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Preface

Finally, the third edition! We must first thank all those who have been pushing

us to produce a third edition. Since the publication of the second edition was so

long ago, clearly the material must be out of date. Wrong! Fundamentals do not

change very often, and our intent continues to be to provide a book that explains

the fundamentals clearly in the belief that if the fundamentals are mastered, there

is no limit to how high one can soar if one’s talent and focus are equal to the task.

We must also apologize that it took so long to produce this revision. Please

know that the delay in no way reflects any lack of enthusiasm on our part. We are

both as passionate about the foundation of computing today as we were 25 years

ago when we overhauled the first course in computing that eventually became

the first edition of this book. Indeed, we have both continued to teach the course

regularly. And, as expected, each time we teach, we develop new insights as to

what to teach, new examples to explain things, and new ways to look at things.

The result of all this, hopefully, is that we have captured this in the third edition.

It is a pleasure to finally be writing this preface. We have received an enor-

mous number of comments from students who have studied the material in the

book and from instructors who have taught from it. It is gratifying to know that

a lot of people agree with our approach, and that this agreement is based on real

firsthand experience learning from it (in the case of students) and watching stu-

dents learn from it (in the case of instructors). The excitement displayed in their

correspondence continues to motivate us.

Why the Book Happened
This textbook evolved from EECS 100, the first computing course for computer

science, computer engineering, and electrical engineering majors at the Univer-

sity of Michigan, Ann Arbor, that Kevin Compton and the first author introduced

for the first time in the fall term, 1995.

EECS 100 happened at Michigan because Computer Science and Engi-

neering faculty had been dissatisfied for many years with the lack of student

comprehension of some very basic concepts. For example, students had a lot

of trouble with pointer variables. Recursion seemed to be “magic,” beyond

understanding.

We decided in 1993 that the conventional wisdom of starting with a high-

level programming language, which was the way we (and most universities) were
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doing it, had its shortcomings. We decided that the reason students were not get-

ting it was that they were forced to memorize technical details when they did not

understand the basic underpinnings.

Our result was the bottom-up approach taken in this book, where we contin-

ually build on what the student already knows, only memorizing when absolutely

necessary. We did not endorse then and we do not endorse now the popular

information hiding approach when it comes to learning. Information hiding is a

useful productivity enhancement technique after one understands what is going on.

But until one gets to that point, we insist that information hiding gets in the way of

understanding. Thus, we continually build on what has gone before so that nothing

is magic and everything can be tied to the foundation that has already been laid.

We should point out that we do not disagree with the notion of top-down

design. On the contrary, we believe strongly that top-down design is correct

design. But there is a clear difference between how one approaches a design prob-

lem (after one understands the underlying building blocks) and what it takes to get

to the point where one does understand the building blocks. In short, we believe

in top-down design, but bottom-up learning for understanding.

Major Changes in the Third Edition
The LC-3

A hallmark of our book continues to be the LC-3 ISA, which is small enough to

be described in a few pages and hopefully mastered in a very short time, yet rich

enough to convey the essence of what an ISA provides. It is the LC “3” because

it took us three tries to get it right. Four tries, actually, but the two changes in the

LC-3 ISA since the second edition (i.e., changes to the LEA instruction and to the

TRAP instruction) are so minor that we decided not to call the slightly modified

ISA the LC-4.

The LEA instruction no longer sets condition codes. It used to set condition

codes on the mistaken belief that since LEA stands for Load Effective Address,

it should set condition codes like LD, LDI, and LDR do. We recognize now that

this reason was silly. LD, LDI, and LDR load a register from memory, and so

the condition codes provide useful information – whether the value loaded is

negative, zero, or positive. LEA loads an address into a register, and for that, the

condition codes do not really provide any value. Legacy code written before this

change should still run correctly.

The TRAP instruction no longer stores the linkage back to the calling pro-

gram in R7. Instead, the PC and PSR are pushed onto the system stack and popped

by the RTI instruction (renamed Return from Trap or Interrupt) as the last instruc-

tion in a trap routine. Trap routines now execute in privileged memory (x0000 to

x2FFF). This change allows trap routines to be re-entrant. It does not affect old

code provided the starting address of the trap service routines, obtained from the

Trap Vector Table, is in privileged memory and the terminating instruction of

each trap service routine is changed from RET to RTI.

As before, Appendix A specifies the LC-3 completely.
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The Addition of C++

We’ve had an ongoing debate about how to extend our approach and textbook

to C++. One of the concerns about C++ is that many of its language features

are too far abstracted from the underlying layers to make for an easy fit to our

approach. Another concern is that C++ is such a vast language that any adequate

coverage would require an additional thousand pages. We also didn’t want to drop

C completely, as it serves as a de facto development language for systems and

hardware-oriented projects.

We adopted an approach where we cover the common core of C and C++

from Chapters 11 through 19. This common core is similar to what was covered

in the second edition, with some minor updates. Chapter 20 serves as a transition,

which we aspired to make very smooth, to the core concepts of C++. With this

approach, we get to explore the evolution between C and C++, which serves as

a key learning opportunity on what changes were essential to boost programmer

productivity.

In particular, we focus on classes in C++ as an evolution from structures in

C. We discuss classes as a compiler construct, how method calls are made, and

the notion of constructors. We touch upon inheritance, too, but leave the details

for subsequent treatment in follow-on courses.

An important element of C++ is the introduction of container classes in the

Standard Template Library, which is a heavily utilized part of the C++ language.

This provides an opportunity to dive deep into the vector class, which serves as

a continuation of a running example in the second half around the support for

variable-sized arrays in high-level languages, or in particular, C’s lack of support

for them.

Other Important Updates

Although no chapter in the book has remained untouched, some chapters have

been changed more than others. In Chapter 2, we expanded the coverage of the

floating point data type and the conversion of fractions between decimal and

binary numbers in response to several instructors who wanted them. We moved

DeMorgan’s Laws from Chapter 3 to Chapter 2 because the concept is really about

AND and OR functions and not about digital logic implementation. In Chap-

ter 3, we completely overhauled the description of state, latches, flip-flops, finite

state machines, and our example of a danger sign. We felt the explanations in the

second edition were not as clear as they needed to be, and the concepts are too

important to not get right. We revised Chapter 4 to better introduce the LC-3,

including a different set of instructions, leading to our first complete example of

a computer program.

Our organization of Chapters 8, 9, and 10 was completely overhauled in order

to present essentially the same material in a more understandable way. Although

most of our treatment of data structures waits until we have introduced C in the

second half of the book, we felt it was important to introduce stacks, queues,

and character strings as soon as the students have moved out of programming in

machine language so they can write programs dealing with these data structures
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and see how these structures are actually organized in memory. We moved our dis-

cussion of subroutines up to Chapter 8 because of their importance in constructing

richer programs.

We also introduced recursion in Chapter 8, although its main treatment is still

left for the second half of the book. Both the expressive power of recursion and

its misuse are so common in undergraduate curricula that we felt dealing with

it twice, first while they are engrossed in the bowels of assembly language and

again after moving up to the richness of C, was worthwhile.

Chapter 9 now covers all aspects of I/O in one place, including polling and

interrupt-driven I/O. Although the concept of privilege is present in the second

edition, we have put greater emphasis on it in the third edition. Our coverage

of system calls (the trap routines invoked by the TRAP instruction) appears in

Chapter 9. All of the above reduce Chapter 10 to simply a comprehensive example

that pulls together a lot of the first half of the book: the simulation of a calculator.

Doing so requires 12 subroutines that are laid out in complete detail. Two con-

cepts that are needed to make this happen are stack arithmetic and ASCII/binary

conversion, so they are included in Chapter 10.

We reworked all the examples in Chapters 11 through 19 to use the latest

ANSI Standard C or C18. We also added more coding examples to further empha-

size points and to provide clarity on complex topics such as pointers, arrays,

recursion, and pointers to pointers in C. In Chapter 16, we added additional

sections on variable-sized arrays in C, and on multidimensional arrays.

Chapter Organization
The book breaks down into two major segments, (a) the underlying structure

of a computer, as manifested in the LC-3; and (b) programming in a high-level

language, in our case C and C++.

The LC-3

We start with the underpinnings that are needed to understand the workings of a

real computer. Chapter 2 introduces the bit and arithmetic and logical operations

on bits. Then we begin to build the structure needed to understand the LC-3.

Chapter 3 takes the student from an MOS transistor, step by step, to a “real”

memory and a finite state machine.

Our real memory consists of four words of three bits each, rather than

16 gigabytes, which is common in most laptops today. Its description fits on a

single page (Figure 3.20), making it easy for a student to grasp. By the time stu-

dents get there, they have been exposed to all the elements needed to construct the

memory. The finite state machine is needed to understand how a computer pro-

cesses instructions, starting in Chapter 4. Chapter 4 introduces the von Neumann

execution model and enough LC-3 instructions to allow an LC-3 program to be

written. Chapter 5 introduces most of the rest of the LC-3 ISA.
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The LC-3 is a 16-bit architecture that includes physical I/O via keyboard

and monitor, TRAPs to the operating system for handling service calls, con-

ditional branches on (N, Z, and P) condition codes, a subroutine call/return

mechanism, a minimal set of operate instructions (ADD, AND, and NOT), and

various addressing modes for loads and stores (direct, indirect, Base+offset).

Chapter 6 is devoted to programming methodology (stepwise refinement)

and debugging, and Chapter 7 is an introduction to assembly language program-

ming. We have developed a simulator and an assembler for the LC-3 that runs on

Windows, Linux, and Mac0S platforms. It can be downloaded from the web at

no charge.

Students use the simulator to test and debug programs written in LC-3

machine language and in LC-3 assembly language. The simulator allows online

debugging (deposit, examine, single-step, set breakpoint, and so on). The sim-

ulator can be used for simple LC-3 machine language and assembly language

programming assignments, which are essential for students to master the concepts

presented throughout the first ten chapters.

Assembly language is taught, but not to train expert assembly language pro-

grammers. Indeed, if the purpose was to train assembly language programmers,

the material would be presented in an upper-level course, not in an introductory

course for freshmen. Rather, the material is presented in Chapter 7 because it

is consistent with the paradigm of the book. In our bottom-up approach, by the

time the student reaches Chapter 7, he/she can handle the process of transform-

ing assembly language programs to sequences of 0s and 1s. We go through the

process of assembly step by step for a very simple LC-3 Assembler. By hand

assembling, the student (at a very small additional cost in time) reinforces the

important fundamental concept of translation.

It is also the case that assembly language provides a user-friendly notation

to describe machine instructions, something that is particularly useful for writing

programs in Chapters 8, 9, and 10, and for providing many of the explanations in

the second half of the book. Starting in Chapter 11, when we teach the semantics

of C statements, it is far easier for the reader to deal with ADD R1, R2, R3 than

to have to struggle with 0001001010000011.

Chapter 8 introduces three important data structures: the stack, the queue,

and the character string, and shows how they are stored in memory. The sub-

routine call/return mechanism of the LC-3 is presented because of its usefulness

both in manipulating these data structures and in writing programs. We also intro-

duce recursion, a powerful construct that we revisit much more thoroughly in the

second half of the book (in Chapter 17), after the student has acquired a much

stronger capability in high-level language programming. We introduce recursion

here to show by means of a few examples the execution-time tradeoffs incurred

with recursion as a first step in understanding when its use makes sense and when

it doesn’t.

Chapter 9 deals with input/output and some basic interaction between the

processor and the operating system. We introduce the notions of priority and

privilege, which are central to a systems environment. Our treatment of I/O is

all physical, using keyboard data and status registers for input and display data

and status registers for output. We describe both interrupt-driven I/O and I/O
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under program control. Both are supported by our LC-3 simulator so the student

can write interrupt drivers. Finally, we show the actual LC-3 code of the trap ser-

vice routines that the student has invoked with the TRAP instruction starting in

Chapter 4. To handle interrupt-driven I/O and trap service routines, we complete

the description of the LC-3 ISA with details of the operation of the Return from

Trap or Interrupt (RTI) and TRAP instructions.

The first half of the book concludes with Chapter 10, a comprehensive exam-

ple of a simple calculator that pulls together a lot of what the students have learned

in Chapters 1 through 9.

Programming in C and C++

By the time the student gets to the second part of the textbook, he/she has an

understanding of the layers below. In our coverage of programming in C and

C++, we leverage this foundation by showing the resulting LC-3 code generated

by a compiler with each new concept in C/C++.

We start with the C language because it provides the common, essential

core with C++. The C programming language fits very nicely with our bottom-

up approach. Its low-level nature allows students to see clearly the connection

between software and the underlying hardware. In this book, we focus on basic

concepts such as control structures, functions, and arrays. Once basic program-

ming concepts are mastered, it is a short step for students to learn more advanced

concepts such as objects and abstraction in C++.

Each time a new high-level construct is introduced, the student is shown

the LC-3 code that a compiler would produce. We cover the basic constructs of

C (variables, operators, control, and functions), pointers, arrays, recursion, I/O,

complex data structures, and dynamic allocation. With C++, we cover some basic

improvements over C, classes, and containers.

Chapter 11 is a gentle introduction to high-level programming languages. At

this point, students have dealt heavily with assembly language and can understand

the motivation behind what high-level programming languages provide. Chapter

11 also contains a simple C program, which we use to kick-start the process of

learning C.

Chapter 12 deals with values, variables, constants, and operators. Chapter 13

introduces C control structures. We provide many complete program examples

to give students a sample of how each of these concepts is used in practice. LC-3

code is used to demonstrate how each C construct affects the machine at the lower

levels.

Chapter 14 introduces functions in C. Students are not merely exposed to the

syntax of functions. Rather they learn how functions are actually executed, with

argument-passing using a run-time stack. A number of examples are provided.

In Chapter 15, students are exposed to techniques for testing their code, along

with debugging high-level source code. The ideas of white-box and black-box

testing are discussed.

Chapter 16 teaches pointers and arrays, relying heavily on the student’s

understanding of how memory is organized. We discuss C’s notions of fixed size

and variable-length arrays, along with multidimensional array allocation.
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Chapter 17 teaches recursion, using the student’s newly gained knowledge of

functions, stack frames, and the run-time stack. Chapter 18 introduces the details

of I/O functions in C, in particular, streams, variable length argument lists, and

how C I/O is affected by the various format specifications. This chapter relies on

the student’s earlier exposure to physical I/O in Chapter 8. Chapter 19 discusses

structures in C, dynamic memory allocation, and linked lists.

Chapter 20 provides a jump-start on C++ programming by discussing its

roots in C and introducing the idea of classes as a natural evolution from struc-

tures. We also cover the idea of containers in the standard template library, to

enable students to quickly jump into productive programming with C++.

Along the way, we have tried to emphasize good programming style and cod-

ing methodology by means of examples. Novice programmers probably learn at

least as much from the programming examples they read as from the rules they

are forced to study. Insights that accompany these examples are highlighted by

means of lightbulb icons that are included in the margins.

We have found that the concept of pointer variables (Chapter 16) is not at all

a problem. By the time students encounter it, they have a good understanding of

what memory is all about, since they have analyzed the logic design of a small

memory (Chapter 3). They know the difference, for example, between a memory

location’s address and the data stored there.

Recursion ceases to be magic since, by the time a student gets to that point

(Chapter 17), he/she has already encountered all the underpinnings. Students

understand how stacks work at the machine level (Chapter 8), and they understand

the call/return mechanism from their LC-3 machine language programming expe-

rience, and the need for linkages between a called program and the return to the

caller (Chapter 8). From this foundation, it is not a large step to explain functions

by introducing run-time stack frames (Chapter 14), with a lot of the mystery about

argument passing, dynamic declarations, and so on, going away. Since a function

can call a function, it is one additional small step (certainly no magic involved)

for a function to call itself.

The Simulator/Debugger
The importance of the Simulator/Debugger for testing the programs a student

writes cannot be overemphasized. We believe strongly that there is no substi-

tute for hands-on practice testing one’s knowledge. It is incredibly fulfilling

to a student’s education to write a program that does not work, testing it to

find out why it does not work, fixing the bugs himself/herself, and then see-

ing the program run correctly. To that end, the Simulator/Debugger has been

completely rewritten. It runs on Windows, Linux, and MacOS while present-

ing the same user interface (GUI) regardless of which platform the student is

using. We have improved our incorporation of interrupt-driven I/O into the Sim-

ulator’s functionality so students can easily write interrupt drivers and invoke

them by interrupting a lower priority executing program. ...in their first course in

computing!
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Alternate Uses of the Book
We wrote the book as a textbook for a freshman introduction to computing. We

strongly believe that our motivated bottom-up approach is the best way for stu-

dents to learn the fundamentals of computing. We have seen lots of evidence

showing that in general, students who understand the fundamentals of how the

computer works are better able to grasp the stuff that they encounter later, includ-

ing the high-level programming languages that they must work in, and that they

can learn the rules of these programming languages with far less memorizing

because everything makes sense. For us, the best use of the book is a one-semester

freshman course for particularly motivated students, or a two-semester sequence

where the pace is tempered.

Having said that, we recognize that others see the curriculum differently.

Thus, we hasten to add that the book can certainly be used effectively in other

ways. In fact, each of the following has been tried, and all have been used

successfully:

Two Quarters, Freshman Course
An excellent use of the book. No prerequisites, the entire book can be covered

easily in two quarters, the first quarter for Chapters 1–10, the second quarter for

Chapters 11–20. The pace is brisk, but the entire book can be covered easily in

two academic quarters.

One-Semester, Second Course
Several schools have successfully used the book in their second course,

after the students have been exposed to programming with an object-oriented

programming language in a milder first course. The rationale is that after expo-

sure to high-level language programming in the first course, the second course

should treat at an introductory level digital logic, basic computer organization,

and assembly language programming. The first two-thirds of the semester is spent

on Chapters 1–10, and the last third on Chapters 11–20, teaching C programming,

but also showing how some of the magic from the students’ first course can be

implemented. Coverage of functions, activation records, recursion, pointer vari-

ables, and data structures are examples of topics where getting past the magic is

particularly useful. The second half of the book can move more quickly since the

student has already taken an introductory programming course. This model also

allows students who were introduced to programming with an object-oriented

language to pick up C, which they will almost certainly need in some of their

advanced software courses.

A Sophomore-Level Computer Organization Course
The book has been used to delve deeply into computer implementation in

the sophomore year. The semester is spent in Chapters 1 through 10, often

culminating in a thorough study of Appendix C, which provides the complete

microarchitecture of a microprogrammed LC-3. We note, however, that some

very important ideas in computer architecture are not covered in the book, most

notably cache memory, pipelining, and virtual memory. Instructors using the

book this way are encouraged to provide extra handouts dealing with those top-

ics. We agree that they are very important to the student’s computer architecture
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education, but we feel they are better suited to a later course in computer

architecture and design. This book is not intended for that purpose.

Why LC-3, and Not ARM or RISCV?
We have been asked why we invented the LC-3 ISA, rather than going with ARM,

which seems to be the ISA of choice for most mobile devices, or RISCV, which

has attracted substantial interest over the last few years.

There are many reasons. First, we knew that the ISA we selected would

be the student’s first ISA, not his/her last ISA. Between the freshman year and

graduation, the student is likely to encounter several ISAs, most of which are in

commercial products: ARM, RISCV, x86, and POWER, to name a few.

But all the commercial ISAs have details that have no place in an introductory

course but still have to be understood for the student to use them effectively. We

could, of course, have subset an existing ISA, but that always ends up in questions

of what to take out and what to leave in with a result that is not as clean as one

would think at first blush. Certainly not as clean as what one can get when starting

from scratch. It also creates an issue whenever the student uses an instruction in

an exam or on an assignment that is not in the subset. Not very clean from a

pedagogical sense.

We wanted an ISA that was clean with no special cases to deal with, with as

few opcodes as necessary so the student could spend almost all his/her time on

the fundamental concepts in the course and very little time on the nuances of the

instruction set. The formats of all instructions in the LC-3 fit on a single page.

Appendix A provides all the details (i.e., the complete data sheet) of the entire

LC-3 ISA in 25 pages.

We also wanted an instruction set that in addition to containing only a few

instructions was very rich in the breadth of what it embraced. So, we came up

with the LC-3, an instruction set with only 15 four-bit opcodes, a small enough

number that students can absorb the ISA without even trying. For arithmetic, we

have only ADD instead of ADD, SUB, MUL, and DIV. For logical operations,

we have AND and NOT, foregoing OR, XOR, etc. We have no shift or rotate

instructions. In all these cases, the missing opcodes can be implemented with

procedures using the few opcodes that the LC-3 provides. We have loads and

stores with three different addressing modes, each addressing mode useful for a

different purpose. We have conditional branches, subroutine calls, return from

trap or interrupt, and system calls (the TRAP instruction).

In fact, this sparse set of opcodes is a feature! It drives home the need for

creating more complex functionality out of simple operations, and the need for

abstraction, both of which are core concepts in the book.

Most importantly, we have found from discussions with hundreds of students

that starting with the LC-3 does not put them at a disadvantage in later courses.

On the contrary: For example, at one campus students were introduced to ARM in

the follow-on course, while at another campus, students were introduced to x86.
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In both cases, students appreciated starting with the LC-3, and their subsequent

introduction to ARM or x86 was much easier as a result of their first learning the

fundamental concepts with the LC-3.

A Few Observations
Having now taught the course more than 20 times between us, we note the

following:

Understanding, Not Memorizing

Since the course builds from the bottom up, we have found that less memorization

of seemingly arbitrary rules is required than in traditional programming courses.

Students understand that the rules make sense since by the time a topic is taught,

they have an awareness of how that topic is implemented at the levels below

it. This approach is good preparation for later courses in design, where under-

standing of and insights gained from fundamental underpinnings are essential to

making the required design tradeoffs.

The Student Debugs the Student’s Program

We hear complaints from industry all the time about CS graduates not being able

to program. Part of the problem is the helpful teaching assistant, who contributes

far too much of the intellectual content of the student’s program so the student

never has to really master the art. Our approach is to push the student to do the

job without the teaching assistant (TA). Part of this comes from the bottom-up

approach, where memorizing is minimized and the student builds on what he/she

already knows. Part of this is the simulator, which the student uses from the day

he/she writes his/her first program. The student is taught debugging from his/her

first program and is required from the very beginning to use the debugging tools

of the simulator to get his/her programs to work. The combination of the simulator

and the order in which the subject material is taught results in students actually

debugging their own programs instead of taking their programs to the TA for

help ... with the too-frequent result that the TAs end up writing the programs for

the students.

Preparation for the Future: Cutting Through Protective Layers

Professionals who use computers in systems today but remain ignorant of what

is going on underneath are likely to discover the hard way that the effectiveness

of their solutions is impacted adversely by things other than the actual programs

they write. This is true for the sophisticated computer programmer as well as the

sophisticated engineer.

Serious programmers will write more efficient code if they understand what

is going on beyond the statements in their high-level language. Engineers, and not

just computer engineers, are having to interact with their computer systems today
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more and more at the device or pin level. In systems where the computer is being

used to sample data from some metering device such as a weather meter or feed-

back control system, the engineer needs to know more than just how to program

in MATLAB. This is true of mechanical, chemical, and aeronautical engineers

today, not just electrical engineers. Consequently, the high-level programming

language course, where the compiler protects the student from everything “ugly”

underneath, does not serve most engineering students well, and it certainly does

not prepare them for the future.

Rippling Effects Through the Curriculum

The material of this text clearly has a rippling effect on what can be taught in

subsequent courses. Subsequent programming courses can not only assume the

students know the syntax of C/C++ but also understand how it relates to the

underlying architecture. Consequently, the focus can be on problem solving and

more sophisticated data structures. On the hardware side, a similar effect is seen

in courses in digital logic design and in computer organization. Students start the

logic design course with an appreciation of what the logic circuits they master are

good for. In the computer organization course, the starting point is much further

along than when students are seeing the term Program Counter for the first time.

Faculty members who have taught the follow-on courses have noticed substan-

tial improvement in students’ comprehension compared to what they saw before

students took our course.
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This objective was instilled in me by the professor who taught me how to be a

professor, Professor William K. Linvill. It has been more than 50 years since I

was in his classroom, but I still treasure the example he set.

A Final Word
We are hopeful that you will enjoy teaching or studying from this third edition of

our book. However, as we said in the prefaces to both previous editions, we are

mindful that the current version of the book will always be a work in progress,

and both of us welcome your comments on any aspect of it. You can reach us by

email at patt@ece.utexas.edu and sjp@illinois.edu. We hope you will.

Yale N. Patt
Sanjay J. Patel

September, 2019





1
C H A P T E R

Welcome Aboard

1.1 What We Will Try to Do
Welcome to From Bits and Gates to C and Beyond. Our intent is to introduce

you over the next xxx pages to the world of computing. As we do so, we have

one objective above all others: to show you very clearly that there is no magic to

computing. The computer is a deterministic system—every time we hit it over the

head in the same way and in the same place (provided, of course, it was in the same

starting condition), we get the same response. The computer is not an electronic

genius; on the contrary, if anything, it is an electronic idiot, doing exactly what

we tell it to do. It has no mind of its own.

What appears to be a very complex organism is really just a very large, sys-

tematically interconnected collection of very simple parts. Our job throughout

this book is to introduce you to those very simple parts and, step-by-step, build the

interconnected structure that you know by the name computer. Like a house, we

will start at the bottom, construct the foundation first, and then go on to add layer

after layer, as we get closer and closer to what most people know as a full-blown

computer. Each time we add a layer, we will explain what we are doing, tying the

new ideas to the underlying fabric. Our goal is that when we are done, you will be

able to write programs in a computer language such as C using the sophisticated

features of that language and to understand what is going on underneath, inside

the computer.

1.2 How We Will Get There
We will start (in Chapter 2) by first showing that any information processed by

the computer is represented by a sequence of 0s and 1s. That is, we will encode

all information as sequences of 0s and 1s. For example, one encoding of the letter

a that is commonly used is the sequence 01100001. One encoding of the decimal

number 35 is the sequence 00100011. We will see how to perform operations on

such encoded information.
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Once we are comfortable with information represented as codes made up of

0s and 1s and operations (addition, for example) being performed on these repre-

sentations, we will begin the process of showing how a computer works. Starting

in Chapter 3, we will note that the computer is a piece of electronic equipment

and, as such, consists of electronic parts operated by voltages and interconnected

by wires. Every wire in the computer, at every moment in time, is at either a high

voltage or a low voltage. For our representation of 0s and 1s, we do not specify

exactly how high. We only care whether there is or is not a large enough voltage

relative to 0 volts to identify it as a 1. That is, the absence or presence of a rea-

sonable voltage relative to 0 volts is what determines whether it represents the

value 0 or the value 1.

In Chapter 3, we will see how the transistors that make up today’s micro-

processor (the heart of the modern computer) work. We will further see how

those transistors are combined into larger structures that perform operations,

such as addition, and into structures that allow us to save information for later

use. In Chapter 4, we will combine these larger structures into the von Neumann

machine, a basic model that describes how a computer works. We will also begin

to study a simple computer, the LC-3. We will continue our study of the LC-3 in

Chapter 5. LC-3 stands for Little Computer 3. We actually started with LC-1 but

needed two more shots at it before (we think) we got it right! The LC-3 has all

the important characteristics of the microprocessors that you may have already

heard of, for example, the Intel 8088, which was used in the first IBM PCs back

in 1981. Or the Motorola 68000, which was used in the Macintosh, vintage 1984.

Or the Pentium IV, one of the high-performance microprocessors of choice for

the PC in the year 2003. Or today’s laptop and desktop microprocessors, the Intel

Core processors – I3, I5, and I7. Or even the ARM microprocessors that are used

in most smartphones today. That is, the LC-3 has all the important characteristics

of these “real” microprocessors without being so complicated that it gets in the

way of your understanding.

Once we understand how the LC-3 works, the next step is to program it, first

in its own language (Chapter 5 and Chapter 6), and then in a language called

assembly language that is a little bit easier for humans to work with (Chap-

ter 7). Chapter 8 introduces representations of information more complex than a

simple number – stacks, queues, and character strings, and shows how to imple-

ment them. Chapter 9 deals with the problem of getting information into (input)

and out of (output) the LC-3. Chapter 9 also deals with services provided to a

computer user by the operating system. We conclude the first half of the book

(Chapter 10) with an extensive example, the simulation of a calculator, an app on

most smartphones today.

In the second half of the book (Chapters 11–20), we turn our attention

to high-level programming concepts, which we introduce via the C and C++

programming languages. High-level languages enable programmers to more

effectively develop complex software by abstracting away the details of the under-

lying hardware. C and C++ in particular offer a rich set of programmer-friendly

constructs, but they are close enough to the hardware that we can examine

how code is transformed to execute on the layers below. Our goal is to enable

you to write short, simple programs using the core parts of these programming
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languages, all the while being able to comprehend the transformations required

for your code to execute on the underlying hardware.

We’ll start with basic topics in C such as variables and operators (Chapter 12),

control structures (Chapter 13), and functions (Chapter 14). We’ll see that these are

straightforward extensions of concepts introduced in the first half of the textbook.

We then move on to programming concepts in Chapters 15–19 that will enable

us to create more powerful pieces of code: Testing and Debugging (Chapter 15),

Pointers and Arrays in C (Chapter 16), Recursion (Chapter 17), Input and Output in

C (Chapter 18), and Data Structures in C (Chapter 19).

Chapters 20 is devoted to C++, which we present as an evolution of the

C programming language. Because the C++ language was initially defined as

a superset of C, many of the concepts covered in Chapters 11–19 directly map

onto the C++ language. We will introduce some of the core notions in C++ that

have helped establish C++ as one of the most popular languages for developing

real-world software. Chapter 20 is our Introduction to C++.

In almost all cases, we try to tie high-level C and C++ constructs to the

underlying LC-3 so that you will understand what you demand of the computer

when you use a particular construct in a C or C++ program.

1.3 Two Recurring Themes
Two themes permeate this book that we as professors previously took for granted,

assuming that everyone recognized their value and regularly emphasized them

to students of engineering and computer science. However, it has become clear

to us that from the git-go, we need to make these points explicit. So, we state

them here up front. The two themes are (a) the notion of abstraction and (b) the

importance of not separating in your mind the notions of hardware and software.

Their value to your development as an effective engineer or computer scien-

tist goes well beyond your understanding of how a computer works and how to

program it.

The notion of abstraction is central to all that you will learn and expect to

use in practicing your craft, whether it be in mathematics, physics, any aspect of

engineering, or business. It is hard to think of any body of knowledge where the

notion of abstraction is not critical.

The misguided hardware/software separation is directly related to your

continuing study of computers and your work with them.

We will discuss each in turn.

1.3.1 The Notion of Abstraction

The use of abstraction is all around us. When we get in a taxi and tell the driver,

“Take me to the airport,” we are using abstraction. If we had to, we could probably

direct the driver each step of the way: “Go down this street ten blocks, and make

a left turn.” And, when the driver got there, “Now take this street five blocks and

make a right turn.” And on and on. You know the details, but it is a lot quicker to

just tell the driver to take you to the airport.
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Even the statement “Go down this street ten blocks…” can be broken down

further with instructions on using the accelerator, the steering wheel, watching

out for other vehicles, pedestrians, etc.

Abstraction is a technique for establishing a simpler way for a person to inter-

act with a system, removing the details that are unnecessary for the person to

interact effectively with that system. Our ability to abstract is very much a pro-

ductivity enhancer. It allows us to deal with a situation at a higher level, focusing

on the essential aspects, while keeping the component ideas in the background.

It allows us to be more efficient in our use of time and brain activity. It allows us

to not get bogged down in the detail when everything about the detail is working

just fine.

There is an underlying assumption to this, however: when everything about
the detail is just fine. What if everything about the detail is not just fine? Then,

to be successful, our ability to abstract must be combined with our ability to

un-abstract. Some people use the word deconstruct—the ability to go from the

abstraction back to its component parts.

Two stories come to mind.

The first involves a trip through Arizona the first author made a long time

ago in the hottest part of the summer. At the time he was living in Palo Alto,

California, where the temperature tends to be mild almost always. He knew

enough to take the car to a mechanic before making the trip and tell him to check

the cooling system. That was the abstraction: cooling system. What he had not

mastered was that the capability of a cooling system for Palo Alto, California,

is not the same as the capability of a cooling system for the summer deserts of

Arizona. The result: two days in Deer Lodge, Arizona (population 3), waiting for

a head gasket to be shipped in.

The second story (perhaps apocryphal) is supposed to have happened during

the infancy of electric power generation. General Electric Co. was having trouble

with one of its huge electric power generators and did not know what to do. On

the front of the generator were lots of dials containing lots of information, and

lots of screws that could be rotated clockwise or counterclockwise as the operator

wished. Something on the other side of the wall of dials and screws was malfunc-

tioning and no one knew what to do. As the story goes, they called in one of the

early giants in the electric power industry. He looked at the dials and listened to

the noises for a minute, then took a small screwdriver from his pocket and rotated

one screw 35 degrees counterclockwise. The problem immediately went away. He

submitted a bill for $1000 (a lot of money in those days) without any elaboration.

The controller found the bill for two minutes’ work a little unsettling and asked

for further clarification. Back came the new bill:

Turning a screw 35 degrees counterclockwise: $ 0.75
Knowing which screw to turn and by how much: 999.25

In both stories the message is the same. It is more efficient to think of entities

as abstractions. One does not want to get bogged down in details unnecessarily.

And as long as nothing untoward happens, we are OK. If there had been no trip

to Arizona, the abstraction “cooling system” would have been sufficient. If the
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electric power generator never malfunctioned, there would have been no need for

the power engineering guru’s deeper understanding.

As we will see, modern computers are composed of transistors. These tran-

sistors are combined to form logic “gates”—an abstraction that lets us think in

terms of 0s and 1s instead of the varying voltages on the transistors. A logic cir-

cuit is a further abstraction of a combination of gates. When one designs a logic

circuit out of gates, it is much more efficient to not have to think about the inter-

nals of each gate. To do so would slow down the process of designing the logic

circuit. One wants to think of the gate as a component. But if there is a problem

with getting the logic circuit to work, it is often helpful to look at the internal

structure of the gate and see if something about its functioning is causing the

problem.

When one designs a sophisticated computer application program, whether it

be a new spreadsheet program, word processing system, or computer game, one

wants to think of each of the components one is using as an abstraction. If one

spent time thinking about the details of each component when it was not neces-

sary, the distraction could easily prevent the total job from ever getting finished.

But when there is a problem putting the components together, it is often useful to

examine carefully the details of each component in order to uncover the problem.

The ability to abstract is the most important skill. In our view, one should

try to keep the level of abstraction as high as possible, consistent with getting

everything to work effectively. Our approach in this book is to continually raise

the level of abstraction. We describe logic gates in terms of transistors. Once we

understand the abstraction of gates, we no longer think in terms of transistors.

Then we build larger structures out of gates. Once we understand these larger

abstractions, we no longer think in terms of gates.

The Bottom Line Abstractions allow us to be much more efficient in dealing

with all kinds of situations. It is also true that one can be effective without under-

standing what is below the abstraction as long as everything behaves nicely. So,

one should not pooh-pooh the notion of abstraction. On the contrary, one should

celebrate it since it allows us to be more efficient.

In fact, if we never have to combine a component with anything else into a

larger system, and if nothing can go wrong with the component, then it is perfectly

fine to understand this component only at the level of its abstraction.

But if we have to combine multiple components into a larger system, we

should be careful not to allow their abstractions to be the deepest level of our

understanding. If we don’t know the components below the level of their abstrac-

tions, then we are at the mercy of them working together without our intervention.

If they don’t work together, and we are unable to go below the level of abstraction,

we are stuck. And that is the state we should take care not to find ourselves in.

1.3.2 Hardware vs. Software

Many computer scientists and engineers refer to themselves as hardware people

or software people. By hardware, they generally mean the physical computer and
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all the specifications associated with it. By software, they generally mean the pro-

grams, whether operating systems like Android, ChromeOS, Linux, or Windows,

or database systems like Access, MongoDB, Oracle, or DB-terrific, or applica-

tion programs like Facebook, Chrome, Excel, or Word. The implication is that

the person knows a whole lot about one of these two things and precious little

about the other. Usually, there is the further implication that it is OK to be an

expert at one of these (hardware OR software) and clueless about the other. It is

as if there were a big wall between the hardware (the computer and how it actu-

ally works) and the software (the programs that direct the computer to do their

bidding), and that one should be content to remain on one side of that wall or

the other.

The power of abstraction allows us to “usually” operate at a level where we

do not have to think about the underlying layers all the time. This is a good thing.

It enables us to be more productive. But if we are clueless about the underlying

layers, then we are not able to take advantage of the nuances of those underlying

layers when it is very important to be able to.

That is not to say that you must work at the lower level of abstraction and not

take advantage of the productivity enhancements that the abstractions provide.

On the contrary, you are encouraged to work at the highest level of abstraction

available to you. But in doing so, if you are able to, at the same time, keep in

mind the underlying levels, you will find yourself able to do a much better job.

As you approach your study and practice of computing, we urge you to take

the approach that hardware and software are names for components of two parts

of a computing system that work best when they are designed by people who take

into account the capabilities and limitations of both.

Microprocessor designers who understand the needs of the programs that

will execute on the microprocessor they are designing can design much more

effective microprocessors than those who don’t. For example, Intel, AMD, ARM,

and other major producers of microprocessors recognized a few years ago that a

large fraction of future programs would contain video clips as part of e-mail,

video games, and full-length movies. They recognized that it would be impor-

tant for such programs to execute efficiently. The result: most microprocessors

today contain special hardware capability to process those video clips. Intel

defined additional instructions, initially called their MMX instruction set, and

developed special hardware for it. Motorola, IBM, and Apple did essentially

the same thing, resulting in the AltiVec instruction set and special hardware to

support it.

A similar story can be told about software designers. The designer of a large

computer program who understands the capabilities and limitations of the hard-

ware that will carry out the tasks of that program can design the program so it

executes more efficiently than the designer who does not understand the nature of

the hardware. One important task that almost all large software systems need to

carry out is called sorting, where a number of items have to be arranged in some

order. The words in a dictionary are arranged in alphabetical order. Students in

a class are often graded based on a numerical order, according to their scores

on the final exam. There is a large number of fundamentally different programs

one can write to arrange a collection of items in order. Donald Knuth, one of the
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top computer scientists in the world, devoted 391 pages to the task in The Art
of Computer Programming, vol. 3. Which sorting program works best is often

very dependent on how much the software designer is aware of the underlying

characteristics of the hardware.

The Bottom Line We believe that whether your inclinations are in the direction

of a computer hardware career or a computer software career, you will be much

more capable if you master both. This book is about getting you started on the

path to mastering both hardware and software. Although we sometimes ignore

making the point explicitly when we are in the trenches of working through a

concept, it really is the case that each sheds light on the other.

When you study data types, a software concept, in C (Chapter 12), you will

understand how the finite word length of the computer, a hardware concept,

affects our notion of data types.

When you study functions in C (Chapter 14), you will be able to tie the rules
of calling a function with the hardware implementation that makes those rules

necessary.

When you study recursion, a powerful algorithmic device (initially in

Chapter 8 and more extensively in Chapter 17), you will be able to tie it to the

hardware. If you take the time to do that, you will better understand when the

additional time to execute a procedure recursively is worth it.

When you study pointer variables in C (in Chapter 16), your knowledge of

computer memory will provide a deeper understanding of what pointers pro-

vide, and very importantly, when they should be used and when they should be

avoided.

When you study data structures in C (in Chapter 19), your knowledge of com-

puter memory will help you better understand what must be done to manipulate

the actual structures in memory efficiently.

We realize that most of the terms in the preceding five short paragraphs may

not be familiar to you yet. That is OK; you can reread this page at the end of the

semester. What is important to know right now is that there are important topics

in the software that are very deeply interwoven with topics in the hardware. Our

contention is that mastering either is easier if you pay attention to both.

Most importantly, most computing problems yield better solutions when the

problem solver has the capability of both at his or her disposal.

1.4 A Computer System
We have used the word computer more than two dozen times in the preceding

pages, and although we did not say so explicitly, we used it to mean a system

consisting of the software (i.e., computer programs) that directs and specifies the

processing of information and the hardware that performs the actual processing

of information in response to what the software asks the hardware to do. When

we say “performing the actual processing,” we mean doing the actual additions,

multiplications, and so forth in the hardware that are necessary to get the job
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done. A more precise term for this hardware is a central processing unit (CPU),

or simply a processor or microprocessor. This textbook is primarily about the

processor and the programs that are executed by the processor.

1.4.1 A (Very) Little History for a (Lot) Better Perspective

Before we get into the detail of how the processor and the software associated

with it work, we should take a moment and note the enormous and unparalleled

leaps of performance that the computing industry has made in the relatively short

time computers have been around. After all, it wasn’t until the 1940s that the

first computers showed their faces. One of the first computers was the ENIAC

(the Electronic Numerical Integrator and Calculator), a general purpose electronic

computer that could be reprogrammed for different tasks. It was designed and built

in 1943–1945 at the University of Pennsylvania by Presper Eckert and his colleagues.

It contained more than 17,000 vacuum tubes. It was approximately 8 feet high, more

than 100 feet wide, and about 3 feet deep (about 300 square feet of floor space). It

weighed 30 tons and required 140 kW to operate. Figure 1.1 shows three operators

programming the ENIAC by plugging and unplugging cables and switches.

About 40 years and many computer companies and computers later, in the

early 1980s, the Burroughs A series was born. One of the dozen or so 18-inch

boards that comprise that machine is shown in Figure 1.2. Each board contained

50 or more integrated circuit packages. Instead of 300 square feet, it took up

around 50 to 60 square feet; instead of 30 tons, it weighed about 1 ton, and instead

of 140 kW, it required approximately 25 kW to operate.

Figure 1.1 The ENIAC, designed and built at University of Pennsylvania, 1943–45.
c©Historical/Getty Images



1.4 A Computer System 9

Figure 1.2 A processor board, vintage 1980s. Courtesy of Emilio Salguerio

Fast forward another 30 or so years and we find many of today’s computers on

desktops (Figure 1.3), in laptops (Figure 1.4), and most recently in smartphones

(Figure 1.5). Their relative weights and energy requirements have decreased

enormously, and the speed at which they process information has also increased

enormously. We estimate that the computing power in a smartphone today (i.e.,

how fast we can compute with a smartphone) is more than four million times the

computing power of the ENIAC!

Figure 1.3
A desktop computer.
c©Joby Sessions/
Future/REX/
Shutterstock

Figure 1.4 A laptop. c©Rob
Monk/Future/
REX/Shutterstock

Figure 1.5 A smartphone. c©Oleksiy
Maksymenko/
imageBROKER/REX/Shutterstock



10 chapter 1 Welcome Aboard

Figure 1.6 A microprocessor. c©Peter Gudella/Shutterstock

The integrated circuit packages that comprise modern digital computers have

also seen phenomenal improvement. An example of one of today’s microproces-

sors is shown in Figure 1.6. The first microprocessor, the Intel 4004 in 1971,

contained 2300 transistors and operated at 106 KHz. By 1992, those numbers

had jumped to 3.1 million transistors at a frequency of 66 MHz on the Intel

Pentium microprocessor, an increase in both parameters of a factor of about 1000.

Today’s microprocessors contain upwards of five billion transistors and can oper-

ate at upwards of 4 GHz, another increase in both parameters of about a factor

of 1000.

This factor of one million since 1971 in both the number of transistors and

the frequency that the microprocessor operates at has had very important impli-

cations. The fact that each operation can be performed in one millionth of the

time it took in 1971 means the microprocessor can do one million things today

in the time it took to do one thing in 1971. The fact that there are more than a

million times as many transistors on a chip means we can do a lot more things at

the same time today than we could in 1971.

The result of all this is we have today computers that seem able to understand

the languages people speak – English, Spanish, Chinese, for example. We have

computers that seem able to recognize faces. Many see this as the magic of artifi-

cial intelligence. We will see as we get into the details of how a computer works

that much of what appears to be magic is really due to how blazingly fast very

simple mindless operations (many at the same time) can be carried out.

1.4.2 The Parts of a Computer System

When most people use the word computer, they usually mean more than just

the processor (i.e., CPU) that is in charge of doing what the software directs.
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They usually mean the collection of parts that in combination form their computer
system. Today that computer system is often a laptop (see Figure 1.4), augmented

with many additional devices.

A computer system generally includes, in addition to the processor, a key-

board for typing commands, a mouse or keypad or joystick for positioning on

menu entries, a monitor for displaying information that the computer system has

produced, memory for temporarily storing information, disks and USB memory

sticks of one sort or another for storing information for a very long time, even after

the computer has been turned off, connections to other devices such as a printer

for obtaining paper copies of that information, and the collection of programs

(the software) that the user wishes to execute.

All these items help computer users to do their jobs. Without a printer, for

example, the user would have to copy by hand what is displayed on the monitor.

Without a mouse, keypad, or joystick, the user would have to type each command,

rather than simply position the mouse, keypad, or joystick.

So, as we begin our journey, which focuses on the CPU that occupies a small

fraction of 1 square inch of silicon and the software that makes the CPU do our

bidding, we note that the computer systems we use contain a lot of additional

components.

1.5 Two Very Important Ideas
Before we leave this first chapter, there are two very important ideas that we

would like you to understand, ideas that are at the core of what computing is all

about.

Idea 1: All computers (the biggest and the smallest, the fastest and the
slowest, the most expensive and the cheapest) are capable of comput-
ing exactly the same things if they are given enough time and enough
memory. That is, anything a fast computer can do, a slow computer can
do also. The slow computer just does it more slowly. A more expensive
computer cannot figure out something that a cheaper computer is unable
to figure out as long as the cheaper computer can access enough mem-
ory. (You may have to go to the store to buy more memory whenever it
runs out of memory in order to keep increasing memory.) All computers
can do exactly the same things. Some computers can do things faster,
but none can do more than any other.

Idea 2: We describe our problems in English or some other language
spoken by people. Yet the problems are solved by electrons running
around inside the computer. It is necessary to transform our problem
from the language of humans to the voltages that influence the flow of
electrons. This transformation is really a sequence of systematic trans-
formations, developed and improved over the last 70 years, which
combine to give the computer the ability to carry out what appear to
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be some very complicated tasks. In reality, these tasks are simple and
straightforward.

The rest of this chapter is devoted to discussing these two ideas.

1.6 Computers as Universal
Computational Devices

It may seem strange that an introductory textbook begins by describing how

computers work. After all, mechanical engineering students begin by studying

physics, not how car engines work. Chemical engineering students begin by

studying chemistry, not oil refineries. Why should computing students begin by

studying computers?

The answer is that computers are different. To learn the fundamental prin-

ciples of computing, you must study computers or machines that can do what

computers can do. The reason for this has to do with the notion that computers

are universal computational devices. Let’s see what that means.

Before modern computers, there were many kinds of calculating machines.

Some were analog machines—machines that produced an answer by measuring

some physical quantity such as distance or voltage. For example, a slide rule is

an analog machine that multiplies numbers by sliding one logarithmically graded

ruler next to another. The user can read a logarithmic “distance” on the sec-

ond ruler. Some early analog adding machines worked by dropping weights on a

scale. The difficulty with analog machines is that it is very hard to increase their

accuracy.

This is why digital machines—machines that perform computations by

manipulating a fixed finite set of digits or letters—came to dominate comput-

ing. You are familiar with the distinction between analog and digital watches. An

analog watch has hour and minute hands, and perhaps a second hand. It gives

the time by the positions of its hands, which are really angular measures. Digital

watches give the time in digits. You can increase accuracy just by adding more

digits. For example, if it is important for you to measure time in hundredths of

a second, you can buy a watch that gives a reading like 10:35.16 rather than just

10:35. How would you get an analog watch that would give you an accurate read-

ing to one one-hundredth of a second? You could do it, but it would take a mighty

long second hand! When we talk about computers in this book, we will always

mean digital machines.

Before modern digital computers, the most common digital machines in the

West were adding machines. In other parts of the world another digital machine,

the abacus, was common. Digital adding machines were mechanical or elec-

tromechanical devices that could perform a specific kind of computation: adding

integers. There were also digital machines that could multiply integers. There

were digital machines that could put a stack of cards with punched names in

alphabetical order. The main limitation of all these machines is that they could

do only one specific kind of computation. If you owned only an adding machine
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and wanted to multiply two integers, you had some pencil-and-paper work

to do.

This is why computers are different. You can tell a computer how to add num-

bers. You can tell it how to multiply. You can tell it how to alphabetize a list or

perform any computation you like. When you think of a new kind of computation,

you do not have to buy or design a new computer. You just give the old computer

a new set of instructions (a program) to carry out the new computation. This is

why we say the computer is a universal computational device. Computer scien-

tists believe that anything that can be computed, can be computed by a computer
provided it has enough time and enough memory. When we study computers, we

study the fundamentals of all computing. We learn what computation is and what

can be computed.

The idea of a universal computational device is due to Alan Turing. Turing

proposed in 1937 that all computations could be carried out by a particular kind of

machine, which is now called a Turing machine. He gave a mathematical descrip-

tion of this kind of machine, but did not actually build one. Digital computers

were not operating until several years later. Turing was more interested in solv-

ing a philosophical problem: defining computation. He began by looking at the

kinds of actions that people perform when they compute; these include making

marks on paper, writing symbols according to certain rules when other symbols

are present, and so on. He abstracted these actions and specified a mechanism that

could carry them out. He gave some examples of the kinds of things that these

machines could do. One Turing machine could add two integers; another could

multiply two integers.

Figure 1.7 shows what we call “black box” models of Turing machines that

add and multiply. In each case, the operation to be performed is described in

the box. The data elements on which to operate are shown as inputs to the box.

The result of the operation is shown as output from the box. A black box model

provides no information as to exactly how the operation is performed, and indeed,

there are many ways to add or multiply two numbers.

TADD

a, b a × ba, b a + b

(Turing machine

that adds)

TMUL

(Turing machine

that multiplies)

Figure 1.7 Black box models of Turing machines.

Turing proposed that every computation can be performed by some Turing

machine. We call this Turing’s thesis. Although Turing’s thesis has never been

proved, there does exist a lot of evidence to suggest it is true. We know, for exam-

ple, that various enhancements one can make to Turing machines do not result in

machines that can compute more.

Perhaps the best argument to support Turing’s thesis was provided by Turing

himself in his original paper. He said that one way to try to construct a machine

more powerful than any particular Turing machine was to make a machine U
that could simulate all Turing machines. You would simply describe to U the
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particular Turing machine you wanted it to simulate, say a machine to add two

integers, give U the input data, and U would compute the appropriate output,

in this case the sum of the inputs. Turing then showed that there was, in fact,

a Turing machine that could do this, so even this attempt to find something that

could not be computed by Turing machines failed.

Figure 1.8 further illustrates the point. Suppose you wanted to compute

g ⋅ (e + f ). You would simply provide to U descriptions of the Turing machines

to add and to multiply, and the three inputs, e, f , and g. U would do the rest.

TADD, TMUL

g × (e + f )

e, f, g (Universal
Turing machine)

U

Figure 1.8 Black box model of a universal Turing machine.

In specifying U, Turing had provided us with a deep insight: He had given us

the first description of what computers do. In fact, both a computer (with as much

memory as it wants) and a universal Turing machine can compute exactly the

same things. In both cases, you give the machine a description of a computation

and the data it needs, and the machine computes the appropriate answer. Comput-

ers and universal Turing machines can compute anything that can be computed

because they are programmable.

This is the reason that a big or expensive computer cannot do more than a

small, cheap computer. More money may buy you a faster computer, a monitor

with higher resolution, or a nice sound system. But if you have a small, cheap

computer, you already have a universal computational device.

1.7 How Do We Get the Electrons to
Do the Work?

Figure 1.9 shows the process we must go through to get the electrons (which

actually do the work) to do our bidding. We call the steps of this process the

“Levels of Transformation.” As we will see, at each level we have choices. If we

ignore any of the levels, our ability to make the best use of our computing system

can be very adversely affected.

1.7.1 The Statement of the Problem

We describe the problems we wish to solve in a “natural language.” Natural lan-

guages are languages that people speak, like English, French, Japanese, Italian,

and so on. They have evolved over centuries in accordance with their usage.

They are fraught with a lot of things unacceptable for providing instructions to a
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Devices

Circuits

Microarchitecture

Machine (ISA) Architecture

Language

Algorithms

Problems

Figure 1.9 Levels of transformation.

computer. Most important of these unacceptable attributes is ambiguity. Natural

language is filled with ambiguity. To infer the meaning of a sentence, a listener is

often helped by the tone of voice of the speaker, or at the very least, the context

of the sentence.

An example of ambiguity in English is the sentence, “Time flies like an

arrow.” At least three interpretations are possible, depending on whether (1) one is

noticing how fast time passes, (2) one is at a track meet for insects, or (3) one is

writing a letter to the Dear Abby of Insectville. In the first case, a simile; one

is comparing the speed of time passing to the speed of an arrow that has been

released. In the second case, one is telling the timekeeper to do his/her job much

like an arrow would. In the third case, one is relating that a particular group of

flies (time flies, as opposed to fruit flies) are all in love with the same arrow.

Such ambiguity would be unacceptable in instructions provided to a com-

puter. The computer, electronic idiot that it is, can only do as it is told. To tell it to

do something where there are multiple interpretations would cause the computer

to not know which interpretation to follow.
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1.7.2 The Algorithm

The first step in the sequence of transformations is to transform the natural lan-

guage description of the problem to an algorithm, and in so doing, get rid of the

objectionable characteristics of the natural language. An algorithm is a step-by-

step procedure that is guaranteed to terminate, such that each step is precisely

stated and can be carried out by the computer. There are terms to describe each

of these properties.

We use the term definiteness to describe the notion that each step is precisely

stated. A recipe for excellent pancakes that instructs the preparer to “stir until

lumpy” lacks definiteness, since the notion of lumpiness is not precise.

We use the term effective computability to describe the notion that each step

can be carried out by a computer. A procedure that instructs the computer to “take

the largest prime number” lacks effective computability, since there is no largest

prime number.

We use the term finiteness to describe the notion that the procedure termi-

nates.

For every problem there are usually many different algorithms for solving

that problem. One algorithm may require the fewest steps. Another algorithm

may allow some steps to be performed concurrently. A computer that allows

more than one thing to be done at a time can often solve the problem in less

time, even though it is likely that the total number of steps to be performed has

increased.

1.7.3 The Program

The next step is to transform the algorithm into a computer program in one of the

programming languages that are available. Programming languages are “mechan-

ical languages.” That is, unlike natural languages, mechanical languages did not

evolve through human discourse. Rather, they were invented for use in specify-

ing a sequence of instructions to a computer. Therefore, mechanical languages do

not suffer from failings such as ambiguity that would make them unacceptable for

specifying a computer program.

There are more than 1000 programming languages. Some have been designed

for use with particular applications, such as Fortran for solving scientific calcula-

tions and COBOL for solving business data-processing problems. In the second

half of this book, we will use C and C++, languages that were designed for

manipulating low-level hardware structures.

Other languages are useful for still other purposes. Prolog is the language of

choice for many applications that require the design of an expert system. LISP

was for years the language of choice of a substantial number of people working

on problems dealing with artificial intelligence. Pascal is a language invented as

a vehicle for teaching beginning students how to program.

There are two kinds of programming languages, high-level languages and

low-level languages. High-level languages are at a distance (a high level) from

the underlying computer. At their best, they are independent of the computer on

which the programs will execute. We say the language is “machine independent.”
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All the languages mentioned thus far are high-level languages. Low-level lan-

guages are tied to the computer on which the programs will execute. There is

generally one such low-level language for each computer. That language is called

the assembly language for that computer.

1.7.4 The ISA

The next step is to translate the program into the instruction set of the particular

computer that will be used to carry out the work of the program. The instruction

set architecture (ISA) is the complete specification of the interface between pro-

grams that have been written and the underlying computer hardware that must

carry out the work of those programs.

An analogy that may be helpful in understanding the concept of an ISA is

provided by the automobile. Corresponding to a computer program, represented

as a sequence of 0s and 1s in the case of the computer, is the human sitting in the

driver’s seat of a car. Corresponding to the microprocessor hardware is the car

itself. The “ISA” of the automobile is the specification of everything the human

needs to know to tell the automobile what to do, and everything the automobile

needs to know to carry out the tasks specified by the human driver. For example,

one element of the automobile’s “ISA” is the pedal on the floor known as the

brake, and its function. The human knows that if he/she steps on the brake, the

car will stop. The automobile knows that if it feels pressure from the human on

that pedal, the hardware of the automobile must engage those elements necessary

to stop the car. The full “ISA” of the car includes the specification of the other

pedals, the steering wheel, the ignition key, the gears, windshield wipers, etc. For

each, the “ISA” specifies (a) what the human has to do to tell the automobile what

he/she wants done, and (b) correspondingly, what the automobile will interpret

those actions to mean so it (the automobile) can carry out the specified task.

The ISA of a computer serves the same purpose as the “ISA” of an auto-

mobile, except instead of the driver and the car, the ISA of a computer specifies

the interface between the computer program directing the computer hardware

and the hardware carrying out those directions. For example, consider the set of

instructions that the computer can carry out—that is, what operations the com-

puter can perform and where to get the data needed to perform those operations.

The term opcode is used to describe the operation. The term operand is used to

describe individual data values. The ISA specifies the acceptable representations

for operands. They are called data types. A data type is a representation of an

operand such that the computer can perform operations on that representation.

The ISA specifies the mechanisms that the computer can use to figure out where

the operands are located. These mechanisms are called addressing modes.

The number of opcodes, data types, and addressing modes specified by an

ISA vary among different ISAs. Some ISAs have as few as a half dozen opcodes,

whereas others have as many as several hundred. Some ISAs have only one data

type, while others have more than a dozen. Some ISAs have one or two addressing

modes, whereas others have more than 20. The x86, the ISA used in the PC, has

more than 200 opcodes, more than a dozen data types, and more than two dozen

addressing modes.
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The ISA also specifies the number of unique locations that comprise the com-

puter’s memory and the number of individual 0s and 1s that are contained in each

location.

Many ISAs are in use today. The most widely known example is the x86,

introduced by Intel Corporation in 1979 and currently also manufactured by

AMD and other companies. Other ISAs and the companies responsible for them

include ARM and THUMB (ARM), POWER and z/Architecture (IBM), and

SPARC (Oracle).

The translation from a high-level language (such as C) to the ISA of the

computer on which the program will execute (such as x86) is usually done by

a translating program called a compiler. To translate from a program written in

C to the x86 ISA, one would need a C to x86 compiler. For each high-level lan-

guage and each desired target ISA, one must provide a corresponding compiler.

The translation from the unique assembly language of a computer to its ISA

is done by an assembler.

1.7.5 The Microarchitecture

The next step is the implementation of the ISA, referred to as its microarchitec-
ture. The automobile analogy that we used in our discussion of the ISA is also

useful in showing the relationship between an ISA and a microarchitecture that

implements that ISA. The automobile’s “ISA” describes what the driver needs to

know as he/she sits inside the automobile to make the automobile carry out the

driver’s wishes. All automobiles have the same ISA. If there are three pedals on

the floor, it does not matter what manufacturer produced the car, the middle one

is always the brake. The one on the right is always the accelerator, and the more

it is depressed, the faster the car will move. Because there is only one ISA for

automobiles, one does not need one driver’s license for Buicks and a different

driver’s license for Hondas.

The microarchitecture (or implementation) of the automobile’s ISA, on

the other hand, is about what goes on underneath the hood. Here all automo-

bile makes and models can be different, depending on what cost/performance

tradeoffs the automobile designer made before the car was manufactured. Some

automobiles come with disc brakes, others (in the past, at least) with drums.

Some automobiles have eight cylinders, others run on six cylinders, and still oth-

ers have only four. Some are turbocharged, some are not. Some automobiles can

travel 60 miles on one gallon of gasoline, others are lucky to travel from one gas

station to the next without running out of gas. Some automobiles cost 6000 US

dollars, others cost 200,000 US dollars. In each case, the “microarchitecture”

of the specific automobile is a result of the automobile designers’ decisions

regarding the tradeoffs of cost and performance. The fact that the “micro-

architecture” of every model or make is different is a good reason to take one’s

Honda, when it is malfunctioning, to a Honda repair person, and not to a Buick

repair person.

In the previous section, we identified ISAs of several computer manufactur-

ers, including the x86 (Intel), the PowerPC (IBM and Motorola), and THUMB

(ARM). Each has been implemented by many different microarchitectures. For
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example, the x86’s original implementation in 1979 was the 8086, followed by the

80286, 80386, and 80486 in the 1980s. More recently, in 2001, Intel introduced

the Pentium IV microprocessor. Even more recently, in 2015, Intel introduced

Skylake. Each of these x86 microprocessors has its own microarchitecture.

The story is the same for the PowerPC ISA, with more than a dozen different

microprocessors, each having its own microarchitecture.

Each microarchitecture is an opportunity for computer designers to make dif-

ferent tradeoffs between the cost of the microprocessor, the performance that the

microprocessor will provide, and the energy that is required to power the micro-

processor. Computer design is always an exercise in tradeoffs, as the designer

opts for higher (or lower) performance, more (or less) energy required, at greater

(or lesser) cost.

1.7.6 The Logic Circuit

The next step is to implement each element of the microarchitecture out of simple

logic circuits. Here also there are choices, as the logic designer decides how to

best make the tradeoffs between cost and performance. So, for example, even for

an operation as simple as addition, there are several choices of logic circuits to

perform the operation at differing speeds and corresponding costs.

1.7.7 The Devices

Finally, each basic logic circuit is implemented in accordance with the require-

ments of the particular device technology used. So, CMOS circuits are different

from NMOS circuits, which are different, in turn, from gallium arsenide

circuits.

The Bottom Line In summary, from the natural language description of a prob-

lem to the electrons that actually solve the problem by moving from one voltage

potential to another, many transformations need to be performed. If we could

speak electron, or if the electrons could understand English, perhaps we could just

walk up to the computer and get the electrons to do our bidding. Since we can’t

speak electron and they can’t speak English, the best we can do is this systematic

sequence of transformations. At each level of transformation, there are choices as

to how to proceed. Our handling of those choices determines the resulting cost

and performance of our computer.

In this book, we describe each of these transformations. We show how tran-

sistors combine to form logic circuits, how logic circuits combine to form the

microarchitecture, and how the microarchitecture implements a particular ISA.

In our case, the ISA is the LC-3. We complete the process by going from the

English-language description of a problem to a C or C++ program that solves the

problem, and we show how that C or C++ program is translated (i.e., compiled)

to the ISA of the LC-3.

We hope you enjoy the ride.



20 chapter 1 Welcome Aboard

Exercises

1.1 [1] Explain the first of the two important ideas stated in Section 1.5.

1.2 [1] Can a higher-level programming language instruct a computer to

compute more than a lower-level programming language?

1.3 [1] What difficulty with analog computers encourages computer

designers to use digital designs?

1.4 [1] Name one characteristic of natural languages that prevents them from

being used as programming languages.

1.5 [5] Say we had a “black box,” which takes two numbers as input and

outputs their sum. See Figure 1.10a. Say we had another box capable of

multiplying two numbers together. See Figure 1.10b. We can connect

these boxes together to calculate p × (m + n). See Figure 1.10c. Assume

we have an unlimited number of these boxes. Show how to connect them

together to calculate:

a. ax + b
b. The average of the four input numbers w, x, y, and z
c. a2 + 2ab+ b2 (Can you do it with one add box and one multiply box?)

1.6 [1] Write a statement in a natural language, and offer two different

interpretations of that statement.

1.7 [3] The discussion of abstraction in Section 1.3.1 noted that one does not

need to understand the makeup of the components as long as “everything

about the detail is just fine.” The case was made that when everything is

not fine, one must be able to deconstruct the components, or be at the

mercy of the abstractions. In the taxi example, suppose you did not

understand the component, that is, you had no clue how to get to the

airport. Using the notion of abstraction, you simply tell the driver,

“Take me to the airport.” Explain when this is a productivity enhancer,

and when it could result in very negative consequences.

×+ +

×

m m nn

m + n m × n

(a) (b) (c)

m n p

p × (m + n)

Figure 1.10 “Black boxes” capable of (a) addition, (b) multiplication, and (c) a
combination of addition and multiplication.
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1.8 [5] John said, “I saw the man in the park with a telescope.” What did he

mean? How many reasonable interpretations can you provide for this

statement? List them. What property does this sentence demonstrate that

makes it unacceptable as a statement in a program?

1.9 [1] Are natural languages capable of expressing algorithms?

1.10 [1] Name three characteristics of algorithms. Briefly explain each of

these three characteristics.

1.11 [4] For each characteristic of an algorithm, give an example of a

procedure that does not have the characteristic and is therefore not an

algorithm.

1.12 [5] Are items a through e in the following list algorithms? If not, what

qualities required of algorithms do they lack?

a. Add the first row of the following matrix to another row whose first

column contains a non-zero entry. (Reminder: Columns run vertically;

rows run horizontally.)

⎡
⎢
⎢
⎢
⎣

1 2 0 4

0 3 2 4

2 3 10 22

12 4 3 4

⎤
⎥
⎥
⎥
⎦

b. In order to show that there are as many prime numbers as there are

natural numbers, match each prime number with a natural number in

the following manner. Create pairs of prime and natural numbers by

matching the first prime number with 1 (which is the first natural

number) and the second prime number with 2, the third with 3, and so

forth. If, in the end, it turns out that each prime number can be paired

with each natural number, then it is shown that there are as many

prime numbers as natural numbers.

c. Suppose you’re given two vectors each with 20 elements and asked

to perform the following operation: Take the first element of the first

vector and multiply it by the first element of the second vector. Do

the same to the second elements, and so forth. Add all the individual

products together to derive the dot product.

d. Lynne and Calvin are trying to decide who will take the dog for a

walk. Lynne suggests that they flip a coin and pulls a quarter out of

her pocket. Calvin does not trust Lynne and suspects that the quarter

may be weighted (meaning that it might favor a particular outcome

when tossed) and suggests the following procedure to fairly

determine who will walk the dog.

1. Flip the quarter twice.

2. If the outcome is heads on the first flip and tails on the second,

then I will walk the dog.

3. If the outcome is tails on the first flip and heads on the second,

then you will walk the dog.
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4. If both outcomes are tails or both outcomes are heads, then we flip

twice again.

Is Calvin’s technique an algorithm?

e. Given a number, perform the following steps in order:

1. Multiply it by 4

2. Add 4

3. Divide by 2

4. Subtract 2

5. Divide by 2

6. Subtract 1

7. At this point, add 1 to a counter to keep track of the fact that you

performed steps 1 through 6. Then test the result you got when

you subtracted 1. If 0, write down the number of times you

performed steps 1 through 6 and stop. If not 0, starting with the

result of subtracting one, perform the seven steps again.

1.13 [4] Two computers, A and B, are identical except for the fact that A has

a subtract instruction and B does not. Both have add instructions. Both

have instructions that can take a value and produce the negative of that

value. Which computer is able to solve more problems, A or B? Prove

your result.

1.14 [4] Suppose we wish to put a set of names in alphabetical order. We call

the act of doing so sorting. One algorithm that can accomplish that is

called the bubble sort. We could then program our bubble sort algorithm

in C and compile the C program to execute on an x86 ISA. The x86 ISA

can be implemented with an Intel Pentium IV microarchitecture. Let us

call the sequence “Bubble Sort, C program, x86 ISA, Pentium IV

microarchitecture” one transformation process.

Assume we have available four sorting algorithms and can program

in C, C++, Pascal, Fortran, and COBOL. We have available compilers

that can translate from each of these to either x86 or SPARC, and we

have available three different microarchitectures for x86 and three

different microarchitectures for SPARC.

a. How many transformation processes are possible?

b. Write three examples of transformation processes.

c. How many transformation processes are possible if instead of three

different microarchitectures for x86 and three different

microarchitectures for SPARC, there were two for x86 and four for

SPARC?

1.15 [7] Identify one advantage of programming in a higher-level language

compared to a lower-level language. Identify one disadvantage.

1.16 [1] Name at least three things specified by an ISA.

1.17 [1] Briefly describe the difference between an ISA and a

microarchitecture.
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1.18 [4] How many ISAs are normally implemented by a single

microarchitecture? Conversely, how many microarchitectures could exist

for a single ISA?

1.19 [1] List the levels of transformation and name an example for each level.

1.20 [4] The levels of transformation in Figure 1.9 are often referred to as

levels of abstraction. Is that a reasonable characterization? If yes, give an

example. If no, why not?

1.21 [7] Say you go to the store and buy some word processing software.

What form is the software actually in? Is it in a high-level programming

language? Is it in assembly language? Is it in the ISA of the computer on

which you’ll run it? Justify your answer.

1.22 [5] Suppose you were given a task at one of the transformation levels

shown in Figure 1.9, and required to transform it to the level just below.

At which level would it be most difficult to perform the transformation to

the next lower level? Why?

1.23 [5] Why is an ISA unlikely to change between successive generations

of microarchitectures that implement it? For example, why would Intel

want to make certain that the ISA implemented by the Pentium III is

the same as the one implemented by the Pentium II? Hint: When you

upgrade your computer (or buy one with a newer CPU), do you need to

throw out all your old software?





2
C H A P T E R

Bits, Data Types, and
Operations

2.1 Bits and Data Types
2.1.1 The Bit as the Unit of Information

We noted in Chapter 1 that the computer was organized as a system with several

levels of transformation. A problem stated in a natural language such as English

is actually solved by the electrons moving around inside the components of the

computer.

Inside the computer, millions of very tiny, very fast devices control the move-

ment of those electrons. These devices react to the presence or absence of voltages

in electronic circuits. They could react to the actual values of the voltages, rather

than simply to the presence or absence of voltages. However, this would make

the control and detection circuits more complex than they need to be. It is much

easier to detect simply whether or not a voltage exists at a point in a circuit than

it is to measure exactly what that voltage is.

To understand this, consider any wall outlet in your home. You could measure

the exact voltage it is carrying, whether 120 volts or 115 volts, or 118.6 volts,

for example. However, the detection circuitry to determine only whether there is

a voltage or whether there is no voltage is much simpler. Your finger casually

inserted into the wall socket, for example, will suffice.

We symbolically represent the presence of a voltage as “1” and the absence

of a voltage as “0.” We refer to each 0 and each 1 as a “bit,” which is a shortened

form of binary digit. Recall the digits you have been using since you were a

child—0, 1, 2, 3,… , 9. There are ten of them, and they are referred to as decimal

digits. In the case of binary digits, there are two of them, 0 and 1.

To be perfectly precise, it is not really the case that the computer differen-

tiates the absolute absence of a voltage (i.e., 0) from the absolute presence of

a voltage (i.e., 1). Actually, the electronic circuits in the computer differentiate

voltages close to 0 from voltages far from 0. So, for example, if the computer

expects either a voltage of 1.2 volts or a voltage of 0 volts (1.2 volts signifying

1 and 0 volts signifying 0), then a voltage of 1.0 volts will be taken as a 1 and

0.2 volts will be taken as a 0.
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With one wire, one can differentiate only two things. One of them can be assigned

the value 0, the other can be assigned the value 1. But to get useful work done by

the computer, it is necessary to be able to differentiate a large number of distinct

values, and to assign each of them a unique representation. We can accomplish

this by combining many wires, that is, many bits. For example, if we use eight bits

(corresponding to the voltage present on each of eight wires), we can represent one

particular value as 01001110, and another value as 11100111. In fact, if we are limited

to eight bits, we can differentiate at most only 256 (i.e., 28) different things. In general,

with k bits, we can distinguish at most 2k distinct items. Each pattern of these k bits

is a code; that is, it corresponds to a particular item (or value).

2.1.2 Data Types

There are many ways to represent the same value. For example, the number five

can be written as a 5. This is the standard decimal notation that you are used to.

The value five can also be represented by someone holding up one hand, with all

fingers and thumb extended. The person is saying, “The number I wish to com-

municate can be determined by counting the number of fingers I am showing.” A

written version of that scheme would be the value 11111. This notation has a name

also—unary. The Romans had yet another notation for five—the character V. We

will see momentarily that a fourth notation for five is the binary representation

00000101.

It is not enough simply to represent values; we must be able to operate on

those values. We say a particular representation is a data type if there are oper-

ations in the computer that can operate on information that is encoded in that

representation. Each instruction set architecture (ISA) has its own set of data types

and its own set of instructions that can operate on those data types. In this book,

we will mainly use two data types: 2’s complement integers for representing posi-

tive and negative integers that we wish to perform arithmetic on, and ASCII codes
for representing characters that we wish to input to a computer via the keyboard or

output from the computer via a monitor. Both data types will be explained shortly.

There are other representations of information that could be used, and indeed

that are present in most computers. Recall the “scientific notation” from high

school chemistry where you were admonished to represent the decimal num-

ber 621 as 6.21⋅102. There are computers that represent numbers in that form,

and they provide operations that can operate on numbers so represented. That

data type is usually called floating point. We will examine its representation in

Section 2.7.1.

2.2 Integer Data Types
2.2.1 Unsigned Integers

The first representation of information, or data type, that we shall look at is the

unsigned integer. As its name suggests, an unsigned integer has no sign (plus or

minus) associated with it. An unsigned integer just has a magnitude. Unsigned
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integers have many uses in a computer. If we wish to perform a task some spe-

cific number of times, unsigned integers enable us to keep track of this number

easily by simply counting how many times we have performed the task. Unsigned

integers also provide a means for identifying different memory locations in the

computer in the same way that house numbers differentiate 129 Main Street from

131 Main Street. I don’t recall ever seeing a house number with a minus sign in

front of it.

We can represent unsigned integers as strings of binary digits. To do this, we

use a positional notation much like the decimal system that you have been using

since you were three years old.

You are familiar with the decimal number 329, which also uses positional

notation. The 3 is worth much more than the 9, even though the absolute value of

3 standing alone is only worth 1/3 the value of 9 standing alone. This is because,

as you know, the 3 stands for 300 (3 ⋅102) due to its position in the decimal string

329, while the 9 stands for 9 ⋅ 100.

Instead of using decimal digits, we can represent unsigned integers using just

the binary digits 0 and 1. Here the base is 2, rather than 10. So, for example, if

we have five bits (binary digits) available to represent our values, the number 5,

which we mentioned earlier, is represented as 00101, corresponding to

0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20

With k bits, we can represent in this positional notation exactly 2k integers, rang-

ing from 0 to 2k − 1. Figure 2.1 shows the five-bit representations for the integers

from 0 to 31.

2.2.2 Signed Integers

To do useful arithmetic, however, it is often (although not always) necessary to

be able to deal with negative quantities as well as positive. We could take our 2k

distinct patterns of k bits and separate them in half, half for positive integers and

half for negative integers. In this way, with five-bit codes, instead of representing

integers from 0 to +31, we could choose to represent positive integers from +1

to +15 and negative integers from −1 to −15. There are 30 such integers. Since

25 is 32, we still have two 5-bit codes unassigned. One of them, 00000, we would

presumably assign to the value 0, giving us the full range of integer values from

−15 to +15. That leaves one 5-bit code left over, and there are different ways to

assign this code, as we will see momentarily.

We are still left with the problem of determining what codes to assign to what

values. That is, we have 32 codes, but which value should go with which code?

Positive integers are represented in the straightforward positional scheme.

Since there are k bits, and we wish to use exactly half of the 2k codes to represent

the integers from 0 to 2k−1 − 1, all positive integers will have a leading 0 in their

representation. In our example of Figure 2.1 (with k = 5), the largest positive

integer +15 is represented as 01111.

Note that in all three signed data types shown in Figure 2.1 , the represen-

tation for 0 and all the positive integers start with a leading 0. What about the

representations for the negative integers (in our five-bit example, −1 to −15)?
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Representation Value Represented

Unsigned Signed Magnitude 1’s Complement 2’s Complement

00000 0 0 0 0

00001 1 1 1 1

00010 2 2 2 2

00011 3 3 3 3

00100 4 4 4 4

00101 5 5 5 5

00110 6 6 6 6

00111 7 7 7 7

01000 8 8 8 8

01001 9 9 9 9

01010 10 10 10 10

01011 11 11 11 11

01100 12 12 12 12

01101 13 13 13 13

01110 14 14 14 14

01111 15 15 15 15

10000 16 −0 −15 −16

10001 17 −1 −14 −15

10010 18 −2 −13 −14

10011 19 −3 −12 −13

10100 20 −4 −11 −12

10101 21 −5 −10 −11

10110 22 −6 −9 −10

10111 23 −7 −8 −9

11000 24 −8 −7 −8

11001 25 −9 −6 −7

11010 26 −10 −5 −6

11011 27 −11 −4 −5

11100 28 −12 −3 −4

11101 29 −13 −2 −3

11110 30 −14 −1 −2

11111 31 −15 −0 −1

Figure 2.1 Four representations of integers.

The first thought that usually comes to mind is: If a leading 0 signifies a positive
integer, how about letting a leading 1 signify a negative integer? The result is

the signed-magnitude data type shown in Figure 2.1. A second thought (which

was actually used on some early computers such as the Control Data Corpora-

tion 6600) was the following: Let a negative number be represented by taking the

representation of the positive number having the same magnitude, and “flipping”

all the bits. That is, if the original representation had a 0, replace it with a 1; if

it originally had a 1, replace it with a 0. For example, since +5 is represented as

00101, we designate −5 as 11010. This data type is referred to in the computer

engineering community as 1’s complement and is also shown in Figure 2.1.
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At this point, you might think that a computer designer could assign any bit

pattern to represent any integer he or she wants. And you would be right! Unfor-

tunately, that could complicate matters when we try to build an electronic circuit

to add two integers. In fact, the signed-magnitude and 1’s complement data types

both require unnecessarily cumbersome hardware to do addition. Because com-

puter designers knew what it would take to design a circuit to add two integers,

they chose representations that simplified the circuit. The result is the 2’s comple-
ment data type, also shown in Figure 2.1. It is used on just about every computer

manufactured today.

2.3 2’s Complement Integers
We see in Figure 2.1 the representations of the integers from −16 to +15 for the

2’s complement data type. Why were those representations chosen?

The positive integers, we saw, are represented in the straightforward posi-

tional scheme. With five bits, we use exactly half of the 25 codes to represent 0

and the positive integers from 1 to 24 − 1.

The choice of representations for the negative integers was based, as we said

previously, on the wish to keep the logic circuits as simple as possible. Almost

all computers use the same basic mechanism to perform addition. It is called an

arithmetic and logic unit, usually known by its acronym ALU. We will get into

the actual structure of the ALU in Chapters 3 and 4. What is relevant right now

is that an ALU has two inputs and one output. It performs addition by adding the

binary bit patterns at its inputs, producing a bit pattern at its output that is the

sum of the two input bit patterns.

For example, if the ALU processed five-bit input patterns, and the two inputs

were 00110 and 00101, the result (output of the ALU) would be 01011. The

addition is as follows:

00110
00101
01011

The addition of two binary strings is performed in the same way the addi-

tion of two decimal strings is performed, from right to left, column by column.

If the addition in a column generates a carry, the carry is added to the column

immediately to its left.

What is particularly relevant is that the binary ALU does not know (and does

not care) what the two patterns it is adding represent. It simply adds the two binary

patterns. Since the binary ALU only ADDs and does not CARE, it would be nice

if our assignment of codes to the integers resulted in the ALU producing correct

results when it added two integers.

For starters, it would be nice if, when the ALU adds the representation for an

arbitrary integer to the representation of the integer having the same magnitude

but opposite sign, the sum would be 0. That is, if the inputs to the ALU are the

representations of non-zero integers A and −A, the output of the ALU should

be 00000.
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To accomplish that, the 2’s complement data type specifies the representation

for each negative integer so that when the ALU adds it to the representation of

the positive integer of the same magnitude, the result will be the representation

for 0. For example, since 00101 is the representation of +5, 11011 is chosen as

the representation for −5.

Moreover, and actually more importantly, as we sequence through represen-

tations of−15 to+15, the ALU is adding 00001 to each successive representation.

We can express this mathematically as:

REPRESENTATION(value + 1) =
REPRESENTATION(value) + REPRESENTATION(1).

This is sufficient to guarantee (as long as we do not get a result larger than

+15 or smaller than −15) that the binary ALU will perform addition correctly.

Note in particular the representations for −1 and 0, that is, 11111 and 00000.

When we add 00001 to the representation for −1, we do get 00000, but we also

generate a carry. That carry, however, does not influence the result. That is, the

correct result of adding 00001 to the representation for −1 is 0, not 100000.

Therefore, the carry is ignored. In fact, because the carry obtained by adding

00001 to 11111 is ignored, the carry can always be ignored when dealing with

2’s complement arithmetic.

Note: If we know the representation for A, a shortcut for figuring out the

representation for −A(A ≠ 0) is as follows: Flip all the bits of A (the official term

for “flip” is complement), and add 1 to the complement of A. The sum of A and

the complement of A is 11111. If we then add 00001 to 11111, the final result is

00000. Thus, the representation for −A can be easily obtained by adding 1 to the

complement of A.

Example 2.1
What is the 2’s complement representation for −13?

1. Let A be +13. Then the representation for A is 01101 since 13 = 8+4+1.

2. The complement of A is 10010.

3. Adding 1 to 10010 gives us 10011, the 2’s complement representation for −13.

We can verify our result by adding the representations for A and −A,

01101
10011
00000

You may have noticed that the addition of 01101 and 10011, in addition to

producing 00000, also produces a carry out of the five-bit ALU. That is, the binary

addition of 01101 and 10011 is really 100000. However, as we saw previously,

this carry out can be ignored in the case of the 2’s complement data type.

At this point, we have identified in our five-bit scheme 15 positive inte-

gers. We have constructed 15 negative integers. We also have a representation
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for 0. With k = 5, we can uniquely identify 32 distinct quantities, and we have

accounted for only 31 (15+15+1). The remaining representation is 10000. What

value shall we assign to it?

We note that−1 is 11111,−2 is 11110,−3 is 11101, and so on. If we continue

this, we note that −15 is 10001. Note that, as in the case of the positive represen-

tations, as we sequence backwards from representations of −1 to −15, the ALU

is subtracting 00001 from each successive representation. Thus, it is convenient

to assign to 10000 the value −16; that is the value one gets by subtracting 00001

from 10001 (the representation for −15).

In Chapter 5 we will specify a computer that we affectionately have named

the LC-3 (for Little Computer 3). The LC-3 operates on 16-bit values. Therefore,

the 2’s complement integers that can be represented in the LC-3 are the integers

from −32,768 to +32,767.

2.4 Conversion Between Binary and
Decimal

It is often useful to convert numbers between the 2’s complement data type

the computer likes and the decimal representation that you have used all

your life.

2.4.1 Binary to Decimal Conversion

We convert a 2’s complement representation of an integer to a decimal represen-

tation as follows: For purposes of illustration, we will assume our number can be

represented in eight bits, corresponding to decimal integer values from −128 to

+127.

Recall that an eight-bit 2’s complement integer takes the form

b7 b6 b5 b4 b3 b2 b1 b0

where each of the bits bi is either 0 or 1.

1. Examine the leading bit b7. If it is a 0, the integer is positive, and we can

begin evaluating its magnitude. If it is a 1, the integer is negative. In that

case, we need to first obtain the 2’s complement representation of the

positive number having the same magnitude. We do this by flipping all the

bits and adding 1.

2. The magnitude is simply

b6 ⋅ 26 + b5 ⋅ 25 + b4 ⋅ 24 + b3 ⋅ 23 + b2 ⋅ 22 + b1 ⋅ 21 + b0 ⋅ 20

In either case, we obtain the decimal magnitude by simply adding the

powers of 2 that have coefficients of 1.

3. Finally, if the original number is negative, we affix a minus sign in front.

Done!
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Example 2.2
Convert the 2’s complement integer 11000111 to a decimal integer value.

1. Since the leading binary digit is a 1, the number is negative. We must first find

the 2’s complement representation of the positive number of the same

magnitude. This is 00111001.

2. The magnitude can be represented as

0 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20

or,

32 + 16 + 8 + 1.

3. The decimal integer value corresponding to 11000111 is −57.

2.4.2 Decimal to Binary Conversion

Converting from decimal to 2’s complement is a little more complicated. The

crux of the method is to note that a positive binary number is odd if the rightmost

digit is 1 and even if the rightmost digit is 0.

Consider again our generic eight-bit representation:

b7 ⋅ 27 + b6 ⋅ 26 + b5 ⋅ 25 + b4 ⋅ 24 + b3 ⋅ 23 + b2 ⋅ 22 + b1 ⋅ 21 + b0 ⋅ 20

We can illustrate the conversion best by first working through an example.

Suppose we wish to convert the value +105 to a 2’s complement binary code.

We note that +105 is positive. We first find values for bi, representing the mag-

nitude 105. Since the value is positive, we will then obtain the 2’s complement

result by simply appending b7, which we know is 0.

Our first step is to find values for bi that satisfy the following:

105 = b6 ⋅ 26 + b5 ⋅ 25 + b4 ⋅ 24 + b3 ⋅ 23 + b2 ⋅ 22 + b1 ⋅ 21 + b0 ⋅ 20

Since 105 is odd, we know that b0 is 1. We subtract 1 from both sides of the

equation, yielding

104 = b6 ⋅ 26 + b5 ⋅ 25 + b4 ⋅ 24 + b3 ⋅ 23 + b2 ⋅ 22 + b1 ⋅ 21

We next divide both sides of the equation by 2, yielding

52 = b6 ⋅ 25 + b5 ⋅ 24 + b4 ⋅ 23 + b3 ⋅ 22 + b2 ⋅ 21 + b1 ⋅ 20

Since 52 is even, b1, the only coefficient not multiplied by a power of 2, must be

equal to 0.

We iterate this process, each time subtracting the rightmost digit from both

sides of the equation, then dividing both sides by 2, and finally noting whether

the new decimal number on the left side is odd or even. Continuing where we left

off, with

52 = b6 ⋅ 25 + j5 ⋅ 24 + b4 ⋅ 23 + b3 ⋅ 22 + b2 ⋅ 21

the process produces, in turn:

26 = b6 ⋅ 24 + b5 ⋅ 23 + b4 ⋅ 22 + b3 ⋅ 21 + b2 ⋅ 20
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Therefore, b2 = 0.

13 = b6 ⋅ 23 + b5 ⋅ 22 + b4 ⋅ 21 + b3 ⋅ 20

Therefore, b3 = 1.

6 = b6 ⋅ 22 + b5 ⋅ 21 + b4 ⋅ 20

Therefore, b4 = 0.

3 = b6 ⋅ 21 + b5 ⋅ 20

Therefore, b5 = 1.

1 = b6 ⋅ 20

Therefore, b6 = 1, and we are done. The binary representation is 01101001.

Let’s summarize the process. If we are given a decimal integer value N, we

construct the 2’s complement representation as follows:

1. We first obtain the binary representation of the magnitude of N by forming

the equation

N = b6 ⋅ 26 + b5 ⋅ 25 + b4 ⋅ 24 + b3 ⋅ 23 + b2 ⋅ 22 + b1 ⋅ 21 + b0 ⋅ 20

and repeating the following, until the left side of the equation is 0:

a. If N is odd, the rightmost bit is 1. If N is even, the rightmost bit is 0.

b. Subtract 1 or 0 (according to whether N is odd or even) from N, remove

the least significant term from the right side, and divide both sides of

the equation by 2.

Each iteration produces the value of one coefficient bi.

2. If the original decimal number is positive, append a leading 0 sign bit, and

you are done.

3. If the original decimal number is negative, append a leading 0 and then

form the negative of this 2’s complement representation, and then you

are done.

2.4.3 Extending Conversion to Numbers with Fractional Parts

What if the number we wish to convert is not an integer, but instead has a

fractional part. How do we handle that wrinkle?

Binary to decimal The binary to decimal case is straightforward. In a positional

notation system, the number

0.b−1b−2b−3b−4

shows four bits to the right of the binary point, representing (when the cor-

responding bi = 1) the values 0.5, 0.25, 0.125, and 0.0625. To complete the
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conversion to decimal, we simply add those values where the corresponding bi =

1. For example, if the fractional part of the binary representation is

. 1 0 1 1

we would add 0.5 plus 0.125 plus 0.0625, or 0.6875.

Decimal to binary The decimal to binary case requires a little more work. Sup-

pose we wanted to convert 0.421 to binary. As we did for integer conversion, we

first form the equation

0.421 = b−1 × 2−1 + b−2 × 2−2 + b−3 × 2−3 + b−4 × 2−4 + ...

In the case of converting a decimal integer value to binary, we divided by 2 and

assigned a 1 or 0 to the coefficient of 20 depending on whether the number on the

left of the equal sign is odd or even. Here (i.e., in the case of converting a decimal

fraction to binary), we multiply both sides of the equation by 2 and assign a 1 or

a 0 to the coefficient of 20 depending on whether the left side of the equation is

greater than or equal to 1 or whether the left side is less than 1. Do you see why?

Since

0.842 = b−1 × 20 + b−2 × 2−1 + b−3 × 2−2 + b−4 × 2−3 + ...

we assign b−1 = 0. Continuing,

1.684 = b−2 × 20 + b−3 × 2−1 + b−4 × 2−2 + ...

so we assign b−2 = 1 and subtract 1 from both sides of the equation, yielding

0.684 = b−3 × 2−1 + b−4 × 2−2 + ...

Multiplying by 2, we get

1.368 = b−3 × 20 + b−4 × 2−1 + ...

so we assign b−3 = 1 and subtract 1 from both sides of the equation, yielding

0.368 = b−4 × 20 + ...

which assigns 0 to b−4. We can continue this process indefinitely, until we are

simply too tired to go on, or until the left side = 0, in which case all bits to

the right of where we stop are 0s. In our case, stopping with four bits, we have

converted 0.421 decimal to 0.0110 in binary.

2.5 Operations on Bits—
Part I: Arithmetic

2.5.1 Addition and Subtraction

Arithmetic on 2’s complement numbers is very much like the arithmetic on

decimal numbers that you have been doing for a long time.
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Addition still proceeds from right to left, one digit at a time. At each point,

we generate a sum digit and a carry. Instead of generating a carry after 9 (since

9 is the largest decimal digit), we generate a carry after 1 (since 1 is the largest

binary digit).

Example 2.3
Using our five-bit notation, what is 11 + 3?

The decimal value 11 is represented as 01011

The decimal value 3 is represented as 00011

The sum, which is the value 14, is 01110

Subtraction is simply addition, preceded by determining the negative of the

number to be subtracted. That is, A − B is simply A + (−B).

Example 2.4
What is 14 − 9?

The decimal value 14 is represented as 01110

The decimal value 9 is represented as 01001

First we form the negative, that is, -9: 10111

Adding 14 to -9, we get 01110

10111

which results in the value 5. 00101

Note again that the carry out is ignored.

Example 2.5
What happens when we add a number to itself (e.g., x + x)?

Let’s assume for this example eight-bit codes, which would allow us to represent

integers from −128 to 127. Consider a value for x, the integer 59, represented as

00111011. If we add 59 to itself, we get the code 01110110. Note that the bits have

all shifted to the left by one position. Is that a curiosity, or will that happen all the

time as long as the sum x + x is not too large to represent with the available number

of bits?

Using our positional notation, the number 59 is

0 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20

The sum 59 + 59 is 2 ⋅ 59, which, in our representation, is

2 ⋅ (0 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20)

But that is nothing more than

0 ⋅ 27 + 1 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21

which shifts each digit one position to the left. Thus, adding a number to itself

(provided there are enough bits to represent the result) is equivalent to shifting the

representation one bit position to the left.
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2.5.2 Sign-Extension

It is often useful to represent a small number with fewer bits. For example, rather

than represent the value 5 as 0000000000000101, there are times when it makes

more sense to use only six bits to represent the value 5: 000101. There is little

confusion, since we are all used to adding leading zeros without affecting the

value of a number. A check for $456.78 and a check for $0000456.78 are checks

having the same value.

What about negative representations? We obtained the negative representa-

tion from its positive counterpart by complementing the positive representation

and adding 1. Thus, the representation for −5, given that 5 is represented as

000101, is 111011. If 5 is represented as 0000000000000101, then the represen-

tation for −5 is 1111111111111011. In the same way that leading 0s do not affect

the value of a positive number, leading 1s do not affect the value of a negative

number.

In order to add representations of different lengths, it is first necessary to

represent them with the same number of bits. For example, suppose we wish to

add the number 13 to −5, where 13 is represented as 0000000000001101 and −5

is represented as 111011. If we do not represent the two values with the same

number of bits, we have

0000000000001101
+ 111011

When we attempt to perform the addition, what shall we do with the missing bits

in the representation for −5? If we take the absence of a bit to be a 0, then we are

no longer adding −5 to 13. On the contrary, if we take the absence of bits to be 0s,

we have changed the −5 to the number represented as 0000000000111011, that

is, +59. Not surprisingly, then, our result turns out to be the representation for 72.

However, if we understand that a 6-bit −5 and a 16-bit −5 differ only in the

number of meaningless leading 1s, then we first extend the value of −5 to 16 bits

before we perform the addition. Thus, we have

0000000000001101
+ 1111111111111011

0000000000001000

and the result is +8, as we should expect.

The value of a positive number does not change if we extend the sign bit

0 as many bit positions to the left as desired. Similarly, the value of a negative

number does not change by extending the sign bit 1 as many bit positions to the

left as desired. Since in both cases it is the sign bit that is extended, we refer

to the operation as Sign-EXTension, often abbreviated SEXT. Sign-extension is

performed in order to be able to operate on representations of different lengths.

It does not affect the values of the numbers being represented.

2.5.3 Overflow

Up to now, we have always insisted that the sum of two integers be small enough

to be represented by the available bits. What happens if such is not the case?
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You are undoubtedly familiar with the odometer on the front dashboard of

your automobile. It keeps track of how many miles your car has been driven—but

only up to a point. In the old days, when the odometer registered 99992 and you

drove it 100 miles, its new reading became 00092. A brand new car! The problem,

as you know, is that the largest value the odometer could store was 99999, so the

value 100092 showed up as 00092. The carry out of the ten-thousands digit was

lost. (Of course, if you grew up in Boston, the carry out was not lost at all—it

was in full display in the rusted chrome all over the car.)

We say the odometer overflowed. Representing 100092 as 00092 is unaccept-

able. As more and more cars lasted more than 100,000 miles, car makers felt the

pressure to add a digit to the odometer. Today, practically all cars overflow at

1,000,000 miles, rather than 100,000 miles.

The odometer provides an example of unsigned arithmetic. The miles you

add are always positive miles. The odometer reads 000129 and you drive 50 miles.

The odometer now reads 000179. Overflow is a carry out of the leading digit.

In the case of signed arithmetic, or more particularly, 2’s complement

arithmetic, overflow is a little more subtle.

Let’s return to our five-bit 2’s complement data type, which allowed us to

represent integers from −16 to +15. Suppose we wish to add +9 and +11. Our

arithmetic takes the following form:

01001
01011
10100

Note that the sum is larger than +15, and therefore too large to represent with

our 2’s complement scheme. The fact that the number is too large means that the

number is larger than 01111, the largest positive number we can represent with

a five-bit 2’s complement data type. Note that because our positive result was

larger than +15, it generated a carry into the leading bit position. But this bit

position is used to indicate the sign of a value. Thus, detecting that the result is

too large is an easy matter. Since we are adding two positive numbers, the result

must be positive. Since the ALU has produced a negative result, something must

be wrong. The thing that is wrong is that the sum of the two positive numbers

is too large to be represented with the available bits. We say that the result has

overflowed the capacity of the representation.

Suppose instead, we had started with negative numbers, for example, −12

and −6. In this case, our arithmetic takes the following form:

10100
11010
01110

Here, too, the result has overflowed the capacity of the machine, since −12+−6

equals −18, which is “more negative” than −16, the negative number with the

largest allowable magnitude. The ALU obliges by producing a positive result.

Again, this is easy to detect since the sum of two negative numbers cannot be

positive.
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Note that the sum of a negative number and a positive number never presents

a problem. Why is that? See Exercise 2.25.

2.6 Operations on Bits—
Part II: Logical Operations

We have seen that it is possible to perform arithmetic (e.g., add, subtract) on val-

ues represented as binary patterns. Another class of operations useful to perform

on binary patterns is the set of logical operations.

2.6.1 A Logical Variable

Logical operations operate on logical variables. A logical variable can have one

of two values, 0 or 1. The name logical is a historical one; it comes from the fact

that the two values 0 and 1 can represent the two logical values false and true,

but the use of logical operations has traveled far from this original meaning.

There are several basic logic functions, and most ALUs perform all of them.

2.6.2 The AND Function

AND is a binary logical function. This means it requires two pieces of input data.

Said another way, AND requires two source operands. Each source is a logical

variable, taking the value 0 or 1. The output of AND is 1 only if both sources have

the value 1. Otherwise, the output is 0. We can think of the AND operation as the

ALL operation; that is, the output is 1 only if ALL two inputs are 1. Otherwise,

the output is 0.

A convenient mechanism for representing the behavior of a logical operation

is the truth table. A truth table consists of n + 1 columns and 2n rows. The first

n columns correspond to the n source operands. Since each source operand is a

logical variable and can have one of two values, there are 2n unique values that

these source operands can have. Each such set of values (sometimes called an

input combination) is represented as one row of the truth table. The final column

in the truth table shows the output for each input combination.

In the case of a two-input AND function, the truth table has two columns for

source operands, and four (22) rows for unique input combinations.

A B AND

0 0 0

0 1 0

1 0 0

1 1 1

We can apply the logical operation AND to two bit patterns of m bits each. This

involves applying the operation individually and independently to each pair of



2.6 Operations on Bits—Part II: Logical Operations 39

bits in the two source operands. For example, if a and b in Example 2.6 are 16-

bit patterns, then c is the AND of a and b. This operation is often called a bit-
wise AND because the operation is applied to each pair of bits individually and

independently.

Example 2.6
If c is the AND of a and b, where a=0011101001101001 and b=0101100100100001,

what is c?

We form the AND of a and b by bit-wise ANDing the two values.

That means individually ANDing each pair of bits ai and bi to form ci. For

example, since a0=1 and b0=1, c0 is the AND of a0 and b0, which is 1.

Since a6=1 and b6=0, c6 is the AND of a6 and b6, which is 0.

The complete solution for c is

a: 0011101001101001
b: 0101100100100001
c: 0001100000100001

Example 2.7
Suppose we have an eight-bit pattern—let’s call it A—in which the rightmost two

bits have particular significance. The computer could be asked to do one of four tasks

depending on the value stored in the two rightmost bits of A. Can we isolate those

two bits?

Yes, we can, using a bit mask. A bit mask is a binary pattern that enables the bits

of A to be separated into two parts—generally the part you care about and the part

you wish to ignore. In this case, the bit mask 00000011 ANDed with A produces 0 in

bit positions 7 through 2, and the original values of bits 1 and 0 of A in bit positions

1 and 0. The bit mask is said to mask out the values in bit positions 7 through 2.

If A is 01010110, the AND of A and the bit mask 00000011 is 00000010. If A is

11111100, the AND of A and the bit mask 00000011 is 00000000.

That is, the result of ANDing any eight-bit pattern with the mask 00000011 is

one of the four patterns: 00000000, 00000001, 00000010, or 00000011. The result

of ANDing with the mask is to highlight the two bits that are relevant.

2.6.3 The OR Function

OR is also a binary logical function. It requires two source operands, both of

which are logical variables. The output of OR is 1 if any source has the value 1.

Only if both sources are 0 is the output 0. We can think of the OR operation as

the ANY operation; that is, the output is 1 if ANY of the two inputs are 1.

The truth table for a two-input OR function is

A B OR

0 0 0

0 1 1

1 0 1

1 1 1

In the same way that we applied the logical operation AND to two m-bit patterns,

we can apply the OR operation bit-wise to two m-bit patterns.
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Example 2.8
If c is the OR of a and b, where a=0011101001101001 and b=0101100100100001,

as before, what is c?

We form the OR of a and b by bit-wise ORing the two values. That means

individually ORing each pair of bits ai and bi to form ci. For example, since a0=1

and b0=1, c0 is the OR of a0 and b0, which is 1. Since a6=1 and b6=0, c6 is the OR

of a6 and b6, which is also 1.

The complete solution for c is

a: 0011101001101001
b: 0101100100100001
c: 0111101101101001

Sometimes this OR operation is referred to as the inclusive-OR in order to distinguish

it from the exclusive-OR function, which we will discuss momentarily.

2.6.4 The NOT Function

NOT is a unary logical function. This means it operates on only one source

operand. It is also known as the complement operation. The output is formed by

complementing the input. We sometimes say the output is formed by inverting
the input. A 1 input results in a 0 output. A 0 input results in a 1 output.

The truth table for the NOT function is

A NOT

0 1

1 0

In the same way that we applied the logical operation AND and OR to two m-bit

patterns, we can apply the NOT operation bit-wise to one m-bit pattern. If a is as

before, then c is the NOT of a.

a: 0011101001101001
c: 1100010110010110

2.6.5 The Exclusive-OR Function

Exclusive-OR, often abbreviated XOR, is a binary logical function. It, too,

requires two source operands, both of which are logical variables. The output

of XOR is 1 if one (but not both) of the two sources is 1. The output of XOR is 0

if both sources are 1 or if neither source is 1. In other words, the output of XOR is

1 if the two sources are different. The output is 0 if the two sources are the same.

The truth table for the XOR function is

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0
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In the same way that we applied the logical operation AND to two m-bit patterns,

we can apply the XOR operation bit-wise to two m-bit patterns.

Example 2.9
If a and b are 16-bit patterns as before, then c (shown here) is the XOR of a and b.

a: 0011101001101001
b: 0101100100100001
c: 0110001101001000

Note the distinction between the truth table for XOR shown here and the truth table

for OR shown earlier. In the case of exclusive-OR, if both source operands are 1, the

output is 0. That is, the output is 1 if the first operand is 1 but the second operand is

not 1 or if the second operand is 1 but the first operand is not 1. The term exclusive
is used because the output is 1 if only one of the two sources is 1. The OR function,

on the other hand, produces an output 1 if only one of the two sources is 1, or if both

sources are 1. Ergo, the name inclusive-OR.

Example 2.10
Suppose we wish to know if two patterns are identical. Since the XOR function pro-

duces a 0 only if the corresponding pair of bits is identical, two patterns are identical

if the output of the XOR is all 0s.

2.6.6 DeMorgan’s Laws

There are two well-known relationships between AND functions and OR func-

tions, known as DeMorgan’s Laws. One of them is illustrated in Figure 2.2. In

Figure 2.2a, we complement each of the two inputs A and B before using them

as inputs to the AND function, and we also complement the result produced by
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Figure 2.2 DeMorgan’s Law.
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the AND function. Figure 2.2b shows the output of these functions if A = 0 and

B = 1. Figure 2.2c summarizes by means of a truth table the behavior of the logic

functions for all four input combinations of A and B. Note that the NOT of A is

represented as ̄A.

We can describe the behavior of these functions algebraically:

A AND B = A OR B
We can also state this behavior in English:

“It is not the case that both A and B are false” is equivalent to saying “At least

one of A and B is true.”

This equivalence is known as one of two DeMorgan’s Laws. Question: Is there

a similar result if one inverts both inputs to an OR function, and then inverts the

output?

2.6.7 The Bit Vector

We have discussed the AND, OR, and NOT functions performed on m-bit pat-

terns, where each of the m bits is a logical value (0 or 1) and the operations are per-

formed bit-wise (i.e., individually and independently). We have also discussed the

use of an m-bit bit mask, where our choice of 0 or 1 for each bit allows us to isolate

the bits we are interested in focusing on and ignore the bits that don’t matter.

An m-bit pattern where each bit has a logical value (0 or 1) independent of

the other bits is called a bit vector. It is a convenient mechanism for identifying

a property such that some of the bits identify the presence of the property and

other bits identify the absence of the property.

There are many uses for bit vectors. The most common use is a bit mask,

as we saw in Example 2.7. In that example, we had an eight-bit value, and we

wanted to focus on bit 1 and bit 0 of that value. We did not care about the other

bits. Performing the AND of that value with the bit mask 00000011 caused bit 7

through bit 2 to be ignored, resulting in the AND function producing 00000000,

00000001, 00000010, or 00000011, depending on the values of bit 1 and bit 0.

The bit mask is a bit vector, where the property of each of the bits is whether or

not we care about that bit. In Example 2.7, we only cared about bit 1 and bit 0.

Another use of a bit mask could involve a 16-bit 2’s complement integer.

Suppose the only thing we cared about was whether the integer was odd or even

and whether it was positive or negative. The bit vector 1000000000000001 has a 1 in

bit 15 that is used to identify a number as positive or negative, and a 1 in bit 0 that is

used to identify if the integer is odd or even. If we perform the AND of this bit vector

with a 16-bit 2’s complement integer, we would get one of four results, depending

on whether the integer was positive or negative and odd or even:

0000000000000000
0000000000000001
1000000000000000
1000000000000001

Another common use of bit vectors involves managing a complex system

made up of several units, each of which is individually and independently either
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busy or available. The system could be a manufacturing plant where each unit is

a particular machine. Or the system could be a taxicab network where each unit

is a particular taxicab. In both cases, it is important to identify which units are

busy and which are available so that work can be properly assigned.

Say we have m such units. We can keep track of these m units with a bit

vector, where a bit is 1 if the unit is free and 0 if the unit is busy.

Example 2.11
Suppose we have eight machines that we want to monitor with respect to their avail-

ability. We can keep track of them with an eight-bit BUSYNESS bit vector, where a

bit is 1 if the unit is free and 0 if the unit is busy. The bits are labeled, from right to

left, from 0 to 7.

The BUSYNESS bit vector 11000010 corresponds to the situation where only

units 7, 6, and 1 are free and therefore available for work assignment.

Suppose work is assigned to unit 7. We update our BUSYNESS bit vector by per-

forming the logical AND, where our two sources are the current bit vector 11000010

and the bit mask 01111111. The purpose of the bit mask is to clear bit 7 of the

BUSYNESS bit vector, while leaving alone the values corresponding to all the other

units. The result is the bit vector 01000010, indicating that unit 7 is now busy.

Suppose unit 5 finishes its task and becomes idle. We can update the

BUSYNESS bit vector by performing the logical OR of it with the bit mask

00100000. The result is 01100010, indicating that unit 5 is now available.

2.7 Other Representations
There are many other representations of information that are used in computers.

Two that are among the most useful are the floating point data type and ASCII

codes. We will describe both in this section. We will also describe a notation

called hexadecimal that, although not a data type, is convenient for humans to

use when dealing with long strings of 0s and 1s.

2.7.1 Floating Point Data Type (Greater Range, Less Precision)

Most of the arithmetic in this book uses integer values. The LC-3 computer, which

you will start studying in Chapter 4, uses the 16-bit, 2’s complement integer data

type. That data type provides one bit to identify whether the number is positive

or negative and 15 bits to represent the magnitude of the value. With 16 bits used

in this way, we can express integer values between −32,768 and +32,767, that

is, between −215 and +215 − 1. We say the precision of our value is 15 bits, and

the range is 216. As you learned in high school chemistry class, sometimes we

need to express much larger numbers, but we do not require so many digits of

precision. In fact, recall the value 6.022⋅1023, which you may have been required

to memorize back then. The range needed to express the value 1023 is far greater

than the largest value 215−1 that is available with 16-bit 2’s complement integers.

On the other hand, the 15 bits of precision available with 16-bit 2’s complement

integers are overkill. We need only enough bits to express four significant decimal

digits (6022).
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So we have a problem. We have more bits than we need for precision. But we

don’t have enough bits to represent the range.

The floating point data type solves the problem. Instead of using all the bits

to represent the precision of a value, the floating point data type allocates some of

the bits to the range of values (i.e., how big or how small) that can be expressed.

The rest of the bits (except for the sign bit) are used for precision.

Most ISAs today specify more than one floating point data type. One of them,

usually called float, consists of 32 bits, allocated as follows:

1 bit for the sign (positive or negative)

8 bits for the range (the exponent field)

23 bits for precision (the fraction field)

In most computers manufactured today, the format of the 32-bit floating point

data type is as shown in Figure 2.3.

8

S

23

fractionexponent

1

Figure 2.3 The 32-bit floating point data type.

2.7.1.1 Normalized Form

Like Avogadro’s number that you learned years ago, the floating point data type

represents numbers expressed in scientific notation, and mostly in normalized

form:

N = (−1)S × 1. fraction × 2exponent−127, 1 ≤ exponent ≤ 254

where S, fraction, and exponent are the binary numbers in the fields of Figure 2.3.

We say mostly in normalized form because (as noted in the equation) the data

type represents a floating point number in normalized form only if the eight-bit

exponent is restricted to the 254 unsigned integer values, 1 (00000001) through

254 (11111110).

As you know, with eight bits, one can represent 256 values uniquely. For the

other two integer values 0 (00000000) and 255 (11111111), the floating point

data type does not represent normalized numbers. We will explain what it does

represent in Section 2.7.1.2 and Section 2.7.1.3.

Recall again Avogadro’s number: (a) an implied + sign (often left out when

the value is positive), (b) four decimal digits 6.022 in normalized form (one non-

zero decimal digit 6 before the decimal point) times (c) the radix 10 raised to

the power 23. The computer’s 32-bit floating point data type, on the other hand,

consists of (a) a sign bit (positive or negative), (b) 24 binary digits in normalized

form (one non-zero binary digit to the left of the binary point) times (c) the radix

2 raised to an exponent expressed in eight bits.

We determine the value of the 32-bit floating point representation shown in

Figure 2.3 by examining its three parts.
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The sign bit S is just a single binary digit, 0 for positive numbers, 1 for neg-

ative numbers. The formula contains the factor −1S, which evaluates to +1 if

S = 0, and −1 if S = 1.

The 23 fraction bits form the 24-bit quantity 1.fraction, where normalized
form demands exactly one non-zero binary digit to the left of the binary point.

Since there exists only one non-zero binary digit (i.e., the value 1), it is unneces-

sary to explicitly store that bit in our 32-bit floating point format. In fact that is

how we get 24 bits of precision, the 1 to the left of the binary point that is always

present in normalized numbers and so is unnecessary to store, and the 23 bits of

fraction that are actually part of the 32-bit data type.

The eight exponent bits are encoded in what we call an excess code, named

for the notion that one can get the *real* exponent by treating the code as

an unsigned integer and subtracting the excess (sometimes called the bias). In

the case of the IEEE Floating Point that almost everyone uses, that excess (or

bias) is 127 for 32-bit floating point numbers. Thus, an exponent field contain-

ing 10000110 corresponds to the exponent +7 (since 10000110 represents the

unsigned integer 134, from which we subtract 127, yielding +7). An exponent

field containing 00000111 corresponds to the exponent −120 (since 00000111

represents the unsigned integer 7, from which we subtract 127, yielding −120).

The exponent field gives us numbers as large as 2+127 for an exponent field con-

taining 254 (11111110) and as small as 2−126 for an exponent field containing

1 (00000001).

Example 2.12
What does the floating point data type

00111101100000000000000000000000

represent?

The leading bit is a 0. This signifies a positive number. The next eight bits

represent the unsigned number 123. If we subtract 127, we get the actual expo-

nent −4. The last 23 bits are all 0. Therefore, the number being represented is

+1.000000000000000000000000 ⋅ 2−4, which is
1

16
.

Example 2.13
How is the number −6

5

8
represented in the floating point data type?

First, we express −6
5

8
as a binary number: −110.101.

−(1 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 + 1 ⋅ 2−1 + 0 ⋅ 2−2 + 1 ⋅ 2−3)

Then we normalize the value, yielding −1.10101 ⋅ 22.

The sign bit is 1, reflecting the fact that −6
5

8
is a negative number. The exponent

field contains 10000001, the unsigned number 129, reflecting the fact that the real

exponent is +2 (129−127 = +2). The fraction is the 23 bits of precision, after remov-

ing the leading 1. That is, the fraction is 10101000000000000000000. The result is

the number −6
5

8
, expressed as a floating point number:

1 10000001 10101000000000000000000
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Example 2.14
The following three examples provide further illustrations of the interpretation of

the 32-bit floating point data type according to the rules of the IEEE standard.

0 10000011 00101000000000000000000 is 1.00101 ⋅ 24 = 18.5

The exponent field contains the unsigned number 131. Since 131 − 127 is 4, the

exponent is +4. Combining a 1 to the left of the binary point with the fraction field

to the right of the binary point yields 1.00101. If we move the binary point four

positions to the right, we get 10010.1, which is 18.5.

1 10000010 00101000000000000000000 is −1 ⋅ 1.00101 ⋅ 23 = −9.25

The sign bit is 1, signifying a negative number. The exponent is 130, signifying an

exponent of 130 − 127, or +3. Combining a 1 to the left of the binary point with

the fraction field to the right of the binary point yields 1.00101. Moving the binary

point three positions to the right, we get 1001.01, which is −9.25.

0 11111110 11111111111111111111111 is ∼2128

The sign is +. The exponent is 254 − 127, or +127. Combining a 1 to the left

of the binary point with the fraction field to the right of the binary point yields

1.11111111… 1, which is approximately 2. Therefore, the result is approximately

2128.

2.7.1.2 Infinities

We noted above that the floating point data type represented numbers expressed

in scientific notation in normalized form provided the exponent field does not

contain 00000000 or 11111111.

If the exponent field contains 11111111, we use the floating point data type to

represent various things, among them the notion of infinity. Infinity is represented

by the exponent field containing all 1s and the fraction field containing all 0s. We

represent positive infinity if the sign bit is 0 and negative infinity if the sign bit is 1.

2.7.1.3 Subnormal Numbers

The smallest number that can be represented in normalized form is

N = 1.00000000000000000000000 × 2−126

What about numbers smaller than 2−126 but larger than 0? We call such num-

bers subnormal numbers because they cannot be represented in normalized form.

The largest subnormal number is

N = 0.11111111111111111111111 × 2−126

The smallest subnormal number is

N = 0.00000000000000000000001× 2−126, i.e., 2−23 × 2−126 which is 2−149.

Note that the largest subnormal number is 2−126 minus 2−149. Do you see why

that is the case?
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Subnormal numbers are numbers of the form

N = (−1)S × 0. fraction × 2−126

We represent them with an exponent field of 00000000. The fraction field is

represented in the same way as with normalized numbers. That is, if the expo-

nent field contains 00000000, the exponent is −126, and the significant digits are

obtained by starting with a leading 0, followed by a binary point, followed by the

23 bits of the fraction field.

Example 2.15
What number corresponds to the following floating point representation?

0 00000000 00001000000000000000000

Answer: The leading 0 means the number is positive. The next eight bits, a zero

exponent, means the exponent is −126, and the bit to the left of the binary point is 0.

The last 23 bits form the number 0.00001000000000000000000, which equals 2−5.

Thus, the number represented is 2−5 ⋅ 2−126, which is 2−131.

Including subnormal numbers allows very, very tiny numbers to be repre-

sented.

A detailed understanding of IEEE Floating Point Arithmetic is well beyond

what should be expected in this first course. Our purpose in including this sec-

tion in the textbook is to at least let you know that there is, in addition to 2’s

complement integers, another very important data type available in almost all

ISAs, which is called floating point; it allows very large and very tiny numbers to

be expressed at the cost of reducing the number of binary digits of precision.

2.7.2 ASCII Codes

Another representation of information is the standard code that almost all com-

puter equipment manufacturers have agreed to use for transferring characters

between the main computer processing unit and the input and output devices.

That code is an eight-bit code referred to as ASCII. ASCII stands for Ameri-

can Standard Code for Information Interchange. It (ASCII) greatly simplifies the

interface between a keyboard manufactured by one company, a computer made

by another company, and a monitor made by a third company.

Each key on the keyboard is identified by its unique ASCII code. So, for

example, the digit 3 is represented as 00110011, the digit 2 is 00110010, the

lowercase e is 01100101, and the ENTER key is 00001101. The entire set of

eight-bit ASCII codes is listed in Figure E.2 of Appendix E. When you type a key

on the keyboard, the corresponding eight-bit code is stored and made available to

the computer. Where it is stored and how it gets into the computer are discussed

in Chapter 9.

Most keys are associated with more than one code. For example, the ASCII

code for the letter E is 01000101, and the ASCII code for the letter e is 01100101.
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Both are associated with the same key, although in one case the Shift key is also

depressed while in the other case, it is not.

In order to display a particular character on the monitor, the computer must

transfer the ASCII code for that character to the electronics associated with the

monitor. That, too, is discussed in Chapter 9.

2.7.3 Hexadecimal Notation

We have seen that information can be represented as 2’s complement integers,

as bit vectors, in floating point format, or as an ASCII code. There are other

representations also, but we will leave them for another book. However, before

we leave this topic, we would like to introduce you to a representation that is used

more as a convenience for humans than as a data type to support operations being

performed by the computer. This is the hexadecimal notation. As we will see, it

evolves nicely from the positional binary notation and is useful for dealing with

long strings of binary digits without making errors.

It will be particularly useful in dealing with the LC-3 where 16-bit binary

strings will be encountered often.

An example of such a binary string is

0011110101101110

Let’s try an experiment. Cover the preceding 16-bit binary string of 0s and 1s

with one hand, and try to write it down from memory. How did you do? Hex-

adecimal notation is about being able to do this without making mistakes. We

shall see how.

In general, a 16-bit binary string takes the form

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

where each of the bits ai is either 0 or 1.

If we think of this binary string as an unsigned integer, its value can be

computed as

a15 ⋅ 215 + a14 ⋅ 214 + a13 ⋅ 213 + a12 ⋅ 212 + a11 ⋅ 211 + a10 ⋅ 210

+ a9 ⋅ 29 + a8 ⋅ 28 + a7 ⋅ 27 + a6 ⋅ 26 + a5 ⋅ 25 + a4 ⋅ 24 + a3 ⋅ 23

+ a2 ⋅ 22 + a1 ⋅ 21 + a0 ⋅ 20

We can factor 212 from the first four terms, 28 from the second four terms, 24

from the third set of four terms, and 20 from the last four terms, yielding

212(a15 ⋅ 23 + a14 ⋅ 22 + a13 ⋅ 21 + a12 ⋅ 20)

+ 28(a11 ⋅ 23 + a10 ⋅ 22 + a9 ⋅ 21 + a8 ⋅ 20)

+ 24(a7 ⋅ 23 + a6 ⋅ 22 + a5 ⋅ 21 + a4 ⋅ 20)

+ 20(a3 ⋅ 23 + a2 ⋅ 22 + a1 ⋅ 21 + a0 ⋅ 20)

Note that the largest value inside a set of parentheses is 15, which would be the

case if each of the four bits is 1. If we replace what is inside each square bracket
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with a symbol representing its value (from 0 to 15), and we replace 212 with its

equivalent 163, 28 with 162, 24 with 161, and 20 with 160, we have

h3 ⋅ 163 + h2 ⋅ 162 + h1 ⋅ 161 + h0 ⋅ 160

where h3, for example, is a symbol representing

a15 ⋅ 23 + a14 ⋅ 22 + a13 ⋅ 21 + a12 ⋅ 20

Since the symbols must represent values from 0 to 15, we assign symbols to these

values as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. That is, we represent

0000 with the symbol 0, 0001 with the symbol 1,… 1001 with 9, 1010 with A,

1011 with B, … 1111 with F. The resulting notation is called hexadecimal, or

base 16.

So, for example, if the hex digits E92F represent a 16-bit 2’s complement

integer, is the value of that integer positive or negative? How do you know?

Now, then, what is this hexadecimal representation good for, anyway? It

seems like just another way to represent a number without adding any benefit.

Let’s return to the exercise where you tried to write from memory the string

0011110101101110

If we had first broken the string at four-bit boundaries

0011 1101 0110 1110

and then converted each four-bit string to its equivalent hex digit

3 D 6 E

it would have been no problem to jot down (with the string covered) 3D6E.

In summary, although hexadecimal notation can be used to perform base-

16 arithmetic, it is mainly used as a convenience for humans. It can be used to

represent binary strings that are integers or floating point numbers or sequences

of ASCII codes, or bit vectors. It simply reduces the number of digits by a factor

of 4, where each digit is in hex (0, 1, 2,… F) instead of binary (0, 1). The usual

result is far fewer copying errors due to too many 0s and 1s.

Exercises

2.1 Given n bits, how many distinct combinations of the n bits exist?

2.2 There are 26 characters in the alphabet we use for writing English. What

is the least number of bits needed to give each character a unique bit

pattern? How many bits would we need to distinguish between upper-

and lowercase versions of all 26 characters?

2.3 a. Assume that there are about 400 students in your class. If every

student is to be assigned a unique bit pattern, what is the minimum

number of bits required to do this?

b. How many more students can be admitted to the class without

requiring additional bits for each student’s unique bit pattern?
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2.4 Given n bits, how many unsigned integers can be represented with the n
bits? What is the range of these integers?

2.5 Using five bits to represent each number, write the representations of

7 and −7 in 1’s complement, signed magnitude, and 2’s complement

integers.

2.6 Write the six-bit 2’s complement representation of −32.

2.7 Create a table showing the decimal values of all four-bit 2’s complement

numbers.

2.8 a. What is the largest positive number one can represent in an eight-bit

2’s complement code? Write your result in binary and decimal.

b. What is the greatest magnitude negative number one can represent in

an eight-bit 2’s complement code? Write your result in binary and

decimal.

c. What is the largest positive number one can represent in n-bit 2’s

complement code?

d. What is the greatest magnitude negative number one can represent in

n-bit 2’s complement code?

2.9 How many bits are needed to represent Avogadro’s number (6.02 ⋅ 1023)

in 2’s complement binary representation?

2.10 Convert the following 2’s complement binary numbers to decimal.

a. 1010
b. 01011010
c. 11111110
d. 0011100111010011

2.11 Convert these decimal numbers to eight-bit 2’s complement binary

numbers.

a. 102

b. 64

c. 33

d. −128

e. 127

2.12 If the last digit of a 2’s complement binary number is 0, then the number

is even. If the last two digits of a 2’s complement binary number are 00

(e.g., the binary number 01100), what does that tell you about the

number?

2.13 Without changing their values, convert the following 2’s complement

binary numbers into eight-bit 2’s complement numbers.

a. 1010 c. 1111111000
b. 011001 d. 01
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2.14 Add the following bit patterns. Leave your results in binary form.

a. 1011 + 0001
b. 0000 + 1010
c. 1100 + 0011
d. 0101 + 0110
e. 1111 + 0001

2.15 It was demonstrated in Example 2.5 that shifting a binary number one bit

to the left is equivalent to multiplying the number by 2. What operation

is performed when a binary number is shifted one bit to the right?

2.16 Write the results of the following additions as both eight-bit binary and

decimal numbers. For each part, use standard binary addition as

described in Section 2.5.1.

a. Add the 1’s complement representation of 7 to the 1’s complement

representation of −7.

b. Add the signed magnitude representation of 7 to the signed

magnitude representation of −7.

c. Add the 2’s complement representation of 7 to the 2’s complement

representation of −7.

2.17 Add the following 2’s complement binary numbers. Also express the

answer in decimal.

a. 01 + 1011
b. 11 + 01010101
c. 0101 + 110
d. 01 + 10

2.18 Add the following unsigned binary numbers. Also, express the answer in

decimal.

a. 01 + 1011
b. 11 + 01010101
c. 0101 + 110
d. 01 + 10

2.19 Express the negative value −27 as a 2’s complement integer, using

eight bits. Repeat, using 16 bits. Repeat, using 32 bits. What does this

illustrate with respect to the properties of sign-extension as they pertain

to 2’s complement representation?

2.20 The following binary numbers are four-bit 2’s complement binary

numbers. Which of the following operations generate overflow? Justify

your answer by translating the operands and results into decimal.

a. 1100 + 0011 d. 1000 − 0001
b. 1100 + 0100 e. 0111 + 1001
c. 0111 + 0001

2.21 Describe what conditions indicate overflow has occurred when two 2’s

complement numbers are added.
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2.22 Create two 16-bit 2’s complement integers such that their sum causes an

overflow.

2.23 Describe what conditions indicate overflow has occurred when two

unsigned numbers are added.

2.24 Create two 16-bit unsigned integers such that their sum causes an

overflow.

2.25 Why does the sum of a negative 2’s complement number and a positive

2’s complement number never generate an overflow?

2.26 You wish to express −64 as a 2’s complement number.

a. How many bits do you need (the minimum number)?

b. With this number of bits, what is the largest positive number you can

represent? (Please give answer in both decimal and binary.)

c. With this number of bits, what is the largest unsigned number you can

represent? (Please give answer in both decimal and binary.)

2.27 The LC-3, a 16-bit machine, adds the two 2’s complement numbers

0101010101010101 and 0011100111001111, producing

1000111100100100. Is there a problem here? If yes, what is the

problem? If no, why not?

2.28 When is the output of an AND operation equal to 1?

2.29 Fill in the following truth table for a one-bit AND operation.

X Y X AND Y

0 0

0 1

1 0

1 1

2.30 Compute the following. Write your results in binary.

a. 01010111 AND 11010111
b. 101 AND 110
c. 11100000 AND 10110100
d. 00011111 AND 10110100
e. (0011 AND 0110) AND 1101
f. 0011 AND (0110 AND 1101)

2.31 When is the output of an OR operation equal to 1?

2.32 Fill in the following truth table for a one-bit OR operation.

X Y X OR Y

0 0

0 1

1 0

1 1
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2.33 Compute the following:

a. 01010111 OR 11010111
b. 101 OR 110
c. 11100000 OR 10110100
d. 00011111 OR 10110100
e. (0101 OR 1100) OR 1101
f. 0101 OR (1100 OR 1101)

2.34 Compute the following:

a. NOT(1011) OR NOT(1100)
b. NOT(1000 AND (1100 OR 0101))
c. NOT(NOT(1101))
d. (0110 OR 0000) AND 1111

2.35 In Example 2.11, what are the masks used for?

2.36 Refer to Example 2.11 for the following questions.

a. What mask value and what operation would one use to indicate that

machine 2 is busy?

b. What mask value and what operation would one use to indicate that

machines 2 and 6 are no longer busy? (Note: This can be done with

only one operation.)

c. What mask value and what operation would one use to indicate that

all machines are busy?

d. What mask value and what operation would one use to indicate that

all machines are idle?

e. Using the operations discussed in this chapter, develop a procedure to

isolate the status bit of machine 2 as the sign bit. For example, if the

BUSYNESS pattern is 01011100, then the output of this procedure is

10000000. If the BUSYNESS pattern is 01110011, then the output is

00000000. In general, if the BUSYNESS pattern is:

b7 b6 b5 b4 b3 b2 b1 b0

the output is:

b2 0 0 0 0 0 0 0 .

Hint: What happens when you ADD a bit pattern to itself?

2.37 If n and m are both four-bit 2’s complement numbers, and s is the four-bit

result of adding them together, how can we determine, using only the

logical operations described in Section 2.6, if an overflow occurred

during the addition? Develop a “procedure” for doing so. The inputs

to the procedure are n, m, and s, and the output will be a bit pattern

of all 0s (0000) if no overflow occurred and 1000 if an overflow

did occur.

2.38 If n and m are both four-bit unsigned numbers, and s is the four-bit result

of adding them together, how can we determine, using only the logical

operations described in Section 2.6, if an overflow occurred during
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the addition? Develop a “procedure” for doing so. The inputs to the

procedure are n, m, and s, and the output will be a bit pattern of

all 0s (0000) if no overflow occurred and 1000 if an overflow

did occur.

2.39 Write IEEE floating point representation of the following

decimal numbers.

a. 3.75

b. −55
23

64
c. 3.1415927

d. 64,000

2.40 Write the decimal equivalents for these IEEE floating point

numbers.

a. 0 10000000 00000000000000000000000
b. 1 10000011 00010000000000000000000
c. 0 11111111 00000000000000000000000
d. 1 10000000 10010000000000000000000

2.41 a. What is the largest exponent the IEEE standard allows for a 32-bit

floating point number?

b. What is the smallest exponent the IEEE standard allows for a 32-bit

floating point number?

2.42 A computer programmer wrote a program that adds two numbers. The

programmer ran the program and observed that when 5 is added to 8,

the result is the character m. Explain why this program is behaving

erroneously.

2.43 Translate the following ASCII codes into strings of characters by

interpreting each group of eight bits as an ASCII character.

a. x48656c6c6f21

b. x68454c4c4f21

c. x436f6d70757465727321

d. x4c432d32

2.44 What operation(s) can be used to convert the binary representation for 3

(i.e., 0000 0011) into the ASCII representation for 3 (i.e., 0011 0011)?

What about the binary 4 into the ASCII 4? What about any digit?

2.45 Convert the following unsigned binary numbers to hexadecimal.

a. 1101 0001 1010 1111
b. 001 1111
c. 1
d. 1110 1101 1011 0010
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2.46 Convert the following hexadecimal numbers to binary.

a. x10

b. x801

c. xF731

d. x0F1E2D

e. xBCAD

2.47 Convert the following hexadecimal representations of 2’s complement

binary numbers to decimal numbers.

a. xF0

b. x7FF

c. x16

d. x8000

2.48 Convert the following decimal numbers to hexadecimal representations

of 2’s complement numbers.

a. 256

b. 111

c. 123,456,789

d. −44

2.49 Perform the following additions. The corresponding 16-bit binary

numbers are in 2’s complement notation. Provide your answers in

hexadecimal.

a. x025B + x26DE

b. x7D96 + xF0A0

c. xA397 + xA35D

d. x7D96 + x7412

e. What else can you say about the answers to parts c and d?

2.50 Perform the following logical operations. Express your answers in

hexadecimal notation.

a. x5478 AND xFDEA

b. xABCD OR x1234

c. NOT((NOT(xDEFA)) AND (NOT(xFFFF)))

d. x00FF XOR x325C

2.51 What is the hexadecimal representation of the following numbers?

a. 25,675

b. 675.625 (i.e., 675
5

8
), in the IEEE 754 floating point standard

c. The ASCII string: Hello
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2.52 Consider two hexadecimal numbers: x434F4D50 and x55544552. What

values do they represent for each of the five data types shown?

x434F4D50 x55544552

Unsigned binary

1’s complement

2’s complement

IEEE 754 floating point

ASCII string

2.53 Fill in the truth table for the equations given. The first line is done as an

example.

Q1 = NOT(A AND B)

Q2 = NOT(NOT(A) AND NOT(B))

A B Q1 Q2

0 0 1 0

Express Q2 another way.

2.54 Fill in the truth table for the equations given. The first line is done as an

example.

Q1 = NOT(NOT(X) OR (X AND Y AND Z))

Q2 = NOT((Y OR Z) AND (X AND Y AND Z))

X Y Z Q1 Q2

0 0 0 0 1
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2.55 We have represented numbers in base-2 (binary) and in base-16 (hex).

We are now ready for unsigned base-4, which we will call quad numbers.

A quad digit can be 0, 1, 2, or 3.

a. What is the maximum unsigned decimal value that one can represent

with 3 quad digits?

b. What is the maximum unsigned decimal value that one can represent

with n quad digits? (Hint: Your answer should be a function of n.)

c. Add the two unsigned quad numbers: 023 and 221.

d. What is the quad representation of the decimal number 42?

e. What is the binary representation of the unsigned quad number 123.3?

f. Express the unsigned quad number 123.3 in IEEE floating point

format.

g. Given a black box that takes m quad digits as input and produces

one quad digit for output, what is the maximum number of unique

functions this black box can implement?

2.56 Define a new eight-bit floating point format with one sign bit, four bits of

exponent, using an excess-7 code (i.e., the bias is 7), and three bits of

fraction. If xE5 is the bit pattern for a number in this eight-bit floating

point format, what value does it have? (Express as a decimal number.)





3
C H A P T E R

Digital Logic Structures

In Chapter 1, we stated that computers were built from very large numbers

of very simple structures. For example, Intel’s Broadwell-E5 microproces-

sor, introduced in 2016, contained more than seven billion transistors. Similarly,

IBM’s Power9 microprocessor, introduced in 2017, contained eight billion tran-

sistors. In this chapter, we will explain how the MOS transistor works (as a logic

element), show how these transistors are connected to form logic gates, and then

show how logic gates are interconnected to form larger units that are needed to

construct a computer. In Chapter 4, we will connect those larger units and form

a computer.

But first, the transistor.

3.1 The Transistor
Most computers today or rather most microprocessors (which form the core of the

computer) are constructed out of MOS transistors. MOS stands for metal-oxide
semiconductor. The electrical properties of metal-oxide semiconductors are well

beyond the scope of what we want to understand in this course. They are below

our lowest level of abstraction, which means that if somehow transistors start

misbehaving, we are at their mercy. However, it is unlikely in this course that we

will have any problems from the transistors.

Still, it is useful to know that there are two types of MOS transistors: P-type

and N-type. They both operate “logically,” very similar to the way wall switches

work.

Figure 3.1 shows the most basic of electrical circuits. It consists of (1) a

power supply (in this case, the 120 volts that come into your house if you live in

the United States, or the 220 volts if you live in most of the rest of the world),

(2) a wall switch, and (3) a lamp (plugged into an outlet in the wall). In order for

the lamp to glow, electrons must flow; in order for electrons to flow, there must be

a closed circuit from the power supply to the lamp and back to the power supply.
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Wall switch Lamp

120-volt
power supply

Figure 3.1 A simple electric circuit showing the use of a wall switch.

The lamp can be turned on and off by simply manipulating the wall switch to

make or break the closed circuit.

Instead of the wall switch, we could use an N-type or a P-type MOS transistor

to make or break the closed circuit. Figure 3.2 shows a schematic rendering of

an N-type transistor (a) by itself, and (b) in a circuit. Note (Figure 3.2a) that

the transistor has three terminals. They are called the gate, the source, and the

drain. The reasons for the names source and drain are not of interest to us in this

course. What is of interest is the fact that if the gate of the N-type transistor is

supplied with 1.2 volts, the connection from source to drain acts like a piece of

wire. We say (in the language of electricity) that we have a short circuit between

the source and drain. If the gate of the N-type transistor is supplied with 0 volts,

the connection between the source and drain is broken. We say that between the

source and drain we have an open circuit.
Figure 3.2 shows the N-type transistor in a circuit with a battery and a bulb.

When the gate is supplied with 1.2 volts, the transistor acts like a piece of wire,

completing the circuit and causing the bulb to glow. When the gate is supplied

with 0 volts, the transistor acts like an open circuit, breaking the circuit, and

causing the bulb to not glow.

Gate

(b)

1.2−volt
battery
(power
supply)

(a)

Drain

Source

Gate Gate

(c)

Figure 3.2 The N-type MOS transistor.
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Figure 3.2c is a shorthand notation for describing the circuit of Figure 3.2b.

Rather than always showing the power supply and the complete circuit, electri-

cal engineers usually show only the terminals of the power supply. The fact that

the power supply itself provides the completion of the completed circuit is well

understood, and so is not usually shown.

The P-type transistor works in exactly the opposite fashion from the N-type

transistor. Figure 3.3 shows the schematic representation of a P-type transistor.

When the gate is supplied with 0 volts, the P-type transistor acts (more or less)

like a piece of wire, closing the circuit. When the gate is supplied with 1.2 volts,

the P-type transistor acts like an open circuit. Because the P-type and N-type

transistors act in this complementary way, we refer to circuits that contain both

P-type and N-type transistors as CMOS circuits, for complementary metal-oxide
semiconductor.

Source

Gate

Drain

Figure 3.3 A P-type MOS transistor.

3.2 Logic Gates
One step up from the transistor is the logic gate. That is, we construct basic logic

structures out of individual MOS transistors. In Chapter 2, we studied the behav-

ior of the AND, the OR, and the NOT functions. In this chapter, we construct

transistor circuits that implement each of these functions. The corresponding

circuits are called AND, OR, and NOT gates.

3.2.1 The NOT Gate (Inverter)

Figure 3.4 shows the simplest logic structure that exists in a computer. It is con-

structed from two MOS transistors, one P-type and one N-type. Figure 3.4a is the

schematic representation of that circuit. Figure 3.4b shows the behavior of the

circuit if the input is supplied with 0 volts. Note that the P-type transistor acts

like a short circuit and the N-type transistor acts like an open circuit. The output

is, therefore, connected to 1.2 volts. On the other hand, if the input is supplied

with 1.2 volts, the P-type transistor acts like an open circuit, but the N-type tran-

sistor acts like a short circuit. The output in this case is connected to ground (i.e.,

0 volts). The complete behavior of the circuit can be described by means of a

table, as shown in Figure 3.4c. If we replace 0 volts with the symbol 0 and 1.2
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(a)

In Out

0 volts

1.2 volts

(b)

In = 0 Out = 1

N−type

P−type

In Out
0 volts

1.2 volts
1.2 volts

0 volts

(c)

0      1
1      0

In Out

(d)

Figure 3.4 A CMOS inverter.

volts with the symbol 1, we have the truth table (Figure 3.4d) for the complement

or NOT function, which we studied in Chapter 2.

In other words, we have just shown how to construct an electronic circuit that

implements the NOT logic function discussed in Chapter 2. We call this circuit

a NOT gate, or an inverter.

3.2.2 OR and NOR Gates

Figure 3.5 illustrates a NOR gate. Figure 3.5a is a schematic of a circuit that

implements a NOR gate. It contains two P-type and two N-type transistors.

Figure 3.5b shows the behavior of the circuit if A is supplied with 0 volts

and B is supplied with 1.2 volts. In this case, the lower of the two P-type transis-

tors produces an open circuit, and the output C is disconnected from the 1.2-volt

power supply. However, the leftmost N-type transistor acts like a piece of wire,

connecting the output C to 0 volts.

Note that if both A and B are supplied with 0 volts, the two P-type transistors

conduct, and the output C is connected to 1.2 volts. Note further that there is no

ambiguity here, since both N-type transistors act as open circuits, and so C is

disconnected from ground.

If either A or B is supplied with 1.2 volts, the corresponding P-type transistor

results in an open circuit. That is sufficient to break the connection from C to

the 1.2-volt source. However, 1.2 volts supplied to the gate of one of the N-type
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0 0 1
0 1 0
1 0 0
1 1 0

CB

(d)

CA AB
0 volts
0 volts

1.2 volts
1.2 volts

1.2 volts
0 volts
0 volts
0 volts

0 volts
1.2 volts

0 volts
1.2 volts

(c)

B = 1

A = 0

C = 0

(b)

p−type

p−type

n−type

n−type

(a)

A

C

B

Figure 3.5 The NOR gate.

transistors is sufficient to cause that transistor to conduct, resulting in C being

connected to ground (i.e., 0 volts).

Figure 3.5c summarizes the complete behavior of the circuit of Figure 3.5a.

It shows the behavior of the circuit for each of the four pairs of voltages that can

be supplied to A and B. That is,

A = 0 volts, B = 0 volts

A = 0 volts, B = 1.2 volts

A = 1.2 volts, B = 0 volts

A = 1.2 volts, B = 1.2 volts

If we replace the voltages with their logical equivalents, we have the truth

table of Figure 3.5d. Note that the output C is exactly the opposite of the logical

OR function that we studied in Chapter 2. In fact, it is the NOT-OR function,

more typically abbreviated as NOR. We refer to the circuit that implements the

NOR function as a NOR gate.

If we augment the circuit of Figure 3.5a by adding an inverter at its output, as

shown in Figure 3.6a, we have at the output D the logical function OR. Figure 3.6a

is the circuit for an OR gate. Figure 3.6b describes the behavior of this circuit if

the input variable A is set to 0 and the input variable B is set to 1. Figure 3.6c

shows the circuit’s truth table.
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(a)

A

B

C
D

(b)

C = 0
B = 1

A = 0

D = 1

p-type

p-type

n-type

n-type

p-type

n-type

0    0      1     0
0    1      0     1
1    0      0     1
1    1      0     1

A    B C     D

(c)

Figure 3.6 The OR gate.

3.2.3 Why We Can’t Simply Connect P-Type to Ground

Some bright students have looked at our implementation of the OR gate (a NOR-

gate followed by an inverter) and asked the question, why can’t we simply connect

the transistors as shown in Figure 3.7a?

Logically, it looks very tempting. Four transistors instead of six. Unfortu-

nately, the electrical properties of transistors make this problematic. When we

connect a P-type transistor to 1.2 volts or an N-type transistor to ground, there is

no voltage across the transistor, resulting in outputs as shown in Figure 3.5, for

example, of 0 volts or 1.2 volts, depending on the input voltages to A and B. How-

ever, when we connect a P-type transistor to ground or an N-type transistor to 1.2

volts, because of the electrical characteristics of the transistors, we get what is

usually referred to as a transmission voltage of approximately 0.5 volts across the

transistor. This results in the output of the transistor circuit of Figure 3.7 being

0.5 volts + 0.5 volts, or 1.0 volt if A and B are both 0, and 0.7 volts (1.2 volts

minus 0.5 volts) otherwise. Figure 3.7b shows the actual voltages in the resulting

truth table, rather than 0s and 1s. That is, even though the transistor circuit looks

like it would work, the transmission voltages across the transistors would yield

an output voltage of 1 volt for a logical 0 and 0.7 volts for a logical 1. Not what

we would like for an OR gate!
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A B C
   0 volts    0 volts 1.0 volts
   0 volts 1.2 volts 0.7 volts
1.2 volts    0 volts 0.7 volts
1.2 volts 1.2 volts 0.7 volts

(b)(a)

CB

A

Figure 3.7 An OR gate (not really!).

3.2.4 AND and NAND Gates

Figure 3.8 shows an AND gate. Note that if either A or B is supplied with 0 volts,

there is a direct connection from C to the 1.2-volt power supply. The fact that C
is at 1.2 volts means the N-type transistor whose gate is connected to C provides

a path from D to ground. Therefore, if either A or B is supplied with 0 volts, the

output D of the circuit of Figure 3.8 is 0 volts.

(a)

NAND

D
C

B

A

A   B C     D

0   0     1      0
0   1     1      0
1   0     1      0
1   1     0      1

(b)

Figure 3.8 The AND gate.
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(c) OR gate 

(e) NOR gate (d) NAND gate 

(a) Inverter (b) AND gate 

Figure 3.9 Basic logic gates.

Again, we note that there is no ambiguity. The fact that at least one of the two

inputs A or B is supplied with 0 volts means that at least one of the two N-type

transistors whose gates are connected to A or B is open, and that consequently, C
is disconnected from ground. Furthermore, the fact that C is at 1.2 volts means

the P-type transistor whose gate is connected to C is open-circuited. Therefore,

D is not connected to 1.2 volts.

On the other hand, if both A and B are supplied with 1.2 volts, then both

of their corresponding P-type transistors are open. However, their corresponding

N-type transistors act like pieces of wire, providing a direct connection from C
to ground. Because C is at ground, the rightmost P-type transistor acts like a

closed circuit, forcing D to 1.2 volts.

Figure 3.8b is a truth table that summarizes the behavior of the circuit of

Figure 3.8a. Note that the circuit is an AND gate. The circuit shown within the

dashed lines (i.e., having output C) is a NOT-AND gate, which we generally

abbreviate as NAND.

The gates just discussed are very common in digital logic circuits and in

digital computers. There are billions of inverters (NOT gates) in Intel’s Skylake

microprocessor. As a convenience, we can represent each of these gates by stan-

dard symbols, as shown in Figure 3.9. The bubble shown in the inverter, NAND,

and NOR gates signifies the complement (i.e., NOT) function. From now on, we

will not draw circuits showing the individual transistors. Instead, we will raise

our level of abstraction and use the symbols shown in Figure 3.9.

3.2.5 Gates with More Than Two Inputs

Before we leave the topic of logic gates, we should note that the notion of AND,

OR, NAND, and NOR gates extends to larger numbers of inputs. One could build

a three-input AND gate or a four-input OR gate, for example. An n-input AND

gate has an output value of 1 only if ALL n input variables have values of 1. If

any of the n inputs has a value of 0, the output of the n-input AND gate is 0. An

n-input OR gate has an output value of 1 if ANY of the n input variables has a

value of 1. That is, an n-input OR gate has an output value of 0 only if ALL n
input variables have values of 0.
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0      0      0       0
0      0      1       0
0      1      0       0
0      1      1       0
1      0      0       0
1      0      1       0
1      1      0       0
1      1      1       1

A     B      C    OUT

(a)

A
B
C

OUT

(b)

Figure 3.10 A three-input AND gate.

Figure 3.10 illustrates a three-input AND gate. Figure 3.10a shows its truth

table. Figure 3.10b shows the symbol for a three-input AND gate.

Question: Can you draw a transistor-level circuit for a three-input AND gate?

How about a four-input AND gate? How about a four-input OR gate?

3.3 Combinational Logic Circuits
Now that we understand the workings of the basic logic gates, the next step

is to build some of the logic structures that are important components of the

microarchitecture of a computer.

There are fundamentally two kinds of logic structures, those that include the

storage of information and those that do not. In Sections 3.4, 3.5, and 3.6, we

will deal with structures that store information. In this section, we will deal with

structures that do not store information. These structures are sometimes referred

to as decision elements. Usually, they are referred to as combinational logic struc-
tures because their outputs are strictly dependent on the combination of input

values that are being applied to the structure right now. Their outputs are not at

all dependent on any past history of information that is stored internally, since no

information can be stored internally in a combinational logic circuit.

We will next examine three useful combinational logic circuits: a decoder, a

mux, and a one-bit adder.

3.3.1 Decoder

Figure 3.11 shows a logic gate implementation of a two-input decoder. A decoder

has the property that exactly one of its outputs is 1 and all the rest are 0s. The one

output that is logically 1 is the output corresponding to the input pattern that it is

expected to detect. In general, decoders have n inputs and 2n outputs. We say the

output line that detects the input pattern is asserted. That is, that output line has

the value 1, rather than 0 as is the case for all the other output lines. In Figure 3.11,

note that for each of the four possible combinations of inputs A and B, exactly one

output has the value 1 at any one time. In Figure 3.11b, the input to the decoder

is 10, resulting in the third output line being asserted.
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Figure 3.11 A two-input decoder.

The decoder is useful in determining how to interpret a bit pattern. We will

see in Chapter 5 that the work to be carried out by each instruction in the LC-

3 computer is determined by a four-bit pattern that is the part of the instruction

called the opcode, A 4-to-16 decoder is a simple combinational logic structure

for identifying what work is to be performed by each instruction.

3.3.2 Mux

Figure 3.12a shows a logic gate implementation of a two-input multiplexer, more

commonly referred to as a mux. The function of a mux is to select one of the

inputs (A or B) and connect it to the output. The select signal (S in Figure 3.12)

determines which input is connected to the output.

C

(c)(a)

A B

S

a b

A B

0A

S = 0

(b)

A B

C

S

A

C

Figure 3.12 A 2-to-1 mux.
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Figure 3.13 A four-input mux.

The mux of Figure 3.12 works as follows: Suppose S = 0, as shown in

Figure 3.12b. Since the output of an AND gate is 0 unless all inputs are 1, the out-

put of the rightmost AND gate is 0. Also, the output of the leftmost AND gate is

whatever the input A is. That is, if A = 0, then the output of the leftmost AND gate

is 0, and if A = 1, then the output of the leftmost AND gate is 1. Since the output

of the rightmost AND gate is 0, it has no effect on the OR gate. Consequently,

the output at C is exactly the same as the output of the leftmost AND gate. The

net result of all this is that if S = 0, the output C is identical to the input A.

On the other hand, if S = 1, it is B that is ANDed with 1, resulting in the

output of the OR gate having the value of B.

In summary, the output C is always connected to either the input A or the

input B—which one depends on the value of the select line S. We say S selects the

source of the mux (either A or B) to be routed through to the output C. Figure 3.12c

shows the standard representation for a mux.

In general, a mux consists of 2n inputs and n select lines. Figure 3.13a

shows a gate-level description of a four-input mux. It requires two select lines.

Figure 3.13b shows the standard representation for a four-input mux.

Question: Can you construct the gate-level representation for an eight-input

mux? How many select lines must you have?

3.3.3 A One-Bit Adder (a.k.a. a Full Adder)

Recall in Chapter 2, we discussed binary addition. A simple algorithm for binary

addition is to proceed as you have always done in the case of decimal addition,

from right to left, one column at a time, adding the two digits from the two values

plus the carry in, and generating a sum digit and a carry to the next column. The

only difference here (with binary addition) is you get a carry after 1, rather than

after 9.

Figure 3.14 is a truth table that describes the result of binary addition on one
column of bits within two n-bit operands. At each column, there are three values
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Ai Bi Ci Ci+1 Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 3.14 The truth table for a one-bit adder.

that must be added: one bit from each of the two operands A and B and the carry

from the previous column. We designate these three bits as Ai, Bi, and Ci. There

are two results, the sum bit (Si) and the carry over to the next column, Ci+1. Note

that if only one of the three bits equals 1, we get a sum of 1, and no carry (i.e.,

Ci+1 = 0). If two of the three bits equal 1, we get a sum of 0, and a carry of 1. If

all three bits equal 1, the sum is 3, which in binary corresponds to a sum of 1 and

a carry of 1.

Figure 3.15 shows a logic gate implementation of a one-bit adder. Note that

each AND gate in Figure 3.15 produces an output 1 for exactly one of the eight

input combinations of Ai, Bi, and Ci. The output of the OR gate for Ci+1 must be 1

in exactly those cases where the corresponding input combinations in Figure 3.14

produce an output 1. Therefore, the inputs to the OR gate that generates Ci+1

Ci

Bi

Ai

Ci+1

Si

Figure 3.15 Gate-level description of a one-bit adder.
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Figure 3.16 A circuit for adding two 4-bit binary numbers.

are the outputs of the AND gates corresponding to those input combinations.

Similarly, the inputs to the OR gate that generates Si are the outputs of the AND

gates corresponding to the input combinations that require an output 1 for Si in

the truth table of Figure 3.14.

Note that since the input combination 000 does not result in an output 1 for

either Ci+1 or Si, its corresponding AND gate is not an input to either of the two

OR gates.

Figure 3.16 shows a circuit for adding two 4-bit binary numbers, using four

of the one-bit adder circuits of Figure 3.15. Note that the carry out of column i is

an input to the addition performed in column i + 1.

If we wish to implement a logic circuit that adds two 16-bit numbers, we can

do so with a circuit of 16 one-bit adders.

We should point out that historically the logic circuit of Figure 3.15 that

provides three inputs (Ai, Bi, and Ci) and two outputs (the sum bit Si and the

carry over to the next column Ci+1) has generally been referred to as a full adder
to differentiate it from another structure, which is called a half adder. The dis-

tinction between the two is the carry bit. Note that the carry into the rightmost

column in Figure 3.16 is 0. That is, in the rightmost circuit, S0 and C1 depend only

on two inputs, A0 and B0. Since that circuit depends on only two inputs, it has been

referred to as a half adder. Since the other circuits depend on all three inputs, they

are referred to as full adders. We prefer the term one-bit adder as a simpler term

for describing what is happening in each column.

3.3.4 The Programmable Logic Array (PLA)

Figure 3.17 illustrates a very common building block for implementing any col-

lection of logic functions one wishes to implement. The building block is called

a programmable logic array (PLA). It consists of an array of AND gates (called

an AND array) followed by an array of OR gates (called an OR array). The num-

ber of AND gates corresponds to the number of input combinations (rows) in

the truth table. For n-input logic functions, we need a PLA with 2n n-input AND
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Figure 3.17 A programmable logic array.

gates. In Figure 3.17, we have 23 three-input AND gates, corresponding to three

logical input variables. The number of OR gates corresponds to the number of

logic functions we wish to implement, that is, the number of output columns in

the truth table. The implementation algorithm is simply to connect the output of

an AND gate to the input of an OR gate if the corresponding row of the truth table

produces an output 1 for that output column. Hence the notion of programmable.

That is, we say we program the connections from AND gate outputs to OR gate

inputs to implement our desired logic functions.

Figure 3.15 shows seven AND gates connected to two OR gates since our

requirement was to implement two functions (sum and carry) of three input vari-

ables. Figure 3.17 shows a PLA that can implement any four functions of three

variables by appropriately connecting AND gate outputs to OR gate inputs. That

is, any function of three variables can be implemented by connecting the outputs

of all AND gates corresponding to input combinations for which the output is 1

to inputs of one of the OR gates. Thus, we could implement the one-bit adder by

programming the two OR gates in Figure 3.17 whose outputs are W and X by

connecting or not connecting the outputs of the AND gates to the inputs of those

two OR gates as specified by the two output columns of Figure 3.14.

3.3.5 Logical Completeness

Before we leave the topic of combinational logic circuits, it is worth noting an

important property of building blocks for logic circuits: logical completeness. We

showed in Section 3.3.4 that any logic function we wished to implement could

be accomplished with a PLA. We saw that the PLA consists of only AND gates,

OR gates, and inverters. That means that any logic function can be implemented,

provided that enough AND, OR, and NOT gates are available. We say that the set

of gates {AND, OR, NOT} is logically complete because we can build a circuit

to carry out the specification of any truth table we wish without using any other
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kind of gate. That is, the set of gates {AND, OR, and NOT} is logically complete

because a barrel of AND gates, a barrel of OR gates, and a barrel of NOT gates are

sufficient to build a logic circuit that carries out the specification of any desired

truth table. The barrels may have to be big, but the point is, we do not need any

other kind of gate to do the job.

Question: Is there any single two-input logic gate that is logically complete?

For example, is the NAND gate logically complete? Hint: Can I implement a

NOT gate with a NAND gate? If yes, can I then implement an AND gate using a

NAND gate followed by a NOT gate? If yes, can I implement an OR gate using

just AND gates and NOT gates?

If all of the above is true, then the NAND gate is logically complete, and I

can implement any desired logic function as described by its truth table with a

barrel of NAND gates.

3.4 Basic Storage Elements
Recall our statement at the beginning of Section 3.3 that there are two kinds of

logic structures, those that involve the storage of information and those that do

not. We have discussed three examples of those that do not: the decoder, the mux,

and the full adder. Now we are ready to discuss logic structures that do include

the storage of information.

3.4.1 The R-S Latch

A simple example of a storage element is the R-S latch. It can store one bit of

information, a 0 or a 1. The R-S latch can be implemented in many ways, the

simplest being the one shown in Figure 3.18. Two 2-input NAND gates are con-

nected such that the output of each is connected to one of the inputs of the other.

The remaining inputs S and R are normally held at a logic level 1.

The R-S latch gets its name from the old designations for setting the latch

to store a 1 and setting the latch to store a 0. Setting the latch to store a 1 was

referred to as setting the latch, and setting the latch to store a 0 was referred to as

resetting the latch. Ergo, R-S.

S

R

A

B

a

b

Figure 3.18 An R-S latch.

The Quiescent State We describe the quiescent (or quiet) state of a latch as

the state when the latch is storing a value, either 0 or 1, and nothing is trying to
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change that value. This is the case when inputs S and R both have the logic value

1. In Figure 3.18 the letter a designates the value that is currently stored in the

latch, which we also refer to as the output of the latch.

Consider first the case where the value stored and therefore the output a is

1. Since that means the value A is 1 (and since we know the input R is 1 because

we are in the quiescent state), the NAND gate’s output b must be 0. That, in turn,

means B must be 0, which results in the output a equal to 1. As long as the inputs

S and R remain 1, the state of the circuit will not change. That is, the R-S latch

will continue to store the value 1 (the value of the output a).

If, on the other hand, we assume the output a is 0, then A must be 0, and

the output b must be 1. That, in turn, results in B equal to 1, and combined with

the input S equal to 1 (again due to quiescence), results in the output a equal to

0. Again, as long as the inputs S and R remain 1, the state of the circuit will not

change. In this case, we say the R-S latch stores the value 0.

Setting the Latch to a 1 or a 0 The latch can be set to 1 by momentarily setting

S to 0, provided we keep the value of R at 1. Similarly, the latch can be set to 0

by momentarily setting R to 0, provided we keep the value of S at 1. In order for

the R-S latch to work properly, both S and R must never be allowed to be set to 0

at the same time.

We use the term set to denote setting a variable to 0 or 1, as in “set to 0” or

“set to 1.” In addition, we often use the term clear to denote the act of setting a

variable to 0.

If we set S to 0 for a very brief period of time, this causes a to equal 1, which

in turn causes A to equal 1. Since R is also 1, the output at b must be 0. This causes

B to be 0, which in turn makes a equal to 1. If, after that very brief period of time,

we now return S to 1, it does not affect a. Why? Answer: Since B is also 0, and

since only one input 0 to a NAND gate is enough to guarantee that the output of

the NAND gate is 1, the latch will continue to store a 1 long after S returns to 1.

In the same way, we can clear the latch (set the latch to 0) by setting R to 0

for a very short period of time.

We should point out that if both S and R were allowed to be set to 0 at the same

time, the outputs a and b would both be 1, and the final state of the latch would

depend on the electrical properties of the transistors making up the gates and

not on the logic being performed. How the electrical properties of the transistors

would determine the final state in this case is a subject we will have to leave for

a later semester. :-(

Finally, we should note that when a digital circuit is powered on, the latch

can be in either of its two states, 0 or 1. It does not matter which state since we

never use that information until after we have set it to 1 or 0.

3.4.2 The Gated D Latch

To be useful, it is necessary to control when a latch is set and when it is cleared.

A simple way to accomplish this is with the gated latch.

Figure 3.19 shows a logic circuit that implements a gated D latch. It consists

of the R-S latch of Figure 3.18, plus two additional NAND gates that allow the
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Figure 3.19 A gated D latch.

latch to be set to the value of D, but only when WE is asserted (i.e., when WE

equals 1). WE stands for write enable. When WE is not asserted (i.e., when WE

equals 0), the outputs S and R are both equal to 1. Since S and R are inputs to the

R-S latch, if they are kept at 1, the value stored in the latch remains unchanged,

as we explained in Section 3.4.1. When WE is momentarily set to 1, exactly one

of the outputs S or R is set to 0, depending on the value of D. If D equals 1, then S
is set to 0. If D equals 0, then both inputs to the lower NAND gate are 1, resulting

in R being set to 0. As we saw earlier, if S is set to 0, the R-S latch is set to 1. If R
is set to 0, the R-S latch is set to 0. Thus, the R-S latch is set to 1 or 0 according

to whether D is 1 or 0. When WE returns to 0, S and R return to 1, and the value

stored in the R-S latch persists.

3.5 The Concept of Memory
We now have all the tools we need to describe one of the most important struc-

tures in the electronic digital computer, its memory. We will see in Chapter 4

how memory fits into the basic scheme of computer processing, and you will see

throughout the rest of the book and indeed the rest of your work with computers

how important the concept of memory is to computing.

Memory is made up of a (usually large) number of locations, each uniquely

identifiable and each having the ability to store a value. We refer to the unique

identifier associated with each memory location as its address. We refer to the

number of bits of information stored in each location as its addressability.

For example, an advertisement for a laptop computer might say, “This com-

puter comes with 2 gigabytes of memory.” Actually, most ads generally use

the abbreviation 2 GB (or, often: 2 Gig). This statement means, as we will

explain momentarily, that the laptop includes two billion memory locations, each

containing one byte of information.

3.5.1 Address Space

We refer to the total number of uniquely identifiable locations as the memory’s

address space. A 2 GB memory, for example, refers to a memory that consists of

two billion uniquely identifiable memory locations.
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Actually, the number two billion is only an approximation, due to the way we

specify memory locations. Since everything else in the computer is represented

by sequences of 0s and 1s, it should not be surprising that memory locations are

identified by binary addresses as well. With n bits of address, we can uniquely

identify 2n locations. Ten bits provide 1024 locations, which is approximately

1000. If we have 20 bits to represent each address, we have 220 uniquely identi-

fiable locations, which is approximately one million. With 30 bits, we have 230

locations, which is approximately one billion. In the same way we use the prefixes

“kilo” to represent 210 (approximately 1000) and “mega” to represent 220 (approx-

imately one million), we use the prefix “giga” to represent 230 (approximately

one billion). Thus, 2 giga really corresponds to the number of uniquely iden-

tifiable locations that can be specified with 31 address bits. We say the address

space is 231, which is exactly 2,147,483,648 locations, rather than 2,000,000,000,

although we colloquially refer to it as two billion.

3.5.2 Addressability

The number of bits stored in each memory location is the memory’s addressabil-

ity. A 2-gigabyte memory (written 2GB) is a memory consisting of 2,147,483,648

memory locations, each containing one byte (i.e., eight bits) of storage. Most

memories are byte-addressable. The reason is historical; most computers got their

start processing data, and one character stroke on the keyboard corresponds to one

8-bit ASCII code, as we learned in Chapter 2. If the memory is byte-addressable,

then each ASCII character occupies one location in memory. Uniquely identi-

fying each byte of memory allows individual bytes of stored information to be

changed easily.

Many computers that have been designed specifically to perform large scien-

tific calculations are 64-bit addressable. This is due to the fact that numbers used

in scientific calculations are often represented as 64-bit floating-point quantities.

Recall that we discussed the floating-point data type in Chapter 2. Since scientific

calculations are likely to use numbers that require 64 bits to represent them, it is

reasonable to design a memory for such a computer that stores one such number

in each uniquely identifiable memory location.

3.5.3 A 22-by-3-Bit Memory

Figure 3.20 illustrates a memory of size 22 by 3 bits. That is, the memory

has an address space of four locations and an addressability of three bits.

A memory of size 22 requires two bits to specify the address. We describe

the two-bit address as A[1:0]. A memory of addressability three stores three

bits of information in each memory location. We describe the three bits

of data as D[2:0]. In both cases, our notation A[high:low] and D[high:low]

reflects the fact that we have numbered the bits of address and data from

right to left, in order, starting with the rightmost bit, which is numbered 0.

The notation [high:low] means a sequence of high − low + 1 bits such that

“high” is the bit number of the leftmost (or high) bit number in the sequence

and “low” is the bit number of the rightmost (or low) bit number in the sequence.
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Figure 3.20 A 22-by-3-bit memory.

Accesses of memory require decoding the address bits. Note that the address

decoder takes as input the address bits A[1:0] and asserts exactly one of its four

outputs, corresponding to the word line being addressed. In Figure 3.20, each row

of the memory corresponds to a unique three-bit word, thus the term word line.

Memory can be read by applying the address A[1:0], which asserts the word line

to be read. Note that each bit of the memory is ANDed with its word line and then

ORed with the corresponding bits of the other words. Since only one word line

can be asserted at a time, this is effectively a mux with the output of the decoder

providing the select function to each bit line. Thus, the appropriate word is read

at D[2:0].

Figure 3.21 shows the process of reading location 3. The code for 3 is 11.

The address A[1:0]=11 is decoded, and the bottom word line is asserted. Note

that the three other decoder outputs are not asserted. That is, they have the value

0. The value stored in location 3 is 101. These three bits are each ANDed with

their word line producing the bits 101, which are supplied to the three output

OR gates. Note that all other inputs to the OR gates are 0, since they have been

produced by ANDing with their unasserted word lines. The result is that D[2:0]

= 101. That is, the value stored in location 3 is output by the OR gates. Memory
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Figure 3.21 Reading location 3 in our 22-by-3-bit memory.

can be written in a similar fashion. The address specified by A[1:0] is presented to

the address decoder, resulting in the correct word line being asserted. With write

enable (WE) also asserted, the three bits D[2:0] can be written into the three gated

latches corresponding to that word line.

3.6 Sequential Logic Circuits
In Section 3.3, we discussed digital logic structures that process information

(decision structures, we call them) wherein the outputs depend solely on the val-

ues that are present on the inputs now. Examples are muxes, decoders, and full

adders. We call these structures combinational logic circuits. In these circuits,

there is no sense of the past. Indeed, there is no capability for storing any infor-

mation about anything that happened before the present time. In Sections 3.4

and 3.5, we described structures that do store information—in Section 3.4, some

basic storage elements, and in Section 3.5, a simple 22-by-3-bit memory.
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Figure 3.22 Sequential logic circuit block diagram.

In this section, we discuss digital logic structures that can both process infor-

mation (i.e., make decisions) and store information. That is, these structures base

their decisions not only on the input values now present, but also (and this is

very important) on what has happened before. These structures are usually called

sequential logic circuits. They are distinguishable from combinational logic cir-

cuits because, unlike combinational logic circuits, they contain storage elements

that allow them to keep track of prior history information. Figure 3.22 shows a

block diagram of a sequential logic circuit. Note the storage elements. Note also

that the output can be dependent on both the inputs now and the values stored in

the storage elements. The values stored in the storage elements reflect the history

of what has happened before.

Sequential logic circuits are used to implement a very important class of

mechanisms called finite state machines. We use finite state machines in essen-

tially all branches of engineering. For example, they are used as controllers of

electrical systems, mechanical systems, and aeronautical systems. A traffic light

controller that sets the traffic light to red, yellow, or green depends on the light

that is currently on (history information) and input information from sensors such

as trip wires on the road, a timer keeping track of how long the current light has

been on, and perhaps optical devices that are monitoring traffic.

We will see in Chapter 4 when we introduce the von Neumann model of a

computer that a finite state machine is at the heart of the computer. It controls the

processing of information by the computer.

3.6.1 A Simple Example: The Combination Lock

A simple example shows the difference between combinational logic structures

and sequential logic structures. Suppose one wishes to secure a bicycle with a

lock, but does not want to carry a key. A common solution is the combination

lock. The person memorizes a “combination” and uses it to open the lock. Two

common types of locks are shown in Figure 3.23.

In Figure 3.23a, the lock consists of a dial, with the numbers from 0 to 30

equally spaced around its circumference. To open the lock, one needs to know

the “combination.” One such combination could be: R13-L22-R3. If this were

the case, one would open the lock by turning the dial two complete turns to the

right (clockwise), and then continuing until the dial points to 13, followed by one
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Figure 3.23 Combination locks.

complete turn to the left (counterclockwise), and then continuing until the dial

points to 22, followed by turning the dial again to the right (clockwise) until it

points to 3. At that point, the lock opens. What is important here is the sequence
of the turns. The lock will not open, for example if one performed two turns to the

right, and then stopped on 22 (instead of 13), followed by one complete turn to

the left, ending on 13, followed by one turn to the right, ending on 3. That is, even

though the final position of the dial is 3, and even though R22-L13-R3 uses the

same three numbers as the combination R13-L22-R3, the lock would not open.

Why? Because the lock stores the previous rotations and makes its decision (open

or don’t open) on the basis of the the history of the past operations, that is, on the

correct sequence being performed.

Another type of lock is shown in Figure 3.23b. The mechanism consists of

(usually) four wheels, each containing the digits 0 through 9. When the digits

are lined up properly, the lock will open. In this case, the combination is the set

of four digits. Whether or not this lock opens is totally independent of the past

rotations of the four wheels. The lock does not care at all about past rotations.

The only thing important is the current value of each of the four wheels. This is

a simple example of a combinational structure.

It is curious that in our everyday speech, both mechanisms are referred to

as “combination locks.” In fact, only the lock of Figure 3.23b is a combinational

lock. The lock of Figure 3.23a would be better called a sequential lock!

3.6.2 The Concept of State

For the mechanism of Figure 3.23a to work properly, it has to keep track of the

sequence of rotations leading up to the opening of the lock. In particular, it has

to differentiate the correct sequence R13-L22-R3 from all other sequences. For

example, R22-L13-R3 must not be allowed to open the lock. Likewise, R10-L22-

R3 must also not be allowed to open the lock.

For the lock of Figure 3.23a to work, it must identify several relevant

situations, as follows:

A. The lock is not open, and NO relevant operations have been
performed.

B. The lock is not open, but the user has just completed the
R13 operation.
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C. The lock is not open, but the user has just completed R13,
followed by L22.

D. The lock is open, since the user has just completed R13,
followed by L22, followed by R3.

We have labeled these four situations A, B, C, and D. We refer to each of these

situations as the state of the lock.

The notion of state is a very important concept in computer engineering, and

actually, in just about all branches of engineering. The state of a mechanism—

more generally, the state of a system—is a snapshot of that system in which all

relevant items are explicitly expressed.

That is: The state of a system is a snapshot of all the relevant elements of the
system at the moment the snapshot is taken.

In the case of the lock of Figure 3.23a, there are four states A, B, C, and D.

Either the lock is open (State D), or if it is not open, we have already performed

either zero (State A), one (State B), or two (State C) correct operations. This is

the sum total of all possible states that can exist.

Question: Why are there exactly four states needed to describe the combina-

tion lock of Figure 3.23a? Can you think of a snapshot of the combination lock

after an operation (Rn or Ln) that requires a fifth state because it is not covered

by one of the four states A, B, C, or D?

There are many examples of systems that you are familiar with that can be

easily described by means of states.

The state of a game of basketball can be described by the scoreboard in the

basketball arena. Figure 3.24 shows the state of the basketball game as Texas 73,

Oklahoma 68, 7 minutes and 38 seconds left in the second half, 14 seconds left on

the shot clock, Texas with the ball, and Texas and Oklahoma each with four team

fouls. This is a snapshot of the basketball game. It describes the state of the basket-

ball game at one point in time. If, 12 seconds later, a Texas player were to score

2
HALF

1

TEXAS

FOULS : 4

OKLAHOMA

FOULS : 4

SHOT CLOCK

Figure 3.24 An example of a state.
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O

XXX

O

O

(a) (b) (c)

Figure 3.25 Three states in a tic-tac-toe machine.

a two-point shot, the new state would be described by the updated scoreboard.

That is, the score would then be Texas 75, Oklahoma 68, the time remaining in

the game would be 7 minutes and 26 seconds, the shot clock would be back to 25

seconds, and Oklahoma would have the ball.

The game of tic-tac-toe can also be described in accordance with the notion

of state. Recall that the game is played by two people (or, in our case, a person

and the computer). The state is a snapshot of the game in progress each time the

computer asks the person to make a move. The game is played as follows: There

are nine locations on the diagram. The person and then the computer take turns

placing an X (the person) and an O (the computer) in an empty location. The

person goes first. The winner is the first to place three symbols (three Xs for the

person, three Os for the computer) in a straight line, either vertically, horizontally,

or diagonally.

The initial state, before either the person or the computer has had a turn, is

shown in Figure 3.25a. Figure 3.25b shows a possible state of the game when the

person is prompted for a second move, if he/she put an X in the upper left corner

as his/her first move, and the computer followed with an O in the middle square

as its first move. Figure 3.25c shows a possible state of the game when the person

is prompted for a third move if he/she put an X in the upper right corner on the

second move, and the computer followed by putting its second O in the upper

middle location.

One final example: a very old soft drink machine, when drinks sold for

15 cents, and the machine would only take nickels (5 cents) and dimes (10 cents)

and not be able to give change.

The state of the machine can be described as the amount of money inserted,

and whether the machine is open (so one can remove a bottle). There are only

three possible states:

A. The lock is open, so a bottle can be (or has been!) removed.

B. The lock is not open, but 5 cents has been inserted.

C. The lock is not open, but 10 cents has been inserted.

3.6.3 The Finite State Machine and Its State Diagram

We have seen that a state is a snapshot of all relevant parts of a system at a

particular point in time. At other times, that system can be in other states. We

have described four systems: a combination lock, a basketball game, a tic-tac-

toe machine, and a very old soft drink machine when a bottle of cola cost only
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15 cents. The behavior of each of these systems can be specified by a finite state
machine, and represented as a state diagram.

A finite state machine consists of five elements:

1. a finite number of states
2. a finite number of external inputs
3. a finite number of external outputs
4. an explicit specification of all state transitions
5. an explicit specification of what determines each external

output value.

The set of states represents all possible situations (or snapshots) that the sys-

tem can be in. Each state transition describes what it takes to get from one state

to another.

Let’s examine the finite state machines for these four systems.

The Combination Lock A state diagram is a convenient representation of a

finite state machine. Figure 3.26 is a state diagram for the combination lock.

Recall, we identified four states A, B, C, and D. Which state we are in depends

on the progress we have made in getting from a random initial state to the lock

being open. In the state diagram of Figure 3.26, each circle corresponds to one

of the four states, A, B, C, or D.

The external inputs are R13, L22, R3, and R-other-than-13, L-other-than-22,

and R-other-than-3.

The external output is either the lock is open or the lock is not open. (One

logical variable will suffice to describe that!) As shown in the state diagram, in

states A, B, and C, the combination lock is locked. In state D, the combination

lock is open.

The explicit specifications of all state transitions are shown by the arrows in

the state diagram. The more sophisticated term for “arrow” is arc. The arrowhead

Other
than
R13

R3
than
Other

R13

B

C

A

opened locked

lockedlocked

D

R3

L22

R13

Other than L22

Other
than
R13

Figure 3.26 State diagram of the combination lock of Figure 3.23a.
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on each arc specifies which state the system is coming from and which state it is

going to. We refer to the state the system is coming from as the current state,

and the state it is going to as the next state. The combination lock has eight state

transitions. Associated with each transition is the input that causes the transition

from the current state to the next state. For example, R13 causes the transition

from state A to state B.

A couple of things are worth noting. First, it is usually the case that from a

current state there are multiple transitions to next states. The state transition that

occurs depends on both the current state and the value of the external input. For

example, if the combination lock is in state B, and the input is L22, the next state

is state C. If the current state is state B and the input is anything other than L22,

the next state is state A. In short, the next state is determined by the combination

of the current state and the current external input.

The output values of a system can also be determined by the combination of

the current state and the value of the current external input. However, as is the case

for the combination lock, where states A, B, and C specify the lock is “locked,”

and state D specifies the lock is “unlocked,” the output can also be determined

solely by the current state of the system. In all the systems we will study in this

book, the output values will be specified solely by the current state of the system.

A Very Old Soft Drink Machine Figure 3.27 is the state diagram for the soft

drink machine.

The soft drink machine has only three states: 5 cents has been inserted,

10 cents has been inserted, and at least 15 cents has been inserted. Transitions

are caused by the insertion (the input) of a nickel or a dime. The output is asso-

ciated only with the states. In states B and C, the machine is locked. Not enough

money has been inserted! In state A, the machine is open, so a soft drink can be

removed because at least 15 cents has been inserted.

Open

Locked Locked

A

B C
5 cents

10 cents5 cents
10 cents 5 cents, 10 cents

Figure 3.27 State diagram of the soft drink machine.

A Basketball Game We could similarly draw a state diagram for the basketball

game we described earlier, where each state would be one possible configuration

of the scoreboard. A transition would occur if either the referee blew a whistle or

the other team got the ball. We showed earlier the transition that would be caused

by Texas scoring a two-point shot. Clearly, the number of states in the finite state

machine describing a basketball game would be huge.
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Also clearly, the number of legitimate transitions from one state to another is

small, compared to the number of arcs one could draw connecting arbitrary pairs

of states. For example, there is no arc from a score of Texas 68, Oklahoma 67 to

Texas 75, Oklahoma 91, since no single input can cause that transition. The input

is the activity that occurred on the basketball court since the last transition. Some

input values are: Texas scored two points, Oklahoma scored three points, Texas

stole the ball, Oklahoma successfully rebounded a Texas shot, and so forth.

The output is the final result of the game. The output has three values: Game

still in progress, Texas wins, Oklahoma wins.

Question: Can one have an arc from a state where the score is Texas 30,

Oklahoma 28 to a state where the score is tied, Texas 30, Oklahoma 30? Is it

possible to have two states, one where Texas is ahead 30-28 and the other where

the score is tied 30-30, but no arc between the two?

A Tic-Tac-Toe Machine We could also draw a state diagram for a tic-tac-toe

machine, in our case when a person is playing against a computer. Each state is a

representation of the position of the game when the person is asked to put an X

into one of the empty cells. Figure 3.25 shows three states. The transition from the

state of Figure 3.25a to the state of Figure 3.25b is caused by the person putting

an X in the top left cell, followed by the computer putting an O in the center cell.

The transition from the state of Figure 3.25b to the state of Figure 3.25c is caused

by the person putting an X in the top right cell, followed by the computer putting

an O in the top middle cell.

Since there are nine cells, and each state has an X, an O, or nothing in each

cell, there must be fewer than 39 states in the tic-tac-toe machine. Clearly there

are far fewer than that, due to various constraints of the game.

There are nine inputs, corresponding to the nine cells a person can put an

X in. There are three outputs: (a) game still in progress, (b) person wins, and

(c) computer wins.

3.6.4 The Synchronous Finite State Machine

Up to now a transition from a current state to a next state in our finite state machine

happened when it happened. For example, a person could insert a nickel into the

soft drink machine and then wait 10 seconds or 10 minutes before inserting the

next coin into the machine. And the soft drink machine would not complain. It

would not dispense the soft drink until 15 cents was inserted, but it would wait

patiently as long as necessary for the 15 cents to be inserted. That is, there is no

fixed amount of time between successive inputs to the finite state machine. This

is true in the case of all four systems we have discussed. We say these systems are

asynchronous because there is nothing synchronizing when each state transition

must occur.

However, almost no computers work that way. On the contrary, we say that

computers are synchronous because the state transitions take place, one after the

other, at identical fixed units of time. They are controlled by a synchronous finite
state machine. We will save for Chapter 4 and beyond the state transitions that

occur at identical, fixed units of time that control a computer. In this chapter, we
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will take on a simpler task, the design of a traffic controller, an admittedly simpler

structure, but one that is also controlled by a synchronous finite state machine.

It is worth pointing out that both the four asynchronous finite state machines

discussed above and the synchronous finite state machine that controls a digital

computer share an important characteristic: They carry out work, one state tran-

sition at a time, moving closer to a goal. In the case of the combination lock, as

long as you make the correct moves, each state transition takes us closer to the

lock opening. In the case of the soft drink machine, each state transition takes us

closer to enjoying the taste of the soft drink. In the case of a computer, each state

transition takes us closer to solving a problem by processing a computer program

that someone has written.

3.6.5 The Clock

A synchronous finite state machine transitions from its current state to its next

state after an identical fixed interval of time. Control of that synchronous behavior

is in part the responsibility of the clock circuit.

A clock circuit produces a signal, commonly referred to as THE clock, whose

value alternates between 0 volts and some specified fixed voltage. In digital logic

terms, the clock is a signal whose value alternates between 0 and 1. Figure 3.28

shows the value of the clock signal as a function of time. Each of the repeated

sequence of identical intervals is referred to as a clock cycle. A clock cycle starts

when the clock signal transitions from 0 to 1 and ends the next time the clock

signal transitions from 0 to 1.

We will see in Chapter 5 and beyond that in each clock cycle, a computer

can perform a piece of useful work. When people say their laptop computers run

at a frequency of 2 gigahertz, they are saying their laptop computers perform

two billion pieces of work each second since 2 gigahertz means two billion clock

cycles each second, each clock cycle lasting for just one-half of a nanosecond. The

synchronous finite state machine makes one state transition each clock cycle.

We will show by means of a traffic signal controller how the clock signal

controls the transition, fixed clock cycle after fixed clock cycle, from one state to

the next.

In electronic circuit implementations of a synchronous finite state machine,

the transition from one state to the next occurs at the start of each clock cycle.

ONE
CLOCK
CYCLE

ONE
CLOCK
CYCLE

ONE
CLOCK
CYCLE

1

0

Figure 3.28 A clock signal.
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3.6.6 Example: A Danger Sign

Many electrical, mechanical, and aeronautical systems are controlled by a syn-

chronous finite state machine. In this section, we will design the complete logic

needed for a synchronous finite state machine to control a traffic danger sign.

Figure 3.29 shows the danger sign as it will be placed on the highway. Note the

sign says, “Danger, Move Right.” The sign contains five lights (labeled 1 through

5 in the figure).

The purpose of our synchronous finite state machine (a.k.a. a controller) is to

direct the behavior of our system. In our case, the system is the set of lights on the

traffic danger sign. The controller’s job is to have the five lights flash on and off

to warn automobile drivers to move to the right. The controller is equipped with

a switch. When the switch is in the ON position, the controller directs the lights

as follows: During one unit of time, all lights will be off. In the next unit of time,

lights 1 and 2 will be on. The next unit of time, lights 1, 2, 3, and 4 will be on.

Then all five lights will be on. Then the sequence repeats: no lights on, followed

by 1 and 2 on, followed by 1, 2, 3, and 4 on, and so forth. Each unit of time lasts

one second. To an automobile driver approaching the sign, the five lights clearly

direct the driver to move to the right. The lights continue to sequence through

these four states as long as the switch is on. If the switch is turned off, all the

lights are turned off and remain off.

1

DANGER

MOVE
RIGHT

3
5

4
2

Figure 3.29 A traffic danger sign.

The State Diagram for the Danger Sign Controller Figure 3.30 is a state dia-

gram for the synchronous finite state machine that controls the lights. There are

four states, one for each of the four conditions corresponding to which lights are

on. Note that the outputs (whether each light is on or off) are determined by the

current state of the system.

If the switch is on (input = 1), the transition from each state to the next

state happens at one-second intervals, causing the lights to flash in the sequence
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All
Off

All
On

1, 2, 3, 4
On

1, 2
On

1

0 1

0

1

A:00 B:01

D:11 C:10

0

0,1

Figure 3.30 State diagram for the danger sign controller.

described. If the switch is turned off (input = 0), the state always transitions to

state A, the “all off” state.

The Sequential Logic Circuit for the Danger Sign Controller Recall that

Figure 3.22 shows a generic block diagram for a sequential logic circuit.

Figure 3.31 is a block diagram of the specific sequential logic circuit we need

to control the lights. Several things are important to note in this figure.

Switch

Clock

5

1, 2 
3, 4 

Combinational

Logic Circuit #1

Combinational

Logic Circuit #2

Storage

Element 1 

Element 2 
Storage

Storage

Combinational Logic

Figure 3.31 Sequential logic circuit for the danger sign controller.
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First, the two external inputs: the switch and the clock. The switch determines

whether the finite state machine will transition through the four states or whether

it will transition to state A, where all lights are off. The other input (the clock)

controls the transition from state A to B, B to C, C to D, and D to A by controlling

the state of the storage elements. We will see how, momentarily.

Second, there are two storage elements for storing state information. Since

there are four states, and since each storage element can store one bit of informa-

tion, the four states are identified by the contents of the two storage elements: A

(00), B (01), C (10), and D (11). Storage element 2 contains the high bit; storage

element 1 contains the low bit. For example, the danger sign controller is in state

B when storage element 2 is 0 and storage element 1 is 1.

Third, combinational logic circuit 1 shows that the on/off behavior of the

lights is controlled by the storage elements. That is, the input to the combinational

logic circuit is from the two storage elements, that is, the current state of the finite

state machine.

Finally, combinational logic circuit 2 shows that the transition from the cur-

rent state to the next state depends on the two storage elements and the switch. If

the switch is on, the output of combinational logic circuit 2 depends on the state

of the two storage elements.

The Combinational Logic Figure 3.32 shows the logic that implements com-

binational logic circuits 1 and 2.

Two sets of outputs are required for the controller to work properly: a set of

external outputs for the lights and a set of internal outputs for the inputs to the

two storage elements that keep track of the state.

1, 2 

3, 4 

5

From Storage
Element 2

From Storage
Element 1

Switch To Storage
Element 2 

To Storage
Element 1 

W

Y

Z

V

X

Figure 3.32 Combinational logic circuits 1 and 2.
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First, let us look at the outputs that control the lights. As we have said, there

are only three outputs necessary to control the lights. Light 5 is controlled by

the output of the AND gate labeled V, since the only time light 5 is on is when

the controller is in state 11. Lights 3 and 4 are controlled by the output of the

OR gate labeled X, since there are two states in which those lights are on, those

labeled 10 and 11. Why are lights 1 and 2 controlled by the output of the OR gate

labeled W? See Exercise 3.42.

Next, let us look at the internal outputs that control the storage elements,

which specify the next state of the controller. Storage element 2 should be set

to 1 for the next clock cycle if the next state is 10 or 11. This is true only if the

switch is on and the current state is either 01 or 10. Therefore, the output signal

that will make storage element 2 be 1 in the next clock cycle is the output of the

OR gate labeled Y. Why is the next state of storage element 1 controlled by the

output of the OR gate labeled Z? See Exercise 3.42.

The Two Storage Elements In order for the danger sign controller to work, the

state transitions must occur once per second when the switch is on.

A Problem with Gated Latches as Storage Elements What would happen if the

storage elements were gated D latches? If the two storage elements were gated

D latches, when the write enable signal (the clock) is 1, the output of OR gates

Y and Z would immediately change the bits stored in the two gated D latches.

This would produce new input values to the three AND gates that are input to

OR gates Y and Z, producing new outputs that would be applied to the inputs of

the gated latches, which would in turn change the bits stored in the gated latches,

which would in turn mean new inputs to the three AND gates and new outputs

of OR gates Y and Z. This would happen again and again, continually changing

the bits stored in the two storage elements as long as the Write Enable signal to

the gated D latches was asserted. The result: We have no idea what the state of the

finite state machine would be for the next clock cycle. And, even in the current

clock cycle, the state of the storage elements would change so fast that the five

lights would behave erratically.

The problem is the gated D latch. We want the output of OR gates Y and Z

to transition to the next state at the end of the current clock cycle and allow the

current state to remain unchanged until then. That is, we do not want the input

to the storage elements to take effect until the end of the current clock cycle.

Since the output of a gated D latch changes immediately in response to its input

if the Write Enable signal is asserted, it cannot be the storage element for our

synchronous finite state machine. We need storage elements that allow us to read

the current state throughout the current clock cycle, and not write the next state

values into the storage elements until the beginning of the next clock cycle.

The Flip-Flop to the Rescue It is worth repeating: To prevent the above from

happening, we need storage elements that allow us to read the current state

throughout the current clock cycle, and not write the next state values into the

storage elements until the beginning of the next clock cycle. That is, the function
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Master Slave

D

Q

Clock

Figure 3.33 A master/slave flip-flop.

to be performed during a single clock cycle involves reading and writing a partic-

ular variable. Reading must be allowed throughout the clock cycle, and writing

must occur at the end of the clock cycle.

A flip-flop can accomplish that. One example of a flip-flop is the master/slave

flip-flop shown in Figure 3.33. The master/slave flip-flop can be constructed out

of two gated D latches, one referred to as the master, the other referred to as the

slave. Note that the write enable signal of the master is 1 when the clock is 0, and

the write enable signal of the slave is 1 when the clock is 1.

Figure 3.34 is a timing diagram for the master/slave flip-flop, which shows

how and why the master/slave flip-flop solves the problem. A timing diagram

shows time passing from left to right. Note that clock cycle n starts at the time

labeled 1 and ends at the time labeled 4. Clock cycle n+1 starts at the time

labeled 4.

Consider clock cycle n, which we will discuss in terms of its first half A, its

second half B, and the four time points labeled 1, 2, 3, and 4.

At the start of each clock cycle, the outputs of the storage elements are the

outputs of the two slave latches. These outputs (starting at time 1) are input to

the AND gates, resulting in OR gates Y and Z producing the next state values for

the storage elements (at time 2). The timing diagram shows the propagation delay

of the combinational logic, that is, the time it takes for the combinational logic

to produce outputs of OR gates Y and Z. Although OR gates Y and Z produce

the Next State value sometime during half-cycle A, the write enable signal to the

master latches is 0, so the next state cannot be written into the master latches.

At the start of half-cycle B (at time 3), the clock signal is 0, which means

the write enable signal to the master latches is 1, and the master latches can be

written. However, during the half-cycle B, the write enable to the slave latches is

0, so the slave latches cannot write the new information now stored in the master

latches.

At the start of clock cycle n+1 (at time 4), the write enable signal to the slave

latches is 1, so the slave latches can store the next state value that was created by

the combinational logic during clock cycle n. This becomes the current state for

clock cycle n+1.
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Since the write enable signal to the master latches is now 0, the state of the

master latches cannot change. Thus, although the write enable signal to the slave

latches is 1, those latches do not change because the master latches cannot change.

In short, the output of the slave latches contains the current state of the system

for the duration of the clock cycle and produces the inputs to the six AND gates in

the combinational logic circuits. Their state changes at the start of the clock cycle

by storing the next state information created by the combinational logic during

the previous cycle but does not change again during the clock cycle. The reason

they do not change again during the clock cycle is as follows: During half-cycle

A, the master latches cannot change, so the slave latches continue to see the state

information that is the current state for the new clock cycle. During half-cycle B,

the slave latches cannot change because the clock signal is 0.

Meanwhile, during half-cycle B, the master latches can store the next state

information produced by the combinational logic, but they cannot write it into

the slave latches until the start of the next clock cycle, when it becomes the state

information for the next clock cycle.

3.7 Preview of Coming Attractions:
The Data Path of the LC-3

In Chapter 5, we will specify a computer, which we call the LC-3, and you will

have the opportunity to write computer programs to execute on it. We close out

Chapter 3 with a discussion of Figure 3.35, the data path of the LC-3 computer.

The data path consists of all the logic structures that combine to process

information in the core of the computer. Right now, Figure 3.35 is undoubtedly

more than a little intimidating, but you should not be concerned by that. You are

not ready to analyze it yet. That will come in Chapter 5. We have included it

here, however, to show you that you are already familiar with many of the basic

structures that make up a computer. For example, you see five MUXes in the data

path, and you already know how they work. Also, an adder (shown as the ALU

symbol with a + sign inside) and an ALU. You know how those elements are

constructed from gates.

One element that we have not identified explicitly yet is a register. A register

is simply a set of n flip-flops that collectively are used to store one n-bit value. In

Figure 3.35, PC, IR, MAR, and MDR are all 16-bit registers that store 16 bits of

information each. The block labeled REG FILE consists of eight registers that each

store 16 bits of information. As you know, one bit of information can be stored in

one flip-flop. Therefore, each of these registers consists of 16 flip-flops. The data

path also shows three 1-bit registers, N, Z, and P. Those registers require only one

flip-flop each. In fact, a register can be any size that we need. The size depends only

on the number of bits we need to represent the value we wish to store.

One way to implement registers is with master/slave flip-flops. Figure 3.36

shows a four-bit register made up of four master/slave flip-flops. We usually need

flip-flops, rather than latches, because it is usually important to be able to both

read the contents of a register throughout a clock cycle and also store a new value
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Figure 3.35 The data path of the LC-3 computer.

in the register at the end of that same clock cycle. As shown in Figure 3.36, the

four-bit value stored in the register during a clock cycle is Q3, Q2, Q1, Q0. At the

end of that clock cycle, the value D3, D2, D1, D0 is written into the register.

The arrows in Figure 3.35 represent wires that transmit values from one struc-

ture to another. Most of the arrows include a cross-hatch with a number next to

it. The number represents the number of wires, corresponding to the number of

bits being transmitted. Thus, for example, the arrow from the register labeled PC

to one of the inputs of the MUX labeled ADDR1MUX indicates that 16 bits are

transmitted from PC to an input of ADDR1MUX.
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D3 D2 D1 D0

Q3 Q2 Q1 Q0

Clock

Figure 3.36 A four-bit register.

In Chapter 5, we will see why these elements must be connected as shown in

order to execute programs written for the LC-3 computer. For now, just enjoy the

fact that the components look familiar. In Chapters 4 and 5, we will raise the level

of abstraction again and put these components together into a working computer.

Exercises

3.1 In the following table, write whether each type of transistor will act as an

open circuit or a closed circuit.

N-type P-type

Gate = 1

Gate = 0

3.2 Replace the missing parts in the following circuit with either a wire or no

wire to give the output OUT a logical value of 0 when the input IN is a

logical 1.

IN = 1 OUT = 0
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3.3 A two-input AND and a two-input OR are both examples of two-input

logic functions. How many different two-input logic functions are

possible?

3.4 Replace the missing parts in the following circuit with either a wire or no

wire to give the output C a logical value of 1. Describe a set of inputs

that give the output C a logical value of 0. Replace the missing parts with

wires or no wires corresponding to that set of inputs.

A

B

C

p-type

p-type

n-type
n-type

3.5 Complete a truth table for the transistor-level circuit in Figure 3.37.

C

C

B

A

A B

OUT

Figure 3.37 Diagram for Exercise 3.5.
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3.6 For the transistor-level circuit in Figure 3.38, fill in the truth table. What

is Z in terms of A and B?

A B C D Z

D

C
A

B

Z

Figure 3.38 Diagram for Exercise 3.6.

3.7 The following circuit has a major flaw. Can you identify it?

Hint: Evaluate the circuit for all sets of inputs.

A B

BA

OUT
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3.8 The transistor-level circuit below implements the logic equation given

below. Label the inputs to all the transistors.

Y = NOT (A AND (B OR C))

3.9 What does the following transistor circuit do?

A OUT

3.10 For what values of A, B, C, D, E, and F will the output of the six-input

AND gate be 1?

A
B
C
D
E
F
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3.11 A student knew that an inverter contained one P-type transistor and one

N-type transistor, but he wired them up wrong, as shown below.

A

Out

What is the value of Out when A = 0?

What is the value of Out when A = 1?

3.12 A function is described by the truth table shown on the left. Your job:

Complete the logic implementation shown on the right by adding the

appropriate connections.

A    B    C Out
0     0     0
0     0     1
0     1     0
0     1     1
1     0     0
1     0     1

1
0
0
1
0
0

1

1     1     0
1     1     1 1

A    B    C 
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3.13 The following logic diagram produces the logical value OUT.

What does the value 0 or 1 for OUT signify?

3.14 The following logic circuits consist of two exclusive-OR gates. Construct

the output truth table.

A

B

C
output

A B C output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3.15 Fill in the truth table for the logical expression NOT(NOT(A) OR

NOT(B)). What single logic gate has the same truth table?

A B NOT(NOT(A) OR NOT(B))

0 0

0 1

1 0

1 1
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3.16 Fill in the truth table for a two-input NOR gate.

A B A NOR B

0 0

0 1

1 0

1 1

3.17 a. Draw a transistor-level diagram for a three-input AND gate and

a three-input OR gate. Do this by extending the designs from

Figure 3.6a and 3.7a.

b. Replace the transistors in your diagrams from part a with either a

wire or no wire to reflect the circuit’s operation when the following

inputs are applied.

(1) A = 1, B = 0, C = 0

(2) A = 0, B = 0, C = 0

(3) A = 1, B = 1, C = 1

3.18 Following the example of Figure 3.11a, draw the gate-level schematic

of a three-input decoder. For each output of this decoder, write the input

conditions under which that output will be 1.

3.19 How many output lines will a five-input decoder have?

3.20 How many output lines will a 16-input multiplexer have? How many

select lines will this multiplexer have?

3.21 If A and B are four-bit unsigned binary numbers, 0111 and 1011,

complete the table obtained when using a two-bit full adder from

Figure 3.15 to calculate each bit of the sum, S, of A and B. Check your

answer by adding the decimal value of A and B and comparing the sum

with S. Are the answers the same? Why or why not?

Cin 0

A 0 1 1 1

B 1 0 1 1

S
Cout

3.22 Given the following truth table, generate the gate-level logic circuit,

using the implementation algorithm referred to in Section 3.3.4.

A B C Z
0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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3.23 a. Given four inputs A, B, C, and D and one output Z, create a truth table

for a circuit with at least seven input combinations generating 1s at

the output. (How many rows will this truth table have?)

b. Now that you have a truth table, generate the gate-level logic circuit

that implements this truth table. Use the implementation algorithm

referred to in Section 3.3.4.

3.24 Implement the following functions using AND, OR, and NOT logic

gates. The inputs are A, B, and the output is F.

a. F has the value 1 only if A has the value 0 and B has the value 1.

b. F has the value 1 only if A has the value 1 and B has the value 0.

c. Use your answers from parts a and b to implement a one-bit adder.

The truth table for the one-bit adder is given below.

A B Sum

0 0 0

0 1 1

1 0 1

1 1 0

d. Is it possible to create a four-bit adder (a circuit that will correctly

add two 4-bit quantities) using only four copies of the logic diagram

from part c? If not, what information is missing? Hint: When A = 1

and B = 1, a sum of 0 is produced. What information is lost?

3.25 Logic circuit 1 in Figure 3.39 has inputs A, B, C. Logic circuit 2 in

Figure 3.40 has inputs A and B. Both logic circuits have an output D.

There is a fundamental difference between the behavioral characteristics

of these two circuits. What is it? Hint: What happens when the voltage

at input A goes from 0 to 1 in both circuits?

B

D
C

A

Figure 3.39 Logic circuit 1 for
Exercise 3.25.

A
D

B

Figure 3.40 Logic circuit 2 for
Exercise 3.25.
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3.26 Generate the gate-level logic that implements the following truth table.

From the gate-level structure, generate a transistor diagram that

implements the logic structure. Verify that the transistor

diagram implements the truth table.

in0 in1 f (in0, in1)

0 0 1

0 1 0

1 0 1

1 1 1

3.27 You know a byte is eight bits. We call a four-bit quantity a nibble. If a

byte-addressable memory has a 14-bit address, how many nibbles of

storage are in this memory?

3.28 Implement a 4-to-1 mux using only 2-to-1 muxes making sure to

properly connect all of the terminals. Remember that you will have

four inputs, two control signals, and one output. Write out the truth table

for this circuit.

3.29 Given the logic circuit in Figure 3.41, fill in the truth table for the output

value Z.

A B C Z
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A

B

C

Z

Figure 3.41 Diagram for Exercise 3.29.
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+ + + +
Carry in

A0 B0 C0C 1A1 B 1C2B2A2C3B3A3

S3 S2 S 1 S0

X

Carry in Carry inCarry in

Figure 3.42 Diagram for Exercise 3.30.

3.30 a. Figure 3.42 shows a logic circuit that appears in many of today’s

processors. Each of the boxes is a full-adder circuit. What does the

value on the wire X do? That is, what is the difference in the output

of this circuit if X = 0 vs. if X = 1?

b. Construct a logic diagram that implements an adder/subtractor. That

is, the logic circuit will compute A + B or A − B depending on

the value of X. Hint: Use the logic diagram of Figure 3.42 as a

building block.

3.31 Say the speed of a logic structure depends on the largest number of logic

gates through which any of the inputs must propagate to reach an output.

Assume that a NOT, an AND, and an OR gate all count as one gate

delay. For example, the propagation delay for a two-input decoder

shown in Figure 3.11 is 2 because some inputs propagate through

two gates.

a. What is the propagation delay for the two-input mux shown in

Figure 3.12?

b. What is the propagation delay for the one-bit full adder in

Figure 3.15?

c. What is the propagation delay for the four-bit adder shown in

Figure 3.16?

d. What if the four-bit adder were extended to 32 bits?

3.32 Recall that the adder was built with individual “slices” that produced

a sum bit and a carry-out bit based on the two operand bits A and B
and the carry-in bit. We called such an element a full adder. Suppose

we have a 3-to-8 decoder and two 6-input OR gates, as shown below.

Can we connect them so that we have a full adder? If so, please do.

(Hint: If an input to an OR gate is not needed, we can simply put an

input 0 on it and it will have no effect on anything. For example, see the

following figure.)
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Decoder

Ci

Bi

Ai

C i + 1

Si

0
Ai Bi Ci
0  0 0 

0  0 1

0  1 0

0  1 1

1  0 0

1  0 1

1  1 0

1  1 1

3.33 For this question, refer to the figure that follows.

A

S

Z

a. Describe the output of this logic circuit when the select line S is a

logical 0. That is, what is the output Z for each value of A?

b. If the select line S is switched from a logical 0 to 1, what will the

output be?

c. Is this logic circuit a storage element?

3.34 Having designed a binary adder, you are now ready to design a 2-bit by

2-bit unsigned binary multiplier. The multiplier takes two 2-bit inputs

A[1:0] and B[1:0] and produces an output Y , which is the product of

A[1:0] and B[1:0]. The standard notation for this is:

Y = A10 ⋅ B10

a. What is the maximum value that can be represented in two bits for

A(A[1:0])?

b. What is the maximum value that can be represented in two bits for

B(B[1:0])?
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c. What is the maximum possible value of Y?

d. What is the number of required bits to represent the maximum value

of Y?

e. Write a truth table for the multiplier described above. You will have a

four-input truth table with the inputs being A[1], A[0], B[1], and

B[0].

f. Implement the third bit of output, Y[2] from the truth table using only

AND, OR, and NOT gates.

3.35 A 16-bit register contains a value. The value x75A2 is written into it.

Can the original value be recovered?

3.36 A comparator circuit has two 1-bit inputs A and B and three 1-bit outputs

G (greater), E (Equal), and L (less than). Refer to Figures 3.43 and 3.44

for this problem.

G is 1 if A > B E is 1 if A = B L is 1 if A < B
0 otherwise 0 otherwise 0 otherwise

G

E

L

A

B

Figure 3.43 Diagram for Exercise 3.36.

G

E

L

A [2]

B [2]

G

E

L

A [1]

B [1]

G

E

L

A [0]

B [0]

A [3]

B [3]

G

E

L

EQUAL

Figure 3.44 Diagram for Exercise 3.36.
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a. Draw the truth table for a one-bit comparator.

A B G E L
0 0
0 1
1 0
1 1

b. Implement G, E, and L using AND, OR, and NOT gates.

c. Using the one-bit comparator as a basic building block, construct a

four-bit equality checker such that output EQUAL is 1 if A30 = B30,

0 otherwise.

3.37 If a computer has eight-byte addressability and needs three bits to access

a location in memory, what is the total size of memory in bytes?

3.38 Distinguish between a memory address and the memory’s addressability.

3.39 Refer to Figure 3.21, the diagram of the four-entry, 22-by-3-bit memory.

a. To read from the fourth memory location, what must the values of

A10 and WE be?

b. To change the number of entries in the memory from 4 to 60, how

many address lines would be needed? What would the addressability

of the memory be after this change was made?

c. Suppose the minimum width (in bits) of the program counter (the

program counter is a special register within a CPU, and we will

discuss it in detail in Chapter 4) is the minimum number of bits

needed to address all 60 locations in our memory from part b. How

many additional memory locations could be added to this memory

without having to alter the width of the program counter?

3.40 For the memory shown in Figure 3.45:

a. What is the address space?

b. What is the addressability?

c. What is the data at address 2?
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011

0 0

111

1

D[3]

D[2]

D[1]

D[0]

Di[3]

Di[1]

Di[0]

WE

Di[2]

A[1]
A[0]

00 1

Figure 3.45 Diagram for Exercise 3.40.

3.41 Given a memory that is addressed by 22 bits and is 3-bit addressable,

how many bits of storage does the memory contain?

3.42 A combinational logic circuit has two inputs. The values of those two

inputs during the past ten cycles were 01, 10, 11, 01, 10, 11, 01, 10, 11,

and 01. The values of these two inputs during the current cycle are 10.

Explain the effect on the current output due to the values of the inputs

during the previous ten cycles.

3.43 In the case of the lock of Figure 3.23a, there are four states A, B, C, and

D, as described in Section 3.6.2. Either the lock is open (State D), or if

it is not open, we have already performed either zero (State A), one

(State B), or two (State C) correct operations. This is the sum total of

all possible states that can exist. Exercise: Why is that the case? That is,

what would be the snapshot of a fifth state that describes a possible

situation for the combination lock?
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3.44 Recall Section 3.6.2. Can one have an arc from a state where the score

is Texas 30, Oklahoma 28 to a state where the score is tied, Texas 30,

Oklahoma 30? Draw an example of the scoreboards (like the one in

Figure 3.24) for the two states.

3.45 Recall again Section 3.6.2. Is it possible to have two states, one where

Texas is ahead 30-28 and the other where the score is tied 30-30, but no

arc between the two? Draw an example of two scoreboards, one where

the score is 30-28 and the other where the score is 30-30, but there can

be no arc between the two. For each of the three output values, game in

progress, Texas wins, Oklahoma wins, draw an example of a scoreboard

that corresponds to a state that would produce that output.

3.46 Refer to Section 3.6.2. Draw a partial finite state machine for the game of

tic-tac-toe.

3.47 The IEEE campus society office sells sodas for 35 cents. Suppose they

install a soda controller that only takes the following three inputs: nickel,

dime, and quarter. After you put in each coin, you push a pushbutton to

register the coin. If at least 35 cents has been put in the controller, it

will output a soda and proper change (if applicable). Draw a finite state

machine that describes the behavior of the soda controller. Each state

will represent how much money has been put in (Hint: There will be

seven of these states). Once enough money has been put in, the controller

will go to a final state where the person will receive a soda and proper

change (Hint: There are five such final states). From the final state, the

next coin that is put in will start the process again.

3.48 Refer to Figure 3.32. Why are lights 1 and 2 controlled by the output

of the OR gate labeled W? Why is the next state of storage element 2

controlled by the output of the OR gate labeled Y?

3.49 The following figure shows an implementation of a finite state machine

with an input X and output Z. S1, S0 specifies the present state. D1, D0

specifies the next state.

Clock

Z
X

D0S0

D1S1

a. Complete the rest of the following table.
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S1 S0 X D1 D0 Z

0 0 0

0 0 1

0 1 0

0 1 1 1 0 1

1 0 0

1 0 1

1 1 0

1 1 1

b. Draw the state diagram for the truth table of part a.

3.50 Prove that the NAND gate, by itself, is logically complete (see

Section 3.3.5) by constructing a logic circuit that performs the AND

function, a logic circuit that performs the NOT function, and a logic

circuit that performs the OR function. Use only NAND gates in these

three logic circuits.

3.51 We have learned that we can write one bit of information with a logic

circuit called a transparent latch and that the bit written is available to be

read almost immediately after being written.

Sometimes it is useful to be able to store a bit but not be able to read

the value of that bit until the next cycle. An example of a logic circuit

that has this property is a .

3.52 A student decided to design a latch as shown below. For what values of

A and B will the latch remain in the quiescent state (i.e., its output will

not change)?

QA

B

★3.53 The master/slave flip-flop we introduced in the chapter is shown below.

Note that the input value is visible at the output after the clock transitions

from 0 to 1.

D

WE

Q D

WE

Q

CLK

input output
MASTER SLAVE
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Shown below is a circuit constructed with three of these flip-flops.

D

WE

Q

MS flip−flop

D

WE

Q

MS flip−flop

D

WE

Q

MS flip−flop

CLK

D0 D2D1

Fill in the entries for D2, D1, D0 for each of clock cycles shown

cycle 6 cycle 7

D1

D0

D2 0

0

0

cycle 5cycle 4cycle 3cycle 2cycle 1cycle 0

In ten words or less, what is this circuit doing?

★3.54 An 8-to-1 mux (shown below) outputs one of the eight sources, A, B, C,

D, E, F, G, H depending on S[2:0], as shown. Note the value of S[2:0]

corresponding to each source is shown just below the input to the mux.

For example, when S[2:0] = 001, B is provided to the output.

A       B C       D       E F G H

000 001 010 011 100 101 110 111

S[2:0]
3

OUT

We can implement an 8-to-1 mux with a logic circuit of 2-to-1 muxes, as

shown below. In this case, the 0 and 1 below the two inputs to each mux

correspond to the value of the select line that will cause that input to be

provided to the output of that mux.
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Note that only two of the sources are shown. Note also that none of the

select bits are labeled. Your task: Finish the job.

a. Label the select line of each mux, according to whether it is S[2],

S[1], or S[0].

b. Label the remaining six sources to the 2-to-1 mux circuit, so the

circuit behaves exactly like the 8-to-1 mux shown above.

0     1 0     1 0     10     1

0     1

0     1

0     1

S[    ]

S[    ]

B

S[    ]

OUT

D

★3.55 We wish to implement two logic functions Y(a,b,c) and Z(a,b). Y is 1 in

exactly those cases where an odd number of a, b, and c equal 1. Z is the

exclusive-OR of a and b.

a. Construct the truth tables for Y and Z.

a b c Y Z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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b. Implement the two logic functions Y and Z described above using

ONLY the logic circuits provided below: a 3-to-8 decoder and two

OR gates. That is, draw the wires from the outputs of the decoder to

the inputs of the OR gates as necessary to do the job. You can assume

you have as many inputs to each OR gate as you find necessary.

a

b

c

Y

Z

★3.56 Shown below is the partially completed state diagram of a finite state

machine that takes an input string of H (heads) and T (tails) and

produces an output of 1 every time the string HTHH occurs.

0 0 0 0 1H T H H

H

T

Init

For example,

if the input string is: H H H H H T H H T H H
H H H T H H T,

the output would be: 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0.

Note that the eighth coin toss (H) is part of two HTHH sequences.

a. Complete the state diagram of the finite state machine that will do

this for any input sequence of any length.

b. If we decide to implement this finite state machine with a sequential

logic circuit (similar to the danger sign we designed in class), how

many state variables would we need?
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★3.57 Shown below is a state diagram for a four-state machine and the truth

table showing the behavior of this state machine. Some of the entries in

both are missing.

Note that the states are labeled 00, 01, 10, and 11 and the output of each

state Z (0 or 1) is shown in each state. The input is shown as X.

Your job is to complete both the truth table and the state machine.

S[1] S[0] X S’[1] S’[0] Z

0 0 0

0 0 1 1 1

0 1 0

0 1 1 1

1 0 0 0

1 0 1 0 1

1 1 0 0 0

1 1 1

Z = Z =  1

Z =  0 Z = S[1 : 0] = 01S[1 : 0] = 00

S[1 : 0] = 10

S[1 : 0] = 11

X = 0

X = 0

X = 0 X = 1

X = 1
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★3.58 The following transistor circuit produces the accompanying truth table.

The inputs to some of the gates of the transistors are not specified.

Also, the outputs for some of the input combinations of the truth table

are not specified.

Your job: Complete both specifications. That is, all transistors will have

their gates properly labeled with either A, B, or C, and all rows of the

truth table will have a 0 or 1 specified as the output.

Note that this is not a problematic circuit. For every input combination,

the output is either connected to ground (i.e., OUT=0) or to the positive

end of the battery (i.e., OUT=1).

B

B
1

2

3

4

5

OUT

A B C OUT

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0

1 1 1

★3.59 Most word processors will correct simple errors in spelling and grammar.

Your job is to specify a finite state machine that will capitalize the

personal pronoun I in certain instances if it is entered as a lowercase i.

For example,

i think i’m in love will be corrected to I think I’m in love.

Input to your finite state machine will be any sequence of characters from

a standard keyboard. Your job is to replace the i with an I if

the i is the first character input or is preceded by a *space*, and

the i is followed by a *space* or by an *apostrophe*.

Shown below is a finite state machine with some of the inputs and some

of the outputs unspecified. Your job is to complete the specification.
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Inputs are from the set {i, A, S, O}, where

A represents an apostrophe,

S represents a space,

O represents any character other than i, apostrophe, or *space*.

The output Z corresponding to each state is 0 or 1, where 0 means “do

nothing,” 1 means “change the most recent i to an I.”

Note: This exercise in developing a finite state machine word processor

is only a first step since a lot of “i to I” will not fix the problem. For

example,

i’ am —> I’ am, i’abcd —> I’abcd, and i’i —> I’i are all bad!

But it is a first step!

Z =Z =

Z =Z =

Z = 0

State
Initial

S

i

A, O

★3.60 A finite state machine is connected to a 23-by-2-bit memory as shown

below:

A[0]
A[1]
A[2]

Memory

D[0]
D[1]

Z2
Z1
Z0

S0
S1
S2

3 Master/Slave
Flip-Flops

Combinational
      Logic
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The contents of the memory is shown below to the left. The next state

transition table is shown below to the right.

Address Content

A[2:0] D[1:0]

000 11

001 10

010 01

011 10

100 01

101 00

110 00

111 01

Current State Next State

S[2:0] D[1:0] D[1:0] D[1:0] D[1:0]

00 01 10 11

000 001 010 110 100

001 100 000 011 110

010 010 100 111 010

011 001 100 100 010

100 110 011 011 111

101 100 010 100 110

110 001 110 100 010

111 000 101 111 101

The output Z0, Z1, Z2 is the current state of the finite state machine.

That is, Z0=S0, Z1=S1, Z2=S2. The cycle time of the finite state

machine is long enough so that during a single cycle, the following

happens: The output of the finite state machine accesses the memory,

and the values supplied by the memory are input to the combinational

logic, which determines the next state of the machine.

a. Complete the following table.

Cycles State Data

Cycle 0 000 11

Cycle 1

Cycle 2

Cycle 3

b. What will the state of the FSM be just before the end of cycle 100?

Why?
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★3.61 The logic diagram shown below is a finite state machine.

a. Construct the truth table for the combinational

logic:

S1 S0 X Z S1’ S0’

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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b. Complete the state machine.

(We have provided nine states. You will not need all of them. Use

only as many as you need):

★3.62 You are taking three courses, one each in computing (C), engineering

(E), and math (M). In each course, you periodically receive assignments.

You never receive more than one assignment at a time. You also never

receive another assignment in a course if you currently have an

assignment in that course that has not been completed. You must

procrastinate (i.e., do nothing) unless you have unfinished assignments

in both computing and engineering.

Design a finite state machine to describe the state of the work you have

to do and whether you are working or procrastinating.

a. Label each state with the unfinished assignments (with letters C,E,M)

for when you are in that state. There are far more states provided than

you actually need. Use only what you need.

b. There are six inputs: c, e, m, c, e, m. c, e, m refer to you receiving an

assignment. c, e, m refer to you completing an assignment. Draw the

transition arc for each state/input pair. For example, if you had

previously only had an unfinished assignment in math and you

received an assignment in computing, you would transition from state

M to state CM, as shown below.
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c. The output of each state is your behavior, 1 if you are working on an

assignment, 0 if you are procrastinating. Label the outputs of each

state.

M CM
c

NONE



4
C H A P T E R

The von Neumann
Model

We are now ready to raise our level of abstraction another notch. We will

build on the logic structures that we studied in Chapter 3, both decision

elements and storage elements, to construct the basic computer model first pro-

posed in the 1940s, usually referred to as the von Neumann machine. ...and, we

will write our first computer program in the ISA of the LC-3.

4.1 Basic Components
To get a task done by a computer, we need two things: (a) a computer pro-
gram that specifies what the computer must do to perform the task, and (b) the

computer that is to carry out the task.

A computer program consists of a set of instructions, each specifying a well-

defined piece of work for the computer to carry out. The instruction is the smallest

piece of work specified in a computer program. That is, the computer either car-

ries out the work specified by an instruction or it does not. The computer does

not have the luxury of carrying out only a piece of an instruction.

John von Neumann proposed a fundamental model of a computer for process-

ing computer programs in 1946. Figure 4.1 shows its basic components. We have

taken a little poetic license and added a few of our own minor embellishments

to von Neumann’s original diagram. The von Neumann model consists of five

parts: memory, a processing unit, input, output, and a control unit. The computer

program is contained in the computer’s memory. The data the program needs to

carry out the work of the program is either contained in the program’s memory

or is obtained from the input devices. The results of the program’s execution are

provided by the output devices. The order in which the instructions are carried

out is performed by the control unit.

We will describe each of the five parts of the von Neumann model in greater

detail.
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MAR MDR

MEMORY
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* Printer
* LED
* Disk
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* Disk

INPUT

PROCESSING UNIT

TEMPALU

PC
IR

CONTROL UNIT

Figure 4.1 The von Neumann model, overall block diagram.

4.1.1 Memory

Recall that in Chapter 3 we examined a simple 22-by-3-bit memory that was con-

structed out of gates and latches. A more realistic memory for one of today’s

computer systems is 234 by 8 bits. That is, a typical memory in today’s world of

computers consists of 234 distinct memory locations, each of which is capable

of storing eight bits of information. We say that such a memory has an address
space of 234 uniquely identifiable locations, and an addressability of eight bits.

We refer to such a memory as a 16-gigabyte memory (abbreviated, 16 GB). The

“16 giga” refers to the 234 locations, and the “byte” refers to the eight bits stored

in each location. The term is 16 giga because 16 is 24 and giga is the term we use

to represent 230, which is approximately one billion; 24 times 230 = 234. A byte is

the word we use to describe eight bits, much the way we use the word gallon to

describe four quarts.

We note (as we will note again and again) that with k bits, we can represent

uniquely 2k items. Thus, to uniquely identify 234 memory locations, each loca-

tion must have its own 34-bit address. In Chapter 5, we will begin the complete

definition of the LC-3 computer. We will see that the memory address space of

the LC-3 is 216, and the addressability is 16 bits.

Recall from Chapter 3 that we access memory by providing the address from

which we wish to read, or to which we wish to write. To read the contents of a
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111

Figure 4.2 Location 6 contains the value 4; location 4 contains the value 6.

memory location, we first place the address of that location in the memory’s

address register (MAR) and then interrogate the computer’s memory. The

information stored in the location having that address will be placed in the

memory’s data register (MDR). To write (or store) a value in a memory location,

we first write the address of the memory location in the MAR, and the value to be

stored in the MDR. We then interrogate the computer’s memory with the write

enable signal asserted. The information contained in the MDR will be written

into the memory location whose address is in the MAR.

Before we leave the notion of memory for the moment, let us again emphasize

the two characteristics of a memory location: its address and what is stored there.

Figure 4.2 shows a representation of a memory consisting of eight locations. Its

addresses are shown at the left, numbered in binary from 0 to 7. Each location

contains eight bits of information. Note that the value 6 is stored in the memory

location whose address is 4, and the value 4 is stored in the memory location

whose address is 6. These represent two very different situations.

Finally, an analogy: the post office boxes in your local post office. The box

number is like the memory location’s address. Each box number is unique. The

information stored in the memory location is like the letters contained in the post

office box. As time goes by, what is contained in the post office box at any par-

ticular moment can change. But the box number remains the same. So, too, with

each memory location. The value stored in that location can be changed, but the

location’s memory address remains unchanged.

4.1.2 Processing Unit

The actual processing of information in the computer is carried out by the

processing unit. The processing unit in a modern computer can consist of many

sophisticated complex functional units, each performing one particular operation

(divide, square root, etc.). The simplest processing unit, and the one normally

thought of when discussing the basic von Neumann model, is the ALU. ALU is the

abbreviation for Arithmetic and Logic Unit, so called because it is usually capa-

ble of performing basic arithmetic functions (like ADD and SUBTRACT) and

basic logic operations (like bit-wise AND, OR, and NOT) that we have already

studied in Chapter 2. We will see in Chapter 5 that the LC-3 has an ALU, which
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can perform ADD, AND, and NOT operations. Two of these (ADD and AND)

we will discuss in this chapter.

The ALU normally processes data elements of a fixed size referred to as the

word length of the computer. The data elements are called words. For example,

to perform ADD, the ALU receives two words as inputs and produces a single

word (the sum) as output. Each ISA has its own word length, depending on the

intended use of the computer.

Most microprocessors today that are used in PCs or workstations have a word

length of 64 bits (as is the case with Intel’s “Core” processors) or 32 bits (as is

the case with Intel’s “Atom” processors). Even most microprocessors now used in

cell phones have 64-bit word lengths, such as Apple’s A7 through A11 processors,

and Qualcomm’s SnapDragon processors. However, the microprocessors used in

very inexpensive applications often have word lengths of as little as 16 or even

8 bits.

In the LC-3, the ALU processes 16-bit words. We say the LC-3 has a word

length of 16 bits.

It is almost always the case that a computer provides some small amount of

storage very close to the ALU to allow results to be temporarily stored if they

will be needed to produce additional results in the near future. For example, if a

computer is to calculate (A+B)⋅C, it could store the result of A+B in memory, and

then subsequently read it in order to multiply that result by C. However, the time

it takes to access memory is long compared to the time it takes to perform the

ADD or MULTIPLY. Almost all computers, therefore, have temporary storage

for storing the result of A + B in order to avoid the much longer access time that

would be necessary when it came time to multiply. The most common form of

temporary storage is a set of registers, like the register described in Section 3.7.

Typically, the size of each register is identical to the size of values processed

by the ALU; that is, they each contain one word. The LC-3 has eight registers

(R0, R1, … R7), each containing 16 bits.

Current microprocessors typically contain 32 registers, each consisting of 32

or 64 bits, depending on the architecture. These serve the same purpose as the

eight 16-bit registers in the LC-3. However, the importance of temporary storage

for values that most modern computers will need shortly means many computers

today have an additional set of special-purpose registers consisting of 128 bits of

information to handle special needs. Those special needs we will have to save for

later in your studies.

4.1.3 Input and Output

In order for a computer to process information, the information must get into

the computer. In order to use the results of that processing, those results must

be displayed in some fashion outside the computer. Many devices exist for the

purposes of input and output. They are generically referred to in computer jar-

gon as peripherals because they are in some sense accessories to the processing

function. Nonetheless, they are no less important.

In the LC-3 we will have the two most basic input and output devices. For

input, we will use the keyboard; for output, we will use the monitor.
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There are, of course, many other input and output devices in computer sys-

tems today. For input we have among other things the mouse, digital scanners,

and shopping mall kiosks to help you navigate the shopping mall. For output we

have among other things printers, LED displays, disks, and shopping mall kiosks

to help you navigate the shopping mall. :-) In the old days, a lot of input and out-

put was carried out by punched cards. Fortunately, for those who would have to

lug around boxes of cards, the use of punched cards has largely disappeared.

4.1.4 Control Unit

The control unit is like the conductor of an orchestra; it is in charge of making

all the other parts of the computer play together. As we will see when we describe

the step-by-step process of executing a computer program, it is the control unit

that keeps track of both where we are within the process of executing the program

and where we are in the process of executing each instruction.

To keep track of which instruction is being executed, the control unit has an

instruction register to contain that instruction. To keep track of which instruc-

tion is to be processed next, the control unit has a register that contains the next

instruction’s address. For historical reasons, that register is called the program
counter (abbreviated PC), although a better name for it would be the instruction
pointer, since the contents of this register is, in some sense, “pointing” to the

next instruction to be processed. Curiously, Intel does in fact call that register the

instruction pointer, but the simple elegance of that name has not caught on.

4.2 The LC-3: An Example
von Neumann Machine

In Chapter 5, we will specify in detail the LC-3, a simple computer that we

will study extensively. We have already shown you its data path in Chapter 3

(Figure 3.35) and identified several of its structures in Section 4.1. In this sec-

tion, we will pull together all the parts of the LC-3 we need to describe it as a von

Neumann computer (see Figure 4.3).

We constructed Figure 4.3 by starting with the LC-3’s full data path

(Figure 3.35) and removing all elements that are not essential to pointing out

the five basic components of the von Neumann model.

Note that there are two kinds of arrowheads in Figure 4.3: filled-in and

not-filled-in. Filled-in arrowheads denote data elements that flow along the cor-

responding paths. Not-filled-in arrowheads denote control signals that control the

processing of the data elements. For example, the box labeled ALU in the pro-

cessing unit processes two 16-bit values and produces a 16-bit result. The two

sources and the result are all data, and are designated by filled-in arrowheads.

The operation performed on those two 16-bit data elements (it is labeled ALUK)

is part of the control—therefore, a not-filled-in arrowhead.

MEMORY consists of the storage elements, along with the Memory

Address Register (MAR) for addressing individual locations and the
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Figure 4.3 The LC-3 as an example of the von Neumann model.

Memory Data Register (MDR) for holding the contents of a memory

location on its way to/from the storage. Note that the MAR contains 16 bits,

reflecting the fact that the memory address space of the LC-3 is 216

memory locations. The MDR contains 16 bits, reflecting the fact that each

memory location contains 16 bits—that is, the LC-3 is 16-bit addressable.

INPUT/OUTPUT consists of a keyboard and a monitor. The simplest

keyboard requires two registers: a keyboard data register (KBDR) for

holding the ASCII codes of keys struck and a keyboard status register

(KBSR) for maintaining status information about the keys struck. The

simplest monitor also requires two registers: a display data register (DDR)

for holding the ASCII code of something to be displayed on the screen and
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a display status register (DSR) for maintaining associated status

information. These input and output registers will be discussed in detail

in Chapter 9.

THE PROCESSING UNIT consists of a functional unit (ALU) that

performs arithmetic and logic operations and eight registers (R0, … R7) for

storing temporary values that will be needed in the near future as operands

for subsequent instructions. The LC-3 ALU can perform one arithmetic

operation (addition) and two logical operations (bitwise AND and bitwise

NOT).

THE CONTROL UNIT consists of all the structures needed to manage

the processing that is carried out by the computer. Its most important

structure is the finite state machine, which directs all the activity. Recall the

finite state machines in Section 3.6. Processing is carried out step by step,

or rather, clock cycle by clock cycle. Note the CLK input to the finite state

machine in Figure 4.3. It specifies how long each clock cycle lasts. The

instruction register (IR) is also an input to the finite state machine since

the LC-3 instruction being processed determines what activities must be

carried out. The program counter (PC) is also a part of the control unit;

it keeps track of the next instruction to be executed after the current

instruction finishes.

Note that all the external outputs of the finite state machine in Figure 4.3 have

arrowheads that are not filled in. These outputs control the processing through-

out the computer. For example, one of these outputs (two bits) is ALUK, which

controls the operation performed in the ALU (ADD, AND, or NOT) during the

current clock cycle. Another output is GateALU, which determines whether or

not the output of the ALU is provided to the processor bus during the current

clock cycle.

The complete description of the data path, control, and finite state machine

for one implementation of the LC-3 is the subject of Appendix C.

4.3 Instruction Processing
The central idea in the von Neumann model of computer processing is that the

program and data are both stored as sequences of bits in the computer’s memory,

and the program is executed one instruction at a time under the direction of the

control unit.

4.3.1 The Instruction

The most basic unit of computer processing is the instruction. It is made up of two

parts, the opcode (what the instruction does) and the operands (who it does it to!).

There are fundamentally three kinds of instructions: operates, data move-
ment, and control, although many ISAs have some special instructions that are

necessary for those ISAs. Operate instructions operate on data. The LC-3 has

three operate instructions: one arithmetic (ADD) and two logicals (AND and
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NOT). Data movement instructions move information from the processing unit

to and from memory and to and from input/output devices. The LC-3 has six data

movement instructions.

Control instructions are necessary for altering the sequential processing of

instructions. That is, normally the next instruction executed is the instruction

contained in the next memory location. If a program consists of instructions

1,2,3,4...10 located in memory locations A, A+1, A+2, ...A+9, normally the

instructions would be executed in the sequence 1,2,3...10. We will see before we

leave Chapter 4, however, that sometimes we will want to change the sequence.

Control instructions enable us to do that.

An LC-3 instruction consists of 16 bits (one word), numbered from left to

right, bit [15] to bit [0]. Bits [15:12] contain the opcode. This means there are at

most 24 distinct opcodes. Actually, we use only 15 of the possible four-bit codes.

One is reserved for some future use. Bits [11:0] are used to figure out where the

operands are.

In this chapter, we will introduce five of the LC-3’s 15 instructions: two oper-

ates (ADD and AND), one data movement (LD), and two control (BR and TRAP).

We will save for Chapters 5, 8, and 9 the other ten instructions.

Example 4.1 The ADD Instruction The ADD instruction is an operate instruction that

requires three operands: two source operands (the numbers to be added) and one

destination operand (where the sum is to be stored after the addition is performed).

We said that the processing unit of the LC-3 contained eight registers for purposes

of storing data that may be needed later. In fact, the ADD instruction requires that

at least one of the two source operands is contained in one of these registers, and that

the result of the ADD is put into one of these eight registers. Since there are eight

registers, three bits are necessary to identify each register. The 16-bit LC-3 ADD

instruction has one of the following two forms (we say formats):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0

ADD R6 R2 R6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0

ADD R6 R2 imm

Both formats show the four-bit opcode for ADD, contained in bits [15:12]: 0001.

Bits [11:9] identify the location to be used for storing the result, in this case register

6 (R6). Bits [8:6] identify the register that contains one of the two source operands,

in this case R2. The only difference in the two formats is the 1 or 0 stored in bit 5,

and what that means. In the first case, bit 5 is 0, signifying that the second source

operand is in the register specified by bits [2:0], in this case R6. In the second case,

bit 5 is 1, signifying that the second source operand is formed by sign-extending the

integer in bits [4:0] to 16 bits. In this case, the second source operand is the positive

integer 6.

Thus, the instruction we have just encoded is interpreted, depending on whether

bit 5 is a 0 or a 1 as either “Add the contents of register 2 (R2) to the contents of
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register 6 (R6) and store the result back into register 6 (R6),” or “Add the contents

of register 2 (R2) to the positive integer 6 and store the result into register 6.” We

will use both formats in a program we will write before we leave Chapter 4.

Example 4.2The AND Instruction The AND instruction is also an operate instruction, and its

behavior is essentially identical to the ADD instruction, except for one thing. Instead

of ADDing the two source operands, the AND instruction performs a bit-wise AND

of the corresponding bits of the two source operands. For example, the instruction

shown below

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0

AND R2 R3 imm

is an AND instruction since bits [15:12] = 0101. The two sources are R3 and the

immediate value 0. The instruction loads R2 with the value 0 since the AND instruc-

tion performs a bit-wise AND where the bit of the second operand is always 0. As

we shall see, this instruction is a convenient technique for making sure a particular

register contains 0 at the start of processing. We refer to this technique as initializing
R2 to 0.

Example 4.3The LD Instruction The LD instruction requires two operands. LD stands

for load, which is computerese for “go to a particular memory location, read the

value that is contained there, and store that value in one of the registers.” The two

operands that are required are the value to be read from memory and the destination

register that will contain that value after the instruction has completed processing.

There are many formulas that can be used for calculating the address of the mem-

ory location to be read. Each formula is called an addressing mode. The particular

addressing mode identified by the use of the opcode LD is called PC+offset. We will

see in Chapter 5 that there are other addressing modes in the LC-3 ISA corresponding

to other formulas for calculating the address of a memory location.

The 16-bit LC-3 LD instruction has the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0

LD R2 198

The four-bit opcode for LD is 0010. Bits [11:9] identify the register that will contain

the value read from memory after the instruction is executed. Bits [8:0] are used to

calculate the address of the location to be read. Since the addressing mode for LD is

PC+offset, this address is computed by sign-extending the 2’s complement integer

contained in bits [8:0] to 16 bits and adding it to the current contents of the program

counter. In summary, the instruction tells the computer to add 198 to the contents

of the PC to form the address of a memory location and to load the contents of that

memory location into R2.

If bits [8:0] had been 111111001, the instruction would have been interpreted:

“Add −7 to the contents of the PC to form the address of a memory location.”
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4.3.2 The Instruction Cycle (NOT the Clock Cycle!)

Instructions are processed under the direction of the control unit in a very sys-

tematic, step-by-step manner. The entire sequence of steps needed to process an

instruction is called the instruction cycle. The instruction cycle consists of six

sequential phases, each phase requiring zero or more steps. We say zero steps

to indicate that most computers have been designed such that not all instructions

require all six phases. We will discuss this momentarily. But first, we will examine

the six phases of the instruction cycle:

FETCH
DECODE
EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE
STORE RESULT

The process is as follows (again refer to Figure 4.3, our simplified version of

the LC-3 data path):

4.3.2.1 FETCH

The FETCH phase obtains the next instruction from memory and loads it into

the instruction register (IR) of the control unit. Recall that a computer program

consists of a number of instructions, that each instruction is represented by a

sequence of bits, and that the entire program (in the von Neumann model) is stored

in the computer’s memory. In order to carry out the work of an instruction, we

must first identify where it is. The program counter (PC) contains the address of

the next instruction to be processed. Thus, the FETCH phase takes the following

steps:

First the MAR is loaded with the contents of the PC.

Next, the memory is interrogated, which results
in the next instruction being placed by the memory
into the MDR.

Finally, the IR is loaded with the contents
of the MDR.

We are now ready for the next phase, decoding the instruction. However, when

the instruction finishes execution, and we wish to fetch the next instruction, we

would like the PC to contain the address of the next instruction. This is accom-

plished by having the FETCH phase perform one more task: incrementing the

PC. In that way, after the current instruction finishes, the FETCH phase of the

next instruction will load into the IR the contents of the next memory location,

provided the execution of the current instruction does not involve changing the

value in the PC.

The complete description of the FETCH phase is as follows:

Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC.
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Step 2: Interrogate memory, resulting in the instruction
being placed in the MDR.

Step 3: Load the IR with the contents of the MDR.

Each of these steps is under the direction of the control unit, much like, as we said

previously, the instruments in an orchestra are under the control of a conductor’s

baton. Each stroke of the conductor’s baton corresponds to one machine cycle.

We will see in Section 4.3.5 that the amount of time taken by each machine cycle

is one clock cycle. In fact, we often use the two terms interchangeably. Step 1

takes one clock cycle. Step 2 could take one clock cycle or many clock cycles,

depending on how long it takes to access the computer’s memory. Step 3 takes

one clock cycle. In a modern digital computer, a clock cycle takes a very small

fraction of a second.

Indeed, a 3.1 GHz Intel Core i7 completes 3.1 billion clock cycles in one

second. Said another way, one clock cycle takes 0.322 billionths of a second

(0.322 nanoseconds). Recall that the light bulb that is helping you read this text

is switching on and off at the rate of 60 times a second. Thus, in the time it takes

a light bulb to switch on and off once, today’s computers can complete more than

51 million clock cycles!

4.3.2.2 DECODE

The DECODE phase examines the instruction in order to figure out what

the microarchitecture is being asked to do. Recall the decoders we studied in

Chapter 3. In the LC-3, a 4-to-16 decoder identifies which of the 16 opcodes is to

be processed (even though one of the 16 is not used!). Input is the four-bit opcode

IR [15:12]. The output line asserted is the one corresponding to the opcode at

the input. Depending on which output of the decoder is asserted, the remaining

12 bits identify what else is needed to process that instruction.

4.3.2.3 EVALUATE ADDRESS

This phase computes the address of the memory location that is needed to pro-

cess the instruction. Recall the example of the LD instruction: The LD instruction

causes a value stored in memory to be loaded into a register. In that exam-

ple, the address was obtained by sign-extending bits [8:0] of the instruction to

16 bits and adding that value to the current contents of the PC. This calculation

was performed during the EVALUATE ADDRESS phase. It is worth noting that

not all instructions access memory to load or store data. For example, we have

already seen that the ADD and AND instructions in the LC-3 obtain their source

operands from registers or from the instruction itself and store the result of the

ADD or AND instruction in a register. For those instructions, the EVALUATE

ADDRESS phase is not needed.

4.3.2.4 FETCH OPERANDS

This phase obtains the source operands needed to process the instruction. In the

LD example, this phase took two steps: loading MAR with the address calculated

in the EVALUATE ADDRESS phase and reading memory that resulted in the

source operand being placed in MDR.
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In the ADD example, this phase consisted of obtaining the source operands

from R2 and R6. In most current microprocessors, this phase (for the ADD

instruction) can be done at the same time the instruction is being executed (the

fifth phase of the instruction cycle). Exactly how we can speed up the processing

of an instruction in this way is a fascinating subject, but it is one we are forced to

leave for later in your education.

4.3.2.5 EXECUTE

This phase carries out the execution of the instruction. In the ADD example, this

phase consisted of the step of performing the addition in the ALU.

4.3.2.6 STORE RESULT

The final phase of an instruction’s execution. The result is written to its designated

destination. In the case of the ADD instruction, in many computers this action is

performed during the EXECUTE phase. That is, in many computers, including

the LC-3, an ADD instruction can fetch its source operands, perform the ADD in

the ALU, and store the result in the destination register all in a single clock cycle.

A separate STORE RESULT phase is not needed.

Once the instruction cycle has been completed, the control unit begins the

instruction cycle for the next instruction, starting from the top with the FETCH

phase. Since the PC was updated during the previous instruction cycle, it contains

at this point the address of the instruction stored in the next sequential memory

location. Thus, the next sequential instruction is fetched next. Processing con-

tinues in this way until something breaks this sequential flow, or the program

finishes execution.

It is worth noting again that although the instruction cycle consists of six

phases, not all instructions require all six phases. As already pointed out, the LC-

3 ADD instruction does not require a separate EVALUATE ADDRESS phase or

a separate STORE RESULT phase. The LC-3 LD instruction does not require an

EXECUTE phase. On the other hand, there are instructions in other ISAs that

require all six phases.

Example 4.4 ADD [eax], edx This is an example of an Intel x86 instruction that requires

all six phases of the instruction cycle. All instructions require the first two phases,

FETCH and DECODE. This instruction uses the eax register to calculate the address

of a memory location (EVALUATE ADDRESS). The contents of that memory

location is then read (FETCH OPERAND), added to the contents of the edx reg-

ister (EXECUTE), and the result written into the memory location that originally

contained the first source operand (STORE RESULT).

4.3.3 Changing the Sequence of Execution

Everything we have said thus far happens when a computer program is executed

in sequence. That is, the first instruction is executed, then the second instruction

is executed, followed by the third instruction, and so on.
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We have identified two types of instructions, the ADD and AND, which are

examples of operate instructions in that they operate on data, and the LD, which

is an example of a data movement instruction in that it moves data from one

place to another. There are other examples of both operate instructions and data

movement instructions, as we will discover in Chapter 5 when we study the LC-3

in greater detail.

There is a third type of instruction, the control instruction, whose purpose is

to change the sequence of instruction execution. For example, there are times, as

we shall see very soon, when it is desirable to first execute the first instruction,

then the second, then the third, then the first again, the second again, then the third

again, then the first for the third time, the second for the third time, and so on. As

we know, each instruction cycle starts with loading the MAR with the PC. Thus,

if we wish to change the sequence of instructions executed, we must change the

contents of the PC between the time it is incremented (during the FETCH phase

of one instruction) and the start of the FETCH phase of the next instruction.

Control instructions perform that function by loading the PC during the

EXECUTE phase, which wipes out the incremented PC that was loaded during

the FETCH phase. The result is that, at the start of the next instruction cycle,

when the computer accesses the PC to obtain the address of an instruction to

fetch, it will get the address loaded during the previous instruction’s EXECUTE

phase, rather than the next sequential instruction in the computer’s program.

The most common control instruction is the conditional branch (BR), which

either changes the contents of the PC or does not change the contents of the PC,

depending on the result of a previous instruction (usually the instruction that is

executed immediately before the conditional branch instruction).

Example 4.5The BR Instruction The BR instruction consists of three parts, the opcode (bits

[15:12] = 0000), the condition to be tested (bits [11:9]), and the addressing mode bits

(bits [8:0]) that are used to form the address to be loaded into the PC if the result of

the previous instruction agrees with the test specified by bits [11:9]. The addressing

mode, i.e., the mechanism used to determine the actual address, is the same one we

used in the LD instruction. Bits [8:0] are sign-extended to 16 bits and then added to

the current contents of the PC.

Suppose the BR instruction shown below is located in memory location x36C9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0

BR condition −6

The opcode 0000 identifies the instruction as a conditional branch. Bits [11:9] = 101

specifies that the test to be performed on the most recent result is whether or not that

result is something other than 0. In Chapter 5 we will describe in detail all the tests

that can be performed on the most recent result. For now, we will just use one test:

Is the result not zero? Bits [8:0] is the value −6.

Assume the previous instruction executed (in memory location x36C8) was an

ADD instruction and the result of the ADD was 0. Since the test “not-zero” failed,

the BR instruction would do nothing during its EXECUTE phase, and so the next

(continued on next page)
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instruction executed would be the instruction at M[x36CA], the address formed by

incrementing the PC during the FETCH phase of the BR instruction’s instruction

cycle.

On the other hand, if the result of the ADD instruction is not 0, then the test

succeeds, causing the BR instruction to load PC with x36C4, the address formed by

sign-extending bits [8:0] to 16 bits and adding that value (-6) to the incremented PC

(x36CA).

Thus, the next instruction executed after the BR instruction at x36C9 is either

the instruction at x36CA or the one at x36C4, depending on whether the result of the

ADD instruction was zero or not zero.

4.3.4 Control of the Instruction Cycle

The instruction cycle is controlled by a synchronous finite state machine. An

abbreviated version of its state diagram, highlighting a few of the LC-3 instruc-

tions discussed in this chapter, is shown in Figure 4.4. As is the case with the

finite state machines studied in Section 3.6, each state corresponds to one machine

cycle of activity that takes one clock cycle to perform. The processing controlled

by each state is described within the node representing that state. The arcs show

the next state transitions.

Processing starts with State 1. The FETCH phase takes three clock cycles,

corresponding to the three steps described earlier. In the first clock cycle, the

MAR is loaded with the contents of the PC, and the PC is incremented. In order

for the contents of the PC to be loaded into the MAR (see Figure 4.3), the finite

state machine must assert GatePC and LD.MAR. GatePC connects the PC to the

processor bus. LD.MAR, the write enable signal of the MAR register, loads the

contents of the bus into the MAR at the end of the current clock cycle. (Registers

are loaded at the end of the clock cycle if the corresponding control signal is

asserted.)

In order for the PC to be incremented (again, see Figure 4.3), the finite

state machine must assert the PCMUX select lines to choose the output of the

box labeled +1 and must also assert the LD.PC signal to load the output of the

PCMUX into the PC at the end of the current cycle.

The finite state machine then goes to State 2. Here, the MDR is loaded with

the instruction, which is read from memory.

In State 3, the instruction is transferred from the MDR to the instruction

register (IR). This requires the finite state machine to assert GateMDR and LD.IR,

which causes the IR to be loaded at the end of the clock cycle, concluding the

FETCH phase of the instruction cycle.

The DECODE phase takes one clock cycle. In State 4, using the external

input IR, and in particular the opcode bits of the instruction, the finite state

machine can go to the appropriate next state for processing instructions depend-

ing on the particular opcode in IR [15:12]. Three of the 15 paths out of State 4

are shown. Processing continues clock cycle by clock cycle until the instruction

completes execution, and the next state logic returns the finite state machine to

State 1.
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As has already been discussed, it is sometimes necessary not to execute

the next sequential instruction but rather to access another location to find the

next instruction to execute. As we have said, instructions that change the flow of

instruction processing in this way are called control instructions. In the case of

the conditional branch instruction (BR), at the end of its instruction cycle, the

PC contains one of two addresses: either the incremented PC that was loaded in

State 1 or the new address computed from sign-extending bits [8:0] of the BR

instruction and adding it to the PC, which was loaded in State 63. Which address

gets loaded into the PC depends on the test of the most recent result.

Appendix C contains a full description of the implementation of the

LC-3, including its full state diagram and data path. We will not go into that level

of detail in this chapter. Our objective here is to show you that there is nothing

magic about the processing of the instruction cycle, and that a properly completed

PC <−address
New

State 1

State 2

State 3

State 4

MAR <− PC
PC <− PC + 1

MDR <− M [MAR]

IR <− MDR

BR
LD

ADD

[opcode]

Last state
to carry out

ADD instruction

Last state
to carry out

LD  instruction

To State 1 To State 1

To State 1

To State 1

State 63

FETCH

First state after
DECODE for

ADD instruction

First state after
DECODE for

LD  instruction

Test the condition
of the most
recent result

DECODE

Figure 4.4 An abbreviated state diagram of the LC-3.



136 chapter 4 The von Neumann Model

state diagram would be able to control, clock cycle by clock cycle, all the steps

required to execute all the phases of every instruction cycle. Since each instruc-

tion cycle ends by returning to State 1, the finite state machine can process, clock

cycle by clock cycle, a complete computer program.

4.3.5 Halting the Computer (the TRAP Instruction)

From everything we have said, it appears that the computer will continue

processing instructions, carrying out the instruction cycle again and again,

ad nauseum. Since the computer does not have the capacity to be bored, must this

continue until someone pulls the plug and disconnects power to the computer?

Usually, user programs execute under the control of an operating system.

Linux, DOS, MacOS, and Windows are all examples of operating systems.

Operating systems are just computer programs themselves. As far as the com-

puter is concerned, the instruction cycle continues whether a user program is

being processed or the operating system is being processed. This is fine as

far as user programs are concerned since each user program terminates with a

control instruction that changes the PC to again start processing the operating

system—often to initiate the execution of another user program.

But what if we actually want to stop this potentially infinite sequence of

instruction cycles? Recall our analogy to the conductor’s baton, beating at the

rate of billions of clock cycles per second. Stopping the instruction sequencing

requires stopping the conductor’s baton. We have pointed out many times that

there is inside the computer a component that corresponds very closely to the

conductor’s baton. It is called the clock, and it defines the amount of time each

machine cycle takes. We saw in Chapter 3 that the clock enables the synchronous

finite state machine to continue on to the next clock cycle. In Chapter 3 the next

clock cycle corresponded to the next state of the danger sign we designed. Here

the next clock cycle corresponds to the next state of the instruction cycle, which

is either the next state of the current phase of the instruction cycle or the first state

of the next phase of the instruction cycle. Stopping the instruction cycle requires

stopping the clock.

Figure 4.5a shows a block diagram of the clock circuit, consisting primarily

of a clock generator and a RUN latch. The clock generator is a crystal oscillator,

a piezoelectric device that you may have studied in your physics or chemistry

class. For our purposes, the crystal oscillator is a black box (recall our defini-

tion of black box in Section 1.4) that produces the oscillating voltage shown in

Figure 4.5b. Note the resemblance of that voltage to the conductor’s baton. Every

clock cycle, the voltage rises to 1.2 volts and then drops back to 0 volts.

One
machine

cycle

(a)

R
S

Run

Q

Clock
Crystal

osc.

Clock
generator

(b)

Time

0 volts
1.2 volts

Figure 4.5 The clock circuit and its control.
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If the RUN latch is in the 1 state (i.e., Q = 1), the output of the clock circuit

is the same as the output of the clock generator. If the RUN latch is in the 0 state

(i.e., Q = 0), the output of the clock circuit is 0.

Thus, stopping the instruction cycle requires only clearing the RUN latch.

Every computer has some mechanism for doing that. In some older machines, it

is done by executing a HALT instruction. In the LC-3, as in many other machines,

it is done under control of the operating system, as we will see in Chapter 9. For

now it is enough to know that if a user program requires help from the operating

system, it requests that help with the TRAP instruction (opcode = 1111) and an

eight-bit code called a trap vector, which identifies the help that the user program

needs. The eight-bit code x25 tells the operating system that the program has

finished executing and the computer can stop processing instructions.

Question: If a HALT instruction can clear the RUN latch, thereby stopping

the instruction cycle, what instruction is needed to set the RUN latch, thereby

reinitiating the instruction cycle? Hint: This is a trick question!

4.4 Our First Program:
A Multiplication Algorithm

We now have all that we need to write our first program. We have a data movement

instruction LD to load data from memory into a register, and we have two operate

instructions, ADD for performing arithmetic and AND for performing a bit-wise

logical operation. We have a control instruction BR for loading the PC with an

address different from the incremented PC so the instruction to be executed next

will NOT be the instruction in the next sequential location in memory. And we

have the TRAP instruction (a.k.a. system call) that allows us to ask the operating

system for help, in this case to stop the computer. With all that under our belt, we

can write our first program.

Suppose the computer does not know how to multiply two positive integers.

In the old days, that was true for a lot of computers! They had ADD instructions,

but they did not have multiply instructions. What to do? Suppose we wanted to

multiply 5 times 4. Even if we do not know how to multiply, if we know that 5

times 4 is 5+5+5+5, and the computer has an ADD instruction, we can write a

program that can multiply. All we have to do is add 5 to itself four times.

Figure 4.6 illustrates the process.

Let us assume that memory location x3007, abbreviated M[x3007], contains

the value 5, and M[x3008] contains the value 4. We start by copying the two

values from memory to the two registers R1 and R2. We are going to accumulate

the results of the additions in R3, so we initialize R3 to 0. Then we add 5 to R3,

and subtract 1 from R2 so we will know how many more times we will need to

add 5 to R3. We keep doing this (adding 5 to R3 and subtracting 1 from R2) until

R2 contains the value 0. That tells us that we have added 5 to R3 four times and

we are done, so we HALT the computer. R3 contains the value 20, the result of

our multiplication.

Figure 4.7 shows the actual LC-3 program, stored in memory locations x3000

to x3008.
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R1 M[x3007]
R2 M[x3008]
R3 0

Start

R2
R3 R3 + R1

R2 − 1

R2 = 0?
No

Stop

Yes

Figure 4.6 Flowchart for an algorithm that multiplies two positive integers.

The program counter, which keeps track of the next instruction to be

executed, initially contains the address x3000.

To move the data from memory locations M[x3007] and M[x3008] to R1 and

R2, we use the data movement instruction LD. The LC-3 computer executes the

LD instruction in M[x3000] by sign-extending the offset (in this case 6) to 16 bits,

adding it to the incremented PC (in this case x3001 since we incremented the PC

during the FETCH phase of this instruction), fetching the data from M[x3007],

and loading it in R1. The LD instruction in M[x3001] is executed in the

same way.

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 R1 <- M[x3007]
x3001 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 R2 <- M[x3008]
x3002 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3003 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 R3 <- R3+R1
x3004 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2 <- R2-1
x3005 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 BR not-zero M[x3003]
x3006 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
x3007 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 The value 5
x3008 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 The value 4

Figure 4.7 A program that multiplies without a multiply instruction.
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R3 is initialized to 0 by performing a bit-wise AND of the contents of R3

with the sign-extended immediate value 0 and loading the result into R3.

Next the computer executes the ADD instructions at M[x3003] and

M[x3004]. The ADD instruction at M[x3003] adds the contents of R1 to the con-

tents of R3 and loads the result into R3. The ADD instruction at M[x3004] adds

−1 to the contents of R2, which keeps track of how many times the value 5 has

been added to R3.

At this point, the PC contains the address x3005. The BR instruction in

M[x3005] loads the PC with the address x3003 if the result of the previous

instruction (the one in M[x3004]) is not 0. If the result of the previous instruction

is 0, the BR instruction does nothing, and so the next instruction to be executed

is the instruction at M[x3006], i.e., the incremented PC is x3006.

Thus, the two ADD instructions execute again and again, until the result of

executing the instruction in M[x3004] produces the value 0, indicating that the

value 5 has been added four times. Finally, the TRAP instruction in M[x3006] is

executed, which is a call to the operating system to halt the computer.

Exercises
4.1 Name the five components of the von Neumann model. For each

component, state its purpose.

4.2 Briefly describe the interface between the memory and the processing

unit. That is, describe the method by which the memory and the

processing unit communicate.

4.3 What is misleading about the name program counter? Why is the name

instruction pointer more insightful?

4.4 What is the word length of a computer? How does the word length of a

computer affect what the computer is able to compute? That is, is it a

valid argument, in light of what you learned in Chapter 1, to say that a

computer with a larger word size can process more information and

therefore is capable of computing more than a computer with a smaller

word size?

4.5 The following table represents a small memory. Refer to this table for the

following questions.

Address Data

0000 0001 1110 0100 0011

0001 1111 0000 0010 0101

0010 0110 1111 0000 0001

0011 0000 0000 0000 0000

0100 0000 0000 0110 0101

0101 0000 0000 0000 0110

0110 1111 1110 1101 0011

0111 0000 0110 1101 1001
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a. What binary value does location 3 contain? Location 6?

b. The binary value within each location can be interpreted in many

ways. We have seen that binary values can represent unsigned

numbers, 2’s complement signed numbers, floating point numbers,

and so forth.

(1) Interpret location 0 and location 1 as 2’s complement integers.

(2) Interpret location 4 as an ASCII value.

(3) Interpret locations 6 and 7 as an IEEE floating point number.

Location 6 contains number[15:0]. Location 7 contains

number[31:16].

(4) Interpret location 0 and location 1 as unsigned integers.

c. In the von Neumann model, the contents of a memory location can

also be an instruction. If the binary pattern in location 0 were

interpreted as an instruction, what instruction would it represent?

d. A binary value can also be interpreted as a memory address. Say the

value stored in location 5 is a memory address. To which location

does it refer? What binary value does that location contain?

4.6 What are the two components of an instruction? What information

do these two components contain?

4.7 Suppose a 32-bit instruction takes the following format:

OPCODE SR DR IMM

If there are 60 opcodes and 32 registers, what is the range of values that

can be represented by the immediate (IMM)? Assume IMM is a 2’s

complement value.

4.8 Suppose a 32-bit instruction takes the following format:

OPCODE DR SR1 SR2 UNUSED

If there are 225 opcodes and 120 registers,

a. What is the minimum number of bits required to represent the

OPCODE?

b. What is the minimum number of bits required to represent the

destination register (DR)?

c. What is the maximum number of UNUSED bits in the instruction

encoding?

4.9 The FETCH phase of the instruction cycle does two important things.

One is that it loads the instruction to be processed next into the IR. What

is the other important thing?

4.10 Examples 4.1, 4.2, and 4.5 illustrate the processing of the ADD, LDR,

and JMP instructions. The PC, IR, MAR, and MDR are written in

various phases of the instruction cycle, depending on the opcode of the

particular instruction. In each location in the following table, enter the

opcodes that write to the corresponding register (row) during the

corresponding phase (column) of the instruction cycle.
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Fetch Evaluate Fetch Store

Instruction Decode Address Data Execute Result

PC

IR

MAR

MDR

4.11 State the phases of the instruction cycle, and briefly describe what

operations occur in each phase.

4.12 For the instructions ADD, LDR, and JMP, write the operations that

occur in each phase of the instruction cycle.

4.13 Say it takes 100 cycles to read from or write to memory and only one

cycle to read from or write to a register. Calculate the number of cycles

it takes for each phase of the instruction cycle for both the IA-32

instruction “ADD [eax], edx” (refer to) and the LC-3 instruction “ADD

R6, R2, R6.” Assume each phase (if required) takes one cycle, unless a

memory access is required.

4.14 Describe the execution of the JMP instruction if R3 contains x369C

(refer to Example 4.5).

4.15 If a HALT instruction can clear the RUN latch, thereby stopping the

instruction cycle, what instruction is needed to set the RUN latch,

thereby reinitiating the instruction cycle?

4.16 a. If a machine cycle is 2 nanoseconds (i.e., 2 ⋅ 10−9 seconds), how

many machine cycles occur each second?

b. If the computer requires on the average eight cycles to process each

instruction, and the computer processes instructions one at a time

from beginning to end, how many instructions can the computer

process in 1 second?

c. Preview of future courses: In today’s microprocessors, many features

are added to increase the number of instructions processed each

second. One such feature is the computer’s equivalent of an assembly

line. Each phase of the instruction cycle is implemented as one or

more separate pieces of logic. Each step in the processing of an

instruction picks up where the previous step left off in the previous

machine cycle. Using this feature, an instruction can be fetched

from memory every machine cycle and handed off at the end of the

machine cycle to the decoder, which performs the decoding function

during the next machine cycle while the next instruction is being

fetched. Ergo, the assembly line. Assuming instructions are located at

sequential addresses in memory, and nothing breaks the sequential

flow, how many instructions can the microprocessor execute each

second if the assembly line is present? (The assembly line is called a

pipeline, which you will encounter in your advanced courses. There
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are many reasons why the assembly line cannot operate at its

maximum rate, a topic you will consider at length in some of

these courses.)

★4.17 In this problem we perform five successive accesses to memory. The

following table shows for each access whether it is a read (load) or write

(store), and the contents of the MAR and MDR at the completion of the

access. Some entries are not shown. Note that we have shortened the

addressability to 5 bits, rather than the 16 bits that we are used to in the

LC-3, in order to decrease the excess writing you would have to do.

Operations on Memory

R/W MAR MDR

Operation 1 W 1 1 1 1 0

Operation 2

Operation 3 W 1 0

Operation 4

Operation 5

The following three tables show the contents of memory locations x4000

to x4004 before the first access, after the third access, and after the fifth

access. Again, not all entries are shown. We have added an unusual

constraint to this problem in order to get one correct answer. The MDR

can ONLY be loaded from memory as a result of a load (read) access.

001 1 1

011 1 1 011 1 11 1 1

0 0

0 0

1 1 1

111

1

0

0

0

1 1 1

Memory before Access 1

x4000

x4003

x4002

x4001

x4000

x4003

x4002

x4001

Memory after Access 3

x4000

x4003

x4002

x4001

Memory after Access 5

x4004 x4004 x4004 01

00

Your job: Fill in the missing entries.

Hint: As you know, writes to memory require MAR to be loaded with

the memory address and MDR to loaded with the data to be written

(stored). The data in the MDR must come from a previous read (load).

★4.18 The 22-by-3 bit memory discussed in class is accessed during

five consecutive clock cycles. The table below shows the values of the

two-bit address, one-bit write enable, and three-bit data-in signals during

each access.

A[1:0] WE Din[2:0]

cycle 1 0 1 1 1 0 1

cycle 2 1 1 0 1 1 0

cycle 3 1 0 1 0 1 0

cycle 4 0 1 1 0 1 1

cycle 5 0 0 0 0 0 0
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Your job: Fill in the value stored in each memory cell and the three

data-out lines just before the end of the fifth cycle. Assume initially that

all 12 memory cells store the value 1. In the figure below, each question

mark (?) indicates a value that you need to fill in.

A[1:0] D D Din inin[ [1] [0]2]

D [2]out

WE

?___
?___

?___

?___

?___?___

?___ ?___

?___?___

?___ ?___ ?___

?___

?___

out out 0[1] [ ]D D

★4.19 Shown below is a byte-addressible memory consisting of eight locations,

and its associated MAR and MDR. Both MAR and MDR consist of

flip-flops that are latched at the start of each clock cycle based on the

values on their corresponding input lines. A memory read is initiated

every cycle, and the data is available by the end of that cycle.

MDR

Memory

Clock

MARClock ...D[5]D[7] D[6]

A[2]
A[1]
A[0]

WE0

D[0]
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Just before the start of cycle 1, MAR contains 000, MDR contains

00010101, and the contents of each memory location is as shown.

Memory Location Value
x0 01010000

x1 11110001

x2 10000011

x3 00010101

x4 11000110

x5 10101011

x6 00111001

x7 01100010

a. What do MAR and MDR contain just before the end of cycle 1?

MAR: MDR:

b. What does MDR contain just before the end of cycle 4?

MDR:



5
C H A P T E R

The LC-3

In Chapter 4, we discussed the basic components of a computer—its mem-

ory, its processing unit, including the associated temporary storage (usually

a set of registers), input and output devices, and the control unit that directs the

activity of all the units (including itself!). We also studied the six phases of the

instruction cycle—FETCH, DECODE, ADDRESS EVALUATION, OPERAND

FETCH, EXECUTE, and STORE RESULT. We used elements of the LC-3 to

illustrate some of the concepts. In fact, we introduced five opcodes: two operate

instructions (ADD and AND), one data movement instruction (LD), and two con-

trol instructions (BR and TRAP). We are now ready to study the LC-3 in much

greater detail.

Recall from Chapter 1 that the ISA is the interface between what the soft-

ware commands and what the hardware actually carries out. In this chapter, we

will point out most of the important features of the ISA of the LC-3. (A few ele-

ments we will leave for Chapter 8 and Chapter 9.) You will need these features

to write programs in the LC-3’s own language, that is, in the LC-3’s machine
language.

A complete description of the ISA of the LC-3 is contained in Appendix A.

5.1 The ISA: Overview
The ISA specifies all the information about the computer that the software has

to be aware of. In other words, the ISA specifies everything in the computer

that is available to a programmer when he/she writes programs in the com-

puter’s own machine language. Most people, however, do not write programs

in the computer’s own machine language, but rather opt for writing programs in

a high-level language like C++ or Python (or Fortran or COBOL, which have

been around for more than 50 years). Thus, the ISA also specifies everything

in the computer that is needed by someone (a compiler writer) who wishes to

translate programs written in a high-level language into the machine language of

the computer.
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The ISA specifies the memory organization, register set, and instruction set,

including the opcodes, data types, and addressing modes of the instructions in

the instruction set.

5.1.1 Memory Organization

The LC-3 memory has an address space of 216 (i.e., 65,536) locations, and an

addressability of 16 bits. Not all 65,536 addresses are actually used for memory

locations, but we will leave that discussion for Chapter 9. Since the normal unit

of data that is processed in the LC-3 is 16 bits, we refer to 16 bits as one word,

and we say the LC-3 is word-addressable.

5.1.2 Registers

Since it usually takes far more than one clock cycle to obtain data from mem-

ory, the LC-3 provides (like almost all computers) additional temporary storage

locations that can be accessed in a single clock cycle.

The most common type of temporary storage locations, and the one used in

the LC-3, is a set of registers. Each register in the set is called a general purpose
register (GPR). Like memory locations, registers store information that can be

operated on later. The number of bits stored in each register is usually one word.

In the LC-3, this means 16 bits.

Registers must be uniquely identifiable. The LC-3 specifies eight GPRs, each

identified by a three-bit register number. They are referred to as R0, R1, … R7.

Figure 5.1 shows a snapshot of the LC-3’s register set, sometimes called a register
file, with the eight values 1, 3, 5, 7, −2, −4, −6, and −8 stored in R0, … R7,

respectively.

Recall from Chapter 4 that the instruction to ADD the contents of R0 to R1

and store the result in R2 is specified as

0000000000000001

0000000000000011

0000000000000101

0000000000000111

1111111111111110

1111111111111100

1111111111111010

1111111111111000

Register 0     (R0)

Register 1     (R1)

Register 2     (R2)

Register 3     (R3)

Register 4     (R4)

Register 5     (R5)

Register 6     (R6)

Register 7     (R7)

Figure 5.1 A snapshot of the LC-3’s register file.
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0000000000000001

0000000000000011

0000000000000111

1111111111111110

1111111111111100

Register 7     (R7)

1111111111111010

1111111111111000

0000000000000100

Register 0     (R0)

Register 1     (R1)

Register 2     (R2)

Register 3     (R3)

Register 4     (R4)

Register 5     (R5)

Register 6     (R6)

Figure 5.2 The register file of Figure 5.1 after the ADD instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1

ADD R2 R0 R1

where the two sources of the ADD instruction are specified in bits [8:6] and

bits [2:0]. The destination of the ADD result is specified in bits [11:9]. Figure 5.2

shows the contents of the register file of Figure 5.1 AFTER the instruction

ADD R2, R1, R0.

is executed.

5.1.3 The Instruction Set

Recall from Chapter 4 that an instruction is made up of two things, its opcode
(what the instruction is asking the computer to do) and its operands (who the

computer is expected to do it to!). The instruction set is defined by its set of

opcodes, data types, and addressing modes. The addressing modes determine

where the operands are located. The data type is the representation of the operands

in 0s and 1s.

The instruction ADD R2, R0, R1 has an opcode ADD, one addressing mode

(register mode), and one data type (2’s complement integer). The instruction

directs the computer to perform a 2’s complement integer addition and speci-

fies the locations (GPRs) where the computer is expected to find the operands

and the location (a GPR) where the computer is to write the result.

We saw in Chapter 4 that the ADD instruction can also have two addressing

modes (register mode and immediate mode), where one of the two operands is

literally contained in bits [4:0] of the instruction.

Figure 5.3 lists all the instructions of the LC-3, the bit encoding [15:12] for

each opcode, and the format of each instruction. Some of them you will recognize

from Chapter 4. Many others will be explained in Sections 5.2, 5.3, and 5.4.
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BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA

NOT+

RET

RTI

ST

JSRR

JSR

Figure 5.3 Formats of the entire LC-3 instruction set. Note: + indicates instructions
that modify condition codes.
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5.1.4 Opcodes

Some ISAs have a very large number of opcodes, one for each of a very large

number of tasks that a program may wish to carry out. The x86 ISA has more than

200 opcodes. Other ISAs have a very small set of opcodes. Some ISAs have specific

opcodes to help with processing scientific calculations. For example, the Hewlett

Packard Precision Architecture can specify the compound operation (A ⋅ B) + C
with one opcode; that is, a multiply, followed by an add on three source operands

A, B, and C. Other ISAs have instructions that process video images obtained from

the World Wide Web. The Intel x86 ISA added a number of instructions which they

originally called MMX instructions because they eXtended the ISA to assist with

MultiMedia applications that use the web. Still other ISAs have specific opcodes to

help with handling the tasks of the operating system. For example, the VAX ISA,

popular in the 1980s, used a single opcode instead of a long sequence of instructions

that other computers used to save the information associated with a program that

was in the middle of executing prior to switching to another program. The decision

as to which instructions to include or leave out of an ISA is usually a hotly debated

topic in a company when a new ISA is being specified.

The LC-3 ISA has 15 instructions, each identified by its unique opcode. The

opcode is specified in bits [15:12] of the instruction. Since four bits are used

to specify the opcode, 16 distinct opcodes are possible. However, the LC-3 ISA

specifies only 15 opcodes. The code 1101 has been left unspecified, reserved for

some future need that we are not able to anticipate today.

As we already discussed briefly in Chapter 4, there are three different types

of instructions, which means three different types of opcodes: operates, data
movement, and control. Operate instructions process information. Data move-

ment instructions move information between memory and the registers and

between registers/memory and input/output devices. Control instructions change

the sequence of instructions that will be executed. That is, they enable the exe-

cution of an instruction other than the one that is stored in the next sequential

location in memory.

5.1.5 Data Types

As we first pointed out in Section 2.1.2, a data type is a representation of infor-

mation such that the ISA has opcodes that operate on that representation. There

are many ways to represent the same information in a computer. That should not

surprise us, since in our daily lives, we regularly represent the same information

in many different ways. For example, a child, when asked how old he is, might

hold up three fingers, signifying that he is 3 years old. If the child is particularly

precocious, he might write the decimal digit 3 to indicate his age. Or, if the child

is a CS or CE major at the university, he might write 0000000000000011, the

16-bit binary representation for 3. If he is a chemistry major, he might write

3.0 ⋅ 100. All four represent the same value: 3.

In addition to the representation of a single number by different bit patterns

in different data types, it is also the case that the same bit pattern can corre-

spond to different numbers, depending on the data type. For example, the 16
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bits 0011000100110000 represent the 2’s complement integer 12,592, the ASCII

code for 10, and a bit vector such that b13, b12, b7, b4, and b3 have the relevant

property of the bit vector.

That should also not surprise us, since in our daily lives, the same represen-

tation can correspond to multiple interpretations, as is the case with a red light.

When you see it on the roadway while you are driving, it means you should stop.

When you see it at Centre Bell where the Montreal Canadiens play hockey, it

means someone has just scored a goal.

Every opcode will interpret the bit patterns of its operands according to the

data type it is designed to support. In the case of the ADD opcode, for example,

the hardware will interpret the bit patterns of its operands as 2’s complement

integers. Therefore, if a programmer stored the bit pattern 0011000100110000 in

R3, thinking that the bit pattern represented the integer 10, the instruction ADD

R4, R3, #10 would write the integer 12,602 into R4, and not the ASCII code for

the integer 20. Why? Because the opcode ADD interprets the bit patterns of its

operands as 2’s complement integers, and not ASCII codes, regardless what the

person creating those numbers intended.

5.1.6 Addressing Modes

An addressing mode is a mechanism for specifying where the operand is located.

An operand can generally be found in one of three places: in memory, in a register,

or as a part of the instruction. If the operand is a part of the instruction, we refer to

it as a literal or as an immediate operand. The term literal comes from the fact that

the bits of the instruction literally form the operand. The term immediate comes

from the fact that we can obtain the operand immediately from the instruction,

that is, we don’t have to look elsewhere for it.

The LC-3 supports five addressing modes: immediate (or literal), register,

and three memory addressing modes: PC-relative, indirect, and Base+offset. We

will see in Section 5.2 that operate instructions use two addressing modes: register

and immediate. We will see in Section 5.3 that data movement instructions use

four of the five addressing modes.

5.1.7 Condition Codes

One final item will complete our overview of the ISA of the LC-3: condition

codes. The LC-3 has three single-bit registers that are individually set (set to

1) or cleared (set to 0) each time one of the eight general purpose registers is

written into as a result of execution of one of the operate instructions or one of

the load instructions. Each operate instruction performs a computation and writes

the result into a general purpose register. Each load instruction reads the contents

of a memory location and writes the value found there into a general purpose

register. We will discuss all the operate instructions in Section 5.2 and all the

load instructions in Section 5.3.

The three single-bit registers are called N, Z, and P, corresponding to their

meaning: negative, zero, and positive. Each time a GPR is written by an operate

or a load instruction, the N, Z, and P one-bit registers are individually set to 0
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or 1, corresponding to whether the result written to the GPR is negative, zero,

or positive. That is, if the result is negative, the N register is set, and Z and P

are cleared. If the result is zero, Z is set and N and P are cleared. If the result is

positive, P is set and N and Z are cleared.

The set of three single-bit registers are referred to as condition codes because

the condition of those bits are used to change the sequence of execution of the

instructions in a computer program. Many ISAs use condition codes to change

the execution sequence. SPARC and x86 are two examples. We will show how

the LC-3 does it in Section 5.4.

5.2 Operate Instructions
5.2.1 ADD, AND, and NOT

Operate instructions process data. Arithmetic operations (like ADD, SUB, MUL,

and DIV) and logical operations (like AND, OR, NOT, XOR) are common

examples. The LC-3 has three operate instructions: ADD, AND, and NOT.

The NOT (opcode = 1001) instruction is the only operate instruction that

performs a unary operation, that is, the operation requires one source operand.

The NOT instruction bit-wise complements a 16-bit source operand and stores the

result in a destination register. NOT uses the register addressing mode for both

its source and destination. Bits [8:6] specify the source register and bits [11:9]

specify the destination register. Bits [5:0] must contain all 1s.

If R5 initially contains 0101000011110000, after executing the following

instruction:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1

NOT R3 R5

R3 will contain 1010111100001111.

Figure 5.4 shows the key parts of the data path that are used to perform the

NOT instruction shown here. Since NOT is a unary operation, only the A input

of the ALU is relevant. It is sourced from R5. The control signal to the ALU

directs the ALU to perform the bit-wise complement operation. The output of

the ALU (the result of the operation) is stored in R3 and the condition codes are

set, completing the execution of the NOT instruction.

Recall from Chapter 4 that the ADD (opcode = 0001) and AND (opcode =
0101) instructions both perform binary operations; they require two 16-bit source

operands. The ADD instruction performs a 2’s complement addition of its two

source operands. The AND instruction performs a bit-wise AND of each pair

of bits of its two 16-bit operands. Like the NOT, the ADD and AND use the

register addressing mode for one of the source operands and for the destina-

tion operand. Bits [8:6] specify the source register, and bits [11:9] specify the

destination register (where the result will be written).
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1616

R0

R1

R2

R3

R4

R5

R6

R7

A

ALULOGIC

N Z P

NOT
B

0101000011110000

1010111100001111

Figure 5.4 Data path relevant to the execution of NOT R3, R5.

5.2.2 Immediates

The second source operand for both ADD and AND instructions (as also dis-

cussed in Chapter 4) can be specified by either register mode or as an immediate

operand. Bit [5] determines which. If bit [5] is 0, then the second source operand

uses a register, and bits [2:0] specify which register. In that case, bits [4:3] are set

to 0 to complete the specification of the instruction.

In the ADD instruction shown below, if R4 contains the value 6 and R5 con-

tains the value −18, then R1 will contain the value −12 after the instruction is

executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

If bit [5] is 1, the second source operand is contained within the instruction.

In that case the second source operand is obtained by sign-extending bits [4:0] to

16 bits before performing the ADD or AND. The result of the ADD (or AND)

instruction is written to the destination register and the condition codes are set,
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16

1 0

0001 001100 1 11110

ADD R1 R4 −2

16

5

LOGIC

N Z P

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #−2.

completing the execution of the ADD (or AND) instruction. Figure 5.5 shows the

key parts of the data path that are used to perform the instruction

ADD R1, R4, #-2.

Since the immediate operand in an ADD or AND instruction must fit in bits

[4:0] of the instruction, not all 2’s complement integers can be immediate

operands. Question: Which integers are OK (i.e., which integers can be used as

immediate operands)?

Example 5.1
What does the following instruction do?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

ANSWER: Register 2 is cleared (i.e., set to all 0s).
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Example 5.2
What does the following instruction do?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1

ANSWER: Register 6 is incremented (i.e., R6 ← R6 + 1).

Note that a register can be used as a source and also as a destination in the same

instruction. This is true for all instructions in the LC-3.

Example 5.3
Recall that the negative of an integer represented in 2’s complement can be obtained

by complementing the number and adding 1. Therefore, assuming the values A and

B are in R0 and R1, what sequence of three instructions performs “A minus B” and

writes the result into R2?

ANSWER:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 ← NOT(B)
NOT R1 R1

0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 R2 ← -B
ADD R2 R1 1

0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 R2 ← A +(-B)
ADD R2 R0 R2

Question: What distasteful result is also produced by this sequence? How can it

easily be avoided?

5.2.3 The LEA Instruction (Although Not Really an Operate)

Where to put the LEA instruction is a matter for debate (when you have nothing

more important to do!). It does not really operate on data, it simply loads a register

with an address. It clearly does not move data from memory to a register, nor is it

a control instruction. We had to put it somewhere, so we chose to discuss it here!

LEA (opcode = 1110) loads the register specified by bits [11:9] of the

instruction with the value formed by adding the incremented program counter

to the sign-extended bits [8:0] of the instruction. We saw this method of con-

structing an address in Chapter 4 with the LD instruction. However, in this

case, the instruction does not access memory, it simply loads the computed

address into a register. Perhaps a better name for this opcode would be CEA (for

Compute Effective Address). However, since many microprocessors in industry

that have this instruction in their ISAs call it LEA (for Load Effective Address),

we have chosen to use the same acronym.
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16

16

16

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

0100  0000  0001  1001 SEXT

ADD

1111111111111101

0100000000010110

LEA R5 x1FD

111111101 1011110

Figure 5.6 Data path relevant to the execution of LEA R5, #−3.

We shall see shortly that the LEA instruction is useful to initialize a regis-

ter with an address that is very close to the address of the instruction doing the

initializing.

If memory location x4018 contains the instruction LEA R5, #−3, and the PC

contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 −3

R5 will contain x4016 after the instruction at x4018 is executed. Question: Why

will R5 not contain the address x4015?

Figure 5.6 shows the relevant parts of the data path required to execute the

LEA instruction. Note that the value to be loaded into the register does not involve

any access to memory. ...nor does it have any effect on the condition codes.

5.3 Data Movement Instructions
Data movement instructions move information between the general purpose reg-

isters and memory and between the registers and the input/output devices. We will

ignore for now the business of moving information from input devices to registers

and from registers to output devices. This will be an important part of Chapter 9.

In this chapter, we will confine ourselves to moving information between memory

and the general purpose registers.
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The process of moving information from memory to a register is called a

load, and the process of moving information from a register to memory is called a

store. In both cases, the information in the location containing the source operand

remains unchanged. In both cases, the location of the destination operand is over-

written with the source operand, destroying in the process the previous value that

was in the destination location.

The LC-3 contains six instructions that move information: LD, LDR, LDI,

ST, STR, and STI.

The format of the load and store instructions is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode DR or SR Addr Gen bits

Data movement instructions require two operands, a source and a destination.

The source is the data to be moved; the destination is the location where it is

moved to. One of these locations is a register, the other is a memory location or

an input/output device. In this chapter we will assume the second operand is in

memory. In Chapter 9 we will study the cases where the second operand is an

input or output device.

Bits [11:9] specify one of these operands, the register. If the instruction is a

load, DR refers to the destination general purpose register that will contain the

value after it is read from memory (at the completion of the instruction cycle). If

the instruction is a store, SR refers to the register that contains the value that will

be written to memory.

Bits [8:0] contain the address generation bits. That is, bits [8:0] contain infor-

mation that is used to compute the 16-bit address of the second operand. In the

case of the LC-3’s data movement instructions, there are three ways to interpret

bits [8:0]. They are collectively called addressing modes. The opcode specifies

how to interpret bits [8:0]. That is, the LC-3’s opcode specifies which of the three

addressing modes should be used to obtain the address of the operand from bits

[8:0] of the instruction.

5.3.1 PC-Relative Mode

LD (opcode = 0010) and ST (opcode = 0011) specify the PC-relative address-

ing mode. We have already discussed this addressing mode in Chapter 4. It is

so named because bits [8:0] of the instruction specify an offset relative to the

PC. The memory address is computed by sign-extending bits [8:0] to 16 bits and

adding the result to the incremented PC. The incremented PC is the contents of

the program counter after the FETCH phase, that is, after the PC has been incre-

mented. If the instruction is LD, the computed address (PC + offset) specifies the

memory location to be accessed. Its contents is loaded into the register specified

by bits [11:9] of the instruction. If the instruction is ST, the contents of the regis-

ter specified by bits [11:9] of the instruction is written into the memory location

whose address is PC + offset. ...and the N, Z, and P one-bit condition codes are

set depending on whether the value loaded is negative, positive, or zero.
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If the following instruction is located at x4018, it will cause the contents of

x3FC8 to be loaded into R2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

LD R2 x1AF

Figure 5.7 shows the relevant parts of the data path required to execute this

instruction. The three steps of the LD instruction are identified. In step 1, the

incremented PC (x4019) is added to the sign-extended value contained in IR [8:0]

(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is

read and the contents of x3FC8 is loaded into the MDR. Suppose the value stored

in x3FC8 is 5. In step 3, the value 5 is loaded into R2, and the NZP condition codes

are set, completing the instruction cycle.

Note that the address of the memory operand is limited to a small range of

the total memory. That is, the address can only be within +256 or −255 locations

of the LD or ST instruction. This is the range provided by the sign-extended value

contained in bits [8:0] of the instruction. If a load instruction needs to access a

memory location further away from the load instruction, one of the other two

addressing modes must be used.

16

16

1616
1

R0

R1

R2

R3

R4

R5

R6

R7

0010

LOGIC

N Z P

010110101111
15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

MAR MDRMEMORY

0000000000000101

ADD

LD R2 x1AF

1111111110101111

3

2

Figure 5.7 Data path relevant to execution of LD R2, x1AF.
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5.3.2 Indirect Mode

LDI (opcode = 1010) and STI (opcode = 1011) specify the indirect address-

ing mode. An address is first formed exactly the same way as with LD and ST.

However, instead of this address being the address of the operand to be loaded

or stored, it is the address of the address of the operand to be loaded or stored.

Hence the name indirect. Note that the address of the operand can be anywhere

in the computer’s memory, not just within the range provided by bits [8:0] of the

instruction as is the case for LD and ST. The destination register for the LDI and

the source register for STI, like all the other loads and stores, are specified in bits

[11:9] of the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 x1CC

is in x4A1B, and the contents of x49E8 is x2110, execution of this instruction

results in the contents of x2110 being loaded into R3.

Figure 5.8 shows the relevant parts of the data path required to execute this

instruction. As is the case with the LD and ST instructions, the first step consists

of adding the incremented PC (x4A1C) to the sign-extended value contained in

IR [8:0] (xFFCC), and the result (x49E8) loaded into the MAR. In step 2, memory

is in x4A1B and x2110 is in x49E8, and execution of this instruction results in the

16
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1616
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2
3 x2110LOGIC

N Z P
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R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]
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SEXT

MAR MDRMEMORY

ADD

1111111111111111

1010 011 111001100
x1CCR3

xFFCC

0100 1010 0001 1100

LDI

4

5

Figure 5.8 Data path relevant to the execution of LDI R3, x1CC.
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contents of x2110 being loaded into R3. In step 3, since x2110 is not the operand,

but the address of the operand, it is loaded into the MAR. In step 4, memory is

again read, and the MDR again loaded. This time the MDR is loaded with the

contents of x2110. Suppose the value −1 is stored in memory location x2110. In

step 5, the contents of the MDR (i.e., −1) is loaded into R3 and the NZP condition

codes are set, completing the instruction cycle.

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the

operand is obtained by adding a sign-extended six-bit offset to a base register.

The six-bit offset is obtained from the instruction, bits [5:0]. The base register is

specified by bits [8:6] of the instruction.

If R2 contains the 16-bit quantity x2345, the following instruction loads R1

with the contents of x2362.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D

Figure 5.9 shows the relevant parts of the data path required to execute this

instruction. First the contents of R2 (x2345) is added to the sign-extended value

1616
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N Z P

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 0110 001 010

x1D

011101

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.9 Data path relevant to the execution of LDR R1, R2, x1D.



160 chapter 5 The LC-3

contained in IR [5:0] (x001D), and the result (x2362) is loaded into the MAR.

Second, memory is read, and the contents of x2362 is loaded into the MDR.

Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,

the contents of the MDR (in this case, x0F0F) is loaded into R1 and the NZP

condition codes are set, completing the execution of the LDR instruction.

Note that the Base+offset addressing mode also allows the address of the

operand to be anywhere in the computer’s memory.

5.3.4 An Example

We conclude our study of addressing modes with a comprehensive example.

Assume the contents of memory locations x30F6 through x30FC are as shown in

Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying

out the seven instructions starting at location x30FC.

Since the PC points initially to location x30F6, the first instruction to be

executed is the one stored in location x30F6. The opcode of that instruction is

1110, load effective address (LEA). LEA loads the register specified by bits [11:9]

with the address formed by sign-extending bits [8:0] of the instruction and adding

the result to the incremented PC. The 16-bit value obtained by sign-extending

bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7. Therefore,

at the end of execution of the LEA instruction, R1 contains x30F4, and the PC

contains x30F7.

Next, the instruction stored in location x30F7 is executed. Since the opcode

0001 specifies ADD, the sign-extended immediate in bits [4:0] (since bit [5] is

1) is added to the contents of the register specified in bits [8:6], and the result

is written to the register specified by bits [11:9]. Since the previous instruction

wrote x30F4 into R1, and the sign-extended immediate value is x000E, the sum

is x3102. At the end of execution of this instruction, R2 contains x3102, and the

PC contains x30F8. R1 still contains x30F4.

Next, the instruction stored in x30F8. The opcode 0011 specifies the ST

instruction, which stores the contents of the register specified by bits [11:9]

(R2) into the memory location whose address is computed using the PC-relative

addressing mode. That is, the address is computed by adding the incremented PC

(x30F9) to the 16-bit value obtained by sign-extending bits [8:0] of the instruction

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1

Figure 5.10 A code fragment illustrating the three addressing modes.



5.4 Control Instructions 161

(xFFFB). Therefore, at the end of execution of the ST instruction, memory loca-

tion x30F4 (i.e., x30F9 + xFFFB) contains the value stored in R2 (x3102) and

the PC contains x30F9.

Next the instruction at x30F9. The AND instruction, with an immediate

operand x0000. At the end of execution, R2 contains the value 0, and the PC

contains x30FA.

At x30FA, the opcode 0001 specifies the ADD instruction. After execution,

R2 contains the value 5, and the PC contains x30FB.

At x30FB, the opcode 0111 signifies the STR instruction. STR (like LDR)

uses the Base+offset addressing mode. The memory address is obtained by

adding the contents of the BASE register (specified by bits [8:6]) to the sign-

extended offset contained in bits [5:0]. In this case, bits [8:6] specify R1, which

contains x30F4. The 16-bit sign-extended offset is x000E. Since x30F4+ x000E

is x3102, the memory address is x3102. The STR instruction stores into x3102

the contents of the register specified by bits [11:9], in this case R2. Since R2 con-

tains the value 5, at the end of execution of this instruction, M[x3102] contains

the value 5, and the PC contains x30FC.

Finally the instruction at x30FC. The opcode 1010 specifies LDI. LDI (like

STI) uses the indirect addressing mode. The memory address is obtained by first

forming an address as is done in the PC-relative addressing mode. Bits [8:0] are

sign-extended to 16 bits (xFFF7) and added to the incremented PC (x30FD).

Their sum (x30F4) is the address of the operand address. Since M[x30F4] con-

tains x3102, x3102 is the operand address. The LDI instruction loads the value

found at this address (in this case 5) into the register identified by bits [11:9] of

the instruction (in this case R3). At the end of execution of this instruction, R3

contains the value 5 and the PC contains x30FD.

5.4 Control Instructions
Control instructions change the sequence of instructions to be executed. If there

were no control instructions, the next instruction fetched after the current instruc-

tion finishes would always be the instruction located in the next sequential

memory location. As you know, this is because the PC is incremented in the

FETCH phase of each instruction cycle. We have already seen in the program of

Section 4.4 that it is often useful to be able to break that sequence.

The LC-3 has five opcodes that enable the sequential execution flow to

be broken: conditional branch, unconditional jump, subroutine call (sometimes

called function), TRAP, and RTI (Return from Trap or Interrupt). In this sec-

tion, we will deal almost entirely with the most common control instruction, the

conditional branch. We will also discuss the unconditional jump and the TRAP

instruction. The TRAP instruction, often called service call, is useful because

it allows a programmer to get help from the operating system to do things that

the typical programmer does not fully understand how to do. Typical examples:

getting information into the computer from input devices, displaying information

to output devices, and stopping the computer. The TRAP instruction breaks the
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sequential execution of a user program to start a sequence of instructions in the

operating system. How the TRAP instruction does this, and in fact, most of the

discussion of the TRAP instruction and all of the discussion of the subroutine

call and the return from interrupt we will leave for Chapters 8 and 9.

5.4.1 Conditional Branches

Of the five instructions which change the execution flow from the next sequential

instruction to an instruction located someplace else in the program, only one of

them decides each time it is executed whether to execute the next instruction in

sequence or whether to execute an instruction from outside that sequence. The

instruction that makes that decision each time it is executed is the conditional

branch instruction BR (opcode = 0000).

Like all instructions in the LC-3, the PC is incremented during the FETCH

phase of its instruction cycle. Based on the execution of previous instructions in

the program, the conditional branch’s EXECUTE phase either does nothing or it

loads the PC with the address of the instruction it wishes to execute next. If the

conditional branch instruction does nothing during the EXECUTE phase, then

the incremented PC will remain unchanged, and the next instruction executed

will be the next instruction in sequence.

That decision, whether to do nothing to the incremented PC or whether to

change it, is based on previous results computed by the program, which are

reflected in the condition codes discussed in Section 5.1.7. We will explain.

The format of the conditional branch instruction is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 n z p PCoffset

Bits [11], [10], and [9] are associated with the three condition codes, N, Z, and P.

As you know, the three operate instructions (ADD, AND, and NOT) and

the three load instructions (LD, LDI, and LDR) in the LC-3 write values into

general purpose registers, and also set the three condition codes in accordance

with whether the value written is negative, zero, or positive.

The conditional branch instruction uses that information to determine

whether or not to depart from the usual sequential execution of instructions that

we get as a result of incrementing the PC during the FETCH phase of each

instruction.

We said (without explanation) in the computer program we studied in

Section 4.4 that if bits [11:9] of the conditional branch instruction are 101, we

will depart from the usual sequential execution if the last value written into a reg-

ister by one of the six instructions listed above is not 0. We are now ready to see

exactly what causes that to happen.

During the EXECUTE phase of the BR instruction cycle, the processor

examines the condition codes whose associated bits in the instruction, bits [11:9],

are 1. Note the lower case n, z, and p in bits [11:9] of the BR instruction for-

mat shown above. If bit [11] is 1, condition code N is examined. If bit [10] is 1,
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condition code Z is examined. If bit [9] is 1, condition code P is examined. If any

of bits [11:9] are 0, the associated condition codes are not examined. If any of the

condition codes that are examined are set (i.e., equal to 1), then the PC is loaded

with the address obtained in the EVALUATE ADDRESS phase. If none of the

condition codes that are examined are set, the incremented PC is left unchanged,

and the next sequential instruction will be fetched at the start of the next

instruction cycle.

The address obtained during the EVALUATE ADDRESS phase of the

instruction cycle is generated using the PC-relative addressing mode.

In our example in Section 4.4, the ADD instruction in memory location

x3004 subtracted 1 from R2, wrote the result to R2, and set the condition codes.

The BR instruction in memory location x3005 shows bits [11:9] = 101. Since bit

[11] is 1, if the N bit is set, the result of the ADD must have been negative. Since

bit [9] is also 1, if the P bit is set, the result must have been positive. Since bit

[10] is 0, we do not examine the Z bit. Thus if the previous result is positive or

negative (i.e., not 0), the PC is loaded with x3003, the address calculated in the

EVALUATE ADDRESS phase of the branch instruction.

Recall that the program of Figure 4.7 used R2 to keep track of the number

of times the number 5 was added to R3. As long as we were not done with all

our additions, the result of subtracting 1 from R2 was not zero. When we were

done with our additions, subtracting 1 from R2 produced the result 0, so Z was

set to 1, N and P were set to 0. At that point, bits [11:9] checked the N and P

condition codes which were 0, so the incremented PC was not changed, and the

instruction at location x3006, a trap to the operating system to halt the computer,

was executed next.

Let’s Look at Another Example. Suppose the following instruction is located

at x4027, and the last value loaded into a general purpose register was 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1

BR n z p x0D9

Figure 5.11 shows the data path elements that are required to execute this

instruction. Note the logic required to determine whether the sequential instruc-

tion flow should be broken. Each of the three AND gates corresponds to one of

the three condition codes. The output of the AND gate is 1 if the corresponding

condition code is 1 and if the associated bit in the instruction directs the hardware

to check that condition code. If any of the three AND gates have an output 1, the

OR gate has an output 1, indicating that the sequential instruction flow should

be broken, and the PC should be loaded with the address evaluated during the

EVALUATE ADDRESS phase of the instruction cycle.

In the case of the conditional branch instruction at x4027, the answer is yes,

and the PC is loaded with x4101, replacing x4028, which had been loaded into

the PC during the FETCH phase of the BR instruction.
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16

SEXT

16 16

PCMUX

ADD

0000000011011001

IR 010

n z p PCoffset9BR

0000 011011001

9

Yes!

PZN
0 1 0

PC 0100 0000 0010 1000

0100 0001 0000 0001

Figure 5.11 Data path relevant to the execution of BRz x0D9.

Another Example. If all three bits [11:9] are 1, then all three condition codes

are examined. In this case, since the last result stored into a register had to be

either negative, zero, or positive (there are no other choices!), one of the three

condition codes must be in state 1. Since all three are examined, the PC is loaded

with the address obtained in the EVALUATE ADDRESS phase. We call this an

unconditional branch since the instruction flow is changed unconditionally, that

is, independent of the data.

For example, if the following instruction, located at x507B, is executed, the

PC is loaded with x5001.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n z p x185

Question: What happens if all three bits [11:9] in the BR instruction are 0?
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5.4.2 Two Methods of Loop Control

We saw in Section 4.4 in our multiplication program that we repeatedly executed

a sequence of instructions until the value in a register was zero. We call that

sequence a loop body, and each time the loop body is executed we call it one

iteration of the loop body. The BR instruction at the end of the sequence controls

the number of times the loop body is executed. There are two common ways to

control the number of iterations.

Loop Control with a Counter Suppose we know that the 12 locations x3100 to

x310B contain integers, and we wish to compute the sum of these 12 integers.

A flowchart for an algorithm to solve the problem is shown in Figure 5.12.

R1 <– x3100
R3 <– 0
R2 <– 12

Yes
R2 ? = 0

No

R4 <– M[R1]
R3 <– R3 + R4
Increment R1

Decrement R2

Figure 5.12 An algorithm for adding integers using a counter for loop control.

First, as in all algorithms, we must initialize our variables. That is, we must

set up the initial values of the variables that the computer will use in executing the

program that solves the problem. There are three such variables: the address of

the next integer to be added (assigned to R1), the running sum (assigned to R3),

and the number of integers left to be added (assigned to R2). The three variables

are initialized as follows: The address of the first integer to be added is put in R1.

R3, which will keep track of the running sum, is initialized to 0. R2, which will

keep track of the number of integers left to be added, is initialized to 12. Then

the process of adding begins.

The program repeats the process of loading into R4 one of the 12 integers

and adding it to R3. Each time we perform the ADD, we increment R1 so it will

point to (i.e., contain the address of) the next number to be added and decrement

R2 so we will know how many numbers still need to be added. When R2 becomes

zero, the Z condition code is set, and we can detect that we are done.

The 10-instruction program shown in Figure 5.13 accomplishes the task.

The details of the program execution are as follows: The program starts

with PC = x3000. The first instruction (at location x3000) initializes R1 with
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Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1<- 3100
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 <- 12
x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz x300A
x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 R4 <- M[R1]
x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 R3 <- R3+R4
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1+1
x3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2 <- R2-1
x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 BRnzp x3004

Figure 5.13 A program that implements the algorithm of Figure 5.12.

the address x3100. (The incremented PC is x3001; the sign-extended PCoffset is

x00FF.)

The instruction at x3001 clears R3. R3 will keep track of the running sum,

so it must start with the value 0. As we said previously, this is called initializing
the SUM to zero.

The instructions at x3002 and x3003 initialize R2 to 12, the number of inte-

gers to be added. R2 will keep track of how many numbers have already been

added. This will be done (by the instruction in x3008) by decrementing R2 after

each addition takes place.

The instruction at x3004 is a conditional branch instruction. Note that bit

[10] is a 1. That means that the Z condition code will be examined. If it is set, we

know R2 must have just been decremented to 0. That means there are no more

numbers to be added, and we are done. If it is clear, we know we still have work

to do, and we continue with another iteration of the loop body.

The instruction at x3005 loads the next integer into R4, and the instruction

at x3006 adds it to R3.

The instructions at x3007 and x3008 perform the necessary bookkeeping.

The instruction at x3007 increments R1, so R1 will point to the next location in

memory containing an integer to be added. The instruction at x3008 decrements

R2, which is keeping track of the number of integers still to be added, and sets

the condition codes.

The instruction at x3009 is an unconditional branch, since bits [11:9] are all 1.

It loads the PC with x3004. It also does not affect the condition codes, so the next

instruction to be executed (the conditional branch at x3004) will be based on the

instruction executed at x3008.

This is worth saying again. The conditional branch instruction at x3004 fol-

lows the instruction at x3009, which does not affect condition codes, which in

turn follows the instruction at x3008. Thus, the conditional branch instruction

at x3004 will be based on the condition codes set by the instruction at x3008.

The instruction at x3008 sets the condition codes based on the value produced

by decrementing R2. As long as there are still integers to be added, the ADD

instruction at x3008 will produce a value greater than zero and therefore clear

the Z condition code. The conditional branch instruction at x3004 examines the
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Z condition code. As long as Z is clear, the PC will not be affected, and the next

iteration of the loop body will begin. That is, the next instruction cycle will start

with an instruction fetch from x3005.

The conditional branch instruction causes the execution sequence to follow:

x3000, x3001, x3002, x3003, x3004, x3005, x3006, x3007, x3008, x3009, x3004,

x3005, x3006, x3007, x3008, x3009, x3004, x3005, and so on. The loop body consists

of the instructions at x3005 to x3009. When the value in R2 becomes 0, the PC is

loaded with x300A, and the program continues at x300A with its next activity.

You may have noticed that we can remove the branch instruction at x3004

if we replace the unconditional branch instruction at x3009 with a conditional

branch that tests for not 0 (i.e., bits [11:9]=101), and branches to the instruc-

tion currently located in x3005. It is tempting to do that since it decreases the

loop body by one instruction. BUT, we admonish you not to do that! The pro-

gram as shown obeys the rules of structured programming that we will discuss

in Chapter 6. The shortcut does work for this simple example, but it breaks the

methodology of structured programming. You do not want to get in the habit of

taking such shortcuts, since for larger programs it is a clear invitation to disaster.

More on this in Chapter 6.

Finally, it is worth noting that we could have written a program to add these

12 integers without any control instructions. We still would have needed the LEA

instruction in x3000 to initialize R1. We would not have needed the instruction

at x3001 to initialize the running sum, nor the instructions at x3002 and x3003

to initialize the number of integers left to be added. We could have loaded the

contents of x3100 directly into R3, and then repeatedly (by incrementing R1),

loaded subsequent integers into R4 and adding R4 to the running sum in R3 11

more times! After the addition of the twelfth integer, we would go on to the next

task, as does the example of Figure 5.13 with the branch instruction in x3004.

Unfortunately, instead of a 10-instruction program, we would have a 35-

instruction program. Moreover, if we had wished to add 100 integers without any

control instructions instead of 12, we would have had a 299-instruction program

instead of 10. The control instructions in the example of Figure 5.13 permit the

reuse of sequences of code (the loop body) by breaking the sequential instruction

execution flow.

Loop Control with a Sentinel The example above controls the number of times

the loop body executes by means of a counter. We knew we wanted to execute the

loop 12 times, so we simply set a counter to 12, and then after each execution of

the loop, we decremented the counter and checked to see if it was zero. If it was

not zero, we set the PC to the start of the loop and continued with another iteration.

A second method for controlling the number of executions of a loop is to use

a sentinel. This method is particularly effective if we do not know ahead of time

how many iterations we will want to perform. Each iteration is usually based on

processing a value. We append to our sequence of values to be processed a value

that we know ahead of time can never occur (i.e., the sentinel). For example, if

we are adding a sequence of numbers, a sentinel could be a letter A or a *, that is,

something that is not a number. Our loop test is simply a test for the occurrence

of the sentinel. When we find it, we know we are done.
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R4 ? =
Sentinel

R1 <– x3100
R3 <– 0

R4 <– M[R1]

Yes

No

R3 <– R3 + R4
Increment R1
R4 <– M[R1]

Figure 5.14 An algorithm for adding integers using a sentinel for loop control.

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1<- x3100
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3002 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 R4 <- M[R1]
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 BRn x3008
x3004 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 R3 <- R3+R4
x3005 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1+1
x3006 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 R4 <- M[R1]
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 BRnzp x3003

Figure 5.15 A program that implements the algorithm of Figure 5.14.

Suppose we know the values stored in locations x3100 to x310B are all pos-

itive. Then we could use any negative number as a sentinel. Let’s say the sentinel

stored at memory address x310C is −1. The resulting flowchart for this solution

is shown in Figure 5.14, and the resulting program is shown in Figure 5.15.

As before, the instruction at x3000 loads R1 with the address of the first value

to be added, and the instruction at x3001 initializes R3 (which keeps track of the

sum) to 0.

At x3002, we load the contents of the next memory location into R4. If the

sentinel is loaded, the N condition code is set.

The conditional branch at x3003 examines the N condition code. If N=1, PC

is loaded with x3008 and onto the next task. If N=0, R4 must contain a valid

number to be added. In this case, the number is added to R3 (x3004), R1 is

incremented to point to the next memory location (x3005), R4 is loaded with

the contents of the next memory location (x3006), and the PC is loaded with

x3003 to begin the next iteration (x3007).
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5.4.3 The JMP Instruction

The conditional branch instruction, for all its capability, does have one unfor-

tunate limitation. The next instruction executed must be within the range of

addresses that can be computed by adding the incremented PC to the sign-

extended offset obtained from bits [8:0] of the instruction. Since bits [8:0] specify

a 2’s complement integer, the next instruction executed after the conditional

branch can be at most +256 or −255 locations from the branch instruction itself.

What if we would like to execute next an instruction that is 2000 locations

from the current instruction? We cannot fit the value 2000 into the nine-bit field;

ergo, the conditional branch instruction does not work.

The LC-3 ISA does provide an instruction JMP (opcode = 1100) that can do

the job.

The JMP instruction loads the PC with the contents of the register speci-

fied by bits [8:6] of the instruction. If the following JMP instruction is located at

address x4000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

JMP BaseR

R2 contains the value x6600, and the PC contains x4000, then the instruction at

x4000 (the JMP instruction) will be executed, followed by the instruction located

at x6600. Since registers contain 16 bits (the full address space of memory), the

JMP instruction has no limitation on where the next instruction to be executed

must reside.

5.4.4 The TRAP Instruction

We will discuss the details of how the TRAP instruction works in Chapter 9.

However, because it will be useful long before that to get data into and out of the

computer, we discuss the TRAP instruction here. The TRAP (opcode = 1111)

instruction changes the PC to a memory address that is part of the operating

system so that the operating system will perform some task on behalf of the

program that is executing. In the language of operating system jargon, we say

the TRAP instruction invokes an operating system service call. Bits [7:0] of the

TRAP instruction form the trapvector, an eight-bit code that identifies the ser-

vice call that the program wishes the operating system to perform on its behalf.

Table A.2 contains the trapvectors for all the service calls that we will use with

the LC-3 in this book.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 trapvector

Once the operating system is finished performing the service call, the pro-

gram counter is set to the address of the instruction following the TRAP instruc-

tion, and the program continues. In this way, a program can, during its execution,
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request services from the operating system and continue processing after each

such service is performed. The services we will require for now are

* Input a character from the keyboard (trapvector = x23).

* Output a character to the monitor (trapvector = x21).

* Halt the program (trapvector = x25).

5.5 Another Example: Counting
Occurrences of a Character

We will finish our introduction to the ISA of the LC-3 with another example

program. Suppose we would like to be able to input a character from the keyboard,

then count the number of occurrences of that character in a file, and finally display

that count on the monitor. We will simplify the problem by assuming that the

number of occurrences of any character that we would be interested in is small

enough that it can be expressed with a single decimal digit. That is, there will be

at most nine occurrences. This simplification allows us to not have to worry about

complex conversion routines between the binary count and the ASCII display on

the monitor—a subject we will get into in Chapter 10, but not today.

Figure 5.16 is a flowchart of the algorithm that solves this problem. Note

that each step is expressed both in English and also (in parentheses) in terms of

an LC-3 implementation.

The first step is (as always) to initialize all the variables. This means pro-

viding starting values (called initial values) for R0, R1, R2, and R3, the four

registers the computer will use to execute the program that will solve the prob-

lem. R2 will keep track of the number of occurrences; in Figure 5.16, it is referred

to as Count. It is initialized to zero. R3 will point to the next character in the file

that is being examined. We refer to it as a pointer since it points to (i.e., contains

the address of) the location where the next character of the file that we wish to

examine resides. The pointer is initialized with the address of the first character

in the file. R0 will hold the character that is being counted; we will input that

character from the keyboard and put it in R0. R1 will hold, in turn, each character

that we get from the file being examined.

We should also note that there is no requirement that the file we are examining

be close to or far away from the program we are developing. For example, it is

perfectly reasonable for the program we are developing to start at x3000 and the

file we are examining to start at x9000. If that were the case, in the initialization

process, R3 would be initialized to x9000.

The next step is to count the number of occurrences of the input character.

This is done by processing, in turn, each character in the file being examined, until

the file is exhausted. Processing each character requires one iteration of a loop.

Recall from Section 5.4.3 that there are two common methods for keeping track

of iterations of a loop. We will use the sentinel method, using the ASCII code for

EOT (End of Transmission) (00000100) as the sentinel. A table of ASCII codes

is in Appendix E.
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Initialize pointer
(R3 <– M[x3012]) 

Count <– 0
(R2 <– 0)

Input char from keyboard
(TRAP x23)

Get char from file
(R1 <– M[R3]) 

Yes

No

Done
(R1 ? = EOT)

Match
(R1 ? = R0)

Yes No

Get char from file
(R3 <– R3 +1
R1 <– M[R3])

Prepare output
(R0 <– R2 + x30)

Output
(TRAP x21)

Stop
(TRAP x25)

Increment count
(R2 <– R2 +1)

Figure 5.16 An algorithm to count occurrences of a character.
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Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 <- M[x3012]
x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 TRAP x23
x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 <- R1-4
x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 BRz x300E
x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- NOT R1
x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 <- R1 + 1
x3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 <- R1 + R0
x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 BRnp x300B
x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 <- R3 + 1
x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 <- M[R3]
x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 BRnzp x3004
x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 <- M[x3013]
x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 <- R0 + R2
x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 TRAP x21
x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 TRAP x25
x3012 Starting address of file

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII TEMPLATE

Figure 5.17 A machine language program that implements the algorithm of Figure 5.16.

In each iteration of the loop, the contents of R1 is first compared to the ASCII

code for EOT. If they are equal, the loop is exited, and the program moves on to

the final step, displaying on the screen the number of occurrences. If not, there is

work to do. R1 (the current character under examination) is compared to R0 (the

character input from the keyboard). If they match, R2 is incremented. In either

case, we move on to getting the next character. The pointer R3 is incremented, the

next character is loaded into R1, and the program returns to the test that checks

for the sentinel at the end of the file.

When the end of the file is reached, all the characters have been examined, and

the count is contained as a binary number in R2. In order to display the count on the

monitor, it is first converted to an ASCII code. Since we have assumed the count

is less than 10, we can do this by putting a leading 0011 in front of the four-bit

binary representation of the count. Note in Figure E.2 the relationship between the

binary value of each decimal digit between 0 and 9 and its corresponding ASCII code.

Finally, the count is output to the monitor, and the program terminates.

Figure 5.17 is a machine language program that implements the flowchart of

Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing

it with x0000. The instruction at x3001 loads the starting address of the file to be

examined into R3. Again, we note that this file can be anywhere in memory. Prior

to starting execution at x3000, some sequence of instructions must have stored the

first address of this file in x3012. Location x3002 contains the TRAP instruction,
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which requests the operating system to perform a service call on behalf of this pro-

gram. The function requested, as identified by the eight-bit trapvector 00100011

(i.e., x23), is to load into R0 the ASCII code of the next character typed on the

keyboard. Table A.2 lists trapvectors for all operating system service calls that

can be performed on behalf of a user program. The instruction at x3003 loads the

character pointed to by R3 into R1.

Then the process of examining characters begins. We start (x3004) by sub-

tracting 4 (the ASCII code for EOT) from R1 and storing it in R4. If the result

is zero, the end of the file has been reached, and it is time to output the count.

The instruction at x3005 conditionally branches to x300E, where the process of

outputting the count begins.

If R4 is not equal to zero, the character in R1 is legitimate and must be

examined. The sequence of instructions at locations x3006, x3007, and x3008

determines whether the contents of R1 and R0 are identical. Taken together, the

three instructions compute

R0 − R1

This produces all zeros only if the bit patterns of R1 and R0 are identical. If the

bit patterns are not identical, the conditional branch at x3009 branches to x300B;

that is, it skips the instruction at x300A, which increments the counter (R2).

The instruction at x300B increments R3, so it will point to the next charac-

ter in the file being examined, the instruction at x300C loads that character into

R1, and the instruction at x300D unconditionally takes us back to x3004 to start

processing that character.

When the sentinel (EOT) is finally detected, the process of outputting the

count begins (at x300E). The instruction at x300E loads 00110000 into R0, and

the instruction at x300F adds the count to R0. This converts the binary represen-

tation of the count (in R2) to the ASCII representation of the count (in R0). The

instruction at x3010 invokes a TRAP to the operating system to output the con-

tents of R0 to the monitor. When that is done and the program resumes execution,

the instruction at x3011 invokes a TRAP instruction to terminate the program.

Question: Can you improve the execution of the above program? Hint: How

many times are the instructions at x3006 and x3007 executed. What small change

will decrease the total number of instructions that have to be executed.

5.6 The Data Path Revisited
Before we leave Chapter 5, let us revisit the data path diagram that we first

encountered in Chapter 3 (Figure 3.35). Many of the structures we have seen

earlier in this chapter in Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.11. We repro-

duce the data path diagram as Figure 5.18. Note at the outset that there are two

kinds of arrows in the data path, those with arrowheads filled in and those with

arrowheads not filled in. Filled-in arrowheads designate information that is pro-

cessed. Unfilled-in arrowheads designate control signals. Control signals emanate

from the block labeled “Finite State Machine.” The connections from the finite

state machine to most control signals have been left off Figure 5.18 to reduce

unnecessary clutter in the diagram.



174 chapter 5 The LC-3
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Figure 5.18 The data path of the LC-3.
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5.6.1 Basic Components of the Data Path
5.6.1.1 The Global Bus

The most obvious item on the data path diagram is the heavy black structure

with arrowheads at both ends. This represents the data path’s global bus. The

LC-3 global bus consists of 16 wires and associated electronics. It allows one

structure to transfer up to 16 bits of information to another structure by making the

necessary electronic connections on the bus. Exactly one value can be transferred

on the bus at one time. Note that each structure that supplies values to the bus

has a triangle just behind its input arrow to the bus. This triangle (called a tri-
state device) allows the computer’s control logic to enable exactly one supplier to

provide information to the bus at any one time. The structure wishing to obtain the

value being supplied can do so by asserting its LD.x (load enable) signal (recall

our discussion of gated latches in Section 3.4.2). Not all computers have a single

global bus. The pros and cons of a single global bus is yet another topic that will

have to wait for later in your education.

5.6.1.2 Memory

One of the most important parts of any computer is the memory that contains

both instructions and data. Memory is accessed by loading the memory address

register (MAR) with the address of the location to be accessed. To perform a load,

control signals then read the contents of that memory location, and the result of

that read is delivered by the memory to the memory data register (MDR). On the

other hand, to perform a store, what is to be stored is loaded into the MDR. Then

the control signals assert a write enable (WE) signal in order to store the value

contained in MDR in the memory location specified by MAR.

5.6.1.3 The ALU and the Register File

The ALU is the processing element. It has two inputs, source 1 from a register and

source 2 from either a register or the sign-extended immediate value provided by

the instruction. The registers (R0 through R7) can provide two values: source 1,

which is controlled by the three-bit register number SR1, and source 2, which is

controlled by the three-bit register number SR2. SR1 and SR2 are fields in the

LC-3 operate instructions. The selection of a second register operand or a sign-

extended immediate operand is determined by bit [5] of the LC-3 instruction.

Note the mux that provides source 2 to the ALU. The select line of that mux is

bit [5] of the LC-3 operate instruction.

The results of an ALU operation are (a) a result that is stored in one of the

registers, and (b) the three single-bit condition codes. Note that the ALU can supply

16 bits to the bus, and that value can then be written into the register specified by the

three-bit register number DR. Also, note that the 16 bits supplied to the bus are also

input to logic that determines whether that 16-bit value is negative, zero, or positive.

The three one-bit condition code registers N, Z, and P are set accordingly.

5.6.1.4 The PC and the PCMUX

At the start of each instruction cycle, the PC supplies to the MAR over the

global bus the address of the instruction to be fetched. In addition, the PC, in

turn, is supplied via the three-to-one PCMUX. During the FETCH phase of the
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instruction cycle, the PC is incremented and written into the PC. That is shown

as the rightmost input to the PCMUX.

If the current instruction is a control instruction, then the relevant source of

the PCMUX depends on which control instruction is currently being processed.

If the current instruction is a conditional branch and the branch is taken, then the

PC is loaded with the incremented PC + PCoffset (the 16-bit value obtained by

sign-extending IR [8:0]). Note that this addition takes place in the special adder

and not in the ALU. The output of the adder is the middle input to PCMUX. The

third input to PCMUX is obtained from the global bus. Its use will become clear

after we discuss other control instructions in Chapters 9.

5.6.1.5 The MARMUX

As you know, memory is accessed by supplying the address to the MAR. The

MARMUX controls which of two sources will supply the MAR with the appro-

priate address during the execution of a load, a store, or a TRAP instruction. The

right input to the MARMUX is obtained by adding either the incremented PC or

a base register to zero or a literal value supplied by the IR. Whether the PC or a

base register and what literal value depends on which opcode is being processed.

The control signal ADDR1MUX specifies the PC or base register. The control

signal ADDR2MUX specifies which of four values is to be added. The left input

to MARMUX provides the zero-extended trapvector, which is needed to invoke

service calls, and will be discussed in detail in Chapter 9.

5.6.2 The Instruction Cycle Specific to the LC-3

We complete our tour of the LC-3 data path by following the flow through an

instruction cycle. Suppose the content of the PC is x3456 and the content of

location x3456 is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0

LDR R3 R2 4

Suppose the LC-3 has just completed processing the instruction at x3455, which

happened to be an ADD instruction.

5.6.2.1 FETCH

As you know, the instruction cycle starts with the FETCH phase. That is, the

instruction is obtained by accessing memory with the address contained in the PC.

In the first cycle, the contents of the PC is loaded via the global bus into the MAR,

and the PC is incremented and loaded into the PC. At the end of this cycle, the

PC contains x3457. In the next cycle (if memory can provide information in one

cycle), the memory is read, and the instruction 0110011010000100 is loaded into

the MDR. In the next cycle, the contents of the MDR is loaded into the instruction

register (IR), completing the FETCH phase.

5.6.2.2 DECODE

In the next cycle, the contents of the IR is decoded, resulting in the control

logic providing the correct control signals (unfilled arrowheads) to control the
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processing of the rest of this instruction. The opcode is 0110, identifying the

LDR instruction. This means that the Base+offset addressing mode is to be used

to determine the address of data to be loaded into the destination register R3.

5.6.2.3 EVALUATE ADDRESS

In the next cycle, the contents of R2 (the base register) and the sign-extended

bits [5:0] of the IR are added and supplied via the MARMUX to the MAR.

The SR1 field specifies 010, the register to be read to obtain the base address.

ADDR1MUX selects SR1OUT, and ADDR2MUX selects the second from the

right source.

5.6.2.4 OPERAND FETCH

In the next cycle (or more than one, if memory access takes more than one cycle),

the value at that address is loaded into the MDR.

5.6.2.5 EXECUTE

The LDR instruction does not require an EXECUTE phase, so this phase takes

zero cycles.

5.6.2.6 STORE RESULT

In the last cycle, the contents of the MDR is gated onto the global bus, from which

it is loaded into R3 and supplied to the condition code logic in order to set the

NZP condition codes.

Exercises

5.1 Given instructions ADD, JMP, LEA, and NOT, identify whether the

instructions are operate instructions, data movement instructions, or

control instructions. For each instruction, list the addressing modes that

can be used with the instruction.

5.2 A memory’s addressability is 64 bits. What does that tell you about the

size of the MAR and MDR?

5.3 There are two common ways to terminate a loop. One way uses a counter

to keep track of the number of iterations. The other way uses an element

called a . What is the distinguishing characteristic of this element?

5.4 Say we have a memory consisting of 256 locations, and each location

contains 16 bits.

a. How many bits are required for the address?

b. If we use the PC-relative addressing mode, and want to allow control

transfer between instructions 20 locations away, how many bits of a

branch instruction are needed to specify the PC-relative offset?

c. If a control instruction is in location 3, what is the PC-relative offset

of address 10? Assume that the control transfer instructions work the

same way as in the LC-3.
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5.5 a. What is an addressing mode?

b. Name three places an instruction’s operands might be located.

c. List the five addressing modes of the LC-3, and for each one state

where the operand is located (from part b).

d. What addressing mode is used by the ADD instruction shown in

Section 5.1.2?

5.6 Recall the machine busy example from Section 2.6.7. Assuming the

BUSYNESS bit vector is stored in R2, we can use the LC-3 instruction

0101 011 010 1 00001 (AND R3, R2, #1) to determine whether machine 0

is busy or not. If the result of this instruction is 0, then machine 0 is busy.

a. Write an LC-3 instruction that determines whether machine 2 is busy.

b. Write an LC-3 instruction that determines whether both machines 2

and 3 are busy.

c. Write an LC-3 instruction that indicates none of the machines are

busy.

d. Can you write an LC-3 instruction that determines whether machine 6

is busy? Is there a problem here?

5.7 What is the largest positive number we can represent literally (i.e., as an

immediate value) within an LC-3 ADD instruction?

5.8 We want to increase the number of registers that we can specify in the

LC-3 ADD instruction to 32. Do you see any problem with that? Explain.

5.9 We would like to have an instruction that does nothing. Many ISAs

actually have an opcode devoted to doing nothing. It is usually called

NOP, for NO OPERATION. The instruction is fetched, decoded, and

executed. The execution phase is to do nothing! Which of the following

three instructions could be used for NOP and have the program still work

correctly?

a. 0001 001 001 1 00000

b. 0000 111 000000001

c. 0000 000 000000000

What does the ADD instruction do that the others do not do?

5.10 What is the difference between the following LC-3 instructions A and B?

How are they similar? How are they different?

A: 0000111101010101

B: 0100111101010101

5.11 We wish to execute a single LC-3 instruction that will subtract the

decimal number 20 from register 1 and put the result into register 2. Can

we do it? If yes, do it. If not, explain why not.

5.12 After executing the following LC-3 instruction: ADD R2, R0, R1, we

notice that R0[15] equals R1[15], but is different from R2[15]. We are

told that R0 and R1 contain UNSIGNED integers (that is, nonnegative

integers between 0 and 65,535). Under what conditions can we trust the

result in R2?
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5.13 a. How might one use a single LC-3 instruction to move the value in R2

into R3?

b. The LC-3 has no subtract instruction. How could one perform the

following operation using only three LC-3 instructions:

R1 ← R2 − R3

c. Using only one LC-3 instruction and without changing the contents

of any register, how might one set the condition codes based on the

value that resides in R1?

d. Is there a sequence of LC-3 instructions that will cause the condition

codes at the end of the sequence to be N = 1, Z = 1, and P = 0?

Explain.

e. Write an LC-3 instruction that clears the contents of R2.

5.14 The LC-3 does not have an opcode for the logical function OR. That is,

there is no instruction in the LC-3 ISA that performs the OR operation.

However, we can write a sequence of instructions to implement the OR

operation. The following four-instruction sequence performs the OR of

the contents of register 1 and register 2 and puts the result in register 3.

Fill in the two missing instructions so that the four-instruction sequence

will do the job.

(1): 1001 100 001 111111

(2):

(3): 0101 110 100 000 101

(4):

5.15 State the contents of R1, R2, R3, and R4 after the program starting at

location x3100 halts.

Address Data

0011 0001 0000 0000 1110 001 000100000

0011 0001 0000 0001 0010 010 000100000

0011 0001 0000 0010 1010 011 000100000

0011 0001 0000 0011 0110 100 010 000001

0011 0001 0000 0100 1111 0000 0010 0101

: :

: :

0011 0001 0010 0010 0100 0101 0110 0110

0011 0001 0010 0011 0100 0101 0110 0111

: :

: :

0100 0101 0110 0111 1010 1011 1100 1101

0100 0101 0110 1000 1111 1110 1101 0011
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5.16 Which LC-3 addressing mode makes the most sense to use under the

following conditions? (There may be more than one correct answer to

each of these; therefore, justify your answers with some explanation.)

a. You want to load one value from an address that is less than ±28

locations away.

b. You want to load one value from an address that is more than 28

locations away.

c. You want to load an array of sequential addresses.

5.17 How many times does the LC-3 make a read or write request to memory

during the processing of the LD instruction? How many times during

the processing of the LDI instruction? How many times during the

processing of the LEA instruction? Processing includes all phases of the

instruction cycle.

5.18 The program counter contains the address of an LDR instruction. In

order for the LC-3 to process that instruction, how many memory

accesses must be made? Repeat this task for STI and TRAP.

5.19 The LC-3 Instruction Register (IR) is made up of 16 bits, of which the

least significant nine bits [8:0] represent the PC-relative offset for the LD

instruction. If we change the ISA so that bits [6:0] represent the

PC-relative offset, what is the new range of addresses we can load data

from using the LD instruction?

5.20 If we made the LC-3 ISA such that we allow the LD instruction to load

data only ±32 locations away from the incremented PC value, how many

bits would be required for the PC-relative offset in the LD instruction?

5.21 What is the maximum number of TRAP service routines that the LC-3

ISA can support? Explain.

5.22 The PC contains x3010. The following memory locations contain values

as shown:

x3050: x70A4

x70A2: x70A3

x70A3: xFFFF

x70A4: x123B

The following three LC-3 instructions are then executed, causing a value

to be loaded into R6. What is that value?

x3010 1110 0110 0011 1111

x3011 0110 1000 1100 0000

x3012 0110 1101 0000 0000

We could replace the three-instruction sequence with a single

instruction. What is it?
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5.23 Suppose the following LC-3 program is loaded into memory starting at

location x30FF:

x30FF 1110 0010 0000 0001

x3100 0110 0100 0100 0010

x3101 1111 0000 0010 0101

x3102 0001 0100 0100 0001

x3103 0001 0100 1000 0010

If the program is executed, what is the value in R2 at the end of

execution?

5.24 An LDR instruction, located at x3200, uses R4 as its base register. The

value currently in R4 is x4011. What is the largest address that this

instruction can load from? Suppose we redefine the LDR offset to be

zero-extended, rather than sign-extended. Then what would be the largest

address that this instruction could load from? With the new definition,

what would be the smallest address that this instruction could

load from?

5.25 Write an LC-3 program that compares two numbers in R2 and R3 and

puts the larger number in R1. If the numbers are equal, then R1 is set

equal to 0.

5.26 Your task is to consider the successor to the LC-3. We will add ten

additional opcodes to the ISA and expand the register set from 8 to 16.

We will change the memory to byte-addressable, with total address space

of 64K bytes. Instructions will remain 16 bits wide. Also, we will encode

all instructions, both old and new, with the same fields as the original 15

instructions, although we may need to change the size of some of the

fields.

a. Is there any problem completing the detailed specification of the

successor to the LC-3, as described above? Explain.

b. How many bits do we need in the PC to be able to address all of

memory?

c. If we want 128 different operating system routines to be able to be

accessed with a trap instruction and we form the address of each of

these routines by shifting the trap vector to the left by five bits, what

is the minimum amount of memory required by the trap service

routines?

d. If, in the new version of the LC-3, we reduced the number of registers

from eight to four and kept the number of opcodes at 16, what is the

largest immediate value we could represent in an ADD instruction on

this new machine?

5.27 Before the seven instructions are executed in the example of Section 5.3.4,

R2 contains the value xAAAA. How many different values are contained

in R2 during the execution of the seven instructions? What are they?
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5.28 It is the case that we REALLY don’t need to have load indirect (1010)

and store indirect (1011) instructions. We can accomplish the same

results using other instruction sequences instead of using these

instructions. Replace the store indirect (1011) instruction in the code

below with whatever instructions are necessary to perform the same

function.

x3000 0010 0000 0000 0010

x3001 1011 0000 0000 0010

x3002 1111 0000 0010 0101

x3003 0000 0000 0100 1000

x3004 1111 0011 1111 1111

5.29 The LC-3 ISA contains the instruction LDR DR, BaseR, offset.

After the instruction is decoded, the following operations (called

microinstructions) are carried out to complete the processing of the

LDR instruction:

MAR ← BaseR + SEXT(Offset6) ; set up the memory address
MDR ← Memory[MAR] ; read mem at BaseR + offset
DR ← MDR ; load DR

Suppose that the architect of the LC-3 wanted to include an instruction

MOVE DR, SR that would copy the memory location with address

given by SR and store it into the memory location whose address is

in DR.

a. The MOVE instruction is not really necessary since it can be

accomplished with a sequence of existing LC-3 instructions. What

sequence of existing LC-3 instructions implements (also called

“emulates”) MOVE R0,R1?

b. If the MOVE instruction were added to the LC-3 ISA, what sequence

of microinstructions, following the decode operation, would emulate

MOVE DR,SR?

5.30 The following table shows a part of the LC-3’s memory:

Address Data

0011 0001 0000 0000 1001 001 001 111111

0011 0001 0000 0001 0001 010 000 000 001

0011 0001 0000 0010 1001 010 010 111111

0011 0001 0000 0011 0000 010 111111100

State what is known about R1 and R0 if the conditional branch redirects

control to location x3100.
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5.31 The figure below shows a snapshot of the eight registers of the LC-3
before and after the instruction at location x1000 is executed. Fill in the
bits of the instruction at location x1000.

BEFORE

R0 x0000

R1 x1111

R2 x2222

R3 x3333

R4 x4444

R5 x5555

R6 x6666

R7 x7777

AFTER

R0 x0000

R1 x1111

R2 x2222

R3 x3333

R4 x4444

R5 xFFF8

R6 x6666

R7 x7777

0x1000 : 0 0 0 1

5.32 If the condition codes have values N = 0, Z = 0, P = 1 at the beginning

of the execution of the following sequence of LC-3 instructions, what

will their values be at the end of the execution of the following sequence

of LC-3 instructions?

x3050 0000 0010 0000 0010

x3051 0101 0000 0010 0000

x3052 0000 1110 0000 0010

x3053 0101 0000 0010 0000

x3054 0001 0000 0011 1111

5.33 If the value stored in R0 is 5 at the end of the execution of the following

instructions, what can be inferred about R5?

x2FFF 0101 0000 0010 0000
x3000 0101 1111 1110 0000
x3001 0001 1101 1110 0001
x3002 0101 1001 0100 0110
x3003 0000 0100 0000 0001
x3004 0001 0000 0010 0001
x3005 0001 1101 1000 0110
x3006 0001 1111 1110 0001
x3007 0001 0011 1111 1000
x3008 0000 1001 1111 1001
x3009 0101 1111 1110 0000



184 chapter 5 The LC-3

5.34 Using the overall data path in Figure 5.18, identify the elements that

implement the NOT instruction of Figure 5.4.

5.35 Using the overall data path in Figure 5.18, identify the elements that

implement the ADD instruction of Figure 5.5.

5.36 Using the overall data path in Figure 5.18, identify the elements that

implement the LD instruction of Figure 5.7.

5.37 Using the overall data path in Figure 5.18, identify the elements that

implement the LDI instruction of Figure 5.8.

5.38 Using the overall data path in Figure 5.18, identify the elements that

implement the LDR instruction of Figure 5.9.

5.39 Using the overall data path in Figure 5.18, identify the elements that

implement the LEA instruction of Figure 5.6.

5.40 The following logic diagram shows part of the control structure of the

LC-3 machine. What is the purpose of the signal labeled A?

N Z P

A

15

IR

0

5.41 A part of the implementation of the LC-3 architecture is shown in the

following diagram.

a. What information does Y provide?

b. The signal X is the control signal that gates the gated D latch. Is there

an error in the logic that produces X?
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15

IR

0

15 [14:0] [15]

16 global bus

X

A

Y

5.42 The LC-3 macho-company has decided to use opcode 1101 to implement

a new instruction. They need your help to pick the most useful one from

the following:

a. MOVE Ri, Rj; The contents of Rj are copied into Ri.

b. NAND Ri, Rj, Rk; Ri is the bit-wise NAND of Rj, Rk

c. SHFL Ri, Rj, #2; The contents of Rj are shifted left 2 bits and stored

into Ri.

d. MUL Ri, Rj, Rk; Ri is the product of 2’s complement integers

in Rj, Rk.

Justify your answer.

5.43 When a computer executes an instruction, the state of the computer is

changed as a result of that execution. Is there any difference in the state

of the LC-3 computer as a result of executing instruction 1 below vs.

executing instruction 2 below? Explain. We can assume the state of the

LC-3 computer before execution is the same in both cases.

instruction 1: 0001 000 000 1 00000 register 0 <-- register 0 + \#0

instruction 2: 0000 111 000000000 branch to PC' + \#0 if any of N,Z,orP is set
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5.44 A program wishes to load a value from memory into register 1, and on

the basis of the value loaded, execute code starting at x3040 if the value

loaded is positive, execute code starting at x3080 if the value loaded is

negative, or execute code starting at location x3003 if the value loaded is

zero. The first instruction of this program (load a value into register R1)

is shown in x3000.

a. Write the instructions for locations x3001 and x3002.

x3000: 0010 001 011111111

x3001:

x3002:

b. The program segment below starts execution at x3000. When the

program halts, what is contained in register 0?

x3000: 0101 000 000 1 00000 ;register 0 <-- 0
x3001: 0001 000 000 1 00001 ;register 0 <-- register 0 + 1
x3002: 0000 001 111111110 ;branch p -2
x3003: 1111 0000 0010 0101 ;TRAP x25

c. Two of the outputs of a 3-to-8 decoder are used as inputs to an AND

gate as shown below.

Decoder
3

...

...
f

5.45 In class we showed the first few states of the finite state machine that is

required for processing instructions of a computer program written for

LC-3. In the first state, the computer does two things, represented as:

MAR <-- PC
PC <-- PC+1

Why does the microarchitecture put the contents of the PC into the

MAR? Why does the microarchitecture increment the PC?
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5.46 R0 contains the ASCII code of a capital letter in the English alphabet. If

the instruction

0001000000000001

is executed, we wish to end up with the lowercase version of that letter in

R0. What must be true of the values in the other registers before this

instruction executes for this to happen?

5.47 The following diagram describes a 22 by 16-bit memory. Each of the four

muxes has four-bit input sources and a four-bit output, and each four-bit

source is the output of a single four-bit memory cell.

a. Unfortunately, the memory was wired by a student, and he got the

inputs to some of the muxes mixed up. That is, instead of the four bits

from a memory cell going to the correct four-bit input of the mux, the

four bits all went to one of the other four-bit sources of that mux. The

result was, as you can imagine, a mess. To figure out the mix-up in the

wiring, the following sequence of memory accesses was performed:



188 chapter 5 The LC-3

Read/Write MDR MAR

Write x134B 01

Write xFCA2 10

Write xBEEF 11

Write x072A 00

Read xF34F 10

Read x1CAB 01

Read x0E2A 00

Note: On a write, MDR is loaded before the access. On a read, MDR

is loaded as a result of the access. Your job is to identify the mix-up

in the wiring. Show which memory cells were wired to which mux

inputs by filling in their corresponding addresses in the blanks

provided. Note that one address has already been supplied for you.

11 10 01 00 11 10 01 0011 10 01 00 11 10 01 00

D[15:12] D[11:8]

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

2

D[7:4] D[3:0]

b. After rewiring the muxes correctly and initializing all memory cells

to xF, the following sequence of accesses was performed. Note that

some of the information about each access has been left out.

Your job: Fill in the blanks.

Read/Write MDR MAR

Write x72 0

Write x8FAF 11

Read x72A3 0

Read xFFFF 1

Write x732D 1

Read xFFFF 0

Write x 7 0

Read x37A3 1

Read x D 1
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Show the contents of the memory cells by putting the hex digit that is

stored in each after all the accesses have been performed.

00

01

10

11

Address
D[15:12] D[7:4] D[3:0]D[11:8]

5.48 After these two instructions execute:

x3030 0001 000 001 0 00 010

x3031 0000 011 000000111

the next instruction to execute will be the instruction at x3039 if what

condition is met?

5.49 We wish to know if R0 is being used as the Base Register for computing

the address in an LDR instruction. Since the instruction is in memory,

we can load it into R4. And, since the Base Register is identified in bits

8:6 of the instruction, we can load R5 with 0000000111000000 and then

execute AND R6,R5,R4. We would know that R0 is the base register if

what condition is met?

★5.50 Three instructions all construct an address by sign-extending the low

nine bits of the instruction and adding it to the incremented PC.

The Conditional Branch

The Load Effective Address

The LD Instruction

x x x x x x x x x0 0 0 0

x x x x x x x x x

x x x x x x x x x1 1 1 0

0 0 1 0

1 1 1

1 1 1

1 1 1

The xxxxxxxxx represents the nine-bit offset that is sign-extended.

Where does the LC-3 microarchitecture put the result of adding the

nine-bit sign-extended offset to the incremented PC?



190 chapter 5 The LC-3

★5.51 An aggressive young engineer decides to build and sell the LC-3 but

is told that if he wants to succeed, he really needs a SUBTRACT

instruction. Given the unused opcode 1101, he decides to specify the

SUBTRACT instruction as follows:

15 8 6 5 2 01112 9 3

1101 000DR SR1 SR2

The instruction is defined as: DR ← SR2 - SR1, and the condition codes

are set. Assume DR, SR1, and SR2 are all different registers.

To accomplish this, the engineer needs to add three states to the state

machine and a mux and register A to the data path. The modified state

machine is shown below, and the modified data path is shown on the next

page. The mux is controlled by a new control signal SR2SEL, which

selects one of its two sources.

SR2SEL/1: SR2OUT, REGISTER A

Your job:

For the state machine shown below, fill in the empty boxes with the

control signals that are needed in order to implement the SUBTRACT

instruction.

For the data path, fill in the value in register A.

R

18

PC <− PC + 1 
MAR <− PC

[INT]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 
[IR[15:12]]

0

MDR <− M

R

IR <− MDR

32

35

33

1

To 49
(See figure C.7)

State 13

State A

State B

SR1MUX = IR[8:6]

LD.REG = 1
DRMUX = IR[11:9]

GateALU = 1   
ALUK =  

SR1MUX = IR[11:9]
ALUK = ADD  

DRMUX = IR[11:9]

SR2SEL =     
LD.REG = 1 

SR1MUX = IR[11:9]

LD.               = 1
GateALU = 1

LD.               = 1

ALUK =             

DRMUX = IR[11:9] 

SR2SEL = SR2OUT

To 18

1101
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MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16 16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16
16

16

16 3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

CONTROL

16

16

SR2SEL

A
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5.52 Here is a list of the 16 opcodes. Circle the ones that write to a general

purpose register (R0 to R7) at some point during the instruction cycle.

ADD AND BR JMP JSR LD LEA LDI

LDR NOT RTI ST STI STR TRAP reserved

5.53 The eight general purpose registers of the LC-3 (R0 to R7) make up the

register file. To write a value to a register, the LC-3 control unit must

supply 16 bits of data (BUS[15:0]), a destination register (DR[2:0]), and

a write enable signal (LD.REG) to load a register. The combinational

logic block shows inputs BUS[15:0], DR[2:0], and LD.REG and outputs

DinR0[15:0], DinR1[15:0], DinR2[15:0], ... DinR7[15:0], LD.R0,

LD.R1, LD.R2, ... LD.R7.

Your job: Add wires, logic gates, and standard logic blocks as necessary

to complete the combinational logic block. Note: If you use a standard

logic block, it is not necessary to show the individual gates. However, it

is necessary to identify the logic block specifically (e.g., “16-to-1 mux”),

along with labels for each relevant input or output, according to its

function.
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R0

R1

R2

R3

R4

R5

R6

R7

16

DR[1]

DR[2]

DR[0]

LD.REG

Combinational Logic

BUS[15:0]

LD.R0

LD.R1

LD.R2

LD.R3

LD.R4

LD.R5

LD.R6

LD.R7

DinR7 16

16DinR6

16DinR5

16DinR4

16DinR3

16DinR2

16DinR1

16DinR0

5.54 All instructions load the MDR during the fetch phase of the instruction

cycle to fetch the instruction from memory on its way to the IR. After

decode has completed, some instructions load the MDR again, using the

source 0 input to the mux labeled A on the data path. Other instructions

load the MDR, using the source 1 input to mux A. Only one of the

15 LC-3 instructions loads the MDR after decode, using both source 0
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and source 1 at different times during the processing of that instruction.

What is the opcode of that instruction?

★5.55 An LC-3 program starts execution at x3000. During the execution of the

program, snapshots of all eight registers were taken at six different times

as shown below: before the program executes, after execution of

instruction 1, after execution of instruction 2, after execution of

instruction 3, after execution of instruction 4, after execution of

instruction 5, and after execution of instruction 6.

Registers Initial After 1st After 2nd After 3rd After 4th After 5th After 6th
Value Instruction Instruction Instruction Instruction Instruction Instruction

R0 x4006 x4050 x4050 x4050 x4050 x4050 x4050

R1 x5009 x5009 x5009 x5009 x5009 x5009 x5009

R2 x4008 x4008 x4008 x4008 x4008 x4008 xC055

R3 x4002 x8005 x8005 x8005 x8005

R4 x4003 x4003 x4003 x4003 x4003

R5 x400D x400D x400D x400D x400D

R6 x400C x400C x400C x400C x400C x400C x400C

R7 x6001 x6001 x6001 x6001 x400E

Also, during the execution of the program, the PC trace, the MAR trace,

and the MDR trace were also recorded as shown below. Note that a PC

trace records the addresses of the instructions executed in sequence by

the program.

PC Trace

x400D

x400E

MAR Trace MDR Trace
xA009

x3025

x1703

x4040

x400E x1403

Your job: Fill in the missing entries in the three tables above.
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5.56 This problem tests your knowledge of the instruction cycle for

processing the NOT instruction. You are asked to show the values of

several control signals in every clock cycle of the sequence that is used to

process the NOT instruction.

The instruction cycle starts with state 18 as shown in the following table.

Your job: Identify each state in the sequence, and show the values of

the control signals listed during each state in the sequence. Use the

convention specified below. For a particular state, if the value of a

control signal does not matter, fill it with an X. You may not have to use

all the rows.

Note: Assume a memory access takes one clock cycle.

Cycle State LD.PC LD.MAR LD.MDR LD.REG LD.CC GateALU GatePC ALUK PCMUX

1 18

2

3

4

5

6

7

8

9

10

LD.PC 0: load not enabled GateALU 0: do not pass signal
1: load enabled 1: pass signal

LD.MAR 0: load not enabled GatePC 0: do not pass signal
1: load enabled 1: pass signal

LD.MDR 0: load not enabled ALUK 00: ADD
1: load enabled 01: AND

10: NOT
LD.REG 0: load not enabled 11: Pass input A

1: load enabled
PCMUX 00: PC+1

LD.CC 0: load not enabled 01: BUS
1: load enabled 10: from adder
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5.57 Note boldface signal lines on the following data path.

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

PCLD.PC

16

+

16

16

[7:0]

[4:0]

GateALU

1616

16

16LOGIC

2

2
N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

+1

ZEXT

SR2MUX

110

IR[8:6]

IR[11:9]
1

SR1MUX

3

2

1. What opcodes use IR [11:9] as inputs to SR1?

2. Where does the control signal of this mux come from? Be specific!

3. What opcodes use this input to the MARMUX?

5.58 Let’s use the unused opcode to implement a new instruction, as shown

below:

15                12  11            9   8             6   5             3   2          0

1101 000Reg1 Reg2 Reg3
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To accomplish this, we will need a small addition to the data path, shown

below in boldface:

SR2MUX

TEMP LD.TEMP

16

REG
FILE

SR2
OUT

SR1
OUT

16

16

2′s Complement

16

16
2

ALUK

16

16

ALUMUXFrom Control

16SEXT(IR[4:0])

ALUMUX

16
16

ALU
B A

GateALU

The following five additional states are needed to control the data path to

carry out the work of this instruction.

R

32

1101

R

MDR <− M[MAR]

State A

State 13

State B

TEMP <− −(MDR)

[Z]

To State 18 To State 23

State C

State D

Z = 0 Z = 1

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

MAR <− Reg2

set CC
BUS <− TEMP + Reg3

Note: State B loads the negative of the contents of MDR into TEMP.
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a. Complete the following table by identifying the values of the control

signals needed to carry out the work of each state.

L
D

.P
C

L
D

.M
A

R

L
D

.M
D

R

L
D

.C
C

L
D

.T
E

M
P

G
at

eP
C

G
at

eM
D

R

G
at

eA
L

U

S
R

1
M

U
X

[1
:0

]

A
L

U
M

U
X

A
L

U
K

[1
:0

]

M
IO

.E
N

R
.W

State 13

State A

State B

State C

State D

LD.PC 0: load not enabled SR1MUX 00: Source IR [11:9]
1: load enabled 01: Source IR [8:6]

10: Source R6
LD.MAR 0: load not enabled

1: load enabled ALUMUX 0: Choose SR1
1: Choose TEMP

LD.MDR 0: load not enabled
1: load enabled ALUK 00: ADD

01: AND
LD.CC 0: load not enabled 10: NOT

1: load enabled 11: Pass input A

LD.TEMP 0: load not enabled MIO.EN 0: MIO not enabled
1: load enabled 1: MIO enabled

GatePC 0: do not pass signal R.W 0: Read
1: pass signal 1: Write

GateMDR 0: do not pass signal
1: pass signal

GateALU 0: do not pass signal
1: pass signal

b. What does the new instruction do?

5.59 Every LC-3 instruction takes eight cycles to be fetched and decoded, if

we assume every memory access takes five cycles. The total number of

cycles an LC-3 instruction takes to be completely processed, however,

depends on what has to be done for that instruction.

Assuming every memory access takes five cycles, and assuming the

LC-3 processes one instruction at a time, from beginning to end, how
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many clock cycles does each instruction take? For each instruction, how

many cycles are required to process it?

Instruction Number of cycles

ADD

AND

LD

LEA

LDI

NOT

BRnzp

TRAP

5.60

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR2

LD.REG

DR

CONTROL

161

LD.CC

2

3

1
1

1

3

IR[11:9]

IR[8:6]

SR1MUX
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Note that several of the lines (i.e., signals) in the LC-3 data path have

been drawn in boldface. Each line is designated by a boldface number 1,

2, or 3. Not all instructions use all three lines. That is, some instructions

would not function correctly if the line (i.e., signal) were removed.

List the opcodes that utilize line 1 during their processing of an

instruction.

List the opcodes that utilize line 2 during their processing of an

instruction.

List the opcodes that require LD.CC=1 on line 3 during their

processing of an instruction.

Note the logic (in boldface) added to the data path. The output of

that logic is labeled X. What does X=1 indicate if ALUK is ADD?

★5.61 During the execution of an LC-3 program, the processor data path was

monitored for four instructions in the program that were processed

consecutively. The table shows all clock cycles during which the bus was

utilized. It shows the clock cycle number, the value on the bus, and the

state (from the state machine diagram) for some of these clock cycles.

Processing of the first instruction starts at clock cycle T. Each memory

access in this LC-3 machine takes five clock cycles.

Your job: Fill in the missing entries in the table. You only need to fill in

the cells not marked with x.

Note: There are five clock cycles for which you need to provide the

control signals. Not all LC-3 control signals are shown in the table.

However, all control signals that are required for those five clock cycles

have been included.

Note: For the DRMUX signal, write ‘11.9’, ‘R7’, or ‘SP’; for the R.W

signal, write an ‘R’ or a ‘W’; for the PCMUX signal, write ‘PC+1’,

‘BUS’, or ‘ADDER’; for all other control signals, write down the actual

bit. If a control signal is not relevant in a given cycle, mark it with a dash

(i.e., -).
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Inst. Clock Bus State Control Signals
# Cycle

Gate Gate Gate Gate LD. LD. LD. LD.LD. DR MIO. R.W PC
PC MDRALUMARMUX PC MDRMAR CC Reg MUX EN MUX

Inst. 1 T + 0 x3010

T + 6 x x x x x x x x x x x x x

T + 8 x00AB x x x x x x x x x x x x x

T + 9 28

T + 10 28

T + 11 28

T + 12 x 28 x x x x x x x x x x x x x

T + 13 x 28 x x x x x x x x x x x x x

T + 14 x x x x x x x x x x x x x

Inst. 2 T + 15 x1510 18 x x x x x x x x x x x x x

x2219 x x x x x x x x x x x x x

x x x x x x x x x x x x x

T + 29 x8001

Inst. 3 T + 30 x x x x x x x x x x x x x

T+ 36 x0804 x x x x x x x x x x x x x

Inst. 4 18 x x x x x x x x x x x x x

x x1200 x x x x x x x x x x x x x x

x x0000 x x x x x x x x x x x x x x





6
C H A P T E R

Programming

We are now ready to develop programs to solve problems with the com-

puter. In this chapter we attempt to do two things: first, we develop a

methodology for constructing programs to solve problems (Section 6.1, Problem

Solving), and second, we develop a methodology for fixing those programs (Sec-

tion 6.2, Debugging) under the likely condition that we did not get everything

right the first time.

There is a long tradition that the errors present in programs are referred to as

bugs, and the process of removing those errors is called debugging. The opportu-

nities for introducing bugs into a complicated program are so great that it usually

takes much more time to get the program to work correctly (debugging) than it

does to create the program in the first place.

6.1 Problem Solving
6.1.1 Systematic Decomposition

Recall from Chapter 1 that in order for electrons to solve a problem, we need to go

through several levels of transformation to get from a natural language description

of the problem (in our case English, although many of you might prefer Italian,

Mandarin, Hindi, or something else) to something electrons can deal with. Once

we have a natural language description of the problem, the next step is to trans-

form the problem statement into an algorithm. That is, the next step is to transform

the problem statement into a step-by-step procedure that has the properties of def-

initeness (each step is precisely stated), effective computability (each step can be

carried out by a computer), and finiteness (the procedure terminates).

In the late 1960s, the concept of structured programming emerged as a way

to dramatically improve the ability of average programmers to take a complex

description of a problem and systematically decompose it into smaller and smaller

manageable units so that they could ultimately write a program that executed cor-

rectly. The methodology has also been called systematic decomposition because

the larger tasks are systematically broken down into smaller ones.
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We will find the systematic decomposition model a useful technique for

designing computer programs to carry out complex tasks.

6.1.2 The Three Constructs: Sequential, Conditional, Iterative

Systematic decomposition is the process of taking a task, that is, a unit of work

(see Figure 6.1a), and breaking it into smaller units of work such that the collec-

tion of smaller units carries out the same task as the one larger unit. The idea is

that if one starts with a large, complex task and applies this process again and

again, one will end up with very small units of work and consequently be able to

easily write a program to carry out each of these small units of work. The process

is also referred to as stepwise refinement, because the process is applied one step

at a time, and each step refines one of the tasks that is still too complex into a

collection of simpler subtasks.

The idea is to replace each larger unit of work with a construct that correctly

decomposes it. There are basically three constructs for doing this: sequential,
conditional, and iterative.

The sequential construct (Figure 6.1b) is the one to use if the designated

task can be broken down into two subtasks, one following the other. That is, the

computer is to carry out the first subtask completely, then go on and carry out the

second subtask completely— never going back to the first subtask after starting

the second subtask.

The conditional construct (Figure 6.1c) is the one to use if the task consists

of doing one of two subtasks but not both, depending on some condition. If the

The task
to be

decomposed

(a)

Do first
part to

completion

Do second
part to

completion

Subtask
1

Test
cond. Test

cond.

True False

Subtask
2

False

True

Subtask

(b)
Sequential

(c)

Conditional
(d)

Iterative

Figure 6.1 The basic constructs of structured programming.
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condition is true, the computer is to carry out one subtask. If the condition is not true,

the computer is to carry out a different subtask. Either subtask may be vacuous; that

is, it may do nothing. Regardless, after the correct subtask is completed, the program

moves onward. The program never goes back and retests the condition.

The iterative construct (Figure 6.1d) is the one to use if the task consists of

doing a subtask a number of times, but only as long as some condition is true. If

the condition is true, do the subtask. After the subtask is finished, go back and

test the condition again. As long as the result of the condition tested is true, the

program continues to carry out the same subtask again and again. The first time

the test is not true, the program proceeds onward.

Note in Figure 6.1 that whatever the task of Figure 6.1a, work starts with the

arrow into the top of the ‘‘box’’ representing the task and finishes with the arrow out

of the bottom of the box. There is no mention of what goes on inside the box. In each

of the three possible decompositions of Figure 6.1a (i.e., Figure 6.1b, c, and d), there

is exactly one entrance into the construct and exactly one exit out of the construct.
Thus, it is easy to replace any task of the form of Figure 6.1a with whichever of its

three decompositions apply. We will see how with several examples.

6.1.3 LC-3 Control Instructions to Implement
the Three Constructs

Before we move on to an example, we illustrate in Figure 6.2 the use of LC-3

control instructions to direct the program counter to carry out each of the three

The task
to be

decomposed

A

(a)

First
subtask

B1

Second
subtask

D1

B1+1

A
(b)

Subtask
2

(c)

A
Generate
condition

Subtask
1

yC2

D2

? xB2

(d)

A
Generate
condition

111

0000 ?B3 z

wD3

Subtask

0000

0000 111 0000

Figure 6.2 Use of LC-3 control instructions to implement structured programming.
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decomposition constructs. That is, Figure 6.2b, c, and d corresponds respectively

to the three constructs shown in Figure 6.1b, c, and d.

We use the letters A, B, C, and D to represent addresses in memory containing

LC-3 instructions. The letter A, for example, represents the address of the first

LC-3 instruction to be executed in all three cases, since it is the starting address

of the task to be decomposed (shown in Figure 6.2a).

Figure 6.2b illustrates the control flow of the sequential decomposition. Note

that no control instructions are needed since the PC is incremented from Address

B1 to Address B1+1. The program continues to execute instructions through

address D1. It does not return to the first subtask.

Figure 6.2c illustrates the control flow of the conditional decomposition.

First, a condition is generated, resulting in the setting of one of the condition

codes. This condition is tested by the conditional branch instruction at Address

B2. If the condition is true, the PC is set to Address C2+1, and subtask 1 is

executed. (Note: x equals 1 + the number of instructions in subtask 2.) If the

condition is false, the PC (which had been incremented during the FETCH phase

of the branch instruction) fetches the instruction at Address B2+1, and subtask

2 is executed. Subtask 2 terminates in a branch instruction that at address C2

unconditionally branches to D2+1. (Note: y equals the number of instructions in

subtask 1.)

Figure 6.2d illustrates the control flow of the iterative decomposition. As

in the case of the conditional construct, first a condition is generated, a condi-

tion code is set, and a conditional branch instruction is executed. In this case,

the condition bits of the instruction at address B3 are set to cause a conditional

branch if the condition generated is false. If the condition is false, the PC is set

to address D3+1. (Note: z equals 1 + the number of instructions in the subtask

in Figure 6.2d.) On the other hand, as long as the condition is true, the PC will

be incremented to B3+1, and the subtask will be executed. The subtask termi-

nates in an unconditional branch instruction at address D3, which sets the PC to

A to again generate and test the condition. (Note: w equals the total number of

instructions in the decomposition shown as Figure 6.2d.)

Now, we are ready to move on to an example.

6.1.4 The Character Count Example from Chapter 5, Revisited

Recall the example of Section 5.5. The statement of the problem is as follows:

“We wish to input a character from the keyboard, count the number of occurrences

of that character in a file, and display that count on the monitor.”

The systematic decomposition of this English language statement of the

problem to the final LC-3 implementation is shown in Figure 6.3. Figure 6.3a

is a brief statement of the problem.

In order to solve the problem, it is always a good idea first to examine exactly

what is being asked for, and what is available to help solve the problem. In this

case, the statement of the problem says that we will get the character of inter-

est from the keyboard, and that we must examine all the characters in a file and

determine how many are identical to the character obtained from the keyboard.

Finally, we must output the result.
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Initialize: Put initial values
into all locations that will be
needed to carry out this task.

Stop

A

B

C

(b)

Start

* Input a character.

* Set up the pointer to the
  first location in the file that
  will be scanned.

* Get the first character from
  the file.

* Zero the register that holds
  the count.

Scan the file, location by
location, incrementing the
counter if the character
matches.

Display the count on the
monitor. 

Input a character. Then scan
a file, counting occurrences
of that character. Finally, 
display on the monitor the
number of occurrences of
that character (up to 9).

Start

Stop

(a)

Figure 6.3 Stepwise refinement of the character count program (Fig. 6.3 continued on
next page.)

To do this, we will need to examine in turn all the characters in a file, we will

need to compare each to the character we input from the keyboard, and we will

need a counter to increment each time we get a match.

We will need registers to hold all these pieces of information:

1. The character input from the keyboard.

2. Where we are (a pointer) in our scan of the file.

3. The character in the file that is currently being examined.

4. The count of the number of occurrences.

We will also need to know when we have reached the end of the file.
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Stop

C1

C2

Prepare to display

Display output

Stop

R2 <- 0 (count)
R0 <- input from the keyboard
R3 <- address of first char in the file
R1 <- first char in the file

A

A2

A3

R0 <- input from the keyboard

R3 <- address of first char in the file

A4 R1 <- first char in the file

R2 <- 0 (count)A1

Start

Test character. If “match,”
increment counter. Get the
next character.

Display the count on the
monitor 

B

B1

C

(c)

Yes

No

Start

Test character. If “match,”
increment counter.

B3 Get next character

B2

B1

C

(d)

Yes

No

Done
?

Done
?

Figure 6.3 Stepwise refinement of the character count program (Fig. 6.3 continued on
next page.)

The problem decomposes naturally (using the sequential construct) into three

parts as shown in Figure 6.3b: (A) initialization, which includes keyboard input

of the character to be “counted,” (B) the process of determining how many occur-

rences of the character are present in the file, and (C) displaying the count on the

monitor.

We have seen the importance of proper initialization in several examples

already. Before a computer program can get to the crux of the problem, it must

have the correct initial values. These initial values do not just show up in the GPRs

by magic. They get there as a result of the first set of steps in every algorithm: the

initialization of its variables.

In this particular algorithm, initialization (as we said in Chapter 5) consists

of starting the counter at 0, setting the pointer to the address of the first character

in the file to be examined, getting an input character from the keyboard, and get-

ting the first character from the file. Collectively, these four steps comprise the

initialization of the algorithm shown in Figure 6.3b as A.
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R2 <– 0 (count)A1

R1 <– first characterA4

Stop

C1

C2 Display output

Form ASCII output

Done
?

R3 <– R3 + 1

R1 <– next character

Start

R0 <– input

R3 <– starting address

A2

A3

(e)

Yes

No

R1 = R0
?

R2 <– R2 + 1

B2

B3

Yes No

Figure 6.3 Stepwise refinement of the character count program (continued Fig. 6.3
from previous page.)

Figure 6.3c decomposes B into an iteration construct, such that as long as

there are characters in the file to examine, the loop iterates. B1 shows what gets

accomplished in each iteration. The character is tested and the count incremented

if there is a match. Then the next character is prepared for examination. Recall

from Chapter 5 that there are two basic techniques for controlling the number
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of iterations of a loop: the sentinel method and the use of a counter. Since we

are unlikely to know how many characters there are in a random file, and since

each file ends with an end of text (EOT) character, our choice is obvious. We use

the sentinel method, that is, testing each character to see if we are examining a

character in the file or the EOT character.

Figure 6.3c also shows the initialization step in greater detail. Four LC-3

registers (R0, R1, R2, and R3) have been specified to handle the four requirements

of the algorithm: the input character from the keyboard, the current character

being tested, the counter, and the pointer to the next character to be tested.

Figure 6.3d decomposes both B1 and C using the sequential construct in both

cases. In the case of B1, first the current character is tested (B2), and the counter

incremented if we have a match, and then the next character is fetched (B3). In

the case of C, first the count is prepared for display by converting it from a 2’s

complement integer to an ASCII code (C1), and then the actual character output

is performed (C2).

Finally, Figure 6.3e completes the decomposition, replacing B2 with the ele-

ments of the condition construct and B3 with the sequential construct (first the

pointer is incremented, and then the next character to be scanned is loaded).

The last step (and usually the easiest part) is to write the LC-3 code corre-

sponding to each box in Figure 6.3e. Note that Figure 6.3e is essentially identical

to Figure 5.16 of Chapter 5 (except now you know where it all came from!).

Before leaving this topic, it is worth pointing out that it is not always pos-

sible to understand everything at the outset. When you find that to be the case,

it is not a signal simply to throw up your hands and quit. In such cases (which

realistically are most cases), you should see if you can make sense of a piece of

the problem and expand from there. Problems are like puzzles; initially they can

be opaque, but the more you work at it, the more they yield under your attack.

Once you do understand what is given, what is being asked for, and how to pro-

ceed, you are ready to return to square one (Figure 6.3a) and restart the process

of systematically decomposing the problem.

6.2 Debugging
Debugging a program is pretty much applied common sense. A simple example

comes to mind: You are driving to a place you have never visited, and somewhere

along the way you made a wrong turn. What do you do now? One common “driv-

ing debugging” technique is to wander aimlessly, hoping to find your way back.

When that does not work, and you are finally willing to listen to the person sitting

next to you, you turn around and return to some “known” position on the route.

Then, using a map (very difficult for some people), you follow the directions pro-

vided, periodically comparing where you are (from landmarks you see out the

window) with where the map says you should be, until you reach your desired

destination.

Debugging is somewhat like that. A logical error in a program can make

you take a wrong turn. The simplest way to keep track of where you are as
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compared to where you want to be is to trace the program. This consists of

keeping track of the sequence of instructions that have been executed and the

results produced by each instruction executed. When you examine the sequence

of instructions executed, you can detect errors in the flow of the program. When

you compare what each instruction has done to what it is supposed to do, you

can detect logical errors in the program. In short, when the behavior of the pro-

gram as it is executing is different from what it should be doing, you know there

is a bug.

A useful technique is to partition the program into parts, often referred to as

modules, and examine the results that have been computed at the end of execu-

tion of each module. In fact, the structured programming approach discussed in

Section 6.1 can help you determine where in the program’s execution you should

examine results. This allows you to systematically get to the point where you

are focusing your attention on the instruction or instructions that are causing the

problem.

6.2.1 Debugging Operations

Many sophisticated debugging tools are offered in the marketplace, and

undoubtedly you will use many of them in the years ahead. In Chapter 15, for

example, we will examine debugging techniques using a source-level debugger

for C.

Right now, however, we wish to stay at the level of the machine architecture,

so we will see what we can accomplish with a few very elementary interactive

debugging operations. We will set breakpoints, single-step, and examine the state

of a program written in the LC-3 ISA.

In Chapter 15, we will see these same concepts again: breakpoints, single-

stepping, and examining program state that we are introducing here, but applied

to a C program, instead of the 0s and 1s of a program written in the LC-3 ISA.

When debugging interactively, the user sits in front of the keyboard and mon-

itor and issues commands to the computer. In our case, this means operating an

LC-3 simulator, using the menu available with the simulator. It is important to be

able to:

1. Write values into memory locations and into registers.

2. Execute instruction sequences in a program.

3. Stop execution when desired.

4. Examine what is in memory and registers at any point in the program.

These few simple operations will go a long way toward debugging programs.

6.2.1.1 Set Values

In order to test the execution of a part of a program in isolation without having

to worry about parts of the program that come before it, it is useful to first write

values in memory and in registers that would have been written by earlier parts of

the program. For example, suppose one module in your program supplies input

from a keyboard, and a subsequent module operates on that input. Suppose you
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want to test the second module before you have finished debugging the first mod-

ule. If you know that the keyboard input module ends up with an ASCII code in

R0, you can test the module that operates on that input by first writing an ASCII

code into R0.

6.2.1.2 Execute Sequences

It is important to be able to execute a sequence of instructions and then stop

execution in order to examine the values that the program has computed as a

result of executing that sequence. Three simple mechanisms are usually available

for doing this: run, step, and set breakpoints.

The Run command causes the program to execute until something makes it

stop. This can be either a HALT instruction or a breakpoint.

The Step command causes the program to execute a fixed number of instruc-

tions and then stop. The interactive user enters the number of instructions he/she

wishes the simulator to execute before it stops. When that number is 1, the com-

puter executes one instruction, then stops. Executing one instruction and then

stopping is called single-stepping. It allows the person debugging the program to

examine the individual results of each instruction executed.

The Set Breakpoint command causes the program to stop execution at a

specific instruction in a program. Executing the debugging command Set Break-

point consists of adding an address to a list maintained by the simulator. During

the FETCH phase of each instruction, the simulator compares the PC with the

addresses in that list. If there is a match, execution stops. Thus, the effect of setting

a breakpoint is to allow execution to proceed until the PC contains an address that

has been set as a breakpoint. This is useful if one wishes to know what has been

computed up to a particular point in the program. One sets a breakpoint at that

address in the program and executes the Run command. The program executes

until that point and then stops so the user can examine what has been computed

up to that point. (When one no longer wishes to have the program stop execution

at that point, the breakpoint can be removed by executing the Clear Breakpoint

command.)

6.2.1.3 Display Values

Finally, it is useful to examine the results of execution when the simulator has

stopped execution. The Display command allows the user to examine the contents

of any memory location or any register.

6.2.2 Use of an Interactive Debugger

We conclude this chapter with four examples, showing how the use of interactive

debugging operations can help us find errors in a program. We have chosen the

following four errors: (1) incorrectly setting the loop control so that the loop exe-

cutes an incorrect number of times, (2) confusing the load instruction 0010, which

loads a register with the contents of a memory location, with the load effective

address instruction 1110, which loads a register with the address of a memory

location, (3) forgetting which instructions set the condition codes, resulting in
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a branch instruction testing the wrong condition, and (4) not covering all possible

cases of input values.

6.2.2.1 Example 1: Multiplying Without a Multiply Instruction

Let’s start with an example we have seen before, multiplying two positive integers

when the computer (such as the LC-3) does not have a multiply instruction. This

time we will assume the two integers to be multiplied are in R4 and R5, and the

result of execution (the product of those two integers) will be put in R2. Figure 6.4

shows the program we have written to do the job.

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3200 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <- 0
x3201 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 R2 <- R2 + R4
x3202 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 R5 <- R5 - 1
x3203 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 BRzp x3201
x3204 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

Figure 6.4 Debugging Example 1. An LC-3 program to multiply (without a Multiply
instruction).

If we examine the program instruction by instruction, we note that the pro-

gram first clears R2 (i.e., initializes R2 to 0) and then attempts to perform the

multiplication by adding R4 to itself a number of times equal to the initial value

in R5. Each time an add is performed, R5 is decremented. When R5 = 0, the

program terminates.

It looks like the program should work! Upon execution, however, we find that

if R4 initially contains the integer 10 and R5 initially contains the integer 3, the

program produces the result 40. What went wrong?

Our first thought is to trace the program. Before we do that, we note that the

program assumes positive integers in R4 and R5. Using the Set Values command,

we put the value 10 in R4 and the value 3 in R5.

It is also useful to annotate each instruction with some algorithmic descrip-

tion of exactly what each instruction is doing. While this can be very tedious

and not very helpful in a 10,000-instruction program, it often can be very helpful

after one has isolated a bug to within a few instructions. There is a big difference

between quickly eyeballing a sequence of instructions and stating precisely what

each instruction is doing. Quickly eyeballing often results in mistaking what one

eyeballs! Stating precisely usually does not. We have included in Figure 6.4, next

to each instruction, such an annotation.

Figure 6.5a shows a trace of the program, which we can obtain by single-

stepping. The column labeled PC shows the contents of the PC at the start of

each instruction. R2, R4, and R5 show the values in those three registers at the

start of each instruction.

A quick look at the trace shows that the loop body was executed four times,

rather than three. That suggests that the condition codes for our branch instruction

could have been set incorrectly. From there it is a short step to noting that the

branch should have been taken only when R5 was positive, and not when R5 is 0.

That is, bit [10]=1 in the branch instruction caused the extra iteration of the loop.



214 chapter 6 Programming

(a)

PC R2 R4 R5

x3201 0 10 3

x3202 10 10 3

x3203 10 10 2

x3201 10 10 2

x3202 20 10 2

x3203 20 10 1

x3201 20 10 1

x3202 30 10 1

x3203 30 10 0

x3201 30 10 0

x3202 40 10 0

x3203 40 10 −1

x3204 40 10 −1

40 10 −1

(b)

PC R2 R4 R5

x3203 10 10 2

x3203 20 10 1

x3203 30 10 0

x3203 40 10 −1

Figure 6.5 Debugging Example 1. (a) A trace of the Multiply program. (b) Tracing with
breakpoints.

The program can be corrected by simply replacing the instruction at x3203

with

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

BR n z p −3

We should also note that we could have saved a lot of the work of tracing the

program by using a breakpoint. That is, instead of examining the results of each
instruction, if we set a breakpoint at x3203, we would examine the results of

each iteration of the loop. Setting a breakpoint to stop the program after each

iteration of the loop is often enough to have us see the problem (and debug the pro-

gram) without the tedium of single-stepping each iteration of the loop. Figure 6.5b

shows the results of tracing the program, where each step is one iteration of the

loop. We see that the loop executed four times instead of three, immediately

identifying the bug.

One last comment before we leave this example. Before we started tracing

the program, we initialized R4 and R5 with values 10 and 3. When testing a

program, it is important to judiciously choose the initial values for the test. Here,

the program stated that the program had to work only for positive integers. So, 10

and 3 are probably OK. What if a (different) multiply program had been written

to work for all integers? Then we could have tried initial values of −6 and 3, 4 and

−12, and perhaps −5 and −7. The problem with this set of tests is that we have

left out one of the most important initial values of all: 0. For the program to work

for “all” integers, it has to work for 0 as well. The point is that, for a program to

work, it must work for all valid source operands, and a good test of such a program

is to set source operands to the unusual values, the ones the programmer may

have failed to consider. These values are often referred to colloquially as corner
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cases, and more often that not, they are the values for which the program does

not operate correctly.

6.2.2.2 Example 2: Adding a Column of Numbers

The program of Figure 6.6 is supposed to add the numbers stored in the ten

locations starting with x3100, and leave the result in R1.

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R1 <- 0
x3001 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 R4 <- 0
x3002 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 R4 <- R4 + 10
x3003 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 R2 <- M[x3100]
x3004 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 R3 <- M[R2]
x3005 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 <- R2 + 1
x3006 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 R1 <- R1 + R3
x3007 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 R4 <- R4 - 1
x3008 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 BRp x3004
x3009 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

Figure 6.6 Debugging Example 2. An LC-3 program to add 10 integers.

The contents of the 20 memory locations starting at location x3100 are shown

in Figure 6.7.

The program should work as follows: The instructions in x3000 to x3003

initialize the variables. In x3000, the sum (R1) is initialized to 0. In x3001 and

Address Contents

x3100 x3107

x3101 x2819

x3102 x0110

x3103 x0310

x3104 x0110

x3105 x1110

x3106 x11B1

x3107 x0019

x3108 x0007

x3109 x0004

x310A x0000

x310B x0000

x310C x0000

x310D x0000

x310E x0000

x310F x0000

x3110 x0000

x3111 x0000

x3112 x0000

x3113 x0000

Figure 6.7 Contents of memory locations x3100 to x3113 for debugging Example 2.
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PC R1 R2 R4

x3001 0 x x

x3002 0 x 0

x3003 0 x #10

x3004 0 x3107 #10

Figure 6.8 Debugging Example 2. A trace of the first four instructions of the Add
program.

x3002, the loop control (R4), which counts the number of values added to R1, is

initialized to #10. The program subtracts 1 each time through the loop and repeats

until R4 contains 0. In x3003, the base register (R2) is initialized to the starting

location of the values to be added: x3100.

From there, each time through the loop, one value is loaded into R3 (in

x3004), the base register is incremented to get ready for the next iteration (x3005),

the value in R3 is added to R1, which contains the running sum (x3006), the

counter is decremented (x3007), the P bit is tested, and if true, the PC is set to

x3004 to begin the next iteration of the loop body (x3008). After ten times through

the loop, R4 contains 0, the P bit is 0, the branch is not taken, and the program

terminates (x3009).

It looks like the program should work. However, when we execute the pro-

gram and then check the value in R1, we find the number x0024, which is not

x8135, the sum of the numbers stored in locations x3100 to x3109. What went

wrong?

We turn to the debugger and trace the program. Figure 6.8 shows a trace of

the first four instructions executed. Note that after the instruction at x3003 has

executed, R2 contains x3107, not x3100 as we had expected. The problem is

that the opcode 0010 loaded the contents of M[x3100] (i.e., x3107) into R2, not

the address x3100. The result was to add the ten numbers starting at M[x3107]

instead of the ten numbers starting at M[x3100].

Our mistake: We used the wrong opcode. We should have used the opcode

1110, which would have loaded R2 with the address x3100. We correct the bug

by replacing the opcode 0010 with 1110, and the program runs correctly.

6.2.2.3 Example 3: Does a Sequence of Memory Locations Contain a 5?

The program of Figure 6.9 has been written to examine the contents of the ten

memory locations starting at address x3100 and to store a 1 in R0 if any of them

contains a 5 and a 0 in R0 if none of them contains a 5.

The program is supposed to do the following: The first six instructions (at

x3000 to x3005) initialize R0 to 1, R1 to −5, and R3 to 10. The instruction at

x3006 initializes R4 to the address (x3100) of the first location to be tested, and

x3007 loads the contents of x3100 into R2.

The instructions at x3008 and x3009 determine if R2 contains the value 5 by

adding −5 to R2 and branching to x300F if the result is 0. Since R0 is initialized

to 1, the program terminates with R0 reporting the presence of a 5 among the

locations tested.
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Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 R0 <- 0
x3001 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 R0 <- R0 + 1
x3002 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R1 <- 0
x3003 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 R1 <- R1 - 5
x3004 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 <- 0
x3005 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 R3 <- R3 + 10
x3006 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 R4 <- M[x3010]
x3007 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 <- M[R4]
x3008 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 R2 <- R2 + R1
x3009 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz x300F
x300A 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 R4 <- R4 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 R3 <- R3 - 1
x300C 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 <- M[R4]
x300D 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 BRp x3008
x300E 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 R0 <- 0
x300F 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
x3010 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 x3100

Figure 6.9 Debugging Example 3. An LC-3 program to detect the presence of a 5.

x300A increments R4, preparing to load the next value. x300B decrements

R3, indicating the number of values remaining to be tested. x300C loads the next

value into R2. x300D branches back to x3008 to repeat the process if R3 still

indicates more values to be tested. If R3 = 0, we have exhausted our tests, so R0

is set to 0 (x300E), and the program terminates (x300F).

When we run the program for some sample data that contains a 5 in one of

the memory locations, the program terminates with R0 = 0, indicating there were

no 5s in locations x3100 to x310A.

What went wrong? We examine a trace of the program, with a breakpoint set

at x300D. The results are shown in Figure 6.10.

The first time the PC is at x300D, we have already tested the value stored in

x3100, we have loaded 7 (the contents of x3101) into R2, and R3 indicates there

are still nine values to be tested. R4 contains the address from which we most

recently loaded R2.

The second time the PC is at x300D, we have loaded 32 (the contents of

x3102) into R2, and R3 indicates there are eight values still to be tested. The

third time the PC is at x300D, we have loaded 0 (the contents of x3103) into R2,

and R3 indicates seven values still to be tested. The value 0 loaded into R2 causes

the branch instruction at x300D to be not taken, R0 is set to 0 (x300E), and the

program terminates (x300F) before the locations containing a 5 are tested.

PC R1 R2 R3 R4

x300D −5 7 9 3101

x300D −5 32 8 3102

x300D −5 0 7 3013

Figure 6.10 Debugging Example 3. Tracing Example 3 with a breakpoint at x300D.
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The error in the program occurred because the branch instruction immedi-

ately followed the load instruction that set the condition codes based on what was

loaded. That wiped out the condition codes set by the iteration control instruction

at x300B, which was keeping track of the number of iterations left to do. Since

the branch instruction should branch if there are still more memory locations to

examine, the branch instruction should have immediately followed the iteration

control instruction and NOT the load instruction which also sets condition codes.

A conditional branch instruction should be considered the second instruction

in a pair of instructions.

Instruction A ; sets the condition codes
BR instruction ; branches based on the condition codes

The first instruction in the pair (Instruction A) sets the condition codes. The

second instruction (BR) branches or not, depending on the condition codes set by

instruction A. It is important to never insert any instruction that sets condition codes

between instruction A and the branch instruction, since doing so will wipe out the

condition codes set by instruction A that are needed by the branch instruction.

Since the branch at x300D was based on the value loaded into R2, instead

of how many values remained to be tested, the third time the branch instruction

was executed, it was not taken when it should have been. If we interchange the

instructions at x300B and x300C, the branch instruction at x300D immediately

follows the iteration control instruction, and the program executes correctly.

It is also worth noting that the branch at x300D coincidentally behaved cor-

rectly the first two times it executed because the load instruction at x300C loaded

positive values into R2. The bug did not produce incorrect behavior until the third

iteration. It would be nice if bugs would manifest themselves the first time they

are encountered, but that is often not the case. Coincidences do occur, which adds

to the challenges of debugging.

6.2.2.4 Example 4: Finding the First 1 in a Word

Our last example contains an error that is usually one of the hardest to find, as we

will see. The program of Figure 6.11 has been written to examine the contents

of a memory location, find the first bit (reading from left to right) that is set, and

store its bit position into R1. If no bit is set, the program is to store −1 in R1. For

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R1 <- 0
x3001 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 R1 <- R1 + 15
x3002 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 R2 <- M[M[x3009]]
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 BRn x3008
x3004 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 <- R1 - 1
x3005 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 R2 <- R2 + R2
x3006 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 BRn x3008
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 BRnzp x3004
x3008 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
x3009 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 x3400

Figure 6.11 Debugging Example 4. An LC-3 program to find the first 1 in a word.
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example, if the location examined contained 0010000110000000, the program

would terminate with R1 = 13. If the location contained 0000000000000110,

the program would terminate with R1 = 2.

The program Figure 6.11 is supposed to work as follows (and it usually does):

x3000 and x3001 initialize R1 to 15, the bit number of the leftmost bit.

x3002 loads R2 with the contents of x3400, the bit pattern to be exam-

ined. Since x3400 is too far from x3000 for a LD instruction, the load indirect

instruction is used, obtaining the location of the bit pattern in x3009.

x3003 tests the most significant bit of the bit pattern (bit [15]), and if it is

a 1, branches to x3008, where the program terminates with R1=15. If the most

significant bit is 0, the branch is not taken, and processing continues at x3004.

The loop body, locations x3004 to x3007, does two things. First (x3004), it

subtracts 1 from R1, yielding the bit number of the next bit to the right. Second

(x3005), it adds R2 to itself, resulting in the contents of R2 shifting left one bit,

resulting in the next bit to the right being shifted into the bit [15] position. Third

(x3006), the BR instruction tests the “new” bit [15], and if it is a 1, branches to

x3008, where the program halts with R1 containing the actual bit number of the

current leftmost bit. If the new bit [15] is 0, x3007 is an unconditional branch to

x3004 for the next iteration of the loop body.

The process continues until the first 1 is found. The program works correctly

almost all the time. However, when we ran the program on our data, the program

failed to terminate. What went wrong?

A trace of the program, with a breakpoint set at x3007, is shown in

Figure 6.12.

PC R1

x3007 14

x3007 13

x3007 12

x3007 11

x3007 10

x3007 9

x3007 8

x3007 7

x3007 6

x3007 5

x3007 4

x3007 3

x3007 2

x3007 1

x3007 0

x3007 −1

x3007 −2

x3007 −3

x3007 −4

Figure 6.12 Debugging Example 4. A Trace of Debugging Example 4 with a breakpoint
at x3007.
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Each time the PC contained the address x3007, R1 contained a value smaller

by 1 than the previous time. The reason is as follows: After R1 was decremented

and the value in R2 shifted left, the bit tested was a 0, and so the program did not

terminate. This continued for values in R1 equal to 14, 13, 12, 11, 10, 9, 8, 7, 6,

5, 4, 3, 2, 1, 0, −1, −2, −3, −4, and so forth.

The problem was that the initial value in x3400 was x0000. The program

worked fine as long as there was at least one 1 present. For the case where x3400

contained all zeros, the conditional branch at x3006 was never taken, and so the

program continued with execution of x3007, then x3004, x3005, x3006, x3007,

and then back again to x3004. There was no way to break out of the sequence

x3004, x3005, x3006, x3007, and back again to x3004. We call the sequence

x3004 to x3007 a loop. Because there is no way for the program execution to break

out of this loop, we call it an infinite loop. Thus, the program never terminates,

and so we can never get the correct answer.

Again, we emphasize that this is often the hardest error to detect because it

is as we said earlier a corner case. The programmer assumed that at least one bit

was set. What if no bits are set? That is, it is not enough for a program to execute

correctly most of the time; it must execute correctly all the time, independent of

the data that the program is asked to process.

Exercises

6.1 Can a procedure that is not an algorithm be constructed from the three

basic constructs of structured programming? If so, demonstrate through

an example.

6.2 The LC-3 has no Subtract instruction. If a programmer needed to

subtract two numbers, he/she would have to write a routine to handle it.

Show the systematic decomposition of the process of subtracting two

integers.

6.3 Recall the machine busy example from previous chapters. Suppose

memory location x4000 contains an integer between 0 and 15 identifying a

particular machine that has just become busy. Suppose further that the

value in memory location x4001 tells which machines are busy and which

machines are idle. Write an LC-3 machine language program that sets the

appropriate bit in x4001 indicating that the machine in x4000 is busy.

For example, if x4000 contains x0005 and x4001 contains x3101 at

the start of execution, x4001 should contain x3121 after your program

terminates.

6.4 Write a short LC-3 program that compares the two numbers in R1 and

R2 and puts the value 0 in R0 if R1 = R2, 1 if R1 > R2, and −1 if

R1 < R2.

6.5 Which of the two algorithms for multiplying two numbers is preferable

and why? 88 ⋅ 3 = 88 + 88 + 88 OR 3 + 3 + 3 + 3 +…+ 3?

6.6 Use your answers from Exercises 6.4 and 6.5 to develop a program that

efficiently multiplies two integers and places the result in R3. Show the
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complete systematic decomposition, from the problem statement to the

final program.

6.7 What does the following LC-3 program do?

x3001 1110 0000 0000 1100
x3002 1110 0010 0001 0000
x3003 0101 0100 1010 0000
x3004 0010 0100 0001 0011
x3005 0110 0110 0000 0000
x3006 0110 1000 0100 0000
x3007 0001 0110 1100 0100
x3008 0111 0110 0000 0000
x3009 0001 0000 0010 0001
x300A 0001 0010 0110 0001
x300B 0001 0100 1011 1111
x300C 0000 0011 1111 1000
x300D 1111 0000 0010 0101
x300E 0000 0000 0000 0101
x300F 0000 0000 0000 0100
x3010 0000 0000 0000 0011
x3011 0000 0000 0000 0110
x3012 0000 0000 0000 0010
x3013 0000 0000 0000 0100
x3014 0000 0000 0000 0111
x3015 0000 0000 0000 0110
x3016 0000 0000 0000 1000
x3017 0000 0000 0000 0111
x3018 0000 0000 0000 0101

6.8 Why is it necessary to initialize R2 in the character counting example

in Section 6.1.4? In other words, in what manner might the program

behave incorrectly if the R2 ← 0 step were removed from the

routine?

6.9 Using the iteration construct, write an LC-3 machine language routine

that displays exactly 100 Zs on the screen.

6.10 Using the conditional construct, write an LC-3 machine language routine

that determines if a number stored in R2 is odd.

6.11 Write an LC-3 machine language routine to increment each of the

numbers stored in memory location A through memory location B.

Assume these locations have already been initialized with meaningful

numbers. The addresses A and B can be found in memory locations

x3100 and x3101.

6.12 a. Write an LC-3 machine language routine that echoes the last

character typed at the keyboard. If the user types an R, the program

then immediately outputs an R on the screen.

b. Expand the routine from part a such that it echoes a line at a time. For

example, if the user types:

The quick brown fox jumps over the lazy dog.

then the program waits for the user to press the Enter key (the ASCII

code for which is x0A) and then outputs the same line.
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6.13 Notice that we can shift a number to the left by one bit position by

adding it to itself. For example, when the binary number 0011 is added

to itself, the result is 0110. Shifting a number one bit pattern to the right

is not as easy. Devise a routine in LC-3 machine code to shift the

contents of memory location x3100 to the right by one bit.

6.14 Consider the following machine language program:

x3000 0101 0100 1010 0000
x3001 0001 0010 0111 1111
x3002 0001 0010 0111 1111
x3003 0001 0010 0111 1111
x3004 0000 1000 0000 0010
x3005 0001 0100 1010 0001
x3006 0000 1111 1111 1010
x3007 1111 0000 0010 0101

What are the possible initial values of R1 that cause the final value

in R2 to be 3?

6.15 Shown below are the contents of memory and registers before and after
the LC-3 instruction at location x3010 is executed. Your job: Identify the

instruction stored in x3010. Note: There is enough information below to

uniquely specify the instruction at x3010.

Before After

R0: x3208 x3208

R1: x2d7c x2d7c

R2: xe373 xe373

R3: x2053 x2053

R4: x33ff x33ff

R5: x3f1f x3f1f

R6: xf4a2 xf4a2

R7: x5220 x5220

. . .

x3400: x3001 x3001

x3401: x7a00 x7a00

x3402: x7a2b x7a2b

x3403: xa700 xa700

x3404: xf011 xf011

x3405: x2003 x2003

x3406: x31ba xe373

x3407: xc100 xc100

x3408: xefef xefef

. . .
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6.16 An LC-3 program is located in memory locations x3000 to x3006. It

starts executing at x3000. If we keep track of all values loaded into the

MAR as the program executes, we will get a sequence that starts as

follows. Such a sequence of values is referred to as a trace.

MAR Trace

x3000

x3005

x3001

x3002

x3006

x4001

x3003

x0021

We have shown below some of the bits stored in locations x3000 to

x3006. Your job is to fill in each blank space with a 0 or a 1, as

appropriate.

x3000 0 0 1 0 0 0 0

x300l 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

x3002 1 0 1 1 0 0 0

x3003

x3004 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1

x3005 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

x3006

6.17 Shown below are the contents of registers before and after the LC-3

instruction at location x3210 is executed. Your job: Identify the

instruction stored in x3210. Note: There is enough information below

to uniquely specify the instruction at x3210.

Before After

R0: xFF1D xFF1D

R1: x301C x301C

R2: x2F11 x2F11

R3: x5321 x5321

R4: x331F x331F

R5: x1F22 x1F22

R6: x01FF x01FF

R7: x341F x3211

PC: x3210 x3220

N: 0 0

Z: 1 1

P: 0 0
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6.18 The LC-3 has no Divide instruction. A programmer needing to divide

two numbers would have to write a routine to handle it. Show the

systematic decomposition of the process of dividing two positive

integers. Write an LC-3 machine language program starting at location

x3000 that divides the number in memory location x4000 by the number

in memory location x4001 and stores the quotient at x5000 and the

remainder at x500l.

6.19 It is often necessary to encrypt messages to keep them away from prying

eyes. A message can be represented as a string of ASCII characters, one

per memory location, in consecutive memory locations. Bits [15:8] of

each location contain 0, and the location immediately following the

string contains x0000.

A student who has not taken this course has written the following

LC-3 machine language program to encrypt the message starting at

location x4000 by adding 4 to each character and storing the resulting

message at x5000. For example, if the message at x4000 is “Matt,” then

the encrypted message at x5000 is “Qeyy.” However, there are four bugs

in his code. Find and correct these errors so that the program works

correctly.

x3000 1110 0000 0000 1010
x3001 0010 0010 0000 1010
x3002 0110 0100 0000 0000
x3003 0000 0100 0000 0101
x3004 0001 0100 1010 0101
x3005 0111 0100 0100 0000
x3006 0001 0000 0010 0001
x3007 0001 0010 0110 0001
x3008 0000 1001 1111 1001
x3009 0110 0100 0100 0000
x300A 1111 0000 0010 0101
x300B 0100 0000 0000 0000
x300C 0101 0000 0000 0000

6.20 Redo Exercise 6.18 for all integers, not just positive integers.

6.21 You have been asked to design the volume control system in a stereo.

The user controls the volume by using Volume Up and Volume Down

buttons on the stereo. When the user presses the Volume Up button, the

volume should increase by 1; when the user presses the Volume Down

button, the volume should decrease by 1. The volume level is represented

as a four-bit unsigned value, ranging from 0 to 15. If the user presses

Volume Up when the volume is already at the maximum level of 15, the

volume should remain at 15; similarly, if the user presses Volume Down

when the volume is already at the minimum level of 0, the volume

should remain at 0. The memory location x3100 has been directly

hooked up to the speakers so that reading bits 3 through 0 from that

memory location will give the current speaker volume, while writing bits

[3:0] of that memory location will set the new speaker volume.
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When the user presses one of the volume buttons, the stereo hardware

will reset the PC of the processor to x3000 and begin execution. If the

user presses Volume Up, then memory location x3101 will be set to 1;

otherwise, if the user presses Volume Down, then the memory location

x3101 will be set to 0.

Below is the program that controls the volume on the stereo. Two of

the instructions in the program have been left out. Your job: Fill in the

missing instructions so that the program controls the volume correctly

as specified.

Address Contents Description

x3000 0010000011111111 R0 ← M[x3100]

x3001 0010001011111111 R1 ← M[x3101]

x3002 0000010000000100 Branch to x3007 if Z is set

x3003

x3004 0000010000000101 Branch to x300A if Z is set

x3005 0001000000100001 R0 ← R0 + x0001

x3006 0000111000000011 Branch always to x300A

x3007 0001001000100000 R1 ← R0 + x0000

x3008 0000010000000001 Branch to x300A if Z is set

x3009

x300A 0011000011110101 M[x3100] ← R0

x300B 1111000000100101 TRAP x25

★6.22 A warehouse is controlled by an electronic lock having an n-digit

combination. The electronic lock has ten buttons labeled 0 to 9 on its

face. To open the lock, a user presses a sequence of n buttons. The

corresponding ASCII characters get loaded into sequential locations of

memory, starting at location x3150. After n buttons have been pressed,

the null character x00 is loaded into the next sequential memory location.

The following program determines whether or not the lock should

open, depending on whether the combination entered agrees with the

combination stored in the n memory locations starting at x3100. If the

lock should open, the program stores a 1 in location x3050. If the lock

should not open, the program stores a 0 in location x3050.

Note that some of the instructions are missing.

Complete the program by filling in the missing instructions.
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x3000 0101 101 101 1 00000 ; R5 <– x0000

x3001 0010 000 000001111 ; R0 <– M[x3011]

x3002 0010 001 000001101 ; R1 <– M[x3010]

x3003 0110 010 000 000000 ; R2 <– M[R0]

x3004

x3005 0110 011 001 000000 ; R3 <– M[R1]

x3006 1001 011 011 111111 ; NOT R3

x3007 0001 011 011 1 00001 ; R3 <– R3 + 1

x3008

x3009 0000 101 000000100 ; Branch to x300E if N or P is set

x300A

x300B

x300C 0000 111 111110110 ; Branch always to x3003

x300D

x300E 0011 101 001000001 ; Store R5 in x3050

x300F 1111 0000 0010 0101 ; HALT

x3010 0011 0001 0000 0000 ; x3100

x3011 0011 0001 0101 0000 ; x3150

A simple change to the contents of memory will allow us to

eliminate the instructions at memory locations x3006 and x3007 in our

program. What is the change?

★6.23 The PC is loaded with x3000, and the instruction at address x3000 is

executed. In fact, execution continues and four more instructions are

executed. The table below contains the contents of various registers at

the end of execution for each of the five (total) instructions.

Your job: Complete the table.

PC MAR MDR IR R0 R1
Before execution starts x3000 —— —— —— x0000 x0000

After the first finishes xB333 x2005

After the 2nd finishes x0601

After the 3rd finishes x1 x0001

After the 4th finishes x1 x6666

After the 5th finishes x0BFC

Let’s start execution again, starting with PC = x3000. First, we

re-initialize R0 and R1 to 0, and set a breakpoint at x3004. We press

RUN eleven times, and each time the program executes until the

breakpoint. What are the final values of R0 and R1?

6.24 A student is debugging his program. His program does not have access to

memory locations x0000 to x2FFF. Why that is the case we will discuss

before the end of the book. The term is “privileged memory” but not

something for you to worry about today.
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He sets a breakpoint at x3050, and then starts executing the program.

When the program stops, he examines the contents of several memory

locations and registers, then hits single step. The simulator executes

one instruction and then stops. He again examines the contents of the

memory locations and registers. They are as follows:

Before After

PC x3050 x3051

R0 x2F5F xFFFF

R1 x4200 x4200

R2 x0123 x0123

R3 x2323 x2323

R4 x0010 x0010

R5 x0000 x0000

R6 x1000 x1000

R7 x0522 x0522

M[x3050] x6??? x6???
M[x4200] x5555 x5555

M[x4201] xFFFF xFFFF

Complete the contents of location x3050

0 1 1 0

6.25 A student is writing a program and needs to subtract the contents of R1

from the contents of R2 and put the result in R3. Instead of writing:

NOT R3,R1
ADD R3,R3,#1
ADD R3,R3,R2

she writes:

NOT R3,R1
.FILL x16E1
ADD R3,R3,R2

She assembles the program and attempts to execute it. Does the subtract

execute correctly? Why or why not?

★6.26 During the execution of an LC-3 program, an instruction in the program

starts executing at clock cycle T and requires 15 cycles to complete.

The table lists ALL five clock cycles during the processing of this

instruction, which require use of the bus. The table shows for each of

those clock cycles: which clock cycle, the state of the state machine, the

value on the bus, and the important control signals that are active during

that clock cycle.
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Cycle State Bus Important Control Signals for This Cycle

T 18 x3010 LD.MAR = 1, LD.PC =1, PCMux = PC + 1, GatePC = 1

T + 4

T + 6 x3013

T + 10 x4567

T + 14 x0000 LD.REG = 1, LD.CC = 1, GateMDR = 1, DR = 001

a. Fill in the missing entries in the table.

b. What is the instruction being processed?

c. Where in memory is that instruction?

d. How many clock cycles does it take memory to read or write?

e. There is enough information above for you to know the contents of

three memory locations. What are they, and what are their contents?

★6.27 An LC-3 program starts execution at x3000. During the execution of the

program, a snapshot of all eight registers was taken at six different times

as shown below: before the program executes, after execution of

instruction 1, after execution of instruction 2, after execution of

instruction 3, after execution of instruction 4, after execution of

instruction 5, and after execution of instruction 6.

Registers Initial After 1st After 2nd After 3rd After 4th After 5th After 6th
Value Instruction Instruction Instruction Instruction Instruction Instruction

R0 x4006 x4050 x4050 x4050 x4050 x4050 x4050

R1 x5009 x5009 x5009 x5009 x5009 x5009 x5009

R2 x4008 x4008 x4008 x4008 x4008 x4008 xC055

R3 x4002 x8005 x8005 x8005 x8005

R4 x4003 x4003 x4003 x4003 x4003

R5 x400D x400D x400D x400D x400D

R6 x400C x400C x400C x400C x400C x400C x400C

R7 x6001 x6001 x6001 x6001 x400E

Also, during the execution of the program, the PC trace, the MAR trace,

and the MDR trace were recorded as shown below. Note that a PC trace

records the addresses of the instructions executed in sequence by the

program.
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PC Trace

x400D

x400E

MAR Trace MDR Trace
xA009

x3025

x1703

x4040

x400E x1403

Your job: Fill in the missing entries in the three tables above.
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C H A P T E R

Assembly Language

By now, you are probably a little tired of 1s and 0s and keeping track of 0001

meaning ADD and 1001 meaning NOT. Also, wouldn’t it be nice if we

could refer to a memory location by some meaningful symbolic name instead of

memorizing its 16-bit address? And wouldn’t it be nice if we could represent each

instruction in some more easily comprehensible way, instead of having to keep

track of which bit of an instruction conveys which individual piece of information

about that instruction? It turns out that help is on the way.

In this chapter, we introduce assembly language, a mechanism that does all

of the above, and more.

7.1 Assembly Language
Programming—
Moving Up a Level

Recall the levels of transformation identified in Figure 1.9 of Chapter 1. Algo-

rithms are transformed into programs described in some mechanical language.

This mechanical language can be, as it is in Chapter 5, the machine language of a

particular computer. Recall that a program is in a computer’s machine language

if every instruction in the program is from the ISA of that computer.

On the other hand, the mechanical language can be more user-friendly. We

generally partition mechanical languages into two classes, high-level and low-

level. Of the two, high-level languages are much more user-friendly. Examples

are C, C++, Java, Fortran, COBOL, Python, plus more than a thousand others.

Instructions in a high-level language almost (but not quite) resemble statements

in a natural language such as English. High-level languages tend to be ISA inde-

pendent. That is, once you learn how to program in C (or Fortran or Python)

for one ISA, it is a small step to write programs in C (or Fortran or Python) for

another ISA.
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Before a program written in a high-level language can be executed, it must

be translated into a program in the ISA of the computer on which it is expected to

execute. It is often the case that each statement in the high-level language specifies

several instructions in the ISA of the computer. In Chapter 11, we will introduce

the high-level language C, and in Chapters 12 through 19, we will show the rela-

tionship between various statements in C and their corresponding translations to

LC-3 code. In this chapter, however, we will only move up a small step from the

ISA we dealt with in Chapter 5.

A small step up from the ISA of a machine is that ISA’s assembly language.

Assembly language is a low-level language. There is no confusing an instruc-

tion in a low-level language with a statement in English. Each assembly language

instruction usually specifies a single instruction in the ISA. Unlike high-level lan-

guages, which are usually ISA independent, low-level languages are very much

ISA dependent. In fact, it is usually the case that each ISA has only one assembly

language.

The purpose of assembly language is to make the programming process more

user-friendly than programming in machine language (i.e., in the ISA of the com-

puter with which we are dealing), while still providing the programmer with

detailed control over the instructions that the computer can execute. So, for exam-

ple, while still retaining control over the detailed instructions the computer is to

carry out, we are freed from having to remember what opcode is 0001 and what

opcode is 1001, or what is being stored in memory location 0011111100001010

and what is being stored in location 0011111100000101. Assembly languages

let us use mnemonic devices for opcodes, such as ADD for 0001 and NOT for

1001, and they let us give meaningful symbolic names to memory locations, such

as SUM or PRODUCT, rather than use the memory locations’ 16-bit addresses.

This makes it easier to differentiate which memory location is keeping track of a

SUM and which memory location is keeping track of a PRODUCT. We call these

names symbolic addresses.

We will see, starting in Chapter 11, that when we take the larger step of

moving up to a higher-level language (such as C), programming will be even more

user-friendly, but in doing so, we will relinquish some control over exactly which

detailed ISA instructions are to be carried out to accomplish the work specified

by a high-level language statement.

7.2 An Assembly Language Program
We will begin our study of the LC-3 assembly language by means of an example.

The program in Figure 7.1 multiplies the integer initially stored in NUMBER

by 6 by adding the integer to itself six times. For example, if the integer is 123,

the program computes the product by adding 123+123+123+123+123+123.

Where have you seen that before? :-)

The program consists of 21 lines of code. We have added a line number to

each line of the program in order to be able to refer to individual lines easily.

This is a common practice. These line numbers are not part of the program. Ten

lines start with a semicolon, designating that they are strictly for the benefit of
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01 ;
02 ; Program to multiply an integer by the constant 6.
03 ; Before execution, an integer must be stored in NUMBER.
04 ;
05 .ORIG x3050
06 LD R1,SIX
07 LD R2,NUMBER
08 AND R3,R3,#0 ; Clear R3. It will
09 ; contain the product.
0A ; The inner loop
0B ;
0C AGAIN ADD R3,R3,R2
0D ADD R1,R1,#-1 ; R1 keeps track of
0E BRp AGAIN ; the iterations
0F ;
10 HALT
11 ;
12 NUMBER .BLKW 1
13 SIX .FILL x0006
14 ;
15 .END

Figure 7.1 An assembly language program.

the human reader. More on this momentarily. Seven lines (06, 07, 08, 0C, 0D, 0E,

and 10) specify assembly language instructions to be translated into machine lan-

guage instructions of the LC-3, which will be executed when the program runs.

The remaining four lines (05, 12, 13, and 15) contain pseudo-ops, which are mes-

sages from the programmer to the translation program to help in the translation

process. The translation program is called an assembler (in this case the LC-3

assembler), and the translation process is called assembly.

7.2.1 Instructions

Instead of an instruction being 16 0s and 1s, as is the case in the LC-3 ISA, an

instruction in assembly language consists of four parts, as follows:

Label Opcode Operands ; Comment

Two of the parts (Label and Comment) are optional. More on that momentarily.

7.2.1.1 Opcodes and Operands

Two of the parts (Opcode and Operands) are mandatory. For an assembly lan-

guage instruction to correspond to an instruction in the LC-3 ISA, it must have

an Opcode (the thing the instruction is to do), and the appropriate number of

Operands (the things it is supposed to do it to). Not surprisingly, this was exactly

what we encountered in Chapter 5 when we studied the LC-3 ISA.

The Opcode is a symbolic name for the opcode of the corresponding LC-3

instruction. The idea is that it is easier to remember an operation by the symbolic
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name ADD, AND, or LDR than by the four-bit quantity 0001, 0101, or 0110.

Figure 5.3 (also Figure A.2) lists the Opcodes of the 15 LC-3 instructions.

Pages 658 through 673 show the assembly language representations for the 15

LC-3 instructions.

The number of operands depends on the operation being performed. For

example, the ADD instruction (line 0C in the program of Figure 7.1) requires

three operands (two sources to obtain the numbers to be added, and one desti-

nation to designate where the result is to be stored). All three operands must be

explicitly identified in the instruction.

AGAIN ADD R3,R3,R2

In this case the operands to be added are obtained from register 2 and from register

3. The result is to be placed in register 3. We represent each of the registers 0

through 7 as R0, R1, R2, … , R7, rather than 000, 001, 010, … , 111.

The LD instruction (line 07 of the program in Figure 7.1) requires two

operands (the memory location from which the value is to be read and the destina-

tion register that is to contain the value after the instruction finishes execution). In

LC-3 assembly language, we assign symbolic names called labels to the memory

locations so we will not have to remember their explicit 16-bit addresses. In this

case, the location from which the value is to be read is given the label NUMBER.

The destination (i.e., where the value is to be loaded) is register 2.

LD R2, NUMBER

As we discussed in Section 5.1.6, operands can be obtained from registers, from

memory, or they may be literal (i.e., immediate) values in the instruction. In the

case of register operands, the registers are explicitly represented (such as R2 and

R3 in line 0C). In the case of memory operands, the symbolic name of the mem-

ory location is explicitly represented (such as NUMBER in line 07 and SIX in line

06). In the case of immediate operands, the actual value is explicitly represented

(such as the value 0 in line 08).

AND R3, R3, #0 ; Clear R3. It will contain the product.

A literal value must contain a symbol identifying the representation base of the

number. We use # for decimal, x for hexadecimal, and b for binary. Sometimes

there is no ambiguity, such as in the case 3F0A, which is a hex number. Nonethe-

less, we write it as x3F0A. Sometimes there is ambiguity, such as in the case

1000. x1000 represents the decimal number 4096, b1000 represents the decimal

number 8, and #1000 represents the decimal number 1000.

7.2.1.2 Labels

Labels are symbolic names that are used to identify memory locations that are

referred to explicitly in the program. In LC-3 assembly language, a label consists

of from 1 to 20 alphanumeric characters (i.e., each character is a capital or lower-

case letter of the English alphabet, or a decimal digit), starting with a letter of the

alphabet.

However, not all sequences of characters that follow these rules can be used

as labels. You know that computer programs cannot tolerate ambiguity. So ADD,
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NOT, x1000, R4, and other character strings that have specific meanings in an

LC-3 program cannot be used as labels. They could confuse the LC-3 assembler

as it tries to translate the LC-3 assembly language program into a program in the

LC-3 ISA. Such not-allowed character strings are often referred to as reserved
words.

NOW, Under21, R2D2, R785, and C3PO are all examples of legitimate LC-3

assembly language labels.

We said we give a label (i.e., a symbolic name) to a memory location if we

explicitly refer to it in the program. There are two reasons for explicitly referring

to a memory location.

1. The location is the target of a branch instruction (e.g., AGAIN in line 0C).

That is, the label AGAIN identifies the location of the instruction that will

be executed next if the branch is taken.

2. The location contains a value that is loaded or stored (e.g., NUMBER in

line 12, and SIX in line 13).

Note the location AGAIN (identified in line 0C) is specifically referenced by

the branch instruction in line 0E.

BRp AGAIN

If the result of ADD R1,R1,#–1 is positive (which results in the P bit being

set), then the program branches to the location explicitly referenced as AGAIN

to perform another iteration.

The location NUMBER is specifically referenced by the load instruction

in line 07. The value stored in the memory location explicitly referenced as

NUMBER is loaded into R2.

If a location in the program is not explicitly referenced, then there is no need

to give it a label.

7.2.1.3 Comments

Comments are messages intended only for human consumption. They have no

effect on the translation process and indeed are not acted on by the LC-3 assem-

bler. They are identified in the program by semicolons. A semicolon signifies

that the rest of the line is a comment and is to be ignored by the assembler. If the

semicolon is the first nonblank character on the line, the entire line is ignored. If

the semicolon follows the operands of an instruction, then only the comment is

ignored by the assembler.

The purpose of comments is to make the program more comprehensible to

the human reader. Comments help explain a nonintuitive aspect of an instruction

or a set of instructions. In lines 08 and 09, the comment “Clear R3; it will contain

the product” lets the reader know that the instruction on line 08 is initializing

R3 prior to accumulating the product of the two numbers. While the purpose of

line 08 may be obvious to the programmer today, it may not be the case two years

from now, after the programmer has written an additional 30,000 instructions and

cannot remember why he/she wrote AND R3,R3,#0. It may also be the case that

two years from now, the programmer no longer works for the company, and the
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company needs to modify the program in response to a product update. If the task

is assigned to someone who has never seen the program before, comments go a

long way toward helping that person understand the program.

It is important to make comments that provide additional insight and do

not just restate the obvious. There are two reasons for this. First, comments that

restate the obvious are a waste of everyone’s time. Second, they tend to obscure

the comments that say something important because they add clutter to the pro-

gram. For example, in line 0D, the comment “Decrement R1” would be a bad

idea. It would provide no additional insight to the instruction, and it would add

clutter to the page.

Another purpose of comments is to make the visual presentation of a program

easier to understand. That is, comments are used to separate pieces of a program

from each other to make the program more readable. Lines of code that work

together to compute a single result are placed on successive lines, but they are

separated from the rest of the program by blank lines. For example, note that

lines 0C through 0E, which together form the loop body that is the crux of this

computer program, are separated from the rest of the code by lines 0B and 0F.

There is nothing on lines 0B and 0F other than the semicolons in the first column.

Incidentally, another opportunity to make a program easier to read is the judi-

cious use of white space, accomplished by adding extra spaces to a line that are

ignored by the assembler—for example, having all the opcodes start in the same

column on the page, whether or not the instruction has a label.

7.2.2 Pseudo-Ops (Assembler Directives)

The LC-3 assembler is a program that takes as input a string of characters repre-

senting a computer program written in LC-3 assembly language and translates it

into a program in the ISA of the LC-3. Pseudo-ops help the assembler perform

that task.

The more formal name for a pseudo-op is assembler directive. It is called a

pseudo-op because, like its Greek root “pseudes” (which means “false”), it does

not refer to an operation that will be performed by the program during execution.

Rather, the pseudo-op is strictly a message from the assembly language program-

mer to the assembler to help the assembler in the assembly process. Once the

assembler handles the message, the pseudo-op is discarded. The LC-3 assem-

bly language contains five pseudo-ops that we will find useful in our assembly

language programming: .ORIG, .FILL, .BLKW, .STRINGZ, and .END. All are

easily recognizable by the dot as their first character.

7.2.2.1 .ORIG

.ORIG tells the assembler where in memory to place the LC-3 program. In line 05,

.ORIG x3050 says, place the first LC-3 ISA instruction in location x3050. As a

result, 0010001000001100 (the translated LD R1,SIX instruction) is put in loca-

tion x3050, and the rest of the translated LC-3 program is placed in the subsequent

sequential locations in memory. For example, if the program consists of x100 LC-

3 instructions, and .ORIG says to put the first instruction in x3050, the remaining

xFF instructions are placed in locations x3051 to x314F.
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7.2.2.2 .FILL

.FILL tells the assembler to set aside the next location in the program and initial-

ize it with the value of the operand. The value can be either a number or a label.

In line 13, the ninth location in the resulting LC-3 program is initialized to the

value x0006.

7.2.2.3 .BLKW

.BLKW tells the assembler to set aside some number of sequential memory loca-

tions (i.e., a BLocK of Words) in the program. The actual number is the operand

of the .BLKW pseudo-op. In line 12, the pseudo-op instructs the assembler to set

aside one location in memory (and, incidentally, to label it NUMBER).

The pseudo-op .BLKW is particularly useful when the actual value of the

operand is not yet known. In our example we assumed the number in location

NUMBER was 123. How did it get there? A common use of .BLKW is to set

aside a location in the program, as we did here, and have another section of code

produce the number, perhaps from input from a keyboard (which we cannot know

at the time we write the program), and store that value into NUMBER before we

execute the code in Figure 7.1.

7.2.2.4 .STRINGZ

.STRINGZ tells the assembler to initialize a sequence of n+1 memory locations.

The argument is a sequence of n characters inside double quotation marks. The

first n words of memory are initialized with the zero-extended ASCII codes of the

corresponding characters in the string. The final word of memory is initialized to

0. The last word, containing x0000, provides a convenient sentinel for processing

the string of ASCII codes.

For example, the code fragment

.ORIG x3010
HELLO .STRINGZ "Hello, World!"

would result in the assembler initializing locations x3010 through x301D to the

following values:

x3010: x0048
x3011: x0065
x3012: x006C
x3013: x006C
x3014: x006F
x3015: x002C
x3016: x0020
x3017: x0057
x3018: x006F
x3019: x0072
x301A: x006C
x301B: x0064
x301C: x0021
x301D: x0000



238 chapter 7 Assembly Language

7.2.2.5 .END

.END tells the assembler it has reached the end of the program and need not

even look at anything after it. That is, any characters that come after .END will

not be processed by the assembler. Note: .END does not stop the program during

execution. In fact, .END does not even exist at the time of execution. It is simply a

delimiter—it marks the end of the program. It is a message from the programmer,

telling the assembler where the assembly language program ends.

7.2.3 Example: The Character Count Example of Section 5.5,
Revisited Again!

Now we are ready for a complete example. Let’s consider again the problem of

Section 5.5. We wish to write a program that will take a character that is input

from the keyboard and count the number of occurrences of that character in a

file. As before, we first develop the algorithm by constructing the flowchart.

Recall that in Section 6.1, we showed how to decompose the problem system-

atically so as to generate the flowchart of Figure 5.16. In fact, the final step of

that process in Chapter 6 is the flowchart of Figure 6.3e, which is essentially

identical to Figure 5.16. Next, we use the flowchart to write the actual program.

This time, however, we enjoy the luxury of not worrying about 0s and 1s and

instead write the program in LC-3 assembly language. The program is shown in

Figure 7.2.

A few comments about this program: Three times during this program, assis-

tance in the form of a service call is required of the operating system. In each case,

a TRAP instruction is used. TRAP x23 causes a character to be input from the

keyboard and placed in R0 (line 0D). TRAP x21 causes the ASCII code in R0

to be displayed on the monitor (line 28). TRAP x25 causes the machine to be

halted (line 29). As we said before, we will leave the details of how the TRAP

instruction is carried out until Chapter 9.

The ASCII codes for the decimal digits 0 to 9 (0000 to 1001) are x30 to x39.

The conversion from binary to ASCII is done simply by adding x30 to the binary

value of the decimal digit. Line 2D shows the label ASCII used to identify the

memory location containing x0030. The LD instruction in line 26 uses it to load

x30 into R0, so it can convert the count that is in R2 from a binary value to an

ASCII code. That is done by the ADD instruction in line 27. TRAP x21 in line

28 prints the ASCII code to the monitor.

The file that is to be examined starts at address x4000 (see line 2E). Usually,

this starting address would not be known to the programmer who is writing this

program since we would want the program to work on many files, not just the one

starting at x4000. To accomplish that, line 2E would be replaced with .BLKW

1 and be filled in by some other piece of code that knew the starting address of

the desired file before executing the program of Figure 7.2. That situation will be

discussed in Section 7.4.
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01 ;
02 ; Program to count occurrences of a character in a file.
03 ; Character to be input from the keyboard.
04 ; Result to be displayed on the monitor.
05 ; Program works only if no more than 9 occurrences are found.
06 ;
07 ;
08 ; Initialization
09 ;
0A .ORIG x3000
0B AND R2,R2,#0 ; R2 is counter, initialize to 0
0C LD R3,PTR ; R3 is pointer to characters
0D TRAP x23 ; R0 gets character input
0E LDR R1,R3,#0 ; R1 gets the next character
0F ;
10 ; Test character for end of file
11 ;
12 ;
13 TEST ADD R4,R1,#-4 ; Test for EOT
14 BRz OUTPUT ; If done, prepare the output
15 ;
16 ; Test character for match. If a match, increment count.
17 ;
18 NOT R1,R1
19 ADD R1,R1,#1 ; R1 <-- -R1
1A ADD R1,R1,R0 ; R1 <-- R0-R1. If R1=0, a match!
1B BRnp GETCHAR ; If no match, do not increment
1C ADD R2,R2,#1
1D ;
1E ; Get next character from the file
1F ;
20 GETCHAR ADD R3,R3,#1 ; Increment the pointer
21 LDR R1,R3,#0 ; R1 gets the next character to test
22 BRnzp TEST
23 ;
24 ; Output the count.
25 ;
26 OUTPUT LD R0,ASCII ; Load the ASCII template
27 ADD R0,R0,R2 ; Convert binary to ASCII
28 TRAP x21 ; ASCII code in R0 is displayed
29 TRAP x25 ; Halt machine
2A ;
2B ; Storage for pointer and ASCII template
2C ;
2D ASCII .FILL x0030
2E PTR .FILL x4000
2F .END

Figure 7.2 The assembly language program to count occurrences of a character.
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7.3 The Assembly Process
7.3.1 Introduction

Before an LC-3 assembly language program can be executed, it must first be

translated into a machine language program, that is, one in which each instruction

is in the LC-3 ISA. It is the job of the LC-3 assembler to perform that translation.

If you have available an LC-3 assembler, you can cause it to translate your

assembly language program into a machine language program by executing an

appropriate command. In the LC-3 assembler that is generally available via the

web, that command is assemble, and it requires as an argument the filename of

your assembly language program. For example, if the filename is solution1.asm,

then

assemble solution1.asm outfile

produces the file outfile, which is in the ISA of the LC-3. It is necessary to check

with your instructor for the correct command line to cause the LC-3 assembler to

produce a file of 0s and 1s in the ISA of the LC-3.

7.3.2 A Two-Pass Process

In this section, we will see how the assembler goes through the process of trans-

lating an assembly language program into a machine language program. We will

use as our input to the process the assembly language program of Figure 7.2.

You remember that there is in general a one-to-one correspondence between

instructions in an assembly language program and instructions in the final

machine language program. We could try to perform this translation in one pass

through the assembly language program. Starting from the top of Figure 7.2, the

assembler discards lines 01 to 09, since they contain only comments. Comments

are strictly for human consumption; they have no bearing on the translation pro-

cess. The assembler then moves on to line 0A. Line 0A is a pseudo-op; it tells

the assembler that the machine language program is to start at location x3000.

The assembler then moves on to line 0B, which it can easily translate into LC-3

machine code. At this point, we have

x3000: 0101010010100000

The LC-3 assembler moves on to translate the next instruction (line 0C). Unfor-

tunately, it is unable to do so since it does not know the meaning of the symbolic

address PTR. At this point the assembler is stuck, and the assembly process fails.

To prevent this from occurring, the assembly process is done in two com-

plete passes (from beginning to .END) through the entire assembly language

program. The objective of the first pass is to identify the actual binary addresses

corresponding to the symbolic names (or labels). This set of correspondences is

known as the symbol table. In pass 1, we construct the symbol table. In pass 2, we

translate the individual assembly language instructions into their corresponding

machine language instructions.

Thus, when the assembler examines line 0C for the purpose of translating

LD R3,PTR
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during the second pass, it already knows that PTR is the symbolic address of

memory location x3013 (from the first pass). Thus, it can easily translate line

0C to

x3001: 0010011000010001

The problem of not knowing the 16-bit address corresponding to PTR no longer

exists.

7.3.3 The First Pass: Creating the Symbol Table

For our purposes, the symbol table is simply a correspondence of symbolic names

with their 16-bit memory addresses. We obtain these correspondences by pass-

ing through the assembly language program once, noting which instruction is

assigned to which memory location, and identifying each label with the memory

address of its assigned entry.

Recall that we provide labels in those cases where we have to refer to a loca-

tion, either because it is the target of a branch instruction or because it contains

data that must be loaded or stored. Consequently, if we have not made any pro-

gramming mistakes, and if we identify all the labels, we will have identified all

the symbolic addresses used in the program.

The preceding paragraph assumes that our entire program exists between our

.ORIG and .END pseudo-ops. This is true for the assembly language program

of Figure 7.2. In Section 7.4, we will consider programs that consist of multi-

ple parts, each with its own .ORIG and .END, wherein each part is assembled

separately.

The first pass starts, after discarding the comments on lines 01 to 09, by

noting (line 0A) that the first instruction will be assigned to address x3000. We

keep track of the location assigned to each instruction by means of a location

counter (LC). The LC is initialized to the address specified in .ORIG, that is,

x3000.

The assembler examines each instruction in sequence and increments the LC

once for each assembly language instruction. If the instruction examined contains

a label, a symbol table entry is made for that label, specifying the current con-

tents of LC as its address. The first pass terminates when the .END pseudo-op is

reached.

The first instruction that has a label is at line 13. Since it is the fifth instruction

in the program and since the LC at that point contains x3004, a symbol table entry

is constructed thus:

Symbol Address

TEST x3004

The second instruction that has a label is at line 20. At this point, the LC has been

incremented to x300B. Thus, a symbol table entry is constructed, as follows:

Symbol Address

GETCHAR x300B
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At the conclusion of the first pass, the symbol table has the following entries:

Symbol Address

TEST x3004
GETCHAR x300B
OUTPUT x300E
ASCII x3012
PTR x3013

7.3.4 The Second Pass: Generating the
Machine Language Program

The second pass consists of going through the assembly language program a sec-

ond time, line by line, this time with the help of the symbol table. At each line,

the assembly language instruction is translated into an LC-3 machine language

instruction.

Starting again at the top, the assembler again discards lines 01 through 09

because they contain only comments. Line 0A is the .ORIG pseudo-op, which

the assembler uses to initialize LC to x3000. The assembler moves on to line 0B

and produces the machine language instruction 0101010010100000. Then the

assembler moves on to line 0C.

This time, when the assembler gets to line 0C, it can completely assemble

the instruction since it knows that PTR corresponds to x3013. The instruction is

LD, which has an opcode encoding of 0010. The destination register (DR) is R3,

that is, 011.

The only part of the LD instruction left to do is the PCoffset. It is computed as

follows: The assembler knows that PTR is the label for address x3013 and that the

incremented PC is LC+1, in this case x3002. Since PTR (x3013) must be the sum

of the incremented PC (x3002) and the sign-extended PCoffset, PCoffset must be

x0011. Putting this all together, the assembler sets x3001 to 0010011000010001

and increments the LC to x3002.

Note: In order to use the LD instruction, it is necessary that the source of

the load, in this case the address whose label is PTR, is not more than +256 or

−255 memory locations from the LD instruction itself. If the address of PTR

had been greater than LC+1+255 or less than LC+1−256, then the offset would

not fit in bits [8:0] of the instruction. In such a case, an assembly error would

have occurred, preventing the assembly process from finishing successfully. For-

tunately, PTR is close enough to the LD instruction, so the instruction assembled

correctly.

The second pass continues. At each step, the LC is incremented and the

location specified by LC is assigned the translated LC-3 instruction or, in the

case of .FILL, the value specified. When the second pass encounters the .END

pseudo-op, assembly terminates.

The resulting translated program is shown in Figure 7.3.

That process was, on a good day, merely tedious. Fortunately, you do not have

to do it for a living—the LC-3 assembler does that. And, since you now know the
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Address Binary

0011000000000000

x3000 0101010010100000

x3001 0010011000010001

x3002 1111000000100011

x3003 0110001011000000

x3004 0001100001111100

x3005 0000010000001000

x3006 1001001001111111

x3007 0001001001000000

x3008 1001001001111111

x3009 0000101000000001

x300A 0001010010100001

x300B 0001011011100001

x300C 0110001011000000

x300D 0000111111110110

x300E 0010000000000011

x300F 0001000000000010

x3010 1111000000100001

x3011 1111000000100101

x3012 0000000000110000

x3013 0100000000000000

Figure 7.3 The machine language program for the assembly language program of
Figure 7.2.

LC-3 assembly language, there is no need to program in machine language. Now

we can write our programs symbolically in LC-3 assembly language and invoke

the LC-3 assembler to create the machine language versions that can execute on

an LC-3 computer.

7.4 Beyond the Assembly of a Single
Assembly Language Program

Our purpose in this chapter has been to take you up one more step from the ISA

of the computer and introduce assembly language. Although it is still quite a

large step from C or C++, assembly language does, in fact, save us a good deal

of pain. We have also shown how a rudimentary two-pass assembler actually

works to translate an assembly language program into the machine language of

the LC-3 ISA.

There are many more aspects to sophisticated assembly language program-

ming that go well beyond an introductory course. However, our reason for

teaching assembly language is not to deal with its sophistication, but rather to

show its innate simplicity. Before we leave this chapter, however, there are a few

additional highlights we should explore.



244 chapter 7 Assembly Language

7.4.1 The Executable Image

When a computer begins execution of a program, the entity being executed is

called an executable image. The executable image is created from modules often

created independently by several different programmers. Each module is trans-

lated separately into an object file. We have just gone through the process of

performing that translation ourselves by mimicking the LC-3 assembler. Other

modules, some written in C perhaps, are translated by the C compiler. Some mod-

ules are written by users, and some modules are supplied as library routines by

the operating system. Each object file consists of instructions in the ISA of the

computer being used, along with its associated data. The final step is to combine

(i.e., link) all the object modules together into one executable image. During exe-

cution of the program, the FETCH, DECODE, … instruction cycle is applied to

instructions in the executable image.

7.4.2 More than One Object File

It is very common to form an executable image from more than one object file.

In fact, in the real world, where most programs invoke libraries provided by the

operating system as well as modules generated by other programmers, it is much

more common to have multiple object files than a single one.

A case in point is our example character count program. The program counts

the number of occurrences of a character in a file. A typical application could

easily have the program as one module and the input data file as another. If this

were the case, then the starting address of the file, shown as x4000 in line 2E of

Figure 7.2, would not be known when the program was written. If we replace line

2E with

PTR .FILL STARTofFILE

then the program of Figure 7.2 will not assemble because there will be no symbol

table entry for STARTofFILE. What can we do?

If the LC-3 assembly language, on the other hand, contained the pseudo-op

.EXTERNAL, we could identify STARTofFILE as the symbolic name of an

address that is not known at the time the program of Figure 7.2 is assembled.

This would be done by the following line

.EXTERNAL STARTofFILE,

which would send a message to the LC-3 assembler that the absence of label

STARTofFILE is not an error in the program. Rather, STARTofFILE is a label

in some other module that will be translated independently. In fact, in our case,

it will be the label of the location of the first character in the file to be examined

by our character count program.

If the LC-3 assembly language had the pseudo-op .EXTERNAL, and if we

had designated STARTofFILE as .EXTERNAL, the LC-3 assembler would be

able to create a symbol table entry for STARTofFILE, and instead of assigning

it an address, it would mark the symbol as belonging to another module. At link
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time, when all the modules are combined, the linker (the program that manages

the “combining” process) would use the symbol table entry for STARTofFILE in

another module to complete the translation of our revised line 2E.

In this way, the .EXTERNAL pseudo-op allows references by one module to

symbolic locations in another module without a problem. The proper translations

are resolved by the linker.

Exercises

7.1 An assembly language program contains the following two instructions.

The assembler puts the translated version of the LDI instruction that

follows into location x3025 of the object module. After assembly is

complete, what is in location x3025?

PLACE .FILL x45A7
LDI R3, PLACE

7.2 An LC-3 assembly language program contains the instruction:

ASCII LD R1, ASCII

The symbol table entry for ASCII is x4F08. If this instruction is executed

during the running of the program, what will be contained in R1

immediately after the instruction is executed?

7.3 What is the problem with using the string AND as a label?

7.4 Create the symbol table entries generated by the assembler when

translating the following routine into machine code:

.ORIG x301C
ST R3, SAVE3
ST R2, SAVE2
AND R2, R2, #0

TEST IN
BRz TEST
ADD R1, R0, #-10
BRn FINISH
ADD R1, R0, #-15
NOT R1, R1
BRn FINISH
HALT

FINISH ADD R2, R2, #1
HALT

SAVE3 .FILL X0000
SAVE2 .FILL X0000

.END
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7.5 a. What does the following program do?

.ORIG x3000
LD R2, ZERO
LD R0, M0
LD R1, M1

LOOP BRz DONE
ADD R2, R2, R0
ADD R1, R1, -1
BR LOOP

DONE ST R2, RESULT
HALT

RESULT .FILL x0000
ZERO .FILL x0000
M0 .FILL x0004
M1 .FILL x0803

.END

b. What value will be contained in RESULT after the program runs to

completion?

7.6 Our assembler has crashed, and we need your help! Create a symbol

table for the following program, and assemble the instructions at labels

A, B, and D.

.ORIG x3000
AND R0, R0, #0

A LD R1, E
AND R2, R1, #1
BRp C

B ADD R1, R1, #-1
C ADD R0, R0, R1

ADD R1, R1, #-2
D BRp C

ST R0, F
TRAP x25

E .BLKW 1
F .BLKW 1

.END

You may assume another module deposits a positive value into E before

the module executes. In 15 words or fewer, what does this program do?

7.7 Write an LC-3 assembly language program that counts the number of 1s

in the value stored in R0 and stores the result into R1. For example, if R0

contains 0001001101110000, then after the program executes, the result

stored in R1 would be 0000 0000 0000 0110.
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7.8 An engineer is in the process of debugging a program she has written.

She is looking at the following segment of the program and decides to

place a breakpoint in memory at location 0xA404. Starting with the

PC = 0xA400, she initializes all the registers to zero and runs the

program until the breakpoint is encountered.

Code Segment:
...
0xA400 THIS1 LEA R0, THIS1
0xA401 THIS2 LD R1, THIS2
0xA402 THIS3 LDI R2, THIS5
0xA403 THIS4 LDR R3, R0, #2
0xA404 THIS5 .FILL xA400
...

Show the contents of the register file (in hexadecimal) when the

breakpoint is encountered.

7.9 What is the purpose of the .END pseudo-op? How does it differ from the

HALT instruction?

7.10 The following program fragment has an error in it. Identify the error and

explain how to fix it.

ADD R3, R3, #30
ST R3, A
HALT

A .FILL #0

Will this error be detected when this code is assembled or when this code

is run on the LC-3?

7.11 The LC-3 assembler must be able to convert constants represented in

ASCII into their appropriate binary values. For instance, x2A translates

into 00101010 and #12 translates into 00001100. Write an LC-3

assembly language program that reads a decimal or hexadecimal

constant from the keyboard (i.e., it is preceded by a # character

signifying it is a decimal, or x signifying it is hex) and prints out the

binary representation. Assume the constants can be expressed with no

more than two decimal or hex digits.
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7.12 What does the following LC-3 program do?

.ORIG x3000
AND R5, R5, #0
AND R3, R3, #0
ADD R3, R3, #8
LDI R1, A
ADD R2, R1, #0

AG ADD R2, R2, R2
ADD R3, R3, #-1
BRnp AG
LD R4, B
AND R1, R1, R4
NOT R1, R1
ADD R1, R1, #1
ADD R2, R2, R1
BRnp NO
ADD R5, R5, #1

NO HALT
B .FILL xFF00
A .FILL x4000

.END

7.13 The following program adds the values stored in memory locations A, B,

and C and stores the result into memory. There are two errors in the

code. For each, describe the error and indicate whether it will be detected

at assembly time or at run time.

Line No.
1 .ORIG x3000
2 ONE LD R0, A
3 ADD R1, R1, R0
4 TWO LD R0, B
5 ADD R1, R1, R0
6 THREE LD R0, C
7 ADD R1, R1, R0
8 ST R1, SUM
9 TRAP x25
10 A .FILL x0001
11 B .FILL x0002
12 C .FILL x0003
13 D .FILL x0004
14 .END
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7.14 a. Assemble the following program:

.ORIG x3000
STI R0, LABEL
OUT
HALT

LABEL .STRINGZ "%"
.END

b. The programmer intended the program to output a % to the monitor

and then halt. Unfortunately, the programmer got confused about

the semantics of each of the opcodes (i.e., exactly what function is

carried out by the LC-3 in response to each opcode). Replace exactly

one opcode in this program with the correct opcode to make the

program work as intended.

c. The original program from part a was executed. However, execution

exhibited some very strange behavior. The strange behavior was in

part due to the programming error and in part due to the fact that the

value in R0 when the program started executing was x3000. Explain

what the strange behavior was and why the program behaved that way.

7.15 The following is an LC-3 program that performs a function. Assume a

sequence of integers is stored in consecutive memory locations, one

integer per memory location, starting at the location x4000. The

sequence terminates with the value x0000. What does the following

program do?

.ORIG x3000
LD R0, NUMBERS
LD R2, MASK

LOOP LDR R1, R0, #0
BRz DONE
AND R5, R1, R2
BRz L1
BRnzp NEXT

L1 ADD R1, R1, R1
STR R1, R0, #0

NEXT ADD R0, R0, #1
BRnzp LOOP

DONE HALT
NUMBERS .FILL x4000
MASK .FILL x8000
.END

7.16 Assume a sequence of nonnegative integers is stored in consecutive

memory locations, one integer per memory location, starting at location

x4000. Each integer has a value between 0 and 30,000 (decimal). The

sequence terminates with the value −1 (i.e., xFFFF).
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What does the following program do?

.ORIG x3000
AND R4, R4, #0
AND R3, R3, #0
LD R0, NUMBERS

LOOP LDR R1, R0, #0
NOT R2, R1
BRz DONE
AND R2, R1, #1
BRz L1
ADD R4, R4, #1
BRnzp NEXT

L1 ADD R3, R3, #1
NEXT ADD R0, R0, #1

BRnzp LOOP
DONE TRAP x25
NUMBERS .FILL x4000

.END

7.17 Suppose you write two separate assembly language modules that you

expect to be combined by the linker. Each module uses the label AGAIN,

and neither module contains the pseudo-op .EXTERNAL AGAIN.

Is there a problem using the label AGAIN in both modules? Why or

why not?

7.18 The following LC-3 program compares two character strings of the same

length. The source strings are in the .STRINGZ form. The first string

starts at memory location x4000, and the second string starts at memory

location x4100. If the strings are the same, the program terminates with

the value 1 in R5. Insert instructions at (a), (b), and (c) that will complete

the program.

.ORIG x3000
LD R1, FIRST
LD R2, SECOND
AND R0, R0, #0

LOOP -------------- (a)
LDR R4, R2, #0
BRz NEXT
ADD R1, R1, #1
ADD R2, R2, #1
-------------- (b)
-------------- (c)
ADD R3, R3, R4
BRz LOOP
AND R5, R5, #0
BRnzp DONE

NEXT AND R5, R5, #0
ADD R5, R5, #1

DONE TRAP x25
FIRST .FILL x4000
SECOND .FILL x4100

.END
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7.19 When the following LC-3 program is executed, how many times will the

instruction at the memory address labeled LOOP execute?

.ORIG x3005
LEA R2, DATA
LDR R4, R2, #0

LOOP ADD R4, R4, #-3
BRzp LOOP
TRAP x25

DATA .FILL x000B
.END

7.20 LC-3 assembly language modules (a) and (b) have been written by

different programmers to store x0015 into memory location x4000. What

is fundamentally different about their approaches?

a. .ORIG x5000
AND R0, R0, #0
ADD R0, R0, #15
ADD R0, R0, #6
STI R0, PTR
HALT

PTR .FILL x4000
.END

b. .ORIG x4000
.FILL x0015
.END

7.21 Assemble the following LC-3 assembly language program.

.ORIG x3000
AND R0, R0, #0
ADD R2, R0, #10
LD R1, MASK
LD R3, PTR1

LOOP LDR R4, R3, #0
AND R4, R4, R1
BRz NEXT
ADD R0, R0, #1

NEXT ADD R3, R3, #1
ADD R2, R2, #-1
BRp LOOP
STI R0, PTR2
HALT

MASK .FILL x8000
PTR1 .FILL x4000
PTR2 .FILL x5000

.END

What does the program do (in no more than 20 words)?

7.22 The LC-3 assembler must be able to map an instruction’s mnemonic

opcode into its binary opcode. For instance, given an ADD, it must

generate the binary pattern 0001. Write an LC-3 assembly language
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program that prompts the user to type in an LC-3 assembly language

opcode and then displays its binary opcode. If the assembly language

opcode is invalid, it displays an error message.

7.23 The following LC-3 program determines whether a character string

is a palindrome or not. A palindrome is a string that reads the same

backwards as forwards. For example, the string “racecar” is a palindrome.

Suppose a string starts at memory location x4000 and is in the .STRINGZ
format. If the string is a palindrome, the program terminates with the

value 1 in R5. If not, the program terminates with the value 0 in R5.

Insert instructions at (a)–(e) that will complete the program.

.ORIG x3000
LD R0, PTR
ADD R1, R0, #0

AGAIN LDR R2, R1, #0
BRz CONT
ADD R1, R1, #1
BRnzp AGAIN

CONT --------------(a)
LOOP LDR R3, R0, #0

--------------(b)
NOT R4, R4
ADD R4, R4, #1
ADD R3, R3, R4
BRnp NO
--------------(c)
--------------(d)
NOT R2, R0
ADD R2, R2, #1
ADD R2, R1, R2
BRnz YES
--------------(e)

YES AND R5, R5, #0
ADD R5, R5, #1
BRnzp DONE

NO AND R5, R5, #0
DONE HALT
PTR .FILL x4000

.END

7.24 We want the following program fragment to shift R3 to the left by four

bits, but it has an error in it. Identify the error and explain how to fix it.

.ORIG x3000
AND R2, R2, #0
ADD R2, R2, #4

LOOP BRz DONE
ADD R2, R2, #-1
ADD R3, R3, R3
BR LOOP

DONE HALT
.END
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7.25 What does the pseudo-op .FILL xFF004 do? Why?

7.26 Recall the assembly language program of Exercise 7.6. Consider the

following program:
.ORIG x3000
AND R0, R0, #0

D LD R1, A
AND R2, R1, #1
BRp B

E ADD R1, R1, #-1
B ADD R0, R0, R1

ADD R1, R1, #-2
F BRp B

ST R0, C
TRAP x25

A .BLKW 1
C .BLKW 1

.END

The assembler translates both assembly language programs into

machine language programs. What can you say about the two

resulting machine language programs?

7.27 Consider the following LC-3 assembly language program:

.ORIG x3000
AND R2, R2, #0
AND R6, R6, #0
ADD R2, R2, #1

TOP ADD R3, R2, #0
ADD R4, R1, #0

SEARCH ADD R3, R3, R3
ADD R4, R4, #-1
BRp SEARCH
AND R5, R3, R0
BRz NEXT
ADD R6, R6, R2

NEXT ADD R2, R2, R2
BRzp TOP

END ST R6, RESULT
HALT

RESULT .BLKW 1
.END

What does it do (in 20 words or fewer)? Please be BRIEF but PRECISE.

You can assume that some of the registers will already contain numbers

that are relevant to the program.

What is the function of R0? For what range of input values does the

program function as you’ve described above?

What is the function of R1? For what range of input values does the

program function as you’ve described above?

What is the function of R6? For what range of input values does the

program function as you’ve described above?
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★7.28 Consider the following program:

.ORIG x3000
LD R0, A
LD R1, B
BRz DONE
--------- (a)
--------- (b)
BRnzp AGAIN

DONE ST R0, A
HALT

A .FILL x0--- (c)
B .FILL x0001

.END

The program uses only R0 and R1. Note lines (a) and (b) indicate two

missing instructions. Complete line (c). Note also that one of the

instructions in the program must be labeled AGAIN, and that label is

missing.

After execution of the program, the contents of A is x1800.

During execution, we examined the computer during each clock cycle

and recorded some information for certain clock cycles, producing

the table shown below. The table is ordered by the cycle number in

which the information was collected. Note that each memory access

takes five clock cycles.

101 15

Control Signals

77

181

0

57

LD.MAR: PCMUX:

DR:

ALUK:

GatePC:

DR:

LD.REG:

PCMUX:

LD.REG:

GatePC:LD.PC:

LD.MAR:

LD.MAR:

LD.MAR:

LD.REG:

LD.PC:

GateALU:

GateMDR:

BEN

GateMDR:

LD.REG: 1 000

LD.PC:

GateALU: GateMARMUX:

LD.CC:

22

1

ADDR2MUX:ADDR1MUX:

State
Number

Cycle
Number

Fill in the missing instructions in the program, and complete the program

by labeling the appropriate instruction AGAIN. Also, fill in the missing

information in the table.

Given values for A and B, what does the program do?
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★7.29 An LC-3 program is executing on the LC-3 simulator when a breakpoint

is encountered, and the simulator stops. At that point, the contents of
several registers are as shown in the first row of the table. After the

run button is subsequently pushed, the next four instructions that are

executed, none of which are an STI or LDI, produce the values shown in

the table, two rows of the table per instruction executed. The first row

of each pair shows the contents after the fetch phase of the corresponding

instruction, and the second row of each pair after that instruction

completes.

Note that some values are missing and are presented by letters A, B, C,

D, E, F, G, H, I, and J.

PC MAR MDR IR R0 R1 R2 R3 R4 R5 R6 R7

x1800 x7FFF x2211 xBFFE x31FF x2233 x5177 x3211 x21FF x5233 x3177 x2211

A x1800 B B x31FF x2233 x5177 x3211 x21FF x5233 x3177 x2211

A x1800 B B x31FF x2233 x5177 x3211 x21FF C x3177 x2211

D A E E x31FF x2233 x5177 x3211 x21FF C x3177 x2211

D F G E x31FF x2233 x5177 x3211 x21FF C x3177 x2211

H D I I x31FF x2233 x5177 x3211 x21FF C x3177 x2211

F D I I x31FF x2233 x5177 x3211 x21FF C x3177 x2211

A F J J x31FF x2233 x5177 x3211 x21FF C x3177 x2211

A F J J x31FF x2233 x5177 x3211 x223A C x3177 x2211

Your job: Determine the values of A, B, C, D, E, F, G, H, I, and J. Note

that some of the values may be identical.

A B C D E

F G H I J

x ⋅F⋅⋅

★7.30 There are times when one wants to implement a stack in memory, but

cannot provide enough memory to be sure there will always be plenty of

space to push values on the stack. Furthermore, there are times (beyond

EE 306) when it is OK to lose some of the oldest values pushed on the

stack. We can save that discussion for the last class if you like.

In such situations, a reasonable technique is to specify a circular stack as

shown below. In this case, the stack occupies five locations x3FFB to

x3FFF. Initially, the stack is empty, with R6 = x4000. The figure shows
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the result of successively pushing the values 1, 2, 3, 4, 5, 6, 7, 8 on the

stack.

x3FFF

x3FFB
x0004
x0008
x0007
x0006

R6

x0005

That is, the 1 was written into x3FFF, the 2 was written into x3FFE, etc.

When the time came to push the 6, the stack was full, so R6 was set to

x3FFF, and the 6 was written into x3FFF, clobbering the 1 which was

originally pushed.

If we now pop five elements off the stack, we get 8, 7, 6, 5, and 4, AND

we have an empty stack, even though R6 contains x3FFD. Why?

Because 3, 2, and 1 have been lost. That is, even though we have pushed

eight values, there can be at most only five values actually available on

the stack for popping. We keep track of the number of actual values on

the stack in R5.

Note that R5 and R6 are known to the calling routine, so a test for

underflow can be made by the calling program using R5. Furthermore,

the calling program puts the value to be pushed in R0 before calling

PUSH.

Your job: Complete the assembly language code shown below to

implement the PUSH routine of the circular stack by filling in each

of the lines: (a), (b), (c), and (d) with a missing instruction.

PUSH ST R1, SAVER
LD R1, NEGFULL
ADD R1, R6, R1
--------------(a)

LD R6, BASE
SKIP ADD R6, R6, #-1

LD R1, MINUS5
ADD R1, R5, R1
BRz END
--------------(b)

END --------------(c)
--------------(d)

RET
NEGFULL .FILL xC005 ; x-3FFB
MINUS5 .FILL xFFFB ; #-5
BASE .FILL x4000
SAVER .BLKW #1
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7.31 Memory locations x5000 to x5FFF contain 2’s complement integers.

What does the following program do?

.ORIG x3000
LD R1, ARRAY
LD R2, LENGTH
AND R3, R3, #0

AGAIN LDR R0, R1, #0
AND R0, R0, #1
BRz SKIP
ADD R3, R3, #1

SKIP ADD R1, R1, #1
ADD R2, R2, #-1
BRp AGAIN
HALT

ARRAY .FILL x5000
LENGTH .FILL x1000

.END

7.32 Consider the following semi-nonsense assembly language program:

line 1: .ORIG x8003
line 2: AND R1,R1,#0
line 3: ADD R0,R1,#5
line 4: ST R1,B
line 5: LD R1,A
line 6: BRz SKIP
line 7: ST R0,B
line 8: SKIP TRAP x25
line 9: A .BLKW #7
line 10: B .FILL #5
line 11: BANNER .STRINGZ "We are done!"
line 12: C .FILL x0
line 13: .END

A separate module will store a value in A before this program executes.

Construct the symbol table.

Show the result of assembly of lines 5 through 7 above. Note: the

instruction at line 8 has already been assembled for you.

x8006

x8007

x8008

x8009 1 1 1 1 0 00 0 0 10100 0 1

Note that two different things could cause location B to contain the value

5: the contents of line 7 or the contents of line 10. Explain the difference
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between line 7 causing the value 5 to be in location B and line 10 causing

the value 5 to be in location B.

★7.33 We have a program with some missing instructions, and we have a table

consisting of some information and some missing information associated

with five specific clock cycles of the program’s execution. Your job is to

complete both!

Insert the missing instructions in the program and the missing

information in the table. Cycle numbering starts at 1. That is, cycle 1 is

the first clock cycle of the processing of LD R0,A. Note that we have not

said anything about the number of clock cycles a memory access takes.

You do have enough information to figure that out for yourself. Note that

we are asking for the value of the registers DURING each clock cycle.

.ORIG x3000
LD R0, A
LD R1, B
NOT R1, R1
ADD R1, R1, #1
AND R2, R2, #0

AGAIN -------------- (a)
-------------- (b)
BRnzp AGAIN

DONE ST R2, C
HALT

A .FILL #5
B .FILL -------- (c)
C .BLKW #1

.END

PC: x3008
ADDR2MUX:

Information

35

57

LD.MDR:

LD.REG:

GateALU:

GateMDR:

1

1

State
Number

Cycle
Number

50

16

1 DRMUX:

GateALU: GatePC:

IR:MDR:

x0001
MDR:

x_4A_
DRMUX:

x0003

LD.IR:

LD.REG:

BUS:

PC:

BUS: x_040
IR:

GatePC:

1LD.PC:

ADDR1MUX:

ADDERPCMUX:

GateMDR:

LD.CC:

23

What is stored in C at the end of execution for the specific operands

given in memory locations A and B?

Actually, the program was written by a student, so as expected, he did

not get it quite right. Almost, but not quite! Your final task on this

problem is to examine the code, figure out what the student was trying to
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do, and point out where he messed up and how you would fix it. It is not

necessary to write any code, just explain briefly how you would fix it.

What was the student trying to do?

How did the student mess up?

How would you fix his program?

7.34 It is often useful to find the midpoint between two values. For this

problem, assume A and B are both even numbers, and A is less than B.

For example, if A = 2 and B = 8, the midpoint is 5. The following

program finds the midpoint of two even numbers A and B by continually

incrementing the smaller number and decrementing the larger number.

You can assume that A and B have been loaded with values before this

program starts execution.

Your job: Insert the missing instructions.

.ORIG x3000
LD R0,A
LD R1,B

X ------------------ (a)
------------------ (b)
ADD R2,R2,R1
------------------ (c)
ADD R1,R1,#-1
------------------ (d)
BRnzp X

DONE ST R1,C
TRAP x25

A .BLKW 1
B .BLKW 1
C .BLKW 1

.END

★7.35 The program stored in memory locations x3000 to x3007 loads a value

from memory location x3100, then does some processing, and then

stores a result in memory location x3101. Following is an incomplete

specification of the program. Your job: Complete the specification of the

program.

Address Contents Assembly code

x3000 0101 001 001 1 00000 AND R1, R1, #0

x3001 0010 000 LD R0, x3100

x3002 0000 110 000000011 BRnz x3006

x3003 0001 ADD

x3004

x3005 0000 111

x3006 0011 001 ST R1, x3101

x3007 1111 0000 0010 0101 HALT

To help you in this process, we have taken a snapshot of part of the

state of the machine before the first instruction executes and at several
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instruction boundaries thereafter, that is, after a number of instructions

executed. Part of the snapshot is shown below. Your job is to complete

the snapshot. Note that the program enters the TRAP x25 service routine

after executing 17 instructions. Therefore, some instructions must

execute more than once.

Note that in the following table, some entries are designated xxxx. You

do not have to fill in those entries. Also, you can ignore snapshots for any

instructions that are not listed in the table.

Instruction # PC MAR MDR R0 R1

Initial x3000 xxxx xxxx xxxx xxxx

1 x3001 xxxx xxxx xxxx

2 x3002

3 x3003 xxxx xxxx

4 x3004 x1240

5 x3005 xxxx xxxx x0002

9 x3005 xxxx xxxx x0001

13 x3005 xxxx xxxx x0000

14 x3002 xxxx xxxx

15 x3006 xxxx xxxx

16 x3007

17 xxxx xxxx xxxx

7.36 The modulo operator (A mod B) is the remainder one gets when dividing

A by B. For example, 10 mod 5 is 0, 12 mod 7 is 5.

The following program is supposed to perform A mod B, where A is in

x3100 and B is in x3101. The result should be stored at location x3200.

However, the programmer made a serious mistake, so the program does

not work. You can assume that A and B are both positive integers.

.ORIG x3000 ; Line 1
LD R3, L2 ; 2
LDR R0, R3, #0 ; 3
LDR R1, R3, #1 ; 4
NOT R2, R1 ; 5
ADD R2, R2, #1 ; 6

L1 ADD R0, R0, R2 ; 7
BRzp L1 ; 8
ADD R0, R0, R1 ; 9
ST R0, L3 ; 10
HALT ; 11

L2 .FILL x3100 ; 12
L3 .FILL x3200 ; 13

.END ; 14

After the instruction at line 6 has executed, what are the contents of R0,

R1, and R2? Note: The correct answer in each case is one of the

following: A, −A, B, −B, 0, 1, −1.
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There is a bug in the program. What line is it in, and what should the

correct instruction be?

★7.37 During the processing of an LC-3 program by the data path we have been

using in class, the computer stops due to a breakpoint set at x3000. The

contents of certain registers and memory locations at that time are as

follows:

R2 through R7: x0000
M[x3000]: x1263
M[x3003]: x0000

The LC-3 is restarted and executes exactly four instructions. To

accomplish this, a number of clock cycles are required. In 15 of those

clock cycles, the bus must be utilized. The following table lists those 15

clock cycles in sequential order, along with the values that are gated onto

the LC-3 bus in each.

BUS

1st: x3000

2nd: x1263

3rd: x009A

4th: x3001

5th: xA000

6th:

7th:

8th:

9th:

10th:

11th:

12th:

13th: x3003

14th: x1263

15th: x009D

Fill in the missing entries above.

What are the four instructions that were executed?

What are the contents of R0 and R1 after the four instructions execute?
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C H A P T E R

Data Structures

Up to now, each item of information we have processed with the computer

has been a single value—either an integer, a floating point number, or an

ASCII character. The real world is filled with items of information far more com-

plex than simple, single numbers. A company’s organization chart and a list of

items arranged in alphabetical order are two examples. We call these complex

items of information abstract data types, or more colloquially data structures.

In this chapter, we will study three abstract data types: stacks, queues, and char-

acter strings. We will write programs to solve problems that require expressing

information according to its structure. There are other abstract data types to be

sure, but we will leave those for Chapter 15, after we have introduced you to the

C programming language.

Before we get to stacks, queues, and character strings, however, we intro-

duce a new concept that will prove very useful in manipulating data structures:

subroutines, or what is also called functions.

8.1 Subroutines
It is often useful to be able to invoke a program fragment multiple times within

the same program without having to specify its details in the source program each

time it is needed. Also, in the real world of computer software development, it is

often (usually?) the case that one software engineer writes a program that requires

such fragments and another software engineer writes the fragments.

Or, one might require a fragment that has been supplied by the manufacturer

or by some independent software supplier. It is almost always the case that col-

lections of such fragments are available to user programmers to free them from

having to write their own. These collections are referred to as libraries. An exam-

ple is the Math Library, which consists of fragments that compute such functions

as square root, sine, and arctangent. In fact, because the Math Library exists,

user programmers can get the computer to compute those functions without even

having to know how to write a program fragment to do it!
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For all of these reasons, it is good to have a way to use program frag-

ments efficiently. Such program fragments are called subroutines, or alternatively,

procedures, or in C terminology, functions.

Figure 8.1 provides a simple illustration of a part of a program—call it “piece-

of-code-A”—containing fragments that must be executed multiple times within

piece-of-code-A. Figure 8.1 will be studied in detail in Chapter 9, but for now,

01 START ST R1,SaveR1 ; Save registers needed
02 ST R2,SaveR2 ; by this routine
03 ST R3,SaveR3
04 ;
05 LD R2,Newline
06 L1 LDI R3,DSR
07 BRzp L1 ; Loop until monitor is ready
08 STI R2,DDR ; Move cursor to new clean line
09 ;
0A LEA R1,Prompt ; Starting address of prompt string
0B Loop LDR R0,R1,#0 ; Write the input prompt
0C BRz Input ; End of prompt string
0D L2 LDI R3,DSR
0E BRzp L2 ; Loop until monitor is ready
0F STI R0,DDR ; Write next prompt character
10 ADD R1,R1,#1 ; Increment prompt pointer
11 BRnzp Loop ; Get next prompt character
12 ;
13 Input LDI R3,KBSR
14 BRzp Input ; Poll until a character is typed
15 LDI R0,KBDR ; Load input character into R0
16 L3 LDI R3,DSR
17 BRzp L3 ; Loop until monitor is ready
18 STI R0,DDR ; Echo input character
19 ;
1A L4 LDI R3,DSR
1B BRzp L4 ; Loop until monitor is ready
1C STI R2,DDR ; Move cursor to new clean line
1D LD R1,SaveR1 ; Restore registers
1E LD R2,SaveR2 ; to original values
1F LD R3,SaveR3
20 JMP R7 ; Do the program’s next task
21 ;
22 SaveR1 .BLKW 1 ; Memory for registers saved
23 SaveR2 .BLKW 1
24 SaveR3 .BLKW 1
25 DSR .FILL xFE04
26 DDR .FILL xFE06
27 KBSR .FILL xFE00
28 KBDR .FILL xFE02
29 Newline .FILL x000A ; ASCII code for newline
2A Prompt .STRINGZ ‘‘Input a character>’’

Figure 8.1 Instruction sequence (Piece-of-code-A) we will study in detail in Chapter 9.
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let’s ignore everything about it except the three-instruction sequences starting at

symbolic addresses L1, L2, L3, and L4.

Each of these four 3-instruction sequences does the following:

label LDI R3,DSR
BRzp label
STI Reg,DDR

Each of the four instances uses a different label (L1, L2, L3, L4), but that is

not a problem since in each instance the only purpose of the label is to branch

back from the BRzp instruction to the LDI instruction.

Two of the four program fragments store the contents of R0 and the other two

store the contents of R2, but that is easy to take care of, as we will see. The main

point is that, aside from the small nuisance of which register is being used for the

source of the STI instruction, the four program fragments do exactly the same

thing, and it is wasteful to require the programmer to write the code four times.

The subroutine call/return mechanism enables the programmer to write the code

only once.

8.1.1 The Call/Return Mechanism

The call/return mechanism allows us to execute this one three-instruction

sequence multiple times by requiring us to include it as a subroutine in our

program only once.

Figure 8.2 shows the instruction execution flow for a program with and

without subroutines.

Note in Figure 8.2 that without subroutines, the programmer has to provide

the same code A after X, after Y, and after Z. With subroutines, the programmer

W

Y
Y

(a) Without subroutines (b) With subroutines

A

1 3 5

2 4 6

X

A

X

Call

Call

A Z

Z

A

Call

Return

W

Figure 8.2 Instruction execution flow with/without subroutines.
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has to provide the code A only once. The programmer uses the call/return mech-

anism to direct the computer each time via the call instruction to the code A,

and after the computer has executed the code A, to the return instruction to the

proper next instruction to be executed in the program.

We refer to the program that contains the call as the caller, and the subroutine

that contains the return as the callee.

The call/return mechanism consists of two instructions. The first instruction

JSR(R) is in the caller program and does two things: It loads the PC with the

starting address of the subroutine and it loads R7 with the address immediately

after the address of the JSR(R) instruction. The address immediately after the

address of the JSR(R) instruction is the address to come back to after execut-

ing the subroutine. We call the address we come back to the return linkage. The

second instruction JMP R7 is the last instruction in the subroutine (i.e., in the

callee program). It loads the PC with the contents of R7, the address just after

the address of the JSR instruction, completing the round trip flow of control from

the caller to the callee and back.

8.1.2 JSR(R)—The Instruction That Calls the Subroutine

The LC-3 specifies one control instruction for calling subroutines; its opcode is

0100. The instruction uses one of two addressing modes for computing the start-

ing address of the subroutine, PC-relative addressing or Base Register addressing.

The LC-3 assembly language provides two different mnemonic names for the

opcode, JSR and JSRR, depending on which addressing mode is used.

The JSR(R) instruction does two things. Like all control instructions, it loads

the PC, overwriting the incremented PC that was loaded during the FETCH phase

of the JSR(R) instruction. In this case the starting address of the subroutine is

computed and loaded into the PC. The second thing the JSR(R) instruction does

is save the return address in R7. The return address is the incremented PC, which

is the address of the instruction following the JSR(R) instruction in the calling

program.

The JSR(R) instruction consists of three parts.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode A Address evaluation bits

Bits [15:12] contain the opcode, 0100. Bit [11] specifies the addressing mode,

the value 1 if the addressing mode is PC-relative, and the value 0 if the addressing

mode is Base Register addressing. Bits [10:0] contain information that is used to

obtain the starting address of the subroutine. The only difference between JSR

and JSRR is the addressing mode that is used for evaluating the starting address

of the subroutine.

JSR The JSR instruction computes the target address of the subroutine by sign-

extending the 11-bit offset (bits [10:0]) of the instruction to 16 bits and adding that

to the incremented PC. This addressing mode is almost identical to the addressing
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mode of another control instruction, the BR instruction, except eleven bits of

PCoffset are used, rather than nine bits as is the case for BR.

If the following JSR instruction is stored in location x4200, its execution will

cause the PC to be loaded with x3E05 (i.e., xFC04 + x4201) and R7 to be loaded

with x4201.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0
JSR A PCoffset11

JSRR The JSRR instruction is exactly like the JSR instruction except for the

addressing mode. JSRR obtains the starting address of the subroutine in exactly

the same way the JMP instruction does; that is, bits [8:6] identify the Base

Register, that contains the address to be loaded into the PC.

If the following JSRR instruction is stored in location x420A, and if R5 con-

tains x3002, the execution of the JSRR will cause R7 to be loaded with x420B

and the PC to be loaded with x3002.

Question: What important feature does the JSRR instruction provide that the

JSR instruction does not provide?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
JSRR A BaseR

8.1.3 Saving and Restoring Registers

We have known for a long time that every time an instruction loads a value into

a register, the value that was previously in that register is lost. Thus, we need to

save the value in a register

∙ if that value will be destroyed by some subsequent instruction, and

∙ if we will need it after that subsequent instruction.

This can be a problem when dealing with subroutines.

Let’s examine again the piece of code in Figure 8.1. Suppose this piece of code is

a subroutine called by the instruction JSR START in some caller program, which

we will call CALLER.

Suppose before CALLER executes JSR START, it computes values that it

loads into R1, R2, and R3. In our subroutine starting at START, the instruction

on line 05 loads a value into R2, the instruction on line 06 loads a value into

R3, and the instruction on line 0A loads a value into R1. What would happen

if CALLER needed those values after returning from the subroutine that begins

at START? Too bad! Since the subroutine destroyed the values in R1, R2, and

R3 by executing the instructions in lines 05, 06, and 0A, those values are lost to

CALLER when it resumes execution after the JMP R7 instruction on line 20 of

the subroutine. Of course, this is unacceptable.

We prevent it from happening during the first part of our subroutine, that

is, during initialization. In lines 01, 02, and 03, the contents of R1, R2, and R3
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are stored in memory locations SaveR1, SaveR2, and SaveR3. Three locations

in the subroutine (lines 22, 23, and 24) have been set aside for the purpose of

saving those register values. And, in lines 1D, 1E, and 1F (just before the JMP

R7 instruction), the values stored there are put back into R1, R2, and R3. That is,

before the subroutine uses R1, R2, and R3 for its own use, the subroutine saves
the values put there by the calling program. And, before the subroutine returns to

the calling program, those values are put back (i.e., restored) where the calling

program has a right to expect them.

We call this technique callee save because the subroutine (i.e., the callee)

saves and restores the registers. It makes sense to have the subroutine save the

registers because the subroutine knows which registers it needs to do the work of

the subroutine. There really is no reason to burden the person writing the caller

program to know which registers the subroutine needs.

We could of course have the caller program save all the registers before JSR

START, and then the subroutine would not have to bother saving any of them.

Some programs do that, and in fact, some ISAs have JSR instructions that do

that as part of the execution of the JSR instruction. But if we wish to eliminate

unnecessary saves and restores, we can do so in this case by having the callee

save only the registers it needs.

We should also point out that since JMP START loads the return linkage

in R7, whatever was in R7 is destroyed by the execution of the JMP START

instruction. Therefore, if the calling program had stored a value in R7 before

calling the subroutine at START, and it needed that value after returning from

the subroutine, the caller program would have to save and restore R7. Why

should the caller program save and restore R7? Because the caller program

knows that the contents of R7 will be destroyed by execution of JMP START.

We call this caller save because the calling program saves and restores the

register value.

The message is this: If a value in a register will be needed after something

else is stored in that register, we must save it before something else happens and

restore it before we can subsequently use it. We save a register value by storing

it in memory; we restore it by loading it back into the register.

The save/restore problem can be handled either by the calling program before

the JSR occurs or by the subroutine. We will see in Section 9.3 that the same prob-

lem exists for another class of calling/called routines, those due to system calls.

In summary, we use the term caller save if the calling program handles the

problem. We use the term callee save if the called program handles the problem.

The appropriate one to handle the problem is the one that knows which registers

will be destroyed by subsequent actions.

The callee knows which registers it needs to do the job of the called program.

Therefore, before it starts, it saves those registers with a sequence of stores. After

it finishes, it restores those registers with a sequence of loads. And it sets aside

memory locations to save those register values.

The caller knows what damage will be done by instructions under its con-

trol. It knows that each instance of a JSR instruction will destroy what is in R7.

So, before the JSR instruction is executed, R7 is saved. After the caller program

resumes execution (upon completion of the subroutine), R7 is restored.
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8.1.4 Library Routines

We noted early in this section that there are many uses for the call/return mech-

anism, among them the ability of a user program to call library subroutines that

are usually delivered as part of the computer system. Libraries are provided as a

convenience to the user programmer. They are legitimately advertised as pro-
ductivity enhancers since they allow the application programmer to use them

without having to know or learn much of their inner details. For example, it is

often the case that a programmer knows what a square root is (we abbreviate

SQRT), may need to use sqrt(x) for some value x, but does not have a clue as to

how to write a program to perform sqrt, and probably would rather not have to

learn how.

A simple example illustrates the point: We have lost our key and need to get

into our apartment. We can lean a ladder up against the wall so that the ladder

touches the bottom of our open window, 24 feet above the ground. There is a

10-foot flower bed on the ground along the edge of the wall, so we need to keep

the base of the ladder outside the flower bed. How big a ladder do we need so

that we can lean it against the wall and climb through the window? Or, stated less

colorfully: If the sides of a right triangle are 24 feet and 10 feet, how big is the

hypotenuse (see Figure 8.3)?

10 feet

24 feet

Ladder

Figure 8.3 Solving for the length of the hypotenuse.

We remember from high school that Pythagoras answered that one for us:

c2 = a2 + b2

Knowing a and b, we can easily solve for c by taking the square root of the sum

of a2 and b2. Taking the sum is not hard—the LC-3 ADD instruction can do that

job. The square is also not hard; we can multiply two numbers by a sequence of

additions. But how does one get the square root? The structure of our solution is

shown in Figure 8.4.

The subroutine SQRT has yet to be written. If it were not for the Math Library,

the programmer would have to pick up a math book (or get someone to do it

for him/her), check out the Newton-Raphson method, and produce the missing

subroutine.
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01 ...
02 ...
03 LD R0,SIDE1
04 BRz S1
05 JSR SQUARE
06 S1 ADD R1,R0,#0
07 LD R0,SIDE2
08 BRz S2
09 JSR SQUARE
0A S2 ADD R0,R0,R1
0B JSR SQRT
0C ST R0,HYPOT
0D BRnzp NEXT_TASK
0E SQUARE ADD R2,R0,#0
0F ADD R3,R0,#0
10 AGAIN ADD R2,R2,#-1
11 BRz DONE
12 ADD R0,R0,R3
13 BRnzp AGAIN
14 DONE RET
15 SQRT ... ; R0 <-- SQRT(R0)
16 ... ;
17 ... ; How do we write this subroutine?
18 ... ;
19 ... ;
1A RET
1B SIDE1 .BLKW 1
1C SIDE2 .BLKW 1
1D HYPOT .BLKW 1
1E ...
1F ...

Figure 8.4 A program fragment to compute the hypotenuse of a right triangle.

However, with the Math Library, the problem pretty much goes away. Since

the Math Library supplies a number of subroutines (including SQRT), the user

programmer can continue to be ignorant of the likes of Newton-Raphson. The

user still needs to know the label of the target address of the library routine that

performs the square root function, where to put the argument x, and where to

expect the result SQRT(x). But these are easy conventions that can be obtained

from the documentation associated with the Math Library.

If the library routine starts at address SQRT, and the argument is provided in

R0 to the library routine, and the result is obtained in R0 from the library routine,

Figure 8.4 reduces to Figure 8.5.

Two things are worth noting:

∙ Thing 1—The programmer no longer has to worry about how to compute the

square root function. The library routine does that for us.

∙ Thing 2—The pseudo-op .EXTERNAL. We already saw in Section 7.4.2 that

this pseudo-op tells the assembler that the label (SQRT), which is needed to

assemble the .FILL pseudo-op in line 19, will be supplied by some other

program fragment (i.e., module) and will be combined with this program
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01 ...
02 ...
03 .EXTERNAL SQRT
04 ...
05 ...
06 LD R0,SIDE1
07 BRz S1
08 JSR SQUARE
09 S1 ADD R1,R0,#0
0A LD R0,SIDE2
0B BRz S2
0C JSR SQUARE
0D S2 ADD R0,R0,R1 ; R0 contains argument x
0E LD R4,BASE ; BASE contains starting address of SQRT routine
0F JSRR R4
10 ST R0,HYPOT
11 BRnzp NEXT_TASK
12 SQUARE ADD R2,R0,#0
13 ADD R3,R0,#0
14 AGAIN ADD R2,R2,#-1
15 BRz DONE
16 ADD R0,R0,R3
17 BRnzp AGAIN
18 DONE RET
19 BASE .FILL SQRT
1A SIDE1 .BLKW 1
1B SIDE2 .BLKW 1
1C HYPOT .BLKW 1
1D ...
1E ...

Figure 8.5 The program fragment of Figure 8.4, using a library routine.

fragment (i.e., module) when the executable image is produced. The exe-

cutable image is the binary module that actually executes. The executable

image is produced at link time.

This notion of combining multiple modules at link time to produce an exe-

cutable image is the normal case. Figure 8.6 illustrates the process. You will see

concrete examples of this when we work with the programming language C in

the second half of this course.

Most application software requires library routines from various libraries. It

would be very inefficient for the typical programmer to produce all of them—

assuming the typical programmer were able to produce such routines in the first

place. We have mentioned routines from the Math Library. There are also a num-

ber of preprocessing routines for producing pretty graphic images. There are other

routines for a number of other tasks where it would make no sense at all to have the

programmer write them from scratch. It is much easier to require only (1) appro-

priate documentation so that the interface between the library routine and the

program that calls that routine is clear, and (2) the use of the proper pseudo-ops

such as .EXTERNAL in the source program. The linker can then produce an

executable image at link time from the separately assembled modules.
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Object module for 
math library

Symbol table

Executable
image

LinkAssemble

Some other separately
assembled module

Object module for A

Symbol table for A

Source module A

Symbol table
for math library

Figure 8.6 An executable image constructed from multiple files.
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8.2 The Stack
Now we are ready to study some data structures. The first and most important

data structure is the stack.

8.2.1 The Stack—An Abstract Data Type

Throughout your future interaction with computers (whether writing software or

designing hardware), you will encounter again and again the storage mechanism

known as a stack. Stacks can be implemented in many different ways, and we

will get to that momentarily. But first, it is important to know that the concept of

a stack has nothing to do with how it is implemented. The concept of a stack is

the specification of how it is to be accessed. That is, the defining notion of a stack

is that the last thing you stored in the stack is the first thing you remove from it.

That is what makes a stack different from everything else in the world. Simply

put: Last In, First Out, or LIFO.

In the terminology of computer programming languages, we say the stack is

an example of an abstract data type. That is, an abstract data type is a storage

mechanism that is defined by the operations performed on it and not at all by the

specific manner in which it is implemented. In this section, you will see stacks

implemented as sequential locations in memory.

8.2.2 Two Example Implementations

A coin holder in the armrest next to the driver of an automobile is an example of

a stack. The first quarter you take to pay the highway toll is the last quarter you

added to the stack of quarters. As you add quarters, you push the earlier quarters

down into the coin holder.

Figure 8.7 shows the behavior of a coin holder. Initially, as shown in

Figure 8.7a, the coin holder is empty. The first highway toll is 75 cents, and

you give the toll collector a dollar. He gives you 25 cents change, a 1995 quar-

ter, which you insert into the coin holder. The coin holder appears as shown in

Figure 8.7b.

(d) After two pops

1995 Quarter

1982 Quarter1996 Quarter

1998 Quarter

1982 Quarter

1995 Quarter

(c) After three pushes(b) After one push

1995 Quarter

(a) Initial state
(Empty)

Figure 8.7 A coin holder in an automobile armrest—example of a stack.
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There are special terms for the insertion and removal of elements from a

stack. We say we push an element onto the stack when we insert it. We say we

pop an element from the stack when we remove it.

The second highway toll is $4.25, and you give the toll collector $5.00. She

gives you 75 cents change, which you insert into the coin holder: first a 1982

quarter, then a 1998 quarter, and finally, a 1996 quarter. Now the coin holder is

as shown in Figure 8.7c. The third toll is 50 cents, and you remove (pop) the

top two quarters from the coin holder: the 1996 quarter first and then the 1998

quarter. The coin holder is then as shown in Figure 8.7d.

The coin holder is an example of a stack, precisely because it obeys the LIFO

requirement. Each time you insert a quarter, you do so at the top. Each time you

remove a quarter, you do so from the top. The last coin you inserted is the first

coin you remove. Therefore, it is a stack.

Another implementation of a stack, sometimes referred to as a computer

hardware stack, is shown in Figure 8.8. Its behavior resembles that of the coin

holder we just described. It consists of some number of hardware registers, each

of which can store a value. The example of Figure 8.8 contains five registers. As

each value is added to the stack or removed from the stack, the values already on

the stack move.

YesEmpty:

/ / / / / /

NoEmpty:

TOP

/ / / / / /

NoEmpty:

/ / / / / /

NoEmpty:

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

(a) Initial state (b) After one push (c) After three pushes (d) After two pops

18

/ / / / / /

/ / / / / /

/ / / / / /

12

5

31

18

31

18

/ / / / / /

/ / / / / /

TOP TOP TOP

Figure 8.8 A stack, implemented in hardware—data entries move.

In Figure 8.8a, the stack is initially shown as empty. Access is always via the

first element, which is labeled TOP. If the value 18 is pushed onto the stack, we

have Figure 8.8b. If the three values 31, 5, and 12 are pushed (in that order), the

result is as shown in Figure 8.8c. Finally, if two values are popped from the stack,

we have Figure 8.8d. A distinguishing feature of the stack of Figure 8.8 is that,

like the quarters in the coin holder, as each value is added or removed, all the
other values already on the stack move.

8.2.3 Implementation in Memory

By far the most common implementation of a stack in a computer is as shown in

Figure 8.9. This stack consists of a sequence of memory locations along with a

mechanism, called the stack pointer, which keeps track of the top of the stack.

We use R6 to contain the address of the top of the stack. That is, in the LC-3, R6

is the stack pointer.
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Figure 8.9 A stack, implemented in memory—data entries do not move.

In Figure 8.9, five memory locations (x3FFF to x3FFB) are provided for the

stack. The actual locations comprising the stack at any single instant of time are

the consecutive locations from x3FFF to the location specified in R6, that is, the

top of the stack. For example, in Figure 8.9c, the stack consists of the contents of

locations x3FFF, x3FFE, x3FFD, and x3FFC.

Figure 8.9a shows an initially empty stack. Since there are no values on the stack,

the stack pointer contains the address x4000, the address of the memory location just

after the memory locations reserved for the stack. Why this makes sense will be clear

after we show the actual code for pushing values onto and popping values off of the

stack. Figure 8.9b shows the stack after pushing the value 18. Note that the stack

pointer contains the address x3FFF, which is the new top of the stack.

Figure 8.9c shows the stack after pushing the values 31, 5, and 12, in that

order. Note that the values inserted into the stack are stored in memory loca-

tions having decreasing addresses. We say the stack grows toward zero. Finally,

Figure 8.9d shows the stack after popping the top two elements off the stack.

Note that those two elements (the values 5 and 12) that were popped are

still present in memory locations x3FFD and x3FFC. However, as we will see

momentarily, those values 5 and 12 cannot be accessed from memory, as long as

every access to memory is controlled by the stack mechanism.

Note also that, unlike the coin holder and computer hardware stack imple-

mentations discussed in the previous section, when values are pushed and popped

to and from a stack implemented in sequential memory locations, the data already

stored on the stack does not physically move.

Push We push a value onto the stack by executing the two-instruction sequence

PUSH ADD R6,R6,#-1
STR R0,R6,#0

In Figure 8.9a, R6 contains x4000, indicating that the stack is empty. To push

the value 18 onto the stack, we decrement R6, the stack pointer, so the address in

R6 (i.e., address x3FFF) corresponds to the location where we want to store the

value we are pushing onto the stack. The actual push is done by first loading 18

into R0, and then executing STR R0,R6,#0. This stores the contents of R0 into

memory location x3FFF.
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That is, to push a value onto the stack, we first load that value into R0. Then

we decrement R6, which contained the previous top of the stack. Then we execute

STR R0,R6,#0, which stores the contents of R0 into the memory location whose

address is in R6.

The three values 31, 5, and 12 are pushed onto the stack by loading each in

turn into R0 and then executing the two-instruction sequence. In Figure 8.9c, R6

(the stack pointer) contains x3FFC, indicating that the top of the stack is location

x3FFC and that 12 was the last value pushed.

Pop To pop a value from the stack, the value is read and the stack pointer is

incremented. The following two-instruction sequence

POP LDR R0,R6,#0
ADD R6,R6,#1

pops the value contained in the top of the stack and loads it into R0. The stack

pointer (R6) is incremented to indicate that the old value at the top of the stack

has been popped and is no longer on the stack, and we have a new value at the

top of the stack.

If the stack were as shown in Figure 8.9c and we executed the sequence twice,

we would pop two values from the stack. In this case, we would first remove the

12, and then the 5. Assuming the purpose of popping two values is to use those

two values, we would, of course, have to move the 12 from R0 to some other

location before calling POP a second time.

Note that after 12 and 5 are popped, R6 contains x3FFE, indicating that 12

and 5 are no longer on the stack and that the top of the stack is 31. Figure 8.9d

shows the stack after that sequence of operations.

Note that the values 12 and 5 are still stored in memory locations x3FFD and

x3FFC, respectively. However, since the stack requires that we push by executing

the PUSH sequence and pop by executing the POP sequence, we cannot read the

values 12 and 5 if we obey the rules. The fancy name for “the rules” is the stack
protocol.

Underflow What happens if we now attempt to pop three values from the stack?

Since only two values remain on the stack, we would have a problem. Attempting

to pop items that have not been previously pushed results in an underflow situ-

ation. In our example, we can test for underflow by comparing the stack pointer

with x4000, which would be the contents of R6 if there were nothing left on the

stack to pop. If UNDERFLOW is the label of a routine that handles the underflow

condition, our resulting POP sequence would be

POP LD R1,EMPTY
ADD R2,R6,R1 ; Compare stack
BRz UNDERFLOW ; pointer with x4000.

;
LDR R0,R6,#0
ADD R6,R6,#1

;
RET

EMPTY .FILL xC000 ; EMPTY <-- negative of x4000
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Underflow
?

Yes No

R5  <-- 0

R0  <-- Value popped
R5  <-- 1

Figure 8.10 POP routine, including test for underflow.

Rather than have the POP routine immediately jump to the UNDERFLOW

routine if the POP is unsuccessful, it is often useful to have the POP routine

return to the calling program with the underflow information contained in a reg-

ister. We will use R5 to provide success/failure information. Figure 8.10 is a

flowchart showing how the POP routine could be augmented, using R5 to report

this success/failure information.

Upon return from the POP routine, the calling program would examine R5

to determine whether the POP completed successfully (R5 = 0), or not (R5 = 1).

Note that since the POP routine reports success or failure in R5, whatever

was stored in R5 before the POP routine was called is lost. Thus, it is the job

of the calling program to save the contents of R5 before the JSR instruction is

executed if the value stored there will be needed later. Recall from Section 8.1.3

that this is an example of a caller-save situation.

The resulting POP routine is shown in the following instruction sequence.

POP AND R5,R5,#0
LD R1,EMPTY
ADD R2,R6,R1
BRz Failure
LDR R0,R6,#0
ADD R6,R6,#1
RET

Failure ADD R5,R5,#1
RET

EMPTY .FILL xC000 ; EMPTY <-- -x4000

Overflow What happens when we run out of available space and we try to

push a value onto the stack? Since we cannot store values where there is no

space, we have an overflow situation. We can test for overflow by comparing the

stack pointer with (in the example of Figure 8.9) x3FFB. If they are equal, we

have no place to push another value onto the stack. If OVERFLOW is the label
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of a routine that handles the overflow condition, our resulting PUSH sequence

would be

PUSH LD R1,MAX
ADD R2,R6,R1
BRz OVERFLOW

;
ADD R6,R6,#-1
STR R0,R6,#0

;
RET

MAX .FILL xC005 ; MAX <-- negative of x3FFB

In the same way that it is useful to have the POP routine return to the calling

program with success/failure information, rather than immediately jumping to the

UNDERFLOW routine, it is useful to have the PUSH routine act similarly.

We augment the PUSH routine with instructions to store 0 (success) or

1 (failure) in R5, depending on whether or not the push completed success-

fully. Upon return from the PUSH routine, the calling program would examine

R5 to determine whether the PUSH completed successfully (R5 = 0) or not

(R5 = 1).

Note again that since the PUSH routine reports success or failure in R5, we

have another example of a caller-save situation. That is, since whatever was stored

in R5 before the PUSH routine was called is lost, it is the job of the calling pro-

gram to save the contents of R5 before the JSR instruction is executed if the value

stored in R5 will be needed later.

The resulting PUSH routine is shown in the following instruction sequence.

PUSH AND R5,R5,#0
LD R1,MAX
ADD R2,R6,R1
BRz Failure
ADD R6,R6,#-1
STR R0,R6,#0
RET

Failure ADD R5,R5,#1
RET

MAX .FILL xC005 ; MAX <-- -x3FFB

8.2.4 The Complete Picture

The POP and PUSH routines allow us to use memory locations x3FFF through

x3FFB as a five-entry stack. If we wish to push a value onto the stack, we simply

load that value into R0 and execute JSR PUSH. To pop a value from the stack

into R0, we simply execute JSR POP. If we wish to change the location or the

size of the stack, we adjust BASE and MAX accordingly.

Before leaving this topic, we should be careful to clean up an important detail

that we discussed in Section 8.1.3. The subroutines PUSH and POP make use of

R1 and R2, and there is no reason why the calling program would know that.
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Therefore, it is the job of the subroutine (callee save) to save R1 and R2 before

using them, and to restore them before returning to the calling program.

The PUSH and POP routines also write to R5. But, as we have already pointed

out, the calling program knows that the subroutine will report success or failure

in R5, so it is the job of the calling program to save R5 before executing the

JSR instruction if the value stored in R5 will be needed later. As discussed in

Section 8.1.3, this is an example of caller save.

The final code for our PUSH and POP operations is shown in Figure 8.11.

01 ;
02 ; Subroutines for carrying out the PUSH and POP functions. This
03 ; program works with a stack consisting of memory locations x3FFF
04 ; through x3FFB. R6 is the stack pointer.
05 ;
06 POP AND R5,R5,#0 ; R5 <-- success
07 ST R1,Save1 ; Save registers that
08 ST R2,Save2 ; are needed by POP
09 LD R1,EMPTY ; EMPTY contains -x4000
0B ADD R2,R6,R1 ; Compare stack pointer to x4000
0C BRz fail_exit ; Branch if stack is empty
0D ;
0E LDR R0,R6,#0 ; The actual "pop"
0F ADD R6,R6,#1 ; Adjust stack pointer
10 BRnzp success_exit
11 ;
12 PUSH AND R5,R5,#0
13 ST R1,Save1 ; Save registers that
14 ST R2,Save2 ; are needed by PUSH
15 LD R1,FULL ; FULL contains -x3FFB
16 ADD R2,R6,R1 ; Compare stack pointer to x3FFB
17 BRz fail_exit ; Branch if stack is full
18 ;
19 ADD R6,R6,#-1 ; Adjust stack pointer
1A STR R0,R6,#0 ; The actual "push"
1B success_exit LD R2,Save2 ; Restore original
1C LD R1,Save1 ; register values
1D RET
1E ;
1F fail_exit LD R2,Save2 ; Restore original
20 LD R1,Save1 ; register values
21 ADD R5,R5,#1 ; R5 <-- failure
22 RET
23 ;
24 EMPTY .FILL xC000 ; EMPTY contains -x4000
25 FULL .FILL xC005 ; FULL contains -x3FFB
26 Save1 .FILL x0000
27 Save2 .FILL x0000

Figure 8.11 The stack protocol.
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8.3 Recursion, a Powerful Technique
When Used Appropriately

Recursion is a mechanism for expressing a function in terms of itself. Some have

referred to it as picking oneself up by one’s bootstraps, since at first blush, it looks

like magic—which, of course, it isn’t.

When used appropriately, the expressive power of recursion is going to save

us a lot of headaches. When used whimsically, recursion is going to require

unnecessary activity, resulting in longer execution time and wasted energy.

The mechanism is so important that we will study it in greater detail later

in the book after we have raised the level of abstraction to programming in a

high-level language. However, since a critical concept needed to understand the

implementation of recursion is the stack, which we have just studied, it is useful

to show by means of examples just when using recursion is warranted and when

using it is not a good idea.

We will examine two ill-advised uses of recursion. We will also examine a

problem where using the expressive power of recursion is very helpful.

8.3.1 Bad Example Number 1: Factorial

The simplest example to illustrate recursion is the function factorial. The

equation

n! = n * (n-1)!

says it all. We are expressing factorial in terms of factorial! How we can write a

program to do this we will see momentarily.

Assume the subroutine FACT (Factorial) is supplied with a positive integer

n in R0 and returns with the value n! in R0. (We will save 0! for an exercise at

the end of the chapter.)

Figure 8.12 shows a pictorial view of the recursive subroutine. We rep-

resent the subroutine FACT as a hexagon, and inside the hexagon is another

instance of the hexagon! We call the subroutine recursive because inside the

FACT subroutine is an instruction JSR FACT.

The subroutine first tests to see if n = 1. If so, we are done, since (1)!

= 1. It is important to emphasize that every recursive subroutine must have

such an initial test to see if we should execute the recursive call. Without this

test, the subroutine would call itself (JSR FACT) an infinite number of times!

Clearly, that cannot be correct. The answer is to provide a test before the recur-

sive JSR instruction. In the case of the subroutine FACT, if R0 is 1, we are done,

since 1! = 1.

If n does not equal 1, we save the value in R1, so we can store n in R1, load

R0 with n-1 and JSR FACT. When FACT returns with (n-1)! in R0, we multiply

it by n (which was stored in R1), producing n!, which we load into R0, restore R1

to the value expected by the calling program, and RET.

If we assume the LC-3 has a MUL instruction, the basic structure of the

FACT subroutine takes the following form:
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n = 1
?

R0 n * (n − 1)!

R0 = (n−1)!

Yes

R0 = n

R0 = n!

No

n − 1R0
Save n

Figure 8.12 Flowchart for a recursive FACTORIAL subroutine.

FACT ST R1, Save1 ; Callee save R1
ADD R1,R0,#-1 ; Test if R0=1
BRz DONE ; If R0=1, R0 also contains (1)!, so we are done
ADD R1,R0,#0 ; Save n in R1, to be used after we compute (n-1)!
ADD R0,R1, #-1 ; Set R0 to n-1, and then call FACT

B JSR FACT ; On RET, R0 will contain (n-1)!
MUL R0,R0,R1 ; Multiply n times (n-1)!, yielding n! in R0

DONE LD R1, Save1 ; Callee restore R1
RET

Save1 .BLKW 1

Since the LC-3 does not have a MUL instruction, this will require another

subroutine call, but we are ignoring that here in order to focus on the essence of

recursion.

Unfortunately, the code we have written will not work. To see why it will not

work, Figure 8.13 shows the flow of instruction execution as we would like it to

be. The main program calls the subroutine with a JSR instruction at address A.

This causes the code labeled #1 to execute. At address B, the subroutine FACT

calls itself with the instruction JSR FACT. This causes the code labeled #2 to

execute, and so forth.

Note that when the main program executes the instruction JSR FACT, the

return linkage A+1 is saved in R7. In the block of code labeled #1, the instruction

at address B (JSR FACT) stores its return linkage B+1 in R7, destroying A+1,

so there is no way to get back to the main program. Bad! In fact, very, very bad!

We can solve this problem by pushing the address A+1 onto a stack before

executing JSR FACT at address B. After we subsequently return to address B+1,

we can then pop the stack and load the address A+1 into R7 before we execute

the instruction RET back to the main program.
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#1

B    JSR FACT

Calling Program
R0 = n

R0 = n−1

R0 = (n−1)!

R0 = (n−2)!

R0 = n−2

R0 = n!

R0 = n−3

B    JSR FACT

B    JSR FACT

#2

#3

A    JSR  FACT

R0 = (n−3)!...
R0 = 1

R0 = 1!

Figure 8.13 Execution flow for recursive FACTORIAL subroutines.
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Also, note that the instruction ADD R1,R0,#0 in #1 loads the value n into

R1, and in #2, the instruction ADD R1,R0,#0 loads the value n-1 into R1, thereby

wiping out the value n that had been put there by the code in #1. Thus, when the

instruction flow gets back to #1), where the value n is needed by the instruction

MUL R0,R0,R1, it is no longer there. It was previously wiped out. Again, very,

very bad!

We can solve this problem with a stack also. That is, instead of moving the

value n to R1 before loading n-1 into R0, we push n onto the stack and then pop

it when we need it after returning from the subroutine with (n-1)! in R0.

Finally, we note that the first instruction in our subroutine saves R1 in Save1

and the last instruction before the RET restores it to R1. We do this so that from

the standpoint of the calling program, the value in R1 before the subroutine is the

same as the value in R1 after the subroutine, even though the subroutine used R1

in performing its job. However, since our subroutine is recursive, when FACT is

called by the JSR instruction at address B, R1 does not contain the value it had

in the main program, but instead it has the value last stored in R1 by the ADD

R1,R0,#0 instruction. Thus after the JSR FACT instruction is executed, the first

instruction of the recursively called subroutine FACT will save that value, wiping

out the value that the main program had stored in R1 when it called FACT.

We can solve this problem with a stack also. We simply replace the ST

R1,Save1 with a push and LD R1,Save1 with a pop.

If we make these changes (and if the LC-3 had a MUL opcode), the recursive

subroutine works as we would like it to. The resulting subroutine is shown in

Figure 8.14 (with almost all instructions explained via comments):

FACT ADD R6,R6,#-1
STR R1,R6,#0 ; Push Caller’s R1 on the stack, so we can use R1.

;
ADD R1,R0,#-1 ; If n=1, we are done since 1! = 1
BRz NO_RECURSE

;
ADD R6,R6,#-1
STR R7,R6,#0 ; Push return linkage onto stack
ADD R6,R6,#-1
STR R0,R6,#0 ; Push n on the stack

;
ADD R0,R0,#-1 ; Form n-1, argument of JSR

B JSR FACT
LDR R1,R6,#0 ; Pop n from the stack
ADD R6,R6,#1
MUL R0,R0,R1 ; form n*(n-1)!

;
LDR R7,R6,#0 ; Pop return linkage into R7
ADD R6,R6,#1

NO_RECURSE LDR R1,R6,#0 ; Pop caller’s R1 back into R1
ADD R6,R6,#1
RET

Figure 8.14 The recursive subroutine FACT.
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SP
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JSR FACT executes in #1
a. Contents of stack when
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n−2

A+1

a. Contents of stack when
JSR FACT executes in #3
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Caller's R1Caller's R1

n−1
B+1

n−2
B+1

Figure 8.15 The stack during two instances of executing the FACTORIAL subroutine.

The main program calls FACT with R0 = n. The code in #1 executes, with

JSR FACT being called with R0 = n-1. At this point, the stack contains the

three entries pushed, as shown in Figure 8.15a. When the JSR FACT instruc-

tion in #3 executes, with R0 = n-3, the stack contains the nine entries as shown

in Figure 8.15b.

The obvious question you should ask at this point is, “Why is this such

a bad use of recursion, particularly when its representation n! = n * (n-1)! is

so elegant?” To answer this question, we first note how many instructions are

executed and how much time is wasted pushing and popping elements off the

stack. AND, the second question you should ask is, “Is there a better way to

compute n!?”

Consider the alternative shown in Figure 8.16:

FACT ST R1,SAVE_R1
ADD R1,R0,#0
ADD R0,R0, #-1
BRz DONE

AGAIN MUL R1,R1,R0
ADD R0,R0,#-1 ; R0 gets next integer for MUL
BRnp AGAIN

DONE ADD R0,R1,#0 ; Move n! to R0
LD R1,SAVE_R1
RET

SAVE_R1 .BLKW 1

Figure 8.16 Implementing FACT iteratively (i.e., without recursion).
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8.3.2 Fibonacci, an Even Worse Example

Another bad use of recursion is to evaluate the Fibonacci number FIB(n). The

Fibonacci numbers are defined for all non-negative integers as follows: FIB(0)=0,

FIB(1)=1, and if n > 1, FIB(n) = FIB(n-1) + FIB(n-2). The expression is

beautifully elegant, but the execution time is horrendous.

Figure 8.17 shows a pictorial view of the recursive subroutine FIB. Note that

the subroutine FIB is represented as a “capital F,” and inside the capital F there

are two more instances of the capital F.

The recursive subroutine in Figure 8.18 computes FIB(n).

Test

R0 n−1

R0 = n

R1 = FIB(n−1)

SAVE  FIB(n−1)
R0 n−2

R1 = FIB(n−2)

Restore R2
Restore n

Restore Linkage

Save Linkage
Save n
Save R2

R1 = FIB(n)

FIB(n−1) + FIB(n−2)R1

Figure 8.17 Pictorial representation of the recursive FIB subroutine.



286 chapter 8 Data Structures

;FIB subroutine
; + FIB(0) = 0
; + FIB(1) = 1
; + FIB(n) = FIB(n-1) + FIB(n-1)
;
; Input is in R0
; Return answer in R1
;
FIB ADD R6, R6, #-1

STR R7, R6, #0 ; Push R7, the return linkage
ADD R6, R6, #-1
STR R0, R6, #0 ; Push R0, the value of n
ADD R6, R6, #-1
STR R2, R6, #0 ; Push R2, which is needed in the subroutine

; Check for base case
AND R2, R0, #-2
BRnp SKIP ; Z=0 if R0=0,1
ADD R1, R0, #0 ; R0 is the answer
BRnzp DONE

; Not a base case, do the recursion
SKIP ADD R0, R0, #-1

JSR FIB ; R1 = FIB(n-1)
ADD R2, R1, #0 ; Move result before calling FIB again
ADD R0, R0, #-1
JSR FIB ; R1 = FIB(n-2)
ADD R1, R2, R1 ; R1 = FIB(n-1) + FIB(n-2)

; Restore registers and return
DONE LDR R2, R6, #0

ADD R6, R6, #1
LDR R0, R6, #0
ADD R6, R6, #1
LDR R7, R6, #0
ADD R6, R6, #1
RET

Figure 8.18 A recursive implementation of Fibonacci.

As with all recursive subroutines, we first need to test for the base cases.

In this case, we AND n with xFFFE, which produces a non-zero result for all

n except n = 1 and n = 0. If n = 0 or 1, we are effectively done. We move n

into R1, restore R2, R0, and R7 (actually, only R2 needs to be restored), and

return.

If n is not 0 or 1, we need to recursively call FIB twice, once with argument

n-1 and once with argument n-2. Finally we add FIB(n-1) to FIB(n-2), put the

result in R1, restore R2, R0, and R7, and return.
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Note that the recursive subroutine FIB(n) calls FIB twice: once for FIB(n-1)

and once for FIB(n-2). FIB(n-1) must call FIB(n-2) and FIB(n-3), and FIB(n-2)

must call FIB(n-3) and FIB(n-4). That means FIB(n-2) must be evaluated twice

and FIB(n-3) will have to be evaluated three times.

Question: Suppose n = 10. How many times must this recursive algorithm

compute the same function FIB(5)?

Compare the recursive algorithm for Fibonacci (Figure 8.18) with a non-

recursive algorithm, as shown in Figure 8.19. Much, much faster execution

time!

FIB ST R1,SaveR1
ST R2,SaveR2
ST R3,SaveR3
ST R4,SaveR4
ST R5,SaveR5

;
NOT R0,R0
ADD R0,R0,#1 ; R0 contains -n
AND R1,R1,#0 ; Suppose n=0
ADD R5,R1,R0 ; R5 = 0 -n
BRz DONE ; if n=0, done almost
AND R3,R2,#0 ; if n>0, set up R3 = FIB(0) = 0
ADD R1,R3,#1 ; Suppose n=1
ADD R5,R1,R0 ; R5 = 1-n
BRz DONE ; if n=1, done almost
ADD R4,R1,#0 ; if n>1, set up R4 = FIB(1) = 1

;
AGAIN ADD R1,R1,#1 ; We begin the iteration of FIB(i)

ADD R2,R3,#0 : R2= FIB(i-2)
ADD R3,R4,#0 : R3= FIB(i-1)
ADD R4,R2,R3 ; R4 = FIB(i)
ADD R5,R1,R0 ; is R1=n ?
BRn AGAIN

;
ADD R0,R4,#0 ; if n>1, R0=FIB(n)
BRnzp RESTORE

DONE ADD R0,R1,#0 ; if n=0,1, FIB(n)=n
RESTORE LD R1,SaveR1

LD R2,SaveR2
LD R3,SaveR3
LD R4,SaveR4
LD R5,SaveR5
RET

Figure 8.19 An iterative solution to Fibonacci.
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8.3.3 The Maze, a Good Example

The reason for shying away from using recursion to compute factorial or

Fibonacci is simply that the iterative algorithms are simple enough to understand

without the horrendous execution time penalty of recursion. However, it is impor-

tant to point out that there are times when the expressive beauty of recursion is

useful to attack a complicated problem. Such is the case with the following prob-

lem, involving a maze: Given a maze and a starting position within the maze,

write a program that determines whether or not there is a way out of the maze

from your starting position.

A Maze A maze can be any size, n by m. For example, Figure 8.20 illustrates a

6x6 maze.

Figure 8.20 Example of a maze.

Each of the 36 cells of the maze can be characterized by whether there is a door

to the north, east, south, or west, and whether there is a door from the cell to the

outside world. Each cell is represented by one word of memory (Figure 8.21), as

follows:

Bit[4]=1 if there is a door to the outside world; Bit[4]=0 if no door.
Bit[3]=1 if there is a door to the cell to the north; Bit[3]=0 if no door.
Bit[2]=1 if there is a door to the cell to the east; Bit[2]=0 if no door.
Bit[1]=1 if there is a door to the cell to the south; Bit[1]=0 if no door.
Bit[0]=1 if there is a door to the cell to the west; Bit[0]=0 if no door.

Figure 8.21 Specification of each cell in the maze.

The words are stored in what we call row major order; that is, row 1 is stored, then

row 2, then row 3, etc. The complete specification of the 6 by 6 maze is shown in

Figure 8.22.
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00 .ORIG x5000
01 MAZE .FILL x0006
02 .FILL x0007
03 .FILL x0005
04 .FILL x0005
05 .FILL x0003
06 .FILL x0000
07 ; second row: indices 6 to 11
08 .FILL x0008
09 .FILL x000A
0A .FILL x0004
0B .FILL x0003
0C .FILL x000C
0D .FILL x0015
0E ; third row: indices 12 to 17
0F .FILL x0000
10 .FILL x000C
11 .FILL x0001
12 .FILL x000A
13 .FILL x0002
14 .FILL x0002
15 ; fourth row: indices 18 to 23
16 .FILL x0006
17 .FILL x0005
18 .FILL x0007
19 .FILL x000D
1A .FILL x000B
1B .FILL x000A
1C ; fifth row: indices 24 to 29
1D .FILL x000A
1E .FILL x0000
1F .FILL x000A
20 .FILL x0002
21 .FILL x0008
22 .FILL x000A
23 ; sixth row: indices 30 to 35
24 .FILL x0008
25 .FILL x0000
26 .FILL x001A
27 .FILL x000C
28 .FILL x0001
29 .FILL x0008
2A .END

Figure 8.22 Specification of the maze of Figure 8.20.
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A Recursive Subroutine to Exit the Maze Our job is to develop an algorithm

to determine whether we can exit a maze from a given starting position within

the maze. With all the intricate paths that our attempts can take, keeping track

of all that bookkeeping looks daunting. Recursion allows us to not have to keep

track of the paths at all! Figure 8.23 shows a pictorial view of a recursive sub-

routine FIND EXIT, an algorithm for determining whether or not we can exit the

maze. Note that the subroutine FIND EXIT is shown as an octagon, and inside

the octagon there are four more instances of octagons, indicating recursive calls

to FIND EXIT. If we can exit the maze, we will return from the subroutine with

R1=1; if not, we will return with R1=0.

R1=1

EXIT

NO

YES

BREADCRUMB

ADDRESS

NO NO NO NO

R1R1R1R1

NORTH
      +

No B
      +

No B
      +

No B
      +

No B

SOUTH WESTEAST

0 0 0

1 1 1

R1

ADDRESSADDRESSADDRESSADDRESS

YESYESYESYES

R1=0

Figure 8.23 Pictorial representation of the recursive subroutine to exit the maze.
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The algorithm works as follows: In each cell, we first ask if there is an exit

from this cell to the outside world. If yes, we return the value 1 and return. If not,

we ask whether we should try the cell to the north, the east, the south, or the west.

In order to try a cell in any direction, clearly there must be a door to the cell in

that direction. Furthermore, we want to be sure we do not end up in an infinite

loop where for example, there are doors that allow us to go north one cell, and

from there east one cell, and from there south one cell, and from there west one

cell, putting us right back where we started. To prevent situations like that from

happening, we put a “breadcrumb” in each cell we visit, and we only go to a cell

and JSR FIND EXIT if we have not visited that cell before.

Thus, our algorithm:

a. From our cell, we ask if we can exit. If yes, we are done. We exit with R1=1.

b. If not, we put a breadcrumb in our cell. Our breadcrumb is bit [15] of the

word corresponding to our current cell. We set it to 1.

c. We ask two questions: Is there a door to the north, and have we never

visited the cell to the north before? If the answer to both is yes, we set the

address to the cell to the north, and JSR FIND EXIT. We set the address to

the cell to the north by simply subtracting 6 from the address of the current

cell. Why 6? Because the cells are stored in row major order, and the

number of columns in the maze is 6.

d. If the answer to either question is no, or if going north resulted in failure,

we ask: Is there a door to the east, and have we never visited that cell

before? If the answer to both is yes, we set the address to the address of the

cell to the east (by adding 1 to the address) and JSR FIND EXIT.

e. If going east does not get us out, we repeat the question for south, and if

that does not work, then for west.

f. If we end up with no door to the west to a cell we have not visited, or if there

is a door and we haven’t visited, but it results in failure, we are done. We

cannot exit the maze from our starting position. We set R1=0 and return.

Figure 8.24 shows a recursive algorithm that determines if we can exit the

maze, given our starting address.



292 chapter 8 Data Structures

; Recursive subroutine that determines if there is a path from current cell
; to the outside world.
; input: R0, current cell address
; output: R1, YES (1) or NO (0)

.ORIG x4000

01 FIND_EXIT ; save modified registers into the stack.
02 ADD R6, R6, #-1
03 STR R2, R6, #0 ; R2 holds the cell data of the caller
04 ADD R6, R6, #-1
05 STR R3, R6, #0 ; R3 holds the cell address of the caller
06 ADD R6, R6, #-1
07 STR R7, R6, #0 ; R7 holds the PC of the caller
08
09 ; Move cell address to R3, since we need to use R0
0A ; as the input to recursive subroutine calls.
0B ADD R3, R0, #0
0C
0D ; If the exit is in this cell, return YES
0E LDR R2, R0, #0 ; R2 now holds the current cell data
0F LD R7, EXIT_MASK
10 AND R7, R2, R7
11 BRnp DONE_YES
12
13 ; Put breadcrumb in the current cell.
14 LD R7, BREADCRUMB
15 ADD R2, R2, R7
16 STR R2, R0, #0
17
18 ; check the north cell for a path to exit
19 CHECK_NORTH LD R7, NORTH_MASK
1A AND R7, R2, R7
1B BRz CHECK_EAST ; If north is blocked, check east
1C LDR R7, R3, #-6
1D BRn CHECK_EAST ; If a breadcrumb in the north cell, check east
1E ADD R0, R3, #-6
1F JSR FIND_EXIT ; Recursively check the north cell
20 ADD R1, R1, #0
21 BRp DONE_YES ; If a path from north cell found, return YES
22
23 ; check the north cell for a path to exit
24 CHECK_EAST LD R7, EAST_MASK
25 AND R7, R2, R7
26 BRz CHECK_SOUTH ; If the way to east is blocked, check south
27 LDR R7, R3, #1
28 BRn CHECK_SOUTH ; If a breadcrumb in the east cell, check south
29 ADD R0, R3, #1
2A JSR FIND_EXIT ; Recursively check the east cell
2B ADD R1, R1, #0
2C BRp DONE_YES ; If a path from east cell found, return YES
2D

Figure 8.24 A recursive subroutine to determine if there is an exit from the maze (Fig. 8.24 continued on
next page.)
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2E ; check the south cell for a path to exit
2F CHECK_SOUTH LD R7, SOUTH_MASK
30 AND R7, R2, R7
31 BRz CHECK_WEST ; If the way to south is blocked, check west
32 LDR R7, R3, #6
33 BRn CHECK_WEST ; If a breadcrumb in the south cell, check west
34 ADD R0, R3, #6
35 JSR FIND_EXIT ; Recursively check the south cell
36 ADD R1, R1, #0
37 BRp DONE_YES ; If a path from south cell found, return YES
38
39 ; check the west cell for a path to exit
3A CHECK_WEST LD R7, WEST_MASK
3B AND R7, R2, R7
3C BRz DONE_NO ; If the way to west is blocked, return NO
3D LDR R7, R3, #-1
3E BRn DONE_NO ; If a breadcrumb in the west cell, return NO
3F ADD R0, R3, #-1
40 JSR FIND_EXIT ; Recursively check the west cell
41 ADD R1, R1, #0
42 BRp DONE_YES ; If a path from west cell found, return YES
43
44 DONE_NO AND R1, R1, #0
45 BR RESTORE
46
47 DONE_YES AND R1, R1, #0
48 ADD R1, R1, #1
49
4A RESTORE ADD R0, R3, #0 ; restore R0 from R3
4B ; restore the rest of the modified registers from the stack.
4C LDR R7, R6, #0
4D ADD R6, R6, #1
4E LDR R3, R6, #0
4F ADD R6, R6, #1
50 LDR R2, R6, #0
51 ADD R6, R6, #1
52 RET
53
54 BREADCRUMB .FILL x8000
55 EXIT_MASK .FILL x0010
56 NORTH_MASK .FILL x0008
57 EAST_MASK .FILL x0004
58 SOUTH_MASK .FILL x0002
59 WEST_MASK .FILL x0001
5A .END

Figure 8.24 A recursive subroutine to determine if there is an exit from the maze (continued Fig. 8.24 from
previous page.)
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8.4 The Queue
Our next data structure is the queue. Recall that the property that defined the

concept of “stack” was LIFO, the last thing we pushed onto the stack is the first

thing we pop off the stack. The defining property of the abstract data type queue
is FIFO. FIFO stands for “First in First out.” The data structure “queue” is like a

queue in a polite supermarket, or a polite ticket counter. That is, the first person

in line is the first person serviced. In the context of the data structure, this means

we need to keep track of two ends of the storage structure: a FRONT pointer

for servicing (i.e., removing elements from the front of the queue) and a REAR

pointer for entering (i.e., inserting into the rear of the queue).

Figure 8.25 shows a block of six sequential memory locations that have been

allocated for storing elements in the queue. The queue grows from x8000 to

x8005. We arbitrarily assign the FRONT pointer to the location just before the

first element of the queue. We assign the REAR pointer to the location containing

the most recent element that was added to the queue. Let’s use R3 as our FRONT

pointer and R4 as our REAR pointer.

Figure 8.25a shows a queue in which five values were entered into the queue.

Since FRONT = x8001, the values 45 in memory location x8000 and 17 in x8001

must have been removed, and the front element of the queue is 23, the value

contained in x8002.
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Figure 8.25 A queue allocated to memory locations x8000 to x8005.



8.4 The Queue 295

Note that the values 45 and 17 are still contained in memory locations x8000

and x8001, even though they have been removed. Like the stack, studied already,

that is the nature of load instructions. When a value is removed by means of a load

instruction, what is stored in the memory location is not erased. The contents of

the memory location is simply copied into the destination register. However, since

FRONT contains the address x8001, there is no way to load from locations x8000

and x8001 as long as locations x8000 to x8005 behave like a queue—i.e., as long

as the accesses are FIFO.

8.4.1 The Basic Operations: Remove from Front,
Insert at Rear

Since FRONT points to the location just in front of the first element in the queue,

we remove a value by first incrementing FRONT and then loading the value stored

at that incremented address. In our example, the next value to be removed is the

value 23, which is at the front of the queue, in memory location x8002. The

following code removes 23 from the queue:

ADD R3,R3,#1
LDR R0,R3,#0

yielding the structure in Figure 8.25b.

Since REAR = x8004, the last value to enter the queue is 74. The values in

the queue in Figure 8.25b are 2 and 74. To insert another element (e.g., 10) at the

back of the queue, the following code is executed:

ADD R4,R4,#1
STR R0,R4,#0

resulting in Figure 8.25c.

8.4.2 Wrap-Around

At first blush, it looks like we cannot insert any more elements into the queue. Not

so! When we remove a value from the queue, that location becomes available for

storing another element. We do that by allowing the available storage locations to

wrap around. For example, suppose we want to add 20 to the queue. Since there

is nothing stored in x8000 (recall 45 had been previously removed), we can store

20 in x8000. The result is shown in Figure 8.25d.

“Wrap-around” works by having our removal and insertion algorithms test

the contents of FRONT and REAR for the value x8005. If we wish to insert, and

REAR contains x8005, we know we have reached the end of our available storage

and we must see if x8000 is available. If we wish to remove, we must first see if

FRONT contains the address x8005. If it does, the front of the queue is in x8000.
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Thus, our code for remove and insert has to include a test for wrap-around. The

code for remove becomes:

LD R2, LAST
ADD R2,R3,R2
BRnp SKIP_1
LD R3,FIRST
BR SKIP_2

SKIP_1 ADD R3,R3,#1
SKIP_2 LDR R0,R3,#0 ; R0 gets the front of the queue

RET
LAST .FILL x7FFB ; LAST contains the negative of 8005
FIRST .FILL x8000

The code for insert is similar. If REAR contains x8005, we need to set R4 to

x8000 before we can insert an element at the rear of the queue. The code to insert

is as follows:

LD R2, LAST
ADD R2,R4,R2
BRnp SKIP_1
LD R4,FIRST
BR SKIP_2

SKIP_1 ADD R4,R4,#1
SKIP_2 STR R0,R4,#0 ; R0 gets the front of the queue

RET
LAST .FILL 7FFB ; LAST contains the negative of 8005
FIRST .FILL x8000

8.4.3 How Many Elements Can We Store in a Queue?

Let’s look again at Figure 8.25d. There are four values in the queue: 2, 74, 10, and

20. Suppose we insert 30 and 40 at the rear of the queue, producing Figure 8.25e.

Both R3 and R4 contain the same address (x8002), and the queue is full. Now

suppose we start removing elements from the front of the queue. If we remove

2, which is at the front of the queue, R3 will contain the address x8003. If we

remove the remaining five elements in the queue, we will have what is shown in

Figure 8.25f. Note that the FRONT and REAR pointers for e and f are identi-

cal, yet Figure 8.25e describes a full queue and Figure 8.25f describes an empty

queue! Clearly that is not acceptable.

Our answer is to allow a queue to store only n-1 elements if space for n ele-

ments has been allocated. That is, if inserting an nth element into the queue would

cause FRONT to equal REAR, we do not allow that insertion. We declare the

queue full when there are n-1 elements in the queue.

Let’s look again at the queue in Figure 8.25d. There are four elements in

the queue, from front to rear: 2, 74, 10, and 20, and two empty slots, x8001 and

x8002. We can insert 30 in x8001, producing Figure 8.26a. That is, 30 is the fifth

element inserted in the queue. Since six words have been allocated for the queue,

and we now have five elements in the queue, we declare the queue full and do not

allow a sixth element to be inserted. Suppose we now start removing elements
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(a) A full queue (b) An empty queue
Figure 8.26 A full queue and an empty queue.

from the queue until the queue is empty, as shown in Figure 8.26b. Now there

is no ambiguity between a full and an empty queue since if the queue is empty,

FRONT = REAR.

8.4.4 Tests for Underflow, Overflow

As was the case with the stack, we can only remove an element from a queue

if there are elements in the queue. Likewise, we can only insert elements in the

queue if it is not full. If the queue is empty and we try to remove an element, we

have an underflow condition. If the queue is full and we try to insert an element,

we have an overflow condition. In both cases, if we are using a subroutine to

manage the queue, we need to report success or failure to the calling program. As

with the stack, we will use R5 for this purpose.

The test for underflow is straightforward. We saw from Figure 8.26 that

if FRONT = REAR, the queue is empty. Our code to test for underflow is

therefore

AND R5,R5,#0 ; Initialize R5 to 0
NOT R2,R3
ADD R2,R2,#1 ; R2 contains negative of R3
ADD R2,R2,R4
BRz UNDERFLOW
; code to remove the front of the queue and return success.

UNDERFLOW ADD R5,R5,#1
RET
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That is, we first check to see if the queue is empty, that is, if R3 = R4. If so, we

branch to UNDERFLOW, where we set R5 to failure, restore R1, and return. If

not, carry out the code to remove the front of the queue.

The test for overflow is similar. To insert an element to the back of the

queue, we first increment the REAR pointer. If that causes FRONT = REAR,

then the queue already contains n-1 elements, which means it is full so we can-

not insert any more elements. We decrement the REAR pointer, set R5 to 1, and

return.

8.4.5 The Complete Story

We conclude our attention to queues with a subroutine that allows elements to be

removed from the front or inserted into the rear of the queue, wraps around when

one of the pointers reaches the last element, and returns with a report of success

(R5 = 0) or failure (R5 = 1) depending on whether the access succeeds or the

access fails due to an underflow or overflow condition.

To make this concrete, we will tie this subroutine to the queue of Figure 8.25,

where we have allocated locations x8000 to x8005 for our queue, x8000 being the

FIRST location and x8005 being the LAST location.

To insert, we first have to make sure the queue is not full. To do that, we

increment the REAR pointer (R4) and then test REAR=FRONT. If the REAR

pointer was initially x8005, we increment REAR by setting it to x8000; that is,

we need to wrap around. If the queue is full, we need to set REAR back to its

original value, and return, reporting failure (R5 = 1). If the queue is not full, we

store the item we wish to insert (which is in R0) in REAR, and return, reporting

success (R5 = 0).

To remove, we first make sure the queue is not empty by testing whether

REAR=FRONT. If REAR=FRONT, the queue is empty, so we return, reporting

failure. If REAR is not the same as FRONT, the queue is not empty, so we can

remove the front element. To do this, we first test to see if FRONT=x8005. If it

is, we set FRONT=x8000. If it isn’t, we increment FRONT. In both cases, we

then load the value from that memory location into R0, and return, reporting

success.

Figure 8.27 shows the complete subroutine.
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00 ;Input: R0 for item to be inserted, R3 is FRONT, R4 is REAR
01 ;Output: R0 for item to be removed
02 ;
03 INSERT ST R1,SaveR1 ; Save register we need
04 AND R5,R5,#0 ; Set R5 to success code
05 ; Initialization complete
06 LD R1,NEG_LAST
07 ADD R1,R1,R4 ; R1 = REAR MINUS x8005
08 BRnp SKIP1 ; SKIP WRAP AROUND
09 LD R4,FIRST ; WRAP AROUND, R4=x8000
0A BR SKIP2
0B SKIP1 ADD R4,R4,#1 ; NO WRAP AROUND, R4=R4+1
0C SKIP2 NOT R1,R4
0D ADD R1,R1,#1 ; R1= NEG REAR
0E ADD R1,R1,R3 ; R1= FRONT-REAR
0F BRz FULL
10 STR R0,R4,#0 ; DO THE INSERT
11 BR DONE
12 FULL LD R1,NEG_FIRST
13 ADD R1,R1,R4 ; R1 = REAR MINUS x8000
14 BRnp SKIP3
15 LD R4,LAST ; UNDO WRAP AROUND, REAR=x8005
16 BR SKIP4
17 SKIP3 ADD R4,R4,#-1 ; NO WRAP AROUND, R4=R4-1
18 SKIP4 ADD R5,R5,#1 ; R5=FAILURE
19 BR DONE
1A ;
1B REMOVE ST R1,SaveR1 ; Save register we need
1C AND R5,R5,#0 ; Set R5 to success code
1D ; Initialization complete
1E NOT R1,R4
1F ADD R1,R1,#1 ; R1= NEG REAR
20 ADD R1,R1,R3 ; R1= FRONT-REAR
21 BRz EMPTY
22 LD R1, NEG_LAST
23 ADD R1,R1,R3 ; R1= FRONT MINUS x8005
24 BRnp SKIP5
25 LD R3, FIRST ; R3=x8000
26 BR SKIP6
27 SKIP5 ADD R3,R3,#1 ; R3=R3+1
28 SKIP6 LDR R0,R3,#0 ; DO THE REMOVE
29 BR DONE
2A EMPTY ADD R5,R5.#1 ; R5=FAILURE
2B DONE LD R1,SaveR1 ; Restore register
2C RET
2D FIRST .FILL x8000
2E NEG_FIRST .FILL x8000
2F LAST .FILL x8005
30 NEG_LAST .FILL x7FFB
31 SaveR1 .BLKW 1

Figure 8.27 The complete queue subroutine.
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8.5 Character Strings
Our final data structure: the character string!

The last data structure we will study in this chapter is the character string,

where a sequence of keyboard characters (letters, digits, and other symbols) is

organized as a one-dimensional array of ASCII codes, usually representing a

person’s name, address, or some other alphanumeric string. Figure 8.28 shows a

character string representing the name of the famous late Stanford professor Bill

Linvill, stored in 13 consecutive words of memory, starting at location x5000.

The ASCII code for each letter of his name is stored in a separate word of mem-

ory. Since an ASCII code consists of one byte of memory, we add a leading x00

to each location. For example, x5000 contains x0042 since the ASCII code for a

capital B is x42. We need 13 memory locations, one word for each of the 11 letters

in his name, one word for the ASCII code x20 representing the space between his

first and last names, and finally the null character x0000 to indicate that we have

reached the end of the character string. Different alphanumeric strings require

character strings of different lengths, but that is no problem since we allocate as

many words of memory as are needed, followed by the null character x0000 to

indicate the end of the character string.

x0042

x0069

x0069

x006C

x006C

x0020

x004C

x0069

x006E

x0076

x006C

x006C

x0000

x5000

Figure 8.28 Character string representing the name “Bill Linvill.”
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A common use of a character string is to identify a body of information asso-

ciated with a particular person. Figure 8.29 shows such a body of information

(often called a personnel record) associated with an employee of a company.
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Figure 8.29 Mary Jones’ personnel record.

Our example personnel record consists of six words of sequential memory,

starting at location x4000, as follows:

1. The first word contains the starting address of a character string containing

the person’s last name. The pointer in location x4000 is the address x6000.

The six-word character string, starting at location x6000, contains the

ASCII code for “Jones,” terminated with the null character.

2. The second word, at x4001, contains a pointer to the character string of the

person’s first name, in this case “Mary,” starting at location x4508.

3. The third word, at x4002, contains a pointer (xCA9B) to her nine-digit

social security number, the unique identifier for all persons working in the

United States.

4. The fourth word, at x4003, contains her salary (in thousands of dollars).

5. The fifth word contains how long she has worked for the company.

6. The sixth word is a pointer (x8E25) to the character string identifying her

job title, in this case “Engineer.”

In summary, an employee named Mary Jones, social security number

012654621, an Engineer, has been with the company four years and earns

$84,000/year salary.

One can write computer programs that examine employee records looking for

various personnel information. For example, if one wanted to know an employee’s

salary, a program could examine employee records, looking for that employee.

The program would call a subroutine that compares the character string repre-

senting an employee’s social security number with the characters of the social

security number of the person the subroutine is searching for. If all the characters

match, the subroutine would return a success code (R5 = 0), and the program
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STRCMP ST R0,SaveR0
ST R1,SaveR1
ST R2,SaveR2
ST R3,SaveR3

;
AND R5,R5,#0 ; R5 <-- Match

;
NEXTCHAR LDR R2,R0,#0 ; R2 contains character from 1st string

LDR R3,R1,#0 ; R3 contains character from 2nd string
BRnp COMPARE ; String is not done, continue comparing
ADD R2,R2,#0
BRz DONE ; If both strings done, match found

COMPARE NOT R2,R2
ADD R2,R2,#1 ; R2 contains negative of character
ADD R2,R2,R3 ; Compare the 2 characters
BRnp FAIL ; Not equal, no match
ADD R0,R0,#1
ADD R1,R1,#1
BRnzp NEXTCHAR ; Move on to next pair of characters

;
FAIL ADD R5,R5,#1 ; R5 <-- No match
;
DONE LD R0,SaveR0

LD R1,SaveR1
LD R2,SaveR2
LD R3,SaveR3
RET

;
SaveR0 .BLKW 1
SaveR1 .BLKW 1
SaveR2 .BLKW 1
SaveR3 .BLKW 1

Figure 8.30 Subroutine to compare two character strings.

would go on to read the salary information in the fourth word of the personnel

record. If all the characters do not match, the subroutine would return a failure

code (R5 = 1), and the program would call the subroutine with the starting address

of another employee’s social security number.

Figure 8.30 is a subroutine that compares two character strings to see if they

are identical.

Another Example: A Character String Representing an “Integer.” We can

also represent arbitrarily long integers by means of character strings. For example,

Figure 8.31 is a character string representing the integer 79,245.

Figure 8.32 is a subroutine that examines such a character string to be sure

that in fact all ASCII codes represent decimal digits. If all the entries in the charac-

ter string are ASCII codes of decimal digits (between x30 and x39), the subroutine

returns success (R = 0). If not, the subroutine returns failure (R5 = 1).
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x0037

x0039

x0032

x0034

x0035

x0000

Figure 8.31 A character string representing the integer 79,245, with one ASCII code
per decimal digit.

; Input: R0 contains the starting address of the character string
; Output: R5=0, success; R5=1, failure.
;
TEST_INTEGER ST R1,SaveR1 ; Save registers needed by subroutine

ST R2,SaveR2
ST R3,SaveR3
ST R4,SaveR4

;
AND R5,R5,#0 ; Initialize success code to R5=0, success
LD R2,ASCII_0 ; R2=xFFD0, the negative of ASCII code x30
LD R3,ASCII_9 ; R3=xFFC7, the negative of ASCII code x39

;
NEXT_CHAR LDR R1,R0,#0 ; Load next character

BRz SUCCESS
ADD R4,R1,R2
BRn BAD ; R1 is less than x30, not a decimal digit
ADD R4,R1,R3
BRp BAD ; R1 is greater than x39, not a decimal digit
ADD R0,R0,#1 ; Character good! Prepare for next character
BR NEXT_CHAR

;
BAD ADD R5,R5,#1 ; R5 contains failure code

SUCCESS LD R4,SaveR4 ; Restore registers
LD R3,SaveR3
LD R2,SaveR2
LD R1,SaveR1
RET

ASCII_0 .FILL xFFD0
ASCII_9 .FILL xFFC7
SaveR1 .BLKW 1
SaveR2 .BLKW 1
SaveR3 .BLKW 1
SaveR4 .BLKW 1

Figure 8.32 Subroutine to determine if a character string represents an integer.
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Exercises

8.1 What are the defining characteristics of a stack?

8.2 What is an advantage to using the model in Figure 8.9 to implement a

stack vs. the model in Figure 8.8?

8.3 The LC-3 ISA has been augmented with the following push and pop

instructions. Push Rn pushes the value in Register n onto the stack. Pop

Rn removes a value from the stack and loads it into Rn. The following

figure shows a snapshot of the eight registers of the LC-3 BEFORE and

AFTER the following six stack operations are performed. Identify

(a)–(d).

BEFORE AFTER
R0 x0000 PUSH R4 R0 x1111
R1 x1111 PUSH (a) R1 x1111
R2 x2222 POP (b) R2 x3333
R3 x3333 PUSH (c) R3 x3333
R4 x4444 POP R2 R4 x4444
R5 x5555 POP (d) R5 x5555
R6 x6666 R6 x6666
R7 x7777 R7 x4444

8.4 Write a function that implements another stack function, peek. Peek

returns the value of the first element on the stack without removing the

element from the stack. Peek should also do underflow error checking.

(Why is overflow error checking unnecessary?)

8.5 How would you check for underflow and overflow conditions if you

implemented a stack using the model in Figure 8.8? Rewrite the PUSH

and POP routines to model a stack implemented as in Figure 8.8, that is,

one in which the data entries move with each operation.

8.6 Rewrite the PUSH and POP routines such that the stack on which they

operate holds elements that take up two memory locations each.

8.7 Rewrite the PUSH and POP routines to handle stack elements of

arbitrary sizes.

8.8 The following operations are performed on a stack:

PUSH A, PUSH B, POP, PUSH C, PUSH D, POP, PUSH E,
POP, POP, PUSH F

a. What does the stack contain after the PUSH F?

b. At which point does the stack contain the most elements? Without

removing the elements left on the stack from the previous operations,

we perform:
PUSH G, PUSH H, PUSH I, PUSH J, POP, PUSH K,
POP, POP, POP, PUSH L, POP, POP, PUSH M

c. What does the stack contain now?

8.9 The input stream of a stack is a list of all the elements we pushed onto

the stack, in the order that we pushed them. The input stream from

Exercise 8.8 was ABCDEFGHIJKLM
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The output stream is a list of all the elements that are popped off the

stack, in the order that they are popped off.

a. What is the output stream from Exercise 8.8?

Hint: BDE …
b. If the input stream is ZYXWVUTSR, create a sequence of pushes and

pops such that the output stream is YXVUWZSRT.

c. If the input stream is ZYXW, how many different output streams can

be created?

★8.10 It is easier to identify borders between cities on a map if adjacent cities

are colored with different colors. For example, in a map of Texas, one

would not color Austin and Pflugerville with the same color, since doing

so would obscure the border between the two cities.

Shown next is the recursive subroutine EXAMINE. EXAMINE examines

the data structure representing a map to see if any pair of adjacent cities

have the same color. Each node in the data structure contains the city’s

color and the addresses of the cities it borders. If no pair of adjacent

cities have the same color, EXAMINE returns the value 0 in R1. If at

least one pair of adjacent cities have the same color, EXAMINE returns

the value 1 in R1. The main program supplies the address of a node

representing one of the cities in R0 before executing JSR EXAMINE.
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.ORIG x4000
EXAMINE ADD R6, R6, #-1

STR R0, R6, #0
ADD R6, R6, #-1
STR R2, R6, #0
ADD R6, R6, #-1
STR R3, R6, #0
ADD R6, R6, #-1
STR R7, R6, #0

AND R1, R1, #0 ; Initialize output R1 to 0
LDR R7, R0, #0
BRn RESTORE ; Skip this node if it has already been visited

LD R7, BREADCRUMB
STR R7, R0, #0 ; Mark this node as visited
LDR R2, R0, #1 ; R2 = color of current node
ADD R3, R0, #2

AGAIN LDR R0, R3, #0 ; R0 = neighbor node address
BRz RESTOR
LDR R7, R0, #1
NOT R7, R7 ; <-- Breakpoint here
ADD R7, R7, #1
ADD R7, R2, R7 ; Compare current color to neighbor’s color
BRz BAD
JSR EXAMINE ; Recursively examine the coloring of next neighbor
ADD R1, R1, #0
BRp RESTORE ; If neighbor returns R1=1, this node should return R1=1
ADD R3, R3, #1
BR AGAIN ; Try next neighbor

BAD ADD R1, R1, #1
RESTORE LDR R7, R6, #0

ADD R6, R6, #1
LDR R3, R6, #0
ADD R6, R6, #1
LDR R2, R6, #0
ADD R6, R6, #1
LDR R0, R6, #0
ADD R6, R6, #1
RET

BREADCRUMB .FILL x8000
.END
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Your job is to construct the data structure representing a particular map.

Before executing JSR EXAMINE, R0 is set to x6100 (the address of

one of the nodes), and a breakpoint is set at x4012. The following table

shows relevant information collected each time the breakpoint was

encountered during the running of EXAMINE.

PC R0 R2 R7

x4012 x6200 x0042 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6500 x0052 x0047

x4012 x6100 x0047 x0042

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6500 x0052 x0047

x4012 x6400 x0042 x0052

x4012 x6500 x0042 x0047

Construct the data structure for the particular map that corresponds to

the relevant information obtained from the breakpoints. Note: We are

asking you to construct the data structure as it exists AFTER the

recursive subroutine has executed.

x6400
x6401
x6402
x6403
x6404
x6405
x6406

x6100
x6101

x6105
x6106

x6200
x6201
x6202
x6203
x6204
x6205
x6206

x6300
x6301
x6302
x6303
x6304
x6305
x6306

x6500
x6501
x6502
x6503
x6504
x6505
x6506

x6102
x6103
x6104

x0042
x6200

x0052
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8.11 The following program needs to be assembled and stored in LC-3

memory. How many LC-3 memory locations are required to store the

assembled program?

.ORIG x4000
AND R0,R0,#0
ADD R1,R0,#0
ADD R0,R0,#4
LD R2,B

A LDR R3,R2,#0
ADD R1,R1,R3
ADD R2,R2,#1
ADD R0,R0,#-1
BRnp A
JSR SHIFTR
ADD R1,R4,#0
JSR SHIFTR
ST R4,C
TRAP x25

B .BLKW 1
C .BLKW 1

.END

How many memory locations are required to store the assembled

program?

What is the address of the location labeled C?

Before the program can execute, the location labeled B must be loaded

by some external means. You can assume that happens before this

program starts executing. You can also assume that the subroutine

starting at location SHIFTR is available for this program to use. SHIFTR

takes the value in R1, shifts it right one bit, and stores the result in R4.

After the program executes, what is in location C?

★8.12 Many cities, like New York City, Stockholm, Konigsberg, etc., consist of

several areas connected by bridges. The following figure shows a map of

FiveParts, a city made up of five areas A, B, C, D, E, with the areas

connected by nine bridges as shown.

A

B

CE

D
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The following program prompts the user to enter two areas and then

stores the number of bridges from the first area to the second in location

x4500. Your job: On the next page, design the data structure for the city

of FiveParts that the following program will use to count the number of

bridges between two areas.

.ORIG x3000
LEA R0, FROM
TRAP x22
TRAP x20 ; Inputs a char without banner
NOT R1, R0
ADD R1, R1, #1
LEA R0, TO
TRAP x22
TRAP x20
NOT R0, R0
ADD R0, R0, #1
AND R5, R5, #0
LDI R2, HEAD

SEARCH BRz DONE
LDR R3, R2, #0
ADD R7, R1, R3
BRz FOUND_FROM
LDR R2, R2, #1
BRnzp SEARCH

FOUND_FROM ADD R2, R2, #2
NEXT_BRIDGE LDR R3, R2, #0

BRz DONE
LDR R4, R3, #0
ADD R7, R0, R4
BRnp SKIP
ADD R5, R5, #1 ; Increment Counter

SKIP ADD R2, R2, #1
BRnzp NEXT_BRIDGE

DONE STI R5, ANSWER
HALT

HEAD .FILL x3050
ANSWER .FILL x4500
FROM .STRINGZ "FROM: "
TO .STRINGZ "TO: "

.END

Your job is to provide the contents of the memory locations that are

needed to specify the data structure for the city of FiveParts, which is

needed by the program on the previous page. We have given you the

HEAD pointer for the data structure and in addition, five memory

locations and the contents of those five locations. We have also supplied

more than enough sequential memory locations after each of the five to

enable you to finish the job. Use as many of these memory locations as

you need.
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8.13 Our code to compute n factorial worked for all positive integers n. As

promised in the text, your assignment here: Augment the iterative

solution to FACT to also work for 0!.

8.14 As you know, the LC-3 ADD instruction adds 16-bit 2’s complement

integers. If we wanted to add 32-bit 2’s complement integers, we could

do that with the program shown next. Note that the program requires

calling subroutine X, which stores into R0 the carry that results from

adding R1 and R2.

Fill in the missing pieces of both the program and the subroutine X,

as identified by the empty boxes. Each empty box corresponds to one
instruction or the operands of one instruction.

x4000
x4001
x4002
x4003
x4004
x4005
x4006

x0041

x0042

x0043

x0044

x0045

x4100
x4101
x4102
x4103
x4104
x4105
x4106

x3100
x3101
x3102
x3103
x3104
x3105
x3106

xA243
xA244
xA245
xA246
xA247
xA248
xA249

xBBBB
xBBBC
xBBBD
xBBBE
xBBBF
xBBC0
xBBC1

x3050
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Note that a 32-bit operand requires two 16-bit memory locations. A

32-bit operand Y has Y[15:0] stored in address A, and Y[31:16] stored

in address A+1.

.ORIG x3000
LEA R3, NUM1
LEA R4, NUM2
LEA R5, RESULT
LDR R1, R3, #0
LDR R2, R4, #0
ADD R0, R1, R2
STR R0, R5, #0
--------------- (a)
LDR ----------- (b)
LDR ----------- (c)
ADD R0, R1, R2
--------------- (d)
TRAP x25

X ST R4, SAVER4
AND R0, R0, #0
AND R4, R1, R2
BRn ----------- (e)
ADD R1, R1, #0
BRn ----------- (f)
ADD ----------- (g)
BRn ADDING
BRnzp EXIT

ADDING ADD R4, R1, R2
BRn EXIT

LABEL ADD R0, R0, #1
EXIT LD R4, SAVER4

RET

NUM1 .BLKW 2
NUM2 .BLKW 2
RESULT .BLKW 2
SAVER4 .BLKW 1

.END
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★8.15 A program encounters a breakpoint and halts. The computer operator

does not change the state of the computer in any way but immediately

presses the run button to resume execution.

The following table shows the contents of MAR and MDR for the first

nine memory accesses that the LC-3 performs after resuming execution.

Your job: Fill in the missing entries.

1st:

2nd:

3rd:

4th:

5th:

6th:

7th:

8th:

9th:

MAR MDR

x5020

xF0F0

x2000 x020A

x040A

x61FE

xC1C0

x4002 xF025
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C H A P T E R

I/O

Up to now we have completely ignored the details of input and output, that is,

how the computer actually gets information from the keyboard (input), and

how the computer actually delivers information to the monitor (output). Instead

we have relied on the TRAP instruction (e.g., TRAP x23 for input and TRAP x21

for output) to accomplish these tasks. The TRAP instruction enables us to tell the

operating system what we need done by means of a trap vector, and we trust the

operating system to do it for us.

The more generic term for our TRAP instruction is system call because the

TRAP instruction is calling on the operating system to do something for us while

allowing us to remain completely clueless as to how it gets done. Now we are

ready to examine how input and output actually work in the LC-3, what happens

when the user program makes a system call by invoking the TRAP instruction,

and how it all works under the control of the operating system.

We will start with the actual physical structures that are required to cause

input and output to occur. But before we do that, it is useful to say a few words

about the operating system and understand a few basic concepts that have not been

important so far but become very important when considering what the operating

system needs to do its job.

You may be familiar with Microsoft’s various flavors of Windows, Apple’s

MacOS, and Linux. These are all examples of operating systems. They all have

the same goal: to optimize the use of all the resources of the computer system

while making sure that no software does harmful things to any program or data

that it has no right to mess with. To better understand their job, we need to under-

stand the notions of privilege and priority and the layout of the memory address

space (i.e., the regions of memory and the purpose of each).
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9.1 Privilege, Priority, and the
Memory Address Space

9.1.1 Privilege and Priority

Two very different (we often say orthogonal) concepts associated with computer

processing are privilege and priority.

9.1.1.1 Privilege

Privilege is all about the right to do something, such as execute a particular

instruction or access a particular memory location. Not all computer programs

have the right to execute all instructions. For example, if a computer system is

shared among many users and the ISA contains a HALT instruction, we would

not want any random program to execute that HALT instruction and stop the

computer. If we did, we would have some pretty disgruntled users on our hands.

Similarly, some memory locations are only available to the operating system. We

would not want some random program to interfere with the data structures or

code that is part of the operating system, which would in all likelihood cause the

entire system to crash. In order to make sure neither of these two things happens, we

designate every computer program as either privileged or unprivileged. We often

say supervisor privilege to indicate privileged. We say a program is executing in

Supervisor mode to indicate privileged, or User mode to indicate unprivileged. If a

program is executing in Supervisor mode, it can execute all instructions and access

all of memory. If a program is executing in User mode, it cannot. If a program

executing in User mode tries to execute an instruction or access a memory location

that requires being in Supervisor mode, the computer will not allow it.

9.1.1.2 Priority

Priority is all about the urgency of a program to execute. Every program is

assigned a priority, specifying its urgency as compared to all other programs.

This allows programs of greater urgency to interrupt programs of lesser urgency.

For example, programs written by random users may be assigned a priority of 0.

The keyboard may be asigned a priority of 4, and the fact that the computer is

plugged into a source of energy like a wall outlet may be assigned a priority of 6.

If that is the case, a random user program would be interrupted if someone sitting

at a keyboard wanted to execute a program that caused data to be input into the

computer. And that program would be interrupted if someone pulled the power

cord out of the wall outlet, causing the computer to quickly lose its source of

energy. In such an event, we would want the computer to execute some operating

system program that is provided specifically to handle that situation.

9.1.1.3 Two Orthogonal Notions

We said privilege and priority are two orthogonal notions, meaning they have

nothing to do with each other. We humans sometimes have a problem with that

as we think of fire trucks that have the privilege of ignoring traffic lights because
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they must quickly reach the fire. In our daily lives, we often are given privileges

because of our greater sense of urgency. Not the case with computer systems.

For example, we can have a user program that is tied to a physics experiment

that needs to interrupt the computer at a specific instance of time to record infor-

mation being generated by the physics experiment. If the user program does not

pre-empt the program running at that instant of time, the data generated by the

experiment may be lost. This is a user program, so it does not have supervisor

privilege. But it does have a greater urgency, so it does have a higher priority.

Another example: The system administrator wants to execute diagnostic pro-

grams that access all memory locations and execute all instructions as part of

some standard preventive maintenance. The diagnostic program needs supervi-

sor privilege to execute all instructions and access all memory locations. But it

has no sense of urgency. Whether this happens at 1 a.m. or 2 a.m. is irrelevant,

compared to the urgency of other programs that need access to the computer

system exactly when they need it. The diagnostic program has privilege but no

priority.

Finally, an example showing that even in human activity one can have priority

but not privilege. Our friend Bob works in the basement of one of those New

York City skyscrapers. He is about to go to the men’s room when his manager

tells him to take a message immediately to the vice president on the 88th floor,

and bring back a response. So Bob delays his visit to the men’s room and takes

the elevator to the 88th floor. The vice president keeps him waiting, causing Bob

to be concerned he might have an accident. Finally, the vice president gives his

response, and Bob pushes the button to summon the elevator to take him back to

the basement, in pain because he needs to go to the men’s room. While waiting for

the elevator, another vice president appears, unlocks the executive men’s room,

and enters. Bob is in pain, but he cannot enter the executive men’s room. Although

he certainly has the priority, he does not have the privilege!

9.1.1.4 The Processor Status Register (PSR)

Each program executing on the computer has associated with it two very impor-

tant registers. The Program Counter (PC) you are very familiar with. The other

register, the Processor Status Register (PSR), is shown in Figure 9.1. It contains

the privilege and priority assigned to that program.

Bit [15] specifies the privilege, where PSR[15]=0 means supervisor privi-

lege, and PSR[15]=1 means unprivileged. Bits [10:8] specify the priority level

(PL) of the program. The highest priority level is 7 (PL7), the lowest is PL0.

The PSR also contains the current values of the condition codes, as shown

in Figure 9.1. We will see in Section 9.4 why it is important that the condition

codes are included in the PSR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pr PL n N Z P

Priv Priority cond codes

PSR

Figure 9.1 Processor status register (PSR).
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9.1.2 Organization of Memory

Figure 9.2 shows the layout of the LC-3 memory.

You know that the LC-3 has a 16-bit address space; ergo, memory locations

from x0000 to xFFFF. Locations x0000 to x2FFF are privileged memory loca-

tions. They contain the various data structures and code of the operating system.

They require supervisor privilege to access. They are referred to as system space.

Locations x3000 to xFDFF are unprivileged memory locations. Supervisor

privilege is not required to access these memory locations. All user programs and

data use this region of memory. The region is often referred to as user space.

Addresses xFE00 to xFFFF do not correspond to memory locations at all.

That is, the last address of a memory location is xFDFF. Addresses xFE00 to

xFFFF are used to identify registers that take part in input and output functions

and some special registers associated with the processor. For example, the PSR

is assigned address xFFFC, and the processor’s Master Control Register (MCR)

is assigned address xFFFE. The benefit of assigning addresses from the memory

address space will be discussed in Section 9.2.1.2. The set of addresses from

xFE00 to xFFFF is usually referred to as the I/O page since most of the addresses

are used for identifying registers that take part in input or output functions. Access

to those registers requires supervisor privilege.

Finally, note that Figure 9.2 shows two stacks, a supervisor stack in system

space and a user stack in user space. The supervisor stack is controlled by the

x0000

xFE00

x3000

xFFFF

Privileged Memory
SSP

USP

User Stack

I/O Page

Supervisor Stack

User Space

System Space

Figure 9.2 Regions of memory.
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operating system and requires supervisor privilege to access. The user stack is

controlled by the user program and does not require privilege to access.

Each has a stack pointer, Supervisor Stack Pointer (SSP) and User Stack

Pointer (USP), to indicate the top of the stack. Since a program can only execute

in Supervisor mode or User mode at any one time, only one of the two stacks is

active at any one time. Register 6 is generally used as the stack pointer (SP) for

the active stack. Two registers, Saved SSP and Saved USP, are provided to save

the SP not in use. When privilege changes, for example, from Supervisor mode to

User mode, the SP is stored in Saved SSP, and the SP is loaded from Saved USP.

9.2 Input/Output
Input and output devices (keyboards, monitors, disks, or kiosks at the shopping

mall) all handle input or output data using registers that are tailored to the needs

of each particular input or output device. Even the simplest I/O devices usually

need at least two registers: one to hold the data being transferred between the

device and the computer, and one to indicate status information about the device.

An example of status information is whether the device is available or is it still

busy processing the most recent I/O task.

9.2.1 Some Basic Characteristics of I/O

All I/O activity is controlled by instructions in the computer’s ISA. Does the ISA

need special instructions for dealing with I/O? Does the I/O device execute at the

same speed as the computer, and if not, what manages the difference in speeds? Is

the transfer of information between the computer and the I/O device initiated by

a program executing in the computer, or is it initiated by the I/O device? Answers

to these questions form some of the basic characteristics of I/O activity.

9.2.1.1 Memory-Mapped I/O vs. Special I/O Instructions

An instruction that interacts with an input or output device register must identify

the particular input or output device register with which it is interacting. Two

schemes have been used in the past. Some computers use special input and output

instructions. Most computers prefer to use the same data movement instructions

that are used to move data in and out of memory.

The very old PDP-8 (from Digital Equipment Corporation, more than 50

years ago—1965) is an example of a computer that used special input and output

instructions. The 12-bit PDP-8 instruction contained a three-bit opcode. If the

opcode was 110, an I/O instruction was indicated. The remaining nine bits of the

PDP-8 instruction identified which I/O device register and what operation was to

be performed.

Most computer designers prefer not to specify an additional set of instructions

for dealing with input and output. They use the same data movement instructions

that are used for loading and storing data between memory and the general pur-

pose registers. For example, a load instruction (LD, LDI, or LDR), in which the
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source address is that of an input device register, is an input instruction. Similarly,

a store instruction (ST, STI, or STR) in which the destination address is that of

an output device register is an output instruction.

Since programmers use the same data movement instructions that are used

for memory, every input device register and every output device register must be

uniquely identified in the same way that memory locations are uniquely identified.

Therefore, each device register is assigned an address from the memory address

space of the ISA. That is, the I/O device registers are mapped to a set of addresses

that are allocated to I/O device registers rather than to memory locations. Hence

the name memory-mapped I/O.

The original PDP-11 ISA had a 16-bit address space. All addresses wherein

bits [15:13] = 111 were allocated to I/O device registers. That is, of the 216

addresses, only 57,344 corresponded to memory locations. The remaining 213

were memory-mapped I/O addresses.

The LC-3 uses memory-mapped I/O. As we discussed in Section 9.1.2,

addresses x0000 to xFDFF refer to actual memory locations. Addresses xFE00 to

xFFFF are reserved for input/output device registers. Table A.3 lists the memory-

mapped addresses of the LC-3 device registers that have been assigned so far.

Future uses and future sales of LC-3 microprocessors may require the expansion

of device register address assignments as new and exciting applications emerge!

9.2.1.2 Asynchronous vs. Synchronous

Most I/O is carried out at speeds very much slower than the speed of the processor.

A typist, typing on a keyboard, loads an input device register with one ASCII

code every time he/she types a character. A computer can read the contents of

that device register every time it executes a load instruction, where the operand

address is the memory-mapped address of that input device register.

Many of today’s microprocessors execute instructions under the control of a

clock that operates well in excess of 2 GHz. Even for a microprocessor operating

at only 2 GHz, a clock cycle lasts only 0.5 nanoseconds. Suppose a processor

executed one instruction at a time, and it took the processor ten clock cycles to

execute the instruction that reads the input device register and stores its contents.

At that rate, the processor could read the contents of the input device register once

every 5 nanoseconds. Unfortunately, people do not type fast enough to keep this

processor busy full-time reading characters. Question: How fast would a person

have to type to supply input characters to the processor at the maximum rate the

processor can receive them?

We could mitigate this speed disparity by designing hardware that would

accept typed characters at some slower fixed rate. For example, we could design

a piece of hardware that accepts one character every 200 million cycles. This

would require a typing speed of 100 words/minute, assuming words on average

consisted of five letters, which is certainly doable. Unfortunately, it would also

require that the typist work in lockstep with the computer’s clock. That is not

acceptable since the typing speed (even of the same typist) varies from moment

to moment.

What’s the point? The point is that I/O devices usually operate at speeds

very different from that of a microprocessor, and not in lockstep. We call this
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latter characteristic asynchronous. Most interaction between a processor and I/O

is asynchronous. To control processing in an asynchronous world requires some

protocol or handshaking mechanism. So it is with our keyboard and monitor. In

the case of the keyboard, we will need a one-bit status register, called a flag, to

indicate if someone has or has not typed a character. In the case of the monitor,

we will need a one-bit status register to indicate whether or not the most recent

character sent to the monitor has been displayed, and so the monitor can be given

another character to display.

These flags are the simplest form of synchronization. A single flag, called

the ready bit, is enough to synchronize the output of the typist who can type

characters at the rate of 100 words/minute with the input to a processor that can

accept these characters at the rate of 200 million characters/second. Each time

the typist types a character, the ready bit is set to 1. Each time the computer reads

a character, it clears the ready bit. By examining the ready bit before reading

a character, the computer can tell whether it has already read the last character

typed. If the ready bit is clear, no characters have been typed since the last time

the computer read a character, and so no additional read would take place. When

the computer detects that the ready bit is set, it could only have been caused by a

new character being typed, so the computer would know to again read a character.

The single ready bit provides enough handshaking to ensure that the asyn-

chronous transfer of information between the typist and the microprocessor can

be carried out accurately.

If the typist could type at a constant speed, and we did have a piece of hard-

ware that would accept typed characters at precise intervals (e.g., one character

every 200 million cycles), then we would not need the ready bit. The computer

would simply know, after 200 million cycles of doing other stuff, that the typist

had typed exactly one more character, and the computer would read that charac-

ter. In this hypothetical situation, the typist would be typing in lockstep with the

processor, and no additional synchronization would be needed. We would say the

computer and typist were operating synchronously. That is, the input activity was

synchronous.

9.2.1.3 Interrupt-Driven vs. Polling

The processor, which is computing, and the typist, who is typing, are two separate

entities. Each is doing its own thing. Still, they need to interact; that is, the data that

is typed has to get into the computer. The issue of interrupt-driven vs. polling is

the issue of who controls the interaction. Does the processor do its own thing until

being interrupted by an announcement from the keyboard, “Hey, a key has been

struck. The ASCII code is in the input device register. You need to read it.” This is

called interrupt-driven I/O, where the keyboard controls the interaction. Or, does

the processor control the interaction, specifically by interrogating (usually, again

and again) the ready bit until it (the processor) detects that the ready bit is set. At

that point, the processor knows it is time to read the device register. This second

type of interaction when the processor is in charge is called polling, since the ready

bit is polled by the processor, asking if any key has been struck.

Section 9.2.2.2 describes how polling works. Section 9.4 explains interrupt-

driven I/O.
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9.2.2 Input from the Keyboard

9.2.2.1 Basic Input Registers (KBDR and KBSR)

We have already noted that in order to handle character input from the keyboard,

we need two things: a data register that contains the character to be input and

a synchronization mechanism to let the processor know that input has occurred.

The synchronization mechanism is contained in the status register associated with

the keyboard.

These two registers are called the keyboard data register (KBDR) and the

keyboard status register (KBSR). They are assigned addresses from the memory

address space. As shown in Table A.3, address xFE02 is assigned to the KBDR;

address xFE00 is assigned to the KBSR.

15 14

KBSR

KBDR

15

0

078

Figure 9.3 Keyboard device registers.

Even though a character needs only 8 bits and the synchronization mecha-

nism needs only 1 bit, it is easier to assign 16 bits (like all memory addresses

in the LC-3) to each. In the case of KBDR, bits [7:0] are used for the data, and

bits [15:8] contain x00. In the case of KBSR, bit [15] contains the synchroniza-

tion mechanism, that is, the ready bit. Figure 9.3 shows the two device registers

needed by the keyboard.

9.2.2.2 The Basic Input Service Routine

KBSR[15] controls the synchronization of the slow keyboard and the fast pro-

cessor. When a key on the keyboard is struck, the ASCII code for that key is

loaded into KBDR[7:0], and the electronic circuits associated with the keyboard

automatically set KBSR[15] to 1. When the LC-3 reads KBDR, the electronic

circuits associated with the keyboard automatically clear KBSR[15], allowing

another key to be struck. If KBSR[15] = 1, the ASCII code corresponding to the

last key struck has not yet been read, and so the keyboard is disabled; that is, no

key can be struck until the last key is read.

If input/output is controlled by the processor (i.e., via polling), then a pro-

gram can repeatedly test KBSR[15] until it notes that the bit is set. At that point,

the processor can load the ASCII code contained in KBDR into one of the LC-3

registers. Since the processor only loads the ASCII code if KBSR[15] is 1, there is

no danger of reading a single typed character multiple times. Furthermore, since

the keyboard is disabled until the previous code is read, there is no danger of the

processor missing characters that were typed. In this way, KBSR[15] provides

the mechanism to guarantee that each key typed will be loaded exactly once.
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The following input routine loads R0 with the ASCII code that has been

entered through the keyboard and then moves on to the NEXT TASK in the

program.

01 START LDI R1, A ; Test for
02 BRzp START ; character input
03 LDI R0, B
04 BRnzp NEXT_TASK ; Go to the next task
05 A .FILL xFE00 ; Address of KBSR
06 B .FILL xFE02 ; Address of KBDR

As long as KBSR[15] is 0, no key has been struck since the last time the processor

read the data register. Lines 01 and 02 comprise a loop that tests bit [15] of KBSR.

Note the use of the LDI instruction, which loads R1 with the contents of xFE00,

the memory-mapped address of KBSR. If the ready bit, bit [15], is clear, BRzp

will branch to START and another iteration of the loop. When someone strikes a

key, KBDR will be loaded with the ASCII code of that key, and the ready bit of

KBSR will be set. This will cause the branch to fall through, and the instruction

at line 03 will be executed. Again, note the use of the LDI instruction, which

this time loads R0 with the contents of xFE02, the memory-mapped address of

KBDR. The input routine is now done, so the program branches unconditionally

to its NEXT TASK.

9.2.2.3 Implementation of Memory-Mapped Input

Figure 9.4 shows the additional data path required to implement memory-mapped

input. You are already familiar, from Chapter 5, with the data path required to

16
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Figure 9.4 Memory-mapped input.
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carry out the EXECUTE phase of the load instructions. Essentially three steps

are required:

1. The MAR is loaded with the address of the memory location to be read.

2. Memory is read, resulting in MDR being loaded with the contents at the

specified memory location.

3. The destination register (DR) is loaded with the contents of MDR.

In the case of memory-mapped input, the same steps are carried out, except
instead of MAR being loaded with the address of a memory location, MAR is

loaded with the address of a device register. Instead of the address control logic

enabling memory to read, the address control logic selects the corresponding

device register to provide input to the MDR.

9.2.3 Output to the Monitor

9.2.3.1 Basic Output Registers (DDR and DSR)

Output works in a way very similar to input, with DDR and DSR replacing the

roles of KBDR and KBSR, respectively. DDR stands for Display Data Register,

which drives the monitor display. DSR stands for Display Status Register. In the

LC-3, DDR is assigned address xFE06. DSR is assigned address xFE04.
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Figure 9.5 Monitor device registers.

As is the case with input, even though an output character needs only 8 bits

and the synchronization mechanism needs only one bit, it is easier to assign

16 bits (like all memory addresses in the LC-3) to each output device register.

In the case of DDR, bits [7:0] are used for data, and bits [15:8] contain x00. In

the case of DSR, bit [15] contains the synchronization mechanism, that is, the

ready bit. Figure 9.5 shows the two device registers needed by the monitor.

9.2.3.2 The Basic Output Service Routine

DSR[15] controls the synchronization of the fast processor and the slow monitor

display. When the LC-3 transfers an ASCII code to DDR[7:0] for outputting, the

electronics of the monitor automatically clear DSR[15] as the processing of the

contents of DDR[7:0] begins. When the monitor finishes processing the character

on the screen, it (the monitor) automatically sets DSR[15]. This is a signal to

the processor that it (the processor) can transfer another ASCII code to DDR

for outputting. As long as DSR[15] is clear, the monitor is still processing the

previous character, so the monitor is disabled as far as additional output from the

processor is concerned.
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If input/output is controlled by the processor (i.e., via polling), a program can

repeatedly test DSR[15] until it notes that the bit is set, indicating that it is OK to

write a character to the screen. At that point, the processor can store the ASCII

code for the character it wishes to write into DDR[7:0], setting up the transfer of

that character to the monitor’s display.

The following routine causes the ASCII code contained in R0 to be displayed

on the monitor:

01 START LDI R1, A ; Test to see if
02 BRzp START ; output register is ready
03 STI R0, B
04 BRnzp NEXT_TASK
05 A .FILL xFE04 ; Address of DSR
06 B .FILL xFE06 ; Address of DDR

Like the routine for KBDR and KBSR in Section 9.2.2.2, lines 01 and 02 repeat-

edly poll DSR[15] to see if the monitor electronics is finished with the last

character shipped by the processor. Note the use of LDI and the indirect access

to xFE04, the memory-mapped address of DSR. As long as DSR[15] is clear,

the monitor electronics is still processing this character, and BRzp branches to

START for another iteration of the loop. When the monitor electronics finishes

with the last character shipped by the processor, it automatically sets DSR[15]

to 1, which causes the branch to fall through and the instruction at line 03 to be

executed. Note the use of the STI instruction, which stores R0 into xFE06, the

memory-mapped address of DDR. The write to DDR also clears DSR[15], dis-

abling for the moment DDR from further output. The monitor electronics takes

over and writes the character to the screen. Since the output routine is now done,

the program unconditionally branches (line 04) to its NEXT TASK.

9.2.3.3 Implementation of Memory-Mapped Output

Figure 9.6 shows the additional data path required to implement memory-mapped

output. As we discussed previously with respect to memory-mapped input,

the mechanisms for handling the device registers provide very little additional

complexity to what already exists for handling memory accesses.

In Chapter 5, you became familiar with the process of carrying out the

EXECUTE phase of the store instructions.

1. The MAR is loaded with the address of the memory location to be written.

2. The MDR is loaded with the data to be written to memory.

3. Memory is written, resulting in the contents of MDR being stored in the

specified memory location.

In the case of memory-mapped output, the same steps are carried out, except
instead of MAR being loaded with the address of a memory location, MAR is

loaded with the address of a device register. Instead of the address control logic

enabling memory to write, the address control logic asserts the load enable signal

of DDR.

Memory-mapped output also requires the ability to read output device reg-

isters. You saw in Section 9.2.3.2 that before the DDR could be loaded, the ready
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Figure 9.6 Memory-mapped output.

bit had to be in state 1, indicating that the previous character had already fin-

ished being written to the screen. The LDI and BRzp instructions on lines 01

and 02 perform that test. To do this, the LDI reads the output device register

DSR, and BRzp tests bit [15]. If the MAR is loaded with xFE04 (the memory-

mapped address of the DSR), the address control logic selects DSR as the input

to the MDR, where it is subsequently loaded into R1, and the condition codes

are set.

9.2.3.4 Example: Keyboard Echo

When we type at the keyboard, it is helpful to know exactly what characters we

have typed. We can get this echo capability easily (without any sophisticated elec-

tronics) by simply combining the two routines we have discussed. The result: The

key typed at the keyboard is displayed on the monitor.

01 START LDI R1, KBSR ; Test for character input
02 BRzp START
03 LDI R0, KBDR
04 ECHO LDI R1, DSR ; Test output register ready
05 BRzp ECHO
06 STI R0, DDR
07 BRnzp NEXT_TASK
08 KBSR .FILL xFE00 ; Address of KBSR
09 KBDR .FILL xFE02 ; Address of KBDR
0A DSR .FILL xFE04 ; Address of DSR
0B DDR .FILL xFE06 ; Address of DDR
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9.2.4 A More Sophisticated Input Routine

In the example of Section 9.2.2.2, the input routine would be a part of a program

being executed by the computer. Presumably, the program requires character input

from the keyboard. But how does the person sitting at the keyboard know when to

type a character? Sitting there, the person may wonder whether or not the program

is actually running, or if perhaps the computer is busy doing something else.

To let the person sitting at the keyboard know that the program is waiting for

input from the keyboard, the computer typically prints a message on the monitor.

Such a message is often referred to as a prompt. The symbols that are displayed

by your operating system (e.g., % or C:) or by your editor (e.g., :) are examples

of prompts.

The program fragment shown in Figure 9.7 obtains keyboard input via

polling as we have shown in Section 9.2.2.2. It also includes a prompt to let the

person sitting at the keyboard know when it is time to type a key. Let’s examine

this program fragment.

You are already familiar with lines 13 through 19 and lines 25 through 28,

which correspond to the code in Section 9.2.3.4 for inputting a character via the

keyboard and echoing it on the monitor.

You are also familiar with the need to save and restore registers if those reg-

isters are needed by instructions in the input routine. Lines 01 through 03 save

R1, R2, and R3, lines 1D through 1F restore R1, R2, and R3, and lines 22 through

24 set aside memory locations for those register values.

This leaves lines 05 through 08, 0A through 11, 1A through 1C, 29 and 2A.

These lines serve to alert the person sitting at the keyboard that it is time to type

a character.

Lines 05 through 08 write the ASCII code x0A to the monitor. This is the

ASCII code for a new line. Most ASCII codes correspond to characters that are

visible on the screen. A few, like x0A, are control characters. They cause an action

to occur. Specifically, the ASCII code x0A causes the cursor to move to the far

left of the next line on the screen. Thus, the name Newline. Before attempting

to write x0A, however, as is always the case, DSR[15] is tested (line 6) to see

if DDR can accept a character. If DSR[15] is clear, the monitor is busy, and the

loop (lines 06 and 07) is repeated. When DSR[15] is 1, the conditional branch

(line 7) is not taken, and (line 8) x0A is written to DDR for outputting.

Lines 0A through 11 cause the prompt Input a character> to be written

to the screen. The prompt is specified by the .STRINGZ pseudo-op on line 2A

and is stored in 19 memory locations—18 ASCII codes, one per memory location,

corresponding to the 18 characters in the prompt, and the terminating sentinel

x0000.

Line 0C iteratively tests to see if the end of the string has been reached (by

detecting x0000), and if not, once DDR is free, line 0F writes the next character

in the input prompt into DDR. When x0000 is detected, the entire input prompt

has been written to the screen, and the program branches to the code that handles

the actual keyboard input (starting at line 13).

After the person at the keyboard types a character and it has been echoed

(lines 13 to 19), the program writes one more new line (lines 1A through 1C)

before branching to its NEXT TASK.
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01 START ST R1,SaveR1 ; Save registers needed
02 ST R2,SaveR2 ; by this routine
03 ST R3,SaveR3
04 ;
05 LD R2,Newline
06 L1 LDI R3,DSR
07 BRzp L1 ; Loop until monitor is ready
08 STI R2,DDR ; Move cursor to new clean line
09 ;
0A LEA R1,Prompt ; Starting address of prompt string
0B Loop LDR R0,R1,#0 ; Write the input prompt
0C BRz Input ; End of prompt string
0D L2 LDI R3,DSR
0E BRzp L2 ; Loop until monitor is ready
0F STI R0,DDR ; Write next prompt character
10 ADD R1,R1,#1 ; Increment prompt pointer
11 BRnzp Loop ; Get next prompt character
12 ;
13 Input LDI R3,KBSR
14 BRzp Input ; Poll until a character is typed
15 LDI R0,KBDR ; Load input character into R0
16 L3 LDI R3,DSR
17 BRzp L3 ; Loop until monitor is ready
18 STI R0,DDR ; Echo input character
19 ;
1A L4 LDI R3,DSR
1B BRzp L4 ; Loop until monitor is ready
1C STI R2,DDR ; Move cursor to new clean line
1D LD R1,SaveR1 ; Restore registers
1E LD R2,SaveR2 ; to original values
1F LD R3,SaveR3
20 BRnzp NEXT_TASK ; Do the program's next task
21 ;
22 SaveR1 .BLKW 1 ; Memory for registers saved
23 SaveR2 .BLKW 1
24 SaveR3 .BLKW 1
25 DSR .FILL xFE04
26 DDR .FILL xFE06
27 KBSR .FILL xFE00
28 KBDR .FILL xFE02
29 Newline .FILL x000A ; ASCII code for newline
2A Prompt .STRINGZ ''Input a character>''

Figure 9.7 The more sophisticated input routine.

9.2.5 Implementation of Memory-Mapped I/O, Revisited

We showed in Figures 9.4 and 9.6 partial implementations of the data path to

handle (separately) memory-mapped input and memory-mapped output. We have

also learned that in order to support interrupt-driven I/O, the two status registers

must be writeable as well as readable.
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Figure 9.8 Relevant data path implementation of memory-mapped I/O.

Figure 9.8 (also shown as Figure C.3 of Appendix C) shows the data path

necessary to support the full range of features we have discussed for the I/O device

registers. The Address Control Logic Block controls the input or output operation.

Note that there are three inputs to this block. MIO.EN indicates whether a data

movement from/to memory or I/O is to take place this clock cycle. MAR contains

the address of the memory location or the memory-mapped address of an I/O device

register. R.W indicates whether a load or a store is to take place. Depending on the

values of these three inputs, the address control logic does nothing (MIO.EN = 0),

or it provides the control signals to direct the transfer of data between the MDR

and the memory or between the MDR and one of the I/O registers.

If R.W indicates a load, the transfer is from memory or I/O device to the

MDR. The Address Control Logic Block provides the select lines to INMUX to

source the appropriate I/O device register or memory (depending on MAR) and

also enables the memory if MAR contains the address of a memory location.

If R.W indicates a store, the contents of the MDR is written either to memory

or to one of the device registers. The address control logic either enables a write

to memory or asserts the load enable line of the device register specified by the

contents of the MAR.

9.3 Operating System Service
Routines (LC-3 Trap Routines)

9.3.1 Introduction

Recall Figure 9.7 of the previous section. In order for the program to successfully

obtain input from the keyboard, it was necessary for the programmer to know

several things:

1. The hardware data registers for both the monitor and the keyboard: the

monitor so a prompt could be displayed, and the keyboard so the program

would know where to get the input character.
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2. The hardware status registers for both the monitor and the keyboard: the

monitor so the program would know when it was OK to display the next

character in the input prompt, and the keyboard so the program would know

when someone had struck a key.

3. The asynchronous nature of keyboard input relative to the executing program.

This is beyond the knowledge of most application programmers. In fact, in the

real world, if application programmers (or user programmers, as they are some-

times called) had to understand I/O at this level, there would be much less I/O

and far fewer programmers in the business.

There is another problem with allowing user programs to perform I/O activity

by directly accessing KBDR and KBSR. I/O activity involves the use of device

registers that are shared by many programs. This means that if a user programmer

were allowed to access the hardware registers, and he/she messed up, it could

create havoc for other user programs. Thus, in general it is ill-advised to give

user programmers access to these registers. That is why the addresses of hardware

registers are part of the privileged memory address space and accessible only to

programs that have supervisor privilege.

The simpler solution, as well as the safer solution to the problem of user

programs requiring I/O, involves the TRAP instruction and the operating system,

which of course has supervisor privilege.

We were first introduced to the TRAP instruction in Chapter 4 as a way to

get the operating system to halt the computer. In Chapter 5 we saw that a user

program could use the TRAP instruction to get the operating system to do I/O

tasks for it (the user program). In fact a great benefit of the TRAP instruction,

which we have already pointed out, is that it allows the user programmer to not

have to know the gory details of I/O discussed earlier in this chapter. In addition,

it protects user programs from the consequences of other inept user programmers.

Figure 9.9 shows a user program that, upon reaching location x4000, needs

an I/O task performed. The user program uses the TRAP instruction to request the

User Program

Operating system
service routine
for handling the
I/O request

x4000 TRAP

Figure 9.9 Invoking an OS service routine using the TRAP instruction.
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operating system to perform the task on behalf of the user program. The operating

system takes control of the computer, handles the request specified by the TRAP

instruction, and then returns control back to the user program at location x4001.

As we said at the start of this chapter, we usually refer to the request made by the

user program as a system call or a service call.

9.3.2 The Trap Mechanism

The trap mechanism involves several elements:

1. A set of service routines executed on behalf of user programs by the

operating system. These are part of the operating system and start at

arbitrary addresses in system space. The LC-3 was designed so that up to

256 service routines can be specified. Table A.2 in Appendix A contains the

LC-3’s current complete list of operating system service routines.

2. A table of the starting addresses of these 256 service routines. This table

is stored in memory locations x0000 to x00FF. The table is referred to by

various names by various companies. One company calls this table the

System Control Block. Another company calls it the Trap Vector Table.

Figure 9.10 shows the Trap Vector Table of the LC-3, with specific starting

addresses highlighted. Among the starting addresses are the one for the

character output service routine (memory location x0420), which is stored

in memory location x0021, the one for the keyboard input service routine

(location x04A0), stored in location x0023, and the one for the machine halt

service routine (location x0520), stored in location x0025.

x04E0

x0460

x04A0

x0520x0025

x00FF

x0024

x0023

x0022

x0021

x0020

x0000

x03E0

x0420

Figure 9.10 The Trap Vector Table.
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3. The TRAP instruction. When a user program wishes to have the operating

system execute a specific service routine on behalf of the user program, and

then return control to the user program, the user program uses the TRAP

instruction (as we have been doing since Chapter 4).

4. A linkage back to the user program. The service routine must have a

mechanism for returning control to the user program.

9.3.3 The TRAP Instruction

The TRAP instruction causes the service routine to execute by (1) changing the

PC to the starting address of the relevant service routine on the basis of its trap

vector, and (2) providing a way to get back to the program that executed the TRAP

instruction. The “way back” is referred to as a linkage.

As you know, the TRAP instruction is made up of two parts: the TRAP

opcode 1111 and the trap vector (bits [7:0]), which identifies the service routine

the user program wants the operating system to execute on its behalf. Bits [11:8]

must be zero.

In the following example, the trap vector is x23.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1
TRAP trap vector

The EXECUTE phase of the TRAP instruction’s instruction cycle does

three things:

1. The PSR and PC are both pushed onto the system stack. Since the PC was

incremented during the FETCH phase of the TRAP instruction’s instruction

cycle, the return linkage is automatically saved in the PC. When control

returns to the user program, the PC will automatically be pointing to the

instruction following the TRAP instruction.

Note that the program requesting the trap service routine can be running

either in Supervisor mode or in User mode. If in User mode, R6, the stack

pointer, is pointing to the user stack. Before the PSR and PC can be

pushed onto the system stack, the current contents of R6 must be stored

in Saved USP, and the contents of Saved SSP loaded into R6.

2. PSR[15] is set to 0, since the service routine is going to require supervisor

privilege to execute. PSR[10:8] are left unchanged since the priority of the

TRAP routine is the same as the priority of the program that requested it.

3. The 8-bit trap vector is zero-extended to 16 bits to form an address that

corresponds to a location in the Trap Vector Table. For the trap vector x23,

that address is x0023. Memory location x0023 contains x04A0, the starting

address of the TRAP x23 service routine. The PC is loaded with x04A0,

completing the instruction cycle.

Since the PC contains x04A0, processing continues at memory address

x04A0.
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Location x04A0 is the starting address of the operating system service rou-

tine to input a character from the keyboard. We say the trap vector “points” to

the starting address of the TRAP routine. Thus, TRAP x23 causes the operating

system to start executing the keyboard input service routine.

9.3.4 The RTI Instruction: To Return Control
to the Calling Program

The only thing left to show is a mechanism for returning control to the calling

program, once the trap service routine has finished execution.

This is accomplished by the Return from Trap or Interrupt (RTI) instruction:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RTI

The RTI instruction (opcode = 1000, with no operands) pops the top two

values on the system stack into the PC and PSR. Since the PC contains the address

following the address of the TRAP instruction, control returns to the user program

at the correct address.

Finally, once the PSR has been popped off the system stack, PSR[15] must

be examined to see whether the processor was running in User mode or Super-

visor mode when the TRAP instruction was executed. If in User mode, the stack

pointers need to be adjusted to reflect that now back in User mode, the relevant

stack in use is the user stack. This is done by loading the Saved SSP with the

current contents of R6, and loading R6 with the contents of Saved USP.

9.3.5 A Summary of the Trap Service Routine Process

Figure 9.11 shows the LC-3 using the TRAP instruction and the RTI instruction to

implement the example of Figure 9.9. The flow of control goes from (A) within a

user program that needs a character input from the keyboard, to (B) the operating

system service routine that performs that task on behalf of the user program,

back to the user program (C) that presumably uses the information contained in

the input character.

As we know, the computer continually executes its instruction cycle (FETCH,

DECODE, etc.) on sequentially located instructions until the flow of control is

changed by changing the contents of the PC during the EXECUTE phase of the

current instruction. In that way, the next FETCH will be at a redirected address.

The TRAP instruction with trap vector x23 in our user program does exactly

that. Execution of TRAP x23 causes the PSR and incremented PC to be pushed

onto the system stack and the contents of memory location x0023 (which, in this

case, contains x04A0) to be loaded into the PC. The dashed line on Figure 9.11

shows the use of the trap vector x23 to obtain the starting address of the trap

service routine from the Trap Vector Table.

The next instruction cycle starts with the FETCH of the contents of x04A0,

which is the first instruction of the relevant operating system service routine.

The trap service routine executes to completion, ending with the RTI instruction,
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Character input 
service routine

B
x04A0

User program

C

A
x0023

Trap Vector Table
x0000

0000  0100  1010  0000

1111  0000  0010  0011

x00FF

1000  000000000000

Figure 9.11 Flow of control from a user program to an OS service routine and back.

which loads the PC and PSR with the top two elements on the system stack, that is,

the PSR and incremented PC that were pushed during execution of the TRAP

instruction. Since the PC was incremented prior to being pushed onto the system

stack, it contains the address of the instruction following the TRAP instruction

in the calling program, and the user program resumes execution by fetching the

instruction following the TRAP instruction.

The following program is provided to illustrate the use of the TRAP instruc-

tion. It can also be used to amuse the average four-year-old!

Example 9.1
Write a game program to do the following: A person is sitting at a keyboard. Each

time the person types a capital letter, the program outputs the lowercase version of

that letter. If the person types a 7, the program terminates.

The following LC-3 assembly language program will do the job.

01 .ORIG x3000
02 LD R2,TERM ; Load -7
03 LD R3,ASCII ; Load ASCII difference
04 AGAIN TRAP x23 ; Request keyboard input
05 ADD R1,R2,R0 ; Test for terminating
06 BRz EXIT ; character
07 ADD R0,R0,R3 ; Change to lowercase
08 TRAP x21 ; Output to the monitor
09 BRnzp AGAIN ; ... and do it again!
0A TERM .FILL xFFC9 ; FFC9 is negative of ASCII 7
0B ASCII .FILL x0020
0C EXIT TRAP x25 ; Halt
0D .END
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The program executes as follows: The program first loads constants xFFC9 and

x0020 into R2 and R3. The constant xFFC9, which is the negative of the ASCII code

for 7, is used to test the character typed at the keyboard to see if the four-year-old wants

to continue playing. The constant x0020 is the zero-extended difference between the

ASCII code for a capital letter and the ASCII code for that same letter’s lowercase

representation. For example, the ASCII code for A is x41; the ASCII code for a is

x61. The ASCII codes for Z and z are x5A and x7A, respectively.

Then TRAP x23 is executed, which invokes the keyboard input service routine.

When the service routine is finished, control returns to the application program (at

line 05), and R0 contains the ASCII code of the character typed. The ADD and

BRz instructions test for the terminating character 7. If the character typed is not a

7, the ASCII uppercase/lowercase difference (x0020) is added to the input ASCII

code, storing the result in R0. Then a TRAP to the monitor output service routine is

called. This causes the lowercase representation of the same letter to be displayed on

the monitor. When control returns to the application program (this time at line 09),

an unconditional BR to AGAIN is executed, and another request for keyboard input

appears.

The correct operation of the program in this example assumes that the per-

son sitting at the keyboard only types capital letters and the value 7. What if the

person types a $? A better solution to Example 9.1 would be a program that tests

the character typed to be sure it really is a capital letter from among the 26 cap-

ital letters in the alphabet or the single digit 7, and if it is not, takes corrective

action.

Question: Augment this program to add the test for bad data. That is, write a

program that will type the lowercase representation of any capital letter typed and

will terminate if anything other than a capital letter is typed. See Exercise 9.20.

9.3.6 Trap Routines for Handling I/O

With the constructs just provided, the input routine described in Figure 9.7 can

be slightly modified to be the input service routine shown in Figure 9.12. Two

changes are needed: (1) We add the appropriate .ORIG and .END pseudo-ops.

.ORIG specifies the starting address of the input service routine—the address

found at location x0023 in the Trap Vector Table. And (2) we terminate the

input service routine with the RTI instruction rather than the BR NEXT TASK,

as is done on line 20 in Figure 9.7. We use RTI because the service routine is

invoked by TRAP x23. It is not part of the user program, as was the case in

Figure 9.7.

The output routine of Section 9.2.3.2 can be modified in a similar way, as

shown in Figure 9.13. The results are input (Figure 9.12) and output (Figure 9.13)

service routines that can be invoked simply and safely by the TRAP instruction

with the appropriate trap vector. In the case of input, upon completion of TRAP

x23, R0 contains the ASCII code of the keyboard character typed. In the case of

output, the initiating program must load R0 with the ASCII code of the character

it wishes displayed on the monitor and then invoke TRAP x21.
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01 ; Service Routine for Keyboard Input
02 ;
03 .ORIG x04A0
04 START ST R1,SaveR1 ; Save the values in the registers
05 ST R2,SaveR2 ; that are used so that they
06 ST R3,SaveR3 ; can be restored before RET
07 ;
08 LD R2,Newline
09 L1 LDI R3,DSR ; Check DDR -- is it free?
0A BRzp L1
0B STI R2,DDR ; Move cursor to new clean line
0C ;
0D LEA R1,Prompt ; Prompt is starting address
0E ; of prompt string
1F Loop LDR R0,R1,#0 ; Get next prompt character
10 BRz Input ; Check for end of prompt string
11 L2 LDI R3,DSR
12 BRzp L2
13 STI R0,DDR ; Write next character of
14 ; prompt string
15 ADD R1,R1,#1 ; Increment prompt pointer
16 BRnzp Loop
17 ;
18 Input LDI R3,KBSR ; Has a character been typed?
19 BRzp Input
1A LDI R0,KBDR ; Load it into R0
1B L3 LDI R3,DSR
1C BRzp L3
1D STI R0,DDR ; Echo input character
1E ; to the monitor
1F ;
20 L4 LDI R3,DSR
21 BRzp L4
22 STI R2,DDR ; Move cursor to new clean line
23 LD R1,SaveR1 ; Service routine done, restore
24 LD R2,SaveR2 ; original values in registers.
25 LD R3,SaveR3
26 RTI ; Return from Trap
27 ;
28 SaveR1 .BLKW 1
29 SaveR2 .BLKW 1
2A SaveR3 .BLKW 1
2B DSR .FILL xFE04
2C DDR .FILL xFE06
2D KBSR .FILL xFE00
2E KBDR .FILL xFE02
2F Newline .FILL x000A ; ASCII code for newline
30 Prompt .STRINGZ "Input a character>"
31 .END

Figure 9.12 Character input service routine.
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01 .ORIG x0420 ; System call starting address
02 ST R1, SaveR1 ; R1 will be used to poll the DSR
03 ; hardware
04 ; Write the character
05 TryWrite LDI R1, DSR ; Get status
06 BRzp TryWrite ; Bit 15 on says display is ready
07 WriteIt STI R0, DDR ; Write character
08
09 ; return from trap
0A Return LD R1, SaveR1 ; Restore registers
0B RTI ; Return from trap
0C DSR .FILL xFE04 ; Address of display status register
0D DDR .FILL xFE06 ; Address of display data register
0E SaveR1 .BLKW 1
0F .END

Figure 9.13 Character output service routine.

9.3.7 A Trap Routine for Halting the Computer

Recall from Section 4.5 that the RUN latch is ANDed with the crystal oscillator

to produce the clock that controls the operation of the computer. We noted that if

that one-bit latch was cleared, the output of the AND gate would be 0, stopping

the clock.

Years ago, most ISAs had a HALT instruction for stopping the clock. Given

how infrequently that instruction is executed, it seems wasteful to devote an

opcode to it. In many modern computers, the RUN latch is cleared by a TRAP

routine. In the LC-3, the RUN latch is bit [15] of the Master Control Register

(MCR), which is memory-mapped to location xFFFE. Figure 9.14 shows the trap

service routine for halting the processor, that is, for stopping the clock.

01 .ORIG x0520 ; Where this routine resides
02 ST R1, SaveR1 ; R1: a temp for MC register
03 ST R0, SaveR0 ; R0 is used as working space
04
05 ; print message that machine is halting
06
07 LD R0, ASCIINewLine
08 TRAP x21
09 LEA R0, Message
0A TRAP x22
0B LD R0, ASCIINewLine
0C TRAP x21
0D ;
0E ; clear bit 15 at xFFFE to stop the machine
0F ;
10 LDI R1, MCR ; Load MC register into R1
11 LD R0, MASK ; R0 = x7FFF
12 AND R0, R1, R0 ; Mask to clear the top bit
13 STI R0, MCR ; Store R0 into MC register

Figure 9.14 HALT service routine for the LC-3 (Fig. 9.14 continued on next page.)
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14 ;
15 ; return from HALT routine.
16 ; (how can this routine return if the machine is halted above?)
17 ;
18 LD R1, SaveR1 ; Restore registers
19 LD R0, SaveR0
1A RTI
1B ;
1C ; Some constants
1D ;
1E ASCIINewLine .FILL x000A
1F SaveR0 .BLKW 1
20 SaveR1 .BLKW 1
21 Message .STRINGZ "Halting the machine."
22 MCR .FILL xFFFE ; Address of MCR
23 MASK .FILL x7FFF ; Mask to clear the top bit
24 .END

Figure 9.14 HALT service routine for the LC-3 (continued Fig. 9.14 from
previous page.)

First (lines 02 and 03), registers R1 and R0 are saved. R1 and R0 are saved

because they are needed by the service routine. Then (lines 07 through 0C),

the banner Halting the machine is displayed on the monitor. Finally (lines 10

through 13), the RUN latch (MCR[15]) is cleared by ANDing the MCR with

0111111111111111. That is, MCR[14:0] remains unchanged, but MCR[15] is

cleared. Question: What instruction (or trap service routine) can be used to start

the clock? Hint: This is a trick question! :-)

9.3.8 The Trap Routine for Character Input (One Last Time)

Let’s look again at the keyboard input service routine of Figure 9.12. In particular,

let’s look at the three-line sequence that occurs at symbolic addresses L1, L2, L3,

and L4:

LABEL LDI R3,DSR
BRzp LABEL
STI Reg,DDR

Can the JSR/RET mechanism enable us to replace these four occurrences of the

same sequence with a single subroutine? Answer: Yes, almost.
Figure 9.15, our “improved” keyboard input service routine, contains

JSR WriteChar

at lines 04, 0A, 10, and 13, and the four-instruction subroutine

WriteChar LDI R3,DSR
BRzp WriteChar
STI R2,DDR
RET

at lines 1A through 1D. Note the RET instruction (a.k.a. JMP R7) that is needed

to terminate the subroutine.
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01 .ORIG x04A0
02 START JSR SaveReg
03 LD R2,Newline
04 JSR WriteChar
05 LEA R1,PROMPT
06 ;
07 ;
08 Loop LDR R2,R1,#0 ; Get next prompt char
09 BRz Input
0A JSR WriteChar
0B ADD R1,R1,#1
0C BRnzp Loop
0D ;
0E Input JSR ReadChar
0F ADD R2,R0,#0 ; Move char to R2 for writing
10 JSR WriteChar ; Echo to monitor
11 ;
12 LD R2, Newline
13 JSR WriteChar
14 JSR RestoreReg
15 RTI ; RTI terminates the trap routine
16 ;
17 Newline .FILL x000A
18 PROMPT .STRINGZ "Input a character>"
19 ;
1A WriteChar LDI R3,DSR
1B BRzp WriteChar
1C STI R2,DDR
1D RET ; JMP R7 terminates subroutine
1E DSR .FILL xFE04
1F DDR .FILL xFE06
20 ;
21 ReadChar LDI R3,KBSR
22 BRzp ReadChar
23 LDI R0,KBDR
24 RET
25 KBSR .FILL xFE00
26 KBDR .FILL xFE02
27 ;
28 SaveReg ST R1,SaveR1
29 ST R2,SaveR2
2A ST R3,SaveR3
2B ST R4,SaveR4
2C ST R5,SaveR5
2D ST R6,SaveR6
2E RET
2F ;
30 RestoreReg LD R1,SaveR1
31 LD R2,SaveR2
32 LD R3,SaveR3
33 LD R4,SaveR4
34 LD R5,SaveR5
35 LD R6,SaveR6
36 RET
37 SaveR1 .FILL x0000
38 SaveR2 .FILL x0000
39 SaveR3 .FILL x0000
3A SaveR4 .FILL x0000
3B SaveR5 .FILL x0000
3C SaveR6 .FILL x0000
3D .END

Figure 9.15 The LC-3 trap service routine for character input (our final answer!).
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Note the hedging: almost. In the original sequences starting at L2 and L3,

the STI instruction forwards the contents of R0 (not R2) to the DDR. We can fix

that easily enough, as follows: In line 08 of Figure 9.15, we use

LDR R2,R1,#0

instead of

LDR R0,R1,#0

This causes each character in the prompt to be loaded into R2. The subroutine

Writechar forwards each character from R2 to the DDR.

In line 0F of Figure 9.15, we insert the instruction

ADD R2,R0,#0

in order to move the keyboard input (which is in R0) into R2. The subroutine

Writechar forwards it from R2 to the DDR. Note that R0 still contains the key-

board input. Furthermore, since no subsequent instruction in the service routine

loads R0, R0 still contains the keyboard input after control returns to the user

program.

In line 12 of Figure 9.15, we insert the instruction

LD R2,Newline

in order to move the “newline” character into R2. The subroutine Writechar

forwards it from R2 to the DDR.

Figure 9.15 is the actual LC-3 trap service routine provided for keyboard

input.

9.3.9 PUTS: Writing a Character String to the Monitor

Before we leave the example of Figure 9.15, note the code on lines 08 through 0C.

This fragment of the service routine is used to write the sequence of characters

Input a character to the monitor. A sequence of characters is often referred to

as a string of characters or a character string. This fragment is also present in

Figure 9.14, with the result that Halting the machine is written to the monitor. In

fact, it is so often the case that a user program needs to write a string of characters

to the monitor that this function is given its own trap service routine in the LC-3

operating system. Thus, if a user program requires a character string to be written

to the monitor, it need only provide (in R0) the starting address of the character

string, and then invoke TRAP x22. In LC-3 assembly language this TRAP is

called PUTS.

PUTS (or TRAP x22) causes control to be passed to the operating system,

and the trap routine shown in Figure 9.16 is executed. Note that PUTS is the code

of lines 08 through 0C of Figure 9.15, with a few minor adjustments.
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01 ; This service routine writes a NULL-terminated string to the console.
02 ; It services the PUTS service call (TRAP x22).
03 ; Inputs: R0 is a pointer to the string to print.
04 ;
05 .ORIG x0460
06 ST R0, SaveR0 ; Save registers that
07 ST R1, SaveR1 ; are needed by this
08 ST R3, SaveR3 ; trap service routine
09 ;
0A ; Loop through each character in the array
0B ;
0C Loop LDR R1, R0, #0 ; Retrieve the character(s)
0D BRz Return ; If it is 0, done
0E L2 LDI R3,DSR
0F BRzp L2
10 STI R1, DDR ; Write the character
11 ADD R0, R0, #1 ; Increment pointer
12 BRnzp Loop ; Do it all over again
13 ;
14 ; Return from the request for service call
15 Return LD R3, SaveR3
16 LD R1, SaveR1
17 LD R0, SaveR0
18 RTI
19 ;
1A ; Register locations
1B DSR .FILL xFE04
1C DDR .FILL xFE06
1D SaveR0 .FILL x0000
1E SaveR1 .FILL x0000
1F SaveR3 .FILL x0000
20 .END

Figure 9.16 The LC-3 PUTS service routine.

9.4 Interrupts and Interrupt-
Driven I/O

In Section 9.2.1.3, we noted that interaction between the processor and an I/O

device can be controlled by the processor (i.e., polling) or it can be controlled by

the I/O device (i.e., interrupt driven). In Sections 9.2.2, 9.2.3, and 9.2.4, we have

studied several examples of polling. In each case, the processor tested the ready

bit of the status register again and again, and when the ready bit was finally 1, the

processor branched to the instruction that did the input or output operation.

We are now ready to study the case where the interaction is controlled by the

I/O device.

9.4.1 What Is Interrupt-Driven I/O?

The essence of interrupt-driven I/O is the notion that an I/O device that may or

may not have anything to do with the program that is running can (1) force the
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.

.

.
Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2

1: Interrupt signal is detected
1: Program A is put into suspended animation
1: PC is loaded with the starting address of Program B
2: Program B starts satisying I/O device’s needs
2: Program B continues satisfying I/O device’s needs
2: Program B continues satisfying I/O device’s needs
2: Program B finishes satisfying I/O device’s needs
3: Program A is brought back to life

Program A is executing instruction n+3
Program A is executing instruction n+4

.

.

.

Figure 9.17 Instruction execution flow for interrupt-driven I/O.

running program to stop, (2) have the processor execute a program that carries out

the needs of the I/O device, and then (3) have the stopped program resume exe-

cution as if nothing had happened. These three stages of the instruction execution

flow are shown in Figure 9.17.

As far as Program A is concerned, the work carried out and the results

computed are no different from what would have been the case if the interrupt

had never happened; that is, as if the instruction execution flow had been the

following:

.

.

.
Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
Program A is executing instruction n+3
Program A is executing instruction n+4

.

.

.

9.4.2 Why Have Interrupt-Driven I/O?

As is undoubtedly clear, polling requires the processor to waste a lot of time spin-

ning its wheels, re-executing again and again the LDI and BR instructions until

the ready bit is set. With interrupt-driven I/O, none of that testing and branching

has to go on. Interrupt-driven I/O allows the processor to spend its time doing
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what is hopefully useful work, executing some other program perhaps, until it is

notified that some I/O device needs attention.

Example 9.2
Suppose we are asked to write a program that takes a sequence of 100 characters

typed on a keyboard and processes the information contained in those 100 characters.

Assume the characters are typed at the rate of 80 words/minute, which corresponds

to one character every 0.125 seconds. Assume the processing of the 100-character

sequence takes 12.49999 seconds, and that our program is to perform this process on

1000 consecutive sequences. How long will it take our program to complete the task?

(Why did we pick 12.49999? To make the numbers come out nice, of course.) :-)

We could obtain each character input by polling, as in Section 9.2.2. If we did,

we would waste a lot of time waiting for the “next” character to be typed. It would

take 100 ⋅ 0.125 or 12.5 seconds to get a 100-character sequence.

On the other hand, if we use interrupt-driven I/O, the processor does not waste

any time re-executing the LDI and BR instructions while waiting for a character to

be typed. Rather, the processor can be busy working on the previous 100-character

sequence that was typed, except for those very small fractions of time when it is inter-

rupted by the I/O device to read the next character typed. Let’s say that to read the next

character typed requires executing a ten-instruction program that takes on the aver-

age 0.00000001 seconds to execute each instruction. That means 0.0000001 seconds

for each character typed, or 0.00001 seconds for the entire 100-character sequence.

That is, with interrupt-driven I/O, since the processor is only needed when characters

are actually being read, the time required for each 100-character sequence is 0.00001

seconds, instead of 12.50000 seconds. The remaining 12.49999 of every 12.50000

seconds, the processor is available to do useful work. For example, it can process the

previous 100-character sequence.

The bottom line: With polling, the time to complete the entire task for each

sequence is 24.9999 seconds, 12.5 seconds to obtain the 100 characters + 12.49999

seconds to process them. With interrupt-driven I/O, the time to complete the entire

task for each sequence after the first is 12.5 seconds, 0.00001 seconds to obtain

the characters + 12.49999 seconds to process them. For 1000 sequences, that is the

difference between 7 hours and 3 1

2
hours.

9.4.3 Two Parts to the Process

There are two parts to interrupt-driven I/O:

1. the mechanism that enables an I/O device to interrupt the processor, and

2. the mechanism that handles the interrupt request.

9.4.4 Part I: Causing the Interrupt to Occur

Several things must be true for an I/O device to actually interrupt the program

that is running:

1. The I/O device must want service.

2. The device must have the right to request the service.

3. The device request must be more urgent than what the processor is

currently doing.
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If all three elements are present, the processor stops executing the program

that is running and takes care of the interrupt.

9.4.4.1 The Interrupt Signal from the Device

For an I/O device to generate an interrupt request, the device must want service,

and it must have the right to request that service.

The Device Must Want Service We have discussed that already in the study of

polling. It is the ready bit of the KBSR or the DSR. That is, if the I/O device is

the keyboard, it wants service if someone has typed a character. If the I/O device

is the monitor, it wants service (i.e., the next character to output) if the associated

electronic circuits have successfully completed the display of the last character.

In both cases, the I/O device wants service when the corresponding ready bit is

set.

The Device Must Have the Right to Request That Service This is the interrupt

enable bit, which can be set or cleared by the processor (usually by the operating

system), depending on whether or not the processor wants to give the I/O device

the right to request service. In most I/O devices, this interrupt enable (IE) bit is

part of the device status register. In the KBSR and DSR shown in Figure 9.18,

the IE bit is bit [14]. The interrupt request signal from the I/O device is the

logical AND of the IE bit and the ready bit, as is also shown in Figure 9.18.

1314

Interrupt signal to the processor

15

Interrupt signal to the processor

0

KBSR

131415 0

DSR

Figure 9.18 Interrupt enable bits and their use.

If the interrupt enable bit (bit [14]) is clear, it does not matter whether the

ready bit is set; the I/O device will not be able to interrupt the processor because

it (the I/O device) has not been given the right to interrupt the processor. In that

case, the program will have to poll the I/O device to determine if it is ready.

If bit [14] is set, then interrupt-driven I/O is enabled. In that case, as soon as

someone types a key (or as soon as the monitor has finished processing the last

character), bit [15] is set. In this case, the device wants service, and it has been

given the right to request service. The AND gate is asserted, causing an interrupt

request to be generated from the I/O device.

9.4.4.2 The Urgency of the Request

The third element in the list of things that must be true for an I/O device to actually

interrupt the processor is that the request must be more urgent than the program
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that is currently executing. Recall from Section 9.1.1.2 that each program runs

at a specified level of urgency called its priority level. To interrupt the running

program, the device must have a higher priority than the program that is currently

running. Actually, there may be many devices that want to interrupt the processor

at a specific time. To succeed, the device must have a higher priority level than

all other demands for use of the processor.

Almost all computers have a set of priority levels that programs can run at.

As we have already noted, the LC-3 has eight priority levels, PL0 to PL7. The

higher the number, the more urgent the program. The PL of a program is usually

the same as the PL (i.e., urgency) of the request to run that program. If a program

is running at one PL, and a higher-level PL request wants the computer, the lower-

priority program suspends processing until the higher-PL program executes and

satisfies its more urgent request. For example, a computer’s payroll program may

run overnight, and at PL0. It has all night to finish—not terribly urgent. A program

that corrects for a nuclear plant current surge may run at PL6. We are perfectly

happy to let the payroll wait while the nuclear power correction keeps us from

being blown to bits.

For our I/O device to successfully stop the processor and start an interrupt-

driven I/O request, the priority of the request must be higher than the priority

of the program it wishes to interrupt. For example, we would not normally want

to allow a keyboard interrupt from a professor checking e-mail to interrupt the

nuclear power correction program.

9.4.4.3 The INT Signal

To stop the processor from continuing execution of its currently running program

and service an interrupt request, the INT signal must be asserted. Figure 9.19 shows

what is required to assert the INT signal. Figure 9.19 shows the status registers of

several devices operating at various priority levels (PL). Any device that has bits [14]

and [15] both set asserts its interrupt request signal. The interrupt request signals are

input to a priority encoder, a combinational logic structure that selects the highest

priority request from all those asserted. If the PL of that request is higher than the PL

of the currently executing program, the INT signal is asserted.

9.4.4.4 The Test for INT

Finally, the test to enable the processor to stop and handle the interrupt. Recall

from Chapter 4 that the instruction cycle continually sequences through the

phases of the instruction cycle (FETCH, DECODE, EVALUATE ADDRESS,

FETCH OPERAND, EXECUTE, and STORE RESULT). Each instruction

changes the state of the computer, and that change is completed at the end of

the instruction cycle for that instruction. That is, in the last clock cycle before the

computer returns to the FETCH phase for the next instruction, the computer is

put in the state caused by the complete execution of the current instruction.

Interrupts can happen at any time. They are asynchronous to the synchronous

finite state machine controlling the computer. For example, the interrupt signal

could occur when the instruction cycle is in its FETCH OPERAND phase. If

we stopped the currently executing program when the instruction cycle was in
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Figure 9.19 Generation of the INT signal.

its FETCH OPERAND phase, we would have to keep track of what part of the

current instruction has executed and what part of the current instruction still has

work to do. It makes much more sense to ignore interrupt signals except when

we are at an instruction boundary; that is, the current instruction has completed,

and the next instruction has not yet started. Doing that means we do not have to

worry about partially executed instructions, since the state of the computer is the

state created by the completion of the current instruction, period!

The additional logic to test for the interrupt signal is to augment the last

state of the instruction cycle for each instruction with a test. Instead of always
going from the last state of one instruction cycle to the first state of the FETCH

phase of the next instruction, the next state depends on the INT signal. If INT

is not asserted, then it is business as usual, with the control unit returning to the

FETCH phase to start processing the next instruction. If INT is asserted, then the

next state is the first state of Part II, handling the interrupt request.

9.4.5 Part II: Handling the Interrupt Request

Handling the interrupt request goes through three stages, as shown in Figure 9.17:

1. Initiate the interrupt (three lines numbered 1 in Figure 9.17).

2. Service the interrupt (four lines numbered 2 in Figure 9.17).

3. Return from the interrupt (one line numbered 3 in Figure 9.17).

We will discuss each.
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9.4.5.1 Initiate the Interrupt

Since the INT signal was asserted, the processor does not return to the first state

of the FETCH phase of the next instruction cycle, but rather begins a sequence of

actions to initiate the interrupt. The processor must do two things: (1) save the

state of the interrupted program so it can pick up where it left off after the require-

ments of the interrupt have been completed, and (2) load the state of the higher

priority interrupting program so it can start satisfying its request.

Save the State of the Interrupted Program The state of a program is a snap-

shot of the contents of all the program’s resources. It includes the contents of the

memory locations that are part of the program and the contents of all the general

purpose registers. It also includes the PC and PSR.

Recall from Figure 9.1 in Section 9.1.1.4 that a program’s PSR specifies

the privilege level and priority level of that program. PSR[15] indicates whether

the program is running in privileged (Supervisor) or unprivileged (User) mode.

PSR[10:8] specifies the program’s priority level (PL), from PL0 (lowest) to PL7

(highest). Also, PSR[2:0] is used to store the condition codes. PSR[2] is the N

bit, PSR[1] is the Z bit, and PSR[0] is the P bit.

The first step in initiating the interrupt is to save enough of the state of the

program that is running so that it can continue where it left off after the I/O device

request has been satisfied. That means, in the case of the LC-3, saving the PC and

the PSR. The PC must be saved since it knows which instruction should be exe-

cuted next when the interrupted program resumes execution. The condition codes

(the N, Z, and P flags) must be saved since they may be needed by a subsequent

conditional branch instruction after the program resumes execution. The priority

level of the interrupted program must be saved because it specifies the urgency of

the interrupted program with respect to all other programs. When the interrupted

program resumes execution, it is important to know what priority level programs

can interrupt it and which ones cannot. Finally, the privilege level of the program

must be saved since it specifies what processor resources the interrupted program

can and cannot access.

Although many computers save the contents of the general purpose registers,

we will not since we will assume that the service routine will always save the

contents of any general purpose register that it needs before using it, and then

restore it before returning to the interrupted program. The only state information

the LC-3 saves are the PC and PSR.

The LC-3 saves this state information on the supervisor stack in the same

way the PC and PSR are saved when a TRAP instruction is executed. That is,

before the interrupt service routine starts, if the interrupted program is in User

mode, the User Stack Pointer (USP) is stored in Saved USP, and R6 is loaded with

the Supervisor Stack Pointer (SSP) from Saved SSP. Then the PSR and PC of

the interrupted program are pushed onto the supervisor stack, where they remain

unmolested while the service routine executes.

Load the State of the Interrupt Service Routine Once the state of the inter-

rupted program has been safely saved on the supervisor stack, the second step
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is to load the PC and PSR of the interrupt service routine. Interrupt service rou-

tines are similar to the trap service routines we have already discussed. They are

program fragments stored in system space. They service interrupt requests.

Most processors use the mechanism of vectored interrupts. You are famil-

iar with this notion from your study of the trap vector contained in the TRAP

instruction. In the case of interrupts, the eight-bit vector is provided by the device

that is requesting the processor be interrupted. That is, the I/O device trans-

mits to the processor an eight-bit interrupt vector along with its interrupt request

signal and its priority level. The interrupt vector corresponding to the highest

priority interrupt request is the one supplied to the processor. It is designated

INTV.

If the interrupt is taken, the processor expands the 8-bit interrupt vector

(INTV) to form a 16-bit address, which is an entry into the Interrupt Vector

Table. You know that the Trap Vector Table consists of memory locations x0000

to x00FF, each containing the starting address of a trap service routine. The Inter-

rupt Vector Table consists of memory locations x0100 to x01FF, each containing

the starting address of an interrupt service routine. The processor loads the PC

with the contents of the location in the Interrupt Vector Table corresponding to

the address formed by expanding the interrupt vector INTV.

For example, the LC-3 keyboard could interrupt the processor every time a

key is pressed by someone sitting at the keyboard. The keyboard interrupt vector

would indicate the location in the interrupt vector table that contains the starting

address of the keyboard interrupt service routine.

The PSR is loaded as follows: Since no instructions in the service routine

have yet executed, PSR[2:0] contains no meaningful information. We arbitrarily

load it initially with 010. Since the interrupt service routine runs in privileged

mode, PSR[15] is set to 0. PSR[10:8] is set to the priority level associated with

the interrupt request.

This completes the initiation phase, and the interrupt service routine is ready

to execute.

9.4.5.2 Service the Interrupt

Since the PC contains the starting address of the interrupt service routine, the

service routine will execute, and the requirements of the I/O device will be

serviced.

9.4.5.3 Return from the Interrupt

The last instruction in every interrupt service routine is RTI, return from trap

or interrupt. When the processor finally accesses the RTI instruction, all the

requirements of the I/O device have been taken care of.

Like the return from a trap routine discussed in Section 9.3.4, execution of

the RTI instruction (opcode = 1000) for an interrupt service routine consists

simply of popping the PC and the PSR from the supervisor stack (where they

have been resting peacefully) and restoring them to their rightful places in the
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processor. The condition codes are now restored to what they were when the

program was interrupted, in case they are needed by a subsequent BR instruction

in the interrupted program. PSR[15] and PSR[10:8] now reflect the privilege level

and priority level of the about-to-be-resumed program. If the privilege level of

the interrupted program is unprivileged, the stack pointers must be adjusted, that

is, the Supervisor Stack Pointer saved, and the User Stack Pointer loaded into R6.

The PC is restored to the address of the instruction that would have been executed

next if the program had not been interrupted.

With all these things as they were before the interrupt occurred, the program

can resume as if nothing had happened.

9.4.6 An Example

We complete the discussion of interrupt-driven I/O with an example.

Suppose program A is executing when I/O device B, having a PL higher

than that of A, requests service. During the execution of the service routine for

I/O device B, a still more urgent device C requests service.

Figure 9.20 shows the execution flow that must take place.

Service routine
for device B

Service routine
for device C

Program A

RTI

RTI x6210

x6202

x6200

x3010

x3006

x3000

x6300

x6315

ADD

AND

Figure 9.20 Execution flow for interrupt-driven I/O.

Program A consists of instructions in locations x3000 to x3010 and was in

the middle of executing the ADD instruction at x3006 when device B sent its

interrupt request signal and accompanying interrupt vector xF1, causing INT to

be asserted.

Note that the interrupt service routine for device B is stored in locations

x6200 to x6210; x6210 contains the RTI instruction. Note that the service routine
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for B was in the middle of executing the AND instruction at x6202 when device

C sent its interrupt request signal and accompanying interrupt vector xF2. Since

the request associated with device C is of a higher priority than that of device B,

INT is again asserted.

Note that the interrupt service routine for device C is stored in locations

x6300 to x6315; x6315 contains the RTI instruction.

Let us examine the order of execution by the processor. Figure 9.21 shows

several snapshots of the contents of the supervisor stack and the PC during the

execution of this example.

The processor executes as follows: Figure 9.21a shows the supervisor stack

and the PC before program A fetches the instruction at x3006. Note that the stack

pointer is shown as Saved SSP, not R6. Since the interrupt has not yet occurred,

R6 is pointing to the current contents of the user stack, which are not shown!

The INT signal (caused by an interrupt from device B) is detected at the end

of execution of the instruction in x3006. Since the state of program A must be

PSR for device B

PSR for device BPSR for device B

 (a)  (b)  (c)

PC x6200 PC x6300

(d) (e)

PC x6203 PC x3007

Saved.
SSP

R6

R6

R6

Saved.SSP

PC x3006

PSR of program A 

PSR of program A PSR of program A 

PSR of program A 

x3007

x3007x3007

x3007

x6203

x6203x6203

Figure 9.21 Snapshots of the contents of the supervisor stack and the PC during
interrupt-driven I/O.
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saved on the supervisor stack, the first step is to start using the supervisor stack.

This is done by saving R6 in the Saved.UPC register and loading R6 with the

contents of the Saved SSP register. The PSR of program A, which includes the

condition codes produced by the ADD instruction, is pushed on the supervisor

stack. Then the address x3007, the PC for the next instruction to be executed in

program A is pushed on the stack. The interrupt vector associated with device B

is expanded to 16 bits x01F1, and the contents of x01F1 (x6200) is loaded into

the PC. Figure 9.21b shows the stack and PC at this point.

The service routine for device B executes until a higher priority interrupt

is detected at the end of execution of the instruction at x6202. The PSR of the

service routine for B, which includes the condition codes produced by the AND

instruction at x6202, and the address x6203 are pushed on the stack. The interrupt

vector associated with device C is expanded to 16 bits (x01F2), and the contents

of x01F2 (x6300) is loaded into the PC. Figure 9.21c shows the supervisor stack

and PC at this point.

Assume the interrupt service routine for device C executes to completion, fin-

ishing with the RTI instruction in x6315. The supervisor stack is popped twice,

restoring the PC to x6203 and the PSR of the service routine for device B, includ-

ing the condition codes produced by the AND instruction in x6202. Figure 9.21d

shows the stack and PC at this point.

The interrupt service routine for device B resumes execution at x6203 and

runs to completion, finishing with the RTI instruction in x6210. The supervisor

stack is popped twice, restoring the PC to x3007 and the PSR of program A,

including the condition codes produced by the ADD instruction in x3006. Finally,

since program A is in User mode, the contents of R6 is stored in Saved SSP and

R6 is loaded with the contents of Saved USP. Figure 9.21e shows the supervisor

stack and PC at this point.

Program A resumes execution with the instruction at x3007.

9.4.7 Not Just I/O Devices

We have discussed the processing of interrupts in the context of I/O devices that

have higher priority than the program that is running and therefore can stop that

program to enable its interrupt service routine to execute.

We must point out that not all interrupts deal with I/O devices. Any event that

has a higher priority and is external to the program that is running can interrupt

the computer. It does so by supplying its INT signal, its INTV vector, and its pri-

ority level. If it is the highest priority event that wishes to interrupt the computer,

it does so in the same way that I/O devices do as described above.

There are many examples of such events that have nothing to do with I/O

devices. For example, a timer interrupt interrupts the program that is running in

order to note the passage of a unit of time. The machine check interrupt calls atten-

tion to the fact that some part of the computer system is not functioning properly.

The power failure interrupt notifies the computer that, for example, someone has

yanked the power cord out of its receptacle. Unfortunately, we will have to put

off dealing with all of these until later in your coursework.
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9.5 Polling Revisited, Now That
We Know About Interrupts

9.5.1 The Problem

Recall our discussion of polling: We continually test the ready bit in the relevant

status register, and if it is not set, we branch back to again test the ready bit. For

example, suppose we are writing a character string to the monitor, and we are

using polling to determine when the monitor has successfully written the current

character so we can dispatch the next character. We take it for granted that the

three-instruction sequence LDI (to load the ready bit of the DSR), BRzp (to test

it and fall through if the device is ready), and STI (to store the next character in the

DDR) acts as an atomic unit. But what if we had interrupts enabled at the same

time? That is, if an interrupt occurred within that LDI, BRzp, STI sequence (say,

just before the STI instruction), it could easily be the case that the LDI instruction

indicated the DDR was ready, the BRzp instruction did not branch back, but by

the time the interrupt service routine completed so the STI could write to the

DDR, the DDR may no longer be ready. The computer would execute the STI,

but the write would not happen.

A simple, but somewhat contrived example :-), will illustrate the problem.

Suppose you are executing a “for” loop ten times, where each time the loop body

prints to the monitor a particular character. Polling is used to determine that the

monitor is ready before writing the next character to the DDR. Since the loop

body executes ten times, this should result in the character being printed on the

monitor ten times. Suppose you also have keyboard interrupts enabled, and the

keyboard service routine echoes the character typed.

Suppose the loop body executes as follows: LDI loads the ready bit, BRzp

falls through since the monitor is ready, and STI stores the character in DDR. In

the middle of this sequence, before the STI can execute, someone types a key.

The keyboard interrupt occurs, the character typed is echoed, i.e., written to the

DDR, and the keyboard interrupt service routine completes.

The interrupted loop body then takes over and “knows” the monitor is ready,

so it executes the STI. ... except the monitor is not ready because it has not com-

pleted the write of the keyboard service routine! The STI of the loop body writes,

but since DDR is not ready, the write does not occur. The final result: Only nine

characters get written, not ten.

The problem becomes more serious if the string written is in code, and the

missing write prevents the code from being deciphered.

A simple way to handle this would be to disable all interrupts while polling

was going on. But consider the consequences. Suppose the polling was required

for a long time. If we disable interrupts while polling is going on, interrupts would

be disabled for that very long time, unacceptable in an environment where one is

concerned about the time between a higher priority interrupt occurring and the

interrupt getting service.
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9.5.2 The Solution

A better solution is shown in Figure 9.22.

The sequence we want to make noninterruptable is shown on lines 0F to 11.

We accomplish this by first loading R1 with the PSR in line 09 and R2 with the

PSR having interrupts disabled in line 0A. PSR[14] is the interrupt enable bit for

all interrupts associated with this program. Note that PSR is memory mapped to

xFFFC. We enable interrupts by storing R1 in PSR (line 0D), followed imme-

diately by disabling interrupts by storing R2 in PSR (line 0E). With interrupts

disabled, we execute the three-instruction sequence LDI, BRzp, and LDI (lines

0F, 10, and 11) if the status register indicates that the device is ready. If the device

is not ready, BRzp (line 10) takes the computer back to line 0D where interrupts

are again enabled.

01 .ORIG x0420
02 ADD R6,R6,#-1
03 STR R1,R6,#0
04 ADD R6,R6,#-1
05 STR R2,R6,#0
06 ADD R6,R6,#-1
07 STR R3,R6,#0 ; Save R1,R2,R3 on the stack
08 ;
09 LDI R1, PSR
0A LD R2,INTMASK
0B AND R2,R1,R2 ; R1=original PSR, R2=PSR with interrupts disabled
0C
0D POLL STI R1,PSR ; enable interrupts (if they were enabled to begin)
0E STI R2,PSR ; disable interrupts
0F LDI R3,DSR
10 BRzp POLL ; Poll the DSR
11 STI R0,DDR ; Store the character into the DDR
12 STI R1,PSR ; Restore original PSR
13
14 LDR R3,R6,#0
15 ADD R6,R6,#1
16 LDR R2,R6,#0
17 ADD R6,R6,#1
18 LDR R1,R6,#0
19 ADD R6,R6,#1 ; Restore R3,R2,and R1 from the stack
1A
1B RTI
1C
1D INTMASK .FILL xBFFF
1E PSR .FILL xFFFC
1F DSR .FILL xFE04
20 DDR .FILL xFE06
21
22 .END

Figure 9.22 Polling AND allowing interrupts.
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In this way, interrupts are disabled again and again, but each time only long

enough to execute the three-instruction sequence LDI, BRzp, STI (in lines 0F,

10, 0D), after which interrupts are enabled again. The result: An interrupt would

have to wait for the three-instruction sequence LDI, BRzp, STI to execute, rather

than for the entire polling process to complete.

Exercises

9.1 a. What is a device register?

b. What is a device data register?

c. What is a device status register?

9.2 Why is a ready bit not needed if synchronous I/O is used?

9.3 In Section 9.2.1.3, the statement is made that a typist would have trouble

supplying keyboard input to a 300-MHz processor at the maximum rate

(one character every 33 nanoseconds) that the processor can accept it.

Assume an average word (including spaces between words) consists of

six characters. How many words/minute would the typist have to type in

order to exceed the processor’s ability to handle the input?

9.4 Are the following interactions usually synchronous or asynchronous?

a. Between a remote control and a television set

b. Between the mail carrier and you, via a mailbox

c. Between a mouse and your PC

Under what conditions would each of them be synchronous? Under

what conditions would each of them be asynchronous?

9.5 What is the purpose of bit [15] in the KBSR?

9.6 What problem could occur if a program does not check the ready bit of

the KBSR before reading the KBDR?

9.7 Which of the following combinations describe the system described in

Section 9.2.2.2?

a. Memory mapped and interrupt driven

b. Memory mapped and polling

c. Special opcode for I/O and interrupt driven

d. Special opcode for I/O and polling

9.8 Write a program that checks the initial value in memory location x4000

to see if it is a valid ASCII code, and if it is a valid ASCII code, prints

the character. If the value in x4000 is not a valid ASCII code, the

program prints nothing.

9.9 What problem is likely to occur if the keyboard hardware does not check

the KBSR before writing to the KBDR?

9.10 What problem could occur if the display hardware does not check the

DSR before writing to the DDR?

9.11 Which is more efficient, interrupt-driven I/O or polling? Explain.
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9.12 Adam H. decided to design a variant of the LC-3 that did not need a

keyboard status register. Instead, he created a readable/writable keyboard

data and status register (KBDSR), which contains the same data as the

KBDR. With the KBDSR, a program requiring keyboard input would

wait until a nonzero value appeared in the KBDSR. The nonzero value

would be the ASCII value of the last key press. Then the program would

write a zero into the KBDSR, indicating that it had read the key press.

Modify the basic input service of Section 8.2.2 to implement Adam’s

scheme.

9.13 Some computer engineering students decided to revise the LC-3 for their

senior project. In designing the LC-4, they decided to conserve on device

registers by combining the KBSR and the DSR into one status register:

the IOSR (the input/output status register). IOSR[15] is the keyboard

device ready bit and IOSR[14] is the display device ready bit. What are

the implications for programs wishing to do I/O? Is this a poor design

decision?

9.14 An LC-3 Load instruction specifies the address xFE02. How do we know

whether to load from the KBDR or from memory location xFE02?

9.15 Name some of the advantages of doing I/O through a TRAP routine

instead of writing the routine yourself each time you would like your

program to perform I/O.

9.16 a. How many trap service routines can be implemented in the LC-3?

Why?

b. Why must a RET instruction be used to return from a TRAP routine?

Why won’t a BR (Unconditional Branch) instruction work instead?

c. How many accesses to memory are made during the processing of a

TRAP instruction? Assume the TRAP is already in the IR.

9.17 Refer to Figure 9.14, the HALT service routine.

a. What starts the clock after the machine is HALTed? Hint: How can

the HALT service routine return after bit [15] of the Master Control

Register is cleared?

b. Which instruction actually halts the machine?

c. What is the first instruction executed when the machine is started

again?

d. Where will the RET of the HALT routine return to?
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9.18 Consider the following LC-3 assembly language program:

.ORIG x3000
L1 LEA R1, L1

AND R2, R2, x0
ADD R2, R2, x2
LD R3, P1

L2 LDR R0, R1, xC
OUT
ADD R3, R3, #-1
BRz GLUE
ADD R1, R1, R2
BR L2

GLUE HALT
P1 .FILL xB

.STRINGZ "HBoeoakteSmtHaotren!s"

.END

a. After this program is assembled and loaded, what binary pattern is

stored in memory location x3005?

b. Which instruction (provide a memory address) is executed after

instruction x3005 is executed?

c. Which instruction (provide a memory address) is executed prior to

instruction x3006?

d. What is the output of this program?

9.19 The following LC-3 program is assembled and then executed. There are

no assemble time or run-time errors. What is the output of this program?

Assume all registers are initialized to 0 before the program executes.

.ORIG x3000
LEA R0, LABEL
STR R1, R0, #3
TRAP x22
TRAP x25

LABEL .STRINGZ "FUNKY"
LABEL2 .STRINGZ "HELLO WORLD"

.END

9.20 The correct operation of the program in Example 9.1 assumes that the

person sitting at the keyboard only types capital letters and the value 7.

What if the person types a $? A better program would be one that tests

the character typed to be sure it really is a capital letter from among the

26 capital letters in the alphabet, and if it is not, takes corrective action.

Your job: Augment the program of Example 9.1 to add a test for bad

data. That is, write a program that will type the lowercase representation

of any capital letter typed and will terminate if anything other than a

capital letter is typed.
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9.21 Assume that an integer greater than 2 and less than 32,768 is deposited

in memory location A by another module before the program below is

executed.

.ORIG x3000
AND R4, R4, #0
LD R0, A
NOT R5, R0
ADD R5, R5, #2
ADD R1, R4, #2
;

REMOD JSR MOD
BRz STORE0
;
ADD R7, R1, R5
BRz STORE1
ADD R1, R1, #1
BR REMOD
;

STORE1 ADD R4, R4, #1
STORE0 ST R4, RESULT

TRAP x25
;

MOD ADD R2, R0, #0
NOT R3, R1
ADD R3, R3, #1

DEC ADD R2, R2, R3
BRp DEC
RET
;

A .BLKW 1
RESULT .BLKW 1

.END

In 20 words or fewer, what does the above program do?

9.22 Recall the machine busy example. Suppose the bit pattern indicating

which machines are busy and which are free is stored in memory

location x4001. Write subroutines that do the following:

a. Check if no machines are busy, and return 1 if none are busy.

b. Check if all machines are busy, and return 1 if all are busy.

c. Check how many machines are busy, and return the number of busy

machines.

d. Check how many machines are free, and return the number of free

machines.

e. Check if a certain machine number, passed as an argument in R5, is

busy, and return 1 if that machine is busy.

f. Return the number of a machine that is not busy.

9.23 The starting address of the trap routine is stored at the address specified

in the TRAP instruction. Why isn’t the first instruction of the trap routine

stored at that address instead? Assume each trap service routine requires

at most 16 instructions. Modify the semantics of the LC-3 TRAP
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instruction so that the trap vector provides the starting address of the

service routine.

9.24 Following is part of a program that was fed to the LC-3 assembler. The

program is supposed to read a series of input lines from the console into

a buffer, search for a particular character, and output the number of times

that character occurs in the text. The input text is terminated by an EOT

and is guaranteed to be no more than 1000 characters in length. After the

text has been input, the program reads the character to count.

The subroutine labeled COUNT that actually does the counting was

written by another person and is located at address x3500. When called,

the subroutine expects the address of the buffer to be in R5 and the

address of the character to count to be in R6. The buffer should have a

NULL to mark the end of the text. It returns the count in R6.

The OUTPUT subroutine that converts the binary count to ASCII

digits and displays them was also written by another person and is at

address x3600. It expects the number to print to be in R6.

Here is the code that reads the input and calls COUNT:

.ORIG x3000
LEA R1, BUFFER

G_TEXT TRAP x20 ; Get input text
ADD R2, R0, x-4
BRz G_CHAR
STR R0, R1, #0
ADD R1, R1, #1
BRnzp G_TEXT

G_CHAR STR R2, R1, #0 ; x0000 terminates buffer
TRAP x20 ; Get character to count
ST R0, S_CHAR
LEA R5, BUFFER
LEA R6, S_CHAR
LD R4, CADDR
JSRR R4 ; Count character
LD R4, OADDR
JSRR R4 ; Convert R6 and display
TRAP x25

CADDR .FILL x3500 ; Address of COUNT
OADDR .FILL x3600 ; Address of OUTPUT
BUFFER .BLKW 1001
S_CHAR .FILL x0000

.END

There is a problem with this code. What is it, and how might it be fixed?

(The problem is not that the code for COUNT and OUTPUT is missing.)
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9.25 Consider the following LC-3 assembly language program:

.ORIG x3000
LEA R0,DATA
AND R1,R1,#0
ADD R1,R1,#9

LOOP1 ADD R2,R0,#0
ADD R3,R1,#0

LOOP2 JSR SUB1
ADD R4,R4,#0
BRzp LABEL
JSR SUB2

LABEL ADD R2,R2,#1
ADD R3,R3,#-1
BRP LOOP2
ADD R1,R1,#-1
BRp LOOP1
HALT

DATA .BLKW 10 x0000
SUB1 LDR R5,R2,#0

NOT R5,R5
ADD R5,R5,#1
LDR R6,R2,#1
ADD R4,R5,R6
RET

SUB2 LDR R4,R2,#0
LDR R5,R2,#1
STR R4,R2,#1
STR R5,R2,#0
RET
.END

Assuming that the memory locations at DATA get filled in before

the program executes, what is the relationship between the final values at

DATA and the initial values at DATA?

9.26 The following program is supposed to print the number 5 on the screen.

It does not work. Why? Answer in no more than ten words, please.

.ORIG x3000
JSR A
OUT
BRnzp DONE

A AND R0,R0,#0
ADD R0,R0,#5
JSR B
RET

DONE HALT
ASCII .FILL x0030
B LD R1,ASCII

ADD R0,R0,R1
RET
.END
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9.27 Figure 9.14 shows a service routine to stop the computer by clearing the

RUN latch, bit [15] of the Master Control Register. The latch is cleared

by the instruction in line 14, and the computer stops. What purpose is

served by the instructions on lines 19 through 1C?

9.28 Suppose we define a new service routine starting at memory location

x4000. This routine reads in a character and echoes it to the screen.

Suppose memory location x0072 contains the value x4000. The service

routine is shown below.

.ORIG x4000
ST R7, SaveR7
GETC
OUT
LD R7, SaveR7
RET

SaveR7 .FILL x0000

a. Identify the instruction that will invoke this routine.

b. Will this service routine work? Explain.

9.29 The two code sequences a and b are assembled separately. There are two

errors that will be caught at assemble time or at link time. Identify the

bugs, and describe why the bug will cause an error, and whether it will

be detected at assemble time or link time.

a. .ORIG x3500
SQRT ADD R0, R0, #0

; code to perform square
; root function and
; return the result in R0
RET
.END

b. .EXTERNAL SQRT
.ORIG x3000
LD R0,VALUE
JSR SQRT
ST R0,DEST
HALT

VALUE .FILL x30000
DEST .FILL x0025

.END
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9.30 Shown below is a partially constructed program. The program asks the

user his/her name and stores the sentence “Hello, name” as a string

starting from the memory location indicated by the symbol HELLO. The

program then outputs that sentence to the screen. The program assumes

that the user has finished entering his/her name when he/she presses the

Enter key, whose ASCII code is x0A. The name is restricted to be not

more than 25 characters.

Assuming that the user enters Onur followed by a carriage return

when prompted to enter his/her name, the output of the program looks

exactly like:

Please enter your name: Onur
Hello, Onur

Insert instructions at (a)–(d) that will complete the program.

.ORIG x3000
LEA R1,HELLO

AGAIN LDR R2,R1,#0
BRz NEXT
ADD R1,R1,#1
BR AGAIN

NEXT LEA R0,PROMPT
TRAP x22 ; PUTS
------------ (a)

AGAIN2 TRAP x20 ; GETC
TRAP x21 ; OUT
ADD R2,R0,R3
BRz CONT
------------ (b)
------------ (c)
BR AGAIN2

CONT AND R2,R2,#0
------------ (d)
LEA R0, HELLO
TRAP x22 ; PUTS
TRAP x25 ; HALT

NEGENTER .FILL xFFF6 ; -x0A
PROMPT .STRINGZ "Please enter your name: "
HELLO .STRINGZ "Hello, "

.BLKW #25

.END
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9.31 The program below, when complete, should print the following to the

monitor:

ABCFGH

Insert instructions at (a)–(d) that will complete the program.

.ORIG x3000
LEA R1, TESTOUT

BACK_1 LDR R0, R1, #0
BRz NEXT_1
TRAP x21
------------ (a)
BRnzp BACK_1
;

NEXT_1 LEA R1, TESTOUT
BACK_2 LDR R0, R1, #0

BRz NEXT_2
JSR SUB_1
ADD R1, R1, #1
BRnzp BACK_2
;

NEXT_2 ------------ (b)
;

SUB_1 ------------ (c)

K LDI R2, DSR
------------ (d)

STI R0, DDR
RET

DSR .FILL xFE04
DDR .FILL xFE06
TESTOUT .STRINGZ "ABC"

.END
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9.32 A local company has decided to build a real LC-3 computer. In order to

make the computer work in a network, four interrupt-driven I/O devices

are connected. To request service, a device asserts its interrupt request

signal (IRQ). This causes a bit to get set in a special LC-3

memory-mapped interrupt control register called INTCTL, which is

mapped to address xFF00. The INTCTL register is shown below. When a

device requests service, the INT signal in the LC-3 data path is asserted.

The LC-3 interrupt service routine determines which device has

requested service and calls the appropriate subroutine for that device. If

more than one device asserts its IRQ signal at the same time, only the

subroutine for the highest priority device is executed. During execution

of the subroutine, the corresponding bit in INTCTL is cleared.

Ethernet
card

CD-ROMHard
disk

Printer

IRQH IRQE IRQP IRQC

INTCTL

INT

The following labels are used to identify the first instruction of each

device subroutine:

HARDDISK ETHERNET PRINTER CDROM

For example, if the highest priority device requesting service is the

printer, the interrupt service routine will call the printer subroutine with

the following instruction:

JSR PRINTER
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Finish the code in the LC-3 interrupt service routine for the

following priority scheme by filling in the spaces labeled (a)–(k). The

lower the number, the higher the priority of the device.

1. Hard disk

2. Ethernet card

3. Printer

4. CD-ROM

LDI R1, INTCTL
DEV0 LD R2, ------ (a)

AND R2, R2, R1
BRnz DEV1
JSR ---------- (b)
---------------- (c)

;
DEV1 LD R2, ------ (d)

AND R2, R2, R1
BRnz DEV2
JSR ---------- (e)
---------------- (f)

;
DEV2 LD R2, ------ (g)

AND R2, R2, R1
BRnz DEV3
JSR ---------- (h)
---------------- (i)

;
DEV3 JSR ----------- (j)

;
END ---------------- (k)

INTCTL .FILL xFF00
MASK8 .FILL x0008
MASK4 .FILL x0004
MASK2 .FILL x0002
MASK1 .FILL x0001

9.33 Interrupt-driven I/O:

a. What does the following LC-3 program do?

.ORIG x3000
LD R3, A
STI R3, KBSR

AGAIN LD R0, B
TRAP x21
BRnzp AGAIN

A .FILL x4000
B .FILL x0032
KBSR .FILL xFE00

.END
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b. If someone strikes a key, the program will be interrupted and the

keyboard interrupt service routine will be executed as shown below.

What does the keyboard interrupt service routine do?

.ORIG x1000
LDI R0, KBDR
TRAP x21
TRAP x21
RTI

KBDR .FILL xFE02
.END

Note: RTI is an instruction that enables the computer to return to

executing the program that was interrupted. It will be studied in

Chapter 10. The only thing you need to know about it now is that it

loads the PC with the address of the instruction that was about to be

fetched when the interrupt occurred.

c. Finally, suppose the program of part a started executing, and

someone sitting at the keyboard struck a key. What would you see on

the screen?

d. In part c, how many times is the digit typed shown on the screen?

Why is the correct answer: “I cannot say for sure.”

9.34 What does the following LC-3 program do?

.ORIG x3000
LD R0,ASCII
LD R1,NEG

AGAIN LDI R2,DSR
BRzp AGAIN
STI R0,DDR
ADD R0,R0,#1
ADD R2,R0,R1
BRnp AGAIN
HALT

ASCII .FILL x0041
NEG .FILL xFFB6 ; -x004A
DSR .FILL xFE04
DDR .FILL xFE06

.END

9.35 During the initiation of the interrupt service routine, the N, Z, and P

condition codes are saved on the stack. Show by means of a simple

example how incorrect results would be generated if the condition codes

were not saved.

9.36 In the example of Section 9.4.6, what are the contents of locations x01F1

and x01F2? They are part of a larger structure. Provide a name for that

structure. (Hint: See Table A.3.)

9.37 Expand the example of Section 9.4.6 to include an interrupt by a still

more urgent device D while the service routine of device C is executing

the instruction at x6310. Assume device D’s interrupt vector is xF3.

Assume the interrupt service routine is stored in locations x6400 to
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x6412. Show the contents of the stack and PC at each relevant point in

the execution flow.

9.38 Suppose device D in Exercise 9.37 has a lower priority than device C but

a higher priority than device B. Rework Exercise 9.37 with this new

wrinkle.

9.39 Write an interrupt handler to accept keyboard input as follows: A buffer

is allocated to memory locations x4000 through x40FE. The interrupt

handler must accept the next character typed and store it in the next

“empty” location in the buffer. Memory location x40FF is used as a

pointer to the next available empty buffer location. If the buffer is full

(i.e., if a character has been stored in location x40FE), the interrupt

handler must display on the screen: “Character cannot be accepted; input

buffer full.”

9.40 Consider the interrupt handler of Exercise 9.39. The buffer is modified

as follows: The buffer is allocated to memory locations x4000 through

x40FC. Location x40FF contains, as before, the address of the next

available empty location in the buffer. Location x40FE contains the

address of the oldest character in the buffer. Location x40FD contains

the number of characters in the buffer. Other programs can remove

characters from the buffer. Modify the interrupt handler so that, after

x40FC is filled, the next location filled is x4000, assuming the character

in x4000 has been previously removed. As before, if the buffer is full,

the interrupt handler must display on the screen: “Character cannot be

accepted; input buffer full.”

9.41 Consider the modified interrupt handler of Exercise 9.40, used in

conjunction with a program that removes characters from the buffer.

Can you think of any problem that might prevent the interrupt handler

that is adding characters to the buffer and the program that is removing

characters from the buffer from working correctly together?

9.42 Suppose the keyboard interrupt vector is x34 and the keyboard interrupt

service routine starts at location x1000. What can you infer about the

contents of any memory location from the above statement?

9.43 Two students wrote interrupt service routines for an assignment. Both

service routines did exactly the same work, but the first student

accidentally used RET at the end of his routine, while the second student

correctly used RTI. There are three errors that arose in the first student’s

program due to his mistake. Describe any two of them.

★9.44 Since ASCII codes consist of eight bits each, we can store two ASCII

codes in one word of LC-3 memory. If a user types 2n characters on the

keyboard, followed by the Enter key, the subroutine PACK on the next

page will store the corresponding ASCII codes into n sequential memory

locations, two per memory location, starting at location A.

You may assume that a user never enters an odd number of characters.

Your job: Fill in the blanks in the program.
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If a user types the string Please help! followed by the Enter key,

what does the program do?

.ORIG x7020
PACK ST R7, SAVER7

ST R6, SAVER6
ST R4, SAVER4
ST R3, SAVER3
LEA R6, A ; R6 is the pointer
AND R4, R4, #0
ADD R4, R4, #8 ; R4 is our counter
AND R3, R3, #0
LEA R0, PROMPT
TRAP x22

POLL --------------- (a)
BRzp POLL
--------------- (b)
LD R0, NEG_LF
ADD R0, R7, R0
--------------- (c)
ADD R4, R4, #0
BRz NOSHIFT

SHIFT ADD R7, R7, R7
ADD R4, R4, #-1
BRp SHIFT
ADD R3, R7, #0
BRnzp POLL

NOSHIFT ADD R3, R3, R7
--------------- (d)
ADD R6, R6, #1
ADD R4, R4, #8
BRnzp POLL

DONE LD R7, SAVER7
LD R6, SAVER6
LD R4, SAVER4
LD R3, SAVER3
LEA R0, A ; Returns a pointer to the characters
RET

KBSR .FILL xFE00
KBDR .FILL xFE02
NEG_LF .FILL xFFF6
PROMPT .STINGZ "Please enter a string: "
A .BLKW #5
SAVER7 .BLKW #1
SAVER6 .BLKW #1
SAVER4 .BLKW #1
SAVER3 .BLKW #1

.END
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★9.45 We want to support eight input keyboards instead of one. To do this, we

need eight ready bits in KBSR, and eight separate KBDRs. We will use

the eight odd-numbered bits in the KBSR as ready bits for the eight

keyboards, as shown below. We will set the other eight bits in the KBSR

to 0.

15 13 11 9 7 5 3 1

KBSR

The eight memory-mapped keyboard data registers and their

corresponding ready bits are as follows:

FE04: KBSR

FE06: KBDR1, Ready bit is KBSR[1]

FE08: KBDR2, Ready bit is KBSR[3]

FE0A: KBDR3, Ready bit is KBSR[5]

FE0C: KBDR4, Ready bit is KBSR[7]

FE0E: KBDR5, Ready bit is KBSR[9]

FE10: KBDR6, Ready bit is KBSR[11]

FE12: KBDR7, Ready bit is KBSR[13]

FE14: KBDR8, Ready bit is KBSR[15]

We wish to write a program that polls the keyboards and loads the ASCII

code typed by the highest priority keyboard into R0. That is, if someone

had previously typed a key on keyboard 1, we want to load the ASCII

code in KBDR1 into R0. If no key was typed on keyboard 1, but a key

had been typed on keyboard 2, we want to load the ASCII code in

KBDR2 into R0. ... and so on. That is, KB1 has higher priority than

KB2, which has higher priority than KB3, which has higher priority than

KB4, etc. KB8 has the lowest priority.

The following program will do the job AFTER you fill in the missing

instructions. Your job: Fill in the missing instructions.

.ORIG X3000
LD R0, KBDR1

POLL LDI R1, KBSR
BRz POLL
AND R2, R2, #0
ADD R2, R2, #2

AGAIN ----------------- (a)
BRnp FOUND
ADD R0, R0, #2
----------------- (b)
----------------- (c)
BRnp AGAIN
HALT

FOUND ----------------- (d)
HALT

KBSR .FILL xFE04
KBDR1 .FILL xFE06

.END
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★9.46 The following program pushes elements onto a stack with JSR PUSH

and pops elements off the stack with JSR POP.

.ORIG X3000
LEA R6, STACK\_BASE

X TRAP x20 ;GETC
TRAP x21 ;OUT
ADD R1, R0, x-0A ;x0A is ASCII code for line feed,

;x-0A is the negative of x0A
BRz Y
JSR PUSH
BRnzp X

Y LEA R2, STACK\_BASE
NOT R2, R2
ADD R2, R2, #1
ADD R3, R2, R6
BRz DONE
JSR POP
TRAP x21 ;OUT
BRnzp Y

DONE TRAP x25 ;HALT
STACK .BLKW 5
STACK\_BASE .FILL x0FFF

PUSH ADD R6, R6, #-1
STR R0, R6, #0
RET

POP LDR R0, R6, #0
ADD R6, R6, #1
RET

.END

What will appear on the screen if a user, sitting at a keyboard, typed the

three keys a, b, c, followed by the Enter key?

What will happen if a user, sitting at a keyboard, typed the eight keys

a, b, c, d, e, f, g, h, followed by the Enter key?
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9.47 We wish to add a new TRAP service routine, which will be called by the

instruction TRAP x9A. The new trap routine will wait for someone to

type a lowercase letter, then echo on the screen the corresponding capital

letter. Assume the user will not type anything except a lowercase letter.

The assembly language code for this trap service routine is shown below:

.ORIG x2055
----------------- (a)
ST R1, SaveR1
ST R0, SaveR0
TRAP x20
LD R1, A
----------------- (b)
TRAP x21
----------------- (c)
LD R1, SaveR1
LD R0, SaveR0
JMP R7

SaveR1 .BLKW 1
SaveR0 .BLKW 1
A .FILL ------------ (d)
____ .BLKW ; (e) a missing label

.END

In order for TRAP x9A to call this service routine, what must be

contained in the memory location having what address?

Fill in the missing information in the assembly language program, that is,

the three missing instructions, the one missing label, and the operand of

the .FILL pseudo-op.

9.48 A programmer wrote the following program that was assembled and

executed. Execution started with PC at x3000.

.ORIG x3000

LEA R0, Message
TRAP x01
TRAP x22 ; What is the output here?
TRAP x25

Message .STRINGZ "Cat in the hat."

.END

Assume that the Trap Vector Table includes the following entries in

addition to the ones we have previously used:

Memory Address Memory Contents
x0000 x0100
x0001 x0102
x0002 x0107
x0003 x010A
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Assume further that additional trap service routines have been loaded

previously in memory as specified below:

.ORIG x0100

LD R7, SaveR7
RET
ST R7, SaveR7
TRAP x02
AND R1, R1, #0
STR R1, R0, #3
RET
AND R1, R1, #0
STR R1, R0, #5
TRAP x00
RET

SaveR7 .BLKW #1

.END

What is the result of execution of this program?

★9.49 The state machine shown below will produce an output sequence if it

receives an input sequence. The initial state is S0.

b

S1

c

S2

S0
a

0 0

1

1

0 1

For example, the input sequence 100 produces the output sequence bac.

We have written a program that simulates this state machine. Inputs are

requested from the keyboard, and the corresponding outputs are shown

on the screen. For example, for the input sequence shown above, the

monitor would display

INPUT (either 0 or 1): 1
OUTPUT: b
INPUT (either 0 or 1): 0
OUTPUT: a
INPUT (either 0 or 1): 0
OUTPUT: c
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Complete the program that simulates the state machine by filling in

each blank with one missing line of LC-3 assembly language code. You

can assume the person at the keyboard can type a 1 or a 0 without error

(i.e., you do not have to test for wrong input).

.ORIG x3000
LEA R6, S0

Loop ------------------ (a)
TRAP x22
TRAP x20 ; inputs a character
TRAP x21

LD R1, NEGASCII
ADD R0, R0, R1
------------------ (b)
LDR R6, R6,#0
LD R0, NEWLINE
TRAP x21
LEA R0, OUTPUT
TRAP x22
------------------ (c)
TRAP x21
LD R0, NEWLINE
TRAP x21
BRnzp LOOP

S0 .FILL S2
.FILL S1
.FILL x0061

S1 .FILL S0
.FILL S2
.FILL x0062

S2 .FILL ______ (d)
.FILL ______ (e)
.FILL ______ (f)

NEGASCII .FILL xFFD0 ; the value -48
OUTPUT .STRINGZ "OUTPUT:"
INPUT .STRINGZ "INPUT (either 0 or 1):"
NEWLINE .FILL x000A

.END
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★9.50 Up to now, we have only had one output device, the monitor, with xFE04

and xFE06 used to address its two device registers. We now introduce a

second output device, a light that requires a single device register, to

which we assign the address xFE08. Storing a 1 in xFE08 turns the light

on, storing a 0 in xFE08 turns the light off.

An Aggie decided to write a program that would control this light by a

keyboard interrupt as follows: Pressing the key 0 would turn the light off.

Pressing the key 1 would cause the light to flash on and off repeatedly.

Shown below is the Aggie’s code and his keyboard interrupt service

routine.

The User Program:
.ORIG x3000

0 LEA R7, LOOP
1 LOOP LDI R0, ENABLE
2 LD R1, NEG_OFF
3 ADD R0, R0, R1 ; check if switch is on
4 BRnp BLINK

;
5 AND R0, R0, #0
6 STI R0, LIGHT ; turn light off
7 RET

;
8 BLINK ST R7, SAVE_R7 ; save linkage
9 LDI R0, LIGHT
A ADD R0, R0, #1
B AND R0, R0, #1 ; toggle LIGHT between 0 and 1
C STI R0, LIGHT
D JSR DELAY ; 1 second delay
E LD R7, SAVE_R7
F RET ; <-- Breakpoint here

;
LIGHT .FILL xFE08
ENABLE .FILL x4000
NEG_OFF .FILL x-30
SAVE_R7 .BLKW #1

.END

The Keyboard Interrupt Routine:
.ORIG x1500

0 ADD R6, R6, #-1 ; <-- Breakpoint here
1 STR R0, R6, #0 ; save R0 on stack
2 ADD R6, R6, #-1
3 STR R7, R6, #0 ; save R7 on stack

;
4 TRAP x20
5 STI R0, ENABLE2

;
6 RTI ; <-- Breakpoint here
7 ENABLE2 .FILL x4000

.END

The DELAY subroutine was inserted in his program in order to separate

the turning on and off of the light by one second in order to make the
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on-off behavior visible to the naked eye. The DELAY subroutine does

not modify any registers.

Unfortunately, per usual, the Aggie made a mistake in his program, and

things do not work as he intended. So he decided to debug his program

(see the next page).

He set three breakpoints, at x1500, at x1506, and at x300F. He initialized

the PC to x3000, the keyboard IE bit to 1, and memory location x0180 to

x1500.

Then he hit the Run button, which stopped executing when the PC

reached x1500. He hit the Run button three more times, each time the

computer stopping when the PC reached a breakpoint. While the program

was running, he pressed a key on the keyboard EXACTLY ONCE.

The table below shows the data in various registers and memory

locations each time a breakpoint was encountered. Note: Assume, when

an interrupt is initiated, the PSR is pushed onto the system stack before

the PC.

Complete the table.

Initial Breakpoint 1 Breakpoint 2 Breakpoint 3 Breakpoint 4
PC x3000 x1500 x1506 x1506 x300F

R0 x1234 x0030

R6 x3000

R7 x1234

M[x2FFC] x0000

M[x2FFD] x0000

M[x2FFE] x0000 x300D

M[x2FFF] x0000 x8001

M[x4000] x0031

M[xFE00] x4000

★9.51 The following user program (priority 0) is assembled and loaded into

memory.

.ORIG x8000
LD R0, Z

AGAIN ADD R0, R0, #-1
BRnp AGAIN
LD R0, W
BRp L1
LD R0, X
TRAP x21
BRnzp DONE

L1 LEA R0, Y
TRAP x22

DONE HALT

X .FILL x34
Y .STRINGZ "OOOOPS!"
Z .FILL x100
W .BLKW #1

.END
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Before this code executes, two things happen: (a) another program loads

a value into W, and (b) a breakpoint is set at the address DONE.

Then the run switch is hit and the program starts executing. Before the

computer stops due to the breakpoint, several interrupts occur and their

corresponding service routines are executed. Finally, the LC-3 stops due

to the breakpoint. We examine the memory shown, and R6, the

Supervisor Stack Pointer.

Memory

x2FF8 x0601

x2FF9 x0601

x2FFA x0500

x2FFB x0504

x2FFC x0204

x2FFD x0201

x2FFE x8004

x2FFF x8002

x3000 x8010

x3001 x8012

R6 x3000

What does the user program write to the monitor? How do you know

that?

★9.52 Your job in this problem will be to add the missing instructions to a

program that detects palindromes. Recall that a palindrome is a string of

characters that are identical when read from left to right or from right to

left—for example, racecar and 112282211. In this program, we will have

no spaces and no capital letters in our input string—just a string of

lowercase letters.

The program will make use of both a stack and a queue. The

subroutines for accessing the stack and queue are shown below. Recall

that elements are PUSHed (added) and POPped (removed) from the

stack. Elements are ENQUEUEd (added) to the back of a queue and

DEQUEUEd (removed) from the front of the queue.

.ORIG x3050
PUSH ADD R6, R6, #-1

STR R0, R6, #0
RET

POP LDR R0, R6, #0
ADD R6, R6, #1
RET

STACK .BLKW #20
.END

.ORIG x3080
ENQUEUE ADD R5, R5, #1

STR R0, R5, #0
RET

DEQUEUE LDR R0, R4, #0
ADD R4, R4, #1
RET

QUEUE .BLKW #20
.END

The program is carried out in two phases. Phase 1 enables a user to input

a character string one keyboard character at a time. The character string

is terminated when the user types the Enter key (line feed). In Phase 1,

the ASCII code of each character input is pushed onto a stack, and its
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negative value is inserted at the back of a queue. Inserting an element at

the back of a queue we call enqueuing.

In Phase 2, the characters on the stack and in the queue are examined

by removing them one by one from their respective data structures (i.e.,

stack and queue). If the string is a palindrome, the program stores a 1 in

memory location RESULT. If not, the program stores a 0 in memory

location RESULT. The PUSH and POP routines for the stack as well as

the ENQUEUE and DEQUEUE routines for the queue are shown below.

You may assume the user never inputs more than 20 characters.

.ORIG X3000
LEA R4, QUEUE
LEA R5, QUEUE
ADD R5, R5, #-1
LEA R6, ENQUEUE ; Initialize SP
LD R1, ENTER
AND R3, R3, #0
------------------ (a)
TRAP x22

PHASE1 TRAP x20
------------------ (b)
BRz PHASE2
JSR PUSH
------------------ (c)
------------------ (d)
JSR ENQUEUE
ADD R3, R3, #1
BRnzp PHASE1

;
PHASE2 JSR POP

------------------ (e)
JSR DEQUEUE
ADD R1, R0, R1
BRnp FALSE
------------------ (f)
------------------ (g)
BRnzp PHASE2

;
TRUE AND R0, R0, #0

ADD R0, R0, #1
ST R0, RESULT
HALT

FALSE AND R0, R0, #0
ST R0, RESULT
HALT

RESULT .BLKW #1
ENTER .FILL x-0A
PROMPT .STRINGZ "Enter an input string: "

.END

★9.53 Now that the keyboard interrupt is old stuff for you, it is time to

introduce two interrupts for the LC-3: INTA and INTB. The necessary

hardware has been added to allow them to happen. INTA has priority 2
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and an interrupt vector of x50. INTB has priority 4 and an interrupt

vector of x60.

Recall that the priority is specified in bits [10:8] of the PSR. In fact, the

full PSR specification is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSR: Pr 0 0 0 0 Priority 0 0 0 0 0 N Z P

where PSR[15] = 0 (Supervisor mode), 1 (User mode).

PSR[14:11] = 0000

PSR[10:8] = priority, 0 (lowest) to 7 (highest).

PSR[7:3] = 00000

PSR[2:0] = condition codes for N,Z,P

In this problem, you are given the user program and the two interrupt

service routines. The user program starts executing at cycle 1 and runs at

priority 0.

User program:

.ORIG x3000
AND R0,R0,#0
ADD R0,R0,#5
LD R1,COUNT
NOT R0,R0
ADD R0,R0,#1

AGAIN ADD R2,R0,R1
BRz DONE
ADD R1,R1,#-1
BRnzp AGAIN

DONE TRAP x25
COUNT .FILL x000F

.END

INTA service routine:

.ORIG x1000
AND R5,R4,#0
ADD R5,R5,#-1
LD R3,VAL
ADD R3,R3,R5
ST R3,VAL
RTI

VAL .BLKW 1
.END

INTB service routine:

.ORIG x2000
LDI R4,VAL2
NOT R4,R4
ADD R4,R4,#1
STI R4,VAL2
RTI

VAL2 .FILL xFE08
.END

Assume both interrupts are enabled. Assume 22 cycles are needed to

initiate an interrupt when you are in User mode, that is, from the time the

test is taken until the interrupt service routine starts executing. Assume it

takes 21 cycles if you are in privileged (Supervisor) mode. You already

know from problem 1 the number of cycles individual instructions take.

In order to support INTA and INTB, the interrupt vector table must have

entries. Show the addresses of these entries and the contents of those

memory locations.

Memory address Content
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Suppose INTA requests service at cycle 30 and INTB requests service at

cycle 68. In which cycle does each service routine start executing?

The following table shows the contents of a section of memory (locations

x2FFA to x3002) before the user program starts executing. Show the

contents of these locations and the contents of the stack pointer in

cycle 100.

Initial At the end of

cycle 100

x2FFA x0001

x2FFB x0010

x2FFC x0100

x2FFD x1000

x2FFE x1100

x2FFF x1110

x3000 x5020

x3001 x1025

x3002 x2207

Stack x3000

Pointer

★9.54 Consider a two-player game where the players must think quickly each

time it is their turn to make a move. Each player has a total allotted

amount of time to make all his/her moves. Two clocks display the

remaining time for each player. While a player is thinking of his/her

move, his clock counts down. If time runs out, the other player wins. As

soon as a player makes his/her move, he hits a button, which serves to

stop counting down his clock and start counting down the other player’s

clock.

The program on the next page implements this mechanism. The

main program keeps track of the time remaining for each player by

decrementing the proper counter once per second while the player is

thinking. When a player’s counter reaches zero, a message is printed on

the screen declaring the winner. When a player hits the button, an

interrupt is taken. The interrupt service routine takes such action as to

enable the main program (after returning from the interrupt) to start

decrementing the other counter.

The interrupt vector for the button is x35. The priority level of the button

is #2. Assume that the operating system has set the interrupt enable bit of
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the button to enable it to interrupt. Assume the main program runs at

priority #1 and executes in User mode.

In order for the interrupt service routine to be executed when the button

is pushed, what memory location must contain what value?

Assume a player hits the button while the instruction at line 16 is being

executed. What two values (in hex) will be pushed onto the stack?

Fill in the missing instructions in the user program.

This program has a bug that will only occur if an interrupt is taken at an

inappropriate time. Write down the line number of an instruction such

that if the button is pressed while that instruction is executing,

unintended behavior will result.

How could we fix this bug?

; Interrupt Service Routine
.ORIG x1550
NOT R0, R0
RTI
.END

; User Program
.ORIG x3000
AND R0, R0, #0 ; Line 1
LD R1, TIME ; Line 2
LD R2, TIME ; Line 3

NEXT -------------------- (a)
-------------------- (b)
BRn P2_DEC ; Line 6
ADD R1, R1, #-1 ; Line 7
------------------- (c)
LEA R0, P2WINS ; Line 9
BRnzp END ; Line 10

P2_DEC ADD R2, R2, #-1 ; Line 11
------------------- (d)
LEA R0, P1WINS ; Line 13

END PUTS ; Line 14
HALT ; Line 15

COUNT LD R3, SECOND ; Line 16
LOOP ADD R3, R3, #-1 ; Line 17

BRp LOOP ; Line 18
------------------- (e)

TIME .FILL #300
SECOND .FILL #25000 ; 1 second
P1WINS .STRINGZ "Player 1 Wins."
P2WINS .STRINGZ "Player 2 Wins."

.END
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★9.55 A program is running in privilege mode (PSR[15] = 0). We set a

breakpoint at location x2000. The operator immediately pushes the run

button. What are the subsequent MAR/MDR values?

MAR MDR

x8000

x1050

x0004

xBCAE

x2800 x2C04

x1052 x3C4D

x2C0A



10
C H A P T E R

A Calculator

Before we leave LC-3 assembly language and raise the level of abstraction

to the C programming language, it is useful to step back and pull together

much of what we have learned with a comprehensive example. The intent is to

demonstrate the use of many of the concepts discussed thus far, as well as to show

an example of well-documented, clearly written code, where the example is much

more complicated than what can fit on one or two pages.

Our example is a program that simulates the actions of a calculator that a per-

son can use to add, subtract, and multiply 2’s complement integers. The person

will enter numbers into the calculator-simulator by typing keys on the keyboard.

Results of a computation will be displayed on the monitor. The calculator sim-

ulation consists of a main program and eleven separate subroutines. You are

encouraged to study this example before moving on to Chapter 11 and high-level

language programming.

Two topics we have not discussed thus far are needed to understand the work-

ings of the calculator simulation: (1) the conversion of integers between ASCII

strings and 2’s complement, and (2) arithmetic using a stack, the method most

calculators use.

The reason for two data types and conversion between them: We need one

data type for input/output and another for doing arithmetic. Numbers entered

via the keyboard and displayed on the monitor use ASCII codes to represent the

numbers. Arithmetic uses 2’s complement integers.

We will need to convert the number the person types from ASCII codes to a

2’s complement integer, and we will need to convert the result of the computa-

tion from a 2’s complement integer to ASCII codes in order to display it on the

monitor. Section 10.1 deals with data type conversion.

With respect to the way calculators perform arithmetic, the mechanism used

by most calculators is very different from the way most desktop and laptop com-

puters perform arithmetic. The ISAs of most desktops and laptops are like the

LC-3, where arithmetic instructions get their source operands from general pur-

pose registers and store the results of the arithmetic operations in general purpose

registers. Our simulation of a calculator, like most calculators, does not use gen-

eral purpose registers. Instead it uses a stack. Source operands are popped from
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the stack, and the result of the operation is pushed back onto the stack. Section

10.2 deals with arithmetic using a stack instead of general purpose registers.

Finally, Section 10.3 contains a full discussion of the calculator-simulator,

along with all the subroutines that are needed to make it work.

10.1 Data Type Conversion
It has been a long time since we talked about data types. We have already

been exposed to several data types: unsigned integers for address arithmetic, 2’s

complement integers for integer arithmetic, 16-bit binary strings for logical oper-

ations, floating point numbers for scientific computation, and ASCII codes for

interaction with input and output devices.

It is important that every instruction be provided with source operands of the

data type that the instruction requires. For example, an ALU requires operands

that are 2’s complement integers to perform an ADD. If the ALU were supplied

with floating point operands, the ALU would produce garbage results.

It is not uncommon in high-level language programs to find an instruction of

the form A = R + I where R (floating point) and I (2’s complement integer) are

represented in different data types.

If the operation is to be performed by a floating point adder, then we have a

problem with I. To handle the problem, one must first convert the value I from

its original data type (2’s complement integer) to the data type required by the

functional unit performing the operation (floating point). For those programming

in some high-level language, the compiler generally produces the code to do that

conversion so the programmer does not even have to think about it.

Even in our “character count problem” way back in Chapter 5, we had to deal

with data type conversion. Our program entered a character from the keyboard,

scanned a file counting the number of occurrences of that character, and then

displayed the count on the monitor. Recall that before we could display our final

count on the monitor, we had to convert our 2’s complement integer to an ASCII

code. Why? Because when we were counting, we were performing arithmetic on

2’s complement integers. But when we were displaying, we needed to represent

our count as an ASCII code. You remember we restricted our program to work

only on files where the total count was not greater than 9, so our conversion from

a 2’s complement integer to an ASCII code could be obtained by simply adding

x30 to the 2’s complement integer to get the ASCII code. For example, the 2’s

complement representation for 6 (in one byte) is 00000110, or x06. The ASCII

code for 6, on the other hand, is 00110110, or x36.

That was a severe limitation to put on our count, restricting it to a single

decimal digit. But that was Chapter 5, and now we are in Chapter 10! If our

number is represented by more than one decimal digit, simply adding x30 does not

work. For example, consider the two decimal digit number 25. If we enter 25 via

the keyboard, we input the ASCII code x32, followed by the ASCII code x35. The

bit stream is 0011001000110101. To perform arithmetic on this integer, we must

first convert it to 0000000000011001, the 2’s complement integer representation

of 25. Displaying the result of some arithmetic computation on the monitor causes
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a similar problem. To do that, we must first convert the result of the arithmetic (a

2’s complement integer) to an ASCII string.

In this section, we develop routines to convert integers consisting of more

than one decimal digit from a string of ASCII codes to 2’s complement, and from

2’s complement to a string of ASCII codes.

10.1.1 Example: A Bogus Program: 2 + 3 = e

Before we get into the actual conversion routines, it is worth looking at a simple,

concrete example that illustrates their importance. Figure 10.1 shows how we can

get into trouble if we do not pay attention to the data types that we are working

with.

Suppose we want to enter two single-digit integers from the keyboard, add

them, and display the result on the monitor. At first blush, we write the simple

program of Figure 10.1. What happens?

01 TRAP x23 ; Input from the keyboard.
02 ADD R1,R0,#0 ; Make room for another input.
03 TRAP x23 ; Input another character.
04 ADD R0,R1,R0 ; Add the two inputs.
05 TRAP x21 ; Display result on the monitor.
06 TRAP x25 ; Halt.

Figure 10.1 ADDITION without paying attention to data types.

Suppose the first digit entered via the keyboard is a 2 and the second digit

entered via the keyboard is a 3. What will be displayed on the monitor before the

program terminates? The value loaded into R0 as a result of entering a 2 is the

ASCII code for 2, which is x0032. When the 3 is entered, the ASCII code for 3,

which is x0033, is loaded into R0 (after the ASCII code for 2 is moved to R1, of

course). Thus, the ADD instruction adds the two binary strings x0032 and x0033,

producing x0065. When that value is displayed on the monitor, it is treated as an

ASCII code. Since x0065 is the ASCII code for a lowercase e, a lowercase e is

displayed on the monitor.

The reason we did not get 5 (which, at last calculation, is the correct result

when adding 2 + 3) is that (a) we didn’t convert the two input characters from

ASCII to 2’s complement integers before performing the addition and (b) we

didn’t convert the result back to ASCII before displaying it on the monitor.

Exercise: Correct Figure 10.1 so that it will add two single-digit positive

integers and produce the correct single-digit positive sum. Assume that the two

digits being added do in fact produce a single-digit sum.

10.1.2 Input Data (ASCII to Binary)

Figure 10.2 shows the ASCII representation of the three-decimal-digit integer

295, stored as an ASCII string in three consecutive LC-3 memory locations,

starting at ASCIIBUFF. R1 contains the number of decimal digits in the positive

integer. Our ASCII to binary subroutine restricts integers to the range 0 to 999.
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x0032

x0039

x0035

3

ASCIIBUFF

R1

Figure 10.2 The ASCII representation of 295 stored in consecutive memory
locations.

ASCIIBUFF is the address of the first memory location of a sequence of four

memory locations that we have allocated (a) to store the ASCII codes of decimal

digits entered from the keyboard, and (b) to store the ASCII codes corresponding

to the result of arithmetic operations in preparation for writing it (the result) to

the monitor.

You might ask why, in Figure 10.2, we used a whole 16-bit word to store

the ASCII code of each decimal digit when a byte would have been enough. In

fact, typically, one does store each ASCII code in a single byte of memory. In this

example, we decided to give each ASCII character its own word of memory in

order to simplify the algorithm.

Since we are restricting input to positive integers consisting of at most three

decimal digits, you might also ask why we are allocating four words of memory to

ASCIIBUFF. Wouldn’t three words be enough? For input yes, but you will see in

Section 10.1.3 that in preparation for output, we will need one more word for the sign

(positive or negative) of the result, since the result of the arithmetic could be negative.

Figure 10.3 shows the flowchart for a subroutine that converts the ASCII

representation of an integer, stored in Figure 10.2, into a binary integer.

The subroutine systematically takes each digit, converts it from its ASCII

code to its binary code by stripping away all but the last four bits, and then uses

those four bits to index into a table of ten binary values. Since we are restrict-

ing conversion to integers consisting of at most three decimal digits, only two

tables are needed, one for the tens digit and one for the hundreds digit. Each

entry in each table corresponds to the value of one of the ten digits. For example,

the entry for index 6 in the hundreds table is the value #600, which is in binary

0000001001011000. That value is then added to R0. R0 is used to accumulate

the contributions of all the digits. The result is returned in R0.

Question: If we wanted to be able to convert four decimal-digit integers,

would we need a table of thousands digits? Or, is there a way to convert larger

numbers represented as larger decimal strings into their binary form without

requiring a table of thousands digits, ten-thousands digits, etc.?

Exercise: [Challenging] Suppose the decimal number is arbitrarily long.

Rather than store a table of 10 values for the thousands-place digit, another table

for the 10 ten-thousands-place digit, and so on, design an algorithm to do the

conversion without requiring any tables at all. See Exercise 10.4.

Figure 10.4 shows the LC-3 code that implements this subroutine.
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R0 < — 0

No

R1 ? = 0
(no digits left)

R4 <— Hundreds digit
R0 <— R0 + 100 * R4

Done

R1 ? = 0
(no digits left)

R0 <— R0 + 10 * R4
R4 <— Tens digit

R1 <— R – 1    

R1 ? = 0
(no digits left)

R0 <— R0 + R4
R1 <— R1 – 1

R4 <— Units digit

Yes

No

Yes

No

Yes

Figure 10.3 Flowchart, subroutine for ASCII-to-binary conversion.

There are two points that we need to make about the subroutines in

Chapter 10, which are all part of our calculator simulation, described fully in

Section 10.3. First, they cannot be assembled individually, and second (because

of that) we need to be sure that no label is used more than once.

Why cannot the subroutine of Figure 10.4 be assembled by itself? Answer:

Line 36 specifies a .FILL having the value ASCIIBUFF, but there is no location
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01 ;
02 ; This subroutine takes an ASCII string of up to three decimal digits and
03 ; converts it into a binary number. R0 is used to collect the result.
04 ; R1 keeps track of how many digits are left to process. ASCIIBUFF
05 ; contains the most significant digit in the ASCII string.
06 ;
07 ASCIItoBinary ST R1,AtoB_Save1
08 ST R2,AtoB_Save2
09 ST R3,AtoB_Save3
0A ST R4,AtoB_Save4
0B AND R0,R0,#0 ; R0 will be used for our result.
0C ADD R1,R1,#0 ; Test number of digits.
0D BRz AtoB_Done ; There are no digits, result is 0.
0E ;
0F LD R2,AtoB_ASCIIBUFF ; R2 points to ASCIIBUFF
10 ADD R2,R2,R1
11 ADD R2,R2,#-1 ; R2 now points to "ones" digit.
12 ;
13 LDR R4,R2,#0 ; R4 <-- "ones" digit
14 AND R4,R4,x000F ; Strip off the ASCII template.
15 ADD R0,R0,R4 ; Add ones contribution.
16 ;
17 ADD R1,R1,#-1
18 BRz AtoB_Done ; The original number had one digit.
19 ADD R2,R2,#-1 ; R2 now points to "tens" digit.
1A ;
1B LDR R4,R2,#0 ; R4 <-- "tens" digit
1C AND R4,R4,x000F ; Strip off ASCII template.
1D LEA R3,LookUp10 ; LookUp10 is BASE of tens values.
1E ADD R3,R3,R4 ; R3 points to the right tens value.
1F LDR R4,R3,#0
20 ADD R0,R0,R4 ; Add tens contribution to total.
21 ;
22 ADD R1,R1,#-1
23 BRz AtoB_Done ; The original number had two digits.
24 ADD R2,R2,#-1 ; R2 now points to "hundreds" digit.
25 ;
26 LDR R4,R2,#0 ; R4 <-- "hundreds" digit
27 AND R4,R4,x000F ; Strip off ASCII template.
28 LEA R3,LookUp100 ; LookUp100 is hundreds BASE.
29 ADD R3,R3,R4 ; R3 points to hundreds value.
2A LDR R4,R3,#0
2B ADD R0,R0,R4 ; Add hundreds contribution to total.
2C ;
2D AtoB_Done LD R1,AtoB_Save1
2E LD R2,AtoB_Save2
2F LD R3,AtoB_Save3

Figure 10.4 ASCII-to-binary conversion subroutine (Fig. 10.4 continued on next page.)
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30 LD R4,AtoB_Save4
31 RET
32 ;
33 AtoB_ASCIIBUFF .FILL ASCIIBUFF
34 AtoB_Save1 .BLKW #1
35 AtoB_Save2 .BLKW #1
36 AtoB_Save3 .BLKW #1
37 AtoB_Save4 .BLKW #1
38 LookUp10 .FILL #0
39 .FILL #10
3A .FILL #20
3B .FILL #30
3C .FILL #40
3D .FILL #50
3E .FILL #60
3F .FILL #70
40 .FILL #80
41 .FILL #90
42 ;
43 LookUp100 .FILL #0
44 .FILL #100
45 .FILL #200
46 .FILL #300
47 .FILL #400
48 .FILL #500
49 .FILL #600
4A .FILL #700
4B .FILL #800
4C .FILL #900

Figure 10.4 ASCII-to-binary conversion subroutine (continued Fig. 10.4 from
previous page.)

in the subroutine labeled ASCIIBUFF. Therefore, trying to assemble the sub-

routine by itself will fail. We could have used .EXTERNAL, discussed briefly in

Chapter 7, to enable the subroutines to be assembled individually, but we chose to

not do that, preferring to assemble the entire calculator-simulator program includ-

ing its eleven subroutines as a single entity. As you would expect, line 43 in the

code of Figure 10.15 contains the label ASCIIBUFF.

Second, if we are to assemble the main program and all the subroutines as

a single unit, we need to be sure to not use the same label in more than one

subroutine. Note that in Figure 10.4, most labels start with “AtoB .” As expected,

the same pattern of labeling is used in the rest of the subroutines.

10.1.3 Display Result (Binary to ASCII)

To display the result of a computation on the monitor, we must first convert the 2’s

complement integer result into an ASCII string. Figure 10.5 shows the subroutine
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01 ; This subroutine converts a 2’s complement integer within the range
02 ; -999 to +999 (located in R0) into an ASCII character string consisting
03 ; of a sign digit, followed by three decimal digits, and stores the
04 ; character string into the four memory locations starting at ASCIIBUFF
05 ; (see Figure 10.4).
06 ;
07 BinarytoASCII ST R0,BtoA_Save0
08 ST R1,BtoA_Save1
09 ST R2,BtoA_Save2
0A ST R3,BtoA_Save3
0B LD R1,BtoA_ASCIIBUFF ; R1 keeps track of output string.
0C ADD R0,R0,#0 ; R0 contains the binary value.
0D BRn NegSign ;
0E LD R2,ASCIIplus ; First store the ASCII plus sign.
0F STR R2,R1,#0
10 BRnzp Begin100
11 NegSign LD R2,ASCIIminus ; First store ASCII minus sign.
12 STR R2,R1,#0
13 NOT R0,R0 ; Convert the number to absolute
14 ADD R0,R0,#1 ; value; it is easier to work with.
15 ;
16 Begin100 LD R2,ASCIIoffset ; Prepare for "hundreds" digit.
17 ;
18 LD R3,Neg100 ; Determine the hundreds digit.
19 Loop100 ADD R0,R0,R3
1A BRn End100
1B ADD R2,R2,#1
1C BRnzp Loop100
1D ;
1E End100 STR R2,R1,#1 ; Store ASCII code for hundreds digit.
1F LD R3,Pos100
20 ADD R0,R0,R3 ; Correct R0 for one-too-many subtracts.
21 ;
22 LD R2,ASCIIoffset ; Prepare for "tens" digit.
23 ;
24 Loop10 ADD R0,R0,#-10 ; Determine the tens digit.
25 BRn End10
26 ADD R2,R2,#1
27 BRnzp Loop10
28 ;
29 End10 STR R2,R1,#2 ; Store ASCII code for tens digit.
2A ADD R0,R0,#10 ; Correct R0 for one-too-many subtracts.
2B Begin1 LD R2,ASCIIoffset ; Prepare for "ones" digit.
2C ADD R2,R2,R0
2D STR R2,R1,#3
2E LD R0,BtoA_Save0
2F LD R1,BtoA_Save1
30 LD R2,BtoA_Save2
31 LD R3,BtoA_Save3
32 RET
33 ;
34 ASCIIplus .FILL x002B
35 ASCIIminus .FILL x002D
36 ASCIIoffset .FILL x0030
37 Neg100 .FILL #-100
38 Pos100 .FILL #100
39 BtoA_Save0 .BLKW #1
3A BtoA_Save1 .BLKW #1
3B BtoA_Save2 .BLKW #1
3C BtoA_Save3 .BLKW #1
3D BtoA_ASCIIBUFF .FILL ASCIIBUFF

Figure 10.5 Binary-to-ASCII conversion subroutine.
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for converting a 2’s complement integer stored in R0 into an ASCII string stored

in the four consecutive memory locations starting at ASCIIBUFF. The value ini-

tially in R0 is restricted to the range−999 to+999. After the subroutine completes

execution, ASCIIBUFF contains the sign (+ or −) of the value initially stored in

R0, followed by three locations that contain the ASCII codes corresponding to

the decimal digits representing its magnitude.

The subroutine works as follows: First, the sign of the result to be displayed

is determined, and the ASCII code for + or − is stored in ASCIIBUFF. The result

(in R0) is replaced by its absolute value. The algorithm determines the hundreds-

place digit by repeatedly subtracting #100 from R0 until the result goes negative.

This is next repeated for the tens-place digit. The value left is the ones digit.

Exercise: This subroutine always produces a string of four characters inde-

pendent of the sign and magnitude of the integer being converted. Devise an

algorithm that eliminates unnecessary characters; that is, eliminate leading zeros

and eliminate a leading + sign. See Exercise 10.6.

10.2 Arithmetic Using a Stack
10.2.1 The Stack as Temporary Storage

You know that the LC-3 ADD instruction takes two source operands that are

stored in registers, performs an addition, and stores the result into one of the LC-

3’s eight general purpose registers. We call the register where the result is stored

the destination register. The eight general purpose registers R0 to R7 comprise

the temporary storage that allows operate instructions like ADD to access both

source registers and the destination register much more quickly than if the com-

puter had to access memory for the operands. Because the three locations are

specified explicitly,

ADD R0,R1,R2

we call the LC-3 a three-address machine. Most desktop and laptop computers

are either three-address machines like the LC-3 or two-address machines like the

x86 ISA that is implemented in many of your laptop and desktop computers. In

a two-address machine, two locations are specified explicitly. An example of an

x86 ADD instruction is

ADD EAX,EBX

where EAX and EBX are two of the eight general purpose registers in the x86

ISA. In this case, EAX serves as both the location of one of the source operands

and the location of the destination operand. With a two-address machine, one of

the source registers is overwritten with the result of the operation.

There are also ISAs that do not use general purpose registers at all to store

either source operands or the results of operate instructions. The most common

of these are called stack machines because a stack is used for temporary storage.

Most calculators, including the one we will simulate in Section 10.3, use a stack

for temporary storage rather than a set of general purpose registers.
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Source operands are obtained by popping the top two elements from the

stack. The result (i.e., the destination operand) is subsequently pushed onto the

stack. Since the computer always pops and pushes operands from the stack,

no addresses need to be specified explicitly. Therefore, stack machines are

sometimes referred to as zero-address machines. The instruction would simply be

ADD

and the computer would know where to find the operands. For a calculator, that is

convenient because a person can cause an ADD to be performed by simply press-

ing the + button on the calculator. Note that the pop, push, and add are not part

of the ISA of the computer, and therefore they are available to the programmer.

They are control signals that the hardware uses to make the actual pop, push,

and add occur. The control signals are part of the microarchitecture, similar to

the load enable signals and mux select signals we discussed in Chapters 4 and 5.

As is the case with LC-3 instructions LD and ST, and control signals PCMUX

and LD.MDR, the programmer simply instructs the computer to ADD, and the

microarchitecture does the rest.

10.2.2 An Example

Suppose we want to evaluate (A + B) ⋅ (C + D), where A contains 25, B contains

17, C contains 3, and D contains 2, and store the result in E. If the LC-3 had a

multiply instruction (we would probably call it MUL), we could use the following

program:

LD R0,A
LD R1,B
ADD R0,R0,R1
LD R2,C
LD R3,D
ADD R2,R2,R3
MUL R0,R0,R2
ST R0,E

With a calculator, we would execute the following eight operations:

(1) push 25
(2) push 17
(3) add
(4) push 3
(5) push 2
(6) add
(7) multiply
(8) pop E

with the final result popped (i.e., 210) being the result of the computation.

Figure 10.6 shows a snapshot of the stack after each of the eight operations. Note

that in this example we have allocated memory locations x3FFB to x3FFF for our

stack, and the stack pointer is initially at x4000, indicating that there is nothing

initially on the stack.

In Section 10.3, we write a program that causes the LC-3 (with keyboard and

monitor) to act like such a calculator. We say the LC-3 simulates the calculator
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Figure 10.6 Stack usage during the computation of (25 + 17) ⋅ (3 + 2).

when it executes that program. To do this, our program will need subroutines to

perform the various arithmetic operations.

10.2.3 OpAdd, OpMult, and OpNeg

The program we write in Section 10.3 to simulate a calculator will need three

subroutines to be able to perform addition, subtraction, and multiplication. They are:

1. OpAdd, which will pop two values from the stack, add them, and push the

result onto the stack.

2. OpMult, which will pop two values from the stack, multiply them, and push

the result onto the stack.
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3. OpNeg, which will pop the top value, form its 2’s complement negative

value, and push the result onto the stack. This will allow us to subtract two

numbers A minus B by first forming −B and then adding the result to A.

The OpAdd Subroutine Figure 10.7 shows the flowchart of the OpAdd sub-

routine. Basically, it attempts to pop two values off the stack and, if successful,

add them. If the result is within the range of acceptable values (i.e., an integer

between −999 and +999), then the result is pushed onto the stack.

There are two things that could prevent OpAdd from completing success-

fully: Fewer than two values are available on the stack for source operands, or

Start

POP

OK?

Range
OK?

PUSH Put back both Put back 1st POP

Stop

OK?

POP

ADD

Yes

No

No

Yes

Yes

No

Figure 10.7 Flowchart for OpAdd algorithm.
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the result is out of range. In both cases, the stack is put back to the way it was

at the start of the OpAdd subroutine. If the first pop is unsuccessful, the stack

is not changed since the POP routine leaves the stack as it was. If the second of

the two pops reports back unsuccessfully, the stack pointer is decremented, which

effectively returns the first value popped to the top of the stack. If the result is out-

side the range of acceptable values, then the stack pointer is decremented twice,

returning both values to the top of the stack.

The OpAdd subroutine is shown in Figure 10.8.

Note that the OpAdd subroutine calls the RangeCheck subroutine. This is a

simple test to be sure the result of the computation is within what can successfully

be stored in a single stack location. For our purposes, we restrict values to integers

in the range −999 to +999. This will come in handy in Section 10.3 when we

design our home-brew calculator. The flowchart for the RangeCheck subroutine

is shown in Figure 10.9. The LC-3 program that implements this subroutine is

shown in Figure 10.10.

01 ;
02 ; Subroutine to pop the top two elements from the stack,
03 ; add them, and push the sum onto the stack. R6 is
04 ; the stack pointer.
05 ;
06 OpAdd ST R0,OpAdd_Save0
07 ST R1,OpAdd_Save1
08 ST R5,OpAdd_Save5
09 ST R7,OpAdd_Save7
0A JSR POP ; Get first source operand.
0B ADD R5,R5,#0 ; Test if POP was successful.
0C BRp OpAdd_Exit ; Branch if not successful.
0D ADD R1,R0,#0 ; Make room for second operand.
0E JSR POP ; Get second source operand.
0F ADD R5,R5,#0 ; Test if POP was successful.
10 BRp OpAdd_Restore1 ; Not successful, put back first.
11 ADD R0,R0,R1 ; THE Add.
12 JSR RangeCheck ; Check size of result.
13 ADD R5,R5,#0 ; Check R5 for success/failure.
14 BRp OpAdd_Restore2 ; Out of range, restore both.
15 JSR PUSH ; Push sum on the stack.
16 BRnzp OpAdd_Exit ; On to the next task...
17 OpAdd_Restore2 ADD R6,R6,#-1 ; Decrement stack pointer.
18 OpAdd_Restore1 ADD R6,R6,#-1 ; Decrement stack pointer.
19 OpAdd_Exit LD R0,OpAdd_Save0
1A LD R1,OpAdd_Save1
1B LD R5,OpAdd_Save5
1C LD R7,OpAdd_Save7
1D RET
1E OpAdd_Save0 .BLKW #1
1F OpAdd_Save1 .BLKW #1
20 OpAdd_Save5 .BLKW #1
21 OpAdd_Save7 .BLKW #1

Figure 10.8 The OpAdd Subroutine.
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X > #999
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R5  <-- 1

Print
(Number out of range)

R5  <-- 0

X < #–999
?

Figure 10.9 The RangeCheck algorithm flowchart.

01 ;
02 ; Subroutine to check that a value is
03 ; between -999 and +999.
04 ;
05 RangeCheck LD R5,Neg999
06 ADD R5,R0,R5 ; Recall that R0 contains the
07 BRp BadRange ; result being checked.
08 LD R5,Pos999
09 ADD R5,R0,R5
0A BRn BadRange
0B AND R5,R5,#0 ; R5 <-- success
0C RET
0D BadRange ST R0,RangeCheck_Save0
0E LEA R0,RangeErrorMsg
0F TRAP x22 ; Output character string
10 AND R5,R5,#0 ;
11 ADD R5,R5,#1 ; R5 <-- failure
12 LD R0,RangeCheck_Save0
13 RET
14 Neg999 .FILL #-999
15 Pos999 .FILL #999
16 RangeErrorMsg .FILL x000A
17 .STRINGZ "Error: Number is out of range."
18 RangeCheck_Save0 .BLKW #1

Figure 10.10 The RangeCheck Subroutine.
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The OpMult Subroutine Figure 10.11 shows the flowchart of the OpMult

subroutine, and Figure 10.12 shows the LC-3 program that implements it. Similar

to the OpAdd subroutine, the OpMult subroutine attempts to pop two values off the

stack and, if successful, multiplies them. Since the LC-3 does not have a multiply
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POP
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Set flag
Negate multiplier
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Figure 10.11 Flowchart for the OpMult subroutine.
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01 ;
02 ; Two values are popped from the stack, multiplied, and if
03 ; their product is within the acceptable range, the result
04 ; is pushed onto the stack. R6 is the stack pointer.
05 ;
06 OpMult ST R0,OpMult_Save0
07 ST R1,OpMult_Save1
08 ST R2,OpMult_Save2
09 ST R3,OpMult_Save3
0A ST R5,OpMult_Save5
0B ST R7,OpMult_Save7
0C AND R3,R3,#0 ; R3 holds sign of multiplier.
0D JSR POP ; Get first source from stack.
0E ADD R5,R5,#0 ; Test for successful POP.
0F BRp OpMult_Exit ; Failure
10 ADD R1,R0,#0 ; Make room for next POP.
11 JSR POP ; Get second source operand.
12 ADD R5,R5,#0 ; Test for successful POP.
13 BRp OpMult_Restore1 ; Failure; restore first POP.
14 ADD R2,R0,#0 ; Moves multiplier, tests sign.
15 BRzp PosMultiplier
16 ADD R3,R3,#1 ; Sets FLAG: Multiplier is neg.
17 NOT R2,R2
18 ADD R2,R2,#1 ; R2 contains -(multiplier).
19 PosMultiplier AND R0,R0,#0 ; Clear product register.
1A ADD R2,R2,#0
1B BRz PushMult ; Multiplier = 0, Done.
1C ;
1D MultLoop ADD R0,R0,R1 ; THE actual "multiply"
1E ADD R2,R2,#-1 ; Iteration Control
1F BRp MultLoop
20 ;
21 JSR RangeCheck
22 ADD R5,R5,#0 ; R5 contains success/failure.
23 BRp OpMult_Restore2
24 ;
25 ADD R3,R3,#0 ; Test for negative multiplier.
26 BRz PushMult
27 NOT R0,R0 ; Adjust for
28 ADD R0,R0,#1 ; sign of result.
29 PushMult JSR PUSH ; Push product on the stack.
2A BRnzp OpMult_Exit
2B OpMult_Restore2 ADD R6,R6,#-1 ; Adjust stack pointer.
2C OpMult_Restore1 ADD R6,R6,#-1 ; Adjust stack pointer.
2D OpMult_Exit LD R0,OpMult_Save0
2E LD R1,OpMult_Save1
2F LD R2,OpMult_Save2
30 LD R3,OpMult_Save3
31 LD R5,OpMult_Save5
32 LD R7,OpMult_Save7
33 RET
34 OpMult_Save0 .BLKW #1
35 OpMult_Save1 .BLKW #1
36 OpMult_Save2 .BLKW #1
37 OpMult_Save3 .BLKW #1
38 OpMult_Save5 .BLKW #1
39 OpMult_Save7 .BLKW #1

Figure 10.12 The OpMult subroutine.
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instruction, multiplication is performed as we have done in the past as a sequence of

adds. Lines 17 to 19 of Figure 10.12 contain the crux of the actual multiply. If the

result is within the range of acceptable values, then the result is pushed onto the stack.

If the second of the two pops reports back unsuccessfully, the stack pointer

is decremented, which effectively returns the first value popped to the top of the

stack. If the result is outside the range of acceptable values, which as before will

be indicated by a 1 in R5, then the stack pointer is decremented twice, returning

both values to the top of the stack.

The OpNeg Subroutine To perform subtraction with the top two elements on

the stack, we first replace the top element on the stack with its negative and then

use OpADD. That is, if the top of the stack contains A, and the second element

on the stack contains B, we can push B−A on the stack by first negating the top

of the stack and then performing OpAdd. The subroutine OpNeg for computing

the negative of the element on the top of the stack is shown in Figure 10.13.

01 ; Subroutine to pop the top of the stack, form its negative,
02 ; and push the result onto the stack.
03 ;
04 OpNeg ST R0,OpNeg_Save0
05 ST R5,OpNeg_Save5
06 ST R7,OpNeg_Save7
07 JSR POP ; Get the source operand.
08 ADD R5,R5,#0 ; Test for successful pop
09 BRp OpNeg_Exit ; Branch if failure.
0A NOT R0,R0
0B ADD R0,R0,#1 ; Form the negative of source.
0C JSR PUSH ; Push result onto the stack.
0D OpNeg_Exit LD R0,OpNeg_Save0
0E LD R5,OpNeg_Save5
0F LD R7,OpNeg_Save7
10 RET
11 OpNeg_Save0 .BLKW #1
12 OpNeg_Save5 .BLKW #1
13 OpNeg_Save7 .BLKW #1

Figure 10.13 The OpNeg subroutine.

10.3 The Calculator
10.3.1 Functionality

We are now ready to specify all the code for our calculator. As we already said,

our calculator is not very sophisticated by today’s standards. It will allow a user to

enter positive integers consisting of not more than three decimal digits, perform

basic arithmetic (addition, subtraction, and multiplication) on these integers, and

display the decimal result (which will also be limited to at most three decimal

digits).
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We will use the keyboard to tell the calculator what to do. We can enter

positive integers having up to three decimal digits, the arithmetic operators +

(for ADD), * (for MUL), and − (for negative), and three additional commands

D (to display the result of the calculation on the monitor), C (to erase all values

entered), and X (to turn off the calculator).

The calculator algorithm works as follows: We use the keyboard to input

commands and decimal values. We use the monitor to display results. We use a

stack to hold source operands for performing arithmetic operations and the results

of those arithmetic operations, as described in Section 10.2. Values entered and

displayed are restricted to three decimal digits, that is, only values between −999

and +999, inclusive.

Figure 10.14 is a flowchart that provides an overview of our algorithm that

simulates a calculator. Simulation of the calculator starts with initialization,

which includes setting R6, the stack pointer, to an empty stack. Then the user

sitting at the keyboard is prompted with: “Enter a Command.”

The following commands are available to the user.

X Exit the simulation.

D Display the value at the top of the stack.

C Clear all values from the stack.

+ Pop the top two elements A,B off the stack and push A+B.

* Pop the top two elements A,B off the stack and push A*B.

− Pop the top element A off the stack and push “minus” A.

Enter or LF Push the value typed on the keyboard onto the top of the stack.

If the user wants to enter a number, he/she types the number (up to three

decimal digits) followed by <Enter> or <Line Feed (LF)>.

Input is echoed, and the calculator simulation systematically tests the char-

acter to identify the user’s command. Depending on the user’s command, the

calculator calls the appropriate subroutine to carry out the work specified. After

the work is carried out, the subroutine returns, followed by a prompt for another

command. The calculator simulation continues in this way until the user presses

X, signaling that the user is finished with the calculator.

For example, to calculate

(51 - 49) * (172 + 205) - (17 * 2)

and display the result 720 on the monitor, one types the following sequence of

keys on the keyboard:

5,1,LF,4,9,LF,−,+,1,7,2,LF,2,0,5,LF,+,*,1,7,LF,2,LF,*,−,+,D.

10.3.2 Code

Twelve routines comprise the calculator simulation. Figure 10.15 is the main

algorithm, supported by eleven subroutines. Note the three global labels, Stack-

Max, StackBase, and ASCIIBUFF, are all part of the main algorithm, shown in

Figure 10.15. They provide the symbol table entries needed by the subroutines

that reference those locations. Note also that the stack has been allocated ten
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Figure 10.14 The calculator, overview.
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01 ;
02 ; The Calculator, Main Algorithm
03 ;
04 LEA R6,StackBase ; Initialize the Stack Pointer.
05 ADD R6,R6,#1 ; R6 = StackBase + 1 --> empty stack
06
07 NewCommand LEA R0,PromptMsg
08 PUTS
09 GETC
0A OUT
0B ;
0C ; Check the command
0D ;
0E TestX LD R1,NegX ; Check for X.
0F ADD R1,R1,R0
10 BRnp TestC
11 HALT
12 ;
13 TestC LD R1,NegC ; Check for C.
14 ADD R1,R1,R0
15 BRnp TestAdd
16 JSR OpClear ; See Figure 10.20
17 BRnzp NewCommand
18 ;
19 TestAdd LD R1,NegPlus ; Check for +
1A ADD R1,R1,R0
1B BRnp TestMult
1C JSR OpAdd ; See Figure 10.8
1D BRnzp NewCommand
1E ;
1F TestMult LD R1,NegMult ; Check for *
20 ADD R1,R1,R0
21 BRnp TestMinus
22 JSR OpMult ; See Figure 10.12
23 BRnzp NewCommand
24 ;
25 TestMinus LD R1,NegMinus ; Check for -
26 ADD R1,R1,R0
27 BRnp TestD
28 JSR OpNeg ; See Figure 10.13
29 BRnzp NewCommand
2A ;
2B TestD LD R1,NegD ; Check for D
2C ADD R1,R1,R0
2D BRnp EnterNumber
2E JSR OpDisplay ; See Figure 10.19
2F BRnzp NewCommand
30 ;
31 ; Then we must be entering an integer
32 ;
33 EnterNumber JSR PushValue ; See Figure 10.16
34 BRnzp NewCommand
35 ;
36 PromptMsg .FILL x000A
37 .STRINGZ "Enter a command:"
38 NegX .FILL xFFA8
39 NegC .FILL xFFBD
3A NegPlus .FILL xFFD5
3B NegMinus .FILL xFFD3
3C NegMult .FILL xFFD6
3D NegD .FILL xFFBC
3E
3F ; Globals
40 StackMax .BLKW #9
41 StackBase .BLKW #1
42 ASCIIBUFF .BLKW #4
43 .FILL x0000 ; ASCIIBUFF sentinel

Figure 10.15 The calculator’s main algorithm.
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entries in the main algorithm, and R6, the stack pointer, is initialized to an empty

stack in line 05.

Figure 10.16 takes an ASCII string of characters terminating by a LF, checks

to be sure it corresponds to a string of not more than three decimal digits, and if so,

converts it to a binary number, then pushes the binary number onto the top of the

stack. Figure 10.4 provides the ASCII-to-binary conversion routine. Figure 10.19

pops the entry on the top of the stack, converts it to an ASCII character string,

and displays the ASCII string on the monitor. Figure 10.5 provides the binary-

to-ASCII conversion routine. Figures 10.8 (OpAdd), 10.12 (OpMult), and 10.13

(OpNeg) supply the basic arithmetic algorithms using a stack. Figures 10.17

and 10.18 contain the basic POP and PUSH routines Finally, Figure 10.20 clears

the stack.

01 ; This subroutine takes a sequence of not more than three decimal digits
02 ; typed by the user, converts its ASCII string to a binary value using the
03 ; ASCIItoBinary subroutine, and pushes the binary value onto the stack.
04 ; Anything else typed results in an error message.
05 ;
06 PushValue ST R0,PushValue_Save0
07 ST R1,PushValue_Save1
08 ST R2,PushValue_Save2
09 ST R7,PushValue_Save7
0A LD R1,PushValue_ASCIIBUFF ; R1 points to string being
0B LD R2,MaxDigits ; generated.
0C ;
0D ValueLoop ADD R3,R0,x-0A ; Test for line feed, x0A
0E BRz GoodInput
0F ADD R2,R2,#0
10 BRz TooLargeInput
11 LD R3,NEGASCII0
12 ADD R3,R0,R3
13 BRn NotInteger
14 LD R3,NEGASCII9
15 ADD R3,R0,R3
16 BRp NotInteger
17 ADD R2,R2,#-1 ; Still room for more digits.
18 STR R0,R1,#0 ; Store last character read.
19 ADD R1,R1,#1
1A GETC
1B OUT ; Echo it.
1C BRnzp ValueLoop
1D ;
1E GoodInput LD R2,PushValue_ASCIIBUFF
1F NOT R2,R2
20 ADD R2,R2,#1
21 ADD R1,R1,R2 ; R1 now contains no. of char.
22 BRz NoDigit
23 JSR ASCIItoBinary
24 JSR PUSH
25 BRnzp PushValue_Done

Figure 10.16 The calculator’s PushValue routine (Fig. 10.16 continued on next page.)
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26 NoDigit LEA R0,NoDigitMsg
27 PUTS
28 BRnzp PushValue_Done
29 NotInteger GETC ; Spin until carriage return.
2A OUT
2B ADD R3,R0,x-0A ; Test for line feed, x0A
2C BRnp NotInteger
2D LEA R0,NotIntegerMsg
2E PUTS
2F BRnzp PushValue_Done
30 TooLargeInput GETC ; Spin until carriage return.
31 OUT
32 ADD R3,R0,x-0A ; Test for line feed, x0A
33 BRnp TooLargeInput
34 LEA R0,TooManyDigits
35 PUTS
36 PushValue_Done LD R0,PushValue_Save0
37 LD R1,PushValue_Save1
38 LD R2,PushValue_Save2
39 LD R7,PushValue_Save7
3A RET
3B TooManyDigits .FILL x000A
3C .STRINGZ "Too many digits"
3D NoDigitMsg .FILL x000A
3E .STRINGZ "No number entered"
3F NotIntegerMsg .FILL x000A
40 .STRINGZ "Not an integer"
41 MaxDigits .FILL x0003
42 NegASCII0 .FILL x-30
43 NegASCII9 .FILL x-39
44 PushValue_ASCIIBUFF .FILL ASCIIBUFF
45 PushValue_Save0 .BLKW #1
46 PushValue_Save1 .BLKW #1
47 PushValue_Save2 .BLKW #1
48 PushValue_Save7 .BLKW #1

Figure 10.16 The calculator’s PushValue routine (continued Fig. 10.16 from previous page.)
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01 ; This subroutine POPs a value from the stack and puts it in
02 ; R0 before returning to the calling program. R5 is used to
03 ; report success (R5 = 0) or failure (R5 = 1) of the POP operation.
04 POP LD R0,POP_StackBase
05 NOT R0,R0 ; R0 = -(addr. of StackBase + 1)
06 ADD R0,R0,R6 ; R6 = StackPointer
07 BRz Underflow
08 LDR R0,R6,#0 ; The actual POP
09 ADD R6,R6,#1 ; Adjust StackPointer
0A AND R5,R5,#0 ; R5 <-- success
0B RET
0C Underflow LEA R0,UnderflowMsg
0D PUTS ; Print error message.
0E AND R5,R5,#0
0F ADD R5,R5,#1 ; R5 <-- failure
10 RET
11 UnderflowMsg .FILL x000A
12 .STRINGZ "Error: Too Few Values on the Stack."
13 POP_StackBase .FILL StackBase

Figure 10.17 The calculator’s POP routine.

01 ; This subroutine PUSHes on the stack the value stored in R0.
02 ; R5 is used to report success (R5 = 0) or failure (R5 = 1) of
03 ; the PUSH operation.
04 PUSH ST R1,PUSH_Save1 ; R1 is needed by this routine.
05 LD R1,PUSH_StackMax
06 NOT R1,R1
07 ADD R1,R1,#1 ; R1 = - addr. of StackMax
08 ADD R1,R1,R6 ; R6 = StackPointer
09 BRz Overflow
0A ADD R6,R6,#-1 ; Adjust StackPointer for PUSH.
0B STR R0,R6,#0 ; The actual PUSH
0C LD R1,PUSH_Save1 ; Restore R1.
0D AND R5,R5,#0 ; R5 <-- success
0E RET
0F Overflow LEA R0,OverflowMsg
10 PUTS
11 LD R1,PUSH_Save1 ; Restore R1.
12 AND R5,R5,#0
13 ADD R5,R5,#1 ; R5 <-- failure
14 RET
15 PUSH_Save1 .BLKW #1
16 OverflowMsg .FILL x000A
17 .STRINGZ "Error: Stack is Full."
18 PUSH_StackMax .FILL StackMax

Figure 10.18 The calculator’s PUSH routine.
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01 ; This subroutine calls BinarytoASCII to convert the 2’s complement
02 ; number on the top of the stack into an ASCII character string, and
03 ; then calls PUTS to display that number on the screen.
04 OpDisplay ST R0,OpDisplay_Save0
05 ST R5,OpDisplay_Save5
06 ST R7,OpDisplay_Save7
07 JSR POP ; R0 gets the value to be displayed.
08 ADD R5,R5,#0
09 BRp OpDisplay_DONE ; POP failed, nothing on the stack.
0A JSR BinarytoASCII
0B LD R0,NewlineChar
0C OUT
0D LD R0,OpDisplay_ASCIIBUFF
0E PUTS
0F ADD R6,R6,#-1 ; Push displayed number back on stack.
10 OpDisplay_DONE LD R0,OpDisplay_Save0
11 LD R5,OpDisplay_Save5
12 LD R7,OpDisplay_Save7
13 RET
14 NewlineChar .FILL x000A
15 OpDisplay_ASCIIBUFF .FILL ASCIIBUFF
16 OpDisplay_Save0 .BLKW #1
17 OpDisplay_Save5 .BLKW #1
18 OpDisplay_Save7 .BLKW #1

Figure 10.19 The calculator’s display routine.

01 ;
02 ; This routine clears the stack by resetting the stack pointer (R6).
03 ;
04 OpClear LD R6,OpClear_StackBase ; Initialize the Stack Pointer.
05 ADD R6,R6,#1 ; R6 = StackBase + 1 --> empty stack
06 RET
07 OpClear_StackBase .FILL StackBase

Figure 10.20 The OpClear routine.

Exercises

10.1 Describe, in your own words, how the Multiply step of the OpMult

algorithm in Figure 10.14 works. How many instructions are executed

to perform the Multiply step? Express your answer in terms of n, the

value of the multiplier. (Note: If an instruction executes five times,

it contributes five to the total count.) Write a program fragment that

performs the Multiply step in fewer instructions if the value of the

multiplier is less than 25. How many?

10.2 Correct Figure 10.1 so that it will add two single-digit positive integers

and produce a single-digit positive sum. Assume that the two digits

being added do in fact produce a single-digit sum.

10.3 Modify Figure 10.1, assuming that the input numbers are one-digit

positive hex numbers. Assume that the two hex digits being added

together do in fact produce a single hex-digit sum.



Exercises 403

10.4 Figure 10.4 provides an algorithm for converting ASCII strings to

binary values. Suppose the decimal number is arbitrarily long. Rather

than store a table of 10 values for the thousands-place digit, another

table for the 10 ten-thousands-place digit, and so on, design an

algorithm to do the conversion without resorting to any tables

whatsoever.

10.5 The code in Figure 10.4 converts a decimal number represented as

ASCII digits into binary. Extend this code to also convert a

hexadecimal number represented in ASCII into binary. If the number

is preceded by an x, then the subsequent ASCII digits (three at most)

represent a hex number; otherwise, it is decimal.

10.6 The algorithm of Figure 10.5 always produces a string of four

characters independent of the sign and magnitude of the integer being

converted. Devise an algorithm that eliminates unnecessary characters

in common representations, that is, an algorithm that does not store

leading 0s nor a leading + sign.

10.7 What does the following LC-3 program do?

.ORIG x3000
LEA R6, STACKBASE
LEA R0, PROMPT
TRAP x22 ; PUTS
AND R1, R1, #0

LOOP TRAP x20 ; IN
TRAP x21
ADD R3, R0, #-10 ; Check for newline
BRz INPUTDONE
JSR PUSH
ADD R1, R1, #1
BRnzp LOOP

INPUTDONE ADD R1, R1, #0
BRz DONE

LOOP2 JSR POP
TRAP x21
ADD R1, R1, #-1
BRp LOOP2

DONE TRAP x25 ; HALT

PUSH ADD R6, R6, #-2
STR R0, R6, #0
RET

POP LDR R0, R6, #0
ADD R6, R6, #2
RET

PROMPT .STRINGZ ‘‘Please enter a sentence: ’’
STACKSPAC .BLKW #50
STACKBASE .FILL #0

.END
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★10.8 The calculator program assumes that if the user did not type one of

the characters X,C,+,−,*,D, then it must be pushing a value and so

executes BRnzp PushValue. Modify the program so it is more robust;

that is, if the user typed something other than a digit, the main program

would load R0 with the ASCII code for X, and branch to Test. If the

user typed a digit, the main program would branch to PushValue.

★10.9 For the calculator program in Exercise 10.8, improve the robustness by

modifying PushValue to make sure all the characters typed are digits.
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C H A P T E R

Introduction to C/C++
Programming

11.1 Our Objective
Congratulations, and welcome to the second half of the book! We’ve just com-

pleted an introduction to the basic underlying structure of modern computing

devices. Be it on a smartphone or in a smart car, the underlying mechanisms for

processing digital data are very much the same. With these foundational concepts

solidly in place, we are now well prepared to explore programming in a high-level

programming language.

In the second half of this book, we will discuss high-level programming con-

cepts in the context of the C and C++ programming languages. At every step,

with every new high-level concept, we will be able to make a connection to the

lower levels of the digital system. Our perspective is that nothing should be left

abstract or mysterious. If we can deconstruct new concepts into operations carried

out by the underlying layers, we become more proficient developers and engineers

who are better at building new hardware and software systems.

Let’s begin with a quick overview of the first half. In the first ten chapters,

we described the LC-3, a simple computing architecture that has all the important

characteristics of a more complex, real system. A basic idea behind the LC-3 (and

indeed, behind all modern digital systems) is that simple elements are system-

atically interconnected to form elements with more complex capabilities. MOS

transistors are connected to build logic gates. Logic gates are used to build mem-

ory and data path elements. Memory and data path elements are interconnected

to build the LC-3. This systematic connection of simple elements to create some-

thing more sophisticated is an important concept that is pervasive throughout

computing, not only in hardware design but also in software design. It is this con-

struction principle that enables us to build digital computing systems that are, as

a whole, mind-bogglingly complex.

After describing the hardware of the LC-3, we programmed it in the 1s and

0s of its native machine language. Having gotten a taste of the error-prone and

unnatural process of programming in machine language, we quickly moved to the

more user-friendly LC-3 assembly language. We described how to decompose a
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programming problem systematically into pieces that could be easily coded on

the LC-3. We examined how low-level TRAP subroutines perform commonly

needed tasks, such as input and output, on behalf of the programmer. Systematic

decomposition and subroutines are prevalent design paradigms for software. We

will continue to see examples of these concepts before we are through.

In this half of the book, our primary objectives are to introduce fundamen-

tal high-level programming constructs—variables, control structures, functions,

arrays, pointers, recursion, simple data structures—and to teach a good problem-

solving methodology for attacking programming problems. Our primary vehicles

for doing so are the C and C++ programming languages.

It is not our objective to provide complete coverage of C or C++. Both C

and C++ are vast programming languages (particularly C++) that have evolved

over decades to support the building of large-scale software. Billions of lines of

code have been written in these languages. Some of the most widely used apps,

cloud services, and devices are built using C or C++. These languages contain

many features that enable stable, maintainable, scalable software development by

teams of developers, but it is not necessary to cover many of these features for a

first exposure to these languages.

Our objective will be to explore the core elements of C initially, and later

C++. These core elements are the entry points of these languages, and they will

enable us to write interesting and challenging programs consisting of 100 or so

lines of code contained in a single file.

We must start somewhere. So in this chapter, we make the transition from

programming in low-level assembly language to high-level language program-

ming in C. The C and C++ programming languages have a fascinating history.

We’ll explore how and why these languages came about and why they are so

widely popular even nearly 50 years after their introduction. We’ll dive headfirst

into C by examining a simple example program. Let us begin!

11.2 Bridging the Gap
It is almost always the software that enables a digital system to do its thing. The

hardware provides the general fabric, and the software provides the specific capa-

bilities. In devices we might not consider to be software-driven, such as a smart

speaker or Bluetooth headphones, there is a large body of software embedded in

the device to implement its features. It’s the software that animates the device.

Enabling these sophisticated capabilities requires larger and more complex

bodies of software. A typical smartphone app might consist of hundreds of thou-

sands of lines of code, a web browser several million, and the code to power a

modern automobile (nonautonomous) might range in the hundreds of millions of

lines. Over time, from generation to generation, the software needed to power

these devices has grown in complexity. As the underlying hardware becomes

faster and our demand for additional capabilities grows, we expect the amount

of software needed to continue to grow as well. Examine Figure 11.1. It provides

a graphical view of the sizes of software systems for various applications.
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Figure 11.1 The size in estimated lines of code of various computing applications. Certain applications
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Programming languages such as C and C++ were created for one primary

purpose: to increase programmer productivity. The most commonly used lan-

guages enable teams of programmers to more rapidly and maintainably develop

correctly working code. Without effective programming languages and cor-

responding development environments, our ability to create these incredible

devices would be severely diminished. Just as building a 100-story skyscraper

or a Boeing 787 aircraft is an engineering feat requiring their own sets of tech-

nologies and tools, so are developing and maintaining a web service requiring ten

million lines of code.

Clearly, LC-3 assembly language isn’t going to be the language of choice

for developing most real-world software (nor are the assembly languages for x86

or ARM, which are the two most widespread instruction set architectures today,

powering nearly all of our PCs, servers, and mobile devices). But it is the case

that whatever the development language, C or C++ or Java or Python, the code

is ultimately, and automatically, translated into the instruction set of the under-

lying hardware (be it ARM or x86 or LC-3). So the conceptual process here is

that the programming language enables us humans to express code in a much

more human-friendly way and in a manner that can be automatically, and unam-

biguously, translated into a machine-executable form. Ideally we might wish to

express things in a human language, but we know how ambiguous and error-

prone that would be. So we choose more precise, machine-oriented languages

like C and C++.

As we made the transition from LC-3 machine language in Chapters 5 and 6

to LC-3 assembly language in Chapter 7, you no doubt noticed and appreciated

how assembly language simplified programming the LC-3. The 1s and 0s became

mnemonics, and memory addresses became symbolic labels. Both instructions and

memory addresses took on a form more comfortable for the human than for the

machinery. The assembler filled some of the gap between the algorithm level and

the ISA level in the levels of transformation (see Figure 1.6). We would like the

language level to fill more of that gap. High-level languages do just that. They help

make the job of programming easier. Let’s look at some ways in which they help.

∙ High-level languages help manage the values upon which we are com-
puting. When programming in machine language, if we want to keep track of the

iteration count of a loop, we need to set aside a memory location or a register

in which to store the counter value. To update the counter, we need to remem-

ber the spot where we last stored it, load it, operate, and store it back in that

location. The process is easier in assembly language because we can assign a

meaningful label to the counter’s memory location. In a higher-level language

such as C, the programmer simply gives the value a meaningful symbolic name

and the programming language takes care of allocating storage for it and perform-

ing the appropriate data movement operations whenever we refer to it in our code.

Since most programs contain lots of values, having such a convenient way to

handle these values is critical to enhancing programmer productivity.

∙ High-level languages provide a human-friendly way to express compu-
tation. Most humans are more comfortable describing the interaction of objects

in the real world than describing the interaction of objects such as integers,
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characters, and floating point numbers in the digital world. Because of their

human-friendly orientation, high-level languages enable the programmer to be

more expressive. In a high-level language, the programmer can express complex

tasks with a smaller amount of code, with the code itself looking more like a

human language. For example, if we wanted to calculate the area of a triangle in

C, we would write:

area = 0.5 * base * height;

Here’s another example: We often write code to test a condition and do some-

thing if the condition is true or do something else if the condition is false. In

high-level languages, such common tasks can be simply stated in an English-like

form. For example, if we want to get(Umbrella) if the condition isItCloudy
is true, otherwise get(Sunglasses) if it is false, then in C we would use the

following control structure:

if (isItCloudy)
get(Umbrella);

else
get(Sunglasses);

This expressiveness enables us to achieve more with fewer lines than with

assembly code. And this dramatically enhances our productivity as programmers.

∙ High-level languages provide an abstraction of the underlying hardware.
High-level languages provide a uniform programmer interface independent of

underlying hardware. And this provides two distinct advantages. First, our code

becomes portable. C or C++ or Java code can be easily and efficiently targeted for

a variety of different devices, independent of their hardware. Code written directly

in assembly language takes advantage of the specifics of a particular hardware

system and isn’t as easy to run on different hardware. It’s easy to understand why

portability is important: An app developer who has written an app for Android

will want to quickly port the app to iOS to take advantage of the large base of

Apple devices.

The second advantage is that we use operations that aren’t natively supported

by the hardware. For example, in the LC-3, there is no single instruction that per-

forms an integer multiplication. Instead, an LC-3 assembly language programmer

must write a small piece of code to perform multiplication. The set of operations

supported by a high-level language is usually larger than the set supported by the

ISA. The language will generate the necessary code to carry out the operation

whenever the programmer uses it. The programmer can concentrate on the actual

programming task knowing that these high-level operations will be performed

correctly and without having to deal with the low-level implementation.

∙ High-level languages enhance maintainability. Since common control

structures are expressed using simple, English-like statements, the program itself

becomes easier to read and therefore easier for others to modify and fix. One can

look at a program in a high-level language, notice loops and decision constructs,

and understand the code with less effort than with a program written in assembly

language. No doubt you’ve had to get reacquainted with your own LC-3 assem-

bly code after spending even a couple of hours away from it. It’s no fun! Often
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as programmers, we are given the task of debugging or building upon someone

else’s code. If the organization of the language is human-friendly to begin with,

then understanding code in that language is a much simpler task.

∙ Many high-level languages provide safeguards against bugs. By making

the programmer adhere to a stricter set of rules, the language can make checks

as the program is translated or as it is executed. If certain rules or conditions

are violated, an error message will direct the programmer to the spot in the code

where the bug is likely to exist. In this manner, the language helps programmers

to get their programs working more quickly.

11.3 Translating High-Level
Language Programs

Just as LC-3 assembly language programs need to be translated (or more specif-

ically, assembled) into machine language, so must all programs written in high-

level languages. After all, the underlying hardware can only execute machine

code. How this translation is done depends on the design of the particular

high-level language. One translation technique is called interpretation. With

interpretation, a translation program called an interpreter reads in the high-level

language program and performs the operations indicated by the programmer. The

high-level language program does not directly execute but rather is executed by

the interpreter program. The other technique is called compilation, and the trans-

lator is a compiler. The compilation process completely translates the high-level

language program into machine language, or a form very close to machine lan-

guage. An executable image is an output of the compilation process. It can directly

execute on the hardware. Keep in mind that both interpreters and compilers are

themselves pieces of software running on some device.

11.3.1 Interpretation

If you’ve ever run Python code, you’ve run an interpreter. With interpretation, a

high-level language program is a set of “commands” for the interpreter program.

The interpreter reads in the commands and carries them out as defined by the lan-

guage. The high-level language program is not directly executed by the hardware

but is in fact just input data for the interpreter. The interpreter is a virtual machine
that executes the program in an isolated sandbox.

Many interpreters translate the high-level language program section by sec-

tion, one line, command, or subroutine at a time. For example, the interpreter

might read a single line of the high-level language program and directly carry

out the effects of that line on the underlying hardware. If the line said, “Take

the square root of B and store it into C,” the interpreter will carry out the square

root by issuing the correct stream of instructions in the ISA of the computer to

perform square root. Once the current line is processed, the interpreter moves on
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to the next line and executes it. This process continues until the entire high-level

language program is done.

11.3.2 Compilation

With compilation, on the other hand, a high-level language program is translated

into machine code that can be directly executed on the hardware. To do this effec-

tively, the compiler must analyze the source program as a larger unit (usually, the

entire source file) before producing the translated version. A program need only

be compiled once, and it can be executed many times. Many programming lan-

guages, including C, C++, and their variants are typically compiled. A compiler

processes the file (or files) containing the high-level language program and pro-

duces an executable image. The compiler does not execute the program (although

some sophisticated compilers do execute the program in order to better optimize

its performance), but instead only transforms it from the high-level language into

the computer’s native machine language.

11.3.3 Pros and Cons

There are advantages and disadvantages with either translation technique. With

interpretation, developing and debugging a program are usually easier. Inter-

preters often permit the execution of a program one section (a single line, for

example) at a time. This allows the programmer to examine intermediate results

and make code modifications on the fly. Often the debugging is easier with inter-

pretation. Interpreted code is more easily portable across different computing

systems. However, with interpretation, programs take longer to execute because

there is an intermediary, the interpreter, which is actually doing the work. With

compilation, the programmer can produce code that executes more quickly and

uses memory more efficiently. Since compilation produces more efficient code,

most production software tends to be programmed in compiled languages.

11.4 The C/C++ Programming
Languages

11.4.1 The Origins of C and C++

Let’s cover a bit of history. The C programming language was developed in the

early 1970s by Dennis Ritchie at Bell Laboratories. Ritchie was part of a group at

Bell Labs developing the Unix operating system. C was created to meet the need

for a programming language that was powerful, yet compact enough for a simple

compiler to generate efficient code. The computer systems being used by Ritchie

and his team had very little memory, so the code generated by the compiler had

to be small, and all with a compiler that was small, too! It was this pragmatic bent

that gave rise to the popularity of C and propelled it to become one of the most

popular production programming languages of its time.
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It’s remarkable that anything in the computing industry can still be useful 50

years after its introduction. (The authors of this textbook are an exception to this,

of course.) The C programming language is going strong, and it is still among the

top languages for software development.

In 1979, shortly after C was introduced, a computer scientist named Bjarne

Stroustrup, also at Bell Labs, working alongside Ritchie and his colleagues, intro-

duced a set of improvements to the C language that helped programmers to better

organize their C code, particularly for large and complex programs. Stroustrup

introduced the notion of classes to C, and he thereby created the C++ program-

ming language. C++ uses the basic types, syntax, and constructs of C, so it is as

efficient as C, but it also has additional features, such as classes and templates, that

are essential for creating the building blocks for large-scale coding projects. C has

enabled us to create computing applications consisting of hundreds of thousands

of lines of code, and C++ has enabled us to create applications with hundreds of

millions of lines.

11.4.2 How We Will Approach C and C++

Because of their popularity and close-to-the-metal, low-level approach, C and

C++ are the ideal languages for our bottom-up exploration. We’ll spend the bulk

of our time with the C language in Chapters 11 through 19, and we will intro-

duce some core C++ concepts in Chapter 20. Because C++ is based on C, the

C-specific material we cover will help in our understanding of C++.

Both C and C++ are highly developed, heavily evolved languages that sup-

port large-scale programming. We will not be covering all aspects of C or C++

in this textbook; instead, we will cover the common core subset that will enable

you to write code on the order of hundreds of lines by yourself in a single source

code file. Our objective is to give you a grounding in digital systems, hardware,

and software. This grounding will be useful in your subsequent courses in data

structures and software engineering for more complex software projects.

All of the examples and specific details of C presented in this text are based

on a standard version of C called ANSI C, or C18. As with many programming

languages, several variants of C have been introduced throughout the years. The

American National Standards Institute (ANSI) approves “an unambiguous and

machine-independent definition of the language C” in order to standardize the

language, promoting portability of C code across different systems and com-

pilers. The most recently adopted version of ANSI C is from 2018 and is thus

referred to as C18. Likewise, we’ll use ISO C++, often called Standard C++, in

our examples involving C++ code.

Many of the new C and C++ concepts we present will be coupled with

LC-3 code generated by a hypothetical LC-3 C compiler. In some cases, we

will describe what actually happens when this code is executed. Keep in mind

that you are not likely to be using an LC-3–based computer but rather one

based on a real ISA such as the x86 or ARM. For example, if you are using a

Windows-based PC, then it is likely that your compiler will generate x86 code,

not LC-3 code. Many of the examples we provide are complete programs that you
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can compile and execute. For the sake of clearer illustration, some of the exam-

ples we provide are not quite complete programs and need to be completed before

they can be compiled. In order to keep things straight, we’ll refer to these partial

code examples as code segments.

11.4.3 The Compilation Process

Both C and C++ are compiled languages. The C or C++ compiler follows the

typical mode of translation from a source program to an executable image. An

executable image (refer to Section 7.4.1 for a refresher on this concept) is a

machine language representation of a program that is ready to be loaded into

memory and executed. The compilation mechanism involves several distinct com-

ponents, notably the preprocessor, the compiler itself, and the linker. Figure 11.2

shows the overall compilation process for C. Let’s briefly take a look at each of

the major components.

11.4.3.1 The Preprocessor

As its name implies, the preprocessor “preprocesses” the source program before

handing it off to the compiler. The preprocessor scans through the source files (the

source files contain the actual C program) looking for and acting upon prepro-

cessor directives. These directives are similar to pseudo-ops in LC-3 assembly

language. They instruct the preprocessor to transform the source file in some

controlled manner. For example, we can direct the preprocessor to substitute the

character string DAYS_THIS_MONTH with the string 30 or direct it to insert the

contents of file stdio.h into the source file at the current line. We’ll discuss why

both of these actions are useful in later chapters. All preprocessor directives begin

with a pound sign, #, as the first character. All useful C and C++ programs rely

on the preprocessor in some way.

11.4.3.2 The Compiler

After the preprocessor transforms the input source file, the program is ready to be

handed over to the compiler. The compiler transforms the preprocessed program

into an object module. Recall from Section 7.4.2 that an object module is the

machine code for one section of the entire program. There are two major phases

of compilation: analysis, in which the source program is broken down or parsed
into its constituent parts, and synthesis, in which a machine code version of the

program is generated. It is the job of the analysis phase to read in, parse, and build

an internal representation of the original program. The synthesis phase generates

machine code and, if directed, tries to optimize this code to execute more quickly

and efficiently on the computer on which it will be run. Each of these two phases

is typically divided into subphases where specific tasks, such as parsing, register

allocation, or instruction scheduling, are accomplished. Some compilers generate

assembly code and use an assembler to complete the translation to machine code.

One of the most important internal bookkeeping mechanisms the compiler

uses in translating a program is the symbol table. A symbol table is the compiler’s

internal bookkeeping method for keeping track of all the symbolic names the
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Figure 11.2 The dotted box indicates the overall compilation process—the
preprocessor, the compiler, and the linker. The entire process is called
compilation even though the compiler is only one part of it. The inputs
are C source and header files and various object files. The output is an
executable image.

programmer has used in the program. The compiler’s symbol table is very similar

to the symbol table maintained by the LC-3 assembler (see Section 7.3.3). We’ll

examine the compiler’s symbol table in more detail in Chapter 8.

11.4.3.3 The Linker

The linker takes over after the compiler has translated the source file into object

code. It is the linker’s job to link together all object modules to form an executable

image of the program. The executable image is a version of the program that can

be loaded into memory and executed by the underlying hardware. When you click
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on the icon for the web browser or launch an app on your phone, for example, you

are instructing the operating system to load the app’s executable image into mem-

ory and start executing it. Often, C programs rely upon library routines. Library

routines perform common and useful tasks (such as I/O) and are prepared for

general use by the developers of the system software (the operating system and

compiler, for example). If a program uses a library routine, then the linker will

find the object code corresponding to the routine and link it within the final exe-

cutable image. This process of linking in library objects should not be new to you;

we described the process in Section 8.4.1 in the context of the LC-3. Usually,

library files are stored in a particular place, depending on the computer system.

11.4.4 Software Development Environments

A simple, effective development flow for our purposes is to write our C or C++

source code using a text editor such as Notepad, TextEdit, or vim. The source

code, once complete, is compiled using a C or C++ compiler using a command

line interface to invoke the full compilation process. The resulting executable

then can be executed also directly from the command line interface. For the short

programs we develop here, this development flow will take us quite far.

For most real-world software development, an integrated development envi-

ronment (or IDE) is often a better choice. An IDE combines several often-used

software development tools into a single framework. An IDE will include a text

editor with which we can create and edit our source code, along with a compiler,

and also a debugger that we can use to more easily debug our code (we’ll take a

look at debuggers in Chapter 15). With an IDE, since the tools are more tightly

coupled, a programmer can more rapidly edit, compile, and debug throughout the

development process.

11.5 A Simple Example in C
Let’s begin by diving headfirst into a simple C example. Figure 11.3 provides the

source code. The program prompts the user to type in a number and then counts

down from that number to 0.

You can download this example from the textbook website and compile it

using your choice of development environment (be sure to use ANSI C to avoid

compilation issues). No need to worry about what each line of code does for now.

Rather, we’ll walk through the high-level organization of this source code and

touch upon some important details, with the objective of helping you get started

with writing your own code. We’ll focus on four aspects: the function main, the

programming style, the preprocessor directives, and the use of input/output.

11.5.1 The Function main

The function main begins at the line containing int main(void) (line 17) and

ends at the closing brace on line 31. These lines of the source code constitute a

function definition for the function named main. What were called subroutines in
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1 //
2 //
3 // Countdown, our first C program
4 //
5 // Description: This program prompts the user to type in
6 // a positive number and counts down from that number to 0,
7 // displaying each number along the way.
8 //
9 //

10
11 // The next two lines are preprocessor directives
12 #include <stdio.h>
13 #define STOP 0
14
15 // Function : main
16 // Description : prompt for input, then countdown
17 int main(void)
18 {
19 // Variable declarations
20 int counter; // Holds intermediate count values
21 int startPoint; // Starting point for count down
22
23 // Prompt the user for input
24 printf("===== Countdown Program =====\n");
25 printf("Enter a positive integer: ");
26 scanf("%d", &startPoint);
27
28 // Count down from the input number to 0
29 for (counter = startPoint; counter >= STOP; counter--)
30 printf("%d\n", counter);
31 }

Figure 11.3 Our first C program. It prompts the user to enter a positive number and
then counts down to 0.

LC-3 assembly language programming are referred to as functions in C. Functions

are a vital part of C, and we will devote all of Chapter 14 to them. In C, the

function main serves a special purpose: It is where execution of the program

begins. Every complete C program requires a function main. Note that in ANSI

C, main must be declared to return an integer value, and therefore the keyword

int precedes the name of the function main. As for the (void), more on that

later.

In this example, the code for function main (i.e., the code in between the curly

braces at line 18 and line 31) can be broken down into two components. The first

component contains the variable declarations for the function, lines 20 and 21.

Two variables, one called counter and the other startPoint, are created for use

within the function main. Variables are a useful and elementary feature provided

by all high-level programming languages. They give us a way to symbolically

name the values within a program rather than referring to them by the memory

location or register in which they are stored.

The second component contains the statements of the function, lines 24

through 31. These statements express the actions that will be performed when

the function is executed. For all C programs, execution starts at the first state-

ment of main and progresses, statement by statement, until the last statement in

main is completed.
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In this example, the first grouping of statements (lines 24–26) displays a mes-

sage and prompts the user to input an integer number. Once the user enters a

number, the program enters the last statement, which is a for loop (a type of

iteration construct that we will discuss in Chapter 13). The loop counts down-

ward from the number typed by the user to 0. For example, if the user entered the

number 5, the program’s output would look as follows:

===== Countdown Program =====
Enter a positive integer: 5
5
4
3
2
1
0

Notice in this example that many lines of the source code are terminated by

semicolons, ;. In C, semicolons are used to terminate declarations and statements;

they are necessary for the compiler to parse the program down unambiguously

into its constituents.

11.5.2 Formatting, Comments, and Style

C is a free-format language. That is, white space (spaces and tabs and line breaks)

between words and between lines within a program does not change the meaning

of the program. The programmer is free to structure the program in whatever

manner he or she sees fit while obeying the syntactic rules of C. Programmers

use this freedom to format the code in a manner that makes it easier to read.

In the example program (Figure 11.3), notice that the for loop is indented in

such a manner that the statement being iterated is easier to identify. Also in the

example, notice the use of blank lines to separate different regions of code in the

function main. These blank lines are not necessary but are used to provide visual

separation of the code. Often, statements that together accomplish a larger task

are grouped together into a visually identifiable unit.

The C code examples throughout this book use a conventional indentation

style typical for C. Styles vary. Programmers sometimes use style as a means of

expression. Feel free to define your own style, keeping in mind that the objective

is to help convey the meaning of the program through its formatting.

Comments in C are different than in LC-3 assembly language. Comments in

C begin with // and proceed through the end of the line. Notice that this example

program contains several lines of comments and also source lines with comments

at the end of them. Comments in C++ can also begin with the sequence // and

extend to the end of the line, and this is one of the many ways in which the two

languages are similar.

Every programming language provides a way for the programmer to express

comments. These comments enable programmers to describe in human terms

what their code does. Proper commenting of code is an important part of the soft-

ware development process. Good comments enhance code readability, allowing
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someone not familiar with the code to understand it more quickly. Since pro-

gramming tasks often involve working in teams, code very often gets shared or

borrowed between programmers. In order to work effectively on a programming

team, or to write code that is worth sharing, you must adopt a good commenting

style early on.

One aspect of good commenting style is to provide information at the begin-

ning of each source file that describes the code contained within it, the date it was

last modified, and by whom. Furthermore, each function (see function main in

the example) should have a brief description of what the function accomplishes,

along with a description of its inputs and outputs. Also, comments are usually

interspersed within the code to explain the intent of the various sections of the

code. But over-commenting can be detrimental because it can clutter up your

code, making it harder to read. In particular, watch out for comments that provide

no additional information beyond what is obvious from the code.

11.5.3 The C Preprocessor

We briefly mentioned the preprocessor in Section 11.4.3. Recall that it trans-

forms the original source program before it is handed off to the compiler. Our

simple example contains two commonly used preprocessor directives: #define
and #include. The C and C++ examples in this book rely only on these two

directives. The #define directive is a simple yet powerful directive that instructs

the preprocessor to replace occurrences of any text that matches X with text Y.

That is, the X gets substituted with Y. In the example, the #define causes the text

STOP to be substituted with the text 0. So the following source line

for (counter = startPoint; counter >= STOP; counter--)

is transformed (internally, only between the preprocessor and compiler) into

for (counter = startPoint; counter >= 0; counter--)

Why is this helpful? Often, the #define directive is used to create fixed values

within a program. Following are several examples.

#define NUMBER_OF_STUDENTS 25
#define MAX_LENGTH 80
#define LENGTH_OF_GAME 300
#define PRICE_OF_FUEL 1.49
#define COLOR_OF_EYES brown

So for example, we can symbolically refer to the price of fuel as

PRICE_OF_FUEL. If the price of fuel were to change, we would simply modify

the definition of PRICE_OF_FUEL and the preprocessor would handle the actual

substitution throughout the code for us. This can be very convenient—if the cost

of fuel was used heavily within a program, we would only need to modify one

line in the source code to change the price throughout the code. Notice that the

last example is slightly different from the others. In this example, one string of

characters COLOR_OF_EYES is being substituted for another, brown. The common

C and C++ programming style is to use uppercase for the name being substituted.
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The other directive we’ll encounter is the #include directive. It instructs the

preprocessor literally to insert another source file into the code at the point where

the #include appears. Essentially, the #include directive itself is replaced by

the contents of another file. At this point, the usefulness of this command may

not be completely apparent to you, but as we progress deeper into the C and C++

languages, you will understand how header files can be used to hold #defines
and declarations that are useful among multiple source files.

We’ll often encounter the following example: #include <stdio.h> in our

C programs. All C programs that perform typical input and output must include

C’s input/output library’s header file stdio.h. This file defines some relevant

information about the I/O functions in the library. The preprocessor directive

#include <stdio.h> is used to insert the header file before compilation begins.

There are two variations of the #include directive:

#include <stdio.h>
#include "program.h"

The first variation uses angle brackets (< >) around the filename. This tells the

preprocessor that the header file can be found in a predefined system directory.

This is usually determined by the configuration of the system, and it contains

many common system-related header files, such as stdio.h. Often we want to

include header files we have created ourselves for the particular program we are

writing. The second variation, using double quotes (" ") around the filename,

tells the preprocessor that the header file can be found in the same directory as

the C source file or in some other directory known to the compiler.

Notice that none of the preprocessor macros end with a semicolon. Since

#define and #include are preprocessor directives and not C statements, they are

not required to be terminated by semicolons.

11.5.4 Input and Output

We close this chapter by describing how to perform input and output from within a

C program. In C, I/O is accomplished through a set of I/O functions. We describe

these functions at a high level now and save the details for Chapter 18, when we

have introduced enough background material to understand C I/O down to a low

level. Since all useful programs perform some form of I/O, getting familiar with

the I/O capabilities of C is an important first step.

The C I/O functions are similar to the IN and OUT trap routines provided

by the LC-3 system software. Three lines of the example program in Figure

11.3 perform output using the C library function printf or print formatted
(refer to lines 24, 25, and 30). The function printf performs output to the

standard output device, which is typically the display device. It requires a for-
mat string in which we provide two things: (1) text to print out and (2) some

specifications on how to print out program values within that text. For example,

the statement

printf("43 is a prime number.");
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prints out the following text to the output device:

43 is a prime number.

In addition to text, it is often useful to print out values generated within the code.

Specifications within the format string indicate how we want these values to be

printed out. Let’s examine a few examples.

printf("%d is a prime number.", 43);

This first example contains the format specification %d in its format string. It

causes the value listed after the format string to be embedded in the output as a

decimal number in place of the %d. The resulting output would be

43 is a prime number.

The following examples show other variants of the same printf.

printf("43 plus 59 in decimal is %d.", 43 + 59);
printf("43 plus 59 in hexadecimal is %x.", 43 + 59);
printf("43 plus 59 as a character is %c.", 43 + 59);

In the first example above, the format specification causes the value 102 to

be embedded in the text because the result of “43 + 59” is printed as a decimal

number. In the next example, the format specification %x causes 66 (because 102

equals x66) to be embedded in the text. Similarly, in the third example, the format

specification of %c displays the value interpreted as an ASCII character that, in

this case, would be lowercase f. The output of this statement would be

43 plus 59 as a character is f.

What is important is that the binary pattern being supplied to printf after the

format string is the same for all three statements. Here, printf interprets the

binary pattern 0110 0110 (decimal 102) as a decimal number in the first example,

as a hexadecimal number in the second example, and as an ASCII character in

the third. The C output function printf converts the bit pattern into the proper

sequence of ASCII characters based on the format specifications we provide it.

All format specifications begin with the percent sign, %.

The final example demonstrates a very common and powerful use of printf.

printf("The wind speed is %d km/hr.", windSpeed);

Here, a value generated during the execution of the program, in this case the

variable windSpeed, is output as a decimal number. The value displayed depends

on the value of windSpeed when this line of code is executed. So if windSpeed
were to equal 2 when the statement containing printf is executed, the following

output would result:

The wind speed is 2 km/hr.

If we want line breaks to appear, we must put them explicitly within the for-

mat string in the places we want them to occur. New lines, tabs, and other special

characters require the use of a special backslash (\) sequence. For example,
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to print a new line character (and thus cause a line break), we use the special

sequence \n. Consider the following statements:

printf("%d is a prime number.\n", 43);
printf("43 plus 59 in decimal is %d.\n", 43 + 59);
printf("The wind speed is %d km/hr.\n", windSpeed);

Notice that each format string ends by printing the new line character \n, so each

subsequent printf will begin on a new line. The output generated by these five

statements would look as follows:

43 is a prime number.
43 plus 59 in decimal is 102.
The wind speed is 2 km/hr.

In our sample program in Figure 11.3, printf appears three times in the

source. The first two versions display only text and no values (thus, they have no

format specifications). The third version prints out the value of variable counter.

Generally speaking, we can display as many values as we like within a single

printf. The number of format specifications (e.g., %d) must equal the number of

values that follow the format string.

Question: What happens if we replace the third printf in the example pro-

gram with the following? The expression “startPoint - counter” calculates

the value of startPoint minus the value of counter.

printf("%d %d\n", counter, startPoint - counter);

Let’s turn our attention to the input function scanf. The function scanf per-

forms input from the standard input device, which is typically the keyboard. It

requires a format string (similar to the one required by printf) and a list of

variables into which the values input from the keyboard should be stored. The

function scanf reads input from the keyboard and, according to the conversion

characters in the format string, converts the input and assigns the converted values

to the variables listed.

In the example program in Figure 11.3, we use scanf to read in a single

decimal number using the format specification %d. Recall from our discussion on

LC-3 keyboard input that the value received via the keyboard is in ASCII. The

format specification %d informs scanf to expect a sequence of numeric ASCII

keystrokes (i.e., the digits 0 to 9). This sequence is interpreted as a decimal num-

ber and converted into an integer. The resulting binary pattern will be stored in

the variable called startPoint. The function scanf automatically performs type

conversions (in this case, from ASCII to integer) for us! The format specification

%d is one of several that can be used with scanf. There are specifications to read

in a single character, a floating point value, an integer expressed as a hexadecimal

value, and so forth.

One important point to note about scanf : Variables that are being modified

by the scanf function (e.g., startPoint) must be preceded by the & (ampersand)

character. We will discuss why this is required when we discuss pointers in

Chapter 16.
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Following are several more examples of scanf.

// Reads in a character and stores it in nextChar
scanf("%c", &nextChar);

// Reads in a floating point number into radius
scanf("%f", &radius);

// Reads two decimal numbers into length and width
scanf("%d %d", &length, &width);

11.6 Summary
In this chapter, we have introduced some key characteristics of high-level pro-

gramming languages, C and C++ in particular, and provided an initial exposure

to the C programming language. We covered the following major topics:

∙ High-Level Programming Languages. High-level languages aim to make

the programming process easier by providing human-friendly abstractions for the

bits and memory that a digital system natively operates upon. Because computers

can only execute machine code, programs in high-level languages must be trans-

lated using the process of compilation or interpretation into a form native to the

hardware.

∙ The C and C++ Programming Languages. C and C++ are ideal languages

for a bottom-up exposure to computing because of their low-level, close-to-the-

metal nature. They are also two of the most popular programming languages in

use today. The C/C++ compilation process involves a preprocessor, a compiler,

and a linker.

∙ Our First C Program. We provided a very simple program to illustrate sev-

eral basic features of C programs. Comments, indentation, and style can help

convey the meaning of a program to someone trying to understand the code. Many

C programs use the preprocessor macros #define and #include. The execution

of a C program begins at the function main, which itself consists of variable dec-

larations and statements. Finally, I/O in C can be accomplished using the library

functions printf and scanf.

Exercises

11.1 Describe some problems or inconveniences you encountered when

programming in lower-level languages.

11.2 How do higher-level languages help reduce the tedium of programming

in lower-level languages?

11.3 What are some disadvantages to programming in a higher-level

language?
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11.4 Compare and contrast the execution process of an interpreter with the

execution process of a compiled binary. What effect does interpretation

have on performance?

11.5 A language is portable if its source code can run on different computing

systems, say with different ISAs. What makes interpreted languages

more portable than compiled languages?

11.6 A command line interface is an interpreter. Why can’t it be a compiler?

11.7 Is the LC-3 simulator a compiler or an interpreter?

11.8 Another advantage of compilation over interpretation is that a compiler

can optimize code more thoroughly. Since a compiler can examine the

entire program when generating machine code, it can reduce the

amount of computation by analyzing what the program is trying to do.

The following algorithm performs some very straightforward

arithmetic based on values typed at the keyboard. It outputs a single

result.

1. Get W from the keyboard

2. X⋅W + W

3. Y⋅X + X

4. Z⋅Y + Y

5. Print Z to the screen

a. An interpreter would execute the program statement by statement.

In total, five statements would execute. If the underlying ISA were

capable of all arithmetic operations (i.e., addition, subtraction,

multiplication, division), at least how many operations would be

needed to carry out this program? State what the operations

would be.

b. A compiler would analyze the entire program before generating

machine code, and it would possibly optimize the code. If the

underlying ISA were capable of all arithmetic operations (i.e.,

addition, subtraction, multiplication, division), at least how many

operations would be needed to carry out this program? State what

the operations would be.

11.9 For this exercise, refer to Figure 11.2.

a. Describe the input to the C preprocessor.

b. Describe the input to the C compiler.

c. Describe the input to the linker.

11.10 What happens if we change the second-to-last line of the program in

Figure 11.3 from printf("%d\n", counter); to:

a. printf("%c\n", counter + 'A');
b. printf("%d\n%d\n", counter, startPoint + counter);
c. printf("%x\n", counter);
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11.11 The function scanf reads in a character from the keyboard, and the

function printf prints it out. What do the following two statements

accomplish?

scanf("%c", &nextChar);
printf("%d\n", nextChar);

11.12 The following lines of C code appear in a program. What will be the

output of each printf statement?

#define LETTER '1'
#define ZERO 0
#define NUMBER 123
printf("%c", 'a');
printf("x%x", 12288);
printf("$%d.%c%d n", NUMBER, LETTER, ZERO);

11.13 Describe a program (at this point, we do not expect you to be able to

write working C code) that reads a decimal number from the keyboard

and prints out its hexadecimal equivalent.
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C H A P T E R

Variables and
Operators

12.1 Introduction
In this chapter, we cover two basic concepts of high-level language programming,

variables and operators. Variables hold the values upon which a program acts, and

operators are the language constructs for manipulating these values. Variables

and operators together allow the programmer to more easily express the work

that a program is to carry out.

The following line of C code is a statement that involves both variables and

operators. In this statement, the addition operator + is used to add 3 to the original

value of the variable score. This new value is then assigned using the assignment

operator = back to score. If score was equal to 7 before this statement was

executed, it would equal 10 afterwards.

score = score + 3;

In the first part of this chapter, we’ll take a closer look at variables in the C

programming language. Variables in C are straightforward: The four most basic

flavors are integers, characters, floating point numbers, and boolean values (i.e.,

variables that take on the value 0 or 1). After variables, we’ll cover C’s rich set of

operators, providing plenty of code examples to illustrate their operations. One

unique feature of our approach is that we can connect these high-level concepts

back to the lower levels. In the third part of the chapter, we’ll examine the com-

piler translations of C code with variables and operators. We close this chapter

by writing some simple C code involving variables and operators.

12.2 Variables
A value is any data item upon which a program performs an operation. Examples

of values include the iteration counter for a loop, an input value entered by a

user, or the partial sum of a series of numbers that are being added together.
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Because keeping track of them requires considerable programmer effort, high-

level languages make the process of managing them easier on the programmer.

High-level languages enable the programmer to refer to values symbolically, by a

name rather than the storage location where the value resides. To operate on the

value, referring to the symbolic name suffices, and the actual storage location is

abstracted away. The compiler generates the full set of data movement operations

to access the value from wherever it resides in memory. The programmer can

focus on writing the logic of the program without concern about where values

are currently stored. In high-level languages, these symbolically named values

are called variables.

Variables are the most basic type of memory object. We’ll elaborate on that

concept as we progress though the C and C++ programming languages. For now,

an object is a named unit of data stored in memory with certain characteristics

and behaviors. The evolution of C into C++ and to languages such as Java and

C# extends our ability to create and manage more general forms of objects in our

code. But for now, let’s focus on the simplest form of memory objects: variables.

In order to properly track the variables in a program, the C or C++ compiler

needs to know several characteristics about each variable, which are ultimately

provided by the programmer. The compiler needs to know the symbolic name of

the variable. It needs to know what type of information the variable will contain.

It needs to know where in the code the variable will be accessible. In C and C++,

this information is provided by the variable’s declaration.

Let’s look at an example. The following declares a variable called echo that

will contain an integer value.

int echo;

Based on this declaration, the compiler reserves enough memory for echo to hold

an integer. Whenever echo is referred to in the subsequent C code, the compiler

generates the appropriate machine code to access it. (In some cases, the compiler

can optimize the program such that echo is stored in a register and therefore does

not require a memory location, but that is a subject for later.)

12.2.1 Four Basic Data Types

Here’s a concept that we’ve seen repeatedly, in various forms: The meaning of a

particular bit pattern depends on the data type imposed on the pattern. For exam-

ple, the binary pattern 0110 0110 might represent the lowercase f or it might

represent the decimal number 102, depending on whether we treat the pattern

as an ASCII data type or as a 2’s complement integer data type. A variable’s

declaration informs the compiler about the variable’s type. The compiler uses a

variable’s type information to allocate a proper amount of storage for the vari-

able. Also, type indicates how operations on the variable are to be performed at

the machine level. For instance, performing an addition on two integer variables

can be done on the LC-3 with one ADD instruction. If the two variables are of

floating point type, the LC-3 compiler would generate a sequence of instructions

to perform the addition because no single LC-3 instruction performs a floating

point addition.



12.2 Variables 427

C supports four basic data types: integers, characters, floating point num-

bers, and boolean values. Variables of these types can be created with the type

specifiers int, char, float (or double), and _Bool (or bool).

int
The following line of code declares an integer variable called numberOfSeconds.

This declaration causes the compiler to allocate storage for one integer’s worth

of data (in the case of the LC-3, one memory location).

int numberOfSeconds;

It should be no surprise that variables of integer type are often used in pro-

grams. They conveniently represent the discrete real-world data we want our

programs to process. If we wanted to represent time in seconds, for example, an

integer variable might be appropriate. In an application that tracks whale migra-

tion, an integer might be useful to represent the sizes of pods of gray whales seen

off the California coast. Integers are also useful for program control. An integer

can be useful as the iteration counter for a counter-controlled loop.

The internal representation and range of values of an int depend on the ISA

of the underlying hardware. In the LC-3, for example, an int is a 16-bit 2’s com-

plement integer that can represent values between −32,768 and +32,767. On an

x86-based system, an int is likely to be a 32-bit 2’s complement number that can

represent values between −2,147,483,648 and +2,147,483,647. In most cases, an

int is a 2’s complement integer in the word length of the underlying ISA.

char
The char type specifier declares a variable whose data value represents a charac-

ter. In the following example, the first declaration creates a variable named lock.

The second one declares key. The second declaration is slightly different; it also

contains an initializer. In C, any variable can be set to an initial value directly in

its declaration. In this example, the variable key will have the initial value of the

ASCII code for uppercase Q. Also notice that the uppercase Q is surrounded by

single quotes, ' '. In C, characters that are to be interpreted as ASCII literals are

surrounded by single quotes. What about lock? What initial value will it have?

We’ll examine this question in depth later in this chapter.

char lock;
char key = 'Q';

Although eight bits are sufficient to hold an ASCII character, for purposes of

simplifying the examples in this textbook, all char variables will occupy 16 bits

on the LC-3. That is, chars, like ints, will each occupy one LC-3 memory

location.

float / double
The type specifier float declares a single-precision floating point number, and

the type specifier double declares a double-precision floating point number. The

representation of these numbers is similar to what we examined in Section 2.7.1.
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Floating point numbers allow us to conveniently deal with numbers that have

fractional components or numbers that are very large or very small. Recall from

our discussion in Section 2.7.1 that at the lowest level, a floating point number is

a bit pattern where one of the bits represents the sign of the number, several other

bits represent the mantissa, and the remaining bits represent the exponent. Here

are three examples of variables of type double:

double costPerLiter;
double electronsPerSecond;
double averageTemp;

As with ints and chars, we can also optionally initialize a floating point

variable within its declaration. Floating point values are a little more compli-

cated than integers and characters, though. Floating point literals are represented

containing either a decimal point or an exponent, or both, as demonstrated in the

example code that follows. The exponent is signified by the character e or E and

can be positive or negative. It represents the power of ten by which the fractional

part (the part that precedes the e or E) is multiplied. Note that the exponent must

be an integer value.

double twoPointOne = 2.1; // This is 2.1
double twoHundredTen = 2.1E2; // This is 210.0
double twoHundred = 2E2; // This is 200.0
double twoTenths = 2E-1; // This is 0.2
double minusTwoTenths = -2E-1; // This is -0.2
double extTemp = -0.2; // This is -0.2

The precision of a floating point number depends on the number of bits of

the representation allocated to the fraction. In C, depending on the compiler and

the ISA, a double may have more bits allocated for the fraction than a float, but

never fewer. The size of the double is dependent upon the ISA and the compiler.

Usually, a double is 64 bits long and a float is 32 bits in compliance with the

IEEE 754 floating point standard.

Bool / bool
The _Bool type is a more recent addition to the C language and is now part of

the ANSI standard. A variable of the _Bool type takes on the values 0 or 1,

representing a value that can be false or true. This type was supported natively by

C++, and later supported by C, and it provides a representation for a commonly

occurring value in our code.

The C type specifier for a boolean type is _Bool. A more convenient way

to accomplish the same is to use the use the bool specifier. To do so, we

need to include the stdbool.h header file. This header file also defines true to

symbolically map to 1, and false to map to 0.

_Bool flag = 1; // Initialized to 1 or true
bool test = false; // Initialized to false, which is symbolically

// defined to 0. Requires stdbool.h
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12.2.2 Choosing Identifiers

Most high-level languages have flexible rules for the variable names, or more gen-

erally, identifiers, that can be chosen by the programmer. C allows you to create

identifiers composed of letters of the alphabet, digits, and the underscore charac-

ter, _. Only letters and the underscore character, however, can be used to begin

an identifier. Uppercase is distinct from lowercase, so Capital is different from

capital. As for length, ANSI C places no limit on the length of an identifier.

Also, identifiers cannot be keywords—words that already have reserved meaning

within the language (words like int, for example).

Here are several tips on standard C naming conventions: Variables beginning

with an underscore (e.g., _index_) conventionally are used only in special library

code. Variables are almost never declared in all uppercase letters. The convention

of all uppercase is used solely for symbolic values created using the preprocessor

directive #define. Programmers like to visually partition variables that consist of

multiple words. In this book, we use uppercase (e.g., wordsPerSecond). Other

programmers prefer underscores (e.g., words_per_second).

Giving variables meaningful names is important for writing good code.

Variable names should be chosen to reflect a characteristic of the value they rep-

resent, allowing the programmer to more easily recall what the value is used

for. For example, a value representing the speed of an object could be named

metersPerSecond rather than x.

12.2.3 Scope: Local vs. Global

As we mentioned, a variable’s declaration assists the compiler in managing the

storage of that variable. In C, a variable’s declaration conveys three pieces of

information to the compiler: the variable’s identifier, its type, and its scope. The

first two of these, identifier and type, the C compiler gets explicitly from the vari-

able’s declaration. The third piece, scope, the compiler infers from the position

of the declaration within the code.

The scope of a variable is the region of the program in which the variable is

“alive” and accessible. The good news is that in C, there are only two basic types

of scope for a variable. Either the variable is global to the entire program, or it is

local, or private, to a particular block of code.

12.2.3.1 Local Variables

In C, all variables must be declared before they can be used. If a variable is

declared within a block, it is visible up through the end of the block. In C, a

block is any subsection of a program beginning with the open brace character, {,

and ending with the closing brace character, }. These variables are local to the

block in which they are declared.

The following code is a simple C program that gets a number from the key-

board and redisplays it on the screen. The integer variable echo is declared within

the block that contains the code for function main. It is only visible to the function

main. If the program contained any other functions besides main, the variable
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would not be accessible from those other functions. ANSI C allows local vari-

ables to be declared basically anywhere within the block in which they are in

scope, prior to their use. For the examples in this textbook, we will follow a sim-

ple, more structured style where variables are declared at the beginning of the

block in which they are used.

#include <stdio.h>

int main(void)
{

int echo;

scanf("%d", &echo);
printf("%d\n", echo);

}

It is sometimes useful to declare two different variables with the same name

within different blocks of the same function. For instance, it might be convenient

to use the name count for the counter variable for several different loops within

the same program. C allows this, as long as the different variables sharing the

same name are declared in separate blocks. Figure 12.1, which we discuss in the

next section, provides an example of this.

12.2.3.2 Global Variables

In contrast to local variables, which can only be accessed within the block

in which they are declared, global variables can be accessed throughout the

1 #include <stdio.h>
2
3 int globalVar = 2; // This variable is a global variable
4
5 int main(void)
6 {
7 int localVar = 3; // This variable is local to main
8
9 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
10
11 // Creating a new sub-block within main
12 {
13 int localVar = 4; // This local to the sub-block within main
14
15 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
16 }
17
18 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
19 }

Figure 12.1 A C program that demonstrates nested scope.
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program.1 They retain their storage and values throughout the duration of the

program.

Global variables can be tempting to use! They are often an easy solution to various

conundrums we encounter when writing code. But even the modest use of globals can

introduce problems for large-scale coding projects. Because global variables can be

modified from anywhere within the code, they open the door for bugs. They create

challenges for code maintenance. They make the code more difficult to extend and

modify. For these reasons, production coding rules often restrict the use of global

variables. We’ll shy away from the use of globals in this textbook.

Let’s look at a comprehensive example involving globals and locals. The

C program in Figure 12.1 contains a global variable globalVar that can be

accessed directly from anywhere in our code. We also have two flavors of local

variable, both with the same name: The first localVar declared at line 7 is local

to the function main. The second localVar declared at line 13 is local to the

sub-block starting at the curly brace at line 12 and extending to line 16. If we

compile and execute this code, the output generated looks as follows:

globalVar = 2, localVar = 3
globalVar = 2, localVar = 4
globalVar = 2, localVar = 3

12.2.3.3 Initialization of Variables

What initial value will a variable have if it has no initializer? In C, by default,

local variables start with an undefined value. That is, local variables have garbage

values in them, unless we explicitly initialize them in our code. Global variables,

in contrast, are initialized to 0. It is standard coding practice to explicitly initialize

local variables within their declarations.

12.2.4 More Examples

The following code provides examples of the four basic types discussed in this

chapter. Some declarations have no initializers; some do. Notice how floating

point and character literals are expressed in C.

double width;
double pType = 9.44;
double mass = 6.34E2;
double verySmallAmount = 9.1094E-31;
double veryLargeAmount = 7.334553E102;
int average = 12;
int windChillIndex = -21;
int unknownValue;
int mysteryAmount;
bool flag = false;
char car = 'A'; // single quotes specify a single ASCII character
char number = '4'; // single quotes specify a single ASCII character

1This is a slight simplification. C also allows globals to be global to a particular source file and not the
entire program, but this detail is not relevant for our discussion here.
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12.3 Operators
C, like many other high-level languages, supports a rich set of operators that

allow the programmer to manipulate variables. Some operators perform arith-

metic operations, some perform logic functions, and others perform comparisons

between values. These operators allow the programmer to express a computation

in a more natural, convenient, and compact manner using symbols that we are

already accustomed to using. This is much more user-friendly than expressing an

operation as a sequence of assembly language instructions!

Given some C code, the compiler’s job is to convert it into machine code that

the underlying hardware can execute. Our hypothetical LC-3 C compiler must

translate whatever operations the program might contain into the LC-3 instruc-

tion set—clearly not an easy task given that the LC-3 supports very few native

operations (AND, ADD, NOT). To help illustrate this point, we examine the code

generated by a simple C statement in which two integers are multiplied together.

In the following code segment, x, y, and z are integer variables where x and y
are multiplied and the result assigned to z.

z = x * y;

Since there is no single LC-3 instruction to multiply two values, our LC-3

compiler must generate a sequence of code that accomplishes the multiplication

of two (possibly negative) integers. One possible manner in which this can be

accomplished is by repeatedly adding the value of x to itself a total of y times, as

accomplished in the calculator example in Chapter 10.

Figure 12.2 provides the resulting LC-3 code generated by the LC-3 com-

piler. Assume that R5 contains the memory address where variable x is allocated.

Immediately prior to that location is where variable y is allocated (i.e., R5-1),

and immediately prior to that is where variable z resides. This allocation is very

deliberate and follows a system we will describe later in Section 12.5.2.

AND R0, R0, #0 ; R0 <= 0
LDR R1, R5, #0 ; load value of x
LDR R2, R5, #-1 ; load value of y
BRz DONE ; if y is zero, we're done
BRp LOOP ; if y is positive, start mult

; y is negative
NOT R1, R1
ADD R1, R1, #1 ; R1 <= -x

NOT R2, R2
ADD R2, R2, #1 ; R2 <= -y (-y is positive)

LOOP ADD R0, R0, R1 ; Multiply loop
ADD R2, R2, #-1 ; The result is in R2
BRp LOOP

DONE STR R0, R5, #-2 ; z = x * y;

Figure 12.2 The LC-3 code for C multiplication.
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12.3.1 Expressions and Statements

Before we proceed, let’s cover some C syntax. We can combine variables and

literal values with operators, such as the multiply operator from the previous

example, to form a C expression. In the previous example, x * y is an expres-

sion. Expressions can be grouped together to form a statement. For example,

z = x * y; is a statement. Statements in C are like complete sentences in English.

Just as a sentence captures a complete thought or action, a C statement expresses

a complete unit of work to be carried out by the digital hardware. All single state-

ments in C end with a semicolon character ;. The semicolon terminates the end

of a statement in much the same way a punctuation mark terminates a sentence in

English. During program execution, statements are executed in order from first

to last, starting with the first statement in main.

One or more simple statements plus declarations can be grouped together

to form a compound statement, or block, by enclosing the declarations and state-

ments within curly braces,{ }. Syntactically, compound statements are equivalent

to simple statements.

The following code provides some illustrations.

z = x * y; // This statement accomplishes some work

{ // This is a compound statement
a = b + c;
i = p * r * t;

}

k = k + 1; // This is another simple statement

12.3.2 The Assignment Operator

We’ve already seen examples of C’s assignment operator. Its symbol is the equal

sign, =. The operator works by first evaluating the right-hand side of the assign-

ment, and then assigning the value to the object (such as a variable) specified on

the left-hand side. For example, in the C statement

a = b + c;

the value of variable awill be set equal to the value of the expression b + c. Notice

that even though the arithmetic symbol for equality is the same as the C symbol

for assignment, they have different meanings. In mathematics, by using the equal

sign, =, one is making the assertion that the right-hand and left-hand expressions

are equivalent. In C, using the = operator causes the compiler to generate code that

will make the left-hand side change its value to equal the value of the right-hand

side. In other words, the left-hand side is assigned the value of the right-hand

side.

Let’s examine what happens when the LC-3 C compiler generates code

for a statement containing the assignment operator. The following C statement

represents incrementing by 4 the integer variable x.

x = x + 4;
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The LC-3 code for this statement is straightforward. Here, assume R5

contains the address of variable x.

LDR R0, R5, #0 ; Get the value of x
ADD R0, R0, #4 ; calculate x + 4
STR R0, R5, #0 ; x = x + 4;

In C, all expressions evaluate to a value of a particular type. From the pre-

vious example, the expression x + 4 evaluates to an integral value because we

are adding an integer 4 to another integer (the variable x). This integer result is

then assigned to an integer variable. What would happen if we constructed an

expression of mixed type, for example x + 4.3? The general rule in C is that the

mixed expressions like this one will be converted from integer to floating point.

If an expression contains both integer and character types, it will be promoted to

integer type. In general, in C shorter types are converted to longer types.

What if we tried to assign an expression of one type to a variable of another,

for example x = x + 4.3? In C, the type of a variable remains immutable

(meaning it cannot be changed), so the expression is converted to the type of

the variable. In this case, the floating point expression x + 4.3 is converted

to integer. In C, floating point values are rounded into integers by dropping the

fractional part. For example, 4.3 will be rounded to 4 when converting from a

floating point into an integer; 5.9 will be rounded to 5.

12.3.3 Arithmetic Operators

The arithmetic operators are easy to understand. Many of the operations and cor-

responding symbols are ones to which we are accustomed, having used them since

learning arithmetic in grade school. For instance, + performs addition, - performs

subtraction, * performs multiplication (which is different from the symbol we

are accustomed to for multiplication in order to avoid ambiguity with the letter

x), and / performs division. Just as when doing arithmetic by hand, there is an

order in which expressions are evaluated. Multiplication and division are evalu-

ated first, followed by addition and subtraction. The order in which operators are

evaluated is called precedence, and we discuss it in more detail in Section 12.3.4.

Following are several C statements formed using the arithmetic operators and the

assignment operator:

distance = rate * time;
netIncome = income - taxesPaid;
fuelEconomy = milesTraveled / fuelConsumed;
area = 3.14159 * radius * radius;
y = a*x*x + b*x + c;

C has another arithmetic operator that might not be as familiar to you as +, -
, *, and /. It is the integer remainder operator, %. To illustrate its operation,

consider what happens when we divide two integer values. When performing an

integer divide in C, the fractional part is dropped and the integral part is the result.
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The expression 11 / 4 evaluates to 2. The modulus operator % can be used to

calculate the integer remainder. For example, 11 % 4 evaluates to 3. Said another

way, (11 / 4) * 4 + (11 % 4) is equal to 11. In the following example, all

variables are integers.

quotient = x / y; // if x = 7 and y = 2, quotient = 3
remainder = x % y; // if x = 7 and y = 2, remainder = 1

Table 12.1 lists all the arithmetic operations and their symbols. Multiplica-

tion, division, and modulus have higher precedence than addition and subtraction.

Table 12.1 Arithmetic Operators in C

Operator symbol Operation Example usage

* multiplication x * y
/ division x / y
% integer remainder x % y
+ addition x + y
- subtraction x - y

12.3.4 Order of Evaluation

What value is stored in x as a result of the following statement? Unless we create

some rules around the order of evaluation, the result would be ambiguous.

x = 2 + 3 * 4;

12.3.4.1 Precedence

Just as when doing arithmetic by hand, there is an order to which expressions are

evaluated. And this order is called operator precedence. For instance, when doing

arithmetic, multiplication and division have higher precedence than addition and

subtraction. For the arithmetic operators, the C precedence rules are the same

as we were taught in grade-school arithmetic. In the preceding statement, x is

assigned the value 14 because the multiplication operator has higher precedence

than addition. That is, the expression evaluates as if it were 2 + (3 * 4).

12.3.4.2 Associativity

But what about operators of equal precedence? What does the following statement

evaluate to?

x = 2 + 3 - 4 + 5;

Depending on which operator we evaluate first, the value of the expression

2 + 3 - 4 + 5 could equal 6 or it could equal −4. Since the precedence of both

operators is the same (i.e., addition has the same precedence as subtraction in C),

we clearly need a rule on how such expressions should be evaluated in C. For

operations of equal precedence, their associativity determines the order in which

they are evaluated. In the case of addition and subtraction, both associate from

left to right. Therefore 2 + 3 - 4 + 5 evaluates as if it were ((2 + 3) - 4) + 5.
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The complete set of precedence and associativity rules for all operators in C

is provided in Table 12.5 at the end of this chapter. We suggest that you do not try

to memorize this table (unless you enjoy reciting C trivia to your friends). Instead,

it is important to realize that the precedence rules exist and to roughly compre-

hend the logic behind them. You can always refer to the table whenever you

need to know the relationship between particular operators. There is a safeguard,

however: parentheses.

12.3.4.3 Parentheses

Parentheses override the evaluation rules by specifying explicitly which oper-

ations are to be performed ahead of others. As in arithmetic, evaluation always

begins at the innermost set of parentheses. We can surround a subexpression with

parentheses if we want that subexpression to be evaluated first. So in the following

example, say the variables a, b, c, and d are all equal to 4. The statement

x = a * b + c * d / 2;

could be written equivalently as

x = (a * b) + ((c * d) / 4);

For both statements, x is set to the value of 20. Here the program will always

evaluate the innermost subexpression first and move outward before falling back

on the precedence rules. What value would the following expression evaluate to

if a, b, c, and d equal 4?

x = a * (b + c) * d / 4;

Parentheses can help make code more readable, too. Most people reading your

code are unlikely to have memorized C’s precedence rules. For this reason, for

long or complex expressions, it is often stylistically preferable to use parentheses,

even if the code works fine without them.

12.3.5 Bitwise Operators

We now return to our discussion of C operators. C has a set of operators called

bitwise operators that manipulate bits of a value. That is, they perform a logical

operation such as AND, OR, NOT, XOR across the individual bits of a value.

For example, the C bitwise operator & performs an operation similar to the LC-3

AND instruction. That is, the & operator performs an AND operation bit by bit

across the two input operands. The C operator | performs a bitwise OR. The oper-

ator ˜ performs a bitwise NOT and takes only one operand (i.e., it is a unary

operator). The operator | performs a bitwise XOR. Examples of expressions

using these operators on 16-bit values follow. In C, the prefix “0x” designates

a hexadecimal value.

0x1234 | 0x5678 // equals 0x567C
0x1234 & 0x5678 // equals 0x1230
0x1234 ˆ 0x5678 // equals 0x444C
˜0x1234 // equals 0xEDCB
1234 & 5678 // equals 1026
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C’s set of bitwise operators includes two shift operators: <<, which performs a

left shift, and >>, which performs a right shift. Both are binary operators, meaning

they require two operands. The first operand is the value to be shifted and the

second operand indicates the number of bit positions to shift by. On a left shift,

the vacated bit positions of the value are filled with zeros; on a right shift, the

value is sign-extended. The result is the value of the expression; neither of the two

original operand values is modified. The following expressions provide examples

of these two operators operating on 16-bit integers.

0x1234 << 3 // equals 0x91A0
0x1234 >> 2 // equals 0x048D
1234 << 3 // equals 9872
1234 >> 2 // equals 308
0x1234 << 5 // equals 0x4680 (result is 16 bits)
0xFEDC >> 3 // equals 0xFFDB (from sign-extension)

Here we show several C statements formed using the bitwise operators. For

all of C’s bitwise operators, both operands must be integral values; neither can

be a floating point value. For these statements, f, g, and h are integers.

h = f & g; // if f = 7, g = 8, h will equal 0
h = f | g; // if f = 7, g = 8, h will equal 15
h = f << 1; // if f = 7, g = 8, h will equal 14
h = g << f; // if f = 7, g = 8, h will equal 1024
h = f̃ | g̃; // if f = 7, g = 8, h will equal -1

// because h is a signed integer

Table 12.2 lists all the bitwise operations and their symbols. The operators

are listed in order of precedence, the NOT operator having highest precedence,

and the left and right shift operators having equal precedence, followed by AND,

then XOR, then OR. They all associate from left to right. See Table 12.5 for a

complete listing of operator precedence.

Table 12.2 Bitwise Operators in C

Operator symbol Operation Example usage

˜ bitwise NOT ˜x
& bitwise AND x & y
| bitwise OR x | y
ˆ bitwise XOR x ˆy
« left shift x « y
» right shift x » y

12.3.6 Relational Operators

C has several operators to test the relationship between two values. As we will

see in Chapter 13, these operators are useful for creating conditional constructs,

which change the flow of statement execution. The equality operator, ==, is an

example of C’s relational operators. This operator tests if two values are equal. If

they are equal, the expression evaluates to a 1, and if they are not, the expression

evaluates to 0.
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The following shows two examples:

q = (312 = = 83); // q will equal 0
z = (x = = y); // z will equal 1 if x equals y

In the second example, the right-hand side of the assignment operator = is

the expression x == y, which evaluates to a 1 or a 0, depending on whether x
and y are equal.

Opposite of the equality operator, the inequality operator, !=, evaluates to a

1 if the operands are not equal. Other relational operators test for greater than,

less than, and so on, as described in the following examples. For these examples,

the variables f, g, and h are integers. The variable f has the value 7, and g is 8.

h = f = = g; // Equal To operator. h will equal 0
h = f > g; // Greater Than operator. h will equal 0
h = f != g; // Not Equal To operator. h will equal 1
h = f <= g; // Less Than Or Equal To. h will equal 1

The next example is a preview of coming attractions. The C relational opera-

tors are particularly useful for performing tests on variables in order to change the

flow of the program. In the following code, a message is printed only if the vari-

able tankLevel is equal to zero. The example uses the C if statement, which

we’ll cover extensively in Chapter 13. The concept of an if construct is quite

familiar to us, having seen the notion during programming of the LC-3.

if (tankLevel == 0)
printf("Warning: Tank Empty!!\n");

Table 12.3 lists all the relational operators and provides a simple example of

each. The first four operators have higher precedence than the last two. Both sets

associate from left to right.

Table 12.3 Relational Operators in C

Operator symbol Operation Example usage

> greater than x > y
>= greater than or equal x >= y
< less than x < y
<= less than or equal x <= y
== equal x == y
!= not equal x != y

12.3.7 Logical Operators

C’s logical operators appear at first glance to be exactly like some of the bitwise

operators, and many intro programmers sometimes confuse the two. Unlike the

bitwise operators, the logical operators only generate the integer values 1 or 0,

depending on whether the test is true or false. This is consistent with the bool
datatype, where 1 is true and 0 false.

C supports three logical operators: &&, ||, and !. The && operator performs

a logical AND of its two operands; it evaluates to an integer value if both of its
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operands are nonzero. It evaluates to 0 otherwise. For example, 3 && 4 evaluates

to a 1, whereas 3 && 0 evaluates to 0.

The|| operator is C’s logical OR operator. The expressionx || y evaluates

to a 1 if either x OR y is nonzero. For example, 3 || 4 evaluates to a 1. Also, 3

|| 0 evaluates to 1.

The negation operator ! evaluates to the other logical state of its operand. So

!x is 1 only if x equals 0. It is 0 otherwise. These logical operators are useful for

constructing logical conditions within a program. For example, we can determine

if a variable is within a particular range of values using a combination of relational

and logical operators. To check if x is between 10 and 20, inclusive, we can use

the following expression:

(10 <= x) && (x <= 20)

Or to test if a character c is a letter of the alphabet:

(('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'))

Here are some examples of the logical operators, with several previous exam-

ples of bitwise operators included to highlight the difference. As in the previous

examples, the variables f, g, and h are integers. The variable f has the value 7,

and g is 8.

h = f & g; // bitwise operator: h will equal 0
h = f && g; // logical operator: h will equal 1
h = f | g; // bitwise operator: h will equal 15
h = f || g; // logical operator: h will equal 1
h = f̃ | g̃; // bitwise operator: h will equal -1
h = !f && !g; // logical operator: h will equal 0
h = 29 || -52; // logical operator: h will equal 1

Table 12.4 lists logical operators in C and their symbols. The logical NOT

operator has the highest precedence, then logical AND, then logical OR. See

Table 12.5 for a complete listing of operator precedence.

Table 12.4 Logical Operators in C

Operator symbol Operation Example usage

! logical NOT !x
&& logical AND x && y
|| logical OR x || y

12.3.8 Increment /Decrement Operators

Because incrementing and decrementing variables is such a commonly performed

operation, the designers of the C programming language decided to include spe-

cial operators to perform them. The ++ operator increments a variable to the next
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Table 12.5 Operator Precedence and Associativity in C

Precedence Associativity Operators
Group

1 (highest) left-to-right () (function call) [ ] (array index) . (structure member) -> (structure pointer dereference)
2 right-to-left ++ -- (postfix versions)
3 right-to-left ++ -- (prefix versions)
4 right-to-left * (indirection) & (address of) + (unary) - (unary) ∼ (bitwise NOT) ! (logical NOT)

sizeof
5 right-to-left (type) (type cast)
6 left-to-right * (multiplication) / (division) % (integer division)
7 left-to-right + (addition) - (subtraction)
8 left-to-right « (left shift) » (right shift)
9 left-to-right < (less than) > (greater than) <= (less than or equal) >= (greater than or equal)

10 left-to-right == (equals) != (not equals)
11 left-to-right & (bitwise AND)
12 left-to-right ˆ (bitwise XOR)
13 left-to-right | (bitwise OR)
14 left-to-right && (logical AND)
15 left-to-right || (logical OR)
16 left-to-right & : (conditional expression)
17 (lowest) right-to-left = += -= *= etc.. (assignment operators)

higher value. The -- operator decrements it. For example, the expression x++
increments the value of integer variable x by 1. The expression x-- decrements

the value of x by 1. Keep in mind that these operators modify the value of the

variable itself. That is, x++ is similar to the operation x = x + 1. These operators

became such a distinctive feature of the C language that the improved version of

C was named C++ as a play on that language feature.

The ++ and -- operators can be used on either side of a variable, either before

the variable as a pre-increment (or pre-decrement), or after as a post-increment (or

post-decrement). The expression ++x operates in a subtly different fashion than

x++. We can illustrate the difference by examining the sequence of statements:

x = 4;
y = x++;

After this code executes, the variable x will be 5, and y will be 4. That is, the

increment happens after the value of the subexpression x++ is determined. The

subexpression x++ evaluates to 4, which is subsequently assigned to y. Then,

the variable x is incremented.

The following code segment illustrates pre-increment, to contrast.

x = 4;
y = ++x;

The expression ++x is evaluated after the variable x is incremented. In this

case, the value of both y and x will be 5.

That said, a standard coding style in C and C++ is to avoid writing code

where the difference between the post- and pre- matters. It is difficult for someone

reading and building upon your code to grasp the difference in usage, so you
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should avoid it. Most coders tend to consistently use one form throughout their

code.

12.3.9 Expressions with Multiple Operators

Thus far we’ve only seen examples of expressions with one or two operators. Real

and useful expressions sometimes have more. We can combine various operators

and operands to form complex expressions. The following example demonstrates

a peculiar blend of operators forming a complex expression.

y = x & z + 3 || 9 - w % 6;

In order to figure out what this statement evaluates to, we need to examine

the order of evaluation of operators. Table 12.5 lists all the C operators (including

some that we have not yet covered but will cover later in this textbook) and their

order of evaluation. According to precedence rules, this statement is equivalent

to the following:

y = (x & (z + 3)) || (9 - (w % 6));

Another more useful expression that consists of multiple operators is given

in the example that follows. In this example, if the value of the variable age is

between 18 and 25, the expression evaluates to 1. Otherwise it is 0. Notice that

even though the parentheses are not required to make the expression evaluate as

we described, they do help make the code easier to read.

(18 <= age) && (age <= 25)

12.4 Problem Solving Using
Operators

Let’s apply what we have covered to this point to solve a coding problem. For this

problem, we are to create a program that performs a simple network calculation:

It calculates the amount of time required to transfer some number of bytes across

a network with a particular transfer rate (provided in bytes per second). The twist

to this problem is that transfer time is to be displayed in hours, minutes, and

seconds.

We approach this problem by applying the decomposition techniques

described in Chapter 6. That is, we will start with a top-level description of our

approach and continually refine it using the sequential, decision, and iteration

constructs (see Chapter 6 if you need a refresher) until we arrive at something

from which we can easily write C code. This technique is called top-down decom-
position because we start with a high-level description of the algorithm and refine

it by breaking larger steps into smaller ones, eventually arriving at a form that is

easy to render into C code.
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Before we start the decomposition process, let’s think about how we will

represent the data items that the program will need to manipulate. At this point,

we get to select from the four basic C types: integer, character, floating point, and

boolean. Since it’s an arithmetic calculation we are performing, the most natural

types for us to consider are either floating point values or integers. The problem

is ultimately about calculating number of hours, minutes, and seconds, so any

fractional components of time are unnecessary. Displaying the total transfer time

as 10.1 hours, 12.7 minutes, 9.3 seconds does not make sense, and 10 hours,

18 minutes, 51 seconds is the preferred output. The better choice of data type

for the time calculation is integer (yes, there are rounding issues, but say we can

ignore them for this calculation).

With our choice of data representation completed, we can apply stepwise

refinement to decompose the problem into C code. Figure 12.3 shows the decom-

position of this programming problem. Step 1 in the figure shows the initial

formulation of the problem. It involves three phases: get input, calculate results,

output results. In the first phase, we will query the user about the amount of data

Start

Stop

Output results

Convert

total seconds to

hours

Convert

remaining seconds

to minutes

Calculate

remaining seconds

Get input data

Stop

Convert seconds

to hours, minutes,

seconds

Output results

Calculate results

Get input data

Step 1 Step 2

Start

Calculate transfer

time in seconds

Step 3

Figure 12.3 Stepwise refinement of a simple network transfer time calculation.
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to be transferred (in bytes) and the transfer rate of the network (in bytes per sec-

ond). In the second phase, we will perform all necessary calculations, which we

will then output in the third phase.

Step 1 is not detailed enough to translate directly into C code, and therefore

we perform another refinement of it in Step 2. Here we realize that the calcula-

tion phase can be further refined into a subphase that first calculates total time

in seconds—which is an easy calculation given the input data—and a subphase

to convert total time in seconds into hours, minutes, and seconds. Step 2 is still

not complete enough for mapping into C, so we perform another refinement of it

in Step 3. Most phases of Step 2 are simple enough to convert into C, except for

the conversion of seconds into hours, minutes, and seconds. In Step 3, we refine

this phase into three subphases. First, we will calculate total hours based on the

total number of seconds. Second, we will use the remaining seconds to calculate

minutes. Finally, we determine the remaining number of seconds after the min-

utes have been calculated. Going from Step 3 into C code is a straightforward

translation.

The complete C program for this problem is presented in Figure 12.4.

1 #include <stdio.h>
2 int main(void)
3 {
4 int amount; // The number of bytes to be transferred
5 int rate; // The average network transfer rate
6 int time; // The time, in seconds, for the transfer
7 int hours; // The number of hours for the transfer
8 int minutes; // The number of mins for the transfer
9 int seconds; // The number of secs for the transfer
10
11 // Get input: number of bytes and network transfer rate
12 printf("How many bytes of data to be transferred? ");
13 scanf("%d", &amount);
14 printf("What is the transfer rate (in bytes/sec)? ");
15 scanf("%d", &rate);
16
17 // Calculate total time in seconds
18 time = amount / rate;
19
20 // Convert time into hours, minutes, seconds
21 hours = time / 3600; // 3600 seconds in an hour
22 minutes = (time % 3600) / 60; // 60 seconds in a minute
23 seconds = ((time % 3600) % 60); // remainder is seconds
24
25 // Output results
26 printf("Time : %dh %dm %ds\n", hours, minutes, seconds);
27 }

Figure 12.4 A C program that performs a simple network rate calculation.



444 chapter 12 Variables and Operators

12.5 Tying It All Together
We’ve now covered all the basic C types and most of the operators that we plan

to use throughout this textbook. Variables are memory objects that require stor-

age in memory. Operators express the computation that is to be performed on

those memory objects. Our C compiler’s task will be to properly allocate mem-

ory for those objects (specifically in our case, variables) and to generate the

proper sequence of LC-3 code corresponding to the C statements. Performing

the translation from C to LC-3 correctly in all cases will require the compiler to

be systematic about these objects and where they are allocated. The compiler will

use a symbol table to keep track of objects that are declared in our code. The com-

piler also uses a memory map to systematically allocate these objects in memory.

Let’s take a closer look.

12.5.1 Symbol Table

In Chapter 7, we examined how the assembler systematically keeps track of labels

within an assembly program by using a symbol table. Like the LC-3 assembler, our

C compiler keeps track of variables in a program with a symbol table. Whenever

the compiler reads a variable declaration, it creates a new entry in its symbol table

corresponding to the variable being declared. The entry contains enough information

for the compiler to manage the storage allocation for the variable and generation of

the proper sequence of machine code whenever the variable is used in the program.

For now, we’ll consider that each symbol table entry for a variable contains (1) its

identifier, (2) its type, (3) the place in memory the variable has been allocated storage,

and (4) the scope of the variable, which for our purposes will be the line numbers in

the code corresponding to where the variable is in scope.

Figure 12.5 shows the symbol table entries corresponding to the variables

declared in the network rate calculation program in Figure 12.4. Since this pro-

gram contains six variable declarations, the compiler ends up with six entries in

its symbol table, one for each. Notice that the compiler records a variable’s loca-

tion in memory as an offset, with most offsets being negative. This offset indicates

...

...

...

–1

–3

–4

–5

amount int

hours int

int

–2

int

int

int

minutes

rate

seconds

time

main

main

main

main

main

main

0 ...

...

...

Location

(as an offset)
ScopeType Other

info...

Identifier

Figure 12.5 The compiler’s symbol table when it compiles the code in Figure 12.4.
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the relative position of the variable within the region of memory in which it is

allocated. Important concept. Let us elaborate.

12.5.2 Allocating Space for Variables

There are two regions of memory in which declared variables in C are allocated

storage: the global data section and the run-time stack.2 Variables that are global

are allocated storage in the global data section. Local variables are allocated stor-

age on the run-time stack. The offset field in the symbol table enables the compiler

to precisely locate those variables in either of those two regions. The offset field

indicates how many locations from the base of the section a variable is allocated

storage. For instance, if a global variable earth has an offset of 4 and the global

data section starts at memory location 0x5000, then earth is stored in location

0x5004. If R4 contained the address of the beginning of the global data section,

then loading the variable earth into R3 can be accomplished with the following

LC-3 instruction:

LDR R3, R4, #4

If earth is instead a local variable, say for example in the function main, the

variable is on the run-time stack, in units of allocation called activation records
or stack frames. Whenever a function starts to execute, its stack frame is added to

the run-time stack in a process we will describe in Chapter 14. A stack frame is

a region of contiguous memory locations that contains all the local variables for

a given function.

Whenever a particular function is executing, the highest numbered memory

address of its stack frame will be stored in R5—which is called the frame pointer.

For example, the stack frame for the function main from the code in Figure 12.4

is shown in Figure 12.6. The variables are allocated in the record in the reverse of

the order in which they are declared. Since the variable amount is declared first,

it appears closest to the frame pointer R5.

If we make a reference to a particular local variable, the compiler will use the

variable’s symbol table entry to generate the proper code to access it. The offset in

the variable’s symbol table entry indicates where in the stack the variable has been

allocated storage. To access the variable seconds, the compiler would generate

the instruction

LDR R0, R5, #-5

A preview of things to come: Whenever we call a function in C (functions

are C’s notion of subroutines), the stack frame for the function is pushed onto the

run-time stack. That is, the function’s stack frame is allocated on top of the stack.

R5 is appropriately adjusted to point to the base of the record—therefore, any code

within the function that accesses local variables will now work correctly using

the offsets as recorded in the symbol table. Whenever the function completes and

2For examples in this textbook, all variables will be assigned a memory location. However, real compilers
perform code optimizations that attempt to allocate variables in registers. Since registers take less time to
access than memory, the program will run faster if frequently accessed values are put into registers.
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Location xFFFF

Location x0000

R5 amount

rate

time

hours

minutes

seconds

Figure 12.6 An example of the stack frame from function main of the code in
Figure 12.4. This function has five local variables. R5 is the frame
pointer and points to the first local variable.

control is about to return to the caller, the activation record is popped off the stack.

R5 is adjusted to point to the caller’s activation record. Throughout all of this, R6
always contains the address of the top of the run-time stack—it is called the stack
pointer. We will go through this process in more detail in Chapter 14.

Figure 12.7 shows the organization of the LC-3’s memory when a program is

running. The program itself occupies a region of memory (labeled Program text

in the diagram); so does the run-time stack and the global data section. There

is another region reserved for dynamically allocated data called the heap (we

will discuss this region in Chapter 19). Both the run-time stack and the heap can

change size as the program executes. For example, whenever one function calls

another, the run-time stack grows because we push another activation record onto

the stack—in fact, it grows toward memory address x0000. In contrast, the heap

grows toward 0xFFFF. Since the stack grows toward x0000, the organization of

an activation record appears to be “upside-down”; that is, the first local variable

appears at the memory location pointed to by R5, the next one at R5 - 1, the

subsequent one at R5 - 2, and so forth (as opposed to R5, R5 + 1, R5 + 2, etc).

During execution, the PC points to a location in the program text, R4 points

to the beginning of the global data section, R5 points within the run-time stack,

and R6 points to the very top of the run-time stack. There are certain regions of

memory, marked System space in Figure 12.7, that are reserved for the operating

system, for things such as TRAP routines, vector tables, I/O registers, and boot

code.
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xFFFF

x0000

R5 (Frame pointer)
R6 (Stack pointer)

(for dynamically allocated memory)

System space

System space

PC

Global data section

Program text

Run-time stack

Heap

R4

Figure 12.7 The LC-3 memory map showing various sections active during program
execution.

12.5.3 A Comprehensive Example

In this section, we will take a comprehensive look at some C code and its LC-3

translation to illustrate how everything we’ve discussed in this chapter ties

together. Figure 12.8 is the source code for a complete C program that performs

some simple operations on integer variables and then outputs the results of these

operations. The program contains one global variable, inGlobal, and three local

variables, inLocal, outLocalA, and outLocalB, which are local to the func-

tion main. The program starts off by assigning initial values to inLocal (which

is initialized in the declaration) and inGlobal. After the initialization step, the

variables outLocalA and outLocalB are updated based on two calculations per-

formed using inLocal and inGlobal. After the calculation step, the values of

outLocalA and outLocalB are output using the printf library function. Notice
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1 #include <stdio.h>
2
3 int inGlobal; // inGlobal is a global variable.
4 // It is declared outside of all blocks
5
6 int main(void)
7 {
8 int inLocal = 5; // inLocal, outLocalA, outLocalB are all
9 int outLocalA; // local to main
10 int outLocalB;
11
12 // Initialize
13 inGlobal = 3;
14
15 // Perform calculations
16 outLocalA = inLocal & ĩnGlobal;
17 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);
18
19 // Print results
20 printf("outLocalA = %d, outLocalB = %d\n", outLocalA, outLocalB);
21 }

Figure 12.8 A C program that performs simple operations. The output of this code is
“outLocalA = 4, outLocalB = 6”.

that because we are using printf, we must include the standard I/O library

header file, stdio.h.

When analyzing this code, the LC-3 C compiler will assign the global vari-

able inGlobal the first available spot in the global data section, which is at

offset 0. When analyzing the function main, it will assign inLocalA to offset 0,

outLocalA to offset −1, and outLocalB to offset −2 within main’s stack frame.

A snapshot of the compiler’s symbol table corresponding to this program along

with the activation record of main is shown in Figure 12.9. The resulting assembly

Location x0000

R5

outLocalA

outLocalB

inLocal

(b) Activation record for main(a) Symbol table

Location xFFFF

inLocal

int

int

inGlobal int

int

outLocalA

outLocalB

main

global

main

main

0 ...

...

...

...–2

–1

0

Scope Other

info...
Identifier Location

(as an offset)
Type

Figure 12.9 The LC-3 C compiler’s symbol table when compiling the program in Figure 12.8 and the
stack frame format for its function main.
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1 main:
2 :
3 :
4 <startup code>
5 :
6 :
7 AND R0, R0, #0
8 ADD R0, R0, #5 ; inLocal is at offset 0
9 STR R0, R5, #0 ; inLocal = 5;
10
11 AND R0, R0, #0
12 ADD R0, R0, #3 ; inGlobal is at offset 0, in globals
13 STR R0, R4, #0 ; inGlobal = 3;
14
15 LDR R0, R5, #0 ; get value of inLocal
16 LDR R1, R4, #0 ; get value of inGlobal
17 NOT R1, R1 ; ĩnGlobal
18 AND R2, R0, R1 ; calculate inLocal & ĩnGlobal
19 STR R2, R5, #-1 ; outLocalA = inLocal & ĩnGlobal;
20 ; outLocalA is at offset -1
21
22 LDR R0, R5, #0 ; get value of inLocal
23 LDR R1, R4, #0 ; get value of inGlobal
24 ADD R0, R0, R1 ; calculate inLocal + inGlobal
25
26 LDR R2, R5, #0 ; get value of inLocal
27 LDR R3, R4, #0 ; get value of inGlobal
28 NOT R3
29 ADD R3, R3, #1 ; calculate -inGlobal
30
31 ADD R2, R2, R3 ; calculate inLocal - inGlobal
32 NOT R2
33 ADD R2, R2, #1 ; calculate -(inLocal - inGlobal)
34
35 ADD R0, R0, R2 ; (inLocal + inGlobal) - (inLocal - inGlobal)
36 STR R0, R5, #-2 ; outLocalB = ...
37 ; outLocalB is at offset -2
38 :
39 :
40 <code for calling the function printf>
41 :
42 :

Figure 12.10 The LC-3 code for the C program in Figure 12.8.

code generated by the LC-3 C compiler is listed in Figure 12.10. Execution starts

at the instruction labeled main.

12.6 Additional Topics
The last major section of this chapter involves a set of additional topics involv-

ing variables and operators. Some of the topics are advanced issues involving

concepts we covered earlier in the chapter; some of the topics are miscellaneous

features of C. We provide this section in order to provide a fuller coverage of
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commonly used features of C. This material is not essential to your understand-

ing of the material in later chapters. For those of you interested in a more complete

coverage of variables and operators in C, read on!

12.6.1 Variations of the Basic Types

C gives the programmer the ability to specify larger or smaller versions of the

basic types int, char, float, and double. The modifiers long and short can be

attached to int with the intent of extending or shortening the default size. For

example, a long int can declare an integer that has twice the number of bits

of a regular int, thereby allowing us to represent a larger range of integers in

a C program. Similarly, the specifier long can be attached to the double type

to create a larger floating point type (if supported by the particular system) with

greater range and precision.

The modifier short can be used to create variables that are smaller than

the default size, which can be useful when trying to conserve on memory space

when handling data that does not require the full range of the default data type.

The following example illustrates how the variations are declared:

long double particlesInUniverse;
long int worldPopulation;
short int ageOfStudent;

Because the size of the three basic C types is closely tied to the types supported

by the underlying ISA, many compilers only support these modifiers long and

short if the device’s ISA supports these size variations. Even though a vari-

able can be declared as a long int, it may be equivalent to a regular int
if the underlying ISA has no support for longer versions of the integer data

type.

Another useful variation of the basic int data type is the unsigned inte-

ger. We can declare an unsigned integer using the unsigned type modifier. With

unsigned integers, all bits are used to represent nonnegative integers (i.e., posi-

tive numbers and zero). In the LC-3, for instance, which has 16-bit data types, an

unsigned integer has a value between 0 and 65,535. When dealing with real-world

objects that by nature do not take on negative values, unsigned integers might be

the data type of choice. The following are examples of unsigned integers:

unsigned int numberOfDays;
unsigned int populationSize;

Following are some sample variations of the three arithmetic basic types:

long int ounces;
short int gallons;
long double veryVeryLargeNumber = 4.12936E361;
unsigned int sizeOfClass = 900;
float tonsOfGrain = 2.998E8;
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1 #include <stdio.h>
2
3 #define RADIUS 15.0 // This value is in centimeters
4
5 int main(void)
6 {
7 const double pi = 3.14159;
8 double area;
9 double circumference;
10
11 // Calculations
12 area = pi * RADIUS * RADIUS; // area = pi*r̂ 2
13
14 circumference = 2 * pi * RADIUS; // circumference = 2*pi*r
15
16 printf("Area of circle with radius %f cm is %f cm̂ 2\n", RADIUS, area);
17 printf("Circumference of the circle is %f cm\n", circumference);
18 }

Figure 12.11 A C program that computes the area and circumference of a circle with
a radius of 15 cm.

12.6.2 Literals, Constants, and Symbolic Values

In C, variables can also be declared as constants by adding the const qualifier

before the type specifier. These constants are types whose values cannot be modi-

fied during the execution of a program; they are read-only. For example, in writing

a program that calculates the area and circumference of a circle of a given radius,

it might be useful to create a floating point constant called pi initialized to the

value 3.14159. Figure 12.11 contains an example of such a program. This exam-

ple is useful for making a distinction between three types of constant values that

often appear in C code. Literal constants are unnamed values that appear literally
in the source code. In the circle example, the values 2 and 3.14159 are exam-

ples of literal constants. In C, we can represent literal constants in hexadecimal

by prepending a 0x in front of them, for example 0x1DB. ASCII literals require

single quotes around them, as for example 'R', which is the ASCII value of the

character R. Floating point literals can be the exponential notation described in

Section 12.2.1. An example of the second type of constant value is pi, which is

declared as a constant value using a variable declaration with the const quali-

fier. The third type of constant value is created using the preprocessor directive

#define, an example of which is the symbolic value RADIUS. All three types create

values that do not change during the execution of a program.

The distinction between constants declared using const and symbolic values

defined using #define might seem a little subtle to you. Using one vs. another is

really a matter of programming style rather than function. Declared constants

are used for things we traditionally think of as constant values, which are values

that never change. The constant pi is an example. Physical constants such as the

speed of light, or the number of days in a week, are conventionally represented

by declared constants.
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Values that stay constant during a single execution of the program but which

might be different from user to user, or possibly from invocation to invocation,

are represented by symbolic values using #define. Such values can be thought

of as parameters for the program. For example, RADIUS in Figure 12.11 can be

changed and the program recompiled, then re-executed. In general, naming a con-

stant using const or #define is preferred over leaving the constant as a literal in

your code. Names convey more meaning about your code than unnamed literal

values.

12.6.3 Additional C Operators

The C programming language has a collection of unusual operators, some of

which have become woven into common C programming style. They occur often

in existing C and C++ code, and there they are worth our notice. Most of these

operators are combinations of operators we have already seen. The combinations

simplify the expression of commonly used computations.

12.6.3.1 Assignment Operators

C allows for arithmetic and bitwise operators to be combined with the assignment

operator, creating an “update and assign” operation. For instance, if we wanted

to add 29 to variable x, we could use the shorthand operator += as follows:

x += 29;

This code is equivalent to

x = x + 29;

More examples are as follows:

h += g; // Equivalent to h = h + g;
h %= f; // Equivalent to h = h % f;
h <<= 3; // Equivalent to h = h << 3;

Table 12.6 lists some of the special operators provided by C

Table 12.6 Special Operators in C

Operator Symbol Operation Example Usage

+= add and assign x += y
-= subtract and assign x -= y
*= multiply and assign x *= y
/= divide and assign x /= y
%=, &=, |=, ˆ=, etc other operate and assign x &= y

12.6.3.2 Conditional Expressions

Conditional expressions are a unique feature of C that allow for simple decisions

to be made with a simple expression. The symbols for the conditional expression

are the question mark and colon, ? and :. The following is an example:

x = a ? b : c;
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Here variable x will get either the value of b or the value of c based on the

logical value of a. If a is nonzero, x will get the value of b. Otherwise, it will get

the value of c.

So if we wanted to have the variable maxValue be assigned the maximum of

two values, valueA and valueB, we could write:

maxValue = (valuaA > valueB) ? valueA : valueB;

12.7 Summary
We conclude this chapter by summarizing the three key concepts we covered.

∙ Variables in C. The C programming language supports variables of four

basic types: integers (int), characters (char), floating point numbers (float and

double), and booleans (_Bool or bool). C, like all other high-level languages,

enables the programmer to give symbolic names to these variables. Variables in

C can be locally declared within a block of code (such as a function) or globally

visible by all blocks.

∙ Operators in C. C’s operators can be categorized by the function they per-

form: assignment, arithmetic, bitwise manipulations, logical and relational tests.

We can form expressions using variables and operators such that the expressions

are evaluated according to precedence and associativity rules. Expressions are

grouped into statements, which express the work the program is to perform.

∙ Translating C Variables and Operators into LC-3 Code. Using a symbol

table to keep track of variable declarations, a compiler will allocate local variables

for a function within a stack frame for the function. The stack frame, or activation

record, for the function is pushed onto the run-time stack whenever the function

is executed. Global variables in a program are allocated in the global data section.

Exercises

12.1 Generate the compiler’s symbol table for the following code. Assume

all variables occupy one location in memory.

{
double ff;
char cc;
int ii;
char dd;
bool zz;

}

12.2 The following variable declaration appears in a program:

int r;

a. If r is a local variable, to what value will it be initialized?

b. If r is a global variable, to what value will it be initialized?
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12.3 What are the value ranges for the following two variables if they are

stored as 32-bit quantities?

int plusOrMinus;
unsigned int positive;

12.4 Evaluate the following floating point literals. Write their values in

standard decimal notation.

a. 111 E −11

b. −0.00021 E 4

c. 101.101 E 0

12.5 Write the LC-3 code that would result if the following local variable

declarations were compiled using the LC-3 C compiler:

char c = 'a';
int x = 3;
int y;
int z = 10;

12.6 For the following code, state the values that are printed out by each

printf statement. The statements are executed in the order A, B, C, D.

int t; // This variable is global
{

int t = 2;
printf("%d\n", t); // A
{
printf("%d\n", t); // B
t = 3;
}
printf("%d\n", t); // C

}
{

printf("%d\n", t); // D
}

12.7 Given that a and b are both integers equal to the values 6 and 9,

respectively, what is the value of each of the following expressions?

Also, if the value of a or b changes, provide their new value.

a. a | b
b. a || b
c. a & b
d. a && b
e. !(a + b)
f. a % b
g. b / a
h. a = b
i. a = b = 5
j. ++a + b--
k. a = (++b < 3) ? a : b
l. a <<= b
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12.8 For the following questions, write a C expression to perform the

following relational test on the character variable letter.

a. Test if letter is any alphabetic character or a number.

b. Test if letter is any character except an alphabetic character or a

number.

12.9 a. What does the following statement accomplish? The variable

letter is a character variable.

letter = ((letter >= 'a' && letter <= 'z') ? '!' : letter);

b. Modify the statement in part a so that it converts lowercase to

uppercase.

12.10 Write a program that reads an integer from the keyboard and displays a

1 if it is divisible by 3 or a 0 otherwise.

12.11 Explain the differences between the following C statements:

a. j = i++;
b. j = ++i;
c. j = i + 1;
d. i += 1;
e. j = i += 1;
f. Which statements modify the value of i? Which ones modify the

value of j? If i = 1 and j = 0 initially, what will the values of

i and j be after each statement is run separately?

12.12 Say variables a and b are both declared locally as long int.

a. Translate the expression a + b into LC-3 code, assuming an int
occupies two bytes. Assume a is allocated at offset 0 and b is at

offset -1 in the activation record for their function.

b. Translate the same expression, assuming an int occupies four

bytes, a is allocated at offset 0, and b is at offset −2.

12.13 If initially, a = 1, b = 1, c = 3, and result = 999, what are the

values of the variables after the following C statement is executed?

result = b + 1 | c + a;

12.14 Recall the machine busy example from Chapter 2. Say the integer

variable machineBusy tracks the busyness of all 16 machines. Recall

that a 0 in a particular bit position indicates the machine is busy and a 1

in that position indicates the machine is idle.

a. Write a C statement to make machine 5 busy.

b. Write a C statement to make machine 10 idle.

c. Write a C statement to make machine n busy. That is, the machine

that has become busy is an integer variable n.

d. Write a C expression to check if machine 3 is idle. If it is idle, the

expression returns a 1. If it is busy, the expression returns a 0.
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e. Write a C expression that evaluates to the number of idle machines.

For example, if the binary pattern in machineBusy were

1011 0010 1110 1001, then the expression would evaluate to 9.

12.15 What purpose does the semicolon serve in C?

12.16 Say we are designing a new computer programming language that

includes the operators @, #, $ and U. How would the expression w @ x
# y $ z U a get evaluated under the following constraints?

a. The precedence of @ is higher than # is higher than $ is higher than

U. Use parentheses to indicate the order.

b. The precedence of # is higher than U is higher than @ is higher

than $.

c. Their precedence is all the same, but they associate left to right.

d. Their precedence is all the same, but they associate right to left.

12.17 Notice that the C assignment operators have the lowest precedence. Say

we have developed a new programming language called Q that works

exactly like C, except that the assignment operator has the highest

precedence.

a. What is the result of the following Q statement? In other words,

what would the value of x be after it is executed?

x = x + 1;

b. How would we change this Q statement so that it works the same

way as it would in C?

12.18 Modify the example program in Chapter 11 (Figure 11.3) so that it

prompts the user to type a character and then prints every character

from that character down to the character ! in the order in which they

appear in the ASCII table.

12.19 Write a C program to calculate the sales tax on a purchase transaction.

Prompt the user to enter the amount of the purchase and the tax rate.

Output the amount of sales tax and the total amount (including tax) on

the whole purchase.

12.20 Suppose a program contains the two integer variables x and y, which

have values 3 and 4, respectively. Write C statements that will exchange

the values in x and y so that after the statements are executed, x is equal

to 4 and y is equal to 3.

a. First, write this routine using a temporary variable for storage.

b. Now rewrite this routine without using a temporary variable.
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C H A P T E R

Control Structures

13.1 Introduction
In Chapter 6, we introduced our top-down problem-solving methodology where a

problem is systematically refined into smaller, more detailed subtasks using three

programming constructs: the sequential construct, the conditional construct, and

the iteration construct.

We applied this methodology in Chapter 12 to derive a simple C program

that calculates network transfer time. The problem’s refinement into a program

only required the use of the sequential construct. For transforming more complex

problems into C code, we will need a way to create the conditional and iteration

constructs. In this chapter, we cover C’s versions of these two constructs.

We begin this chapter by describing C’s conditional constructs. The if and

if-else statements allow us to conditionally execute a statement. After condi-

tional constructs, we move on to C’s iteration constructs: the for, the while, and

the do-while statements, all of which allow us to express loops. With many of

these constructs, we will present the corresponding LC-3 code generated by our

hypothetical LC-3 C compiler to better illustrate how these constructs behave

at the lower levels. C also provides additional control constructs, such as the

switch, break, and continue statements, all of which provide a convenient way

to represent some particular control tasks. We discuss these in Section 13.5. In the

final part of the chapter, we’ll use the top-down problem-solving methodology to

solve some complex coding problems that require the use of control structures.

13.2 Conditional Constructs
Conditional constructs allow a programmer to select an action based on some

condition. This is a very common programming idiom, and every useful pro-

gramming language provides a convenient way of expressing it. C provides two

types of basic conditional constructs: if and if-else.
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13.2.1 The if Statement

The if statement is quite simple. It performs an action if a condition is true.

The action is a C statement, and it is executed only if the condition, which is a

C expression, evaluates to a non-zero (logically true) value. Let’s take a look at

an example.

if (x <= 10)
y = x * x + 5;

The statement y = x * x + 5; is only executed if the expression x <= 10
is non-zero, or logically true. Recall from our discussion of the <= operator (the

less than or equal to operator) that it evaluates to 1 if the relationship is true, 0

otherwise. The statement following the condition can also be a compound state-
ment, or block, which is a sequence of statements beginning with an open brace

and ending with a closing brace. Compound statements are used to group one

or more simple statements into a single entity. This entity is itself equivalent

to a simple statement. Using compound statements with an if statement, we

can conditionally execute several statements on a single condition. For exam-

ple, in the following code, both y and z will be modified if x is less than or equal

to 10.

if (x <= 10) {
y = x * x + 5;
z = (2 * y) / 3;

}

As with all statements in C, the format of the if statement is flexible. The line

breaks and indentation used in the preceding example are a common style for

an if statement. This style allows someone reading the code to quickly identify

the portion that executes if the condition is true. Keep in mind that the use of

indentation does not affect the behavior of the program, even though we might

want it to. The following code is indented like the previous code, but it behaves

differently. The second statement, z = (2 * y) / 3; is not associated with the

if and will execute regardless of the condition.

if (x <= 10)
y = x * x + 5;
z = (2 * y) / 3;

Figure 13.1 shows the control flow of an if statement. The diagram corre-

sponds to the following code:

if (condition)
action;

Syntactically, the condition is surrounded by parentheses so that the compiler

can unambiguously separate the condition from the rest of the if statement. The

action must be a simple or compound statement.
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T

F

Action

Condition

Figure 13.1 The C if statement, pictorially represented.

Here are more examples of if statements. They demonstrate programming

situations where this decision construct might be useful.

if (temperature <= 0)
printf("At or below freezing point.\n");

if ('a' <= key && key <= 'z')
numLowerCase++;

if (current > currentLimit)
blownFuse = 1;

if (loadMAR & clock)
registerMAR = bus;

if (month==4 || month==6 || month==9 || month==11)
printf("The month has 30 days\n");

if (x = 2) // This condition is always true. Why?
y = 5; // The variable y will always be 5

The last example in the preceding code illustrates a common mistake made

when programming in C. The condition uses the assignment operator = rather

than the equality operator ==, which causes the value of x to change to 2.

This condition is always true: expressions containing the assignment operator

evaluate to the value being assigned (in this case, 2). Since the condition is

always non-zero, y will always get assigned the value 5 and x will always be

assigned 2.

Even though they look similar at first glance, the following code is a

“repaired” version of the previous code.

if (x == 2)
y = 5;
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Let’s look at the LC-3 code that is generated for this code, assuming that x
and y are integers that are locally declared. This means that R5 will point to the

variable x and R5 - 1 will point to y.

LDR R0, R5, #0 ; load x into R0
ADD R0, R0, #-2 ; subtract 2 from x
BRnp NOT_TRUE ; If condition is not true,

; then skip the assignment

AND R0, R0, #0 ; R0 <- 0
ADD R0, R0, #5 ; R0 <- 5
STR R0, R5, #-1 ; y = 5;

NOT_TRUE ; the rest of the program
:
:

Notice that it is most straightforward for the LC-3 C compiler to generate code

that tests for the opposite of the original condition (x not equal to 2) and to branch

based on its outcome.

The if statement is itself a statement. Therefore, it is legal to nest an if
statement within another if statement, as demonstrated in the following C code.

Since the statement following the first if is a simple statement (i.e., composed

of only one statement), no braces are required on the outer if.

if (x == 3)
if (y != 6) {

z = z + 1;
w = w + 2;

}

The inner if statement only executes if x is equal to 3. There is an easier way to

express this code. The following code does it with a single if.

if ((x == 3) && (y != 6)) {
z = z + 1;
w = w + 2;

}

13.2.2 The if-else Statement

If we wanted to perform one set of actions if a condition were true and another

set if the same condition were false, we could use the following sequence of if
statements:

if (temperature <= 0)
printf("At or below freezing point.\n");

if (temperature > 0)
printf("Above freezing.\n");

Here, a single message is printed depending on whether the variable

temperature is less than or equal to zero or if it is greater than zero. It

turns out that this type of conditional execution is a very useful construct in
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programming that is natively supported in C via the if-else statement. The

following code is equivalent to the previous code segment. Here, the statement

appearing immediately after the else keyword executes only if the condition is

false.

if (temperature <= 0)
printf("At or below freezing point.\n");

else
printf("Above freezing.\n");

The flow diagram for the if-else is shown in Figure 13.2. The figure

corresponds to the following code:

if (condition)
action_if;

else
action_else;

FT
Condition

Action_if Action_else

Figure 13.2 The C if-else statement, pictorially represented.

The lines action_if and action_else can correspond to compound state-

ments and thus consist of multiple statements, as in the following example.

if (x) {
y++;
z--;

}
else {

y--;
z++;

}

If the variable x is non-zero, the if’s condition is true, y is incremented, and z
is decremented. Otherwise, y is decremented and z incremented. The LC-3 code
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1 LDR R0, R5, #0 ; load the value of x
2 BRz ELSE ; if x equals 0, perform else part
3
4 LDR R0, R5, #-1 ; load y into R0
5 ADD R0, R0, #1
6 STR R0, R5, #-1 ; y++;
7
8 LDR R0, R5, #-2 ; load z into R0
9 ADD R0, R0, #-1
10 STR R0, R5, #-2 ; z--;
11 BR DONE
12
13 ELSE: LDR R0, R5, #-1 ; load y into R0
14 ADD R0, R0, #-1
15 STR R0, R5, #-1 ; y--;
16
17 LDR R0, R5, #-2 ; load z into R0
18 ADD R0, R0, #1
19 STR R0, R5, #-2 ; z++;
20 DONE:
21 :

Figure 13.3 The LC-3 code generated for an if-else statement.

generated by our LC-3 C compiler is listed in Figure 13.3. The three variables x,

y, and z are locally declared integers.

We can connect conditional constructs together to form a longer sequence of

conditional tests. The example in Figure 13.4 shows a complex decision structure

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int month;
6
7 printf("Enter the number of the month: ");
8 scanf("%d", &month);
9
10 if (month==4 || month==6 || month==9 || month==11)
11 printf("The month has 30 days\n");
12 else if (month==1 || month==3 || month==5 ||
13 month==7 || month==8 || month==10 || month==12)
14 printf("The month has 31 days\n");
15 else if (month==2)
16 printf("The month has either 28 days or 29 days\n");
17 else
18 printf("Don't know that month\n");
19 }

Figure 13.4 A program that determines the number of days in a given month.
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created using only the if and if-else statements. No other control structures

are used. This program requests a number of a month from the user and outputs

the number of days in that month.

At this point, we should clarify how elses are associated with ifs in

the C / C++ programming languages: An else is associated with the closest

unassociated if. The following example points out why this is important.

if (x != 10)
if (y > 3)

z = z / 2;
else

z = z * 2;

Without this rule, it would be ambiguous whether the else should be paired

with the outer if or the inner if. For this situation, the rule states that the else
is coupled with the inner if because it is closer than the outer if and the inner if
statement has not already been coupled to another else (i.e., it is unassociated).

The code is equivalent to the following:

if (x != 10) {
if (y > 3)

z = z / 2;
else

z = z * 2;
}

Just as parentheses can be used to modify the order of evaluation of expres-

sions, curly braces can be used to associate statements. If we wanted to associate

the else with the outer if, we could write the code as

if (x != 10) {
if (y > 3)

z = z / 2;
}
else

z = z * 2;

We finish our discussion on if and if-else constructs with a simple

example, provided in Figure 13.5. This example illustrates a common use for

conditional constructs. In the code, we perform a simple division based on two

numbers read as input from the keyboard. Because division by 0 is undefined,

if the user enters a 0 divisor, a message is displayed indicating the result cannot

be generated. The if-else statement serves nicely for the purpose of checking

for the error case. Notice that the non-error case appears first and the error case

second. Although we could have coded this either way, having the common, non-

error case first provides a visual cue to someone reading the code that the error

case is the uncommon one.
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 int dividend;
6 int divisor;
7 int result;
8
9 printf("Enter the dividend: ");
10 scanf("%d", &dividend);
11
12 printf("Enter the divisor: ");
13 scanf("%d", &divisor);
14
15 if (divisor != 0) {
16 result = dividend / divisor;
17 printf("The result of the division is %d\n", result);
18 }
19 else
20 printf("A divisor of zero is not allowed\n");
21 }

Figure 13.5 A program that has error-checking code.

13.3 Iteration Constructs
The power of computing comes in no small part from the ability to compute via

iteration. All useful programs perform some form of iteration. C and C++, as

with all programming languages, provide native constructs for expressing iter-

ative computation. In C/C++, there are three iteration constructs, each a slight

variant of the others: the while statement, the for statement, and the do-while
statement. Let’s examine each.

13.3.1 The while Statement

We begin by describing C’s simplest iteration statement. A while loop executes

a statement repeatedly while a condition is true. Before each iteration of the

statement, the condition is checked. If the condition evaluates to a logical true

(non-zero) value, the statement is executed again. In the following example pro-

gram, the loop keeps iterating while the value of variable x is less than 10. It

produces the following output:

0 1 2 3 4 5 6 7 8 9

#include <stdio.h>

int main(void)
{

int x = 0;

while (x < 10) {
printf("%d ", x);
x = x + 1;

}
}



13.3 Iteration Constructs 465

Test

T

F

Loop body

Figure 13.6 The C while statement, pictorially represented.

The while statement consists of two components. The test condition is an

expression used to determine whether or not to continue executing the loop. It is

tested before each execution of the loop_body. The loop_body is a statement

that expresses the work to be done within the loop. Like all statements, it can be

a compound statement.

while (test)
loop_body;

Figure 13.6 shows the control flow using the notation of systematic decom-

position. Two branches are required: one conditional branch to exit the loop after

test and one unconditional branch after loop_body back to test to determine

whether or not to execute another iteration. The LC-3 code generated by our

compiler for the previous while example that counts from 0 to 9 is listed in

Figure 13.7.

1 AND R0, R0, #0 ; clear out R0
2 STR R0, R5, #0 ; x = 0;
3
4 ; while (x < 10)
5 LOOP LDR R0, R5, #0 ; perform the test
6 ADD R0, R0, #-10
7 BRpz DONE ; x is not less than 10
8
9 ; loop body
10 :
11 <code for calling the function printf>
12 :
13 LDR R0, R5, #0 ; R0 <- x
14 ADD R0, R0, #1 ; x + 1
15 STR R0, R5, #0 ; x = x + 1;
16 BR LOOP ; end of iteration
17 DONE
18 :

Figure 13.7 The LC-3 code generated for a while loop that counts to 9.
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The while statement is useful for coding loops where the iteration process

involves testing for a sentinel condition. That is, we don’t know the number of iter-

ations beforehand, but we wish to keep looping until some event (i.e., the sentinel)

occurs. For example, when we wrote the character counting program in Chap-

ters 5 and 7, we created a loop that terminated when the sentinel EOT character

(a character with ASCII code 4) was detected. If we were coding that program in

C rather than LC-3 assembly language, we would use a while loop. The program

in Figure 13.8 uses the while statement to test for a sentinel condition.1

1 #include <stdio.h>
2
3 int main(void)
4 {
5 char echo = 'A'; // Initialize char variable echo
6
7 while (echo != '\n') {
8 scanf("%c", &echo);
9 printf("%c", echo);
10 }
11 }

Figure 13.8 Another program with a simple while loop.

We end our discussion of the while statement by pointing out a common

programming bug involving while loops. The following program will never ter-

minate because the loop body does not change the looping condition. In this case,

the condition always remains true, and the loop never terminates. Such loops are

called infinite loops, and they are usually (but not always) unintentional, created

due to programmer error.

#include <stdio.h>
int main()
{

int x = 0;
while (x < 10)

printf("%d ", x);
}

13.3.2 The for Statement

Just as the while loop is a perfect match for a sentinel-controlled loop, the C for
loop is a perfect match for a counter-controlled loop. In fact, the for loop is a

special case of the while loop that happens to work well when the number of

iterations is known ahead of time.

1This program behaves a bit differently than you might expect. You might expect it to print out each
input character as the user types it in, just as the LC-3 version did. Because of the way C deals with
keyboard I/O, the program does not get any input until the user hits the Enter key. We explain why this is
so when dealing with the low-level issues surrounding I/O in Chapter 18.
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In its most straightforward form, the for statement allows us to repeat a

statement a specified number of times. For example,

#include <stdio.h>
int main(void)
{

int x;
for (x = 0; x < 10; x++)

printf("%d ", x);
}

will produce the following output. It loops exactly ten times.

0 1 2 3 4 5 6 7 8 9

The syntax for the C for statement may look a little perplexing at first. It is

composed of four components, as follows:

for (init; test; update)
loop_body;

The three components within the parentheses, init, test, and update, con-

trol the behavior of the loop and must be separated by semicolons. The final

component, loop_body, specifies the actual computation to be executed in each

iteration.

Let’s take a look at each component of the for loop in detail. The init
component is an expression (and optionally also a declaration) that is evaluated

before the first iteration. It is typically used to declare and initialize variables in

preparation for executing the loop. The test is an expression that gets evaluated

before every iteration to determine if another iteration should be executed. If the

test expression evaluates to zero, the for terminates, and the control flow passes

to the statement immediately following the for. If the expression is non-zero,

another iteration of the loop_body is performed. Therefore, in the previous code

example, the test expression x < 10 causes the loop to keep repeating as long

as x is less than 10. The update component is an expression that is evaluated at

the end of every iteration. It is used to update things in preparation for the next

iteration. In the previous code example, the variable x is incremented by 1 in the

update step. The loop_body is a statement that defines the work to be performed

in each iteration, and it works much the same way as the loop body in a while
statement. It can be a compound statement.

We mention that that init can optionally be a declaration. If it is a declara-

tion, the declared variable’s scope is the for statement itself. This makes it very

convenient to create loops where the iteration variable is self-contained within

the loop itself. The following example is a common usage for a for statement,

where the iteration variable is declared in the loop. There are some strong benefits

to doing this—for one thing, stray iteration variables don’t end up cluttering our

code. They are declared and used within the few lines of the loop itself. There is

a difference between the previous version of this code and this one. What is it?

Hint: It isn’t a difference in output.
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#include <stdio.h>
int main(void)
{

for (int x = 0; x < 10; x++)
printf("%d ", x);

}

Figure 13.9 shows the flow diagram of the for statement. There are four

blocks, one for each of the four components of the for statement. There is a con-

ditional branch that determines whether to exit the loop based on the outcome of

the test expression or to proceed with another iteration. An unconditional branch

loops back to the test at the end of each iteration, after the update expression

is evaluated.

update

Loop body

T

F
Test

init

Figure 13.9 The C for statement, pictorially represented.

Even though the syntax of a for statement allows it to be very flexible,

most of the for loops you will encounter (or will write) will be of the counter-

controlled variety, that is, loops that iterate for a certain number of iterations.

Following are some commonly encountered examples of for loops, including

counter-controlled loops and loops with locally declared variables.

// --- What does the loop output? ---
for (int x = 0; x <= 10; x++)

printf("%d ", x);

// --- What does this one output? ---
char letter = 'a';
for (char c = 0; c < 26; c++)

printf("%c ", letter + c);
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// --- What does this loop do? ---
int numberOfOnes = 0;
for (int bitNum = 0; bitNum < 16; bitNum++) {

if (inputValue & (1 << bitNum))
numberOfOnes++;

}

Let’s take a look at the LC-3 translation of a simple for loop. The program

is a simple one: It calculates the sum of all integers between 0 and 9.

#include <stdio.h>
int main(void)
{

int x;
int sum = 0;
for (x = 0; x < 10; x++)

sum = sum + x;
}

The LC-3 code generated by the compiler is shown in Figure 13.10. The

following code contains an easy-to-make mistake involving for loops.

1 AND R0, R0, #0 ; clear out R0
2 STR R0, R5, #-1 ; sum = 0;
3
4 ; init
5 AND R0, R0, #0 ; clear out R0
6 STR R0, R5, #0 ; init (x = 0)
7
8 ; test
9 LOOP LDR R0, R5, #0 ; perform the test
10 ADD R0, R0, #-10
11 BRpz DONE ; x is not less than 10
12
13 ; loop body
14 LDR R0, R5, #0 ; get x
15 LDR R1, R5, #-1 ; get sum
16 ADD R1, R1, R0 ; sum + x
17 STR R0, R5, #-1 ; sum = sum + x;
18
19 ; reinit
20 LDR R0, R5, #0 ; get x
21 ADD R0, R0, #1
22 STR R0, R5, #0 ; x++
23 BR LOOP
24
25 DONE
26 :

Figure 13.10 The LC-3 code generated for a for statement.
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sum = 0;
for (x = 0; x < 10; x++);

sum = sum + x;
printf("sum = %d\n", sum);
printf("x = %d\n", x);

What is output by the first printf? The answer is sum = 10. Why? The

second printf outputs x = 10. Why? If you look carefully, you might be able

to notice a misplaced semicolon.

A for loop can be constructed using a while loop (actually, vice versa as

well). When programming, they can be used interchangeably, to a degree. Which

construct to use in which situation may seem puzzling at first, but keep in mind

the general rule that while is best suited for loops that involve sentinel conditions,

whereas for fits situations where the number of iterations is known beforehand.

13.3.2.1 Nested Loops

Figure 13.11 contains an example of a for where the loop body is composed

of another for loop. This construct is referred to as a nested loop because the

inner loop is nested within the outer. In this example, the program prints out a

multiplication table for the numbers 0 through 9. Each iteration of the inner loop

prints out a single product in the table. That is, the inner loop iterates ten times for

each iteration of the outer loop. An entire row is printed for each iteration of the

outer loop. Notice that the printf at line 9 contains a special character sequence

in its format string. The \t sequence causes a tab character to be printed out. The

tab helps align the columns of the multiplication table so the output looks neater.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 // Outer Loop
6 for (int multiplicand = 0; multiplicand < 10; multiplicand++) {
7 // Inner Loop
8 for (int multiplier = 0; multiplier < 10; multiplier++)
9 printf("%d\t", multiplier * multiplicand);
10 printf("\n");
11 }
12 }

Figure 13.11 A program that prints out a multiplication table.

Figure 13.12 contains a slightly more complex example. The number of iter-

ations of the inner loop depends on the value of outer as determined by the outer

loop. The inner loop will first execute zero time, then one time, then two times,

etc. There is a wide range of interesting algorithms that we’ll encounter in this

book that have similar iteration structures.
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 int sum = 0; // Initial the result variable
6 int input; // Holds user input
7
8 // Get input
9 printf("Input an integer: ");
10 scanf("%d", &input);
11
12 // Perform calculation
13 for (int outer = 1; outer <= input; outer++) {
14 for (int inner = 0; inner < outer; inner++) {
15 sum += inner;
16 }
17 }
18
19 // Output result
20 printf("The result is %d\n", sum);
21 }

Figure 13.12 A program with a nested for loop.

13.3.3 The do-while Statement

With a while loop, the condition is always checked before an iteration is per-

formed. Therefore, it is possible for the while loop to execute zero iterations (i.e.,

when the condition is false from the start). There is a slight variant of the while
statement in C called do-while, which always performs at least one iteration. In

a do-while loop, the condition is evaluated after the first iteration is performed.

The operation of the do-while is demonstrated in the following example:

x = 0;
do {

printf("%d \n", x);
x = x + 1;

} while (x < 10);

Here, the conditional test, x < 10, is evaluated at the end of each iteration. Thus,

the loop body will execute at least once. The next iteration is performed only if the

test evaluates to a non-zero value. This code produces the following output:

0 1 2 3 4 5 6 7 8 9

Syntactically, a do-while is composed of two components, exactly like the

while.

do
loop_body;

while (test);

The loop_body component is a statement (simple or compound) that

describes the computation to be performed by the loop. The test is an expression
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Test

T

F

Loop body

Figure 13.13 The C do-while statement, pictorially represented.

that determines whether another iteration is to be performed. Figure 13.13 shows

the control flow of the do-while loop. Notice the slight change from the flow of

a while loop. The loop body and the test are interchanged. A conditional branch

loops back to the top of the loop body, initiating another iteration.

At this point, the differences between the three types of C iteration constructs

may seem very subtle, but once you become comfortable with them and build up

experience using these constructs, you will more easily be able to pick the right

construct to fit the situation. To a large degree, these constructs can be used inter-

changeably. Stylistically, there are times when one construct makes more sense

to use than another—often the type of loop you choose will convey information

about the intent of the loop to someone reading your code.

13.4 Problem Solving Using
Control Structures

Armed with a new arsenal of control structures, we can now try to solve complex

programming problems. In this section, we will apply our top-down problem-

solving methodology to four problems requiring the use of C control structures.

Being effective at solving programming problems requires that you under-

stand the basic primitives of the system on which you are programming. The art

of programming is often creative uses of those basic primitives in clever ways. At

this point, our set of C primitives includes variables of the three basic types, oper-

ators, two decision structures, and three control structures. It’s a pretty powerful

set with which we can achieve a lot.

13.4.1 Problem 1: Approximating the Value of 𝝅

For our first programming problem, we will calculate the value of 𝜋 using the

following series expansion:

𝜋 = 4 − 4

3
+ 4

5
− 4

7
+⋯ + (−1)n−1 4

2n + 1
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We’ll write C code to evaluate this series for the number of terms indicated by

the user. If the user enters 3, the program will evaluate 4− 4

3
+ 4

5
. The series is an

infinite series, and the more terms we evaluate, the more accurate our approxima-

tion of 𝜋. This is not a very rapidly converging series, so we’ll need to evaluate a

lot of terms to generate a good approximation.

As we did for the problem-solving example in Chapter 12, we first invoke

step 0: We select a representation for the data involved in the computation. Since

the series deals with fractional numbers, we use the double floating point type

for any variables directly involved in the series calculation.

Now we invoke stepwise refinement to decompose a roughly stated algorithm

into a C program. Roughly, we want the program to first initialize everything,

then prompt the user to input the number of terms of the series to evaluate, then

evaluate the series for the given number of terms, and finally print out the result.

We have defined the problem as a set of sequential constructs. Figure 13.14 shows

this initial decomposition. Most of the sequential constructs in Figure 13.14 are

very straightforward, and converting them into C code is quite simple.

Start

Stop

Calculate pi
using series
expansion

Start

Stop

Initialize

Step 2

Get input

Evaluate series

Output result

Step 1

Figure 13.14 The initial decomposition of a program that evaluates the series
expansion for 𝝅 for a given number of terms.

One of the elements in the figure, however, requires some additional refine-

ment. We need to put a little thought into the subtask labeled Evaluate series.

For this subtask, we essentially want to iterate through the series, term by term,

until we evaluate exactly the number of terms indicated by the user. We want
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Start

Stop

Initialize

Get input

Evaluate series

Output result

Initialize
iteration count

T

F

Evaluate
another term

count = count + 1

count < terms
?

Evaluate series

Figure 13.15 The refinement of the subtask Evaluate series into an iteration
construct that iterates a given number of times. Within this loop, we
evaluate terms for a series expansion for 𝝅.

to use a counter-controlled iteration construct since we know exactly the num-

ber of iterations to execute. Figure 13.15 shows the refined decomposition. We

maintain a counter for the current loop iteration. If the counter is less than the

limit indicated by the user, then we evaluate another term. Notice that the refined

version of the subtask looks like the flow diagram for a for loop. The only non-

trivial subtask remaining is Evaluate another term. Notice that all even terms in

the series are subtracted, and all odd terms are added. Within this subtask, we

need to determine if the particular term being evaluated is odd or even and then

factor it into the current value of the approximation. This involves using a deci-

sion construct as shown in Figure 13.16. The complete code resulting from this

stepwise refinement is shown in Figure 13.17.

13.4.2 Problem 2: Finding Prime Numbers Less Than 100

Our next problem-solving example involves finding all the prime numbers that

are less than 100. A number is prime only if the numbers that evenly divide it are

1 and itself.

Step 0, as with our previous examples, is to select an appropriate data repre-

sentation for the various variables associated with the problem. Since primality

only applies to integers, using the integer data type for the main computation

seems the best choice. Next, we approach this problem by first stating it as a single
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T

F
count < terms

?

Evaluate
another term Add new term Subtract

new term

Evaluate
another term

Initialize
iteration count

count = count + 1

Evaluate series

F
Count is odd

?

T

Figure 13.16 Incorporate the current term based on whether it is odd or even.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int numOfTerms; // Number of terms to evaluate
6 double pi = 0; // approximation of pi
7
8 printf("Number of terms (must be 1 or larger) : ");
9 scanf("%d", &numOfTerms);
10
11 for (int count = 1; count <= numOfTerms; count++) {
12 if (count % 2)
13 pi = pi + (4.0 / (2.0 * count - 1)); // Odd term
14 else
15 pi = pi - (4.0 / (2.0 * count - 1)); // Even term
16 }
17
18 printf("The approximate value of pi is %f\n", pi);
19 }

Figure 13.17 A program to calculate 𝝅.

task (step 1). We then refine this single task into two separate sequential subtasks:

Initialize and then perform the calculation (step 2). Performing the Calculation
subtask is the bulk of the coding effort. Essentially, the Calculation subtask can

be stated as follows: We will iterate through every integer between 2 and 100
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Start

Stop

Display all prime
numbers less

than 100.

Start

Initialize

Calculation

Stop

Start

Stop

Step 1 Step 2 Step 3

CalcPrime

Num <= 100
?

Initialize
Num = 2

Num = Num + 1

T

F

Figure 13.18 Decomposing a problem to compute prime numbers less than 100.
The first three steps involve creating a loop that iterates between the
2 and 100.

to determine if it is prime, printing out only those that are. A counter-controlled

loop should work just fine for this purpose because we know the iteration space

precisely. We can further refine the Calculation subtask into smaller subtasks, as

shown in Figure 13.18. Notice that the flow diagram has the shape of a for loop.

Already, the problem is starting to resolve into C code. We still need to refine the

CalcPrime subtask but determine if the current number is prime or not. Here, we

rely on the fact that any number between 2 and 100 that is not prime will have at

least one divisor between 2 and 10 that is not itself.

We can refine this subtask as shown in Figure 13.19. Basically, we will deter-

mine if each number is divisible by an integer between 2 and 10 (being careful to

exclude the number itself). If it has no divisors between 2 and 10, except perhaps

itself, then the number is prime.

Finally, we need to refine the Divide number by integers 2 through 10 subtask.

It involves dividing the current number by all integers between 2 and 10 and

determining if any of them evenly divide it. A simple way to do this is to use
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Start

Stop

CalcPrime

T

F
Divide Num by

integers 2 thru 10

No
divisors?

T

F

CalcPrime

Num is prime.
Print it out.

Step 3

Num <= 100
?

Initialize
Num = 2

Num = Num + 1

Figure 13.19 Decomposing the CalcPrime subtask.

another counter-controlled loop to cycle through all the integers between 2 and

10. Figure 13.20 shows the decomposition using an iteration construct.

Now, we have a representation of the program that can easily be reduced to

C code. The program is listed in Figure 13.21. There are two for loops within

the program, one of which is nested within the other. The outer loop sequences

through all the integers between 2 and 100; it corresponds to the loop created when

we decomposed the Calculation subtask. An inner loop determines if the number

generated by the outer loop has any divisors; it corresponds to the loop created when

we decomposed the Divide number by integers 2 through 10 subtask.

13.4.3 Problem 3: Analyzing an E-mail Address

Our final problem in this section involves analyzing an e-mail address typed in at the

keyboard to determine if it is of valid format. For this problem, we’ll use a simple

definition of validity: An e-mail address is a sequence of characters that must contain

an at sign, “@”, and a period, “.”, with the @ symbol preceding the period.

As before, we start by choosing an appropriate data representation for the

underlying data of the problem. Here, we are processing text data entered by
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Initialize

T

F

divisor = 2

Divisor <= 10
?

Calc Num / Div

Divisor =
Divisor + 1

Divide Num by
integers 2 thru 10

No
divisors?

T

F

Num is prime

CalcPrime

Figure 13.20 Decomposing the Divide numbers by integers 2 through 10 subtask.

1 #include <stdio.h>
2 #include <stdbool.h>
3
4 int main(void)
5 {
6 bool prime = true;
7
8 // Start at 2 and go until 0
9 for (int num = 2; num <= 100; num++) {
10 prime = true; // Assume the number is prime
11
12 // Test if the candidate number is a prime
13 for (int divisor = 2; divisor <= 10; divisor++)
14 if (((num % divisor)==0) && num != divisor)
15 prime = false;
16
17 if (prime)
18 printf("The number %d is prime\n", num);
19 }
20 }

Figure 13.21 A program that finds all prime numbers between 2 and 100.
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Start

Process input

Output result
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Step 1
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next char
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next char
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next char
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Output results

Stop

Step 2 Step 3

More?
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Figure 13.22 A stepwise refinement of the analyze e-mail address program.

the user. The type best suited for text is the ASCII character type, char. Actually,

the best representation for input text is an array of characters, or character string,

but because we have not yet introduced arrays into our lexicon of primitive ele-

ments (and we will in Chapter 16), we instead target our solution to use a single

variable of the char type.

Next, we apply the stepwise refinement process. The entire process is dia-

grammed in Figure 13.22. We start with a rough flow of the program where we

have two tasks (step 1): Process input and Output results. Here, the Output results
task is straightforward. We output the validity of the input sequence of characters.

The Process input task requires more refinement, however. In decomposing

the Process input task (step 2), we need to keep in mind that our choice of data

representation (variable of the char type) implies that we will need to read and

process the user’s input one character at a time. We will keep processing, character

by character, until we have reached the end of the e-mail address, implying that

we’ll need a sentinel-controlled loop. Step 2 of the decomposition divides the

Process input task into a sentinel-controlled iteration construct that terminates

when the end of an e-mail address is encountered, which we’ll say is either a

space or a newline character, \n.

The next step (step 3) of the decomposition involves detailing what process-

ing occurs within the loop. Here, we need to check each character within the

e-mail address and record if we have seen the @ symbol and a period in the proper

order. To do this, we will use two variables to record each symbol’s occurrence.

When the loop terminates and we are ready to display the result, we can examine

these variables to display the appropriate output message.
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1 #include <stdio.h>
2 #include <stdbool.h>
3
4 int main(void)
5 {
6 char nextChar; // Next character in e-mail address
7 bool gotAt = false; // Indicates if At @ was found
8 bool gotDot = false; // Indicates if Dot . was found
9
10 printf("Enter your e-mail address: ");
11
12 do {
13 scanf("%c", &nextChar);
14
15 if (nextChar=='@')
16 gotAt = true;
17
18 if (nextChar=='.' && gotAt)
19 gotDot = true;
20 }
21 while (nextChar != ' ' && nextChar != '\n');
22
23 if (gotAt && gotDot)
24 printf("Your e-mail address appears to be valid.\n");
25 else
26 printf("Your e-mail address is not valid!\n");
27 }

Figure 13.23 A C program to perform a simple test for validity of e-mail addresses.

At this point, we are not far from C code. Notice that the loop structure is very

similar to the flow diagram of the do-while statement, and therefore we choose

to use it as the iteration construct. The C code for this problem is provided in

Figure 13.23.

13.5 Additional C Control Structures
We complete our coverage of the C control structures by examining the switch,

break, and continue statements. These three statements provide specialized

program control that programmers occasionally find useful for very particular

programming situations. We provide them here primarily for completeness; none

of the examples in the remainder of the textbook use any of these three constructs.

13.5.1 The switch Statement

Occasionally, we run into programming situations where we want to do one of n
different things based on the value of a particular variable. For example, in the

following code, we test the character variable keypress to see which of several

possible character values it equals and do one outcome based on its value.
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// keypress is a char variable

if (keyPress=='a')
// Do statement A

else if (keyPress=='b')
// Do statement B

else if (keyPress=='x')
// Do statement C

else if (keyPress=='y')
// Do statement D

In this code, one (or none) of the statements labeled A, B, C, or D will execute,

depending on the value of the variable keyPress. If keyPress is equal to the

character a, then statement A is executed, if it is equal to the character b, then

statement B is executed, and so forth. If keyPress does not equal a or b or x
or y, then none of the statements are executed. If there are many of these condi-

tions to check, then many tests will be required in order to find the “matching”

one. To simplify this particular programming idiom, C provides the switch state-

ment. The following code segment behaves the same as the code in the previous

example. It uses a switch statement instead of cascaded if-else statements.

switch (keyPress) {
case 'a':

// Do statement A
break;

case 'b':
// Do statement B
break;

case 'x':
// Do statement C
break;

case 'y':
// Do statement D
break;

}

Notice that the switch statement contains several lines beginning with the

keyword case, followed by a label and colon :. If the value of any of the follow-

ing case labels matches the value of keypress, then associated statements are

executed.

Let’s go through the switch construct step by step. The switch keyword

precedes the expression on which to base the decision. This expression must be

of integral type (e.g., an int or a char). If one of the case labels matches the

value of the expression, then program control passes to the statement or block

immediately following that case label. Each case consists of a sequence of zero

or more statements similar to a compound statement, but no delimiting braces are

required. The place within this compound statement to start executing is deter-

mined by which case matches the value of the switch expression. Each case
label within a switch statement must be unique, and identical labels are not
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allowed. Furthermore, each case label must be a constant expression. It cannot

be based on a value that changes as the program is executing.

In the preceding switch example, each case ends with a break statement.

The break exits the switch construct by jumping the flow of control to the clos-

ing brace of the switch, essentially exiting the switch. The break statements

are optional. If they are not used (which is rarely the case), then control will go

from the current case to the next. We can optionally also include a default
case. This case is selected if the switch expression matches none of the case
constants. If no default case is given, and the expression matches none of the

constants, none of the cases are executed.

A stylistic note: The last case of a switch does not need to end with a break
since execution of the switch ends there, anyway. However, including a break
for the final case is good programming practice. If another case is ever added

to the end of the switch, then you will not have to remember to add the break
to the previous case.

13.5.2 The break and continue Statements

In Section 13.5.1, we saw an example of how the C break statement is used with

switch. The break statement and also the continue statement are occasionally

used with iteration constructs. The break statement causes the compiler to gen-

erate code that will immediately exit a loop or a switch statement. When used

within a loop body, break causes the loop to terminate by jumping out to the end

of the loop statement. No more iterations are executed. The continue statement,

on the other hand, causes the current iteration to end. The next iteration might

then execute, depending on the looping conditions. Both of these statements can

occur within a loop body and apply to the iteration construct immediately enclos-

ing them. Essentially, the break and continue statements cause the compiler to

generate an unconditional branch instruction that leaves the loop or loop iteration

from somewhere in the loop body. Following are two example C code segments

that use break and continue.

// This code segment produces the output: 0 1 2 3 4
for (i = 0; i < 10; i++) {

if (i==5)
break;

printf("%d ", i);
}

// This code produces the output: 0 1 2 3 4 6 7 8 9
for (i = 0; i < 10; i++) {

if (i==5)
continue;

printf("%d ", i);
}

13.5.3 An Example: Simple Calculator

The program in Figure 13.24 performs a function similar to the calculator exam-

ple from Chapter 10. The user is prompted for three items: an integer operand,
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 int operand1, operand2; // Input values
6 int result = 0; // Result of the operation
7 char operation; // operation to perform
8
9 // Get the input values
10 printf("Enter first operand: ");
11 scanf("%d", &operand1);
12 printf("Enter operation to perform (+, -, *, /): ");
13 scanf("\n%c", &operation);
14 printf("Enter second operand: ");
15 scanf("%d", &operand2);
16
17 // Perform the calculation
18 switch(operation) {
19 case '+':
20 result = operand1 + operand2;
21 break;
22
23 case '-':
24 result = operand1 - operand2;
25 break;
26
27 case '*':
28 result = operand1 * operand2;
29 break;
30
31 case '/':
32 if (operand2 != 0) // Error-checking code.
33 result = operand1 / operand2;
34 else
35 printf("Divide by 0 error!\n");
36 break;
37
38 default:
39 printf("Invalid operation!\n");
40 break;
41 }
42
43 printf("The answer is %d\n", result);
44 }

Figure 13.24 Calculator program in C.
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an operation to perform, and another integer operand. The program performs the

operation on the two input values and displays the result. The program makes use

of a switch to base its computation on the operator the user has selected.

13.6 Summary
We conclude this chapter by summarizing the key concepts we’ve covered. The

basic objective of this chapter was to enlarge our set of problem-solving primi-

tives by exploring the various control structures supported by the C programming

language.

∙ Decision Constructs in C. We covered two basic C decision statements: if
and if-else. Both of these statements conditionally execute a statement,

depending on whether a specified expression is true or false.

∙ Iteration Constructs in C. C provides three iteration statements: while,

for, and do-while. All of these statements execute a statement multiple

times based on some iteration criteria or condition. The while and do-while
statements are particularly well-suited for expressing sentinel-controlled

loops. The for statement works well for expressing counter-controlled loops.

∙ Problem Solving Using Control Structures. To our arsenal of primitives for

problem solving (which already includes the three basic C types, variables,

operators, and I/O using printf and scanf), we added control constructs.

We practiced some problem-solving examples that required application of

these control constructs.

Exercises

13.1 Re-create the LC-3 compiler’s symbol table when it compiles the

calculator program listed in Figure 13.24.

13.2 a. What does the following code look like after it is processed by the

preprocessor?

#define VERO -2

if (VERO)
printf("True!");

else
printf("False!");

b. What is the output produced when this code is run?

c. If we modified the code to the following, does the code behave

differently? If so, how?

#define VERO -2

if (VERO)
printf("True!");

else if (!VERO)
printf("False!");
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13.3 An if-else statement can be used in place of the C conditional

operator (see Section 12.6.3). Rewrite the following statement using

an if-else rather than the conditional operator.

x = a ? b : c;

13.4 Describe the behavior of the following statements for the case when x
equals 0 and when x equals 1. Assume all variables are integer types.

a. if (x = 0)
printf("x equals 0\n");

else
printf("x does not equal 0\n");

b. if (x == 0)
printf("x equals 0\n");

else
printf("x does not equal 0\n");

c. if (x == 0)
printf("A\n");

else if (x != 1)
printf("B\n");

else if (x < 1)
printf("C\n");

else if (x)
printf("D\n");

d. switch (x) {
case 0:

y = 3;
case 1:

y = 4;
break;

default:
y = 5;
break;

}

e. What happens if x is not equal to 0 or 1 for part d?

13.5 Provide the LC-3 code generated by our LC-3 C compiler when it

compiles the switch statement in part d of Exercise 13.4.

13.6 Figure 13.12 contains a C program with a nested for loop.

a. Mathematically state the series that this program calculates.

b. Write a program to calculate the following function:

f (n) = f (n − 1) + f (n − 2)

with the following initial conditions,

f (0) = 1, f (1) = 1
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13.7 Can the following if-else statement be converted into a switch? If yes,

convert it. If no, why not?

if (x == 0)
y = 3;

else if (x == 1)
y = 4;

else if (x == 2)
y = 5;

else if (x == y)
y = 6;

else
y = 7;

13.8 At least how many times will the statement called loopBody execute

the following constructs?

a. while (condition)
loopBody;

b. do
loopBody;

while (condition);

c. for (init; condition; update)
loopBody;

d. while (condition1)
for (init; condition2; reinit)

loopBody;

e. do
do

loopBody;
while (condition1);

while (condition2);

13.9 What is the output of each of the following code segments?

a. a = 2;
while (a > 0)

a--;
printf("%d", a);

b. a = 2;
do {

a--;
} while (a > 0)
printf("%d", a);

c. b = 0;
for (a = 3; a < 10; a += 2)

b = b + 1;
printf("%d %d", a, b);

13.10 Convert the program in Figure 13.4 into one that uses a switch
statement instead of if-else.

13.11 Modify the e-mail address validation program in Figure 13.23 to check

that a valid e-mail address has at least one alphabetic character
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preceding the @ (at sign), at least one between the @ and the period,

and at least one after the period.

13.12 For the following questions, x is an integer with the value 4.

a. What output is generated by the following code segment?

if (7 > x > 2)
printf("True.");

else
printf("False.");

b. Why doesn’t the following code cause an infinite loop?

while (x > 0)
x++;

c. What is the value of x after the following code has executed?

for (x = 4; x < 4; x--) {
if (x < 2)

break;
else if (x == 2)

continue;
x = -1;

}

13.13 Change this program so that it uses a do-while loop instead of a for
loop.

int main(void)
{

int sum;

for (int i = 0; i <= 100; i++) {
if (i % 4 == 0)

sum = sum + 2;
else if (i % 4 == 1)

sum = sum - 6;
else if (i % 4 == 2)

sum = sum * 3;
else if (i % 4 == 3)

sum = sum / 2;
}
printf("%d\n", sum);

}

13.14 Write a C program that accepts as input a single integer k, then writes a

pattern consisting of a single 1 on the first line, two 2s on the second

line, three 3s on the third line, and so forth, until it writes k occurrences

of k on the last line.

For example, if the input is 5, the output should be the following:

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5



488 chapter 13 Control Structures

13.15 a. Convert the following while loop into a for loop.

while (condition)
loopBody;

b. Convert the following for loop into a while loop.

for (init; condition; update)
loopBody;

13.16 What is the output of the following code?

int w = 12;
int sum = 0;

for (int r = 1; r <= w; r++)
for (int s = r; s <= w; s++)

sum = sum + s;
printf("sum =%d\n", sum);

13.17 The following code performs something quite specific. Describe its

output.

int i;
scanf("%d", &i);

for (int j = 0; j < 16; j++) {
if (i & (1 << j))

count++;
}
printf("%d\n", count);

13.18 Provide the output of each of the following code segments.

a. int x = 20;
int y = 10;

while ((x > 10) && (y & 15)) {
y = y + 1;
x = x - 1;
printf("*");

}

b. for (int x = 10; x ; x = x - 1)
printf("*");
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c. for (int x = 0; x < 10; x = x + 1)
if (x % 2)

printf("*");

d. int x = 0;

while (x < 10) {
for (int i = 0; i < x; i = x + 1)

printf("*");
x = x + 1;

}

13.19 Why does C not permit declaration of variables in while loops similar

to for loops?

while (int x < 10) {
// Loop body
x = x + 1;

}





14
C H A P T E R

Functions

14.1 Introduction
Functions are the basic building blocks for large-scale code development today.

They enable the software developer to extend the set of constructs natively sup-

ported by the language to include new primitives. Functions are such a necessary

and important concept that we build support for them directly in the hardware at

the instruction set architecture level.

Why are they so important? Functions (or procedures, or subroutines, or

methods—all of which are variations of the same theme) enable abstraction. That

is, they increase our ability to separate the operation performed by a component

from the details of how it performs that operation. Once the component is created

and we understand its construction, we can use the component as a building block

without giving much thought to its detailed implementation. Without abstraction,

our ability to create complex, sophisticated digital systems would be seriously

impaired.

Functions are not new to us. We have been using variants of functions ever

since we programmed subroutines in LC-3 assembly language. While there are

syntactic differences between subroutines in LC-3 assembly and functions in C,

the concepts behind them are largely the same. The C programming language

is heavily oriented around functions. A C program is essentially a collection of

functions. Every statement belongs to one (and only one) function. All C pro-

grams start and finish execution in the function main. The function main might

call other functions along the way, and they might, in turn, call more functions.

Control eventually returns to the function main, and when main ends, the program

ends. And the C++ language takes the idea of functions even further by enabling

the programmer to associate functions with specific types to build objects. But

that is a subject for Chapter 20.

In this chapter, we examine C functions in detail. We begin by creating sev-

eral short programs in order to get a sense of the C syntax around functions.

From there we move on to how functions are implemented, examining the low-

level operations necessary for functions to work. In the last part of the chapter,
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we apply our problem-solving methodology to some programming problems that

benefit from the use of functions.

14.2 Functions in C
Let’s start off with a simple example of a C program involving functions.

Figure 14.1 is a program that prints a message using a function named

PrintBanner. This program begins execution at the function main, which then

calls the function PrintBanner. This function prints a line of text consisting of

the = character to the output device. PrintBanner is the simplest form of a func-

tion: It requires no input from its caller to do its job, and it provides its caller with

no output data (not counting the banner printed to the screen). In other words, no

arguments are passed from main to PrintBanner and no value is returned from

PrintBanner to main. More formally, we refer to the function main as the caller
and to PrintBanner as the callee.

1 #include <stdio.h>
2
3 void PrintBanner(); // Function declaration
4
5 int main(void)
6 {
7 PrintBanner(); // Function call
8 printf("A simple C program.\n");
9 PrintBanner();
10 }
11
12 void PrintBanner() // Function definition
13 {
14 printf("============================\n");
15 }

Figure 14.1 A C program that uses a function to print a banner message.

14.2.1 A Function with a Parameter

The fact that PrintBanner and main require no exchange of information simpli-

fies their interface. In general, however, we’d like to be able to pass information

between the caller and the callee. The next example demonstrates how this is

accomplished in C. The code in Figure 14.2 contains a function Factorial that

performs an operation based on an input argument.

Factorial performs a multiplication of all integers between 1 and n, where

n is the value provided by the caller function (in this case main). The calculation

performed by this function can be algebraically stated as:

factorial(n) = n! = 1 × 2 × 3 ×… × n
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1 #include <stdio.h>
2
3 int Factorial(int n); // Function Declaration
4
5 int main(void) // Definition for main
6 {
7 int number; // Number from user
8 int answer; // Answer of factorial
9
10 printf("Input a number: "); // Call to printf
11
12 scanf("%d", &number); // Call to scanf
13
14 answer = Factorial(number); // Call to factorial
15
16 printf("The factorial of %d is %d\n", number, answer);
17 }
18
19 int Factorial(int n) // Function Definition
20 {
21 int result = 1; // Initialized result
22
23 for (int i = 1; i <= n; i++) // Calculate factorial
24 result = result * i;
25
26 return result; // Return to caller
27 }

Figure 14.2 A C program to calculate factorial.

The value calculated by this function is named result in the C code in

Figure 14.2. Its value is returned (using the return statement) to the caller.

We say that the function Factorial requires a single integer argument from its

caller, and it returns an integer value back to its caller. In this particular example,

the variable answer in the caller is assigned the return value from Factorial
(line 14).

Let’s take a closer look at the syntax. In the code in Figure 14.2, there are

four lines that are of particular interest to us. The declaration for Factorial is

at line 3. Its definition starts at line 19. The call to Factorial is at line 14; this

statement invokes the function. The return from Factorial back to its caller is

at line 26.

14.2.1.1 The Declaration

The function declaration for Factorial appears at line 3, looking kind of lonely.

What is the purpose of a this line? It informs the compiler about some relevant

properties of the function in the same way a variable’s declaration informs the

compiler about a variable. Sometimes called a function prototype, a function dec-

laration contains the name of the function, the type of value it returns, and a
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list of input arguments it expects along with their associated types. The function

declaration ends with a semicolon.

The first item appearing in a function’s declaration is the type of the value

the function returns. The type can be any C data type (e.g., int, char, double).

This type describes the type of the single output value that the function produces.

Not all functions return values. For example, the function PrintBanner from the

previous example did not return a value. If a function does not return a value,

then its return type should be declared as void, indicating to the compiler that

the function returns nothing.

The next item in the declaration is the function’s name. A function’s name

can be any legal C identifier. Often, programmers choose function names rather

carefully to reflect the actions performed by the function. Factorial, for exam-

ple, is a good choice for the function in our example because the mathematical

term for the operation it performs is factorial. Also, it is good style to use a nam-

ing convention where the names of functions and the names of variables are easily

distinguishable. In the examples in this book, we do this by capitalizing the first

character of all function names, such as Factorial.

A function’s declaration also describes the type and order of the input argu-
ments required by the function. These are the types of values that the function

expects to receive from its callers and the order in which it expects to receive

them. We can optionally specify (and often do) the name of each parameter in

the declaration. For example, the function Factorial takes one integer value as

an input argument, and it refers to this value internally as n. Some functions may

not require any input. The function PrintBanner requires no input arguments;

therefore, its argument list is empty.

14.2.1.2 The Call

Line 14 in our example is the function call that invokes Factorial. In this state-

ment, the function main calls Factorial. Before Factorial can start, however,

main must transmit a single integer value to Factorial. Such values within the

caller that are transmitted to the callee are called arguments. Arguments can be

any legal expression, but they should match the type expected by the callee. These

arguments are enclosed in parentheses immediately after the callee’s name. In this

example, the function main passes the value of the variable number as the argu-

ment. The value returned by Factorial is then assigned to the integer variable

answer.

14.2.1.3 The Definition

The code beginning at line 19 is the function definition for Factorial. Notice

that the first line of the definition matches the function declaration (minus the

semicolon). Within the parentheses after the name of the function is the function’s

formal parameter list. The formal parameter list is a list of variable declarations,

where each variable will be initialized with the corresponding argument provided

by the caller. In this example, when Factorial is called on line 14, the parameter

n will be initialized to the value of number from main. From every place in the

program where a function is called, the actual arguments appearing in each call



14.2 Functions in C 495

should match the type and ordering of the formal parameter list. The function’s

body appears in the braces following the parameter list. A function’s body consists

of declarations and statements that define the computation the function performs.

Any variable declared within these braces is local to the function, visible and

modifiable only within the function itself. In C, the arguments of the caller are

passed as values to the callee. What this means is that Factorial cannot modify

the variable number because only the value of number is passed to Factorial.

14.2.1.4 The Return Value

Control passes back from Factorial to the caller main on line 26. Since

Factorial is returning a value, an expression must follow the return keyword,

and the type of this expression should match the return type declared for the

function. In the case of Factorial, the statement return result; transmits the

calculated value stored in result back to the caller. In general, functions that

return a value must include at least one return statement in their body. Func-

tions that do not return a value—functions declared as type void—do not need

a return statement; the return is optional. For these functions, control passes

back to the caller after the last statement has executed.

What about the function main? Its return type is int (as required by the ANSI

standard), yet it does not contain a return. Strictly speaking, we should include a

return 0 at the end of main in the examples we’ve seen thus far. In C, if a non-

void function does not explicitly return a value, the value of the last statement

is returned to the caller. For the simple code that we describe in this textbook,

the return value from main is unnecessary, so we’ve omitted an explicit return
in the text to make our examples more compact. Also, the formal parameter list

for main in this example is void. It turns out we can pass main arguments, and

oftentimes it’s useful to do so. For most examples in this textbook, main will not

use those arguments; we designate main’s parameter list as void.

Let’s summarize these various syntactic components: A function declaration

informs the compiler about the function, indicating its name, the number and

types of parameters the function expects from a caller, and the type of value the

function returns. A function definition is the actual source code for the function.

The definition includes a formal parameter list, which indicates the names of

the function’s parameters and the order in which they will be expected from the

caller. A function is invoked via a function call. Input values, or arguments, for

the function are listed within the parentheses of the function call. Literally, the

value of each argument listed in the function call is assigned to the corresponding

parameter in the parameter list, the first argument assigned to the first parameter,

the second argument to the second parameter, and so forth. The return value is

the output of the function, and it is passed back to the caller function.

14.2.2 Example: Area of a Ring

We further demonstrate C function syntax with a short example in Figure 14.3.

This C program calculates the area of a circle that has a smaller circle removed

from it. In other words, it calculates the area of a ring with a specified outer and
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1 #include <stdio.h>
2
3 // Function declarations
4 double AreaOfCircle(double radius);
5
6 int main(void)
7 {
8 double outer; // Inner radius
9 double inner; // Outer radius
10 double areaOfRing; // Area of ring
11
12 printf("Enter inner radius: ");
13 scanf("%lf", &inner);
14
15 printf("Enter outer radius: ");
16 scanf("%lf", &outer);
17
18 areaOfRing = AreaOfCircle(outer) - AreaOfCircle(inner);
19 printf("The area of the ring is %f\n", areaOfRing);
20 }
21
22 // Calculate area of circle given a radius
23 double AreaOfCircle(double radius)
24 {
25 double pi = 3.14159265; // This can be optionally declared as a const
26
27 return pi * radius * radius;
28 }

Figure 14.3 A C program that calculates the area of a ring.

inner radius. In this program, a function is used to calculate the area of a cir-

cle with a given radius. The function AreaOfCircle takes a single argument of

type double and returns a double value back to the caller. The following point

is important for us to reiterate: when function AreaOfCircle is active, it can

“see” and modify its local variable pi and its parameter radius. It cannot, how-

ever, directly modify any of the variables within the function main. The function

AreaOfCircle in this example has a slightly different usage than the functions

that we’ve seen in the previous examples in this chapter. Notice that there are mul-

tiple calls to AreaOfCircle from the function main. In this case, AreaOfCircle
performs a useful, primitive computation such that encapsulating it into a function

is beneficial.

On a larger scale, real programs will include functions that are called from

hundreds or thousands of different places. By forming AreaOfCircle and similar

primitive operations into functions, we potentially save on the amount of source

code in the program, which is beneficial for code maintenance. The program also

takes on a better structure. With AreaOfCircle, the intent of the code is more

visibly apparent than if the formula were directly embedded in-line.
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14.3 Implementing Functions in C
Every C feature we’ve encountered (and will encounter in the future) must be

translated into machine-executable form in order for it to be of consequence.

Functions in C are the high-level equivalent of subroutines at the LC-3 machine

level. Functions in C are implemented using a similar set of mechanisms as

assembly level subroutines. In this section, we’ll explore the full process in

detail.

There are four basic phases in the execution of a function call: (1) Argument

values from the caller are passed to the callee, (2) control is transferred to the

callee, (3) the callee executes its task, and (4) control is passed back to the caller,

along with a return value. In C, each function is required to be caller-independent.
That is, a function should be callable from any function. With this requirement,

functions become composable building blocks that we can use from anywhere

in our code. In this section, we will examine how all of this is accomplished on

the LC-3.

14.3.1 Run-Time Stack

At the assembly level, a function is just a sequence of instructions that is called

using a JSR instruction. The RET instruction returns control back to the caller.

That is the simple part. We need to address some of the stickier issues, too, in

order to complete the translation framework. These sticky issues include how

arguments are passed, how the return value is returned, and the allocation of local

variables. The solution to these issues involves something that has become the

cornerstone of digital systems architecture: the run-time stack.

We need a way to “activate” a function when it is called. That is, when a func-

tion starts executing, its local variables must be allocated somewhere in memory.

There are many possible solutions, and here we’ll explore two options.

Option 1: The compiler could systematically assign places in memory for

each function to place its local variables. Function A might be assigned the mem-

ory chunk starting at X for its local values, function B might be assigned the

memory chunk starting at location Y, and so forth, provided, of course, that these

memory chunks do not overlap. While this seems like the most straightforward

way to manage the allocation, it has some limitations. What happens if function

A calls itself? We call this recursion, which we saw initially in Section 8.3. We’ll

dedicate all of Chapter 17 to the idea of recursion in C. If function A calls itself,

then the callee version of function A will overwrite the local values of the caller

version of function A, and the program will not behave as we expect it to. For

the C programming language, which allows recursive functions, option 1 will not

work. Also it’s a wasteful allocation of memory because a function will require

storage (potentially a lot of storage) even if it isn’t executing.

Option 2: What if instead of allocating the space for local variables statically

(i.e., in a fixed place in memory), the space is allocated once the function starts

executing? And when the function returns to the caller, its space is reclaimed to

be assigned later to another function. And if the function is called from itself, the
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new invocation of the function will get its own space that is distinct from its other

currently active invocations. This solves the issues raised with Option 1.

How should this allocation be done? We can utilize the idea that the calling

pattern of functions can easily be tracked with a stack data structure. Each func-

tion has a memory template where it stores its local variables, some bookkeeping

information, and its parameter variables (we’ll mention more about the parame-

ters and bookkeeping information later in this chapter). This template is called its

stack frame or activation record. Whenever a function is called, its stack frame

will be allocated somewhere in memory. And because the calling pattern of func-

tions naturally follows a stack-like pattern, this allocation and deallocation will

follow the pushes and pops of a stack.

Let us demonstrate with an example. The code in Figure 14.4 contains three

functions, main, Watt, and Volt. What each function does is not important for

this example, so we’ve omitted some of their details but provided enough so that

the calling pattern between them is apparent. The function main calls Watt, and

Watt calls Volt. Eventually, control returns to main, which then calls Volt.

1 int main(void)
2 {
3 int a;
4 int b;
5
6 :
7 b = Watt(a); // main calls Watt first
8 b = Volt(a, b); // then calls Volt
9 }
10
11 int Watt(int a)
12 {
13 int w;
14
15 :
16 w = Volt(w, 10); // Watt calls Volt
17
18 return w;
19 }
20
21 int Volt(int q; int r)
22 {
23 int k;
24 int m;
25
26 :
27 return k;
28 }

Figure 14.4 Code example that demonstrates the stack-like nature of function calls.
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Figure 14.5 Several snapshots of the run-time stack while the program outlined in
Figure 14.4 executes.

This is illustrated in the diagrams of Figure 14.5. Each of the shaded regions

represents the activation record or stack frame of a particular function call. The

sequence of figures shows how the run-time stack grows and shrinks as the

various functions are called and return to their caller. Keep in mind that, as

we push items onto the stack, the top of the stack moves, or “grows,” toward

lower-numbered memory locations.

Figure 14.5a is a picture of the run-time stack when the program starts execu-

tion. Since the execution of a C program starts in main, the stack frame for main
is the first to be allocated on the stack. Figure 14.5b shows the run-time stack

immediately after Watt is called by main. Notice that the stack frames are allo-

cated in a stack-like fashion. That is, whenever a function is called, its stack frame

is pushed onto the stack. Whenever the function returns, its frame is popped off

the stack. Figure 14.5 parts (c) through (f ) show the state of the run-time stack

at various points during the execution of this code.
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We ultimately want to map this process into LC-3 assembly code, so we’ll

need some easy way to access the data in each function’s stack frame and also to

manage the pushing and popping of stack frames. For this, we will use R5 and R6.

Notice that R5 points to some internal location within the stack frame at the top

of the stack—it points to the base of the local variables for the currently executing

function. We call it the frame pointer. Also notice how R6 always points to the

very top of the stack. We call it the stack pointer. Both of these registers have a

key role to play in the implementation of the run-time stack and of functions in

C in general.

14.3.2 Getting It All to Work

It is clear that there is a lot of work going on at the machine level when a

function is called. Arguments must be passed, stack frames pushed and popped,

control moved from one function to another. As involved as it may seem, the

implementation of this is rather straightforward, and we will spend the remain-

der of this section going through the details of the C run-time stack protocol on

the LC-3.

We’ll partition this protocol into four steps. Step 1: The caller function copies

arguments for the callee onto the run-time stack and passes control to the callee.

Step 2: The callee function pushes space for local variables and other information

onto the run-time stack, essentially creating its stack frame on top of the stack.

Step 3: The callee executes. Step 4: Once it is ready to return, the callee removes,

or pops, its stack frame off the run-time stack and returns the return value and

control to the caller.

We’ll examine the LC-3 implementation of each of these steps in detail by

looking at the code generated to accomplish the following line of code:

w = Volt(w, 10);

which is line 16 from the code in Figure 14.4.

14.3.2.1 The Call

In the statement w = Volt(w, 10);, the function Volt is called with two argu-

ments. The value returned by Volt is then assigned to the local integer variable

w. In translating this function call, the compiler generates LC-3 code that does

the following:

1. Transmits the value of the two arguments to the function Volt by pushing

them directly onto the top of the run-time stack. Recall that R6 points to the

top of the run-time stack. It is the stack pointer. That is, it contains the

address of the memory location that is actively holding the topmost data

item on the stack. To push an item onto the stack, we first decrement R6

and then store the data value using R6 as a base address. In our stack

protocol, the arguments of a C function call are pushed onto the stack from
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right to left in the order in which they appear in the function call. In the

case of Watt, we will first push the value 10 (rightmost argument) and then

the value of w.

2. Transfers control to Volt via the JSR instruction.

The following LC-3 code performs the call to Volt from Watt. Instructions 1

through 4 perform the push of the argument 10, and instructions 6 through 8 push

the argument w. Notice that w itself is a local variable in Watt and must be loaded

from Watt’s stack frame. More on this soon.

1 AND R0, R0, #0 ; R0 <- 0
2 ADD R0, R0, #10 ; R0 <- 10
3 ADD R6, R6, #-1 ;
4 STR R0, R6, #0 ; Push 10 onto stack
5
6 LDR R0, R5, #0 ; Load w
7 ADD R6, R6, #-1 ;
8 STR R0, R6, #0 ; Push w
9 JSR Volt

Figure 14.6 illustrates the modifications made to the run-time stack by these

instructions. Notice that the argument values are pushed immediately on top of

the stack frame of the caller (Watt). The stack frame for the callee (Volt) will be

constructed on the stack directly on top of the stack frame of the caller.

Local variable
of Watt

Parameters
for Volt

Memoryx0000

Stack frame of Watt

xFFFF

value of w

10

w

R6

R5

Figure 14.6 The run-time stack after Watt pushes arguments to Volt.

14.3.2.2 Starting the Callee Function

The instruction executed immediately after the JSR in the function Watt is the

first instruction in the callee function Volt. Before we begin to execute the actual
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work in Volt described by the C code, we need to set the stage for Volt to exe-

cute. We need to properly allocate the stack frame for Volt and properly set the

stack pointer R6 and the frame pointer R5 so that the code of Volt can execute

correctly.

At this point, the stack contains the two arguments for Volt at the top. The

purpose of the preamble code of Volt is to prepare the stack such that it also

contains a spot for the return value of Volt, the return address of Watt, Watt’s

frame pointer, and all of the local variables of Volt. This will be accomplished

in four steps, which we describe next, each as a single action:

1. Save space on the stack for callee’s return value. The return value is located

immediately on top of the parameters for the callee. Later, when the callee

is ready to pass control back to the caller, the return value is written into

this location.

2. Push a copy of the return address in R7 onto the stack. Recall that R7 will

hold the return address whenever a JSR is used to initiate a subroutine call.

This will ensure that we can return to the caller even if the callee calls

another function.

3. Push a copy of the caller’s frame pointer in R5 onto the stack. By saving a

copy of R5, we will be able to restore the stack frame of the caller in such

a way that the caller can easily resume execution after the function call

is complete. If either the caller’s return address or the frame pointer is

destroyed, then we will have trouble restarting the caller correctly when

the callee finishes. Therefore, it is important that we make copies of both

in memory.

4. Allocate space on the stack for the callee’s local variables, and adjust R5 to

point to the base of the local variables and R6 to point to the top of the stack.

The preamble code to accomplish this for Volt is provided below. This code

appears first before any of the code for statements in Volt.

1 Volt: ADD R6, R6, #-1 ; Allocate spot for the return value
2
3 ADD R6, R6, #-1 ;
4 STR R7, R6, #0 ; Push R7 (Return address)
5
6 ADD R6, R6, #-1 ;
7 STR R5, R6, #0 ; Push R5 (Caller's frame pointer)
8
9 ADD R5, R6, #-1 ; Set frame pointer for Volt
10 ADD R6, R6, #-2 ; Allocate memory for Volt's local variables

Figure 14.7 summarizes the changes to memory accomplished by the func-

tion call code we have encountered so far. The layout in memory of these stack

frames—one for Watt and one for Volt—is apparent. Notice that some entries

of the stack frame of Volt are written by Watt. In particular, the parameter fields

of Volt’s stack frame are initialized using the argument values from Watt. Watt
writes the value of its local variable w as the first argument and the value 10 for

the second argument. Keep in mind that these values are pushed from right to left
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Figure 14.7 The run-time stack after the stack frame for Volt is pushed onto the
stack.

according to their position in the function call. Therefore, the value of w appears

on top of the value 10. Once invoked, Volt will refer to these values as the param-

eters q and r. Question: What are the initial values of Volt’s local variable? Recall

from Chapter 11 that local variables such as these are uninitialized.

Notice that each stack frame on the stack has the same structure. Each con-

tains locations for the function’s local variables, for the bookkeeping information

(consisting of the caller’s return address and caller’s frame pointer), the return

value, and the function’s parameters.

14.3.2.3 Ending the Callee Function

Once the callee function has completed its work, we prepare to return to the caller.

This essentially involves tearing down the stack frame and restoring the run-time

stack to the state it was in when the caller initiated its function call. To accomplish

this, we use the following four actions:

1. If there is a return value, it is written into the return value entry of the active

stack frame.

2. The local variables for the callee are popped off the stack. This can be

accomplished by individually popping them, or simply by setting the stack

pointer R6 to the location immediately after the frame pointer R5.
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3. The caller frame pointer and return address are restored.

4. Control to the caller function via the RET instruction.

The LC-3 instructions corresponding to this for Volt are as follows. Keep in

mind that even though the stack frame for Volt is popped off the stack, its values

remain in memory until they are explicitly overwritten.

1 LDR R0, R5, #0 ; Load local variable k
2 STR R0, R5, #3 ; Write it in return value slot, which will always
3 ; be at location R5 + 3
4
5 ADD R6, R5, #1 ; Pop local variables
6
7 LDR R5, R6, #0 ; Pop the frame pointer
8 ADD R6, R6, #1 ;
9
10 LDR R7, R6, #0 ; Pop the return address
11 ADD R6, R6, #1 ;
12 RET

14.3.2.4 Returning to the Caller Function

After the callee function executes the RET instruction, control is passed back to the

caller function. In some cases, there is no return value (if the callee is declared of

type void) and, in some cases, the caller function ignores the return value. Again,

from our previous example, the return value is assigned to the variable w in Watt.

In particular, there are two actions to be performed:

1. The return value (if there is one) is popped off the stack.

2. The arguments are popped off the stack.

The code after the JSR looks like the following. Once this code starts execut-

ing, R6 points to the top of the stack, which is the return value, and R5 is again

the frame pointer of Watt.

1 JSR Volt
2 LDR R0, R6, #0 ; Load the return value
3 STR R0, R5, #0 ; w = Volt(w, 10);
4 ADD R6, R6, #1 ; Pop return value
5
6 ADD R6, R6, #2 ; Pop arguments

Once this code is done, the call is now complete, and the caller function can

resume its normal operation. Notice that prior to the return, the callee restores the

environment of the caller. From the caller’s perspective, it appears as if nothing

has changed except that a new value (the return value) has been pushed onto the

stack.



14.3 Implementing Functions in C 505

14.3.2.5 Caller Save/Callee Save

Before we complete our discussion of the implementation of functions, we need

to cover a topic that we’ve so far swept under the rug. During the execution of a

function, R0 through R3 can contain temporary values that are part of an ongoing

computation. Registers R4 through R7 are reserved for other purposes: R4 is the

pointer to the global data section, R5 is the frame pointer, R6 is the stack pointer,

and R7 is used to hold return addresses. If we make a function call, based on the

calling convention we’ve described, R4 through R7 do not change, or they change

in a predetermined fashion. But what happens to registers R0, R1, R2, and R3?

To address this, digital systems typically adopt one of two strategies: (1) The

caller will save these registers by pushing them onto its stack frame. This is the

caller-save convention. (We also discussed this in Section 8.1.1.) When control

is returned to the caller, the caller will restore these registers by popping them off

the stack. (2) Alternatively, the callee can save these registers by adding four fields

in the bookkeeping area of its record. This is called the callee-save convention.

When the callee is initiated, it will save R0 through R3 and R5 and R7 into the

bookkeeping region and restore these registers before returning to the caller.

14.3.3 Tying It All Together

The code for the function call in Watt and the beginning and end of Volt is listed

in Figure 14.8. The LC-3 code segments presented in the previous sections are all

combined, showing the overall structure of the code. This code is more optimized

than the previous individual code segments. We’ve combined the manipulation

of the stack pointer R6 associated with pushing and popping the return value into

single instructions.

Let’s summarize our LC-3 C function call protocol. The caller function

pushes the value of each argument onto the stack and performs a Jump To Sub-

routine (JSR) to the callee. The callee allocates a space for the return value, saves

the caller’s frame pointer and return address, and then allocates space on the stack

for its local variables. The callee then proceeds to carry out its task. When the

task is complete, the callee writes the return value into the space reserved for it,

pops and restores frame pointer and return value for the caller, and returns to the

caller. The caller then pops the return value and arguments from the stack and

resumes its execution.

You might be wondering why we would go through all these steps just to

make a function call. That is, is all this code really required, and couldn’t the

calling convention be made simpler? One of the characteristics of real calling

conventions is that in the general case, any function should be able to call any

other function. To enable this, the calling convention should be organized so that

a caller does not need to know anything about a callee except its interface (i.e.,

the type of value the callee returns and the types of values it expects as argu-

ments). Likewise, a callee is written to be independent of the functions that call

it. Because of this generality, the functional calling protocol needs these steps. It

is all part of the overhead required to make functions an essential building block

for large-scale software.
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1 Watt:
2 ...
3 AND R0, R0, #0 ; R0 <- 0
4 ADD R0, R0, #10 ; R0 <- 10
5 ADD R6, R6, #-1 ;
6 STR R0, R6, #0 ; Push 10 onto stack
7
8 LDR R0, R5, #0 ; Load w
9 ADD R6, R6, #-1 ;
10 STR R0, R6, #0 ; Push w
11 JSR Volt
12
13 LDR R0, R6, #0 ; Load the return value
14 STR R0, R5, #0 ; w = Volt(w, 10);
15 ADD R6, R6, #3 ; Pop return value and arguments
16 ...
17
18 Volt: ADD R6, R6, #-1 ; Allocate spot for the return value
19
20 ADD R6, R6, #-1 ;
21 STR R7, R6, #0 ; Push R7 (Return address)
22
23 ADD R6, R6, #-1 ;
24 STR R5, R6, #0 ; Push R5 (Caller's frame pointer)
25
26 ADD R5, R6, #-1 ; Set frame pointer for Volt
27 ADD R6, R6, #-2 ; Allocate memory for Volt's local variables
28
29 ... ; Volt performs its work
30
31 LDR R0, R5, #0 ; Load local variable k
32 STR R0, R5, #3 ; Write it in return value slot, which will always
33 ; be at location R5 + 3
34
35 ADD R6, R5, #1 ; Pop local variables
36
37 LDR R5, R6, #0 ; Pop the frame pointer
38 ADD R6, R6, #1 ;
39
40 LDR R7, R6, #0 ; Pop the return address
41 ADD R6, R6, #1 ;
42 RET

Figure 14.8 The LC-3 code corresponding to a C function call and return.
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14.4 Problem Solving Using
Functions

For functions to be useful to us, we must somehow integrate them into our

programming problem-solving methodology. In this section, we will demon-

strate the use of functions through two example problems, with each example

demonstrating a slightly different manner in which functions are applied.

Conceptually, functions are a good point of division during the top-down

design of an algorithm from a problem. As we decompose a problem, natural

“components” will appear in the tasks that are to be performed by the algo-

rithm. These components are natural candidates for functions. Our first example

involves converting text from lowercase into uppercase, and it presents an exam-

ple of a component function that is naturally apparent during the top-down design

process.

Functions are also useful for encapsulating primitive operations that the pro-

gram requires at various spots in the code. By creating such functions, we are in

a sense extending the set of operations of the programming language, tailoring

them to the specific problem at hand. In the case of the second problem, which

determines Pythagorean Triples, we will develop a primitive function to calculate

x2 to assist with the calculation.

14.4.1 Problem 1: Case Conversion

In this section, we go through the development of a program that reads input

from the keyboard and echoes it back to the screen, similar to the program in

Figure 13.8. We throw in a slight twist in this version: We want the program

to convert lowercase characters into uppercase before echoing them onto the

screen.

Our approach to solving this problem is to use the echo program from

Figure 13.8 as a starting point. The previous code used a while loop to read an

input character from the keyboard and then print it to the output device. To this

basic structure, we want to add a component that checks if a character is lowercase

and converts it to uppercase if it is. We could add code to perform this directly

into the while loop, but given the self-contained nature of this component, we

will create a function to do this job.

The conversion function is called after each character is scanned from the

keyboard and before it is displayed to the screen. The function requires a single

character as an argument and either returns the same character (if the character

is already uppercase or is not a character of the alphabet) or returns an upper-

case version of the character. Figure 14.9 shows the flow of this program. The

flowchart of the original echo program is shaded. To this original flowchart, we

are adding a component function to perform the conversion.
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Print character

TF

F

Return value:
Converted character

Lowercase?

Get character

Parameter:
Character to convert

T

Not end
of line

Initialize

Convert
Leave as is

Start

Convert to
uppercase

Stop

Figure 14.9 The decomposition into smaller subtasks of a program that converts
input characters into uppercase.

Figure 14.10 shows the complete C code. It takes input from the keyboard,

converts each input character into uppercase, and prints out the result. When the

input character is the new line character, the program terminates. The conversion

process from lowercase to uppercase is done by the function ToUpper. Notice the

use of ASCII literals in the function body to perform the actual conversion. Keep

in mind that a character in single quotes (e.g., 'A') is evaluated as the ASCII

value of that character. The expression 'a' - 'A' is therefore the ASCII value

of the character a minus the ASCII of A.

14.4.2 Problem 2: Pythagorean Triples

Now we’ll attempt a programming problem involving calculating all Pythagorean

Triples less than a particular input value. A Pythagorean Triple is a set of three

integer values a, b, and c that satisfy the property c2 = a2 + b2. In other words,

a and b are the lengths of the sides of a right triangle where c is the hypotenuse.

For example, 3, 4, and 5 is a Pythagorean Triple. The problem here is to calculate
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1 #include <stdio.h>
2
3 char ToUpper(char inchar); // Function Declaration
4
5 // Prompt for a line of text, Read one character,
6 // convert to uppercase, print it out, then get another
7 int main(void)
8 {
9 char echo = 'A'; // Initialize input character
10 char upcase; // Converted character
11
12 printf("Type input: ");
13 while (echo != '\n') {
14 scanf("%c", &echo);
15 upcase = ToUpper(echo);
16 printf("%c", upcase);
17 }
18 }
19
20 // If the parameter is lowercase, return
21 // its uppercase ASCII value
22 char ToUpper(char inchar)
23 {
24 char outchar;
25
26 if ('a' <= inchar && inchar <= 'z')
27 outchar = inchar - ('a' - 'A');
28 else
29 outchar = inchar;
30
31 return outchar;
32 }

Figure 14.10 A program with a function to convert lowercase letters to uppercase.

all Triples a, b, and c where all are less than a certain number provided by the

user.

For this problem, we will try to find all Triples by brute force. That is, if

the limit indicated by the user is max, we will check all combinations of three

integers less than max to see if they satisfy the Triple property. In order to check

all combinations, we will want to vary each sideA, sideB, and sideC from 1

to max. This implies the use of counter-controlled loops. More exactly, we will

want to use a for loop to vary sideC, another to vary sideB, and another to vary

sideA, each nested within the other. At the core of these loops, we will check to

see if the property holds for the three values, and if so, we’ll print them out.

Now, in performing the Triple check, we will need to evaluate the following

expression:

(sideC * sideC == (sideA * sideA + sideB * sideB))
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1 #include <stdio.h>
2
3 int Squared(int x);
4
5 int main(void)
6 {
7 int maxC;
8
9 printf("Enter the maximum length of hypotenuse: ");
10 scanf("%d", &maxC);
11
12 for (int sideC = 1; sideC <= maxC; sideC++) {
13 for (int sideB = 1; sideB <= maxC; sideB++) {
14 for (int sideA = 1; sideA <= maxC; sideA++) {
15 if (Squared(sideC) == Squared(sideA) + Squared(sideB))
16 printf("%d %d %d\n", sideA, sideB, sideC);
17 }
18 }
19 }
20 }
21
22 // Calculate the square of a number
23 int Squared(int x)
24 {
25 return x * x;
26 }

Figure 14.11 A C program that calculates Pythagorean Triples.

Because the square operation is a primitive operation for this problem—meaning

it is required in several spots—we will encapsulate it into a function Squared
that returns the square of its integer parameter. The preceding expression will be

rewritten as follows. Notice that this code gives a clearer indication of what is

being calculated.

(Squared(sideC) == Squared(sideA) + Squared(sideB))

The C program for this is provided in Figure 14.11. There are better ways to

calculate Triples than with a brute-force technique of checking all combinations

(Can you modify the code to run more efficiently?); the brute-force technique

suits our purposes of demonstrating the use of functions.

14.5 Summary
In this chapter, we introduced the concept of functions in C. The general notion

of subprograms such as functions has been part of programming languages

since the earliest days of programming. Functions are useful because they allow

us to create new primitive building blocks that might be useful for a particu-

lar programming task (or for a variety of tasks). In a sense, they allow us to
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extend the native operations and constructs supported by the language with addi-

tional primitive functions. The key notions that you should take away from this

chapter are:

∙ Syntax of functions in C. To use a function in C, we must declare the

function using a function declaration (which we typically do at the begin-

ning of our code) that indicates the function’s name, the type of value the

function returns, and the types and order of values the function expects as

inputs. A function’s definition contains the actual code for the function. A

function is invoked when a call to it is executed. A function call contains

arguments—values that are to be passed to the function.

∙ Implementation of C functions at the lower level. Part of the complexity

associated with implementing functions is that in C, a function can be called

from any other function in the source file (and even from functions in other

object files). To assist in dealing with this, we adopt a general calling con-

vention for calling one function from another. To assist with the fact that

some functions might even call themselves, we base this calling convention

on the run-time stack. The calling convention involves the caller passing the

value of its arguments by pushing them onto the stack, then calling the callee.

The arguments written by the caller become the parameters of the callee’s

stack frame. The callee does its task and then pops its stack frame off the

stack, leaving behind its return value for the caller.

∙ Using functions when programming. It is possible to write all your pro-

grams without ever using functions. The result would be that your code would

be hard to read, maintain, and extend, and it would probably be buggier than

it would if your code used functions. Functions enable abstraction: We can

write a function to perform a particular task, debug it, test it, and then use it

within the program wherever it is needed.

Exercises

14.1 What is the significance of the function main? Why must all programs

contain this function?

14.2 Refer to the structure of a stack frame to answer these questions.

a. What is the purpose of the frame pointer?

b. What is the purpose of the return address?

c. What is the purpose of the return value?

14.3 Refer to the C syntax of functions to answer these questions.

a. What is a function declaration? What is its purpose?

b. What is a function prototype?

c. What is a function definition?

d. What are arguments?

e. What are parameters?
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14.4 For each of the following items, identify whether the caller function or

the callee function performs the action.

a. Writing the arguments into the stack frame.

b. Writing the return value.

c. Writing the frame pointer.

d. Modifying the value in R5 to point within the callee function’s stack

frame.

14.5 What is the output of the following program? Explain.

void MyFunc(int z);

int main(void)
{

int z = 2;
MyFunc(z);
MyFunc(z);

}

void MyFunc(int z)
{

printf("%d ", z);
z++;

}

14.6 What is the output of the following program?

#include <stdio.h>
int Multiply(int d, int b);

int d = 3;
int main()
{

int a = 1, b = 2, c;
int e = 4;

c = Multiply(a, b);
printf("%d %d %d %d %d\n", a, b, c, d, e);

}

int Multiply(int d, int b)
{

int a = 2;
b = 3;
return (a * b);

}

14.7 Following is the code for a C function named Bump.

int Bump(int x)
{

int a;
a = x + 1;
return a;

}
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a. Draw the stack frame for Bump.

b. Write one of the following in each entry of the stack frame to

indicate what is stored there.

(1) Local variable

(2) Argument

(3) Address of an instruction

(4) Address of data

(5) Other

c. Some of the entries in the stack frame for Bump are written by the

function that calls Bump; some are written by Bump itself. Identify

the entries written by Bump.

14.8 What is the output of the following code? Explain why the function

Swap behaves the way it does.

void Swap(int x, int y);

int main(void)
{

int x = 1;
int y = 2;

Swap(x, y);
printf("x = %d y = %d\n", x, y);

}

void Swap(int y, int x)
{

int temp

temp = x;
x = y;
y = temp;

}

14.9 Are the arguments to a function placed on the stack before or after the

JSR to that function? Why?

14.10 A C program containing the function food has been compiled into

LC-3 assembly language. The partial translation of the function into

LC-3 is:

food:
ADD R6, R6, #-2 ;
STR R7, R6, #0 ;
ADD R6, R6, #-1 ;
STR R5, R6, #0 ;
ADD R5, R6, #-1 ;
ADD R6, R6, #-4 ;
...

a. How many local variables does this function have?

b. Say this function has two integer parameters x and y. Generate the

code to evaluate the expression x + y.
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14.11 Following is the code for a C function named Unit.

int Init(int x);
int Unit(int x);
int main()
{

int a = 1;
int b = 2;

a = Init(a);
b = Unit(b);
printf("a = %d b = %d\n", a, b);

}

int Init(int x)
{

int y = 2;
return y + x;

}

int Unit(int x)
{

int z;
return z + x;

}

a. What is the output of this program?

b. What determines the value of local variable z when function Unit
starts execution?

14.12 Modify the example in Figure 14.10 to also convert each character to

lowercase. The new program should print out both the lower- and

uppercase versions of each input character.

14.13 Write a function to print out an integer value in base 4 (using only the

digits 0, 1, 2, 3). Use this function to write a program that reads two

integers from the keyboard and displays both numbers and their sum in

base 4 on the screen.

14.14 Write a function that returns a 1 if the first integer input parameter is

evenly divisible by the second. Using this function, write a program

to find the smallest number that is evenly divisible by all integers less

than 10.

14.15 The following C program is compiled into LC-3 machine language and

loaded into address x3000 before execution. Not counting the JSRs to

library routines for I/O, the object code contains three JSRs (one to

function f, one to g, and one to h). Suppose the addresses of the three

JSR instructions are x3102, x3301, and x3304. Also suppose the user

provides 4 5 6 as input values. Draw a picture of the run-time stack,

providing the contents of locations, if possible, when the program is

about to return from function f. Assume the base of the run-time stack

is location xEFFF.
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#include <stdio.h>
int f(int x, int y, int z);
int g(int arg);
int h(int arg1, int arg2);

int main(void)
{

int a, b, c;

printf("Type three numbers: ");
scanf("%d %d %d", &a, &b, &c);
printf("%d", f(a, b, c));

}

int f(int x, int y, int z)
{

int x1;

x1 = g(x);
return h(y, z) * x1;

}

int g(int arg)
{

return arg * arg;
}

int h(int arg1, int arg2)
{

return arg1 / arg2;
}

14.16 Referring once again to the machine-busy example from previous

chapters, remember that we represent the busyness of a set of 16

machines with a bit pattern. Recall that a 0 in a particular bit position

indicates the corresponding machine is busy and a 1 in that position

indicates that machine is idle.

a. Write a function to count the number of busy machines for a given

busyness pattern. The input to this function will be a bit pattern

(which can be represented by an integer variable), and the output

will be an integer corresponding to the number of busy machines.

b. Write a function to take two busyness patterns and determine which

machines have changed state, that is, gone from busy to idle, or idle

to busy. The output of this function is simply another bit pattern

with a 1 in each position corresponding to a machine that has

changed its state.

c. Write a program that reads a sequence of ten busyness patterns from

the keyboard and determines the average number of busy machines

and the average number of machines that change state from one

pattern to the next. The user signals the end of busyness patterns by

entering a pattern of all 1s (all machines idle). Use the functions you

developed for parts 1 and 2 to write your program.
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14.17 a. Write a C function that mimics the behavior of a 4-to-1 multiplexer.

See Figure 3.13 for a description of a 4-to-1 mux.

b. Write a C function that mimics the behavior of the LC-3 ALU.

14.18 Notice that on a numeric keypad for your phone, the keys labeled 2, 3,

4, . . ., 9 also have letters associated with them. For example, the key

labeled 2 corresponds to the letters A, B, and C. Write a program that

will map a seven-digit telephone number into all possible character

sequences that the phone number can represent. For this program, use a

function that performs the mapping between digits and characters. The

digits 1 and 0 map to nothing.

14.19 The following C program uses a combination of global variables and

local variables with different scope. What is the output?

#include <stdio.h>

int t = 1; // Global variable

int sub1(int fluff);

int main (void)
{

int t = 2;
int z;
z = t;
z = z + 1;
printf("A: The variable z equals %d\n", z);
{

z = t;
t = 3;
{

int t = 4;
z = t;
z = z + 1;
printf("B: The variable z equals %d\n", z);

}
z = sub1(z);
z = z + 1;
printf("C: The variable z equals %d\n", z);

}
z = t;
z = z + 1;
printf("D: The variable z equals %d\n", z);

}

int sub1(int fluff)
{

int i;
i = t;
return (fluff + i);

}
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C H A P T E R

Testing and Debugging

15.1 Introduction
December 1999, NASA mission controllers lost contact with the Mars Polar
Lander as it approached the Martian surface. The Mars Polar Lander was on

a mission to study the southern polar region of the Red Planet. Contact was never

reestablished, and NASA subsequently announced that the spacecraft most prob-

ably crashed onto the planet’s surface during the landing process. After evaluating

the situation, investigators concluded that the likely cause was faulty control

software that prematurely caused the onboard engines to shut down when the

probe was 40 meters above the surface rather than when the probe had actually

landed. It is suspected that a software error incorrectly identified vibrations from

deployment of the landing gear as touchdown on the surface, triggering thruster

shutdown.

Just a few months earlier, another NASA mission to Mars, the Mars Climate
Orbiter, was lost during orbital insertion due to a different software bug. A

ground-based software subsystem that controlled the Orbiter’s thrusters was cal-

culating measurements in imperial units instead of metric units, as required by the

other systems on the spacecraft, sending the Orbiter on a catastrophic trajectory.

The end result of this infamous bug was the loss of a $655 million space probe.

The physical complexities of sending probes into space are astounding, and

the software systems that control these spacecraft are no less complex. Software

is just as integral to a system as any mechanical or electrical subsystem, and all

the more difficult to make correct because it is “invisible.” It cannot be visu-

ally observed or quantitatively measured as easily as, say, a propulsion system or

landing system. It’s an obvious fact that software plays a vital and critical part

in our digital world. Even something as nondigital as turning on the water faucet

requires the processing of hundreds of thousands of lines of code to track the

delivery and flow of water into your water glass.

With software playing such a vital role, it is important that this software

behave correctly according to specifications. Designing working code is not auto-

matic. Programs are not correct by construction, particularly code written in C
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or C++. We must actively test and debug software as an integral part of the

development process.

Anecdotally, experienced coders spend more than half of their time debug-

ging code as opposed to writing code. The best programmers are those who have

mastered debugging. Concepts in testing and debugging code are as important to

understand as basic ideas in coding. In this chapter, we introduce basic notions

of testing and debugging to help give you essential skills in being an effective

programmer.

Testing is the process of exposing bugs, and debugging is the process of

fixing them. Testing a piece of code involves subjecting it to as many input con-

ditions as possible, in order to stress the software into revealing its bugs. For

example, in testing the function ToUpper from Chapter 14 (this function returns

the uppercase version of an alphabetic character passed as the argument), we

might want to pass every possible ASCII value as an input argument and observe

the function’s output in order to determine if the function behaves according to

specifications. If the function produces incorrect output for a particular input,

then we’ve discovered a bug. It is better to find the bug while the code is still in

development than to have an unsuspecting user stumble on the bug inadvertently.

It would have been better for the NASA software engineers to find the bug in the

Mars Polar Lander on the surface of the Earth rather than encounter it 40 meters

above the surface of Mars.

Using information about a program and its execution, a programmer can

apply common sense to deduce where things are going awry. Just as a crime

detective cracks a case by examining evidence, a programmer must examine the

available clues in order to track down the source of the bug. Debugging code is

much easier if you know how to gather information about it—such as the value

of key variables during the execution of the program—in a systematic way.

In this chapter, we describe several techniques you can use to find and fix bugs

in a program. We first describe some broad categories of errors that can creep

into programs. We then describe testing methods for quickly finding these errors.

We finally describe some debugging techniques for isolating and repairing these

errors, and we provide some defensive programming techniques to minimize bugs

in the code you write.

15.2 Types of Errors
To better understand how to find and fix errors in our code, or to avoid errors in the

first place, it’s helpful to build a taxonomy of types of errors. There are four broad

categories of errors that programmers introduce into code. Syntactic errors are the

easiest to deal with because they are caught by the compiler. The compiler notifies

us of such errors when it tries to translate the source code into machine code, often

pointing out exactly in which line the error occurred. Semantic errors, on the other

hand, are problems that can often be very difficult to repair. They occur when the

program is syntactically correct but does not behave exactly as we intended. Both

syntactic and semantic errors are generally typographic in nature—they occur
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when we write something we did not mean to write. Algorithmic errors, on the

other hand, are less casual mistakes. They are errors in which our approach to

solving a problem is wrong. They are costly to the overall software development

process because they are hard to detect and often hard to fix. Specification errors
are due to poorly defined program requirements, or misinterpretations of those

requirements by the person or team implementing them.

As far as overall digital systems go, bugs can be anywhere, and they aren’t

limited to the software side of the house. The hardware can have bugs, sensors

can be flaky, and physical systems can fail, which can manifest in the device not

working properly. And any of these systems can fail transiently due to an adverse

operating situation—the device can fail for just a brief moment and then resume

correct operation. It’s important that the overall system be robust and bug-free,

and as system designers we want a good methodology for testing and debugging.

For now we will focus on software testing and debugging. You’ll find that many

of the ideas we’ll develop here will translate into testing and debugging hardware,

too.

Another aspect that we will not explore in this chapter is the idea of security

bugs. Many digital devices hold and process personal and private information,

and they have design requirements to keep this information secure, particularly

from malicious attackers. To meet these requirements, hardware and software sys-

tems are carefully designed and tested to provide a basic layer of security against

clever attackers. Nonetheless, security holes exist and have been exploited. Some

of these exploits have become famous (Heartbleed, Meltdown, Spectre, and many

others) and have had costly consequences. In this chapter, we’ll keep our attention

on general software bugs, focusing on the fundamentals of testing and debugging.

System security is a major topic worthy of subsequent study.

15.2.1 Syntactic Errors

In C and C++ and all programming languages, syntactic errors (or syntax errors
or parse errors) are always caught by the compiler or other translator. These types

of errors occur when we ask the compiler to translate code that does not conform

to the C/C++ specification. For instance, the code listed in Figure 15.1 contains

a syntax error, which the compiler will flag when the code is compiled. The dec-

laration for the variable j is missing a semicolon. For anyone learning a new

programming language, incorrect syntax accounts for a good number of errors.

The good news is that these types of errors are easy to find because the com-

piler detects them, and they are rather simple to fix. In compiling the code in

Figure 15.1, the compiler will inform us of the syntax error (sometimes crypti-

cally, because it gets confused and is unable to pinpoint the root cause) and will

indicate the spot in the code where things went awry.

15.2.2 Semantic Errors

Semantic errors are similar to syntactic errors. They occur for the same reason:

Our minds and our fingers are not completely coordinated when writing code.
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i
6 int j;
7
8 for (i = 0; i <= 10; i++) {
9 j = i * 7;
10 printf("%d x 7 = %d\n", i, j);
11 }
12 }

Figure 15.1 This program contains a syntax error.

Semantic errors do not involve incorrect syntax; therefore, the program gets trans-

lated and we can execute it. It is not until we analyze the output that we discover

that the program is not performing as expected. Figure 15.2 lists an example of

the same program as Figure 15.1 with a simple semantic error (the syntax error

is fixed). The program should print out a multiplication table for the number 7.

Here, a single execution of the program reveals the problem. Only one entry of

the multiplication table is printed.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i;
6 int j;
7
8 for (i = 0; i <= 10; i++)
9 j = i * 7;
10 printf("%d x 7 = %d\n", i, j);
11 }

Figure 15.2 A program with a semantic error.

You should be able to deduce, given your knowledge of C, why this program

behaves incorrectly. Why is the following line the only output?

11 x 7 = 70

This code demonstrates something called a control flow error. Here, the pro-

gram’s control flow, or the order in which statements are executed, is different

than we intended.

The code listed in Figure 15.3 also contains a semantic error. It is intended

to calculate the sum of all integers less than or equal to the number input from

the keyboard (i.e., it calculates 1 + 2 + 3 + . . . + n). It contains a common but

tricky semantic error. Try executing this program and you will notice that the

output is not what you might expect. This code has an uninitialized variable, or

initialization error, in variable result in AllSum.
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1 #include <stdio.h>
2
3 int AllSum(int n);
4
5 int main(void)
6 {
7 int in; // Input value
8 int sum; // Value of 1+2+3+..+ n
9
10 printf("Input a number: ");
11 scanf("%d", &in);
12
13 sum = AllSum(in);
14 printf("The AllSum of %d is %d\n", in, sum);
15 }
16
17
18 int AllSum(int n)
19 {
20 int result; // Result to be returned
21 int i; // Iteration count
22
23 for (i = 1; i <= n; i++) // This calculates sum
24 result = result + i;
25
26 return result; // Return to caller
27 }

Figure 15.3 A program with a bug involving local variables.

Some errors are caught during execution because an illegal action is per-

formed by the program. All digital systems have certain protected regions of

memory. These regions require the appropriate privilege level for access, and

they can’t be accessed by all code. For example, system memory can only be

accessed by code with system-level privilege. In this way, we can protect the sys-

tem from application code with bugs or from potentially malicious code that is

accessing memory that it shouldn’t. When such an illegal action is performed by a

program, the operating system terminates its execution. We can easily create such

code. Modify the scanf statement from the AllSum example to the following:

scanf("%d", in);

The ampersand character, &, as we shall see in Chapter 16, is a special operator

in the C language. Omitting it here causes a run-time error because the program has

tried to modify a memory location it lacks the privilege to access. We will look at

this example and the reasons for the error in more detail in later chapters.

15.2.3 Algorithmic Errors

Algorithmic errors are the result of an incorrectly designed piece of code. That

is, the program itself behaves exactly as we designed, but the design itself was
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flawed. These types of errors can be hidden; they may not appear until many trials

of the program have been run. Even when they are detected and isolated, they can

be very hard to repair. The good news is that these types of errors can often be

reduced and even eliminated by proper planning during the design phase, before

any code is written.

The space of algorithmic errors is broad. They can range from simple, iso-

lated errors to complex ones involving large portions of functionality. We’ll start

by examining a simple, somewhat common algorithmic error made by novice and

experienced programmers alike. We call it an off-by-one error because something

in our code is off by one (or by a similar, small amount). This something can be the

number of iterations of a loop, the amount of storage for a data object, or another

such value. In the code in Figure 15.4, the number of iterations to perform is off

by one. Instead of performing ten iterations, if we input 10, it will perform only

nine. Clearly, this bug is easy to fix. As coders we are naturally apt to miscalcu-

late the ending conditions of loops, or the sizes of objects in memory, or other

similar calculations in our program logic. And often, these miscalculations are

off by one (or a small number).

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int iterations; // Input value
6
7 printf("How many iterations? ");
8 scanf("%d", &iterations);
9
10 for (int i = 1; i < iterations; i++)
11 printf("Executing iteration %d\n" , i);
12 }

Figure 15.4 A program with an off-by-one error.

Another, deeper example of an algorithmic flaw, this time involving program

logic, is provided in Figure 15.5. This code takes as input the number of a calendar

year and determines if that year is a leap year or not. At first glance, this code

appears to be correct. Leap years do occur every four years. However, they are

skipped at the turn of every century, except every fourth century (i.e., the year

2000 was a leap year, but 2100, 2200, and 2300 will not be). The code works for

almost all years, except those falling into these exceptional cases. We categorize

this as an algorithmic error.

15.2.4 Specification Errors

Perhaps the most infamous software bug of all was the Year 2000 computer bug,

or Y2K bug. Many early computer systems had small memories, and this required

programmers to economize on the size of data items they stored in memory. When

storing dates, many early software systems only stored enough bits to represent

the last two digits of the year; for example, in storing the year 1975, only 75
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 int year;
6
7 printf("Input a year (i.e., 1942): ");
8 scanf("%d", &year);
9
10 if ((year % 4) == 0)
11 printf("This year is a leap year\n");
12 else
13 printf("This year is not a leap year\n");
14 }

Figure 15.5 This program to determine leap years has an algorithmic bug.

was stored, with the century being implicitly the 1900s. With this shortcut, the

year 2000 became indistinguishable from the year 1900 (or 1800 or 2100, for

that matter). This presented a worldwide challenge as we anticipated the current

year transitioning into the 2000s after December 31, 1999. Plenty of software

written originally on memory-constrained systems was still functional, and this

software needed fixing in order to properly roll over with the century changeover.

As a consequence, a lot of money and effort were invested in tracking down Y2K-

related bugs before January 1, 2000, rolled around.

We call this type of bug a specification bug. The software worked as specified,

but the specification itself was flawed. The software architects of the day decided

that it was OK to encode only the last two digits of a year because they didn’t

expect the software would still be operational at the end of 1999.

Specification errors can arise from poor specifications that don’t properly

anticipate the operating requirements for the software, and the Y2K bug is an

example of this. Specification errors can also arise from poor communication of

those specifications. Often, we write down the working requirements in specifica-

tion documents, and if those documents are poorly or incorrectly written, software

errors can arise. Even with a well-conceived and well-written set of requirements,

specification errors can arise due to poor interpretation on the part of the coding

team. Specifications are a human-oriented concept, and they are susceptible to

human errors throughout the process.

15.3 Testing
There is an adage among seasoned programmers that any line of code that is

untested is probably buggy. Good testing techniques are crucial to writing good

software. What is testing? With testing, we basically put the software through

“synthetic trails.” We apply synthetic inputs, observe how the software behaves,

and try to discover bugs before the software is released into the wild. Real-world

software might undergo millions of trials before it is released.
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In an ideal world, we could test a program by examining its operation under

every possible input condition. For most programs, testing for every input combi-

nation is impossible. For example, if we wanted to test a program that finds prime

numbers between integers A and B, where A and B are 32-bit input values, there

would be (232)
2

possible input combinations. If we could run one million trials

in one second, it would take half a million years to completely test the program.

Clearly, testing each input combination is not an option.

Which input combinations do we test with? We could randomly pick inputs

in hopes that some of those random patterns will expose the program’s bugs.

And such a strategy is good, but it is often not enough to provide high degrees of

assurance that the code meets specifications. The modern software development

process views testing more systematically. In particular, black-box testing is used

to check if the code meets its specifications, and white-box testing targets various

facets of the program’s implementation in order to provide some assurance that

many lines (if not every line) of code are tested.

15.3.1 Black-Box Testing

With black-box testing, we examine if the program meets its input and output

specifications, disregarding the internals of the program. We treat the software

being tested as a black box where the internals are not visible to us. That is, with

black-box testing, we are concerned with what the program does and not how it

does it. For example, a black-box test of the program AllSum in Figure 15.3 might

involve running the program, typing an input number, and comparing the result-

ing output to what you calculated by hand. If the two do not match, then either the

program contains a bug or your arithmetic skills are shoddy. We might continue

attempting trials until we are reasonably confident that the program is functional.

For testing larger programs, the testing process is automated in order to run

more tests per unit time. That is, we automatically run the original program, pro-

vide some random inputs, check that the output meets specifications, and repeat.

With such a process, we can clearly run many more trials than we could if a person

performed each trial.

To automate the black-box test process, we need a way to automatically verify

whether the program output meets specifications given a particular testing input.

Oftentimes, we’ll need to develop a checker program that can perform a compu-

tation similar to the program being tested but developed independently. Because

such a program is developed independently, it is less likely to have the same bug

in the same place, and the two programs can jointly serve to detect bugs. Black-

box testers who write checker programs are often not permitted to see the code

within the black box they are testing so that we get a truly independent version

of the checker.

15.3.2 White-Box Testing

For larger software systems, black-box testing is supplemented with additional

techniques to raise the effectiveness of the testing process. With black-box testing,

it is not possible to know which lines of code have been tested and which have

not, and therefore, according to the adage, all are presumed to be buggy.
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Software developers supplement black-box testing with white-box tests.

White-box tests isolate various internal components of the software and test

whether the components conform to their intended design. That is, we test know-

ing how the software is constructed. For example, knowing that the code consists

of several different functions and testing each function in isolation (perhaps as a

black box) is a white-box process. We can apply the same type of testing to loops

and other subconstructs within a function.

How might a white-box test be constructed? For many types of white-box

tests, we modify the code itself. For example, in order to see whether a function

is working correctly, we might add extra code to call the function a few extra times

with different inputs and check whether its outputs match the expected results. We

might add extra printf statements to the code with which we can observe values

of internal variables to see if things are working as expected. Once the code is

complete and ready for release, these printf statements can be disabled, or not

selected for compilation, or removed outright.

Another common white-box strategy is the use of error-detecting code strate-

gically placed within an application. This code might check for conditions that

indicate that the application is not working correctly. When an incorrect situa-

tion is detected, the code takes some corrective actions, such as shutting down

some portion of the app, or terminating or restarting the application. Since this

error-detecting code asserts that certain conditions hold during program execu-

tion, we generally call these checks assertions. For example, assertions can be

used to check whether a function returns a value within an expected range. If the

return value is out of range, then some action is triggered.

In the following example, we check whether the function CalculateArea
generates a value that is a reasonable value. In this case, the function takes as

input some geometric object represented by two height values and two width

values. Not knowing anything else about the function, we can include a check

that assures that the value generated by CalculateArea is never negative, which

it shouldn’t be unless something has gone awry.

area = CaculateArea(height1, heigth2, width1, width2);
if (area < 0)

printf("Error in function CalculateArea!\n");

Most practical testing methodologies enforce the use of both black-box and

white-box testing together. White-box tests alone do not cover the complete func-

tionality of the software—even if all white-box tests pass and we individually

cover each line of code, there might be a portion of the operating specifications

that is left uncovered. Similarly, black-box tests alone do not guarantee that every

line of code is tested. The two together provide a powerful mechanism for testing

through the vast operating space of real-world software systems.

15.4 Debugging
Once bug is detected, it must be isolated, fixed, and the fix verified. This is what

we refer to as debugging our code. Debugging an error requires the use of our
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reasoning skills, often intense use. We observe a symptom of the error, such as

incorrect output, and perhaps even a set of input that triggers the error. We might

even have a general idea of where in the code the bug is located, but often not.

From this limited information, we apply our powers of deduction to isolate the

exact location of the bug in order to address it.

The key to effective debugging is being able to quickly gather information

that will lead to identification and resolution of the bug, similar to the way a

detective might gather evidence at a crime scene or the way a skilled physician

might perform a series of tests in order to diagnose a patient’s illness. There are a

number of methodologies programmers use to gather information for debugging

purposes. These range from quick and dirty ad hoc techniques to those that are

more systematic, involving the use of software debugging tools.

15.4.1 Ad Hoc Techniques

The easiest and most natural technique for debugging is visual inspection of the

source code. Sometimes the nature of the failure tips us off to the region of the

code where the bug is likely to exist. Looking through the code in that region

and checking for simple mistakes, such as initialization errors and off-by-one

errors and other semantic errors, is an effective first measure for debugging our

code. This technique is fine if the region of source code is small and you are very

familiar with the code.

We can complement this technique with another ad hoc technique of inserting

statements within the code to print out additional information during execution.

Printing out values of key variables can provide quick insights into what is going

wrong in the program logic. Adding printf statements to track control flow can

tell us which statements are executing and in which order. For example, if you

wanted to quickly determine if a counter-controlled loop is iterating for the correct

number of iterations, you could place a printf statement within the loop body.

For simple programs, such ad hoc techniques are easy and reasonable to use.

Large or more complex programs, which can have intricate bugs, require the use

of more heavy-duty techniques.

15.4.2 Source-Level Debuggers

Ad hoc techniques require additional work, code, and compilations to gather

debugging information, and they are time-intensive on the part of the program-

mer. Simplifying the debugging process would go a long way toward improving

programmer productivity. Source-level debuggers do just that by making the ad

hoc techniques easier on the programmer. Source-level debuggers are software

development tools that enable us to examine variables, memory objects, registers,

and memory at any point during the execution of our code.

A source-level debugger can allow us to execute our code one C statement at

a time and examine the values of any program state (variables, registers, memory,

run-time stack, etc.) along the way. Source-level debuggers are similar to the LC-

3 debugger that we used previously, except that a source-level debugger operates

in relation to high-level source code rather than LC-3 assembly code.
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For a source-level debugger to be used on a program, the program must be

compiled such that the compiler augments the executable image with enough

additional information for the debugger to do its job. Among other things, the

debugger will need information from the compilation process in order to map

every machine language instruction to its corresponding statement in the high-

level source code. The debugger also needs information about variable names

and their locations in memory (i.e., the symbol table). This is required so that a

programmer can examine the value of any variable within the program using its

name in the source code.

Most programmers today use an integrated development environment (IDE)

for developing their code. These environments integrate the common tools needed

to develop code, such as code repository, editor, and compilation system, into

a single user interface. Examples of IDEs include Windows Visual Studio,

Xcode for Apple devices, Android Studio for Android devices, and Eclipse for

cross-platform development. All of these IDEs provide access to a source-level

debugger. While the specifics of the debugger depend on the IDE itself, there

is a core set of operations that nearly every IDE’s debugger will support. In

this section, we will step through this core set. The core debugger commands

fall into two categories: those that let you control the execution of the program

and those that let you examine the value of variables and memory during the

execution.

15.4.2.1 Breakpoints

Breakpoints allow us to specify points during the execution of a program when

the program should be temporarily stopped so that we can examine or modify the

state of the program. This is useful because it helps us examine the program’s

execution in the region of the code where the bug occurs. For example, we can

add a breakpoint at a particular line in the source code or at a particular func-

tion. When execution reaches that line, program execution is frozen in time, and

we can examine everything about that program at that particular instance. How a

breakpoint is added is specific to the user interface of the IDE, usually by click-

ing on the line of code where we want the breakpoint to be inserted. Sometimes

it is useful to stop at a line only if a certain condition is true. Such conditional

breakpoints are useful for isolating specific situations in which we suspect buggy

behavior. For example, if we suspect that the function PerformCalculation
works incorrectly when its input argument is 16, then we might want to add

a breakpoint that stops execution only when x is equal to 16 in the following

code:

for (x = 0; x < 100; x++)
PerformCalculation(x);

Alternatively, we can set a watchpoint to stop the program at any point where

a particular condition is true. For example, we can use a watchpoint to stop execu-

tion whenever the variable LastItem is equal to 4. This will cause the debugger

to stop execution at any statement that causes LastItem to equal 4. Unlike break-
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points, watchpoints are not associated with any single line of the code but apply

to every line.

15.4.2.2 Single-Stepping

Once the debugger reaches a breakpoint (or watchpoint), it temporarily suspends

program execution and awaits our next command. At this point we can examine

program state, such as values of variables, or we can continue with execution. It is

often useful to proceed from a breakpoint one statement at time, a process referred

to as single-stepping. The LC-3 debugger has a command that executes a single

LC-3 instruction and similarly a C source-level debugger that allows execution

to proceed one C statement at a time. The single-step command executes the

current source line and then suspends the program again. Single-stepping through

a program is very useful, particularly when isolating a bug down to a single source

code line. We can set a breakpoint near the suspected region and then check the

values of variables as we single-step through the code. A common use of single-

stepping is to verify that the control flow of the program does what we expect.

We can single-step through a loop to verify that it performs the correct number

of iterations, or we can single-step through an if-else to verify that we have

programmed the condition correctly.

Variations of single-stepping exist that allow us to skip over functions or to

skip to the last iteration of a loop. These variations are useful for skipping over

code that we do not suspect to contain errors but that is in the execution path

between a breakpoint and the error itself.

15.4.2.3 Examining Values

The art of debugging is about gathering the information required to logically

deduce the source of the error. A source-level debugger is the tool of choice for

gathering information when debugging large programs. While execution is sus-

pended at a breakpoint, we can gather information about the bug by examining

the values of variables related to the suspected bug. Generally speaking, we can

examine all execution states of the program at the breakpoint. We can examine

the values of variables, memory, the stack, and even the registers. The specifics

on how these things can be examined depend on the user interface of the particu-

lar IDE being used. Some IDEs allow you to mouse over a variable in the source

code window, causing a pop-up window to display the variable’s current value.

We encourage you to familiarize yourself with the source-level debugger in your

IDE. At the end of this chapter, we provide several problems that you can use to

gain some experience with this useful debugging tool.

15.5 Programming for Correctness
Knowing how to test and debug your code is a prerequisite for being a good

programmer. Great programmers know how to avoid many error-causing situa-

tions in the first place. Poor programming methodologies give rise to buggy code,
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particularly on projects developed by teams of coders. Being aware of some

defensive programming techniques can help reduce the amount of time required

to get a piece of code up and running. The battle against bugs starts before any

line of code is written. Here, we provide three general methods for catching errors

even before they become errors.

15.5.1 Nailing Down the Specifications

Many bugs arise from poor or incomplete program specifications. Specifications

sometimes do not cover all possible operating scenarios, and thus they leave some

conditions open for interpretation by the programmer. For example, recall the

factorial example from Chapter 14. Figure 14.2 is a program that calculates the

factorial of a number typed at the keyboard. The specification for this program

might have simply been, “Write a program to take an integer value from the key-

board and calculate its factorial.” As such, the specification is incomplete. What

if the user enters a negative number? Or zero? What if the user enters a number

that is too large and results in an overflow? In these cases, the code as written will

not perform correctly, and it is therefore buggy. To fix this, we need to modify

the specifications of the program to allow the program to indicate an error if the

input is less than or equal to zero, or if the input is such that n! > 231, implying

that n must be less than or equal to 31. In the code in Figure 15.6, we have added

an input range check to the Factorial function. Now the function returns a −1

if its input parameter is out of the correct operating range.

1 int Factorial(int n) // Function Definition
2 {
3 int result = 1; // Initialized result
4
5 if ((n < 1) || (n > 31)) // Bad parameter
6 return -1;
7
8 for (int i = 1; i <= n; i++) // Calculate factorial
9 result = result * i;
10
11 return result; // Return to caller
12 }

Figure 15.6 Factorial function with a check for valid input parameter range.

15.5.2 Modular Design

Functions are useful for extending the functionality of the programming lan-

guage. With functions we can add new operations and constructs that are helpful

for a particular programming task. In this manner, functions enable us to write

programs in a modular fashion.

Once a function is complete, we can test it independently in isolation (i.e., as

a white-box test) and determine that it is working as we expect. Since a typical

function performs a smaller task than the complete program, it is easier to test than
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the entire program. Once we have tested and debugged each function in isolation,

we will have an easier chance getting the program to work when everything is

integrated.

This modular design concept of building a program out of simple, pretested,

working components is a fundamental concept in systems design. In subsequent

chapters, we will introduce the concept of a library. A library is a collection of

pretested components that all programmers can use in writing their code. Modern

programming practices are heavily oriented around the use of libraries because

of the benefits inherent to modular design. We not only design software, but cir-

cuits, hardware, and various other layers of the computing system using a similar

modular design philosophy.

15.5.3 Defensive Programming

All seasoned programmers have techniques to prevent bugs from creeping into

their code. They construct their code in a such a way that those errors that they

suspect might affect the program are eliminated by design. That is, they pro-

gram defensively. We provide a short list of general defensive programming

techniques that you should adopt to avoid problems with the programs you

write.

∙ Comment your code. Writing comments makes you think about the code

you’ve written. Code documentation is not only a way to inform others

about how your code works but also a process that makes you reflect on

and reconsider your code. During this process, you might discover that you

forgot a special case or operating condition that will ultimately break your

code.

∙ Adopt a consistent coding style. For instance, aligning opening and closing

braces will let you identify simple semantic errors associated with missing

braces. Along these lines, also be consistent in variable naming. The name of

a variable should convey some meaningful information about the value the

variable contains.

∙ Avoid assumptions. It is tempting to make simple, innocent assumptions

when writing code, but these can ultimately lead to broken code. For exam-

ple, in writing a function, we might assume that the input parameter will

always be within a certain range. If this assumption is not grounded in the pro-

gram’s specifications, then the possibility for an error has been introduced.

Write code that is free of such assumptions—or at least use assertions and

spot checks to indicate when the assumptions do not hold.

∙ Avoid global variables. While some experienced programmers rely heavily

on global variables, many software engineers advocate avoiding them when-

ever possible. Global variables can make some programming tasks easier.

However, they often make code more difficult to understand and extend, and

when a bug is detected, harder to analyze.
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∙ Rely on the compiler. Most good compilers have an option to carefully check

your program for suspicious code (e.g., an uninitialized variable) or com-

monly misapplied code constructs (e.g., using the assignment operator =

instead of the equality operator ==). While these checks are not thorough,

they do help identify some commonly made programming mistakes. The

defensive techniques mentioned here are particular to the programming con-

cepts we’ve already discussed. In subsequent chapters, after we introduce

new programming concepts, we also discuss how to use defensive techniques

when writing programs that use them.

15.6 Summary
In this chapter, we presented methodologies for finding and fixing bugs within

your code. Digital systems are increasingly reliant on software, and modern

software is often very complex. In order to prevent software bugs from often ren-

dering our personal devices unusable or from occasionally causing space probes

to crash, it is important that software tightly conform to its specifications. The

key concepts that we covered in this chapter are:

∙ Testing. Finding bugs in code is not easy, particularly when the program

is large. Software engineers use systematic testing to find errors in software.

Black-box testing is done to validate that the behavior of a program conforms

to specifications. White-box testing targets the structure of a program and

provides some assurance that every line of code has undergone some level of

testing.

∙ Debugging. Debugging an error requires the ability to take the available

information and deduce the source of the error. While ad hoc techniques

can provide us with a little additional information about the bug, the source-

level debugger is the software engineering tool of choice for most debugging

tasks. Source-level debuggers allow a programmer to execute a program in

a controlled environment and examine various values and states within the

program during execution.

∙ Programming for correctness. Experienced programmers try to avoid bugs

even before the first line of code is written. Often, the specification of the

program is the source of bugs, and nailing down loose ends will help elim-

inate bugs after the code has been written. Modular design involves writing

a larger program out of simple pretested functions and helps reduce the dif-

ficulty in testing a large program. Following a defensive programming style

helps reduce situations that lead to buggy code.
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Exercises

15.1 The following programs each have a single error that prevents them

from operating as specified. With as few changes as possible, correct

the programs. They all should output a single number: the sum of the

integers from 1 to 10, inclusive.

a. #include <stdio.h>
int main(void)
{

int i = 1;
int sum = 0;

while (i < 11) {
sum = sum + i;
++i;
printf("%d\n", sum);

}
}

b. #include <stdio.h>
int main(void)
{

int sum = 0;

for (int i = 0; i >= 10; ++i)
sum = sum + i;

printf("%d\n", sum);
}

c. #include <stdio.h>
int main(void)
{

int i = 0;
int sum = 0;

while (i <= 11)
sum = sum + i++;

printf("%d\n", sum);
}

d. #include <stdio.h>
int main(void)
{

int sum = 0;
for (int i = 0; i <= 10;)

sum = sum + ++i;
printf("%d\n", sum);

}
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15.2 The following program fragments have syntax errors and therefore will

not compile. Assume that all variables have been properly declared. Fix

the errors so that the fragments will not cause compiler errors.

a. i = 0;
j = 0;
while (i < 5)
{

j = j + 1;
i = j >> 1

}

b. if (cont == 0)
a = 2;
b = 3;

else
a = -2;
b = -3;

c. #define LIMIT 5;
if (LIMIT)

printf("True");
else

printf("False");

15.3 The following C code was written to find the minimum of a set of

positive integers that a user enters from the keyboard. The user signifies

the end of the set by entering the value −1. Once all the numbers have

been entered and processed, the program outputs the minimum.

However, the code contains an error. Identify and suggest ways to fix

the error. Use a source-level debugger, if needed, to find it.

#include <stdio.h>
int main(void)
{

int smallestNumber = 0;
int nextInput;
// Get the first input number
scanf("%d", &nextInput);

// Keep reading inputs until user enters -1
while (nextInput != -1) {

if (nextInput < smallestNumber)
smallestNumber = nextInput;

scanf("%d", &nextInput);
}
printf("The smallest number is %d\n", smallestNumber);

}
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15.4 The following program reads in a line of characters from the keyboard

and echoes only the alphabetic characters within the line. For example,

if the input were “Let's meet at 6:00pm.”, then the output should

be “Letsmeetatpm” However, the program has a bug. Can you identify

and fix the bug?

#include <stdio.h>
int main(void)
{

char echo = '0';

while (echo != '\n') {
scanf("%c", &echo);
if ((echo > 'a' || echo < 'z') &&

(echo > 'A' || echo < 'Z'))
printf("%c", echo);

}
}

15.5 Use a source-level debugger to monitor the execution of the following

code:

#include <stdio.h>
int IsDivisibleBy(int dividend, int divisor);

int main(void)
{

int f; // The number of integer factors of a number
for (int i = 2; i < 1000; i++) {

f = 0;
for (int j = 2; j < i; j++) {

if (IsDivisibleBy(i, j))
f++;

}
printf("The number %d has %d factors\n", i, f);

}
}

int IsDivisibleBy(int dividend, int divisor)
{

if (dividend % divisor == 0)
return 1;

else
return 0;

}
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a. Set a breakpoint at the beginning of function IsDivisibleBy and

examine the parameter values for the first ten calls. What are they?

b. What is the value of f after the inner for loop ends and the value of

i equals 660?

c. Can this program be written more efficiently? Hint: Monitor the

value of the arguments when the return value of IsDivisibleBy
is 1.

15.6 Using a source-level debugger, determine for what values of arguments

the function Mystery returns a zero.

#include <stdio.h>
int Mystery(int a, int b, int c);

int main(void)
{

int sum = 0; // running sum of Mystery
for (int i = 100; i > 0; i--) {

for (int j = 1; j < i; j++) {
for (int k = j; k < 100; k++)

sum = sum + Mystery(i, j, k);
}

}
}

int Mystery(int a, int b, int c)
{

int out;

out = 3*a*a + 7*a - 5*b*b + 4*b + 5*c ;
return out;

}
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15.7 The following program manages flight reservations for a small airline

that has only one plane. This plane has SEATS number of seats for

passengers. This program processes ticket reservation requests from the

airline’s website. The command R requests a reservation. If there is a

seat available, the reservation is approved. If there are no seats, the

reservation is denied. Subsequently, a passenger with a reservation can

purchase a ticket using the P command. This means that for every P
command, there must be a preceding R command; however, not every R
will materialize into a purchased ticket. The program ends when the X
command is entered. Following is the program, but it contains serious

design errors. Identify the errors. Propose and implement a correct

solution.

#include <stdio.h>
#define SEATS 10

int main(void)
{

int seatsAvailable = SEATS;
char request = '0';
while (request != 'X') {

scanf("%c", &request);
if (request == 'R') {

if (seatsAvailable)
printf("Reservation Approved!\n");

else
printf("Sorry, flight fully booked.\n");

}
if (request == 'P') {

seatsAvailable--;
printf("Ticket purchased!\n");

}
}
printf("Done! %d seats not sold\n", seatsAvailable);

}
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C H A P T E R

Pointers and Arrays

16.1 Introduction
In this chapter, we introduce (actually, reintroduce) two simple but powerful types

of data objects: pointers and arrays. We first encountered the idea of pointers

and arrays when writing LC-3 code. Now we formalize them in the context of

high-level programming languages. A pointer is simply the address of a memory

object, such as a variable. With pointers, we can indirectly access these objects,

which provides for some very useful capabilities. For example, with pointers,

we can create functions that modify the arguments passed by the caller. With

pointers, we can create sophisticated data organizations that grow and shrink (like

the run-time stack) during a program’s execution.

An array is a list of data objects of the same type arranged sequentially in

memory. For example, in a few of the LC-3 examples from the first half of the

book, we represented a file of characters as a sequence of characters arranged

sequentially in memory. This sequential arrangement of characters is more for-

mally known as an array. To access a particular item in an array, we specify which

element we want to access by providing its index. So, an expression like a[4]
will access the fifth element in the array named a—it is the fifth element because

we start numbering the array at element 0. Arrays are useful because they allow

us to conveniently process groups of data such as vectors, matrices, lists, and

character strings, which are naturally representative of certain objects in the real

world.

16.2 Pointers
We begin our discussion of pointers with a classic example of their utility. In

the C program in Figure 16.1, the function Swap is designed to switch the value

of its two arguments. The function Swap is called from main with the argu-

ments valueA, which in this case equals 3, and valueB, which equals 4. Once

Swap returns control to main, we expect valueA and valueB to have their values
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1 #include <stdio.h>
2
3 // Swap has no return value thus is declared as void
4 void Swap(int firstVal, int secondVal);
5
6 int main(void)
7 {
8 int valueA = 3;
9 int valueB = 4;
10
11 printf("Before Swap ");
12 printf("valueA = %d and valueB = %d\n", valueA, valueB);
13
14 Swap(valueA, valueB);
15
16 printf("After Swap  ");
17 printf("valueA = %d and valueB = %d\n", valueA, valueB);
18 }
19
20 void Swap(int firstVal, int secondVal)
21 {
22 int tempVal; // Holds firstVal when swapping
23
24 tempVal = firstVal;
25 firstVal = secondVal;
26 secondVal = tempVal;
27 }

Figure 16.1 The function Swap attempts to swap the values of its two parameters.

swapped. However, compile and execute the code and you will notice that those

variables in Swap remain unchanged. To analyze why, let’s examine the run-time

stack during the execution of Swap. Figure 16.2 shows the state of the run-time

stack just prior to the completion of the function, just after the statement on line 25

has executed but before control returns to function main. Notice that the function

Swap has modified the values of its parameters firstVal and secondVal within

its own stack frame. When Swap finishes and control returns to main, these mod-

ified values are lost when the stack frame for Swap is popped off the stack. The

values from main’s perspective have not been swapped. And we are left with a

buggy program.

In C, arguments are always passed from the caller function to the callee by
value. C evaluates each argument that appears in a function call as an expres-

sion and pushes the value of the expression onto the run-time stack in order

to pass them to the function being called. In the callee, the argument values

then become values for the function’s parameter variables. For Swap to mod-

ify the arguments that the caller passes to it, it must have access to the caller

function’s stack frame—it must access the locations at which the arguments are

stored in order to modify their values. The function Swap needs the addresses
of valueA and valueB in main in order to change their values. As we shall see
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Figure 16.2 A snapshot of the run-time stack when the function Swap is about to
return control to main.

in the next few sections, pointers and their associated operators enable this to

happen.

16.2.1 Declaring Pointer Variables

Just as an integer variable contains a bit pattern that is treated and interpreted

as an integer value, a pointer variable contains a bit pattern that is treated as an

address of a memory object, such as a variable. A pointer is said to point to the

variable whose address it contains. Associated with a pointer variable is the type
of object to which it points. So, for instance, an integer pointer points to an integer

variable. To declare a pointer variable in C, we use the following syntax:

int *ptr;

Here we have declared a variable named ptr that points to an integer.

The asterisk (*) indicates that the identifier that follows is a pointer variable.

C programmers will often say that ptr is of type int star. Similarly, we can

declare

char *cp;
double *dp;

The variable cp points to a character and dp points to a double-precision float-

ing point number. Pointer variables are initialized in a manner similar to all other
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variables. If a pointer variable is declared as a local variable, it will not be initial-

ized automatically. The syntax of declaring a pointer variable using * may seem a

bit odd at first, but once we have gone through the pointer operators, the rationale

behind the syntax will become more clear.

16.2.2 Pointer Operators

C has two operators for pointer-related manipulations, the address operator & and

the indirection operator *.

16.2.2.1 The Address Operator &

The address operator, whose symbol is an ampersand, &, generates the memory

address of its operand, which must be a memory object such as a variable. In

the following code sequence, the pointer variable ptr will point to the integer

variable object. The expression on the right-hand side of the second assignment

statement generates the memory address of object.

int object;
int *ptr;

object = 4;
ptr = &object;

Let’s examine the LC-3 code for this sequence. Both declared variables are local

variables allocated on the run-time stack. Recall that R5, the base pointer, points

to the first declared local variable, or object in this case.

AND R0, R0, #0 ; Clear R0
ADD R0, R0, #4 ; R0 = 4
STR R0, R5, #0 ; object = 4;
ADD R0, R5, #0 ; Generate memory address of object
STR R0, R5, #-1 ; Ptr = &object;

Figure 16.3 shows the stack frame of the function containing this code imme-

diately after the statement ptr = &object; has executed. In order to make things

more concrete, each memory location is labeled with an address, which we’ve

arbitrarily selected to be in the xEFF0 range. The base pointer R5 currently points

to xEFF2. Notice that object contains the integer value 4 and ptr contains the

memory address of object.

16.2.2.2 The Indirection Operator *

The second pointer operator is called the indirection, or dereference, operator, and

its symbol is the asterisk, * (pronounced star in this context). This operator allows

us to indirectly manipulate the value of a memory object. From our previous
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Figure 16.3 The run-time stack frame containing object and ptr after the
statement ptr = &object has executed.

example: *ptr refers to the value stored in variable object. The expression *ptr
refers to the value pointed to by the pointer variable ptr. Here, *ptr and object
can be used interchangeably. Adding to the previous C code example,

int object;
int *ptr;

object = 4;
ptr = &object;
*ptr = *ptr + 1;

The statement *ptr = *ptr + 1; accomplishes the same thing as object =
object + 1;. The expression *ptr means different things depending on which

side of the assignment operator it appears on. On the right-hand side of the assign-

ment operator, it refers to the value that appears at that location (in this case the

value 4). On the left-hand side, it specifies the location that gets modified (in this

case, the address of object). Let’s examine the LC-3 code for the last statement

in the preceding code.

LDR R0, R5, #-1 ; R0 contains the value of ptr
LDR R1, R0, #0 ; R1 <- *ptr
ADD R1, R1, #1 ; *ptr + 1
STR R1, R0, #0 ; *ptr = *ptr + 1;

Notice that this code is different from what would be generated if the final

C statement had been object = object + 1;. With the pointer dereference,

the compiler generates two LDR instructions for the indirection operator on the

right-hand side, one to load the value of ptr, which is a memory address, and

another to get the value stored at that address. With the dereference on the left-

hand side, the compiler generates a STR R1, R0, #0. Had the statement been

object = *ptr + 1;, the compiler would have generated STR R1, R5, #0.

16.2.3 Passing a Reference Using Pointers

Using the address and indirection operator, we can repair the Swap function from

Figure 16.1, which did not quite accomplish the swap of its two input arguments.

Figure 16.4 lists the same program with a revised version of Swap called NewSwap.
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1 #include <stdio.h>
2
3 void NewSwap(int *firstVal, int *secondVal);
4
5 int main(void)
6 {
7 int valueA = 3;
8 int valueB = 4;
9

10 printf("Before Swap ");
11 printf("valueA = %d and valueB = %d\n", valueA, valueB);
12
13 NewSwap(&valueA, &valueB);
14
15 printf("After Swap ");
16 printf("valueA = %d and valueB = %d\n", valueA, valueB);
17 }
18
19 void NewSwap(int *firstVal, int *secondVal)
20 {
21 int tempVal; // Holds firstVal when swapping */
22
23 tempVal = *firstVal;
24 *firstVal = *secondVal;
25 *secondVal = tempVal;
26 }

Figure 16.4 The function NewSwap swaps the values of its two arguments.

The first modification we’ve made is that the parameters of NewSwap are no longer

integers but are now pointers to integers (int *). These two parameters are the

memory addresses of the two variables that are to be swapped. Within the func-

tion body of NewSwap, we use the indirection operator * to obtain the values that

these pointers point to.

Now when we call NewSwap from main, we need to supply the addresses for

the two variables we want swapped, rather than the values of the variables as we

did in the previous version of the code. For this, the & operator does the trick.

Figure 16.5 shows the run-time stack when various statements of the function

NewSwap are executed. The three subfigures (A–C) correspond to the run-time

stack after lines 23, 24, and 25 execute. By design, C passes information from

the caller function to the callee by value; that is, each argument expression in the

call statement is evaluated, and the resulting value is passed to the callee via

the run-time stack. However, in NewSwap we created a call by reference for the

two arguments by using the address operator &. When an argument is passed as

a reference, its address is passed to the callee function—for this to be valid, the

argument must be a variable or other memory object (i.e., it must have an address).

The callee function then can use the indirection operator * to access (and modify)

the original value of the object.
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Figure 16.5 Snapshots of the run-time stack when the function NewSwap executes
the statements in (a) line 23, (b) line 24, (c) line 25.

16.2.4 Null Pointers

Sometimes it is convenient for us to have a pointer point to nothing so that

we can differentiate it from an actual pointer value. A pointer that points to

nothing is a null pointer. In C, we make this designation with the following

assignment:

int *ptr;
ptr = NULL;

Here, we are assigning the value of NULL to the pointer variable ptr. In C, NULL is

a specially defined preprocessor macro that contains a value 0. So by convention,

we consider a pointer that points to memory address 0 to be a special case pointer

that points to nothing. Having such a pointer will be quite useful for dynamic data

structures, which we will discuss in Chapter 19.

16.2.5 Demystifying the Syntax

Let’s revisit some notation that we introduced in Chapter 11. Considering our

discussion of pass-by-reference in C, let’s re-examine the I/O library function

scanf. In following example,

scanf("%d", &input);

the function scanf needs to update the variable input with the decimal value

read from the keyboard. Therefore, scanf needs the address of input and not
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its value. To accomplish this, the address operator & is required. If we omit the

address operator, the program terminates with an error. Can you come up with

a plausible reason why this happens? Why is it not possible for scanf to work

correctly without the use of a reference?

Before we complete our introduction to pointers, let’s try to make sense of

the pointer declaration syntax. To declare a pointer variable, we use a declaration

of the following form:

type *ptr;

where type can be any of the predefined (or programmer-defined) types such

as int, char, float, double, and so forth. The name ptr is simply any legal

variable identifier. With this declaration, we are declaring a variable that, when

the dereference (*) operator is applied to it, generates a value of type type. That

is, *ptr is of type type.

As with all other operators, the address and indirection operators are evalu-

ated according to the C precedence and associativity rules. The precedence and

associativity of these and all other operators are listed in Table 12.5. Notice that

both of the pointer operators have very high precedence.

16.2.6 An Example Problem Involving Pointers

Say we want to develop a C program that calculates the quotient and remainder

given an integer dividend and integer divisor. That is, our code will calculate div-
idend / divisor and dividend % divisor . The structure of this program is very

simple and requires only the sequential construct—no iteration required. The

twist, however, is that we want the calculation of quotient and remainder to be

performed by a single C function.

We can easily construct a function to generate a single output value (say,

quotient) that we can pass back to the caller using the return value mechanism.

A function that calculates only the quotient, for example, could consist of the

single statement return dividend / divisor;. To provide the caller with

multiple values, however, we will make use of the call by reference mechanism

using pointer variables.

The code in Figure 16.6 contains a function that does just that. The func-

tion IntDivide has four parameters, two of which are integers and two of which

are pointers to integers. The function divides the first parameter x by the second

parameter y. The integer portion of the result is assigned to the memory location

pointed to by quoPtr, and the integer remainder is assigned to the memory loca-

tion pointed to by remPtr. Using call-by-reference with pointers, we can create

a function that “returns” multiple output values back to its caller.

Notice that the function IntDivide also returns a value to indicate its status:

It returns a −1 if the divisor is zero, indicating to the caller that an error has

occurred. It returns a zero otherwise, indicating to the caller that the computation

proceeded successfully. The function main, upon return, checks the return value

to determine if the values in quotient and remainder are correct. Using the return

value to signal error conditions during a function call is a common programming

convention, particularly for complex functions.
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1 include <stdio.h>
2
3 int IntDivide(int x, int y, int *quoPtr, int *remPtr);
4
5 int main(void)
6 {
7 int dividend; // The number to be divided
8 int divisor; // The number to divide by
9 int quotient; // Integer result of division

10 int remainder; // Integer remainder of division
11 int error; // Did something go wrong?
12
13 printf("Input dividend: ");
14 scanf("%d", &dividend);
15 printf("Input divisor: ");
16 scanf("%d", &divisor);
17
18 error = IntDivide(dividend,divisor,&quotient,&remainder);
19
20 if (!error) // !error indicates no error
21 printf("Answer: %d remainder %d\n", quotient, remainder);
22 else
23 printf("IntDivide failed.\n");
24 }
25
26 int IntDivide(int x, int y, int *quoPtr, int *remPtr)
27 {
28 if (y != 0) {
29 *quoPtr = x / y; // Modify *quoPtr
30 *remPtr = x % y; // Modify *remPtr
31 return 0;
32 }
33 else
34 return -1;
35 }

Figure 16.6 The function IntDivide calculates the integer portion and remainder of
an integer divide; it returns a −1 if the divisor is zero.

16.3 Arrays
Consider a program that keeps track of the final exam scores for each of the 50

students in a computer engineering course. The most convenient way to store

data in this code would be to declare a single memory object, say the variable

examScore, in which we can store 50 different integer values. We can access a

particular exam score within this variable using an offset from the beginning of

the object. For example, examScore[32] provides the exam score for the 33rd

student, and examScore[19] would be the exam score for the 20th student (the

very first student’s score stored in examScore[0]). The object examScore in

this example is an array of integers. An array is a collection of similar data items
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that are stored sequentially in memory and accessible through a single name or

identifier. Specifically, all the elements in the array are of the same type (e.g.,

int, char, etc.) and accessible through the name of the array.

Arrays are most useful when the data upon which the program operates is nat-

urally expressed as a contiguous sequence of values. Because real-world data falls

into this category (such as exam scores for students in a course), arrays are incred-

ibly useful data structures. Also, from a computational perspective, being able to

access the individual array elements using indices that can potentially themselves

be computed creates a powerful capability for complex computational patterns.

For instance, if we wanted to write a program to take a sequence of 100 num-

bers entered from the keyboard and sort them into ascending order, then an array

would be the natural choice for storing these numbers in memory. The program

would be almost impossible to write using the simple (non-array) variables. And

the indices for the array elements can be computed using iteration constructs,

making the sorting code much more compact and expressive.

16.3.1 Declaring and Using Arrays

First, let’s examine how to declare an array in C. As with all other declarations, arrays

must have a type associated with them. The type indicates the properties of the values

stored in the array. The following declaration creates an array of ten integers:

int grid[10];

The keyword int indicates that we are declaring something of integer type named

grid. The brackets indicate we are declaring an array, and the 10 indicates that

the array is to contain ten integers, all of which will be consecutively located in

memory. Figure 16.7 shows a pictorial representation of how grid is allocated.

The first element, grid[0], is allocated in the lowest memory address and the last

Memory allocated for
array grid

grid[9]

grid[8]

grid[7]
grid[6]

grid[5]

grid[4]

grid[3]

grid[2]

grid[1]

grid[0]

Memory

Figure 16.7 The array grid allocated in memory.
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element, grid[9], in the highest address. If the array grid were a local variable,

then its memory space would be allocated on the run-time stack. To access a

particular element, we provide an index within brackets. For example,

grid[6] = grid[3] + 1;

The statement reads the value stored in the fourth element of grid (remem-

ber, we start numbering with 0), adds 1 to it, and stores the result into the seventh

element of grid. Let’s look at the LC-3 code for this example. Let’s say that grid
is the only local variable allocated on the run-time stack. By our run-time stack

convention, this means that the frame pointer R5 will point to grid[9], or the

last element in the array.

ADD R0, R5, #-9 ; Put the base address of grid into R0
LDR R1, R0, #3 ; R1 <-- grid[3]
ADD R1, R1, #1 ; R1 <-- grid[3] + 1
STR R1, R0, #6 ; grid[6] = grid[3] + 1;

Notice that the first instruction calculates the base address of the array, which

is the address of grid[0], and puts it into R0. The base address of an array in

general is the address of the first element of the array. We can access any element

in the array by adding the index of the desired element to the base address.

The power of arrays comes from being able to compute an array index using

a C integral expression. The following example demonstrates this. Here we are

accessing the array grid using another variable x.

grid[x+1] = grid[x] + 2;

Let’s look at the LC-3 code for this statement. Assume x is allocated on the

run-time stack directly on top of the array grid.

LDR R0, R5, #-10 ; Load the value of x
ADD R1, R5, #-9 ; Put the base address of grid into R1
ADD R1, R0, R1 ; Calculate address of grid[x]
LDR R2, R1, #0 ; R2 <-- grid[x]
ADD R2, R2, #2 ; R2 <-- grid[x] + 2
LDR R0, R5, #-10 ; Load the value of x
ADD R0, R0, #1 ; R0 <-- x + 1
ADD R1, R5, #-9 ; Put the base address of grid into R1
ADD R1, R0, R1 ; Calculate address of grid[x+1]
STR R2, R1, #0 ; grid[x+1] = grid[x] + 2;

16.3.2 Examples Using Arrays

We start off with a simple C program that adds two arrays together by adding the

corresponding elements from each array to form the sum. Each array represents

a list of exam scores for students in a course. Each array contains an element

for each student’s score. To generate the cumulative points for each student, we

effectively want to perform Total[i] = Exam1[i] + Exam2[i]. Figure 16.8

contains the C code to read in two ten-element integer arrays, add them together

into another ten-element array, and print out the sum.
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1 #include <stdio.h>
2 #define NUM_STUDENTS 10
3
4 int main(void)
5 {
6 int Exam1[NUM_STUDENTS];
7 int Exam2[NUM_STUDENTS];
8 int Total[NUM_STUDENTS];
9

10 // Input Exam 1 scores
11 for (int i = 0; i < NUM_STUDENTS; i++) {
12 printf("Input Exam 1 score for student %d : ", i);
13 scanf("%d", &Exam1[i]);
14 }
15 printf("\n");
16
17 // Input Exam 2 scores
18 for (int i = 0; i < NUM_STUDENTS; i++) {
19 printf("Input Exam 2 score for student %d : ", i);
20 scanf("%d", &Exam2[i]);
21 }
22 printf("\n");
23
24 // Calculate Total Points
25 for (int i = 0; i < NUM_STUDENTS; i++) {
26 Total[i] = Exam1[i] + Exam2[i];
27 }
28
29 // Output the Total Points
30 for (int i = 0; i < NUM_STUDENTS; i++) {
31 printf("Total for Student %d = %d\n", i, Total[i]);
32 }
33 }

Figure 16.8 A C program that calculates the sum of two ten-element arrays.

Notice the use of the preprocessor macro NUM_STUDENTS to represent a con-

stant value of the size of the input set. This is a common use for preprocessor

macros, which are usually found at the beginning of the source file (or within

C header files). Now, if we want to increase the size of the array, for example

if the student enrollment changes, we simply change the definition of the macro

(one change) and recompile the program. If we did not use the macro, changing

the array size would require changes to the code in multiple places. The changes

could be potentially difficult to track down, and forgetting to do one would likely

result in a program that did not work correctly.

Now onto a slightly more complex array example. Figure 16.9 lists a C pro-

gram that reads in a sequence of decimal numbers (in total MAX_NUMS of them)

from the keyboard and determines the number of times each input number is

repeated within the sequence. The program then prints out each number, along

with the number of times it repeats.
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1 #include <stdio.h>
2 #define MAX_NUMS 10
3
4 int main(void)
5 {
6
7 int repIndex; // Loop variable for rep loop
8 int numbers[MAX_NUMS]; // Original input numbers
9 int repeats[MAX_NUMS]; // Number of repeats

10
11 // Get input
12 printf("Enter %d numbers.\n", MAX_NUMS);
13 for (int index = 0; index < MAX_NUMS; index++) {
14 printf("Input number %d : ", index);
15 scanf("%d", &numbers[index]);
16 }
17
18 // Scan through entire array, counting number of
19 // repeats per element within the original array
20 for (int index = 0; index < MAX_NUMS; index++) {
21 repeats[index] = 0;
22 for (repIndex = 0; repIndex < MAX_NUMS; repIndex++) {
23 if (numbers[repIndex] == numbers[index])
24 repeats[index]++;
25 }
26 }
27
28 // Print the results
29 for (int index = 0; index < MAX_NUMS; index++)
30 printf("Original number %d. Number of repeats %d\n",
31 numbers[index], repeats[index]);
32 }

Figure 16.9 A C program that determines the number of repeated values in an array.

In this program, we use two arrays, numbers and repeats. Both are declared

to contain MAX_NUMS integer values. The array numbers stores the input sequence.

The array repeats is calculated by the program to contain the number of times

the corresponding element in numbers is repeated in the input sequence. For

example, if numbers[3] equals 115, and there are a total of four 115s in the

input sequence, then repeats[3] will equal 4.

This program consists of three loops, one at line 13, one at line 20, and one at

29. The first and last for loops are simple loops that get keyboard input (line 13)

and print out the results (line 29). The middle for loop (line 20) contains a nested

loop—a loop within a loop. This nested loop computes the number of repeats of

each element of the number array. The outer loop iterates the variable index
from 0 through MAX_NUMS. We use index to scan through the array from the

first element numbers[0] through the last element numbers[MAX_NUMS]. That

is, the outer loop iterates through each element of number. The inner loop also

iterates from 0 through MAX_NUMS; we use this loop to scan through the number
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array again, this time determining how many of the elements equal the element

selected by the outer loop (i.e., numbers[index]). Each time a copy is detected

through the expression

(numbers[repIndex] == numbers[index]),

the corresponding element in the repeats array is incremented (line 24).

16.3.3 Arrays as Parameters

Passing arrays between functions is a useful thing because it allows us to create

functions that operate on arrays. Say we want to create a set of functions that cal-

culates the mean and median on an array of integers. We would need either (1) to

pass the entire array of values from one function to another or (2) to pass a refer-

ence to the array. If the array contains a large number of elements, copying each

element from one stack frame onto another could be very costly in execution time.

Fortunately, C naturally passes arrays by reference. Figure 16.10 is a C program

1 #include <stdio.h>
2 #define MAX_NUMS 10
3
4 int Average(int input_values[]);
5
6 int main(void)
7 {
8 int mean; // Average of numbers
9 int numbers[MAX_NUMS]; // Original input numbers

10
11
12 // Get input
13 printf("Enter %d numbers.\n", MAX_NUMS);
14 for (int index = 0; index < MAX_NUMS; index++) {
15 printf("Input number %d : ", index);
16 scanf("%d", &numbers[index]);
17 }
18
19 mean = Average(numbers);
20
21 printf("The average of these numbers is %d\n", mean);
22 }
23
24 int Average(int inputValues[])
25 {
26 int sum = 0;
27
28 for (int index = 0; index < MAX_NUMS; index++) {
29 sum = sum + inputValues[index];
30 }
31
32 return (sum / MAX_NUMS);
33 }

Figure 16.10 An example of an array as a parameter to a function.
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that contains a function Average whose single parameter is an array of integers.

When calling the function Average from main, we use as the argument the name

of the array numbers. Here, we are not using the standard notation involving

brackets [ ] that we normally use for arrays. In C, an array’s name refers to

the address of the base element of the array. The name numbers is equivalent to

&numbers[0]. The type of numbers is similar to int *, because numbers is a

pointer to something of integer type. In using numbers as the argument to the

function Average, we are causing the address of the array numbers to be pushed

onto the stack and passed to the function Average. Within the function Average,

the parameter inputValues is assigned the address of the array. Within Average
we can access the elements of the original array using standard array notation.

Figure 16.11 shows the run-time stack just prior to the execution of the return
from Average (line 34 of the program).
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Figure 16.11 The run-time stack prior to the execution of the return from Average.
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Notice how the input parameter inputValues is specified in the declaration

of the function Average. The brackets [ ] indicate to the compiler that the

corresponding parameter will be the base address to an array of the specified

type, in this case an array of integers. Since arrays are passed by reference in C,

any modifications to the array values made by the called function will be visible

to the caller once control returns to it. How would we go about passing only a

single element of an array by value? How about by reference?

16.3.4 Strings in C

Strings are sequences of characters that represent text. Strings in C are sim-

ply arrays of character type, with each subsequent element containing the next

character of the string. For example,

char word[10];

declares an array that can contain a string of up to ten characters. Longer strings

require larger arrays. In our example, the array word can contain the strings

“elephant” or “giraffe”, but not the entirety of “hippopotamus”.

The word “giraffe” requires seven actual characters to be stored in the array,

with the remaining three character slots in word unused. If we don’t treat those

three unused elements in a special manner, then we may end up not knowing

where “giraffe” ends. To avoid any ambiguity, we adopt a special protocol for

strings in C where the end of a string is denoted by the null character whose

ASCII value is 0. This character serves as a sentinel that identifies the end of

the string. Such strings are also called null-terminated strings. ’\0’ is the special

character sequence that we can use in our C code to designate the null character.

Continuing with our previous declaration,

char word[10];

word[0] = 'g';
word[1] = 'i';
word[2] = 'r';
word[3] = 'a';
word[4] = 'f';
word[5] = 'f';
word[6] = 'e';
word[7] = '\0';
printf("%s", word);

Here, we are assigning each element of the array individually such that the

string will contain “giraffe”. Notice that the end-of-string character itself is a

character that occupies an element of the array. Even though the array is declared

for ten elements, we must reserve one element for the null character, and therefore

strings that are longer than nine characters cannot be stored in this array. The

word “rhinoceros” could not be stored in word because there would be no room

available for storing the null character designating the end of the string.

We also used a new printf format specification %s in this example. This

specification prints out a string of characters, starting with the character pointed
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to by the corresponding parameter and ending at the end-of-string character ‘\0’.

C also allows strings to be initialized within their declarations.

For instance, the preceding example can be rewritten to the following:

char word[10] = "Hello";
printf("%s", word);

Make note of two things here: First, character strings are distinguished from

single characters with double quotes,“ ”. Single quotes are used for single char-

acters, such as ‘A’. Second, the null character is automatically added to the end

of the string.

16.3.4.1 Examples of Strings

Figure 16.12 contains C code that performs a common, useful primitive operation

on strings: It calculates the length of a string. Since the size of the array that con-

tains the string does not indicate the actual length of the string (it does, however,

tell us the maximum length of the string), we need to examine the string itself to

calculate its length. The algorithm for determining string length is easy. Starting

with the first element, we count the number of characters before the null character.

The function StringLength in Figure 16.12 performs this calculation. Notice

1 #include <stdio.h>
2 #define MAX_STRING 20
3
4 int StringLength(char string[]);
5
6 int main(void)
7 {
8 char input[MAX_STRING]; // Input string
9 int length = 0;

10
11 printf("Input a word (less than 20 characters): ");
12 scanf("%s", input);
13
14 length = StringLength(input);
15 printf("The word contains %d characters\n", length);
16 }
17
18 int StringLength(char string[])
19 {
20 int index = 0;
21
22 while (string[index] != '\0')
23 index = index + 1;
24
25 return index;
26 }

Figure 16.12 A program that calculates the length of a string.
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that we are using the format specification %s in the scanf statement. This speci-

fication causes scanf to read in a string of characters from the keyboard until the

first white space character. In C, any space, tab, new line, carriage return, vertical

tab, or form-feed character is considered white space. So if the user types (from

The New Colossus, by Emma Lazarus)

Not like the brazen giant of Greek fame,
With conquering limbs astride from land to land;

only the word Not is stored in the array input. The remainder of the text

line is reserved for subsequent scanf calls to read. So if we perform another

scanf("%s", input), the word like will be stored in the array input. Notice

that the white space is automatically discarded by this %s specification. We exam-

ine this I/O behavior more closely in Chapter 18 when we take a deeper look into

I/O in C. Notice that the maximum word size is 20 characters. What happens if

the first word is longer? The scanf function has no information on the size of the

array input and will keep storing characters to the array address it was provided

until white space is encountered.

So what then happens if the first word is longer than 20 characters? Any

local variables that are allocated after the array input in the function main will

be overwritten. Draw out the stack frame before and after the call to scanf to see

why. In the exercises at the end of this chapter, we provide a problem where you

need to modify this program in order to catch the scenario where the user enters

a word longer than what fits into the input array.

Let’s examine a slightly more complex example that uses functions we

developed in previous code examples in this chapter. In the code example in

Figure 16.13, we read an input string from the keyboard using scanf, then call a

function to reverse the string. The reversed string is then printed out. The func-

tion Reverse first determines the length of the string using the StringLength
function from the previous example. Then it performs the reversal by swapping

the first character with the last, the second character with the second to last, the

third character with the third to last, and so on. To perform the swap, it uses the

NewSwap function from Figure 16.4 modified to operate on characters. The rever-

sal loop calls the function CharSwap on pairs of characters within the string. First,

CharSwap is called on the first and last character, then on the second and second to

last character, and so forth. The C standard library provides many prewritten func-

tions for strings. For example, functions to copy strings, merge strings together,

compare them, or calculate their length can be found in the C standard library, and

the declarations for these functions can be included via the <string.h> header

file.

16.3.5 The Relationship Between Arrays and Pointers in C

You might have noticed that there is a similarity between an array’s name and a

pointer variable to an element of the same type as the array. For instance,

char word[10];
char *cptr;
cptr = word;
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1 #include <stdio.h>
2 #define MAX_STRING 20
3
4 int StringLength(char string[]);
5 void CharSwap(char *firstVal, char *secondVal);
6 void Reverse(char string[]);
7
8 int main(void)
9 {

10 char input[MAX_STRING]; // Input string
11
12 printf("Input a word (less than 20 characters): ");
13 scanf("%s", input);
14
15 Reverse(input);
16 printf("The word reversed is %s.\n", input);
17 }
18
19 int StringLength(char string[])
20 {
21 int index = 0;
22
23 while (string[index] != '\0')
24 index = index + 1;
25
26 return index;
27 }
28
29 void CharSwap(char *firstVal, char *secondVal)
30 {
31 char tempVal; // Temporary location for swapping
32
33 tempVal = *firstVal;
34 *firstVal = *secondVal;
35 *secondVal = tempVal;
36 }
37
38 void Reverse(char string[])
39 {
40 int length;
41
42 length = StringLength(string);
43
44 for (int index = 0; index < (length / 2); index++)
45 CharSwap(&string[index], &string[length - (index + 1)]);
46 }

Figure 16.13 A program that reverses a string.
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is a legal, and sometimes useful, sequence of code. Here we have assigned the

pointer variable cptr to point to the base address of the array word. Because

they are both pointers to characters, cptr and word can be used interchangeably.

For example, we can access the fourth character within the string by using either

word[3] or *(cptr + 3).

One difference between the two, though, is that cptr is a variable and can

be reassigned (i.e., it can appear on the left-hand side of an assignment operator).

The array identifier word, on the other hand, cannot be reassigned. For example,

the following statement is illegal: word = newArray. It generates a compiler

error. The identifier always points to a fixed spot in memory where the compiler

has placed the array. Once it has been allocated, it cannot be moved.

Table 16.1 shows the equivalence of several expressions involving pointer

and array notation. Rows in the table are expressions with similar meanings.

Table 16.1 Expressions with Similar Meanings

Using a Pointer Using Name of Array Using Array Notation

Address of array cptr word &word[0]
0th element *cptr *word word[0]
Address of element n (cptr + n) (word + n) &word[n]
Element n *(cptr + n) *(word + n) word[n]

Here we assume cptr is a char * and word is a char array and cptr = &word[0];

16.3.6 Problem Solving: Insertion Sort

With this initial exposure to arrays under our belt, we can now attempt an inter-

esting and sizeable (and useful!) problem: We will write C code to sort an array

of integers into ascending order. That is, the code should arrange the data in array

a[] such that a[0] ≤ a[1] ≤ a[2] . . . .
To accomplish this, we will use an algorithm for sorting called Insertion

Sort. Sorting is an important primitive operation in computing, and consider-

able energy has been devoted over the years to understanding, analyzing, and

refining the sorting process. There are many algorithms for sorting, and you will

encounter various techniques in later computing courses. We use insertion sort

here because it parallels how we might sort items in the physical world, with real

objects. And it is quite straightforward enough for us to develop C code for it.

Insertion sort is best described by an example. Say we want to sort the books

on a bookshelf into alphabetical order by author. Conceptually, we divide the

books on the shelf into two groups, those that are already sorted and those that

are not. Initially, the sorted group would be empty because all the books would be

unsorted. The sorting process proceeds by taking a book from the unsorted group

and inserting it into the proper position among the sorted books. For example, if

the sorted group contained three books, one by Faulkner, one by Fitzgerald, and

one by Steinbeck, then sorting the book by Hemingway would mean inserting it

between Fitzgerald and Steinbeck. We keep sorting one book at a time until all

books in the unsorted group have been inserted. This is insertion sort.
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How would we go about applying this technique to sort an array of integers?

Applying systematic decomposition to the preceding algorithm, we see that the

core of the program involves iterating through the elements of the array, inserting

each element into the proper spot in a new array where all items are in ascending

order. This process continues until all elements of the original array have been

inserted into the new array. Once this is done, the new array will contain the same

elements as the first array, except in sorted order.

For this technique we need to represent two groups of items, the original

unsorted elements and the sorted elements. For this we could use two separate

arrays. It turns out, however, that we can represent both groups of elements within

the original array. Doing so results in code that requires less memory and is more

compact, though slightly more complex. The initial part of the array contains the

sorted elements and the remainder of the array contains the unsorted elements.

We pick the next unsorted item and insert it into the sorted part at the correct

point. We keep doing this until we have gone through the entire array.

The actual InsertionSort routine (shown in Figure 16.14) contains a

nested loop. The outer loop scans through all the unsorted items (analogous to

going through the unsorted books, one by one). The inner loop scans through the

already sorted items, scanning for the place at which to insert the new item. Once

we detect an already sorted element that is larger than the one we are inserting,

we insert the new element between the larger and the one before it.

Let’s take a closer look by examining what happens during an iteration of the

actual sorting code at lines 33–43. The outer loop at line 33 iterates the variable

unsorted through the sequence 1, 2, 3, 4,..., 9. During the fourth iteration, at line

34, the variable unsorted is 4, and say the array list contains the following ten

elements, and therefore unsortedItem = 15:

list = [2 16 68 69 15 9 10 7 82 19]
unsorted = 4
unsortedItem = 15

During this iteration, the code inserts the value of list[4], which is 15,

into the sorted portion of the array, which at this point is the elements list[0]
through list[3]. The inner loop at lines 38–41 iterates the variable sorted
through the list of already sorted elements. It does this from the highest numbered

element down to 0, in this case starting at 3 down to 0. Notice that the condition

on the for loop terminates the loop once a list item less than the current item, 15,

is found.

In each iteration of this inner loop (lines 38–41), an element in the sorted

group is copied to the subsequent position in the array (line 41) in order to make

space for the new element to be inserted. In the first iteration, list[3] is copied

to list[4]. Upon the completion of line 43, the variables values are:

list = [2 16 68 69 69 9 10 7 82 19]
unsorted = 4
unsortedItem = 15
sorted = 3

Notice that we have overwritten list[4] and lost the value 15 that was

stored there. This is OK because we have a copy of its value in the variable
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1 #include <stdio.h>
2 #define MAX_NUMS 10
3
4 void InsertionSort(int list[]);
5
6 int main(void)
7 {
8
9 int numbers[MAX_NUMS]; // List of numbers to be sorted

10
11 // Get input
12 printf("Enter %d numbers.\n", MAX_NUMS);
13 for (int index = 0; index < MAX_NUMS; index++) {
14 printf("Input number %d : ", index);
15 scanf("%d", &numbers[index]);
16 }
17
18 InsertionSort(numbers); // Call sorting routine
19
20 // Print sorted list
21 printf("\nThe input set, in ascending order:\n");
22 for (int index = 0; index < MAX_NUMS; index++)
23 printf("%d\n", numbers[index]);
24 }
25
26 void InsertionSort(int list[])
27 {
28 int unsorted; // Index for unsorted list items
29 int sorted; // Index for sorted items
30 int unsortedItem; // Current item to be sorted
31
32 // This loop iterates from 1 thru MAX_NUMS
33 for (unsorted = 1; unsorted < MAX_NUMS; unsorted++) {
34 unsortedItem = list[unsorted];
35
36 // This loop iterates from unsorted thru 0, unless
37 // we hit an element smaller than current item
38 for (sorted = unsorted - 1;
39 (sorted >= 0) && (list[sorted] > unsortedItem);
40 sorted--)
41 list[sorted + 1] = list[sorted];
42
43 list[sorted + 1] = unsortedItem; // Insert item
44 }
45 }

Figure 16.14 Insertion sort in C.
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unsortedItem (from line 34). After the second iteration, and the completion

of line 43, the variables contain:

list = [2 16 68 68 69 9 10 7 82 19]
unsorted = 4
unsortedItem = 15
sorted = 2

After the third iteration, after the completion of line 43, the variables contain:

list = [2 16 16 68 69 9 10 7 82 19]
unsorted = 4
unsortedItem = 15
sorted = 1

For the fourth iteration, sorted is set to 0. The inner for loop at line 38

terminates because the evaluation condition is no longer true. More specifi-

cally, list[sorted] > unsortedItem is not true. The current sorted list item

list[0], which is 2, is not larger than the current unsorted item unsortedItem,

which is 15. Now the inner loop terminates, and the statement at line 43,

list[sorted + 1] = unsortedItem; executes. Now list contains, and the

sorted part of the array contains, one more element.

list = [2 15 16 68 69 9 10 7 82 19]

This process continues until all items have been sorted, meaning the outer

loop has iterated through all elements of the array list.

16.3.7 Common Pitfalls with Arrays in C

Unlike some other modern programming languages, C does not provide protec-

tion against exceeding the size (or bounds) of an array. Recall that C originated

during an era when memory and computer processing power were precious

resources, and programmers had to be very economical in the operations their

code performed. In the spirit of minimizing overhead, C performs no size enforce-

ment on arrays. This enables programs written in C to be fast and efficient, but at

the cost of potential bugs. Programmer beware!

In the valid C expression a[i], the index i can access a memory location

beyond the end of the array. The code in Figure 16.15 illustrates a situation where

exceeding the size of an array can generate puzzling, erroneous results. Run this

code and enter a number larger than the array size. Analyze this program by draw-

ing out the run-time stack, and you will see more clearly why this bug causes the

behavior it does. Writing beyond the end of the array causes some unexpected

behavior in this code.

16.3.8 Variable-Length Arrays

In all of our discussion of arrays up until this point, we’ve worked under the

assumption that an array in C is of fixed size. That is, the size of the array is fixed

and is known when the code is compiled. In order to allocate an array on the

run-time stack, the compiler needs to know the exact size. If the exact size is not
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1 #include <stdio.h>
2 #define MAX_SIZE 10
3
4 int main(void)
5 {
6 int index;
7 int array[MAX_SIZE];
8 int limit;
9

10 printf("Enter limit (integer): ");
11 scanf("%d", &limit);
12
13 for(index = 0; index < limit; index++) {
14 array[index] = 0;
15 printf("array[%d] is set to 0\n", index);
16 }
17 }

Figure 16.15 This C program has peculiar behavior if the user enters a number that
is too large.

known, then the offsets from the frame pointer (R5) for the array and other vari-

ables in the stack frame cannot be properly determined, and everything falls apart.

But this particular restriction proves to be quite limiting. Often we want to

size our arrays based on the particular situation we’ve encountered during execu-

tion. For example, referring back to our InsertionSort example in Figure 16.14,

we may want our algorithm to be flexible enough to handle as much data as we

want to throw at it. The example is hard-coded to work only on ten data items.

Starting in 1999, the ANSI C standard adopted support for variable-length

arrays. Variable-length arrays are arrays whose sizes are variable integer expres-

sions, rather than constants. The following code fragment

int Calculate(int len)
{

int data[len];

illustrates the declaration of a variable-length array. The size of the array data can

only be determined during execution of the code, and it is not known at compile

time. The array data is still allocated on the run-time stack in this case but using

a different type of allocation scheme than with standard, statically sized arrays.

This protocol requires additional instructions during allocation and access, which

adds performance overheard. Variable-length arrays are a nice programming

convenience at the expense of additional performance.

Variable-length arrays work nicely for many of the examples in this textbook

because the examples tend to be simple. We’ll use them occasionally through-

out the remaining chapters. While variable-length arrays address a limitation of

statically sized arrays, they themselves are limited in that once they are declared,

we can’t modify their size. For this, dynamically sized arrays in C and vectors

in C++ are the more general, thus more commonly used, solution. We’ll discuss

both in the final few chapters of this textbook.
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16.3.9 Multidimensional Arrays in C

Nearly everyone alive today has taken or will take a picture with a smartphone.

It’s an activity that’s simple enough for a person to accomplish, but it triggers an

incredible amount of activity within a smartphone. Some of this activity involves

physics and optics, as light from the scene being captured enters the lens of the

phone to form an image on a device called a CMOS image sensor (think of it as

the digital retina of the phone’s camera). Much of this activity is digital; the image

sensor and a slew of associated software on the phone convert the signals cap-

tured by the sensor into a high-quality picture. What exactly is this picture? Each

element of the picture, or image, is called a pixel, and it represents the intensity

of green, blue, and red at a particular point in the image. The image itself is a col-

lection of these pixels (short for picture elements), arranged in a two-dimensional

grid, with each pixel belonging to a particular row and column within the image.

For example, an image might have 1080 rows and 1920 columns of pixels and

would contain about two million pixels altogether. For the sake of this example,

let’s say we can represent each pixel with an integer value in C. How would we

represent the overall image in C?

We can easily extend our idea of arrays to incorporate multidimensional

concepts like images. In C, the syntax for doing so is simple:

int image[1080][1920];

This declaration creates an array called image that is organized as a two-

dimensional array. The first dimension is of size 1080, or the number of rows of

pixels, and the second dimension is of size 1920, and it represents the number of

columns of pixels. Instead of providing a single index value to access elements

of a single dimensional array, we now need to provide two, one for the row and

one for the column. So, the expression:

image[38][283]

accesses the pixel in the 284th column of the 39th row of the image. Remember,

numbering of arrays in C always starts with 0.

This 2D array will need to be mapped into memory somehow, just as we did

with a simple 1D array. In the 1D case, the mapping is easy because the arrange-

ment in memory corresponds to increasing indices of the array. In the 2D case,

we have two options. Either we can map consecutive elements of each column

into consecutive memory locations, or we can map consecutive elements of each

row into consecutive memory locations. With C and C++, consecutive elements

of each column are in adjacent memory locations, which is an ordering often

called row-major order. Figure 16.16 provides a diagram of how this ordering

applies to the array image. The image is so large that it won’t fit into the LC-

3’s 16-bit address space. The LC-3 only has 216 or 65,536 locations, and this

image requires 2,073,600. We need a larger address space! So for this figure, we

extended the address space to be 32 bits to make the example work.

Let’s take a look at a simple image processing function that operates on

images represented as 2D arrays. Using our example of an image, let’s say that

each element of the image array is an integer, and this integer represents the inten-

sity of light at that position in the image. The higher the value, the brighter that
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image[0][0]x0001 EA00

x0001 EA01
x0001 EA02

x0001 EA03

x0001 F8FE

x0001 F8FF

x0001 F900

x0001 F901

x0001 F17E

x0001 F17F
x0001 F180
x0001 F181

image[0][1]

image[0][2]

image[0][3]

image[1][0]

image[1][1]

image[0][1918]

image[0][1919]

image[2][0]

image[2][1]

image[1][1918]

image[1][1919]

Figure 16.16 How a two-dimensional array is mapped into memory in C.

particular pixel. As such, the value represents the “white value” of the pixel. More

generally, we’d incorporate color into the representation, but for now we’ll keep it

simple. The function Adjust in Figure 16.17 divides each pixel value by 2. When

viewed visually, what would you expect in the resulting image?

1 #define ROWS 1080
2 #define COLS 1920
3
4 int Adjust(int image[ROWS][COLS])
5 {
6 for (int row = 0; row < ROWS; row++) {
7 for (int col = 0; col < COLS; col++) {
8 image[row][col] = image[row][col] / 2;
9 }

10 }
11 }

Figure 16.17 A simple image processing function based on 2D arrays in C.

The idea of multidimensional arrays in C extends beyond 2D arrays, too. We

can declare a 3D array by attaching another set of brackets to the declaration, thus

adding a dimension.

int dataVolume[40][50][60]; // This declares 120,000 elements

The layout in memory of a 3D array in C follows the same pattern as a 2D

array: Consecutive elements of the rightmost index are allocated sequentially
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in memory. And we move through the indices right to left. So immediately in

memory after dataVolume[0][0][59] will be dataVolume[0][1][0].

16.4 Summary
In this chapter we covered two important high-level programming constructs:

pointers and arrays. Both constructs enable us to access memory indirectly. The

key notions we covered in this chapter are:

∙ Pointers. Pointers are variables that contain addresses of other memory

objects (such as other variables). With pointers we can indirectly access and

manipulate these other objects. A very simple application of pointers is to

use them to pass parameters by reference. Pointers have more substantial

applications, and we will see them in subsequent chapters.

∙ Arrays. An array is a collection of elements of the same type arranged

sequentially in memory. We can access a particular element within an array

by providing an index to the element that is its offset from the beginning

of the array. Many real-world objects are best represented within a computer

program as an array of items, thus making the array a significant structure for

organizing data. With arrays, we can represent character strings that hold text

data, for example. We examined several important array operations, including

the sorting operation via insertion sort. C also supports variable-length arrays.

With a variable-length array, we can declare an array whose size is determined

during program execution. We also examined multidimensional arrays in C.

Exercises

16.1 Write a C function that takes as a parameter a character string of

unknown length, containing a single word. Your function should

translate this string from English into Pig Latin. This translation is

performed by removing the first letter of the string, appending it onto

the end, and concatenating the letters ay. You can assume that the array

contains enough space for you to add the extra characters. For example,

if your function is passed the string “Hello,” after your function returns,

the string should have the value “elloHay.” The first character of the

string should be “e.”

16.2 Write a C program that accepts a list of numbers from the user until a

number is repeated (i.e., is the same as the number preceding it). The

program then prints out the number of numbers entered (excluding the

last) and their sum. When the program is run, the prompts and

responses will look like the following:

Number: 5
Number: -6
Number: 0
Number: 45
Number: 45
4 numbers were entered and their sum is 44
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16.3 What is the output when the following code is compiled and run?

int x;
int main(void)
{

int *px = &x;
int x = 7;

*px = 4;
printf("x = %d\n", x);

}

16.4 Create a string function that takes two input strings, stringA and

stringB, and returns a 0 if both strings are the same, a 1 if stringA
appears before stringB in the sorted order of a dictionary, or a 2 if

stringB appears before stringA.

16.5 Using the function developed for Exercise 16.4, modify the Insertion

Sort program so that it operates upon strings instead of integers.

16.6 Translate the following C function into LC-3 assembly language.

int main(void)
{

int a[5], i;
i = 4;
while (i >= 0) {

a[i] = i;
i--;

}
}

16.7 For this question, examine the following program. Notice that the

variable ind is a pointer variable that points to another pointer variable.

Such a construction is legal in C.

#include <stdio.h>
int main(void)
{

int apple;
int *ptr;
int **ind;
ind = &ptr;

*ind = &apple;
**ind = 123;
ind++;
*ptr++;
apple++;
printf("%x %x %d\n", ind, ptr, apple);

}

Analyze what this program performs by drawing out the run-time stack

at the point just after the statement apple++; executes.
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16.8 The following code contains a call to the function triple. What is the

minimum size of the stack frame of triple?

int main(void)
{

int array[3];

array[0] = 1;
array[1] = 2;
array[2] = 3;
triple(array);

}

16.9 Write a program to remove any duplicates from a sequence of numbers.

For example, if the list consisted of the numbers 5, 4, 5, 5, and 3, the

program would output 5, 4, 3.

16.10 Write a program to find the median of a set of numbers. Recall that the

median is a number within the set in which half the numbers are larger

and half are smaller. Hint: To perform this, you may need to sort the

list first.

16.11 For this question, refer to the following C program:

int FindLen(char *);
int main(void)
{

char str[10];

printf("Enter a string : ");
scanf("%s", str);
printf("%s has %d characters\n", str, FindLen(str));

}

int FindLen(char * s)
{

int len=0;
while (*s != '\0') {

len++;
s++;

}
return len;

}

a. What is the size of the stack frame for the functions main and

FindLen?

b. Show the contents of the stack just before FindLen returns if the

input string is apple.

c. What would the stack frame look like if the program were run and

the user typed a string of length greater than ten characters? What

would happen to the program?
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16.12 The following code reads a string from the keyboard and prints out a

version with any uppercase characters converted to lowercase.

However, it has a flaw. Identify it.

#include <stdio.h>
#define MAX_LEN 10

char *LowerCase(char *s);
int main(void)
{

char str[MAX_LEN];
printf("Enter a string : ");
scanf("%s", str);
printf("Lowercase: %s \n", LowerCase(str));

}

char *LowerCase(char *s)
{

char newStr[MAX_LEN];
for (int index = 0; index < MAX_LEN; index++) {

if ('A' <= s[index] && s[index] <= 'Z')
newStr[index] = s[index] + ('a' - 'A');

else
newStr[index] = s[index];

}
return newStr;

}

16.13 Consider the following declarations.

#define STACK_SIZE 100
int stack[STACK_SIZE];
int topOfStack;
int Push(int item);

a. Write a funtion Push (the declaration is provided) that will push the

value of item onto the top of the stack. If the stack is full and the

item cannot be added, the function should return a 1. If the item is

successfully pushed, the function should return a 0.

b. Write a function Pop that will pop an item from the top of the

stack. Like Push, this function will return a 1 if the operation is

unsuccessful. That is, a Pop was attempted on an empty stack. It

should return a 0 if successful. Consider carefully how the popped

value can be returned to the caller.
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16.14 Write a function that takes an image represented as 2-dimensional

array of integers, where each integer represents the intensity of the

corresponding pixel and creates a histogram of that counts the

frequency of intensity values. For simplicity assume that the intensity

values are only between 0 and 15, and only 16 bins need to be created

in the histogram.

a. Write the function assuming that the image dimensions are fixed

and can be hard-coded.

b. Write the function assuming that the image dimensions are provided

as parameters to the function.
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C H A P T E R

Recursion

17.1 Introduction
Suppose we want to find a particular student’s exam in a stack of exams that are

already sorted into alphabetical order. Our procedure for doing so could be as

follows: Pick a random point in the stack, and check for a match. If we find a

match, great! We are done. If we don’t find the exam (which is the more likely

case, initially), we now know the exam we’re looking for is either in the upper

stack or in the lower stack based on whether the name occurs alphabetically before

or after the name at the random point. Here’s the key: We can now repeat the same

procedure on a stack of exams (lower or upper) that is necessarily smaller than

our original stack. For example, say we are looking for Mira’s exam. We find at

our selected random point Salina’s exam. We clearly didn’t find Mira’s exam, but

we know that it must in the portion of the stack that precedes Salina’s exam. We

repeat our search on that smaller substack. Fairly quickly, we will locate Mira’s

exam, if it exists in the set.

The technique we’ve described is recursive. We are solving the problem

(finding an exam in a stack of exams) by stating that we’ll solve it on succes-

sively smaller versions of the problem (find the exam on this smaller stack).

We examined recursion first in Chapter 8, in the context of subroutines in LC-3

assembly language. Now that we’ve raised the level of programming abstraction,

it’s worthwhile for us to revisit recursion in the context of the C programming

language.

Recursion is similar to iteration in that both describe a repeating flow of

computation. The power of recursion lies in its ability to elegantly express the

computation flow for certain programming tasks. There are some programming

problems for which the recursive solution is far simpler than the corresponding

iterative solution. Nearly always, recursion comes at the cost of additional execu-

tion overhead compared to iteration. So recursion must be applied carefully with

a thorough understanding of the underlying costs.

In this chapter, we introduce the concept of recursion via several different

examples. As we did in Chapter 8, we’ll examine how recursive functions are
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implemented on the LC-3, this time with the run-time stack facilitating the recur-

sion. The elegance of the run-time stack mechanism is that recursive functions

require no special handling—they execute in the same manner as any other func-

tion. The main purpose of this chapter is to provide an initial but deep exposure to

recursion so that you can start implementing recursive algorithms in your code.

17.2 What Is Recursion?
Let’s revisit the basic idea of recursion through a simple toy example. A function

that calls itself is a recursive function. The function RunningSum in Figure 17.1 is

an example. This function calculates the sum of all the integers between the input

parameter n and 1, inclusive. For example, RunningSum(4) calculates 4+3+2+1.

However, it does the calculation recursively. Notice that the running sum of 4 is

really 4 plus the running sum of 3. Likewise, the running sum of 3 is 3 plus the

running sum of 2. This recursive definition is the basis for a recursive algorithm.

In other words,

RunningSum(n) = n + RunningSum(n − 1)

In mathematics, we use recurrence equations to express such functions. The

preceding equation is a recurrence equation for RunningSum. In order to complete

the evaluation of this equation, we must also supply an initial case. So in addition

to the preceding formula, we need to state

RunningSum(1) = 1

before we can completely evaluate the recurrence. Now we can fully evaluate

RunningSum(4):

RunningSum(4) = 4 + RunningSum(3)

= 4 + 3 + RunningSum(2)

= 4 + 3 + 2 + RunningSum(1)

= 4 + 3 + 2 + 1

The C version of RunningSum works in the same manner as the recurrence equa-

tion. During execution of the function call RunningSum(4), RunningSum makes

a function call to itself, with an argument of 3 (i.e., RunningSum(3)). However,

before RunningSum(3) ends, it makes a call to RunningSum(2). And before

1 int RunningSum(int n)
2 {
3 if (n == 1)
4 return 1;
5 else
6 return (n + RunningSum(n-1));
7 }

Figure 17.1 An example of a simple recursive function.
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RunningSum(3)
{
:
:

  return (3 + RunningSum(2));
}

RunningSum(2)
{
:
:

  return (2 + RunningSum(1));
}

RunningSum(1)

}

{

}

  return 1;

Return value

Return value

Return value
1

3

6

{
:
:

  return (4 + RunningSum(3));

RunningSum(4)

Step 2

Step 1

Step 3

Step 6

Step 4

Step 5

Figure 17.2 The flow of control when RunningSum(4) is executed.

RunningSum(2) ends, it makes a call to RunningSum(1). RunningSum(1),

however, makes no additional recursive calls and returns the value 1 to

RunningSum(2), which enables RunningSum(2) to end and return the value

2 + 1 back to RunningSum(3). This enables RunningSum(3) to end and pass

a value of 3 + 2 + 1 to RunningSum(4). Figure 17.2 pictorially shows how the

execution of RunningSum(4) proceeds.

17.3 Recursion vs. Iteration
Clearly, we could have (and should have) written RunningSum using a for loop,

and the code would have been more straightforward than its recursive counterpart.

We provided a recursive version here in order to demonstrate a recursive call in

the context of an easy-to-understand example.

There is a parallel between using recursion and using conventional iteration

(such as for and while loops) in programming. All recursive functions can be

written using iteration. For certain programming problems, however, the recur-

sive version is simpler and more elegant than the iterative version. Solutions to

certain problems are naturally expressed in a recursive manner, such as problems
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that are expressed with recurrence equations. It is because of such problems that

recursion is an indispensable programming technique. Knowing which problems

require recursion and which are better solved with iteration is part of the art of

computer programming, and it is a skill one develops through coding experience.

Recursion, as useful as it is, comes at a cost. As an experiment, write an

iterative version of RunningSum and compare the running time for large n with

the recursive version. To do this you can use library functions to get the time of

day (e.g., gettimeofday) before the function starts and when it ends. Plot the

running time for a variety of values of n and you will notice that the recursive

version is relatively slower (provided the compiler did not optimize away the

recursion, which it can do through a simple transformation that converts certain

types of recursive code to iterative code when the recursion is the last operation

in the function, i.e., it occurs at the tail of the function). Recursive functions incur

function call overhead that iterative solutions do not. Understanding the under-

lying overheads of recursion is something we cleanly explore with our bottom-up

approach, and it will assist you in knowing when, and when not, to apply recursion

for a particular programming task.

17.4 Towers of Hanoi
One problem for which the recursive solution is simpler than iteration is the clas-

sic puzzle Towers of Hanoi. The puzzle involves a platform with three posts. On

one of the posts sit a number of wooden disks, each smaller than the one below

it. The objective is to move all the disks from their current post to one of the

other posts. However, there are two rules for moving disks: Only one disk can

be moved at a time, and a larger disk can never be placed on top of a smaller

disk. For example, Figure 17.3 shows a puzzle where five disks are on post 1. To

solve this puzzle, these five disks must be moved to one of the other posts obey-

ing the two rules. As the legend associated with the puzzle goes, when the world

was created, the priests at the Temple of Brahma were given the task of moving

64 disks from one post to another. When they completed their task, the world

would end.

Post 2Post 1 Post 3

Figure 17.3 The Towers of Hanoi puzzle with five disks.
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Now how would we go about writing C code to solve this puzzle? If we

view the problem from the end first, we can make the following observation: The

final sequence of moves must involve moving the largest disk from post 1 to the

target post, say post 3, and then moving all of the other disks back on top of it.

Conceptually, we need to move all n − 1 disks off the largest disk and onto the

intermediate post, then move the largest disk onto the target post. Finally, we

move all n − 1 disks from the intermediate post onto the target post. Moving n
− 1 disks in one move is not a singular, legal move. However, we have stated the

problem in such a manner that we can solve by solving two smaller subproblems.

We now have a recursive definition of the problem: In order to move n disks to the

target post, which we symbolically represent as Move(n, target), we first move n
− 1 disks to the intermediate post, Move(n-1, intermediate), then move the nth

disk to the target, which is a singular move, and finally move n − 1 disks from the

intermediate to the target, Move(n-1, target). So in order to Move(n, target),

two recursive calls are made to solve two smaller subproblems involving n − 1

disks.

As with recurrence equations in mathematics, all recursive definitions require

a base case, which ends the recursion. In the way we have formulated the problem,

the base case involves moving the smallest disk (disk 1). Moving disk 1 requires

no other disks to be moved since it is always on top and can be moved directly

from one post to any another without moving any other disks. Without a base

case, a recursive function would never end, similar to an infinite loop in conven-

tional iteration. Taking our recursive definition to C code is fairly straightforward.

Figure 17.4 is a recursive C function of this algorithm.

1 // diskNumber is the disk to be moved (disk1 is smallest)
2 // startPost is the post the disk is currently on
3 // endPost is the post we want the disk to end on
4 // midPost is the intermediate post
5 void MoveDisk(int diskNumber, int startPost, int endPost, int midPost)
6 {
7 if (diskNumber > 1) {
8 // Move n-1 disks off the current disk on
9 // startPost and put them on the midPost
10 MoveDisk(diskNumber-1, startPost, midPost, endPost);
11
12 printf("Move disk %d from post %d to post %d.\n",
13 diskNumber, startPost, endPost);
14
15 // Move all n-1 disks from midPost onto endPost
16 MoveDisk(diskNumber-1, midPost, endPost, startPost);
17 }
18 else
19 printf("Move disk 1 from post %d to post %d.\n",
20 startPost, endPost);
21 }

Figure 17.4 A recursive function to solve the Towers of Hanoi puzzle.
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1 32

1
2
3

Figure 17.5 The Towers of Hanoi
puzzle, initial
configuration.

1 32

2
3 1

Figure 17.6 The Towers of Hanoi
puzzle, after first
move.

Let’s see what happens when we solve the puzzle with three disks. Following

is the initial function call to MoveDisk. We start off by saying that we want to move

disk 3 (the largest disk) from post 1 to post 3, using post 2 as the intermediate

storage post. That is, we want to solve a three-disk Towers of Hanoi puzzle. See

Figure 17.5.

// diskNumber 3; startPost 1; endPost 3; midPost 2
MoveDisk(3, 1, 3, 2)

This call invokes another call to MoveDisk to move disks 1 and 2 off disk 3 and

onto post 2 using post 3 as intermediate storage. The call is performed at line 10

in the source code.

// diskNumber 2; startPost 1; endPost 2; midPost 3
MoveDisk(2, 1, 2, 3)

To move disk 2 from post 1 to post 2, we first move disk 1 off disk 2 and onto

post 3 (the intermediate post). This triggers another call to MoveDisk again from

the call on line 10.

// diskNumber 1; startPost 1; endPost 3; midPost 2
MoveDisk(1, 1, 3, 2)

For this call, the condition of the if statement on line 7 will not be true, and disk

1 can be moved directly to the target post. The printf statement on lines 19–20

is executed. See Figure 17.6.

Move disk 1 from post 1 to post 3.

This invocation of MoveDisk returns to its caller, which was the call

MoveDisk(2, 1, 2, 3). Recall that we were waiting for all disks on top of disk

2 to be moved to post 3. Since that is now complete, we can move disk 2 from post

1 to post 2. The printf on lines 19–20 is the next statement to execute, signaling

another disk to be moved. See Figure 17.7.

Move disk 2 from post 1 to post 2.

Next, a call is made to move all disks that were on disk 2 back onto disk 2.

This happens at the call on line 16 of the source code for MoveDisk.

// diskNumber 1; startPost 2; endPost 3; midPost 1
MoveDisk(1, 2, 3, 1)
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1 32
3 12

Figure 17.7 The Towers of Hanoi
puzzle, after second
move.

1 32
3 2

1

Figure 17.8 The Towers of Hanoi
puzzle, after third
move.

1 32
2
1

3

Figure 17.9 The Towers of Hanoi
puzzle, after fourth
move.

1 32
2 31

Figure 17.10 The Towers of
Hanoi puzzle, after
fifth move.

Again, since disk 1 has no disks on top of it, we see the move printed. See

Figure 17.8.

Move disk number 1 from post 3 to post 2.

Control passes back to the call MoveDisk(2, 1, 2, 3) which, having com-

pleted its task of moving disk 2 (and all disks on top of it) from post 1 to post 2,

returns to its caller. Its caller is MoveDisk(3, 1, 3, 2). All disks have been

moved off disk 3 and onto post 2. Disk 3 can be moved from post 1 onto post 3.

The printf is the next statement executed. See Figure 17.9.

Move disk 3 from post 1 to post 3.

The next subtask remaining is to move disk 2 (and all disks on top of it) from

post 2 onto post 3. We can use post 1 for intermediate storage. The following call

occurs on line 16 of the source code.

// diskNumber 2; startPost 2; endPost 3; midPost 1
MoveDisk(2, 2, 3, 1)

In order to do so, we must first move disk 1 from post 2 onto post 1, via the

call on line 16.

// diskNumber 1; startPost 2; endPost 1; midPost 3
MoveDisk(1, 2, 1, 3)

The move requires no submoves. See Figure 17.10.

Move disk 1 from post 2 to post 1.

Return passes back to the caller MoveDisk(2, 2, 3, 1), and disk 2 is

moved onto post 3. See Figure 17.11.

Move disk 2 from post 2 to post 3.
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1 32
31
2

Figure 17.11 The Towers of
Hanoi puzzle, after
sixth move.

1 32
3
2
1

Figure 17.12 The Towers of
Hanoi puzzle,
completed.

The only thing remaining is to move all disks that were on disk 2 back on

top.

// diskNumber 1; startPost 1; endPost 3; midPost 2
MoveDisk(1, 1, 3, 2)

The move is done immediately. See Figure 17.12.

Move disk 1 from post 1 to post 3.

and the puzzle is completed!

Let’s summarize the action of the recursion by examining the sequence of

function calls that were made in solving the three-disk puzzle:

MoveDisk(3, 1, 3, 2) // Initial Call
MoveDisk(2, 1, 2, 3)
MoveDisk(1, 1, 3, 2)
MoveDisk(1, 2, 3, 1)
MoveDisk(2, 2, 3, 1)
MoveDisk(1, 2, 1, 3)
MoveDisk(1, 1, 3, 2)

Consider how you would write an iterative version of a solver for this puz-

zle. You’ll no doubt quickly appreciate the simplicity of the recursive version.

Returning to the legend of the Towers of Hanoi: The world will end when the

monks finish solving a 64-disk version of the puzzle. For a three-disk puzzle, the

solution required seven moves. If each move takes one second, how long will it

take the monks to solve the 64-disk puzzle? Would the number of moves for an

iterative version be any different?

17.5 Fibonacci Numbers
Let’s revisit an example from Section 8.3.2. We considered this a bad application

of recursion when we introduced it for the LC-3, and it still is in C! But this exam-

ple is worth reexamining. It’s simple enough to express with a short C function,

yet complex enough to have interesting stack behavior during execution. Also,

we can view a complete translation to LC-3 assembly and take note of how the

recursion is handled by the run-time stack.

The following recurrence equations generate a well-known sequence of num-

bers called the Fibonacci numbers, which has some interesting mathematical,

geometrical, and natural properties.
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f (n) = f (n − 1) + f (n − 2)

f (1) = 1

f (0) = 1

The nth Fibonacci number is the sum of the previous two. The series is 1, 1, 2, 3,

5, 8, 13, … This series was popularized by the Italian mathematician Leonardo

of Pisa around the year 1200 (it is thought to have first been described by Indian

mathematicians around 200 BC). His father’s name was Bonacci, and thus he often

called himself Fibonacci as a shortening of filius Bonacci, or son of Bonacci.

Fibonacci formulated this series as a way of estimating breeding rabbit pop-

ulations. We have since discovered some fascinating ways in which the series

models some other natural phenomena such as the structure of a spiral shell or

the pattern of petals on a flower. The ratios of successive numbers in the sequence

approximate the Golden Ratio.

We can formulate a recursive function to calculate the nth Fibonacci number

directly from the recurrence equations. Fibonacci(n) is recursively calculated

by Fibonacci(n-1) + Fibonacci(n-2). The base case of the recursion is

simply the fact that Fibonacci(1) and Fibonacci(0) both equal 1. Figure 17.13

lists the recursive code to calculate the nth Fibonacci number.

1 #include <stdio.h>
2
3 int Fibonacci(int n);
4
5 int main(void)
6 {
7 int in;
8 int number;
9
10 printf("Which Fibonacci number? ");
11 scanf("%d", &in);
12
13 number = Fibonacci(in);
14 printf("That Fibonacci number is %d\n", number);
15 }
16
17 int Fibonacci(int n)
18 {
19 int sum;
20
21 if (n == 0 || n == 1)
22 return 1;
23 else {
24 sum = (Fibonacci(n-1) + Fibonacci(n-2));
25 return sum;
26 }

Figure 17.13 A recursive C function to calculate the nth Fibonacci number.
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This example is simple enough for us to take a deeper look into how recursion

actually is implemented at the lower levels. In particular, we will examine the run-

time stack mechanism and see how it naturally handles recursive calls. Whenever

a function is called, whether from itself or another function, a new copy of its

stack frame is pushed onto the run-time stack. That is, each invocation of the

function gets a new, private copy of parameters and local variables. And once each

invocation completes, this private copy must be deallocated. The run-time stack

enables this in a natural fashion. If the variables of a recursive function were

statically allocated in memory, each recursive call to Fibonacci would overwrite

the values of the previous call.

Let’s take a look at the run-time stack when we call the function Fibonacci
with the parameter 3, Fibonacci(3). We start off with the stack frame for

Fibonacci(3) on top of the run-time stack. Figure 17.14 shows the pro-

gression of the stack as the original function call is evaluated. The func-

tion call Fibonacci(3) will first calculate Fibonacci(3-1) as the expression

Fibonacci(n-1) + Fibonacci(n-2) is evaluated left to right. Therefore, a

call is first made to Fibonacci(2), and a stack frame for Fibonacci(2) is

pushed onto the run-time stack (see Figure 17.14, step 2). For Fibonacci(2),

the parameter n equals 2 and does not meet the terminal condition; therefore,

a call is made to Fibonacci(1) (see Figure 17.14, step 3). This call is made

in the course of evaluating Fibonacci(2-1) + Fibonacci(2-2). The call

Fibonacci(1) results in no more recursive calls because the parameter n meets

the terminal condition. The value 1 is returned to Fibonacci(2), which now

can complete the evaluation of Fibonacci(1) + Fibonacci(0) by calling

Fibonacci(0) (see Figure 17.14, step 4). The call Fibonacci(0) immediately

returns a 1. Now, the call Fibonacci(2) can complete and return its subcalcula-

tion (its result is 2) to its caller, Fibonacci(3). Having completed the left-hand

component of the expression Fibonacci(2) + Fibonacci(1), Fibonacci(3)
calls Fibonacci(1) (see Figure 17.14, step 5), which immediately returns the

value 1. Now Fibonacci(3) is done—its result is 3 (Figure 17.14, step 6). We

could state the recursion of Fibonacci(3) algebraically, as follows:

Fibonacci(3) = Fibonacci(2) + Fibonacci(1)
= (Fibonacci(1) + Fibonacci(0)) + Fibonacci(1)
= 1 + 1 + 1 = 3

The sequence of function calls made during the evaluation of Fibonacci(3) is

as follows:

Fibonacci(3)
Fibonacci(2)
Fibonacci(1)
Fibonacci(0)
Fibonacci(1)

Walk through the execution of Fibonacci(4) and you will notice that

the sequence of calls made by Fibonacci(3) is a subset of the calls made

by Fibonacci(4). No surprise, since Fibonacci(4) = Fibonacci(3) +
Fibonacci(2). Likewise, the sequence of calls made by Fibonacci(4) is a sub-

set of the calls made by Fibonacci(5). There is an exercise at the end of this
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R6

Fibonacci(3)

main

Step 1: Initial call

R6

R6

main

Fibonacci(3)

Fibonacci(2)

main

Fibonacci(3)

Fibonacci(2)

R6

R6

main

R6

Fibonacci(3)

main

Fibonacci(2)

Fibonacci(3)

Step 2: Fibonacci(3) calls Fibonacci(2)

Step 4: Fibonacci(2) calls Fibonacci(0)Step 3: Fibonacci(2) calls Fibonacci(1)

Step 5: Fibonacci(3) calls Fibonacci(1)

Fibonacci(1) Fibonacci(0)

Step 6: Back to the starting point

main

Fibonacci(3)

Fibonacci(1)

Figure 17.14 Snapshots of the run-time stack for the function call Fibonacci(3).
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chapter involving calculating the number of function calls made during the eval-

uation of Fibonacci(n). As we did in Section 8.3.2, it’s worthwhile to compare

the running time of the recursive version of Fibonnaci in C to an iterative ver-

sion. The simple recursive version, while it falls directly out of the recurrence

equations and is easy to code, is far more costly than its iterative counterpart. It is

more expensive not only because of the function call overhead, but also because

the recursive solution has a significant number of repeated calculations that the

iterative version does not.

Figure 17.15 lists the LC-3 C compiler generated for this Fibonacci program.

Notice that no special treatment was required to handle the program’s recur-

sive nature. Because of the run-time stack mechanism for activating functions,

a recursive function gets treated like every other function. If you examine this

code closely, you will notice that the compiler generated a temporary variable in

order to translate line 24 of Fibonacci properly. Most compilers will generate

such temporaries when compiling complex expressions and will allocate storage

in the stack frame on top of programmer-declared local variables.

1 Fibonacci:
2 ADD R6, R6, #-2 ; push return value/address
3 STR R7, R6, #0 ; store return address
4 ADD R6, R6, #-1 ; push caller's frame pointer
5 STR R5, R6, #0 ;
6 ADD R5, R6, #-1 ; set new frame pointer
7 ADD R6, R6, #-2 ; allocate space for locals and temps
8
9 LDR R0, R5, #4 ; load the parameter n
10 BRZ FIB_BASE ; check for n == 0
11 ADD R0, R0, #-1 ;
12 BRZ FIB_BASE ; n==1
13
14 LDR R0, R5, #4 ; load the parameter n
15 ADD R0, R0, #-1 ; calculate n-1
16 ADD R6, R6, #-1 ; push n-1
17 STR R0, R6, #0 ;
18 JSR Fibonacci ; call to Fibonacci(n-1)
19
20 LDR R0, R6, #0 ; read the return value at top of stack
21 ADD R6, R6, #-1 ; pop return value
22 STR R0, R5, #-1 ; store it into temporary value
23 LDR R0, R5, #4 ; load the parameter n
24 ADD R0, R0, #-2 ; calculate n-2
25 ADD R6, R6, #-1 ; push n-2
26 STR R0, R6, #0 ;
27 JSR Fibonacci ; call to Fibonacci(n-2)
28

Figure 17.15 Fibonacci in LC-3 assembly code (Fig. 17.15 continued on
next page.)
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29 LDR R0, R6, #0 ; read the return value at top of stack
30 ADD R6, R6, #-1 ; pop return value
31 LDR R1, R5, #-1 ; read temporary value: Fibonacci(n-1)
32 ADD R0, R0, R1 ; Fibonacci(n-1) + Fibonacci(n-2)
33 BR FIB_END ; branch to end of code
34
35 FIB_BASE:
36 AND R0, R0, #0 ; clear R0
37 ADD R0, R0, #1 ; R0 = 1
38
39 FIB_END:
40 STR R0, R5, #3 ; write the return value
41 ADD R6, R5, #1 ; pop local variables
42 LDR R5, R6, #0 ; restore caller's frame pointer
43 ADD R6, R6, #1 ;
44 LDR R7, R6, #0 ; pop return address
45 ADD R6, R6, #1 ;
46 RET

Figure 17.15 Fibonacci in LC-3 assembly code (continued Fig. 17.15 from
previous page.)

17.6 Binary Search
We started this chapter by describing a recursive technique for finding a particular

exam in a set of exams that are in alphabetical order. The technique is called

binary search, and it is a rapid way of finding a particular element within a list of

elements in sorted order. At this point, given our understanding of recursion and

of arrays, we can code a recursive function in C to perform binary search.

Say we want to find a particular integer value in an array of integers that

is in ascending order. The function should return the index of the integer, or a

−1 if the integer does not exist. To accomplish this, we will use the binary search

technique as follows: Given an array and an integer to search for, we will examine

the midpoint of the array and determine if the integer is (1) equal to the value at

the midpoint, (2) less than the value at the midpoint, or (3) greater than the value

at the midpoint. If it is equal, we are done. If it is less than, we perform the

search again, but this time only on the first half of the array. If it is greater than,

we perform the search only on the second half of the array. Notice that we can

express cases (2) and (3) using recursive calls.

What happens if the value we are searching for does not exist within the

array? Given this recursive technique of performing searches on smaller and

smaller subarrays of the original array, we eventually perform a search on an

array that has no elements (e.g., of size 0) if the item we are searching for does

not exist. If we encounter this situation, we will return a −1. This will be a base

case in the recursion.

Figure 17.16 contains the recursive implementation of the binary search algo-

rithm in C. Notice that in order to determine the size of the array at each step,

we pass the starting and ending points of the subarray along with each call to

BinarySearch. Each call refines the variables start and end to search smaller
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1 // This function returns the position of 'item' if it exists
2 // between list[start] and list[end], or -1 if it does not.
3 int BinarySearch(int item, int list[], int start, int end)
4 {
5 int middle = (end + start) / 2;
6
7 // Did we not find what we are looking for?
8 if (end < start)
9 return -1;
10
11 // Did we find the item?
12 else if (list[middle] == item)
13 return middle;
14
15 // Should we search the first half of the array?
16 else if (item < list[middle])
17 return BinarySearch(item, list, start, middle - 1);
18
19 // Or should we search the second half of the array?
20 else
21 return BinarySearch(item, list, middle + 1, end);
22 }

Figure 17.16 A recursive C function to perform binary search.

and smaller subarrays of the original array list. The variable start contains

the array index of the first data item, and the variable end contains the index of

the last data item.

Figure 17.17 provides an illustration of this code during execution. The array

list contains eleven elements as shown. The initial call to BinarySearch passes

the value we are searching for (item) and the array to be searched. (Recall from

Chapter 16 that this is the address of the very first element, or base address, of

the array.) Along with the array, we provide the extent of the array. That is, we

provide the starting and ending points of the portion of the array to be searched.

In every subsequent recursive call to BinarySearch, this extent is made smaller,

eventually reaching a point where the subset of the array we are searching has

either only one element or no elements at all. These two situations are the base

cases of the recursion.

A more straightforward search technique would be to sequentially search

through the array. That is, we could examine list[0], then list[1], then

list[2], etc., and eventually either find the item or determine that it does not

exist. Binary search, however, will require fewer comparisons and can potentially

execute faster if the array is large enough. In subsequent computing courses, you

will analyze binary search and determine that its running time is proportional to

log2 n, where n is the size of the array. Sequential search, on the other hand, is

proportional to n. For sufficiently large values of n, log2 n is much smaller than n.

For example, if n = 1,000,000, then log2 n is 19.93. Note that we aren’t saying that

recursive binary search is more efficient than iterative binary search, because it
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start middle end

middle
start

end

list

list

list

list

middle

12 32 37 49 109 110 153 387 392 777 926

BinarySearch(109, array, 0, 4)

12 32 37 49 109 110 153 387 392 777 926

start middle end

BinarySearch(109, array, 0, 10)

12 32 37 49 109 110 153 387 392 777 926

BinarySearch(109, array, 4, 4)

end

12 32 37 49 109 110 153 387 392 777 926

BinarySearch(109, array, 3, 4)

start

Figure 17.17 BinarySearch performed on an array of eleven elements. We are
searching for the element 109.

isn’t (due to function call overhead). But we are saying that binary search (iterative

or recursive) is more efficient than sequential search, and significantly so.

17.7 Escaping a Maze
Recursion is commonly applied in solving games and puzzles. Recursion allows

for a systematic search through all possibilities, making it useful for solving prob-

lems where it is feasible to examine every possible solution in search of the right

one. Solving a Soduku puzzle, or finding a path through a maze, for example, are

problems that are amenable to recursive search.
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We wrote a simple maze solver in Chapter 8 in LC-3 assembly, and we’ll

revisit the problem again in the context of C. There are many ways we can

approach a maze solver, but the recursive approach is perhaps the simplest. Let’s

start by considering how to represent a maze in C. As we did in Chapter 8, we’ll

use a two-dimensional array, with each element in the array representing whether

the maze position is blocked (because it contains a wall), is open, or contains an

exit. The maze will be a character array, where each element of the array contains

the character X for a blocked space, a space ’ ’ character for an open space, and

the character E for an exit. Our maze solver will take this 2D array as input, along

with coordinates of the initial starting point, and will search through the maze to

find a path to the exit, if it exists. Figure 17.18 shows an example of a simple 4 × 4

maze represented in our 2D array format. In this example, maze[3][0] = 'E'
designates the exit, and maze[0][2] = 'X' is an example of a space that is

blocked. If we set the initial position to maze[1][2], then there exists a path to

the exit.

X X

E X

X X
X

Figure 17.18 An example of how to represent a maze with a two-dimensional
character array.

Now the question is, how might a maze solver compute the path to the exit?

We can use the following idea: From the starting point, if a path to the exit exists, it

must go through the space either directly to the left, directly to the right, directly

up, or directly down from the initial point. So we set the new position to one

of those spaces and recursively solve the maze from there. That is, from the new

point, if a solution exists, it must go through space to the left, to the right, directly

up, or directly down from the new point.

Eventually, we’ll hit a blocked space X or the exit E. And these designate base

cases for the recursion. We’ll also need to mark spaces that we’ve already visited

with a V. This will enable us to skip over spaces that we’ve already evaluated, and

it will prevent us from going in circles (literally!). This will also be a base case.

Figure 17.19 provides the C code implementation of the ExitMaze function.

It takes as its parameters a maze represented as a 2D character array of dimen-

sions MAZE_HEIGHT by MAZE_WIDTH, and two integers that represent the current

position as x and y indices in the maze array. The initial portion of the function

checks to see if we’ve hit any of our terminal conditions: Either xpos or ypos is

out of the maze, or the current position is the exit or corresponds to a space in

the maze that has already been visited or is blocked. If not, we mark the current

position as visited and recursively check the neighboring positions.

This algorithm performs something called a depth-first search through all

the possible paths through the maze. We can represent the recursive calls as a

graph, where each node in the graph corresponds to an invocation of the function

ExitMaze. In the general case, each invocation of ExitMaze can make up to four
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1 #define MAZE_HEIGHT 4
2 #define MAZE_WIDTH 4
3
4 int ExitMaze(char maze[MAZE_HEIGHT][MAZE_WIDTH], int xpos, int ypos)
5 {
6 if (xpos < 0 || xpos >= MAZE_HEIGHT || ypos < 0 || ypos >= MAZE_WIDTH)
7 return 0;
8
9 if (maze[xpos][ypos] == 'E') // Found the Exit!

10 return 1;
11
12 if (maze[xpos][ypos] != ' ') // Space is not empty (possibly X or V)
13 return 0;
14
15 maze[xpos][ypos]='V'; // Mark this space as visited
16
17 // Go Down
18 if (ExitMaze(maze, xpos + 1, ypos)) {
19 maze[xpos][ypos]='P';
20 return 1;
21 }
22
23 // Go Right
24 if (ExitMaze(maze, xpos, ypos + 1)) {
25 maze[xpos][ypos]='P';
26 return 1;
27 }
28
29 // Go Up
30 if (ExitMaze(maze, xpos - 1, ypos)) {
31 maze[xpos][ypos]='P';
32 return 1;
33 }
34
35 // Go Left
36 if (ExitMaze(maze, xpos, ypos - 1)) {
37 maze[xpos][ypos]='P';
38 return 1;
39 }
40
41 // No path to Exit
42 return 0;
43 }

Figure 17.19 A recursive C function to find an escape path in a maze.

recursive calls (one call for each direction). So each node can end up creating up

to four new invocations of ExitMaze. Figure 17.20 provides a graphical depiction

of ExitMaze in action. The initial call shows the initial maze configuration, along

with the starting point (maze[1][2]). That initial call generates four new calls,
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Exit Found!

Figure 17.20 The total set of recursive calls made by our maze solver.

each evaluated one after the other. The first call (move down) returns immediately,

as does the next call (move right), as does the third call (move up). The fourth

call (move left) is a move into an open space, and thus it causes new calls to be

generated.

17.8 Summary
We initially examined recursion in the context of LC-3 assembly language in

Chapter 8. In this chapter, we examine it again in the context of C. With recursion,

it is important for us to develop an understanding of the types of problems that are

amenable to a recursive solution and also to understand the overheads involved

with recursion.
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We can solve a problem recursively by using a function that calls itself on

smaller subproblems. With recursion, we state the function, say f (n), in terms of

the same function on smaller values of n, say for example, f (n−1). The Fibonacci

series, for example, is recursively stated as

Fibonacci(n) = Fibonacci(n − 1) + Fibonacci(n − 2);

For the recursion to eventually terminate, recursive calls require a base case.

Recursion is a powerful programming tool that, when applied to the right prob-

lem, can make the task of programming considerably easier. For example, the

Towers of Hanoi puzzle can be solved in a simple manner with recursion. It

is much harder to formulate using iteration. In future courses, you will exam-

ine ways of organizing data involving pointers (e.g., trees and graphs) where the

simplest techniques to manipulate the data structure involve recursive functions.

At the lower levels, recursive functions are handled in exactly the same man-

ner as any other function call. The run-time stack mechanism enables this by

systematically allocating a stack frame for each function invocation, providing

storage for each invocation such that it doesn’t interfere with storage for any other

invocation.

Exercises

17.1 For these questions, refer to the examples that appear in the chapter.

a. How many calls to RunningSum are made for the call

RunningSum(10)?

b. How about for the call RunningSum(n)? Give your answer in terms

of n.

c. How many calls to MoveDisk are made in the Towers of Hanoi

problem if the initial call is MoveDisk(4, 1, 3, 2)? This call

plays out a four-disk game.

d. How many calls are made for an n-disk game?

e. How many calls to Fibonacci (see Figure 17.13) are made for the

initial call Fibonacci(10)?

f. How many calls are required for the nth Fibonacci number?

g Is a square with a ‘P’ ever encountered at line 12 of the ExitMaze
code?

17.2 Is the return address for a recursive function always the same at each

function call? Why or why not?

17.3 What is the maximum number of recursive calls made to solve a maze

using ExitMaze?
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17.4 What does the following function produce for count(20)?

int count(int arg)
{

if (arg < 1)
return 0;

else if (arg % 2)
return(1 + count(arg - 2));

else
return(1 + count(arg - 1));

}

17.5 Consider the following C program, and the run-time stack in

Figure 17.21:

#include <stdio.h>
int Power(int a, int b);
int main(void)
{

int x, y, z;

printf("Input two numbers: ");
scanf("%d %d", &x, &y);
if ((x > 0) && (y > 0))

z = Power(x,y);
else

z = 0;
printf("The result is %d.\n", z);

}

int Power(int a, int b)
{

if (a < b)
return 0;

else
return 1 + Power(a/b, b);

}

a. State the complete output if the input is

(1) 4 9

(2) 27 5

(3) −1 3

b. What does the function Power compute?

c. Figure 17.21 is a snapshot of the stack after a call to the function

Power. Two stack frames are shown, with some of the entries filled

in. Assume the snapshot was taken just before execution of one of

the return statements in Power. What are the values in the entries

marked with a question mark? If an entry contains an address, use

an arrow to indicate the location the address refers to.



Exercises 589

Stack frame for Power

?

R6
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?

?

?

?

Stack frame for Power

Figure 17.21 Run-time stack after the function Power is called.

17.6 Consider the following C function:

int Sigma( int k )
{

int l;
l = k - 1;
if (k==0)

return 0;
else

return (k + Sigma(l));
}

a. Convert the recursive function into a nonrecursive function. Assume

Sigma() will always be called with a nonnegative argument.

b. Exactly 1 KB of contiguous memory is available for the run-time

stack, and addresses and integers are 16 bits wide. How many

recursive function calls can be made before the program runs out

of stack space? Assume no storage is needed for temporary values.
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17.7 The following C program is compiled and executed on the LC-3. When

the program is executed, the run-time stack starts at memory location

xFEFF and grows toward xC000 (the stack can occupy up to 16 KB of

memory).

int SevenUp(int x)
{

if (x == 1)
return 7;

else
return (7 + sevenUp(x - 1));

}

int main(void)
{

int a;

printf("Input a number \n");
scanf("%d", &a);
a = SevenUp(a);
printf("%d is 7 times the number\n", a);

}

a. What is the largest input value for which this program will run

correctly? Explain your answer.

b. If the run-time stack can occupy only 4 KB of memory, what is the

largest input value for which this program will run correctly?

17.8 Write an iterative version of a function to find the nth Fibonacci

number. Plot the running time of this iterative version to the running

time of the recursive version on a variety of values for n. Why is the

recursive version significantly slower?

17.9 The binary search routine shown in Figure 17.16 searches through an

array that is in ascending order. Rewrite the code so that it works for

arrays in descending order.

17.10 Following is a very famous algorithm whose recursive version is

significantly easier to express than the iterative one. It was originally

proposed by the Greek mathematician Euclid! For the following

subproblems, provide the final value returned by the function.

int ea(int x, int y)
{

if (y == 0)
return x;

else
return ea(y, x % y);

}

a. ea(12, 15)
b. ea(6, 10)
c. ea(110, 24)
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d. What does this function calculate? Consider how you might

construct an iterative version to calculate the same thing.

17.11 Write a program without recursive functions equivalent to the

following C program:

int main(void)
{

printf("%d", M());
}

void M()
{

int num, x;
printf("Type a number: ");
scanf("%d", &num);
if (num <= 0)

return 0;
else {

x = M();
if (num > x)

return num;
else

return x;
}

}

17.12 Consider the following recursive function:

int func (int arg)
{

if (arg % 2 != 0)
return func(arg - 1);

if (arg <= 0)
return 1;

return func(arg/2) + 1;
}

a. Is there a value of arg that causes an infinite recursion? If so, what

is it?

b. Suppose that the function func is part of a program whose main
function is as follows. How many function calls are made to func
when the program is executed?

int main(void)
{

printf("The value is %d\n", func(10));
}

c. What value is output by the program?

17.13 A magic square is an n × n grid where each cell contains one of the

integers between 1 and n2. Each cell contains a different integer, and

the sum of the cells in a column, in a row, and on each diagonal is

equal. Given a partial solution to a magic square (provided as a 2D
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integer array), find a complete solution if it exists. Use a recursive

technique to build a solver.

17.14 What is the output of the following C program?

#include <stdio.h>
void Magic(int in);
int Even(int n);

int main(void)
{

Magic(10);
}

void Magic(int in)
{

if (in == 0)
return;

if (Even(in))
printf("%i\n", in);

Magic(in - 1);
if (!Even(in))

printf("%i\n", in);
return;

}

int Even(int n)
{

if (n % 2) return 1 else 0;
}
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C H A P T E R

I/O in C

18.1 Introduction
Whether it be to the screen, to a file, or to another computer across a network,

all useful programs perform output of some sort or another. Most programs also

require some form of input. As is the case with many other modern programming

languages, input and output are not directly supported by C. Instead input/output

(I/O) is handled by a set of standard library functions that extend the base lan-

guage. The behavior of these standard library functions is precisely defined by

the ANSI C standard.

In this chapter, we will discuss several functions in the C standard library

that support simple I/O. The functions putchar and printf write to the output

device, and getchar and scanf read from the input device. The more general

functions fprintf and fscanf perform file I/O, such as to a file on disk. We

have used printf and scanf extensively throughout the second half of this book.

In this chapter, we examine the details of how these functions work. Along the

way, we will introduce the notion of variable argument lists and demonstrate

how parameter-passing on the LC-3 run-time stack handles function calls with

a variable number of arguments.

18.2 The C Standard Library
The C standard library is a major extension of the C programming language. It

provides support for input/ouput, character string manipulations, mathematical

functions, file access functions, and various system utilities that are not specif-

ically required for a single program but are generally useful in many programs.

The standard library is intended to be a repository of useful, primitive functions

that serve as components for building complex software. This component-based

library approach is a characteristic of many contemporary programming lan-

guages such as C++, Java, and Python, which also have similar standard libraries

of primitive functions, types, and other facilities.
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We provide a short description of some useful C library functions in

Appendix D.9. The library’s functions are typically developed by the designers of

the underlying device and system—the Android smartphone, for example—and

are optimized for the system on which they are developed.

To use a function defined within the C standard library, we must include

the appropriate header file (.h file). The functions within the standard library are

grouped according to their functionality. Each of these groups has a header file

associated with it. For example, mathematical functions such as sin and tan
use the common header file math.h. The standard I/O functions use the header

file stdio.h. These header files contain, among other things, function declara-

tions for the I/O functions and preprocessor macros relating to I/O. A library

header file does not contain the source code for library functions.

If the header files do not contain source code, how does the machine code for,

say, printf get added to our applications? Each library function called within a

program is linked in when the executable image is formed. The object files con-

taining the library functions are stored somewhere on the system and are accessed

by the linker, which links together the various function binaries into a single

executable program. We refer to this as static linking.

Libraries can be linked dynamically into the application. With certain types

of libraries (dynamically linked libraries, or DLLs), the machine code for a library

isn’t directly integrated into the executable image but is “linked” on demand,

while the program executes. This has a number of advantages over a statically

linked library. It reduces the size of the executable, it enables multiple programs

to link the same code, thereby reducing memory requirements, and it allows the

library to be upgraded independently from the application.

18.3 I/O, One Character at a Time
We’ll start by examining two of the simplest I/O functions provided by the C

library. The functions getchar and putchar perform input and output on a single

character at a time. Input is read in as ASCII and output is written out as ASCII,

in a manner similar to the IN and OUT TRAP routines of the LC-3.

18.3.1 I/O Streams

Conceptually, all character-based input and output is performed in streams. The

sequence of ASCII characters typed by the user at the keyboard is an example of

an input stream. As each character is typed, it is added to the end of the stream.

Whenever a program reads keyboard input, it reads from the beginning of the

stream. The sequence of ASCII characters printed by a program, similarly, is

added to the end of the output stream. In other words, this stream abstraction

allows us to further decouple the producer from the consumer, which is helpful

because the two are usually operating at different rates (see Chapter 8). For exam-

ple, if a program wants to perform some output, it adds characters to the end of

the output stream without being required to wait for the output device to finish



18.3 I/O, One Character at a Time 595

displaying the previous character. Many other popular languages, such as C++,

provide a similar stream-based abstraction for I/O.

In C, the standard input stream is referred to as stdin and is mapped to the

keyboard by default. The standard output stream is referred to as stdout and is

mapped by default to the display. The functions getchar and putchar operate

on these two streams.

18.3.2 putchar

The function putchar is the high-level language equivalent of the LC-3 OUT
TRAP routine. The function putchar displays on the stdout output stream the

ASCII value of the parameter passed to it. It performs no type conversions—the

value passed to it is assumed to be ASCII and is added directly to the out-

put stream. All the calls to putchar in the following code segment cause the

same character (lowercase h) to be displayed. A putchar function call is treated

like any other function call, except here the function resides within the standard

library. The function declaration for putchar appears in the stdio.h header file.

Its code will be linked into the executable during the compiler’s link phase.

char c = 'h';
:
putchar(c);
putchar('h');
putchar(104);

18.3.3 getchar

The function getchar is the high-level language equivalent of the LC-3 INTRAP

function. It returns the ASCII value of the next input character appearing in the

stdin input stream. By default, the stdin input stream is simply the stream of

characters typed at the keyboard. In the following code segment, getchar returns

the ASCII value of the next character typed at the keyboard. This return value is

assigned to the variable c.

char c;

c = getchar();

18.3.4 Buffered I/O

Run the C code in Figure 18.1 and you will notice something peculiar. The pro-

gram prompts the user for the first input character and waits for that input to be

typed in. Type in a single character (say z, for example) and nothing happens. The

second prompt does not appear, as if the call to getchar has missed the keystroke.

In fact, the program seems to make no progress at all until the Enter/Return key is

pressed. Such behavior seems unexpected considering that getchar is specified

to read only a single character from the keyboard input stream. This unexpected

behavior is due to buffering of the keyboard input stream. On most devices, I/O
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 char inChar1;
6 char inChar2;
7
8 printf("Input character 1:\n");
9 inChar1 = getchar();
10
11 printf("Input character 2:\n");
12 inChar2 = getchar();
13
14 printf("Character 1 is %c\n", inChar1);
15 printf("Character 2 is %c\n", inChar2);
16 }

Figure 18.1 An example of buffered input.

streams are buffered. Every key typed on the keyboard is captured by the lower

levels of the system software and kept in a buffer, which is a small array or queue

(see Section 8.4), until it is released into the stream. In the case of the input stream,

the buffer is released when the user presses Enter. The Enter key itself appears as

a newline character in the input stream. So in the example in Figure 18.1, if the

user types the character A and presses Enter, the variable inChar1 will equal the

ASCII value of A (which is 65) and the variable inChar2 will equal the ASCII

value of newline (which is 10). There is a good reason for buffering, particularly

for keyboard input: Pressing the Enter key allows the user to confirm the input.

Say you mistyped some input and wanted to correct it before the program detects

it. You can edit what you type using the Backspace and Delete keys, and then

confirm your input by pressing Enter.

The output stream is similarly buffered. Observe by running the program in

Figure 18.2. This program uses a new library function called sleep that suspends

the execution of the program for approximately the number of seconds provided

as the integer argument, which in this case is 5. This library function requires that

1 #include <stdio.h>
2 #include <unistd.h>
3
4 int main()
5 {
6 putchar('a');
7
8 sleep(5);
9
10 putchar('b');
11 putchar('\n');
12 }

Figure 18.2 An example of buffered output.
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we include the unistd.h header file. Run this code and you will notice that the

output of the character a does not happen quite as you might expect. Instead of

appearing prior to the five-second delay, the character a appears afterwards, only

after the newline character releases the output buffer to the output stream. We

say that the putchar('\n') causes output to be flushed. Add a putchar('\n')
statement immediately after line 6 and the program will behave differently.

Despite the slightly complex behavior of buffered I/O streams, the underly-

ing mechanism used to make this happen is the device’s native I/O functionality,

which in the case of the LC-3 is the IN and OUTTRAP routines described in Chap-

ter 8. The buffering of streams is accomplished by the interrupt service routines

that handle the arrival of input data, or the OUT service routine.

18.4 Formatted I/O
The functions putchar and getchar suffice for simple I/O tasks but are cumber-

some for performing non-ASCII I/O. The functions printf and scanf perform

more sophisticated formatted I/O, and they are designed to more conveniently

handle I/O of integer and floating point values.

18.4.1 printf

The function printf writes formatted text to the output stream. Using printf,

we can print out ASCII text embedded with values generated by the running pro-

gram. The printf function takes care of all of the type conversions necessary

for this to occur. For example, the following code prints out the value of integer

variable x. In doing so, the printf must convert the integer value of x into a

sequence of ASCII characters that can be embedded in the output stream.

int x;

printf("The value is %d\n", x);

Generally speaking, printf writes its first parameter to the output stream. The

first parameter is the format string. It is a character string (i.e., of type char *)

containing text to be displayed on the output device. Embedded within the format

string are zero or more conversion specifications.

The conversion specifications indicate how to print out any of the parameters

that follow the format string in the function call. Conversion specifications all

begin with a % character. As their name implies, they indicate how the values of

the parameters that follow the format string should be treated when converted

to ASCII. In many of the examples we have encountered so far, integers have

been printed out as decimal numbers using the %d specification. We could also

use the %x specification to print integers as hexadecimal numbers, or %b to print

them as binary numbers (represented as ASCII text, of course). Other conversions

include %c, which causes a value to be interpreted as straight ASCII, and %s,
which is used for strings and causes characters stored consecutively in memory to

be output (for this the corresponding parameter is expected to be of type char*).
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The specification %f interprets the corresponding parameter as a floating point

number and displays it in a floating point format. What if we wanted to print out

the % character itself? We use the sequence %%. See Appendix D for a full listing

of conversion specifiers.

As mentioned in Chapter 11, when we first encountered C I/O functions,

special characters such as newline can also be embedded in the format string.

The \n prints a new line, and a \t character prints a tab; both are examples of

these special characters. All special characters begin with a \ and they can appear

anywhere within a format string. To print out a backslash character, we use a \\.

See Table D.1 in Appendix D for a list of special characters.

Here are some examples of various format specifications:

int a = 102;
int b = 65;
char c = 'z';
char banner[10] = "Hola!";
double pi = 3.14159;

printf("The variable 'a' decimal : %d\n", a);
printf("The variable 'a' hex : %x\n", a);
printf("The variable 'a' binary : %b\n", a);
printf("'a' plus 'b' as character : %c\n", a + b);
printf("Char %c.\t String %s\n Float %f\n", c, banner, pi);

The function printf begins by examining the format string a single character

at a time. If the current character is not a % or \, then the character is directly

written to the output stream. (Recall that the output stream is buffered, so the

output might not appear on the display until a new line is written.) If the character

is a \, then the next character indicates the particular special character to print out.

For instance, the escape sequence \n indicates a newline character. If the current

character is a %, indicating a conversion specification, then the next character

indicates how the next pending parameter should be interpreted. For instance, if

the conversion specification is a %d and the next pending parameter has a value

that corresponds to the bit pattern 0000000001101000, then the number 104 is

written to the output stream. If the conversion character is a %c, then the character

h is written. A different value is printed if %f is the conversion specification.

The conversion specifier indicates to printf how the next parameter should be

interpreted. It is important to realize that, within the printf routine, there is

no relationship between a conversion specification and the type of a parameter.

The programmer is free to choose how things are to be interpreted as they are

displayed to the screen. Question: What happens with the following function call?

printf("The value of nothing is %d\n");

There is no argument corresponding to the %d specification. When the

printf routine is called, it assumes the correct number of values was written

onto the stack, so it blindly reads a value off the stack for the %d spec, assuming

it was intentionally placed there by the caller. Here, a garbage value is displayed

to the screen, in decimal.
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18.4.2 scanf

The function scanf is used to read formatted ASCII data from the input stream.

A call to scanf is similar to a call to printf. Both calls require a format string as

the first argument followed by a variable number of other arguments. Both func-

tions are controlled by characters within the format string. The function scanf
differs in that all arguments following the format string must be pointers. As we

discussed in Chapter 16, scanf must be able to access the original locations of

the objects in memory in order to assign new values to them.

The format string for scanf contains ASCII text and conversion specifica-

tions, just like the format string for printf. The conversion characters are similar

to those used for printf. A table of these specifications can be found in Appendix

D. Essentially, the format string represents the format of the input stream. For

example, the format string "%d" indicates to scanf that the next sequence of

non–white space characters (white space is defined as spaces, tabs, new lines,

carriage returns, vertical tabs, and form feeds) is a sequence of digits in ASCII

representing an integer in decimal notation. After this decimal number is read

from the input stream, it is converted into an integer and stored in the corre-

sponding argument. Since scanf modifies the values of the variables passed to

it, arguments are passed by reference using the & operator. In addition to con-

version specifications, the format string also can contain plain text, which scanf
tries to match with the input stream. We use the following code to demonstrate.

char name[100];
int month, day, year;
double gpa;

printf("Enter : lastname birthdate grade_point_average\n");
scanf("%s %d/%d/%d %lf", name, &month, &day, &year, &gpa);

printf("\n");
printf("Name : %s\n", name);
printf("Birthday : %d/%d/%d\n", month, day, year);
printf("GPA : %f\n", gpa);

In this scanf statement, the first specification is a %s that scans a string of

characters from the input stream. In this context, all characters starting from the

first non–white space character and ending with the next white space character

(conceptually, the next word in the input stream) are stored in memory starting

at the address of name. An \0 character is automatically added to signify the end

of the string. Since the argument name is an array, it is automatically passed by

reference; that is, the address of the first element of the array is passed to scanf.

The next specification is for a decimal number, %d. Now scanf expects to find

a sequence of digits (at least one digit) as the next set of non–white space char-

acters in the standard input stream. Characters from standard input are analyzed,

white space characters are discarded, and the decimal number (i.e., a sequence

of digits terminated by a nondigit) is read in. The number is converted from a

sequence of ASCII characters into a binary integer and stored in the memory

location indicated by the argument &month.
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The next input field is the ASCII character /. Now, scanf expects to find

this character, possibly surrounded by white space, in the input stream. Since this

input field is not a conversion specification, it is not assigned to any variable.

Once it is read in from the input stream, it is discarded, and scanf moves onto

the next field of the format string. Similarly, the next three input fields %d/%d
read in two decimal numbers separated by a /. These values are converted into

integers and are assigned to the locations indicated by the pointers appearing as

the next two arguments (which correspond to the addresses of the variables day
and year).

The last field in the format string specifies that the input stream contains a

long floating point number, which is the specification used to read in a value

of type double. For this specifier, scanf expects to see a sequence of decimal

numbers, and possibly a decimal point, possibly an E or e signifying exponential

notation, in the input stream (see Appendix D.2.4). This field is terminated once

a nondigit (excluding the first E, or the decimal point or a plus or minus sign

for the fraction or exponent) or white space is detected. The scanf routine takes

this sequence of ASCII characters and converts them into a properly expressed,

double-precision floating point number and stores it into gpa.

Once it is done processing the format string, scanf returns to the caller. It

also returns an integer value. The number of format specifications that were suc-

cessfully scanned in the input stream is passed back to the caller. In this case, if

everything went correctly, scanf would return the value 5. In the preceding code

example, we chose to ignore the return value.

So, for example, the following line of input yields the following output:

Enter : lastname birthdate grade_point_average
Mudd 02/16/69 3.02

Name : Mudd
Birthday : 2/16/69
GPA : 3.02

Since scanf ignores white space for this format string, the following input

stream yields the same results. Remember, newline characters are considered

white space.

Enter : lastname birthdate grade_point_average
Mudd 02
/
16 / 69 3.02

Name : Mudd
Birthday : 2/16/69
GPA : 3.02

What if the format of the input stream does not match the format string? For

instance, what happens with the following stream?

Enter : lastname birthdate grade_point_average
Mudd 02 16 69 3.02
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Here, the input stream does not contain the / characters encoded in the format

string. In this case, scanf returns the value 2, since the variables name and month
are correctly assigned before the mismatch between the format string and the

input stream is detected. The remaining variables go unmodified. Since the input

stream is buffered, unused input is not discarded, and subsequent reads of the

input stream begin where the last call left off.

If the next two reads of the input stream are

a = getchar();
b = getchar();

what do a and b contain? The answer ' ' (the space character) and 1 should be

no surprise.

18.4.3 Variable Argument Lists

Do you notice something different about the functions printf and scanf from all

other functions we have described thus far? These two functions have a variable
number of arguments passed to them. The number of arguments passed to printf
and scanf depends on the number of items being printed or scanned. We say such

functions have variable argument lists. In the case of printf and scanf, there is a

one-to-one correspondence between each conversion specification in the format

string and each argument that appears after the format string in such function

calls. The following printf statement is from one of our previous examples:

printf("Char %c.\t String %s\n Float %f\n", c, banner, pi);

The format string contains three format specifications; therefore, three argu-

ments should follow it in the function call. The %c spec in the string is associated

with the first argument that follows (the variable c). The %s is associated with

banner, and %f with pi. There are three values to be printed; therefore, this call

contains four arguments altogether. If we want to print five values, the printf
call should contain six arguments.

Recall from Chapter 14 that our LC-3 calling convention pushed items onto

the run-time stack from right to left of the order in which they appear on the func-

tion call. This places the pointer to the format string immediately at the top of the

stack when printf or scanf takes over. Since it is the leftmost argument, it will

always be the last item pushed onto the stack before the function call (JSR instruc-

tion) occurs. Once printf or scanf takes over, it can access the first parameter

directly off the top of the stack. Once this parameter (which is the format string)

is analyzed, the functions can determine the other parameters on the stack. If the

arguments on a function call were pushed from left to right, it would be much

more difficult for printf and scanf to discern the location of the format string

parameter.

Figure 18.3 shows two diagrams of the run-time stack. In diagram (a), the

arguments to the call for printf are passed from right to left, and in (b) they

are passed from left to right. Consider for which case the resulting LC-3 code for

printf will be simpler. In version (a), the offset of the format string from the
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printf("%d %d %d\n", x, y, z);

ptr to format string

Stack frame
for previous function

z

y

x

ptr to format string

Parameters for
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Figure 18.3 Subfigure (a) shows the stack if the arguments to the printf call are
pushed from right to left. Subfigure (b) shows the stack if the arguments
are pushed left to right.

stack pointer will always be zero, regardless of the number of other parameters

on the stack. In version (b), the offset of the format string from the stack pointer

depends on the number of parameters on the stack. The format string, like all

other strings embedded within a program’s source code, is stored in a special

region of memory reserved for constants, or literal values.

18.5 I/O from Files
Say we wanted to process a large set of data, such as the daily closing price of

Apple stock for the last 20 years. To ask the user to type this in on a keyboard

would render it very “user-unfriendly.” Instead, we would want the program to

read the data from a file and possibly write its output to another file. I/O in C is

based on streams, as we described earlier, and these streams are conceptually all

bound to files.

The functions printf and scanf are in fact special cases of more general-

purpose C I/O functions. These two functions operate specifically on two special

files called stdin and stdout. In C, stdin and stdout are mapped by default

to the keyboard and the display.

The general-purpose version of printf is called fprintf, and the general-

purpose version of scanf is called fscanf. The functions fprintf and fscanf
work like their counterparts, with the main difference being that they allow us
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to specify the stream on which they act. For example, we can tell fprintf to

write its output to a specific file with a particular name at a precise location on

the device. Let’s examine how this is done.

The first step in performing file I/O is to declare a file pointer for each file

we want to manipulate. Typically, files are stored on the file system of the device,

which provides protected and secure access to all the documents, images, exe-

cutables, videos, text files, and other data stored on the devices. In C, we can

declare a file pointer called infile as follows:

FILE *infile;

Here we are declaring a pointer to something of type FILE. The type FILE is

defined within the header file stdio.h. Its details are not important for current

purposes. Once the file pointer is declared, we need to map it to a file on the

device’s file system. The C library call fopen performs this mapping. Each fopen
call requires two arguments: the name of the file to open and the description of

what type of operation we want to perform on the file. An example follows.

FILE *infile;

infile = fopen("aapl_stock_prices", "r");

The first argument to fopen is the string aapl_stock_prices, which is the

name of the file to open. The second argument is the operation we want to per-

form on this file. Several useful modes are "r" for reading, "w" for writing (a

file opened with this mode will lose its previous contents), "a" for appending

(here, previous contents is not lost; new data is added to the end of the file), and

"r+" for reading and writing. Note that both arguments must be character strings;

therefore, they are surrounded by double quotes in this example. In this case, we

are opening the file called "aapl_stock_prices" for reading.

If the fopen call is successful, the function returns a file pointer to the phys-

ical file. If the open for some reason fails (as in a case when the file cannot be

found), then the function returns a null pointer. Recall that a null pointer is an

invalid pointer that has the value NULL. It is always good practice to check to

determine if the fopen call was successful.

FILE *infile;

infile = fopen("ibm_stock_prices", "r");

if (infile == NULL)
printf("fopen unsuccessful!\n");

Now with the file pointer properly mapped to a physical file, we can use

fscanf and fprintf to read and write it just as we used printf and scanf to

read the standard devices. The functions fscanf and fprintf both require a file

pointer as their first argument to indicate on which stream the operations are to

be performed. The example in Figure 18.4 demonstrates this.

Here, we are reading from an ASCII text file called aapl_stock_prices
and writing to a file called buy_hold_or_sell. The input file contains the stock
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1 #include <stdio.h>
2 #define LIMIT 10000
3
4 int main()
5 {
6
7 FILE *infile;
8 FILE *outfile;
9 double prices[LIMIT];
10 char answer[10];
11 int i = 0;
12
13 infile = fopen("aapl_stock_prices", "r");
14 outfile = fopen("buy_hold_or_sell", "w");
15
16 if (infile != NULL && outfile != NULL) {
17 // Read the input data
18 while ((fscanf(infile, "%lf", &prices[i]) != EOF) && i < LIMIT)
19 i++;
20
21 printf("%d prices read from the data file", i);
22
23 // Process the data...
24 :
25 :
26 answer = ...
27
28 // Write the output
29 fprintf(outfile, "%s", answer);
30 }
31 else
32 printf("fopen unsuccessful!\n");
33 }

Figure 18.4 An example of a program that performs file I/O.

prices represented as floating point data, each separated by white space. Even

though the file can contain more, our program will process at most 10,000 items.

The fscanf function returns a special value when no more data can be read from

the input file, indicating the end of file has been reached. We can check the return

value of fscanf against this special character, which is defined to the preproces-

sor macro EOF. The while loop terminates once we encounter the EOF character,

or if we reach the data limit of 10,000 items. After reading the input file, the

program processes the input data and generates the string answer, which is then

written to the output file. The function printf is equivalent to calling fprintf
using stdout as the file pointer. Likewise, scanf is equivalent to calling fscanf
using stdin.
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18.6 Summary
In this chapter, we examined the C facilities for performing input and output.

Like many other current programming languages, C provides no direct support

for input and output. Rather, standard library functions are provided for I/O. At

their core, these functions perform I/O one character at a time using the IN and

OUT routines supported by the underlying machine. The key concepts that you

should take away from this chapter are:

∙ Input and output in streams. Modern programming languages create a use-

ful abstraction for thinking about I/O. Input and output occur in streams.

The producer adds data to the stream, and the consumer reads data from the

stream. With this relationship, both can operate at their own rate without

waiting for the other to be ready to conduct the I/O. For example, a program

generating output for the display writes data into the output stream without

necessarily waiting for the display to keep pace.

∙ The four basic I/O functions. We discuss the operation, at a fairly detailed

level, of four basic I/O functions: putchar, getchar, printf, and scanf.

The latter two functions require the use of variable argument lists, which our

LC-3 calling convention can easily handle because of the order in which we

push arguments onto the run-time stack.

∙ File I/O. The standard C I/O functions treat all I/O streams as file I/O. Func-

tions like printf and scanf are special cases where the I/O files are the

standard output and input devices. The more general functions fprintf and

fscanf enable us to specify a file pointer to which the corresponding oper-

ations are to be performed. We can bind a file pointer to a physical file on

the file system using fopen.

Exercises

18.1 Write an I/O function call to handle the following tasks. All can be

handled by a single call.

a. Print out an integer followed by a string followed by a floating point

number.

b. Print out a phone number in (XXX)-XXX-XXXX format.

Internally, the phone number is stored as three integers.

c. Print out a student ID number in XXX-XX-XXXX format.

Internally, the ID number is stored as three character strings.

d. Read a student ID number in XXX-XX-XXXX format. The number

is to be stored internally as three integers.

e. Read in a line of input containing Last name, First name,

Middle initial age sex. The name fields are separated by

commas. The middle initial and sex should be stored as characters.

Age is an integer.
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18.2 What does the value returned by scanf represent?

18.3 Why is buffering of the keyboard input stream useful?

18.4 What must happen when a program tries to read from the input stream

but the stream is empty?

18.5 Why does the following code print out a strange value (such as

1073741824)?

float x = 192.27163;
printf("The value of x is %d\n", x);

18.6 What is the value of input for the following function call:

scanf("%d", &input);

if the input stream contains

This is not the input you are looking for.

18.7 Consider the following program:

#include <stdio.h>

int main(void)
{
int x = 0;
int y = 0;
char label[10];

scanf("%d %d", &x, &y);
scanf("%s", label);

printf("%d %d %s\n", x, y, label);
}

a. What gets printed out if the input stream is 46 29 BlueMoon?

b. What gets printed out if the input stream is 46 BlueMoon?

c. What gets printed out if the input stream is 111 999 888?

18.8 Write a program to read in a C source file and write it back to a file

called “condensed_program” with all white space removed.

18.9 Write a program to read in a text file and provide a count of

a. The number of strings in the file, where a string begins with a

non–white space character and ends with a white space character.

b. The number of words in the file, where a word begins with

an alphabetic character (e.g., a–z or A–Z) and ends with a

nonalphabetic character.

c. The number of unique words in the file. Words are as defined in

part b. The set of unique words has no duplicates.

d. The frequency of words in order of most frequent to least frequent.

In other words, analyze the text file, count the number of times each

word occurs, and display these counts from most frequent word to

least frequent.
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C H A P T E R

Dynamic Data
Structures in C

19.1 Introduction
C at its core provides support for just a few fundamental types of data. That is,

C natively supports the allocation of variables of integers, floating point values,

characters, and booleans. C also supports operators that manipulate these types,

such as + for addition and * for multiplication. With C, we can quite easily declare

variables of these native types, and we can also create arrays of them and pointers

to them.

Ultimately, though, when we write code, we often deal with things that can-

not be easily described by an integer, or floating point value, or character, or

boolean, or even by arrays of them. If we are, for example, modeling an aircraft

wing or developing the path planner for an autonomous vehicle, we need more

sophisticated types in order to map the real world (or virtual world) into the digital

world of the computing device.

The next two chapters deal primarily with the framework that C and C++

provide for creating and organizing more complex data types. We’ll discover that

the fundamental data types, as limited as they are, form the building blocks with

which we can build nearly any general, complex type we might need. Creating

these types, organizing them, connecting them together, and defining operations

to manipulate them are a large part of the coding process.

In this chapter, we first explore the C framework for building more complex

data types. In C, we can create a new type that is a collection of basic types

by using a structure. Structures provide us with a convenient way of representing

objects that are best represented by combinations of the basic types. For example,

an employee might be represented as a structure containing a name (character

string), job title (character string), department (perhaps integer), and employee

ID (integer) within a corporate database. With this structure, we can declare a

single memory object representing an employee just as simply as we can declare

an integer variable.

In addition to structures, we’ll explore dynamic memory allocation in C,

which is a framework for allocating memory objects that are more persistent than
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those allocated on the run-time stack. With the pairing of structures and dynamic

memory allocation, we can create dynamic data structures that can grow and

shrink and persist in memory across different function calls. This capability is

so incredibly useful that it forms the basis of most software development.

19.2 Structures
Let’s leap straight into an example. Let’s say we wanted to track airborne aircraft

around a particular geographic point, say the city of Urbana, Illinois. There are

several characteristic features that we would want to associate with each aircraft.

The aircraft’s registration number, which is useful for identification, can be rep-

resented by a character string. The altitude, longitude, latitude, and heading of

the flight are also useful, and these could each be represented as an integer value.

Airspeed could be represented by a floating point value (say a double, for exam-

ple). Depending on the specifics of the tracker application, there could also be

other items worth associating with each aircraft.

For our application, associated with each aircraft, we’d want the following

values:

char ID[7]; // Max 6 characters
int altitude; // in meters
int longitude; // in tenths of degrees
int latitude; // in tenths of degrees
int heading; // in tenths of degrees
double airSpeed; // in kilometers/hour

If we wanted to track multiple aircraft around Urbana, what sort of data struc-

ture would we use? Our natural choice might be to use a collection of arrays, one

for each value. If we were to go with this approach, it’s not difficult to imagine

how cumbersome it would be to juggle this in our code.

To assist in the creation and management of such types that are collections of

basic types, C provides “structures.” Structures allow the programmer to define a

new type that consists of a combination of other, simpler types such as int, char,

and double, as well as pointers to them and arrays of them. Structure variables

are declared in the same way variables of fundamental data types are declared.

Before any structure variables are declared, however, the structure itself needs to

be defined.

For our aircraft tracking app, we could create a structure definition as such:

struct flightType {
char ID[7]; // Max 6 characters
int altitude; // in meters
int longitude; // in tenths of degrees
int latitude; // in tenths of degrees
int heading; // in tenths of degrees
double airSpeed; // in kilometers/hour

};

With this structure definition, we create a new type consisting of six val-

ues, or members. If we were to declare something of this new type, it would be
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allocated in contiguous storage, with enough space for all its members. To declare

a variable of this new type, we do the following:

struct flightType plane;

This declares a variable called plane that consists of the six members defined in

the structure definition.

We can access the individual members of this structure variable using the

following syntax:

struct flightType plane;

plane.airSpeed = 800.00;
plane.altitude = 10000;

Each member can be accessed using the variable’s name as the base name

followed by a dot “.” followed by the member name.

The variable plane gets allocated onto the stack just like any other local

variable, and it occupies a contiguous region of memory large enough to hold all

member elements. In this case, if each of the basic types occupied one LC-3 memory

location, the variable plane would occupy 12 locations (7 for the character string,

5 for the integers, and 1 for the double). Figure 19.1 shows a portion of the run-time

stack when a function that contains the following declarations is invoked.

int x;
struct flightType plane;
int y;

Run-time stack

y

plane.ID[0]

plane.ID[1]

plane.ID[2]

plane.ID[3]

plane.ID[4]

plane.ID[5]

plane.ID[6]

plane.altitude

plane.heading

plane.longitude

plane.latitude

plane.airSpeed

x

Figure 19.1 The run-time stack showing an allocation of a variable of structure type.
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More generally, the syntax for a structure declaration is as follows:

struct tag {
type1 member1;
type2 member2;
...
typeN memberN

} identifiers;

The tag field provides a handle for referring to the structure later in the code,

as in the case of declaring variables of the structure’s format. The list of members

defines the organization of a structure and is syntactically a list of declarations in

types that have been previously defined. A member can be of any type, including

another structure type. We can optionally include identifiers in a structure’s dec-

laration to actually declare variables of that structure’s type. These appear after

the closing brace of the structure declaration, prior to the semicolon.

19.2.1 typedef

C structures enable programmers to define their own aggregate types. C

typedef enables programmers to name their own types. It has the general form

typedef type name;

It’s not so much a type definition, as its name implies, as it is a type synonym.

This statement causes the identifier name to be synonymous with the type type,

which can be any basic type or aggregate type (e.g., a structure). For instance,

typedef int Color;

allows us to define variables of type Color, which will now be synonymous with

integer. Using this definition, we can declare:

Color pixels[200][100];

which could be used to represent an image, for example, of size 200 × 100 pixels.

The typedef facility is particularly useful when dealing with structures. For

example, we can create a simpler, more meaningful name for our airborne aircraft

structure.

struct flightType {
char ID[7]; // Max 6 characters
int altitude; // in meters
int longitude; // in tenths of degrees
int latitude; // in tenths of degrees
int heading; // in tenths of degrees
double airSpeed; // in kilometers/hour

};
typedef struct flightType Flight;

Now we can declare structure variables using the type name Flight.

For example,

Flight plane;
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is now equivalent to the declaration used previously:

struct flightType plane;

The typedef declaration provides no additional functionality. However, its

purpose is to provide additional clarity to our code, particularly code that is heavy

with programmer-defined types. Well-chosen type names connote properties of

the variables they declare even beyond what can be expressed by the names of

the variables themselves.

19.2.2 Implementing Structures in C

As useful as structures are, they are a fairly simple concept built atop the basic

framework provided by C. A structure variable is a regular variable like an int,

char, or float, but with more moving parts. Each of these parts is necessarily a

simpler type that can be directly manipulated using existing operators. For exam-

ple, in the following code, the member altitude of the structure variable of type

Flight is accessed.

int x;
Flight plane;
int y;

plane.altitude = 0;

Here, the variable plane is of type Flight, meaning it contains the six mem-

ber fields we defined previously. The member field labeled altitude is accessed

using the variable’s name followed by a period, followed by the member field

label. The compiler, knowing the layout of the structure, generates code that

accesses the structure’s member field using the appropriate offset. Figure 19.1

shows the layout of the portion of the stack frame for this function. The compiler

keeps track, in its symbol table, of the position of each variable in relation to the

base pointer R5, and if the variable is an aggregate data type, it also tracks the

position of each field within the variable. Notice that for the particular reference

plane.altitude = 0;, the compiler must generate code to access the second

variable on the stack and the second member element of that variable. Follow-

ing is the code generated by the LC-3 C compiler for the assignment statement

plane.altitude = 0;.

AND R1, R1, #0 ; zero out R1
ADD R0, R5, #-12 ; R0 contains base address of plane
STR R1, R0, #7 ; plane.altitude = 0;

19.3 Arrays of Structures
Let’s continue to build on this example by considering how we might build an

application to track all the airborne aircraft over a particular location, such as

Urbana, Illinois. The core data structure for our tool would be some sort of

collection of memory objects (i.e., variables) of the flightType structure. This

data structure should give us easy access to all aircraft in flight over Urbana at

any point in time and should support the addition and removal of aircraft as they

take off and land, or as they otherwise enter and exit the airspace.
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An easy, straightforward way to represent the set of airborne aircraft would

be to use an array. We are already familiar with arrays for building contiguous

collections of simple variables, and here we’ll apply the same concept to objects

of flightType. We quickly run into a design issue in that we need to pick a size for

the array, either statically or using a variable-sized array (see Section 16.3.8). For

the sake of example, let’s make the determination that no more than 100 aircraft

will exist in this airspace (but what if we are wrong?). For this the following

declaration suffices:

Flight aircraft[100];

This declaration is like a declaration of a regular array, except instead of declaring

100 integer values, we have declared a contiguous region of memory contain-

ing 100 structures, each of which is composed of the six members indicated in

the declaration struct flightType. The reference aircraft[12], for example,

would refer to the 13th object in the region of 100 such objects in memory.

Each object contains enough storage for its six constituent member ele-

ments. Each object in this array is of type Flight (which is a synonym of

struct flightType) and can be accessed using standard array notation. For

example, accessing the flight characteristics of the first aircraft can be done using

the identifier aircraft[0]. Accessing a member field is done by accessing an

element of the array and then specifying a field:

aircraft[0].heading

The following code segment provides an example. It finds the average airspeed

of all 100 aircraft in the airspace.

double sum = 0;
double averageAirSpeed;

for (int i = 0; i < 100; i++)
sum = sum + plane[i].airSpeed;

averageAirSpeed = sum / 100;

What if there are fewer than 100 aircraft? We’d need some convenient way of

tracking the actual number of airborne aircraft in our array. More on this later.

We can also create pointers to structures. The following declaration creates

a pointer variable that contains the address of a variable of type Flight.

Flight *aircraftPtr;

We can assign this variable as we would any pointer variable.

aircraftPtr = &aircraft[34];

If we want to access any of the member fields pointed to by this pointer

variable, we could use an expression such as the following:

(*aircraftPtr).longitude

Let’s decode this expression. We are dereferencing the variable aircraftPtr.

It points to something of type Flight, which is a structure. We can access one

of the member elements of this structure by using the dot operator (.). Pointers

to structures are an incredibly powerful and therefore commonly used concept,
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so the creators of the C programming language provided for a simple, intuitive

syntax for this type of dereferencing. The previous expression is equivalent to:

aircraftPtr->longitude

That is, the expression -> is like the dereference operator *, except it is used

for directly dereferencing a member element of a structure type. The symbol ->
visually evokes that something is being pointed at.

Let’s develop our running example a little further. Say we want to add some

functionality that determines, for each aircraft, which of the other aircraft is clos-

est in physical distance. To accomplish this, we need to examine the position

and altitude of each aircraft and determine the one that is closest to the refer-

ence aircraft. In Figure 19.2, the function NearestNeighbor calls the function

AirDistance on pairs of aircraft to determine distance and finds the minimum of

1 #include <stdio.h>
2 #define TOTAL_FLIGHTS 100
3
4 // Structure definition
5 struct flightType {
6 char ID[7]; // Max 6 characters
7 int altitude; // in meters
8 int longitude; // in tenths of degrees
9 int latitude; // in tenths of degrees
10 int heading; // in tenths of degrees
11 double airSpeed; // in kilometers/hour
12 };
13 typedef struct flightType Flight;
14
15 double AirDistance(Flight *aircraftA, Flight *aircraftB)
16 {
17 // This function calculates Euclidean distance
18 // in meters in 3-space of two aircraft given
19 // their altitude, longitude and latitude.
20 return distance;
21 }
22
23 void NearestNeighbor(Flight aircraft[TOTAL_AIRCRAFT])
24 {
25 double minD;
26 Flight *closest;
27
28 for (int i = 0; i < TOTAL_AIRCRAFT; i++) {
29 closestAircraft = NULL; // Initialize
30 minD = MAX_DISTANCE; // Initialize
31 for (int j = 0; j < TOTAL_AIRCRAFT; j++) {
32 if (i != j) {
33 if (AirDistance(&aircraft[i], &aircraft[j]) < minD)
34 closest = &aircraft[j];
35 }
36 }
37 printf("The closest aircraft to %s is %s.\n",
38 aircraft[i].flightNum, closest->flightNum);
39 }
40 }

Figure 19.2 Tracking airborne aircraft using an array based on the type Flight.
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all pairs. The function AirDistance isn’t completely coded. It uses the position

and altitude of each of its two arguments to determine their distance apart.

Notice that NearestNeighbor passes AirDistance two pointers rather than

the structures themselves. While it is possible to pass structures, passing pointers

is more efficient because it involves less pushing of data onto the run-time stack;

that is, in this case two pointers are pushed rather than 24 locations’ worth of data

for two objects of type Flight.

19.4 Dynamic Memory Allocation
The choice of array of Flight types for our core data structure is quite problem-

atic for several reasons. We needed to choose a size for this array and hard-code

that size into our code. If the number of aircraft is fewer than that size, then we

are okay, except that we have more space allocated than we actually need. Yes,

we also need a means for identifying which array elements contain real aircraft

and which are unused. But if we had more than that number of aircraft in the sky,

then our code would not function correctly. Such rigid assumptions make our

code brittle. When the assumptions don’t hold, our code is likely to fail. It would

be better if we could make our sizing choice flexible to accommodate however

many aircraft are in the air.

Another reason that the array of Flight types is a poor choice of core struc-

ture arises from the dynamic nature of airborne aircraft. They tend to land, take

off, exit the airspace, or enter it with relatively high frequency. Our core data

structure will need to add and remove aircraft as they enter and exit the airspace.

Adding or removing a data item from the middle of an array is easy enough to

code, but it requires moving all the items that follow in the array over one spot,

which amounts to a lot of data movement over time, which could slow down our

app or put a higher load on our device’s battery.

The solution to these issues (the fixed data structure size and the inefficient

delete of objects) is to use a dynamic data structure. In the next section, we will

introduce the idea of a linked data structure that addresses both of these issues

head on. But before we get there, we need to discuss the idea of dynamic memory

allocation.

Memory objects (e.g., variables) in C programs are allocated to one of three

spots in memory: the run-time stack, the global data section, or the heap. Vari-

ables declared local to functions are allocated during execution onto the run-time

stack by default. Global variables are allocated to the global data section and

are accessible from all parts of a program. Dynamically allocated data objects

are allocated onto the heap, and their allocation and deallocation are determined

completely by the logic of our code.

At a high level, dynamic memory allocation works as follows: A memory

allocator (which is a C system library function named malloc) manages an area

of memory called the heap. During execution, a program can make a request to

the memory allocator for blocks of memory of a particular size in bytes. The

memory allocator locates a contiguous block of this size, reserves this block by
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marking it as allocated, and returns a pointer to this block. For example, if we

wanted to store 1000 aircraft’s worth of data in our aircraft tracker code, we could

request the allocator for this space in bytes. If enough space exists in the heap,

the allocator will return a pointer to it. We’ll work through a detailed example

momentarily.

A block of memory that is allocated on the heap stays allocated until we

decide to explicitly deallocate it by calling the memory deallocator (it works

in concert with the allocator and is also a C system library function. It’s

named free). The deallocator adds the block back onto the heap for subsequent

reallocation.

Figure 19.3 is a copy of Figure 12.7; it shows the relationship of the various

regions of memory, including the heap. Notice that as blocks are allocated and

deallocated, the heap grows and shrinks. The heap and the stack both grow toward

each other. The size of the stack is based on the depth of the current function call,

whereas the size of the heap is based on how much memory the memory allocator

has reserved for the requests it has received.

xFFFF

x0000

R5 (frame pointer)
R6 (stack pointer)

System space

System space

PC

Global data section

Program text

Run-time stack

Heap
(for dynamically allocated memory)

R4

Figure 19.3 The LC-3 memory map showing the heap region of memory.
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Objects that are allocated in the heap stay “alive” until we, the programmer,

explicitly deallocate them. This is unlike the stack, where objects are deallocated

once the code blocks (e.g., functions) in which they are declared have exited.

This additional programmer control is invaluable. It will enable us to create data

structures that are persistent across multiple functions and across large spans of

program execution.

19.4.1 Dynamically Sized Arrays

Dynamic allocation and deallocation are handled by the C standard library func-

tions malloc and free. They both have simple interfaces—they each take one

argument (their internals are quite complex, but that is a topic for a subsequent

course). We’ll see how they are used via a simple example involving dynamically

sized arrays.

int numAircraft;
Flight *planes;

printf("Total number of aircraft?");
scanf("%d", &numAircraft);
planes = malloc(24 * numAircraft);

The function malloc allocates a contiguous region of memory on the

heap of the size in bytes indicated by the single parameter. If the heap has

enough unclaimed memory and the call is successful, malloc returns a pointer

to the allocated region. Here we allocate a chunk of memory consisting of

24 * numAircraft bytes, where numAircraft is the number of aircraft in the

air.

What about the 24? Recall that the type Flight is composed of six members—

an array of seven characters, four integers, and a double, each occupying a single

two-byte location on the LC-3. Each structure requires 24 bytes of memory on the

LC-3. But this same structure on a Windows PC might require 31 bytes, due to the

different sizes of integers, characters, and double types. As a necessary convenience

for programmers, the C language supports a compile-time operator called sizeof.

This operator returns the size, in bytes, of the memory object or type on the particular

system being compiled for. For example, sizeof(Flight) will return the number

of bytes occupied by an object of type Flight on the particular device the code is

being compiled for. In this way, we can create more portable code that works on

different systems without having to modify it.

If all the memory on the heap has been allocated and the current allocation

cannot be accomplished, malloc returns the value NULL. Recall that the symbol

NULL is a preprocessor macro symbol that represents a null pointer. It is good

programming practice to check that the return value from malloc indicates that

the memory allocation was successful.

The function malloc returns a pointer, but of what type? In the preceding

example, we are treating the pointer that is returned by malloc as a pointer to

some variable of type Flight. In other places, we might want malloc to allocate

an array of integers, characters, or of some other type. In other words, malloc
needs to return a generic pointer of type void *. This generic pointer needs to
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be type cast to the appropriate type during assignment. That is, whenever we call

the memory allocator, we need to convert the void * pointer from malloc to the

type of the pointer variable we are assigning it to. In the preceding example, we

assigned the pointer to planes, which is of type Flight *; we therefore should

cast the pointer to type Flight *. To do otherwise makes the code less portable,

and most compilers generate a warning message because we are assigning a

pointer value of one type to a pointer variable of another.

To type cast a value from one type to a newType, we use the following syntax.

The variable var should be of newType.

var = (newType) expression;

Now that we’ve discussed type casting, the sizeof operation, and error

checking of the return value from malloc, the correct way to write the code from

the previous example is:

int numAircraft;
Flight *planes;

printf("Total number of aircraft?");
scanf("%d", &numAircraft);
planes = (Flight *) malloc(sizeof(Flight) * numAircraft);
if (planes == NULL) {

printf("Error in malloc...\n");
:
:

Since the region that is allocated by malloc is contiguous in memory, we can

switch between pointer notation and array notation. Now we can use the expres-

sion planes[29] to access the characteristics of the 30th aircraft (provided that

numAircraft was larger than 30, of course). Notice that we smoothly switched

from pointer notation to array notation; this is an example of the equivalence

between array and pointer notation that we discussed in Section 16.3.5.

What about deallocation? To deallocate memory and return it to the heap,

we can use the function free. It takes as an argument a pointer to a block that

was previously allocated by malloc and deallocates it. After a region has been

free’d, it is once again eligible for allocation. We’ll see some examples that use

free in the next section.

The function malloc is only one of several memory allocation functions in

the standard library. The function calloc allocates memory and initializes it to

the value 0. The function realloc attempts to grow or shrink previously allocated

regions of memory. To use the memory allocation functions of the C standard

library, we need to include the stdlib.h header file.

We can use realloc to create an array that adapts to the data size. For exam-

ple, the function AddMoreAircraft() could double the size of our core aircraft

array if the current size of the planes were too small. Likewise, we could use

ReduceAircraft() when the size of the array is larger than what is required.

Both of these functions would call realloc to adjust the array’s size.

Notice that with this dynamic allocation functionality, we’ve created some-

thing similar, but not exactly the same as the variable-length arrays natively sup-

ported in C (recall from Section 16.3.8). Dynamically sized arrays (or dynamic
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arrays) are allocated on the heap, which means that we can access them through-

out our code and not just within a single function, which is the case with

stack-allocated variable-sized arrays. Dynamic arrays can also grow and shrink,

whereas variable-length arrays are of fixed size throughout program execution.

Even if we chose to use variable-length arrays for our aircraft tracker code, if the

number of aircraft in our airspace surged, our code might not have enough space

to track all aircraft.

Now let’s take a step back. We started Section 19.4 by pointing out that our

choice of data structure was rather poor because it required that we chose a fixed

size for the array, and also because it wasn’t efficient at deleting aircraft after they

left our airspace or them adding once they entered. We addressed the dynamic

sizing requirement by sketching a solution using dynamic memory allocation and

dynamically sized arrays. But the issue of deleting and adding aircraft persists.

One approach to resolving this is to use a linked data structure, which we are now

fully prepared to explore in the next section!

19.5 Linked Lists
A linked list is a data structure that is similar to an array in that both can be used

for data that is a sequential list of elements. In an array, each element (except the

last) has a next element that follows it consecutively in memory. Likewise in a

linked list, each element has a next element (except the last), but the elements

need not be adjacent in memory. Rather, each element in a linked list contains a

pointer to the next element, which enables the next element to be placed anywhere

in relation. The pointer is used to reconstruct the sequential order.

A linked list is a collection of elements, or nodes, where each node is one

“unit” of data, such as the Flight structure for tracking airborne aircraft, plus a

pointer to the next node. Given a starting node, we can traverse the list from one

node to another by following the pointers. The following code shows how this

is accomplished in C. Here we have added a single new member element to the

structure, the pointer Flight * next. As a side note, we rearranged this code

slightly from the example in Figure 19.2 by moving the typedef to precede the

structure definition. Why? This enables us to use the more convenient Flight *
rather than struct flightType * as the type for next.

1 // Structure definition
2 typedef struct flightType Flight;
3 struct flightType {
4 char ID[7]; // Max 6 characters
5 int altitude; // in meters
6 int longitude; // in tenths of degrees
7 int latitude; // in tenths of degrees
8 int heading; // in tenths of degrees
9 double airSpeed; // in kilometers/hour
10 Flight *next; // Pointer to next element
11 };

Like an array, a linked list has a beginning and an end. Its beginning, or head,

is accessed using a pointer called the head pointer. The final node in the list, or
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Head pointer

Node 1

Node 0

Node 2

Node 3

Head

A linked list in abstract form

Node 1 Node 2 Node 3

Tail

A linked list in memory

Node 0

NULL

NULL

Figure 19.4 Two representations for a linked list.

tail, points to the NULL value, which signifies that no additional elements follow,

similar to the way the NULL character indicates the end of a string. Figure 19.4

shows two representations of a linked list data structure: an abstract depiction

where nodes are represented as blocks and pointers are represented by arrows,

and a more physical representation that shows what the data structure might look

like in memory. Nodes can appear anywhere, and it is the pointers that help re-

create the linear order. Given a head pointer, we can access all elements in the

list by traversing from one node to the next via the next pointer.

Despite their similarities, arrays and linked lists have fundamental differ-

ences. An array can be accessed in random order. We can access element

number 4, followed by element 911, followed by 45, for example, by providing

the index of the element we wish to access. A simple linked list must be traversed

sequentially starting at its head; if we wanted to access node 29, then we would

have to start at node 0 (the head node) and then go to node 1, then to node 2, and

so forth. This sequential access may seem like a disadvantage, and it is! But there

is a strong benefit to linked lists, which we discuss next.

Linked lists are dynamic in nature; additional nodes can be added or deleted

without movement of the other nodes. Existing nodes stay in place, with the new

node added, or old node deleted, by rearranging the node-to-node links. Both

add and delete are accomplished by rearranging pointers, and they don’t require
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copying or moving data. While it is straightforward to dynamically size an array

(see Section 19.4.1 on using malloc), it is more costly to add or remove a single

element in an array.

19.5.1 Support Functions

Let’s redevelop the core data structure for our flight tracker app, this time using

a linked list instead of an array as we did in Figure 19.2. There are two basic

functions we’ll develop in this example, AddFlight, which will add an aircraft to

the linked list as it enters our airspace, and DeleteFlight to remove an aircraft.

Our starting point will be the variable

Flight *airspace = NULL;

and it will replace the array we used in Figure 19.2. It is initially empty, as

signified by its initialization to NULL.

Before we dive into the linked list itself, let’s build up the code surrounding

the AddFlight and DeleteFlight functions. Figure 19.5 lists the C source code

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 // Structure definition
6 typedef struct flightType Flight;
7 struct flightType {
8 char ID[7]; // Max 6 characters
9 int altitude; // in meters

10 int longitude; // in tenths of degrees
11 int latitude; // in tenths of degrees
12 int heading; // in tenths of degrees
13 double airSpeed; // in kilometers/hour
14 Flight *next; // Pointer to next element
15 };
16
17 Flight *CreateFlight(char *ID, int altitude, int longitude,
18 int latitude, int heading, double airspeed)
19 {
20 Flight *newFlight;
21
22 newFlight = (Flight *)malloc(sizeof(Flight));
23 strcpy(newFlight->ID, ID);
24 newFlight->altitude = altitude;
25 newFlight->longitude = longitude;
26 newFlight->latitude = latitude;
27 newFlight->heading = heading;
28 newFlight->airSpeed = airspeed;
29 }
30
31 void PrintAirspace(Flight *list)

Figure 19.5 The support functions for our airspace tracker (Fig. 19.5 continued on
next page.)
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32 {
33 int count = 1;
34
35 printf("Aircraft in Airspace --------------------------\n");
36 while (list != NULL) {
37 printf("Aircraft : %d\n", count);
38 printf("ID       : %s\n", list->ID);
39 printf("Altitude : %d\n", list->altitude);
40 printf("Longitude: %d\n", list->longitude);
41 printf("Heading  : %d\n", list->heading);
42 printf("Airspeed : %f\n", list->airSpeed);
43 printf("-----------------------------\n");
44 count = count + 1;
45 list = list->next;
46 }
47 printf("\n\n");
48 }
49
50 int main(void)
51 {
52 Flight *airspace = NULL;
53 Flight *newPlane = NULL;
54
55 newPlane = CreateFlight("ZA123", 1000, 3233,
56 2516, 392, 3493.20);
57 if (AddFlight(newPlane, &airspace) == 0)
58 printf("Successful add of flight %s\n",newPlane->ID);
59 .
60 .
61 .
62 if (DeleteFlight("ZA123", &airspace) == 0)
63 printf("Successful removal of flight %s\n", "ZZ");
64 .
65 .
66 .
67 }

Figure 19.5 The support functions for our airspace tracker (continued Fig. 19.5 from
previous page.)

for the support functions for our linked list–based flight tracker. The structure def-

inition is just as we developed previously, with the addition of the Flight *next
pointer to enable us to link nodes together.

The function CreateFlight takes as arguments the various properties of an

aircraft to create a new node via malloc. The function then returns a pointer to

this new node.

The function PrintAirspace prints all the aircraft in the airspace by travers-

ing the linked list, which is provided as an input parameter. Notice that the while
loop is the analog of the for loop we would typically use for traversing a fixed-

size array. Since we don’t know the number of nodes in the list, we use a while
loop to keep traversing from node to node until we reach the NULL pointer. And
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instead of the i++ which is typical of a for loop, the iteration is accomplished by

list = list ->next;.

The function main orchestrates everything, and it contains example calls to

the functions AddFlight and DeleteFlight.

One note about the code in Figure 19.5 is that we needed to include two

additional header files from the C standard library. The header file stdlib.h
contains the definitions for the memory allocation functions that we’ll use, e.g.,

malloc and free. The header file string.h contains various string functions,

including strcmp, which we’ll use in the functions to add and delete aircraft to

and from our linked list.

19.5.2 Adding a Node to a Linked List

Since the linked list of aircraft will be maintained in sorted order by aircraft ID,

there is a precise spot within the list where each new aircraft should be added. For

example, if our list contains two aircraft, one with ID A, followed by one with

ID C, then the new aircraft B will be inserted in between those two aircraft. The

new list will be A, B, C.

The basic insertion algorithm is simple: the next pointer of A, which currently

points to C, should be changed to point to the new aircraft B, and the next pointer

of B should be changed to point to C. Only two values are modified in order to

add the new node. Compare this to what is required to add a node to a sorted

array!

Let’s start off with some code to represent this particular situation. Keep in

mind that this code is not complete, as we’ll elaborate later, but it does provide

the basic structure of the algorithm, and it is important for us to understand before

we develop the full code.

We want to traverse the list, searching for the spot in the list at which to insert

B. We’ll use a while loop, as we did for the PrintAirspace support function,

to traverse the list. We’re searching for a node with an ID that is greater than B

because that indicates we’ve found the spot at which to insert B. In this case, A

is not greater than B, so we keep iterating. C is greater than B, and therefore we

insert B just before C.

Note that because ID is represented as a character string, we’ll use the

C standard string function strcmp, which compares two strings, stringX and

stringY:

comp = strcmp(stringX, stringY);

It returns a 0 if both are equal, or a value <0 if stringX appears before stringY
in alphabetical order, according to ASCII, or a value >0 if stringX appears after

stringY.

To insert B prior to node C, we need to modify the next pointer of A, which

is prior to node C. To accomplish this, we need to retain a “previous” pointer

that points to the node prior to node C. In other words, the current pointer serves

as our index through the linked list, and the previous pointer lags it by one node.

The current pointer helps us locate the point of insertion, and the previous pointer
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1 int AddFlight(Flight *newPlane, Flight *list)
2 {
3 Flight *previous = NULL;
4 Flight *current = list;
5 int IDcompare;
6
7 while (current != NULL) {
8 IDcompare = strcmp(newPlane->ID, current->ID);
9 // returns 0 if equal

10 // < 0 if newPlane->ID is less than current->ID
11 // > 0 if newPlane->ID is greater than current->ID
12
13 if (IDcompare < 0) {
14 // Add newPlane in between previous and current nodes
15 newPlane->next = current;
16 previous->next = newPlane;
17 return 0;
18 }
19 // Continue traversing thru the list
20 previous = current;
21 current = current->next;
22 }
23 }

Figure 19.6 Our first version of AddFlight. It handles the simple case of adding a
node to the middle of the list.

assists in the insertion by providing a way to access the node whose next pointer

needs to be modified.

The code provided in Figure 19.6 provides the basic structure, albeit incom-

plete, of our code. Notice that the while loop iterates through the nodes in the

linked list using the pointer variable current. The pointer variable previous
lags current by one node.

This code is incomplete. It doesn’t take into account some of the different

cases we will encounter during use. How does the preceding situation change if

C doesn’t exist, or if A doesn’t exist, or if neither exists? Let’s walk through the

permutations of A and C (and B) existing in the list prior to the insertion of B.

We’ve already covered the situation where both A and C are in the list in the

code in Figure 19.6. Here B is inserted in between two existing nodes. We’ll call

this the “Add to Middle” case. Let’s consider the other cases.

Empty List: What if neither A nor C exists prior to the insertion of B? Here

we are adding B to an empty list. We want to change the value of the head pointer

of the list (allAircraft in the function main), which currently points to NULL, to

point instead to B. The next pointer of B will point to NULL. The list now contains

a single aircraft, B.

Add at Tail: What if A exists, but C does not? In this case, we will be adding

B to the end, or tail, of the list. The next pointer of A will be modified to point to

B instead of NULL. B’s next pointer will be set to NULL.
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Add to Middle NULLA

B

CallAircraft

B Exists NULLA

B

B CallAircraft

Add at Head NULL

B

CallAircraft

Add at Tail
NULL

NULLA

B

allAircraft

Empty List NULLNULL

B

allAircraft

Figure 19.7 Inserting a node into a linked list. The dashed lines indicate newly
formed links.

Add at Head: What if C exists, but A does not? In this case, B will be inserted

prior to C. This requires modifying the head pointer of the list (allAircraft in

the function main), which currently points to C, to point to B instead. B’s next

pointer will be set to point to C.

B Exists: What if A and C exist, but so does B? In this case, we will not insert

a duplicate of B; instead we will signal that a special condition has occurred.

Figure 19.7 provides another view of each of these five cases. We’ll have

to ensure that our AddFlight code from Figure 19.6 handles all five of these

situations. Some of these cases are rather easy to address, such as “B Exists”.

“Add at Tail” is also rather simple. Here we exit the while loop without

having added B. At this point, we know that B will be added to the tail,

which requires modifying the previous node to point to B and having B point

to NULL.

The other two cases, Add at Head and Empty List, are more problem-

atic. They both require modifying the parameter list to point to a new node.
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To address this issue, we’ll need to pass list by reference to AddFlight (see

Section 16.2.3). That is, we’ll need to pass a pointer to it, instead of the value

itself. We’ve seen how to do this for typical variables, but it gets a little confusing

when dealing with pointer variables. In C, this parameter would be expressed as

a pointer to a variable of type Flight *, or as expressed as code:

Flight **list;

It’s often distractingly difficult to clearly think about what this actually means.

The double asterisks can require some mental processing for most programmers

to decode. It is helpful to keep in mind that the concept is just the same as if we

were passing an integer variable by reference:

int *x;

And in order to modify the variable x, say by incrementing it, we can use the

following notation:

*x = *x + 1;

Likewise, to modify a pointer variable passed by reference, we can use the

following notation:

*list = *list->next;

We’ve provided the complete version of AddFlight in Figure 19.8. The

places in the code where we handle each of the five different cases are identified

in the comments.

19.5.3 Deleting Node from a Linked List

Our function to delete a node from the list follows the template set AddFlight
quite closely. The delete function requires an ID of the aircraft to be deleted. The

corresponding node can exist somewhere within the list, at the head of the list, at

the tail of the list, or it might not exist at all. As with our code to add an element

to the list, our delete code needs to handle each of these cases.

We traverse the list looking for the node to delete. If found, the node previous

to it is modified to point to the node following it. The node to delete is then

deallocated using the free function. As with the add function, DeleteFlight
returns a 0 if the delete proceeded successfully or a −1 if it didn’t.

When deleting a node from a linked list, we can encounter situations analo-

gous to those we encountered when adding a node: Delete from Middle, Empty
List, Delete from Tail, Delete from Head, and Doesn’t Exist.

Each of these situations is simple to code on top of the basic while loop

structure. Some of these cases are similar to each other: Empty List and Doesn’t
Exist are in effect the same. Neither actually performs a delete, and each returns

a −1 to signal an error. Also, Delete from Middle and Delete from Tail are the

same due to the type similarity between a NULL pointer and a pointer to a real

node. The Delete from Head case requires that we modify the parameter list in
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1 int AddFlight(Flight *newPlane, Flight **list)
2 {
3 Flight *previous = NULL;
4 Flight *current = *list;
5 int IDcompare;
6
7 while (current != NULL) {
8 IDcompare = strcmp(newPlane->ID, current->ID);
9 // returns 0 if equal
10 // < 0 if newPlane->ID is less than current->ID
11 // > 0 if newPlane->ID is greater than current->ID
12
13 if (IDcompare == 0)
14 return -1; // Exists!
15 }
16 else if (IDcompare < 0) {
17 // Add newPlane in between previous and current nodes
18 newPlane->next = current;
19 if (previous == NULL)
20 *list = newPlane; // Add At Head
21 else
22 previous->next = newPlane; // Add to Middle
23 return 0;
24 }
25 else {
26 // Continue traversing thru the list
27 previous = current;
28 current = current->next;
29 }
30 }
31 newPlane->next = NULL;
32 if (previous == NULL)
33 *list = newPlane; // Empty List
34 else
35 previous->next = newPlane; // Add At Tail
36 return 0;
37 }

Figure 19.8 Source code for complete AddFlight function.

order to assign a new head node after the delete operation. Figure 19.9 provides

the complete source code for DeleteFlight.

19.5.4 Arrays vs. Linked Lists

We can now replace our core array data structure in our flight tracker app with

the more dynamic linked list. Throughout this chapter, we’ve discussed some

of the advantages in doing so. But as with many things in computing, there are

tradeoffs involved: linked lists provide some advantages over arrays, but they also

have some disadvantages. Wisely choosing which method of data organization to
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1 int DeleteFlight(char *planeID, Flight **list)
2 {
3 Flight *previous = NULL;
4 Flight *current = *list;
5 int IDcompare;
6
7 while (current != NULL) {
8 IDcompare = strcmp(planeID, current->ID);
9 // returns 0 if equal
10 // < 0 if Plane->ID is less than current->ID
11 // > 0 if Plane->ID is greater than current->ID
12 if (IDcompare == 0) {
13 // Found node to remove!
14 if (previous == NULL)
15 *list = current->next; // Del At Head
16 else
17 previous->next = current->next; // Del from Mid/Tail
18 free(current);
19 return 0;
20 }
21 else if (IDcompare < 0)
22 return -1; // Doesn't Exist
23 else {
24 // Continue traversing thru the list
25 previous = current;
26 current = current->next;
27 }
28 }
29 // Traversed the whole list. Doesn't Exist
30 return -1;
31 }

Figure 19.9 Source code for complete DeleteFlight function.

use in a particular situation requires consideration of these tradeoffs (and also a

deeper sense of how these structures are implemented at the lower level).

Let’s first examine the impact to memory space. Arrays are quite memory

efficient. If we create an array of 1000 integers, we will be allocated 1000 inte-

gers’ worth of memory space. Additional storage is not required. If the array is

dynamically allocated on the heap, there is likely some additional overhead to

keep track of the block of memory, but that is small in relation to the actual array.

Linked lists, in contrast, require a pointer per node to link to the next node. Also,

since the nodes are individually allocated on the heap, each node will incur addi-

tional dynamic allocation overhead. If the node size is small, then this overhead

can be a significant fraction of overall data structure size. While arrays are effi-

cient in terms of allocation, they suffer in our inability to precisely size them to our

needs. We often need to declare strings that are long enough to hold the longest

string we expect to encounter, which is larger than necessary for the typical case.
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Now, what if we wanted to add an element, or delete an element, or search

the structure for a particular element? These are primitive operations that we may

want to perform on any list of data. For adding and deleting elements, which we’ve

examined when developing our flight tracker app, a linked list offers the ability

to dynamically add and remove nodes by rearranging links. And because the data

structure need not be contiguous in memory, we can dynamically allocate nodes

to fit the actual run-time needs of the application. With arrays, adding an element

requires that enough space exists for it in the array; if there is enough space,

existing elements must then be moved around to create a spot for the new data.

Likewise, when deleting an element from an array, we need to fill the vacated

spot by moving data elements in order to keep data contiguous. As for searching,

linked lists require sequential traversal, whereas with an array, we can use binary

search (see Section 17.6), which is a highly efficient algorithm for searching a

sorted list.

These differences arise because we’ve improved the add and delete opera-

tions at the expense of random access. Array elements can be randomly accessed,

whereas nodes in a linked list require sequential traversal. This in turn affects our

ability to do efficient search.

Arrays and linked lists form the opposite ends of a spectrum of data structure

choices. There is a near continuum of variations created by inventive program-

mers and computer scientists to fit particular situations, each of which provides

some advantages of one end of the spectrum without the disadvantages of the

other. A subsequent course in data structures and algorithmic analysis will

provide deeper exposure to the data structure zoo.

19.6 Summary
We conclude this chapter by a summarizing the three key concepts we covered.

∙ Structures in C. The primary objective of this chapter was to introduce the

concept of user-defined aggregate types in C, or structures. C structures allow

us to create new data types by grouping together data of more primitive types.

C structures take us a big step toward the idea of objects in C++, which we’ll

discuss in Chapter 20.

∙ Dynamic memory allocation. The concept of dynamic memory allocation

is an important prerequisite for advanced programming concepts. In particu-

lar, dynamic data structures that grow and shrink during program execution

require some form of memory allocation. C provides some standard memory

allocation functions such as malloc and free.

∙ Linked lists. We combine the concepts of structures and dynamic memory

allocation to introduce a fundamental new data structure called a linked list. It

is similar to an array in that it contains data that is best organized in a list fash-

ion. Why is the linked list such an important data structure? For one thing,

it is a dynamic structure that can be expanded or shrunk during execution.

This dynamic quality makes it appealing to use in certain situations where
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the static nature of arrays would be wasteful. The concept of connecting data

elements together using pointers is fundamental, and you will encounter it

often when dealing with advanced structures such as hash tables, trees, and

graphs.

Exercises

19.1 Is there a bug in the following program? Explain.

struct node {
int count;
struct node *next;

};

int main(void)
{

int data = 0;
struct node *getdata;
getdata->count = data + 1;
printf("%d", getdata->count);

}

19.2 The following are a few lines of a C program:

struct node {
int count;
struct node *next;

};

int main(void)
{

int data = 0;
struct node *getdata;
:
:
getdata = getdata->next;
:
:

}

Write, in LC-3 assembly language, the instructions that are

generated by the compiler for the line getdata = getdata->next;.

19.3 The code for NearestNeighbor in Figure 19.2 performs a pairwise

check of all aircraft currently in the airspace. If there are n aircraft in

the airspace, how many checks are performed?
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19.4 The following program is compiled on a computing device in which

each basic data type (pointer, character, integer, floating point) occupies

one location of memory.

typedef element_t Element;
struct element_t {

char name[25];
int atomic_number;
float atomic_mass;

};

int NobleElement(Element *t)
{

if ((t->atomic_number==2) ||
(t->atomic_number==10) ||
(t->atomic_number==18) ||
(t->atomic_number==36) ||
(t->atomic_number==54) ||
(t->atomic_number==86))
return 1;

else
return 0;

}

int main(void)
{

int x, y;
Element periodic_table[110];
:
:
// Determine if the yth element is noble
x = NobleElement(___________________);
:
:

}

a. How many locations will the stack frame of the function

NobleElement contain?

b. Assuming that periodic_table, x, and y are the only local

variables, how many locations in the stack frame for main will be

devoted to local variables?

c. Fill in the missing blank in the function call to NobleElement in

main.
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19.5 The following C program is compiled into the LC-3 machine language

and executed. The run-time stack begins at xEFFF. The user types the

input abac followed by a return.

#include <stdio.h>
#define MAX 4

typedef Rec
struct rec_t {

char ch;
struct Rec *back;

};

int main(void)
{

struct Rec *ptr, pat[MAX+2];
int i = 1, j = 1;
printf("Pattern: ");
pat[1].back = pat;
ptr = pat;
while ((pat[i].ch = getchar()) != '\n') {

ptr[++i].back = ++ptr;
if (i > MAX) break;

}
while (j <= i)

printf("%d ", pat[j++].back - pat);
// Note the pointer arithmetic here: subtraction
// of pointers to structures gives the number of
// structure elements, not the number
// of memory locations

}

a. Show the contents of the stack frame for main when the program

terminates.

b. What is the output of this program for the input abac?

19.6 Write a basic version of malloc and free. Assume that malloc is

initialized whenever a program is started and points to an empty

(unallocated) heap. Initially, don’t be concerned about efficiency or

reallocating blocks of memory after they’ve been freed. Develop

something that is functional, and then improve it from there.





20
C H A P T E R

Introduction to C++

20.1 Essential C++
We can think of programming languages as the scaffolding with which the digi-

tal world is constructed. Building more sophisticated apps and services that are

safe, secure, and reliable requires that our programming systems—languages and

tools—are oriented toward programmer productivity. If coding in a particular

language is tedious, overly complicated, error prone, or hard to extend, then the

applications that can be created will be limited, and the language will be unlikely

to be widely used. Many languages have come and gone, and very few have

endured as long as C and C++. Both are very effective languages for large-scale

software development for performance-hungry, core system code.

C++ was born out of a desire to help C programmers to create more sophis-

ticated programs. C programs at scale tend to become large, messy collections

of types, structures, and functions. The C language itself doesn’t provide support

for systematic organization of these code entities. As coding projects become

large, involving teams of people, this lack of programming organization can ren-

der the code hard to extend and maintain, creating lots of headaches for software

engineering management.

C++ addresses some core limitations of large programs that have lots of

defined types, structures, and functions created by multiple programmers. C++

creator Bjarne Stroustrup had the foresight in the late 1970s to address these limi-

tations by creating an extension of C that provided a formalized way of organizing

types, structures, and functions into classes. Classes are the logical evolution of

the C structure we introduced in Chapter 19. With classes, code tends to be much

more extendable and reusable. Large C++ projects today can reach tens of mil-

lions of lines or more, and C++ is as widely used as any other language out there,

particularly for applications that require high performance or a high degree of

optimization.

C++ is a vast language that evolved over the years from C with classes (in

fact, the original name for it was C with Classes!) to include a variety of advanced

language features that would require another 1,000 pages to treat thoroughly. But
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don’t fret—we’ll cover what we consider the essential C++ in this single chapter.

It will be enough to provide you with a very strong start on writing fairly complex

C++ code. Consider this chapter to be a C++ starting point from which you can

explore further in subsequent courses.

The good news is that nearly everything we’ve described in the previous

chapters on C translates directly into C++. C++ was originally built on top of C.

Basic types, variables, code constructs, and functions are largely the same or sim-

ilar to what we’ve discussed with C. We could go back and change all mentions

of C with C++ and Chapters 11 through 19 would largely remain correct.

It will help to keep one simple concept in mind: C++ code compiles down

to the same execution model as C. C’s model is a collection of functions, starting

with main, that execute sequentially based on the call structure of the code, with

the run-time stack used for passing arguments and for local variable (or object)

allocation, the heap providing for dynamic allocation, and the global section pro-

viding for global allocation. The same framework will apply to our compiled

C++ code. The same binary representations, basic types, constructs, and execu-

tion model applies. It will be helpful to keep this in mind as we discuss the various

features of C++. Much of the magic of C++ is handled at the compilation layer.

The C++ compiler is doing more work on our behalf to generate the executable

code, enabling the level of software abstraction to be raised and thereby making

the task of programming more convenient for us.

20.2 Going from C to C++
C++ gained rapid popularity shortly after its introduction, partly on the idea that

it was a better version of C, which was the most popular programming language

of the time. C++ kept the structural concepts of C while addressing some major

shortcomings from a software engineering perspective. It was based on the idea

that a program should be organized around the objects it will operate on through

a notion called classes. We’ll talk about classes shortly.

In its revision of C, the C++ language also addressed other shortcomings

of C, which were not as significant a change as adding classes, but helped with

the overall ease of programming. In this section, we’ll start off by introducing

some of these smaller but commonly used changes from C that are provided by

the C++ language. Throughout the book, it has been our style to introduce big

new concepts with simple code examples. So we’ll dive directly into C++ with

an example in Figure 20.1. Let’s go through some of the changes from C in this

code.

20.2.1 Compiling C++ Code

The code in Figure 20.1 looks very similar in syntax and structure to a program

in C. Again, C++ is based on C, so most of what we’ve learned about C can

be applied to C++. In fact, because we are familiar with C, we can guess with

reasonable accuracy what this program does by reading the C++ code. It’s quite

similar to the code we saw in Figure 16.4 when we discussed pointers in C for



20.2 Going from C to C++ 635

1 #include <iostream>
2
3 void swap(int &x, int &y)
4 {
5 int temp = x;
6 x = y;
7 y = temp;
8 }
9
10 void swap(char &x, char &y)
11 {
12 char temp = x;
13 x = y;
14 y = temp;
15 }
16
17 void swap(double &x, double &y)
18 {
19 double temp = x;
20 x = y;
21 y = temp;
22 }
23
24 int main (void)
25 {
26 // Variable declarations
27 int a = 4, b =5;
28 char c = 'c', d = 'd';
29 double x = 3.14, y = 1.41;
30
31 // Before the swaps
32 std::cout << "a = " << a << "   b = " << b << std::endl;
33 std::cout << "c = " << c << "   d = " << d << std::endl;
34 std::cout << "x = " << x << "   y = " << y << std::endl;
35
36 swap(a, b);
37 swap(c, d);
38 swap(x, y);
29
40 // After the swaps
41 std::cout << "a = " << a << "   b = " << b << std::endl;
42 std::cout << "c = " << c << "   d = " << d << std::endl;
43 std::cout << "x = " << x << "   y = " << y << std::endl;
44 }

Figure 20.1 A simple C++ code example.



636 chapter 20 Introduction to C++

the first time. You might be perplexed by the three variants of the function swap
that appear in the code. More on that later.

Because the two languages are similar, most Integrated Development Envi-

ronments, or IDEs, that provide a C development environment will also compile

C++ code (they are really C++ environments that also support C code devel-

opment). For the few C++ examples we provide in this text, we’ve adhered to

standard coding conventions using ISO, or Standard C++. Now would be an

appropriate moment to experiment with compiling some simple C++ code, such

as the code from Figure 20.1, in your favorite IDE.

20.2.2 Namespaces

The concept of a namespace doesn’t quite have a C counterpart. A namespace is

an advanced C++ concept that applies to software projects that consist of many

lines of code in multiple files developed by many people.

With larger programs written by teams of programmers, it is common to

run into naming conflicts. Functions, global variables, and structure types will

inevitably be named the same thing at some point. To resolve these naming colli-

sions, new names must be selected somewhere by someone. It can be an awkward,

painful process. To solve this systematically in C requires adopting an onerous

naming convention.

Namespaces provide a better path. In C++, we can create a namespace where

all identifiers are distinct from those in all other namespaces. This lets us create

names and make them unique to a particular region of code, very similar to scope

(see Section 12.2.3). This is essential for large code bodies.

For those who are just starting with C++, often the default global namespace

suffices. It’s what we are accustomed to as C programmers. For most intro pro-

grams we write, everything we create will be added to the global namespace. For

example, the function swap in Figure 20.1 will be part of the global namespace.

We can use named entities (types, functions, global values) from other

namespaces, such as the std namespace for the C++ Standard Library (more on

this later). To do this, we use the std:: extension on the identifier in question.

This appears in several spots in the code in Figure 20.1. This indicates that these

identifiers were defined within a different namespace and used in the current one.

The :: is called the scope operator in C++, and it lets us explicitly choose which

namespace a particular identifier originates. We’ll see it again when we discuss

classes.

20.2.3 Input and Output

Keeping our attention on the lines that contain the std:: operator, each of these

lines performs output in C++. C++ significantly simplifies formatted input and

output compared to C by providing an easy mechanism for doing typical format-

ted I/O operations. C++ defines two streams: cin, which is similar to stdin in

C, and cout, which is similar to stdout. These streams are defined within the

iostream header file, which is included on line 1.
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Instead of using printf and scanf to perform basic formatted I/O, C++

uses a set of operators to remove items from the cin input stream and to add

items to the cout data stream. The operator >> is used to extract from an input

stream, and the operator << is used to insert into the output stream. For example,

on lines 32 to 34 and 41 to 43, we use the << operator to insert various strings

and variables into the standard output stream cout. We can also add a new line

character via the endl constant. Each of the items is displayed on the standard

output device, character by character, in the order in which they are added to the

output stream. Since each of these is defined within the std namespace in the

C++ Standard Library, we need to precede each with the std:: namespace tag.

Whenever a variable is inserted into the output stream, it is converted into ASCII

based on its original type (integers are converted into decimal characters, etc.).

Input happens in a similar fashion using the standard input stream std::cin
and the extraction operator >>. For example, the following lines of code assign

a value from cin to the variable input.

int input;

std::cout << "Provide an integer value: ";
std::cin >> input;

While the I/O functionality of C++ looks drastically different than C, the

underlying functionality is similar. Instead of using printf and scanf, we are

using the << and >> operators in conjunction with cout and cin. The preced-

ing code is translated into an appropriate function call with a set of arguments

similar to those in C. In other words, much of this functionality is provided for

the syntactic convenience of the programmer. Ultimately, I/O functions need to

be called, and a system call (e.g., TRAP) to perform the physical I/O needs to be

performed.

20.2.4 Pass by Reference

Passing by reference in C can be a challenging proposition. Consider for example

our linked list code from Chapter 19. For the AddFlight function, we needed

to pass in the address of the head pointer, instead of the head pointer itself, to

handle the case when the list was empty or a new aircraft was being added to the

front of the list. This required using a pointer to a pointer (Flight **list) and

careful use of the dereference operator within the AddFlight function to modify

the correct memory location. Also, we must modify both the function and all the

call sites to designate a parameter as a reference in C.

C++ provides direct syntax to designate a parameter as reference within a

function’s definition. Notice line 3 in the code in Figure 20.1. The two parameters

to swap are both prefixed with an ampersand &, indicating that they are references

to integer variables, instead of the integer values themselves. Now within the code

of swap (lines 5 and 7) we treat those values syntactically as if we have access to

the original variable (i.e., in the stack frame for main), instead of as dereferenced

pointers as we did with C. The C++ compiler generates the appropriate code,

based on whether the identifiers are references or values.
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For example, the LC-3 translation for the following line of code (line 6):

x = y; // Equivalent to *x = *y in C

is

LDR R0, R5, 4 ; Load x, which is a reference
LDR R1, R5, 5 ; Load y, which is a reference
LDR R2, R1, 0 ; Load *y
STR R2, R0, 0 ; Perform *x = *y

This is another case where the cumbersome and challenging-to-read syntax

of C is replaced by something simpler and more straightforward in C++. With

the C++ approach, if a parameter needs to be a reference, we only need to change

the function itself and not the places it is called. During compilation, each argu-

ment at each call site can be selected to be passed as a value or as a reference

without requiring explicit coding from the programmer. The compiler picks the

appropriate thing to pass based on the function’s declaration.

20.2.5 Function Overloading

We deferred our discussion on why there are three versions of the same function

swap in the code in Figure 20.1. You may have noticed that the code for each

is mostly the same except for the types of the input parameters and the internal

temporary variable. They all perform the same set of internal operations.

C++ lets us create functions with the same name (three versions of swap)

provided they have a different parameter list, in terms of sequence of types. The

three versions of swap are each different in that one takes two integers by refer-

ence, another takes two characters, and the third requires two doubles. At each call

site for swap, the types of the argument are used by the compiler to select which

one to actually call. That is, the argument list is matched with the parameter list.

This facility is called function overloading. Any function can have mul-

tiple versions, with different sets of parameters. You can think about this as

a naming trick performed by the compilation system where each function’s

name is appended with the types of the parameters in the order they appear. So

swap_int_int is different than swap_char_char. And this happens transpar-

ently, under the hood, as the code is compiled.

Why is function overloading a useful thing? Consider the swap function. It’s

useful to be able to provide general swap capabilities, regardless of type. We’d

like to be able to swap two integer values, two character values, or two doubles.

With overloading we can keep the simple, intuitive name swap and create variants

that handle each basic type, as we did in Figure 20.1.

Let’s go one step further. The three versions of swap are very similar, with

each performing the same underlying operations on different types. In the spirit of

reusing code, and reducing source code footprint, another approach would be to

make this code independent of type by using a template. We’ll discuss templates

later in Section 20.4.
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20.2.6 Dynamic Allocation

In C, we used malloc to dynamically allocate a block of memory on the heap.

Once we are done with that block, we use free to return that block to the heap for

subsequent reallocation. Both malloc and free are library functions, provided

by the C Standard Library.

In C++, dynamic allocation is accomplished by the new and delete opera-

tors. Here’s how they work:

1 int *p;
2
3 p = new int;
4 :
5 :
6 delete p;

On line 3, we are allocating an integer’s worth of space using the new oper-

ator. And on line 6, we are deallocating p using free. In C++, both new and

delete are operators rather than functions as malloc and free are in C, and

they also call the constructor or destructor of the type they create. More on that

in Section 20.3.2.

20.2.7 Compilation to Machine Version

We’ve touched on a small but essential set of changes from C in this section. There

are more concepts we certainly could have discussed, but our intention is not to

provide complete exposure, just enough to jump-start the development of small

but powerful C++ coding projects. When combined with what we’ve discussed

with C, which is a subset, this is a fairly substantial set of C++.

C++ uses the same run-time model as C. Like a C program, a C++ program

compiles down to a section of functions. The code in Figure 20.1 compiles down

into four functions plus library functions. The function main calls the equivalent

of printf for each of the formatted output statements involving std::cout, then

calls the version of swap for integer parameters (swap_int_int), then swap for

characters (swap_char_char), then swap for doubles (swap_double_double),

and so forth.

20.3 Classes
One of the original innovations of C++ over C was the introduction of classes.

Classes are a refinement on the idea of a structure as a programmer-defined type.

C++ extends the idea of C structures by adding functions as member elements,

incorporating hierarchy, and supporting well-defined interfaces. The memory

items that are declared using classes are no longer simple variables, they are

objects that have a richer set of operations associated with them. These ideas

were borrowed from other languages that predate C++, but they were embedded

within C, which was very popular at the time.
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// C++ code
class Triangle {

double sideA;
double sideB;
double sideC;

};

Triangle t1;

// C code
struct Triangle {

double sideA;
double sideB;
double sideC;

};

struct Triangle t2;

Figure 20.2 Comparing Triangles in C++ and C.

There is a very clear and pragmatic benefit of classes. C programs are a

flat collection of types, values, and functions. As programs grow in complex-

ity, this flat collection becomes a soupy mess that inhibits forward progress from

a development perspective. Classes are primarily an organizational construct that

enable us to associate similar functionality together. They provide a strong soft-

ware engineering benefit. It is no surprise that many of the successful languages

that followed, such as Java, also provide support for classes.

We’ll start off with an example of a simple class called Triangle in

Figure 20.2. As we did with structures in Chapter 19, we can define our own

type with classes. The type Triangle will contain several member elements to

describe a particular triangle, specifically the lengths of each of its three sides.

This is quite similar to what we would have done in C using structures. Both

versions of the code in Figure 20.2 create new types. The C++ class Triangle
enables us to declare the object t1. In C, the structure Triangle enables us to

declare the memory item t2. In C++, objects are the memory items that are

defined by classes.

20.3.1 Methods

Let’s take one step deeper into the realm of objects. We can associate specific

functions with objects that are of Triangle class. These functions can only be

called when operating on objects of that class. They have no meaning otherwise.

Such functions are called methods. In our Triangle example, we might want to

calculate the area and the perimeter of a triangle.

Specifically, we’ll add two functions to the class structure (in the next section,

we’ll add another), one to calculate the perimeter and one to calculate the area

of a given triangle. These are methods within the class Triangle. Figure 20.3

contains an expanded definition of the class. We’ve added lines 5, 6, and 7. We’ll

discuss line 5 shortly, in the next section. Lines 6 and 7 within the class definition

declare two methods to be part of the class. Both return double values, and both

have empty parameter lists.

Lines 10 through 13 define the method perimeter, and lines 15 through

21 define the method area. These are function definitions as we saw in C, with

an essential restriction: these methods can only be called in reference to a spe-

cific object of Triangle type. We’ll elaborate on this shortly. For now, both are

methods similar to the functions we created in C.

The name of each method is preceded in the definition by Triangle::, which

signifies to the C++ compiler that they belong to the class Triangle (i.e., their
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1 class Triangle {
2 double sideA;
3 double sideB;
4 double sideC;
5 public:
6 double area();
7 double perimeter();
8 };
9
10 double Triangle::perimeter()
11 {
12 return sideA + sideB + sideC;
13 }
14
15 double Triangle::area()
16 {
17 double s = perimeter() / 2;
18
19 // Heron's Formula
20 return sqrt(s*(s - sideA)*(s - sideB)*(s - sideC));
21 }

Figure 20.3 The class Triangle with two methods.

scope is Triangle). The method perimeter performs a simple calculation of

adding the lengths of the three sides. But the three sides of what? The method

area actually calls perimeter (on what?) and uses the semi-perimeter in con-

junction with the three sides (again, of what) to calculate the total area using

Heron’s Formula.

The code in Figure 20.3 is only the class definition. We aren’t creating any

objects with this code. Let’s create a Triangle object and use it! The code in

Figure 20.4 is a portion of a main function, where an object of Triangle type,

t1, is declared. This object is allocated in the stack frame for main, with enough

storage for the data members of Triangle, in this case the three doubles for the

lengths of the three sides. Notice that what gets allocated in memory for the C++

class version of Triangle is exactly the same as what would get allocated for the

C structure from Figure 20.2. From this perspective, nothing has changed.

1 int main(void)
2 {
3 Triangle t1;
4 double p1;
5 :
6 :
7 p1 = t1.perimeter();
8 :
9 }

Figure 20.4 A method call in C++.
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Line 7 has a call to the method perimeter on the object Triangle t1. This

C++ code is translated into lower-level assembly code that looks like a typical

function call in C. Parameters are pushed, stack frames are built, JSR is used to

transfer control, RET is used to return back, etc.

Unlike a typical C function, though, perimeter can only be called in relation

to a Triangle object, as is the case in line 7. Calling perimeter or area directly

will result in a compilation error. The idea is that a method is a special kind of

function that is directly tied to a particular class type.

The method perimeter requires a reference to a Triangle object in order

to calculate its result. If the method perimeter is just a regular subroutine at the

assembly level, and it takes no parameters, how will it know which Triangle to

operate on? For instance, how will the triangle t1 be operated upon when area
is called on line 7? To make this happen, on a C++ method call, a reference to

the particular object in question is passed implicitly to the method as an extra

parameter. In C++, this implicit reference is called the this pointer, and we can

use it within any method.

So the method call is translated like a standard function call in C, with the

exception that we’ll push the this pointer first onto the stack frame, as an implicit

argument to the method. This happens for any and all method calls in C++.

Figure 20.5 provides the LC-3 code that corresponds to line 7 above and also

a portion of the method perimeter. In the method perimeter, all expressions

that access member elements of the Triangle class are actually based on the

this pointer.

20.3.2 Access Specifiers

One of the benefits of classes in C++ is that they encourage the use of abstrac-

tion in the software development process. Abstraction has been a major theme

throughout this textbook because it is foundational to the architecture of digital

systems. Abstraction enables us to hide the complexity at one level behind a well-

defined interface in order to create building blocks for the next level. For example,

interconnected MOS transistors form a NOT gate, which is a more composable

abstraction for building an adder. In C, this abstraction primarily happens around

the use of functions: a function provides some complex functionality, but it is

accessed by a simple interface (parameters, etc.). The details of the function can

be hidden once the functionality is understood.

C++ extends and formalizes this idea through the use of classes. Classes have

well-defined interfaces, and those interfaces are specified by access specifiers in

the class definition. We can declare member elements to be accessible from the

outside (i.e., on the interface) or as purely internal (i.e., part of the implemen-

tation). We can hide the internals and focus on the interface if we want to use a

particular class in our code.

There are a variety of access specifiers in C++. Of these, we’ll focus on two:

public and private. Private members can only be accessed within the class, and

public members can be accessed from within and also from the outside.

Notice in the class definition for Triangle in Figure 20.3, on line 5, we use

the public specifier. The following two member elements area and perimeter
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1 perimeter
2 ADD R6, R6, #-1 ; Allocate spot for the return value
3
4 ADD R6, R6, #-1 ;
5 STR R7, R6, #0 ; Push R7 (Return address)
6
7 ADD R6, R6, #-1 ;
8 STR R5, R6, #0 ; Push R5 (Caller's frame pointer)
9
10 ADD R5, R6, #-1 ; Set frame pointer for perimeter
11
12 LDR R0, R5, #-4 ; Load this pointer
13 AND R1, R1, #0 ; Zero out R1
14 LDR R2, R0, #0 ; Load this->sideA
15 ADD R1, R1, R2 ; Add to perimeter
16 LDR R2, R0, #1 ; Load this->sideB
17 ADD R1, R1, R2 ; Add to perimeter
18 LDR R2, R0, #2 ; Load this->sideC
19 ADD R1, R1, R2 ; Add to perimeter
20
21 STR R1, R5, #3 ; Write it in return value slot
22 ADD R6, R5, #1 ; Pop local variables
23
24 LDR R5, R6, #0 ; Pop the frame pointer
25 ADD R6, R6, #1 ;
26
27 LDR R7, R6, #0 ; Pop the return address
28 ADD R6, R6, #1 ;
29 RET
30 ...
31 main
32 ...
33 ADD R0, R5, #0 ; Load address of t1 into R0
34 ADD R6, R6, #-1 ;
35 STR R0, R6, #0 ; Push &t1
36 JSR perimeter
37
38 LDR R0, R6, #0 ; Load the return value from perimeter
39 STR R0, R5, #1 ; p1 = t1.perimeter();
40 ADD R6, R6, #2 ; Pop return value and argument
41 ...

Figure 20.5 The LC-3 code corresponding to the method call in Figure 20.4.

are both public, and they can be accessed from anywhere in our code that the

Triangle class is visible. These two members happen to be methods, but we

could have chosen any member element to be public. In contrast, because we

didn’t provide a specifier for sideA, sideB, sideC, the default is that they

are private. These three member elements can only be accessed by methods

within the Triangle class definition. In other words, they are hidden. With this,
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we can create an object of Triangle type, and the only access we get is via the

area and perimeter methods. They are on the interface. Everything else is an

implementation detail and is abstracted away.

It’s important to note that the public and private designations are only

compile-time constructs and are very similar in concept to scope. They do not

affect the behavior of the code during run time. If we access a private mem-

ber from a non-class method (i.e., outside of the Triangle:: naming scope), the

compiler will generate an error, as is the case with line 7 in the following example.

In line 7, we are accessing sideA, which is a private member.

1 int main(void)
2 {
3 Triangle t1;
4 double a1;
5 :
6 :
7 t1.sideA = 10; // This will generate an error
8 a1 = t1.area();
9 :
10 }

20.3.3 Constructors

If the code in the preceding example doesn’t work, then how do we initialize a

Triangle object? By defining a constructor method. A constructor is a special

method within a class that is called implicitly whenever an object of that class

is created. For example, if we declare an object as local within a function, an

instance of that object is allocated on the stack whenever the function is called,

and also a constructor method for that class is called.

We can define a constructor using the following syntax, shown as an exten-

sion to the class Triangle. A method with the same name as the class name is

considered the class constructor, and by definition it never returns anything. On

line 6, we declare the method Triangle, and on line 11, we define it. This method

takes three double values and initializes the three sides of a newly allocated

Triangle.

1 class Triangle {
2 double sideA;
3 double sideB;
4 double sideC;
5 public:
6 Triangle(double a, double b, double c);
7 double area();
8 double perimeter();
9 };
10
11 Triangle::Triangle(double a, double b, double c)
12 {
13 sideA = a;
14 sideB = b;
15 sideC = c;
16 }
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A class’s constructor is called whenever an object is allocated on the run-

time stack, or on the heap via dynamic allocation. In the following code, we

create two objects. The first t1 is declared as a local variable and allocated

on the run-time stack. As part of the allocation of this object, the constructor

Triangle::Triangle is called implicitly.

On line 2, we declare a pointer variable t2 to a Triangle, which initially has

no real storage that it is pointing to. On line 4, we allocate storage to it using new
(see Section 20.2.6). Once the memory is allocated by new, the constructor for

the class for Triangle is called, which then initializes the values of the internal

members based on the supplied arguments.

1 Triangle t1(2.0, 2.0, 3.0);
2 Triangle *t2;
3
4 t2 = new Triangle(4.2, 7.8, 10.2);

The idea of a constructor, which is an implicitly invoked function, is a depar-

ture from how things work in C. C’s philosophy is to give a large degree of control

to the programmer, keeping the source code relatively close to the hardware.

C++ relaxes that language philosophy slightly, with the goal of creating a more

extensible structure to our code.

There is enough flexibility in C++ to put whatever code we like into a class’s

constructor method. In practice, constructors are used to initialize the internal

logic/data of a class. C++ also provides support for a corresponding method for

when an object is destroyed (when it is deallocated via delete, or when the block

in which it was declared exits) called a destructor, but that is a topic for later.

The complete code of our running example is provided in Figure 20.6.

20.3.4 Advanced Topics

We are just scratching the surface on classes in C++. What we have covered thus

far in this chapter are the core class concepts that are used most frequently in

C++. Before we end this topic, let’s touch upon the next realm: inheritance.

Programmer-defined types tend to multiply as a coding project matures and

grows. New classes get added that are similar to but slightly different from exist-

ing ones, the net result of which is replicated code in the form of similar class

definitions, methods, and functions. To address this tendency toward code bloat-

ing, the C++ class system provides the notion of inheritance, where classes can

be derived from other classes.

Let’s consider our Triangle example. As we extend our code, we may

discover that we’d like to handle quadrilaterals and pentagons, too, and form

data structures that contain a mixture of polygons. It’s easy to imagine how

these classes could contain a lot of common code, with differences in how spe-

cific methods are implemented. Each would have different area and perimeter
methods, for example.

For this particular situation, we could create a base class for a Polygon, from

which Triangle, Quadrilateral, and Pentagon are derived. Common func-

tionality and data members could be placed in the Polygon class. The Triangle,
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1 #include <iostream>
2 #include <math.h>
3
4 class Triangle {
5 double sideA;
6 double sideB;
7 double sideC;
8 public:
9 Triangle(double a, double b, double c);
10 double area();
11 double perimeter();
12 };
13
14 Triangle::Triangle(double a, double b, double c)
15 {
16 sideA = a;
17 sideB = b;
18 sideC = c;
19 }
20
21 double Triangle::perimeter()
22 {
23 return sideA + sideB + sideC;
24 }
25
26 double Triangle::area()
27 {
28 double s = perimeter() / 2;
29
30 // Heron's Formula
31 return sqrt(s*(s - sideA)*(s - sideB)*(s - sideC));
32 }
33
34 int main (void)
35 {
36 Triangle t1(2.0, 2.0, 3.0);
37 Triangle *t2;
38
39 t2 = new Triangle(4.2, 7.8, 10.2);
40
41
42 std::cout << "Tri 1 Area " << t1.area() << std::endl;
43 std::cout << "Tri 1 Perim " << t1.perimeter() << std::endl;
44
45 std::cout << "Tri 2 Area " << t2->area() << std::endl;
46 std::cout << "Tri 2 Perim " << t2->perimeter() << std::endl;
47 }

Figure 20.6 A complete example involving the Triangle class in C++.
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Quadrilateral, and Pentagon class would inherit these common portions,

requiring only the portions that are unique to be provided as additional code.

This type of hierarchy enables programmers to develop a rich set of class

structures where code from one can be leveraged to create another similar but dis-

tinct derived class. This concept in general is called inheritance. This avoids the

soupy, redundant mess in C where each structure requires its own definition and

support functions no matter how similar it might be to another existing structure.

As with other parts of the class system within C++, inheritance is a compile-

time construct. The programmer can build sophisticated classes that are derived

from other classes. The compiler weaves them together as a combination of

data elements and methods. At the end of the day, it’s all a memory layout for

the data elements and a JSR to the appropriate method whenever an invocation

is made.

20.4 Containers and Templates
When creating a new type (struct in C or class in C++), we are quickly tempted

to take into account the data structure that we want to store that type. Consider for

instance our Triangle type from the previous section. If we want to store objects

of this type as a linked data structure of triangles, we need to include additional

data members in the class definition to store the links. If we later decide to change

to a different structure, then the class or structure itself must be reworked. If both

data structures are required in different places in the code, then we’re faced with

the prospect of replicating our type definition, creating redundant code.

The idea of containers enables us to separate the data type from the data

structure. We can define the type independently from the structure containing that

type. Because the two have different design constraints, enabling the programmer

to think about them separately is a big benefit to programming productivity. In

general, the idea of a flexible data structure code that can hold an object of any

type is a container.

C++ provides containers via the C++ Standard Template Library, or STL.

Of all the features of C++, many experienced programmers consider the STL

one of the most useful. The STL provides a set of prebuilt container classes that

enable programmers to quickly build data structures such as dynamic, resizable

arrays, linked lists, stacks, queues, and maps without having to write much code.

20.4.1 Vectors

We will focus our attention on one particular STL container: the vector. Its utility

will be readily apparent to us having dealt with the limitations of arrays in C. The

vector container enables us to create arrays that can be easily resized—that is,

dynamic arrays. We’ve explored this concept previously (Section 19.4.1), and we

know that C’s support for dynamic arrays is fairly minimal. Fully implementing a

dynamic array in C requires additional code for each new type of dynamic array

we create, which increases the burden on the programmer.
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1 int main (void)
2 {
3 std::vector<Triangle> triVector(10); // Vector of 10 tris
4 std::vector<int> intVector(20); // Vector of 20 ints
5
6 for (int i = 1; i < intVector.size(); i++)
7 intVector[i] = intVector[i - 1] + i;
8
9 // Print out vector
10 std::cout << "intVector[" << intVector.size() << "] = ";
11 for (int i = 1; i < intVector.size(); i++)
12 std::cout << intVector[i] << " ";
13 std::cout << std::endl;
14
15 // Let's resize!
16 intVector.resize(50);
17
18 // Print out vector
19 std::cout << "intVector[" << intVector.size() << "] = ";
20 for (int i = 1; i < intVector.size(); i++)
21 std::cout << intVector[i] << " ";
22 std::cout << std::endl;
23 }

Figure 20.7 An example using the C++ vector container from the C++ Standard
Template Library.

The C++ vector container provides a rich set of array functionality, and it

can be used with any type we create in our code. Figure 20.7 contains a simple

piece of code that declares two vectors, one of Triangle type, and one of int
type. Notice the new syntax for declaration on lines 3 and 4. The std:: prefix

indicates that we are using the namespace of the Standard Library, and the vector
indicates the container class we are using.

There are a number of prebuilt methods provided by the STL vector con-

tainer class. Table 20.1 provides a brief description of some of them. So with

very little code, we can create a data structure with a fairly sophisticated set of

prebuilt functionality. All we do is provide the type!

Table 20.1 Some Useful Methods of the C++ STL Vector Class

Description Example

size() Return size of vector intVector.size();
resize() Change size of vector intVector.resize(newSize);
insert() Add elements to vector intVector.insert(where,

value);
erase() Remove elements from vector intVector.erase(where);
push back() Add new element at end of vector intVector.push back(value);
front() Access first element y = intVector.front() - 1;
back() Access last element intVector.back() = 3;
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20.4.2 Templates

The container classes in C++ are built using templates. A template is a program-

ming language feature that enables us to write code that is type independent. For

example, we can rewrite the code for swap from our initial C++ code in Figure

20.1 using templates and create only a single version of swap, thereby reducing

code replication. The template version causes the compiler to stamp out multiple

versions, differing based on the template’s parameters. Creating templates is an

advanced C++ concept that is done rather infrequently in day-to-day program-

ming. On the other hand, using containers from the Standard Template Library

is quite common.

Given our bottom-up perspective, it’s worth noting again that templates, con-

tainers, and the STL are all compiler-oriented features. The C++ source code is

enabling the compiler to combine and mix-and-match things to ultimately gen-

erate the same type of assembly code that we generated with C. In other words,

many of these features can be directly translated from C++ code to equivalent C

code.

20.5 Summary
We conclude this chapter by summarizing some of the key C++ concepts we

covered.

∙ C to C++. C++ was originally created to enable C programmers to be

more productive. The underlying execution framework of C++ is the same

as C. Ultimately C++ code, like C code, is translated to machine code that

is an assemblage of functions that are called starting with main, with a

run-time stack for passing arguments and return values, allocation of local

values, and a heap for dynamic allocation. C++ provides some syntactic

updates to C, with simpler formatted I/O, function overloading, and pass by

reference.

∙ Classes. The natural evolution of structures in C are classes in C++. Classes

extend the idea of structures to include member elements that are functions

(methods) with strict interfaces and with inheritance. Also, classes have

some implicit behavior, such as invocation of a class’s constructor method

whenever an object of that class is allocated.

∙ Containers. Separating data type from data structure is a powerful concept.

Containers in C++ enable us to accomplish this, and the C++ Standard

Library (STL) provides a number of useful data structures that can “con-

tain” the classes we build in our code. We explored the vector container

class, which can be used to implement arrays. Vectors are richer than stan-

dard C arrays with their prebuilt functionality for resizing, inserting elements,

removing elements, and so on. Container classes in C are built using C++

templates.
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Exercises

20.1 Modify the code in Figure 20.1 to include a swap function for boolean

types.

20.2 Modify the code in Figure 20.1 to include a swap function for swapping

two pointers to integers (int *).

20.3 In the following code, which version of funcA will get called?

int funcA(int a); // Version A
int funcA(int a, int b); // Version B
int funcA(int a, int b, int c); // Version C

// Which funcA will get called here?
x = funcA(x, y, 2);

20.4 Draw the memory layout of the objects/variables allocated on lines 3

and 4 of Figure 20.4.

20.5 Add a method to the Triangle class to calculate the height of the

Triangle, given that sideC is the base.

20.6 What is the net result if we remove line 8 from the code in Figure 20.6?

20.7 Convert the aircraft tracking code from Chapter 19, Figures 19.5, 19.8,

and 19.9 to the equivalent version in C++ using classes instead of

structures.

20.8 Write C++ code that contains a quadrilateral class similar to the

Triangle class of Figure 20.6 with methods for area and perimeter.

20.9 Extend your code from Exercise 20.8 to include pentagons.

20.10 Write the LC-3 code that accomplishes the local object allocation on

line 36 in Figure 20.6

20.11 Consider the following code:

int main (void)
{

std::vector<int> intVector(0); // Vector of 0 ints

intVector.pushback(1);
intVector.pushback(2);
intVector.pushback(3);

}

a. Draw the memory layout of intVector when the code is finished.

b. Where in memory is intVector allocated?

20.12 Write a C++ program that uses vectors to read in a character string

from the keyboard and print it out in reverse.
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20.13 Write a C++ program using vectors that reads in a line of text from the

keyboard and removes all the redundant words from it. For example, if

the input line is:

This line of this line text text contains no copied copied no words.

Then the output would be:

This line of text contains no copied words.
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The LC-3 ISA

A.1 Overview
The instruction set architecture (ISA) of the LC-3 is defined as follows:

Memory address space 16 bits, corresponding to 216 locations, each

containing one word (16 bits). Addresses are numbered from 0 (i.e., x0000)

to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations

and memory-mapped I/O device registers. Certain regions of memory are

reserved for special uses, as described in Figure A.1.

Locations x0000 to x2FFF comprise privileged memory and are only

accessible if the process is executing in Supervisor mode (PSR[15]=0).

Locations x3000 to xFDFF comprise memory available to User mode and

x0200
x01FF

x0100
x00FF

x0000

x2FFF

xFE00
xFDFF

x3000

xFFFF

(Privileged Memory)

(Unprivileged Memory)

SSP

USP
User Stack

Device Register Addresses

Supervisor Stack

User Space

Interrupt Vector Table
System Space

Trap Vector Table

Figure A.1 Memory map of the LC-3
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Table A.1 Device Register Assignments

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register (KBSR) The ready bit (bit [15]) indicates if the keyboard has received a
new character.

xFE02 Keyboard data register (KBDR) Bits [7:0] contain the last character typed on the keyboard.
xFE04 Display status register (DSR) The ready bit (bit [15]) indicates if the display device is ready to

receive another character to print on the screen.
xFE06 Display data register (DDR) A character written in bits [7:0] will be displayed on the screen.
xFFFC Processor Status Register (PSR) Contains privilege mode, priority level and condition codes of

the currently executing process.
xFFFE Machine control register (MCR) Bit [15] is the clock enable bit. When cleared, instruction

processing stops.

data. Addresses xFE00 to xFFFF specify input and output device registers

and special internal processor registers that are also only accessible if the

process is executing in Supervisor mode (PSR[15]=0). For purposes of

controlling access to these device registers, their addresses are also

considered part of privileged memory.

Memory-mapped I/O Input and output are handled by load/store (LD/ST,

LDI/STI, LDR/STR) instructions using memory addresses from xFE00 to

xFFFF to designate each device register. Table A.1 lists the input and

output device registers and internal processor registers that have been

specified for the LC-3 thus far, along with their corresponding assigned

addresses from the memory address space.

Bit numbering Bits of all quantities are numbered, from right to left,

starting with bit 0. The leftmost bit of the contents of a memory location is

bit 15.

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode

(operation to be performed); bits [11:0] provide further information that is

needed to execute the instruction. The specific operation of each LC-3

instruction is described in Section A.2.

Illegal opcode exception Bits [15:12] = 1101 has not been specified. If

an instruction contains 1101 in bits [15:12], an illegal opcode exception

occurs. Section A.3 explains what happens.

Program counter A 16-bit register containing the address of the next

instruction to be processed.

General purpose registers Eight 16-bit registers, numbered from 000 to

111 (R0 to R7).

Condition codes Three 1-bit registers: N (negative), Z (zero), and P

(positive). Load instructions (LD, LDI, and LDR) and operate instructions

(ADD, AND, and NOT) each load a result into one of the eight general

purpose registers. The condition codes are set, based on whether that result,

taken as a 16-bit 2’s complement integer, is negative (N = 1; Z, P = 0), zero

(Z = 1; N, P = 0), or positive (P = 1; N, Z = 0). All other LC-3 instructions

leave the condition codes unchanged.
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Interrupt processing I/O devices have the capability of interrupting the

processor. Section A.3 describes the mechanism.

Priority level The LC-3 supports eight levels of priority. Priority level 7

(PL7) is the highest, PL0 is the lowest. The priority level of the currently

executing process is specified in bits PSR[10:8].

Processor status register (PSR) A 16-bit register, containing status

information about the currently executing process. Seven bits of the PSR

have been defined thus far. PSR[15] specifies the privilege mode of

the executing process. PSR[10:8] specifies the priority level of the currently

executing process. PSR[2:0] contains the condition codes. PSR[2] is N,

PSR[1] is Z, and PSR[0] is P.

Supervisor mode The LC-3 specifies two modes of operation, Supervisor

mode (privileged) and User mode (unprivileged). Interrupt service routines

and trap service routines (i.e., system calls) execute in Supervisor mode.

The privilege mode is specified by PSR[15]. PSR[15]=0 indicates

Supervisor mode; PSR[15]=1 indicates User mode.

Privilege mode exception The RTI instruction executes in Supervisor mode.

If the processor attempts to execute the RTI instruction while in User mode, a

privilege mode exception occurs. Section A.3 explains what happens.

Access Control Violation (ACV) exception An ACV exception occurs if a

process attempts to access a location in privileged memory (either a location in

system space or a device register having an address from xFE00 to xFFFF)

while operating in User mode. Section A.3 explains what happens.

Supervisor stack A region of memory in system space accessible via the

Supervisor Stack Pointer (SSP). When PSR[15]=0, the stack pointer (R6) is

SSP. When the processor is operating in User mode (PSR[15]=1), the SSP

is stored in Saved SSP.

User stack A region of memory in user space accessible via the User Stack

Pointer (USP). When PSR[15]=1, the stack pointer (R6) is USP. When the

processor is operating in Supervisor mode (PSR[15]=0), the USP is stored

in Saved USP.

A.2 The Instruction Set
The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists

of an opcode (bits[15:12]) plus 12 additional bits to specify the other informa-

tion that is needed to carry out that instruction. Figure A.2 summarizes the 15

different opcodes in the LC-3 and the specification of the remaining bits of each

instruction. The 16th four-bit opcode is not specified but is reserved for future use.

In the following pages, the instructions will be described in greater detail.

Table A.2 is provided to help you to understand those descriptions. For each

instruction, we show the assembly language representation, the format of the

16-bit instruction, the operation of the instruction, an English-language descrip-

tion of its operation, and one or more examples of the instruction. Where relevant,

additional notes about the instruction are also provided.



656 appendix A The LC-3 ISA

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA

NOT+

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes
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Table A.2 Notational Conventions

Notation Meaning

xNumber The number in hexadecimal notation. Example: xF2A1
#Number The number in decimal notation. Example #793
bNumber The number in binary. Example b10011
A[l:r] The field delimited by bit [l] on the left and bit [r] on the right, of the datum A. For example, if PC

contains 0011001100111111, then PC[15:9] is 0011001. PC[2:2] is 1. If l and r are the same bit
number, we generally write PC[2].

BaseR Base Register; one of R0..R7, specified by bits [8:6] of the instruction, used in conjunction with a six-bit
offset to compute Base+offset addresses (LDR and STR), or alone to identify the target address of a
control instruction (JMP and JSRR).

DR Destination Register; one of R0..R7, which specifies the register a result should be written to.
imm5 A five-bit immediate value (bits [4:0] of an instruction), when used as a literal (immediate) value. Taken

as a five-bit, 2’s complement integer, it is sign-extended to 16 bits before it is used. Range: −16..15.
INTV An eight-bit value, supplied along with an interrupting event; used to determine the starting address

of an interrupt service routine. The eight bits form an offset from the starting address of the interrupt
vector table. The corresponding location in the interrupt vector table contains the starting address
of the corresponding interrupt service routine. Range 0..255.

LABEL An assembly language construct that identifies a location symbolically (i.e., by means of a name,
rather than its 16-bit address).

mem[address] Denotes the contents of memory at the given address.
offset6 A six-bit signed 2’s complement integer (bits [5:0] of an instruction), used with the Base+offset

addressing mode. Bits [5:0] are sign-extended to 16 bits and then added to the Base Register to
form an address. Range: −32..31.

PC Program Counter; 16-bit register that contains the memory address of the next instruction to be
fetched. For example, if the instruction at address A is not a control instruction, during its execution,
the PC contains the address A + 1, indicating that the next instruction to be executed is contained in
memory location A + 1.

PCoffset9 A nine-bit signed 2’s complement integer (bits [8:0] of an instruction), used with the PC+offset
addressing mode. Bits [8:0] are sign-extended to 16 bits and then added to the incremented PC to
form an address. Range −256..255.

PCoffset11 An eleven-bit signed 2’s complement integer (bits [10:0] of an instruction), used with the JSR opcode
to compute the target address of a subroutine call. Bits [10:0] are sign-extended to 16 bits and then
added to the incremented PC to form the target address. Range −1024..1023.

PSR Processor Status Register. A 16-bit register that contains status information of the process that is
executing. Seven bits of the PSR have been specified. PSR[15] = privilege mode. PSR[10:8] =
Priority Level. PSR[2:0] contains the condition codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P.

Saved SSP Saved Supervisor Stack Pointer. The processor is executing in either Supervisor mode or User mode.
If in User mode, R6, the stack pointer, is the User Stack Pointer (USP). The Supervisor Stack Pointer
(SSP) is stored in Saved SSP. When the privilege mode changes from User mode to Supervisor
mode, Saved USP is loaded with R6 and R6 is loaded with Saved SSP.

Saved USP Saved User Stack Pointer. The User Stack Pointer is stored in Saved USP when the processor is
executing in Supervisor mode. See Saved SSP.

setcc() Indicates that condition codes N, Z, and P are set based on the value of the result written to DR.
SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times as necessary to extend A to

16 bits. For example, if A = 110000, then SEXT(A) = 1111 1111 1111 0000.
SP The current stack pointer. R6 is the current stack pointer. There are two stacks, one for each privilege

mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1.
SR, SR1, SR2 Source register; one of R0..R7 that specifies the register from which a source operand is obtained.
SSP The Supervisor Stack Pointer.
trapvect8 An eight-bit value (bits [7:0] of an instruction), used with the TRAP opcode to determine the starting

address of a trap service routine. Bits [7:0] are taken as an unsigned integer and zero-extended to
16 bits. This is the address of the memory location containing the starting address of the
corresponding service routine. Range 0..255.

USP The User Stack Pointer.
ZEXT(A) Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. For example, if

A = 110000, then ZEXT(A) = 0000 0000 0011 0000.
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ADD Addition

Assembler Formats

ADD DR, SR1, SR2

ADD DR, SR1, imm5

Encodings

12 11 9 8 6 5 4 3 2 0

15 12 11 9 8 6 5 4 0

15

SR2

0001 DR SR1 1 imm5

0001 DR SR1 0 0 0

Operation

if (bit[5] == 0)
DR=SR1+SR2;

else
DR=SR1+SEXT(imm5);

setcc();

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the

second source operand is obtained by sign-extending the imm5 field to 16 bits.

In both cases, the second source operand is added to the contents of SR1 and the

result stored in DR. The condition codes are set, based on whether the result is

negative, zero, or positive.

Examples

ADD R2, R3, R4 ; R2 ← R3 + R4

ADD R2, R3, #7 ; R2 ← R3 + 7



A.2 The Instruction Set 659

AND Bit-wise Logical AND

Assembler Formats

AND DR, SR1, SR2

AND DR, SR1, imm5

Encodings

12 11 9 8 6 5 4 0

02345689111215

15

0101 DR SR1 1 imm5

DR SR1 0 0 0 SR20101

Operation

if (bit[5] == 0)
DR=SR1 AND SR2;

else
DR=SR1 AND SEXT(imm5);

setcc();

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1,

the second source operand is obtained by sign-extending the imm5 field to 16

bits. In either case, the second source operand and the contents of SR1 are bit-

wise ANDed and the result stored in DR. The condition codes are set, based on

whether the binary value produced, taken as a 2’s complement integer, is negative,

zero, or positive.

Examples

AND R2, R3, R4 ;R2 ← R3 AND R4

AND R2, R3, #7 ;R2 ← R3 AND 7
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BR Conditional Branch

Assembler Formats

BRn LABEL BRzp LABEL

BRz LABEL BRnp LABEL

BRp LABEL BRnz LABEL

BR† LABEL BRnzp LABEL

Encoding

zn p

15 12 11 10 9 8 0

0000 PCoffset9

Operation

if ((n AND N) OR (z AND Z) OR (p AND P))
PC=PC‡ + SEXT(PCoffset9);

Description

The condition codes specified by bits [11:9] are tested. If bit [11] is 1, N is tested;

if bit [11] is 0, N is not tested. If bit [10] is 1, Z is tested, etc. If any of the condi-

tion codes tested is 1, the program branches to the memory location specified by

adding the sign-extended PCoffset9 field to the incremented PC.

Examples

BRzp LOOP ; Branch to LOOP if the last result was zero or positive.

BR† NEXT ; Unconditionally branch to NEXT.

†The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the target
address.
‡This is the incremented PC.
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JMP

RET

Jump

Return from Subroutine

Assembler Formats

JMP BaseR

RET

Encoding

000 000000

05689111215

BaseRJMP 1100

000 111 000000

05689111215

RET 1100

Operation

PC = BaseR;

Description

The program unconditionally jumps to the location specified by the contents of

the base register. Bits [8:6] identify the base register.

Examples

JMP R2 ; PC ← R2

RET ; PC ← R7

Note

The RET instruction is a special case of the JMP instruction, normally used in the

return from a subroutine. The PC is loaded with the contents of R7, which con-

tains the linkage back to the instruction following the subroutine call instruction.
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JSR

JSRR

Jump to Subroutine

Assembler Formats

JSR LABEL

JSRR BaseR

Encoding

1

010111215

PCoffset11

000 BaseR 000000

0568910111215

JSRR

JSR 0100

0100

Operation

TEMP=PC;†

if (bit[11] == 0)
PC = BaseR;

else
PC=PC† + SEXT(PCoffset11);

R7=TEMP;

Description

First, the incremented PC is saved in a temporary location. Then the PC is loaded

with the address of the first instruction of the subroutine, which will cause an

unconditional jump to that address after the current instruction completes execu-

tion. The address of the subroutine is obtained from the base register (if bit [11]

is 0), or the address is computed by sign-extending bits [10:0] and adding this

value to the incremented PC (if bit [11] is 1). Finally, R7 is loaded with the value

stored in the temporary location. This is the linkage back to the calling routine.

Examples

JSR QUEUE ; Put the address of the instruction following JSR into R7;

; Jump to QUEUE.

JSRR R3 ; Put the address of the instruction following JSRR into R7;

; Jump to the address contained in R3.

†This is the incremented PC.
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LD Load

Assembler Format

LD DR, LABEL

Encoding

PCoffset90010 DR

15 12 11 9 8 0

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[PC† + SEXT(PCoffset9)];
setcc();

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding

this value to the incremented PC. If the address is to privileged memory and

PSR[15]=1, initiate ACV exception. If not, the contents of memory at this address

is loaded into DR. The condition codes are set, based on whether the value loaded

is negative, zero, or positive.

Example

LD R4, VALUE ; R4 ← mem[VALUE]

†This is the incremented PC.



664 appendix A The LC-3 ISA

LDI Load Indirect

Assembler Format

LDI DR, LABEL

Encoding

PCoffset91010 DR

15 12 11 9 8 0

Operation

if (either computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[mem[PC† + SEXT(PCoffset9)]];
setcc();

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this

value to the incremented PC. What is stored in memory at this address is the

address of the data to be loaded into DR. If either address is to privileged mem-

ory and PSR[15]=1, initiate ACV exception. If not, the data is loaded and the

condition codes are set, based on whether the value loaded is negative, zero, or

positive.

Example

LDI R4, ONEMORE ; R4 ← mem[mem[ONEMORE]]

†This is the incremented PC.
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LDR Load Base+offset

Assembler Format

LDR DR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRDR0110 offset6

Operation

If (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[BaseR + SEXT(offset6)];
setcc();

Description

An address is computed by sign-extending bits [5:0] to 16 bits and adding this

value to the contents of the register specified by bits [8:6]. If the computed address

is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the con-

tents of memory at this address is loaded into DR. The condition codes are set,

based on whether the value loaded is negative, zero, or positive.

Example

LDR R4, R2, #−5 ; R4 ← mem[R2 − 5]
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LEA Load Effective Address

Assembler Format

LEA DR, LABEL

Encoding

15 12 11 9 8 0

DR1110 PCoffset9

Operation

DR = PC† + SEXT(PCoffset9);

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this

value to the incremented PC. This address is loaded into DR.‡

Example

LEA R4, TARGET ; R4 ← address of TARGET.

†This is the incremented PC.
‡The LEA instruction computes an address but does NOT read memory. Instead, the address itself is
loaded into DR.
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NOT Bit-Wise Complement

Assembler Format

NOT DR, SR

Encoding

11111

15 12 11 9 8 6 5 4 3 2 0

DR1001 SR 1

Operation

DR=NOT(SR);
setcc();

Description

The bit-wise complement of the contents of SR is stored in DR. The condi-

tion codes are set, based on whether the binary value produced, taken as a 2’s

complement integer, is negative, zero, or positive.

Example

NOT R4, R2 ; R4 ← NOT(R2)
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RET Return from Subroutine

Assembler Format

RET†

Encoding

000 111 000000

05689111215

1100

Operation

PC = R7;

Description

The PC is loaded with the value in R7. Its normal use is to cause a return from a

previous JSR(R) instruction.

Example

RET ; PC ← R7

†The RET instruction is a specific encoding of the JMP instruction. See also JMP.
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RTI
Return from Trap or Interrupt

Assembler Format

RTI
Encoding

15 12 11 0

0000000000001000

Operation

if (PSR[15] == 1)
Initiate a privilege mode exception;

else
PC=mem[R6]; R6 is the SSP, PC is restored
R6=R6+1;
TEMP=mem[R6];
R6=R6+1; system stack completes POP before saved PSR is restored
PSR=TEMP; PSR is restored
if (PSR[15] == 1)

Saved SSP=R6 and R6=Saved USP;

Description

If the processor is running in User mode, a privilege mode exception occurs. If

in Supervisor mode, the top two elements on the system stack are popped and

loaded into PC, PSR. After PSR is restored, if the processor is running in User

mode, the SSP is saved in Saved SSP, and R6 is loaded with Saved USP.

Example

RTI ; PC, PSR ← top two values popped off stack.

Note

RTI is the last instruction in both interrupt and trap service routines and returns

control to the program that was running. In both cases, the relevant service routine

is initiated by first pushing the PSR and PC of the program that is running onto the

system stack. Then the starting address of the appropriate service routine is loaded

into the PC, and the service routine executes with supervisor privilege. The last

instruction in the service routine is RTI, which returns control to the interrupted

program by popping two values off the supervisor stack to restore the PC and PSR.

In the case of an interrupt, the PC is restored to the address of the instruction that was

about to be processed when the interrupt was initiated. In the case of an exception,

the PC is restored to either the address of the instruction that caused the exception or

the address of the following instruction, depending on whether the instruction that

caused the exception is to be re-executed. In the case of a TRAP service routine,

the PC is restored to the instruction following the TRAP instruction in the calling

routine. In the case of an interrupt or TRAP, the PSR is restored to the value it had

when the interrupt was initiated. In the case of an exception, the PSR is restored to

the value it had when the exception occurred or to some modified value, depending

on the exception. See also Section A.3.
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ST Store

Assembler Format

ST SR, LABEL

Encoding

PCoffset90011 SR

15 12 11 9 8 0

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[PC† + SEXT(PCoffset9)] = SR;

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV

exception. If not, the contents of the register specified by SR is stored in the

memory location whose address is computed by sign-extending bits [8:0] to 16

bits and adding this value to the incremented PC.

Example

ST R4, HERE ; mem[HERE] ← R4

†This is the incremented PC.
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STI Store Indirect

Assembler Format

STI SR, LABEL

Encoding

PCoffset91011 SR

15 12 11 9 8 0

Operation

if (either computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[mem[PC† + SEXT(PCoffset9)]] = SR;

Description

If either computed address is to privileged memory and PSR[15]=1, initiate

ACV exception. If not, the contents of the register specified by SR is stored

in the memory location whose address is obtained as follows: Bits [8:0] are sign-

extended to 16 bits and added to the incremented PC. What is in memory at this

address is the address of the location to which the data in SR is stored.

Example

STI R4, NOT HERE ; mem[mem[NOT HERE]] ← R4

†This is the incremented PC.
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STR Store Base+offset

Assembler Format

STR SR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRSR0111 offset6

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[BaseR + SEXT(offset6)] = SR;

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV

exception. If not, the contents of the register specified by SR is stored in the

memory location whose address is computed by sign-extending bits [5:0] to 16

bits and adding this value to the contents of the register specified by bits [8:6].

Example

STR R4, R2, #5 ; mem[R2+5] ← R4
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TRAP System Call

Assembler Format

TRAP trapvector8

Encoding

078111215

1111 0000 trapvect8

Operation

TEMP=PSR;
if (PSR[15] == 1)

Saved USP=R6 and R6=Saved SSP;
PSR[15]=0;

Push TEMP,PC† on the system stack
PC=mem[ZEXT(trapvect8)];

Description

If the the program is executing in User mode, the User Stack Pointer must be

saved and the System Stack Pointer loaded. Then the PSR and PC are pushed

on the system stack. (This enables a return to the instruction physically follow-

ing the TRAP instruction in the original program after the last instruction in the

service routine (RTI) has completed execution.) Then the PC is loaded with the

starting address of the system call specified by trapvector8. The starting address

is contained in the memory location whose address is obtained by zero-extending

trapvector8 to 16 bits.

Example

TRAP x23 ; Directs the operating system to execute the IN system call.

; The starting address of this system call is contained in

; memory location x0023.

Note:
Memory locations x0000 through x00FF, 256 in all, are available to contain

starting addresses for system calls specified by their corresponding trap vectors.

This region of memory is called the Trap Vector Table. Table A.3 describes the

functions performed by the service routines corresponding to trap vectors x20

to x25.

†This is the incremented PC.
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Unused Opcode
Assembler Format

none

Encoding

0111215

1101

Operation

Initiate an illegal opcode exception.

Description

If an illegal opcode is encountered, an illegal opcode exception occurs.

Note:
The opcode 1101 has been reserved for future use. It is currently not defined. If

the instruction currently executing has bits [15:12] = 1101, an illegal opcode

exception occurs. Section A.3 describes what happens.
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Table A.3 Trap Service Routines

Trap Vector Assembler Name Description

x20 GETC Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.

x21 OUT Write a character in R0[7:0] to the console display.
x22 PUTS Write a string of ASCII characters to the console display. The characters are

contained in consecutive memory locations, one character per memory location,
starting with the address specified in R0. Writing terminates with the occurrence of
x0000 in a memory location.

x23 IN Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into
R0. The high eight bits of R0 are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with
the address specified in R0. The ASCII code contained in bits [7:0] of a memory
location is written to the console first. Then the ASCII code contained in bits [15:8]
of that memory location is written to the console. (A character string consisting of
an odd number of characters to be written will have x00 in bits [15:8] of the
memory location containing the last character to be written.) Writing terminates
with the occurrence of x0000 in a memory location.

x25 HALT Halt execution and print a message on the console.

A.3 Interrupt and Exception
Processing

As has been discussed in detail in Chapter 9, events external to the program that

is running can interrupt the processor. A common example of an external event

is interrupt-driven I/O. It is also the case that the processor can be interrupted

by exceptional events that occur while the program is running that are caused by

the program itself. An example of such an “internal” event is the presence of an

unused opcode in the computer program that is running.

Associated with each event that can interrupt the processor is an eight-bit

vector that provides an entry point into a 256-entry interrupt vector table. The

starting address of the interrupt vector table is x0100. That is, the interrupt vector

table occupies memory locations x0100 to x01FF. Each entry in the interrupt

vector table contains the starting address of the service routine that handles the

needs of the corresponding event. These service routines execute in Supervisor

mode.

Half (128) of these entries, locations x0100 to x017F, provide the starting

addresses of routines that service events caused by the running program itself.

These routines are called exception service routines because they handle excep-

tional events, that is, events that prevent the program from executing normally.

The other half of the entries, locations x0180 to x01FF, provide the starting

addresses of routines that service events that are external to the program that

is running, such as requests from I/O devices. These routines are called interrupt
service routines.
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A.3.1 Interrupts

At this time, an LC-3 computer system provides only one I/O device that can

interrupt the processor. That device is the keyboard. It interrupts at priority level

PL4 and supplies the interrupt vector x80.

An I/O device can interrupt the processor if it wants service, if its interrupt

enable (IE) bit is set, and if the priority of its request is greater than the priority of

any other event that wants to interrupt and greater than the priority of the program

that is running.

Assume a program is running at a priority level less than 4, and someone

strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently execut-

ing program is interrupted at the end of the current instruction cycle. The interrupt

service routine is initiated as follows:

1. The PSR of the interrupted process is saved in TEMP.

2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).

3. The processor sets the priority level to PL4, the priority level of the

interrupting device (PSR[10:8]=100).

4. If the interrupted process is in User mode, R6 is saved in Saved USP and

R6 is loaded with the Supervisor Stack Pointer (SSP).

5. TEMP and the PC of the interrupted process are pushed onto the supervisor

stack.

6. The keyboard supplies its eight-bit interrupt vector, in this case x80.

7. The processor expands that vector to x0180, the corresponding 16-bit

address in the interrupt vector table.

8. The PC is loaded with the contents of memory location x0180, the address

of the first instruction in the keyboard interrupt service routine.

The processor then begins execution of the interrupt service routine.

The last instruction executed in an interrupt service routine is RTI. The top

two elements of the supervisor stack are popped and loaded into the PC and PSR

registers. R6 is loaded with the appropriate stack pointer, depending on the new value

of PSR[15]. Processing then continues where the interrupted program left off.

A.3.2 Exceptions

At this time, the LC-3 ISA specifies three exception conditions: privilege mode

violation, illegal opcode, and access control violation (ACV). The privilege mode

violation occurs if the processor attempts to execute the RTI instruction while

running in User mode. The illegal opcode exception occurs if the processor

attempts to execute an instruction having the unused opcode (bits [15:12] =

1101). The ACV exception occurs if the processor attempts to access privileged

memory (i.e., a memory location in system space or a device register having an

address from xFE00 to xFFFF while running in User mode).

Exceptions are handled as soon as they are detected. They are initiated very

much like interrupts are initiated, that is:

1. The PSR of the process causing the exception is saved in TEMP.
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2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).

3. If the process causing the exception is in User mode, R6 is saved in

Saved USP and R6 is loaded with the SSP.

4. TEMP and the PC of the process causing the exception are pushed onto the

supervisor stack.

5. The exception supplies its eight-bit vector. In the case of the privilege mode

violation, that vector is x00. In the case of the illegal opcode, that vector is

x01. In the case of the ACV exception, that vector is x02.

6. The processor expands that vector to x0100, x0101, or x0102, the

corresponding 16-bit address in the interrupt vector table.

7. The PC is loaded with the contents of memory location x0100, x0101, or

x0102, the address of the first instruction in the corresponding exception

service routine.

The processor then begins execution of the exception service routine.

The details of the exception service routine depend on the exception and the

way in which the operating system wishes to handle that exception.

In many cases, the exception service routine can correct any problem caused

by the exceptional event and then continue processing the original program. In

those cases, the last instruction in the exception service routine is RTI, which pops

the top two elements from the supervisor stack and loads them into the PC and

PSR registers. The program then resumes execution with the problem corrected.

In some cases, the cause of the exceptional event is sufficiently catastrophic

that the exception service routine removes the program from further processing.

Another difference between the handling of interrupts and the handling of

exceptions is the priority level of the processor during the execution of the service

routine. In the case of exceptions, we normally do not change the priority level

when we service the exception. The priority level of a program is the urgency

with which it needs to be executed. In the case of the exceptions specified by the

LC-3 ISA, the urgency of a program is not changed by the fact that a privilege

mode violation occurred or there was an illegal opcode in the program or the

program attempted to access privileged memory while it was in User mode.
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From LC-3 to x86

As you know, the ISA of the LC-3 explicitly specifies the interface between

what the LC-3 machine language programmer or LC-3 compilers produce

and what a microarchitecture of the LC-3 can accept and process. Among those

things specified are the address space and addressability of memory, the number

and size of the registers, the format of the instructions, the opcodes, the data types

that are the encodings used to represent information, and the addressing modes

that are available for determining the location of an operand.

The ISA of the microprocessor in your PC also specifies an interface between

the compilers and the microarchitecture. However, in the case of the PC, the ISA

is not the LC-3. Rather it is the x86. Intel introduced the first member of this ISA

in 1979. It was called the 8086, and the “normal” size of the addresses and data

elements it processed was 16 bits, the same size as the LC-3. Today, the typical

size of addresses and data is 64 bits. With special vector extensions, instructions

can operate on vectors that can be of size 128, 256, and 512 bits. Because there

are a lot of old programs and data expressed in 32 bits, the x86 is able to process

instructions in what we call 64-bit mode or 32-bit mode. That is, in 32-bit mode,

the x86 restricts itself to a 32-bit address space and 32-bit elements.

From the 8086 to the present time, Intel has continued implementations

of the x86 ISA, among them the 386 (in 1985), 486 (in 1989), Pentium (in

1992), Pentium Pro (in 1995), Pentium II (in 1997), Pentium IV (in 2001), “1st

Generation Core i7-9xx Series,” codename Nehalem (in 2008), “4th Generation

Core i7-4xxx Series,” codename Haswell (in 2013), and “8th Generation Core

i7-8086K,” codename: Coffee Lake (in 2018).

The ISA of the x86 is much more complicated than that of the LC-3. There

are more opcodes, more data types, more addressing modes, a more complicated

memory structure, and a more complicated encoding of instructions into 0s and

1s. However, fundamentally, they have the same basic ingredients.

You have spent a good deal of time understanding computing within the con-

text of the LC-3. Some may feel that it would be good to learn about a real ISA.

One way to do that would be to have some company such as Intel mass-produce

LC-3 microprocessors, some other company like Dell put them in their PCs, and a

third company such as Microsoft compile Windows NT into the ISA of the LC-3.

An easier way to introduce you to a real ISA is by way of this appendix.
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We present here elements of the x86, a very complicated ISA. We do so in

spite of its complexity because it is one of the most pervasive of all ISAs available

in the marketplace.

We make no attempt to provide a complete specification of the x86 ISA.

That would require a whole book by itself, and to appreciate it, a deeper under-

standing of operating systems, compilers, and computer systems than we think

is reasonable at this point in your education. If one wants a complete treat-

ment, we recommend the Intel Architecture Software Developer’s Manual. In this

appendix, we restrict ourselves to some of the characteristics that are relevant to

application programs. Our intent is to give you a sense of the richness of the x86

ISA. We introduce these characteristics within the context of the LC-3 ISA, which

at this point you are very familiar with.

B.1 LC-3 Features and
Corresponding x86 Features

B.1.1 Instruction Set

An instruction set is made up of instructions, each of which has an opcode and

zero or more operands. The number of operands depends on how many are needed

by the corresponding opcode. Each operand is a data element and is encoded

according to its data type. The location of an operand is determined by evaluating

its addressing mode.

The LC-3 instruction set contains one data type, 15 opcodes, and three

addressing modes: PC-relative (LD, ST), indirect (LDI, STI), and register-plus-

offset (LDR, STR). The x86 instruction set has more than a dozen data types,

more than a thousand opcodes, and more than two dozen addressing modes

(depending on how you count).

B.1.1.1 Data Types

Recall that a data type is a representation of information such that the ISA pro-

vides opcodes that operate on information that is encoded in that representation.

The LC-3 supports only one data type, 16-bit 2’s-complement integers. This

is not enough for efficient processing in the real world. Scientific applications

need numbers that are represented by the floating point data type. Multimedia

applications require information that is represented by a different data type. Com-

mercial applications written years ago, but still active today, require an additional

data type, referred to as packed decimal. Some applications require a greater

range of values and a greater precision of each value than other applications.

As a result of all these requirements, the x86 is designed with instructions

that operate on (for example) 8-bit integers, 16-bit integers, and 32-bit integers,

32-bit and 64-bit floating point numbers, 64-bit, 128-bit, 256-bit, and 512-bit-

multimedia values. Figure B.1 shows some of the data types present in the

x86 ISA.
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Integer: 

7

S

0

15

S

0

31 0

S

Unsigned Integer:

7 0

15 0

31 0

Floating Point:

S

2231

exponent fraction

63

S

51 0

exponent fraction

79 63 0

S

exponent fraction

0

S

Bit String:

MMX Data Type:

last bit bit 0

63 48 32 16 0

element 3 element 2 element 1 element 0

63 56 48 40 32 24 16 8 0

7 6 5 4 3 2 1 element 0

X + 1X + 2X + 3X + 4... address X

BCD Integer:

digit N

digit

N

digit

N – 1

digit

3

digit 0digit 1digit 2

048121620

Packed BCD:
04812

...

digit

2

digit

1

digit

0

length of bit string

Figure B.1 A sample of x86 data types.
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B.1.1.2 Opcodes

The LC-3 comprises 15 opcodes; the x86 instruction set comprises more than

a thousand. Recall that the three basic instruction types are operates, data

movement, and control. Operates process information, data movement opcodes

move information from one place to another (including input and output), and

control opcodes change the flow of the instruction stream.

In addition, we should add a fourth category to handle functions that must

be performed in the real world because a user program runs in the context of an

operating system that is controlling a computer system, rather than in isolation.

These instructions deal with computer security, system management, hardware

performance monitoring, and various other issues that are beyond what the typical

application program pays attention to. We will ignore those instructions in this

appendix, but please realize that they do exist, and you will see them as your

studies progress. Here we will concentrate on the three basic instruction types:

operates, data movement, and control.

Operates The LC-3 has three operate instructions: ADD, AND, and NOT. The

ADD opcode is the only LC-3 opcode that performs arithmetic. If one wants to

subtract, one obtains the negative of an operand and then adds. If one wants

to multiply, one can write a program with a loop to ADD a number some specified

number of times. However, this is too time-consuming for a real microprocessor.

So the x86 has separate SUB and MUL, as well as DIV, INC (increment), DEC

(decrement), and ADC (add with carry), to name a few.

A useful feature of an ISA is to extend the size of the integers on which it can

operate. To do this, one writes a program to operate on such long integers. The

ADC opcode, which adds two operands plus the carry from the previous add, is

a very useful opcode for extending the size of integers.

In addition, the x86 has, for each data type, its own set of opcodes to operate

on that data type. For example, multimedia instructions (collectively called the

MMX instructions) often require saturating arithmetic, which is very different

from the arithmetic we are used to. PADDS is an opcode that adds two operands

with saturating arithmetic.

Saturating arithmetic can be explained as follows: Suppose we represent the

degree of grayness of an element in a figure with a digit from 0 to 9, where 0 is

white and 9 is black. Suppose we want to add some darkness to an existing value

of grayness of that figure. An element could start out with a grayness value of

7, and we might wish to add a 5 worth of darkness to it. In normal arithmetic,

7 + 5 is 2 (with a carry), which is lighter than either 7 or 5. Something is wrong!

With saturating arithmetic, when we reach 9, we stay there—we do not generate

a carry. So, for example, 7 + 5 = 9 and 9 + n = 9. Saturating arithmetic is a

different kind of arithmetic, and the x86 has opcodes (MMX instructions) that

perform this type of arithmetic.

Scientific applications require opcodes that operate on values represented

in the floating point data type. FADD, FMUL, FSIN, FSQRT are examples of

floating point opcodes in the x86 ISA.

The AND and NOT opcodes are the only LC-3 opcodes that perform logical

functions. One can construct any logical expression using these two opcodes.
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Table B.1 Operate Instructions, x86 ISA

Instruction Explanation

ADC x, y x, y, and the carry retained from the last relevant operation (in CF) are added and
the result stored in x.

MUL x The value in EAX is multiplied by x, and the result is stored in the 64-bit register
formed by EDX, EAX.

SAR x x is right shifted (arithmetic shift) n bits, and the result is stored in x. The value of n
can be 1, an immediate operand, or the count in the CL register.

XOR x, y A bit-wise exclusive-OR is performed on x, y and the result is stored in x.
DAA After adding two packed decimal numbers, AL contains two BCD values, which

may be incorrect due to propagation of the carry bit after 15, rather than after 9.
DAA corrects the two BCD digits in AL.

FSIN The top of the stack (call it x) is popped. The sin(x) is computed and pushed onto
the stack.

FADD The top two elements on the stack are popped, added, and their result pushed
onto the stack.

PANDN x, y A bit-wise AND-NOT operation is performed on MMX values x, y, and the result is
stored in x.

PADDS x, y Saturating addition is performed on packed MMX values x, y, and the result is
stored in x.

However, as is the case with arithmetic, this also is too time-consuming. The x86

has in addition separate OR, XOR, AND-NOT, and separate logical operators for

different data types.

Furthermore, the x86 has a number of other operate instructions that set and

clear registers, convert a value from one data type to another, shift or rotate the

bits of a data element, and so on. Table B.1 lists some of the operate opcodes in

the x86 instruction set.

Data Movement The LC-3 has six data movement opcodes: LD, LDI, ST,

STI, LDR, and STR. They all copy information between memory (and memory-

mapped device registers) and the eight general purpose registers, R0 to R7.

Although the x86 does not have LDI or STI opcodes, it does have the other

four, and in addition to these, many other data movement opcodes. XCHG can

swap the contents of two locations. PUSHA pushes all eight general purpose

registers onto the stack. IN and OUT move data between input and output ports

and the processor. CMOVcc copies a value from one location to another only if a

previously computed condition is true. Table B.2 lists some of the data movement

opcodes in the x86 instruction set.

Control The LC-3 has five control opcodes: BR, JSR/JSRR, JMP, RTI, and

TRAP. x86 has all these and more. Table B.3 lists some of the control opcodes in

the x86 instruction set.

B.1.1.3 Two Address vs. Three Address

The LC-3 is a three-address ISA. This description reflects the number of operands

explicitly specified by the ADD instruction. An add operation requires two

source operands (the numbers to be added) and one destination operand to store
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Table B.2 Data Movement Instructions, x86 ISA

Instruction Explanation

MOV x, y The value stored in y is copied into x.
XCHG x, y The values stored in x and y are swapped.
PUSHA All the registers are pushed onto the top of the stack.
PUSH Push a register onto the top of the stack.
POP Pop a register from the top of the stack.
MOVS The element in the DS segment pointed to by ESI is copied into the location in

the ES segment pointed to by EDI. After the copy has been performed, ESI and
EDI are both incremented.

REP MOVS Perform the MOVS. Then decrement ECX. Repeat this instruction until ECX = 0.
(This allows a string to be copied in a single instruction, after initializing ECX.)

LODS The element in the DS segment pointed to by ESI is loaded into EAX, and ESI is
incremented or decremented, according to the value of the DF flag.

INS Data from the I/O port specified by the DX register is loaded into the EAX
register (or AX or AL, if the size of the data is 16 bits or 8 bits, respectively).

CMOVZ x, y If ZF = 1, the value stored in y is copied into x. If ZF = 0, the instruction acts like
a no-op.

LEA x, y The address y is stored in x. This is very much like the LC-3 instruction of the
same name.

Table B.3 Control Instructions, x86 ISA

Instruction Explanation

Jcond x Branch based on the condition specified by cond. If cond is true, the IP is loaded
with x.

JMP x IP is loaded with the address x. This is very much like the LC-3 instruction of the
same name.

CALL x The IP is pushed onto the stack, and a new IP is loaded with x.
RET The stack is popped, and the value popped is loaded into IP.
LOOP x ECX is decremented. If ECX is not 0 and ZF = 1, the IP is loaded with x.
INT n The value n is an index into a table of descriptors that specify operating system

service routines. The end result of this instruction is that IP is loaded with the
starting result of the corresponding service routine. This is very much like the
TRAP instruction in the LC-3.

the result. In the LC-3, all three must be specified explicitly, hence the name

three-address ISA.

Even if the same location is to be used both for one of the sources and for the

destination, the three addresses are all specified. For example, the LC-3

ADD R1,R1,R2

identifies R1 as both a source and the destination.

The x86 is mostly (except for special instructions defined as SSE or AVX

instructions) a two-address ISA. Since the add operation needs three operands, the

location of one of the sources must also be used to store the result. For example,

the corresponding 16-bit ADD instruction in the x86 ISA would be

ADD AX,BX

where AX and BX are names of two of the x86’s eight 16-bit general purpose

registers. AX and BX are the sources, and AX is the destination.
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Since the result of the operate is stored in the location that originally con-

tained one of the sources, that source operand is no longer available after that

instruction is executed. If that source operand is needed later, it must be saved

before the operate instruction is executed.

B.1.1.4 Memory Operands

A major difference between the LC-3 instruction set and the x86 instruction set

is the restriction on where operate instructions can get their operands. An LC-3

operate instruction must obtain its source operands from registers and write the

result to a destination register. An x86 instruction, on the other hand, can obtain

one of its sources from memory and/or write its result to memory. In other words,

the x86 can read a value from memory, operate on that value, and store the result

in memory all in a single instruction. The LC-3 cannot.

The LC-3 program requires a separate load instruction to read the value from

memory before operating on it, and a separate store instruction to write the result

in memory after the operate instruction. An ISA, like the LC-3, that has this

restriction is called a load-store ISA. The x86 is not a load-store ISA.

B.1.2 Memory

The LC-3 memory consists of 216 locations, each containing 16 bits of informa-

tion. We say the LC-3 has a 16-bit address space, since one can uniquely address

its 216 locations with 16 bits of address. We say the LC-3 has an addressability

of 16 bits, since each memory location contains 16 bits of information.

The x86 memory has a 64-bit address space and an addressability of eight

bits. Since one byte contains eight bits, we say the x86 memory is byte address-

able. Since each location contains only eight bits, four contiguous locations in

memory are needed to store a 32-bit data element, say locations X, X+1, X+2,

and X+3. We designate X as the address of the 32-bit data element. In actuality,

X only contains bits [7:0], X+1 contains bits [15:8], X+2 contains bits [23:16],

and X+3 contains bits [31:24] of the 32-bit value.

One can determine an LC-3 memory location by simply obtaining its address

from the instruction, using one of the three addressing modes available in the

instruction set. An x86 instruction has available to it more than two dozen

addressing modes that it can use to specify the memory address of an operand.

We examine the addressing modes of an x86 instruction in Section B.2.

In addition to the larger number of addressing modes, the x86 contains a

mechanism called segmentation that provides a measure of protection against

unwanted accesses to particular memory addresses. The address produced by an

instruction’s addressing mode, rather than being an address in its own right, is

used as an address within a segment of memory. Access to that memory location

must take into account the segment register that controls access to that segment.

The details of how the protection mechanism works will have to wait for later in

your studies.

However, Figure B.2 does show how an address is calculated for the

register+offset addressing mode, both for the LC-3 and for the x86, with
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Figure B.2 Register+offset addressing mode in LC-3 and x86 ISAs.
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segmentation. In both cases, the opcode is to move data from memory to a gen-

eral purpose register. The LC-3 uses the LDR instruction. The x86 uses the

MOV instruction. In the case of the x86, the address calculated is in the DS

segment, which is accessed via the DS register. That access is done through a 16-

bit selector, which indexes into a segment descriptor table, yielding the segment
descriptor for that segment. The segment descriptor contains a segment base reg-
ister, a segment limit register, and protection information. The memory address

obtained from the addressing mode of the instruction is added to the segment

base register to provide the actual memory address, as shown in Figure B.2.

B.1.3 Internal State

The internal state of the LC-3 consists of eight 16-bit general purpose registers,

R0 to R7, a 16-bit PC, and a 16-bit PSR that specifies the privilege mode, priority,

and three 1-bit condition codes (N, Z, and P). The user-visible internal state of

the x86 consists of 64-bit application-visible registers, a 64-bit Instruction pointer

(RIP), a 64-bit RFLAGS register, and the 16-bit segment registers.

B.1.3.1 Application-Visible Registers

Figure B.3 shows some of the application-visible registers in the x86 ISA.

In 64-bit mode, the x86 has 16 general purpose registers: RAX, RBX, RCX,

RDX, RSP, RBP, RCI, RDI, and R8 through R15. Each register contains 64 bits

reflecting the normal size of operands. In 32-bit mode, there are eight general

purpose registers: EAX, EBX, ECX, EDX, ESP, EBP, ECI, and EDI, which use

bits [31:0] of the corresponding 64-bit registers. Also, since some x86 opcodes

process 16-bit and 8-bit operands, x86 also specifies 16-bit registers AX, BX,

...DI by using bits [15:0] of the 64-bit registers, and 8 bit registers AL, BL,

CL, and DL using bits [7:0] and AH, BH, CH, and DH, using bits [15:8] of

the corresponding 64-bit registers. The x86 also provides 128-bit, 256-bit, and

512-bit SIMD registers for operands needed by SSE and AVX operations. They

are, respectively, XMM0 to XMM31 for 128 bits, YMM0 to YMM31 for 256

bits, and ZMM0 to ZMM31 for 512 bits.

B.1.3.2 System Registers

The LC-3 has two system-level registers—the PC and the PSR. The user-visible

x86 has these and more. Figure B.4 shows some of the user-visible system

registers in the x86 ISA.

Instruction Pointer (RIP) The x86 has the equivalent of the LC-3’s 16-bit pro-

gram counter. The x86 calls it an instruction pointer (RIP). Since the address

space of the x86 is 64 bits, the RIP is a 64-bit register. In 32-bit mode, since

the address space is only 32 bits, the instruction pointer (EIP) uses bits [31:0] of

the RIP.

RFLAGS Register Corresponding to the LC-3’s N, Z, and P condition codes,

the x86 has a one-bit SF (sign flag) register and a one-bit ZF (zero flag) register.
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Figure B.3 Some x86 application-visible registers.

SF and ZF provide exactly the same functions as the N and Z condition codes

of the LC-3. The x86 does not have the equivalent of the LC-3’s P condition

code. In fact, the P condition code is redundant since, if one knows the val-

ues of N and Z, one knows the value of P. We included it in the LC-3 ISA

anyway, for the convenience of assembly language programmers and compiler

writers.

The x86 collects other one-bit values in addition to N and Z. These one-bit

values (which Intel calls flags, rather than condition codes) are contained in a

64-bit register called RFLAGS. Several of these flags are discussed in the

following paragraphs.
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Figure B.4 x86 system registers.

The CF flag stores the carry produced by the last relevant operation that

generated a carry. As we said earlier, together with the ADC instruction, CF facil-

itates the generation of procedures, which allows the software to deal with larger

integers than the ISA supports.

The OF flag stores an overflow condition if the last relevant operate generated

a value too large to store in the available number of bits. Recall the discussion of

overflow in Section 2.5.3.

The DF flag indicates the direction in which string operations are to process

strings. If DF = 0, the string is processed from the high-address byte down (i.e.,

the pointer keeping track of the element in the string to be processed next is decre-

mented). If DF = 1, the string is processed from the low-address byte up (i.e., the

string pointer is incremented).

Two flags not usually considered as part of the application state are the IF

(interrupt) flag and the TF (trap) flag. Both correspond to functions with which

you are familiar.

IF is very similar to the IE (interrupt enable) bit in the KBSR and DSR,

discussed in Section 9.4.4.1. If IF = 1, the processor can recognize external
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interrupts (like keyboard input, for example). If IF = 0, these external inter-

rupts have no effect on the process that is executing. We say the interrupts are

disabled.

TF is very similar to single-step mode in the LC-3 simulator, only in this case

it is part of the ISA. If TF = 1, the processor halts after every instruction so the

state of the system can be examined. If TF = 0, the processor ignores the trap and

processes the next instruction.

Segment Registers When operating in its preferred operating mode (called pro-
tected mode), the address calculated by the instruction is really an offset from the

starting address of a segment, which is specified by some segment base regis-
ter. These segment base registers are part of their corresponding data segment
descriptors, which are contained in the segment descriptor table. At each instant

of time, six of these segments are active. They are called, respectively, the code
segment (CS), stack segment (SS), and four data segments (DS, ES, FS, and

GS). The six active segments are accessed via their corresponding segment reg-

isters shown in Figure B.4, which contain pointers to their respective segment

descriptors.

B.2 The Format and Specification of
x86 Instructions

The LC-3 instruction is a 16-bit instruction. Bits [15:12] always contain the

opcode; the remaining 12 bits of each instruction are used to support the needs

of that opcode.

The length of an x86 instruction is not fixed. It consists of from 1 to

16 bytes, depending on the needs of that instruction. A lot of information

can be packed into one x86 instruction. Figure B.5 shows the format of an

x86 instruction.

The two key parts of an x86 instruction are the opcode and, where neces-

sary, the ModR/M byte. The opcode specifies the operation the instruction is to

perform. The ModR/M byte specifies how to obtain the operands it needs. The

ModR/M byte specifies one of several addressing modes, some of which require

Prefixes

From 0

to 4

1-byte

prefixes

(see Table B.4)

Mod

(see Table B.5) (see Table B.6)

Reg R/M

Opcode Mod R/M SIB Displacement Immediate

Address displace-

ment of 0, 1, 2, or 

4 bytes, specified 

by ModR/M

Immediate data

of 0, 1, 2, or 4

bytes, specified

by the opcode

Scale Index Base

Figure B.5 Format of the x86 instruction.
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the use of registers, a one-, two-, or four-byte displacement, and additional register

information contained in an optional SIB byte.

Some opcodes specify an immediate operand and also specify the number

of bytes of the instruction that is used to store that immediate information. The

immediate value (when one is specified) is the last element of the instruction.

Finally, instructions assume certain default information with respect to the

semantics of an instruction, such as address size, operand size, segment to be

used, and so forth. The instruction can change this default information by means

of one or more prefixes, which are located at the beginning of the instruction.

Each part of an x86 instruction is discussed in more detail in Sections B.2.1

through B.2.6.

B.2.1 Prefix

Prefixes provide additional information that is used to process the instruction.

There are four classes of prefix information, and each instruction can have from

zero to four prefixes, depending on its needs. Fundamentally, a prefix overrides

the usual interpretation of the instruction.

The four classes of prefixes are lock and repeat, segment override, operand

override, and address override. Table B.4 describes the four types of prefixes.

B.2.2 Opcode

The opcode byte (or bytes—some opcodes are represented by two bytes) spec-

ifies a large amount of information about the needs of that instruction. The

Table B.4 Prefixes, x86 ISA

Repeat/Lock
xF0 (LOCK) This prefix guarantees that the instruction will have exclusive use

of all shared memory until the instruction completes execution.

xF2, xF3
(REP/REPE/REPNE)

This prefix allows the instruction (a string instruction) to be
repeated some specified number of times. The iteration count
is specified by ECX. The instruction is also terminated on the
occurrence of a specified value of ZF.

Segment override
x2E(CS), x36(SS),
x3E(DS), x26(ES),
x64(FS), x65(GS)

This prefix causes the memory access to use the specified
segment, instead of the default segment expected for that
instruction.

Operand size override
x66 This prefix changes the size of data expected for this instruction.

That is, instructions expecting 32-bit data elements use 16-bit
data elements. And instructions expecting 16-bit data elements
use 32-bit data elements.

Address size override
x67 This prefix changes the size of operand addresses expected for

this instruction. That is, instructions expecting a 32-bit address
use 16-bit addresses. And instructions expecting 16-bit
addresses use 32-bit addresses.
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opcode byte (or bytes) specifies, among other things, the operation to be per-

formed, whether the operands are to be obtained from memory or from reg-

isters, the size of the operands, whether or not one of the source operands is

an immediate value in the instruction, and if so, the size of that immediate

operand.

Some opcodes are formed by combining the opcode byte with bits [5:3]

of the ModR/M byte, if those bits are not needed to provide addressing mode

information. The ModR/M byte is described in Section B.2.3.

B.2.3 ModR/M Byte

The ModR/M byte, shown in Figure B.5, provides addressing mode information

for two operands, when necessary, or for one operand, if that is all that is needed.

If two operands are needed, one may be in memory, the other in a register, or both

may be in registers. If one operand is needed, it can be either in a register or in

memory. The ModR/M byte supports all cases.

The ModR/M byte is essentially partitioned into two parts. The first part

consists of bits [7:6] and bits [2:0]. The second part consists of bits [5:3].

If bits [7:6] = 00, 01, or 10, the first part specifies the addressing mode

of a memory operand, and the combined five bits ([7:6],[2:0]) identify which

addressing mode. If bits [7:6] = 11, there is no memory operand, and bits [2:0]

specify a register operand.

Bits [5:3] specify the register number of the other operand, if the opcode

requires two operands. If the opcode only requires one operand, bits [5:3] are

available as a subopcode to differentiate among eight opcodes that have the same

opcode byte, as described in Section B.2.2.

Table B.5 lists some of the interpretations of the ModR/M byte.

Table B.5 ModR/M Byte, Examples

Mod Reg R/M Eff. Addr. Reg Explanation

00 011 000 [EAX] EBX EAX contains the address of the memory operand.
EBX contains the register operand.

01 010 000 disp8[EAX] EDX Memory operand’s address is obtained by adding
the displacement byte of the instruction to the
contents of EAX. EDX contains the register
operand.

10 000 100 disp32[-][-] EAX Memory operand’s address is obtained by adding
the four-byte (32 bits) displacement of the
instruction to an address that will need an SIB
byte to compute. (See Section B.2.4 for the
discussion of the SIB byte.) EAX contains the
register operand.

11 001 110 ESI ECX If the opcode requires two operands, both are in
registers (ESI and ECX). If the opcode requires
one operand, it is in ESI. In that case, 001 (bits
[5:3]) are part of the opcode.
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Table B.6 SIB Byte, Examples

Scale Index Base Computation Explanation

00 011 000 EBX+EAX The contents of EBX is added to the contents of
EAX. The result is added to whatever is specified
by the ModR/M byte.

01 000 001 2 ⋅ EAX + ECX The contents of EAX is multiplied by 2, and the
result is added to the contents of ECX. This is
then added to whatever is specified by the
ModR/M byte.

01 100 001 ECX The contents of ECX is added to whatever is
specified by the ModR/M byte.

10 110 010 4 ⋅ ESI + EDX The contents of ESI is multiplied by 4, and the
result is added to the contents of EDX. This is
then added to whatever is specified by the
ModR/M byte.

B.2.4 SIB Byte

If the opcode specifies that an operand is to be obtained from memory, the Mod-

R/M byte specifies the addressing mode, that is, the information that is needed

to calculate the address of that operand. Some addressing modes require more

information than can be specified by the ModR/M byte alone. Those operand

specifiers (see the third entry in Table B.5) specify the inclusion of an SIB byte

in the instruction. The SIB byte (for scaled-index-base), shown in Figure B.5, pro-

vides scaling information and identifies which register is to be used as an index

register and/or which register is to be used as a base register. Taken together, the

SIB byte computes scale ⋅ index + base, where base and/or index can be zero,

and scale can be 1. Table B.6 lists some of the interpretations of the SIB byte.

B.2.5 Displacement

If the ModR/M byte specifies that the address calculation requires a displacement,

the displacement (one, two, or four bytes) is contained in the instruction. The

opcode and/or ModR/M byte specifies the size of the displacement.

Figure B.6 shows the addressing mode calculation for the source operand if

the instruction is as shown. The prefix x26 overrides the segment register and

specifies using the ES segment. The ModR/M and SIB bytes specify that a four-

byte displacement is to be added to the base register ECX + the index register

EBX after its contents is multiplied by 4.

B.2.6 Immediate

Recall that the LC-3 allowed small immediate values to be present in the instruc-

tion, by setting inst[5:5] to 1. The x86 also permits immediate values in the

instruction. As stated previously, if the opcode specifies that a source operand

is an immediate value in the instruction, it also specifies the number of bytes

of the instruction used to represent the operand. That is, an immediate can be
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Figure B.6 Addressing mode calculation for Base+ScaledIndes+disp32.

represented in the instruction with one, two, or four bytes. Since the opcode

also specifies the size of the operand, immediate values that can be stored in

fewer bytes than the operand size are first sign-extended to their full size before

being operated on. Figure B.7 shows the use of the immediate operand with the

ADD instruction. The example is ADD EAX, $5. We are very familiar with the

corresponding LC-3 instruction: ADD R0,R0,#5.

10000011 11000000 00000101

+5

SEXT

Opcode ModR/M imm8

ADD

r/m 32, imm8 EAX 5

EAX

ADD

EAX

8

32

Figure B.7 Example x86 instruction in 32-bit mode: ADD EAX, $5.
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B.3 An Example
We conclude this appendix with an example. The problem is one we have dealt

with extensively in Chapter 14. Given an input character string consisting of text,

numbers, and punctuation, write a C program to convert all the lowercase letters

to uppercase. Figure B.8 shows a C program that solves this problem. Figure B.9

shows the annotated LC-3 assembly language code that a C compiler would gen-

erate. Figure B.10 shows the corresponding annotated x86 assembly language

code, assuming we are operating the x86 in 32-bit mode. For readability, we show

assembly language representations of the LC-3 and x86 programs rather than the

machine code.

#include <stdio.h>

void UpcaseString(char inputString[]);

int main (void)
{

char string[8];

scanf("%s", string);
UpcaseString(string);

}

void UpcaseString(char inputString[])
{
int i = 0;

while(inputString[i]) {
if (('a' <= inputString[i]) && (inputString[i] <= 'z'))
inputString[i] = inputString[i] - ('a' - 'A');

i++;
}

}

Figure B.8 C source code for the upper-/lowercase program.
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; uppercase: converts lower- to uppercase
.ORIG x3000
LEA R6, STACK

MAIN ADD R1, R6, #3
READCHAR IN ; read in input string: scanf

OUT
STR R0, R1, #0
ADD R1, R1, #1
ADD R2, R0, x-A
BRnp READCHAR
ADD R1, R1, #-1
STR R2, R1, #0 ; put in NULL char to mark the "end"
ADD R1, R6, #3 ; get the starting address of the string
STR R1, R6, #14 ; pass the parameter
STR R6, R6, #13
ADD R6, R6, #11
JSR UPPERCASE
HALT

UPPERCASE STR R7, R6, #1
AND R1, R1, #0
STR R1, R6, #4
LDR R2, R6, #3

CONVERT ADD R3, R1, R2 ; add index to starting addr of string
LDR R4, R3, #0
BRz DONE ; Done if NULL char reached
LD R5, a
ADD R5, R5, R4 ; 'a' <= input string
BRn NEXT
LD R5, z
ADD R5, R4, R5 ; input string <= 'z'
BRp NEXT
LD R5, asubA ; convert to uppercase
ADD R4, R4, R5
STR R4, R3, #0

NEXT ADD R1, R1, #1 ; increment the array index, i
STR R1, R6, #4
BRnzp CONVERT

DONE LDR R7, R6, #1
LDR R6, R6, #2
RET

a .FILL #-97
z .FILL #-122
asubA .FILL #-32
STACK .BLKW 100

.END

Figure B.9 LC-3 assembly language code for the upper-/lowercase program.
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.386P

.model FLAT

_DATA SEGMENT ; The NULL-terminated scanf format
$SG397 DB '%s', 00H ; string is stored in global data space.
_DATA ENDS

_TEXT SEGMENT

_string$ = -8 ; Location of "string" in local stack
_main PROC NEAR

sub esp, 8 ; Allocate stack space to store "string"
lea eax, DWORD PTR _string$[esp+8]
push eax ; Push arguments to scanf
push OFFSET FLAT:$SG397
call _scanf

lea ecx, DWORD PTR _string$[esp+16]
push ecx ; Push argument to UpcaseString
call _UpcaseString

add esp, 20 ; Release local stack space
ret 0

_main ENDP

_inputString$ = 8 ; "inputString" location in local stack
_UpcaseString PROC NEAR

mov ecx, DWORD PTR _inputString$[esp-4]
cmp BYTE PTR [ecx], 0
je SHORT $L404 ; If inputString[0]==0, skip the loop

$L403: mov al, BYTE PTR [ecx] ; Load inputString[i] into AL
cmp al, 97 ; 97 == 'a'
jl SHORT $L405
cmp al, 122 ; 122 == 'z'
jg SHORT $L405
sub al, 32 ; 32 == 'a' - 'A'
mov BYTE PTR [ecx], al

$L405: inc ecx ; i++ %$
mov al, BYTE PTR [ecx]
test al, al
jne SHORT $L403 ; Loop if inputString[i] != 0

$L404: ret 0
_UpcaseString ENDP
_TEXT ENDS
END

Figure B.10 x86 assembly language code for the upper-/lowercase program.
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A P P E N D I X

The Microarchitecture
of the LC-3

We have seen in Chapters 4 and 5 the several stages of the instruction cycle

that must occur in order for the computer to process each instruction. If a

microarchitecture is to implement an ISA, it must be able to carry out this instruc-

tion cycle for every instruction in the ISA. This appendix illustrates one example

of a microarchitecture that can do that for the LC-3 ISA. Many of the details of

the microarchitecture and the reasons for each design decision are well beyond

the scope of an introductory course. However, for those who want to understand

how a microarchitecture can carry out the requirements of each instruction of the

LC-3 ISA, this appendix is provided.

C.1 Overview
Figure C.1 shows the two main components of a microarchitecture: the data path,

which contains all the components that actually process the instructions, and the

control, which contains all the components that generate the set of control signals

that are needed to control the processing at each instant of time.

We say, “at each instant of time,” but we really mean during each clock cycle.

That is, time is divided into clock cycles. The cycle time of a microprocessor is the

duration of a clock cycle. A common cycle time for a microprocessor today is 0.33

nanoseconds, which corresponds to 3 billion clock cycles each second. We say

that such a microprocessor is operating at a frequency of 3 gigahertz, or 3 GHz.

At each instant of time—or, rather, during each clock cycle—the 52 control

signals (as shown in Figure C.1) control both the processing in the data path and

the generation of the control signals for the next clock cycle. Processing in the

data path is controlled by 42 bits, and the generation of the control signals for the

next clock cycle is controlled by 10 bits.

Note that the hardware that determines which control signals are needed each

clock cycle does not operate in a vacuum. On the contrary, the control signals

needed in the “next” clock cycle depend on the following:

1. The control signals that are present during the current clock cycle.

2. The LC-3 instruction that is being executed.
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Figure C.1 Microarchitecture of the LC-3, major components.

3. The privilege mode of the program that is executing, and whether the

processor has the right to access a particular memory location.

4. If that LC-3 instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

5. Whether or not an external device is requesting that the processor be

interrupted.

6. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the

LC-3 that corresponds to these six items. They are, respectively:

1. J[5:0], COND[2:0], and IRD—ten bits of control signals provided by the

current clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which

differentiates JSR from JSRR (i.e., the addressing mode for the target of the

subroutine call).

3. PSR[15], bit [15] of the Processor Status Register, which indicates whether

the current program is executing with supervisor or user privileges, and

ACV, a signal that informs the processor that a process operating in User
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mode is trying to access a location in privileged memory. ACV stands for

Access Control Violation. When asserted, it denies the process access to the

privileged memory location.

4. BEN to indicate whether or not a BR should be taken.

5. INT to indicate that some external device of higher priority than the

executing process requests service.

6. R to indicate the end of a memory operation.

C.2 The State Machine
The behavior of the LC-3 microarchitecture during a given clock cycle is com-

pletely determined by the 52 control signals, combined with ten bits of addi-

tional information (inst[15:11], PSR[15], ACV, BEN, INT, and R), as shown in

Figure C.1. We have said that during each clock cycle, 42 of these control signals

determine the processing of information in the data path and the other ten control

signals combine with the ten bits of additional information to determine which

set of control signals will be required in the next clock cycle.

We say that these 52 control signals specify the state of the control struc-

ture of the LC-3 microarchitecture. We can completely describe the behavior of

the LC-3 microarchitecture by means of a directed graph that consists of nodes

(one corresponding to each state) and arcs (showing the flow from each state to

the one[s] it goes to next). We call such a graph a state machine.

Figure C.2, combined with Figure C.7, is the state machine for our implemen-

tation of the LC-3. The state machine describes what happens during each clock

cycle in which the computer is running. Each state is active for exactly one clock

cycle before control passes to the next state. The state machine shows the step-

by-step (clock cycle–by–clock cycle) process that each instruction goes through

from the start of its FETCH phase to the end of its instruction cycle, as described

in Section 4.3.2. Each node in the state machine corresponds to the activity that

the processor carries out during a single clock cycle. The actual processing that

is performed in the data path is contained inside the node. The step-by-step flow

is conveyed by the arcs that take the processor from one state to the next.

Let’s start our study of Figure C.2 by examining the FETCH phase of the

instruction cycle. As you know, every instruction goes through the same FETCH

phase in its instruction cycle. Recall from Chapter 4 that the FETCH phase starts

with a memory access to read the instruction at the address specified by the PC.

Note that in the state numbered 18, the MAR is loaded with the address contained

in PC, and the PC is incremented in preparation for the FETCH of the next LC-3

instruction after the current instruction finishes its instruction cycle. If the content

of MAR specifies privileged memory, and PSR[15] = 1, indicating User mode,

the access of the instruction will not be allowed. That would be an access control

violation, so ACV is set. Finally, if there is no interrupt request present (INT = 0),

the flow passes to the state numbered 33. We will describe in Section C.7 the flow

of control if INT = 1, that is, if an external device is requesting an interrupt.
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Figure C.2 A state machine for the LC-3.



C.3 The Data Path 703

Before we get into what happens during the clock cycle when the proces-

sor is in the state numbered 33, we should explain the numbering system—that

is, why are states numbered 18 and 33. Recall, from our discussion of finite

state machines in Chapter 3, that each state must be uniquely specified and that

this unique specification is accomplished by means of state variables. Our state

machine that implements the LC-3 ISA requires 59 distinct states to implement

the entire behavior of the LC-3. Figure C.2 shows 31 of them plus pointers to

seven others (states 8, 13, 15, 48, 49, 57, and 60). Figure C.7 shows the other

28 states (including the seven that are pointed to in Figure C.2). We will visit all

of them as we go through this appendix. Since k logical variables can uniquely

identify 2k items, six state variables are needed to uniquely specify 59 states. The

number next to each node in Figure C.2 and Figure C.7 is the decimal equivalent

of the values (0 or 1) of the six state variables for the corresponding state. Thus,

for example, the state numbered 18 has state variable values 010010.

Now, back to what happens after the clock cycle in which the activity of state

18 has finished. As we said, if no external device is requesting an interrupt, the

flow passes to state 33 (i.e., 100001). From state 33, control passes to state 60

if the processor is trying to access privileged memory while in User mode, or to

state 28, if the memory access is allowed, that is, if there is no ACV violation.

We will discuss what happens if there is an ACV violation in Section C.7.

In state 28, since the MAR contains the address of the instruction to be processed,

this instruction is read from memory and loaded into the MDR. Since this memory

access can take multiple cycles, this state continues to execute until a ready signal

from the memory (R) is asserted, indicating that the memory access has completed.

Thus, the MDR contains the valid contents of the memory location specified by

MAR. The state machine then moves on to state 30, where the instruction is loaded

into the instruction register (IR), completing the fetch phase of the instruction cycle.

The state machine then moves to state 32, where DECODE takes place. Note

that there are 13 arcs emanating from state 32, each one corresponding to bits [15:12]

of the LC-3 instruction. These are the opcode bits that direct the state machine to

one of 16 paths to carry out the instruction cycle of the particular instruction that has

just been fetched. Note that the arc from the last state of each instruction cycle (i.e.,

the state that completes the processing of that LC-3 instruction) takes us to state 18

(to begin the instruction cycle of the next LC-3 instruction).

C.3 The Data Path
The data path consists of all components that actually process the information

during each clock cycle—the functional units that operate on the information, the

registers that store information at the end of one cycle so it will be available for

further use in subsequent cycles, and the buses and wires that carry information

from one point to another in the data path. Figure C.3, an expanded version of

what you have already encountered in Figure 5.18, illustrates the data path of our

microarchitecture of the LC-3.

Note the control signals that are associated with each component in the data

path. For example, ALUK, consisting of two control signals, is associated with
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Figure C.3 The LC-3 data path.
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Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD
LD.Priority/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD

LD.ACV/1: NO, LOAD
LD.Vector/1: NO, LOAD

GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES

GateMARMUX/1: NO, YES
GateVector/1: NO, YES

GatePC-1/1: NO, YES
GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1
BUS ;select value from bus
ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]
R7 ;destination R7
SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]
8.6 ;source IR[8:6]
SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero
offset6 ;select SEXT[IR[5:0]]
PCoffset9 ;select SEXT[IR[8:0]]
PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1
SP−1 ;select stack pointer−1
Saved SSP ;select saved Supervisor Stack Pointer
Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]
ADDER ;select output of address adder

TableMUX/1: x00, x01

VectorMUX/2: INTV
Priv.exception
Opc.exception
ACV.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES
R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode
1 ;User mode
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the ALU. These control signals determine how that component (the ALU) will

be used each cycle. Table C.1 lists the set of 42 control signals that control the

elements of the data path and the set of values that each control signal can have.

(Actually, for readability, we provide a symbolic name for each value, rather than

the binary value.) For example, since ALUK consists of two bits, it can have one

of four values. Which value it has during any particular clock cycle depends on

whether the ALU is required to ADD, AND, NOT, or simply pass one of its inputs

to the output during that clock cycle. PCMUX also consists of two control signals

and specifies which input to the MUX is required during a given clock cycle.

LD.PC is a single-bit control signal and is a 0 (NO) or a 1 (YES), depending on

whether or not the PC is to be loaded during the given clock cycle.

During each clock cycle, corresponding to the “current state” in the state

machine, the 42 bits of control direct the processing of all components in the data

path that are required during that clock cycle. As we have said, the processing

that takes place in the data path during that clock cycle is specified inside the

node representing the state.

C.4 The Control Structure
The control structure of a microarchitecture is specified by its state machine. As

described earlier, the state machine (Figure C.2 and Figure C.7) determines which

control signals are needed each clock cycle to process information in the data path

and which control signals are needed each clock cycle to direct the flow of control

from the currently active state to its successor state.

Figure C.4 shows a block diagram of the control structure of our implemen-

tation of the LC-3. Many implementations are possible, and the design consider-

ations that must be studied to determine which of many possible implementations

should be used is the subject of a full course in computer architecture.

We have chosen here a straightforward microprogrammed implementation.

Each state of the control structure requires 42 bits to control the processing in the

data path and 10 bits to help determine which state comes next. These 52 bits are

collectively known as a microinstruction. Each microinstruction (i.e., each state

of the state machine) is stored in one 52-bit location of a special memory called

the control store. There are 59 distinct states. Since each state corresponds to one

microinstruction in the control store, the control store for our microprogrammed

implementation requires six bits to specify the address of each microinstruction.

Those six bits correspond to the state number associated with each state in the

state machine. For example, the microinstruction associated with state 18 is the

set of 52 control signals stored in address 18 of the control store.

Table C.2 lists the function of the ten bits of control information that help

determine which state comes next. Figure C.5 shows the logic of the micro-

sequencer. The purpose of the microsequencer is to determine the address in the

control store that corresponds to the next state, that is, the location where the

52 bits of control information for the next state are stored.
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Figure C.4 The control structure of a microprogrammed implementation, overall block
diagram.

Table C.2 Microsequencer Control Signals

Signal Name Signal Values

J/6:
COND/3: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode
COND4 ;Privilege Mode
COND5 ;Interrupt test
COND6 ;ACV Test

IRD/1: NO, YES
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Figure C.5 The microsequencer of the LC-3.

As we said, state 32 of the state machine (Figure C.2) performs the DECODE

phase of the instruction cycle. It has 16 “next” states, depending on the LC-3

instruction being executed during the current instruction cycle. If the IRD con-

trol signal in the microinstruction corresponding to state 32 is 1, the output MUX

of the microsequencer (Figure C.5) will take its source from the six bits formed

by 00 concatenated with the four opcode bits IR[15:12]. Since IR[15:12] speci-

fies the opcode of the current LC-3 instruction being processed, the next address

of the control store will be one of 16 addresses, corresponding to the 15 opcodes

plus the one unused opcode, IR[15:12] = 1101. That is, each of the 16 next states

after state 32 is the first state to be carried out after the instruction has been

decoded in state 32. For example, if the instruction being processed is ADD, the

address of the next state is state 1, whose microinstruction is stored at location

000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1101,

the unused opcode, the microarchitecture would execute a sequence of

microinstructions, starting at state 13. These microinstructions would respond to

the fact that an instruction with an illegal opcode had been fetched. Section C.7.3

describes what happens in that case.
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Figure C.6 Additional logic required to provide control signals.

Several signals necessary to control the data path and the microsequencer

are not among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, INT,

ACV, and R. Figure C.6 shows the additional logic needed to generate DR, SR1,

BEN, and ACV.

The INT signal is supplied by some event external to the normal instruction

processing, indicating that normal instruction processing should be interrupted

and this external event dealt with. The interrupt mechanism was described in

Chapter 9. The corresponding flow of control within the microarchitecture is

described in Section C.7.

The remaining signal, R, is a signal generated by the memory in order to

allow the LC-3 to operate correctly with a memory that takes multiple clock

cycles to read or store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR

contains the address to be read and the microinstruction asserts READ, it will take

five cycles before the contents of the specified location in memory is available to

be loaded into MDR. (Note that the microinstruction asserts READ by means of

two control signals: MIO.EN/YES and R.W/RD; see Figure C.3.)
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Recall our discussion in Section C.2 of the function of state 28, which

accesses an instruction from memory during the FETCH phase of each instruc-

tion cycle. If the memory takes five cycles to read a value, for the LC-3 to operate

correctly, state 28 must execute five times before moving on to state 30. That is,

until MDR contains valid data from the memory location specified by the con-

tents of MAR, we want state 28 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the pro-

cessor can move on to state 30. What if the microarchitecture did not wait for the

memory to complete the read operation before moving on to state 30? Since the

contents of MDR would still be garbage, the microarchitecture would put garbage

into the IR in state 30.

The ready signal (R) enables the memory read to execute correctly. Since the

memory knows it needs five clock cycles to complete the read, it asserts a ready

signal (R) throughout the fifth clock cycle. Figure C.2 shows that the next state

is 28 (i.e., 011100) if the memory read will not complete in the current clock

cycle and state 30 (i.e., 011110) if it will. As we have seen, it is the job of the

microsequencer (Figure C.5) to produce the next state address.

The ten microsequencer control signals for state 28 are:

IRD/0 ; NO
COND/001 ; Memory Ready
J/011100

With these control signals, what next state address is generated by the microse-

quencer? For each of the first four executions of state 28, since R = 0, the next

state address is 011100. This causes state 28 to be executed again in the next clock

cycle. In the fifth clock cycle, since R = 1, the next state address is 011110, and

the LC-3 moves on to state 30. Note that in order for the ready signal (R) from

memory to be part of the next state address, COND had to be set to 001, which

allowed R to pass through its four-input AND gate.

C.5 The TRAP Instruction
As we have said, each LC-3 instruction follows its own path from state 32 to

its final state in its instruction cycle, after which it returns to state 18 to start

processing the next instruction. As an example, we will follow the instruction

cycle of the TRAP instruction, shown in Figure C.7.

Recall that the TRAP instruction pushes the PSR and PC onto the system

stack, loads the PC with the starting address of the trap service routine, and

executes the service routine from privileged memory.

From state 32, the next state after DECODE is state 15, consistent with the

TRAP instruction opcode 1111. In state 15, the Table register, which will be

used to form MAR[15:8] of the trap vector table entry, is loaded with x00, the

PC is incremented (we will see why momentarily), and the MDR is loaded with

the PSR in preparation for pushing it onto the system stack. Control passes to

state 47.
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In state 47, the trap vector (IR[7:0]) is loaded into the eight-bit register

Vector, PSR[15] is set to Supervisor mode since the trap service routine exe-

cutes in privileged memory, and the state machine branches to state 37 or 45,

depending on whether the program that executed the TRAP instruction was in

User mode or Supervisor mode. If in User mode, state 45 saves the User Stack

Pointer in Saved USP, loads the stack pointer from Saved SSP, and continues on

to state 37, where the processor starts pushing PSR and PC onto the stack. If the

program executing the TRAP instruction is already in Privileged mode, state 45

is not necessary.

In states 37 and 41, the PSR is pushed onto the system stack. In states 43, 46,

and 52, the PC is pushed onto the system stack. Note that in state 43, the PC is

decremented before being pushed onto the stack. This is necessary in the case of

dealing with interrupts and exceptions, which will be explained in Section C.7.

This is not necessary for processing the TRAP instruction, which is why PC is

incremented in state 15.

The only thing remaining is to load PC with the starting address of the trap

service routine. This is done by loading MAR with the address of the proper entry

in the trap vector table, obtained by concatenating Table and Vector (in state 54),

loading the starting address from memory into MDR (in state 53), and loading

the PC (in state 55). This completes the execution of the TRAP instruction, and

control returns to state 18 to begin processing the next instruction – in this case,

the first instruction of the trap service routine.

The last instruction in every trap service routine is RTI (return from trap or

interrupt). From DECODE in state 32, the next state of RTI is state 8, consistent

with its eight-bit opcode 1000. In states 8, 36, and 38, the PC is popped off the

system stack and loaded into PC. In states 39, 40, 42, and 34, the PSR is popped

off the system stack and loaded into PSR. This returns the PC and PSR to the

values it had before the trap service routine was executed. Finally, if the program

that invoked the TRAP instruction was in User mode, PSR[15] must be returned

to 1, the Supervisor Stack Pointer saved, and the User Stack Pointer loaded into

SP. This is done in state 59, completing the instruction cycle for RTI.

C.6 Memory-Mapped I/O
As you know from Chapter 9, the LC-3 ISA performs input and output via

memory-mapped I/O, that is, with the same data movement instructions that it

uses to read from and write to memory. The LC-3 does this by assigning an

address to each device register. Input is accomplished by a load instruction whose

effective address is the address of an input device register. Output is accomplished

by a store instruction whose effective address is the address of an output device

register. For example, in state 25 of Figure C.2, if the address in MAR is xFE02,

MDR is supplied by the KBDR, and the data input will be the last keyboard

character typed. On the other hand, if the address in MAR is a legitimate memory

address, MDR is supplied by the memory.
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Table C.3 Truth Table for Address Control Logic

MAR MIO.EN R.W MEM.EN IN.MUX LD.KBSR LD.DSR LD.DDR

xFE00 0 R 0 x 0 0 0
xFE00 0 W 0 x 0 0 0
xFE00 1 R 0 KBSR 0 0 0
xFE00 1 W 0 x 1 0 0
xFE02 0 R 0 x 0 0 0
xFE02 0 W 0 x 0 0 0
xFE02 1 R 0 KBDR 0 0 0
xFE02 1 W 0 x 0 0 0
xFE04 0 R 0 x 0 0 0
xFE04 0 W 0 x 0 0 0
xFE04 1 R 0 DSR 0 0 0
xFE04 1 W 0 x 0 1 0
xFE06 0 R 0 x 0 0 0
xFE06 0 W 0 x 0 0 0
xFE06 1 R 0 x 0 0 0
xFE06 1 W 0 x 0 0 1
other 0 R 0 x 0 0 0
other 0 W 0 x 0 0 0
other 1 R 1 mem 0 0 0
other 1 W 1 x 0 0 0

The state machine of Figure C.2 does not have to be altered to accommo-

date memory-mapped I/O. However, something has to determine when memory

should be accessed and when I/O device registers should be accessed. This is the

job of the address control logic (ADDR.CTL.LOGIC) shown in Figure C.3.

Table C.3 is a truth table for the address control logic, showing what con-

trol signals are generated, based on (1) the contents of MAR, (2) whether or not

memory or I/O is accessed this cycle (MIO.EN/NO, YES), and (3) whether a load

(R.W/Read) or store (R.W/Write) is requested. Note that, for a memory-mapped

load, data can be supplied to MDR from one of four sources: memory, KBDR,

KBSR, or DSR. The address control logic provides the appropriate select signals

to the INMUX. For a memory-mapped store, the data supplied by MDR can be

written to memory, KBSR, DDR, or DSR. The address control logic supplies the

appropriate enable signal to the corresponding structure.

C.7 Interrupt and Exception Control
The final piece of the state machine needed to complete the LC-3 story are those

states that control the initiation of an interrupt, those states that control the return

from an interrupt (the RTI instruction), and those states that control the initiation

of one of the three exceptions specified by the ISA.

Interrupts and exceptions are very similar. Both stop the program that is cur-

rently executing. Both push the PSR and PC of the interrupted program onto the

system stack, obtain the starting address of the interrupt or exception service rou-

tine from the interrupt vector table, and load that starting address into the Program

Counter. The main difference between interrupts and exceptions is the nature of
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the event that causes the program that is executing to stop. Interrupts are events

that usually have nothing to do with the program that is executing. Exceptions are

events that are the direct result of something going awry in the program that is exe-

cuting. The LC-3 specifies three exceptions: a privilege mode violation, an illegal

opcode, and an ACV exception. Figure C.7 shows the state machine that carries

these out. Figure C.8 shows the data path, after adding the additional structures

to Figure C.3 that are needed to make interrupt and exception processing work.
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Figure C.7 LC-3 state machine showing interrupt control.
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Figure C.8 LC-3 data path, including additional structures for interrupt control.

Section C.7.1 describes the flow of processing required to initiate an interrupt.

Section C.7.3 describes the flow of processing required to initiate an exception.

C.7.1 Initiating an Interrupt

While a program is executing, an interrupt can be requested by some external

event so that the normal processing of instructions can be preempted and the con-

trol can turn its attention to processing the interrupt. The external event requests
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an interrupt by asserting its interrupt request signal. Recall from Chapter 9 that

if the priority level of the device asserting its interrupt request signal is higher than

both the priority level of the currently executing program and any other external

interrupt request asserted at the same time, INT is asserted and INTV is loaded

with the interrupt vector corresponding to that external event. The microproces-

sor responds to INT by initiating the interrupt. That is, the processor puts itself

into Supervisor mode if it isn’t in Supervisor mode, pushes the PSR and PC of

the interrupted process onto the supervisor stack, and loads the PC with the start-

ing address of the interrupt service routine. The PSR contains the privilege mode

PSR[15], priority level PSR[10:8], and condition codes PSR[2:0] of a program.

It is important that when the processor resumes execution of the interrupted pro-

gram, the privilege mode, priority level, and condition codes are restored to what

they were when the interrupt occurred.

The microarchitecture of the LC-3 initiates an interrupt as follows: Recall

from Figure C.2 that in state 18, while MAR is loaded with the contents of PC

and PC is incremented, INT is tested.

State 18 is the only state in which the processor checks for interrupts. The

reason for only testing in state 18 is straightforward: Once an LC-3 instruction

starts processing, it is easier to let it finish its complete instruction cycle (FETCH,

DECODE, etc.) than to interrupt it in the middle and have to keep track of how far

along it was when the external device requested an interrupt (i.e., asserted INT).

If INT is only tested in state 18, the current instruction cycle can be aborted early

(even before the instruction has been fetched), and control directed to initiating

the interrupt.

The test is enabled by the control signals that make up COND5, which are

101 only in state 18, allowing the value of INT to pass through its four-input AND

gate, shown in Figure C.5, to contribute to the address of the next state. Since the

COND signals are not 101 in any other state, INT has no effect in any other state.

In state 18, the ten microsequencer control bits are as follows:

IRD/0 ; NO
COND/101 ; Test for interrupts
J/100001

If INT = 1, a 1 is produced at the output of the AND gate, which in turn

makes the next state address not 100001, corresponding to state 33, but rather

110001, corresponding to state 49. This starts the initiation of the interrupt (see

Figure C.7).

Several functions are performed in state 49. The PSR, which contains the

privilege mode, priority level, and condition codes of the interrupted program,

are loaded into MDR, in preparation for pushing it onto the supervisor stack.

PSR[15] is cleared, reflecting the change to Supervisor mode, since all inter-

rupt service routines execute in Supervisor mode. The three-bit priority level

and eight-bit interrupt vector (INTV) provided by the interrupting device are

recorded. PSR[10:8] is loaded with the priority level of the interrupting device.

The internal register Vector is loaded with INTV and the eight-bit register Table

is loaded with x01 in preparation for accessing the interrupt vector table to obtain

the starting address of the interrupt service routine. Finally, the processor tests
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the old PSR[15] to determine whether the stack pointers must be adjusted before

pushing PSR and PC.

If the old PSR[15]= 0, the processor is already operating in Supervisor mode.

R6 is the Supervisor Stack Pointer (SSP), so the processor proceeds immediately

to states 37 and 41 to push the PSR of the interrupted program onto the super-

visor stack. If PSR[15] = 1, the interrupted program was in User mode. In that

case, the User Stack Pointer (USP) must be saved in Saved USP and R6 must be

loaded with the contents of Saved SSP before moving to state 37. This is done in

state 45.

The control flow from state 49 to either 37 or 45 is enabled by the ten

microsequencer control bits, as follows:

IRD/0 ; NO
COND/100 ; Test PSR[15], privilege mode
J/100101

If PSR[15] = 0, control goes to state 37 (100101); if PSR[15] = 1, control

goes to state 45 (101101).

In state 37, R6 (the SSP) is decremented (preparing for the push), and MAR

is loaded with the address of the new top of the stack.

In state 41, the memory is enabled to WRITE (MIO.EN/YES, R.W/WR).

When the write completes, signaled by R = 1, PSR has been pushed onto the

supervisor stack, and the flow moves on to state 43.

In state 43, the PC is loaded into MDR. Note that state 43 says MDR is loaded

with PC-1. Recall that in state 18, at the beginning of the instruction cycle for the

interrupted instruction, PC was incremented. Loading MDR with PC-1 adjusts

PC to the correct address of the interrupted program.

In states 46 and 52, the same sequence as in states 37 and 41 occurs, only

this time the PC of the interrupted program is pushed onto the supervisor stack.

The final task to complete the initiation of the interrupt is to load the PC

with the starting address of the interrupt service routine. This is carried out by

states 54, 53, and 55. It is accomplished in a manner similar to the loading of

the PC with the starting address of a TRAP service routine. The event causing

the INT request supplies the eight-bit interrupt vector INTV associated with the

interrupt, similar to the eight-bit trap vector contained in the TRAP instruction.

This interrupt vector is stored in the eight-bit register INTV, shown on the data

path in Figure C.8.

The interrupt vector table occupies memory locations x0100 to x01FF. In

state 54, the interrupt vector that was loaded into Vector in state 49 is combined

with the base address of the interrupt vector table (x0100) and loaded into MAR.

In state 53, memory is READ. When R = 1, the read has completed, and MDR

contains the starting address of the interrupt service routine. In state 55, the PC

is loaded with that starting address, completing the initiation of the interrupt.

It is important to emphasize that the LC-3 supports two stacks, one for each

privilege mode, and two stack pointers (USP and SSP), one for each stack. R6 is

the stack pointer and is loaded from the Saved SSP when privilege changes from

User mode to Supervisor mode, and from Saved USP when privilege changes
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from Supervisor mode to User mode. When the privilege mode changes, the cur-

rent value in R6 must be stored in the appropriate “Saved” stack pointer in order

to be available the next time the privilege mode changes back.

C.7.2 Returning from an Interrupt or Trap Service Routine, RTI

Interrupt service routines, like trap service routines already described, end with

the execution of the RTI instruction. The job of the RTI instruction is to restore

the computer to the state it was in before the interrupt or trap service routine was

executed. This means restoring the PSR (i.e., the privilege mode, priority level,

and the values of the condition codes N, Z, P) and restoring the PC. These values

were pushed onto the stack during the initiation of the interrupt or execution of

the TRAP instruction. They must, therefore, be popped off the stack in the reverse

order.

The first state after DECODE is state 8. Here we load the MAR with the

address of the top of the supervisor stack, which contains the last thing pushed

(that has not been subsequently popped)—the state of the PC when the interrupt

was initiated. At the same time, we test PSR[15] since RTI is a privileged instruc-

tion and can only execute in Supervisor mode. If PSR[15] = 0, we can continue

to carry out the requirements of RTI.

States 36 and 38 restore PC to the value it had when the interrupt was initi-

ated. In state 36, the memory is read. When the read is completed, MDR contains

the address of the instruction that was to be processed next when the interrupt

occurred. State 38 loads that address into the PC.

States 39, 40, 42, and 34 restore the privilege mode, priority level, and con-

dition codes (N, Z, P) to their original values. In state 39, the Supervisor Stack

Pointer is incremented so that it points to the top of the stack after the PC was

popped. The MAR is loaded with the address of the new top of the stack. State

40 initiates the memory READ; when the READ is completed, MDR contains

the interrupted PSR. State 42 loads the PSR from MDR, and state 34 increments

the stack pointer.

The only thing left is to check the privilege mode of the interrupted pro-

gram to see whether the stack pointers have to be switched. In state 34, the

microsequencer control bits are as follows:

IRD/0 ; NO
COND/100 ; Test PSR[15], privilege mode
J/110011

If PSR[15]= 0, control flows to state 51 (110011) to do nothing for one cycle.

If PSR[15] = 1, control flows to state 59, where R6 is saved in Saved SSP and

R6 is loaded from Saved USP. In both cases, control returns to state 18 to begin

processing the next instruction.

C.7.3 Initiating an Exception

The LC-3 identifies three cases where processing is not allowed to continue nor-

mally due to something going awry in the executing program. We refer to these

cases as exceptions. They are initiated in the same way interrupts are initiated,
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by pushing the PSR and PC onto the system stack, obtaining the starting address

of the exception service routine from the interrupt vector table, and loading that

address into the PC to initiate the exception service routine.

The three exceptions identified in the LC-3 are (1) a privileged mode excep-

tion caused by the program attempting to execute the RTI instruction while in

User mode, (2) the illegal opcode exception caused by the program trying to exe-

cute an instruction whose opcode is 1101, and (3) an access control violation

(ACV) exception caused by the program trying to access a privileged memory

location while in User mode.

C.7.3.1 Privilege Mode Exception

If the processor is in User mode (PSR[15] = 1) and is attempting to execute

RTI, a privilege mode exception occurs. The processor pushes the PSR and the

address of the RTI instruction onto the supervisor stack and loads the PC with

the starting address of the service routine that handles privilege mode violations.

Figure C.7 shows the flow, starting with a branch from state 8 to state 44 if

PSR[15] = 1.

In state 44, the eight-bit Table register is loaded with x01, indicating the

address of an entry in the interrupt vector table, and the eight-bit Vector register

is loaded with x00, indicating the first entry in the interrupt vector table. The con-

tents of x0100 is the starting address of the service routine that handles privilege

mode exceptions. The MDR is loaded with the PSR of the program that caused

the exception in preparation for pushing it onto the system stack. Finally, PSR[15]

is set to 0, since the service routine will execute with supervisor privileges. Then

the processor moves to state 45, where it follows the same flow as the initiation

of interrupts.

The main difference between this flow and that for the initiation of interrupts

is in state 54, where MAR is loaded with x01’Vector. In the case of interrupts,

Vector is loaded in state 49 with INTV, which is supplied by the interrupting

device. In the case of the privilege mode violation, Vector is loaded in state

44 with x00.

There are two additional functions performed in state 49 that are not per-

formed in state 44. First, the priority level is changed, based on the priority of

the interrupting device. We do not change the priority in handling a privilege

mode violation. The service routine executes at the same priority as the program

that caused the violation. Second, a test to determine the privilege mode is per-

formed for an interrupt. This is unnecessary for a privilege mode violation since

the processor already knows it is executing in User mode.

C.7.3.2 Illegal Opcode Exception

Although it would be a rare situation, it is possible, we suppose, that a pro-

grammer writing a program in machine language could mistakenly include an

instruction having opcode = 1101. Since there is no such opcode in the LC-3 ISA,

the computer cannot process that instruction. State 32 performs the DECODE,

and the next state is state 13.
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The action the processor takes is very similar to that of a privilege mode

exception. The PSR and PC of the program are pushed onto the supervisor stack,

and the PC is loaded with the starting address of the Illegal Opcode exception

service routine.

State 13 is very similar to state 44, which starts the initiation of a privilege

mode exception. There are two differences: (1) Vector is loaded with x01, since

the starting address of the service routine for the illegal opcode exception is in

x0101. (2) In the case of the privilege mode exception, we know the program is

in User mode when the processor attempts to execute the RTI instruction. In the

case of an illegal opcode, the processor can be in either mode, so from state 13

the processor goes to state 37 or state 45, depending on whether the program is

executing in Supervisor mode or User mode when the illegal opcode instruction

is encountered.

Like state 44, the priority of the running program is not changed, since the

urgency of handling the exception is the same as the urgency of executing the

program that contains it. Like state 49, state 13 tests the privilege mode of the

program that contains the illegal opcode, since if the currently executing pro-

gram is in User mode, the stack pointers need to be switched as described in

Section C.7.1. Like state 49, the processor then microbranches either to state 37

if the stack pointer is already pointing to the supervisor stack, or to state 45 if the

stack pointers have to be switched. From there, the initiating sequence continues

in states 37, 41, 43, etc., identical to what happens when an interrupt is initiated

(Section C.7.1) or a privilege mode exception is initiated (Section C.7.3.1). The

PSR and PC are pushed onto the supervisor stack and the starting address of the

service routine is loaded into the PC, completing the initiation of the exception.

C.7.3.3 Access Control Violation (ACV) Exception

An Access Control Violation (ACV) exception occurs if the processor attempts

to access privileged memory while operating in User mode. The state machine

checks for this in every case where the processor accesses memory, that is, in

states 17, 19, 23, 33, and 35. If an ACV violation occurs, the next state is respec-

tively states 56, 61, 48, 60, or 57 (see Figure C.2). In all five states, the processor

loads Table with x01, Vector with x02, MDR with the PSR, sets PSR[15] to 0,

exactly like state 44, with one exception. Vector is set to x02 since the starting

address of the ACV exception service routine is in memory location x0102. Pro-

cessing continues exactly like in state 44, moving first to state 45 to switch to the

system stack, and then pushing PSR and PC onto the stack and loading the PC

with the starting address of the service routine.

C.8 Control Store
Figure C.9 completes our microprogrammed implementation of the LC-3. It

shows the contents of each location of the control store, corresponding to the

52 control signals required by each state of the state machine. We have left the

exact entries blank to allow you, the reader, the joy of filling in the required signals

yourself. The solution is available from your instructor.
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Figure C.9 Specification of the control store.



D
A P P E N D I X

The C Programming
Language

D.1 Overview
This appendix is an ANSI C (C18) reference manual oriented toward the novice

C programmer. It covers a significant portion of the language, including material

not covered in the main text of this book. The intent of this appendix is to provide

a quick reference to various features of the language for use during program-

ming for courses based on this textbook. Each item covered within the following

sections contains a brief summary of a particular C feature and an illustrative

example, when appropriate.

D.2 C Conventions
We start our coverage of the C programming language by describing the lexical

elements of a C program and some of the conventions used by C programmers

for writing C programs.

D.2.1 Source Files

The C programming convention is to separate programs into files of two types:

source files (with the extension .c) and header files (with the extension .h).

Source files, sometimes called .c or dot-c files, contain the C code for a group of

related functions. For example, functions related to managing a stack data struc-

ture might be placed in a file named stack.c. Each .c file is compiled into an

object file, and these objects are linked together into an executable image by the

linker.

D.2.2 Header Files

Header files typically do not contain C statements but rather contain function,

variable, structure, and type declarations, as well as preprocessor macros. The

programming convention is to couple a header file with the source file in which
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the declared items are defined. For example, if the source file stdio.c con-

tains the definitions for the functions printf, scanf, getchar, and putchar,

then the header file stdio.h contains the declarations for these functions. If one

of these functions is called from another .c file, then the stdio.h header file

should be #included to get the proper function declarations.

D.2.3 Comments

In C, comments begin with the two-character delimiter //. Comments within

comments are not legal and will generate a syntax error on most compilers. Com-

ments within strings or character literals are not recognized as comments and will

be treated as part of the character string. The ANSI C standard also allows for /*
and */ as comment delimiters, which was the only comment delimiter in older

versions of C.

D.2.4 Literals

C programs can contain literal constant values that are integers, floating point

values, characters, character strings, or enumeration constants. These literals can

be used as initializers for variables, or within expressions. Some examples are

provided in the following subsections.

D.2.4.1 Integer

Integer literals can be expressed either in decimal, octal, or hexadecimal notation.

If the literal is prefixed by a 0 (zero), it will be interpreted as an octal num-

ber. If the literal begins with a 0x, it will be interpreted as hexadecimal. Thus,

it can consist of the digits 0 through 9 and the characters a through f. Uppercase

A through F can be used as well. An unprefixed literal (i.e., it doesn’t begin with

a 0 or 0x) indicates it is in decimal notation and consists of a sequence of digits.

Regardless of its base, an integer literal can be preceded by a minus sign, −, to

indicate a negative value.

An integer literal can be suffixed with the letter l or L to indicate that it is

of type long int. An integer literal suffixed with the letter u or U indicates an

unsigned value. Refer to Section D.3.2 for a discussion of long and unsigned
types.

The first three examples that follow express the same number, 87. The two

last versions express it as an unsigned int value and as a long int value.

87 // 87 in decimal
0x57 // 87 in hexadecimal
0127 // 87 in octal
-24 // -24 in decimal
-024 // -20 in octal
-0x24 // -36 in hexadecimal
87U
87L

D.2.4.2 Floating Point

Floating point constants consist of three parts: an integer part, a decimal point,

and a fractional part. The fractional part and integer part are optional, but one
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of the two must be present. The number preceded by a minus sign indicates a

negative value. Several examples follow:

1.613123
.613123
1. // expresses the number 1.0
-.613123

Floating point literals can also be expressed in exponential notation. With

this form, a floating point constant (such as 1.613123) is followed by an e or E.

The e or E signals the beginning of the integer exponent, which is the power of

ten by which the part preceding the exponent is multiplied. The exponent can be a

negative value. The exponent is obviously optional, and if used, then the decimal

point is optional. Examples follow:

6.023e23 // 6.023 * 10ˆ23
454.323e-22 // 454.323 * 10ˆ(-22)
5E13 // 5.0 * 10ˆ13

By default, a floating point type is a double or double-precision floating

point number. This can be modified with the optional suffix f or F, which indicates

a float or single-precision floating point number. The suffix l or L indicates a

long double (see Section D.3.2).

D.2.4.3 Character

A character literal can be expressed by surrounding a particular character by

single quotes, for example, 'c'. This converts the character into the internal char-

acter code used by the computer, which for most computers today, including the

LC-3, is ASCII.

Table D.1 lists some special characters that typically cannot be expressed

with a single keystroke. The C programming language provides a means to state

them via a special sequence of characters. The last two forms, octal and hexadec-

imal, specify ways of stating an arbitrary character by using its code value, stated

Table D.1 Special Characters in C

Character Sequence

newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
formfeed \f
audible alert \a
backslash \ \\
question mark ? \?
single quote ' \'
double quote " \"
octal number \0nnn
hexadecimal number \xnnn
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as either octal or hex. For example, the character ‘S’, which has the ASCII value

of 83 (decimal), can be stated as ‘∖0123’ or ‘∖x53’.

D.2.4.4 String Literals

A string literal within a C program must be enclosed within double quote char-

acters, ". String literals have the type char * and space for them is allocated

in a special section of the memory address space reserved for literal con-

stants. The termination character '\0' is automatically added to the character

string. The following are two examples of string literals:

char greeting[10] = "bon jour!";
printf("This is a string literal");

String literals can be used to initialize character strings, or they can be used

wherever an object of type char * is expected, for example, as an argument to a

function expecting a parameter of type char *. String literals, however, cannot

be used for the assignment of arrays. For example, the following code is not legal

in C.

char greeting [10];

greeting = "bon jour!";

D.2.4.5 Enumeration Constants

Associated with an enumerated type (see Section D.3.1) are enumerators, or enu-

meration constants. These constants are of type int, and their precise value

is defined by the enumerator list of an enumeration declaration. In essence, an

enumeration constant is a symbolic, integral value.

D.2.5 Formatting

C is a freely formatted language. The programmer is free to add spaces, tabs,

carriage returns, new lines between and within statements and declarations. C

programmers often adopt a style helpful for making the code more readable,

which includes adequate indenting of control constructs, consistent alignment

of open and close braces, and adequate commenting that does not obstruct some-

one trying to read the code. See the numerous examples in the C programming

chapters of the book for a typical style of formatting C code.

D.2.6 Keywords

The following list is a set of reserved words, or keywords, that have special

meaning within the C language. They are the names of the primitive types,

type modifiers, control constructs, and other features natively supported by

the language. These names cannot be used by the programmer as names of
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variables, functions, or any other object that the programmer might provide a

name for.

auto extern short while
break float signed _Alignas
case for sizeof _Alignof
char goto static _Atomic
const if struct _Bool
continue inline switch _Complex
default int typedef _Generic
do long union _Imaginary
double register unsigned _Noreturn
else restrict void _Static_assert
enum return volatile _Thread_local

D.3 Types
In C, expressions, functions, and objects have types associated with them. The

type of a variable, for example, indicates something about the actual value

the variable represents. For instance, if the variable kappa is of type int, then the

value (which is essentially just a bit pattern) referred to by kappa will be inter-

preted as a signed integer. In C, there are the basic data types, which are types

natively supported by the programming language, and derived types, which are

types based on basic types and which include programmer-defined types.

D.3.1 Basic Data Types

There are several predefined basic types within the C language: int, float,

double, char, _Bool, _Complex, _Imaginary. They exist automatically within

all implementations of C, although their sizes and range of values depend upon

the computer system being used.

D.3.1.1 int
The binary value of something of int type will be interpreted as a signed whole

number. Typical computers use 32 bits to represent signed integers, expressed in

2’s complement form. Such integers can take on values between (and including)

−2,147,483,648 and +2,147,483,647.

D.3.1.2 float
Objects declared of type float represent single-precision floating point numbers.

These numbers typically, but not always, follow the representations defined by the

IEEE standard for single-precision floating point numbers, which means that the

type is a 32-bit type, where 1 bit is used for sign, 8 bits for exponent (expressed

in bias-127 code), and 23 bits for fraction. See Section 2.7.1.
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D.3.1.3 double
Objects declared of type double deal with double-precision floating point num-

bers. Like objects of type float, objects of type double are also typically

represented using the IEEE standard. The precise difference between objects of

type float and of type double depends on the system being used; however, the

ANSI C standard specifies that the precision of a double should never be less

than that of a float. On most machines a double is 64 bits.

D.3.1.4 char
Objects of character type contain a single character, expressed in the character

code used by the computer system. Typical computer systems use the ASCII

character code (see Appendix E). The size of a char is large enough to store

a character from the character set. C also imposes that the size of a short int
must be at least the size of a char.

Collectively, the int and char types (and enumerated types) are referred to

as integral types, whereas float and double are floating types.

D.3.1.5 Enumerated Types

C provides a way for the programmer to specify objects that take on symbolic

values. For example, we may want to create a type that takes on one of four values:

Penguin, Riddler, CatWoman, Joker. We can do so by using an enumerated
type, as follows:

// Specifier
enum villains { Penguin, Riddler, CatWoman, Joker };

// Declaration
enum villains badGuy;

The variable badGuy is of the enumerated type villains. It can take on one

of the four symbolic values defined by enumerator list in the specifier. The four

symbolic values are called enumeration constants (see Section D.2.4.5) and are

actually integer values.

In an enumerator list, the value of the first enumeration constant will be 0,

the next will be 1, and so forth. In the type villains, the value of Penguin
will be 0, Riddler will be 1, CatWoman will be 2, Joker will be 3. The value of

an enumerator can be explicitly set by the programmer by using the assignment

operator, =. For example,

// Specifier
enum villains { Penguin = 3, Riddler, CatWoman, Joker };

causes Penguin to be 3, Riddler to be 4, and so forth.

D.3.2 Type Qualifiers

The basic types can be modified with the use of a type qualifier. These modifiers

alter the basic type in some small fashion or change its default size.
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D.3.2.1 signed, unsigned
The types int and char can be modified with the use of the signed and

unsigned qualifiers. By default, integers are signed; the default on characters

depends on the computer system.

For example, if a computer uses 32-bit 2’s complement signed integers, then a

signed int can have any value in the range −2,147,483,648 to +2,147,483,647.

On the same machine, an unsigned int can have a value in the range 0 to

+4,294,967,295.

signed int c; // the signed modifier is redundant
unsigned int d;

signed char j; // forces the char to be interpreted
// as a signed value

unsigned char k; // the char will be interpreted as an
// unsigned value

D.3.2.2 long, short
The qualifiers long and short allow the programmer to manipulate the physical

size of a basic type. For example, the qualifiers can be used with an integer to

create short int and long int.

It is important to note that there is no strict definition of how much larger

one type of integer is than another. The C language states only that the size of a

short int is less than or equal to the size of an int, which is less than or equal

to the size of a long int. Stated more completely and precisely:

sizeof(char) <= sizeof(short int) <= sizeof(int) <= sizeof(long int)

New computers that support 64-bit data types make a distinction on the long
qualifier. On these machines, a long int might be a 64-bit integer, whereas

an int might be a 32-bit integer. The range of values of types on a particular

computer can be found in the standard header file <limits.h>. On most UNIX

systems, it will be in the /usr/include directory.

The following are several examples of type modifiers on the integral data

types.

short int q;
long int p;
unsigned long int r;

The long and short qualifiers can also be used with the floating type double
to create a floating point number with higher precision or larger range (if such

a type is available on the computer) than a double. As stated by the ANSI C

specification, the size of a float is less than or equal to the size of a double,

which is less than or equal to the size of a long double.

double x;
long double y;
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D.3.2.3 const
A value that does not change through the course of execution can be qualified

with the const qualifier. For example,

const double pi = 3.14159;

By using this qualifier, the programmer is providing information that might

enable an optimizing compiler to perform more powerful optimizations on the

resulting code. All variables with a const qualifier must be explicitly initialized.

D.3.3 Storage Class

Memory objects in C can be of the static or automatic storage class. Objects of

the automatic class are local to a block (such as a function) and lose their value

once their block is completed. By default, local variables within a function are of

the automatic class and are allocated on the run-time stack (see Section 14.3.1).

Objects of the static class retain their values throughout program execution.

Global variables and other objects declared outside of all blocks are of the static

class. Objects declared within a function can be qualified with the static quali-

fier to indicate that they are to be allocated with other static objects, allowing their

value to persist across invocations of the function in which they are declared. For

example,

int Count(int x)
{

static int y;

y++;
printf("This function has been called %d times.", y);

}

The value of y will not be lost when the activation record of Count is popped

off the stack. To enable this, the compiler will allocate a static local variable in

the global data section. Every call of the function count updates the value of y.

Unlike typical local variables of the automatic class, variables of the static

class are initialized to zero. Variables of the automatic class must be initialized

by the programmer.

There is a special qualifier called register that can be applied to objects in

the automatic class. This qualifier provides a hint to the compiler that the value

is frequently accessed within the code and should be allocated in a register to

potentially enhance performance. The compiler, however, treats this only as a

suggestion and can override or ignore this specifier based on its own analysis.

Functions, as well as variables, can be qualified with the qualifier extern.

This qualifier indicates that the function’s or variable’s storage is defined in

another object module that will be linked together with the current module when

the executable is constructed.

D.3.4 Derived Types

The derived types are extensions of the basic types provided by C. The derived

types include pointers, arrays, structures, and unions. Structures and unions
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enable the programmer to create new types that are aggregations of other

types.

D.3.4.1 Arrays

An array is a sequence of objects of a particular type that is allocated sequentially

in memory. That is, if the first element of the array of type T is at memory location

X, the next element will be at memory location X + sizeof(T), and so forth.

Each element of the array is accessible using an integer index, starting with the

index 0. That is, the first element of array list is list[0], numbered starting

at 0. The size of the array must be stated as a constant integral expression (it is

not required to be a literal) when the array is declared.

char string[100]; // Declares array of 100 characters
int data[20]; // Declares array of 20 integers

To access a particular element within an array, an index is formed using an

integral expression within square brackets, [ ].

data[0] // Accesses first element of array data
data[i + 3] // The variable i must be an integer
string[x + y] // x and y must be integers

The compiler is not required to check (nor is it required to generate code to

check) whether the value of the index falls within the bounds of the array. The

responsibility of ensuring proper access to the array is upon the programmer. For

example, based on the previous declarations and array expressions, the reference

string[x + y], the value of x + y should be 100 or less; otherwise, the

reference exceeds the bounds of the array string.

D.3.4.2 Pointers

Pointers are objects that are addresses of other objects. Pointer types are declared

by prefixing an identifier with an asterisk, *. The type of a pointer indicates the

type of the object that the pointer points to. For example,

int *v; // v points to an integer

C allows a restricted set of operations to be used on pointer variables. Point-

ers can be manipulated in expressions, thus allowing “pointer arithmetic” to be

performed. C allows assignment between pointers of the same type, or assign-

ment, of a pointer to 0. Assignment of a pointer to the constant value 0 causes the

generation of a null pointer. Integer values can be added to or subtracted from a

pointer value. Also, pointers of the same type can be compared (using the rela-

tional operators) or subtracted from one another, but this is meaningful only if the

pointers involved point to elements of the same array. All other pointer manip-

ulations are not explicitly allowed in C but can be done with the appropriate

casting.
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D.3.4.3 Structures

Structures enable the programmer to specify an aggregate type. That is, a struc-

ture consists of member elements, each of which has its own type. The program-

mer can specify a structure using the following syntax. Notice that each member

element has its own type.

struct tag_id {
type1 member1;
type2 member2;
:
:
typeN memberN;

};

This structure has member elements named member1 of type type1,

member2 of type2, up to memberN of typeN. Member elements can take on any

basic or derived type, including other programmer-defined types.

The programmer can specify an optional tag, which in this case is tag_id.

Using the tag, the programmer can declare structure variables, such as the

variable x in the following declaration:

struct tag_id x;

A structure is defined by its tag. Multiple structures can be declared in a pro-

gram with the same member elements and member element identifiers; they are

different if they have different tags.

Alternatively, variables can be declared along with the structure declaration,

as shown in the following example. In this example, the variable firstPoint is

declared along with the structure. The array image is declared using the structure

tag point.

struct point {
int x;
int y;

} firstPoint;

// declares an array of structure type variables
struct point image[100];

See Section 19.2 for more information on structures.

D.3.4.4 Unions

Structures are containers that hold multiple objects of various types. Unions, on

the other hand, are containers that hold a single object that can take on different

predetermined types at various points in a program. For example, the following

is the declaration of a union variable joined:

union u_tag {
int ival;
double fval;
char cval;

} joined;
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The variable joined ultimately contains bits. These bits can be an integer,

double, or character data type, depending on what the programmer decides to put

there. For example, the variable will be treated as an integer with the expression

joined.ival, or as a double-precision floating point value with joined.fval,

or as a character with joined.cval. The compiler will allocate enough space for

union variables as required for the largest data type.

D.3.5 typedef
In C, a programmer can use typedef to create a synonym for an existing type.

This is particularly useful for providing names for programmer-defined types.

The general form for a typedef follows:

typedef type name;

Here, type can be any basic type, enumerated type, or derived type. The identifier

name can be any legal identifier. The result of this typedef is that name is a

synonym for type. The typedef declaration is an important feature for enhancing

code readability; a well-chosen type name conveys additional information about

the object declared of that type. Following are some examples.

typedef enum {coffee, tea, water, soda} Beverage;
Beverage drink; // Declaration uses previous typedef
typedef struct {

int xCoord;
int yCoord;
int color;

} Pixel;

Pixel bitmap[1024*820]; // Declares an array of pixels

D.4 Declarations
An object is a named section of memory, such as a variable. In C, an object must

be declared with a declaration before it can be used. Declarations inform the com-

piler of characteristics, such as its type, name, and storage class, so that correct

machine code can be generated whenever the object is manipulated within the

body of the program.

In C, functions are also declared before they are used. A function declaration

informs the compiler about the return value, function name, and types and order

of input parameters.

D.4.1 Variable Declarations

The format for a variable declaration is as follows:

[storage-class] [type-qualifier] {type} {identifier} [ = initializer] ;

The curly braces, { }, indicate items that are required and the square brackets,

[ ], indicate optional items.
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The optional storage-class can be any storage class modifier listed in

Section D.3.3, such as static.

The optional type-qualifier can be any legal type qualifiers, such as the

qualifiers provided in Section D.3.2.

The type of a variable can be any of the basic types (int, char, float,

double), enumerated types, or derived types (array, pointer, structure, or union).

An identifier can be any sequence of letters, digits, and the underscore char-

acter, . The first character must be a letter or the underscore character. Identifiers

can have any length, but for most variables you will use, at least 31 characters will

be significant. That is, variables that differ only after the 31st character might be

treated as the same variable by an ANSI C compiler. Uppercase letters are differ-

ent from lowercase, so the identifier sum is different from Sum. Identifiers must

be different from any of the C keywords (see Section D.2.6). Several examples of

legal identifiers follow. Each is a distinct identifier.

blue
Blue1
Blue2
_blue_
bluE
primary_colors
primaryColors

The initializer for variables of automatic storage (see Section D.3.3) can be

any expression that uses previously defined values. For variables of the static class

(such as global values) or external variables, the initializer must be a constant

expression.

Also, multiple identifiers (and initializers) can be placed on the same line,

creating multiple variables of the same type, having the same storage class and

type characteristics.

static long unsigned int k = 10UL;
register char 1 = 'Q';
int list[100];
struct node_type n; // Declares a structure variable

Declarations can be placed at the beginning of any block (see Section D.6.2),

before any statements. Such declarations are visible only within the block in

which they appear. Declarations can also appear at the outermost level of the

program, outside of all functions. Such declarations are global variables. They

are visible from all parts of the program. See Section 12.2.3 for more information

on variable declarations.

D.4.2 Function Declarations

A function’s declaration informs the compiler about the type of value returned by

the function and the type, number, and order of parameters the function expects

to receive from its caller. The format for a function declaration is as follows:

{type} {function-id}([type1] [, type2], ... [, typeN]);
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The curly braces, { }, indicate items that are required and the square brackets,

[ ], indicate items that are optional.

The type indicates the type of the value returned by the function and can be

of any basic type, enumerated type, a structure, a union, a pointer, or void (note:

it cannot be an array). If a function does not return a value, then its type must be

declared as void.

The function-id can be any legal identifier that has not already been defined.

Enclosed within parentheses following the function-id are the types of each of

the input parameters expected by the function, indicated by type1, type2, typeN,

each separated by a comma. Optionally, an identifier can be supplied for each

argument, indicating what the particular argument will be called within the func-

tion’s definition. For example, the following might be a declaration for a function

that returns the average of an array of integers:

int Average(int numbers[], int howMany);

D.5 Operators
In this section, we describe the C operators. The operators are grouped by the

operations they perform.

D.5.1 Assignment Operators

C supports multiple assignment operators, the most basic of which is the simple

assignment operator =. All assignment operators associate from right to left.

A standard form for a simple assignment expression is as follows:

{left-expression} = {right-expression}

The left-expression must be a modifiable object. It cannot, for example, be a

function, an object with a type qualifier const, or an array (it can, however, be

an element of an array). The left-expression is often referred to as an lvalue. The

left-expression can be an object of a structure or union type.

After the assignment expression is evaluated, the value of the object referred

to by the left-expression will take on the value of the right-expression. In most

usages of the assignment operator, the types of the two expressions will be the

same. If they are different, and both are basic types, then the right operand is

converted to the type of the left operand.

The other assignment operators include:

+= -= *= /= %= &= |= ˆ= <<= >>=

All of these assignment operators combine an operation with an assignment. In

general, A op= B is equivalent to A = A op (B). For example, x += y is

equivalent to x = x + y.

Examples of the various assignment operators can be found in

Sections 12.3.2 and 12.6.3.
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D.5.2 Arithmetic Operators

C supports basic arithmetic operations via the following binary operators:

+ - * / %

These operators perform addition, subtraction, multiplication, division, and

modulus. These operators are most commonly used with operands of the basic

types (int, double, float, and char). If the operands have different types (such

as a floating point value plus an integer), then the resulting expression is converted

according to the conversion rules (see Section D.5.11). There is one restriction,

however: the operands of the modulus operator % must be of the integral type

(e.g., int, char, or enumerated).

The addition and subtraction operators can also be used with pointers that

point to values within arrays. The use of these operators in this context is referred

to as pointer arithmetic. For example, the expression ptr + 1 where ptr is of

type type *, is equivalent to ptr + sizeof(type). The expression ptr + 1
generates the address of the next element in the array.

C also supports the two unary operators + and -. The negation operator, -,

generates the negative of its operand. The unary plus operator, +, generates its

operand. This operator is included in the C language primarily for symmetry with

the negation operator.

For more examples involving the arithmetic operators, see Section 12.3.3.

D.5.3 Bit-Wise Operators

The following operators:

& | ˆ ˜ << >>

are C’s bit-wise operators. They perform bit-wise operation only on integral

values. That is, they cannot be used with floating point values.

The left shift operator, <<, and right shift operator, >>, evaluate to the value

of the left operand shifted by the number of bit positions indicated by the right

operand. In ANSI C, if the right operand is greater than the number of bits in

the representation (say, for example, 33 for a 32-bit integer) or negative, then the

result is undefined.

Table D.2 provides some additional details on these operators. It provides an

example usage and evaluation of each with an integer operand x equal to 186 and

the integer operand y equal to 6.

Table D.2 Bit-Wise Operators in C

x=186
Operator Symbol Operation Example Usage y=6

& bit-wise AND x & y 2
| bit-wise OR x | y 190
˜ bit-wise NOT ˜ x −187
ˆ bit-wise XOR x ˆ y 188
« left shift x « y 11904
» right shift x » y 2
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D.5.4 Logical Operators

The logical operators in C are particularly useful for constructing logical expres-

sions with multiple clauses. For example, if we want to test whether both

condition A and condition B are true, then we might want to use the logical AND

operator.

The logical AND operator takes two operands (which do not need to be of

the same type). The operator evaluates to a 1 if both operands are nonzero. It

evaluates to 0 otherwise.

The logical OR operator takes two operands and evaluates to 1 if either is

nonzero. If both are zero, the operator evaluates to 0.

The logical NOT operator is a unary operator that evaluates to the logical

inverse of its operand: it evaluates to 1 if the operand is zero, 0 otherwise.

The logical AND and logical OR operators are short-circuit operators. That

is, if in evaluating the left operand, the value of the operation becomes known,

then the right operand is not evaluated. For example, in evaluating (x || y++),

if x is nonzero, then y++ will not be evaluated, meaning that the side effect of the

increment will not occur.

Table D.3 provides some additional details on the logical operators and pro-

vides an example usage and evaluation of each with an integer operand x equal

to 186 and the integer operand y equal to 6.

Table D.3 Logical Operators in C

x=186
Operator Symbol Operation Example Usage y=6

&& logical AND x && y 1
|| logical OR x || y 1
! logical NOT !x 0

D.5.5 Relational Operators

The following operators:

== != > >= < <=

are the relational operators in C. They perform a relational comparison between

the left and right operands, such as equal to, not equal to, and greater than. The

typical use of these operators is to compare expressions of the basic types. If

the relationship is true, then the result is the integer value 1; otherwise, it is 0.

Expressions of mixed type undergo the standard type conversions described in

Section D.5.11. C also allows the relational operators to be used on pointers.

However, such pointer expressions only have meaning if both pointers point to

the same object, such as the same array.
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D.5.6 Increment/Decrement Operators

The increment/decrement operators in C are ++ and --. They increment or

decrement the operand by 1. Both operators can be used in prefix and postfix
forms.

In the prefix form, for example ++x, the value of the object is incremented

(or decremented). The value of the expression is then the value of the result. For

example, after the following executes:

int x = 4;
int y;

y = ++x;

both x and y equal 5.

In the postfix form, for example x++, the value of the expression is the value

of the operand prior to the increment (or decrement). Once the value is recorded,

the operand is incremented (or decremented) by 1. For example, the result of the

following code:

int x = 4;
int y;

y = x++;

is that x equals 5 and y equals 4.

Like the addition and subtraction operators, the increment and decrement

operators can be used with pointer types. See Section D.5.2.

D.5.7 Conditional Expression Operators

The conditional expression operator in C has the following form:

{expressionA} ? {expressionB} : {expressionC}

Here, if expressionA is logically true, that is, it evaluates to a nonzero value, then

the value of the entire expression is the value of expressionB. If expressionA is

logically false, that is, it evaluates to zero, then the value of the entire expression

is the value of expressionC. For example, in the following code segment:

w = x ? y : z;

the value of the conditional expression x ? y : z will depend on the value of

x. If x is nonzero, then w will be assigned the value of y. Otherwise w will be

assigned the value of z.

Like the logical AND and logical OR operators, the conditional expression

short-circuits the evaluation of expressionB or expressionC, depending on the

state of expressionA. See Section D.5.4.
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D.5.8 Pointer, Array, and Structure Operators

This final batch of operators performs address-related operations for use with the

derived data types.

D.5.8.1 Address Operator

The address operator is the &. It takes the address of its operand. The operand

must be a memory object, such as a variable, array element, or structure member.

D.5.8.2 Dereference Operator

The complement of the address operator is the dereference operator. It returns the

object to which the operand is pointing. For example, given the following code:

int *p;
int x = 5;

p = &x;
*p = *p + 1;

the expression *p returns x. When *p appears on the left-hand side of an

assignment operator, it is treated as an lvalue (see Section D.5.1). Otherwise *p
evaluates to the value of x.

D.5.8.3 Array Reference

In C, an integral expression within square brackets, [ ], designates a subscripted

array reference. The typical use of this operator is with an object declared as an

array. The following code contains an example of an array reference on the array

list.

int x;
int list [100];

x = list[x + 10];

D.5.8.4 Structure and Union References

C contains two operators for referring to member elements within a structure or

union. The first is the dot, or period, which directly accesses the member element

of a structure or union variable. The following is an example:

struct pointType {
int x;
int y;

};
typedef pointType Point;

Point pixel;

pixel.x = 3;
pixel.y = pixel.x + 10;
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The variable pixel is a structure variable, and its member elements are

accessed using the dot operator.

The second means of accessing member elements of a structure is the

arrow, or -> operator. Here, a pointer to a structure or union can be derefer-

enced and a member element selected with a single operator. The following code

demonstrates:

Point pixel;
Point *ptr;

ptr = &pixel;
ptr->x = ptr->x + 1;

Here, the pointer variable ptr points to the structure variable pixel.

D.5.9 sizeof
The sizeof operator returns the number of bytes required to store an object of

the type specified. For example, sizeof(int) will return the number of bytes

occupied by an integer. If the operand is an array, then sizeof will return the

size of the array. The following is an example:

int list [45];

struct example_type {
int valueA;
int valueB;
double valueC;

};
typedef struct example_type Example;

...

sizeA = sizeof(list); /* 45 * sizeof(int) */
sizeB = sizeof(Example); /* Size of structure */

D.5.10 Order of Evaluation

The order of evaluation of an expression starts at the subexpression in the inner-

most parentheses, with the operator with the highest precedence, moving to

the operator with the lowest precedence within the same subexpression. If two

operators have the same precedence (e.g., two of the same operators, as in the

expression 2 + 3 + 4), then the associativity of the operators determines the

order of evaluation, either from left to right or from right to left. The evaluation

of the expression continues recursively from there.

Table D.4 provides the precedence and associativity of the C operators.

The operators of highest precedence are listed at the top of the table, in lower

numbered precedence groups.
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Table D.4 Operator Precedence, from Highest to Lowest.
Descriptions of Some Operators Are Provided in Parentheses

Precedence Group Associativity Operators

1 (highest) l to r () (function call) [ ] (array index) . ->
2 r to l ++ -- (postfix versions)
3 r to l ++ -- (prefix versions)
4 r to l * (indirection) & (address of)

+ (unary) - (unary) ̃ ! sizeof
5 r to l (type) (type cast)
6 l to r * (multiplication) / %
7 l to r + (addition) - (subtraction)
8 l to r « »
9 l to r < > <= >=

10 l to r == !=
11 l to r &
12 l to r ˆ
13 l to r |
14 l to r &&
15 l to r ||
16 l to r ?:
17 (lowest) r to l = += -= *= etc.

D.5.11 Type Conversions

Consider the following expression involving the operator op.

A op B

The resulting value of this expression will have a particular type associated

with it. This resulting type depends on (1) the types of the operands A and B, and

(2) the nature of the operator op.

If the types of A and B are the same and the operator can operate on that type,

the result is the type defined by the operator.

When an expression contains variables that are a mixture of the basic types,

C performs a set of standard arithmetic conversions of the operand values. In

general, smaller types are converted into larger types, and integral types are con-

verted into floating types. For example, if A is of type double and B is of type int,

the result is of type double. Integral values, such as char, int, or an enumerated

type, are converted to int (or unsigned int, depending on the implementation).

The following are examples.

char i;
int j;
float x;
double y;

i * j // This expression is an integer
j + 1 // This expression is an integer
j + 1.0 // This expression is a float
i + 1.0 // This expression is a float
x + y // This expression is a double
i + j + x + y // This is a double
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As in case (2) above, some operators require operands of a particular type or

generate results of a particular type. For example, the modulus operator % only

operates on integral values. Here integral type conversions are performed on the

operands (e.g., char is converted to int). Floating point values are not allowed

and will generate compilation errors.

If a floating point type is converted to an integral type (which does not happen

with the usual type conversion, but can happen with casting as described in the

next subsection), the fractional portion is discarded. If the resulting integer cannot

be represented by the integral type, the result is undefined.

D.5.11.1 Casting

The programmer can explicitly control the type conversion process by type
casting. A cast has the general form:

(new-type) expression

Here the expression is converted into the new-type using the usual conver-

sion rules described in the preceding paragraphs. Continuing with the previous

example code:

j = (int) x + y; // This results in conversion of
// double into an integer

D.6 Expressions and Statements
In C, the work performed by a program is described by the expressions and

statements within the bodies of functions.

D.6.1 Expressions

An expression is any legal combination of constants, variables, operators, and

function calls that evaluates to a value of a particular type. The order of evaluation

is based on the precedence and associativity rules described in Section D.5.10.

The type of an expression is based on the individual elements of the expression,

according to the C type promotion rules (see Section D.5.11). If all the elements

of an expression are int types, then the expression is of int type. Following are

several examples of expressions:

a * a + b * b
a++ - c / 3
a <= 4
q || integrate(x)

D.6.2 Statements

In C, simple statements are expressions terminated by a semicolon, ;. Typically,

statements modify a variable or have some other side effect when the expression

is evaluated. Once a statement has completed execution, the next statement in
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sequential order is executed. If the statement is the last statement in its function,

then the function terminates.

c = a * a + b * b; // Two simple statements
b = a++ - c / 3;

Related statements can be grouped together into a compound statement,

or block, by surrounding them with curly braces, { }. Syntactically, the com-

pound statement is the same as a simple statement, and they can be used

interchangeably.

{ // One compound statement
c = a * a + b * b;
b = a++ - c / 3;
}

D.7 Control
The control constructs in C enable the programmer to alter the sequential

execution of statements with statements that execute conditionally or iteratively.

D.7.1 If
An if statement has the format

if (expression)
statement

If the expression, which can be of any basic, enumerated, or pointer types, eval-

uates to a nonzero value, then the statement, which can be a simple or compound

statement, is executed.

if (x < 0)
a = b + c; // Executes if x is less than zero

See Section 13.2.1 for more examples of if statements.

D.7.2 If-else
An if-else statement has the format

if (expression)
statement1

else
statement2

If the expression, which can be of any basic, enumerated, or pointer type, eval-

uates to a nonzero value, then statement1 is executed. Otherwise, statement2 is

executed. Both statement1 and statement2 can be simple or compound statements.
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if (x < 0)
a = b + c; // Executes if x is less than zero

else
a = b - c; // Otherwise, this is executed.

See Section 13.2.2 for more examples of if-else statements.

D.7.3 Switch
A switch statement has the following format:

switch(expression) {
case const-expr1:

statement1A
statement1B
:

case const-expr2:
statement2A
statement2B
:

:
:

case const-exprN:
statementNA
statementNB
:

}

A switch statement is composed of an expression, which must be of integral

type (see Section D.3.1), followed by a compound statement (although it is not

required to be compound, it almost always is). Within the compound statement

exist one or more case labels, each with an associated constant integral expres-

sion, called const-expr1, const-expr2, const-exprN in the preceding example.

Within a switch, each case label must be different.

When a switch is encountered, the controlling expression is evaluated. If

one of the case labels matches the value of expression, then control jumps to the

statement that follows and proceeds from there.

The special case label default can be used to catch the situation where none

of the other case labels match. If the default case is not present and none of the

labels match the value of the controlling expression, then no statements within

the switch are executed.

The following is an example of a code segment that uses a switch state-

ment. The use of the break statement causes control to leave the switch. See

Section D.7.7 for more information on break.
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char k;

k = getchar();
switch (k) {
case '+':
a = b + c;
break; // break causes control to leave switch

case '-':
a = b - c;
break;

case '*':
a = b * c;
break;

case '/':
a = b / c;
break;

}

See Section 13.5.1 for more examples of switch statements.

D.7.4 While
A while statement has the following format:

while (expression)
statement

The while statement is an iteration construct. If the value of expression evaluates

to nonzero, then the statement is executed. Control does not pass to the subsequent

statement, but rather the expression is evaluated again and the process is repeated.

This continues until expression evaluates to 0, in which case control passes to the

next statement. The statement can be a simple or compound statement.

In the following example, the while loop will iterate 100 times.

x = 0;
while (x < 100) {

printf("x = %d\n", x);
x = x + 1;

}

See Section 13.3.1 for more examples of while statements.

D.7.5 For
A for statement has the following format:

for (initializer; term-expr; reinitializer)
statement



744 appendix D The C Programming Language

The for statement is an iteration construct. The initializer, which is an expres-

sion, is evaluated only once, before the loop begins. The term-expr is an expres-

sion that is evaluated before each iteration of the loop. If the term-expr evaluates

to nonzero, the loop progresses; otherwise, the loop terminates and control passes

to the statement following the loop. Each iteration of the loop consists of the exe-

cution of the statement, which makes up the body of the loop, and the evaluation

of the reinitializer expression.

The following example is a for loop that iterates 100 times.

for (x = 0; x < 100; X++) {
printf("x = %d\n", x);

}

See Section 13.3.2 for more examples of for statements.

D.7.6 Do-while
A do-while statement has the format

do
statement

while (expression);

The do-while statement is an iteration construct similar to the while statement.

When a do-while is first encountered, the statement that makes up the loop body

is executed first, then the expression is evaluated to determine whether to exe-

cute another iteration. If it is nonzero, then another iteration is executed (in other

words, statement is executed again). In this manner, a do-while always executes

its loop body at least once.

The following do-while loop iterates 100 times.

x = 0;
do {

printf("x = %d\n", x);
x = x + 1;

}
while (x < 100);

See Section 13.3.3 for more examples of do-while statements.

D.7.7 Break
A break statement has the format:

break;

The break statement can only be used in an iteration statement or in a switch
statement. It passes control out of the smallest statement containing it to the
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statement immediately following. Typically, break is used to exit a loop before

the terminating condition is encountered.

In the following example, the execution of the break statement causes

control to pass out of the for loop.

for (x = 0; x < 100; x++) {
:
:
if (error)

break;
:
:

}

See Section 13.5.2 for more examples of break statements.

D.7.8 continue
A continue statement has the following format:

continue;

The continue statement can be used only in an iteration statement. It prema-

turely terminates the execution of the loop body. That is, it terminates the current

iteration of the loop. The looping expression is evaluated to determine whether

another iteration should be performed. In a for loop, the reinitializer is also

evaluated.

If the continue statement is executed, then x is incremented, and the reini-
tializer executed, and the loop expression evaluated to determine if another

iteration should be executed.

for (x = 0; x < 100; x++) {
:
:
if (skip)

continue;
:
:

}

See Section 13.5.2 for more examples of continue statements.

D.7.9 return
A return statement has the format

return expression;

The return statement causes control to return to the current caller function, that

is, the function that called the function that contains the return statement. Also,

after the last statement of a function is executed, an implicit return is made to the

caller.

The expression that follows the return is the return value generated by the

function. It is converted to the return type of the function. If a function returns
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a value, and yet no return statement within the function explicitly generates a

return value, then the return value is undefined.

return x + y;

D.8 The C Preprocessor
The C programming language includes a preprocessing step that modifies, in

a programmer-controlled manner, the source code presented to the compiler.

The most frequently used features of the C preprocessor are its macro substi-

tution facility (#define), which replaces a sequence of source text with another

sequence, and the file inclusion facility (#include), which includes the con-

tents of a file into the source text. Both of these are described in the following

subsections.

None of the preprocessor directives are required to end with a semicolon.

Since #define and #include are preprocessor directives and not C statements,

they are not required to be terminated by semicolons.

D.8.1 Macro Substitution

The #define preprocessor directive instructs the C preprocessor to replace occur-

rences of one character sequence with another. Consider the following example:

#define A B

Here, any token that matches A will be replaced by B. That is, the macro A gets

substituted with B. The character A must appear as an individual sequence; that

is, the A in APPLE will not be substituted, nor will an A that appears in quoted

strings, that is, “A”.

The replacement text spans until the end of the line. If a longer sequence is

required, the backslash character, \, can be used to continue to the next line.

Macros can also take arguments. They are specified in parentheses immedi-

ately after the text to be replaced. For example:

#define REMAINDER(X, Y) ((X) % (Y))

Here, every occurrence of the macro COPY in the source code will be accompanied

by two values, as in the following example.

valueC = REMAINDER(valueA, valueB + 15);

The macro REMAINDER will be replaced by the preprocessor with the replace-

ment text provided in the #define, and the two arguments A and B will be

substituted with the two arguments that appear in the source code. The previous

code will be modified to the following after preprocessing:

valueC = ((valueA) % (valueB + 15));

Notice that the parentheses surrounding X and Y in the macro definition were

required. Without them, the macro REMAINDER would have calculated the wrong

value.
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While the REMAINDER macro appears to be similar to a function call,

notice that it incurs none of the function call overhead associated with regular

functions.

D.8.2 File Inclusion

The #include directive instructs the preprocessor to insert the contents of a file

into the source file. Typically, the #include directive is used to attach header

files to C source files. C header files typically contain #defines and declarations

that are useful among multiple source files.

There are two variations of the #include directive:

#include <stdio.h>
#include "program.h"

The first variation uses angle brackets, < >, around the filename. This tells the

preprocessor that the header file can be found in a predefined directory, usually

determined by the configuration of the system and which contains many system-

related and library-related header files, such as stdio.h. The second variation,

using double quotes, " ", around the filename, instructs the preprocessor that

the header file can be found in the same directory as the C source file.

D.9 Some Standard Library Functions
The ANSI C standard library contains over 150 functions that perform a vari-

ety of useful tasks (e.g., I/O and dynamic memory allocation) on behalf of your

program. Every installation of ANSI C will have these functions available, so

even if you make use of these functions, your program will still be portable from

one ANSI C platform to another. In this section, we will describe some useful

standard library functions.

D.9.1 I/O Functions

The <stdio.h> header file must be included in any source file that contains calls

to the standard I/O functions. Following is a small sample of these functions.

D.9.1.1 getchar
This function has the following declaration:

int getchar(void);

The function getchar reads the next character from the standard input

device, or stdin. The value of this character is returned (as an integer) as the

return value.

The behavior of getchar is very similar to the LC-3 input TRAP (except no

input banner is displayed on the screen).
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Most computer systems will implement getchar using buffered I/O. This

means that keystrokes (assuming standard input is coming from the keyboard)

will be buffered by the operating system until the Enter key is pressed. Once Enter

is pressed, the entire line of characters is added to the standard input stream.

D.9.1.2 putchar
This function has the following declaration:

void putchar(int c);

The function putchar takes an integer value representing an ASCII character

and puts the character to the standard output stream. This is similar to the LC-3

TRAP OUT.

If the standard output stream is the monitor, the character will appear on the

screen. However, since many systems buffer the output stream, the character may

not appear until the system’s output buffer is flushed, which is usually done once

a newline appears in the output stream.

D.9.1.3 scanf
This function has the following declaration:

int scanf(const char *formatstring, *ptr1, ...);

The function scanf is passed a format string (which is passed as pointer

to the initial character) and a list of pointers. The format string contains format

specifications that control how scanf will interpret fields in the input stream.

For example, the specification %d causes scanf to interpret the next sequence of

non–white space characters as a decimal number. This decimal is converted from

ASCII into an integer value and assigned to the variable pointed to by the next

pointer in the parameter list. Table D.5 contains a listing of the possible specifi-

cations for use with scanf. The number of pointers that follow the format string

in the parameter list should correspond to the number of format specifications

in the format string. The value returned by scanf corresponds to the number of

variables that were successfully assigned.

Table D.5 scanf Conversion Specifications

scanf Conversions Parameter Type

%d signed decimal
%i decimal, octal (leading 0), hex (leading 0x or 0X)
%o octal
%x hexadecimal
%u unsigned decimal
%c char
%s string of non–white space characters, \0 added
%f, %e floating point number
%lf double precision floating point number
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D.9.1.4 printf
This function has the following declaration:

int printf(const char *formatString, ...);

The function printf writes the format string (passed as a pointer to the ini-

tial character) to the standard output stream. If the format string contains a format

specification, then printf will interpret the next parameter in the parameter list

as indicated by the specification and will embed the interpreted value into the

output stream. For example, the format specification %d will cause printf to

interpret the next parameter as a decimal value. printf will write the resulting

digits into the output stream. Table D.6 contains a listing of the format specifica-

tions for use with printf. In general, the number of values following the format

string on the parameter list should correspond to the number of format specifica-

tions in the format string. printf returns the number of characters written to the

output stream. However, if an error occurs, a negative value is returned.

Table D.6 printf Conversion Specifications

printf Conversions Printed as

%d, %i signed decimal
%o octal
%x, %X hexadecimal (a–f or A–F)
%u unsigned decimal
%c single char
%s string, terminated by \0
%f floating point in decimal notation
%e, %E floating point in exponential notation
%p pointer

D.9.2 String Functions

The C standard library contains around 15 functions that perform operations on

strings (i.e., null-terminated arrays of characters). To use the string functions from

within a program, include the <string.h> header file in each source file that con-

tains a call to a library string function. In this section, we describe two examples

of C string functions.

D.9.2.1 strcmp
This function has the following declaration:

int strcmp(char *stringA, char *stringB);

This function compares stringA with stringB. It returns a 0 if they are

equal. It returns a value greater than 0 if stringA is lexicographically greater than

stringB (lexicographically greater means that stringA occurs later in a diction-

ary than stringB). It returns a value less than 0 if stringA is lexicographically

less than stringB.
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D.9.2.2 strcpy
This function has the following declaration:

char *strcpy(char *stringA, char *stringB);

This function copies stringB to stringA. It copies every character in

stringB up to and including the null character. The function returns a pointer

to stringA if no errors occurred.

D.9.3 Math Functions

The C standard math functions perform commonly used mathematical operations.

Using them requires including the <math.h> header file. In this section, we list a

small sample of C math functions. Each of the listed functions takes as parameters

values of type double, and each returns a value of type double.

double sin(double x); // sine of x, expressed in radians
double cos(double x); // cosine of x, expressed in radians
double tan(double x); // tan of x, expressed in radians
double exp(double x); // exponential function, ê x
double log(double x); // natural log of x
double sqrt(double x); // square root of x
double pow(double x, double y) // x̂ y -- x to the y power

D.9.4 Utility Functions

The C library contains a set of functions that perform useful tasks such as memory

allocation, data conversion, sorting, and other miscellaneous things. The common

header file for these functions is <stdlib.h>.

D.9.4.1 malloc
As described in Section 19.4, the function malloc allocates a fixed-sized chunk

from memory.

This function has the following declaration:

void *malloc(size_t size);

The input parameter is the number of bytes to be allocated. The parameter is

of type size_t, which is the same type returned by the sizeof operator (very

often, this type is typedefed as an unsigned integer). If the memory allocation

goes successfully, a pointer to the allocated region of memory is returned. If the

request cannot be satisfied, the value NULL is returned.

D.9.4.2 free
This function has the following declaration:

void free(void *ptr);

This function returns to the heap a previously allocated chunk of memory

pointed to by the parameter. In other words, free deallocates memory pointed
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to by ptr. The value passed to free must be a pointer to a previously allocated

region of memory, otherwise errors could occur.

D.9.4.3 rand and srand
The C standard utility functions contain a function to generate a sequence of

random numbers. The function is called rand. It does not generate a truly random

sequence, however. Instead, it generates the same sequence of varying values

based on an initial seed value. When the seed is changed, a different sequence is

generated. For example, when seeded with the value 10, the generator will always

generate the same sequence of numbers. However, this sequence will be different

than the sequence generated by another seed value.

The function rand has the following declaration:

int rand(void)

It returns a pseudo-random integer in the range 0 to RAND_MAX, which is at

least 32,767.

To seed the pseudo-random number generator, use the function srand. This

function has the following declaration:

void srand(unsigned int seed);
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Useful Tables

E.1 Commonly Used Numerical
Prefixes

Table E.1 Numerical Prefixes

Amount
Commonly Used
Base-2 Approx. Prefix Abbreviation Derived From

1024 280 yotta Y Greek for eight: okto
1021 270 zetta Z Greek for seven: hepta
1018 260 exa E Greek for six: hexa
1015 250 peta P Greek for five: pente
1012 240 tera T Greek for monster: teras
109 230 giga G Greek for giant: gigas
106 220 mega M Greek for large: megas
103 210 kilo k Greek for thousand: chilioi

10−3 milli m Latin for thousand: milli
10−6 micro 𝜇 Greek for small: mikros
10−9 nano n Greek for dwarf: nanos
10−12 pico p Spanish for a little: pico
10−15 femto f Danish and Norwegian for 15: femten
10−18 atto a Danish and Norwegian for 18: atten
10−21 zepto z Greek for seven: hepta
10−24 yocto y Greek for eight: okto
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E.2 Standard ASCII codes

Table E.2 The Standard ASCII Table

ASCII ASCII ASCII ASCII

Character Dec Hex Character Dec Hex Character Dec Hex Character Dec Hex
nul 0 00 sp 32 20 @ 64 40 ' 96 60
soh 1 01 ! 33 21 A 65 41 a 97 61
stx 2 02 " 34 22 B 66 42 b 98 62
etx 3 03 # 35 23 C 67 43 c 99 63
eot 4 04 $ 36 24 D 68 44 d 100 64
enq 5 05 % 37 25 E 69 45 e 101 65
ack 6 06 & 38 26 F 70 46 f 102 66
bel 7 07 ' 39 27 G 71 47 g 103 67
bs 8 08 ( 40 28 H 72 48 h 104 68
ht 9 09 ) 41 29 I 73 49 i 105 69
lf 10 0A * 42 2A J 74 4A j 106 6A
vt 11 0B + 43 2B K 75 4B k 107 6B
ff 12 0C ' 44 2C L 76 4C l 108 6C
cr 13 0D - 45 2D M 77 4D m 109 6D
so 14 0E . 46 2E N 78 4E n 110 6E
si 15 0F / 47 2F O 79 4F o 111 6F
dle 16 10 0 48 30 P 80 50 p 112 70
dc1 17 11 1 49 31 Q 81 51 q 113 71
dc2 18 12 2 50 32 R 82 52 r 114 72
dc3 19 13 3 51 33 S 83 53 s 115 73
dc4 20 14 4 52 34 T 84 54 t 116 74
nak 21 15 5 53 35 U 85 55 u 117 75
syn 22 16 6 54 36 V 86 56 v 118 76
etb 23 17 7 55 37 W 87 57 w 119 77
can 24 18 8 56 38 X 88 58 x 120 78
em 25 19 9 57 39 Y 89 59 y 121 79
sub 26 1A : 58 3A Z 90 5A z 122 7A
esc 27 1B ; 59 3B [ 91 5B { 123 7B
fs 28 1C < 60 3C \ 92 5C | 124 7C
gs 29 1D = 61 3D ] 93 5D } 125 7D
rs 30 1E > 62 3E ˆ 94 5E ˜ 126 7E
us 31 1F ? 63 3F 95 5F del 127 7F
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E.3 Powers of 2

Table E.3 Powers of 2

Common
Amount Decimal Conversion Abbreviation

21 2 —
22 4 —
23 8 —
24 16 —
25 32 —
26 64 —
27 128 —
28 256 —
29 512 —
210 1,024 1K
211 2,048 2K
212 4,096 4K
213 8,192 8K
214 16,384 16K
215 32,768 32K
216 65,536 64K
217 131,072 128K
218 262,144 256K
219 544,288 512K
220 1,048,576 1M
230 1,073,741,824 1G
232 4,294,967,296 4G
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Solutions to selected exercises can be found on our website:

http://www.mhhe.com/patt3
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problem solving with, 556–559

relationship with pointers, 554, 556

strings, 479, 552–555

variable-length, 559–560, 618

assembler directives. See pseudo-ops

assemblers, 18, 233, 240–243

assembly language, 231–245

comments in, 235–236, 240

defined, 17

executable image and, 244

instructions in, 233–236

labels and, 234–235

object files and, 244–245

opcodes and operands in, 233–234

programming example, 232–233, 238–239

pseudo-ops and, 233, 236–238

purpose of, 232

two-pass process, 240–243

assembly process, 240–243

assertions, 525

assignment operators, 433–434, 452, 541, 733

associativity, 435–436, 738

asynchronous finite state machine, 85, 86

asynchronous I/O, 319

automatic storage class, 728

Avogadro’s number, 44

b
.BLKW. See under pseudo-ops

BR instruction. See under instructions

base case, 573, 577

base+offset. See under addressing modes

base pointer, 540

BaseR. See under instruction fields

basic data types, 725–726

binary digits, 25–26

binary operations, 151

binary search, 581–583, 628

binary-to-ASCII conversion, 385–387

binary to decimal conversions, 31–34

bit. See binary digits

bit line, 77

bit numbering, 654

bit vectors, 42–43, 150

bitwise operators, 39–41, 436–437, 734

black-box testing, 524

block in C, 429, 433, 458, 732, 741

body of the loop, 165

boolean values, 428

branches. See conditional branches; unconditional

branches

breakpoints, 212, 527–528

buffered I/O, 595–597

bugs, 203, 410, 517, 519. See also debugging

Burroughs A series, 8

byte-addressability, 76

c
C++

classes in, 633, 634, 639–647

comments in, 417, 722

compilation in, 411, 413, 415, 634–636, 639

containers in, 647–648

dynamic memory allocation in, 639

function overloading in, 638

I/O in, 636–637

namespaces in, 636

origins of, 412, 633

pass by reference in, 637–638

preprocessor and, 413

purpose of, 408, 633

standard library, 636, 637, 647, 649

templates in, 638, 649

C

arrays in. See arrays

block in, 429, 433, 458, 732, 741

code formatting in, 417, 530, 724

comments in, 417
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compilation in, 411, 413–415

control structures in. See control structures

data types supported by, 427–428, 725–731

examples in. See examples in C

functions in. See functions

header files in, 419, 594–595, 597, 603,

721–722

identifiers in, 429, 732

I/O in, 419–422, 593–604

keywords in, 429, 724–725

operators in. See operators

origins of, 411

pointers in. See pointers

preprocessor and, 413, 414, 418–419, 746–747

purpose of, 408

recursion in. See recursion

source files, 721

standard library, 415, 554, 593–594, 616, 617,

747–751

variables in. See variables

CMOS. See under transistors

CPU. See central processing unit

calculator simulation, 379, 395–402

call by reference, 542, 544, 599

call by value, 538

callee, 266, 492, 494, 501–505, 542

callee-save, 268, 279, 505

caller, 266, 492, 494, 501–505, 542

caller-independent functions, 497

caller-save, 268, 277, 278, 505

calling convention, 505, 506

call/return mechanism, 265–266

casting. See type cast

central processing unit (CPU), 8

character literals, 427, 723–724

character strings, 300–303, 338, 479, 552–555

classes, 633, 634, 639–647

clock, 136

clock circuit, 86, 136

clock cycle, 86, 90–94, 134, 699–700

closed circuit, 59–60, 66

code segments, 413, 690

combinational logic circuits

decoder, 67–68

defined, 67

full adder, 69–71

implementation of, 89–90

logical completeness and, 72–73

mux, 68–69

one-bit adder, 69–71

programmable logic array and, 71–72

combination locks, 79–80

comments

in assembly language, 235–236, 240

in C, 417, 722

in C++, 417

in defensive programming, 530

importance of, 417–418

compilation, 410, 411, 413–415, 634–636, 639

compilers, 18, 410, 411, 413–415

complement, 30, 40

compound statements

with for, 467

with do-while, 471

formation of, 433

with if, 458

with if-else, 461

with while, 465

computer, defined, 7

computer programs, defined, 121

computer systems

Burroughs A series, 8

components of, 10–11

CPU, 8

desktops, 9

ENIAC, 8, 9

history of, 8–10

keyboards and, 11, 124, 126, 320–322

laptops, 9, 11

monitors and, 11, 124, 126, 322–324

mouse and, 11, 125

peripherals and, 124

smartphones, 9, 561

storage for, 11

conditional branches, 133, 135, 162–164

conditional breakpoints, 527

conditional constructs, 204–205, 409, 457–464

conditional expressions, 452–453, 736

condition codes (also called Flags)

N, 150–151, 162–164, 168, 175, 654

P, 150–151, 162–164, 175, 654

Z, 150–151, 162–167, 175, 654

constants in C, 451–452, 602

constructors, 644–645

containers, 647–648

control flow error, 520

control instructions. See under instructions

control signals

GateMDR, 134

GatePC, 134

LD.IR, 134

LD.MAR, 134

LD.PC, 134

MIO.EN, 327

R.W, 327

control store, 719–720
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control structures, 457–484

break statement, 480, 482

conditional constructs, 204–205, 409, 457–464

continue statement, 480, 482

iteration constructs, 204, 205, 209–210,

464–472

in LC-3, 706–710

problem solving with, 204–206, 472–480

sequential constructs, 204, 208, 210

simple calculator example, 482–484

switch statement, 480–482

control unit, 125, 127

conversion specifications, 597, 601

counter-controlled loops, 466, 468, 476, 477, 509

d
DDR. See display data register

DECODE. See under instruction cycle

DR. See destination register

DSR. See display status register

data movement instructions. See under instructions

data path, 93–95, 173–177, 699, 700, 703–706

data segment descriptors, 690

data structures

character strings, 300–303, 479, 552–555

defined, 263

queues, 294–299

stack, 273–279, 498–500

data types. See also floating point data type; integer

data type

ASCII codes, 26, 47–48, 300, 754

bit vectors, 42–43, 150

boolean values, 428

in C, 427–428, 725–731

character, 427, 450

conversion of, 380–387, 434, 739–740

defined, 17, 26, 149

fundamental, 607, 608

hexadecimal notation, 48–49

in instruction set, 147

LC-3 vs. x86, 680–681

modifiers for, 450

for variables, 426–428

debugging

ad hoc techniques for, 526

breakpoints and, 212, 527–528

defined, 203, 525

displaying values in, 212, 528

executing sequences in, 212

IDEs and, 415, 527, 528

importance of, 518

interactive, 212–220

interpretation and, 411

setting values in, 211–212

single-stepping, 212, 528

source-level debuggers, 526–528

techniques for, 210–211

decimal to binary conversions, 32–34

decision elements. See combinational logic circuits

declarations

of arrays, 546–547

of function, 416, 493–494, 732–733

of pointer variables, 539–540, 544

of structures, 608–611

of variables, 426, 429, 731–732

decoder, 67–68

deconstruction, 4

decrement operators, 439–441, 736

defensive programming, 529, 530–531

definiteness of algorithms, 16, 203

DeMorgan’s Laws, 41–42

depth-first search, 584

dereference operator, 540–541, 613, 737

derived types, 725, 728–731

desktop computers, 9

destination, 147

destination register (DR)

data movement instructions and, 158

defined, 387

instruction cycle and, 132, 177

memory-mapped input and, 322

notational conventions, 657

operate instructions and, 151, 152, 234, 242

queues and, 295

device registers

assignments, 654

display data register, 126, 322–324, 338, 654

display status register, 127, 322–324, 342, 654

input device register, 317–318

keyboard data register, 126, 320–321, 654

keyboard status register, 126, 320–321,

342, 654

machine control register, 654

Master Control Register, 316, 335–336

output device register, 317–318

processor status register, 315, 316, 345, 351,

654–655, 657

digital machines, 12–13

disabled interrupts, 690

displacement, 693

display data register (DDR), 126, 322–324, 338, 654

displaying values, 212

display status register (DSR), 127, 322–324,

342, 654

division, 434, 435
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dot operator, 612

double quotes in C, 553

dynamically linked libraries, 594

dynamically sized arrays, 616–618, 647

dynamic memory allocation, 607–608, 614–618,

627, 639

e
.END. See under pseudo-ops

ENIAC, 8, 9

EOF, 604

EVALUATE ADDRESS. See under instruction cycle

EXECUTE. See under instruction cycle

.EXTERNAL. See under pseudo-ops

effective computability of algorithms, 16, 203

enumerated types, 726

enumeration constants, 724, 726

equality operator, 437–438

errors, 518–523. See also debugging; testing

algorithmic, 519, 521–523

semantic, 518–521

specification, 519, 522–523

syntactic, 518–520

examples in C

analyzing e-mail addresses, 477–480

approximating value of pi, 472–474

area of ring, 495–496

arrays to sum exam scores, 547–548

calculation of quotient and remainder, 544–545

case conversion, 507–508, 695

exceeding array bounds, 559, 560

factorial, 492–495

finding prime numbers less than 100, 474–477

insertion sort, 556–559

LC-3 translation of C code, 447–449

maze solver, 583–586

pointers, 544–545

Pythagorean Triples, 508–510

repeated values in arrays, 548–550

simple calculator, 482–484

simple network calculation, 441–443

string length, 553–554

string reverse, 554, 555

Towers of Hanoi, 572–576

tracking aircraft, 613–614

exceptions, 676–677, 712–713, 717–719

exception service routines, 675

exclusive-OR function. See XOR function

executable image, 244, 271–272, 411, 413–415, 594

exponents, 44–46

expressions, 433, 441, 452–453, 740

f
FETCH. See under instruction cycle

FETCH OPERANDS. See under instruction cycle

FIFO. See first in, first out

.FILL. See under pseudo-ops

factorial, 280–284, 492–495

Fibonacci numbers, 285–287, 576–581

file inclusion, 747

file pointer, 603

files, I/O from, 602–604

finiteness of algorithms, 16, 203

finite state machine, 79, 83–87, 89, 134

first in, first out (FIFO), 294, 295

flags, 319. See also condition codes

flip-flops, 91–93

float, 44

floating point data type

in C, 725

conversion to integer, 739–740

defined, 26

exponents in, 44–46

fractions in, 44–46

IEEE Standard, 45, 46, 428

infinities and, 46

literals, 428, 451, 722–723

modifiers for, 450

normalized form, 44–46

precision and, 43–44

range and, 43–44, 450

single-precision vs. double precision, 427

subnormal numbers and, 46–47

formal parameter list, 494–495

format strings, 419–421, 597–602

formatted I/O, 597–602, 637

fractions, 44–46

frame pointer, 445, 446, 500, 502–505

full adder, 69–71

functions, 491–511. See also subroutines

calls to, 492–493, 494, 500–505

declarations of, 416, 493–494, 732–733

definitions of, 415–416, 493, 494–495

implementation of, 497–506

importance of, 491

overloading, 638

parameters and, 492–495, 732

with pointer return type, 544

problem solving with, 507–510

prototypes of, 493

statements of, 416–417

fundamental data types, 607, 608



764 Index

g
GETC. See under service routines

GPR. See general purpose register

gated D latches, 74–75, 90, 91

GateMDR. See under control signals

GatePC. See under control signals

general purpose register (GPR), 146, 387, 654, 688

generic pointer, 616–617

global bus, 175

global data section, 445–447, 505, 614

global variables, 430–431, 445, 530, 732

h
HALT instruction. See under instructions

HALT service routine. See under service routines

half adder, 71

halting the computer, 136–137

handshaking mechanism, 319

hardware versus software, 5–7

header files, 419, 428, 594–595, 597, 603, 622,

721–722

head pointer, 618, 619

heap, 446, 447, 614–618

hexadecimal notation, 48–49, 722

high-level languages, 16–17, 145, 231–232,

408–411

i
IDEs. See Integrated Development Environments

IE bit. See interrupt enable bit

IEEE Standard, 45, 46, 428

IN. See under service routines

INT signal, 343–345, 349, 715

INTV. See under instruction fields

I/O. See input/output

I/O page, 316

I/O streams, 594–595, 636

IR. See instruction register

ISA. See instruction set architecture

identifiers in C, 429, 732

illegal opcode exception, 654, 674, 718–719

imm5. See under instruction fields

immediate addressing mode, 150, 152–153,

693–694

inclusive-OR function, 40, 41

increment operators, 439–441, 736

indices for arrays, 546, 547, 561–563

indirect addressing mode, 150, 158–159

indirection operator, 540–542

inequality operator, 438

infinite loops, 220, 466

infinities, 46

inheritance, 645–647

initialization error, 520

initializers, 427, 732

initialize variables, 165, 170, 208, 431

initial values, 170

initiate the interrupt, 345–346, 714–717

input combinations, 38

input device register, 317–318

input/output (I/O)

asynchronous vs. synchronous, 318

basic characteristics of, 317–319

buffered, 595–597

in C++, 636–637

in C, 419–422, 593–604

device registers for, 316

from files, 602–604

formatted, 597–602, 637

interrupt-driven, 319, 339–349

keyboard input, 320–322

memory-mapped, 318, 321–324, 326–327,

654, 711–712

monitor output, 322–324

polling, 319, 325, 350–352

service routines for handling, 333–335

sophisticated input routine, 325–326

special instructions for, 317

standard library functions, 747–749

stream-based abstraction for, 594–595, 636

input service routine, 320–321, 331–334, 336–338

insertion sort, 556–559

instruction cycle

changing sequence of execution, 132–133

control of, 134–136

DECODE phase, 131, 134, 176–177

defined, 130

EVALUATE ADDRESS phase, 131, 177

EXECUTE phase, 132, 133, 177

FETCH OPERANDS phase, 131–132, 177

FETCH phase, 130–131, 133, 134, 176

halting, 136–137

STORE RESULT phase, 132, 177

instruction fields

BaseR, 267, 657

DR, 657

imm5, 657

INTV, 346, 349, 657, 715

LABEL, 657

PC, 657

PCoffset9, 657

PCoffset11, 267, 657
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PSR, 657

Saved SSP, 317, 331, 345, 657

Saved USP, 317, 331, 345, 657

SP, 657

SR, 657

SR1, 657

SR2, 657

SSP, 657

trapvect8, 657

USP, 657

instruction pointer. See program counter (PC)

instruction register (IR), 125, 127, 130, 134

instructions

ADD, 128–129, 132, 151–153, 380, 656, 658

AND, 129, 151–153, 656, 659

in assembly language, 233–236

BR, 133–135, 162–164, 267, 656, 660

control, 128, 133, 135, 149, 161–170,

205–206, 683–684

data movement, 128, 133, 149, 155–161,

683–684

defined, 121, 127, 654

HALT, 137, 314

I/O, 317–318

JMP, 169, 266, 656, 661

JSR, 266–267, 336, 656, 662

JSRR, 267, 656, 662

JSR(R), 266–267

LD, 129, 156–157, 656, 663

LDI, 158, 350–352, 656, 664

LDR, 159–160, 656, 665

LEA, 154–155, 656, 666

NOT, 151, 152, 656, 667

operate, 127–128, 133, 149, 151–155, 682–683

RET, 336, 656, 661, 668

RTI, 656, 669

ST, 156–157, 656, 670

STI, 158, 338, 350–352, 656, 671

STR, 159, 656, 672

TRAP, 137, 161–162, 169–170, 313, 656, 673,

710–711

instruction set architecture (ISA), 17–18, 145–151

integer data type

1’s complement, 28, 29

2’s complement, 26, 29–31

applications of, 427

in C, 725

modifiers for, 450

representations of, 27, 28

signed integers, 27–29

unsigned integers, 26–27, 450

integer literals, 722

Integrated Development Environments (IDEs), 415,

527, 528, 636

interpretation, 410–411

interpreters, 410–411

interrupt-driven I/O, 319, 339–349

interrupt enable (IE) bit, 342

interrupt processing, 655

interrupt request, 342–343

interrupt request signal, 342, 343, 346, 347, 715

interrupts, 676, 690, 712–717

interrupt service routines, 345–346, 350–352, 675

interrupt signal, 342

interrupt vector, 346

Interrupt Vector Table, 346, 653, 675, 716

inverter, 61–62

iteration constructs, 204, 205, 209–210, 464–472

iteration of the loop, 165, 210

iteration vs. recursion, 571–572

j
JMP instruction. See under instructions

JSR instruction. See under instructions

JSR(R) instruction. See under instructions

JSRR instruction. See under instructions

Java, 408, 409, 640

k
KBDR. See keyboard data register

KBSR. See keyboard status register

keyboard data register (KBDR), 126, 320–321, 654

keyboard echo, 324

keyboard interrupt vector, 346

keyboards, 11, 124, 126, 320–322

keyboard status register (KBSR), 126, 320–321,

342, 654

keywords in C, 429, 724–725

l
LABEL. See under instruction fields

LC-3

assembly language for, 232–238

assembly process and, 240–243

calling convention, 505, 506, 601

case conversion example, 695, 696

control instructions for, 161–170, 205–206, 683

control structure in, 706–710

counting occurrences of characters, 170–173,

206–210, 238–239



766 Index

LC-3 (Continued)

data movement instructions for, 155–161, 683

data path of, 93–95, 173–177, 699, 700,

703–706

data types supported by, 680

input and output devices of, 124

instruction cycle specific to, 176–177

instruction set, 145–151, 653–674, 680–685

internal state of, 687–690

memory map, 446, 447, 653

memory organization of, 122, 146, 316,

685–687

microarchitecture of, 699–720

opcodes in, 682–683

operate instructions for, 151–155, 682–683

state machine of, 701–703

as three-address machine, 683–684

translation of C code, 447–449

as von Neumann computer, 125–127

LDI instruction. See under instructions

LD instruction. See under instructions

LD.IR. See under control signals

LD.MAR. See under control signals

LD.PC. See under control signals

LDR instruction. See under instructions

LEA instruction. See under instructions

LIFO. See last in, first out

labels, 234–235

laptops, 9, 11

last in, first out (LIFO), 273, 274, 294

left shift, 437

Levels of Transformation process, 15–19

libraries, 263, 530

library routines, 244, 269–272, 415

line numbers, 232–233

lines of code in computing applications, 406–407

link, 244

linkage, 330

linked lists, 618–628

adding nodes to, 622–625

arrays vs., 619, 626–628

defined, 618

deleting nodes from, 625–626

pictorial representation of, 619

support functions for, 620–622

linker, 245, 271, 413–415, 594

link time, 244–245, 271

literal addressing mode, 150

literals

characters, 427, 723–724

constants, 451, 602

floating point, 428, 451, 722–723

integer, 722

string, 724

load, 156

load-store ISA, 685

local variables, 429–431, 445, 495, 497–498

logical AND operator, 438, 439

logical completeness, 72–73

logically false in C, 438

logically true in C, 438

logical NOT operator, 439

logical operations, 38–43, 151

logical operators, 438–439, 735

logical OR operator, 439

logical variables, 38

logic circuits, 5, 19. See also combinational logic

circuits; sequential logic circuits

logic functions

AND function, 38–39

NOT function, 40

OR function, 39–40

XOR function, 40–41

logic gates

AND gate, 65–66, 71–72

inverter, 61–62

multiple input, 66–67

NAND gate, 66, 73

NOR gate, 62–63

NOT gate, 61–62, 642

OR gate, 63–65, 71–72

transistors in formation of, 5, 61, 405

loop body, 165, 236

loop control, 165–168, 210

low-level languages, 17, 231, 232

m
MAR. See memory address register

MCR. See machine control register

MDR. See memory data register

MIO.EN. See under control signals

MMX instruction set, 6, 149

MOS. See under transistors

machine check, 349

machine control register (MCR), 654

machine cycle, 131, 136

machine language, 145, 231, 240, 242–243

macros, 746–747

Master Control Register, 316, 335–336

master/slave flip-flop, 91–93

math functions, 263, 269–270, 750

mechanical languages, 16

memory. See also storage structures
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addressability of, 75, 76, 122, 146

address register, 123, 125–126, 175–176,

322–324

address space of, 75–76, 122, 146, 653–654

data register, 123, 126, 175, 322–324

decoding, 77–78

dynamic allocation of, 607–608, 614–618,

627, 639

organization of, 316–317

in von Neumann model, 122–123, 125–126

memory address register (MAR), 123, 125–126,

175–176, 322–324

memory allocation, 614–615, 617

memory data register (MDR), 123, 126, 175,

322–324

memory deallocation, 615, 617

memory-mapped address, 318

memory-mapped I/O, 318, 321–324, 326–327, 654,

711–712

memory maps, 444, 446, 447, 561, 562

memory objects, 426, 539, 540, 607, 614

methods, 640–642

microarchitecture, 18–19, 699–720

microinstruction, 706

microprocessors, 6, 10, 59, 124

microsequencer, 706–710

ModR/M byte, 692

modular design, 529–530

modules, 211

modulus, 435

monitors, 11, 124, 126, 322–324

mouse, 11, 125

multiplication, 434, 435

multiplication algorithms, 137–139

mux, 68–69

n
N. See under condition codes

NAND gate. See under logic gates

NMOS. See under transistors

NOR gate. See under logic gates

NOT function. See under logic functions

NOT gate. See under logic gates

NOT in C, 436, 437

NOT instruction. See under instructions

namespaces, 636

natural languages, 14–15

negation operator, 439

negative numbers, 28, 36, 37, 45

nested loops, 470–471, 509, 549

nested scope, 430

Newline, 325

nodes

adding, 622–625

defined, 618

deleting, 625–626

linking, 621

pictorial representation of, 619

normalized form, 44–46

N-type transistors. See under transistors

null pointer, 543, 616, 621

null-terminated strings, 552

numerical prefixes, 753

o
OPERAND FETCH. See under instruction cycle

OR function. See under logic functions

OR gate. See under logic gates

.ORIG. See under pseudo-ops

OR in C, 436, 437

OUT. See under service routines

object files, 244–245, 413, 594, 721

object modules. See object files

objects, 433, 607, 616, 639, 731. See also memory

objects

octal, 722

off-by-one error, 522

one-bit adder, 69–71

OpAdd algorithm, 389, 390–391

opcodes

assembly language and, 233–234

defined, 17, 68

in instruction set, 127, 147, 149

in LC-3 vs. x86, 682–683, 691–692

open circuit, 60–62, 66

operands, 17, 127, 147, 150, 233–234, 685. See also
addressing modes

operate instructions. See under instructions

operations on bits, 34–43

operators, 432–443

address, 540–542, 544, 737

arithmetic, 434–435, 734

assignment, 433–434, 452, 541, 733

bitwise, 39–41, 436–437, 734

conditional expression, 452–453, 736

decrement, 439–441, 736

defined, 425

dereference, 540–541, 613, 737

dot, 612

expressions and, 433, 441, 452–453

increment, 439–441, 736

logical, 438–439, 735

order of evaluation for, 435–436, 738–739

overview, 432

pointer, 540–541
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operators (Continued)

problem solving with, 441–443

relational, 437–438, 735

scope, 636

statements and, 433

OpMult algorithm, 389, 393–395

OpNeg algorithm, 390, 395

orthogonal notions, 314–315

output. See input/output (I/O)

output device register, 317–318

output service routine, 322–323, 333, 335

overflow, 36–37, 277–278, 297, 298

overloading functions, 638

p
P. See under condition codes

PC. See program counter

PCoffset9. See under instruction fields

PCoffset11. See under instruction fields
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