Lab6 Learn from the past

Task

After the baptism of the five labs before, the last lab must be a piece of cake for you.

Intro

In this lab, you only need to use a high-level programming language(e.g. C/C++) to implement all the code
that has been written before. Note that the algorithm needs to be consistent with what was used
before. (e.g. Modulo operations cannot be replaced with % for the second lab.)

Here are program lists:

1. 1ab1: counting how many 1

2. lab2: a variant of the fibonacci sequence
3. lab3: longest duplicate substring

4. lab4: sort and count

rules

Here are some details:

1. You are expressly forbidden to use operations like *, /, %, >>, << which LC3 does not support directly
and the equivalent library functions;

2.You are allowed to use +, -, =, ++, -, ==, 1=, <, >, <=,>=, &, |, ~;

3. You are allowed to use for , while, do while, if, continue, break , switch case ;

4. You are allowed to define help functions that do not violate the above rules.

skeleton

For your convenience, your code may be written as:

#include <cstdint>
#include <iostream>

#include <fstream>

#tdefine LENGTH 3
#tdefine MAXLEN 100

intl6_t labl(intl6_t a, intl6_t b) {
// initialize

// calculation

// return value

af://n0
af://n2
af://n5
af://n23
af://n39

intl6_t lab2(intl16_t p, intl6_t q, intl6_t n) {

// initialize

// calculation

// return value

intl6_t lab3(int16_t n, char s[]) {
// initialize

// calculation

// return value

void lab4(intl6_t score[], intl6_t *a, intl6_t *b) {
// initialize

// calculation

// return value

int main() {
std: :fstream file;
file.open("test.txt", std::ios::in);

// labl
intle t a = @, b = 0;
for (int i = ©; i < LENGTH; ++i) {
file >> a >> b;
std::cout << labl(a, b) << std::endl;

// lab2
intl6e_t p =06, q =0, n = 0;
for (int i = ©; i < LENGTH; ++i) {
file >> p >> q >> n;
std::cout << lab2(p, g, n) << std::endl;

// lab3
char s[MAXLENT];
for (int i = ©; i < LENGTH; ++i) {
file >> n >> s;
std::cout << lab3(n, s) << std::endl;

// laba
intl16_t score[16];
for (int i = ©; i < LENGTH; ++i) {

for (int j = 0; j < 16; ++j) {

file >> score[]j];
}
lab4(score, &a, &b);
for (int j = @; j < 16; ++j) {

std::cout << score[j] <« H

}

std::cout << std::endl << a <<

<< b << std::endl;

file.close();

return 0;

with the test.txt we provide, here is the output

15
146
818
1219

10 20 25 30 35 40 45 50 55 60 80 85 90 95 100

10 15 20 25 35 40 45 50 65 70 75 80 90 95 100

N

10 11 21 22 33 44 53 55 57 66 77 88 97 98 99

A O WO PO W P
[

=

Note:

1. If you use the programming framework we provide, for the convenience of TA's test, please comment
outthe #define LENGTH 3 when submitting. (So TA can use -DLENGTH=X since there are more
testcases.)

2. If you write from scratch yourself, please describe your program structure in the report, and make sure
your output is consistent with our skeleton.

Score

Correctness for 50% and the report for other 50%.

Submission

Your submission be structured as shown below.

PB21****** Name.zip
F— PB21****** Name_report.pdf
L— 1lab6.c

af://n55
af://n58

Reports

Your reports should contain at least the five parts below:

purpose

principles (e.g. how to solve these problems using high-level programming language)
procedure (e.g. bugs you encountered and how to solve them)

result of your test

answers to the questions

o What is the difference between programming in a high-level language and programming in LC3
assembly language?

o What instructions do you think need to be added to LC3? (Hint: You can think about the previous
labs and what instructions could be added to greatly simplify the previous programming)

o |s there anything you need to learn from LC3 for the high-level language you use?

af://n62

	Lab6 Learn from the past
	Task
	Intro
	rules
	skeleton

	Score
	Submission
	Reports

