Shared-Variable Concurrency

Xinyu Feng
University of Science and Technology of China

12/17/2013

Parallel Composition (or Concurrency Composition)

Syntax:

$$
(\text { comm }) c::=\ldots\left|c_{0} \| c_{1}\right| \ldots
$$

Note we allow nested parallel composition, e.g., $\left(c_{0} ;\left(c_{1} \| c_{2}\right)\right) \| c_{3}$.

Operational Semantics:

$$
\begin{array}{lc}
\frac{\left(c_{0}, \sigma\right) \longrightarrow\left(c_{0}^{\prime}, \sigma^{\prime}\right)}{\left(c_{0} \| c_{1}, \sigma\right) \longrightarrow\left(c_{0}^{\prime} \| c_{1}, \sigma^{\prime}\right)} & \frac{\left(c_{1}, \sigma\right) \longrightarrow\left(c_{1}^{\prime}, \sigma^{\prime}\right)}{\left(c_{0} \| c_{1}, \sigma\right) \longrightarrow\left(c_{0} \| c_{1}^{\prime}, \sigma^{\prime}\right)} \\
\text { Skip \| Skip, } \sigma) \longrightarrow(\text { Skip, } \sigma) & \frac{\left(c_{i}, \sigma\right) \longrightarrow\left(\text { abort, } \sigma^{\prime}\right), \quad i \in\{0,1\}}{\left(c_{0} \| c_{1}, \sigma\right) \longrightarrow\left(\text { abort, } \sigma^{\prime}\right)}
\end{array}
$$

We have to use small-step semantics (instead of big-step semantics) to model concurrency.

Interference

Example:

$$
\begin{aligned}
& y:=x+1 ; \quad\left\|\quad \begin{array}{l}
y:=x+1 \\
x:=y+1
\end{array} \quad\right\| \quad=x+1
\end{aligned}
$$

Suppose initially $\sigma x=\sigma y=0$. What are the possible results?
(1) $y=1, x=2 ;(2) y=1, x=3 ;(3) y=3, x=3 ;(4) y=2, x=3$

Two commands c_{0} and c_{1} are said to interfere if:

$$
\left(f v\left(c_{0}\right) \cap f a\left(c_{1}\right)\right) \cup\left(f v\left(c_{1}\right) \cap f a\left(c_{0}\right)\right) \neq \emptyset
$$

If c_{0} and c_{1} interfere, we say there are race conditions (or races) in $c_{0} \| c_{1}$.
When c_{0} and c_{1} do not interfere, nor terminate by failure, the concurrent composition $c_{0} \| c_{1}$ is determinate.

Another Example

A benign race:

$$
k:=-1 ;
$$

(newvar $i:=0$ in while $i \leq n \wedge k=-1$ do if $f(i) \geq 0$ then $k:=i$ else $i:=i+2$
$\|$ newvar $i:=1$ in while $i \leq n \wedge k=-1$ do if $f(i) \geq 0$ then $k:=i$ else $i:=i+2$)

A problematic version:
$k:=-1 ;$
(newvar $i:=0$ in while $i \leq n \wedge k=-1$ do if $f(i) \geq 0$ then $\operatorname{print}(i) ; \operatorname{print}(f(i))$ else $i:=i+2$
|| newvar $i:=1$ in while $i \leq n \wedge k=-1$ do if $f(i) \geq 0$ then $\operatorname{print}(i) ; \operatorname{print}(f(i))$ else $i:=i+2)$

Conditional Critical Regions

We could use a critical region to achieve mutual exclusive access of shared variables.

Syntax:

$$
(\text { comm }) c::=\text { await } b \text { then } \hat{c}
$$

where \hat{c} is a sequential command (a command with no await and parallel composition).

Semantics:

$$
\begin{gathered}
\frac{\llbracket b \rrbracket_{\text {boolexp }} \sigma=\text { true } \quad(\hat{c}, \sigma) \longrightarrow^{*}\left(\text { Skip }, \sigma^{\prime}\right)}{(\text { await } b \text { then } \hat{c}, \sigma) \longrightarrow\left(\text { Skip, } \sigma^{\prime}\right)} \\
\llbracket b \rrbracket_{\text {boolexp }} \sigma=\text { false } \\
(\text { await } b \text { then } \hat{c}, \sigma) \longrightarrow(\text { Skip } ; \text { await } b \text { then } \hat{c}, \sigma)
\end{gathered}
$$

The second rule gives us a "busy-waiting" semantics. If we eliminate that rule, the thread will be blocked when the condition does not hold.

Achieving Mutual Exclusion

$k:=-1$;
(newvar $i:=0$ in while $i \leq n \wedge k=-1$ do
(if $f(i) \geq 0$ then (await busy $=0$ then busy :=1); print $(i) ; \operatorname{print}(f(i)) ;$ busy $:=0$ else $i:=i+2$)
$\|$ newvar $i:=1$ in while $i \leq n \wedge k=-1$ do
(if $f(i) \geq 0$ then (await busy $=0$ then busy :=1); print $(i) ; \operatorname{print}(f(i)) ;$ busy $:=0$ else $i:=i+2)$)

Atomic Blocks

A syntactic sugar:

$$
\text { atomic }\{c\} \stackrel{\text { def }}{=} \text { await true then } c
$$

We may also use the short-hand notation $\langle c\rangle$.
Semantics:

$$
\frac{(c, \sigma) \longrightarrow^{*}\left(\text { Skip }, \sigma^{\prime}\right)}{(\text { atomic }\{c\}, \sigma) \longrightarrow\left(\text { Skip }, \sigma^{\prime}\right)}
$$

It gives the programmer control over the size of atomic actions.
Reynolds uses crit c instead of atomic $\{c\}$.
await busy0 $=0$ then busy0 $:=1$;
await busy1 $=0$
then busy1 := 1;

$$
\begin{aligned}
& \text { busy0 }:=0 ; \\
& \text { busy } 1:=0 ;
\end{aligned}
$$

await busy $1=0$
then busy1 := 1;
await busy0 $=0$
then busy0 $:=1$;

$$
\begin{aligned}
& \text { busy0 }:=0 ; \\
& \text { busy1 }:=0 ;
\end{aligned}
$$

$$
k:=-1 ;
$$

$$
\text { (newvar } i:=0 \text { in while } k=-1 \text { do }
$$

$$
\text { if } f(i) \geq 0 \text { then } k:=i \text { else } i:=i+2
$$

$\|$ newvar $i:=1$ in while $k=-1$ do if $f(i) \geq 0$ then $k:=i$ else $i:=i+2$)
Suppose $f(i)<0$ for all even number i. Then there's an infinite execution in the form of:
$\ldots \longrightarrow\left(c_{1} \| c^{\prime}, \sigma_{1}\right) \longrightarrow\left(c_{2} \| c^{\prime}, \sigma_{2}\right) \longrightarrow \ldots \longrightarrow\left(c_{n} \| c^{\prime}, \sigma_{n}\right) \longrightarrow \ldots$
An execution of concurrent processes is unfair if it does not terminate but, after some finite number of steps, there is an unterminated process that never makes a transition.

A fair execution of the following program would always terminate: newvar $y:=0$ in $(x:=0 ;(($ while $y=0$ do $x:=x+1) \| y:=1))$

Stronger fairness is needed to rule out infinite execution of the following program:

```
newvar \(y:=0\) in
    ( \(x\) := 0;
    \(((\) while \(y=0\) do \(x:=1-x) \|(\) await \(x=1\) then \(y:=1))\)
)
```


Trace Semantics

Can we give a denotational semantics to concurrent programs?
The domain-based approach is complex. Here we use transition traces to model the execution of programs.

Execution of $\left(c_{0}, \sigma_{0}\right)$ in a concurrent setting:

$$
\left(c_{0}, \sigma_{0}\right) \longrightarrow\left(c_{1}, \sigma_{0}^{\prime}\right),\left(c_{1}, \sigma_{1}\right) \longrightarrow\left(c_{2}, \sigma_{1}^{\prime}\right), \ldots,\left(c_{n-1}, \sigma_{n-1}\right) \longrightarrow\left(\text { Skip, } \sigma_{n-1}^{\prime}\right)
$$

The gap between σ_{i}^{\prime} and σ_{i+1} reflects the intervention of the environment (other threads).

It could be infinite if $\left(c_{0}, \sigma_{0}\right)$ does not terminate:

$$
\left(c_{0}, \sigma_{0}\right) \longrightarrow\left(c_{1}, \sigma_{1}\right),\left(c_{1}, \sigma_{1}^{\prime}\right) \longrightarrow\left(c_{2}, \sigma_{2}\right), \ldots
$$

We omit the commands to get a transition trace:
or

$$
\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots,\left(\sigma_{n-1}, \sigma_{n-1}^{\prime}\right)
$$

$$
\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots
$$

Interference-Free Traces

A trace $\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots,\left(\sigma_{n-1}, \sigma_{n-1}^{\prime}\right)$ (or $\left.\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots\right)$ is said to be Interference-Free iff $\forall i . \sigma_{i}^{\prime}=\sigma_{i+1}$.

Operations over Traces

We use τ to represent individual transition traces, and \mathcal{T} for a set of traces.

$$
\begin{array}{ll}
\epsilon & \quad \text { empty trace } \\
\tau_{1}+\tau_{2} & \stackrel{\text { def }}{=} \text { concatenation of } \tau_{1} \text { and } \tau_{2} \\
\tau_{1} \text { if } \tau_{1} \text { is infinite. } \\
\mathcal{T}_{1} ; \mathcal{T}_{2} \stackrel{\text { def }}{=}\left\{\tau_{1}++\tau_{2} \mid \tau_{1} \in \mathcal{T}_{1} \text { and } \tau_{2} \in \mathcal{T}_{2}\right\} \\
\mathcal{T}^{0} \quad \stackrel{\text { def }}{=}\{\epsilon\} \\
\mathcal{T}^{n+1} \quad \stackrel{\text { def }}{=} \mathcal{T} ; \mathcal{T}^{n} \\
\mathcal{T}^{*} \quad \stackrel{\text { def }}{=} \bigcup_{n=0}^{\infty} \mathcal{T}^{n} \\
\mathcal{T}^{\omega} \quad \stackrel{\text { def }}{=}\left\{\tau_{0}+\tau_{1}+\ldots \mid \tau_{i} \in \mathcal{T}\right\}
\end{array}
$$

Note the difference between \mathcal{T}^{*} and \mathcal{T}^{ω}.

Trace Semantics — First Try

$\mathcal{T} \llbracket x:=e \rrbracket$
$=\left\{\left(\sigma, \sigma^{\prime}\right) \mid \sigma^{\prime}=\sigma\left\{x \leadsto \llbracket e \rrbracket_{\text {intexp }} \sigma\right\}\right\}$
$=\{(\sigma, \sigma) \mid \sigma \in \Sigma\}$
$=\mathcal{T} \llbracket c_{0} \rrbracket ; \mathcal{T} \llbracket c_{1} \rrbracket$
$\mathcal{T} \llbracket c_{0} ; c_{1} \rrbracket$
$\mathcal{T} \llbracket$ if b then c_{1} else $c_{2} \rrbracket=\left(\mathcal{B} \llbracket b \rrbracket ; \mathcal{T} \llbracket c_{1} \rrbracket\right) \cup\left(\mathcal{B} \llbracket \neg b \rrbracket ; \mathcal{T} \llbracket c_{2} \rrbracket\right)$ where $\mathcal{B} \llbracket b \rrbracket=\left\{(\sigma, \sigma) \mid \llbracket b \rrbracket_{\text {boolexp }} \sigma=\right.$ true $\}$
$\mathcal{T} \llbracket$ while b do $c \rrbracket \quad=\left((\mathcal{B} \llbracket b \rrbracket ; \mathcal{T} \llbracket c \rrbracket)^{*} ; \mathcal{B} \llbracket \neg b \rrbracket\right) \cup(\mathcal{B} \llbracket b \rrbracket ; \mathcal{T} \llbracket c \rrbracket)^{\omega}$

Trace Semantics (cont’d)

How to give semantics to newvarx :=e in c ?
Definition: local-global $(x, e, \tau, \hat{\tau})$ iff the following are true (suppose $\tau=\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots$ and $\left.\hat{\tau}=\left(\hat{\sigma_{0}}, \hat{\sigma_{0}^{\prime}}\right),\left(\hat{\sigma_{1}}, \hat{\sigma_{1}^{\prime}}\right), \ldots\right)$:

- they have the same length;
- for all $x^{\prime} \neq x, \sigma_{i} x^{\prime}=\hat{\sigma}_{i} x^{\prime}$ and $\sigma_{i}^{\prime} x^{\prime}=\hat{\sigma_{i}^{\prime}} x^{\prime}$;
- for all $i, \sigma_{i+1} x=\sigma_{i}^{\prime} x$;
- for all $i, \hat{\sigma}_{i} x=\hat{\sigma}_{i}^{\prime} x$;
- $\sigma_{0} x=\llbracket e \rrbracket_{\text {intexp }} \hat{\sigma_{0}}$.
$\mathcal{T} \llbracket$ newvarx $:=e$ in $c \rrbracket=\{\hat{\tau} \mid \tau \in \mathcal{T} \llbracket c \rrbracket$ and local-global $(x, e, \tau, \hat{\tau})\}$

We view a trace τ as a function mapping indices to the corresponding transitions.

Definition: fair-merge $\left(\tau_{1}, \tau_{2}, \tau\right)$ iff there exist functions
$f \in \operatorname{dom}\left(\tau_{1}\right) \rightarrow \operatorname{dom}(\tau)$ and $g \in \operatorname{dom}\left(\tau_{2}\right) \rightarrow \operatorname{dom}(\tau)$ such that the following are true:

- f and g are monotone injections:

$$
i<j \Longrightarrow(f i<f j) \wedge(g i<g j)
$$

- $\operatorname{ran}(f) \cap \operatorname{ran}(g)=\emptyset$ and $\operatorname{ran}(f) \cup \operatorname{ran}(g)=\operatorname{dom}(\tau)$;
- $\forall i . \tau_{1}(i)=\tau(f i) \wedge \tau_{2}(i)=\tau(g i)$

Then $\mathcal{T}_{\text {fair }} \llbracket c_{1} \| c_{2} \rrbracket=$
$\left\{\tau \mid \exists \tau_{1} \in \mathcal{T}_{\text {fair }} \llbracket c_{1} \rrbracket, \tau_{2} \in \mathcal{T}_{\text {fair }} \llbracket c_{2} \rrbracket\right.$. fair-merge $\left.\left(\tau_{1}, \tau_{2}, \tau\right)\right\}$

Unfair Interleaving

Definition: unfair-merge $\left(\tau_{1}, \tau_{2}, \tau\right)$ if one of the following are true:

- fair-merge $\left(\tau_{1}, \tau_{2}, \tau\right)$
- τ_{1} is infinite and there exist τ_{2}^{\prime} and $\tau_{2}^{\prime \prime}$ such that $\tau_{2}=\tau_{2}^{\prime}+\tau_{2}^{\prime \prime}$ and fair-merge $\left(\tau_{1}, \tau_{2}^{\prime}, \tau\right)$
- τ_{2} is infinite, and there exist τ_{1}^{\prime} and $\tau_{1}^{\prime \prime}$ such that $\tau_{1}=\tau_{1}^{\prime}++\tau_{1}^{\prime \prime}$ and fair-merge $\left(\tau_{1}^{\prime}, \tau_{2}, \tau\right)$
$\mathcal{T}_{\text {unfair }}$ I $c_{1} \| c_{2} \rrbracket$
$=\left\{\tau \mid \exists \tau_{1} \in \mathcal{T}_{\text {unfair }} \llbracket c_{1} \rrbracket, \tau_{2} \in \mathcal{T}_{\text {unfair }} \llbracket c_{2} \rrbracket\right.$. unfair-merge $\left.\left(\tau_{1}, \tau_{2}, \tau\right)\right\}$

Trace Semantics for await

$\mathcal{T} \llbracket$ await b then $c \rrbracket=$

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{B} \llbracket \neg b \rrbracket ; \mathcal{T} \llbracket \mathbf{S k i p} \rrbracket)^{*} ; \\
\left\{\left(\sigma, \sigma^{\prime}\right) \mid \llbracket b \rrbracket_{\text {boolexp }} \sigma=\right.\text { true } \\
\quad \text { and there exist } \sigma_{0}^{\prime}, \sigma_{1}, \sigma_{1}^{\prime}, \ldots, \sigma_{n} \text { such that } \\
\quad\left(\sigma, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots,\left(\sigma_{n}, \sigma^{\prime}\right) \in \mathcal{T} \llbracket c \rrbracket \\
\text { and it is Interference-Free. }\}
\end{array} \\
& \cup(\mathcal{B} \llbracket \neg b \rrbracket ; \mathcal{T} \llbracket \text { Skip } \rrbracket)^{\omega}
\end{aligned}
$$

Trace Semantics (cont’d)

The semantics is equivalent to the following:

$$
\begin{aligned}
& \mathcal{T} \llbracket c \| \rrbracket \\
& \left\{\left(\sigma_{0}, \sigma_{0}^{\prime}\right), \ldots,\left(\sigma_{n}, \sigma_{n}^{\prime}\right) \mid\right. \\
& \text { there exist } c_{0}, \ldots, c_{n} \text { such that } c_{0}=c, \\
& \forall i \in[0, n-1] .\left(c_{i}, \sigma_{i}\right) \longrightarrow\left(c_{i+1}, \sigma_{i}^{\prime}\right), \\
& \text { and } \left.\left.\left(c_{n}, \sigma_{n}\right) \xrightarrow{(S k i p}, \sigma_{n}^{\prime}\right)\right\} \\
& \cup\left\{\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots \mid\right. \\
& \text { there exist } c_{0}, c_{1}, \ldots \text { such that } c_{0}=c, \\
& \left.\quad \text { and for all } i,\left(c_{i}, \sigma_{i}\right) \longrightarrow\left(c_{i+1}, \sigma_{i}^{\prime}\right)\right\}
\end{aligned}
$$

Problem with This Semantics

The trace semantics we just defined is not abstract enough.
It distinguishes the following programs (which should be viewed equivalent):

$$
\begin{aligned}
& x:=x+1 \\
& x:=x+1 ; \text { Skip }
\end{aligned}
$$

$$
\text { Skip ; } x:=x+1
$$

Also consider the following two programs:

$$
\begin{aligned}
& x:=x+1 ; x:=x+1 \\
& (x:=x+1 ; x:=x+1) \text { choice } x:=x+2
\end{aligned}
$$

Stuttering and Mumbling

$$
\begin{array}{cc}
\overline{\tau<\tau} & \overline{\tau<(\sigma, \sigma), \tau} \\
\frac{\tau<\tau^{\prime} \tau^{\prime}<\tau^{\prime \prime}}{\tau<\tau^{\prime \prime}} & \overline{\left(\sigma, \sigma^{\prime}\right),\left(\sigma^{\prime}, \sigma^{\prime \prime}\right), \tau<\left(\sigma, \sigma^{\prime \prime}\right), \tau} \\
& \frac{\tau<\tau^{\prime}}{\left(\sigma, \sigma^{\prime}\right), \tau<\left(\sigma, \sigma^{\prime}\right), \tau^{\prime}} \\
\mathcal{T}^{\dagger} \stackrel{\text { def }}{=}\left\{\tau \mid \tau \in \mathcal{T} \text { or } \exists \tau^{\prime} \in \mathcal{T} \cdot \tau^{\prime}<\tau\right\} \\
\mathcal{T}^{*} \llbracket c \rrbracket \stackrel{\text { def }}{=}(\mathcal{T} \llbracket c \rrbracket)^{\dagger}
\end{array}
$$

Stuttering and Mumbling (cont'd)

The new semantics $\mathcal{T}^{*} \llbracket c \rrbracket$ is equivalent to the following:
$\mathcal{T} \llbracket c \rrbracket \stackrel{\text { def }}{=}$

$$
\left\{\left(\sigma_{0}, \sigma_{0}^{\prime}\right), \ldots,\left(\sigma_{n}, \sigma_{n}^{\prime}\right) \mid\right.
$$

there exist c_{0}, \ldots, c_{n} such that $c_{0}=c$,
$\forall i \in[0, n-1] .\left(c_{i}, \sigma_{i}\right) \longrightarrow^{*}\left(c_{i+1}, \sigma_{i}^{\prime}\right)$,
and $\left(c_{n}, \sigma_{n}\right) \longrightarrow^{*}\left(\right.$ Skip, $\left.\left.\sigma_{n}^{\prime}\right)\right\}$
$\cup\left\{\left(\sigma_{0}, \sigma_{0}^{\prime}\right),\left(\sigma_{1}, \sigma_{1}^{\prime}\right), \ldots \mid\right.$
there exist c_{0}, c_{1}, \ldots such that $c_{0}=c$,
$\forall i .\left(c_{i}, \sigma_{i}\right) \longrightarrow{ }^{*}\left(c_{i+1}, \sigma_{i}^{\prime}\right)$,
and for infinitely many $\left.i \geq 0,\left(c_{i}, \sigma_{i}\right) \longrightarrow^{+}\left(c_{i+1}, \sigma_{i}^{\prime}\right)\right\}$

