Quantum Physics Exercise Class I

Yu Su

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China

Sep 10, 2023

Hilbert space

- A linear space \mathcal{H} composed of $|\psi\rangle$
- Dual correspondence: $c|\psi\rangle \Leftrightarrow c^{*}\langle\psi|$
- Inner product: $\mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, or $\langle\psi \mid \varphi\rangle \in \mathbb{C}$, satisfying $\langle\psi \mid \varphi\rangle^{*}=\langle\varphi \mid \psi\rangle$

Note:

- The dimension of Hilbert space is determined by the physical requirements
- Proof of Cauchy-Schwarz inequality: Consider a vector

$$
\begin{equation*}
|\alpha\rangle \equiv|\psi\rangle+\lambda|\varphi\rangle \tag{1}
\end{equation*}
$$

with $\lambda \in \mathbb{C}$. The inner product requires

$$
\begin{equation*}
\langle\alpha \mid \alpha\rangle=\langle\psi \mid \psi\rangle+\lambda\langle\psi \mid \varphi\rangle+\lambda^{*}\langle\varphi \mid \psi\rangle+|\lambda|^{2}\langle\varphi \mid \varphi\rangle \geq 0 \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\lambda=-\frac{\langle\varphi \mid \psi\rangle}{\langle\varphi \mid \varphi\rangle} \tag{3}
\end{equation*}
$$

and we obtain the Cauchy-Schwarz inequality. The equality holds when

$$
\begin{equation*}
|\psi\rangle=-\lambda|\varphi\rangle \tag{4}
\end{equation*}
$$

Hilbert space

Operator $\hat{A}: \mathcal{H} \rightarrow \mathcal{H}$
Note:

- Except for one special case, the operator is always a linear one, i.e.,

$$
\begin{equation*}
\hat{A}\left(c_{1}|\psi\rangle+c_{2}|\varphi\rangle\right)=c_{1} \hat{A}|\psi\rangle+c_{2} \hat{A}|\varphi\rangle \tag{5}
\end{equation*}
$$

- Hermite conjugation (\dagger) of an operator \hat{A} is defined via

$$
\begin{equation*}
\hat{A}|\psi\rangle \leftrightarrow\langle\psi| \hat{A}^{\dagger} \tag{6}
\end{equation*}
$$

- Combination rule:

$$
\begin{equation*}
\langle\psi|(\hat{A}|\varphi\rangle)=(\langle\psi| \hat{A})|\varphi\rangle \equiv\langle\psi| \hat{A}|\varphi\rangle \tag{7}
\end{equation*}
$$

- Hermite operator:

$$
\begin{equation*}
\hat{A}=\hat{A}^{\dagger} \tag{8}
\end{equation*}
$$

or in detail

$$
\begin{equation*}
(\langle\psi| \hat{A}|\varphi\rangle)^{*}=\langle\varphi| \hat{A}|\psi\rangle \tag{9}
\end{equation*}
$$

- Outer product: $|\psi\rangle\langle\varphi|$ is an operator.

Eigenvalues and eigenvectors

The equation

$$
\begin{equation*}
\hat{A}\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle \tag{10}
\end{equation*}
$$

defines the eigenvalues $\left\{a_{n}\right\}$ and eigenvectors $\left\{\left|a_{n}\right\rangle\right\}$. Note:

- For an Hermitian, $a_{n} \in \mathbb{R}$ and the eigenvectors with different eigenvalues are orthogonal. The eigenvectors with the same eigenvalues span a subspace, therefore they can also be constructed orthogonally.
- In physical cases, any vector can be expanded by the eigenvectors in the same Hilbert space, namely

$$
\begin{equation*}
|\psi\rangle=\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n} \mid \psi\right\rangle \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
1=\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n}\right| \quad \text { (Completeness) } \tag{12}
\end{equation*}
$$

Here 1 should be explained as the unit operator in \mathcal{H}.

Representation

Given a set of complete eigenvectors, use them as basis and expand:

- vectors

$$
\begin{align*}
& |\psi\rangle=\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n} \mid \psi\right\rangle \Longrightarrow\left[\begin{array}{c}
\left\langle a_{1} \mid \psi\right\rangle \\
\left\langle a_{2} \mid \psi\right\rangle \\
\vdots
\end{array}\right] \tag{13}\\
& \langle\psi|=\sum_{n}\left\langle\psi \mid a_{n}\right\rangle\left\langle a_{n}\right| \Longrightarrow\left[\begin{array}{lll}
\left\langle\psi \mid a_{1}\right\rangle & \left\langle\psi \mid a_{2}\right\rangle & \ldots
\end{array}\right] \tag{14}
\end{align*}
$$

- operators

$$
\hat{A}=\sum_{m n}\left|a_{m}\right\rangle\left\langle a_{m}\right| \hat{A}\left|a_{n}\right\rangle\left\langle a_{n}\right| \equiv \sum_{m n} A_{m n}\left|a_{m}\right\rangle\left\langle a_{n}\right| \Longrightarrow\left[\begin{array}{ccc}
A_{11} & A_{12} & \cdots \tag{15}\\
A_{21} & A_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \equiv \mathbf{A}
$$

In one representation, the vectors become $\operatorname{dim} \mathcal{H}^{\text {th }}$ dimensional arrays and operators become matrices $\in \mathbb{C}^{\operatorname{dim} \mathcal{H} \times \operatorname{dim} \mathcal{H}}$.

Representation

The unitary transformation links two different representation. Consider two basis $\left|a_{n}\right\rangle$ and $\left|b_{n}\right\rangle$. There exist two representations, being

$$
\begin{equation*}
|\psi\rangle=\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n} \mid \psi\right\rangle=\sum_{n}\left|b_{n}\right\rangle\left\langle b_{n} \mid \psi\right\rangle \tag{16}
\end{equation*}
$$

Hence we can define the unitary operator as

$$
\begin{equation*}
\hat{U} \equiv \sum_{n}\left|b_{n}\right\rangle\left\langle a_{n}\right| \tag{17}
\end{equation*}
$$

with property

$$
\begin{equation*}
\hat{U} \hat{U}^{\dagger}=\hat{U}^{\dagger} \hat{U}=1 \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\langle b_{n} \mid \psi\right\rangle=\sum_{m}\left\langle a_{n}\right| \hat{U}^{\dagger}\left|a_{m}\right\rangle\left\langle a_{m} \mid \psi\right\rangle=\left\langle a_{n}\right| \hat{U}^{\dagger}|\psi\rangle \tag{19}
\end{equation*}
$$

With the same method, one can prove

$$
\begin{equation*}
\mathbf{A}^{\prime} \equiv\left(\left\langle b_{m}\right| \hat{A}\left|b_{n}\right\rangle\right)=\mathbf{U}^{\dagger} \mathbf{A} \mathbf{U} \tag{20}
\end{equation*}
$$

Representation

In order to solve the equation

$$
\begin{equation*}
\hat{B}|b\rangle=b|b\rangle \tag{21}
\end{equation*}
$$

we firstly adopt one representation $\left|a_{n}\right\rangle$. Then we have

$$
\begin{equation*}
\sum_{n}\left\langle a_{m}\right| \hat{B}\left|a_{n}\right\rangle\left\langle a_{n} \mid b\right\rangle=b\left\langle a_{m} \mid b\right\rangle \tag{22}
\end{equation*}
$$

or equivalently

$$
\left[\begin{array}{ccc}
B_{11} & B_{12} & \cdots \tag{23}\\
B_{21} & B_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots
\end{array}\right]=b\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots
\end{array}\right]
$$

with $c_{m} \equiv\left\langle a_{m} \mid b\right\rangle$. Therefore, by solving the characteristic equation

$$
\begin{equation*}
\operatorname{det}(\mathbf{B}-\lambda \mathbf{I})=0 \tag{24}
\end{equation*}
$$

one can obtain the eigenvalues and eigenvectors expressed by $\left|a_{n}\right\rangle$.

Some definitions

- Trace of an operator:

$$
\begin{equation*}
\operatorname{Tr} \hat{A} \equiv \sum_{n}\langle n| \hat{A}|n\rangle=\sum_{n} a_{n} \tag{25}
\end{equation*}
$$

The definition holds only as the summation converges absolutely.

- Determinant:

$$
\begin{equation*}
\operatorname{det} \hat{A} \equiv \prod_{n} a_{n} \tag{26}
\end{equation*}
$$

The definition also holds only as the product converges absolutely.

- Commutator and anticommutator:

$$
\begin{align*}
{[\hat{A}, \hat{B}] } & \equiv \hat{A} \hat{B}-\hat{B} \hat{A} \tag{27}\\
\{\hat{A}, \hat{B}\} & \equiv \hat{A}, \hat{B}]_{-} \tag{28}\\
\hline \hat{B} \hat{A} & \equiv[\hat{A}, \hat{B}]_{+}
\end{align*}
$$

And note that

$$
\begin{equation*}
[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}] \tag{29}
\end{equation*}
$$

Some definitions

- Function of an operator:

$$
\begin{equation*}
f(\hat{A}) \equiv \sum_{k=0}^{\infty} \frac{\hat{A}^{k}}{k!} f^{(k)}(0) \tag{30}
\end{equation*}
$$

- Eigenvalues and eigenvectors:

$$
\begin{equation*}
f(\hat{A})\left|a_{n}\right\rangle=f\left(a_{n}\right)\left|a_{n}\right\rangle \tag{31}
\end{equation*}
$$

- One important equality:

$$
\begin{equation*}
\operatorname{det} \hat{A}=e^{\operatorname{Tr} \ln \hat{A}} \tag{32}
\end{equation*}
$$

- Exponential of an operator:

$$
\begin{equation*}
e^{\hat{A}}=1+\hat{A}+\frac{1}{2} \hat{A}^{2}+\cdots+\frac{1}{k!} \hat{A}^{k}+\cdots \tag{33}
\end{equation*}
$$

Please note

$$
\begin{equation*}
e^{\hat{A}} e^{\hat{B}} \neq e^{\hat{A}+\hat{B}} \tag{34}
\end{equation*}
$$

if $[\hat{A}, \hat{B}] \neq 0$.

Unitary transformation

Suppose

$$
\begin{equation*}
\hat{A}\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle . \tag{35}
\end{equation*}
$$

Given a unitary operator \hat{U}, we have

$$
\begin{equation*}
\hat{U} \hat{A} \hat{U}^{\dagger}\left(\hat{U}\left|a_{n}\right\rangle\right)=a_{n}\left(\hat{U}\left|a_{n}\right\rangle\right) \tag{36}
\end{equation*}
$$

This means $\hat{A}^{\prime} \equiv \hat{U} \hat{A} \hat{U}^{\dagger}$ share the same eigenvalues with \hat{A}. Therefore,

$$
\begin{equation*}
\operatorname{Tr} \hat{A}=\operatorname{Tr} \hat{A}^{\prime} \text { and } \operatorname{det} \hat{A}=\operatorname{det} \hat{A}^{\prime} \tag{37}
\end{equation*}
$$

Schrödinger equation

The time evolution equation for a quantum state:

$$
\begin{equation*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \tag{38}
\end{equation*}
$$

Here \hat{H} is the Hamiltonian of a system. The formal solution of the system is given by

$$
\begin{equation*}
|\psi(t)\rangle=e^{-i \hat{H}\left(t-t_{0}\right) / \hbar}\left|\psi\left(t_{0}\right)\right\rangle \tag{39}
\end{equation*}
$$

If the Hamiltonian satisfies

$$
\begin{equation*}
\hat{H}|n\rangle=E_{n}|n\rangle \tag{40}
\end{equation*}
$$

we have

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{n} e^{-i E_{n}\left(t-t_{0}\right) / \hbar}\left\langle n \mid \psi\left(t_{0}\right)\right\rangle|n\rangle \tag{41}
\end{equation*}
$$

Schrödinger equation

How to solve a Schrödinger equation systematically? Suppose the Hamiltonian is expressed under one representation, e.g.,

$$
\begin{equation*}
\hat{H}=\sum_{m n} H_{m n}\left|a_{m}\right\rangle\left\langle a_{n}\right| \Longrightarrow \mathbf{H} \tag{42}
\end{equation*}
$$

Method I:
(1) Diagonalize the Hamiltonian and obtain E_{n} and $|n\rangle$;
(2) Expand the initial state with respect to $|n\rangle$;
(3) Use Eq. (41) to obtain the solution.

Method II:

(1) Calculate $e^{-i \hat{H} t / \hbar}$ directly;
(2) In one representation,

$$
\begin{equation*}
e^{\mathbf{A}}=e^{\mathbf{U} \mathbf{U}^{-1} \mathbf{A U U} \mathbf{U}^{-1}}=e^{\mathbf{U} \boldsymbol{\wedge} \mathbf{U}^{-1}}=\mathbf{U} e^{\wedge} \mathbf{U}^{-1} \tag{43}
\end{equation*}
$$

Continuous cases

The most general Hamiltonian of a magnetic field-free system is given by

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x}) \tag{44}
\end{equation*}
$$

where \hat{X} and \hat{p} are the coordinate and momentum respectively, m is the mass, and V is the potential energy. Here we assume the system has only one degree of freedom. In this case \hat{x} and \hat{p} have infinite continuous number of eigenvalues. The eigenvectors are defined as

$$
\begin{equation*}
\hat{x}|x\rangle=x|x\rangle \text { and } \hat{p}|p\rangle=p|p\rangle \tag{45}
\end{equation*}
$$

The orthonormality and completeness read (take x as an example)

$$
\begin{align*}
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) \tag{46}\\
& 1=\int_{-\infty}^{\infty} \mathrm{d} x|x\rangle\langle x| \tag{47}
\end{align*}
$$

Coordinate and momentum

Assume the coordinate representation of $|p\rangle$ is given by

$$
\begin{equation*}
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \tag{48}
\end{equation*}
$$

Then

$$
\begin{equation*}
\langle x| \hat{p}|p\rangle=\int \mathrm{d} x^{\prime}\langle x| \hat{p}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid p\right\rangle=p\langle x \mid p\rangle \tag{49}
\end{equation*}
$$

That is

$$
\begin{equation*}
\hat{p}=\int \mathrm{d} x|x\rangle(-i \hbar) \frac{\partial}{\partial x}\langle x| \tag{50}
\end{equation*}
$$

Equivalently, we have

$$
\begin{equation*}
\hat{p}|x\rangle=i \hbar \frac{\partial}{\partial x}|x\rangle \tag{51}
\end{equation*}
$$

For \hat{x}, one could also prove

$$
\begin{equation*}
\hat{x}=\int \mathrm{d} p|p\rangle(i \hbar) \frac{\partial}{\partial p}\langle p| \tag{52}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{x}|p\rangle=-i \hbar \frac{\partial}{\partial p}|p\rangle \tag{53}
\end{equation*}
$$

Coornidate and momentum

The Heisenberg's commutator relation reads

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar \tag{54}
\end{equation*}
$$

Prove:

$$
\begin{aligned}
& \hat{x} \hat{p}=\int \mathrm{d} x x|x\rangle(-i \hbar) \frac{\partial}{\partial x}\langle x| \\
& \hat{p} \hat{x}=\int \mathrm{d} x x|x\rangle(-i \hbar) \frac{\partial}{\partial x}\langle x|-i \hbar \cdot 1
\end{aligned}
$$

The commutator relation can be generalized as

$$
\begin{equation*}
[\hat{x}, f(\hat{p})]=\left.i \hbar \frac{\partial}{\partial p} f(p)\right|_{p=\hat{p}} \text { and }[\hat{p}, f(\hat{x})]=-\left.i \hbar \frac{\partial}{\partial x} f(x)\right|_{x=\hat{x}} \tag{55}
\end{equation*}
$$

The notable wave function is defined as the combination coefficient of one quantum state $|\psi\rangle$ expanded in the coordinate representation, that is,

$$
\begin{equation*}
\psi(x, t) \equiv\langle x \mid \psi(t)\rangle \tag{56}
\end{equation*}
$$

The correspondence Schrödinger equation is given by

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial x} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t) \tag{57}
\end{equation*}
$$

Coornidate and momentum

In the momentum representation, the wave function is defined as

$$
\begin{equation*}
\tilde{\psi}(p, t) \equiv\langle p \mid \psi(t)\rangle \tag{58}
\end{equation*}
$$

It can be also obtained from $\psi(x, t)$ via unitary transformation reading

$$
\begin{equation*}
\tilde{\psi}(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int \mathrm{~d} x e^{-i p x / \hbar} \psi(x, t) \tag{59}
\end{equation*}
$$

Or inversely

$$
\begin{equation*}
\psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int \mathrm{~d} p e^{i p x / \hbar} \tilde{\psi}(p, t) \tag{60}
\end{equation*}
$$

The inner product reads

$$
\begin{equation*}
\langle\psi \mid \varphi\rangle=\int \mathrm{d} x \psi^{*}(x) \varphi(x)=\int \mathrm{d} p \tilde{\psi}^{*}(p) \tilde{\varphi}(p) \tag{61}
\end{equation*}
$$

And also

$$
\begin{align*}
\langle\psi| f(\hat{x})|\varphi\rangle & =\int \mathrm{d} x \psi^{*}(x) f(x) \varphi(x)=\int \mathrm{d} p \tilde{\psi}^{*}(p) f\left(i \hbar \frac{\partial}{\partial p}\right) \tilde{\varphi}(p) \tag{62}\\
\langle\psi| f(\hat{p})|\varphi\rangle & =\int \mathrm{d} x \psi^{*}(x) f\left(-i \hbar \frac{\partial}{\partial x}\right) \varphi(x)=\int \mathrm{d} p \tilde{\psi}^{*}(p) f(p) \tilde{\varphi}(p) \tag{63}
\end{align*}
$$

Unitary operator

Prove $e^{i \lambda \hat{A}}$ is unitary, with $\lambda \in \mathbb{R}$ and $\hat{A}=\hat{A}^{\dagger}$
Firstly,

$$
\begin{equation*}
\left(e^{i \lambda \hat{A}}\right)^{\dagger}=e^{-i \lambda \hat{A}} \tag{64}
\end{equation*}
$$

Secondly,

$$
\begin{equation*}
e^{i \lambda \hat{A}} e^{-i \lambda \hat{A}}=e^{i(\lambda-\lambda) \hat{A}}=1 ? \tag{65}
\end{equation*}
$$

Since $[\hat{A}, \hat{A}]=0$, we could treat the above equality the same as the c-number case, that is, the equality holds.
Rigorous proof: Define

$$
\begin{equation*}
\hat{C} \equiv e^{i \lambda \hat{A}} e^{-i \lambda \hat{A}} \tag{66}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \hat{C}=i[\hat{A}, \hat{C}]=0 \tag{67}
\end{equation*}
$$

Therefore, $\hat{C}=$ const $\cdot 1$. According to $\hat{C}(\lambda=0)=1$, we prove the result.

Unitary operator

FYI:

FYI:

$$
\begin{equation*}
e^{\hat{A}} e^{\hat{B}}=e^{\hat{C}} \tag{69}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]+\frac{1}{12}[\hat{A},[\hat{A}, \hat{B}]]-\frac{1}{12}[\hat{B},[\hat{A}, \hat{B}]]+\cdots \tag{70}
\end{equation*}
$$

Two state system

Consider the system with Hamiltonian

$$
\begin{equation*}
\hat{H}=\beta(|1\rangle\langle 2|+|2\rangle\langle 1|) \tag{71}
\end{equation*}
$$

where $\beta \in \mathbb{R}$ and $\langle a \mid b\rangle=\delta_{a b}(a, b=1,2)$.

- Diagonalize the Hamiltonian.

$$
\hat{H} \Longrightarrow \mathbf{H}=\left[\begin{array}{ll}
0 & \beta \tag{72}\\
\beta & 0
\end{array}\right]
$$

The characteristic equation gives eigenvalues being

$$
\begin{equation*}
E_{ \pm}= \pm \beta \tag{73}
\end{equation*}
$$

And the eigenvalues are

$$
\begin{align*}
& \psi_{+}=\frac{1}{\sqrt{2}}[1,1]^{T} \Longrightarrow \frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \equiv|+\rangle \tag{74}\\
& \psi_{-}=\frac{1}{\sqrt{2}}[1,-1]^{T} \Longrightarrow \frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \equiv|-\rangle \tag{75}
\end{align*}
$$

Two state system

- Given initial state $|\psi(0)\rangle=|1\rangle$, then we have

$$
\begin{align*}
|\psi(t)\rangle & =e^{-i \hat{H} t / \hbar}|1\rangle=e^{-i \beta t / \hbar}|+\rangle\langle+\mid 1\rangle+e^{i \beta t / \hbar}|-\rangle\langle-\mid 1\rangle \\
& =\cos (\beta t / \hbar)|1\rangle-i \sin (\beta t / \hbar)|2\rangle \tag{76}
\end{align*}
$$

Oscillate between $|1\rangle$ and $|2\rangle$ with frequency $\Omega=\frac{\pi \hbar}{2|\beta|}$.

- The inner product:

$$
\begin{equation*}
\langle\psi(t) \mid \psi(t)\rangle=1 \tag{77}
\end{equation*}
$$

If $\operatorname{Im} \beta \neq 0$, we have

$$
\begin{equation*}
\langle\psi(t) \mid \psi(t)\rangle=\cosh (2 \operatorname{lm} \beta t / \hbar) \neq 1 \tag{78}
\end{equation*}
$$

