Shared-Variable Concurrency

Xinyu Feng

University of Science and Technology of China

12/17/2013

Xinyu Feng Shared-Variable Concurrency

Parallel Composition (or Concurrency Composition)

Syntax:
(comm)c:=...|cllci|...

Note we allow nested parallel composition, e.g.,
(co;(c1 1l c2)) Il cs.
Operational Semantics:

(co, o) — (¢, o) (¢, o) — (¢, o)

(collcr, o) —(cgllcr, o) (collcr, o) — (collcg, o)

(ci,) — (abort, o’), i€ {0,1}
(Skip || Skip, o) — (Skip, o) (co Il €1, o) — (abort, o)

We have to use small-step semantics (instead of big-step
semantics) to model concurrency.

Xinyu Feng Shared-Variable Concurrency

Interference

Example:

y=x+1;
x:=y+1

yi=x+1;
X:=x+1

Suppose initially oo x = oy = 0. What are the possible results?
My=1,x=2,2)y=1,x=3; (B)y=3x=3; (4)y=2,x=3
Two commands ¢g and ¢4 are said to interfere if:

(fv(co) N fa(eq)) U (fv(cr) N fa(co)) # 0

If co and ¢y interfere, we say there are race conditions (or races) in
Co |l C1.

When ¢y and ¢y do not interfere, nor terminate by failure, the
concurrent composition ¢ || ¢1 is determinate.

Xinyu Feng Shared-Variable Concurrency

Another Example

A benign race:
k .= -1;

(newvar j := 0 in whilei<nA k =-1do
if f(i) >0thenk :=ielsei:=i+2

|| newvar i:=1inwhilei<nAk=-1do
if f(i) >0thenk :=ielsei:=i+2)

A problematic version:
k:=-1;

(newvar j := 0 in whilei<nAk =-1do
if f(i) > O then print(i) ; print(f(i)) else i :== i + 2

|| newvari:=1inwhilei<nAk=-1do
if f(i) > O then print(i) ; print(f(/)) else i := i + 2)

Xinyu Feng Shared-Variable Concurrency

Conditional Critical Regions

We could use a critical region to achieve mutual exclusive access
of shared variables.

Syntax:
(comm) c¢ ::= await b then C

where ¢ is a sequential command (a command with no await and
parallel composition).

Semantics:
[b]]boo[expa' = true (6, O-) —>* (Skip, O-,)
(await b then ¢, o) — (Skip, o)

[[b]]boolexp o = false
(await b then ¢, o) — (Skip ; await b then ¢, o)

The second rule gives us a “busy-waiting” semantics. If we
eliminate that rule, the thread will be blocked when the condition
does not hold.

Xinyu Feng Shared-Variable Concurrency

Achieving Mutual Exclusion

k = -1;
(newvar j := 0 in whilei<nAk =-1do
(if f(i) > 0 then (await busy = O then busy := 1);
print(i) ; print(f(i)) ; busy := 0
elsei:=i+2)
|| newvari:=1inwhilei<nAk=-1do
(if f(i) > 0 then (await busy = O then busy := 1);
print(i) ; print(f(i)) ; busy := 0
elsei:=i+2))

Xinyu Feng Shared-Variable Concurrency

Atomic Blocks

A syntactic sugar:

atomici{c} def await true then ¢

We may also use the short-hand notation (c).

Semantics:
(c, o) —* (Skip, o)

(atomic{c}, o) — (Skip,o”)

It gives the programmer control over the size of atomic actions.

Reynolds uses crit ¢ instead of atomic{c}.

Xinyu Feng Shared-Variable Concurrency

Deadlock

await busy0 = 0
then busy0 := 1;

await busy1 =0
then busy1 :=1;

busyO0 := 0;
busy1 := 0;

await busy1 =0
then busy1 .= 1;

await busy0 =0
then busy0 := 1;

busyO0 := 0;
busy1 := 0;

Xinyu Feng Shared-Variable Concurrency

Fairness

k = -1;

(newvar j := 0 in while k = -1 do
if f(i) >0thenk :=ielsei:=i+2

|| newvar i := 1 in while kK = —1 do
if f(i) >0thenk :=ielsei:=i+2)

Suppose f(i) < 0 for all even number i. Then there’s an infinite
execution in the form of:

.— (e llcyoq) > (el ¢’o2) — ... — (el Cyop) — ...
An execution of concurrent processes is unfair if it does not

terminate but, after some finite number of steps, there is an
unterminated process that never makes a transition.

Xinyu Feng Shared-Variable Concurrency

Fairness — More Examples

A fair execution of the following program would always terminate:
newvar y :=0in (x := 0;((whiley =0dox:=x+1) ||y :=1))
Stronger fairness is needed to rule out infinite execution of the
following program:
newvar y :=0in
(x :=0;
((whiley =0do x :=1-x) || (await x = 1 then y := 1))

)

Xinyu Feng Shared-Variable Concurrency

Trace Semantics

Can we give a denotational semantics to concurrent programs?
The domain-based approach is complex. Here we use transition
traces to model the execution of programs.

Execution of (cg, 09) in a concurrent setting:
(0090—0) — (C1 90—6)9 (C1, 0-1) -_— (CZ, 0-;), ey (Cn—1, O-I)—‘]) — (Sklp, 0-;-,_1)

The gap between o} and o4 reflects the intervention of the
environment (other threads).

It could be infinite if (cy, 0p) does not terminate:

(co,00) — (c1,01), (€1, 0) — (€2, 02),...

We omit the commands to get a transition trace:

(00,0%). (01.09). ... (On1,074)

or (00,0%), (01, 07%), ...

Xinyu Feng Shared-Variable Concurrency

Interference-Free Traces

A trace (00, 0), (01,0%), ..., (0na,07,4) (Or
(00,0%), (01,0%),...) is said to be Interference-Free iff
Vi.o; = oi.

Xinyu Feng Shared-Variable Concurrency

Operations over Traces

We use T to represent individual transition traces, and 7 for a set
of traces.

€ empty trace

def .
T1+To = concatenation of T4 and 7o
71 if 71 is infinite.

def
T1 ;Tz = {T1-|+T2 | T1 67.1 andrgeTg}

70 Eg
g def T ;7"
T* d;f U 7~n
n=0
g dgf{‘1'0+|-‘l'1+|-...|T,‘€7~}

Note the difference between 7 and 7¢.

Xinyu Feng Shared-Variable Concurrency

Trace Semantics — First Try

Tx :=el = {(0', o) | o =ofx~ [ellintexp O'}}
T [Skip] ={(o,0) | ceX}
Tlco; el =T col; 7lerl

T [[if b then ¢y else c;]| = (Bl[b]; T [ci]) Y (BI-bl; T [ca0)
where B[b]l = {(0,0) | [bllboolexp o = true}

7 [while b do c] = ((8Lb1; TLel)*; Bl-bl) U (BLb]; T Lcl)”

Xinyu Feng Shared-Variable Concurrency

Trace Semantics (cont’d)

How to give semantics to newvarx := e in c?
Definition: local-global(x, e, 7, 7) iff the following are true (suppose
T = (00,0%),(01,0%),... and T = (0°0,0'6), (F1,0%),...):

@ they have the same length;

o forallx’ # x,0ix’ =dix’ and o x’ = a-lf x';

H) Y Sy
o foralli, oy x = o X;
@ foralli,dix = a'le;

@ 09 x = [[ellintexp T0-

7 [newvarx := ein c] = {¥ | T € T[c] and local-global(x, e, 7, %)}

Xinyu Feng Shared-Variable Concurrency

Fair Interleaving

We view a trace 7 as a function mapping indices to the
corresponding transitions.

Definition: fair-merge(t1, 72, 7) iff there exist functions
f € dom(71) — dom(r) and g € dom(r2) — dom(7) such that the
following are true:

@ f and g are monotone injections:
i<j= (fi<fj)A(gi<gj)

@ ran(f) nran(g) = 0 and ran(f) U ran(g) = dom(7);
o Vi.ty(i)=1(fi) A t2(i)=7(g1)

Then Thirlley |l c2ll =

{r | 311 € Trarlcr1]l, 72 € Trarlc2]l. fair-merge(t1, 72, 7)}

Xinyu Feng Shared-Variable Concurrency

Unfair Interleaving

Definition: unfair-merge(t1, 72, 7) if one of the following are true:
@ fair-merge(t1,72,7)
@ 74 is infinite and there exist 7, and 7, such that 7o = 7,+77
and fair-merge(t1, 15, 7)
@ 72 is infinite, and there exist 7} and 7 such that 71 = 7+
and fair-merge(t}, 72, 1)

Tunfair[[c1 || 02]]
= {r | 311 € Tuntairllc1]. 72 € Tunmair[c2]l. unfair-merge(t1, 72, 7)}

Xinyu Feng Shared-Variable Concurrency

Trace Semantics for await

7 [await b then c] =

(BI-b]; T [Skip])*;
{(0,0”) | [bllbooiexp o = true
and there exist 0-6, 01,07, ...,0p such that
(o,03),(01,0%), ..., (on, o) € T el
and it is Interference-Free.}
U(BI[-b]; T [Skip])”

Xinyu Feng Shared-Variable Concurrency

Trace Semantics (cont’d)

The semantics is equivalent to the following:

Tle) &
{(O-Os 0-6)’ ey (O'n, 0-11) |
there exist ¢y, ..., c, such that ¢g = c,
Vie [0, n-— 1]. (C,‘,O’,') — (C,'+1,0';),
and (cp, o) — (Skip, o),)}
Ul(0r0, 0g), (071, 0%), - . |
there exist ¢y, ¢1,... such that ¢ = c,
and for all i, (C,', O',') — (C,'+1 , O';)}

Xinyu Feng Shared-Variable Concurrency

Problem with This Semantics

The trace semantics we just defined is not abstract enough.
It distinguishes the following programs (which should be viewed

equivalent):
X = x+1
x := x+1; Skip
Skip; x := x+1

Also consider the following two programs:

X :=x+1;x:=x+1

(x := x+1;x:=x+1) choice x := x+2

Xinyu Feng Shared-Variable Concurrency

Stuttering and Mumbling

T<T < (0,0),7 (o,0"), (07, 0"),t < (0,0"),T
<1t <1 <7
T<7" (o,0"), 7 < (0,07), 7
Tt dZBf{T|T€TOI’3T’€T.T’<T}
T[] € (TIel)’

Xinyu Feng Shared-Variable Concurrency

Stuttering and Mumbling (cont’d)

The new semantics 7 *[[c] is equivalent to the following:
Tle] &
{(O—O’ 0—6)’ R (O'n, 0-;1) |
there exist ¢y, ..., ¢, such that ¢y = ¢,
Vie [O, n-— 1]. (C,',O',') —* (CF-H’ O';),
and (cp, on) —* (Skip, o))}
Ul(00, 0g)s (071, 0%), - - |
there exist ¢y, ¢y,... such that ¢y = ¢,
Vi. (C,', 0',') —* (C,'+1 , O';),
and for infinitely many i > 0, (¢;, o) — 7 (Ci1, o)}

Xinyu Feng Shared-Variable Concurrency

