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𝐼(𝑋; 𝑌): Correlated Gaussian

(Mutual information between correlated Gaussian random variables with correlation 𝜌) Let 

(𝑋, 𝑌) ∼ 𝒩(0, 𝐾), where

𝑲 =
𝝈𝟐 𝝆𝝈𝟐

𝝆𝝈𝟐 𝝈𝟐

𝑰 𝑿; 𝒀 ?

ℎ 𝑋 = ℎ 𝑌 =
1

2
log 2𝜋𝑒𝜎2

ℎ 𝑋, 𝑌 =
1

2
log 2𝜋𝑒 2|𝐾| =

1

2
log 2𝜋𝑒 2𝜎4 1 − 𝜌2

𝐼 𝑋; 𝑌 = ℎ 𝑋 + ℎ 𝑌 − ℎ 𝑋, 𝑌 = −
1

2
log 1 − 𝜌2

◼ 𝜌 = 0, 𝑋 and 𝑌 are independent and 𝐼 is 0
◼ 𝜌 = ±1, 𝑋 and 𝑌 are perfectly correlated and 𝐼 is ∞



Maximum Entropy with Constraints

1. Let 𝑋𝐺 ∼ 𝒩 𝜇, 𝜎2 . Consider 

𝑫(𝑿| 𝑿𝑮 ≥ 𝟎
Then 

න𝑓 log
𝑓

𝑔
≥ 0

ℎ 𝑋 = ℎ 𝑓 ≤ −∫ 𝑓 log𝑔 = −න𝑓log
1

2𝜋𝜎2
+ 𝑓 −

𝑥 − 𝜇 2

2𝜎2

ℎ 𝑋 ≤
1

2
log 2𝜋𝜎2 +

1

2
=
1

2
log 2𝜋𝑒𝜎2

2.  Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2 ≤ 𝜎2. ⇒ Case 1.

◼ Let the random variable 𝑋 ∈ 𝑅 have mean 𝜇 and variance 𝝈𝟐. Then

𝒉 𝑿 ≤
𝟏

𝟐
𝐥𝐨𝐠𝟐𝝅𝒆𝝈𝟐

with equality iff 𝑿 ∼ 𝓝(𝝁, 𝝈𝟐)
◼ Let the random variable 𝑋 ∈ 𝑅 satisfy 𝐸𝑋2 ≤ 𝜎2. Then

𝒉 𝑿 ≤
𝟏

𝟐
𝐥𝐨𝐠𝟐𝝅𝒆𝝈𝟐

with equality iff 𝑋 ∼ 𝒩(0, 𝜎2)

𝑬 𝑿𝟐 , 𝐕𝐚𝐫(𝐗)给定的情况下，
高斯分布最大化微分熵



Maximum Entropy

Theorem 12.1.1 (Maximum entropy distribution) Let 

𝑓∗ 𝑥 = 𝑓𝜆 𝑥 = 𝑒𝜆0+σ𝑖=1
𝑚 𝜆𝑖𝑟𝑖 𝑥

𝑥 ∈ 𝑆, where 𝜆0, . . . , 𝜆𝑚 are chosen so that 𝑓∗ satisfies (+ +). Then 𝑓∗ uniquely maximizes ℎ(𝑓) over 

all probability densities f satisfying constraints (+ +).

Ref: Cover Ch. 12

◼ Let 𝑆 = [𝑎, 𝑏], with no other constraints. Then the maximum entropy distribution is the uniform 

distribution over this range.

◼ 𝑆 = [0,∞) and 𝐸𝑋 = 𝜇. Then the entropy-maximizing distribution is

𝑓 𝑥 =
1

𝜇
𝑒
−
𝑥
𝜇, 𝑥 ≥ 0

◼ 𝑆 = (−∞,∞), 𝐸𝑋 = 𝛼1, and 𝐸𝑋2 = 𝛼2. The maximum entropy distribution is 𝒩 𝛼1, 𝛼2 − 𝛼1
2

Consider the following problem: Maximize the entropy ℎ(𝑓) over all probability densities 𝑓 satisfying

1. 𝑓 𝑥 ≥ 0, with equality outside the support

2. ∫𝑠 𝑓 𝑥 𝑑𝑥 = 1 (+ +)

3. ∫𝑆 𝑓 𝑥 𝑟𝑖 𝑥 𝑑𝑥 = 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑚. (𝑟𝑖(𝑥) is a function of 𝑥)

Thus, 𝑓 is a density on support set S meeting certain moment constraints 𝛼1, 𝛼2, . . . , 𝛼𝑚.



Hadamard’s Inequality

Theorem  (Hadamard) 𝐾 ≤ ∏𝐾𝑖𝑖, with equality iff 𝐾𝑖𝑗 = 0, 𝑖 ≠ 𝑗

Let X ∼ 𝒩 0,𝐾 . Then

1

2
log 2𝜋𝑒 𝑛 𝐾 = 𝒉 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 ≤ σ𝒉 𝑿𝒊 =

𝑖=1

𝑛
1

2
log 2𝜋𝑒 𝐾𝑖𝑖

with equality iff 𝑋1, 𝑋2, … , 𝑋𝑛 are independent (i.e., 𝐾𝑖𝑗 = 0, 𝑖 ≠ 𝑗 ) 

◼ A general technique to deal with nonnegative 

definite symmetric matrix 𝐾
◼ Ref. Ch. 17.9, 17.10, Cover 

𝐾 is a nonnegative definite symmetric 𝑛 × 𝑛 matrix. Let |𝐾| denote the determinant of 𝐾.

◼ log |𝐾| is concave

◼ log(|𝐾𝑛|/|𝐾𝑛−𝑝|) is concave in 𝐾𝑛
◼ |𝐾𝑛|/ 𝐾𝑛−1 is concave in 𝐾𝑛



Balanced Information Inequality 

Balanced: If the net weights of 𝑿, 𝐘, 𝐙 are all zero.

ℎ 𝑋, 𝑌 ≤ ℎ 𝑋 + ℎ 𝑌 and ℎ 𝑋, 𝑌, 𝑍 ≤
1

2
ℎ 𝑋, 𝑌 +

1

2
ℎ 𝑌, 𝑍 +

1

2
ℎ(𝑍, 𝑋)

Let 𝑛 := 1,2, … , 𝑛 . For any 𝛼 ⊆ [𝑛], denote (𝑋𝑖: 𝑖 ∈ 𝛼) by 𝑋𝛼 . For example, 𝛼 = {1,3, 4}, we 

denote 𝑋1, 𝑋3, 𝑋4 by 𝑋 1,3,4 for simplicity. 

◼ We could write any information inequality in the form σ𝛼𝑤𝛼 𝐻 𝑋𝛼 ≥ 0 or σ𝛼𝑤𝛼 ℎ 𝑋𝛼 ≥ 0.

◼ An information inequality is called balanced if for any 𝑖 ∈ [𝑛], the net weight of 𝑋𝑖 is zero.

◼ The linear continuous inequality σ𝛼𝑤𝛼 ℎ 𝑋𝛼 ≥ 0 is valid if and only if its corresponding 

discrete counterpart σ𝛼𝑤𝛼 𝐻 𝑋𝛼 ≥ 0 is valid and balanced.

Ref: Balanced Information Inequalities, T. H. Chan, IEEE Transactions 

on Information Theory, Vol. 49, No. 12, December 2003

Differences between inequalities of the discrete entropy and differential entropy

◼ Both 𝐻 𝑋, 𝑌 ≤ 𝐻 𝑋 + 𝐻(𝑌) and ℎ 𝑋, 𝑌 ≤ ℎ 𝑋 + ℎ(𝑌) are valid

◼ 𝐻 𝑋, 𝑌 ≥ 𝐻(𝑋) but neither ℎ 𝑋, 𝑌 ≥ ℎ(𝑋) nor ℎ 𝑋, 𝑌 ≤ ℎ 𝑋 is valid

Take 𝐻 𝑋, 𝑌, 𝑍 ≤
1

4
𝐻 𝑋 +

1

2
𝐻 𝑌, 𝑍 +

3

4
𝐻(𝑍, 𝑋) for example. 

Count the weights of random variables 𝑋, 𝑌, 𝑍 in both sides

𝑋: 1, 1; 𝑌: 1,
1

2
; 𝑍: 1,

5

4
The net weights of 𝑋, 𝑌, 𝑍 are 0,

1

2
, −

1

4



Han’s Inequality

Han’s inequality:

ℎ1
(𝑛)

≥ ℎ2
𝑛
… ≥ ℎ𝑛

𝑛
= 𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 /𝑛 = 𝑔𝑛

𝑛
≥ ⋯ ≥ 𝑔2

𝑛
≥ 𝑔1

𝑛

◼ Let (𝑋1, 𝑋2, … , 𝑋𝑛) have a density, and for every 𝑺 ⊆ 𝟏, 𝟐, … , 𝒏 , denoted by 𝑋(𝑆)
the subset {𝑋𝑖: 𝑖 ∈ 𝑆}. Let

ℎ𝑘
(𝑛)

=
1
𝑛
𝑘



𝑆: 𝑆 =𝑘

ℎ 𝑋 𝑆

𝑘

𝑔𝑘
(𝑛)

=
1
𝑛
𝑘



𝑆: 𝑆 =𝑘

ℎ 𝑋 𝑆 |𝑋(𝑆𝑐)

𝑘

◼ When 𝑛 = 3,

ℎ1
(3)

=
𝐻 𝑋1 + 𝐻 𝑋2 + 𝐻 𝑋3

3
≥ ℎ2

(3)
=
𝐻 𝑋1, 𝑋2 + 𝐻 𝑋2, 𝑋3 + 𝐻 𝑋3, 𝑋1

6
≥ ℎ3

3
= 𝐻 𝑋1, 𝑋2, 𝑋3 /3

𝑔1
(3)

=
𝐻 𝑋1|𝑋2, 𝑋3 + 𝐻 𝑋2|𝑋1, 𝑋3 + 𝐻 𝑋3|𝑋1, 𝑋2

3

≤ 𝑔2
3
=
𝐻 𝑋1, 𝑋2|𝑋3 + 𝐻 𝑋2, 𝑋3|𝑋1 + 𝐻 𝑋3, 𝑋1|𝑋2

6
≤ 𝑔3

3
= 𝐻 𝑋1, 𝑋2, 𝑋3 /3



Information of Heat 

◼ Heat equation (Fourier): Let 𝑥 be the position and 𝑡 be the time,

𝝏

𝝏𝒕
𝒇 𝒙, 𝒕 =

𝟏

𝟐

𝝏𝟐

𝝏𝒙𝟐
𝒇(𝒙, 𝒕)

◼ Let 𝑋 be any random variable with a density 𝑓 𝑥 . Let 𝑍 be an independent normally 

distributed random variable with zero mean and unit variance, 𝑍 ∼ 𝒩(0,1). Let 

𝑌𝑡 = 𝑋 + 𝑡𝑍
The probability density function 𝒇(𝒚; 𝒕) (𝑓(𝑦; 𝑡) is a function in 𝑦, not 𝑡)  of 𝑌𝑡 satisfies heat      

equation

𝒇 𝒚; 𝒕 = න𝒇 𝒙
𝟏

𝟐𝝅𝒕
𝒆−

𝒚−𝒙 𝟐

𝟐𝒕 𝒅𝒙

Gaussian channel ↔ Heat equation



Entropy and Fisher Information

Fisher information: Let 𝑋 be any random variable with density 𝑓 𝑥 . Its Fisher information is 

given by 

𝑰 𝑿 = න
−∞

+∞

𝒇 𝒙

𝝏
𝝏𝒙

𝒇 𝒙

𝒇 𝒙

𝟐

𝒅𝒙

◼ Let 𝑋 be any random variable with a density 𝑓 𝑥 . Let 𝑍 be an independent normally 

distributed random variable with zero mean and unit variance. Let 𝑌𝑡 = 𝑋 + 𝑡𝑍
𝝏

𝝏𝒕
𝒉 𝒀𝒕 =

𝟏

𝟐
𝑰(𝒀𝒕)

◼ Let 𝑓 𝑦, 𝑡 (or 𝑓)  be the p.d.f of 𝑌𝑡
𝜕

𝜕𝑡
ℎ 𝑌𝑡 =

1

2
𝐼 𝑌𝑡 =

1

2
න
𝑓𝑦
2

𝑓
𝑑𝑦 ≥ 0

𝜕2

𝜕𝑡2
ℎ 𝑌𝑡 = −

1

2
න𝑓

𝑓𝑦𝑦

𝑓
−
𝑓𝑦
2

𝑓2

2

𝑑𝑦 ≤ 0

◼ When 𝑋 is Gaussian 𝒩(0,1), 

ℎ 𝑌𝑡 =
1

2
log 2𝜋𝑒(1 + 𝑡)

All the derivatives alternate in signs: +, -, +, -, …



Higher Order Derivatives of ℎ(𝑌𝑡)

(Cheng 2015) Let 𝑋 be any random variable with a density 𝑓 𝑥 . Let 𝑍 be an independent 

normally distributed random variable with zero mean and unit variance. Let 𝑌𝑡 = 𝑋 + 𝑡𝑍 and

𝑓 𝑦, 𝑡 (or 𝑓)  be the p.d.f of 𝑌𝑡. Then

𝜕3

𝜕𝑡3
ℎ 𝑌𝑡 ≥ 0 and

𝜕4

𝜕𝑡4
ℎ 𝑌𝑡 ≤ 0

Conjecture: When 𝑛 is even,  
𝜕𝑛

𝜕𝑡𝑛
ℎ 𝑌𝑡 ≤ 0, otherwise 

𝜕𝑛

𝜕𝑡𝑛
ℎ 𝑌𝑡 ≥ 0

“This suggests that……, etc., but 

I could not prove it”  (1966)

H. P. McKean 

Ref: F. Cheng and Y. Geng, ‘‘Higher Order Derivatives in Costa's 

Entropy Power Inequality’’

C. Villani

2010 Fields medalist



EPI and FII

(Shannon 1948, Entropy power inequality (EPI)) If 𝑋 and 𝑌 are independent random 𝑛-vectors 

with densities, then

𝑒
2
𝑛
ℎ(𝑋+𝑌) ≥ 𝑒

2
𝑛
ℎ(𝑋) + 𝑒

2
𝑛
ℎ(𝑌)

𝑒2ℎ(𝑋+𝑌) ≥ 𝑒2ℎ 𝑋 + 𝑒2ℎ 𝑌 (𝑛 = 1)
◼ Fisher information inequality (FII)

1

𝐼 𝑋 + 𝑌
≥

1

𝐼 𝑋
+

1

𝐼 𝑌
◼ Most profound result in Shannon’s 1948 paper

◼ EPI can imply some very fundamental results

◼ Uncertainty principle

◼ Young’s inequality 

◼ Nash’s inequality 

◼ Cramer-Rao bound

Reference

◼ T. Cover, ‘‘Information theoretic inequalities,’’ 1990

◼ O. Rioul, “Information Theoretic Proofs of Entropy Power 

Inequalities,” 2011
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