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A P P E N D I X

The Microarchitecture
of the LC-3

We have seen in Chapters 4 and 5 the several stages of the instruction cycle

that must occur in order for the computer to process each instruction. If a

microarchitecture is to implement an ISA, it must be able to carry out this instruc-

tion cycle for every instruction in the ISA. This appendix illustrates one example

of a microarchitecture that can do that for the LC-3 ISA. Many of the details of

the microarchitecture and the reasons for each design decision are well beyond

the scope of an introductory course. However, for those who want to understand

how a microarchitecture can carry out the requirements of each instruction of the

LC-3 ISA, this appendix is provided.

C.1 Overview
Figure C.1 shows the two main components of a microarchitecture: the data path,

which contains all the components that actually process the instructions, and the

control, which contains all the components that generate the set of control signals

that are needed to control the processing at each instant of time.

We say, “at each instant of time,” but we really mean during each clock cycle.

That is, time is divided into clock cycles. The cycle time of a microprocessor is the

duration of a clock cycle. A common cycle time for a microprocessor today is 0.33

nanoseconds, which corresponds to 3 billion clock cycles each second. We say

that such a microprocessor is operating at a frequency of 3 gigahertz, or 3 GHz.

At each instant of time—or, rather, during each clock cycle—the 52 control

signals (as shown in Figure C.1) control both the processing in the data path and

the generation of the control signals for the next clock cycle. Processing in the

data path is controlled by 42 bits, and the generation of the control signals for the

next clock cycle is controlled by 10 bits.

Note that the hardware that determines which control signals are needed each

clock cycle does not operate in a vacuum. On the contrary, the control signals

needed in the “next” clock cycle depend on the following:

1. The control signals that are present during the current clock cycle.

2. The LC-3 instruction that is being executed.
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Figure C.1 Microarchitecture of the LC-3, major components.

3. The privilege mode of the program that is executing, and whether the

processor has the right to access a particular memory location.

4. If that LC-3 instruction is a BR, whether the conditions for the branch have

been met (i.e., the state of the relevant condition codes).

5. Whether or not an external device is requesting that the processor be

interrupted.

6. If a memory operation is in progress, whether it is completing during this cycle.

Figure C.1 identifies the specific information in our implementation of the

LC-3 that corresponds to these six items. They are, respectively:

1. J[5:0], COND[2:0], and IRD—ten bits of control signals provided by the

current clock cycle.

2. inst[15:12], which identifies the opcode, and inst[11:11], which

differentiates JSR from JSRR (i.e., the addressing mode for the target of the

subroutine call).

3. PSR[15], bit [15] of the Processor Status Register, which indicates whether

the current program is executing with supervisor or user privileges, and

ACV, a signal that informs the processor that a process operating in User
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mode is trying to access a location in privileged memory. ACV stands for

Access Control Violation. When asserted, it denies the process access to the

privileged memory location.

4. BEN to indicate whether or not a BR should be taken.

5. INT to indicate that some external device of higher priority than the

executing process requests service.

6. R to indicate the end of a memory operation.

C.2 The State Machine
The behavior of the LC-3 microarchitecture during a given clock cycle is com-

pletely determined by the 52 control signals, combined with ten bits of addi-

tional information (inst[15:11], PSR[15], ACV, BEN, INT, and R), as shown in

Figure C.1. We have said that during each clock cycle, 42 of these control signals

determine the processing of information in the data path and the other ten control

signals combine with the ten bits of additional information to determine which

set of control signals will be required in the next clock cycle.

We say that these 52 control signals specify the state of the control struc-

ture of the LC-3 microarchitecture. We can completely describe the behavior of

the LC-3 microarchitecture by means of a directed graph that consists of nodes

(one corresponding to each state) and arcs (showing the flow from each state to

the one[s] it goes to next). We call such a graph a state machine.

Figure C.2, combined with Figure C.7, is the state machine for our implemen-

tation of the LC-3. The state machine describes what happens during each clock

cycle in which the computer is running. Each state is active for exactly one clock

cycle before control passes to the next state. The state machine shows the step-

by-step (clock cycle–by–clock cycle) process that each instruction goes through

from the start of its FETCH phase to the end of its instruction cycle, as described

in Section 4.3.2. Each node in the state machine corresponds to the activity that

the processor carries out during a single clock cycle. The actual processing that

is performed in the data path is contained inside the node. The step-by-step flow

is conveyed by the arcs that take the processor from one state to the next.

Let’s start our study of Figure C.2 by examining the FETCH phase of the

instruction cycle. As you know, every instruction goes through the same FETCH

phase in its instruction cycle. Recall from Chapter 4 that the FETCH phase starts

with a memory access to read the instruction at the address specified by the PC.

Note that in the state numbered 18, the MAR is loaded with the address contained

in PC, and the PC is incremented in preparation for the FETCH of the next LC-3

instruction after the current instruction finishes its instruction cycle. If the content

of MAR specifies privileged memory, and PSR[15] = 1, indicating User mode,

the access of the instruction will not be allowed. That would be an access control

violation, so ACV is set. Finally, if there is no interrupt request present (INT = 0),

the flow passes to the state numbered 33. We will describe in Section C.7 the flow

of control if INT = 1, that is, if an external device is requesting an interrupt.
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Before we get into what happens during the clock cycle when the proces-

sor is in the state numbered 33, we should explain the numbering system—that

is, why are states numbered 18 and 33. Recall, from our discussion of finite

state machines in Chapter 3, that each state must be uniquely specified and that

this unique specification is accomplished by means of state variables. Our state

machine that implements the LC-3 ISA requires 59 distinct states to implement

the entire behavior of the LC-3. Figure C.2 shows 31 of them plus pointers to

seven others (states 8, 13, 15, 48, 49, 57, and 60). Figure C.7 shows the other

28 states (including the seven that are pointed to in Figure C.2). We will visit all

of them as we go through this appendix. Since k logical variables can uniquely

identify 2k items, six state variables are needed to uniquely specify 59 states. The

number next to each node in Figure C.2 and Figure C.7 is the decimal equivalent

of the values (0 or 1) of the six state variables for the corresponding state. Thus,

for example, the state numbered 18 has state variable values 010010.

Now, back to what happens after the clock cycle in which the activity of state

18 has finished. As we said, if no external device is requesting an interrupt, the

flow passes to state 33 (i.e., 100001). From state 33, control passes to state 60

if the processor is trying to access privileged memory while in User mode, or to

state 28, if the memory access is allowed, that is, if there is no ACV violation.

We will discuss what happens if there is an ACV violation in Section C.7.

In state 28, since the MAR contains the address of the instruction to be processed,

this instruction is read from memory and loaded into the MDR. Since this memory

access can take multiple cycles, this state continues to execute until a ready signal

from the memory (R) is asserted, indicating that the memory access has completed.

Thus, the MDR contains the valid contents of the memory location specified by

MAR. The state machine then moves on to state 30, where the instruction is loaded

into the instruction register (IR), completing the fetch phase of the instruction cycle.

The state machine then moves to state 32, where DECODE takes place. Note

that there are 13 arcs emanating from state 32, each one corresponding to bits [15:12]

of the LC-3 instruction. These are the opcode bits that direct the state machine to

one of 16 paths to carry out the instruction cycle of the particular instruction that has

just been fetched. Note that the arc from the last state of each instruction cycle (i.e.,

the state that completes the processing of that LC-3 instruction) takes us to state 18

(to begin the instruction cycle of the next LC-3 instruction).

C.3 The Data Path
The data path consists of all components that actually process the information

during each clock cycle—the functional units that operate on the information, the

registers that store information at the end of one cycle so it will be available for

further use in subsequent cycles, and the buses and wires that carry information

from one point to another in the data path. Figure C.3, an expanded version of

what you have already encountered in Figure 5.18, illustrates the data path of our

microarchitecture of the LC-3.

Note the control signals that are associated with each component in the data

path. For example, ALUK, consisting of two control signals, is associated with
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Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD
LD.Priority/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD

LD.ACV/1: NO, LOAD
LD.Vector/1: NO, LOAD

GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES

GateMARMUX/1: NO, YES
GateVector/1: NO, YES

GatePC-1/1: NO, YES
GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1
BUS ;select value from bus
ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]
R7 ;destination R7
SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]
8.6 ;source IR[8:6]
SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero
offset6 ;select SEXT[IR[5:0]]
PCoffset9 ;select SEXT[IR[8:0]]
PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1
SP−1 ;select stack pointer−1
Saved SSP ;select saved Supervisor Stack Pointer
Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]
ADDER ;select output of address adder

TableMUX/1: x00, x01

VectorMUX/2: INTV
Priv.exception
Opc.exception
ACV.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES
R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode
1 ;User mode
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the ALU. These control signals determine how that component (the ALU) will

be used each cycle. Table C.1 lists the set of 42 control signals that control the

elements of the data path and the set of values that each control signal can have.

(Actually, for readability, we provide a symbolic name for each value, rather than

the binary value.) For example, since ALUK consists of two bits, it can have one

of four values. Which value it has during any particular clock cycle depends on

whether the ALU is required to ADD, AND, NOT, or simply pass one of its inputs

to the output during that clock cycle. PCMUX also consists of two control signals

and specifies which input to the MUX is required during a given clock cycle.

LD.PC is a single-bit control signal and is a 0 (NO) or a 1 (YES), depending on

whether or not the PC is to be loaded during the given clock cycle.

During each clock cycle, corresponding to the “current state” in the state

machine, the 42 bits of control direct the processing of all components in the data

path that are required during that clock cycle. As we have said, the processing

that takes place in the data path during that clock cycle is specified inside the

node representing the state.

C.4 The Control Structure
The control structure of a microarchitecture is specified by its state machine. As

described earlier, the state machine (Figure C.2 and Figure C.7) determines which

control signals are needed each clock cycle to process information in the data path

and which control signals are needed each clock cycle to direct the flow of control

from the currently active state to its successor state.

Figure C.4 shows a block diagram of the control structure of our implemen-

tation of the LC-3. Many implementations are possible, and the design consider-

ations that must be studied to determine which of many possible implementations

should be used is the subject of a full course in computer architecture.

We have chosen here a straightforward microprogrammed implementation.

Each state of the control structure requires 42 bits to control the processing in the

data path and 10 bits to help determine which state comes next. These 52 bits are

collectively known as a microinstruction. Each microinstruction (i.e., each state

of the state machine) is stored in one 52-bit location of a special memory called

the control store. There are 59 distinct states. Since each state corresponds to one

microinstruction in the control store, the control store for our microprogrammed

implementation requires six bits to specify the address of each microinstruction.

Those six bits correspond to the state number associated with each state in the

state machine. For example, the microinstruction associated with state 18 is the

set of 52 control signals stored in address 18 of the control store.

Table C.2 lists the function of the ten bits of control information that help

determine which state comes next. Figure C.5 shows the logic of the micro-

sequencer. The purpose of the microsequencer is to determine the address in the

control store that corresponds to the next state, that is, the location where the

52 bits of control information for the next state are stored.
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Figure C.4 The control structure of a microprogrammed implementation, overall block
diagram.

Table C.2 Microsequencer Control Signals

Signal Name Signal Values

J/6:
COND/3: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode
COND4 ;Privilege Mode
COND5 ;Interrupt test
COND6 ;ACV Test

IRD/1: NO, YES
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Figure C.5 The microsequencer of the LC-3.

As we said, state 32 of the state machine (Figure C.2) performs the DECODE

phase of the instruction cycle. It has 16 “next” states, depending on the LC-3

instruction being executed during the current instruction cycle. If the IRD con-

trol signal in the microinstruction corresponding to state 32 is 1, the output MUX

of the microsequencer (Figure C.5) will take its source from the six bits formed

by 00 concatenated with the four opcode bits IR[15:12]. Since IR[15:12] speci-

fies the opcode of the current LC-3 instruction being processed, the next address

of the control store will be one of 16 addresses, corresponding to the 15 opcodes

plus the one unused opcode, IR[15:12] = 1101. That is, each of the 16 next states

after state 32 is the first state to be carried out after the instruction has been

decoded in state 32. For example, if the instruction being processed is ADD, the

address of the next state is state 1, whose microinstruction is stored at location

000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1101,

the unused opcode, the microarchitecture would execute a sequence of

microinstructions, starting at state 13. These microinstructions would respond to

the fact that an instruction with an illegal opcode had been fetched. Section C.7.3

describes what happens in that case.
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Several signals necessary to control the data path and the microsequencer

are not among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, INT,

ACV, and R. Figure C.6 shows the additional logic needed to generate DR, SR1,

BEN, and ACV.

The INT signal is supplied by some event external to the normal instruction

processing, indicating that normal instruction processing should be interrupted

and this external event dealt with. The interrupt mechanism was described in

Chapter 9. The corresponding flow of control within the microarchitecture is

described in Section C.7.

The remaining signal, R, is a signal generated by the memory in order to

allow the LC-3 to operate correctly with a memory that takes multiple clock

cycles to read or store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR

contains the address to be read and the microinstruction asserts READ, it will take

five cycles before the contents of the specified location in memory is available to

be loaded into MDR. (Note that the microinstruction asserts READ by means of

two control signals: MIO.EN/YES and R.W/RD; see Figure C.3.)



710 appendix C The Microarchitecture of the LC-3

Recall our discussion in Section C.2 of the function of state 28, which

accesses an instruction from memory during the FETCH phase of each instruc-

tion cycle. If the memory takes five cycles to read a value, for the LC-3 to operate

correctly, state 28 must execute five times before moving on to state 30. That is,

until MDR contains valid data from the memory location specified by the con-

tents of MAR, we want state 28 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the pro-

cessor can move on to state 30. What if the microarchitecture did not wait for the

memory to complete the read operation before moving on to state 30? Since the

contents of MDR would still be garbage, the microarchitecture would put garbage

into the IR in state 30.

The ready signal (R) enables the memory read to execute correctly. Since the

memory knows it needs five clock cycles to complete the read, it asserts a ready

signal (R) throughout the fifth clock cycle. Figure C.2 shows that the next state

is 28 (i.e., 011100) if the memory read will not complete in the current clock

cycle and state 30 (i.e., 011110) if it will. As we have seen, it is the job of the

microsequencer (Figure C.5) to produce the next state address.

The ten microsequencer control signals for state 28 are:

IRD/0 ; NO
COND/001 ; Memory Ready
J/011100

With these control signals, what next state address is generated by the microse-

quencer? For each of the first four executions of state 28, since R = 0, the next

state address is 011100. This causes state 28 to be executed again in the next clock

cycle. In the fifth clock cycle, since R = 1, the next state address is 011110, and

the LC-3 moves on to state 30. Note that in order for the ready signal (R) from

memory to be part of the next state address, COND had to be set to 001, which

allowed R to pass through its four-input AND gate.

C.5 The TRAP Instruction
As we have said, each LC-3 instruction follows its own path from state 32 to

its final state in its instruction cycle, after which it returns to state 18 to start

processing the next instruction. As an example, we will follow the instruction

cycle of the TRAP instruction, shown in Figure C.7.

Recall that the TRAP instruction pushes the PSR and PC onto the system

stack, loads the PC with the starting address of the trap service routine, and

executes the service routine from privileged memory.

From state 32, the next state after DECODE is state 15, consistent with the

TRAP instruction opcode 1111. In state 15, the Table register, which will be

used to form MAR[15:8] of the trap vector table entry, is loaded with x00, the

PC is incremented (we will see why momentarily), and the MDR is loaded with

the PSR in preparation for pushing it onto the system stack. Control passes to

state 47.
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In state 47, the trap vector (IR[7:0]) is loaded into the eight-bit register

Vector, PSR[15] is set to Supervisor mode since the trap service routine exe-

cutes in privileged memory, and the state machine branches to state 37 or 45,

depending on whether the program that executed the TRAP instruction was in

User mode or Supervisor mode. If in User mode, state 45 saves the User Stack

Pointer in Saved USP, loads the stack pointer from Saved SSP, and continues on

to state 37, where the processor starts pushing PSR and PC onto the stack. If the

program executing the TRAP instruction is already in Privileged mode, state 45

is not necessary.

In states 37 and 41, the PSR is pushed onto the system stack. In states 43, 46,

and 52, the PC is pushed onto the system stack. Note that in state 43, the PC is

decremented before being pushed onto the stack. This is necessary in the case of

dealing with interrupts and exceptions, which will be explained in Section C.7.

This is not necessary for processing the TRAP instruction, which is why PC is

incremented in state 15.

The only thing remaining is to load PC with the starting address of the trap

service routine. This is done by loading MAR with the address of the proper entry

in the trap vector table, obtained by concatenating Table and Vector (in state 54),

loading the starting address from memory into MDR (in state 53), and loading

the PC (in state 55). This completes the execution of the TRAP instruction, and

control returns to state 18 to begin processing the next instruction – in this case,

the first instruction of the trap service routine.

The last instruction in every trap service routine is RTI (return from trap or

interrupt). From DECODE in state 32, the next state of RTI is state 8, consistent

with its eight-bit opcode 1000. In states 8, 36, and 38, the PC is popped off the

system stack and loaded into PC. In states 39, 40, 42, and 34, the PSR is popped

off the system stack and loaded into PSR. This returns the PC and PSR to the

values it had before the trap service routine was executed. Finally, if the program

that invoked the TRAP instruction was in User mode, PSR[15] must be returned

to 1, the Supervisor Stack Pointer saved, and the User Stack Pointer loaded into

SP. This is done in state 59, completing the instruction cycle for RTI.

C.6 Memory-Mapped I/O
As you know from Chapter 9, the LC-3 ISA performs input and output via

memory-mapped I/O, that is, with the same data movement instructions that it

uses to read from and write to memory. The LC-3 does this by assigning an

address to each device register. Input is accomplished by a load instruction whose

effective address is the address of an input device register. Output is accomplished

by a store instruction whose effective address is the address of an output device

register. For example, in state 25 of Figure C.2, if the address in MAR is xFE02,

MDR is supplied by the KBDR, and the data input will be the last keyboard

character typed. On the other hand, if the address in MAR is a legitimate memory

address, MDR is supplied by the memory.
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Table C.3 Truth Table for Address Control Logic

MAR MIO.EN R.W MEM.EN IN.MUX LD.KBSR LD.DSR LD.DDR

xFE00 0 R 0 x 0 0 0
xFE00 0 W 0 x 0 0 0
xFE00 1 R 0 KBSR 0 0 0
xFE00 1 W 0 x 1 0 0
xFE02 0 R 0 x 0 0 0
xFE02 0 W 0 x 0 0 0
xFE02 1 R 0 KBDR 0 0 0
xFE02 1 W 0 x 0 0 0
xFE04 0 R 0 x 0 0 0
xFE04 0 W 0 x 0 0 0
xFE04 1 R 0 DSR 0 0 0
xFE04 1 W 0 x 0 1 0
xFE06 0 R 0 x 0 0 0
xFE06 0 W 0 x 0 0 0
xFE06 1 R 0 x 0 0 0
xFE06 1 W 0 x 0 0 1
other 0 R 0 x 0 0 0
other 0 W 0 x 0 0 0
other 1 R 1 mem 0 0 0
other 1 W 1 x 0 0 0

The state machine of Figure C.2 does not have to be altered to accommo-

date memory-mapped I/O. However, something has to determine when memory

should be accessed and when I/O device registers should be accessed. This is the

job of the address control logic (ADDR.CTL.LOGIC) shown in Figure C.3.

Table C.3 is a truth table for the address control logic, showing what con-

trol signals are generated, based on (1) the contents of MAR, (2) whether or not

memory or I/O is accessed this cycle (MIO.EN/NO, YES), and (3) whether a load

(R.W/Read) or store (R.W/Write) is requested. Note that, for a memory-mapped

load, data can be supplied to MDR from one of four sources: memory, KBDR,

KBSR, or DSR. The address control logic provides the appropriate select signals

to the INMUX. For a memory-mapped store, the data supplied by MDR can be

written to memory, KBSR, DDR, or DSR. The address control logic supplies the

appropriate enable signal to the corresponding structure.

C.7 Interrupt and Exception Control
The final piece of the state machine needed to complete the LC-3 story are those

states that control the initiation of an interrupt, those states that control the return

from an interrupt (the RTI instruction), and those states that control the initiation

of one of the three exceptions specified by the ISA.

Interrupts and exceptions are very similar. Both stop the program that is cur-

rently executing. Both push the PSR and PC of the interrupted program onto the

system stack, obtain the starting address of the interrupt or exception service rou-

tine from the interrupt vector table, and load that starting address into the Program

Counter. The main difference between interrupts and exceptions is the nature of
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the event that causes the program that is executing to stop. Interrupts are events

that usually have nothing to do with the program that is executing. Exceptions are

events that are the direct result of something going awry in the program that is exe-

cuting. The LC-3 specifies three exceptions: a privilege mode violation, an illegal

opcode, and an ACV exception. Figure C.7 shows the state machine that carries

these out. Figure C.8 shows the data path, after adding the additional structures

to Figure C.3 that are needed to make interrupt and exception processing work.
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[IR[15:12]]

49

15

37

45

51 59

18

28

33

To 60

30

32

MDR<−M
R

R

0

0
1

1

Write

R

Write

R

MDR<−M
R

PC<−MDR

41

46

47
43

34

13

52

54

53

55

TRAP

RTI

MDR<−M
R

MDR<−M
R

R

To 18

To 37 To 45

To 18 To 18

To 45

To 45

To 37 To 45

1101
8

48
56

61
60
57

44

36

38

39

40

42

See Figure C.2R

R

R

R

PSR[15] <− 0

PSR[15] <− 0

Vector <− INTV
Table <− x01

Table <− x01Table <− x01

Table <− x01

Vector <− IR[7:0]

Table <− x00

MDR <− PSR

MDR <− PSR

PSR[10:8] <− Priority

PC <− PC+1

MDR <− PC−1

MAR, SP<− SP−1

MAR, SP<−SP−1

MAR<−Table’Vector

PC<−MDR

MAR, SP<−SP + 1

PSR<−MDR

0
0

0

0

0

1

1

1

1

1

Saved_SSP<−SP

SP<−SP+1

Nothing Saved_SSP<−SP

MAR<−SP [PSR[15]]

SP<−Saved_USP

[PSR[15]]

[PSR[15]]

[PSR[15]]

SP<−Saved_USP

[PSR[15]]

Vector <− x00
MDR <− PSR
PSR[15] <− 0

Vector <− x01

Vector <− x02

PSR[15] <− 0

PSR[15] <− 0

MDR <− PSR

MDR <− PSR

[ACV]

Figure C.7 LC-3 state machine showing interrupt control.



714 appendix C The Microarchitecture of the LC-3

MEMORY

OUTPUTINPUT

DSR

DDRKBDR
ADDR. CTL.

LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

MEM.EN

R MIO.EN

ZEXT

2

16

SEXT
[10:0]

SEXT

SEXT
[5:0]

SEXT
[8:0]

16 16 16 16

16

IR LD.IR

16

8

8

INTV

8

x01

x01

Z PN

R

16

16

16

ACV
LD.ACV

16

PrivLD.Priv

PSRMUX

Set.Priv [15]

2
ALUK

SPMUX

16 16

SR2MUX

Sa
ve

d.
SS

P

Sa
ve

d.
U

SP

+1 −1

LD
.S

av
ed

U
SP

LD
.S

av
ed

SS
P

16

DR
3

16

16161616

16
GateALU GateSP

x00

x00

x02

8

8

VectorMUX

+

MARMUX

LOGIC

CONTROL LOGIC

PCLD.PC

GatePC−1

REG
FILE

SR2 SR1
OUTOUT

LD.REG

SR 2 SR1

GatePSR

[2:0]LD.C C

INT

LOGIC

PSRMUX 3

16 [2:0]
[10:8]

GatePSR[10:8]
PSRMUX

LD.Priority

Interrupt
Priority

GatePSR

A>B
B

A

ALU
AB

[4:0]

ADDR2MUX

2

0

16

[7:0]

16
2 +1

−1

GatePC

PCMUX

GateMARMUX

33

ADDR1MUX

[5]

[15]

3

GateVector

[7:0][15:8]
Table Vector

TableMUX

Priority

2

[7:0]

TableMUX

LD.Vector

Figure C.8 LC-3 data path, including additional structures for interrupt control.

Section C.7.1 describes the flow of processing required to initiate an interrupt.

Section C.7.3 describes the flow of processing required to initiate an exception.

C.7.1 Initiating an Interrupt

While a program is executing, an interrupt can be requested by some external

event so that the normal processing of instructions can be preempted and the con-

trol can turn its attention to processing the interrupt. The external event requests
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an interrupt by asserting its interrupt request signal. Recall from Chapter 9 that

if the priority level of the device asserting its interrupt request signal is higher than

both the priority level of the currently executing program and any other external

interrupt request asserted at the same time, INT is asserted and INTV is loaded

with the interrupt vector corresponding to that external event. The microproces-

sor responds to INT by initiating the interrupt. That is, the processor puts itself

into Supervisor mode if it isn’t in Supervisor mode, pushes the PSR and PC of

the interrupted process onto the supervisor stack, and loads the PC with the start-

ing address of the interrupt service routine. The PSR contains the privilege mode

PSR[15], priority level PSR[10:8], and condition codes PSR[2:0] of a program.

It is important that when the processor resumes execution of the interrupted pro-

gram, the privilege mode, priority level, and condition codes are restored to what

they were when the interrupt occurred.

The microarchitecture of the LC-3 initiates an interrupt as follows: Recall

from Figure C.2 that in state 18, while MAR is loaded with the contents of PC

and PC is incremented, INT is tested.

State 18 is the only state in which the processor checks for interrupts. The

reason for only testing in state 18 is straightforward: Once an LC-3 instruction

starts processing, it is easier to let it finish its complete instruction cycle (FETCH,

DECODE, etc.) than to interrupt it in the middle and have to keep track of how far

along it was when the external device requested an interrupt (i.e., asserted INT).

If INT is only tested in state 18, the current instruction cycle can be aborted early

(even before the instruction has been fetched), and control directed to initiating

the interrupt.

The test is enabled by the control signals that make up COND5, which are

101 only in state 18, allowing the value of INT to pass through its four-input AND

gate, shown in Figure C.5, to contribute to the address of the next state. Since the

COND signals are not 101 in any other state, INT has no effect in any other state.

In state 18, the ten microsequencer control bits are as follows:

IRD/0 ; NO
COND/101 ; Test for interrupts
J/100001

If INT = 1, a 1 is produced at the output of the AND gate, which in turn

makes the next state address not 100001, corresponding to state 33, but rather

110001, corresponding to state 49. This starts the initiation of the interrupt (see

Figure C.7).

Several functions are performed in state 49. The PSR, which contains the

privilege mode, priority level, and condition codes of the interrupted program,

are loaded into MDR, in preparation for pushing it onto the supervisor stack.

PSR[15] is cleared, reflecting the change to Supervisor mode, since all inter-

rupt service routines execute in Supervisor mode. The three-bit priority level

and eight-bit interrupt vector (INTV) provided by the interrupting device are

recorded. PSR[10:8] is loaded with the priority level of the interrupting device.

The internal register Vector is loaded with INTV and the eight-bit register Table

is loaded with x01 in preparation for accessing the interrupt vector table to obtain

the starting address of the interrupt service routine. Finally, the processor tests
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the old PSR[15] to determine whether the stack pointers must be adjusted before

pushing PSR and PC.

If the old PSR[15]= 0, the processor is already operating in Supervisor mode.

R6 is the Supervisor Stack Pointer (SSP), so the processor proceeds immediately

to states 37 and 41 to push the PSR of the interrupted program onto the super-

visor stack. If PSR[15] = 1, the interrupted program was in User mode. In that

case, the User Stack Pointer (USP) must be saved in Saved USP and R6 must be

loaded with the contents of Saved SSP before moving to state 37. This is done in

state 45.

The control flow from state 49 to either 37 or 45 is enabled by the ten

microsequencer control bits, as follows:

IRD/0 ; NO
COND/100 ; Test PSR[15], privilege mode
J/100101

If PSR[15] = 0, control goes to state 37 (100101); if PSR[15] = 1, control

goes to state 45 (101101).

In state 37, R6 (the SSP) is decremented (preparing for the push), and MAR

is loaded with the address of the new top of the stack.

In state 41, the memory is enabled to WRITE (MIO.EN/YES, R.W/WR).

When the write completes, signaled by R = 1, PSR has been pushed onto the

supervisor stack, and the flow moves on to state 43.

In state 43, the PC is loaded into MDR. Note that state 43 says MDR is loaded

with PC-1. Recall that in state 18, at the beginning of the instruction cycle for the

interrupted instruction, PC was incremented. Loading MDR with PC-1 adjusts

PC to the correct address of the interrupted program.

In states 46 and 52, the same sequence as in states 37 and 41 occurs, only

this time the PC of the interrupted program is pushed onto the supervisor stack.

The final task to complete the initiation of the interrupt is to load the PC

with the starting address of the interrupt service routine. This is carried out by

states 54, 53, and 55. It is accomplished in a manner similar to the loading of

the PC with the starting address of a TRAP service routine. The event causing

the INT request supplies the eight-bit interrupt vector INTV associated with the

interrupt, similar to the eight-bit trap vector contained in the TRAP instruction.

This interrupt vector is stored in the eight-bit register INTV, shown on the data

path in Figure C.8.

The interrupt vector table occupies memory locations x0100 to x01FF. In

state 54, the interrupt vector that was loaded into Vector in state 49 is combined

with the base address of the interrupt vector table (x0100) and loaded into MAR.

In state 53, memory is READ. When R = 1, the read has completed, and MDR

contains the starting address of the interrupt service routine. In state 55, the PC

is loaded with that starting address, completing the initiation of the interrupt.

It is important to emphasize that the LC-3 supports two stacks, one for each

privilege mode, and two stack pointers (USP and SSP), one for each stack. R6 is

the stack pointer and is loaded from the Saved SSP when privilege changes from

User mode to Supervisor mode, and from Saved USP when privilege changes
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from Supervisor mode to User mode. When the privilege mode changes, the cur-

rent value in R6 must be stored in the appropriate “Saved” stack pointer in order

to be available the next time the privilege mode changes back.

C.7.2 Returning from an Interrupt or Trap Service Routine, RTI

Interrupt service routines, like trap service routines already described, end with

the execution of the RTI instruction. The job of the RTI instruction is to restore

the computer to the state it was in before the interrupt or trap service routine was

executed. This means restoring the PSR (i.e., the privilege mode, priority level,

and the values of the condition codes N, Z, P) and restoring the PC. These values

were pushed onto the stack during the initiation of the interrupt or execution of

the TRAP instruction. They must, therefore, be popped off the stack in the reverse

order.

The first state after DECODE is state 8. Here we load the MAR with the

address of the top of the supervisor stack, which contains the last thing pushed

(that has not been subsequently popped)—the state of the PC when the interrupt

was initiated. At the same time, we test PSR[15] since RTI is a privileged instruc-

tion and can only execute in Supervisor mode. If PSR[15] = 0, we can continue

to carry out the requirements of RTI.

States 36 and 38 restore PC to the value it had when the interrupt was initi-

ated. In state 36, the memory is read. When the read is completed, MDR contains

the address of the instruction that was to be processed next when the interrupt

occurred. State 38 loads that address into the PC.

States 39, 40, 42, and 34 restore the privilege mode, priority level, and con-

dition codes (N, Z, P) to their original values. In state 39, the Supervisor Stack

Pointer is incremented so that it points to the top of the stack after the PC was

popped. The MAR is loaded with the address of the new top of the stack. State

40 initiates the memory READ; when the READ is completed, MDR contains

the interrupted PSR. State 42 loads the PSR from MDR, and state 34 increments

the stack pointer.

The only thing left is to check the privilege mode of the interrupted pro-

gram to see whether the stack pointers have to be switched. In state 34, the

microsequencer control bits are as follows:

IRD/0 ; NO
COND/100 ; Test PSR[15], privilege mode
J/110011

If PSR[15]= 0, control flows to state 51 (110011) to do nothing for one cycle.

If PSR[15] = 1, control flows to state 59, where R6 is saved in Saved SSP and

R6 is loaded from Saved USP. In both cases, control returns to state 18 to begin

processing the next instruction.

C.7.3 Initiating an Exception

The LC-3 identifies three cases where processing is not allowed to continue nor-

mally due to something going awry in the executing program. We refer to these

cases as exceptions. They are initiated in the same way interrupts are initiated,
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by pushing the PSR and PC onto the system stack, obtaining the starting address

of the exception service routine from the interrupt vector table, and loading that

address into the PC to initiate the exception service routine.

The three exceptions identified in the LC-3 are (1) a privileged mode excep-

tion caused by the program attempting to execute the RTI instruction while in

User mode, (2) the illegal opcode exception caused by the program trying to exe-

cute an instruction whose opcode is 1101, and (3) an access control violation

(ACV) exception caused by the program trying to access a privileged memory

location while in User mode.

C.7.3.1 Privilege Mode Exception

If the processor is in User mode (PSR[15] = 1) and is attempting to execute

RTI, a privilege mode exception occurs. The processor pushes the PSR and the

address of the RTI instruction onto the supervisor stack and loads the PC with

the starting address of the service routine that handles privilege mode violations.

Figure C.7 shows the flow, starting with a branch from state 8 to state 44 if

PSR[15] = 1.

In state 44, the eight-bit Table register is loaded with x01, indicating the

address of an entry in the interrupt vector table, and the eight-bit Vector register

is loaded with x00, indicating the first entry in the interrupt vector table. The con-

tents of x0100 is the starting address of the service routine that handles privilege

mode exceptions. The MDR is loaded with the PSR of the program that caused

the exception in preparation for pushing it onto the system stack. Finally, PSR[15]

is set to 0, since the service routine will execute with supervisor privileges. Then

the processor moves to state 45, where it follows the same flow as the initiation

of interrupts.

The main difference between this flow and that for the initiation of interrupts

is in state 54, where MAR is loaded with x01’Vector. In the case of interrupts,

Vector is loaded in state 49 with INTV, which is supplied by the interrupting

device. In the case of the privilege mode violation, Vector is loaded in state

44 with x00.

There are two additional functions performed in state 49 that are not per-

formed in state 44. First, the priority level is changed, based on the priority of

the interrupting device. We do not change the priority in handling a privilege

mode violation. The service routine executes at the same priority as the program

that caused the violation. Second, a test to determine the privilege mode is per-

formed for an interrupt. This is unnecessary for a privilege mode violation since

the processor already knows it is executing in User mode.

C.7.3.2 Illegal Opcode Exception

Although it would be a rare situation, it is possible, we suppose, that a pro-

grammer writing a program in machine language could mistakenly include an

instruction having opcode = 1101. Since there is no such opcode in the LC-3 ISA,

the computer cannot process that instruction. State 32 performs the DECODE,

and the next state is state 13.
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The action the processor takes is very similar to that of a privilege mode

exception. The PSR and PC of the program are pushed onto the supervisor stack,

and the PC is loaded with the starting address of the Illegal Opcode exception

service routine.

State 13 is very similar to state 44, which starts the initiation of a privilege

mode exception. There are two differences: (1) Vector is loaded with x01, since

the starting address of the service routine for the illegal opcode exception is in

x0101. (2) In the case of the privilege mode exception, we know the program is

in User mode when the processor attempts to execute the RTI instruction. In the

case of an illegal opcode, the processor can be in either mode, so from state 13

the processor goes to state 37 or state 45, depending on whether the program is

executing in Supervisor mode or User mode when the illegal opcode instruction

is encountered.

Like state 44, the priority of the running program is not changed, since the

urgency of handling the exception is the same as the urgency of executing the

program that contains it. Like state 49, state 13 tests the privilege mode of the

program that contains the illegal opcode, since if the currently executing pro-

gram is in User mode, the stack pointers need to be switched as described in

Section C.7.1. Like state 49, the processor then microbranches either to state 37

if the stack pointer is already pointing to the supervisor stack, or to state 45 if the

stack pointers have to be switched. From there, the initiating sequence continues

in states 37, 41, 43, etc., identical to what happens when an interrupt is initiated

(Section C.7.1) or a privilege mode exception is initiated (Section C.7.3.1). The

PSR and PC are pushed onto the supervisor stack and the starting address of the

service routine is loaded into the PC, completing the initiation of the exception.

C.7.3.3 Access Control Violation (ACV) Exception

An Access Control Violation (ACV) exception occurs if the processor attempts

to access privileged memory while operating in User mode. The state machine

checks for this in every case where the processor accesses memory, that is, in

states 17, 19, 23, 33, and 35. If an ACV violation occurs, the next state is respec-

tively states 56, 61, 48, 60, or 57 (see Figure C.2). In all five states, the processor

loads Table with x01, Vector with x02, MDR with the PSR, sets PSR[15] to 0,

exactly like state 44, with one exception. Vector is set to x02 since the starting

address of the ACV exception service routine is in memory location x0102. Pro-

cessing continues exactly like in state 44, moving first to state 45 to switch to the

system stack, and then pushing PSR and PC onto the stack and loading the PC

with the starting address of the service routine.

C.8 Control Store
Figure C.9 completes our microprogrammed implementation of the LC-3. It

shows the contents of each location of the control store, corresponding to the

52 control signals required by each state of the state machine. We have left the

exact entries blank to allow you, the reader, the joy of filling in the required signals

yourself. The solution is available from your instructor.
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111100 (State 60)
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111110 (State 62)
111111 (State 63)
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Figure C.9 Specification of the control store.


