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Independence Bound on Entropy

B From intuition to math expression

Let X1, X5, ..., X;, be drawn according to p(x4, X5, ..., X,). Then

n
H(X, X, 0 X) < ) HXD)
i=1

with equality if and only if the X; are independent.

By chain rule for entropies,

n n
H(XllXZI ...,Xn) == z H(XilXi_l, ...,Xl) S Z H(Xl)
i=1 i=1

B Conditioning reduces entropy H(Y|X) < H(Y)
B Equality holds if and only if X; is independent of X;_1, ..., X; for all [ (i.e., if and
only if the X;’s are independent).

Intuition is not always correct




Markov Chain

Airport:
o

Random variables X, Y, Z are said to form a Markov chain in that order (denoted
by X — Y — Z) if the conditional distribution of Z depends only on Y and is
conditionally independent of X. Specifically, X, Y, and Z form a Markov chain
X = Y — Z if the joint probability mass function can be written as

p(x,y,z) = p(x)py|x)p(z|y).

MC is a simple but very import structure for real world

B X ->Y - Zif and only if X and Z are conditionally independent given Y.

B X->Y - Zimpliesthat Z > Y — X. Thus, the condition is sometimes written
XoVYolr p(X,Y|Z)

BIfZ=f({),thenX->Y > Z. I(X;Y|Z) = Epxy,2) 10gp(X|Z)p(Y|Z)

f X > Y - Z,then [(X;Z|Y) = 0 (X and Z are conditionally independent given Y)




Data Processing Inequality

(Data processing inequality) If X = Y — Z,then [(X;Y) = [(X; Z)

Proof sketch: Expand I(X;Y,Z) by chain rule
I(X;Y,2) =1(X;Z2)+1(X; Y|Z)
I(X;Y,2) =1(X;Y)+1(X;Z|Y)
where I(X;Z|Y) =0

B |n particular, if Z = g(Y),we have I(X;Y) = I(X; g(Y)).
BIfX->Y->Zthenl (X;Y|Z2) <I(X;Y).
B Assume X, Y are two independent random variables uniformly distributed on {0, 1}.
Z=X+Y (mod?2)
Calevlate I(X;Y|Z2) (I(X;Y|Z) > 1(X;Y)).



I(X;Y; Z)

B Assume X, Y are two independent random variables uniformly distributed on {0, 1}.
Z=X+Y (mod?2)
Calevlate I(X;Y|Z) (I(X;Y|Z2) > I[(X;Y)).
Some facts:
B X,Y,Z are all uniformly distributed H(X) = H(Y) = H(Z)
B Anytwo of X,Y,Z can determine the other H(X,Y,Z) = H(X,Y)
B Anytwoof X,Y,Z are independent H(X,Y) = H(X) + H(Y)
I(X;Y|Z) =H(X|Z) — HX|Y,Z)
= H(X|Z)
= H(X)
=1
[(X;Y|Z2) > 1(X;Y)

Define: I(X;Y;2Z) = I(X;Y) — I(X;Y|Z)

Conditioning may not reduce mutual information. Mutual information is not uncertainty




Information Diagram: 2 RVs

H(X)Y)

/s




Information Diagram: 3 RVs

I(XI,XQ:,X_?,)

B Area may be signed: negative

](Xl ) X2 | X3) H(X2| Xl) B Three circles: not three watches

H(X))

H(X\|X,, X5) I[(X;X5)

Except [(X1; X5; X3), every partis > 0. May be Negative! | Z =X +Y (mod 2)

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung




Information Diagram: 4 RVs

H(X|Y)

I(X;Y|2)

Only items like I(X;Y|Z), H(X|Y) = 0

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung




Information Diagram: Markov Chain

X Y Z

XY >/

Each area > 0

Xl_)Xz_)..._)Xn

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung




Examples

I1(X,; X3; X3)

[(XI,X2|X’;)

H (X))

H(X\| X, X5) I1(X1; X5)

HX,Y) + H(Y,Z) + H(Z,X)

H(X,Y,Z) < >

<HX)+HY)+HZ)

H(X,Y|Z)+H(Y,Z|X)+H(Z,X|Y)
2

HX|Y,Z) + H(Y|X,Z) + H(Z|X,Y) < < H(X,Y,Z)



Examples (cont’d)

Homework 3
B Prove that under the constraint that X - Y — Z forms a Markov
chain, X LY|Zand X L Zimply X LY.
B Prove that the implication in (a) continues to be valid without the
Markov chain constraint.
B Prove that Y L Z|T implies Y L Z|(X,T) conditioning on
X->Y->Z-T.
B letX > Y > Z > T form a Markov chain. Determine which of the
following inequalities always hold:
L IXT)+I1XY;2)=21(X;Z2)+1(Y;T)
I 1X;T)+I1(Y;Z2)=21(X;Y)+1(Z;T)
. 1 (X;Y)+1(Z;T) = 1(X;2)+1(Y;T)



Example: Causality (& 5 3 i)

T BIRAL. ZIFLF. BRI

el M/ db RS )

f’—--‘h

In information theory, we may use random variable to
denote the conditions given in the problem, and apply
the techniques in information measures to check whether
a given condition is satisfied.

Given: X LY|Zand X L Z
Prove: X LY

I(X;Y|Z) = 0,1(X;Z) = 0
I(X;Y) =0



Example: Perfect Secrecy

CkiEd
L% : X = 0010001 e /

# X: Y=1010110
%4: 7=1110001 H
04 3%: X = 0010001

Let X be the plain text, Y be the cipher text, and Z be the key in a secret key

cryptosystem
B Y is generated from X and Z
HYI|X,Z)=0
B Since X can be recovered from Y and Z, we have
HX|Y,Z) =0

B We will show that this constraint implies
I(X;Y)>= HX)—-H(Z)
B If the cipher text Y is required to be independent of the plain text X
I(X;Y)=0
Then
HX) <H@Z) (F EKENTEHAKE)



Fano’s Inequality: Estimation

Suppose that we wish to estimate a random variable X with a distribution p(x).

We observe a random variable Y that is related to X by the conditional distribution
p(y|x). ) )
B From Y, we calculate a function g(Y) = X, where X is an estimate of X and takes on
values in X.
B We will not restrict the alphabet X to be equal to X, and we will also allow the
function g(Y) to be random.
B We wish to bound the probability that X # X. We observe that X —» Y — X forms a
Markov chain. Define the probability of error
P, = Pr(X # X)
B When H(X|Y) = 0, we know that P, = 0. How about H(X|Y), as P, - 02

Fano: Establish the relation between P, and H(X|Y)




Fano’s Inequality

Theorem 2.10.1 (Fano’s Inequality) For
Pr(X # X), we have

This inequality can be weakened to

H(P,) + P,log|X| = H(X|X) = H(X|Y)

1+ P log|X|=HX|Y) or P, >

any estimator X such that X —» Y — X, with P, =

HX|Y)-1
log | X|

Define an error random variable
E =
Then
H(E, X|X)

Facts:

Intvition: P, — 0 implies H(X|Y) - 0

0, ifX=X
1, ifX+X
= H(X|X) +

= H(E|X) + H(X|E, X)

m H(E|X,X)=0
m H(E|X)<H(E)=H()

Corollary. Let P, = Pr(X * )?), and let )?y — X; then
H(P,) + P, log(|X| — 1) = H(X|Y)

m H(X|E,X) <P log|X|
H(X|E,X)=Pr(E =0)H(X|X, E = 0)
E (1 _Pe)o‘*‘PelOngla

+Pr(E=DHX|X,E=1)




Convexity /Concavity of Information Measures

(Log sum inequality) For nonnegative numbers, a4, a,,...,a, and by, b,,..., b,,
n n
n
a; i=1 i
a; lOgb— = a; log Zn b
=1 L i=1 1=1"1

with equality if and only if = = const.
i

Prove via convexity /concavity

B (Concavity of entropy) H(p) is a concave function of p.

B Let (X,V) ~p(x,y) = p()p(|x).
The mutual information [(X;Y) is a concave function of p(x) for fixed p(y|x) and a
convex function of p(y|x) for fixed p(x).

B (Convexity of relative entropy) D(p||q) is convex in the pair (p, q); that is, if
(p1,q1) and (p5, ;) are two pairs of probability mass functions, then

D(Ap; + (1 — Dpz|lAg; + (1 — D)gz) < AD(p4llq1) + (1 — A)D(p2llq2)
forall 0 <A< 1.

Homework 3:

Cover: 2.8, 2.9, 2.10 2.14, 2.15, 2.18, 2.20,
2,27, 2.32



Summary

The materials of this lecture are related to
B The textbook of T. Cover: 2.7, 2.8., 2.10
B The textbook of R. Yeung: 3.5, 3.6



