
操作系统大作业设计报告

题目：实时文件系统设计

学号：

1. PB10000613

2. PB10000603

3. PB10000614

4. PB10011033

5. PB10210102

姓名：

1. 李朝晖

2. 李博杰

3. 郭家华

4. 胡剑伟

5. 曹剑楠

一、可行性研究报告 （每点分别阐述，立项依据请详细阐述）
项目背景及实践意义

增强对C语言和操作系统（尤其是实时操作系统）的了解，增强编程能力，培养合作精神。学会查找文献，并将所学知识灵活运用。

小组成员相关背景

郭家华
熟悉C语言，熟悉Linux使用，大二上选修过陈香兰老师的公选课《Linux内核源代码导读》。

李朝晖
初高中一直参加计算机竞赛，所以了解了一些算法方面的知识，大学以前编过一些程序，大学以后，无。

胡剑伟
学过C语言，知道一些linux的基本命令，编过一些小型程序。

李博杰
参加过计算机竞赛，熟悉C语言，选修过《Linux内核源代码导读》。

曹剑楠
制作过科科（iOS）、思贝（Adobe AIR），熟悉制作软件。个人网站：home.ustc.edu.cn/~frogcjn

立项依据

文件系统通常是建立在磁盘之上的，而磁盘操作本身的速度相对于内存操作而言是非常慢的。对于需要读写文件的实时任务，普通文件系统的读写延时也许是难以接受的。因此，设计并实现一个实时文件系统可以避免（或减少）实时任务的实时性在文件操作上被破坏的情况。

因此，设计并实现一个实时文件系统具有实际意义。

对于

1. real-time databases

2. C3I systems

3. multimedia applications

4. on-demand services

等实际应用场景，系统需要具有实时性的文件系统的支持。如，对于播放电影的程序，如果电影文件的读取速度赶不上播放速度，电影播放就会卡壳，给观众带来不愉快。类似的，对于视频点播系统(Video on demand)，如果服务器不能在给定的时间内将观众点播的内容从磁盘读出并传送到网络上，客户端视屏播放也会卡壳。

二、项目计划（每点分别阐述）

项目概述：

在rtlinux上实现一个读写延时短的、实时性强的文件系统。

项目目标：在基于rtlinux的平台上进行测试，在高实时性要求的负载下：

1. 实时性目标：平均响应时间比ext2快10%；scheduleable的任务保证满足deadline。

2. 吞吐量目标：完成的硬实时任务比ext2多20%。

Background

In traditional views, real-time systems are mostly embedded, with limited resource, raising little requirement on large storage. But to our knowledge, real-time methodology can be applied to a much larger field, taking into account the fact that many services in production suffer from unpredictable latency and throughput under high average load or temporary burst load. Deployment of real-time system in production servers is in great need of large storage with predictable latency and bandwidth, which are two major metrics of a real-time system.

We believe that the real-time performance of general-purpose file systems, as seen in the surveyed research papers, has much room for improvement. The ext2 file system, as well as other modern file systems, offer guarantee neither on the response time of a file read nor the bandwidth of periodic reads in a contiguous file. Ext2 considers all requests equal and uses elevator algorithm to merge operations adjacent on disk, which is easy to cause hungry.

Most modern file systems evolves to support advanced features such as encryption, privileges, data consistency, which adversely hits the performance in real-time measures. We are convinced that the features mentioned can either be achieved in user-level applications such as database, or (consistency, availability) be enhanced by data replication. Hence real-time performance is expected to improve greatly by deploying algorithms in fields of real-time system and data storage already in existence, and cutting off advanced features to implement a pure, performance-targeted file system.

For one thing, seek time comprises the major part of block access time, and might be the origin of unpredictability in data access. A block read can be modeled as a non-preemptable task with predictable upper limit of finishing time, therefore existing task scheduling algorithms can be ported here. For another thing, the fastest operation a disk can perform is reading contiguous blocks of data. The allocation policy for ﬁle data will have the largest effect on how effectively the ﬁle system can utilize the disk’s bandwidth, and such policies have been researched exhaustively. Our task is to combine two fields’ study and make trade-offs between deadline and throughput.

Real-time file systems is nothing significant without supporting large storage with poor data locality for higher-level real-time applications, otherwise all data can simply be loaded into memory at initialization time. These applications fall in two categories: real-time database and stream media. Database is in need of low latency (expected response time) for random reads and writes, while stream media puts requirement upon guaranteed bandwidth for contiguous reads.

Benchmarks of real-time file system should be carefully examined to fit real-world scenarios and therefore produce meaningful performance data. Both the ext2 file system and our real-time file system offer no consistency guarantees and therefore perform most operations in memory cache. A short benchmark with strong data locality will be in fact testing the speed of kernel routines, memcpy() and context switch, making little difference between ext2 and real-time file system. Similarly, traditional benchmarks measuring time elapsed during source code compilation does not reflect real-time performance of file systems.

In a nutshell, our benchmarks are designed for two scenarios:

1. Streaming I/O Benchmark for testing how fast a system can write sequential chunks of data to a file.

2. Random I/O Benchmark where the workload is comprised of predominately random I/O operations, and performs both queries and update operations.

Concretely speaking, four benchmarks are designed to test performance in Streaming and Random I/O where the workloads are one single-threaded, the other multi-threaded (10 threads for instance). Each benchmark is run independently on both ext2 and real-time file system. For Streaming I/O benchmark, minimum bandwidth per second throughout test is reported for comparison; for Random I/O benchmark, percentage of requests that finish before deadline is reported.

Specifically, single-threaded Streaming I/O reflects how much overhead the ﬁle system imposes when compared with accessing the underlying disk as a raw device. Multi-threaded benchmarks reflect the extent to which equality is achieved, and challenge the caching mechanism in an inconstant, “periodic” environment, where LRU (Least Recently Used) might not perform well.

Ext2 analysis (FIXME)

关键时间节点安排

按照教学周对应“实施计划”中的任务点。

4周：算法：看完BeFS设计的书，搜集

(1) designing a good file system layout,

(2) adopting effective disk scheduling algorithms and

(3) setting up high-speed disk caches.

方面的论文

代码：看懂BFS的代码

5周：算法：看部分论文，选择一种算法，加深对磁盘调度的认识 ，为下周搭建一个算法的模拟环境做准备。选出一组基础的算法。

代码：看懂BeFS和ext2

6周：算法：搭建一个算法的模拟环境，改进算法。

代码：搭文件系统的实验环境，按上周给出的基础的算法实现一个实时文件系统

7周：算法：继续看论文，改进算法。

代码：完成上周的实时文件系统。

8周：算法：完成大致算法的设计。

代码：写一些文件系统的配套工具，看一些其他的文件系统代码，加深理解，总结。

9周-10周：算法：辅助完成文件系统的实现，并在同时思考，改进算法。

代码：实现实时文件操作系统。

11周-12周：所有人：调试+改进

人员组织分工：

算法研究：李博杰，李朝晖

代码及算法实现：郭家华，曹剑楠，胡剑伟

PS:这里的算法研究和代码实行并不是完全分开的，只是说，负责算法研究的人研究了什么算法，在下星期就把这些讲给负责代码的人听；而负责代码的了看完了什么代码，就在下星期辅导研究算法的人看懂相应的部分。两部分工作各差开一个星期。

Software Requirements:

rtlinux-3.2-wr + slackware 10.0(linux 2.4.29)

Hardware Requirements:

i686处理器，至少200G硬盘，至少512M内存。

Overall Design

1. Enable RTLinux to call Linux file system routines.

2. Copy On Write mechanism to allow for locked access from multiple readers and one writer.

3. I/O schedule to reorder requests and meet deadline, distinguish real-time and non-real-time requests.

4. Revise caching and prefetching mechanism to distinguish real-time and non-real-time caches and get rid of thrashing.

5. Block allocation (optional).

Implementation Details

1. Enable RTLinux to call Linux file system routines.

A kernel thread in RTLinux cannot call Linux kernel routines directly because Linux kernel is not fully preemptable and might have been interrupted by RTLinux in some critical section, where direct call of kernel routines may cause deadlocks or corrupt data consistency in critical section.

There are two methods to resolve this problem. One is to backup current status before entering critical section, hence RTLinux can preempt it at any time, restore the status before backup, and call the desired file system routine. Considering the complexity of Linux kernel, this roll-back mechanism is formidable. The other is to let the kernel go and preempt it once it exits critical section. Kernel routines in critical section is generally about 10 C statements and less than 50 CPU instructions, which does not take much time compared to the overhead of file system routines.

A straightforward solution to preempt Linux kernel once it exits critical section is adding a check after each critical section, if RTLinux is waiting outside, then schedule RTLinux. Sounds simple, while hard to implement, since we have to determine exactly which critical sections are related to file system, and be careful with nested critical sections. If too much critical sections are taken into consideration, deadlocks may occur unpredictably; if a critical section is forgotten, kernel data structure may be corrupted.

Our solution is to escape from the mess in kernel, and use kernel’s native schedule(). Each real-time thread in RTLinux corresponds with a kernel thread in Linux responsible for file system requests (call it slave). Request of a real-time thread is sent to its slave via a special Linux kernel thread (call it dispatcher). The slave completes the file system operation and tells the RTLinux kernel to wake up the pending RT thread.

At RTLinux thread creation time, RTLinux adds a new task (slave) to task_struct in Linux kernel and set its status to waiting.

When RTLinux thread invokes file system request,

(1) RTLinux packs the query, thread id and buffer address;

(2) RTLinux sends the package into a global waiting queue;

(3) Set the priority of Linux kernel to be highest;

(4) Invoke a interrupt for Linux;

(5) Sleep.

In Linux kernel (1) Interrupt service routine of Linux sets need_reschedule bit;

(2) When Linux kernel gets running, it first finishes stuff critical section, then check need_reschedule bit, and call schedule();

(3) Add some code in the head of schedule(): (3a) Check the global waiting queue and dispatch packages of requests to corresponding slaves, and set their status to ready; (3b) Select a ready slave as the next task to run; (3c) If no ready slaves exist, call RTLinux rtl_finish_io(), and continue original task scheduling.

(4) When a slave gets running, it invokes VFS function directly and waits for response;

(5) When response comes, the slave invokes RTLinux rtl_wake_up(thread_id) and sleeps.

The RTLinux wake_up function sets the thread which has invoked the file system request to ready. We write rtl_finish_io() to lower the priority of Linux kernel once it has finished all real-time file system tasks.

2. Copy On Write mechanism to allow for locked access from multiple readers and one writer.

If a non-real-time task is in locked reading, the file becomes a critical section. A real-time task cannot write to the file if no other measures taken. By implementing Copy On Write mechanism between VFS and ext2, we can allow locked access from multiple readers and one writer with data consistency, while simultaneous access from two writers are denied.

Copy On Write works like a version controlling system, which (1) records modifications in separate branches without affecting read, (2) switch to the new branch once writer exits, (3) clean old branch if no readers in, (4) flush latest branch to disk if all readers and writer exit.

Three attributes are added to an inode: Reader_total (R), Writing (W), Primary Version (V). Each version maintains its reader count, and stores its delta with disk. Each reader reads a version not more than V, and the writer writes to version V+1.

The real-time file system provides four primitives to lock/unlock a file for read/write, which is compliant with POSIX standard. Note that our work is on single CPU, and the Linux kernel is not preemptable in the four primitives, no race conditions are taken into consideration.

When a writer comes, it (1) checks Writing (W); (2) If writing, return EAGAIN or suspend the writer thread depending on whether I/O is blocking; (3) set W=1; (4) Create a new version with version number V+1; (5) Subsequent writes are done on version V+1.

When a writer leaves, (1) W=0; (2) If no readers in version V, drop this version; (3) Primary Version++; (3) If R=0, flush primary version to disk.

When a reader comes, (1) R++; (2) Reader count of version V++; (3) Read version V.

When a reader leaves, it read version V’. (1) Reader count of V’--; (2) If V’ is not primary and no readers in V’, drop version V’; (3) Total Readers (R)--; (4) If R=0 and W=0, flush primary version to disk.

Versions are stored in a hash table, where the key is block number, and the data is a linked list of all versions of changed blocks with the same hash value.

When reading a block from version X, check versions of the block in descending order, and return the latest version. If no versions exist, read it from disk. When writing a block to version X, a new node with version X and the data written is created.

When a version is dropped, traverse all blocks this version is different from disk: If a block has newer version, delete the corresponding node to save memory; otherwise this block is the latest version and should not be removed.

All reads and writes in real-time file system should be locked. If the application did not explicitly lock the file, lock and unlock primitives are added before and after each request to ensure data consistency.

3. I/O schedule to reorder requests and meet deadline, distinguish real-time and non-real-time requests.

(3.1) The obvious shortage of file systems, used by RT-linux, should be the lack of appropriate RT I/O scheduler. As regard linux-2.4.29, this operating system uses the algorithm which merely includes basic operations and clearly without any real time attributes. All instances associated with the I/O scheduler in the kernel are stored in three files: elevator.c, elevator.h and ll_rw_blk.c.

We intend to focus our attention on them. In other words, we will read the three files carefully to achieve sufficient familiarity with the interfaces between the native I/O scheduler and other parts. Then we would design ourselves RT schedule algorithm and replace the original one.

(3.2) Linux 2.6 Kernel implements a series of I/O scheduler, which is worth learning. The following text is excerpted from [2].

❑ elevator_noop is a very simple I/O scheduler that adds incoming requests to the queue one after the other for processing on a ‘‘ﬁrst come, ﬁrst served‘‘ basis. Requests are merged but not reordered. The noop I/O scheduler (no operation) is only a good choice for intelligent hardware that can reorder requests by itself. It is also reported to be a good scheduler for devices where there are no moving parts and thus no seek times — ﬂash disks, for instance.

❑ iosched_deadline serves two purposes: it tries to minimize the number of disk seeks (i.e., movement of the read/write heads) and also does its best to ensure that requests are processed within a certain time. In the latter case, the kernel’s timer mechanism is used to implement an ‘‘expiry time‘‘ for the individual requests. In the former case, lengthy data structures (red-black trees and linked lists) are used to analyze requests so that they can be reordered with the minimum of delay, thus reducing the number of disk seeks.

❑ iosched_as implements the anticipatory scheduler, which — as its name suggests — anticipates process behavior as far as possible. Naturally, this is not an easy goal, but the scheduler tries to achieve it by assuming that read requests are not totally independent of each other. When an application submits a read request to the kernel, the assumption is then made that a second related request will be submitted within a certain period. This is important if the read request is submitted in a period during which the disk is busy with write operations. To ensure satisfactory interaction, the write operations are deferred, and preference is given to the read operations. If writing is resumed immediately, a disk seek operation is required but is negated by a new read request arriving shortly afterward. In this case, it is better to leave the disk head in its position after the ﬁrst read request and to wait brieﬂy for the next read request— if a second read request does not arrive, the kernel is free to resume write operations.

(3.3) The reservation model we have surveyed:

1. Let the set of n reservations requiring resource reservation be denoted as τ1, τ2, ⋅ ⋅ ⋅ , τn. Each reservation τi needs to obtain Ci units of time every Ti units of time. In addition, the Ci units of resource time must be available at or before Di in each periodic interval separated by Ti. Bi is the priority inversion duration encountered by reservation τi.

2. We plan to improve “Just-in-Time” Slack-Stealing Algorithm. A brief description of the this algorithm is as follows. The maximum “slack” available to each disk reservation is computed whenever a new request is admitted (or an existing reservation is deleted). At run-time, if the current slack of higher priority reservations is non-zero, another unreserved (or lower priority reserved) request can be scheduled if closer to the disk head. If slack is stolen, the slack of higher priority reservations is reduced by one. This process is then repeated. If the slack of a high priority reservation goes to zero, it will be serviced independent of its location.
To summarize, this algorithm is a hybrid scheme which can obtain all the benefits of the earliest deadline scheduling algorithm and at least part of the benefits of the scan algorithm which take the head position into consideration when picking the next block.

3. So far, we ground our work mainly on the [1].

4. Revise caching and prefetching mechanism to distinguish real-time and non-real-time caches and get rid of thrashing.

For one thing, the priority of thread should be considered in page replacing algorithm, where cache for files used by real-time thread should have a higher priority.

For another thing, cache size should be dynamically adjusted to get rid of thrashing. Consider a scenario where ten real-time stream media threads are each sending some short films over and over, having each thread flushing the cache of all other films with large memory space idle is no better than increasing cache size and cache more frequently used films. On the other hand, if the memory becomes the bottleneck while I/O is not so busy or have weak data locality, cache size should be turned smaller to save space for applications.

5. If the performance of RT I/O can not satisfy us, the block allocation part will be taken into consideration.

参考文献

[1] Real-Time Filesystems: Guaranteeing Timing Constraints for Disk Accesses in RT-Mach, 1997

[2] Professional Linux Kernel Architecture, Wolfgang Mauerer, Wiley Publishing Inc., 2008

[3] Practical File System Design with the Be File System, Dominic Giampaolo

[4] Understanding the Linux Kernel, Second Edition

