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Outline

 Entropy

 Relative entropy

 Mutual information

 Information inequality



Independence Bound on Entropy  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be drawn according to 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛). Then

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 ≤෍

𝑖=1

𝑛

𝐻(𝑋𝑖)

with equality if and only if the 𝑋𝑖 are independent.

By chain rule for entropies,

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 =෍

𝑖=1

𝑛

𝐻(𝑋𝑖|𝑋𝑖−1, … , 𝑋1) ≤෍

𝑖=1

𝑛

𝐻(𝑋𝑖)

◼ Conditioning reduces entropy 𝑯 𝒀 𝑿 ≤ 𝑯(𝒀)
◼ Equality holds if and only if 𝑋𝑖 is independent of 𝑋𝑖−1, … , 𝑋1 for all 𝑖 (i.e., if and

only if the 𝑋𝑖 ’s are independent).

◼ From intuition to math expression

Intuition is not always correct



Markov Chain

If 𝑋 → 𝑌 → 𝑍, then 𝐼(𝑋; 𝑍|𝑌) = 0 (𝑋 and 𝑍 are conditionally independent given 𝑌)

Random variables 𝑋, 𝑌, 𝑍 are said to form a Markov chain in that order (denoted 

by 𝑋 → 𝑌 → 𝑍) if the conditional distribution of 𝑍 depends only on 𝑌 and is 

conditionally independent of 𝑋. Specifically, 𝑋, 𝑌, and 𝑍 form a Markov chain 

𝑋 → 𝑌 → 𝑍 if the joint probability mass function can be written as

𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥)𝑝(𝑦|𝑥)𝑝(𝑧|𝑦).
MC is a simple but very import structure for real world

Airport: 
Beijing

Airport: 
Shanghai

Airport: 
Shenzhen

◼ 𝑋 → 𝑌 → 𝑍 if and only if 𝑋 and 𝑍 are conditionally independent given 𝑌. 

◼ 𝑋 → 𝑌 → 𝑍 implies that 𝑍 → 𝑌 → 𝑋. Thus, the condition is sometimes written 

𝑋 ↔ 𝑌 ↔ 𝑍.
◼ If 𝑍 = 𝑓(𝑌), then 𝑋 → 𝑌 → 𝑍. 𝐼 𝑋; 𝑌 𝑍 = 𝐸𝑝(𝑥,𝑦,𝑧) log

𝑝(𝑋, 𝑌|𝑍)

𝑝(𝑋|𝑍)𝑝(𝑌|𝑍)



Data Processing Inequality 

(Data processing inequality) If 𝑋 → 𝑌 → 𝑍, then 𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑍)

◼ In particular, if 𝑍 = 𝑔(𝑌), we have 𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑔(𝑌)).
◼ If 𝑋 → 𝑌 → 𝑍, then 𝐼 (𝑋; 𝑌|𝑍) ≤ 𝐼(𝑋; 𝑌).
◼ Assume 𝑋, 𝑌 are two independent random variables uniformly distributed on 0, 1 .

𝑍 = 𝑋 + 𝑌 ( 𝑚𝑜𝑑 2)
Calculate 𝐼(𝑋; 𝑌|𝑍) (𝐼(𝑋; 𝑌|𝑍) > 𝐼(𝑋; 𝑌)).

Proof sketch:     Expand 𝐼(𝑋; 𝑌, 𝑍) by chain rule

𝐼(𝑋; 𝑌, 𝑍) = 𝐼(𝑋; 𝑍) + 𝐼(𝑋; 𝑌|𝑍)
𝐼(𝑋; 𝑌, 𝑍) = 𝐼(𝑋; 𝑌) + 𝐼(𝑋; 𝑍|𝑌)

where 𝑰 𝑿; 𝒁 𝒀 = 𝟎



𝐼(𝑋; 𝑌; 𝑍)
◼ Assume 𝑋, 𝑌 are two independent random variables uniformly distributed on 0, 1 .

𝑍 = 𝑋 + 𝑌 ( 𝑚𝑜𝑑 2)
Calculate 𝐼(𝑋; 𝑌|𝑍) (𝐼(𝑋; 𝑌|𝑍) > 𝐼(𝑋; 𝑌)).

Some facts:     

◼ 𝑋, 𝑌, 𝑍 are all uniformly distributed  𝐻 𝑋 = 𝐻 𝑌 = 𝐻(𝑍)
◼ Any two of 𝑋, 𝑌, 𝑍 can determine the other 𝐻 𝑋, 𝑌, 𝑍 = 𝐻(𝑋, 𝑌)
◼ Any two of 𝑋, 𝑌, 𝑍 are independent 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)

𝐼 𝑋; 𝑌 𝑍 = 𝐻 𝑋 𝑍 − 𝐻 𝑋 𝑌, 𝑍
= 𝐻 𝑋 𝑍
= 𝐻 𝑋
= 1

𝐼 𝑋; 𝑌 𝑍 > 𝐼 𝑋; 𝑌

Conditioning may not reduce mutual information. Mutual information is not uncertainty 

Define: 𝐼 𝑋; 𝑌; 𝑍 = 𝐼 𝑋; 𝑌 − 𝐼(𝑋; 𝑌|𝑍)



Information Diagram: 2 RVs 



Information Diagram: 3 RVs

Except 𝐼(𝑋1; 𝑋2; 𝑋3), every part is ≥ 0. May be  Negative! 𝑍 = 𝑋 + 𝑌 (𝑚𝑜𝑑 2)

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

◼ Area may be signed: negative

◼ Three circles: not three watches



Information Diagram: 4 RVs

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

Only items like 𝐼 𝑋; 𝑌 𝑍 , 𝐻 𝑋|𝑌 ≥ 0

𝐻(𝑋|𝑌)

𝐼(𝑋; 𝑌|𝑍)



Information Diagram: Markov Chain

𝑋 → 𝑌 → 𝑍

𝑋1 → 𝑋2 → ⋯ → 𝑋𝑛

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

Each area ≥ 𝟎



Examples

𝐻 𝑋, 𝑌, 𝑍 ≤
𝐻 𝑋, 𝑌 + 𝐻 𝑌, 𝑍 + 𝐻 𝑍, 𝑋

2
≤ 𝐻 𝑋 + 𝐻 𝑌 + 𝐻 𝑍

𝐻 𝑋 𝑌, 𝑍 + 𝐻 𝑌 𝑋, 𝑍 + 𝐻 𝑍 𝑋, 𝑌 ≤
𝐻 𝑋,𝑌|𝑍 +𝐻 𝑌,𝑍|𝑋 +𝐻 𝑍,𝑋|𝑌

2
≤ 𝐻(𝑋, 𝑌, 𝑍)



Examples (cont’d)

Homework 3 

◼ Prove that under the constraint that 𝑋 → Y → 𝑍 forms a Markov

chain, X ⊥ 𝑌|𝑍 and 𝑋 ⊥ 𝑍 imply 𝑋 ⊥ 𝑌 .

◼ Prove that the implication in (a) continues to be valid without the

Markov chain constraint.

◼ Prove that 𝑌 ⊥ 𝑍|𝑇 implies 𝑌 ⊥ 𝑍|(𝑋, 𝑇) conditioning on

𝑋 → 𝑌 → 𝑍 → 𝑇.

◼ Let 𝑋 → 𝑌 → 𝑍 → 𝑇 form a Markov chain. Determine which of the

following inequalities always hold:

I. 𝐼 𝑋; 𝑇 + 𝐼 𝑌 ; 𝑍 ≥ 𝐼 (𝑋; 𝑍) + 𝐼 (𝑌 ; 𝑇)
II. 𝐼 𝑋; 𝑇 + 𝐼 𝑌 ; 𝑍 ≥ 𝐼 (𝑋; 𝑌 ) + 𝐼 (𝑍; 𝑇)
III. 𝐼 𝑋; 𝑌 + 𝐼 𝑍; 𝑇 ≥ 𝐼 (𝑋; 𝑍) + 𝐼 (𝑌 ; 𝑇)



Example: Causality (因果推断)

In information theory, we may use random variable to 

denote the conditions given in the problem, and apply 

the techniques in information measures to check whether 

a given condition is satisfied.

Given: 𝑋 ⊥ 𝑌|𝑍 and 𝑋 ⊥ 𝑍
Prove:  𝑋 ⊥ 𝑌

𝐼(𝑋; 𝑌|𝑍) = 0, 𝐼(𝑋; 𝑍) = 0
𝐼(𝑋; 𝑌) = 0

给定条件：戴眼镜、爱好文学、弹吉他
推断：他/她是哪位同学



Example: Perfect Secrecy

Let 𝑋 be the plain text, 𝑌 be the cipher text, and 𝑍 be the key in a secret key 

cryptosystem

◼ 𝑌 is generated from 𝑋 and 𝑍
𝐻 𝑌 𝑋, 𝑍 = 0

◼ Since 𝑋 can be recovered from 𝑌 and 𝑍, we have

𝐻(𝑋|𝑌, 𝑍) = 0
◼ We will show that this constraint implies

𝐼 𝑋; 𝑌 ≥ 𝐻 𝑋 − 𝐻(𝑍)
◼ If the cipher text  𝑌 is required to be independent of the plain text 𝑋

𝐼 𝑋; 𝑌 = 0
Then

𝐻 𝑋 ≤ 𝐻(𝑍) (信息长度小于密钥长度)

秘密：X = 0010001

明文: Y=1010110

密钥：Z=1110001 

接收端: X = 0010001

窃听者



Fano’s Inequality: Estimation 

◼ Suppose that we wish to estimate a random variable 𝑋 with a distribution 𝑝(𝑥).
◼ We observe a random variable 𝑌 that is related to 𝑋 by the conditional distribution 

𝑝(𝑦|𝑥). 
◼ From 𝑌, we calculate a function 𝑔 𝑌 = ෠𝑋, where ෠𝑋 is an estimate of 𝑋 and takes on 

values in ෡𝒳. 

◼ We will not restrict the alphabet ෡𝒳 to be equal to 𝑋, and we will also allow the 

function 𝑔(𝑌) to be random. 

◼ We wish to bound the probability that ෠𝑋 ≠ 𝑋. We observe that 𝑋 → 𝑌 → ෠𝑋 forms a 

Markov chain. Define the probability of error

𝑃𝑒 = Pr( ෠𝑋 ≠ 𝑋)
◼ When 𝐻 𝑋 𝑌 = 0, we know that 𝑃𝑒 = 0. How about 𝐻 𝑋 𝑌 , as 𝑃𝑒 → 0?

𝑋 𝑌 ෠𝑋 = 𝑔(𝑌)

Fano: Establish the relation between 𝑃𝑒 and 𝐻(𝑋|𝑌)



Fano’s Inequality

Define an error random variable

𝐸 = ൝
0, 𝑖𝑓 ෠𝑋 = 𝑋

1, 𝑖𝑓 ෠𝑋 ≠ 𝑋

Then

𝐻 𝐸, 𝑋 ෠𝑋 = 𝐻 𝑋 ෠𝑋 + 𝐻 𝐸 𝑋, ෠𝑋

= 𝐻 𝐸 ෠𝑋 + 𝐻(𝑋|𝐸, ෠𝑋)

Facts:

◼ 𝐻 𝐸 𝑋, ෠𝑋 = 0

◼ 𝐻 𝐸 ෠𝑋 ≤ 𝐻 𝐸 = 𝐻(𝑃𝑒)

◼ 𝐻 𝑋 𝐸, ෠𝑋 ≤ 𝑃𝑒 log |𝒳|

Corollary. Let 𝑃𝑒 = Pr 𝑋 ≠ ෠𝑋 , and let ෠𝑋:𝒴 → 𝒳; then

𝐻 𝑃𝑒 + 𝑃𝑒 log( 𝒳 − 1) ≥ 𝐻(𝑋|𝑌)

Theorem 2.10.1 (Fano’s Inequality) For any estimator ෠𝑋 such that 𝑋 → 𝑌 → ෠𝑋, with 𝑃𝑒 =
Pr( ෠𝑋 ≠ 𝑋), we have

𝐻 𝑃𝑒 + 𝑃𝑒 log |𝒳| ≥ 𝐻 𝑋 ෠𝑋 ≥ 𝐻(𝑋|𝑌)

This inequality can be weakened to

1 + 𝑃𝑒 log |𝒳| ≥ 𝐻(𝑋|𝑌) or       𝑃𝑒 ≥
𝐻(𝑋|𝑌)−1

log |𝒳|

Intuition: 𝑷𝒆 → 𝟎 implies 𝑯(𝑿|𝒀) → 𝟎



Convexity/Concavity of Information Measures 

◼ (Concavity of entropy) 𝐻(𝑝) is a concave function of 𝑝.

◼ Let 𝑋, 𝑌 ∼ 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦|𝑥).
The mutual information 𝐼(𝑋; 𝑌) is a concave function of 𝑝(𝑥) for fixed 𝑝(𝑦|𝑥) and a   

convex function of 𝑝(𝑦|𝑥) for fixed 𝑝(𝑥).
◼ (Convexity of relative entropy) 𝐷(𝑝||𝑞) is convex in the pair (𝑝, 𝑞); that is, if 

(𝑝1, 𝑞1) and (𝑝2, 𝑞2) are two pairs of probability mass functions, then

𝐷(𝜆𝑝1 + 1 − 𝜆 𝑝2||𝜆𝑞1 + 1 − 𝜆 𝑞2) ≤ 𝜆𝐷(𝑝1||𝑞1) + (1 − 𝜆)𝐷(𝑝2||𝑞2)
for all 0 ≤ 𝜆 ≤ 1.

(Log sum inequality) For nonnegative numbers, 𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑏1, 𝑏2, . . . , 𝑏𝑛,

෍

𝑖=1

𝑛

𝑎𝑖 log
𝑎𝑖
𝑏𝑖
≥ ෍

𝑖=1

𝑛

𝑎𝑖 log
σ𝑖=1
𝑛 𝑎𝑖

σ𝑖=1
𝑛 𝑏𝑖

with equality if and only if 
𝑎𝑖

𝑏𝑖
= const.

Prove via convexity/concavity

Homework 3: 

Cover:  2.8, 2.9, 2.10 2.14, 2.15, 2.18, 2.20,  

2.27, 2.32



Summary

The materials of this lecture are related to
◼ The textbook of T. Cover: 2.7, 2.8., 2.10

◼ The textbook of R. Yeung: 3.5, 3.6


