EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ICHARD P. FEYNMAN

FEYNMAN

LECTURES.ON
COMPUTATION

TEYNMAN
ECTURES on

COMPUTATION

Photograph courtesy of Michelle Feynman and Carl R. Feynman

TEYNMAN

L ECTL

(OMPL

RTS on
TATION

RicHARD P. Feynman

Lpitop 2y
Towy Hev w RobiN W ALLON

Department of Flectronics and Computer Science
University of Southampton
England

THE ADVANCED BOOK PROGRAM

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

First published 1996 by Westview Press

Published 2018 by CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

CRC Press is an imprint of the Taylor & Francis Group, an informa business

Copyright © 1996 by Carl R. Feynman and Michelle Feynman

Foreword and Afterword copyright © 1996 by Anthony J.G. Hey and Robin W.
Allen

No claim to original U.S. Government works

This book contains information obtained from authentic and highly regarded
sources. Reasonable efforts have been made to publish reliable data and information,
but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http:/fwww.taylorandfrancis.com

and the CRC Press Web site at
http:/fwww.crcpress.com

A Cataloging-in-Publication record for this book is available from the Library of
Congress.

Text design and typesetting by Tony Hey

ISBN 13: 9780-7382-0296-9 (pbk)

Foreword

CONTENTS

Preface (Richard Feynman)

1 Introduction to Computers

1.1
1.2
1.3

The File Clerk Model
Instruction Sets
Summary

2 Computer Organization

2.1
2.2
23
24
25
2.6

Gates and Combinational Logic
The Binary Decoder

More on Gates: Reversible Gates
Complete Sets of Operators
Flip-Flops and Computer Memory
Timing and Shift Registers

3 The Theory of Computation

3.1
32
33
3.4
3.5
3.6
3.7

Effective Procedures and Computability

Finite State Machines

The Limitations of Finite State Machines

Turing Machines

More on Turing Machines

Universal Turing Machines and the Halting Problem
Computability

viii

Xiil

~J 00 L

20

20
30
34
39
42
46

52

52
55
60
66
75
80
88

vi

CONTENTS

4 Coding and Information Theory

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Computing and Communication Theory
Error Detecting and Correcting Codes
Shannon’s Theorem

The Geometry of Message Space

Data Compression and Information
Information Theory

Further Coding Techniques

Analogue Signal Transmission

5 Reversible Computation and the
Thermodynamics of Computing

5.1
52

53
54
55
5.6

The Physics of Information

Reversible Computation and the
Thermodynamics of Computing
Computation: Energy Cost versus Speed
The General Reversible Computer

The Billiard Ball Computer

Quantum Computation

6 Quantum Mechanical Computers
(Reprinted from Optics News, February 1985)

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Computation with a Reversible Machine

A Quantum Mechanical Computer
Imperfections and Irreversible Free Energy Loss
Simplifying the Implementation

Conclusions

References

94

95

95
106
110
115
120
123
129

137

137

151
167
172
176
182

185

185
187
191
199
202
210
211

CONTENTS

vii

7 Physical Aspects of Computation
A Caveat from the Editors
7.1 The Physics of Semiconductor Devices
7.2 Energy Use and Heat Loss in Computers
7.3 VLSI Circuit Construction
7.4 Further Limitations on Machine Design

Afterword: Memories of Richard Feynman

Suggested Reading
Index

212
212
213
238
257
274
284

294
297

Editor’s Foreword

Since it is now some eight years since Feynman died I feel it necessary to
explain the genesis of these ‘Feynman Lectures on Computation’. In November
1987 I received a call from Helen Tuck, Feynman’s secretary of many years,
saying that Feynman wanted me to write up his lecture notes on computation for
publication. Sixteen years earlier, as a post-doc at CalTech I had declined the
opportunity to edit his ‘Parton’ lectures on the grounds that it would be a
distraction from my research. I had often regretted this decision so I did not take
much persuading to give it a try this time around. At CalTech that first time, I
was a particle physicist, but ten years later, on a sabbatical visit to CalTech in
1981, I became interested in computational physics problems — playing with
variational approaches that (I later found out) were similar to techniques
Feynman had used many years before. The stimulus of a CalTech colloquium
on ‘The Future of VLSI’ by Carver Mead then began my move towards parallel
computing and computer science.

Feynman had an interest in computing for many years, dating back to the
Manhattan project and the modeling of the plutonium implosion bomb. In ‘Los
Alamos from Below’, published in ‘Surely You’re Joking, Mr. Feynman!’,
Feynman recounts how he was put in charge of the ‘IBM group’ to calculate the
energy release during implosion. Even in those days before the advent of the
digital computer, Feynman and his team worked out ways to do bomb
calculations in parallel. The official record at CalTech lists Feynman as joining
with John Hopfield and Carver Mead in 1981 to give an interdisciplinary course
entitled ‘The Physics of Computation’. The course was given for two years and
John Hopfield remembers that all three of them never managed to give the
course together in the same year: one year Feynman was ill, and the second year
Mead was on leave. A handout from the course of 1982/3 reveals the flavor of
the course: a basic primer on computation, computability and information theory
followed by a section entitled ‘Limits on computation arising in the physical
world and "fundamental” limits on computation’. The lectures that year were
given by Feynman and Hopfield with guest lectures from experts such as Marvin
Minsky, John Cocke and Charles Bennett. In the spring of 1983, through his
connection with MIT and his son Carl, Feynman worked as a consultant for
Danny Hillis at Thinking Machines, an ambitious, new parallel computer
company.

In the fall of 1983, Feynman first gave a course on computing by himself,
listed in the CalTech record as being called ‘Potentialities and Limitations of

EDITOR’'S FOREWORD ix

Computing Machines’. In the years 1984/85 and 1985/86, the lectures were
taped and it is from these tapes and Feynman’s notebooks that these lecture
notes have been reconstructed. In reply to Helen Tuck, I told her I was visiting
CalTech in January of 1988 to talk at the ‘Hypercube Conference’. This was a
parallel computing conference that originated from the pioneering work at
CalTech by Geoffrey Fox and Chuck Seitz on their ‘Cosmic Cube’ parallel
computer. I talked with Feynman in January and he was very keen that his
lectures on computation should see the light of day. I agreed to take on the
project and returned to Southampton with an agreement to keep in touch. Alas,
Feynman died not long after this meeting and we had no chance for a more
detailed dialogue about the proposed content of his published lectures.

Helen Tuck had forwarded to me both a copy of the tapes and a copy of
Feynman’s notes for the course. It proved to be a lot of work to put his lectures
in a form suitable for publication. Like the earlier course with Hopfield and
Mead, there were several guest lecturers giving one or more lectures on topics
ranging from the programming language ‘Scheme’ to physics applications on the
‘Cosmic Cube’. I also discovered that several people had attempted the task
before me! However, the basic core of Feynman’s contribution to the course
rapidly became clear — an introductory section on computers, followed by five
sections exploring the limitations of computers arising from the structure of
logic gates, from mathematical logic, from the unreliability of their components,
from the thermodynamics of computing and from the physics of semiconductor
technology. In a sixth section, Feynman discussed the limitations of computers
due to quantum mechanics. His analysis of quantum mechanical computers was
presented at a meeting in Anaheim in June of 1984 and subsequently published
in the journal ‘Optics News’ in February 1985. These sections were followed by
lectures by invited speakers on a wide range of ‘advanced applications’ of
computers — robotics, Al, vision, parallel architectures and many other topics
which varied from year to year.

As advertised, Feynman’s lecture course set out to explore the limitations
and potentialities of computers. Although the lectures were given some ten years
ago, much of the material is relatively ‘timeless’ and represents a Feynmanesque
overview of some standard topics in computer science. Taken as a whole,
however, the course is unusual and genuinely interdisciplinary. Besides giving
the ‘Feynman treatment’ to subjects such as computability, Turing machines (or
as Feynman says, ‘Mr. Turing’s machines’), Shannon’s theorem and information
theory, Feynman also discusses reversible computation, thermodynamics and
quantum computation. Such a wide-ranging discussion of the fundamental basis
of computers is undoubtedly unique and a ‘sideways’, Feynman-type view of the

X LECTURES ON COMPUTATION

whole of computing. This does not mean to say that all aspects of computing are
discussed in these lectures and there are many omissions, programming
languages and operating systems, to name but two. Nevertheless, the lectures do
represent a summary of our knowledge of the truly fundamental limitations of
digital computers. Feynman was not a professional computer scientist and he
covers a large amount of material very rapidly, emphasizing the essentials rather
than exploring details. Nevertheless, his approach to the subject is resolutely
practical and this is underlined in his treatment of computability theory by his
decision to approach the subject via a discussion of Turing machines. Feynman
takes obvious pleasure in explaining how something apparently so simple as a
Turing machine can arrive at such momentous conclusions. His philosophy of
learning and discovery also comes through strongly in these lectures. Feynman
constantly emphasizes the importance of working things out for yourself, trying
things out and playing around before looking in the book to see how the
‘experts’ have done things. The lectures provide a unique insight into Feynman’s
way of working.

I have used editorial license here and there in ways I should now explain.
In some places there are footnotes labeled ‘RPF’ which are asides that Feynman
gave in the lecture that in a text are best relegated to a footnote. Other footnotes
are labeled ‘Editors’, referring to comments inserted by me and my co-editor
Robin Allen. I have also changed Feynman’s notation in a few places to
conform to current practice, for example, in his representation of MOS
transistors.

Feynman did not learn subjects in a conventional way. Typically, a
colleague would tell him something that interested him and he would go off and
work out the details for himself. Sometimes, by this process of working things
out for himself, Feynman was able to shed new light on a subject. His analysis
of quantum computation is a case in point but it also illustrates the drawback of
this method for others. In the paper on quantum computation there is a footnote
after the references that is typically Feynman. It says: ‘I would like to thank T.
Toffoli for his help with the references’. With his unique insight and clarity of
thinking Feynman was often able not only to make some real progress but also
to clarify the basis of the whole problem. As a result Feynman’s paper on
quantum computation is widely quoted to the exclusion of other lesser mortals
who had made important contributions along the way. In this case, Charles
Bennett is referred to frequently, since Feynman first heard about the problem
from Bennett, but other pioneers such as Rolf Landauer and Paul Benioff are
omitted. Since I firmly believe that Feynman had no wish to take credit from
others I have taken the liberty of correcting the historical record in a few places

EDITOR’'S FOREWORD xi

and refer the reader, in a footnote, to more complete histories of the subject. The
plain truth was that Feynman was not interested in the history of a subject but
only the actual problem to be solved!

I have exercised my editorial prerogative in one other way, namely in
omitting a few lectures on topics that had become dated or superseded since the
mid 1980’s. However, in order to give a more accurate impression of the course,
there will be a companion volume to these lectures which contains articles on
‘advanced topics’ written by the self-same ‘experts’ who participated in these
courses at CalTech. This complementary volume will address the advances made
over the past ten years and will provide a fitting memorial to Feynman’s
explorations of computers.

There are many acknowledgements necessary in the successful completion
of a project such as this. Not least I should thank Sandy Frey and Eric Mjolness,
who both tried to bring some order to these notes before me. I am grateful to
Geoffrey Fox, for trying to track down students who had taken the courses, and
to Rod van Meter and Takako Matoba for sending copies of their notes. I would
also like to thank Gerry Sussman, and to place on record my gratitude to the
late Jan van de Sneepscheut, for their initial encouragement to me to undertake
this task. Gerry had been at CalTech, on leave from MIT, when Feynman
decided to go it alone, and he assisted Feynman in planning the course.

I have tried to ensure that all errors of (my) understanding have been
eliminated from the final version of these lectures. In this task I have been
helped by many individuals. Rolf Landauer kindly read and improved Chapter
5 on reversible computation and thermodynamics and guided me patiently
through the history of the subject. Steve Furber, designer of the ARM RISC
processor and now a professor at the University of Manchester, read and
commented in detail on Chapter 7 on VLSI — a topic of which I have little first-
hand knowledge. Several colleagues of mine at Southampton also helped me
greatly with the text: Adrian Pickering and Ed Zaluska on Chapters 1 and 2;
Andy Gravell on Chapter 3; Lajos Hanzo on Chapter 4; Chris Anthony on
Chapter 5; and Peter Ashburn, John Hamel, Greg Parker and Ed Zaluska on
Chapter 7. David Barron, Nick Barron and Mike Quinn, at Southampton, and
Tom Knight at MIT, were kind enough to read through the entire manuscript
and, thanks to their comments, many errors and obscurities have been removed.
Needless to say, I take full responsibility for any remaining errors or confusions!
I must also thank Bob Churchhouse of Cardiff University for information on
Baconian ciphers, Bob Nesbitt of Southampton University for enlightening me
about the geologist William Smith, and James Davenport of Bath University for

xii LECTURES ON COMPUTATION

help on references pertaining to the algorithmic solution of integrals. I am also
grateful to the Optical Society of America for permission to reproduce, in
slightly modified form, Feynman’s classic 1985 ‘Optics News’ paper on
Quantum Mechanical Computing as Chapter 6 of these lectures.

After Feynman died, I was greatly assisted by his wife Gweneth and a
Feynman family friend, Dudley Wright, who supported me in several ways, not
least by helping pay for the lecture tapes to be transcribed. I must also pay
tribute to my co-editor, Robin Allen, who helped me restart the project after the
long legal wrangling about ownership of the Feynman archive had been decided,
and without whom this project would never have seen the light of day. Gratitude
is also due to Michelle Feynman, and to Carl Feynman and his wife Paula, who
have constantly supported this project through the long years of legal stalemate
and who have offered me every help. A word of thanks is due to Allan Wylde,
then Director of the Advanced Book Program at Addison-Wesley, who showed
great faith in the project in its early stages. Latterly, Jeff Robbins and Heather
Mimnaugh at Addison-Wesley Advanced Books have shown exemplary patience
with the inevitable delays and my irritating persistence with seemingly
unimportant details. Lastly, I must record my gratitude to Helen Tuck for her
faith in me and her conviction that I would finish the job — a belief I have not
always shared! I hope she likes the result.

Tony Hey
Electronics and Computer Science Department
University of Southampton

England

May 1996

FEYNMAN’S PREFACE

When I produced the Lectures on Physics, some thirty years ago now, I saw
them as an aid to students who were intending to go into physics. I also
lamented the difficulties of cramming several hundred years’ worth of science
into just three volumes. With these Lectures on Computation, matters are
somewhat easier, but only just. Firstly, the lectures are not aimed solely at
students in computer science, which liberates me from the shackles of exam
syllabuses and allows me to cover areas of the subject for no more reason than
that they are interesting. Secondly, computer science is not as old as physics; it
lags by a couple of hundred years. However, this does not mean that there is
significantly less on the computer scientist’s plate than on the physicist’s:
younger it may be, but it has had a far more intense upbringing! So there is still
plenty for us to cover.

Computer science also differs from physics in that it is not actually a
science. It does not study natural objects. Neither is it, as you might think,
mathematics; although it does use mathematical reasoning pretty extensively.
Rather, computer science is like engineering — it is all about getting something
to do something, rather than just dealing with abstractions as in pre-Smith
geology'. Today in computer science we also need to "go down into the mines"
— later we can generalize. It does no harm to look at details first.

But this is not to say that computer science is all practical, down to earth
bridge-building. Far from it. Computer science touches on a variety of deep
issues. It has illuminated the nature of language, which we thought we
understood: early attempts at machine translation failed because the old-
fashioned notions about grammar failed to capture all the essentials of language.
It naturally encourages us to ask questions about the limits of computability,
about 'what we can and cannot know about the world around us. Computer
science people spend a lot of their time talking about whether or not man is
merely a machine, whether his brain is just a powerful computer that might one
day be copied; and the field of ‘artificial intelligence’ — I prefer the term
‘advanced applications’ — might have a lot to say about the nature of ‘real’

! William Smith was the father of modern geology; in his work as a canal and mining engineer he
observed the systematic layering of the rocks, and recognized the significance of fossils as a means
of determining the age of the strata in which they occur. Thus was he led to formulate the
superposition principle in which rocks are successively laid down upon older layers. Prior to Smith’s
great contribution, geology was more akin to armchair philosophy than an empirical science.
[Editors]

Xiv LECTURES ON COMPUTATION

intelligence, and mind. Of course, we might get useful ideas from studying how
the brain works, but we must remember that automobiles do not have legs like
cheetahs nor do airplanes flap their wings! We do not need to study the
neurologic minutiae of living things to produce useful technologies; but even
wrong theories may help in designing machines. Anyway, you can see that
computer science has more than just technical interest.

These lectures are about what we can and can’t do with machines today,
and why. I have attempted to deliver them in a spirit that should be
recommended to all students embarking on the writing of their PhD theses:
imagine that you are explaining your ideas to your former smart, but ignorant,
self, at the beginning of your studies! In very broad outline, after a brief
introduction to some of the fundamental ideas, the next five chapters explore the
limitations of computers — from logic gates to quantum mechanics! The second
part consists of lectures by invited experts on what I’ve called advanced
applications — vision, robots, expert systems, chess machines and so on’.

A companion volume to these lectures is in preparation. As far as is possible, this second
volume will contain articles on ‘advanced applications’ by the same experts who contributed to
Feynman’s course but updated to reflect the present state of the art. [Editors]

ONE

INTRODUCTION TO COMPUTERS

Computers can do lots of things. They can add millions of numbers in the
twinkling of an eye. They can outwit chess grandmasters. They can guide
weapons to their targets. They can book you onto a plane between a guitar-
strumming nun and a non-smoking physics professor. Some can even play the
bongoes. That’s quite a variety! So if we’re going to talk about computers, we’d
better decide right now which of them we’re going to look at, and how.

In fact, we’re not going to spend much of our time looking at individual
machines. The reason for this is that once you get down to the guts of
computers you find that, like people, they tend to be more or less alike. They
can differ in their functions, and in the nature of their inputs and outputs — one
can produce music, another a picture, while one can be set running from a
keyboard, another by the torque from the wheels of an automobile — but at heart
they are very similar. We will hence dwell only on their innards. Furthermore,
we will not assume anything about their specific Input/Output (I/O) structure,
about how information gets into and out of the machine; all we care is that,
however the input gets in, it is in digital form, and whatever happens to the
output, the last the innards see of it, it’s digital too; by digital, I mean binary
numbers: 1’s and 0’s.

What does the inside of a computer look like? Crudely, it will be built out
of a set of simple, basic elements. These elements are nothing special — they
could be control valves, for example, or beads on an abacus wire — and there
are many possible choices for the basic set. All that matters is that they can be
used to build everything we want. How are they arranged? Again, there will be
many possible choices; the relevant structure is likely to be determined by
considerations such as speed, energy dissipation, aesthetics and what have you.
Viewed this way, the variety in computers is a bit like the variety in houses: a
Beverly Hills condo might seem entirely different from a garage in Yonkers, but
both are built from the same things — bricks, mortar, wood, sweat — only the
condo has more of them, and arranged differently according to the needs of the
owners. At heart they are very similar.

Let us get a little abstract for the moment and ask: how do you connect
up which set of elements to do the most things? It’s a deep question. The answer
again is that, up to a point, it doesn’t matter. Once you have a computer that can

2 LECTURES ON COMPUTATION

do a few things — strictly speaking, one that has a certain "sufficient set" of
basic procedures — it can do basically anything any other computer can do. This,
loosely, is the basis of the great principle of "Universality". Whoa! You cry. My
pocket calculator can’t simulate the red spot on Jupiter like a bank of Cray
supercomputers! Well, yes it can: it would need rewiring, and we would need
to soup up its memory, and it would be damned slow, but if it had long enough
it could reproduce anything the Crays do. Generally, suppose we have two
computers A and B, and we know all about A — the way it works, its "state
transition rules" and what-not. Assume that machine B is capable of merely
describing the state of A. We can then use B to simulate the running of A by
describing its successive transitions; B will, in other words, be mimicking A. It
could take an eternity to do this if B is very crude and A very sophisticated, but
B will be able to do whatever A can, eventually. We will prove this later in the
course by designing such a B computer, known as a Turing machine.

Let us look at universality another way. Language provides a useful
source of analogy. Let me ask you this: which is the best language for
describing something? Say: a four-wheeled gas-driven vehicle. Of course, most
languages, at least in the West, have a simple word for this; we have
"automobile", the English say "car", the French "voiture", and so on. However,
there will be some languages which have not evolved a word for "automobile",
and speakers of such tongues would have to invent some, possibly long and
complex, description for what they see, in terms of their basic linguistic
elements. Yet none of these descriptions is inherently "better" than any of the
others: they all do their job, and will only differ in efficiency. We needn’t
introduce democracy just at the level of words. We can go down to the level of
alphabets. What, for example, is the best alphabet for English? That is, why
stick with our usual 26 letters? Everything we can do with these, we can do with
three symbols — the Morse code, dot, dash and space; or two — a Baconian
cipher, with A through Z represented by five-digit binary numbers. So we see
that we can choose our basic set of elements with a lot of freedom, and all this
choice really affects is the efficiency of our language, and hence the sizes of our
books: there is no "best" language or alphabet — each is logically universal, and
each can model any other. Going back to computing, universality in fact states
that the set of complex tasks that can be performed using a "sufficient” set of
basic procedures is independent of the specific, detailed structure of the basic
set.

For today’s computers to perform a complex task, we need a precise and
complete description of how to do that task in terms of a sequence of simple
basic procedures — the "software"” — and we need a machine to carry out these

INTRODUCTION TO COMPUTERS 3

procedures in a specifiable order — this is the "hardware". This instructing has
to be exact and unambiguous. In life, of course, we never tell each other exactly
what we want to say; we never need to, as context, body language, familiarity
with the speaker, and so on, enable us to "fill in the gaps" and resolve any
ambiguities in what is said. Computers, however, can’t yet "catch on" to what
is being said, the way a person does. They need to be told in excruciating detail
exactly what to do. Perhaps one day we will have machines that can cope with
approximate task descriptions, but in the meantime we have to be very prissy
about how we tell computers to do things.

Let us examine how we might build complex instructions from a set of
rudimentary elements. Obviously, if an instruction set B (say) is very simple,
then a complex process is going to take an awful lot of description, and the
resulting "programs” will be very long and complicated. We may, for instance,
want our computer to carry out all manner of numerical calculations, but find
ourselves with a set B which doesn’t include multiplication as a distinct
operation. If we tell our machine to multiply 3 by 35, it says "what?" But
suppose B does have addition; if you think about it, you’ll see that we can get
it to multiply by adding lots of times — in this case, add 35 to itself twice.
However, it will clearly clarify the writing of B-programs if we augment the set
B with a separate "multiply” instruction, defined by the chunk of basic B
instructions that go to make up multiplication. Then when we want to multiply
two numbers, we say "computer, 3 times 35", and it now recognizes the word
"times" — it is just a lot of adding, which it goes off and does. The machine
breaks these compound instructions down into their basic components, saving
us from getting bogged down in low level concepts all the time. Complex
procedures are thus built up stage by stage. A very similar process takes place
in everyday life; one replaces with one word a set of ideas and the connections
between them. In referring to these ideas and their interconnections we can then
use just a single word, and avoid having to go back and work through all the
lower level concepts. Computers are such complicated objects that simplifying
ideas like this are usually necessary, and good design is essential if you want to
avoid getting completely lost in details.-

We shall begin by constructing a set of primitive procedures, and examine
how to perform operations such as adding two numbers or transferring two
numbers from one memory store to another. We will then go up a level, to the
next order of complexity, and use these instructions to produce operations like
multiply and so on. We shall not go very far in this hierarchy. If you want to
see how far you can go, the article on Operating Systems by P.J. Denning and

4 LECTURES ON COMPUTATION

R.L. Brown (Scientific American, September 1984, pp. 96-104) identifies thirteen
levels! This goes from level 1, that of electronic circuitry — registers, gates,
buses — to number 13, the Operating System Shell, which manipulates the user
programming environment. By a hierarchical compounding of instructions, basic
transfers of 1’s and 0’s on level one are transformed, by the time we get to
thirteen, into commands to land aircraft in a simulation or check whether a forty
digit number is prime. We will jump into this hierarchy at a fairly low level, but
one from which we can go up or down.

Also, our discussion will be restricted to computers with the so-called
"Von Neumann architecture". Don’t be put off by the word "architecture”; it’s
just a big word for how we arrange things, only we’re arranging electronic
components rather than bricks and columns. Von Neumann was a famous
mathematician who, besides making important contributions to the foundations
of quantum mechanics, also was the first to set out clearly the basic principles
of modern computers’. We will also have occasion to examine the behavior of
several computers working on the same problem, and when we do, we will
restrict ourselves to computers that work in sequence, rather than in parallel; that
is, ones that take turns to solve parts of a problem rather than work
simultaneously. All we would lose by the omission of "parallel processing" is
speed, nothing fundamental.

We talked earlier about computer science not being a real science. Now
we have to disown the word "computer" too! You see, "computer” makes us
think of arithmetic — add, subtract, multiply, and so on — and it’s easy to assume
that this is all a computer does. In fact, conventional computers typically have
one place where they do their basic math, and the rest of the machine is for the
computer’s main task, which is shuffling bits of paper around — only in this case
the paper notes are digital electrical signals. In many ways, a computer is
reminiscent of a bureaucracy of file clerks, dashing back and forth to their filing
cabinets, taking files out and putting them back, scribbling on bits of paper,
passing notes to one another, and so on; and this metaphor, of a clerk shuffling
paper around in an office, will be a good place to start to get some of the basic
ideas of computer structure across. We will go into this in some detail, and the
impatient among you might think too much detail, but it is a perfect model for
communicating the essentials of what a computer does, and is hence worth
spending some time on.

lActually, there is currently a lot of interest in designing "non-Von Neumann" machines. These
will be discussed by invited "experts" in a companion volume. [Editors]

INTRODUCTION TO COMPUTERS 5

1.1: The File Clerk Model

Let’s suppose we have a big company, employing a lot of salesmen. An awful
lot of information about these salesmen is stored in a big filing system
somewhere, and this is all administered by a clerk. We begin with the idea that
the clerk knows how to get the information out of the filing system. The data
is stored on cards, and each card has the name of the salesman, his location, the
number and type of sales he has made, his salary, and so on and so forth.

Salesman:
Sales:

Salary:
Location:

Now suppose we are after the answer to a specific question: "What are the total
sales in California?" Pretty dull and simple, and that’s why I chose it: you must
start with simple questions in order to understand difficult ones later. So how
does our file clerk find the total sales in California? Here’s one way he could
do it:

Take out a card
If the "location" says California, then
Add the number under "sales" to a running count called
"total"
Put "sales" card back
Take next card and repeat.

Obviously you have to keep this up until you’ve gone through all the cards.
Now let’s suppose we’ve been unfortunate enough to hire particularly stupid
clerks, who can read, but for whom the above instructions assume too much:
say, they don’t know how to keep a running count. We need to help them a
little bit more. Let us invent a "total" card for our clerk to use. He will use this
to keep a running total in the following way:

6 LECTURES ON COMPUTATION

Take out next "sales" card

If California, then
Take out "total" card
Add sales number to number on card
Put "total" card back

Put "sales" card back

Take out next "sales" card and repeat.

This is a very mechanical rendering of how a crude computer could solve this
adding problem. Obviously, the data would not be stored on cards, and the
machine wouldn’t have to "take out a card" — it would read the stored
information from a register. It could also write from a register to a "card"
without physically putting something back.

Now we’re going to stretch our clerk! Let’s assume that each salesman
receives not only a basic salary from the company, but also gets a little on
commission from sales. To find out how much, we multiply his sales by the
appropriate percentage. We want our clerk to allow for this. Now he is cheap
and fast, but unfortunately too dumb to multiply®. If we tell him to multiply 5
by 7 he says "what?" So we have to teach him to multiply. To do this, we will
exploit the fact that there is one thing he does well: he can get cards very, very
quickly.

We’ll work in base two. As you all probably know, the rules for binary
arithmetic are easier than those for base ten; the multiplication table is so small
it will easily fit on one card. We will assume that even our clerk can remember
these; all he needs are "shift" and "carry" operations, as the following example
makes clear:

In decimal: 22x5=110
In binary: 10110 In decimal: 22
101 3
10110

10110 (shift twice)

1101110 11

2As an aside, although our dense file clerk is assumed in these examples to be a man, no sexist
implications are intended! [RPF]

INTRODUCTION TO COMPUTERS 7

So as long as our clerk can shift and carry he can, in effect, multiply. He does
it very stupidly, but he also does it very quickly, and that’s the point of all this:
the inside of a computer is as dumb as hell but it goes like mad! It can perform
very many millions of simple operations a second and is just like a very fast
dumb file clerk. It is only because it is able to do things so fast that we do not
notice that it is doing things very stupidly. (Interestingly enough, neurons in the
brain characteristically take milliseconds to perform elementary operations,
which leaves us with the puzzle of why is the brain so smart? Computers may
be able to leave brains standing when it comes to multiplication, but they have
trouble with things even small children find simple, like recognizing people or
manipulating objects.)

To go further, we need to specify more precisely our basic set of
operations. One of the most elementary is the business of transferring
information from the cards our clerk reads to some sort of scratch pad on which
he can do his arithmetic:

Transfer operations

"Take Card X" = Information on card X written to pad
"Replace Card Y" = Information on pad written on card Y

All we have done is to define the instruction "take card X" to mean copying the
information on card X onto the pad, and similarly with "replace card Y. Next,
we want to be able to instruct the clerk to check if the location on card X was
"California". He has to do this for each card, so the first thing he has to do is
be able to remember "California” from one card to the next. One way to help
him do this is to have California written on yet another card C so that his
instructions are now:

Take card X (from store to pad)
Take card C (from store to pad)
Compare what is on card X with what is on card C.

We then tell him that if the contents match, do so and so, and if they don’t, put
the cards back and take the next ones. Keeping on taking out and putting back
the California card seems to be a bit inefficient, and indeed, you don’t have to
do that; you can keep it on the pad for a while instead. This would be better, but
it all depends on how much room the clerk has on his pad and how many pieces
of information he needs to keep. If there isn’t much room, then there will have

8 | LECTURES ON COMPUTATION

to be a lot of shuffling cards back in and out. We have to worry about such
things!

We can keep on breaking the clerk’s complex tasks down into simpler,
more fundamental ones. How, for example, do we get him to look at the
"location" part of a card from the store? One way would be to burden the poor
guy with yet another card, on which is written something like this:

0000 0000 0000 0000 0000 1111 0000 0000 0000 0000...

Each sequence of digits is associated with a particular piece of information on
the card: the first set of zeroes is "lined up" with the salesman’s name, the next
with his age, say, and so on. The clerk zips through this numeric list until he
hits a set of 1’s, and then reads the information next to them. In our case, the
1111 is lined up with California. This sort of location procedure is actually used
in computers, where you might use a so-called "bitwise AND" operation (we’ll
discuss this later). This little diversion was just to impress upon you the fact that
we need not take any of our clerk’s skills for granted — we can get him to do
things increasingly stupidly.

1.2: Instruction sets

Let’s take a look at the clerk’s scratch pad. We haven’t yet taught the clerk how
to use this, so we’ll do that now. We will assume that we can break down the
instructions he can carry out into two groups. Firstly, there is a core "instruction
set" of simple procedures that comes with the pad — add, transfer, etc. These are
in the hardware: they do not change when we change the problem. If you like,
they reflect the clerk’s basic abilities. Then we have a set which is specific to
the task, say calculating a salesman’s commission. The elements of this set are
built out of the instructions in the core set in ways we have discussed, and
represent the combinations of the clerk’s talents that will be required for him to
carry out the task at hand.

The first thing we need to get the clerk to do is do things in the right
order, that is, to follow a succession of instructions. We do this by designating
one of the storage areas on the pad as a "program counter". This will have a
number on-it, which indicates whereabouts in the calculational procedure the
clerk is. As far as the clerk is concerned, the number is an address — he knows
that buried in the filing system is a special "instruction file" cabinet, and the
number in the counter labels a card in that file which he has to go and get; on

INTRODUCTION TO COMPUTERS 9

the card is the instruction as to what he is to do next. So he gets the instruction
and stores it on his pad in an area which we call the "instruction register".

File

Address | Instruction

Program Counter

Before he carries out the instruction, however, he prepares for the next one by
incrementing the program counter; he does this simply by adding one to it. Then
he does whatever the instruction in the register tells him to do. Using a
bracketed notation where () means "contents of" — remember this, as we will be
using it a lot — we can write this sequence of actions as follows®:

Fetch instruction from address PC
PC « PC)+1
Do instruction

The second line is a fancy way of saying that the counter PC "gets" the new
value (PC)+1. The clerk will also need some temporary storage areas on the
pad; to enable him to do arithmetic, for example. These are called registers, and
give him a place to store something while he goes and finds some other number.
Even if you are only adding two numbers you need to remember the first until
you have fetched the second! Everything must be done in sequence and the
registers allow us to organize things. They usually have names; in our case we
will have four, which we call registers A, B and X, and the fourth, C, which is
special — it can only store one bit of data, and we will refer to it as the "carry"
register. We could have more or fewer registers — generally, the more you have,
the easier a program is to write — but four will suffice for our purposes.

3The conventions adopted for such "Register Transfer Language" vary according to the whim
of the author. We choose to follow the so-called "right to left" convention utilized in standard
programming languages. [Editors]

10 LECTURES ON COMPUTATION

So our clerk knows how to find out what he has to do, and when. Let’s
now look at the core instruction set for his pad. The first kind of instruction
concerns the transfer of data from one card to another. For example, suppose we
have a memory location M on the pad. We want to have an instruction that
transfers the contents of register A into M:

Transfer (A) into M or M « (A)

Similarly, we might want to go the other way, and write the contents of M into
A:

Transfer (M) into A or A« MM

M, incidentally, is not necessarily designed for temporary storage like A. We
must also have analogous instructions for register B:

Transfer (B) to M or M « (B)
Transfer (M) to B or B « M)

Register X we will use a little differently. We shall allow transfers from B to X
and X to B:

X &< ®B) and B « X).

In addition, we need to be able to keep tabs on, and manipulate, our program
counter PC. This is obviously necessary: if the clerk shoots off to execute some
multiplication, say, when he comes back he has to know what to do next — he
has to remember the number in PC. In fact, we’ll keep it in register X. Thus we
add the transfer instructions:

PC «(X) and X « (PC).

Next, we need arithmetical and logical operations. The most basic of these is a
"clear" instruction:

Clear A, or A « 0.

This means, whatever is in A, forget it, wipe it out. Then we need an Add
operation:

INTRODUCTION TO COMPUTERS 11

AddBto A, or A « (A)+(B)

This means that register A receives the sum of the contents of B and the
previous contents of A. We also have a shift operation, which will enable us to
do multiplication without having to introduce a core instruction for it:

Shiftleft A and Shiftright A

The first merely moves all the bits in A one place to the left. If this shift causes
the leftmost bit to overflow we store it in the carry register C. We can also shift
our number to the right; I have no use for this in mind, but it could come in
handy!

The next instructions are logical ones. We will be looking at these in
greater detail in the next chapter, but I will mention them here for completeness.
There are three that will interest us: AND, OR and XOR. Each is a function of
two digital "inputs" x and y. If both inputs are 1, then AND gives you 1;
otherwise it gives you zero. As we will see, the AND operation turns up in
binary addition, and hence multiplication; if we view x and y as two digits we
" are adding, then (x AND y) is the carry bit: it’s only one if both digits are one.
In terms of our registers, x and y are (A) and (B), and AND operates on these:

AND: A « (A) A (B),
where we have used the logical symbol A for the AND operation. The result of

acting on a pair of variables with an operator such as AND is often summarized
in a "truth table" (Table 1.1.):

B

X=ANAB

——o o | P
—_— = O
—_—O OO | K

Table 1.1 The Truth Table for the AND Operator

12 LECTURES ON COMPUTATION

Our other two operators can be described in similar terms. The OR also operates
on (A) and (B); it gives a one unless both (A) and (B) are zero — (x OR y) is one
if x or y is one. XOR, or the "exclusive or", is similar to OR, except it gives
zero if both (A) and (B) are one; in the binary addition of x and y, it corresponds
to what you get if you add x to y and ignore any carry bits. A binary add of 1
and 1 is 10, which is zero if you forget the carry. We can introduce the relevant
logical symbols:

OR A «<A)V@®
XOR A < (A)® @B

The actions of OR and XOR can also be summarized by truth tables:

A[B[X Al B[X
olo]o 0]o]o
o115l x=ave |g|i]]|x=Aa®B
1]1o]1 1]1o]1
11111 1]1]o0

OR XOR

Table 1.2 The Truth Tables for the OR and XOR Operators

Two more operations that it turns out are convenient to have are the instructions
to increment or decrement the contents of A by one:

Increment A, or A« (A)+1
Decrement A, or A « (A) -1

Obviously, one can go on adding instructions that may or may not turn out to
be very convenient. Here, we already have more than the minimum number
necessary to be able to do some useful calculations. However, we want to be
able to do as much as possible, so we can bring in other instructions. One other
that will be useful is one that allows us to put a data item directly into a
register. For example, rather than writing California on a card and then
transferring from card to pad, it would be convenient to be able to write
California on the pad directly. Thus we introduce the "Direct Load" instruction:

INTRODUCTION TO COMPUTERS 13

Direct Load: B < N,
where N is any constant.

There is one class of instructions that it is vital we add: that of branches,
or jumps. A "jump to Z" is basically an instruction for the clerk to look in
(instruction) location Z; that is, it involves a change in the value of the program
counter by more than the usual increment of one. This enables our clerk to leap
from one part of a program to another. There are two kinds of jumps,
"unconditional" and "conditional". The unconditional jump we have touched on
above:

Jumpto (Z) or PC « (Z)
The really new thing is the conditional jump:
Jump to (Z) if C=1
With this instruction, the jump to location (Z) is only made if the carry register
C contains a carry bit. The freedom given by this conditional instruction will be
vital to the whole design of any interesting machines.
There are many other kinds of jump we can add. Sometimes it turns out
to be convenient to be able to jump not only to a definite location but to one a

specific number of steps further on in the program. We can therefore introduce
jump instructions that add this number of steps to the program counter:

Jumpto (PC)+(Z) or PC « (PC)+ (2)

Jump to (PC) + (2) if C=1

Finally, there is one more command that we need; namely, an instruction that
tells our clerk to quit:

Halt.

With these instructions, we can now do anything we want and I will
suggest some problems for you to practice on below. Before we do that, let us
summarize where we are and what we’re trying to do. The idea has been to

14 LECTURES ON COMPUTATION

outline the basic computer operations and methods and indicate what is actually
in a computer (I haven’t been describing an actual design, but I’ve come close). -
In a simple computer there are only a few registers; more complex ones have
more registers, but the concepts are basically the same, just scaled up a bit.

It is worth looking at how we represent the instructions we considered
above. In our particular case the instructions contain two pieces: an instruction
address and an instruction number, or "opcode":

Instruction Instruction
address opcode/number

For example, one of the instructions was "put the contents of memory M into
register A". The computer doesn’t speak English, so we have to encode this
command into a form it can understand; in other words, into a binary string.
This is the opcode, or instruction number, and its length clearly determines how
many different instructions we can have. If the opcode is a four-digit binary
number, then we can have 2* =16 different instructions, of which loading the
contents of a memory address into A is just one. The second part of the
instruction is the instruction address, which tells the computer where to go to
find what it has to load into A; that is, memory address M. Some instructions,
such as "clear A", don’t require an address direction.

Details such as how the instruction opcodes are represented or exactly
how things are set out in memory are not needed to use the instructions. This
is the first and most elementary step in a series of hierarchies. We want to be
able to maintain such ignorance consistently. In other words, we only want to
have to think about the lower details once and then design things so that the
next guy who comes along and wants to use your structure does not have to
worry about the lower level details.

There is one feature that we have so far ignored completely. Our machine
as described so far would not work because we have no way of getting numbers
in and out. We must consider input and output. One quick way to go about
things would be to assign a particular place in memory, say address 17642, to
be the input, and attach it to a keyboard so that someone from outside the
machine could change its contents. Similarly, another location, say 17644, might
be the output, which would be connected to a TV monitor or some other device,

INTRODUCTION TO COMPUTERS 15

so that the results of a calculation can reach the outside world.

Now there are two ways in which you can increase your understanding
of these issues. One way is to remember the general ideas and then go home
and try to figure out what commands you need and make sure you don’t leave
one out. Make the set shorter or longer for convenience and try to understand
the tradeoffs by trying to do problems with your choice. This is the way I would
do it because I have that kind of personality! It’s the way I study — to
understand something by trying to work it out or, in other words, to understand
something by creating it. Not creating it one hundred percent, of course; but
taking a hint as to which direction to go but not remembering the details. These
you work out for yourself.

The other way, which is also valuable, is to read carefully how someone
else did it. I find the first method best for me, once I have understood the basic
idea. If I get stuck I look at a book that tells me how someone else did it. I turn
the pages and then I say "Oh, I forgot that bit", then close the book and carry
on. Finally, after you’ve figured out how to do it you read how they did it and
find out how dumb your solution is and how much more clever and efficient
theirs is! But this way you can understand the cleverness of their ideas and have
a framework in which to think about the problem. When I start straight off to
read someone else’s solution I find it boring and uninteresting, with no way of
putting the whole picture together. At least, that’s the way it works for me!

Throughout the book, I will suggest some problems for you to play with.
You might feel tempted to skip them. If they’re too hard, fine. Some of them
are pretty difficult! But you might skip them thinking that, well, they’ve
probably already been done by somebody else; so what’s the point? Well, of
course they’ve been done! But so what? Do them for the fun of it. That’s how
to learn the knack of doing things when you have to do them. Let me give you
an example. Suppose I wanted to add up a series of numbers,

1+2+3+4+5+6+7...

up to, say, 62. No doubt you know how to do it; but when you play with this
sort of problem as a kid, and you haven’t been shown the answer . . . it’s fun
trying to figure out how to do it. Then, as you go into adulthood, you develop
a certain confidence that you can discover things; but if they’ve already been
discovered, that shouldn’t bother you at all. What one fool can do, so can
another, and the fact that some other fool beat you to it shouldn’t disturb you:

16 LECTURES ON COMPUTATION

you should get a kick out of having discovered something. Most of the problems
I give you in this book have been worked over many times, and many ingenious
solutions have been devised for them. But if you keep proving stuff that others
have done, getting confidence, increasing the complexities of your solutions —
for the fun of it — then one day you’ll turn around and discover that nobody
actually did that one! And that’s the way to become a computer scientist.

I'll give you an example of this from my own experience. Above, I
mentioned summing up the integers. Now, many years ago, I got interested in
the generalization of such a problem: I wanted to figure out formulae for the
sums of squares, cubes, and higher powers, trying to find the sum of m things
each up to the n™ power. And I cracked it, finding a whole lot of nice relations.
When I’d finished, I had a formula for each sum in terms of a number, one for
each n, that I couldn’t find a formula for. I wrote these numbers down, but I
couldn’t find a general rule for getting them. What was interesting was that they
were integers, until you got to n=13 — when it wasn’t (it was something just
over 691)! Very shocking! And fun.

Anyway, I discovered later that these numbers had actually been
discovered back in 1746. So I had made it up to 1746! They were called
"Bernoulli Numbers". The formula for them is quite complicated, and unknown
in a simple sense. I had a "recursion relation" to get the next one from the one
- before, but I couldn’t find an arbitrary one. So I went through life like this,
discovering next something that had first been discovered in 1889, then
something from 1921 . . . and finally I discovered something that had the same
date as when I discovered it. But I get so much fun out of doing it that I figure
there must be others out there who do too, so I am giving you these problems
to enjoy yourselves with. (Of course, everyone enjoys themselves in different
ways.) I would just urge you not to be intimidated by them, nor put off by the
fact that they’ve been done. You’re unlikely to discover something new without
a lot of practice on old stuff, but further, you should get a heck of a lot of fun
out of working out funny relations and interesting things. Also, if you read what
the other fool did, you can appreciate how hard it was to do (or not), what he
was trying to do, what his problems were, and so forth. It’s much easier to
understand things after you’ve fiddled with them before you read the solution.
So for all these reasons, I suggest you have a go.

Problem 1.1: (a) Go back to our dumb file clerk and the problem of finding
out the total number of sales in California. Would you advise the management
to hire two clerks to do the job quicker? If so, how would you use them, and
could you speed up the calculation by a factor of two? You have to think about

INTRODUCTION TO COMPUTERS 17

how the clerks get their instructions. Can you generalize your solution to K, or
even 2X clerks?

(b) What kinds of problems can K clerks actually speed up? What kinds can
they apparently not?

(c) Most present-day computers only have one central processor — to use our
analogy, one clerk. This single file clerk sits there all day long working away
like a fiend, taking cards in and out of the store like mad. Ultimately, the speed
of the whole machine is determined by the speed at which the clerk — that is,
the central processor — can do these operations. Let’s see how we can maybe
improve the machine’s performance. Suppose we want to compare two n-bit
numbers, where n is a large number like 1024; we want to see if they’re the
same. The easiest way for a single file clerk to do this would be to work
through the numbers, comparing each digit in sequence. Obviously, this will
take a total time proportional to n, the number of digits needing checking. But
suppose we can hire n file clerks, or 2n or perhaps 3n: it’s up to us to decide
how many, but the number must be proportional to n. Now, it turns out that by
increasing the number of file clerks we can get the comparison-time down to be
proportional to log, n. Can you see how?

(d) If you can do this compare problem, you might like to try a harder one. See
if you can figure out a way of adding two n-bit numbers in "log n" time. This
is more difficult because you have to worry about the carries!

Problem 1.2: The second problem concerns getting the clerk to multiply
(multiplication, remember, is not included in his basic instruction set). The
problem comes in two parts. First, find the appropriate set of basic instructions
required to perform multiplication. Having these, let’s assume we save them
some place in the machine so that we don’t have to duplicate them every time
we want to multiply; put them, say, in locations m to m+k. Show how we can
give the clerk instructions to use this set-up to do a multiplication and return to
the right place in the program.

1.3: Summary
We have now covered enough stuff for us to go on to understand any particular

machine design. But instead of looking at any particular machine in detail we
are going to do something rather different. From where we are now we can go

18 LECTURES ON COMPUTATION

up, down or sideways. What do I mean by this? Well, "up" means hiding more
details of the workings of the machine from the user — introducing more levels
of abstraction. We have already seen some examples of this; for example,
building up new operations such as multiplication from operations in our basic
set. Every time we want to multiply we just use this multiply "subroutine".
Another example worth discussing is the ability to talk about algebraic variables
rather than locations in memory. Suppose you want to take the sum of X and Y,
and call it Z:

Z=X+Y

X and Y are already known to the computer and stored at specific locations in
memory. The first thing we have to do is assign some place in memory to store
the value of Z and then ensure that this location holds the sum of the contents
of the X and Y memory cells. Now we know all about Z and can use it in other
expressions, such as Z+X. It is clearly much simpler talking about algebraic
variables rather than memory locations all the time although it is quite a job to
set this up. However, up to now we have had to know exactly where a number
is located in order to make a transfer. We can now introduce a new number Z,
and say to the computer "I want a number Z — find a place to put it and don’t
bother telling me where it is!" This is what I mean by moving "up".

Of course, we already went "up" a bit when we summarized operations
by instructions such as "Clear A", and so on. This sort of shorthand is
introduced for our benefit, and programs written in it cannot be understood
directly by the machine itself. Such "assembly language" programs have to be
translated into a "machine language" that the computer can understand, and this
is done by a program called an "assembler". The next level up, where we have
multiplication and variables and so on, needs another program to translate these
"high-level" programs into assembly language. These translation programs are
called "compilers" or "interpreters”. The difference between them is in when the
translation is done. An interpreter works out what to do step by step, as the
program runs, interpreting each successive instruction in terms of the cruder
language. A compiler takes the program as a whole and converts it all into
assembly or machine language before the program is run. Compilers have the
advantage that, in some cases, looking at the whole "code" it is possible for
them to find clever ways to simplify the required operations. This is the nub of
the important field of "compiler optimization" and is becoming of increasing
importance for the new types of "non-Von Neumann" parallel computers.

INTRODUCTION TO COMPUTERS 19

Clearly, one can keep going up in level, putting together new algorithms,
programming languages, adding the ability to manipulate "files" containing
programs and data, and so on. Nowadays it is possible for most people to
happily work at these higher levels using high-level languages to program their
machines. Imagine how tedious it was — and is, for modern computer designers
— to work solely in machine code!

That was "up"; now it’s time to go down. How can anything be simpler
than our dumb file clerk model and our simple list of instructions? What we
have not considered is what our file clerk is made of; to be more realistic, we
have not looked at how we would actually build electronic circuits to perform
the various operations we have discussed. This is where we are going to go
next, but before we do, let me say what I mean by moving "sideways".
Sideways means looking at something entirely different from our Von-Neumann
architecture, which is distinguished by having a single Central Processing Unit
(CPU) and everything coming in and going out through the "fetch and execute"
cycle. Many other more exotic computer architectures are now being
experimented with, and some are being marketed as machines people can buy.
Going "sideways" therefore means remaining at the same level of detail but
examining how calculations would be performed by machines with differing
core structures. We already invited you to think of such "parallel" computers
with the problem of organizing several file clerks to work together on the same
problem.

TWO

COMPUTER ORGANIZATION

2.1: Gates and Combinational Logic

We shall begin our trip downwards by looking at what we need to be able to
perform our various simple operations — adds, transfers, control decisions, and
so forth. We will see that we will need very little to do all of these things! To
get an idea of what’s involved, let’s start with the "add" operation. Qur first,
important, decision is to restrict ourselves to working in base 2, the binary
system: the only digits are 1 and 0, and as we shall see, these can easily fit into
a computer framework: we represent them electronically by a simple "on/off"
state of a component. In the meantime, we shall adopt a somewhat picturesque,
and simpler, technique for depicting binary numbers: rather than just write out
strings of 1’s and 0’s, we will envisage a binary number to be a
compartmentalized strip of plastic, rather like an ice tray, with each
compartment corresponding to a digit; if the compartment is empty, that means
the digit is 0, but if the digit is 1 we put a pebble there. Now let us take two
such strips, and pretend these are the numbers to be added — the "summands".
Underneath these two we have laid out one more, to hold the answer (Fig. 2.1):

. ‘ ’ Summands

. . ‘ Answer

Fig. 2.1 A Pictorial Depiction of Binary Addition

This turns our abstract mathematical problem into a matter of real world
"mechanics". All we need to do the addition is a simple set of rules for moving
the pebbles. Now instead of pebbles, which are slow and hard to handle, we

COMPUTER ORGANIZATION 21

could use anything else, say, wires with either a high voltage for 1 and low
voltage for 0. The basic problem is the same: what are the rules for combining
pebbles or voltages? For binary addition the basic rules are:

0+0=0
0+1=1
1+0=1

1 + 1 =0 plus a carry

So now you can imagine giving instructions on how to move the pebbles to
someone who is a complete idiot: if you have two pebbles here, one above the
other, you put no pebble in the sum space beneath them, but carry one over one
space to the left — and so on. The marvellous thing is, with sufficiently detailed
rules this "idiot" is able to add two numbers of any size! With a slightly more
detailed set, he can graduate to multiplication. He can even, eventually, do very
complicated things involving hypergeometric functions and what have you. What
you tell an apparent idiot, who can do no more than shuffle pebbles around, is
enough for him to tackle the evaluation of hypergeometric functions and the
like. If he shifts the pebbles quickly enough, he could even do this quicker than
you — in that respect, he is justified in thinking himself smarter than you!

Of course, real machines do not calculate by fiddling with pebbles
(although don’t forget the abacus of old!). They manipulate electronic signals.
So, if we are going to implement all of our notions about operations, we have
to start thinking about electric circuits. Let us ditch our ice trays and stones and
look at the problem of building a real, physical adder to add two binary digits
A and B. This process will result in a sum, S, and a carry, C; we set this out in
a table as follows:

S

—t OO :J>
—_—O = O w
—~ococo | O

0
1
1
0

Table 2.1 A "Truth Table" for Binary Addition

22 LECTURES ON COMPUTATION

Let us represent our adder as a black box with two wires going in — A and B —
and two coming out — S and C' (Fig. 2.2):

A— s

B — — C

Fig. 2.2 A Black Box Adder

We will detail the actual nature of this box shortly. For the moment, let us take
it for granted that it works. (As an aside, let us ask how many such adders we
would need to add two r-bit numbers? You should be able to convince yourself
that (2r-1) single-bit adders are required. This again illustrates our general
principle of systematically building complicated things from simpler units.)

Let us go back to our black box, single-bit adder. Suppose we just look
at the carry bit: this is only non-zero if both A and B are one. This corresponds
precisely to the behavior of the so-called AND gate from Boolean logic. Such
a gate is itself no more than a black box, with two inputs and one output, and
a "truth table" which tells us how the output depends on the inputs. This truth
table, and the usual pictorial symbol for the AND gate are given below:

A| BJAANDB

010 0). —

ol1 0 B — A AND B
110 0

111 1

Fig. 2.3 The AND Gate

This box is sometimes known as a "half adder". We will encounter a "full adder" later in this
chapter. [RPF]

COMPUTER ORGANIZATION 23

Simple enough: A AND B is 1 if, and only if, A is 1 and B is 1. Thus, carry and
"and" are really the same thing, and the carry bit for our adder may be obtained
by feeding the A and B wires into an and gate. Although I have described the
gate as a black box, we do in fact know exactly how to build one using real
materials, with real electronic signals acting as values for A, B and C, so we are
well on the way to implementing the adder. The sum bit of the adder, S, is
given by another kind of logic gate, the "exclusive or" or XOR gate. Like the
AND, this has a defining truth table and a pretty symbol (Fig. 2.4):

A | BAXORB

0]0 0 A

ol 1 1 AXORB
110 1 B

1 1 0

Fig. 2.4 The XOR Gate

A XOR Bis 1if A or B is 1, but not both. XOR is to be distinguished from a
similar type of gate, the conventional OR gate, which has truth table and symbol
shown in Figure 2.5:

A | BJAORB A

010 0 AORB
011 1

110 1 B

1 1 1

Fig. 2.5 The OR Gate

All of these gates are examples of "switching functions", which take as input
some binary-valued variables and compute some binary function. Claude

24 LECTURES ON COMPUTATION

Shannon was the first to apply the rules of Boolean algebra to switching
networks in his MIT Master’s thesis in 1937. Such switching functions can be
implemented electronically with basic circuits called, appropriately enough,
"gates". The presence of an electronic signal on a wire is a "1" (or "true"), the
absence a "0" (or "false"). Let us continue going down in level and look in more
detail at these basic gates.

The simplest operation of all is an "identity" or "do-nothing" operation.

This is just a wire coming into a box and then out again, with the same signal
on it. This just represents a wire (Fig. 2.6):

N
L~

Fig. 2.6 The Identity

In a real computer, this element would be considered a "delay": as we will see
in Chapter Seven, electric current actually takes time to move along wires, and
this finite travel time — or delay — is something which must be taken into
consideration when designing machines; with computers, even elements that do
nothing on paper can do something when we build them! But let us skip this
operation and look at the next simplest, namely, a box which "negates" the
incoming signal. If the input is a 1, then the output will be 0, and vice versa.
This is the NOT operation, with the obvious truth table (Fig. 2.7):

A NOT A
1 Dc
0

Fig. 2.7 The NOT Gate

—_O

Diagrammatically, the NOT is just the delay with a circle at its tip. Now with
a little thought, one can see that there is a relationship between OR and AND,

COMPUTER ORGANIZATION 25

using NOT. By playing with the truth tables you should be able to convince
yourself that A OR B is the same as NOT{(NOT A) AND (NOT B)}. This is
just one example of an equivalence between operators; there are many more®.
Of course, one need not express OR in terms of AND and NOT; one could
express AND in terms of NOT and OR, and so on. One of the nice games you
can play with logic gates is trying to find out which is the best set to use for a
specific purpose, and how to express other operators in terms of this best set.
A question that naturally arises when thinking of this stuff is whether it’s
possible to assemble a basic set with which you could, in principle, build all
possible logic functions: that is, if you invent any black box whatsoever (defined
by assigning an output state to each possible input state), could you actually
build it using just the gates in the basic set? We will not consider this matter of
"completeness" of a set of operators in any detail here; the actual proof is pretty
tough, and way beyond the level of this course. We will content ourselves with
a hand-waving proof in section 2.4, later in this chapter. Suffice it to say that
the set AND, OR and NOT is complete; with these operators, one can build
absolutely any switching function. To tempt you to go further with all this cute
stuff, I will note that there exist single operators that are complete!

We now have pretty much all of the symbols used by engineers to depict
the various gates. They’re a useful tool for illustrating the links between their

physical counterparts. For example, we can diagrammatically depict our
relationship between AND, OR and NOT as follows (Fig. 2.8):

2o =

Fig. 2.8 The Relationship Between And, Or and Not

Note that we have adopted the common convention of writing the NOTs as
circles directly on the relevant wires; we don’t need the triangles.

Let’s play with these awhile. How do we make an XOR gate out of them?

“These relationships are actually specific instances of a general and venerable old law known
as de Morgan’s Theorem. [Editors]

26 LECTURES ON COMPUTATION

Now XOR only gives 1 if A=1 and B=0, or A=0 and B=1. The general rule for
constructing novel gates like this is to write out the truth tables for A AND B,
A OR B, A AND (NOT B) and so on, and see how you might turn the outputs
of such gates into the inputs for another, in such a way that you get the desired
result. For example, we can get a 1 from A=1 and B=0 if we feed A and B into
an AND gate, with a NOT on the B line. Similarly, we use the same trick to get
the second option, using an AND, but with the NOT on the A line. If we then
feed the outputs of these two gates through a third — an OR — we end up with
a XOR (Fig. 2.9):

w >

AeB

Fig. 2.9 XOR expressed in ANDs and ORs

(Notice the convention we are using: if two crossing wires are electrically
connected, we place a dot on the crossing point. If the lines cross without
connection, there is no dot.) Of course, you have to check that this combination
works for the other two input sets of A and B; and indeed it does. If both A and
B are 0, both AND gates give zero, and the OR gives zero; if both A and B are
1, again, both AND gates give zero, leading to zero as the final result. Note that
this circuit is not unique. Another way of achieving an XOR switch is as follows
(Fig. 2.10):

A

5. D—}
) >

Fig. 2.10 An Alternative XOR

COMPUTER ORGANIZATION 27

Which way should we make the XOR circuit in practice? It just depends
on the details of the particular circumstance — the hardware, the semiconductor
technology, and so on. We might also be interested in other issues, such as
which method requires the fewest elements. As you can imagine, such stuff
amounts to an interesting design problem, but we are not going to dwell on it
here. All we care to note is that we can make any switch we like as long as we
have a big bag of ANDs, ORs and NOTs. We have already seen how to make
a single-bit adder — the carry bit comes from an AND gate, and the sum bit
from an XOR gate, which we now know how to build from our basic gates. Let
us look at another example: a multiple AND, with four inputs A,B,C,D. This has
four inputs but still just one output, and by extension from the two-input case,
we declare that this gate only "goes off" — that is, gives an output of one —
when all four inputs are 1. Sometimes people like to write this problem
symbolically thus:

ANBACAD

where the symbol A means "AND" in propositional logic (as we mentioned
earlier). Of course, when logicians write something like this they have no
particular circuit in mind which can perform the operation. We, however, can
design such a circuit, built up from our primitive black box gates: to be precise,
three AND gates as in Figure 2.11:

-

Ny
—{-

O Qow »
o Q w»

Fig. 2.11 A Multiple AND Gate
In a similar way, one can build up a multiple AND of any size.
Now the time has come to hit nearly rock-bottom in our hierarchy by

looking at the actual electronic components one would use to construct logic
gates. We will actually hit rock bottom, by which I mean discussing the physics

28 LECTURES ON COMPUTATION

of semiconductors and the motion of actual electrons through machines, later in
the course (in Chapter Seven). For now, I will give some quick pointers to gate
construction that should be intelligible to those of you with some grasp of
electronics.

Central to the construction of all gates is the transistor. This is arguably
the most important of all electronic components, and played a critical role in the
development and growth of the industry. Few electronic devices contain no
transistors, and an understanding of the basic properties of these elements is
essential for understanding computers, in which they are used as switches. Let
us see how a transistor can be used to construct a NOT gate. Consider the
following circuit (Fig. 2.12):

+V

t— OUTPUT

GATE

GROUND
Fig. 2.12 The Transistor Inverter, or NOT Gate

A transistor is a three-connection device: one input is connected to the gate
signal, one to ground, and the other to a positive voltage via a resistor. The
central property of the transistor is that if the gate has a distinctly positive
voltage the component conducts, but if the gate is zero or distinctly negative, it
does not. Now look at the behavior of the output voltage as we input a voltage
to the gate. If we input a positive voltage, which by convention we label a 1, the
transistor conducts: a current flows through it, and the output voltage becomes
zero, or binary 0. On the other hand, if the gate was a little bit negative, or zero,
no current flows, and the output is the same as +V, or 1. Thus, the output is the

COMPUTER ORGANIZATION 29

opposite of the input, and we have a NOT gate’.

What about an AND gate? Due to the nature of the transistor, it actually
turns out to be more convenient to use a NAND gate as our starting point for
this. Such a gate is easier to make in a MOS environment than an AND gate,
and if we can make the former, we can obtain the latter from it by using one of
de Morgan’s rules: that AND = NOT {NAND}. So consider the following
simple circuit (Fig. 2.13):

+V L

ANANDB
GROUND -l

Fig. 2.13 A Transistor NAND Gate

In order for the output voltage to be zero here, we need to have current flow
through both A and B, which we can clearly only achieve if both A and B are
positive. Hence, this circuit is indeed a "NOT AND" or NAND gate. To get an
AND gate, we simply take the NAND output from Figure 2.13 and feed it in as
input to the NOT gate illustrated in Figure 2.12. The resultant output is our
AND.

What about an OR gate? Well, we have seen how to make an OR from
ANDs and NOTs, and we could proceed this way if we wished, combining the
transistor circuits above; however, an easier option (both conceptually and from

3 As a technical aside, we have assumed that our circuits are fabricated using MOS (Metal Oxide
Semiconductor) technology. Resistors are hard to implement in this type of silicon technology, and
in practice the resistor would actually be replaced by another type of MOS transistor (see Chapter
Seven). [RPF]

30 LECTURES ON COMPUTATION

the viewpoint of manufacture) results from consideration of the following,
parallel circuit (Fig. 2.14):

+V *

ANORB

R

GROUND

Fig. 2.14 A Transistor NOR Gate

If either A or B is positive, or both positive, current flows and the output is zero.
If both A and B are zero, it is +V, or 1. So again, we have the opposite of what
we want: this is a "NOT OR" or NOR gate. All we do now is send our output
through a NOT, and all is well.

Hopefully this has convinced you that we can make electrical circuits
which function as do the basic gates. We are now going to go back up a level
and look at some more elaborate devices that we can build from our basic
building blocks.

2.2: The Binary Decoder

The first device that we shall look at is called a "binary decoder". It works like
this. Suppose we have four wires, A, B, C, D coming into the device. These
wires could bring in any input. However, if the signals on the wires are a
specific set, say 1011, we want to know this: we want to receive a signal from
the decoder telling us that 1011 has occurred. It is as if we have some demon
scanning the four bits coming into the decoder and, if they turn out to be 1011,
he sends us a signal! This is easy to arrange using a modified AND gate (and
much cheaper than hiring a demon). The following device (Fig. 2.15) clearly
only gives us an output of 1 when A, C, D are 1 and B is O:

COMPUTER ORGANIZATION 31

Fig. 2.15 A Simple Decoder

This is a very special type of decoder. Suppose we want a more general one,
with lots of demons each looking for their own particular number amidst the
many possible input combinations. Such a decoder is easy to make by
connecting individual decoders in parallel. A full decoder is one that will decode
every possible input number. Let us see how this works with a three-to-eight
binary decoder. Here, we have three input bits on wires A, B, C giving 2°= 8
combinations. We therefore have eight output wires, and we want to build a gate
that will assign each input combination to a distinct output line, giving a 1 on
just one of these eight wires, so that we can tell at a glance what input was fed
into the decoder. We can organize the decoder as follows (Fig. 2.16):

000

010
011
100 OUTPUTS
101
110
111

Fig. 2.16 A Binary Decoder

32 LECTURES ON COMPUTATION

We have introduced the pictorial convention that three dots on a horizontal line
implies a triple AND gate (see the discussion surrounding Figure 2.11). Notice
that each input wire branches into an A and NOT A signal and so on. As we
have arranged things, only the bottom four wires can go off if A is one, and the
top four if A is zero. The dots on the wires for B and C (and NOT B and NOT
C) similarly show us immediately which of the eight output wires can go off:
we have labeled each output line with its corresponding input state. Thus, we
have explicitly constructed a three-to-eight binary decoder.

Now, there is a profound use to which we can put the device in Fig. 2.16;
one which reveals the decoder to be an absolutely essential part of the machine
designer’s arsenal. Suppose we feed 1’s from the left into all of the horizontal
input wires of the decoder. Now interpret each dot on an intersection as a two-
way AND:

i H O

and a simple crossing as no connection:

In order for the 1 input from the left to get past the first dot, the correct signal
A=1 or NOT A=1, depending on the wire, must be present. Similarly for B and
C. So we still have a binary decoder; nothing has changed in this regard.
However, we have also invented something else, which a little thought should
show you is indispensable in a functioning computer: this device can serve as
a multiple switch to connect you to a selected input wire. The original input
lines of the decoder, A, B, C now serve as "address" lines to select which output
wire gives a signal (which may be 1 or 0). This is very close to something
called a "multiplexer": multiplexing is the technique of selecting and

COMPUTER ORGANIZATION 33

transmitting signals from multiple input lines to a single output line. In our
example, we can make our device into a true multiplexer by adding an eight-
way OR gate to the eight output lines (Fig. 2.17):

——] BINARY 8-WAY
—| DECODER "OR"
T 1
ABC

Fig. 2.17 The Multiplexer
This rather neat composite device clearly selects which of the eight input lines
on the left is transmitted, using the 3-bit address code. Multiplexers are used in
computers to read and write into memory, and for a whole host of other tasks.
Let me give you some problems to play with.
Problem 2.1: Design an 8 to 3 encoder. In other words, solve the reverse
problem to that considered earlier: 8 input wires, only one of which has a signal

on at any given time; 3 output wires which "encode" which wire had the signal
on.

Problem 2.2: Design a simple adder using AND, OR and NOT gates.

Problem 2.3: Design a 1-bit full adder:

A S
B_—

¢
C—

Problem 2.4: Make an r-bit full adder using r 1-bit full adders. How many

34 LECTURES ON COMPUTATION

simple adders would be needed?
2.3: More on Gates: Reversible Gates

We stated earlier, without proof, that the combinational circuits for AND and
NOT are sufficient building blocks to realize any switching function.

= —Pe-

AND NOT

Actually, there are two other elements that we added without noticing. These are
the "fanout" and "exchange" operations (Fig. 2.18):

— X

FANOUT EXCHANGE

Fig. 2.18 FANOUT and EXCHANGE

In the case of wires and pulses of 1’s and 0’s the presence of these "gates" is
an obvious assumption; FANOUT just splits a wire into two or more and
EXCHANGE just swaps over a pair of connections. If, on the other hand, the
information were carried by pebbles, then a fanout into two means that one
pebble has become two, so it is quite a special operation. Similarly, if the
information were stored in separate boxes in distinct locations, then exchange
is also a definite operation. We are emphasizing the logical necessity of
including these two "obvious" operations since we will be needing them in our
discussion of reversibility. The other thing we will assume we have is an endless
supply of 0’s and 1’s; a store somewhere into which we can stick wires and get
signals for as long as we want. This can have unforeseen uses. For example, we
have already noted that one can in fact replace the AND and NOT set of gates

COMPUTER ORGANIZATION 35

by a single NAND gate (Fig. 2.19):

A | B |ANAND B

010 1 A —

0l1 1 B ANAND B
1{0 1

11 0

Fig. 2.19 The NAND Gate

It is easy to see that this single gate is as good as having both AND and NOT.
To get a NOT operation from a NAND, all we do is turn to our storehouse of
1s and connect one of the NAND inputs up to it. Now, whatever the other input
A, the output will be NOT A:

? }NOTA = A Dc NOT A

Now that we have a NOT and a NAND, we can clearly construct an AND, and
we have demonstrated their equivalence as a set of operators.

We want to discuss a rather different problem, which will enable us to
look at some rather more exotic logic gates. Both the AND and the NAND
operation — and the OR and XOR — are irreversible operations. By this I mean
simply that from the output of the gate you cannot reconstruct the input:
information is irreversibly lost. If the output of an AND gate with four inputs
is zero, it could have resulted from any one of fifteen input sets, and you have
no idea which (although you obviously know about the inputs if the output is
one!). We would like to introduce the concept of a reversible operation as one
with enough information in the output to enable you to deduce the input. We
will need such a concept when we come to study the thermodynamics of

36 LECTURES ON COMPUTATION

computation later. It will make it possible for us to make calculations about the
free energy — or, if you like, the physical efficiency — of computation.

The problem of reversible computers has been studied independently by
Bennett and Fredkin. Our basic constructs will be three gates: NOT (N),
CONTROLLED NOT (CN) and a CONTROLLED CONTROLLED NOT
(CCN). Let us explain what these are. A NOT is just a NOT as before, a one
element object. A CONTROLLED NOT is a two-wire input gadget that, unlike
the AND and NAND gates, has two outputs as well. It works in the following
way. We have two wires, on one of which we write a circle, representing a
control, and on the other a cross (Fig. 2.20):

A O A’

B X B’
Fig. 2.20 The CN Gate

The "X" denotes a NOT operation: however, this NOT is not a conventional
one; it is controlled by the input to the O-wire. Specifically, if the input to the
O-wire is 1, then the input to the X-wire is inverted; if the O-input is zero, then
the NOT gate does not work, and the signal on the X-wire goes through
unchanged. In other words, the input to the O-line activates the NOT gate on
the lower line. The O-output, however, is always the same as the O-input — the
upper line is the identity. The truth table for this gate is simple enough:

Al B]rA’ B’
0 0] O 0
0 110 1
1 0] 1 1
1 1 1 0

Table 2.2 Truth Table for the CN Gate

COMPUTER ORGANIZATION 37

Note that we can interpret B’ as the output of an XOR gate with inputs A and
B: B'= XOR(A,B).

One of the most important properties of this CN gate is that it is

reversible — from what comes out we can deduce what went in. Notice that we
can actually reverse the operation of the gate by merely repeating it:

A O O A

Fig. 2.21 The Identity Utilizing CN Gates

We can use a CN gate to build a fanout circuit. If we set B=0, then we have
B’=A and A’=A. As an exercise, you might like to show how CN gates can be
connected up to make an exchange operator (Hint: it takes several).

Sadly, we cannot do everything with just N and CN gates. Something
more is needed, for example, a CCN, or CONTROLLED CONTROLLED NOT
gate (Fig. 2.22):

A o A
B O B’
C ¢ C’

Fig. 2.22 The CCN Gate

In this gate, we have two control lines A and B, each marked by an O, and as

38 LECTURES ON COMPUTATION

with the CN gate, the signals on this line are unchanged on passage through the
gate: A’=A, B’=B. The remaining line, once again, has a NOT on it, but this is
only activated if both A=1 and B=1: then, C'=NOT C. Notice that this single
gate is very powerful. If we keep both A and B equal to one, then the CCN gate
is just an N, a NOT. If we keep just A=1, then the gate is just a CN gate with
B and C as inputs. So if we have a CCN gate and a source of 1s and 0Os, we can
junk both the CN and N gates. But things are even better: with this CCN gate
we can do everything! We have already seen how a CN gate can be used to
produce an XOR output. We know that throwing in a NOT or two enables us
to get an AND gate. So clearly, we can generate any gate we like with just a
CCN gate: by itself, it forms a complete operator set. As an example, the AND
gate can be made by holding C=0, and taking the inputs to be A and B. The
output, A AND B is then C’, which is clearly 1 only when the NOT gate is
activated to invert C=0, which in turn is only the case — by the property of the
CCN gate — when A=B=1.

The next thing we must do is show that we can do something useful with only
these reversible operations. This is not difficult, as we have just shown that we
can do anything with them that we can do with a complete operator set!
However, we would like whatever we build to be itself reversible. Consider the
problem of making a full adder:

A ——
—— SUM
B
——— CARRY
c —

We need to add A, B and C and obtain the sum and carry. Now as it stands, this
operation is not reversible — one cannot, in general, reconstruct the three inputs
from the sum and carry. We have decided that we want to have a reversible
adder, so we need more information at the output than at present. As you can
see with a little thought, reversible gates have the general property that "lines
in = lines out" — this is the only way that all possible inputs can be separately
"counted" at the output — and so we need another line coming out of our adder.
In fact, it turns out that we need two extra lines coming out of the gate, and one

COMPUTER ORGANIZATION 39

extra going in, which you set to 0, say. Using N, CN and CCN (or just the
latter) we can get AND, OR and XOR operators, and we can clearly use these
to build an adder: the trick of making it reversible lies in using the redundancy
of the extra outputs to arrange things such that the two extra output lines, on top
of the sum and carry ones, are just the inputs A and B. It is a worthwhile
exercise to work this out in detail.

Fredkin added an extra constraint on the outputs and inputs of the gates
he considered. He demanded that not only must a gate be reversible, but the
number of 1s and Os should never change. There is no good reason for this, but
he did it anyway. He introduced a gate performing a controlled exchange
operation (Fig. 2.23):

A O AI=A
B B’
C C’

Fig. 2.23 The Fredkin Gate: A Controlled Exchange

In his honor, we will call this a Fredkin gate. You should be used to the notion
of control lines by now; they just activate a more conventional operation on
other inputs. In this case, the operation is exchange. Fredkin’s gate works like
this: if A=0, B and C are not exchanged; B’=B, and C’=C. However, if A=1 they
are, and B’=C, C’=B. You can check that the numbers of 1s and Os is conserved.
As a further, and more demanding, exercise, you can try to show how this
Fredkin gate can be used (perhaps surprisingly) to perform all logical operations
instead of using the CCN gate.

2.4: Complete Sets of Operators

I have introduced you to the notion of reversible gates so that you can see that
there is more to the subject of computer logic than just the standard AND, NOT
and OR gates. We will return to these gates in chapter five. I want for the
moment to leave the topic of reversible computation and return to the issue of

40 LECTURES ON COMPUTATION

complete sets of operators. Now I’ve been very happy to say that with a so-
called "complete set" of operators, you can do anything, that is, build any logical
function. I will take as my complete set the operations AND, NOT, FANOUT
and EXCHANGE. The problem I would like to address is how we can know
that this set is complete. Suppose we have a bunch of n input wires, which we’ll
label X, X,, X;,... X,. For each pattern of inputs {X}, we will have some specific
output pattern on a set of wires Y, Y,,..., ¥,,, where m is not necessarily equal
to n. The output on Y; is a logical function of the X;. Formally, we write

Y, = F({X)), i=1,...,m 2.1)

What we want to demonstrate is that for any set of functions F; we can build a
circuit to perform that function on the inputs using just our basic set of gates.
Let us look at a particular example, namely, the sum of the input wires. We can
see how in principle we can do this as follows. In our binary decoder, we had
n input wires and 2" output wires, and we arranged for a particular output wire
to fire by using a bunch of AND gates. This time we want to arrange for that
output to give rise to a specific signal on another set of output wires. In
particular, we can then arrange for the signals on the output wires to be the
binary number corresponding to the value of the sum of the particular input
pattern.

Let us suppose that for a particular input set of Xs we have selected one
wire. One wire only is "hot", and all the others "cold". When this wire is hot we
want to generate a specific set of output signals. This is the opposite problem
to the decoder. What we need now is an encoder. As you should have figured
out from one of the problems you were set, this can be constructed from a
bunch of OR gates. So you see, we have separated the problem into two parts.
The first part that we looked at before was how to arrange for different wires
to go off according to the input. The answer was our decoder. Our encoder must
have a lot of input wires but only one goes off at a time. We want to be able
to write the number of which wire went off in the binary system. A three-bit
encoder may be built from OR gates as follows (Fig. 2.24):

COMPUTER ORGANIZATION 41

0
1 iy
2 H
3 tH -
Input {x} il
4 "
5 H) iy
6 # 5
m m m

<
O

Y, Y, Y,

Fig. 2.24 The Three-bit Encoder

where we have used the following notation for the OR gates:

Thus, if we are not bothered about the proliferation of 2" wires, then we can
construct any logical function we wish. In general, we have an AND plane and
an OR plane and a large number of wires connecting these two regions (Fig.
2.25):

a5
m
o
il
o
m
| .
INpUT | X, X, X, Y. Yoi-. Y, || OUTPUT
Similar to decoder Similar to encoder
AND plane OR plane

Fig. 2.25 Construction of a General Logical Function

42 LECTURES ON COMPUTATION

where we have used the same notation for AND gates as in Figure 2.16. If you
succeeded in solving any of the problems 2.2-2.4, which required you to
construct a number of different adders, then you will have already seen simple
examples of this principle at work.

Some of the logical functions we could construct in this way are so simple
that using Boolean algebra we can simplify the design and use fewer gates. In
the past people used to invest much effort in finding the simplest or smallest
system for particular logical functions. However, the approach described here
is so simple and general that it does not need an expert in logic to design it!
Moreover, it is also a standard type of layout that can easily be laid out in
silicon. Thus this type of design is usually used for Programmable Logic Arrays,
or PLAs. These are often used to produce custom-made chips for which
relatively few copies are needed. The customer only has to specify which ANDs
and which ORs are connected to get the desired functionality. For mass-
produced chips it is worthwhile investing the extra effort to do the layout more
efficiently.

2.5: Flip-Flops and Computer Memory

Now I want to come onto something different, which is not only central to the
functioning of useful computers, but should also be fun to look at. We start with
a simple question: can we store numbers? That is, can we build a computer’s
memory from the gates and tidbits we’ve assembled so far? A useful memory
store will allow us to alter what we store; to erase and rewrite the contents of
a memory location. Let’s look at the simplest possible memory store, one which
holds just one bit (a 1 or 0), and see how we might tinker with it. As a
reasonable first guess at building a workable memory device, consider the
following black box arrangement:

A — — C

Fig. 2.26 A Black Box Memory Store

We take the signal on line C to represent what is in our memory. The input A
is a control line, with the following properties: as long as A is 0, i.e. we are

COMPUTER ORGANIZATION 43

feeding nothing into our box, C remains the same. However, if we switch A to
1, then we change C: it goes from 0 to 1 or vice versa. We can write a kind of
"truth table" for this:

A | Present C | NextC
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.3 "Truth Table" for the Memory Device

It is easily noticed from this table that "Next C" is the XOR of A and the
present C. So it might seem that if we get clever and replace our black box by
an XOR gate with feedback from C, we may have a possible memory unit (Fig.
2.27):

Fig. 2.27 A Plausible (but Non-Workable) Memory Device

Will this work? Well, it all depends on the timing! We have to interrupt our
abstract algebra and take note of the limitations on devices imposed by the
physical world. Let’s suppose that A is 0 and C is 1. Then everything is stable:
so far, so good. Now change the input A to 1. What happens? C changes to 0,
by definition, which is what we want. But this value is then fed back into the
XOR gate, where with A=1 it gives an output of 1 — so C changes back to 1.
This then goes back into the XOR, where with A=1 it now gives an output C =
0. We then start all over again. Our gate oscillates horribly, and is of no use
whatsoever.

44 LECTURES ON COMPUTATION

However, if you think about it, you can see that we can salvage the gate
somewhat by building in delays to the various stages of its operation; for
example, we can make the XOR take a certain amount of time to produce its
output. However, we cannot stop it oscillating. Even if we were prepared to
build a short-term memory bank, the physical volatility of electronic components
would introduce extra instabilities leading to unforeseen oscillations that make
this gate pretty useless for practical purposes. Out of interest, note what happens
if we build the circuit with an OR rather than an XOR?

Clearly, the crucial troublesome feature in this device is the element of
feedback. Can we not just dispense with it? The answer is yes, but this would
be at quite a cost. For reasons of economy and space, one thing we would like
our computer to be able to do is repeated calculations with the same pieces of
operating equipment. For example, if we used a certain adder to do part of a
calculation, we would like to use the same adder to do another subsequent part
of the calculation, which might involve using its earlier output. We would not
want to keep piling more and more adders into our architecture for each new
stage of a program: yet without feedback, we would have no choice. So we will
want to crack this problem!

What we want is a circuit that can hold a value, 0 or 1, until we decide
to reset it with a signal on a wire. The circuit that turns out to do the job for us
is called a flip-flop, schematically drawn as shown in Figure 2.28:

S Q
—R Q

Fig. 2.28 A Flip-Flop

The flip-flop has two input wires — the "set" (S) and "reset" (R) wires — and two
outputs, which we call Q and Q. This latter labeling reflects the fact that one is
always the logical complement — the inverse — of the other. They are sometimes
misleadingly referred to as the 0 and 1 lines; misleading, because each can take
either value, as long as the other is its inverse.

COMPUTER ORGANIZATION 45

We can actually use NOR gates (for example) to build a circuit that
functions as a flip-flop:

Ol

Fig. 2.29 Gate Structure of a Simple Flip-Flop

Note that the device incorporates feedback! Despite this, it is possible to arrange
things so that the flip-flop does not oscillate, as happened with our naive XOR
store. It is important to ensure that § and R are never simultaneously 1,
something which we can arrange the architecture of our machine to ensure. The
device then has just two output states, both of which are stable: O=1 (hence
0=0), and Q=0 (hence Q=1). How does this help us with memory storage?

The way the thing works is best seen by examining its truth table:

Present OI S {R | NextQ
0 0 {0 0
0 0 |1 0
0 1 1]0 1
1 0 10 1
1 1 10 1
1 0 |1 0

Table 2.4 Truth Table for a Simple Flip-Flop

46 LECTURES ON COMPUTATION

The signal on the Q-line is interpreted as the contents of the flip-flop, and this
stays the same whenever S and R are both 0. Let us first consider the case when
the reset line, R, carries no signal. Then we find that, if the contents Q of the
flip-flop are initially 0, setting S=1 changes this to 1; otherwise, the S-line has
no effect. In other words, the S-line sets the contents of the flip-flop to 1, but
subsequently manipulating S does nothing; if the flip-flop is already at 1, it will
stay that way even if we switch S. Now look at the effect of the reset line, R.
If the flip-flop is at 0, it will stay that way if we set R=1; however, if it is at 1,
then setting R=1 resets it to 0. So the R line clears the contents of the flip-flop.
This is pretty confusing upon first exposure, and I would recommend that you
study this set-up until you understand it fully. We will now examine how we
can use this flip-flop to solve our timing problems.

2.6: Timing and Shift Registers

We have now designed a device — a flip-flop — which incorporates feedback,
and doesn’t suffer from the oscillations of naive structures. However, there is
a subtle and interesting problem concerning this gadget. As I pointed out in the
last lecture, the signals traveling between the various components take differing
times to arrive and be processed, and sometimes the physical volatility of the
components you use to build your equipment will give you freaky variations in
these times in addition, which you wouldn’t allow for if you assumed
technology to be ideal. This means that often you will find signals arriving at
gates later than they are supposed to, and doing the wrong job! We have to be
aware of the possible effects of this. For the flip-flop, for example, what would
happen if both the outputs turned out to be the same? We have assumed, as an
idealization, that they would be complementary, but things can go wrong! You
can see that if this happens, then the whole business of the set and reset would
go out the window.

The way around this is to introduce into the system a clock, and have this
send an "enable" signal to the flip-flop at regular intervals. We then contrive to
have the flip-flop do nothing until it receives a clock signal. These signals are
spaced far enough apart to allow everything to settle down before operations are
executed. We implement this idea by placing an AND gate on each input wire,
and also feeding into each gate the clock signal:

COMPUTER ORGANIZATION 47

—
O

w2
o Ol

0,

Fig. 2.30 A Clocked RS Flip-Flop

This is sometimes called a transparent latch since all the time the clock is
asserted any change of input is transmitted through the device.

We represent the signal ¢, from the clock as a series of pulses (Fig. 2.31):

0

0,

Time

Fig. 2.31 The Clock Pulse

Clearly, whatever the input to the AND gates, it will only get through to S and
R when the signal from the clock ¢, is 1. So as long as we get the timing of the
clock right, and we can be sure it does not switch the gate on until there is no
chance of the inputs playing up, we have cleared up the problem. But of course,
we have created another one! We have merely deferred the difficulty: the output
of this gate will shoot off to another, or more than one, and we will have the
same problems with travel times, and so on, all over again. It will not help to
connect everything up to our clock ¢, — far from it; one part of the system may
be turning on just as another is changing its outputs. We still have delays. So

48 LECTURES ON COMPUTATION

we might think, to get around this, to try to build a machine with great
precision, calculating delay times and making sure that everything comes out
right. It can be done, and the resultant system is fast and efficient, but it’s also
very expensive and difficult to design. The best way to get around the problem
is to introduce another clock, ¢,, and not allow the next gate in the chain to
accept input from the first until this clock is asserted. This arrangement is the
basis for a special type of flip-flop called a Master-Slave Flip-Flop (Fig. 2.32):

o Al

S
R
T _T
®, 0,

Fig. 2.32 The Master-Slave Flip-Flop

S
R

o ROl

The signals from the two clocks should be complementary:

0,

0)
Time
1 ces
0, r
0)
Time

The easiest way to ensure this is to get ¢, from NOT ¢,. We also note that we
need our logical operations to be fast in comparison with the clock pulse-length.
Don’t forget that in all this we are using the abstractions that (1) all levels are
0 or 1 (not true: they are always changing with time. They are never exactly one
or zero, but they are near saturation), and (2) there is a definite, uniform delay
time between pulses: we can say that this happens, then that happens, and so on.
This is a good idealization, and we can get closer to it by introducing more

COMPUTER ORGANIZATION 49

clock signals if we like.

It is possible to design a variety of flip-flop devices, and learning how and
why they work is a valuable exercise. One such device is the D-type flip-flop,
which has the structure shown in Figure 2.33:

wnn
wn

G o W s Y
>

o,

Fig. 2.33 A ""D-type" Flip-Flop

It is unclear why this device is labeled a "D-type" flip-flop. One plausible
suggestion is that the "D" derives from the "delaying" property of the device:
basically, the output is the same as the input, but only becomes so after a clock
pulse.

Let us introduce the following shorthand notation for the D-type flip-flop:

_—

.__I___Q

o »

D— —Q_D_T—_T»— R
= ~—-D»——T

o,

Fig. 2.34 Simplified Notation for the D-type Flip-Flop

50 LECTURES ON COMPUTATION

A very useful device that may be built from flip-flops, and one which we
shall take the trouble to examine, is a shift register. This is a device which can,
amongst other things, store arbitrary binary numbers — sequences of bits — rather
than just one bit. It comprises a number of flip-flops, connected sequentially,
into which we feed our binary number one bit at a time. We will just use our
basic S-R’s, with a delay built in. The basic structure of a shift register is as
follows:

Input A B C
100101101....

) D Q D Q D Q

T N

Fig. 2.35 A Shift Register

Each unit of this register is essentially a stable delay device of the kind I
described earlier. Note that each flip-flop in the array is clocked by the same
clock ¢,.

The reader should have little difficulty in seeing how the device works.
We start with the assumption (not necessary, but a simplifying one) that all of
the flip-flops are set to zero. Suppose we wish to feed the number 101 into the
device. What will happen? We feed the number in lowest digit first, so we stick
a 1 into the left hand S-R, which I've labeled A, and wait until the clock pulse
arrives to get things moving. After the next clock pulse, the output of A
becomes 1. We now feed the next bit, 0, into A. Nothing happens until the next
clock pulse. After this arrives, the next S-R in the sequence, B, gets a 1 on its
output (the original 0 has been reset). However, the output of A switches to 0,
reflecting its earlier input. Meanwhile, we have fed into A the next bit of our
number which is 1. Again, we wait for the next clock pulse. Now we find that
A has an output of 1, B of 0 and C of 1 — in other words, reading from left to
right, the very number we fed into it! Generalizing to larger binary strings is
straightforward (note that each flip-flop can hold just the one bit, so a register
containing n flip-flops can only store up to 2"). So you can see that a register
like this takes a sequential piece of information and turns it into parallel

COMPUTER ORGANIZATION 51

information; shifting it along bit by bit and storing it for our later examination.
It is not necessary to go any further with them; the reader should be able to see
that registers clearly have uses as memory stores for numbers and as shifting
devices for binary arithmetical operations, and that they can therefore be built
into adders and other circuits.

THREE

THE THEORY OF COMPUTATION

Thus far, we have discussed the limitations on computing imposed by the
structure of logic gates. We now come on to address an issue that is far more
fundamental: is there a limit to what we can, in principle, compute? It is easy
to imagine that if we built a big enough computer, then it could compute
anything we wanted it to. Is this true? Or are there some questions that it could
never answer for us, however beautifully made it might be?

Ironically, it turns out that all this was discussed long before computers
were built! Computer science, in a sense, existed before the computer. It was a
very big topic for logicians and mathematicians in the thirties. There was a lot
of ferment at court in those days about this very question — what can be
computed in principle? Mathematicians were in the habit of playing a particular
game, involving setting up mathematical systems of axioms and elements — like
those of Euclid, for example — and seeing what they could deduce from them.
An assumption that was routinely made was that any statement you might care
to make in one of these mathematical languages could be proved or disproved,
in principle. Mathematicians were used to struggling vainly with the proof of
apparently quite simple statements — like Fermat’s Last Theorem, or Goldbach’s
Conjecture — but always figured that, sooner or later, some smart guy would
come along and figure them out'. However, the question eventually arose as to
whether such statements, or others, might be inherently unprovable. The
question became acute after the logician Kurt Godel proved the astonishing
result — in "Go6del’s Theorem" — that arithmetic was incomplete.

3.1: Effective Procedures and Computability

The struggle to define what could and could not be proved, and what numbers
could be calculated, led to the concept of what I will call an effective procedure.
If you like, an effective procedure is a set of rules telling you, moment by
moment, what to do to achieve a particular end; it is an algorithm. Let me

'In the case of Fermat’s Last Theorem, some smart guy did come along and solve it! Fermat’s
Theorem, which states that the equation
X' + y" = 7" (n an integer, n>3)
has no solutions for which x, y and z are integers, has always been one of the outstanding problems
of number theory. The proof, long believed impossible to derive (mathematical societies even offered
rewards for it!), was finally arrived at in 1994 by the mathematicians Andrew Wiles and Richard
Taylor, after many, many years’ work (and after a false alarm in 1993). [Editors]

THEORY OF COMPUTATION 53

explain roughly what this means, by example. Suppose you wanted to calculate
the exponential function of a number x, ¢". There is a very direct way of doing
this: you use the Taylor series

e* =1 +x+ (Y2 + &3 + ... G.1

Plug in the value of x, add up the individual terms, and you have €. As the
number of terms you include in your sum increases, the value you have for e*
gets closer to the actual value. So if the task you have set yourself is to compute
€ to a certain degree of accuracy, I can tell you how to do it — it might be slow
and laborious, and there might be techniques which are more efficient, but we
don’t care: it works. It is an example of what I call an effective procedure.

Another example of an effective procedure in mathematics is the process
of differentiation. It doesn’t matter what function of a variable x I choose to
give you, if you have learned the basic rules of differential calculus you can
differentiate it. Things might get a little messy, but they are straightforward.
This is in contrast to the inverse operation, integration. As you all know,
integration is something of an art; for any given integrand, you might have to
make a lot of guesses before you can integrate it: should I change variables? Do
we have the derivative of a function divided by the function itself? Is integration
by parts the way to go? In that we none of us have a hotline to the correct
answer, it is fair to say that we do not possess an effective procedure for
integration. However, this is not to say that such a procedure does not exist: one
of the most interesting discoveries in this area of the past twenty years has been
that there is such a procedure! Specifically, any integral which can be expressed
in terms of a pre-defined list of elementary functions — sines, exponentials, error
functions and so forth — can be evaluated by an effective procedure. This means,
among other things, that machines can do integrals. We have to thank a guy
named Risch for this ("The Problem of Integration in Finite Terms", Trans.
A.M.S. 139(1969) pp. 167-189).

There are other examples in mathematics where we lack effective
procedures; factoring general algebraic expressions, for example: there are
effective procedures for expressions up to the fourth degree, but not fifth and
over. An interesting example of a discipline in which every school kid would
give his eye-teeth for an effective procedure is geometry. Geometrical proof, like
integration, strikes most of us as more art than science, requiring considerable
ingenuity. It is ironic that, like integration, there is an effective procedure for

54 LECTURES ON COMPUTATION

geometry! It is, in fact, Cartesian analytic geometry. We label points by
coordinates, (x,y), and we determine all lengths and angles by using Pythagoras’
Theorem and various other formulae. Analytic geometry reduces the geometry
of Euclid to a branch of algebra, at a level where effective procedures exist.

I have already pointed out that converting questions to effective
procedures is pretty much equivalent to getting them into a form whereby
computers can handle them, and this is one of the reasons why the topic has
attracted so much attention of late (and why, for example, the notion of effective
procedures in integration has only recently been addressed and solved). Now
when mathematicians first addressed these problems, their interest was more
general than the practical limits of computation; they were interested in principle
with what could be proved. The question spawned a variety of approaches. Alan
Turing, a British mathematician, equated the concept of "computability" with the
ability of a certain type of machine to perform a computation. Church defined
a system of logic and propositions and called it effective calculability. Kleene
defined certain so-called "general recursive propositions" and worked in terms
of these. Post had yet another approach (see the problem at the end of this
chapter), and there were still other ways of examining the problem. All of these
workers started off with a mathematical language of sorts and attempted to
define a concept of "effective calculability" within that language. Thankfully for
us, it can be shown that all of these apparently disparate approaches are
equivalent, which means that we will only need to look at one of them. We
choose the commonest method, that of Turing.

Turing’s idea was to make a machine that was kind of an analogue of a
mathematician who has to follow a set of rules. The idea is that the
mathematician has a long strip of paper broken up into squares, in each of
which he can write and read, one at a time. He looks at a square, and what he
sees puts him in some state of mind which determines what he writes in the next
square. So imagine the guy’s brain having lots of different possible states which
are mixed up and changed by looking at the strip of paper. After thinking along
these lines and abstracting a bit, Turing came up with a kind of machine which
is referred to as — surprise, surprise — a Turing machine. We will see that these
machines are horribly inefficient and slow — so much so that no one would ever
waste their time building one except for amusement — but that, if we are patient
with them, they can do wonderful things.

Now Turing invented all manner of Turing machines, but he eventually
discovered one — the so-called Universal Turing Machine (UTM) — which was
the best of the bunch. Anything that any specific, special-purpose Turing

THEORY OF COMPUTATION 55

machine could do, the UTM could do. But further, Turing asserted that if
anything could be done by an effective procedure, it could be done by his
Universal machine, and vice versa: if the UTM could not solve a problem, there
was no effective procedure for that problem. Although just a conjecture, this
belief about the UTM and effective procedures is widely held, and has received
much theoretical support. No one has yet been able to design a machine that can
outdo the UTM in principle. I will actually give you the plans for a UTM later.
First, we will take a closer look at its simpler brother — the finite state machine.

3.2: Finite State Machines

A typical Turing machine consists of two parts; a tape, which must be of
potentially unlimited size, and the machine itself, which moves over the tape and
manipulates its contents. It would be a mistake to think that the tape is a minor
addition to a very clever machine; without the tape, the machine is really quite
dumb (try solving a complex integral in your head). We will begin our
examination of Turing machines and what they can do by looking at a Turing
machine without its tape; this is called a finite state machine.

Although we are chiefly interested in finite state machines (FSMs) as
component parts of Turing machines, they are of some interest in their own
right. What kinds of problems can such machines do, or not do? It turns out that
there are some questions that FSMs cannot answer but that Turing machines
can. Why this should be the case is naturally of interest to us. We will take all
of our machines to be black boxes, whose inner mechanical workings are hidden
from us; we have no interest in these details. We are only interested in their
behavior. To familiarize you with the relevant concepts, let me give an example
of a finite state machine (Fig. 3.1):

QI

Q

Fig. 3.1 A Generic Finite State Machine

56 LECTURES ON COMPUTATION

The basic idea is as follows. The machine starts off in a certain internal state,
Q. This might, for example, simply be holding a number in memory. It then
receives an input, or stimulus, S — you can either imagine the machine reading
a bit of information off a (finite) tape or having it fed in in some other way. The
machine reacts to this input by changing to another state, Q', and spitting
something out — a response to the input, R. The state it changes to and its
response are determined by both the initial state and the input. The machine then
repeats this cycle, reading another input, changing state again, and again issuing
some response.

To make contact with real machines, we will introduce a discrete time
variable, which sets the pace at which everything happens. At a given time ¢, we
have the machine in a state Q(f) receiving a symbol S(f). We arrange things so
that the response to this state of affairs comes one pulse later, at time (¢+1). Let
us, for notational purposes, introduce two functions F and G, to describe the
FSM and write:

R[t+1] = FIS®), Q]
Qlz+1] = G[S®), Q)]

(3.2)

We can depict the behaviour of FSMs in a neat diagrammatic way. Suppose a
machine has a set of possible states {Q,}. We represent the basic transition of
this machine from a state Q; to a state Q, upon reception of a stimulus S, and
resulting in a response R, as follows:

\
S /

Fig. 3.2 A Graphical Depiction of a State Transition

This graphical technique comes into its own when we have the possibility of
multiple stimuli, responses and state changes. For example, we might have the
system shown below in Fig. 3.3:

THEORY OF COMPUTATION 57

Fig. 3.3 A Complex Finite State Machine

This FSM behaves as follows: if it is in state Q, and it receives a stimulus S,
it spits out R, and goes into state Q,. If, however, it receives a stimulus S,, it
spits out R, and changes to state Q. Getting S,, it switches to state O, and
produces R;. Once in state Q,, if it receives a stimulus S,, it returns to state Q,,
responding with R,, whilst if it receives a stimulus S, it stays where it is and
spits out R,. The reader can figure out what happens when the machine is in
states Q; and Q,, and construct more complex examples for himself.

One feature of this example is that the machine was able to react to three
distinct stimuli. It will suit our purposes from here on to restrict the possible
stimuli to just two — the binary one and zero. This doesn’t actually affect what
we can do with FSMs, only how quickly we can do it; we can allow for the
possibility of multiple input stimuli by feeding in a sequence of 1’s and 0’s,
which is clearly equivalent to feeding in an arbitrary number, only in binary
format. Simplifications of this kind are common in the study of FSMs and
Turing machines where we are not concerned with their speed of operation.

Let me now give a specific example of an FSM that actually does
something, albeit something pretty trivial — a delay machine. You feed it a

58 LECTURES ON COMPUTATION

stimulus and, after a pause, it responds with the same stimulus. That’s all it
does. Figure 3.4 shows the "state diagram" of such a delay machine.

1

Fig. 3.4 A Delay Machine

You can hardly get a simpler machine than this! It has only two internal states,
and acts as a delay machine solely because we are using pulsed time and
demanding that the machine’s response to a stimulus at time ¢ comes at time
t+1. If we tell our machine to spit out whatever we put in, we will have a delay
time of one unit. It is possible to increase this delay time, but it requires more
complicated machines. As an exercise, try to design a delay FSM that
remembers two units into the past: the stimulus we put in at time ¢ is fed back
to us at time 2. (Incidentally, there is a sense in which such a machine can be
taken as having a memory of only one time unit: if we realize that the state at
time #+1 tells us the input at time 7. It is often convenient to examine the state
of an FSM rather than its response.)

Another way of describing the operation of FSMs is by tabulating the
functions F and G we described earlier. Understanding the operation of an FSM
from such a table is harder than from its state diagram, and becomes hopeless
for very complex machines, but we will include it for the sake of completeness:

G|1Q | Q& F1Q |Q
SO QO QO S() Ro R]
S Q[Q Si|Ry| R

Table 3.1 State Table for a Generic FSM

THEORY OF COMPUTATION 59

Now it is surprising what you can do with these things, and it is worth
getting used to deciphering state diagrams so that you can appreciate this. I am
going to give you a few more examples, a little more demanding than our delay
machine. First up is a so-called "toggle" or "parity" machine. You feed this
machine a string of 0’s and 1’s, and it keeps track of whether the number of 1’s
it has received is even or odd; that is, the parity of the string.

Fig. 3.5 The Parity Machine

From the diagram in Figure 3.5, you can see that, one unit of time after you
feed in the last digit, the response of the FSM tells you the parity. If itis a 1,
the parity is odd — you have fed in an odd number of 1’s. A O tells you that you
have fed in an even number. Note that, as an alternative, the parity can be read
off from the state of the machine; which I have flagged by labeling the two
possible states as "odd" and "even".

Let me give you some simple problems to think about.

Problem 3.1: Suppose we feed a sequence of 1’s and 0’s — a binary number —
into a machine. Design a machine which performs a pairwise sum of the digits,
that is, one which takes the incoming digits two at a time and adds them,
spitting the result out in two steps. So, if two digits come in as 00, it spits out
00; a 10 or 01 results in a 01 (1+0 = 0+1!); but a 11 results in binary 10: 1+1
= 2, in decimal, 10 in binary. I will give you a hint: the machine will require
four states.

Problem 3.2: Another question you might like to address is the design of
another delay machine, but this time one which remembers and returns two input
stimuli. You can see that such a device needs four states — corresponding to the
four possible inputs 00, 01, 10 and 11.

Problem 3.3: Finally, if you are feeling particularly energetic, design a two-

60 LECTURES ON COMPUTATION

input binary adder. I want the full works! I feed in two binary numbers,
simultaneously, one bit from each at a time, with the least significant bits first,
and the FSM, after some delay, feeds me the sum. I’m not interested in it telling
me the carry, just the sum. We can schematically depict the desired behaviour
of the machine as follows:

Time —
Inputs 101011

011010

Output=sum 1 1 0 1 0 O (Carrying 1 into the next column)

3.3: The Limitations of Finite State Machines

If you have succeeded in designing an adder, then you have created a little
wonder — a simple machine that can add two numbers of any size. It is slow and
inefficient, but it does its job. This is usually the case with FSMs. However, it
is important to appreciate the limitations of such machines; specifically, there
are many tasks that they cannot perform. It is interesting to take a look at what
they are. For example, it turns out that one cannot build a FSM that will
multiply any two arbitrary binary numbers together. The reason for this will
become clear in just a moment, after we have examined a simpler example.
Suppose we want to build a parenthesis checker. What is one of these? Imagine
you have a stream of parentheses, as follows:

(CCONCCOOCCOIOOCOIO)

The task of a parenthesis checker is to ascertain whether such an expression is
"balanced": that the brackets open and close consistently throughout the
expression. This is not the same as just counting the number of left and right
brackets and making sure they are equal! They have to match in the correct
order. This is a common problem in arithmetic and algebra, whenever we have
operations nested within others. The above example, incidentally, is invalid; this
one:

(OCOO)CCOOCOO)))

is valid. You might like to check in each case.

THEORY OF COMPUTATION 61

On the face of it, building a parenthesis checker seems a pretty
straightforward thing to do. In many ways it is, but anything you get to
implement the check would not be an FSM. Here is one way you could proceed.
Starting from the left of the string, you count open brackets until you reach a
close bracket. You "cancel" the close bracket with the rightmost open bracket,
then move one space to the right. If you hit a close bracket, cancel it with
another open bracket; if you hit an open bracket, add one to the number of open
brackets you have uncanceled and move onto the next one. It is a very simple
mechanism, and it will tell you whether or not your parenthesis string is OK: if
you have any brackets left over after you process the rightmost one, then your
string is inconsistent. So why cannot an FSM do something this simple?

The answer is that the parenthesis checker we want has to cope with
arbitrary strings. That means, in principle, strings of arbitrary length which
might contain arbitrarily large numbers of "open" brackets. Now recall that an
essential feature of the machine is that it must keep track of how many open
brackets remain uncancelled by closed ones at each stage of its operation; yet
to do this, in the terminology of FSMs, it will need a distinct state for each
distinct number of open brackets. Here lies the problem. An arbitrary string
requires a machine with an arbitrary — that is, ultimately, infinite — number of
states. Hence, no finite state machine will do. What will do, as we shall see, is
a Turing machine — for a Turing machine is, essentially, an FSM with infinite
memory capacity.

For those who think I am nitpicking, it is important to reiterate that I am
discussing matters of principle. From a practical viewpoint, we can clearly build
a finite state machine to check the consistency of any bracket string we are
likely to encounter. Once we have set its number of states, we can ensure that
we only feed it strings of an acceptable size. If we label each of its states by 32
32-bit binary numbers we can enumerate over 2'°° states, and hence deal with
strings 2! brackets long. This is far more than we are ever likely to encounter
in practice: by comparison, note that current estimates place the number of
protons in the universe only of the order of 2*®. But from a mathematical and
theoretical standpoint, this is a very different thing from having a universal
parenthesis checker: it is, of course, the difference between the finite and the
infinite, and when we are discussing academic matters this is important. We can
build an FSM to add together two arbitrarily large numbers; we cannot build a
parenthesis checking FSM to check any string we choose. Incidentally, it is the
need for an infinite memory that debars the construction of an FSM for binary
multiplication.

62 LECTURES ON COMPUTATION

Before getting onto Mr. Turing and his machines, I would like to say one
or two more things about those with a finite number of states. One thing we
looked at in detail in previous chapters was the extent to which complicated
logic functions could be built out of simple, basic logic units — such as gates.
A similar question arises here: is there a core set of FSMs with which all others
can be built? To examine this question, we will need to examine the ways in
which FSMs can be combined.

Figure 3.6 shows two machines, which I call A and B. I have linked them
up in something of a crazy way, with feedback and whatnot. Don’t worry if you
can’t see at a glance what is going on!

A B
GA—)Z"' 14 v “13—') pA
QA | QB 3
3
R i
(0] 3
B > — Py

Fig. 3.6 A Composite FSM

Let me describe what the diagram represents. In a general FSM, the input
stimulus can be any binary number, as can its response. Whether the stimulus
is fed in sequentially, or in parallel (e.g. on a lot of on/off lines), we can split
it up into two sets. Suppose the stimulus for A has ten bits. We split this up
into, say, a 7-bit and a 3-bit stimulus. Now comes the tricky part: we take the
7-bit input to be external, fed in from outside on wire G,, but the 3-bit input we
take from the response of machine B — which we have also split up. In the case
of B, we take the response to have, say, 16 bits, and 3 of these we re-route to
A, the other 13 we take as output. Bear with me! What about the response of
A? Again, we split this up: suppose it is 20 bits. We choose (this is all arbitrary)
to feed 14 into B as input, and with the remaining 6 we bypass B and take them
as output. The remainder of B’s input — whatever it may be — is fed in from
outside, on wire Gp. Let’s say 0, carries 5 bits.

THEORY OF COMPUTATION 63

The point of all these shenanigans is that this composite system can be
represented as a single finite state machine:

s+ Q pP—Rr

where the input stimulus is the combined binary input on wires 6, and G5, and
the output is the partial responses from A and B, again combined. Clearly, the
machine has an input stimulus of 7+5=12 bits, and a response of 13+6=19 bits.
Exactly what the thing does depends on the properties of A and B; it seems
feasible that the number of internal states of this combined machine is the
product of the number of states of A and B, but one must be careful about the
extent to which things can be affected by feedback and the information running
around the wires. What I wanted to show was how you could build an FSM
from smaller ones by tying up the loose wires appropriately. You might like to
see what happens if you arrange things differently — by forgetting feedback, for
example. You will find that feedback is essential if you want as few constraints
as possible on the size of the overall input and output bit sizes: connecting up
two machines by, say, directly linking output to input not only fixes the sizes
of the overall stimulus/response but also requires the component FSMs to match
up in their respective outputs and inputs.

Let me return to my question: can we build any FSM out of a core set of
basic FSMs? The answer turns out to be yes: in fact, we find ourselves going
right back to our friends AND and NOT, which can be viewed as finite state
machines themselves, and which we can actually use to build any other FSM.
Let me show roughly how this is done. We will first need a bit of new notation.
Let us represent a set of k signal-bearing wires by a single wire crossed with a
slash, next to which we write the number k:

/ 3 —)
~ = - k lines

k

With this convenient diagrammatic tool, we can draw a schematic diagram of

64 LECTURES ON COMPUTATION

a general finite state machine (Fig. 3.7):

R R R
S—t— E |— E —— OUT

S i COMBINATORIAL I

f. LOGIC New g

0, b,

Fig. 3.7 The General FSM

The operation of this rather complicated-looking device is quite straightforward.
It comprises two registers (such as those we constructed in Chapter 2 from
clocked flip-flops) and a black box that performs certain logical functions. The
input to the first register has two pieces, the stimulus S to the FSM and the state
the machine is in, Q: central to our design is the fact that we can label the
internal states by a binary number. In this case, the stimulus has s bits, and is
fed in on s wires, while the state has k bits, fed in on k wires. (The FSM has
therefore up to 2* internal states). Subject to timing, which I will come back to,
the register passes these two inputs into the logic unit. Here is the trick. An
FSM, in response to a given stimulus and being in a given state, produces a
response and goes into a (possibly) new state. In terms of our current
description, this simply amounts to our black box receiving two binary strings
as input, and producing two as output — one representing the response, the other
the new state. The new state information is then fed back into the first register
to prime the machine for its next stimulus. Ensuring that the FSM works is then
just a matter of building a logic unit which gives the right outputs for each
input, which we know is just a matter of combining ANDs and NOTs in the
right way.

A quick word about timing. As we have discussed, the practicalities of
circuit design mean that we have to clock the inputs and outputs of logic

THEORY OF COMPUTATION 65

devices; we have to allow for the various delays in signals arriving because of
finite travel times. Our FSM is no exception, and we have to connect the
component registers up to two clocks as usual; the way these work is essentially
the same as with standard logic circuits. The first register is clocked by ¢,, the
second by ¢,, and we arrange things such that when one is on, the other is off
— which we do by letting ¢,= NOT ¢, and hooking both up to a standard clock
— and ensuring that the length of time for which each is on is more than enough
to let the signals on the wires settle down. The crucial thing is to ensure that ¢,
is off whilst ¢, is on, to prevent the second register sending information about
the change of state to the first while it is still processing the initial state
information.

Problem 3.4: Before turning to Turing machines, I will introduce you to a nice
FSM problem that you might like to think about. It is called the "Firing Squad"
problem. We have an arbitrarily long line of identical finite state machines that
I call "soldiers". Let us say there are N of them. At one end of the line is a
"general", another FSM. Here is what happens. The general shouts "Fire". The
puzzle is to get all of the soldiers to fire simultaneously, in the shortest possible
time, subject to the following constraints: firstly, time goes in units; secondly,
the state of each FSM at time 7+1 can only depend on the state of its next-door
neighbors at time 7 thirdly, the method you come up with must be independent
of N, the number of soldiers. At the beginning, each FSM is quiescent. Then the
general spits out a pulse, "fire", and this acts as an input for the soldier
immediately next to him. This soldier reacts in some way, enters a new state,
and this in turn affects the soldier next to him, and so on down the line. All the
soldiers interact in some way, yack yack yack, and at some point they become
synchronized and spit out a pulse representing their "firing". (The general,
incidentally, does nothing on his own initiative after starting things off.)

There are different ways of doing this, and the time between the general
issuing his order and the soldiers firing is usually found to be between 3N and
8N. It is possible to prove that the soldiers cannot fire earlier than T=2N-2 since
there would not be enough time for all the required information to move around.
Somebody has actually found a solution with this minimum time. That is very
difficult though, and you should not be so ambitious. It is a nice problem,
however, and I often spend time on airplanes trying to figure it out. I haven’t
cracked it yet.

66 LECTURES ON COMPUTATION

3.4: Turing Machines

Finally, we come to Turing machines. Turing’s idea was to conceive of himself,
or any other mathematician, as a machine, having a finite state machine in his
head, and an unlimited amount of paper at his disposal to write on. It is the
unlimited paper — hence effectively unbounded memory — that distinguishes a
Turing machine from an FSM. Remember that some problems — parenthesis
checking, multiplication — cannot be done by finite state machines, because, by
definition, they lack an unlimited memory capacity. This restriction does not
apply to Turing machines. Note that we are not saying that the amount of paper
attached to such a machine is infinite; at any given stage it will be finite, but we
have the option of adding to the pile whenever we need more. Hence our use
of the word "unlimited".

Turing machines can be described in many ways, but we will adopt the
picture that is perhaps most common. We envisage a little machine, with a finite
number of internal states, that moves over a length of tape. This tape is how we
choose to arrange our paper. It is sectioned off into cells, in each of which
might be found a symbol. The action of the machine is simple, and similar to
that of an FSM: it starts off in a certain state, looking at the contents of a cell.
Depending on the state, and the cell contents, it might erase the contents of the
cell and write something new, or leave the cell as it is (to ensure uniformity of
action, we view this as erasing the contents and writing them back in again).
Whatever it does, it next moves one cell to the left or right, and changes to a
new internal state. It might look something like Figure 3.8:

&

We can see how similar the Turing machine is to an FSM. Like an FSM, it has
internal states. Reading the contents of a cell is like a stimulus, and overwriting
the contents is like a response, as is moving left or right. The restriction that the
machine move only one square at a time is not essential; it just makes it more

Fig. 3.8 A Turing Machine

THEORY OF COMPUTATION 67

primitive, which is what we want. One feature of a Turing machine that is
essential is that it be able to move both left and right. You can show (although
you might want to wait until you are more familiar with the ideas) that a Turing
machine that can only move in one direction is just a finite state machine, with
all its limitations.

Now we are going to start by insisting that only a finite part of the tape
have any writing on it. On either side of this region, the tape is blank. We first
tell the machine where to start, and this is at time T. Its later behavior, at a time
T+1 say (Turing machines operate on pulsed time like FSMs), is specified by
three functions, each of which depends on the state Q;at time T and the symbol
S; it has just read: these are its new state, Q;, the symbol it writes, S;, and the
direction of its subsequent motion, D. We can write:

Q = FQ, S)
S; = 6@, S) 33
D = D@, S)

This list is just like the specification of an FSM but with the extra function D.
The complete machine is fully described by these functions, which you can view
as one giant (and finite) look-up list of "quintuples" — a fancy name for the set
of five functions we have defined, two at time 7 (Q; and S,), and three at 7+1
(Q), S; and D). All you do now is stick in some data — which you do by writing
on the tape and letting the machine look at it — tell the machine where to start,
and leave it to get on with it. The idea is that the machine will finish up by
printing the result of its calculation somewhere on the tape for you to peruse at
your leisure. Note that for it to do this, you have to give it instructions as to
when it is to halt or stop. This seems pretty trivial, but as we will see later,
matters of "halting" hide some very important, and very profound, issues in
computation.

Before giving you some concrete examples of Turing machines, let me
remind you of why we are looking at them. I have said that finding an effective
procedure for doing a problem is equivalent to finding a Turing machine that
could solve it. This does not seem much of an insight until we realize that
among the list of all Turing machines, by which I mean all lists of quintuples,
there exists a very special kind, a Universal Turing machine (UTM), which can
do anything any other Turing machine can do! Specifically, a UTM is an

68 LECTURES ON COMPUTATION

imitator, mimicking the problem-solving activities of simpler Turing machines.
(I say "a" UTM, rather than "the" UTM since, while all UTMs are
computationally equivalent, they can be built in many different ways). Suppose
we have a Turing machine, defined by some list of quintuples, which computes
a particular output when we give it a particular set of input data. We get a UTM
to imitate this process by feeding it a description of the Turing machine — that
is, telling the UTM about the machine’s quintuple list — and the input data, both
of which we do by writing them on the UTM’s tape in some language it
understands, in the same way we feed data into any Turing machine. We also
tell the UTM where each begins and ends®. The UTM’s internal program then
takes this information and mimics the action of the original machine. Eventually,
it spits out the result of the calculation: that is, the output of the original Turing
machine. What is impressive about a UTM is that all we have to do is give it
a list of quintuples and some initial data — its own set of defining quintuples
suffice for it to mimic any other machine. We don’t have to change them for
specific cases’. Why such machines are important to us is because it turns out
that, if you try to get a UTM to impersonate itself, you end up discovering that
there are some problems that no Turing machine — and hence no mathematician
— can solve!

Let us now look at a few real Turing machines. The first, and one of the
simplest, is related to a finite state machine we have already examined — a
parity counter. We feed the machine a binary string and we want it to tell us
whether the number of 1’s in the string is odd or even. Schematically we have
(Fig. 3.9):

...... o ot |1t]of1 |1]|o]|1 |[EBfo][o0.

&

Start

Fig. 3.9 Input Tape for the Parity Counter

We begin by writing the input data, the binary string, onto the tape as shown;

The section of the UTM’s tape containing information about the machine it is imitating is
usually referred to as the "pseudotape”. [RPF]

SWe will actually construct a UTM later. [RPF]

THEORY OF COMPUTATION 69

each cell of the tape holds one digit. The "tape-head" of the machine rests at the
far left of the string, on the first digit, and we define the machine to be in state
0, To the left of the string are nothing but zeroes, and to the right, more zeroes
— although we separate these from the string with a letter E, for "end", so that
the machine does not assume they are part of it.

The operation of the machine, which we will shortly translate into
quintuples, is as follows. The state of the machine tells us the parity of the
string. The machine starts off in state Q,, equal to even parity, as it has not yet
encountered any 1s. If it encounters a zero, it stays in state Q, and moves one
space to the right. The state does not change because the parity does not change
when it hits a zero. However, if it hits a 1, the machine erases it, replaces it
with a zero, moves one space to the right, and enters a state Q,. Now if it hits
a zero, it stays in state Q, and moves a space to the right, as before. If it hits a
1, it erases it, putting a zero in its place, and moves to the right, this time
reverting to state @, You should now have an idea what is happening. The
machine works its way across the string from left to right, changing its state
whenever it encounters a 1, and leaving a string of Os behind. If the machine is
in state Q, when it kills the last digit of the string, then the string has even
parity; if it is in state Q,, it is odd. How does the machine tell us the parity?
Simple — we include a rule telling the machine what to do if it reads an E. If it
is in state Q, and reads E, it erases E and writes "0", meaning even parity. In
state Q,, it overwrites E with a "1", denoting odd parity. In both cases it then
enters a new state @y, meaning "halt". It does not need to move to the right or
left. We examine the tape, and the digit directly above the head is the answer
to our question. We end up with the situation shown in Figure 3.10:

{Even (0), or Odd (1)}

Fig. 3.10 Output Tape from the Parity Counter

The quintuples for this machine are straightforwardly written out (Table 3.2):

70 LECTURES ON COMPUTATION

Initial State | Read | New State | Write | Direction of Move
0 0 0 0 R
0 1 1 0 R
1 0 1 0 R
1 1 0 0 R
0 E H(alt) 0 -
1 E H 1 -

Table 3.2 Quintuples for the Parity Counter

Now this device is rather dumb, and we have already seen that we could solve
the parity problem with a finite state machine (note here how our Turing
machine has only moved in one direction!). We will shortly demonstrate the
superiority of Mr. Turing’s creations by building a parenthesis checker with
them, something which we have seen cannot be done with an FSM, but first let
me introduce some new diagrammatics which will make it easier for us to
understand how these machines work without tying ourselves in knots wading
through quintuple lists.

The idea is, unsurprisingly, similar to that we adopted with FSMs. In fact,
the only real difference in the diagrams is that we have to somehow include the
direction of motion of the head after it has overwritten a cell, and we have to
build in start and halt conditions. In all other respects the diagrams resemble
those for FSMs. Take a look at Figure 3.11, which describes our parity counter:

START

Fig. 3.11 A Turing Machine Parity Counter

THEORY OF COMPUTATION 71

This is essentially the same as Figure 3.5, the FSM which does the same job.
Where the FSM has a stimulus, the TM has the contents of a cell. In these
diagrams, both are written at the point of contact of lines and circles. Where the
FSM spits out a response, which we wrote on the arrow linking states, the TM
overwrites the cell contents, what it writes being noted on the arrow. The state
labels of both FSMs and TMs are written inside the circles. The major
differences are that, firstly, we have to know where the machine starts, which
we do by adding an external arrow as shown; and we have to show when it
stops, which we do by attaching another arrow to each state to allow for the
machine reading E, each arrow terminating in a "Halt". More subtly, we also
have to describe the direction of its motion after each operation. It turns out that
machines whose direction of motion depends only on their internal state — and
not on the symbols they read — are not fundamentally less capable of carrying
out computations than more general machines which allow the tape symbols to
influence the direction of motion. I will thus restrict myself to machines where
motion to the right or left depends solely on the internal state. This enables me
to solve the diagrammatic problem with ease: just write L or R, as appropriate,
inside the state box. In this case, both states are associated with movement to
the right.

I have gone on at some length about the rather dumb parity machine as
it is important that you familiarize yourself with the basic mechanics and
notation of Turing machines. Let me now look at a more interesting problem,
that of building a parenthesis checker. This will illustrate the superiority of
Turing machines over finite state machines. Suppose we provide our Turing
machine with a tape, in each cell of which is written a parenthesis (Fig. 3.12):

...ECO)OCO)N(OE....

Fig. 3.12 Input Tape to the Parenthesis Checker

Each end of the string is marked with a symbol E. This is obviously the
simplest way of representing the string. How do we get the machine to check
its validity? One way is as follows. I will describe things in words first, and
come back to discuss states and diagrams and so forth in a moment. The
machine starts at the far left end of the string. It runs through all the left
brackets until it comes to a right bracket. It then overwrites this right bracket
with an X — or any other symbol you choose — and then moves one square to

72 LECTURES ON COMPUTATION

the left. It is now on a left bracket. It overwrites this with an X, too. It has now
canceled a pair of brackets. The key property of the X’s is that the machine
doesn’t care about them; they are invisible. After having canceled a pair in this
way, the machine moves right again, passing through any X’s and left brackets,
until it hits a right bracket. It then does its stuff with the X again. As you can
see, in this way the machine systematically cancels pairs of brackets. Sooner or
later, the head of the machine will hit an E — it could be either one — and then
comes the moment of truth. When this happens, the machine has to check
whether the tape between the two Es contains only X’s, or some uncanceled
brackets too. If the former, the string is valid, and the machine prints (say) a 1
somewhere to tell us this; if the latter, the machine prints 0, telling us the string
is invalid. Of course, after printing, the machine is told to halt.

If you think about it, this very simple procedure will check out any
parenthesis string, irrespective of size. The functioning of this machine is
encapsulated by the state diagram of Figure 3.13 (following Minsky [1967]):

START

0
H
[
L

Q\
. H

Note how the diagram differs from that for an FSM: we have to include start
and stop instructions, and also direction of motion indicators. In fact, this
machine, unlike the parity counter, requires two different left-moving states.

ooy o

Fig. 3.13 The Parenthesis Checker State Diagram

Now that you have some grasp of the basic ideas, you might like to try
and design a few Turing machines for yourself. Here are some example
problems to get you thinking.

Problem 3.5: Design a unary multiplier. "Unary" numbers are numbers written
in base 1, and are even more primitive than binary. In this base, we have only

THEORY OF COMPUTATION 73

the digit 1, and a number N is written as a string of N 1’s: 1 = 1, 2(base 10) =
11(base 1), 3 = 111, 4 = 1111, and so on. I would like you to design a Turing
machine to multiply together any two unary numbers. Start with the input string:

00.E1111..1B 1111 ..11E..00

m n

which codes the numbers being multiplied, m and n and separates the two
numbers with the symbol B. The goal is to end up with a tape that gives you
mn. It might look something like this:

..00 E0000..0BXXX..XEYYYY..Y 00..

m n mn

where Y is some symbol distinct from 0, 1, X, E and B. You can consider the
given tape structure a strong hint as one way in which you could solve the
problem!

Problem 3.6: We have discussed binary adders before. I would now like you
to design a Turing machine to add two binary numbers, but only for the case
where they have the same number of bits (this makes it easier). You can start
with the initial tape:

..00A1101.1B1001..0CO000...

m n

for numbers m and n with the field of the two numbers delineated by the
symbols A, B and C. I will leave it to you to decide where the machine starts,
how it proceeds, what its final output looks like, where it appears, and so on.

Problem 3.7: If you’re finding these problems too easy, here’s one that is much
harder: design a Turing machine for a binary multiplier!

74 LECTURES ON COMPUTATION

Problem 3.8: This last problem is neat: design a unary to binary converter. That
is, if you feed the machine a string of 1’s representing a unary number, it gives
you that number converted to binary. The secret to this problem lies in the
mathematics of divisors and remainders. Consider what we mean when we talk
of the binary form of an n-bit number N = N,N,_,...N,N,. By definition we have:

N =N2"+ N, 2"! + .. + N2 + N,

We start with N written in unary — i.e. a string of N 1’s — and we want to find
the coefficients N,, the digits in binary. The rightmost digit, N,, can be found by
dividing N by two, and noting the remainder, since:

N =2X + N,
with X easily ascertained. To find N,, we get rid of N,, and use the fact that:
X =2Y +N,

That is, we divide X by two and note the remainder — N,. We just keep doing
this, shrinking the number down by dividing by two and noting the remainder,
until we have the binary result. Note that, since N is an n-bit number, by
definition N, must be 1.

If we are given the number N in unary form, we can simulate the above
procedure by grouping the 1’s off pairwise and looking at what is left. Let us
take a concrete example. Use the number nine in base ten, or 111111111 in
unary. Pair up the 1’s:

a1 @an an an 1

Clearly, this is just like dividing by two. There is an isolated digit on the right.
This tells us that N, is 1. To find N,, we scratch the righthand 1 and pair up the
pairs in the remaining string:

(11 11) (11 11).

This time, there is no remainder: N, is 0. Similarly, we find that N, is 0. We
have now paired up all our pairs and pairs of pairs, and the only thing left to do
is tag a 1, for N;, to the left of the number, giving us 111111111 (unary) = 1001

(binary).

THEORY OF COMPUTATION 75

I will leave it up to you to implement this algorithm with a Turing
machine. You have to get the thing to pair off digits, mark them as pairs and
check the remainder; and then come back to the beginning and mark off pairs
of pairs, and so on. Marking pairs is probably best done by starting at the left
end of the string and going to the right, striking out every other digit and
replacing it with an X symbol. When the machine gets to go through the string
again, it ignores the X’s and strikes out every other 1 again. This method,
suitably refined, will work! I leave it to you to figure out the details. Don’t
forget that you have to get the machine to start, perform the conversion, write
its output and then stop.

3.5: More on Turing Machines

I would now like to take a look at a fairly complicated Turing machine that
bears on a different aspect of computing. Earlier in these lectures I pointed out
that computers were more paper pushers than calculators, and it would be nice
to see if we can build a Turing machine that performs filing, rather than
arithmetic, functions. The most primitive such function is looking up information
in a file, and that is what we are going to examine next. We want a machine
that first locates a file in a file system, then reads its contents, and finally relays
these contents to us*.

We will employ the following Turing "filing system", or tape (Fig. 3.14),
which we are to feed into our machine:

e Y (N X (NDJUX (N [(U)f X | (N3) e o Y

&

Fig. 3.14 Input Tape to the Locating Machine

*Our discussion closely follows Minsky [1967]. [RPF]

76 LECTURES ON COMPUTATION

This is a bit schematic. The X-symbols this time play the role of segregating
various file entries; there is one entry between each pair of X’s. Each entry
comprises a name (or address), "N", and contents, "U", both of which we take
to be binary strings, one digit per tape square as usual. We have attached to the
left hand end of the tape the name of a file which we want the machine to read
for us, and denoted the left end of the tape by a symbol Y. To the left of this is
a string of zeroes; the same is true at the right-hand end of the tape. The
machine is to start where marked to the right of the name N of the file we want
to find.

The first task confronting the machine is that of locating the right file. It
does this by systematically comparing each file name in the list with the target
name, working from left to right, until it finds the correct one. How should it

do this? For ease of understanding, suppose we have the following filing tape
(Fig. 3.15):

..000 Y 101 X 001 011 X 101 110 X 111 000 Y 000...
N U

Fig. 3.15 A Sample Filing Tape

For convenience, we are taking both the name strings and the data strings to be
of the same length, three bits. We want to read the contents of file (101) which
we’ll call the target file. Now it might seem that the best thing to do is the
following: assign to each possible target a distinct state of the Turing machine.
This will give us at most eight states. The machine starts in the state 101
dictated by the target file name and goes to the first file from the left, and looks
at the name. If there is a match, all well and good. If not, it goes to the next file
on the right, checks that, and so on. In this way, the machine smoothly moves
from left to right until it hits the correct address. However, the problem with
such a machine is that it has only eight states and will only be any good for
three-bit filing systems: it has no universality of application. We want a single
machine that can handle any size of filename. To achieve this, the machine must
compare each filename with the target on a sequential, digit-by-digit basis,
laboriously shuttling between the two until a mismatched digit is found, in
which case it goes onto the next filename, or until a complete match is found,
when (say) it returns to its starting point. To keep track of those parts of the

THEORY OF COMPUTATION 77

tape it has already considered, the machine would do the now-familiar trick of
overwriting digits with symbols which it subsequently ignores, just as we did
with the parenthesis checker. By assigning different symbols to 0’s and 1’s —
A’s and B’s, say — we can keep track of which were 0’s and 1’s; if we wanted
to come along tomorrow and use the file again, we could, only we would find
it written in a different alphabet. We could then reconstruct the entire original
file by overwriting the new symbols with 0’s and 1’s.

Minsky’s solution for a locating Turing machine is shown in Figure 3.16:

START

To "COPY"

Fig. 3.16 The Locating Machine

There is a loose end in this diagram, pointing to "copy". This represents the
stage at which the machine has located the correct filename and is wondering
what to do next. We will shortly show how we are going to get it to copy the
information in the file to a point of our choosing on the tape.

For the moment let us stick with our location machine and look in more
detail at how it works. The head starts on the first X to the right of the target
number. As the loop instructions show, the machine then heads left, changing
the 0’s and 1’s in the target to A’s and B’s respectively. This may seem a little
bizarre, but there is a point to it, as we will see. Eventually, the machine hits the
Y. It then goes into a new state, and as is clear from the diagram, it will start
moving right. It will first encounter one of the A’s or B’s it has just written: it
overwrites this with the original digit (this definitely seems bizarre, but it will

78 LECTURES ON COMPUTATION

make sense!), a 0 or 1, and moves right again. It now enters one of two states
in which it will only recognise a 0 or 1: not an A or B. If it hits an A or B, it
will ignore it, keeping on moving right — in other words, it is going to pass right
through the remainder of the rewritten target string, having in a sense "noted"
the first digit of the string. This is why we overwrote the 0’s and 1’s of the
string with A’s and B’s. It will also pass straight through the X it encounters and
go on to the first filename to be checked.

Now comes the crucial sequence of operations. The machine is going to
hit either a 1 or a 0, and how it reacts depends on how it has been primed —i.e.
on the state it is in as a result of reading the first target digit. There are two
possibilities. Firstly, if the digit it hits is different from the first target digit, so
the filenames do not match from the outset, the machine overwrites the digit as
appropriate, and then moves to the right until it hits the next X, denoting the end
of the file. It then starts to move to the left, overwriting the contents of the rest
of the file with A’s and B’s. It passes through the leftmost X, zips through the
target filename (A’s and B’s are invisible to it), changes the first digit to an A
or B, and hits Y. This is a cue for the whole process to start again: only now it
goes to the next filename. Sooner or later, the first target digit and that of the
checked filename will match, and this is the second possibility we must
consider.

When a match occurs, the machine overwrites the matching digit, and
enters a state in which it moves back left until it encounters the Y. Then, it goes
forwards, overwrites the second target symbol with the correct digit, and then
moves on to the files. It checks the second digit for a match, and so it goes on.
Working through the machine diagram, you should be able to convince yourself
that the tape above would ultimately be converted into the tape of Figure 3.17:

...Y 101 X AAB ABB X BAB 110 X 111 000 Y ...

N Q UN)

Fig. 3.17 Output Tape from the Locating Machine

Note that the head has returned to its starting point, and the effect of its
activities has been to change all 0’s and 1’s between the start and the end of the

THEORY OF COMPUTATION 79

desired filename (but not the contents of the file) to A’s and B’s. (There is the
important possibility that the target filename cannot be found, because we have
typed it in wrongly, say, and in this case the machine head will end up on the
Y at the far right; as the diagram indicates, at this juncture it is instructed to
"Halt".)

As I have said, there is a "loose wire" on our diagram, representing a feed
to a copy machine: we have our file, now we want to know what to do with it!
True to the spirit of Turing machines, we are going to copy it slowly and
laboriously to another part of the tape. That is, you are: the copying machine is
shown in Figure 3.18, and its input tape is the output tape of the location
machine. Have fun figuring out how it works!

FROM LOCATING
MACHINE ———

Fig. 3.18 The Copy Machine

A cute feature of this machine is that it copies the contents of the file into the
block containing the target filename on the original tape; that is, the target string
is overwritten. (We can do this because we chose to have filenames and contents
the same size.) The end result of this machine operating on its tape is the tape
of Figure 3.19:

..Y BBA X AAB ABB X BAB BBA X B11 000 Y ...
U

Fig. 3.19 Output Tape from the Copy Machine

80 LECTURES ON COMPUTATION

I will finish this section by giving you a couple more Turing problems.

Problem 3.9: Make a Turing machine which starts with a blank tape and ends
up with all the binary numbers written on it in succession, separated by "Y’s",
with the restriction that after you write the terminating Y, you never change the
number again. An additional restriction you might impose is that the machine
does not even look at terminated numbers.

Problem 3.10: Design a machine which recognizes only, and all, sequences of
the form

10110011100011110000.....1"0".

That the machine has "accepted" such a tape is indicated by its halting and
leaving the tape blank after its machinations. More generally, we define an
arbitrary sequence as "acceptable" by a Turing machine if the machine
eventually halts with a blank tape. We can extend this notion to cover finite
state machines. Design a Turing machine that accepts exactly the set of
sequences accepted by any FSM. (Hint: use the FSM functions F and G to make
Turing quintuples.)

3.6: Universal Turing Machines and the Halting Problem

Let us return to the reason why we are studying Turing machines. I said earlier
that if you had an effective procedure for doing some computation, then that
was equivalent to it being possible in principle to find a Turing machine to do
the same computation. It is useful to talk in terms of functions. Suppose we start
with a variable x, and we take a function of that variable, F(x). We say that F(x)
is Turing computable if we can find a Turing machine Ty which, if fed a tape
on which x is written, in some representation — binary, unary, whatever — will
eventually halt with F(x) printed on the tape. Every other effective procedure
that anyone else has been able to cook up has turned out to be equivalent to this
— the general recursive functions are Turing computable, and vice versa — so we
can take "Turing computable” to be an effective synonym for "computable”.

Now it may be the case that for some values of x, the Turing machine
might not halt. This is weird behavior, but it might happen. Many functions —
such as x? — are called "complete”, meaning that for all values of x we plug into
our machine, it will halt with the value of the function written on the tape.
Functions for which this is not true are called "partial". In such cases, we have

THEORY OF COMPUTATION 81

to alter our operational definition of the function as follows: if, for a value x, the
machine stops, we define the value of the function to be F(x); if the machine
does not stop, we define the value of the function to be zero. This does not
mean that if we put x into F we get zero, in the way that putting x = 3 in the
function (x-3) gives us zero. Here, "zero" is just a useful label we attach to F(x)
when our Turing machine does not quit its computing. This redefined function
is complete in the sense that we can assign some numerical value to it for any
X.

A question naturally arises: can we say, in advance, which values of x
might cause our machine to hang up? In some cases, the answer is yes. For
example, there may be times when the machine goes into a recognizable infinite
loop, perhaps shuttling between a couple of states and not achieving anything,
and we can then say for sure that it will never stop. But in general, we cannot
say in advance when a particular value of x is going to give us trouble! Put
another way, it is not possible to construct a computable function which predicts
whether or not the machine Ty halts with input x. In seeing why this is so, we
shall appreciate the power of Mr. Turing’s little machines.

I have flagged what is to follow in the penultimate sentence of the
previous paragraph. I have raised the question of whether there is a computable
function which will tell us whether or not Ty halts for input x. But, if there is
such a function, by definition it must be describable by a Turing machine. This
concept, of Turing machines telling us about other Turing machines, is central
to the topic of Universal Turing machines to which we now turn.

We can pose the question we have set ourselves in the following way.
Suppose we have a machine which we call D. As input, D takes a tape which
contains information about Ty and Ty’s initial tape (that is, information about
X). Machine D is required to tell us whether Ty will halt or not: yes or no.
Importantly, D must always write the answer and halt, itself. What we now do
is introduce another machine Z, which reacts to the output from D in the
following way:

If Ty halts (D says "yes"), then Z does not.
If Ty does not halt (D says "no"), then Z does.

We then get Z to operate on itself and find a contradiction! Let us expand on
this argument.

82 LECTURES ON COMPUTATION

To begin our quest for D, we first need to look at how we get one Turing
machine to understand the workings of another. We need to characterize a given
machine T, and its tape ¢; there are several ways of doing this. We will choose
a description in terms of quintuples (Table 3.3):

Initial Final
State |Read State | Write Move
Q| S Q'l S’ |d(=LorR)

Table 3.3 Quintuple Description of a Turing Machine

We want to build a universal machine that is capable of imitating any T. In
other words if we feed it information about T and about T’s tape ¢, our
universal machine spits out the result of T acting on ¢. We will characterize our
universal machine — call it U — in terms of quintuples in similar fashion to T.
Let these quintuples for U be written (g,s; ¢’, s’, d’) and note that they must
suffice for all possible machines T that we want U to imitate: g,s, etc. must not
depend on the specifics of T. A constraint we shall impose on our machines is
that the tape symbols S, S’, s, s” must be binary numbers. An arbitrary Turing
machine T will come with an-arbitrary set of possible symbols, but with thought
you should be able to see that we can always label the distinct symbols by
binary numbers and work with these (e.g. if we had 8 symbols, each could be
redescribed by a three-bit binary string)’.

The basic behavior of U is simple enough to describe. (Our discussion
again closely follows Minsky [1967].) We need U to imitate T step by step,
keeping a record of the state of T’s tape at each stage. It must note the state of
T at each point, and by examining its simulated T-tape it can inform itself what
T would read at any given stage. By looking at the description it has of T, U
can find out what T is supposed to do next. Minsky nicely relates this process
to what you would do when using a quintuple list and a tape to figure out what
a Turing machine does. The universal Turing machine U is just a slower version
of you!

>In fact, as an exercise, examine how you would reprogram a Turing machine T that operated
with 2" symbols to become a machine T’ operating on 0 and 1. Hint: where T had to read one
symbol at a time, T’ has to read n. [RPF]

THEORY OF COMPUTATION 83

Let us supply U with the tape shown in Figure 3.20:

Q® S Quintuples of T
..... M dT
Pseudo-tape of T State of T Symbol of T Description of T

&

Fig. 3.20 Input Tape to the Universal Turing Machine

The infinite "pseudo-tape" on the left is U’s working space, where U keeps track
of what T’s tape looks like at each stage of its simulation. Choosing to have it
infinite only to the left is not essential, but simplifies things. The marker M tells
U where the tape head of T currently is on ¢. To the right of this working space
is a segment of tape containing the state of T; then, next right is a segment
containing the symbol just read by T; and finally, to the right again, is a region
containing the description of T. This description of T, which we denote as d,
comprises a sequential listing of the quintuples of T, written as a binary
sequence (Fig. 3.21):

Quintuple Quintuple Quintuple
ojojojofo|o]o olojofo|o]o]o ojoflofojo]o]o
X o|le | o]l | X Y
Ll]® o] i|®)]
—_— | — 1 —_] —— 11

Q1 Sl Qn SnDu Qi Sj Qij ijDij

Fig. 3.21 The Description d, of T for U’s Tape

Each quintuple is segregated from the next by the symbol X. To start U off, we
need to tell it T’s initial state 0, and the symbol S, it reads first. Let us assume
that U’s tape head is initially over the leftmost X as shown in Figure 3.22:

84 LECTURES ON COMPUTATION

bol
State of T/ Symbol read by T

(=]
(=)
- o

0
1 X o |Y

_— -

0jofo}jo0 0]0
11 (1]1
|

— — 1

Location of T - S. Q. S.D.
ationo Machine conditionQ‘ S Q; 8D,
O Machine description

Fig. 3.22 Starting Position for the Tapehead of U

Essential to the operation of U are the locating and copying operations we
described earlier. In general terms U operates as follows. First, U looks in the
section of the tape describing the action of T for a given Q and S, exactly as we
did with the locating machine: the set (Q,S) can be regarded as the filename of
the file containing the relevant quintuple. As with the locator, on its way this
operation changes all the 0’s and 1’s it encounters to A’s and B’s. After it finds
the relevant pair (and changes them to A’s and B’s), it returns to the leftmost X.

The next stage involves the copy machine. U moves to the right until it
hits the first set of 0’s and 1’s; because of the way we have set up the tape,
these represent the three remaining parts of the quintuple specified by Q and S.
These are the new state of T, the symbol it writes (on the pseudo-tape in
position M) and its subsequent direction of motion. The machine then copies A’s
and B’s representing both the new Q and new S into the machine condition
region in the middle of the tape. It remembers the direction of motion d (L or
R, represented as A or B). The machine now heads left until it reaches M. Once
there, it erases M and temporarily overwrites it with the direction d (A or B). It
then moves right, changing all A’s and B’s to 0’s and 1’s on the way (leaving
an A or B in M’s old location). Finally, it moves to the immediate left of the
leftmost X, erases the symbol S that is there (but remembers it) and prints the
special symbol V in its place (this is all that V is used for).

The machine now enters its final phase. It shifts left until it encounters the
A or B that we stored in M; this represents the direction d in which T should
next move. The machine overwrites the A or B with the S it has remembered,
and then moves left or right depending on the instruction d. It reads the symbol
of the square it is now on, remembers it and prints an M in its place. It then
shifts right until it reaches the V, which it replaces with the remembered symbol.
Now the sequence starts all over again.

THEORY OF COMPUTATION 85

What the machine has done is simulate one cycle of T’s operation: it has
started off in a certain state Q and a given input symbol S; it has then changed
state, written a new symbol and moved on to the next symbol dictated by T. U
continues like this until it has mimicked T completely. Importantly, U has a halt
state: it recognizes when T has halted, and proceeds to stop itself.

The description of U given above, due to Minsky, requires U to have 8
symbols and 23 states. So that you can appreciate the beauty of his machine, we
reproduce it in full in Figure 3.23. You should not find it too hard to break it
down into its constituent sub-machines.

Fig. 3.23 A Universal Turing Machine

86 LECTURES ON COMPUTATION

It is possible to build a UTM with the same number of symbols but just ¢ states.
If one wants to get tricky, there are ways of using the same state for more than
one purpose, to minimize the number of states required. A UTM can be built
with just two states and lots of symbols, or two symbols and lots of states. It is
surprising that such a general purpose machine should require so few parts for
its description; surely a machine that can do everything should be enormously
complicated? The surprising answer is that it’s not! How efficient one can make
a UTM is an entertaining question, but has no deep significance.

Let us now turn to the real reason why we have been interested in
demonstrating the existence of a UTM. We have asked whether it is possible to
build a machine that will tell us whether a Turing machine T with tape ¢ will
halt, for all T and 7. We can clearly rephrase this as a halting problem for a
universal machine U. Let us define a new machine D, which is just U with the
added property that it tells us whether or not T halts with tape ¢, and that it can
do this for all machines T and all tapes ¢ (Fig. 3.24):

® | @
: State Diagram
: of D
No Yes
/
Halt Halt
(if T never halts, given t) (if T eventually halts, given t)

Fig. 3.24 Universal Machine D with tape t and d,

In other words, D always halts with an answer. Can such a machine exist? The
answer is no! We can actually show that D is an impossible dream, and we do
this by picking a machine T and a tape ¢, for which D cannot do what it is
supposed to.

Information about T and ¢ are fed into a universal machine in the form 4,
the quintuple description of T, and the information on the tape ¢ (see Fig. 3.24).
Now for no apparent reason, let us see what happens if we let the tape ¢ contain
the description d,. We now enhance our machine D slightly and introduce
another machine E. This new machine only requires as input a tape containing
dy; it then copies d; onto a blank part of the tape and now behaves like machine

THEORY OF COMPUTATION 87

D with an input tape containing ¢ = d; and d;. E will now behave the same way
as D, and halt giving the answer "yes" if T halts when reading its own
description: otherwise, E will answer "no" (Fig. 3.25). Whatever the case, E
always halts.

(dy)
A

No Yes
e NN
Halt Halt
(if T never halts, given d,) (if T eventually halts, given d,)

Fig. 3.25 Universal Machine E with input tape d,

Now we introduce a modified version of E which we shall call Z. Our
new machine Z has two extra states that are used to prevent Z from halting if
E takes the "yes" route (Fig. 3.26):

(dyp)

(x = any symbol)

Fig. 3.26 Universal Machine Z

88 LECTURES ON COMPUTATION

Thus Z has the property that, if E spits out the answer "yes", it does not halt;
whereas if E spits out "no", it also gives us a "no" and does halt (i.e. Z = E in
this case). So, Z halts when we feed it d;, if T applied to d; does not halt, but
does not halt if T applied to d, does. Now comes the crucial step. Let us write
a description d, for Z, and substitute Z for T in the foregoing argument. We
then deduce that:

Z applied to d, halts if and only if Z applied to d, does not halt.

This is a clear contradiction! Going back through our argument, we find that it
is our assumption that D exists that is wrong. So there are some computational
problems (e.g. determining whether a UTM will halt) that cannot be solved by
any Turing machine. This is Turing’s main result.

3.7 Computability

There must be many uncomputable functions. How many are there? We can
gain some insight into this by considering a counting argument. Consider
computable real numbers: by which we mean those whose binary expansions can
be printed on a tape, whether the machine halts or not. We can show that there
are many more real numbers than computable real numbers since the latter are
countable, while the former are not. We call a set "countable" if we can put its
elements in one-to-one correspondence with elements of the set of positive
integers; that is, if we can label each set member by a unique integer. Two
examples of countable sets are the even and rational numbers:

Even numbers 0 2 4 6 8 10..

0 1 2 3 4 5

Rational numbers (172) (1/3 2/3) (1/4 2/4 3/4) ...
1 2 3 4 5 6

The real numbers, however, are not countable. We can supply a neat proof of
this as follows. Let us suppose the opposite. Then we would be able to pair off
the reals with the integers in some way, say as follows:

THEORY OF COMPUTATION 89

Integer Real

1 0.124

2 0.015

3 0.53692

4 0.8003444

5 0.334105011
6 0.3425.......

The exact assignment of real numbers to integers, and we have chosen a weird
one here, is arbitrary; as long as we have one real number per integer, and all
the reals are accounted for, we are OK. However, this cannot be so! To see
why, we will find a real number that cannot be on our list. In the above list, 1
have underlined certain digits: the first digit of the first number, the second digit
of the second, the third of the third, and so on. We define a new number using
these: all we require is that the nth digit of this number differs from the nth digit
in our list. The real number:

0.22741....

going on forever, is just such a number. We have obtained this by adding one
to each of the underlined digits. (We can include the rule "9+1=0" to make this
a consistent procedure or we can use other procedures entirely to generate new
real numbers.) What have we achieved? By construction, the above number
differs from the mth number in our correspondence list in its mth digit, and this
is true for all m — that is, for all integers. Hence, we have found a real number
that cannot appear on our list. So by "diagonalization" as it is called (referring
to the "diagonal" line we can draw through all of the underlined numbers above)
we have shown that the real numbers are not countable.

Turing machines, however, are countable. To see this, consider the tape
description d, of a machine T. We can consider this to be a string of binary
symbols unique to the machine if we ignore the spacings between quintuple
listings. The resulting binary number serves to uniquely label the machine by an
element of the set of integers. On the other hand, if we define a function f{(n) to
be 1 if the nth Turing machine halts and 0 otherwise, then clearly this function
is not computable, as we have seen from the Halting Problem. There are many
other examples.

Let us return to the subject of effective procedures and make a few
comments. Although we have tended to portray effective procedures as

90 LECTURES ON COMPUTATION

algorithms that enable us to calculate things, in reality many such procedures are
of little practical use — they might require too much tape for their execution, for
example, or some other extravagant use of resources. A procedure might take
the age of the Universe to complete yet still be technically "effective". In
practice we want procedures that are not just effective but also efficient. The
word "efficient", of course, is not easy to define precisely and so we end up
leaving the clean and unambiguous world of logic and entering that of the real
world of the comparatively dirty and vague — or exciting and interesting —
depending on your viewpoint! Many problems in "artificial intelligence", such
as face recognition, involve effective procedures that are not efficient — and in
some cases, they are not even very effective!

Sometimes we do not strictly need effective procedures at all. It might be
the case, for example, that you can ask a question and, while I cannot give you
a sure answer, I can answer it with a probability of correctness of (1 — 10°%).
You might be quite happy with such good odds. There is nothing particularly
bad about uncertainty. An obvious, and rather uninteresting, example of this
would be if you asked me whether a given number x was divisible by some
other number y. I could simply say "no", and if y is big enough, the odds are in
my favor that I am right: to be precise, the odds are 1 in y that a randomly
chosen number is divisible by y. The principle here is that you can know a lot
more than you can prove! Unfortunately, it is also possible to think you know
a lot more than you actually know. Hence the frequent need for proof.

A related, but more interesting problem, is the question of whether or not
a given number 7 is prime. An effective procedure for this might involve taking
all prime numbers up to n'? and seeing if any divide n; if not, n is prime. This
is fine, and rather neat, for small »n, but when we get to the big numbers it
becomes impractical. A better test is a probabilistic one. This uses one of
Fermat’s famous theorems:

a? = amod p G4

What this means is that, for any number a and prime p, if we divide @’ by p, we
get the remainder a. So for example, we write:

3¥=243=48x5+3

The idea behind the method is to take a large value of a, and calculate a mod

THEORY OF COMPUTATION 91

p. For large p, the odds are good that p is not a prime and that this quantity
does not equal a since there are so many possible remainders. (The actual odds
are not simple to calculate, but you get the idea.) However, if p is huge —
something of the order of 10*%, say — how do we calculate a”? Well, we don’t
actually need this number: we only need the remainder after division by p. Why
this is so I will leave as an exercise for you! (Don’t worry about the general
case: do it for a nine-digit p.)

Another similar problem deals with factorization: I give you a number m,
and tell you that it is the product of two primes, m=pgq. You have to find p and
g. No efficient algorithm exists for this problem as yet, and it in fact forms the
basis of a coding system. It is possible to build our ignorance of the general
solution of this mathematical problem into ciphering a message. The moment
some clever guy cracks it — and people have gotten up to 72 digit m’s so far —
the code is useless, and we’d better find another one.

Before leaving the subject of computability, I want to make some remarks
about the related topic of "grammars". In mathematics, as in linguistics, a
grammar is basically a set of rules for combining the elements of a language,
only the language is a mathematical one (such as arithmetic or algebra). It is
possible to misapply these rules. Consider the following statements:

@+bc a+b(c

Within the context of arithmetic, only the first of these makes sense. The
second, however, does not: the parenthesis is wrongly, even meaninglessly,
placed. An interesting general question in computing is whether we can build
machines that will test mathematical (and other) expressions for their
grammatical correctness. We have seen one example: the parenthesis checker.
This checked a very simple grammar involving) and (and the only grammatical
rule was that strings of parentheses balanced. But remember it took a Turing
machine to do this: a finite state machine was not up to it. Now there are certain
classes of grammar that FSMs can check — for example, strings of ones,
1111111.... where valid strings have to have even numbers of digits, for example
— but the abilities of this type of machine are limited. We can actually draw up
a table relating types of grammars to the machines required for their analysis
(Table 3.4):

92 LECTURES ON COMPUTATION
Language Description Example Machine
required
Finite A list of ab, abc Memory
enumerable acceptable (table look-up)
expressions
Regular Regular ab*c, *=any no. | Finite state
language expressions built | of repetitions, machines (a
with *, v, A, () | incl. none. theorem)
a(bvd)*c
Context free Language a'b" (not a"b"™ An in-between
generated by where n # m) machine: a
production rules push-down
which admit automaton. Has
recursion one "stack"
inside — a pile
of paper with a
spring
underneath, can
only take off the
top one
General Computable a'b"c? Turing
recursive functions

Table 3.4 General Grammars and Their Machine Implementation

It is sad that Turing machines are so easy to make that we have to leap over all
this pretty theory. Nevertheless, in the design of compilers (which involve the
interpretation of languages) the use of such theory is so fundamental that you
might find further study of it worthwhile.

We will finish our look at computability with an interesting problem
discovered by Post as a graduate student in 1921. Consider a binary string, say
10010. It is arbitrary. Given the string, play with it according to the following
rules: read the first three digits; if the first is 0, delete all three and add 00 to
the end of the string; if the first is 1, delete all three and add 1101 to the end.
So with our string we would have

THEORY OF COMPUTATION 93

10010
--- 101101
--- 1011101

The question is this: does this process go on forever, stop, or go on periodically?
The last I heard, all tested sequences had either stopped or gone into a loop, but
that this should be so generally had not been proved. It is an interesting issue
because it has been shown that a so-called "Post machine" — one which takes
a string g and writes a result A(g) depending on the first digit g; of the string —
can act as a Universal machine and do anything a Turing ma