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Gaussian Channel

◼ The most important continuous alphabet channel is the Gaussian channel. For example, wireless 

telephone channels and satellite links

◼ The noise 𝑍𝑖 is drawn i.i.d. from a Gaussian distribution with variance 𝑁
◼ The noise 𝑍𝑖 is assumed to be independent of the signal 𝑋𝑖
◼ This is a time-discrete channel with output 𝑌𝑖 at time 𝑖, where 𝑌𝑖 is the sum of the input 𝑋𝑖 and 

the noise 𝑍𝑖
𝑌𝑖 = 𝑋𝑖 + 𝑍𝑖 , 𝑍𝑖 ∼ 𝒩 0,𝑁 .

◼ Without further conditions, the capacity of this channel may be ∞.

◼ The values of 𝑋 may be very sparse

◼ Assume the variance of noise 𝑁 is neglected compared to the distances of the values of 𝑋. 

Then 𝑌 = 𝑋 + 𝑍 ≈ 𝑋. Thus 𝐼 𝑋; 𝑌 ≈ 𝐻(𝑋), which may be ∞.

Gaussian channel

Continuous alphabet channel

◼ The channel could be use at each time 𝑖
◼ The input 𝑋𝑖 , noise 𝑍𝑖, output 𝑌𝑖 are 

continuous



Energy Constraint

◼ The most common limitation on the input is an energy or power constraint

◼ We assume an average power constraint. For any codeword (𝑥1, 𝑥2, … , 𝑥𝑛) transmitted over 

the channel, we require that

𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝒙𝒊
𝟐 ≤ 𝑷.

◼ This communication channel models many practical channels, including radio and satellite links.

The information capacity of the Gaussian channel with power constraint 𝑃 is

𝐶 = max
𝑓 𝑥 :𝐸𝑋2≤𝑃

𝐼(𝑋; 𝑌)

𝐼 𝑋; 𝑌 = ℎ(𝑌) − ℎ(𝑌|𝑋)
= ℎ 𝑌 − ℎ 𝑋 + 𝑍 𝑋
= ℎ 𝑌 − ℎ 𝑍 𝑋
= ℎ(𝑌) − ℎ(𝑍)

ℎ 𝑍 =
1

2
log 2𝜋𝑒𝑁

𝐸𝑌2 = 𝐸 𝑋 + 𝑍 2 = 𝐸𝑋2 + 2𝐸𝑋𝐸𝑍 + 𝐸𝑍2 = 𝑃 + 𝑁

ℎ 𝑌 ≤
1

2
log 2𝜋𝑒 𝑃 + 𝑁

𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑍 ≤
1

2
log 2𝜋𝑒 𝑃 + 𝑁 −

1

2
log 2𝜋𝑒𝑁

=
1

2
log(1 +

𝑃

𝑁
)

𝑪 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝑷

𝑵

The maximum is attained when 𝑿 ∼ 𝒩(𝟎,𝑷)

◼ within the sphere 𝑛𝑃
◼ 𝑃 per channel use



Gaussian Channel: Intuition

𝑌𝑛 = 𝒙𝒏 + 𝑍𝑛

◼ Consider any codeword 𝑥𝑛 of length 𝑛. 

𝑌𝑛 = 𝒙𝒏 + 𝑍𝑛

◼ The received vector is normally distributed with mean equal to the true codeword and 

variance equal to the noise variance. 

◼ With high probability, the received vector is contained in a sphere of radius 𝑛(𝑁 + 𝜖)

around the true codeword. 

◼ If we assign everything within this sphere to the given codeword, when this codeword is sent 

there will be an error only if the received vector falls outside the sphere, which has low 

probability.

◼ Each codeword is represented by a sphere

◼ Low decoding error requires no intersection between any spheres 



Gaussian Channel: Intuition (cont’d)

Sphere packing for the Gaussian channel

The maximum number of nonintersecting 

decoding spheres is no more than 

𝑪𝒏 𝒏 𝑷 +𝑵
𝒏
𝟐

𝑪𝒏 𝒏𝑵
𝒏
𝟐

= 𝟏 +
𝑷

𝑵

𝒏
𝟐

𝑹 ≤
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝑷

𝑵

𝑪 = sup 𝑹 =
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝑷

𝑵

◼ The received vectors (𝒀 = 𝑿 + 𝒁) have energy no greater than 𝑛(𝑃 + 𝑁), so they lie in a 

sphere of radius 𝑛 𝑃 + 𝑁
◼ The volume of an n-dimensional sphere is of the form 𝐶𝑛𝑟

𝑛, where 𝑟 is the radius of the 

sphere.

2𝜋𝑟, 𝜋𝑟2 and 
4

3
𝜋𝑟3

◼ The volumes  are approximated by

𝐶𝑛 𝑛𝑁
𝑛

2 and 𝐶𝑛 𝑛 𝑃 + 𝑁
𝑛

2



Gaussian Channel: Definition

A rate 𝑅 is said to be achievable for a Gaussian channel with a power constraint 𝑃 if there 

exists a sequence of (2𝑛𝑅, 𝑛) codes with codewords satisfying the power constraint such that the 

maximal probability of error 𝜆(𝑛) tends to zero. The capacity of the channel is the supremum of 

the achievable rates.

◼ Definition. An (𝑀, 𝑛) code for the Gaussian channel with power constraint 𝑃 consists of the 

following:

1. An index set {1, 2, . . . , 𝑀}.
2. An encoding function 𝑥: {1, 2, . . . , 𝑀} → 𝒳𝑛, yielding codewords 𝑥𝑛 1 , 𝑥𝑛 2 , … ,

𝑥𝑛 𝑀 , satisfying the power constraint 𝑃; that is, for every codeword

෍

𝑖=1

𝑛

𝑥𝑖
2 𝑤 ≤ 𝑛𝑃, 𝑤 = 1,2, … ,𝑀.

3. A decoding function

𝑔:𝒴𝑛 → {1,2, … ,𝑀}
◼ The arithmetic average of the probability of error is defined by 

𝑃𝑒
(𝑛)

=
1

2𝑛𝑅
∑𝜆𝑖



Gaussian Channel: Code Construction 

◼ Generation of the codebook

We generate the codewords (𝑥1, 𝑥2, … , 𝑥𝑛) with each element i.i.d. according to a  

normal distribution with variance 𝑃 − 𝜖. Since for large 𝑛,

1

𝑛
෍𝑥𝑖

2 → 𝑃 − 𝜖

The probability that a codeword does not satisfy the power constraint will be small. 

Let 𝑋𝑖(𝑤),   𝑖 = 1,2, … , 𝑛, 𝑤 = 1,2, … , 2𝑛𝑅 be i.i.d. ∼ 𝒩(0, 𝑃 − 𝜖), forming codewords    

𝑋𝑛 1 , 𝑋𝑛 2 , …, 𝑋𝑛 2𝑛𝑅 ∈ ℛ𝑛

◼ Encoding: 

◼ The codebook is revealed to both the sender and the receiver. 

◼ To send the message index 𝑤, sends the 𝑤th codeword 𝑋𝑛(𝑤) in the codebook.

◼ Decoding: The receiver looks down the list of codewords {𝑋𝑛(𝑤)} and searches for one 

that is jointly typical with the received vector. 

◼ If there is one and only one such codeword 𝑋𝑛(𝑤), the receiver declares ෡𝑊 = 𝑤 to 

be the transmitted codeword. 

◼ Otherwise, the receiver declares an error. The receiver also declares an error if the 

chosen codeword does not satisfy the power constraint.

Random codes and joint typicality: Power constraints and the random variables are continuous  



Gaussian Channel: Probability of Error

Without loss of generality, assume that codeword 1 was sent. Thus, 

𝑌𝑛 = 𝑋𝑛(1) + 𝑍𝑛.
Define the following events:

𝐸0 =
1

𝑛
෍

𝑗=1

𝑛

𝑋𝑗
2 1 > 𝑃

and 

𝐸𝑖 = 𝑋𝑛 𝑖 , 𝑌𝑛 is in 𝐴𝜖
(𝑛)

Pr ℰ 𝑊 = 1 = 𝑃 𝐸0 ∪ 𝐸1
𝑐 ∪ 𝐸2 ∪ 𝐸3…∪ 𝐸2𝑛𝑅 ≤ 𝑃 𝐸0 + 𝑃 𝐸1

𝑐 +෍

𝑖=2

2𝑛𝑅

𝑃 𝐸𝑖

𝑃 𝐸0 → 0
𝑃 𝐸1

𝑐 ≤ 𝜖

෍

𝑖=2

2𝑛𝑅

𝑃 𝐸𝑖 = 2𝑛𝑅 − 1 2−𝑛(𝐼 𝑋;𝑌 −3𝜖) ≤ 2−𝑛(𝐼 𝑋;𝑌 −𝑅−3𝜖)

𝑃𝑒
(𝑛)

≤ 3𝜖
Now choosing a good codebook and deleting 

the worst half of the codewords, we obtain a 

code with low maximal probability of error 

𝜆(𝑛) → 0. (DMC)



Gaussian Channel: Converse

Let 𝑊 be distributed uniformly over 

{1, 2, . . . , 2𝑛𝑅}.
𝑊 → 𝑋𝑛 𝑊 → 𝑌𝑛 → ෡𝑊

By Fano’s inequality 

𝐻 𝑊 ෡𝑊 ≤ 1 + 𝑛𝑅𝑃𝑒
𝑛
= 𝑛𝜖𝑛

where 𝜖𝑛 → 0 as 𝑃𝑒
(𝑛)

→ 0.

𝑛𝑅 = 𝐻 𝑊 = 𝐼 𝑊; ෡𝑊 + 𝐻 𝑊 ෡𝑊

≤ 𝐼 𝑊; ෡𝑊 + 𝑛𝜖𝑛
≤ 𝐼 𝑋𝑛; 𝑌𝑛 + 𝑛𝜖𝑛
= ℎ 𝑌𝑛 − ℎ 𝑌𝑛 𝑋𝑛 + 𝑛𝜖𝑛
= ℎ 𝑌𝑛 − ℎ 𝑍𝑛 + 𝑛𝜖𝑛

≤෍

𝑖=1

𝑛

ℎ 𝑌𝑖 −෍

𝑖=1

𝑛

ℎ 𝑍𝑖 + 𝑛𝜖𝑛

Let 𝑃𝑖 be the average power of the 𝑖th column of 

the codebook

𝑃𝑖 =
1

2𝑛𝑅
෍

𝑤

𝑥𝑖
2(𝑤) and

1

𝑛
෍

𝑖

𝑃𝑖 ≤ 𝑃

Since 𝑋𝑖 and 𝑍𝑖 are independent, then 

𝐸𝑌𝑖
2 = 𝑃𝑖 + 𝑁, ℎ 𝑌𝑖 ≤

1

2
log 2𝜋𝑒 𝑃𝑖 + 𝑁

𝑛𝑅 ≤෍

𝑖=1

𝑛

ℎ 𝑌𝑖 −෍

𝑖=1

𝑛

ℎ 𝑍𝑖 + 𝑛𝜖𝑛

≤ ∑
1

2
log 2𝜋𝑒 𝑃𝑖 + 𝑁 −

1

2
log 2𝜋𝑒𝑁 + 𝑛𝜖𝑛

= ∑
1

2
log 2𝜋𝑒 1 +

𝑃𝑖
𝑁

+ 𝑛𝜖𝑛

𝑓 𝑥 =
1

2
log(1 + 𝑥) is concave

1

𝑛
෍

𝑖=1

𝑛
1

2
log 1 +

𝑃𝑖
𝑁

≤
1

2
log 1 +

1

𝑛
෍

𝑖=1

𝑛
𝑃𝑖
𝑁

≤
1

2
log 1 +

𝑃

𝑁

𝑹 ≤
𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝑷

𝑵
+ 𝝐𝒏



Parallel Gaussian Channel

◼ Assume that we have a set of Gaussian channels in parallel. The output of each channel is the 

sum of the input and Gaussian noise. For channel 𝑗,
𝑌𝑗 = 𝑋𝑗 + 𝑍𝑗 , 𝑗 = 1,2, … , 𝑘

◼ The noise is assumed to be independent from channel to channel. We assume that there is a 

common power constraint on the total power used, that is

𝐸෍

𝑗=1

𝑘

𝑋𝑗
2 ≤ 𝑃

◼ We wish to distribute the power among the various channels so as to maximize the total 

capacity.

◼ 𝑃𝑖 = 𝐸𝑋𝑖
2 ,and ∑𝑃𝑖 ≤ 𝑃

𝑪 = 𝐦𝐚𝐱
𝒇 𝒙𝟏,𝒙𝟐,…,𝒙𝒌 :𝑬 ∑ 𝑿𝒊

𝟐≤𝑷
𝑰(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒌; 𝒀𝟏, 𝒀𝟐, … , 𝒀𝒌)



Parallel Gaussian Channel (cont’d)

◼ 𝐼 𝑋1, 𝑋2, … , 𝑋𝑘; 𝑌1, 𝑌2, … , 𝑌𝑘
= ℎ 𝑌1, 𝑌2, … , 𝑌𝑘 − ℎ 𝑌1, 𝑌2, … , 𝑌𝑘 𝑋1, 𝑋2, … , 𝑋𝑘
= ℎ 𝑌1, 𝑌2, … , 𝑌𝑘 − ℎ 𝑍1, 𝑍2, … , 𝑍𝑘 𝑋1, 𝑋2, … , 𝑋𝑘
= ℎ 𝑌1, 𝑌2, … , 𝑌𝑘 − ℎ 𝑍1, 𝑍2, … , 𝑍𝑘

= ℎ 𝑌1, 𝑌2, … , 𝑌𝑘 −෍

𝑖

ℎ 𝑍𝑖

≤ ∑ℎ 𝑌𝑖 − ℎ 𝑍𝑖

≤෍

𝒊

𝟏

𝟐
𝐥𝐨𝐠 𝟏 +

𝑷𝒊
𝑵𝒊

where 𝑃𝑖 = 𝐸𝑋𝑖
2 ,and ∑𝑃𝑖 = 𝑃. Equality is achieved by

𝑋1, 𝑋2, … , 𝑋𝑘 ∼ 𝒩(0,

𝑃1 0 ⋯ 0
0 𝑃2 ⋯ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑃𝑘

)

◼ We need to optimize

max෍

𝑖

log 1 +
𝑃𝑖
𝑁𝑖

∑𝑃𝑖 = 𝑃

Lagrange and KKT ⇒ Water-filling  



Worst Additive Noise

◼ Under the energy constraint 𝑃, the channel capacity of  additive channel  𝑌 = 𝑋 + 𝑍 is 

𝐶 𝑍 = max
𝑋:𝐸𝑋2≤𝑃

𝐼 𝑋; 𝑌

= max
𝑋:𝐸𝑋2≤𝑃

ℎ 𝑋 + 𝑍 − ℎ(𝑍)

◼ What is the minimum of 𝐶(𝑍), if we could choose 𝑍: 𝐸𝑍2 ≤ 𝑁. 

◼ That is, to play a max-min game between 𝑋 and 𝑍
max

𝑍:𝐸𝑍2≤𝑁
𝐶 𝑍 ≔ min

𝑍:𝐸𝑍2≤𝑁
max

𝑋:𝐸𝑋2≤𝑃
𝐼 𝑋; 𝑋 + 𝑍 = min

𝑍:𝐸𝑍2≤𝑁
max

𝑋:𝐸𝑋2≤𝑃
𝐼 𝑋; 𝑋 + 𝑍

◼ We need to find a 𝑍∗. When 𝐶(𝑍∗) is attained by X∗,
𝐼 𝑋∗; 𝑋∗ + 𝑍∗ ≤ max

𝑋:𝐸𝑋2≤𝑃
𝐼 𝑋; 𝑋 + 𝑍

◼ The 𝐦𝐢𝐧
𝒁:𝑬𝒁𝟐≤𝑵

𝑪(𝒁) is attained iff 𝒁 = 𝒁𝑮 ∼ 𝓝(𝟎, 𝝈𝟐) (Shannon, 1948)

𝒀 = 𝑿 + 𝒁
𝑪 = max𝑿:𝑬𝑿𝟐≤𝑷 𝑰(𝑿; 𝑿 + 𝒁)



Worst Additive Noise

In Gaussian channel 

𝐼 𝑋; 𝑋 + 𝑍∗ ≤ 𝐼 𝑋∗; 𝑋∗ + 𝑍∗ = 𝐶(𝑍∗)
𝐼 𝑋∗; 𝑋∗ + 𝑍

= ℎ 𝑋∗ + 𝑍 − ℎ 𝑍

≥
1

2
log 𝑒2ℎ 𝑋∗ + 𝑒2ℎ 𝑍 − ℎ 𝑍

≥ min
𝑠
𝑓 𝑡, 𝑠

= 𝐼 𝑋∗; 𝑋∗ + 𝑍∗

min
𝑍

max
𝑋

𝐼 𝑋; 𝑋 + 𝑍 = max
𝑋

min
𝑍

𝐼(𝑋; 𝑋 + 𝑍)

=
1

2
log 1 +

𝑃

𝑁

Entropy power inequality (EPI, Shannon 1948): If 𝑋 and 𝑌 are independent random 𝑛-

vectors with densities, then  

𝒆
𝟐
𝒏𝒉(𝑿+𝒀) ≥ 𝒆

𝟐
𝒏𝒉(𝑿) + 𝒆

𝟐
𝒏𝒉(𝒀)

◼ 𝐼 𝑋; 𝑋 + 𝑍 = ℎ 𝑋 + 𝑍 − ℎ 𝑍
◼ By EPI,

ℎ 𝑋 + 𝑍 ≥
1

2
log 𝑒2ℎ 𝑋 + 𝑒2ℎ 𝑍

◼ 𝐼 𝑋; 𝑋 + 𝑍 ≥
1

2
log 𝑒2ℎ 𝑋 + 𝑒2ℎ 𝑍 − ℎ 𝑍

◼ 𝑓 𝑡, 𝑠 =
1

2
log 𝑒2𝑡 + 𝑒2𝑠 − 𝑠, where

𝑡 = ℎ 𝑋 ≤
1

2
log 2𝜋𝑒𝑃

𝑠 = ℎ 𝑍 ≤
1

2
log 2𝜋𝑒𝑁

◼ 𝑓(𝑡, 𝑠) is increasing and convex in 𝑡, and is 

decreasing and convex in 𝑠

◼ Fix 𝑠, 𝑓(𝑡, 𝑠) is maximized if 𝑡 =
1

2
log 2𝜋𝑒𝑃

◼ Fix 𝑡, 𝑓(𝑡, 𝑠) is minimized if 𝑠 =
1

2
log 2𝜋𝑒𝑁

◼ 𝑋∗ ∼ 𝒩(0, 𝑃), 𝑍 ∼ 𝒩(0,𝑁∗)

𝑰 𝑿; 𝑿 + 𝒁∗ ≤ 𝑰 𝑿∗; 𝑿∗ + 𝒁∗ ≤ 𝑰(𝑿∗; 𝑿∗ + 𝒁)
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