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1. Let ρ be an arbitrary 2-qubit density operator. Suppose we perform a projec-
tive measurement of the second qubit in the computational basis. Let ρ′ be the
density matrix which would be assigned to the system after the measurement
by an observer who did not learn the measurement result. Prove that the
reduced density matrix for the first qubit is not affected by the measurement,
i.e.,

tr2(ρ
′) = tr2(ρ).

Answer:
Let P0 = |0⟩ ⟨0|2, P1 = |1⟩ ⟨1|2 be the projectors of the second qubit, then

ρ′ = P0ρP0 + P1ρP1.

Note that a 2-qubit density operator can be written as

ρ =
1

4
(I ⊗ I + r⃗ · σ⃗ ⊗ I + I ⊗ s⃗ · σ⃗ +

∑
i,j

tijσi ⊗ σj).

Thus,

ρ′ =
1

4
(I⊗I+ r⃗ · σ⃗⊗I+I⊗ [P0(s⃗ · σ⃗)P0+P1(s⃗ · σ⃗)P1]+

∑
i,j

tijσi⊗ [P0σjP0+P1σjP1]).

For instance, the contribution of the last term to the reduced density matrix
is

σi ⊗ tr[P0σjP0 + P1σjP1] = σi ⊗ tr[σjP0 + σjP1] = σi ⊗ tr(σj),
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where we used cyclic property of trace, P 2
0 = P0, P

2
1 = P1 and P0 + P1 = I.

Similarly for the rest. Therefore, tr2(ρ′) = tr2(ρ) =
1
2(I + r⃗ · σ⃗).

2. Suppose we have a single qubit operator U with eigenvalues ±1, so that U is
both Hermitian and unitary, so it can be regarded both as an observable and
a quantum gate. Suppose we wish to measure the observable U . That is, we
desire to obtain a measurement result indicating one of the two eigenvalues,
and leaving a post-measurement state which is the corresponding eigenvector.
Show that the following circuit implements a measurement of U .

Answer:
The state after the second Hadamard is

1√
2
|0⟩

(
|ψin⟩+ U |ψin⟩√

2

)
+

1√
2
|1⟩

(
|ψin⟩ − U |ψin⟩√

2

)
.

If the first qubit is projected to |0⟩, the second qubit becomes |ψout⟩ = (|ψin⟩+
U |ψin⟩)/

√
2 ∝ P+ |ψin⟩, where P+ = (I + U)/2 is the projector to the positive

eigenspace of U . If the first qubit is projected to |1⟩, the second qubit becomes
|ψout⟩ = (|ψin⟩+U |ψin⟩)/

√
2 ∝ P− |ψin⟩, where P− = (I−U)/2 is the projector to

the negative eigenspace of U . Therefore, the measurement results of the first
qubit indicates one of the two eigenvalues, and leaves |ψout⟩ the corresponding
eigenvector.

3. Please construct the quantum SWAP gate to swap two qubits using the C-
NOT gate.

Answer:
The circuit swapping two qubits is as following:
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To see that this circuit accomplishes the swap operation, note that the se-
quence of gates has the following sequence of effects on a computational basis
state |a, b⟩,

where all additions are done modulo 2.

4. Please design a quantum circuit which converts the state |00⟩, |01⟩, |10⟩, |11⟩
into four Bell states.

Answer:
The quantum circuit to create Bell state is as following:

The proof is omitted.

5. Consider the following three-qubit quantum circuit, in which |χ⟩ and |ϕ⟩ are
arbitrary qubit states:
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1.) Give the intermediate states of the circuit, |ψ0⟩, |ψ1⟩, |ψ2⟩, |ψ3⟩.

2.) If the measurement result is zero, what is the state of the bottom two
qubits?

3.) If ⟨χ|ϕ⟩ = α, with what probability is the measurement result zero?

Answer:

1.)

|ψ0⟩ = |0⟩|χ⟩|ϕ⟩,

|ψ1⟩ =
1√
2
(|0⟩+ |1⟩)|χ⟩|ϕ⟩,

|ψ2⟩ =
1√
2
|0⟩|χ⟩|ϕ⟩+ 1√

2
|1⟩|ϕ⟩|χ⟩,

|ψ3⟩ =
1

2
|0⟩(|χ⟩|ϕ⟩+ |ϕ⟩|χ⟩) + 1

2
|1⟩(|χ⟩|ϕ⟩ − |ϕ⟩|χ⟩).

2.)

|χ⟩|ϕ⟩+ |ϕ⟩|χ⟩√
2(1 + |⟨χ|ϕ⟩|2)

3.) The measurement is going to result in 0 with probability

1

4
(⟨χ|⟨ϕ|+ ⟨ϕ|⟨χ|)(|χ⟩|ϕ⟩+ |ϕ⟩|χ⟩) = 1 + |α|2

2
.

6. Verify that the following circuit is the appropriate encoder/decoder circuit for
the 3 qubit phase flip code. In other words, exhibit a measurement on the two
ancillae in the circuit’s output |ψ⟩ that will detect whether a phase flip error
occurred on one of the three qubits.
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Answer:
The phase flip coder/decoder circuit is equivalent to

Thus, if the noise is Z1, then the facts H2 = I and HZH = X simplify the
circuit to

So, we can have

we see an error detection procedure is to measure the two ancillae and an error
correction procedure is to apply a bit flip to the first qubit if the ancillae are
in the state |1⟩2 ⊗ |1⟩3 and then, in all cases where a phase flip has occurred,
throw out both ancillae and replace them with fresh ancillae initialized in the
state |0⟩2 ⊗ |0⟩3.

7. Please draw the quantum circuit of Deutsch algorithm, and analysis how it
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works.

Answer: Please read page 58-61 of lecture “QIP2022chapt_6_Kai Chen.pdf”
for reference.

8. Please write down the DiVincenzo criterion that quantum computer imple-
mentation must satisfy.

Answer:

(1) Scalability: A scalable physical system with well characterized parts,
usually qubits.

(2) Initialization: The ability to initialize the system in a simple fiducial
state.

(3) Control: The ability to control the state of the computer using sequences
of elementary universal gates.

(4) Stability: Decoherence times much longer than gate times, together with
the ability to suppress decoherence through error correction and fault-
tolerant computation.

(5) Measurement:The ability to read out the state of the computer in a
convenient product basis.

9. Let |ψ⟩ = a|0⟩ + b|1⟩ and consider the following circuit. What is the output
state of the top qubit?

Answer:
Classical control operation after measurement is equivalent to quantum control
operation before measurement, hence the circuit is equivalent to
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Control-Z operation is symmetric between control bit and target bit, hence
the circuit is equivalent to

Commuting control-Z through Hadamard we get

Three control-nots with alternating control and target qubit gives swap gates,
therefore the circuit is equivalent to

which is equal to
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The control-not operation does not change the state as it has |0⟩ as control
qubit, therefore it is easy to see that the output qubit on the top line is

|ϕ⟩ = H|ψ⟩ = a+ b√
2
|0⟩+ a− b√

2
|1⟩.

10. Evaluate the output of the following quantum circuit.

Answer:
The circuit’s input state is

|ψin⟩AB = |00⟩.

After the first gate, the state is

|ψ1⟩AB = [exp(
−iπσyA

4
)⊗ IB]|ψin⟩AB

= [(cos(
π

4
)IA − i sin(

π

4
)σyA)⊗ IB]|00⟩

=
1√
2
(|00⟩+ |10⟩).

After the second and final gate, the state is

|ψout⟩AB = UCNOT |ψ1⟩AB

=
1√
2
(|00⟩+ |11⟩).


