
CS258: Information Theory

Fan Cheng

Shanghai Jiao Tong University 

http://www.cs.sjtu.edu.cn/~chengfan/

chengfan@sjtu.edu.cn

Spring, 2020

http://www.cs.sjtu.edu.cn/~chengfan/
mailto:chengfan@sjtu.edu.cn


Outline

 Kraft inequality

 Optimal codes

 Huffman coding

 Shannon-Fano-Elias coding

 Generation of discrete distribution

 Universal source coding



Random Variable Generation

Heads Vs. Tails

The entropy of 𝑿
𝑯 𝑿 = 𝟏. 𝟓

The expected number of coin flips

𝑬 𝑻 = 𝟏. 𝟓

◼ We are given a sequence of fair coin 

tosses 𝒁𝟏, 𝒁𝟐, … , and we wish to 

generate 𝑋 on 𝒳 = {1, 2, . . . , 𝑚} with 

probability mass function 𝐩 =
𝑝1, … , 𝑝𝑚 .

◼ Let the random variable 𝑇 denote the 

number of coin flips used in the 

algorithm.

Generate a random variable according the outcome of 

fair coin flips:

HHHH, TTTTT, HTHTHT, THTHTH

If 𝑋 = 0, 1, 2 , 𝑝 𝑋 = (
1

2
,
1

4
,
1

4
)

◼ H: 𝑋 = 0
◼ TH: 𝑋 = 1
◼ TT: 𝑋 = 2

◼ How many fair coin flips to generate 𝑋?



Random Variable Generation

Representation of a generation algorithm

◼ We can describe the algorithm mapping strings of bits 𝑍1, 𝑍2, … , to possible outcomes 𝑋
by a binary tree 

◼ The leaves of the tree are marked by output symbols 𝑋, and the path to the leaves is 

given by the sequence of bits produced by the fair coin

The tree representing the algorithm must satisfy certain 

properties:

◼ The tree should be complete (i.e., every node is 

either a leaf or has two descendants in the tree). The 

tree may be infinite, as we will see in some examples.

◼ The probability of a leaf at depth 𝑘 is 2−𝑘. Many 

leaves may be labeled with the same output 

symbol—the total probability of all these leaves 

should equal the desired probability of the output 

symbol.

◼ The expected number of fair bits 𝑬𝑻 required to 

generate 𝑋 is equal to the expected depth of this 

tree.

Tree for generation of the distribution (
1

2
,
1

4
,
1

4
)

Intuition: Each coin tossing generates 

1 bit.

𝑬 𝑻 ≥ 𝑯(𝑿)



Random Variable Generation

◼ The expected depth of the tree

𝐸 𝑇 = 

𝑦∈𝒴

𝑘 𝑦 2−𝑘(𝑦)

◼ The entropy of the distribution of 𝑌 is

𝐻 𝑌 = −

𝑦∈𝒴

1

2𝑘 𝑦
log

1

2𝑘 𝑦

= 

𝑦∈𝒴

𝑘 𝑦 2−𝑘(𝑦)

where 𝑘(𝑦) denotes the depth of leaf 𝑦. Thus,

𝐻 𝑌 = 𝐸𝑇

Let 𝒴 denote the set of leaves of a complete tree. Consider a distribution on the leaves such 

that the probability of a leaf at depth 𝑘 on the tree is 2−𝑘. Let 𝑌 be a random variable with

this distribution.

(Lemma). For any complete tree, consider a probability distribution on the leaves such that 

the probability of a leaf at depth 𝑘 is 2−𝑘. Then the expected depth of the tree is equal to 

the entropy of this distribution (𝑯 𝒀 = 𝑬𝑻).

𝑯 𝒀 = 𝑬𝑻



Random Variable Generation

◼ Any algorithm generating 𝑋 from fair bits can be represented by a complete binary 

tree. Label all the leaves of this tree by distinct symbols 𝑦 ∈ 𝑌 = {1, 2, . . . }. If the tree 

is infinite, the alphabet 𝑌 is also infinite.

◼ Now consider the random variable 𝑌 defined on the leaves of the tree, such that for 

any leaf 𝑦 at depth 𝑘, the probability that 𝑌 = 𝑦 is 2−𝑘. The expected depth of this tree 

is equal to the entropy of 𝑌:

𝐸𝑇 = 𝐻(𝑌)
◼ Now the random variable 𝑋 is a function of 𝑌 (one or more leaves map onto an output 

symbol), and hence we have

𝐻(𝑋) ≤ 𝐻(𝑌)

(Theorem). For any algorithm generating 𝑋, the expected number of fair bits used is 

greater than the entropy 𝐻(𝑋), that is,

𝑬 𝑻 ≥ 𝑯(𝑿)

𝑬𝑻 ≥ 𝑯(𝑿)



Random Variable Generation

◼ For the constructive part, we use the Huffman code tree for 𝑋 as the tree to generate 

the random variable. Each 𝑋 = 𝑥 will correspond to a leaf

◼ For a dyadic distribution, the Huffman code is the same as the Shannon code and 

achieves the entropy bound. 

𝑙𝑖 = log𝐷−𝑛𝑖 = 𝑛𝑖
◼ For any 𝑥 ∈ 𝒳, the depth of the leaf in the code tree corresponding to 𝑥 is the length 

of the corresponding codeword, which is log
1

𝑝 𝑥
. Hence, when this code tree is used 

to generate 𝑋, the leaf will have a probability

2
− log

1
𝑝(𝑥) = 𝑝(𝑥) .

◼ The expected number of coin flips is the expected depth of the tree, which is equal to 

the entropy (because the distribution is dyadic). Hence, for a dyadic distribution, the 

optimal generating algorithm achieves

𝐸𝑇 = 𝐻(𝑋).

(Theorem). Let the random variable 𝑋 have a dyadic distribution. 

The optimal algorithm to generate 𝑋 from fair coin flips requires an 

expected number of coin tosses precisely equal to the entropy:

𝑬𝑻 = 𝑯(𝑿)



Random Variable Generation

◼ If the distribution is not dyadic? In this case we cannot use the same idea, since the code 

tree for the Huffman code will generate a dyadic distribution on the leaves, not the 

distribution with which we started

◼ Since all the leaves of the tree have probabilities of the form 2−𝑘, it follows that we 

should split any probability 𝒑𝒊 that is not of this form into atoms of this form. We can 

then allot these atoms to leaves on the tree

𝑝 𝑥 =
7

8
=
1

2
+
1

4
+
1

8

◼ Finding the binary expansions of the probabilities 𝒑𝒊
′𝒔. Let the binary expansion of the 

probability 𝑝𝑖 be

𝑝𝑖 =

𝑗≥1

𝑝𝑖
(𝑗)
,

where 𝑝𝑖
(𝑗)

= 2−𝑗 or 0. Then the atoms of the expansion are the {𝑝𝑖
(𝑗)
: 𝑖 = 1,2, … ,𝑚, 𝑗 ≥ 1}.

◼ Since σ𝑖 𝑝𝑖 = 1, the sum of the probabilities of these atoms is 1. We will allot an atom 

of probability 2−𝑗 to a leaf at depth 𝑗 on the tree. 

◼ The depths (j) of the atoms satisfy the Kraft inequality, we can always construct such a 

tree with all the atoms at the right depths. 



Random Variable Generation
Let 𝑋 have distribution 

𝑋 =
𝑎 with prob.

2

3

𝑏 with prob.
1

3

We find the binary expansions of these probabilities:
2

3
= 0.10101010…2

1

3
= 0.01010101…2

Hence, the atom for the expansion are:

2

3
→

1

2
,
1

8
,
1

32
, …

1

3
→

1

4
,
1

16
,
1

64
,…

◼ This procedure yields a tree that generates the random variable 𝑋. We have argued that 

this procedure is optimal (gives a tree of minimum expected depth)

◼ (Theorem) The expected number of fair bits required by the optimal algorithm to generate 

a random variable 𝑋 lies between 𝐻(𝑋) and 𝐻(𝑋) + 2:

𝐻 𝑋 ≤ 𝐸𝑇 < 𝐻 𝑋 + 2

Tree to generate a (
2

3
,
1

3
) distribution



Universal Source Coding

◼ Assume we have a random variable 𝑋 drawn according to a distribution from the family 

{𝒑𝜽}, where the parameter 𝜽 ∈ 𝟏, 𝟐, 𝟑, … ,𝒎 is unknown

◼ We wish to find an efficient code for this source

Challenge: For many practical situations, however, the probability distribution underlying the 

source may be unknown

◼ One possible approach is to wait until we have seen all the data, estimate the 

distribution from the data, use this distribution to construct the best code, and then go 

back to the beginning and compress the data using this code. 

◼ This two-pass procedure is used in some applications where there is a fairly small 

amount of data to be compressed.

◼ In yet other cases, there is no probability distribution underlying the data—all we are 

given is an individual sequence of outcomes. How well can we compress the sequence? 

◼ If we do not put any restrictions on the class of algorithms, we get a meaningless 

answer—there always exists a function that compresses a particular sequence to 

one bit while leaving every other sequence uncompressed. This function is clearly 

“overfitted” to the data.



Minmax Redundancy

◼ If we know 𝜽, we can construct a code with codeword length 𝑙 𝑥 = log
1

𝑝𝜃 𝑥

min
𝑙(𝑥)

𝐸𝑝 𝑙 𝑋 = 𝐸𝑝 log
1

𝑝𝜃 𝑋
= 𝐻(𝑝𝜃)

◼ What happens if we do not know the true distribution 𝒑𝜽, yet wish to code as 

efficiently as possible? In this case, using a code with codeword lengths 𝑙(𝑥) and implied 

probability 𝑞 𝑥 = 2−𝑙 𝑥 , we define the redundancy of the code as the difference 

between the expected length of the code and the lower limit for the expected length:

𝑅 𝑝𝜃 , 𝑞 = 𝐸𝑝𝜃 𝑙 𝑥 − 𝐸𝑝𝜃 log
1

𝑝𝜃 𝑋
=

𝑥

𝑝𝜃 𝑥 𝑙 𝑥 − log
1

𝑝𝜃 𝑥

=

𝑥

𝑝𝜃 𝑥 log
1

𝑞(𝑥)
− log

1

𝑝𝜃(𝑥)
= 𝐷(𝑝𝜃| 𝑞

◼ We wish to find a code that does well irrespective of the true distribution 𝑝𝜃, and thus 

we define the minimax redundancy as

𝑹∗ = 𝐦𝐢𝐧
𝒒

𝐦𝐚𝐱
𝒑𝜽

𝑹 = 𝐦𝐢𝐧
𝒒

𝐦𝐚𝐱
𝒑𝜽

𝑫(𝒑𝜽||𝒒)



Redundancy and Capacity

(Theorem) The capacity of a channel 𝒑(𝒙|𝜽) with rows 𝒑𝟏, 𝒑𝟐, . . . , 𝒑𝒎 is given by

𝑪 = 𝑹∗ = 𝐦𝐢𝐧
𝒒

𝐦𝐚𝐱
𝜽

𝑫(𝒑𝜽||𝒒)

How to compute 𝑅∗: Take {𝑝𝜃: 1 ≤ 𝜃 ≤ 𝑚} as a transition a matrix

𝜽 →

…𝒑𝟏 𝒙 …

…𝒑𝟐 𝒙 …
⋮

…𝒑𝜽 𝒙 …

…𝒑𝒎 𝒙 …

→ 𝑋

This is a channel 𝜃, 𝑝𝜃 𝑥 ,𝒳 . The capacity of this channel is given by

𝐶 = max
𝜋(𝜃)

𝐼(𝜃; 𝑋) = max
𝜋(𝜃)



𝜃

𝜋 𝜃 𝑝𝜃 𝑥 log
𝑝

𝑞

where 𝑞𝜋 𝑥 = σ𝜃 𝜋 𝜃 𝑝𝜃 𝑥 .

Channel capacity is well understood.



Shannon-Fano-Elias → Arithmetic Coding

Shannon-Fano-Elias Coding: 𝐹 𝑎 = Pr(𝑥 ≤ 𝑎)

𝑙 𝑥 =
1

𝑝 𝑥
+ 1

𝐻 𝑋 ≤ 𝐸 𝑙 𝑥 < 𝐻 𝑋 + 2

Motivation: using intervals to represent symbols

Consider a random variable 𝑋 with a ternary alphabet 

𝐴, 𝐵, 𝐶 , with probabilities 0.4, 0.4, and 0.2, 

respectively.  𝐹 𝑥 = 0.4, 0.8, 1.0 .
Let the sequence to be encoded by ACAA

◼ A →[0, 0.4)
◼ AC → [0.32, 0.4) (scale with ratio 0.4, 0.8, 1.0 )

◼ ACA → [0.32, 0.352)

◼ ACAA → [0.32, 0.3328)

Combination of 𝑥1𝑥2,
𝑥1𝑥2 ∈ {𝐴, 𝐵, 𝐶}

◼ The procedure is incremental and can be used for any 

blocklength

◼ Coding by intervals: new insight

“火车刚发明的时候比马车还慢”



Lempel-Ziv Coding: Introduction 

The idea of adaptive dictionary-based schemes was not explored until Ziv and Lempel 

wrote their papers in 1977 and 1978. The two papers describe two distinct versions of the 

algorithm. We refer to these versions as LZ77 or sliding window Lempel–Ziv and LZ78 or 

tree-structured Lempel–Ziv.

◼ Use dictionaries for compression dates back to the invention of the telegraph. 

◼ “25: Merry Christmas” 

◼ “26: May Heaven’s choicest blessings be showered on the newly married couple.”

Abraham Lempel Yaakov Ziv

Gzip, pkzip, compress in unix, GIF



Lempel-Ziv Coding: Sliding Window 

Sliding Window Lempel–Ziv Algorithm

◼ We assume that we have a string 𝑥1, 𝑥2, . . . to be compressed from a finite alphabet. A 

parsing S of a string 𝑥1𝑥2 · · · 𝑥𝑛 is a division of the string into phrases, separated by 

commas. Let 𝑊 be the length of the window.

◼ Assume that we have compressed the string until time 𝑖 − 1. Then to find the next phrase, 

find the largest 𝑘 such that for some 𝑗, 𝑖 − 𝑊 ≤ 𝑗 ≤ 𝑖 − 1, the string of length 𝑘 starting  

at 𝑥𝑗 is equal to the string (of length 𝑘) starting at 𝑥𝑖 (i.e., 𝑥𝑗+𝑙 = 𝑥𝑖+𝑙 for all 0 ≤ 𝑙 < 𝑘). 

The next phrase is then of length 𝑘 (i.e., 𝑥𝑖 . . . 𝑥𝑖+𝑘−1) and is represented by the pair 

(𝑃, 𝐿), where 𝑃 is the location of the beginning of the match and 𝐿 is the length of the 

match.

◼ If a match is not found in the window, the next character is sent uncompressed.

The key idea of the Lempel–Ziv algorithm is to parse the string into phrases and to replace 

phrases by pointers to where the same string has occurred in the past. 

0101010101010101011010101010101101, W = 7

0101010101010101011010101010101101

0101010101010101011010101010101101

Find the maximum repeated substring inside 𝑾



Lempel-Ziv Coding: Sliding Window 

𝑊 = 4, ABBABBABBBAABABA

0101010101010101011010101010101101, W = 6

0101010101010101011010101010101101

0101010101010101011010101010101101

Find the maximum repeated substring inside 𝑾

ABBABBABBBAABABA

A BBABBABBBAABABA

A, B BABBABBBAABABA

A, B, B ABBABBBAABABA

A, B, B, ABBABB BAABABA

A, B, B, ABBABB, BA ABABA

A, B, B, ABBABB, BA, A BABA

A, B, B, ABBABB, BA, A, BA BA

A, B, B, ABBABB, BA, A, BA, BA



Lempel-Ziv Coding: Tree-Structured

◼ In the 1978 paper, Ziv and Lempel described an algorithm that parses a string into 

phrases, where each phrase is the shortest phrase not seen earlier. 

◼ This algorithm can be viewed as building a dictionary in the form of a tree, where the 

nodes correspond to phrases seen so far.

◼ Find a string in a set of strings: Trie

ABBABBABBBAABABAA

ABBABBABBBAABABAA

A BBABBABBBAABABAA

A, B BABBABBBAABABAA

A, B, BA BBABBBAABABAA

A, B, BA, BB ABBBAABABAA

A, B, BA, BB, AB BBAABABAA

A, B, BA, BB, AB, BBA ABABAA

A, B, BA, BB, AB, BBA, ABA BAA

A, B, BA, BB, AB, BBA, ABA, BAA

Optimality of LZ77, LZ78

Ref. Ch. 13.5 T. Cover



Summary

Cover: 5.11, 13.1, 13.3, 13.4, 13.5


