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Peculiar Motions and the Local Standard of Rest

The velocity components of stars in the solar neighborhood are traditionally labeled

dR do dz
M="g®="a?=%

Defining the dynamical local standard of rest (dynamical LSR) to be a point that is instantaneously
centered on the Sun and moving in a perfectly circular orbit along the solar circle about the Galactic
center.

IIzsr = 0,058 = O, Zrsr =0

An alternative definition for the LSR known as the kinematic local standard of rest (kinematic LSR)
is based on the average motions of stars in the solar neighborhood.

<II>=0,<0><0),<Z2>=0

The velocity of a star relative to the dynamical LSR is known as the star's peculiar velocity and is
given by

u=IM-T;sg=L,v=0—-0Osp =0 -0, w=2Z—Zsg =2
The average of u, v.and w for all stars in the solar neighborhood, excluding the Sun, is
<u>=0, <v>=Co? =C<u’><0, <w>=0
Why < © >< ©p(< v ><0)?

e The stars inside the Sun's orbit are in the apogalacticon of their elliptical orbits when they
pass through the Sun's neighborhood, so the tangential velocity © is smaller.

e The stars outside the Sun's orbit are in the perigalacticon of their elliptical orbits when they
pass through the Sun's neighborhood, so the tangential velocity © is larger.

e There are more stars inside the Sun's orbit than beyond it.

Why should o, correlate with <v>?
e larger o, wider range of elliptical orbits included, more negative <v >

e smaller o, fewer stars with orbits noncircular, <v>~0

Differential Galactic Rotation and Oort’'s Constants

The relative radial and transverse velocities of a star (at point S) to the Sun (at point O) are,
respectively,

v, = Ocosa — Oysinl

vy = Osina — Oycosl
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FIGURE 22 The geometry of analyzing differential rotation in the Galactic plane. The Sun is
at point O, the center of the Galaxy 1s located at C, and the star is at S, located a distance d from the
Sun. £ is the Galactic longitude of the star at S, and « and g are auxiliary angles. The directions of
motion reflect the clockwise rotation of the Galaxy as viewed from the NGP.

where O, is the orbital velocity of the Sun in the idealized case of perfectly circular motion
(actually the orbital velocity of the LSR) and « is defined in the figure. Defining the angular-
velocity curve to be

_ O(R)
Q(R) = R

the relative radial and transverse velocities become
v, = QRcosa — QyRysin £,
v, = QRsina — QyR cos L.

Now, by referring to the geometry of Fig. 22 and considering the right triangle AOTC,
we find

Rcosa = Rpsiné,
Rsine = Rycost —d.
Substituting these relations into the previous expressions, we have
v, = (2 — Q) Rysin £, (37)
v, = (2 — Q) Rpcosl — Qd. (38)
Equations (37) and (38) are valid as long as the assumption of circular motion is justified.

Oort derived a set of approximate equations for v, and v¢ that are valid only in the region near the
Sun. Defining the Oort constants
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Using the Taylor expansion of Q(R), the difference between Q and Qq, and the approximate value of
Qis

df 1 de 9,
= B =\ =5 lR — 5 ) — = (=24 _
0) (Ro dR IR, R2 )(R— Ro) = ( /Ro)(—dcosl)

O~ QO =A-B
Inserting equations above into Egs. (37) and (38) results in

v, ~ Adsin2l
vy &~ Adcos2l + Bd

Some Equations of Cosmology

I'm going to skip the derivation of these equations here, which takes general relativity to
understand them completely, but the reader should at least know how to derive these equations
from Newtonian physics.

e Friedmann equation, Hubble parameter and density parameter:

2, 1 dR(t) , 8nG ke 8nG
() = (g ) = 3P0~ Foarg = ~5Pl0)
_ plt) _ 8nGp(t) ec?
= = 3w~ BRoR
where p(t) = pn(t) + pr(t) + pr, pa = o= = const
Ac?
Q(t) = Qm(t) + Qr(t) + QA(t)a QA(t) = 3H—2(t)
e Fluid equation:
dR(t)p(t) _ P(t) d(R(t))
dt c? dt
where P(t) = P, (t) + P.(t) + Pa
e Equation of state:
P(t) = wp(t)c?
where w, = 0,w, = %,wA =-1
e Acceleration equation:
T _ 2 oy + 2y mey
e Deceleration parameter:
B R(t)  d*R(t) 1 d*R(t) 1 o
10 ="GrRuyj@z @&~ RoEN a2 3wl

e Cosmological redshift:
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e Density and Hubble parameter as a function of redshift z:

p(2) = po(1 + 2)30+)
H?(2) = HZ[Qmo(1+ 2)® + Quo(1 + 2)* + Qa0 + (1 — Qo) (1 + 2)?]

where the subscript 0 represents the present value.

®* The constant k determines the ultimate fate of the universe:

* If k > 0, the total energy of the shell is negative, and the universe is bounded, or
closed. In this case, the expansion will someday halt and reverse itself.

» If k < 0, the total energy of the shell is positive, and the universe is unbounded, or
open. In this case, the expansion will continue forever.

» If k = 0, the total energy of the shell is zero, and the universe is flat, neither open
nor closed. In this case, the expansion will continue to slow down, coming to a halt
only as t — o0 and the universe is infinitely dispersed.

Transition from the Radiation Era to the Matter Era to the A
Era

The behavior of the scale factor R(t) for a flat universe can be found by setting k = 0 in the
Friedmann equation.

Radiation era when t << t, n: R(t) o t/2
The transition from the radiation era to the matter era occurred when the scale factor satisfied
Pr = pm — Ry ~ 3.05 x 1074, 2, ~ 3270,t,,, =~ 5.52 x 10%yr
Matter era when t, ,, << t << ty: R(t) oc t2/3
The acceleration of the universe changed sign (from negative to positive) when the scale factor was
Riceer = 0.57, 2geeer = 0.76, tgecer = 7.08Gyr
The transition from the matter era to the A era occurred when the scale factor satisfied
Pm = pr — Rpp = 0.72, 2, p = 0.39,t A =~ 9.55Gyr

A erawhen t>>tyy: R(t) o< eHotv/ Qo
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FIGURE 19 Alogarithmic graph of the scale factor R as a function of time. During the radiation
era, R oc t'/2; during the matter era, R oc t*/3; and during the A era, R grows exponentially.

Distances to the Most Remote Objects in the Universe

The Robertson-Walker metric determines the spacetime interval between two events in an
isotropic, homogeneous universes.

2

w
ds® = c*dt* — R*(t)(———— + @w’df® + w’sin’0d¢*)

1 — kw?

With ds = 0 for a light ray, and d6 = do = 0 for a radial path traveled from the point of the light's
emission at comoving coordinate w, to its arrival at Earth at @ = 0, taking the negative square

root (so w decreases with increasing time) gives

—cdt dw
R(t) V1 — kw?
to odt @, de -« for Qo =1,thenk =0

= —— = sin~ we -+ for Qo > 1,then k >0
i R() 0 V1—kw? sinh 1w, -+ for Qy < 1,thenk < 0

Defining two dimensionless integrals

o dt 7 d 1 2 1 1
I(Z)EHO/ —— = H, —:z—5(1+qo)z2+(—+ “qo+ =gt +=(1—Q))22 —---
te

R(?) o H(?) g TN Ty
b dz 1 dR(t)  H(t)
YRS a T T R2t) dt | R(b)

() - for Qp=1,thenk =0
1
S(z) = ﬁsm (2)/Qo—1)--- for Qp > 1,thenk >0 %2—5(1+q0)z2---f07‘z<<1
Fsmh (2)v/1—8q) - for Qy < 1,thenk <0

Therefore the comoving coordinate as a function of the redshift is w(z) = 4-5(2). Now we are
ready for the concept of four distances at time tg.
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Coordinate distance : ro(z) = w(z) = FS(Z)
0
fo cdt c

roper distance : dpo(z) /t R® " H z)

Luminosity distance : dr,o(2) = ro(2)(1 + 2) = HLS(Z)(l + 2)
0

S
Angular diameter distance : d4(z) = Ioj(j) = HL 1 _(::)
z 0 z

Multiplying by the scale factor R(t) then converts these to the distances at some other time t.
The proper distance to the farthest observable point at time t is called the particle horizon

toodt! 2ct - - - during radiation era
dn(t) = R(t) R 3ct - - - during matter era
o R(t) — 19.3Gpc- - -during A era
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