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188 CLASSROOM NOTES [February 

COROLLARY. For every (n- 1)-tuple a, . * a,,- in Gn there exists a unique 
b EGn such that (bai . * a.-) e. 

THEOREM II. If G. is an abstract algebra with one operation and if there exists a 
group G defined on the same set as G. and whose binary operation is derived from 
the operation in Gn and such that each n-product in Gn can be rewritten as an itera- 
tion of the binary operation in G, then it is necessary and sufficient that Gn be a 
hypergroup. 

Proof. We know from Theorem I that Gn is a hypersemigroup with identity. 
For any a-Gn there exists a unique (n-1)-tuple a-le . . . e such that 
(a-le ea) = (aa-le . . e) = e, since G is a group. On the other hand, we define 
a binary operation (*) in the same way as in Theorem I. This results in a semi- 
group with identity G. We see from the corollary to Lemma II that if ae . * e 
is an (n-l)-tuple in Gn, there exists a unique a-' such that (a-lae . . e) 
= a- * a= e, so that the pair (Gn, *) is a group. The rest of the proof follows as 
in Theorem I. 

I wish to thank the referee for a very valuable suggestion. 

Reference 
1. G. Birkhoff, Lattice Theory, rev. ed. Amer. Math. Soc. Colloq. Puibl., 25 (1948). 

CLASSROOM NOTES 
THE SCARCITY OF CROSS PRODUCTS ON EUCLIDEAN SPACES 

BERTRAM WALSH, Ulniversity of California, Los Angeles 

When first introduced to the dot product on Rn (n arbitrary) and the cross 
product on R3, students are not unlikely to inquire about the definition of a cross 
product for R , n ,3. This note points out that by proving the elementary propo- 
sitions and theorem below, students may answer this question themselves. 
Namely, they may show that if reasonable demands are made of "cross products" 
(that they satisfy the axioms for cross products in Apostol's recent Calculus text 
[2]), then only on R1, R3 and R7 can cross products exist-the one on R1 being 
trivial and the ones on RI somewhat pathological. We indicate the elementary 
proofs, for whose rediscovery students will need knowledge of the fact that 
orthonormal (o.n.) sets in Rn have cardinalities<n, with equality if and only 
if the o.n. set is a basis; orthogonal projection is required a couple of times, but 
projection is onto a subspace for which an orthonormal basis has already been 
constructed, so that the projection can be written out explicitly, component- 
wise. 
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1967] CLASSROOM NOTES 189 

The axioms [2, p. 2751 are 

(5.28) a X b =-(b X a) 

(5.29) a X (b + c)=(a X b) + (a X c) 
(5.30) X(aXb)=(Xa) X b 
(5.31) a.(a X b) =0 

(5.32) 1 a X bi = [I aJll b12 -(a.b)2]1/2 

for all scalars X and all vectors a, b, c. One can easily verify that in the presence 
of the other four axioms, (5.32) is equivalent to the statement that the cross 
product of two orthogonal unit vectors is also a unit vector, so that in spite of 
its complicated appearance the axiom is natural. 

Our principal tools are the identities 

(1) (aXb) c=-[b-(aXc)] 
and 
(2) a X (b X c) - c X (a X b) 2(a.c)b - (b.c)a - (ab)c; 

the first of these, which expresses the fact that the linear transformation 
b->(aXb) is skew-symmetric, is easily derived from (5.31) by setting a+c 
where a occurs, using linearity and symmetry, and canceling what one already 
knows about. The second is derived by two applications of the "polarization"' 
trick: writing (5.32) as 

(a X b).(a X b) = (a.a)(b.b) - (a-b)2 

and setting b+d where b is, using bilinearity and symmetry to get an expansion 
of both sides and canceling what one already knows about, one gets 

(a X b)*(a X d) = (a.a)(b.d) - (a.b)(a d). 

This can be written, using (1) and the linearity of the dot product, as 

- [a X (a X b)] d= [(a-a)b - (a-b)a].d 

and since dCRn is arbitrary, this gives 

(3) a X (a X b) = (a-b)a - (a-a)b, 

a useful special case of (2). Now setting a+c wherever a is in (3), expanding by 
linearity, canceling what one already knows about and using the skew-symmetry 
of the cross product (i.e. (5.28)) leads directly to (2). A useful special case, inci- 
dentally, is 

(4) For mutually orthogonal a, b, c, a X (b X c) = c X (a X b) 

which one sees by observing that the right side of (2) is zero whenever a, b and c 
are mutually orthogonal. The identities (1), (2), (3) and (4) hold for any cross 
product satisfying the axioms, on any R". 
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Given such a cross product on Rn, we make two definitions: 
(I) A vector subspace A of Rn is closed under Xif whenever a1EA and a2EA, 

then also a, X a2 ? A. 
(II) A subspace B of Rn is stable under A X, where A CRn, if whenever acA 

and bEB, then aXbeB. 
So A is closed under X iff stable under A X. We now have 

PROPOSITION 1. Let A CRn, B be a subspace of R7. If B is stable under A X, 
then so is its orthogonal complement B' { c c ERn, b c = Ofor all b EB }. 

Proof. If cEB', then for any aCEA and bEB 

b *(a X c) =- [(a X b) c] = 0 since a X b C B. 

Thus for any beB, b I(a Xc), and so aXcEB'. I 
PROPOSITION 2. Let A be a subspace of Rn which is closed under X and 

possesses an orthonormal basis {f1, . *, fk }. Let bEEA'. Then the vectors 
lb, f1,Xb, * * , f. Xb} lie in A' and are mutually orthogonal and of the same 
length as b. In particular if b is a unit vector they form an orthonormal set of k + 1 
elements in A1. 

Proof. That {b, f1Xb, } CA' follows from Proposition 1. The orthog- 
onality relations and lengths follow from b (fi X b) =0 and 

(fi X b) . (fj X b) = (b X fi) i (b X f5) 

=-[b X (b X f j) fj] by (1) 
= - [(b.fi)b - (b*b)fi]*fj = (fj.fj)(b.b).I 

It is easy to verify that the only cross product on RI is identically zero, and 
that there is no cross product on R2: it couldn't be zero, and there aren't enough 
dimensions for it to be nonzero. Suppose we have a cross product on Rn, then, 
n>3. If e1 and e2 are an orthonormal pair of elements of Rn, then elXe2 is a 
unit (by (5.32)) vector normal to both e1 and e2; set e3=e1Xe2. Let H be the 
linear subspace of Rn spanined by { el, e2, e3 }. Regardless of what n may be, 

PROPOSITION 3. H is closed under X. 

Proof. Bilinearity of X insures that it suffices to check this on basis vectors. 
By identity (3) 

e2 X e3 = e2 X (el X e2) - [e2 X (e2 X el) 

= - [(e2 el)e2 - (e2 e2)el] = el 

and similarly e3 X el=e2. I 
Thus the basis { e1, e2, e3 } has the same multiplication table as the basis 

{i, j, k} for R3 with the usual cross product. 
One can resolve any vector aEER into 
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3 - 3 

a-E (a*ei)e, + a E (aei)i i=l~ ~ [ 
i )e1 

with the first component in H and the second in H'. Thus either H=Rn, in 
which case n = 3, or else it is possible to find a unit vector m H'. Suppose the 
latter. Then by Proposition 2, the set {im, e1Xm, e2XIn, e3Xm} is an ortho- 
normal set in H1-, and {e1, e2, e3, in, elXm, e2XM, e3Xm} is an orthonormal 
set in Rn, so n> 7. Let C denote the subspace of Rn spanned by this last set. 

PROPOSITION 4. C is closed under X. 

Proof. One need only check the five types of products which can occur: 

(i) ei X ej. Belongs to H C C, by Proposition 3. 
(ii) ei X m. Belongs to C by definition. 

(iii) ei X (ej X m) = 2(ei.m)ej - (ej.m)ei - (ei.ej)m + m X (ei X ej) 
= - (ei X ej) X m- (ei.ej)m C C. 

(iv) m X (ei X m) - m X (m X ei) = (m-m)e - (m.ee)m =e, C C. 

(v) (eiXin) X (ejXim) (inXei) X (mXej) 

ej X [(n X e) X m] by (4) 
-ej X [mn X (ei X m)] 

ej X ei by (iv) above. 

One can resolve any vector aCR into 

a-[ (a.ei)ej + (aim)m + Z (a.(ei X mn))(ej X m) 

3 3 

+ a- f (ae)ej - (a m)m - (a.(es X mn))(e, X m) 

with the first component in C and the second in C'. Thus either C-= Rn in which 
case n = 7, or it is possible to find a unit vector n E C'. 

THEOREM. If there exists a cross product on Rn which satisfies Apostol's axioms, 
then n = 1, 3 or 7. Conversely, there exist cross products on these three spaces. 

Proof. We have seen that for n < 3, cross products exist precisely when n = 1 
or 3, the cross product on RI being identically zero and the two cross products 
on R3 being the classical ones, and that if Rn has a cross product for n > 3, then 
n > 7. If n> 7, then one can find a unit vector nE C', where C is constructed as 
above. We shall show, however, that the existence of such a vector would lead 
to a contradiction. Indeed, should such an n exist, then miXn is also a unit 
vector in C'; set p=mXn. Just as in Proposition 3, we have nXp=m and 
pXim=n. Let us compute some products: we find that, for i:1j, 

This content downloaded from 202.28.191.34 on Sun, 22 Mar 2015 11:08:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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(e; X m) X (ej X n) 

(es X m) X (ej X (p X m)) by (4) 

(es X m) X (m X (ej X p)) by (4) 

(ej X p) X ((ei X m) X m) 

(ej X p) X (m X (m X e,)) = (ej X p) X [(rn.ej)m - (m.m)ei] 

- (ej X p) X ei = ei X (ej X p) = p X (ei X ej). 

Similarly 

(ej X n) X (et X m) = 

(ej X n) X (es X (n X p)) = 

-(ejXn) X (eiX (pXn))= by(4) 

-(ej X n) X (n X (es X p)) = by (4) 

-(ei X p) X ((ej X n) X n) = by (3) 
- (et X p) X (- ej) 

-p X (e, X ej). 

(The computations indicated by the ellipsis are straightforward.) But putting 
these together gives (eiXm) X (ejXn) = (ejXn) X (ei Xm); this contradicts the 
skew-symmetry of X unless this particular product is zero. However, p X (es X ej) 
is the product of two perpendicular unit vectors and thus has unit norm. This 
contradiction shows that the case n > 7 cannot arise. 

It remains to exhibit a cross product on R7 which satisfies the axioms. Such a 
product can be constructed from the familiar one on R3 as follows: R7 cor- 
responds 1-1 with the set of all triples (a, X, b) where a and b are in R3 and XCR 
under the correspondence 

aii + + a7i7 -> (ali + a2j + a3k, a4, a5i + a6j + a7k). 

It is easy to see that this correspondence turns addition and scalar multiplica- 
tion in R7 into component-by-component addition and scalar multiplication of 
triples; defining the dot product of triples by 

(a,, Xi, b1) * (a2, N2, b2) (a1.a2) + NiX2 + (bl-b2) 

we see easily that the dot product of two triples equals the dot product of the 
two elements of R7 to which they correspond. We actually define the cross prod- 
uct on these triples: if one recalls what Propositions 3 and 4 told one the multi- 
plication table of C should be, and if one thinks of (a, X, b) as representing a 
vector whose component in H is a, whose component along m is X, and whose 
component in the space spanned by { e1 X m, e2Xm, e3Xm} is bXm, then one is 
led to the definition 
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(a,, X1, b1) X (a2, X2, b2) = ([X1b2 - X2b1 + (a, X a2) 
(b1 X b2)], [-(a,.b2) + (bl.a2)j, [X2a, 

X1a2 -(a1 X b2) - (b, X a2)1). 

(Note that the cross products inside the brackets in the triple are products in R3 
and thus well defined.) Knowing that the cross product in R3 satisfies the axioms, 
one easily verifies that this cross product on R7 (via identification of R7 with the 
triples) satisfies the axioms also. 

Remark: The pathological behavior of the cross product on R7 begins with 
its lack of anything near uniqueness: in R3 there are only two choices for the 
cross product of a given orthonormal pair of vectors, while in R7 our construc- 
tion can be modified to yield cross products which choose any of the unit vectors 
in the five-dimensional space orthogonal to the given pair. The cross products 
on R7 also fail to satisfy the Lie identity 

aX (b Xc) + c X (aX b) + b X (c X a) 0; 

indeed 

m X (el X e2) + e2 X (m X e1) + (e1 X (e2 X m)) =- 3(e3 X m). 

Any number of other standard identities also fail in R7. 

Postscript. The discussion above has concentrated on the geometric problem 
of defining a cross product on a real inner product space, and has attacked this 
problem via reasoning processes close to those of three-dimensional vector ge- 
ometry. The theorem it produces is actually equivalent to a classical theorem of 
Hurwitz which states that a bilinear "multiplication" operation (denoted by 
juxtaposition) with the property I xyI = I x I yf can be introduced on a finite- 
dimensional real inner product space if and only if the space has dimension 1, 2, 
4 or 8, and that the operation is then "essentially" the multiplication of the 
reals, complexes, Hamilton quaternions, or Cayley numbers, and actually is one 
of those multiplications if an identity is present. Indeed, assuming Hurwitz's 
theorem and being given an Rn with a cross product as before, write Rn+i as 
(isometric to) ReG)Rn where eERn+l, and define a multiplication on RI'+' by 

(Xe + a)(,e + b) = (X,4 - a.b)e + (,a + Xb + aX b); 

then it is easy to verify, using the cross product axioms, that this bilinear multi- 
plication has the property Xe+aI Iue+bt = I (Xe+a)(me+b)j and hence 
n+1=2, 4 or 8, n=t1, 3, or 7. On the other hand, Hurwitz's theorem follows 
quite readily from ours: given a real inner product space A with a multiplication 
satisfying xy| = x| I yI and a left-and-right identity e, one finds that 
(x . x) (y . y) (xy . xy) leads, after the usual couple of polarizations, to 

(5) 2(z x)(y w) = (zy xw) + (zw xy), 
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of which we shall need only the cases 

(6, 6') (e.x)(y.y) = (y.xy), (x-x)(e.w) = (x.xw) 

and 

(7) 2(z*e)(y.e) = (zy.e) + (z.y). 

Now let V denote the subspace Re' of A, and define an operation X on V by 
aXb=ab+(a.b)e. 

Since (a X b) * e = (ab e) + (a b) = 2 (a * e) (b * e)=0 by (7), X maps V bilin- 
early into itself, i.e. satisfies (5.29) and (5.30), and the version of (5.30) with X 
applied to b. It follows easily from (6) and (6') that (aXb) *-b =0=a (aXb), 
so (5.31) holds; moreover, it is not difficult to show from these two versions of 
(5.31) that (5.28) also holds. Finally, (5.32) follows quickly from (7). Thus by 
our theorem (which, it is easy to check, does not rest on finite-dimensionality 
hypotheses) V is 7, 3, 1 or possibly 0-dimensional, A is 8, 4, 2 or 1-dimensional, 
and quite easily seen to be isomorphic to the Cayley numbers, quaternions, 
complexes or reals. An elegant algebraic treatment of Hurwitz's theorem is to be 
found in [3 ]. 

Hurwitz's classical theorem suggests generaliza-tions in various directions. 
We have noted in passing that (in the presence of an identity) finite dimensional- 
ity is a useless hypothesis; Wright [4] has shown that a nonassociative real 
normed division algebra with x cy I-= x j I y I must actually have an inner-product 
norm, thus be one of our four standard algebras. A "nonassociative Gelfand- 
Mazur theorem," with merely I xy j XI y I, seems still to be lacking. In the 
situation of the classical Hurwitz theorem, the unit sphere of RRn (n 1, 2, 4 or 8) 
comes equipped with a continuous product operation, with identity; a long 
series of profound topological results, culminating in [1], has shown that these 
values of n are the only ones for wAThich such a continuous product on the unit 
sphere can exist. 

The author thanks the referee for his suggestion that material be appended which would ex- 
plicitly point out the relation of the preceding material to the Hurwitz theorem and to the recent 
topological results. 
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