
A
A P P E N D I X

The LC-3 ISA

A.1 Overview
The instruction set architecture (ISA) of the LC-3 is defined as follows:

Memory address space 16 bits, corresponding to 216 locations, each

containing one word (16 bits). Addresses are numbered from 0 (i.e., x0000)

to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations

and memory-mapped I/O device registers. Certain regions of memory are

reserved for special uses, as described in Figure A.1.

Locations x0000 to x2FFF comprise privileged memory and are only

accessible if the process is executing in Supervisor mode (PSR[15]=0).

Locations x3000 to xFDFF comprise memory available to User mode and

x0200
x01FF

x0100
x00FF

x0000

x2FFF

xFE00
xFDFF

x3000

xFFFF

(Privileged Memory)

(Unprivileged Memory)

SSP

USP
User Stack

Device Register Addresses

Supervisor Stack

User Space

Interrupt Vector Table
System Space

Trap Vector Table

Figure A.1 Memory map of the LC-3



654 appendix A The LC-3 ISA

Table A.1 Device Register Assignments

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register (KBSR) The ready bit (bit [15]) indicates if the keyboard has received a
new character.

xFE02 Keyboard data register (KBDR) Bits [7:0] contain the last character typed on the keyboard.
xFE04 Display status register (DSR) The ready bit (bit [15]) indicates if the display device is ready to

receive another character to print on the screen.
xFE06 Display data register (DDR) A character written in bits [7:0] will be displayed on the screen.
xFFFC Processor Status Register (PSR) Contains privilege mode, priority level and condition codes of

the currently executing process.
xFFFE Machine control register (MCR) Bit [15] is the clock enable bit. When cleared, instruction

processing stops.

data. Addresses xFE00 to xFFFF specify input and output device registers

and special internal processor registers that are also only accessible if the

process is executing in Supervisor mode (PSR[15]=0). For purposes of

controlling access to these device registers, their addresses are also

considered part of privileged memory.

Memory-mapped I/O Input and output are handled by load/store (LD/ST,

LDI/STI, LDR/STR) instructions using memory addresses from xFE00 to

xFFFF to designate each device register. Table A.1 lists the input and

output device registers and internal processor registers that have been

specified for the LC-3 thus far, along with their corresponding assigned

addresses from the memory address space.

Bit numbering Bits of all quantities are numbered, from right to left,

starting with bit 0. The leftmost bit of the contents of a memory location is

bit 15.

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode

(operation to be performed); bits [11:0] provide further information that is

needed to execute the instruction. The specific operation of each LC-3

instruction is described in Section A.2.

Illegal opcode exception Bits [15:12] = 1101 has not been specified. If

an instruction contains 1101 in bits [15:12], an illegal opcode exception

occurs. Section A.3 explains what happens.

Program counter A 16-bit register containing the address of the next

instruction to be processed.

General purpose registers Eight 16-bit registers, numbered from 000 to

111 (R0 to R7).

Condition codes Three 1-bit registers: N (negative), Z (zero), and P

(positive). Load instructions (LD, LDI, and LDR) and operate instructions

(ADD, AND, and NOT) each load a result into one of the eight general

purpose registers. The condition codes are set, based on whether that result,

taken as a 16-bit 2’s complement integer, is negative (N = 1; Z, P = 0), zero

(Z = 1; N, P = 0), or positive (P = 1; N, Z = 0). All other LC-3 instructions

leave the condition codes unchanged.



A.2 The Instruction Set 655

Interrupt processing I/O devices have the capability of interrupting the

processor. Section A.3 describes the mechanism.

Priority level The LC-3 supports eight levels of priority. Priority level 7

(PL7) is the highest, PL0 is the lowest. The priority level of the currently

executing process is specified in bits PSR[10:8].

Processor status register (PSR) A 16-bit register, containing status

information about the currently executing process. Seven bits of the PSR

have been defined thus far. PSR[15] specifies the privilege mode of

the executing process. PSR[10:8] specifies the priority level of the currently

executing process. PSR[2:0] contains the condition codes. PSR[2] is N,

PSR[1] is Z, and PSR[0] is P.

Supervisor mode The LC-3 specifies two modes of operation, Supervisor

mode (privileged) and User mode (unprivileged). Interrupt service routines

and trap service routines (i.e., system calls) execute in Supervisor mode.

The privilege mode is specified by PSR[15]. PSR[15]=0 indicates

Supervisor mode; PSR[15]=1 indicates User mode.

Privilege mode exception The RTI instruction executes in Supervisor mode.

If the processor attempts to execute the RTI instruction while in User mode, a

privilege mode exception occurs. Section A.3 explains what happens.

Access Control Violation (ACV) exception An ACV exception occurs if a

process attempts to access a location in privileged memory (either a location in

system space or a device register having an address from xFE00 to xFFFF)

while operating in User mode. Section A.3 explains what happens.

Supervisor stack A region of memory in system space accessible via the

Supervisor Stack Pointer (SSP). When PSR[15]=0, the stack pointer (R6) is

SSP. When the processor is operating in User mode (PSR[15]=1), the SSP

is stored in Saved SSP.

User stack A region of memory in user space accessible via the User Stack

Pointer (USP). When PSR[15]=1, the stack pointer (R6) is USP. When the

processor is operating in Supervisor mode (PSR[15]=0), the USP is stored

in Saved USP.

A.2 The Instruction Set
The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists

of an opcode (bits[15:12]) plus 12 additional bits to specify the other informa-

tion that is needed to carry out that instruction. Figure A.2 summarizes the 15

different opcodes in the LC-3 and the specification of the remaining bits of each

instruction. The 16th four-bit opcode is not specified but is reserved for future use.

In the following pages, the instructions will be described in greater detail.

Table A.2 is provided to help you to understand those descriptions. For each

instruction, we show the assembly language representation, the format of the

16-bit instruction, the operation of the instruction, an English-language descrip-

tion of its operation, and one or more examples of the instruction. Where relevant,

additional notes about the instruction are also provided.



656 appendix A The LC-3 ISA

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA

NOT+

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes



A.2 The Instruction Set 657

Table A.2 Notational Conventions

Notation Meaning

xNumber The number in hexadecimal notation. Example: xF2A1
#Number The number in decimal notation. Example #793
bNumber The number in binary. Example b10011
A[l:r] The field delimited by bit [l] on the left and bit [r] on the right, of the datum A. For example, if PC

contains 0011001100111111, then PC[15:9] is 0011001. PC[2:2] is 1. If l and r are the same bit
number, we generally write PC[2].

BaseR Base Register; one of R0..R7, specified by bits [8:6] of the instruction, used in conjunction with a six-bit
offset to compute Base+offset addresses (LDR and STR), or alone to identify the target address of a
control instruction (JMP and JSRR).

DR Destination Register; one of R0..R7, which specifies the register a result should be written to.
imm5 A five-bit immediate value (bits [4:0] of an instruction), when used as a literal (immediate) value. Taken

as a five-bit, 2’s complement integer, it is sign-extended to 16 bits before it is used. Range: −16..15.
INTV An eight-bit value, supplied along with an interrupting event; used to determine the starting address

of an interrupt service routine. The eight bits form an offset from the starting address of the interrupt
vector table. The corresponding location in the interrupt vector table contains the starting address
of the corresponding interrupt service routine. Range 0..255.

LABEL An assembly language construct that identifies a location symbolically (i.e., by means of a name,
rather than its 16-bit address).

mem[address] Denotes the contents of memory at the given address.
offset6 A six-bit signed 2’s complement integer (bits [5:0] of an instruction), used with the Base+offset

addressing mode. Bits [5:0] are sign-extended to 16 bits and then added to the Base Register to
form an address. Range: −32..31.

PC Program Counter; 16-bit register that contains the memory address of the next instruction to be
fetched. For example, if the instruction at address A is not a control instruction, during its execution,
the PC contains the address A + 1, indicating that the next instruction to be executed is contained in
memory location A + 1.

PCoffset9 A nine-bit signed 2’s complement integer (bits [8:0] of an instruction), used with the PC+offset
addressing mode. Bits [8:0] are sign-extended to 16 bits and then added to the incremented PC to
form an address. Range −256..255.

PCoffset11 An eleven-bit signed 2’s complement integer (bits [10:0] of an instruction), used with the JSR opcode
to compute the target address of a subroutine call. Bits [10:0] are sign-extended to 16 bits and then
added to the incremented PC to form the target address. Range −1024..1023.

PSR Processor Status Register. A 16-bit register that contains status information of the process that is
executing. Seven bits of the PSR have been specified. PSR[15] = privilege mode. PSR[10:8] =
Priority Level. PSR[2:0] contains the condition codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P.

Saved SSP Saved Supervisor Stack Pointer. The processor is executing in either Supervisor mode or User mode.
If in User mode, R6, the stack pointer, is the User Stack Pointer (USP). The Supervisor Stack Pointer
(SSP) is stored in Saved SSP. When the privilege mode changes from User mode to Supervisor
mode, Saved USP is loaded with R6 and R6 is loaded with Saved SSP.

Saved USP Saved User Stack Pointer. The User Stack Pointer is stored in Saved USP when the processor is
executing in Supervisor mode. See Saved SSP.

setcc() Indicates that condition codes N, Z, and P are set based on the value of the result written to DR.
SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times as necessary to extend A to

16 bits. For example, if A = 110000, then SEXT(A) = 1111 1111 1111 0000.
SP The current stack pointer. R6 is the current stack pointer. There are two stacks, one for each privilege

mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1.
SR, SR1, SR2 Source register; one of R0..R7 that specifies the register from which a source operand is obtained.
SSP The Supervisor Stack Pointer.
trapvect8 An eight-bit value (bits [7:0] of an instruction), used with the TRAP opcode to determine the starting

address of a trap service routine. Bits [7:0] are taken as an unsigned integer and zero-extended to
16 bits. This is the address of the memory location containing the starting address of the
corresponding service routine. Range 0..255.

USP The User Stack Pointer.
ZEXT(A) Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. For example, if

A = 110000, then ZEXT(A) = 0000 0000 0011 0000.



658 appendix A The LC-3 ISA

ADD Addition

Assembler Formats

ADD DR, SR1, SR2

ADD DR, SR1, imm5

Encodings

12 11 9 8 6 5 4 3 2 0

15 12 11 9 8 6 5 4 0

15

SR2

0001 DR SR1 1 imm5

0001 DR SR1 0 0 0

Operation

if (bit[5] == 0)
DR=SR1+SR2;

else
DR=SR1+SEXT(imm5);

setcc();

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the

second source operand is obtained by sign-extending the imm5 field to 16 bits.

In both cases, the second source operand is added to the contents of SR1 and the

result stored in DR. The condition codes are set, based on whether the result is

negative, zero, or positive.

Examples

ADD R2, R3, R4 ; R2 ← R3 + R4

ADD R2, R3, #7 ; R2 ← R3 + 7



A.2 The Instruction Set 659

AND Bit-wise Logical AND

Assembler Formats

AND DR, SR1, SR2

AND DR, SR1, imm5

Encodings

12 11 9 8 6 5 4 0

02345689111215

15

0101 DR SR1 1 imm5

DR SR1 0 0 0 SR20101

Operation

if (bit[5] == 0)
DR=SR1 AND SR2;

else
DR=SR1 AND SEXT(imm5);

setcc();

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1,

the second source operand is obtained by sign-extending the imm5 field to 16

bits. In either case, the second source operand and the contents of SR1 are bit-

wise ANDed and the result stored in DR. The condition codes are set, based on

whether the binary value produced, taken as a 2’s complement integer, is negative,

zero, or positive.

Examples

AND R2, R3, R4 ;R2 ← R3 AND R4

AND R2, R3, #7 ;R2 ← R3 AND 7



660 appendix A The LC-3 ISA

BR Conditional Branch

Assembler Formats

BRn LABEL BRzp LABEL

BRz LABEL BRnp LABEL

BRp LABEL BRnz LABEL

BR† LABEL BRnzp LABEL

Encoding

zn p

15 12 11 10 9 8 0

0000 PCoffset9

Operation

if ((n AND N) OR (z AND Z) OR (p AND P))
PC=PC‡ + SEXT(PCoffset9);

Description

The condition codes specified by bits [11:9] are tested. If bit [11] is 1, N is tested;

if bit [11] is 0, N is not tested. If bit [10] is 1, Z is tested, etc. If any of the condi-

tion codes tested is 1, the program branches to the memory location specified by

adding the sign-extended PCoffset9 field to the incremented PC.

Examples

BRzp LOOP ; Branch to LOOP if the last result was zero or positive.

BR† NEXT ; Unconditionally branch to NEXT.

†The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the target
address.
‡This is the incremented PC.



A.2 The Instruction Set 661

JMP

RET

Jump

Return from Subroutine

Assembler Formats

JMP BaseR

RET

Encoding

000 000000

05689111215

BaseRJMP 1100

000 111 000000

05689111215

RET 1100

Operation

PC = BaseR;

Description

The program unconditionally jumps to the location specified by the contents of

the base register. Bits [8:6] identify the base register.

Examples

JMP R2 ; PC ← R2

RET ; PC ← R7

Note

The RET instruction is a special case of the JMP instruction, normally used in the

return from a subroutine. The PC is loaded with the contents of R7, which con-

tains the linkage back to the instruction following the subroutine call instruction.



662 appendix A The LC-3 ISA

JSR

JSRR

Jump to Subroutine

Assembler Formats

JSR LABEL

JSRR BaseR

Encoding

1

010111215

PCoffset11

000 BaseR 000000

0568910111215

JSRR

JSR 0100

0100

Operation

TEMP=PC;†

if (bit[11] == 0)
PC = BaseR;

else
PC=PC† + SEXT(PCoffset11);

R7=TEMP;

Description

First, the incremented PC is saved in a temporary location. Then the PC is loaded

with the address of the first instruction of the subroutine, which will cause an

unconditional jump to that address after the current instruction completes execu-

tion. The address of the subroutine is obtained from the base register (if bit [11]

is 0), or the address is computed by sign-extending bits [10:0] and adding this

value to the incremented PC (if bit [11] is 1). Finally, R7 is loaded with the value

stored in the temporary location. This is the linkage back to the calling routine.

Examples

JSR QUEUE ; Put the address of the instruction following JSR into R7;

; Jump to QUEUE.

JSRR R3 ; Put the address of the instruction following JSRR into R7;

; Jump to the address contained in R3.

†This is the incremented PC.



A.2 The Instruction Set 663

LD Load

Assembler Format

LD DR, LABEL

Encoding

PCoffset90010 DR

15 12 11 9 8 0

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[PC† + SEXT(PCoffset9)];
setcc();

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding

this value to the incremented PC. If the address is to privileged memory and

PSR[15]=1, initiate ACV exception. If not, the contents of memory at this address

is loaded into DR. The condition codes are set, based on whether the value loaded

is negative, zero, or positive.

Example

LD R4, VALUE ; R4 ← mem[VALUE]

†This is the incremented PC.



664 appendix A The LC-3 ISA

LDI Load Indirect

Assembler Format

LDI DR, LABEL

Encoding

PCoffset91010 DR

15 12 11 9 8 0

Operation

if (either computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[mem[PC† + SEXT(PCoffset9)]];
setcc();

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this

value to the incremented PC. What is stored in memory at this address is the

address of the data to be loaded into DR. If either address is to privileged mem-

ory and PSR[15]=1, initiate ACV exception. If not, the data is loaded and the

condition codes are set, based on whether the value loaded is negative, zero, or

positive.

Example

LDI R4, ONEMORE ; R4 ← mem[mem[ONEMORE]]

†This is the incremented PC.



A.2 The Instruction Set 665

LDR Load Base+offset

Assembler Format

LDR DR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRDR0110 offset6

Operation

If (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
DR = mem[BaseR + SEXT(offset6)];
setcc();

Description

An address is computed by sign-extending bits [5:0] to 16 bits and adding this

value to the contents of the register specified by bits [8:6]. If the computed address

is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the con-

tents of memory at this address is loaded into DR. The condition codes are set,

based on whether the value loaded is negative, zero, or positive.

Example

LDR R4, R2, #−5 ; R4 ← mem[R2 − 5]



666 appendix A The LC-3 ISA

LEA Load Effective Address

Assembler Format

LEA DR, LABEL

Encoding

15 12 11 9 8 0

DR1110 PCoffset9

Operation

DR = PC† + SEXT(PCoffset9);

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this

value to the incremented PC. This address is loaded into DR.‡

Example

LEA R4, TARGET ; R4 ← address of TARGET.

†This is the incremented PC.
‡The LEA instruction computes an address but does NOT read memory. Instead, the address itself is
loaded into DR.



A.2 The Instruction Set 667

NOT Bit-Wise Complement

Assembler Format

NOT DR, SR

Encoding

11111

15 12 11 9 8 6 5 4 3 2 0

DR1001 SR 1

Operation

DR=NOT(SR);
setcc();

Description

The bit-wise complement of the contents of SR is stored in DR. The condi-

tion codes are set, based on whether the binary value produced, taken as a 2’s

complement integer, is negative, zero, or positive.

Example

NOT R4, R2 ; R4 ← NOT(R2)



668 appendix A The LC-3 ISA

RET Return from Subroutine

Assembler Format

RET†

Encoding

000 111 000000

05689111215

1100

Operation

PC = R7;

Description

The PC is loaded with the value in R7. Its normal use is to cause a return from a

previous JSR(R) instruction.

Example

RET ; PC ← R7

†The RET instruction is a specific encoding of the JMP instruction. See also JMP.



A.2 The Instruction Set 669

RTI
Return from Trap or Interrupt

Assembler Format

RTI
Encoding

15 12 11 0

0000000000001000

Operation

if (PSR[15] == 1)
Initiate a privilege mode exception;

else
PC=mem[R6]; R6 is the SSP, PC is restored
R6=R6+1;
TEMP=mem[R6];
R6=R6+1; system stack completes POP before saved PSR is restored
PSR=TEMP; PSR is restored
if (PSR[15] == 1)

Saved SSP=R6 and R6=Saved USP;

Description

If the processor is running in User mode, a privilege mode exception occurs. If

in Supervisor mode, the top two elements on the system stack are popped and

loaded into PC, PSR. After PSR is restored, if the processor is running in User

mode, the SSP is saved in Saved SSP, and R6 is loaded with Saved USP.

Example

RTI ; PC, PSR ← top two values popped off stack.

Note

RTI is the last instruction in both interrupt and trap service routines and returns

control to the program that was running. In both cases, the relevant service routine

is initiated by first pushing the PSR and PC of the program that is running onto the

system stack. Then the starting address of the appropriate service routine is loaded

into the PC, and the service routine executes with supervisor privilege. The last

instruction in the service routine is RTI, which returns control to the interrupted

program by popping two values off the supervisor stack to restore the PC and PSR.

In the case of an interrupt, the PC is restored to the address of the instruction that was

about to be processed when the interrupt was initiated. In the case of an exception,

the PC is restored to either the address of the instruction that caused the exception or

the address of the following instruction, depending on whether the instruction that

caused the exception is to be re-executed. In the case of a TRAP service routine,

the PC is restored to the instruction following the TRAP instruction in the calling

routine. In the case of an interrupt or TRAP, the PSR is restored to the value it had

when the interrupt was initiated. In the case of an exception, the PSR is restored to

the value it had when the exception occurred or to some modified value, depending

on the exception. See also Section A.3.



670 appendix A The LC-3 ISA

ST Store

Assembler Format

ST SR, LABEL

Encoding

PCoffset90011 SR

15 12 11 9 8 0

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[PC† + SEXT(PCoffset9)] = SR;

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV

exception. If not, the contents of the register specified by SR is stored in the

memory location whose address is computed by sign-extending bits [8:0] to 16

bits and adding this value to the incremented PC.

Example

ST R4, HERE ; mem[HERE] ← R4

†This is the incremented PC.



A.2 The Instruction Set 671

STI Store Indirect

Assembler Format

STI SR, LABEL

Encoding

PCoffset91011 SR

15 12 11 9 8 0

Operation

if (either computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[mem[PC† + SEXT(PCoffset9)]] = SR;

Description

If either computed address is to privileged memory and PSR[15]=1, initiate

ACV exception. If not, the contents of the register specified by SR is stored

in the memory location whose address is obtained as follows: Bits [8:0] are sign-

extended to 16 bits and added to the incremented PC. What is in memory at this

address is the address of the location to which the data in SR is stored.

Example

STI R4, NOT HERE ; mem[mem[NOT HERE]] ← R4

†This is the incremented PC.



672 appendix A The LC-3 ISA

STR Store Base+offset

Assembler Format

STR SR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRSR0111 offset6

Operation

if (computed address is in privileged memory AND PSR[15] == 1)
Initiate ACV exception;

else
mem[BaseR + SEXT(offset6)] = SR;

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV

exception. If not, the contents of the register specified by SR is stored in the

memory location whose address is computed by sign-extending bits [5:0] to 16

bits and adding this value to the contents of the register specified by bits [8:6].

Example

STR R4, R2, #5 ; mem[R2+5] ← R4



A.2 The Instruction Set 673

TRAP System Call

Assembler Format

TRAP trapvector8

Encoding

078111215

1111 0000 trapvect8

Operation

TEMP=PSR;
if (PSR[15] == 1)

Saved USP=R6 and R6=Saved SSP;
PSR[15]=0;

Push TEMP,PC† on the system stack
PC=mem[ZEXT(trapvect8)];

Description

If the the program is executing in User mode, the User Stack Pointer must be

saved and the System Stack Pointer loaded. Then the PSR and PC are pushed

on the system stack. (This enables a return to the instruction physically follow-

ing the TRAP instruction in the original program after the last instruction in the

service routine (RTI) has completed execution.) Then the PC is loaded with the

starting address of the system call specified by trapvector8. The starting address

is contained in the memory location whose address is obtained by zero-extending

trapvector8 to 16 bits.

Example

TRAP x23 ; Directs the operating system to execute the IN system call.

; The starting address of this system call is contained in

; memory location x0023.

Note:
Memory locations x0000 through x00FF, 256 in all, are available to contain

starting addresses for system calls specified by their corresponding trap vectors.

This region of memory is called the Trap Vector Table. Table A.3 describes the

functions performed by the service routines corresponding to trap vectors x20

to x25.

†This is the incremented PC.



674 appendix A The LC-3 ISA

Unused Opcode
Assembler Format

none

Encoding

0111215

1101

Operation

Initiate an illegal opcode exception.

Description

If an illegal opcode is encountered, an illegal opcode exception occurs.

Note:
The opcode 1101 has been reserved for future use. It is currently not defined. If

the instruction currently executing has bits [15:12] = 1101, an illegal opcode

exception occurs. Section A.3 describes what happens.



A.3 Interrupt and Exception Processing 675

Table A.3 Trap Service Routines

Trap Vector Assembler Name Description

x20 GETC Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.

x21 OUT Write a character in R0[7:0] to the console display.
x22 PUTS Write a string of ASCII characters to the console display. The characters are

contained in consecutive memory locations, one character per memory location,
starting with the address specified in R0. Writing terminates with the occurrence of
x0000 in a memory location.

x23 IN Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into
R0. The high eight bits of R0 are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with
the address specified in R0. The ASCII code contained in bits [7:0] of a memory
location is written to the console first. Then the ASCII code contained in bits [15:8]
of that memory location is written to the console. (A character string consisting of
an odd number of characters to be written will have x00 in bits [15:8] of the
memory location containing the last character to be written.) Writing terminates
with the occurrence of x0000 in a memory location.

x25 HALT Halt execution and print a message on the console.

A.3 Interrupt and Exception
Processing

As has been discussed in detail in Chapter 9, events external to the program that

is running can interrupt the processor. A common example of an external event

is interrupt-driven I/O. It is also the case that the processor can be interrupted

by exceptional events that occur while the program is running that are caused by

the program itself. An example of such an “internal” event is the presence of an

unused opcode in the computer program that is running.

Associated with each event that can interrupt the processor is an eight-bit

vector that provides an entry point into a 256-entry interrupt vector table. The

starting address of the interrupt vector table is x0100. That is, the interrupt vector

table occupies memory locations x0100 to x01FF. Each entry in the interrupt

vector table contains the starting address of the service routine that handles the

needs of the corresponding event. These service routines execute in Supervisor

mode.

Half (128) of these entries, locations x0100 to x017F, provide the starting

addresses of routines that service events caused by the running program itself.

These routines are called exception service routines because they handle excep-

tional events, that is, events that prevent the program from executing normally.

The other half of the entries, locations x0180 to x01FF, provide the starting

addresses of routines that service events that are external to the program that

is running, such as requests from I/O devices. These routines are called interrupt
service routines.



676 appendix A The LC-3 ISA

A.3.1 Interrupts

At this time, an LC-3 computer system provides only one I/O device that can

interrupt the processor. That device is the keyboard. It interrupts at priority level

PL4 and supplies the interrupt vector x80.

An I/O device can interrupt the processor if it wants service, if its interrupt

enable (IE) bit is set, and if the priority of its request is greater than the priority of

any other event that wants to interrupt and greater than the priority of the program

that is running.

Assume a program is running at a priority level less than 4, and someone

strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently execut-

ing program is interrupted at the end of the current instruction cycle. The interrupt

service routine is initiated as follows:

1. The PSR of the interrupted process is saved in TEMP.

2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).

3. The processor sets the priority level to PL4, the priority level of the

interrupting device (PSR[10:8]=100).

4. If the interrupted process is in User mode, R6 is saved in Saved USP and

R6 is loaded with the Supervisor Stack Pointer (SSP).

5. TEMP and the PC of the interrupted process are pushed onto the supervisor

stack.

6. The keyboard supplies its eight-bit interrupt vector, in this case x80.

7. The processor expands that vector to x0180, the corresponding 16-bit

address in the interrupt vector table.

8. The PC is loaded with the contents of memory location x0180, the address

of the first instruction in the keyboard interrupt service routine.

The processor then begins execution of the interrupt service routine.

The last instruction executed in an interrupt service routine is RTI. The top

two elements of the supervisor stack are popped and loaded into the PC and PSR

registers. R6 is loaded with the appropriate stack pointer, depending on the new value

of PSR[15]. Processing then continues where the interrupted program left off.

A.3.2 Exceptions

At this time, the LC-3 ISA specifies three exception conditions: privilege mode

violation, illegal opcode, and access control violation (ACV). The privilege mode

violation occurs if the processor attempts to execute the RTI instruction while

running in User mode. The illegal opcode exception occurs if the processor

attempts to execute an instruction having the unused opcode (bits [15:12] =

1101). The ACV exception occurs if the processor attempts to access privileged

memory (i.e., a memory location in system space or a device register having an

address from xFE00 to xFFFF while running in User mode).

Exceptions are handled as soon as they are detected. They are initiated very

much like interrupts are initiated, that is:

1. The PSR of the process causing the exception is saved in TEMP.



A.3 Interrupt and Exception Processing 677

2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).

3. If the process causing the exception is in User mode, R6 is saved in

Saved USP and R6 is loaded with the SSP.

4. TEMP and the PC of the process causing the exception are pushed onto the

supervisor stack.

5. The exception supplies its eight-bit vector. In the case of the privilege mode

violation, that vector is x00. In the case of the illegal opcode, that vector is

x01. In the case of the ACV exception, that vector is x02.

6. The processor expands that vector to x0100, x0101, or x0102, the

corresponding 16-bit address in the interrupt vector table.

7. The PC is loaded with the contents of memory location x0100, x0101, or

x0102, the address of the first instruction in the corresponding exception

service routine.

The processor then begins execution of the exception service routine.

The details of the exception service routine depend on the exception and the

way in which the operating system wishes to handle that exception.

In many cases, the exception service routine can correct any problem caused

by the exceptional event and then continue processing the original program. In

those cases, the last instruction in the exception service routine is RTI, which pops

the top two elements from the supervisor stack and loads them into the PC and

PSR registers. The program then resumes execution with the problem corrected.

In some cases, the cause of the exceptional event is sufficiently catastrophic

that the exception service routine removes the program from further processing.

Another difference between the handling of interrupts and the handling of

exceptions is the priority level of the processor during the execution of the service

routine. In the case of exceptions, we normally do not change the priority level

when we service the exception. The priority level of a program is the urgency

with which it needs to be executed. In the case of the exceptions specified by the

LC-3 ISA, the urgency of a program is not changed by the fact that a privilege

mode violation occurred or there was an illegal opcode in the program or the

program attempted to access privileged memory while it was in User mode.


