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1 Definitions and First Examples
1. Let L be the real vector space R3. Define [xy] = x× y (cross product of vectors) for x, y ∈ L, and verify that L

is a Lie algebra. Write down the structure constants relative to the usual basis of R3.

Solution: Clearly, [, ] is bilinear and anti-commutative, it need only to check the Jacobi Identity:

[[x, y], z] = (x× y)× z
= (x.z)y − (y.z)x

= (z.x)y − (y.x)z + (x.y)z − (z.y)x

= [[z, y], x] + [[x, z], y]

where (.) is the inner product of R3.

Take the standard basis of R3: e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). We can write down the structure
equations of L:

[e1, e2] = e3

[e2, e3] = e1

[e3, e1] = e2

2. Verify that the following equations and those implied by (L1)(L2) define a Lie algebra structure on a three
dimensional space with basis (x, y, z) : [xy] = z, [xz] = y, [yz] = 0.

Solution:
(L1)(L2) are satisfied, it is sufficient to show the Jacobi Identity hold for the basis:

[[x, y], z] = [z, z] = 0

[[y, z], x] = [0, x] = 0

[[x, z], y] = [y, y] = 0

3. Let x =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, y =

(
0 0
1 0

)
be an ordered basis for sl(2, F ). Compute the matrices of

adx, adh, ady relative to this basis.

Solution:
By the structure equations of sl(2, F ):

adx(y) = −ady(x) = h

adx(h) = −adh(x) = −2x

ady(h) = −adh(y) = 2y

We can write down the matrices of adx, adh, ady relative to this basis easily:

adx ∼

0 −2 0
0 0 1
0 0 0

 adh ∼

2 0 0
0 0 0
0 0 −2

 ady ∼

 0 0 0
−1 0 0
0 2 0


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4. Find a linear Lie algebra isomorphic to the nonabelian two dimensional algebra constructed in (1.4).

Solution:
Two dimensional Lie algebra constructed in (1.4) is given by basis (x, y) with commutation [x, y] = x.

In gl(F 2), let

x 7→
(

0 1
0 0

)
, y 7→

(
−1 0
0 0

)
This is a isomorphism.

5. Verify the assertions made in (1.2) about t(n, F ), d(n, F ), n(n, F ), and compute the dimension of each algebra,
by exhibiting bases.

Solution:
Assertions made in (1.2):

t(n, F ) = d(n, F ) + n(n, F ) vector space direct sum (1)
[d(n, F ), n(n, F )] = n(n, F ) (2)
[t(n, F ), t(n, F )] = n(n, F ) (3)

Evidently, (1) holds and [d(n, F ), n(n, F )] ⊆ n(n, F ). So we just need to show the converse conclusion is
also true.

Let eij denotes the matrix with (i,j)-element is 1, and 0 otherwise.

n(n, F ) = spanF {eij |i < j}

But we know
eij = eiieij − eijeii = [eii, eij ] ⊆ [d(n, F ), n(n, F )], i < j

So (2) is correct.

(3) follows from (1) and (2):

[t(n, F ), t(n, F )] = [d(n, F ) + n(n, F ), d(n, F ) + n(n, F )]

⊆ [d(n, F ), d(n, F )] + [n(n, F ), n(n, F )] + [d(n, F ), n(n, F )]

⊆ n(n, F )

Conversely, n(n, F ) = [d(n, F ), n(n, F )] ⊆ [t(n, F ), t(n, F )].

6. Let x ∈ gl(n, F ) have n distinct eigenvalues a1, · · · , an in F . Prove that the eigenvalues of adx are precisely the
n2 scalars ai − aj(1 6 i, j 6 n), which of course need not be distinct.

Solution:

Let vi =

v1i

...
vni

 ∈ Fn, 1 6 i 6 n are eigenvectors of x respect to eigenvalue ai respectively. Then

vi, 1 6 i 6 n are linear independent. Let A = (vij)n×n, Eij denotes the n × n matrix with (i,j)-element is
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1, and 0 otherwise, eij = AEijA
−1, Then we have A is a nonsingular matrix and

eijvk = δjkvi

adx(eij)vk = x.eij .vk − eij .x.vk = (ai − ak)δjkvi = (ai − aj)eij .vk
So

adx(eij) = (ai − aj)eij
i.e., ai − aj are eigenvalues of adx, the eigenvectors are eij respectively. Hence adx is diagonalizable. So
we can conclude that the eigenvalues of adx are precisely the n2 scalars ai − aj(1 6 i, j 6 n).

7. Let s(n, F ) denote the scalar matrices (=scalar multiples of the identity) in gl(n, F ). If charF is 0 or else a prime
not dividing n, prove that gl(n, F ) = sl(n, F ) + s(n, F ) (direct sum of vector spaces), with [s(n, F ), gl(n, F )] =
0.

Solution:
∀A = (aij) ∈ gl(n, F ), If tr(A) = 0,A ∈ sl(n, F ); elseA = tr(A)

n I+(A− tr(A)
n I) with tr(A− tr(A)

n I) = 0,
i.e., A− tr(A)

n I ∈ sl(n, F ).(charF is 0 or else a prime not dividing n.) sl(n, F ) ∩ s(n, F ) = {0} is clearly.
Hence gl(n, F ) = sl(n, F ) + s(n, F ) (direct sum of vector spaces).

For aI ∈ s(n, F ),∀A ∈ gl(n, F ), [aI,A] = aA− aA = 0, So

[s(n, F ), gl(n, F )] = 0.

8. Verify the stated dimension of Dl.

Solution:

Suppose x =

(
m n
p q

)
(m,n, p, q ∈ gl(n, F ), s =

(
0 Il
Il 0

)
. By sx = −xts, we have

m = −qt, n = −nt, p = −pt, q = −mt

We can enumerate a basis of Dl:

ei,j − el+j,l+i, 1 6 i, j 6 l; ei,l+j − ej,l+i, el+i,j − el+j,i, 1 6 i < j 6 l

where eij is the matrix having 1 in the (i, j) position and 0 elsewhere. Hence

dimDl = l2 +
1

2
l(l − 1) +

1

2
l(l − 1) = 2l2 − l

9. When charF = 0, show that each classical algebra L = Al, Bl, Cl, or Dl is equal to [LL]. (This shows again
that each algebra consists of trace 0 matrices.)

Solution:
[L,L] ⊆ L is evident. It is sufficient to show L ⊆ [L,L].
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• A1:
e12 = 1

2 [h, e12]
e21 = 1

2 [e21, h]
h = [e12, e21]

• Al(l > 2):
eij = [eik, ekj ], k 6= i, j, i 6= j
hi = [ei,i+1, ei+1,i]

• Bl(l > 2):

e1,l+i+1 − ei+1,1 = [e1,j+1 − el+j+1,1, ej+1,l+i+1 − ei+1,l+j+1]
e1,i+1 − el+i+1,1 = [e1,l+j+1 − ej+1,1, el+j+1,i+1 − el+i+1,j+1]
ei+1,i+1 − el+i+1,l+i+1 = [ei+1,1 − e1,l+i+1, e1,i+1 − el+i+1,1]
ei+1,j+1 − el+i+1,l+j+1 = [ei+1,1 − e1,l+i+1, e1,j+1 − el+j+1,1]
ei+1,l+j+1 − ej+1,l+i+1 = [ei+1,i+1 − el+i+1,l+i+1, ei+1,l+j+1 − ej+1,l+i+1]
el+i+1,j+1 − ej+l+1,i+1 = [el+i+1,l+i+1 − ei+1,i+1, el+i+1,j+1 − ej+l+1,i+1]

where 1 6 i 6= j 6 l.

• Cl(l > 3):
eii − el+i,l+i = [ei,l+i, el+i,i]
eij − el+j,l+i = [eii − el+i,l+i, eij − el+j,l+i] i 6= j
ei,l+j + ej,l+i = [eii − el+i,l+i, ei,l+j + ej,l+i]
el+i,j + el+j,i = [el+i,l+i − eii, el+i,j + el+j,i]

• Dl(l > 2):
eii − el+i,l+i = 1

2 [eij − el+j,l+i, eji − el+i,l+j ]
+ 1

2 [ei,l+j − ej,l+i, el+j,i − el+i,j ]
eij − el+j,l+i = [eii − el+i,l+i, eij − el+j,l+i]
ei,l+j − ej,l+i = [eii − el+i,l+i, ei,l+j − ej,l+i]
el+i,j − el+j,i = [el+i,l+i − eii, el+i,j − el+j,i]

where i 6= j.

10. For small values of l, isomorphisms occur among certain of the classical algebras. Show that A1, B1, C1 are all
isomorphic, while D1 is the one dimensional Lie algebra. Show that B2 is isomorphic to C2, D3 to A3. What can
you say about D2?

Solution:
The isomorphism of A1, B1, C1 is given as follows:

A1 → B1 → C1

e11 − e22 7→ 2(e22 − e33) 7→ e11 − e22

e12 7→ 2(e13 − e21) 7→ e12

e21 7→ 2(e12 − e31) 7→ e21

For B2, C2 we first calculate the eigenvectors for h1 = e22 − e44, h2 = e33 − e55 and h′1 = e11 − e33, h
′
2 =

e22 − e44 respectively. We denote λ = (λ(h1), λ(h2)) for the eigenvalue of h1, h2, λ′ is similar. See the
following table:
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B2 C2

α = (1, 0) e21 − e14 α′ = (−1, 1) e21 − e34

−α = (−1, 0) e12 − e41 −α′ = (1,−1) e12 − e43

β = (−1, 1) e32 − e45 β′ = (2, 0) e13

−β = (1,−1) e23 − e54 −β′ = (−2, 0) e31

α+ β = (0, 1) e15 − e31 α′ + β′ = (1, 1) e14 + e23

−(α+ β) = (0,−1) e13 − e51 −(α′ + β′) = (−1,−1) e41 + e32

2α+ β = (1, 1) e25 − e34 2α′ + β′ = (0, 2) e24

−(2α+ β) = (−1,−1) e43 − e52 −(2α′ + β′) = (0,−2) e42

We make a linear transformation

h̃1
′

= −1

2
h′1 +

1

2
h′2, h̃2

′
=

1

2
h1 +

1

2
h2

Then α(h1) = α′(h̃1
′
), α(h2) = α′(h̃2

′
), β(h1) = β′(h̃1

′
), β(h2) = β′(h̃2

′
). So the isomorphism of B2, C2

is given as follows:
B2 → C2

e22 − e44 7→ − 1
2 (e11 − e33) + 1

2 (e22 − e44)
e33 − e55 7→ 1

2 (e11 − e33) + 1
2 (e22 − e44)

e12 − e41 7→
√

2
2 (e12 − e43)

e21 − e14 7→
√

2
2 (e21 − e34)

e32 − e45 7→ e13

e23 − e54 7→ e31

e15 − e31 7→
√

2
2 (e14 + e23)

e13 − e51 7→
√

2
2 (e32 + e41)

e25 − e34 7→ e24

e43 − e52 7→ e42

For A3 and D3, we calculate the eigenvalues and eigenvectors for h1 = e11 − e22, h2 = e22 − e33, h3 =
e33 − e44 and h′1 = e11 − e44, h

′
2 = e22 − e55, h

′
3 = e33 − e66 respectively.

A3 D3

α = (1, 1,−1) e13 α′ = (0, 1, 1) e26 − e35

−α = (−1,−1, 1) e31 −α′ = (0,−1,−1) e62 − e53

β = (−1, 1, 1) e24 β′ = (0, 1,−1) e23 − e65

−β = (1,−1,−1) e42 −β′ = (0,−1, 1) e32 − e56

γ = (−1, 0,−1) e41 γ′ = (1,−1, 0) e12 − e54

−γ = (1, 0, 1) e14 −γ′ = (−1, 1, 0) e21 − e45

α+ γ = (0, 1,−2) e43 α′ + γ′ = (1, 0, 1) e16 − e34

−(α+ γ) = (0,−1, 2) e34 −(α′ + γ′) = (−1, 0,−1) e61 − e43

β + γ = (−2, 1, 0) e21 β′ + γ′ = (1, 0,−1) e13 − e64

−(β + γ) = (2,−1, 0) e12 −(β′ + γ′) = (−1, 0, 1) e31 − e46

α+ β + γ = (−1, 2,−1) e23 α′ + β′ + γ′ = (1, 1, 0) e15 − e24

−(α+ β + γ) = (1,−2, 1) e32 −(α′ + β′ + γ′) = (−1,−1, 0) e51 − e42

We take a linear transformation

h̃1
′

= −h′1 + h′3, h̃2
′

= h′1 + h′2, h̃3
′

= −h′1 − h′3
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then α(hi) = α′(h̃i
′
), β(hi) = β′(h̃i

′
), γ(hi) = γ′(h̃i

′
), i = 1, 2, 3; The isomorphism of A3 and D3 can be

given as follows:
A3 7→ D3

e11 − e22 7→ −(e11 − e44) + e33 − e66

e22 − e33 7→ (e11 − e44) + (e22 − e55)
e33 − e44 7→ −(e11 − e44)− (e33 − e66)
e13 7→ e26 − e35

e31 7→ e62 − e53

e24 7→ e23 − e65

e42 7→ e32 − e56

e41 7→ e12 − e54

e14 7→ e21 − e45

e43 7→ e16 − e34

e34 7→ e61 − e43

e21 7→ e13 − e64

e12 7→ e31 − e46

e23 7→ e15 − e24

e32 7→ e51 − e42

11. Verify that the commutator of two derivations of an F -algebra is again a derivation, whereas the ordinary product
need not be.

Solution:
A is a F -algebra, δ, δ′ ∈ Der(A), a, b ∈ A

[δ, δ′](ab) = δδ′(ab)− δ′δ(ab)
= δ (δ′(a)b+ aδ′(b))− δ′ (δ(a)b+ aδ(b))

= δ(δ′(a))b+ δ′(a)δ(b) + δ(a)δ′(b) + aδ(δ′(b))

−δ′(δ(a))b− δ(a)δ′(b)− δ′(a)δ(b)− aδ′(δ(b))
= ([δ, δ′](a))b− a[δ, δ′](b)

∴ [δ, δ′] ∈ Der(A)

12. Let L be a Lie algebra over an algebraically closed field and let x ∈ L. Prove that the subspace of L spanned by
the eigenvectors of adx is a subalgebra.

Solution:
Suppose y, z are eigenvectors of adx respect to eigenvalues λ, µ, i.e., [x, y] = λy, [x, z] = µz then

adx[y, z] = [x, [y, z]]

= [y, [x, z]]− [z, [x, y]]

= (λ+ µ)[y, z]

So [y, z] is also a eigenvector of adx. i.e., the subspace of L spanned by the eigenvectors of adx is a
subalgebra.
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2 Ideals and Homomorphisms
1. Prove that the set of all inner derivations adx, x ∈ L, is an ideal of DerL.

Solution:
∀δ ∈ DerL, x, y ∈ L

[δ, adx](y) = δ([x, y])− [x, δ(y)]

= [δ(x), y] + [x, δ(y)]− [x, δ(y)]

= ad(δ(x))(y)

∴ [δ, adx] = adδ(x)is a inner derivations.

2. Show that sl(n, F ) is precisely the derived algebra of gl(n, F ) (cf. Exercise 1.9).

Solution:
∀x, y ∈ gl(n, F ), tr[x, y] = tr(xy)− tr(yx) = 0. We have

[gl(n, F ), gl(n, F )] ⊆ sl(n, F )

Conversely, by exercise 1.9,

sl(n, F ) = [sl(n, F ), sl(n, F )] ⊆ [gl(n, F ), gl(n, F )]

3. Prove that the center of gl(n, F ) equals s(n, F ) (the scalar matrices). Prove that sl(n, F ) has center 0, unless
charF divides n, in which case the center is s(n, F ).

Solution:
Clearly, we have s(n, F ) ⊆ Z(gl(n, F )). Conversely, Let a =

∑
i,j

aijeij ∈ Z(gl(n, F )), then for each

ekl ∈ gl(n, F ),

[a, ekl] =
∑
i,j

aij [eij , ekl]

=
∑
i,j

aij(δjkeil − δliekj)

=

n∑
i=1

aikeil −
n∑
j=1

aljekj

= (akk − all)ekl +

n∑
i=1
i6=k

aikeil −
n∑
j=1
j 6=l

aljekj

So
akk = all, aij = 0, i 6= j

i.e.
a ∈ s(n, F )
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For sl(n, F ), if c ∈ Z(sl(n, F )), ∀x ∈ sl(n, F ), [x, c] = 0. But we know gl(n, F ) = sl(n, F ) + s(n, F ) and
s(n, F ) is the center of gl(n, F ). Hence c ∈ Z(gl(n, F )) = s(n, F ). We have

Z(sl(n, F )) = sl(n, F ) ∩ s(n, F )

If charF does not divide n, each aI ∈ s(n, F ) has trace na 6= 0, so aI 6∈ sl(n, F ). i.e., Z(sl(n, F )) =
sl(n, F ) ∩ s(n, F ) = 0. Else if charF divides n, each aI ∈ s(n, F ) has trace na = 0, in this case
Z(sl(n, F )) = sl(n, F ) ∩ s(n, F ) = s(n, F )

4. Show that (up to isomorphism) there is a unique Lie algebra over F of dimension 3 whose derived algebra has
dimension 1 and lies in Z(L).

Solution:
Let L0 be the 3-dimensional lie algebra over F with basis (x0, y0, z0) and commutation:

[x0, y0] = z0, [x0, z0] = [y0, z0] = 0

.

Suppose L be any 3-dimensional lie algebra over F whose derived algebra has dimension 1 and lies in Z(L).
We can take a basis (x, y, z) of L such that z ∈ [LL] ⊆ Z(L). By hypothesis, [x, y] = λz, [x, z] = [y, z] =
0, λ ∈ F . Then L→ L0, x 7→ x0, y 7→ y0, z 7→ λz0 is a isomorphism.

5. Suppose dimL = 3, L = [LL]. Prove that L must be simple. [Observe first that any homomorphic image of L
also equals its derived algebra.] Recover the simplicity of sl(2, F ), charF 6= 2.

Solution:
Let I is an ideal of L, then [L/I, L/I] = [L,L]/I = L/I .

Suppose L has a proper ideal I 6= 0, then I has dimension 1 or 2. If I has dimension 2, then L/I is a
1-dimensional algebra, [L/I, L/I] = 0 6= L/I . Else I has dimension 1, we can take a basis (x, y, z) of L
such that z is a basis of I , so

[x, z] ∈ I, [y, z] ∈ I

Hence [LL] is contained in the subspace of L spanned by [x, y], z. Its dimension is at most 2, this contradict
with [LL] = L.

Now, we conclude that L has no proper nonzero ideal, i.e., L is a simple Lie algebra.

6. Prove that sl(3, F ) is simple, unless charF = 3 (cf. Exercise 3). [Use the standard basis h1, h2, eij(i 6= j). If
I 6= 0 is an ideal, then I is the direct sum of eigenspaces for adh1 or adh2; compare the eigenvalues of adh1, adh2

acting on the eij .]

Solution:

7. Prove that t(n, F ) and d(n, F ) are self-normalizing subalgebras of gl(n, F ), whereas n(n, F ) has normalizer
t(n, F ).
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Solution:
Let a =

∑
ij

aijeij ∈ gl(n, F ), [a, t(n, F )] ⊆ t(n, F ). But

[a, ekk] =
∑
ij

aijδjkeik −
∑
ij

aijδkiekj

=
∑
i

aikeik −
∑
j

akjekj

⊆ t(n, F )

It must be aik = 0 for i > k, and akj = 0 for j < k. Hence akl = 0 for all k > l. This implies a ∈ t(n, F ),
i.e., t(n, F ) is the self-normalizing subalgebras of gl(n, F ).

Similarly for d(n, F ), let a =
∑
ij

aijeij ∈ gl(n, F ), [a, d(n, F )] ⊆ d(n, F ). But

[a, ekk] =
∑
ij

aijδjkeik −
∑
ij

aijδkiekj

=
∑
i

aikeik −
∑
j

akjekj

⊆ d(n, F )

It must be aik = 0 for i 6= k, and akj = 0 for j 6= k. Hence akl = 0 for all k 6= l. This implies a ∈ d(n, F ),
i.e., d(n, F ) is the self-normalizing subalgebras of gl(n, F ).

8. Prove that in each classical linear Lie algebra (1.2), the set of diagonal matrices is a self-normalizing subalgebra,
when charF = 0.

Solution:

9. Prove Proposition 2.2.

Solution:

10. Let σ be the automorphism of sl(2, F ) defined in (2.3). Verify that σ(x) = −y, σ(y) = −x, σ(h) = −h.

Solution:

exp adx(x) = x

exp adx(h) = h− 2x

exp adx(y) = y + h− x
exp ad(−y)(x) = x+ h− y
exp ad(−y)(h) = h− 2y

exp ad(−y)(y) = y
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σ(x) = exp adx exp ad(−y)(x)

= exp adx(x+ h− y)

= x+ h− 2x− y − h+ x

= −y

σ(y) = exp adx exp ad(−y)(y + h− x)

= exp adx(y + h− 2y − x− h+ y)

= exp adx(−x)

= −x

σ(h) = exp adx exp ad(−y)(h− 2x)

= exp adx(h− 2y − 2(x+ h− y))

= exp adx(−h− 2x)

= −h+ 2x− 2x = −h

11. If L = sl(n, F ), g ∈ GL(n, F ), prove that the map of L to itself defined by x 7→ −gxtg−1 (xt= transpose of x)
belongs to AutL. When n = 2, g = identity matrix, prove that this automorphism is inner.

Solution:
g ∈ GL(n, F ) and tr(−gxtg−1) = −tr(x), i.e, tr(x) = 0 if and only if tr(−gxtg−1) = 0. so the map
x 7→ −gxtg−1 is a linear space automorphism of sl(n, F ). We just verify it is a homomorphism of lie
algebras:

[−gxtg−1,−gytg−1] = gxtytg−1 − gytxtg−1

= −g((xy)t − (yx)t)g−1

= −g[x, y]tg−1

When n = 2, g=identity matrix, the automorphism σ : x 7→ −xt, i.e.

σ(x) = −y, σ(y) = −x, σ(h) = −h

So σ = exp adx exp ad(−y) exp adx is an inner automorphism. (Warning: An inner automorphism is not
exactly of form exp adx with adx is nilpotent. It can be the composition of elements with this form.)

12. Let L be an orthogonal Lie algebra (type Bl or Dl). If g is an orthogonal matrix, in the sense that g is invertible
and gtsg = s, prove that x 7→ gxg−1 defines an automorphism of L.

Solution:
x ∈ Bl or Dl, sx = −xts. Hence

sgxg−1 = (g−1)tsxg−1

= −(g−1)txtsg−1

= −(g−1)txtgts

= −(gxg−1)ts
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So the map x 7→ gxg−1 is a linear automorphism of Bl or Cl. We just verify it is a homomorphism of lie
algebras:

[gxg−1, gyg−1] = gxyg−1 − gyxg−1 = g[x, y]g−1

3 Solvable and Nilpotent Lie Algebras
1. Let I be an ideal of L. Then each member of the derived series or descending central series of I is also an ideal

of L.

Solution:
For derived series, we need to show: if I is an ideal of L, [II] is an ideal of L. Let x,∈ L, y, z ∈ I

[x, [y, z]] = [[z, x], y] + [[x, y], z] ∈ [II]

So [II] is an ideal of L.

For descending central series, we need to show: if I, J are ideals of L, and J ⊆ I , [IJ ] is an ideal of L. Let
x ∈ L, y ∈ I, z ∈ J

[x, [y, z]] = [[z, x], y] + [[x, y], z] ∈ [IJ ]

Because [z, x] ∈ J and [x, y] ∈ I .

2. Prove that L is solvable if and only if there exists a chain of subalgebras L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lk = 0
such that Li+1 is an ideal of Li and such that each quotient Li/Li+1 is abelian.

Solution:
If L is solvable, its derived series : L = L(0) ⊃ L(1) ⊃ · · · ⊃ L(k) = 0, L(m+1) = [L(m), L(m)], so L(m) is
an ideal of L(m) and L(m)/L(m+1) is abelian.

Conversely, if there exists a chain of subalgebras L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lk = 0 such that Li+1 is an
ideal of Li and such that each quotient Li/Li+1 is abelian.

Claim: if I is an ideal of L and L/I is abelian, then I ⊆ [LL]. This is clearly. Because L/I is abelian,
∀x, y ∈ L, [x, y] ∈ I , i.e., [L,L] ⊆ I .

By the above claim, we can deduced by induction that L(m) ⊆ Lm. In fact L(1) ⊆ L1 is true. If L(m) ⊆ Lm,
L(m+1) = [L(m), L(m)] ⊆ [Lm, Lm] ⊆ Lm+1.

By the hypothesis, L(k) = 0, so L is solvable.

3. Let charF = 2. Prove that sl(2, F ) is nilpotent.

Solution:
Let (x, h, y) is the standard basis for sl(2, F ).

[hx] = 2x = 0, [xy] = h, [hy] = −2y = 0

Hence
[sl(2, F ), sl(2, F )] = Fh
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[sl(2, F ), [sl(2, F ), sl(2, F )]] = [sl(2, F ), Fh] = 0

i.e., sl(2, F ) is nilpotent.

4. Prove that L is solvable (resp. nilpotent) if and only if ad L is solvable (resp. nilpotent).

Solution: ad : L → adL is a homomorphism, by proposition 2.2, adL ∼= L/Z(L) because of ker(ad) =
Z(L). [Z(L), Z(L)] = 0, so Z(L) is a solvable ideal.

By proposition 3.1, L is solvable if and only if adL is solvable.

5. Prove that the nonabelian two dimensional algebra constructed in (1.4) is solvable but not nilpotent. Do the same
for the algebra in Exercise 1.2.

Solution:
The nonabelian two dimensional algebra L is given by basis (x, y) and commutations [x, y] = x. We can
deduce that: L(1) = Fx,L(2) = 0. So L is solvable. But L1 = Fx,L2 = Fx, · · · , Lk = Fx, · · · , so L is
not nilpotent.

The algebra in Exercise 1.2 L is given by basis (x, y, z) and commutations [x, y] = z, [x, z] = y, [y, z] = 0.
We can deduce that: L(1) = Fy + Fz, L(2) = 0. So L is solvable. But L1 = Fy + Fz, L2 = Fy +
Fz, · · · , Lk = Fy + Fz, · · · , so L is not nilpotent.

6. Prove that the sum of two nilpotent ideals of a Lie algebra L is again a nilpotent ideal. Therefore, L possesses a
unique maximal nilpotent ideal. Determine this ideal for each algebra in Exercise 5.

Solution:
Let I, J are nilpotent ideals of L, Im = 0, Jn = 0.

[I + J, I + J ] ⊆ [II] + [JJ ] + [IJ ] ⊆ [II] + [JJ ] + I ∩ J

We can deduce by induction that
(I + J)k ⊆ Ik + Jk + I ∩ J

If we let k > max(m,n), then Ik = 0, Jk = 0, (I + J)k ⊆ I ∩ J .

(I + J)k+l = [I + J, · · · , [I + J︸ ︷︷ ︸
k

, I ∩ J ] · · · ] ⊆ I l ∩ J + I ∩ J l

If we let k > max(m,n), then (I + J)k+l = 0, I + J is a nilpotent ideal of L.

7. Let L be nilpotent, K a proper subalgebra of L. Prove that NL(K) includes K properly.

Solution:
Let L0 = L,L1 = [LL], L2 = [L,L1], · · · , Ln = 0 be the descending central series of L. K is a proper
subalgebra of L. Hence there exists a k, such that Lk+1 ⊆ K, but Lk 6⊆ K.
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Let x ∈ Lk, x 6∈ K, [x,K] ⊆ Lk+1 ⊆ K, so x ∈ NL(K), but x 6∈ K. i.e., NL(K) includes K properly.

In exercise 3.5, the 2 dimensional algebra has a maximal nilpotent ideal Fx; the 2 dimensional algebra has a
maximal nilpotent ideal Fy + Fz.

8. Let L be nilpotent. Prove that L has an ideal of codimension 1.

Solution:
L is nilpotent, [LL] 6= L. We have a natural homomorphism π : L→ L/[LL]. L/[LL] is a nonzero abelian
algebra, so it has a subspace Ī of codimension 1. Ī must be a ideal of L/[LL] as L/[LL] being abelian. So
π−1(Ī) is a ideal of L with codimension 1.

9. Prove that every nilpotent Lie algebra L has an outer derivation (see (1.3)), as follows: Write L = K + Fx
for some ideal K of codimension one (Exercise 8). Then CL(K) 6= 0 (why?). Choose n so that CL(K) ⊂
Ln,CL(K) 6⊂ Ln+1, and let z ∈ CL(K) − Ln+1. Then the linear map δ sending K to 0, x to z, is an outer
derivation.

Solution:
L is nilpotent, there exists k such that Lk = 0, Lk−1 6= 0. So [Lk−1,K] ⊆ [Lk−1, L] = 0, i.e., 0 6= Lk−1 ⊆
CL(K). Then we have n satisfying CL(K) ⊆ Ln, CL(K) 6⊆ Ln+1. Let z ∈ CL(K)\Ln+1. We make a
linear map δ send K to 0,x to z.

For all k1 + λ1x, k2 + λ2x ∈ L, [k1 + λ1x, k2 + λ2x] ∈ K, so δ([k1 + λ1x, k2 + λ2x]) = 0.

In the other hand,

[δ(k1 + λ1x), k2 + λ2x] + [k1 + λ1x, δ(k2 + λ2x)]

= [λ1z, k2 + λ2x] + [k1 + λ1x, λ2z]

= λ1λ2[z, x] + λ1λ2[x, z]

= 0

We conclude that δ is a derivation. If δ is a inner derivation, δ = ady, then [y,K] = δ(K) = 0, so
y ∈ CL(K) ⊆ Ln. Then we have [y, x] ⊆ Ln+1. But [y, x] = δ(x) = z 6∈ Ln+1. This is a contradiction. So
δ is a outer derivation.

10. Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and such that adx|K is nilpotent for all x ∈ L.
Prove that L is nilpotent.

Solution:
L/K is nilpotent, for all x ∈ L, adx̄ is a nilpotent endomorphism in End(L/K). i.e., there exists a n such
that (adx)n(y) ∈ K,∀y ∈ L.

In the other hand, adx|K is nilpotent, so we have am such that (adx)m((adx)n(y)) = 0, i.e., (adx)m+n(y) =
0. So adx is a nilpotent endomorphism in gl(L). By Engel’s Theorem, L is nilpotent.
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4 Theorems of Lie and Cartan
1. Let L = sl(V ). Use Lie’s Theorem to prove that RadL = Z(L); conclude that L is semisimple (cf. Exercise 2.3).

[Observe that RadL lies in each maximal solvable subalgebraB of L. Select a basis of V so thatB = L∩t(n, F ),
and notice that the transpose ofB is also a maximal solvable subalgebra of L. Conclude that RadL ⊂ L∩d(n, F ),
then that RadL = Z(L).]

Solution:

2. Show that the proof of Theorem 4.1 still goes through in prime characteristic, provided dimV is less than charF .

Solution:

3. This exercise illustrates the failure of Lie’s Theorem when F is allowed to have prime characteristic p. Consider
the p× p matrices:

x =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0

 , y = diag(0, 1, 2, 3, · · · , p− 1)

Check that [x, y] = x, hence that x and y span a two dimensional solvable subalgebra L of gl(p, F ). Verify that
x, y have no common eigenvector.

Solution:

4. When p = 2, Exercise 3.3 show that a solvable Lie algebra of endomorphisms over a field of prime characteristic
p need not have derived algebra consisting of nilpotent endomorphisms (cf. Corollary C of Theorem 4.1). For
arbitrary p, construct a counterexample to Corollary C as follows: Start with L ⊂ gl(p, F ) as in Exercise 3. Form
the vector space direct sum M = L + F p, and make M a Lie algebra by decreeing that F p is abelian, while
L has its usual product and acts on F p in the given way. Verify that M is solvable, but that its derived algebra
(= Fx+ F p) fails to be nilpotent.

Solution:

5. If x, y ∈ EndV commute, prove that (x + y)s = xs + ys, and (x + y)n = xn + yn. Show by example that this
can fail if x, y fail to commute. [Show first that x, y semisimple (resp. nilpotent) implies x+y semisimple (resp.
nilpotent).]

Solution:

6. Check formula (*) at the end of (4.2).
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Solution:

7. Prove the converse of Theorem 4.3.

Solution:

8. Note that it suffices to check the hypothesis of Theorem 4.3 (or its corollary) for x, y ranging over a basis of L.
For the example given in Exercise 1.2, verify solvability by using Cartan’s Criterion.

Solution:

5 Killing Form
1. Prove that if L is nilpotent, the Killing form of L is identically zero.

Solution: L is nilpotent. There is a k such that L2k+1 = 0, So

adxady · · · adxady︸ ︷︷ ︸
k

(x) ∈ L2k+1 = 0,∀x, y, z ∈ L

Hence we have adxady is a nilpotent endomorphism of L.

κ(x, y) = tr(adxady) = 0

2. Prove that L is solvable if and only if [LL] lies in the radical of the Killing form.

Solution:
“⇐”: [LL] lies in the radical of the Killing form, then ∀x ∈ [LL], y ∈ L, κ(x, y) = tr(adxady) = 0. By
corollary 4.3, L is solvable.

“⇒”: L is solvable. By Lie theorem, L has a basis x1, · · · , xn such that any x ∈ L, adx is a upper triangular
matrix relative to (x1, · · · , xn). Hence

ad[x, y] = adxady − adyadx

is a strictly upper triangular matrix. We have ad[xy]ady is a strictly upper triangular matrix for all x, y, z ∈ L.
Therefore, tr(ad[xy]ady) = 0 and then [LL] ⊆ Rad(L).

3. Let L be the two dimensional nonabelian Lie algebra (1.4), which is solvable. Prove that L has nontrivial Killing
form.
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Solution:
L be the two dimensional nonabelian Lie algebra (1.4). (x, y) is a basis of L and [x, y] = x. We can write
down the matrix of adx, ady relative to the basis (x, y) as follows:

adx ∼
(

0 1
0 0

)
, ady ∼

(
−1 0
0 0

)
So κ(y, y) = tr(adyady) = 1, κ is nontrivial.

4. Let L be the three dimensional solvable Lie algebra of Exercise 1.2. Compute the radical of its Killing form.

Solution:
Let (x, y, z) be the basis of L, [xy] = z, [xz] = y, [yz] = 0. The matrices of adx, ady, adz are

adx ∼

0 0 0
0 0 1
0 1 0

 , ady ∼

 0 0 0
0 0 0
−1 0 0

 , adz ∼

 0 0 0
−1 0 0
0 0 0


We compute the matrix of Killing Form κ relative to the basis (x, y, z):

κ =

2 0 0
0 0 0
0 0 0


Let ax+ by + cz is any element in the radical of κ.

(a, b, c)

2 0 0
0 0 0
0 0 0

 = 0

So a = 0, b, c can be any number in F . We conclude that the radical of the Killing form is Fy + Fz.

5. Let L = sl(2, F ). Compute the basis of L dual to the standard basis, relative to the Killing form.

Solution:
The matrix of the Killing form relative to the basis (x, h, y) is0 0 4

0 8 0
4 0 0


The basis of L dual to the standard basis is ( 1

4y,
1
8h,

1
4x)

6. Let charF = p 6= 0. Prove that L is semisimple if its Killing form is nondegenerate. Show by example that the
converse fails. [Look at sl(3, F ) modulo its center, when charF = 3.]
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Solution:
If Rad(L) 6= 0, the last nonzero term I in its derived series is a abelian subalgebra of L, and by exercise 3.1,
I is a ideal of L. In another words, L has a nonzero abelian ideal. It is suffice to prove any abelian ideal of L
is zero.

Let S be the radical of the Killing form, which is nondegenerate. So S = 0. To prove that L is semisimple,
it will suffice to prove that every abelian ideal I of L is included in S. Suppose x ∈ I, y ∈ L. Then adxady
maps L → L → I , and (adxady)2 maps L into [II] = 0. This means that adxady is nilpotent, hence that
0 = Tr(adxady) = κ(x, y), so I ⊆ S = 0.

7. Relative to the standard basis of sl(3, F ), compute the determinant of κ. Which primes divide it?

Solution:
We write down the matrix of adx relative to basis (e11 − e22, e22 − e33, e12, e13, e21, e23, e31, e33 when x
runs over this basis.

ad(e11 − e22) = diag(0, 0, 2, 1,−2,−1,−1, 1)

ad(e22 − e33) = diag(0, 0,−1, 1, 1, 2,−1,−2)

ade12 =



0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0


, ade21 =



0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0



ade13 =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, ade31 =



0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0



ade23 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, ade32 =



0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
−1 2 0 0 0 0 0 0


The matrix of the Killing form relative to this basis is

κ =



12 −6 0 0 0 0 0 0
−6 12 0 0 0 0 0 0
0 0 0 0 6 0 0 0
0 0 0 0 0 0 6 0
0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 6
0 0 0 6 0 0 0 0
0 0 0 0 0 6 0 0


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Its determinant is det(κ) = 2839, so prime 2 and 3 divide the determinant of κ

8. Let L = L1 ⊕ · · · ⊕ Lt be the decomposition of a semisimple Lie algebra L into its simple ideals. Show that the
semisimple and nilpotent parts of x ∈ L are the sums of the semisimple and nilpotent parts in the various Li of
the components of x.

Solution:
Let x ∈ L, x = x1 + · · ·+ xt with xi ∈ Li, and xi = ui + vi is the Jordan decomposition of xi in Li, ui is
semisimple and vi is nilpotent.

Because adLui|Li = adLiui is a semisimple endomorphism of Li. In the other hand, adLui|Lj = 0, j 6= i.
Hence adLui is a semisimple endomorphism of L. We know [ui, uj ] = for all i 6= j. Let u = u1 + · · ·+ ut,
then adLu is a semisimple endomorphism of L.

Similarly, let v = v1 + · · ·+ vt, adv is a nilpotent endomorphism of L.

Furthermore, [u, v] = [u1, v1] + · · ·+ [ut, vt] = 0, so x = u+ v is the Jordan decomposition of x.

6 Complete Reducibility of Representations
1. Using the standard basis for L = sl(2, F ), write down the Casimir element of the adjoint representation of L (cf.

Exercise 5.5). Do the same thing for the usual (3-dimensional) representation of sl(3, F ), first computing dual
bases relative to the trace form.

Solution:
For the adjoint representation of L = sl(2, F ), The matrix of β respect to basis (x, h, y) is

β ∼

0 0 4
0 8 0
4 0 0


we can deduce the dual basis of (x, h, y) is ( 1

4y,
1
8h,

1
4x). So the Casimir element of this representation is

cad =
1

4
adxady +

1

8
adhadh+

1

4
adyadx

For the usual representation ofL = sl(3, F ), The matrix of β respect to basis (e11−e22, e22−e33, e12, e13, e23, e21, e31, e32)
is

β ∼



2 −1 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


We can deduce the dual basis is

2

3
e11 −

1

3
e22 −

1

3
e33,

1

3
e11 +

1

3
e22 −

2

3
e33, e21, e31, e32, e12, e13, e23
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So

cϕ =
∑
x

xx′ =

 8
3 0 0
0 8

3 0
0 0 8

3



2. Let V be an L-module. Prove that V is a direct sum of irreducible submodules if and only if each L-submodule
of V possesses a complement.

Solution:
“⇒” Let V = V1 ⊕ · · · ⊕ Vn and Vi is irreducible submodule of V . Let W is any submodule of V .

Let W ′ be the maximal submodule of V which trivial intersection with W .(Such a module exists because
V has finite dimensional.) Then W ∩ W ′ = 0. If W + W ′ is a proper submodule of V , then there is a
Vi such that Vi 6⊂ W + W ′. But Vi ∩ (W + W ′) is a submodule of Vi and we know it is not the Vi, so
Vi ∩ (W + W ′) = 0. So we can make a module W ′ + Vi which trivially intersection with W , and proper
including W ′, which contradict with W ′ is maximal. So V = W ⊕W ′.
“⇐” V is a finite dimensional module of L. Let U be the maximal submodule of V such that it is a direct
sum of irreducible submodule. Such a U exists because a irreducible submodule of V is a direct sum of itself.
If U 6= V , then there is a submodule W such that V = U ⊕W . Let W1 is a irreducible submodule of W .
Then U ⊕W1 is a submodule of V and it is a direct sum of irreducible submodules. This contradicts to the
choice of U .

3. If L is solvable, every irreducible representation of L is one dimensional.

Solution:
Let V is a irreducible representation of L, ϕ : L → gl(V ) is a representation. Then ϕ(L) is a solvable
subalgebra of gl(V ). By Lie Theorem, there is a 0 6= v ∈ V , φ(L).v ⊆ Fv. So Fv is a submodule of V .
Hence V = Fv has dimension 1 as V is irreducible.

4. Use Weyl’s Theorem to give another proof that for L semisimple, adL = DerL (Theorem 5.3). [If δ ∈ DerL,
make the direct sum F+L into anL-module via the rule x.(a, y) = (0, aδ(x)+[xy]). Then consider a complement
to the submodule L.]

Solution:
Let δ ∈ DerL, make F + L into an L-module by

x.(a, y) = (0, aδ(x) + [x, y])

We can check the above formula defines a module as follows:

[x, z].(a, y) = (0, aδ([x, z]) + [[x, z], y])

= (0, a[δ(x), z] + a[x, δ(z)] + [x, [z, y]] + [z, [y, x]]

x.z.(a, y) = x.(0, aδ(z) + [z, y]) = (0, [x, aδ(z) + [z, y]])

z.x.(a, y) = z.(0, aδ(x) + [x, y]) = (0, [z, aδ(x) + [x, y]])

∴ [x, z].(a, y) = x.z.(a, y)− z.x.(a, y)
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Clearly, L is a submodule of F + L. By Weyl’s Theorem, it has a complement of dimension 1. Let
(a0, x0), a0 6= 0 be its basis. Then L acts on it trivially. Hence

0 = x.(a0, x0) = (0, a0δ(x) + [x, x0])

i.e.
δ(x) = [

1

a0
x0, x] = ad

1

a0
x0(x)

So δ ∈ IntL.

5. A Lie algebraL for which RadL = Z(L) is called reductive. (Examples: L abelian,L semisimple,L = gl(n, F ).)

1. If L is reductive, then L is a completely reducible adL-module. [If adL 6= 0, use Weyl’s Theorem.] In
particular, L is the direct sum of Z(L) and [LL], with [LL] semisimple.

2. If L is a classical linear Lie algebra (1.2), then L is semisimple. [Cf. Exercise 1.9.]
3. If L is a completely reducible adL-module, then L is reductive.
4. If L is reductive, then all finite dimensional representations of L in which Z(L) is represented by semisimple

endomorphisms are completely reducible.

Solution:
(1)L is reductive, adL ∼= L/Z(L) ∼= L/Rad(L), so If adL 6= 0, adL is a semisimple Lie algebra. By weyl
theorem, L is a completely reducible adL-module. If adL = 0, L is abelian, each 1-dimensional subspace of
L is a irreducible adL-module. So L is a completely reducible adL-module.

We know L/Z(L) is semisimple, so [LL]/Z(L) ∼= [L/Z(L), L/Z(L)] ∼= L/Z(L). i.e., for all x ∈ L, there
exists y, z ∈ L, such that x+Z(L) = [y, z] +Z(L), so we have x = [y, z] + c with c ∈ Z(L). We conclude
that

L = Z(L) + [LL]

On the other hand, Z(L) is a adL-submodule of L and L is a completely reducible adL-module. So Z(L)
has a component M in L.

L = M ⊕ Z(L)

where M is a ideal of L.

[LL] ⊂ [M ⊕ Z(L),M ⊕ Z(L)] ⊂ [M,M ] ⊂M

We conclude that
L = [LL]⊕ Z(L)

Hence [LL] ∼= L/Z(L) is semisimple.

(2) If L is a classical linear Lie algebra, by exercise 4.1, RadL = Z(L). And by exercise 1.9, Z(L) = 0, so
L = [LL] is semisimple.

(3)L is a completely reducible adL-module. Clearly Z(L) is a submodule. So

L = Z(L)⊕M

where M is a direct sum of some simple ideal of L. So M is semisimple. L/Z(L) ∼= M is semisimple. We
conclude that Rad(L/Z(L)) = RadL/Z(L) = 0. Hence RadL ⊆ Z(L).

On the other hand, Z(L) ⊆ RadL is clearly.

We conclude that RadL = Z(L), L is reductive.

(4)
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6. Let L be a simple Lie algebra. Let β(x, y) and γ(x, y) be two symmetric associative bilinear forms on L. If β, γ
are nondegenerate, prove that β and γ are proportional. [Use Schur’s Lemma.]

Solution:
L is a irreducible L-module by ad, and L∗ is a L-module, We can define a linear map φ : L→ L∗, x 7→ βx,
where βx ∈ L∗ defined by βx(y) = β(x, y). Then we have

φ(ad(x).y)(z) = β[x,y](z) = β([x, y], z)

= −β([y, x], z) = −β(y, [x, z])

= −βy(ad(x).z) = (ad(x).βy)(z)

∴ φ(ad(x).y) = ad(x).φ(y)

From the above formula we know φ is a module homomorphism of L-module.

Similarly, we can define a linear map ψ : L∗ → L, f → xf , where xf defined by f(z) = γ(xf , z) for all
z ∈ L. This xf exists because γ is non-degenerate. Then we have

γ(xad(x).f , z) = (ad(x).f)(z) = −f([x, z])

γ(ad(x).xf , z) = −γ([xf , x], z) = −γ(xf , [x, z]) = −f([x, z])

ψ(ad(x).f) = xad(x).f

ad(x).ψ(f) = [x, xf ]

∴ ψ(ad(x).f) = ad(x).ψ(f)

Hence ψ is also a homomorphism of L-modules. So ψ ◦ φ is a homomorphism from L to L, i.e, ψ ◦ φ is a
endomorphism of L which commutative with all adx, x ∈ L, and L is a irreducible L-module. By Schur’s
lemma we have

ψ ◦ φ = λI

So
xβx = ψ(βx) = λx

γ(λx, y) = γ(xβx, y) = βx(y) = β(x, y)

i.e.,
β(x, y) = λγ(x, y),∀x, y ∈ L

7. It will be seen later on that sl(n, F ) is actually simple. Assuming this and using Exercise 6, prove that the Killing
form κ on sl(n, F ) is related to the ordinary trace form by κ(x, y) = 2nTr(xy).

Solution:
Clearly Tr(xy) is a nonzero symmetric associative bilinear form on sl(n, F ), its radical is a ideal of sl(n, F ),
but sl(n, F ) is a simple Lie algebra, So Tr(xy) is nondegenerate. By exercise 6.6, κ(x, y) = λTr(xy). We
can only compute it for x = y = e11 − e22. In this case, Tr(xy) = 2.
eii − ei+1,i+1, 1 6 i 6 n− 1 and eij , i, j 6= 1, 2 are eigenvectors for ad(e11 − e22) with eigenvalue 0.
e12 is the eigenvector for ad(e11 − e22) with eigenvalue 2. e21 is the eigenvector for ad(e11 − e22) with
eigenvalue -2. e1k, k 6= 1, 2 and ek2, k 6= 1, 2 are eigenvectors for ad(e11 − e22) with eigenvalue 1. ek1, k 6=
1, 2 and e2k, k 6= 1, 2 are eigenvectors for ad(e11 − e22) with eigenvalue -1.
So the matrix of ad(e11 − e22) relative to the standard basis of sl(n, F ) is a diagonal matrix

diag(0, · · · , 0︸ ︷︷ ︸
n−1

, 2,−2, 1, · · · , 1︸ ︷︷ ︸
2n−4

,−1, · · · ,−1︸ ︷︷ ︸
2n−4

, 0, · · · , 0)
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Hence κ(x, y) = Tr(adxady) = 4 + 4 + 2(2n− 4) = 4n = 2nTr(xy).

8. If L is a Lie algebra, then L acts (via ad) on (L⊗L)∗, which may be identified with the space of all bilinear forms
β on L. Prove that β is associative if and only if L.β = 0.

Solution:
By definition,

z.β(x⊗ y) = −β(z.(x⊗ y))

= −β(z.x⊗ y + x⊗ z.y)

= β([x, z]⊗ y)− β(x⊗ [z, y])

Hence
L.β = 0⇔ β([x, z]⊗ y) = β(x⊗ [z, y]),∀x, y, z ∈ L⇔ βis associative.

9. Let L′ be a semisimple subalgebra of a semisimple Lie algebra L. If x ∈ L′, its Jordan decomposition in L′ is
also its Jordan decomposition in L.

Solution:
The map φ : L′ → gl(L), x 7→ adLx make L be a L′ module. Let x ∈ L′ and x = xs + xn is its Jordan
decomposition in L′. By Corollary 6.4, adLx = adLxs + adLxn is the Jordan decomposition of adLx. So
x = xs + xn is the Jordan decomposition of x in L as the uniqueness of the Jordan decomposition.

7 Representations of sl(2, F )

In these exercises, L = sl(2, F ).

1. Use Lie’s Theorem to prove the existence of a maximal vector in an arbitrary finite dimensional L-module. [Look
at the subalgebra B spanned by h and x.]

Solution:
Let V be an arbitrary finite dimensional L-module. φ : L → gl(V ) is a representation. Let B be the
subalgebra of L spanned by h and x. Then φ(B) is a solvable subalgebra of gl(V ). And φ(x) is a nilpotent
endomorphism of V . By Lie’s theorem, there is a common eigenvector v for B. So h.v = λv, x.v = 0, v is
a maximal vector.

2. M = sl(3, F ) contains a copy of L in its upper left-hand 2 × 2position. Write M as direct sum of irreducible
L-submodules (M viewed as L- module via the adjoint representation): V (0)⊕ V (1)⊕ V (1)⊕ V (2).

Solution:
Let h = e11 − e22, x = e12, y = e21, M is a L-module.
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First, we know adh.e12 = 2e12, adx.e12 = 0. So e12 is a maximal vector with highest weight 2. It can
generate a irreducible module isomorphic to V (2). Let v0 = e12, v1 = [e21, e12] = −(e11 − e22), v2 =
[e21,−(e11 − e22)] = −e21. So V (2) ∼= span{e12, e11 − e22, e21}.
adh.e13 = e13, adx.e13 = 0. So e13 is a maximal vector with weight 1. It can generate a irreducible module
isomorphic to V (1). [e21, e13] = e23. We have V (1) ∼= span{e13, e23}.
adh.e32 = e32, adx.e32 = 0. So e32 is a maximal vector with weight 1. It can generate a irreducible module
isomorphic to V (1). [e21, e32] = −e31. We have another V (1) ∼= span{e31, e32}.
At last, we have a 1-dimensional irreducible submodule of V (0) ∼= span{e22 − e33}. And

M = V (0)⊕ V (1)⊕ V (1)⊕ V (2)

3. Verify that formulas (a) − (c) of Lemma 7.2 do define an irreducible representation of L. [To show that they
define a representation, it suffices to show that the matrices corresponding to x, y, h satisfy the same structural
equations as x, y, h.]

Solution:

[h, x].vi = 2x.vi = 2(λ− i+ 1)vi−1

h.x.vi − x.h.vi = (λ− i+ 1)h.vi−1 − (λ− 2i)x.vi

= (λ− i+ 1)(λ− 2i+ 2)vi−1 − (λ− 2i)(λ− i+ 1)vi−1

= 2(λ− i+ 1)vi−1

[h, y].vi = −2y.vi = −2(i+ 1)vi+1

h.y.vi − y.h.vi = (i+ 1)h.vi−1 − (λ− 2i)y.vi

= (i+ 1)(λ− 2i− 2)vi+1 − (λ− 2i)(i+ 1)vi+1

= −2(i+ 1)vi+1

[x, y].vi = hvi = (λ− 2i)vi

x.y.vi = y.x.vi = (i+ 1)x.vi+1 − (λ− i+ 1)y.vi−1

= (i+ 1)(λ− i)vi − (λ− i+ 1)ivi

= (λ− 2i)vi

4. The irreducible representation of L of highest weight m can also be realized “naturally”, as follows. Let X,Y be
a basis for the two dimensional vector space F 2, on which L acts as usual. Let R = F [X,Y ] be the polynomial
algebra in two variables, and extend the action of L to R by the derivation rule: z.fg = (z.f)g + f(z.g), for
z ∈ L, f, g ∈ R. Show that this extension is well defined and that R becomes an L-module. Then show that
the subspace of homogeneous polynomials of degree m, with basis Xm, Xm−1Y, · · · , XY m−1, Y m, is invariant
under L and irreducible of highest weight m.

Solution:
First we show that the extension is well defined.
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If XmXn = XsXt, m+ n = s+ t. Suppose s < m.

z.(XmXn) = (z.Xm)Xn +Xm(z.Xn)

= (z.(XsXm−s))Xn +Xm(z.Xn)

= (z.Xs)Xt +Xs((z.Xm−s)Xn +Xm−s(z.Xn))

= (z.Xs)Xt +Xs(z.Xt)

= z.(XsXt)

The other cases can be check similarly. So R is a L-module. And we have:

x.X = 0 h.X = X y.X = Y
x.Y = X h.Y = −Y y.Y = 0

By the definition of extension,

x.Xk = 0 h.Xk = kXk y.Xk = kXk−1Y
x.Y k = kXY k−1 h.Y k = −kY k y.Y k = 0

Hence the subspace of homogeneous polynomials of degree m is a L-module. Let

vi =

(
m

i

)
Xm−iY i, i = 1, · · · ,m

Then

h.vi =

(
m

i

)
((h.Xm−i)Y i +Xm−i(h.Y i))

=

(
m

i

)
((m− i)Xm−iY i − iXm−iY i)

= (m− 2i)vi

y.vi =

(
m

i

)
(y.Xm−i)Y i

=

(
m

i

)
(m− i)Xm−i−1Y i+1

= (i+ 1)vi+1

x.vi =

(
m

i

)
Xm−i(x.Y i)

=

(
m

i

)
iXm−i+1Y i−1

= (m− i+ 1)vi−1

So the subspace of homogeneous polynomials of degree m isomorphic to V (m). So it is a irreducible L-
module of highest weight m.

5. Suppose charF = p > 0, L = sl(2, F ). Prove that the representation V (m) of L constructed as in Exercise 3 or
4 is irreducible so long as the highest weight m is strictly less than p, but reducible when m = p.
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Solution:

Let U be a submodule of V (m), U 6= 0. 0 6= v ∈ U , v =
m∑
i=0

λivi. Let k = max{i|λi 6= 0}, then

xk.v = λk(m− k + 1)(m− k + 2) · · ·mv0 ∈ U

If m < p, λk(m− k+ 1)(m− k+ 2) · · ·m 6= 0, hence v0 ∈ U . So yk.v0 = k!vk ∈ U ,vk ∈ U . We conclude
that U = V .

If m = p, U = spanF {v0, · · · , vm−1} is a submodule of V . So V is reducible.

6. Decompose the tensor product of the two L-modules V (3), V (7) into the sum of irreducible submodules : V (4)⊕
V (6)⊕ V (8)⊕ V (10). Try to develop a general formula for the decomposition of V (m)⊗ V (n).

Solution:
Let u0, u1, u2, u3 is the standard basis of V (3) and v0, · · · , v7 is the standard basis of V (7), M = V (3) ⊗
V (7) has a basis ui ⊗ vj , i = 0, · · · , 3, j = 0, · · · , 7.

h.(ui ⊗ vj) = (h.ui)⊗ vj + ui ⊗ (h.vj) = (10− 2(i+ j))ui ⊗ vj
Hence

M10−2k = spanF {ui ⊗ vj , i+ j = k}

InM10, x.(u0⊗v0) = 0, so u0⊗v0 is a maximal vector with weight 10. It generates a irreducible submodule
of M isomorphic to V (10).

In M8, x.(7u1⊗ v0− 3u0⊗ v1) = 0, so 7u1⊗ v0− 3u0⊗ v1 is a maximal vector with weight 8. It generates
a irreducible submodule of M isomorphic to V (8).

In M(6), x.(7u2 ⊗ v0 − 2u1 ⊗ v1 + u0 ⊗ v2) = 0, so 7u2 ⊗ v0 − 2u1 ⊗ v1 + u0 ⊗ v2 is a maximal vector
with weight 6. It generates a irreducible submodule of M isomorphic to V (6).

InM(4), x.(105u3⊗v0−15u2⊗v1+5u1⊗v2−3u0⊗v3) = 0, so 105u3⊗v0−15u2⊗v1+5u1⊗v2−3u0⊗v3

is a maximal vector with weight 4. It generates a irreducible submodule of M isomorphic to V (4).

Hence V (4)⊕ V (6)⊕ V (8)⊕ V (10) ⊆M , but dimM = 4 ∗ 8 = 32,dimV (4) + dimV (6) + dimV (8) +
dimV (10) = 5 + 7 + 9 + 11 = 32. So M = V (4)⊕ V (6)⊕ V (8)⊕ V (10).

In general, for M = V (m) ⊗ V (n). We suppose m 6 n. ui, i = 0, · · · ,m is the basis of V (m) and
vj , j = 1, · · · , n is the basis of V (n).

h.(ui ⊗ vj) = (m+ n− 2(i+ j))ui ⊗ vj
Hence

Mm+n−2k = span{ui ⊗ vj , i+ j = k}
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For k = 0, · · · ,m, suppose w =
k∑
i=0

λiui ⊗ vk−i ∈Mm+n−2k is a maximal vector. Then

x.w =

k∑
i=0

λi((x.ui)⊗ vk−i + ui ⊗ (x.vk−i))

=

k∑
i=1

λi(m− i+ 1)ui−1 ⊗ vk−i +

k−1∑
i=0

λi(n− k + i+ 1)ui ⊗ vk−i−1

=

k∑
i=1

(λi(m− i+ 1) + λi−1(n− k + i))ui−1 ⊗ vk−i

= 0

Therefore
λi(m− i+ 1) + λi−1(n− k + i)

We conclude that

λi = (−1)i
(m− k + i)!(m− i)!

(m− k)!m!
= (−1)i

(
m− k + i

i

)
/

(
m

i

)
λ0

Let λ0 = 1, then w =
k∑
i=0

λiui⊗vk−i is a maximal vector with weight m+n−2k. It generates a irreducible

submodule of M isomorphic to V (m+ n− 2k).

So
m⊕
k=0

V (m+ n− 2k) ⊆ V (m)⊗ V (n). Compare the dimensional of two sides.

dim

(
m⊕
k=0

V (m+ n− 2k)

)

=

m∑
k=0

(m+ n− 2k + 1)

= (m+ 1)(m+ n+ 1)−m(m+ 1)

= (m+ 1)(n+ 1)

= dimV (m)⊗ V (n)

So we have
V (m)⊗ V (n) = V (n−m)⊕ V (n−m+ 2)⊕ · · · ⊕ V (m+ n)

7. In this exercise we construct certain infinite dimensional L-modules. Let λ ∈ F be an arbitrary scalar. Let Z(λ)
be a vector space over F with countably infinite basis (v0, v1, v2, · · · ).

1. Prove that formulas (a)-(c) of Lemma 7.2 define an L-module structure on Z(λ), and that every nonzero
L-submodule of Z(λ) contains at least one maximal vector.

2. Suppose λ + 1 = i is a nonnegative integer. Prove that vi is a maximal vector (e.g., λ = −1, i = 0).
This induces an L-module homomorphism Z(µ) φ→Z(λ), µ = λ − 2i, sending v0 to vi. Show that φ is a
monomorphism, and that Imφ,Z(λ)/Imφ are both irreducible L- modules (but Z(λ) fails to be completely
reducible when i > 0).

3. Suppose λ+ 1 is not a nonnegative integer. Prove that Z(λ) is irreducible.
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Solution:
(1) We can check Z(λ) is a L-module as we do in exercise 2.4.3.

Let U ⊆ Z(λ) be an arbitrary nonzero submodule of Z(λ), 0 6= v =
n∑
k=1

aikvik ∈ U with all aik 6= 0. We

have

h.v =

n∑
k=1

aik(λ− 2ik)vik ∈ U

This implies all vik ∈ U . So
U =

⊕
j∈J

Cvj , J ⊆ N

Let k = min J , then vk ∈ U , and vk−1 6∈ U , so x.vk = (λ − k + 1)vk−1 = 0. We conclude that vk is a
maximal vector in U .

(2) If λ+ 1 = i is a nonnegative integer. x.vi = (λ− i+ 1)vi−1 = 0, so vi is a maximal vector.

Next we show v0 → vi induces a homomorphism φ : Z(µ)→ Z(λ), vk 7→
(
k+i
i

)
vk+i.

φ(h.vk) = (µ− 2k)φ(vk) = (µ− 2k)

(
k + i

i

)
vk+i

h.φ(vk) =

(
k + i

i

)
h.vk+i = (λ− 2k − 2i)

(
k + i

i

)
vk+i

= (µ− 2k)

(
k + i

i

)
vk+i

φ(x.vk) = (µ− k + 1)φ(xk−1) = (µ− k + 1)

(
k + i− 1

i

)
vk+i−1

= −(k + i)

(
k + i− 1

i

)
vk+i−1 = −k

(
k + i

i

)
vk+i−1

x.φ(vk) =

(
k + i

i

)
x.vk+i = (λ− k − i+ 1)

(
k + i

i

)
vk+i−1

= −k
(
k + i

i

)
vk+i−1

φ(y.vk) = (k + 1)φ(vk+1) = (k + 1)

(
k + i+ 1

i

)
vk+i+1

= (k + i+ 1)

(
k + i

i

)
vk+i+1

y.φ(vk) =

(
k + i

i

)
y.vk+i = (k + i+ 1)

(
k + i

i

)
vk+i+1

Clear φ is a monomorphism. Imφ ∼= Z(µ) is a submodule of Z(λ) and by (1) it has a maximal vector of
form vs. But

x.vs = (µ− s+ 1) = −(i+ s)vs−1 = 0

From i+ s > 0, we have vs−1 = 0. So v0 is the unique maximal vector in Z(µ) and Z(µ) is irreducible.

Z(λ)/Imφ ∼= V (i− 1) is a irreducible module.

Next we show Z(λ) is not completely reducible. If Z(λ) is completely reducible, U is a proper nonzero
submodule of Z(λ), then Z(λ) = U ⊕W . By (1) U has a maximal vector vs, s > 1, W has a maximal
vector vt, t > 1.

x.vs = (λ− s+ 1)vs−1 = 0, x.vt = (λ− t+ 1)vt−1 = 0
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Hence s = t = λ+ 1. This contradict with U ∩W = 0.

(3) If Z(λ) reducible, it has a proper nonzero submodule U . By (1) U has a maximal vector vk with k > 0.

x.vk = (λ− k + 1)vk−1 = 0

Hence λ+ 1 = k is a positive integer. We get a contradiction.

8 Root Space Decomposition
1. If L is a classical linear Lie algebra of type Al, Bl, Cl, or Dl (see (1.2)), prove that the set of all diagonal matrices

in L is a maximal toral subalgebra, of dimension l (Cf. Exercise 2.8.)

Solution:
The set of all diagonal matrices in L is a toral subalgebra. It is enough to show it is maximal.

Let h be the maximal toral subalgebra contains all diagonal matrices in L. We know that h is abelian.

If a = (aij) ∈ h, we claim there is a matrix of form h = diag(a1, · · · , an) with ai 6= aj , i 6= j in h. Hence
ah = ha implies a is a diagonal matrix.

Al : h = diag(1, · · · , l,− l(l + 1)

2
)

Bl : h = diag(0, 1, · · · , l,−1, · · · ,−l)
Cl : h = diag(1, · · · , l,−1, · · · ,−l)
Dl : h = diag(1, · · · , l,−1, · · · ,−l)

2. For each algebra in Exercise 1, determine the roots and root spaces. How are the various hα expressed in terms of
the basis for H given in (1.2)?

Solution:

3. If L is of classical type, compute explicitly the restriction of the Killing form to the maximal toral subalgebra
described in Exercise 1.

Solution:

4. If L = sl(2, F ), prove that each maximal toral subalgebra is one dimensional.

Solution:
h is a maximal toral subalgebra of L, L = h ⊕

∑
α∈Φ

Lα, dimLα = 1. α ∈ Φ then −α ∈ Φ. This implies

Card(Φ) is even and nonzero. So dim h = 1.

5. If L is semisimple, H a maximal toral subalgebra, prove that H is self-normalizing (i.e., H = NL(H)).
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Solution:
L is semisimple andH is a maximal toral subalgebra. L = H⊕

∑
α∈Φ

Lα. x ∈ NL(H), x = h0+
∑
α∈Φ

xα, xα ∈

Lα. Let h ∈ H such that α(h) 6= 0,∀α ∈ Φ.

[h, x] =
∑
α∈Φ

α(h)xα ∈ H

Hence xα = 0,∀α ∈ Φ. x = h0 ∈ H . i.e, NL(H) = H .

6. Compute the basis of sl(n, F ) which is dual (via the Killing form) to the standard basis. (Cf. Exercise 5.5.)

Solution:

7. Let L be semisimple, H a maximal toral subalgebra. If h ∈ H , prove that CL(h) is reductive (in the sense of
Exercise 6.5). Prove that H contains elements h for which CL(h) = H; for which h in sl(n, F ) is this true ?

Solution:
L is semisimple. We have a decomposition L = H+̇

∑
α∈Φ

Lα.

x = h0 +
∑
α∈Φ

xα ∈ CL(h)

⇔ [h, x] =
∑
α∈Φ

α(h)xα = 0

⇔ α(h) = 0 or xα = 0

Hence
CL(h) = H+̇

∑
α∈Φ
α(h)=0

Lα

Denote Φh = {α ∈ Φ|α(h) = 0}. Now we claim that

Z(CL(h)) = {h′ ∈ H|α(h′) = 0,∀α ∈ Φh}

Let x = h0 +
∑
α∈Φh

xα ∈ Z(CL(h)). We can find a h′ ∈ H such that α(h′) 6= 0,∀α ∈ Φh. Then

[h, x] =
∑
α∈Φh

α(h′)xα = 0. It implies xα = 0. We have x = h0 ∈ H . Next we take 0 6= xα ∈ Lα,∀α ∈ Φh,

then [x, xα] = α(h0)xα = 0. Hence α(x) = α(h0) = 0,∀α ∈ Φh.

Next we show Z(CL(h)) = Rad(CL(h)). Clearly Z(CL(h)) is a solvable ideal of CL(h), it is enough to
show it is a maximal solvable ideal.

If x = h0 +
∑
α∈Φh

xα ∈ Rad(CL(h))\Z(CL(h)). We have a h′ ∈ H such that α(h′) 6= 0 and α(h′) 6=

β(h′),∀α 6= β ∈ Φh. Then [h′, x] =
∑
α∈Φh

α(h′)xα ∈ Rad(CL(h)). Hence h0, xα ∈ Rad(CL(h)), α ∈ Φh.

If there is a α ∈ Φh such that xα 6== 0, then hα = [xα, yα] ∈ Rad(CL(h)), 2yα = −[hα, yα] ∈
Rad(CL(h)). Hence sl(2, F ) ∼= Sα ⊆ Rad(CL(h)) which contradict with the solvability of Rad(CL(h)).
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Now we get x = h0 ∈ Rad(CL(h))\Z(CL(h)). So there is a α ∈ Φh such that α(h0) 6= 0. Then [h0, xα] =
α(h0)xα ∈ Rad(CL(h)), [h0, yα] = −α(h0)yα ∈ Rad(CL(h)). We also have Sα ⊆ Rad(CL(h)) which
contradict with the solvability of Rad(CL(h)).

All of the above show that Z(CL(h)) = Rad(CL(h)). i.e., CL(h) is reductive. We know there is a h ∈ H ,
α(h) 6= 0,∀α ∈ Φ. In this case, CL(h) = H .

8. For sl(n, F ) (and other classical algebras), calculate explicitly the root strings and Cartan integers. In particular,
prove that all Cartan integers 2(α, β)/(β, β), α 6= ±β, for sl(n, F ) are 0,±1.

Solution:

9. Prove that every three dimensional semisimple Lie algebra has the same root system as sl(2, F ), hence is isomor-
phic to sl(2, F ).

Solution:
Let L be a three dimensional semisimple Lie algebra. Then L has a maximal toral subalgebra H .

L = H+̇
∑
φ∈Φ

Lα

Since α ∈ Φ implies −α ∈ Φ and dimLα = 1,∀α ∈ Φ. Hence
∑
α∈Φ

Lα has even dimensional. But L is

semisimple. We have dimH = 1, Φ = {α,−α}.
Hence there is a subalgebra sl(2, F ) ⊆ Sα ⊆ L with dimSα = dimL = 3. So we have

L ∼= sl(2, F )

10. Prove that no four, five or seven dimensional semisimple Lie algebras exist.

Solution:
Let L is a semisimple Lie algebra with a maximal toral subalgebra H . L = H+̇

∑
α ∈ ΦLα. Since α ∈ Φ

implies −α ∈ Φ,
∑
α∈Φ

Lα has dimensional 2k with k > 1. And Φ = {±α1, · · · ,±αk} which span a space

of dimension at most k.

∴ dimH = dimL− dim(
∑
α∈Φ

Lα) = dimL− 2k

In the other hands, Φ span H∗.
dimH = dimH∗ 6 k

We conclude
dimL

3
6 k <

dimL

2
(∗)

If dimL = 4, we can not find a integer k satisfying (∗).

If dimL = 5, k = 2. Then dimH = 1,i.e, Φ spans a 1-dimensional space. α2 = mα1 with m = ±1. We
get a contradiction.
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If dimL = 7. k = 3. Then dimH = 1. We can deduce a contradiction as the case dimL = 5.

Hence, there is no four,five or seven dimensional semisimple Lie algebra.

11. If (α, β) > 0, and α 6= ±β, prove that α− β ∈ Φ(α, β ∈ Φ). Is the converse true?

Solution:
We have β − 2(α,β)

(α,α) α ∈ Φ since α, β ∈ Φ.

Let the β string through α is α − rβ, · · · , α, · · · , α + qβ. We have r > 0 since (α, β) > 0. Hence α − β
appeals in the string. It is a root.

9 Axiomatics
Unless otherwise specified, Φ denotes a root system in E, with Weyl groupW .

1. Let E′ be a subspace of E. If a reflection σα leaves E′ invariant, prove that either α ∈ E′ or else E′ ⊂ Pα.

Solution:
If E′ 6⊆ Pα. Let λ ∈ E′\Pα, σα(λ) = λ− < λ,α > α ∈ E′. Since λ 6∈ Pα, < λ,α >6= 0. Hence α ∈ E′.

2. Prove that Φ∨ is a root system inE, whose Weyl group is naturally isomorphic toW; show also that< α∨, β∨ >=<
β,α >, and draw a picture of Φ∨ in the cases A1, A2, B2, G2.

Solution:
(R1) and (R2) are clearly. For (R4), we have

< β∨, α∨ >=
2(β∨, α∨)

(α∨, α∨)
=

2(β, α)

(β, β)
=< α, β >

Then we check (R3):

σα∨(β∨) = β∨− < β∨, α∨ > α∨

=
2β

(β, β)
− < α, β >

2α

(α, α)

=
2

(β, β)
(β− < β,α > α)

=
2σα(β)

(σα(β), σα(β))

= (σα(β))∨

σα∨ and σα both leaves Pα pointwise fixed and send α to −α. So they are the same linear transformation of
E. The Weyl group is naturally isomorphic.

3. In Table 1, show that the order of σασβ in W is (respectively) 2,3,4,6 when θ = π/2, π/3 (or 2π/3), π/4 (or
3π/4), π/6(or 5π/6). [Note that σασβ = rotation through 2θ.]
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Solution: Let α, β ∈ Φ, then σασβ fixes pointwise Pα ∩Pβ . So σασβ determined by their restriction on the
subspace spanned by α, β. We take a standard orthogonal basis of it.

α1 =
α

‖α‖

β′ = β − (β, α)

(α, α)
α = β − 1

2
< β,α > α

‖β′‖2 = (β, β)− (β, α)2

(α, α)
= ‖β‖2(1− cos2 θ) = ‖β‖2 sin2 θ

β1 =
1

‖β‖ sin θ

(
β − 1

2
< β,α > α

)
{α1, β1} is a standard orthogonal basis of the subspace spanned by α, β. And we have

σασβ(α1) =
1

‖α‖
σασβ(α)

=
1

‖α‖
σα(α− < α, β > β)

=
1

‖α‖
(−α− < α, β > β+ < α, β >< β, α > α)

=
1

‖α‖
(−α− < α, β > β′ +

1

2
< α, β >< β, α > α)

=
1

‖α‖
(α cos 2θ − 2β1‖α‖ cos θ sin θ)

= α1 cos 2θ − β1 sin 2θ

σασβ(β1) =
1

‖β‖ sin θ
σασβ(β − 1

2
< β,α > α)

=
1

‖β‖ sin θ
σα(−β − 1

2
< β,α > α+

1

2
< β,α >< α, β > β)

=
1

‖β‖ sin θ
σα(β cos 2θ − 1

2
< β,α > α)

=
1

‖β‖ sin θ
(β cos 2θ− < β,α > α cos 2θ +

1

2
< β,α > α)

=
1

‖β‖ sin θ
(β′ cos 2θ +

1

2
cos 2θ < β, α > α−

< β,α > α cos 2θ +
1

2
< β,α > α)

=
1

‖β‖ sin θ
(β′ cos 2θ + α < β, α > sin2 θ)

= β1 cos 2θ + α1 sin 2θ

Hence we have σασβ is a rotation through 2θ. So the order of σασβ inW is respectively 2,3,4,6.

4. Prove that the respective Weyl groups of A1 × A1, A2, B2, G2 are dihedral of order 4,6,8,12. If Φ is any root
system of rank 2, prove that its Weyl group must be one of these.
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Solution:

5. Show by example that α− β may be a root even when (α, β) 6 0(cf. Lemma 9.4).

Solution:
In G2, α, β + α ∈ Φ, < β + α, α >= −3 + 2 = −1 < 0, but β + α− α = β ∈ Φ.

6. Prove thatW is a normal subgroup of AutΦ(=group of all isomorphisms of Φ onto itself).

Solution:
If α ∈ Φ, φ ∈ AutΦ,

φσαφ
−1(φ(β)) = φσα(β)

= φ(β)− < β,α > φ(α)

= φ(β)− < φ(β), φ(α) > φ(α)

= σφ(α)(φ(β))

Hence φσαφ−1 ∈ W . However, any elements ofW can be written as σα1 · · ·σαt with αi ∈ Φ. So

φσα1 · · ·σαtφ−1 = φσα1φ
−1 · · ·φσαtφ−1 = σφ(α1) · · ·σφ(αt) ∈ W

i.e.,W is a normal subgroup of AutΦ.

7. Let α, β ∈ Φ span a subspaceE′ ofE. Prove thatE′∩Φ is a root system inE′. Prove similarly that Φ∩(Zα+Zβ)
is a root system in E′ (must this coincide with E′ ∩ Φ?). More generally, let Φ′ be a nonempty subset of Φ such
that Φ′ = −Φ′, and such that α, β ∈ Φ′, α + β ∈ Φ implies α + β ∈ Φ′. Prove that Φ′ is a root system in the
subspace of E it spans. [Use Table 1].

Solution:

8. Compute root strings in G2 to verify the relation r − q =< β,α >.

Solution:

9. Let Φ be a set of vectors in a euclidean space E, satisfying only (R1), (R3), (R4). Prove that the only possible
multiples of α ∈ Φ which can be in Φ are ±1/2α,±α,±2α. Verify that {α ∈ Φ|2α 6∈ Φ} is a root system.

Solution:

10. Let α, β ∈ Φ. Let the α-string through β be β−rα, · · · , β+qα, and let the β-string through α be α−r′β, · · · , α+

q′β. Prove that q(r+1)
(β,β) = q′(r′+1)

(α,α) .
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Solution:
ade−αadeαeβ =

1

2
(r + 1)q(α, α)eβ

ade−βadeβeα =
1

2
(r′ + 1)q′(β, β)eα

(ade−αadeαeβ , e−β) = ([eα, eβ ], [e−α, e−β ])

(ade−βadeβeα, e−α) = ([eβ , eα], [e−β , e−α])

Hence,

1

2
(r + 1)q(α, α) = (ade−αadeαeβ , e−β) = (ade−βadeβeα, e−α) =

1

2
(r′ + 1)q′(β, β)

i.e.
q(r + 1)

(β, β)
=
q′(r′ + 1)

(α, α)

11. Let c be a positive real number. If Φ possesses any roots of squared length c, prove that the set of all such roots is
a root system in the subspace of E it spans. Describe the possibilities occurring in Figure 1.

Solution:

10 Simple Roots and Weyl Group
1. Let Φ∨ be the dual system of Φ, ∆∨ = {α∨|α ∈ ∆}. Prove that ∆∨ is a base of Φ∨.[Compare Weyl chambers of

Φ and Φ∨.]

Solution: Since α∨ = 2α
(α,α) , the hyper planes Pα∨ and Pα in E which orthogonal to α∨ and α, respectively,

are coincide. We conclude that γ is a regular element with respect to the root system Φ if and only if γ is a
regular element with respect to the root system Φ∨.

Let γ be a regular element with respect to the root system Φ (so a regular element for Φ∨). For any α ∈ Φ,

(γ, α)(γ, α∨) =
2

(α, α)
(γ, α)2 > 0,

i.e., (γ, α) and (γ, α∨) either positive simultaneously or negative simultaneously. Hence, α ∈ Φ+(γ) if and
only if α∨ ∈ Φ∨

+
(γ).

Now let γ be a regular element with respect to Φ such that ∆ = ∆(γ). From Theorem 10.3, we deduce that
every α ∈ Φ+(γ) can be written as

α = σ(β),

where β ∈ ∆ and σ ∈W , the Weyl group of Φ. Then

α∨ = σ(β)∨ =
2σ(β)

(σ(β), σ(β))
=

2

(β, β)
σ(β) = σ(β∨).
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Let ∆ = {α1, · · · , α`}. We claim that, for any σ ∈ W , σ(α∨i ) is a linear combination of α∨1 , · · · , α∨` with
integer coefficients. Note that we may write σ = σαi1 · · ·σαit . It is enough to show σαj (α

∨
i ) is a linear

combination of α∨1 , · · · , α∨` with integer coefficients.

σαj (α
∨
i ) = α∨i − 〈α∨i , αj〉αj

= α∨i −
2(α∨i , αj)

(αj , αj)
αj

= α∨i −
4(αi, αj)

(αi, αi)(αj , αj)
αj

= α∨i −
4(αi, αj)

(αi, αi)
α∨j

= α∨i − 〈αj , αi〉α∨j .

Note that 〈αj , αi〉 is an integer, we proved the claim.

Hence, for α ∈ Φ,

α∨ =
∑̀
i=1

kiα
∨
i , ki ∈ Z.

Next we show either all ki’s are nonnegative or all ki’s are nonpositive.

In fact, we may write α =
∑̀
i=1

k′iαi, where either all ki’s are nonnegative integers or all ki’s are nonpositive

integers. Then

α∨ =
2

(α, α)
α =

2

(α, α)

∑̀
i=1

k′iαi =
∑̀
i=1

(αi, αi)

(α, α)
k′iα
∨
i .

Note that {α∨1 , · · · , α∨` } is linear independent, we obtain that

ki =
(αi, αi)

(α, α)
k′i.

Since (αi,αi)
(α,α) > 0 for all i = 1, · · · , ` and α ∈ Φ, ki and k′i have the same sign. Hence, either all ki’s are

nonnegative or all ki’s are nonpositive.

2. If ∆ is a base of Φ, prove that the set (Zα+Zβ)∩Φ(α 6= βin∆) is a root system of rank 2 in the subspace of E
spanned by α, β (cf. Exercise 9.7). Generalize to an arbitrary subset of ∆.

Solution:

3. Prove that each root system of rank 2 is isomorphic to one of those listed in (9.3).

Solution:

4. Verify the Corollary of Lemma 10.2A directly for G2.
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Solution:

5. If σ ∈ W can be written as a product of t simple reflections, prove that t has the same parity as l(σ).

Solution:

6. Define a function sn : W → {±1} by sn(σ) = (−1)l(σ). Prove that sn is a homomorphism (cf. the case A2,
whereW is isomorphic to the symmetric group S3).

Solution:

7. Prove that the intersection of “positive” open half-spaces associated with any basis γ1, · · · , γl of E is nonvoid.
[If δi is the projection of γi on the orthogonal complement of the subspace spanned by all basis vectors except γi,
consider γ =

∑
riδi when all ri > 0.]

Solution:

8. Let ∆ be a base of Φ, α 6= β simple roots, Φαβ the rank 2 root system in Eαβ = Rα+Rβ(see Exercise 2 above).
The Weyl groupWαβ of Φαβ is generated by the restrictions τα, τβ to Eαβ of σα, σβ , andWαβ may be viewed
as a subgroup ofW . Prove that the “length” of an element ofWαβ(relative to τα, τβ) coincides with the length of
the corresponding element ofW .

Solution:

9. Prove that there is a unique element σ inW sending Φ+ to Φ− (relative to ∆). Prove that any reduced expression
for σ must involve all σα(α ∈ ∆). Discuss l(σ).

Solution:

10. Given ∆ = {α1, · · · , αl} in Φ, let λ =
l∑
i=1

kiαi(ki ∈ Z, allki > 0or allki 6 0). Prove that either λ is a

multiple (possibly 0) of a root, or else there exists σ ∈ W such that σλ =
l∑
i=1

k′iαi, with some k′i > 0 and

some k′i < 0. [Sketch of proof: If λ is not a multiple of any root, then the hyperplane Pλ orthogonal to λ is
not included in

⋃
α∈Φ

Pα. Take µ ∈ Pλ −
⋃
α∈Φ

Pα. Then find σ ∈ W for which all (α, σµ) > 0. It follows that

0 = (λ, µ) = (σλ, σµ) =
∑
ki(αi, σµ).]

Solution:

11. Let Φ be irreducible. Prove that Φ∨ is also irreducible. If Φ has all roots of equal length, so does Φ∨ (and then
Φ∨ is isomorphic to Φ). On the other hand, if Φ has two root lengths, then so does Φ∨; but if α is long, then α∨ is
short (and vice versa). Use this fact to prove that Φ has a unique maximal short root (relative to the partial order
≺ defined by ∆).
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Solution:

12. Let λ ∈ C(∆). If σλ = λ for some σ ∈ W , then σ = 1.

Solution:

13. The only reflections in W are those of the form σα(α ∈ Φ). [A vector in the reflecting hyperplane would, if
orthogonal to no root, be fixed only by the identity inW .]

Solution:

14. Prove that each point of E isW-conjugate to a point in the closure of the fundamental Weyl chamber relative to
a base ∆. [Enlarge the partial order on E by defining µ ≺ λ iff λ − µ is a nonnegative R-linear combination of
simple roots. If µ ∈ E, choose σ ∈ W for which λ = σµ is maximal in this partial order.]

11 Classification
1. Verify the Cartan matrices (Table 1).

2. Calculate the determinants of the Cartan matrices (using induction on l for types Al −Dl), which are as follows:

Al : l + 1;Bl : 2;Cl : 2;Dl : 4;E6 : 3;E7 : 2;E8, F4andG2 : 1

3. Use the algorithm of (11.1) to write down all roots for G2. Do the same for C3 :

 2 −1 0
−1 2 −1
0 −2 2

.

4. Prove that the Weyl group of a root system Φ is isomorphic to the direct product of the respective Weyl groups of
its irreducible components.

5. Prove that each irreducible root system is isomorphic to its dual, except that Bl, Cl are dual to each other.

6. Prove that an inclusion of one Dynkin diagram in another (e.g., E6 in E7 or E7 in E8) induces an inclusion of the
corresponding root systems.

12 Construction of Root Systems and Automorphisms
1. Verify the details of the constructions in (12.1).

2. Verify Table 2.

Type Long Short
Al α1 + α2 + · · ·+ αl
Bl α1 + 2α2 + 2α3 + · · ·+ 2αl α1 + α2 + · · ·+ αl
Cl 2α1 + 2α2 + · · ·+ 2αl−1 + αl α1 + 2α2 + · · ·+ 2αl−1 + αl
Dl α1 + 2α2 + · · ·+ 2αl−2 + αl−1 + αl
E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

E8 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

F4 2α1 + 3α2 + 4α3 + 2α4 α1 + 2α2 + 3α3 + 2α4

G2 3α1 + 2α2 2α1 + α2
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3. Let Φ ⊂ E satisfy (R1), (R3), (R4), but not (R2), cf. Exercise 9.9. Suppose moreover that Φ is irreducible, in the
sense of §11. Prove that Φ is the union of root systems of type Bn, Cn in E(n = dimE), where the long roots of
Bn are also the short roots of Cn. (This is called the non-reduced root system of type BCn in the literature.)

4. Prove that the long roots in G2 form a root system in E of type A2.

5. In constructing Cl, would it be correct to characterize Φ as the set of all vectors in I of squared length 2 or 4?
Explain.

6. Prove that the map α 7→ −α is an automorphism of Φ. Try to decide for which irreducible Φ this belongs to the
Weyl group.

7. Describe AutΦ when Φ is not irreducible.

13 Abstract Theory of Weights
1. Let Φ = Φ1∪· · ·∪Φt be the decomposition of Φ into its irreducible components, with ∆ = ∆1∪· · ·∪∆t. Prove

that Λ decomposes into a direct sum Λ1 ⊕ · · · ⊕ Λt; what about Λ+?

2. Show by example (e.g., for A2) that λ 6∈ Λ+, α ∈ ∆, λ− α ∈ Λ+ is possible.

3. Verify some of the data in Table 1, e.g., for F4.

4. Using Table 1, show that the fundamental group of Al is cyclic of order l + 1, while that of Dl is isomorphic to
Z/4Z (l odd), or Z/2Z × Z/2Z (l even). (It is easy to remember which is which, since A3 = D3.)

5. If Λ′ is any subgroup of Λ which includes Λr, prove that Λ′ isW-invariant. Therefore, we obtain a homomorphism
φ : AutΦ/W → Aut(Λ/Λr). Prove that φ is injective, then deduce that −1 ∈ W if and only if Λr ⊃ 2Λ (cf. Ex-
ercise 12.6). Show that −1 ∈ W for precisely the irreducible root systems A1, Bl, Cl, Dl(leven), E7, E8, F4, G2.

6. Prove that the roots in Φ which are dominant weights are precisely the highest long root and (if two root lengths
occur) the highest short root (cf. (10.4) and Exercise 10.11), when Φ is irreducible.

7. If ε1, · · · , εl is an obtuse basis of the euclidean space E (i.e., all (εi, εj) 6 0 for i 6= j), prove that the dual basis
is acute (i.e., all (ε∗i , ε

∗
j ) > 0 for i 6= j). [Reduce to the case l = 2.]

8. Let Φ be irreducible. Without using the data in Table 1, prove that each λi is of the form
∑
j

qijαj , where all qij

are positive rational numbers. [Deduce from Exercise 7 that all qij are nonnegative. From (λi, λj) > 0. Then
show that if qij > 0 and (αj , αk) < 0, then qik > 0.]

9. Let λ ∈ Λ+. Prove that σ(λ+ δ)− δ is dominant only for σ = l.

10. If λ ∈ Λ+, prove that the set Π consisting of all dominant weights µ ≺ λ and theirW-conjugates is saturated, as
asserted in (13.4).

11. Prove that each subset of Λ is contained in a unique smallest saturated set, which is finite if the subset in question
is finite.

12. For the root system of type A2, write down the effect of each element of the Weyl group on each of λ1, λ2. Using
this data, determine which weights belong to the saturated set having highest weight λ1 + 3λ2. Do the same for
type G2 and highest weight λ1 + 2λ2.

13. Call λ ∈ Λ+ minimal if µ ∈ Λ+, µ ≺ λ implies that µ = λ. Show that each coset of Λr in Λ contains precisely
one minimal Λ. Prove that λ is minimal if and only if theW-orbit of λ is saturated (with highest weight λ), if and
only if λ ∈ Λ+ and < λ,α >= 0, 1,−1 for all roots α. Determine (using Table 1) the nonzero minimal λ for
each irreducible Φ, as follows:
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Al:λ1, · · · , λl
Bl:λl
Cl:λ1

Dl:λ1, λl−1, λl
E6:λ1, λ6

E7:λ7

14 Isomorphism Theorem
1. Generalize Theorem 14.2 to the case: L semisimple.

2. Let L = sl(2, F ). If H,H ′ are any two maximal toral subalgebras of L, prove that there exists an automorphism
of L mapping H onto H ′.

3. Prove that the subspace M of L ⊕ L′ introduced in the proof of Theorem 14.2 will actually equal D, if x and x′

are chosen carefully.

4. Let σ be as in Proposition 14.3. Is it necessarily true that σ(xα) = −yα for nonsimple α, where [xαyα] = hα?

5. Consider the simple algebra sl(3, F ) of typeA2. Show that the subgroup of IntL generated by the automorphisms
τα in (14.3) is strictly larger than the Weyl group (here S3). [View IntL as a matrix group and compute τ2

α

explicitly.]

6. Use Theorem 14.2 to construct a subgroup Γ(L) of AutL isomorphic to the group of all graph automorphisms
(12.2) of Φ.

7. For each classical algebra (1.2), show how to choose elements hα ∈ H corresponding to a base of Φ (cf. Exercise
8.2).

15 Cartan Subalgebras
1. A semisimple element of sl(n, F ) is regular if and only if its eigenvalues are all distinct (i.e., if and only if its

minimal and characteristic polynomials coincide).

2. Let L be semisimple (charF = 0). Deduce from Exercise 8.7 that the only solvable Engel subalgebras of L are
the CSA’s.

3. Let L be semisimple (charF = 0), x ∈ L semisimple. Prove that x is regular if and only if x lies in exactly one
CSA.

4. Let H be a CSA of a Lie algebra L. Prove that H is maximal nilpotent, i.e., not properly included in any nilpotent
subalgebra of L. Show that the converse is false.

5. Show how to carry out the proof of Lemma A of (15.2) if the field F is only required to be of cardinality exceeding
dimL.

6. Let L be semisimple (charF = 0), L′ a semisimple subalgebra. Prove that each CSA of L′ lies in some CSA of
L. [Cf. Exercise 6.9.]

16 Conjugacy Theorems
1. Prove that E(L) has order one if and only if L is nilpotent.
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Solution: ⇒ Suppose E(L) = 1. Let x ∈ L. Then

L =
⊕
a

La(adx).

If there is a 6= 0 such that La(adx) 6= 0, we take 0 6= y ∈ La(adx). Then y is strongly ad-nilpotent. Since
E(L) = 1, we conclude that exp(ady) = 1. It follows that ady = 0, i.e., y ∈ L0(adx). This yields a
contradiction. Hence, L = L0(adx) and hence adx is nilpotent. Therefore, L is nilpotent.

⇐ SupposeL is nilpotent. Let x ∈ L be strongly ad-nilpotent. Then there exists y ∈ L such that x ∈ La(ady)
for some a 6= 0, i.e., (ady−a)nx = 0 for some n. Since ady is nilpotent and a 6= 0, we obtain that (ady−a)
is invertible, and hence x = 0. Hence, E(L) = {exp(adx)|x is strongly ad-nilpotent.} = 1.

2. Let L be semisimple, H a CSA, ∆ a base of Φ. Prove that any subalgebra of L consisting of nilpotent elements,
and maximal with respect to this property, is conjugate under E(L) to N(∆), the derived algebra of B(∆).

3. Let Ψ be a set of roots which is closed (α, β ∈ Ψ, α + β ∈ Φ implies α + β ∈ Ψ) and satisfies Ψ ∪ −Ψ = ∅.
Prove that Ψ is included in the set of positive roots relative to some base of Φ. [Use Exercise 2.] (This exercise
belongs to the theory of root systems, but is easier to do using Lie algebras.)

4. How does the proof of Theorem 16.4 simplify in case L = sl(2, F )?

5. Let L be semisimple. If a semisimple element of L is regular, then it lies in only finitely many Borel subalgebras.
(The converse is also true, but harder to prove, and suggests a notion of “regular” for elements of L which are not
necessarily semisimple.)

6. Let L be semisimple, L = H +
∑·

Lα. A subalgebra P of L is called parabolic if P includes some Borel
subalgebra. (In that case P is self-normalizing, by Lemma 15.2B.) Fix a base ∆ ⊂ Φ, and set B = B(∆). For
each subset ∆′ ⊂ ∆, define P (∆′) to be the subalgebra of L generated by all Lα(α ∈ ∆or−α ∈ ∆′), along with
H .

1. P (∆′) is a parabolic subalgebra of L (called standard relative to ∆.

2. Each parabolic subalgebra of L including B(∆) has the form P (∆′) for some ∆′ ⊂ ∆. [Use the Corollary
of Lemma 10.2A and Proposition 8.4(d).]

3. Prove that every parabolic subalgebra of L is conjugate under E(L) to one of the P (∆′).

4. Let L = sl(2, F ), with standard basis (x, h, y). For c ∈ F , write x(c) = exp ad(cx), y(c) = exp ad(cy). Define
inner automorphisms w(c) = x(c)y(−c−1)x(c), h(c) = w(c)w(1)−1(= w(c)w(−1)), for c 6= 0. Compute the
matrices of w(c), h(c) relative to the given basis of L, and deduce that all diagonal automorphisms (16.5) of L are
inner. Conclude in this case that AutL = IntL = E(L).

5. Let L be semisimple. Prove that the intersection of two Borel subalgebras B,B′ of L always includes a CSA of
L. [The proof is not easy; here is one possible outline:

1. Let N,N ′ be the respective ideals of nilpotent elements in B,B′. Relative to the Killing form of L, N =
B⊥, N ′ = B′⊥, where ⊥ denotes orthogonal complement.

2. Therefore B = N⊥ = (N + (N ∩N ′))⊥ = (N + (B ∩N ′))⊥ = N⊥ ∩ (B⊥ +N ′⊥) = B ∩ (N +B′) =
N + (B ∩B′).

3. Note that A = B ∩B′ contains the semisimple and nilpotent parts of its elements.

4. Let T be a maximal toral subalgebra of A, and find a T -stable complement A′ to A ∩N . Then A′ consists
of semisimple elements. Since B/N is abelian, [TA′] = 0, forcing A′ = T .

5. Combine (b),(d) to obtain B = N + T ; thus T is a maximal toral subalgebra of L.]
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17 Universal Enveloping Algebras
1. Prove that if dimL < ∞, then U(L) has no zero divisors. [Hint: Use the fact that the associated graded algebra

G is isomorphic to a polynomial algebra.]

2. Let L be the two dimensional nonabeiian Lie algebra (1.4), with [xy] = x. Prove directly that i : L → U(L) is
injective (i.e., that J ∩ L = 0).

3. If ∈ L, extend adx to an endomorphism of U(L) by defining adx(y) = xy − yx(y ∈ U(L)). If dimL < ∞,
prove that each element of U(L) lies in a finite dimensional L-submodule. [If x, x1, · · · , xm ∈ L, verify that

adx(xl, · · · , xn) =
m∑
i=1

x1x2 · · · adx(xi) · · ·xm.]

4. If L is a free Lie algebra on a set X , prove that U(L) is isomorphic to the tensor algebra on a vector space having
X as basis.

5. Describe the free Lie algebra on a set X = {x}.

6. How is the PBW Theorem used in the construction of free Lie algebras?

18 Generators and Relations
1. Using the representation of L0 on V (Proposition 18.2), prove that the algebras X,Y described in Theorem 18.2

are (respectively) free Lie algebras on the sets of xi, yi.

2. When rankΦ = 1, the relations (S+
ij), (S

−
ij ) are vacuous, so L0 = L ∼= sl(2, F ). By suitably modifying the basis

of V in (18.2), show that V is isomorphic to the module Z(0) constructed in Exercise 7.7.

3. Prove that the ideal K of L0 in (18.3) lies in every ideal of L0 having finite codimension (i.e., L is the largest
finite dimensional quotient of L0).

4. Prove that each inclusion of Dynkin diagrams (e.g., E6 ⊂ E7 ⊂ E8) induces a natural inclusion of the corre-
sponding semisimple Lie algebras.

19 The Simple Algebras
1. If L is a Lie algebra for which [LL] is semisimple, then L is reductive.

2. Supply details for the argument outlined in (19.2).

3. Verify the assertions made about C0 in (19.3).

4. Verify that δ(x), x ∈ sl(3, F ), as defined in (19.3), is a derivation of C.

5. Show that the Cayley algebra C satisfies the “alternative laws”:x2y = x(xy), yx2 = (yx)x. Prove that, in
any algebra U satisfying the alternative laws, an endomorphism of the following form is actually a derivation:
[λa, λb] + [λa, ρb] + [ρa, ρb](a, bU, λa =left multiplication in U by a, ρb= right multiplication in U by b, bracket
denoting the usual commutator of endomorphisms).

Show that the Cayley algebra C satisfies the “alternative laws”:x2y = x(xy), yx2 = (yx)x. Prove that, in
any algebra U satisfying the alternative laws, an endomorphism of the following form is actually a derivation:
[λa, λb] + [λa, ρb] + [ρa, ρb](a, bU, λa =left multiplication in U by a, ρb= right multiplication in U by b, bracket
denoting the usual commutator of endomorphisms).
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Solution: Let x = a+ b, y = c in x2y = x(xy) and yx2 = (yx)x, we obtain

(ab)c+ (ba)c = a(bc) + b(ac) and c(ab) + c(ba) = (ca)b+ (cb)a

Let D = [λa, λb] + [λa, ρb] + [ρa, ρb]. Note that

D(x) = a(bx)− b(ax) + a(xb)− (ax)b+ (xb)a− (xa)b.

Then

D(x)y = (a(bx))y − (b(ax))y + (a(xb))y − ((ax)b)y + ((xb)a)y − ((xa)b)y

= (a(bx))y − b((ax)y) + a((xb)y)− (ax)(by) + (xb)(ay)− ((xa)b)y

xD(y) = x(a(by))− x(b(ay)) + x(a(yb))− x((ay)b) + x((yb)a)− x((ya)b)

= x(a(by))− (xb)(ay) + (xa)(yb)− (x(ay))b+ (x(yb))a− x((ya)b)

And

−((xa)b)y + (xa)(yb) = ((xa)y)b− (xa)(by)

x(a(by))− (ax)(by) = −a(x(by)) + (xa)(by)

Thus,

D(x)y + xD(y)

= a((xb)y)− a(x(by)) + (x(yb))a− b((ax)y)− (x(ay))b+ ((xa)y)b+ (a(bx))y − x((ya)b)

Note,
D(xy) = a(b(xy))− b(a(xy)) + a((xy)b)− (a(xy))b+ ((xy)b)a− ((xy)a)b,

Since,

a(b(xy)) + a((xy)b)− a((xb)y) + a(x(by))

= a(b(xy) + (xy)b− (xb)y + x(by))

= a((bx)y + (xy)b− (xb)y + (xb)y)

= a((bx)y + (xy)b)

− (a(xy))b− ((xy)a)b+ (x(ay))b− ((xa)y)b

= −(a(xy) + (xy)a− x(ay) + (xa)y)b

= −(a(xy) + x(ya)− (xa)y + (xa)y)b

= −(a(xy) + x(ya))b

Thus

D(xy)−D(x)y − xD(y) =a((bx)y + (xy)b) + ((xy)b− x(yb))a

+ b((ax)y − a(xy))− (a(xy) + x(ya))b

− (a(bx))y + x((ya)b)

=a((bx)y + (xy)b) + ((bx)y − b(xy))a

+ b((ya)x− y(ax))− (a(xy) + x(ya))b

− (a(bx))y + x((ya)b)

=a((bx)y)− (a(bx))y + ((bx)y)a

− (x(ya))b+ x((ya)b) + b((ya)x)

+ a((xy)b)− (a(xy))b− (b(xy))a− b(y(ax))

=(bx)(ya)− ((bx)y)a+ ((bx)y)a

− (bx)(ya) + b(x(ya)) + b((ya)x)

− b((xy)a) + (b(xy))a− (b(xy))a− b(y(ax))

=b(x(ya)) + b((ya)x)− b((xy)a)− b(y(ax))

=b(x(ya)− (xy)a) + b((ya)x− y(ax))

=b(y(ax)− (ya)x) + b((ya)x− y(ax))

=0

Hence, [λa, λb] + [λa, ρb] + [ρa, ρb] is a derivation.
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6. Fill in details of the argument at the conclusion of (19.3).

20 Weights and Maximal Vectors
1. If V is an arbitrary L-module, then the sum of its weight spaces is direct.

2. (a) If V is an irreducible L-module having at least one (nonzero) weighs space, prove that V is the direct sum of
its weight spaces.

(b) Let V be an irreducible L-module. Then V has a (nonzero) weight space if and only if U(H).v is finite
dimensional for all v ∈ V , or if and only if U.v is finite dimensional for all v ∈ V (where U=subalgebra with
1 generated by an arbitrary h ∈ H in U(H)).

(c) Let L = sl(2, F ), with standard basis (x, y, h). Show that 1 − x is not invertible in U(L), hence lies in a
maximal left ideal I of U(L). Set V = U(L)/I , so V is an irreducible L-module. Prove that the images of
1, h, h2, · · · are all linearly independent in V (so dimV =∞), using the fact that

(x− 1)rhs ≡

{
0 (mod I), r > s

(−2)rr! · 1 (mod I) r = s

Conclude that V has no (nonzero) weight space.

3. Describe weights and maximal vectors for the natural representations of the linear Lie algebras of types Al −Dl

described in (l.2).

4. Let L = sl(2, F ), λ ∈ H∗. Prove that the module Z(λ) for λ = λ(h) constructed in Exercise 7.7 is isomorphic to
the module Z(λ) constructed in (20.3). Deduce that dimV (λ) <∞ if and only if λ(h) is a nonnegative integer.

5. If µ ∈ H∗, define P(µ) to be the number of distinct sets of nonnegative integers kα(α � 0) for which µ =∑
α�0

kαα. Prove that dimZ(λ)µ = P(λ− µ), by describing a basis for Z(λ)µ.

6. Prove that the left ideal I(λ) introduced in (20.3) is already generated by the elements xα, hα,−λ(hα).1 for α
simple.

7. Prove, without using the induced module construction in (20.3), that I(λ) ∩ U(N−) = 0, in particular that
I(λ) is properly contained in U(L). [Show that the analogous left ideal I ′(λ) in U(B) is proper, white I(λ) =
U(N−)I ′(λ) by PBW.]

8. For each positive integer d, prove that the number of distinct irreducible L-modules V (λ) of dimension 6 d is
finite. Conclude that the number of nonisomorphic L-modules of dimension 6 d is finite. [If dimV (λ) < ∞,
view V (λ) as Sα-module for each α � 0; notice that λ(hα) ∈ Z, and that V (λ) includes an Sα-submodule of
dimension λ(hα) + 1.]

9. Verify the following description of the unique maximal submodule Y (λ) of Z(λ) (20.3) : If v ∈ Z(λ)µ, λ− µ =∑
α�0

cαα(cα ∈ Z+), observe that
∏
α�0

xcαα .v has weight λ (the positive roots in any fixed order), hence is a scalar

multiple of the maximal vector v+. If this multiple is 0 for every possible choice of the cα (cf. Exercise 5), prove
that v ∈ Y (λ). Conversely, prove that Y (λ) is the span of all such weight vectors v for weights µ 6= λ.

10. A maximal vector w+ of weight µ in Z(λ) induces an L-module homomorphism φ : Z(µ) → Z(λ), with Imφ
the submodule generated by w+. Prove that φ is injective.

11. Let V be an arbitrary finite dimensional L-module, λ ∈ H∗. Construct in the L-module W = Z(λ)⊗ V a chain
of submodules W = W1 ⊃ W2 ⊃ · · · ⊃ Wn+1 = 0(n = dimV ) so that Wi/Wi+1 is isomorphic to Z(λ+ λl),
where the weights of V in suitable order (multiplicities counted) are λ1, · · · , λn.
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21 Finite Dimensional Modules
1. The reader can check that we have not yet used the simple transitivity of W on bases of Φ (Theorem 10.3(e)),

only the transitivity. Use representation theory to obtain a new proof, as follows: There exists a finite dimensional
irreducible module V (λ) for which all < λ,α > (α ∈ ∆) are distinct and positive. If σ ∈ W permutes ∆, then
σλ = λ, forcing σ = 1.

2. Draw the weight diagram for the case B2, λ = λ1 + λ2 (notation of Chapter 3).

3. Let λ ∈ Λ+. Prove that 0 occurs as a weight of V (λ) if and only if λ is a sum of roots.

4. Recall the module Z(λ) constructed in (20.3). Use Lemma 21.2 to find certain maximal vectors in Z(λ), when
λ ∈ Λ: the coset of ymi+1

i ,mi =< λ,αi >, is a maximal vector provided mi is nonnegative (Cf. Exercise 7.7.)

5. Let V be a faithful finite dimensional L-module, Λ(V ) the subgroup of Λ generated by the weights of V . Then
Λ(V ) ⊃ Λr. Show that every subgroup of Λ including Λr is of this type.

6. If V = V (λ), λ ∈ Λ+, prove that V ∗ is isomorphic (as L-module) to V (−σλ), where σ ∈ W is the unique
element ofW sending ∆ to −∆ (Exercise 10.9, cf. Exercise 13.5).

7. Let V = V (λ),W = V (µ), with λ, µ ∈ Λ+. Prove that Π(V ⊗W ) = {ν + ν′|ν ∈ Π(λ), ν′ ∈ Π(µ)} and that
dim(V ⊗W )ν+ν′ equals ∑

π+π′=ν+ν′

dimVπ · dimWπ′

In particular, λ+µ occurs with multiplicity one, so V (λ+µ) occurs exactly once as a direct summand of V ⊗W .

8. Let λ1, · · · , λl be the fundamental dominant weights for the root system Φ of L (13.1). Show how to construct
an arbitrary V (λ), λ ∈ Λ+, as a direct summand in a suitable tensor product of modules V (λ1), · · · , V (λl)
(repetitions allowed).

9. Prove Lemma 21.4 and deduce Lemma 21.2 from it.

10. Let L = sl(l + 1, F ), with CSA H = d(l + 1, F ) ∩ L. Let µ1, · · · , µl+1 be the coordinate functions on H ,
relative to the standard basis of gl(l + 1, F ). Then

∑
µi = 0, and µ1, · · · , µl form a basis of H∗, while the set

of αi = µi − µi+1(1 6 i 6 l) is a base ∆ for the root system Φ. Verify thatW acts on H∗ by permuting the µi;
in particular, the reflection with respect to αi interchanges µi, µi+1 and leaves the other µj fixed. Then show that
the fundamental dominant weights relative to ∆ are given by λk = µ1 + · · ·+ µk(1 6 k 6 l).

11. Let V = F l+1, L = sl(V ). Fix the CSA H and the base ∆ = (α1, · · · , αl) of Φ as in Exercise 10. The purpose
of this exercise is to construct irreducible L-modules Vk(1 6 k 6 l) of highest weight λk.

1. For k = 1, V1 = V is irreducible of highest weight λ1.

2. In the k-fold tensor product V ⊗ · · · ⊗ V, k > 2, define Vk to be the subspace of skew-symmetric tensors: If
(v1, · · · , vl+1) is the canonical basis of V , Vk has basis consisting of the

(
l+1
k

)
vectors

[vi1 , · · · , vik ] =
∑
π∈Sk

sn(π)vπ(i1) ⊗ · · · ⊗ vπ(ik) (∗)

where i1 < i2 < · · · < ik. Show that (*) is of weight µi1 + · · ·+ µik .

3. Prove that L leaves the subspace Vk invariant and that all the weights µi1 + · · · + µik(il < · · · < ik) are
distinct and conjugate underW . Conclude that Vk is irreducible, of highest weight λk. (Cf. Exercise 13.13.)
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22 Multiplicity Formula
1. Let λ ∈ Λ+. Prove, without using Freudenthal’s formula, thatmλ(λ−kα) = 1 for α ∈ ∆ and 0 6 k 6< λ,α >.

2. Prove that cL is in the center of U(L) (cf. (23.2)). [Imitate the calculation in (6.2), with φ omitted.] Show also
that cL is independent of the basis chosen for L.

3. In Example 1 (22.4), determine the W-orbits of weights, thereby verifying directly that W-conjugate weights
have the same multiplicity (cf. Theorem 21.2). [Cf. Exercise 13.12.]

4. Verify the multiplicities shown in Figure 1 of (21.3).

5. Use Freudenthal’s formula and the data for A2 in Example 1 (22.4) to compute multiplicities for V (λ), λ =
2λ1 + 2λ2. Verify in particular that dimV (λ) = 27 and that the weight 0 occurs with multiplicity 3. Draw the
weight diagram.

6. For L of type G2, use Table 2 of (22.4) to determine all weights and their multiplicities for V (λ), λ = λ1 + 2λ2.
Compute dimV (λ) = 286. [Cf. Exercise 13.12.]

7. Let L = sl(2, F ), and identify mλ1 with the integer m. Use Propositions A and B of (22.5), along with Theorem
7.2, to derive the Clebsch-Gordan formula: If n 6 m, then V (m) ⊗ V (n) ∼= V (m + n) ⊕ V (m + n − 2) ⊕
· · · ⊕ V (m− n), n+ 1 summands in all. (Cf. Exercise 7.6.)

8. Prove the uniqueness part of Proposition 22.5A.

23 Characters
1. In the Example in (23.3), verify that the trace polynomial is given correctly.

2. For the algebras of type A2, B2, G2, compute explicit generators for B(H)W in terms of the fundamental dom-
inant weights λ1, λ2. Show how some of these lift to E , using the algorithm of this section. (Notice too that in
each case B(H)W is a polynomial algebra with l = 2 generators.)

3. Show that Proposition 23.2 remains valid when λ is an arbitrary linear function onH , provided only that< λ,α >
is an integer.

4. From the formula (∗)χλ(z) = λ(ξ(z)) of (23.3), compute directly the value of the universal Casimir element cL
(22.1) on V (λ), λ ∈ Λ+ : (λ+ δ, λ+ δ)− (δ, δ). [Recall how tα and hα, resp. zα and yα, are related. Rewrite cL
in the ordering of a PBW basis, and use the fact derived in (22.3) that (µ, µ) =

∑
i

µ(hi)µ(ki) for any weight µ.]

5. Prove that any polynomial in n variables over F (charF = 0) is a linear combination of powers of linear polyno-
mials. [Use induction on n. Expand (T1 + aT2)k and then use a Vandermonde determinant argument to show that
kth powers of linear polynomials span a space of correct dimension when n = 2.

6. If λ ∈ Λ+ prove that all µ linked to λ satisfy µ ≺ λ, hence that all such µ occur as weights of Z(λ).

7. Let D = [U(L),U(L)] be the subspace of U(L) spanned by all xy − yx(x, y ∈ U(L)). Prove that U(L) is the
direct sum of the subspaces D and E (thereby allowing one to extend xλ to all of U(L) by requiring it to be 0
on D). [Recall from Exercise 17.3 that U(L) is the sum of finite dimensional L-modules, hence is completely
reducible because L is semisimple. Show that E is the sum of all trivial L-submodules of U(L), whileD coincides
with the space of all adx(y), x ∈ L, y ∈ U(L), the latter being complementary to E .]

8. Prove that the weight lattice Λ is Zariski dense in H∗ (see Appendix), H∗ being identified with affine l-space.
Use this to give another proof that Corollary’ in (23.2) extends to all λ, µH∗.

9. Every F -algebra homomorphism χ : E → F is of the form ξλ for some λ ∈ H∗. [View χ as a homomorphism
C(H)W → F and show that its kernel generates a proper ideal in C(H).]

10. Prove that the map ψ : E → C(H)W is independent of the choice of ∆.

Page 47



24 Formulas of Weyl, Kostant, and Steinberg
1. Give a direct proof of Weyl’s character formula (24.3) for type A1.

2. Use Weyl’s dimension formula to show that a faithful irreducible finite dimensional L-module of smallest possible
dimension has highest weight λi for some 1 6 i 6 l.

3. Use Kostant’s formula to check some of the multiplicities listed in Example 1 (22.4), and compare chλ there with
the expression given by Weyl’s formula.

4. Compare Steinberg’s formula for the special case A1 with the Clebsch-Gordan formula (Exercise 22.7).

5. Using Steinberg’s formula, decompose the G2-module V (λ1) ⊗ V (λ2) into its irreducible constituents. Check
that the dimensions add up correctly to the product dimV (λ1) · dimV (λ2), using Weyl’s formula.

6. Let L = sl(3, F ). Abbreviate λ = m1λ1 +m2λ2 by (m1,m2). Use Steinberg’s formula to verify that V (1, 0)⊗
V (0, 1) ∼= V (0, 0)⊕ V (1, 1).

7. Verify the degree formulas in (24.3) ; derive such a formula for type C3. How can the integers c(α)
i be found in

general?

8. Let λ ∈ Λ. If there exists σ 6= 1 inW fixing λ, prove that
∑

σ(λ)=λ

sn(σ)εσ(λ) = 0. [Use the fact that λ lies in the

closure but not the interior of some Weyl chamber to find a reflection fixing λ, and deduce that the group fixing λ
has even order.]

9. The purpose of this exercise is to obtain another decomposition of a tensor product, based on explicit knowledge of
the weights of one module involved. Begin, as in (24.4), with the equation (2) chλ′ ∗ω(λ′′+δ) =

∑
λ∈Λ+

n(λ)ω(λ+

δ). Replace chλ′ on the left side by
∑
λ∈Λ

mλ′(λ)ελ, and combine to get:
∑
σ∈W

sn(σ)
∑
λ

mλ′(λ)εσ(λ+λ′′+δ), using

the fact that W permutes weight spaces of V (λ′). Next show that the right side of (2) can be expressed as∑
σ∈W

sn(σ)
∑

λ∈Λ+

n(λ)εσ(λ+δ). Define t(µ) to be 0 if some element σ 6= 1 of W fixes µ, and to be sn(σ) if

nothing but 1 fixes µ and if σ(µ) is dominant. Then deduce from Exercise 8 that:

chλ′ ∗ chλ′′ =
∑

λ∈Π(λ′)

mλ′(λ)t(λ+ λ′′ + δ)ch{λ+λ′′+δ}−δ

where the braces denote the unique dominant weight to which the indicated weight is conjugate.

10. Rework Exercises 5, 6, using the approach of Exercise 9.

11. With notation as in Exercise 6, verify that V (1, 1)⊗V (1, 2) ∼= V (2, 3)⊕V (3, 1)⊕V (0, 4)⊕V (1, 2)⊕V (1, 2)⊕
V (2, 0)⊕ V (0, 1).

12. Deduce from Steinberg’s formula that the only possible λ ∈ Λ+ for which V (λ) can occur as a summand of
V (λ′) ⊗ V (λ′′) are those of the form µ + λ′′, where µ ∈ Π(λ′). In case all such µ + λ′′ are dominant, deduce
from Exercise 9 that V (µ + λ′′) does occur in the tensor product, with multiplicity mλ′(µ). Using these facts,
decompose V (1, 3)⊗ V (4, 4) for type A2 (cf. Example 1 of (22.4)).

13. Fix a sum π of positive roots, and show that for all sufficiently large n, mnδ(nδ − π) = p(−π).

25 Chevalley basis of L
1. Prove Proposition 25.1(c) by inspecting root systems of rank 2. [Note that one of α, β may be assumed simple.]

2. How can the bases for the classical algebras exhibited in (1.2) be modified so as to obtain Chevalley bases? [Cf.
Exercise 14.7.]
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3. Use the proof of Proposition 25.2 to give a new proof of Exercise 9.10.

4. If only one root length occurs in each component of Φ (i.e., Φ has irreducible components of types A,D,E),
prove that all cαβ = ±1 in Theorem 25.2 (when α, β, α+ β ∈ Φ).

5. Prove that different choices of Chevalley basis for L lead to isomorphic Lie algebras L(Z) over Z. (“Isomorphism
over Z” is defined just as for a field.)

6. For the algebra of typeB2, let the positive roots be denoted α, β, α+β, 2β+α. Check that the following equations
are those resulting from a Chevalley basis (in particular, the signs ± are consistent):

[hβ , xβ ] = 2xβ [xβ , xα] = xα+β

[hβ , xα] = −2xα [xβ , xα+β ] = 2x2β+α

[hβ , xα+β = 0 [xβ , x−α−β ] = −2x−α
[hβ , x2β+α] = 2x2β+α [xβ , x−2β−α] = −x−α−β
[hα, xβ ] = −xβ [xα, x−α−β ] = x−β
[hα, xα] = 2xα [xα+β , x−2β−α] = x−β
[hα, xα+β = xα+β [hα, x2β+α] = 0

7. Let F = C. Fix a Chevalley basis of L, and let L′ be the R-subspace of L spanned by the elements
√
−1hi(1 6

i 6 l), xα − x−α, and
√
−1(xα + x−α)(α ∈ Φ+). Prove that these elements form a basis of L over C (so

L ∼= L′ ⊗R C) and that L′ is closed under the bracket (so L′ is a Lie algebra over R). Show that the Killing
form κ′ of L′ is just the restriction to L′ of κ, and that κ′ is negative definite. (L′ is a “compact real form” of L,
associated with a compact Lie group).

8. Let L = sl(l + 1, F ), and let K be any field of characteristic p. If p - l + 1, then L(K) is simple. If p = 2, l = 1,
then L(K) is solvable. If l > 1, p | l + 1, then RadL(K) = Z(L(K)) consists of the scalar matrices.

9. Prove that for L of typeAl, the resulting Chevalley groupG(K) of adjoint type is isomorphic to PSL(l+1,K) =
SL(l + 1,K) modulo scalars (the scalars being the l + 1st roots of unity in K).

10. Let L be of type G2, K a field of characteristic 3. Prove that L(K) has a 7-dimensional ideal M (cf. the short
roots). Describe the representation of L(K) on L(K)/M .

11. The Chevalley group G(K) acts on L(K) as a group of Lie algebra automorphisms.

12. Is the basis of G2 exhibited in (19.3) a Chevalley basis?

26 Kostant’s Theorem
1. Let L = sl(2, F ). Let (v0, v1, · · · , vm) be the basis constructed in (7.2) for the irreducible L-module V (m) of

highest weight m. Prove that the Z-span of this basis is invariant under U(L)Z . Let (w0, w1, · · · , wm) be the
basis of V (m) used in (22.2). Show that the Z-span of the wi is not invariant under U(L)Z .

2. Let λ ∈ Λ+ ⊂ H∗ be a dominant integral linear function, and recall the module Z(λ) of (20.3), with irreducible
quotient V (λ) = Z(λ)/Y (λ). Show that the multiplicity of a weight µ of V (λ) can be effectively computed
as follows, thanks to Kostant’s Theorem: If v+ is a maximal vector of Z(λ), then the various fA.v+ for which∑
aiαj = λ − µ form an F -basis of the weight space for µ in Z(λ). (Cf. Lemma D of (24.1).) In turn if∑
aiαi =

∑
ciαi, then eCfA.v+ is an integral multiple nCAv+. This yields a d × d integral matrix (nCA)

(d= multiplicity of µ in Z(λ)), whose rank = mλ(µ). (Cf. Exercise 20.9). Moreover, this integral matrix is
computable once the Chevalley basis structure constants are known. Carry out a calculation of this kind for type
A2, taking λ− µ small.
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27 Admissible Lattices
1. If M is an admissible lattice in V , then M ∩ Vµ is a lattice in Vµ for each weight µ of V .

2. Prove that each admissible lattice in L which includes L(Z) and is closed under the bracket has the form LV .
[Imitate the proof of Proposition 27.2; cf. Exercise 21.5.]

3. IfM (resp. N ) is an admissible lattice in V (resp. W ), thenM ⊗N is an admissible lattice in V ⊗W (cf. Lemma
26.3A). Use this fact, and the identification (as L-modules) of V ∗⊗V with EndV (6.1), to prove that LV is stable
under all (adxα)m/m! in Proposition 27.2 (without using Lemma 27.2).

In the following exercises, L = sl(2, F ), and weights are identified with integers.

4. Let V = V (λ), λ ∈ Λ+. Prove that LV = L(Z) when λ is odd, while LV = Z
(
h
2

)
+ Zx+ Zy when λ is even.

5. If charK > 2, prove that L(K)→ LV (K) is an isomorphism for any choice of V .

6. Let V = V (λ), λ ∈ Λ+. Prove that GV (K) ∼= SL(2,K) when Λ(V ) = Λ, PSL(2,K) when Λ(V ) = Λr.

7. If 0 6 λ < charK, V = V (λ), prove that V (K) is irreducible as L(K)- module.

8. Fix λ ∈ Λ+. Then a minimal admissible lattice Mmin in V (λ) has a Z-basis (v0, · · · , vλ) for which the formulas
in Lemma 7.2 are valid:

h.vi = (h− 2i)vi,

y.vi = (i+ 1)vi+1, (vλ+1 = 0)

x.vi = (λ− i+ 1)vi−1, (v−1 = 0).

Show that the corresponding maximal admissible lattice Mmax has a Z-basis (w0, · · · , wλ) with w0 = v0 and
action given by:

h.wi = (λ− 2i)wi

y.wi = (λ− i)wi+1

x.wi = iwi−1

Deduce that vi =
(
λ
i

)
wi. Therefore, [Mmax : Mmin] =

λ∏
i=0

(
λ
i

)
.

9. Keep the notation of Exercise 8. Let M be any admissible lattice, Mmax ⊃ M ⊃ Mmin. Then M has a Z-basis
(z0, · · · , zλ) with zi = aiwi(ai ∈ Z), a0 = aλ = 1. Define integers bi, ci by: x.zi = bizi−1(b0 = 1), y.zi =
cizi+1(cλ = 1). Show that ci = ±bλ−i and that

∏
bi = λ!.

10. Keep the notation of Exercise 8. LetM be a subgroup ofMmax containingMmin, with aZ-basis (w0, a1w1, · · · , aλwλ).
Find necessary and sufficient conditions on the ai for M to be an admissible lattice. Work out the possibilities
when λ = 4.
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