
CS258: Information Theory

Fan Cheng

Shanghai Jiao Tong University

http://www.cs.sjtu.edu.cn/~chengfan/

chengfan@sjtu.edu.cn

Spring, 2020

http://www.cs.sjtu.edu.cn/~chengfan/
mailto:chengfan@sjtu.edu.cn

Outline

 Kraft inequality

 Optimal codes

 Huffman coding

 Shannon-Fano-Elias coding

 Generation of discrete distribution

 Universal source coding

Huffman Codes: Algorithm

𝑫-ary Huffman codes (prefix code) for a given distribution:

◼ Each time combine 𝐷 symbols with the lowest probabilities into a single source symbol,

until there is only one symbol

Huffman coding is optimal:

min∑𝒑𝒊𝒍𝒊

◼ Huffman coding for weighted codewords 𝑤𝑖 :

𝒑𝒊 ⇒ 𝒘𝒊 →
𝒘𝒊

∑𝒘𝒊

Huffman’s algorithm for minimizing ∑𝑤𝑖𝑙𝑖 can

be applied to any set of numbers 𝑤𝑖 ≥ 0

Huffman Codes: Algorithm

◼ Since at each stage of the reduction, the number of symbols is reduced by 𝐷 − 1, we

want the total number of symbols to be 𝟏 + 𝒌(𝑫 − 𝟏), where 𝑘 is the number of

merges.

If 𝐷 ≥ 3, we may not have a sufficient number of symbols so that we can combine them 𝐷 at a time. In

such a case, we add dummy symbols to the end of the set of symbols. The dummy symbols have

probability 0 and are inserted to fill the tree.

◼ Morse Vs. Huffman

Morse code could be regarded as a certain Huffman code when 𝑝𝑖
′𝑠 are

estimated

◼ Adaptive Huffman coding

Huffman Codes: Extension

◼ Counterexample: 0 → 1, 1 → 0

◼ For 𝑝 𝑋 =
1

3
,
1

3
,
1

4
,
1

12
, both (2,2,2,2) and (1,2,3,3) are optimal Huffman code

Huffman code is not unique: 𝒍𝒊, 𝟏 ≤ 𝒊 ≤ 𝒏

1

12

1

4

1

3

1

3

1

3

2

3

1

1

12

1

4

1

3

1

3

1

3

2

3

1

Number of different Huffman trees?

(1,2,3,3)

(2,2,2,2)

Huffman Codes: Extension

◼ Huffman Vs. Shannon codes

◼ Shannon codes log
1

𝑝𝑖
attain optimality within 1 bit. If the prob. distribution is 𝑫-

adic, Shannon codes are optimal

◼ Shannon codes may be much worse when 𝑝𝑖 → 0: Consider two symbols, one with

probability 0.9999 and the other with probability 0.0001. The optimal codeword

length is 1 bit for both symbols. The lengths of Shannon codes are 1 and 14.

◼ Huffman codes in application

◼ JPEG, PNG, ZIP, MP3

◼ Cryptography

◼ Internet protocol, HTTP header (RFC)

A probability distribution Pr(𝑋) is called 𝑫-adic if each of the probabilities

Pr 𝑋 = 𝑥𝑖 = 𝐷−𝑛

for some 𝑛.

◼ For a 𝐷-𝑎𝑑𝑖𝑐 distribution, the optimal solution in Lagrange is unique: 𝑙𝑖 = log
1

𝑝𝑖
= 𝑛𝑖

Canonical Codes: I

1. The lengths are ordered inversely with the probabilities (i.e., if 𝑝𝑗 > 𝑝𝑘, then 𝑙𝑗 ≤ 𝑙𝑘).

Without loss of generality, we will assume that the probability masses are ordered, so that

𝑝1 ≥ 𝑝2 ≥· · ·≥ 𝑝𝑚. Recall that a code is optimal if ∑𝒑𝒊𝒍𝒊 is minimal. For any optimal

coding scheme

0.1

5

0.1

5
0.2

0.2

5

0.2

5

0.3
0.4

5

0.5

5

1

◼ If 𝑝𝑗 > 𝑝𝑘 , then 𝑙𝑗 ≤ 𝑙𝑘.

If not, swap the codewords of 𝑗 and 𝑘.

Denote the new code by 𝐶𝑚
′

𝐿 𝐶𝑚
′ − 𝐿 𝐶𝑚 = ∑𝑝𝑖𝑙𝑖

′ − ∑𝑝𝑖𝑙𝑖
= 𝑝𝑗𝑙𝑘 + 𝑝𝑘𝑙𝑗 − 𝑝𝑗𝑙𝑗 − 𝑝𝑘𝑙𝑘
= 𝑝𝑗 − 𝑝𝑘 𝑙𝑘 − 𝑙𝑗 < 0

Canonical Codes: II

1. The lengths are ordered inversely with the probabilities (i.e., if 𝑝𝑗 > 𝑝𝑘, then 𝑙𝑗 ≤ 𝑙𝑘).

2. The two longest codewords have the same length.

Without loss of generality, we will assume that the probability masses are ordered, so that

𝑝1 ≥ 𝑝2 ≥· · ·≥ 𝑝𝑚. Recall that a code is optimal if ∑𝒑𝒊𝒍𝒊 is minimal. For any optimal

coding scheme

0.1

5

0.1

5
0.2

0.2

5

0.2

5

0.3
0.4

5

0.5

5

1

 If the two longest codewords are not of the same

length, one can delete the last bit of the longer one,

preserving the prefix property and achieving lower

expected codeword length.

Canonical Codes: III

1. The lengths are ordered inversely with the probabilities (i.e., if 𝑝𝑗 > 𝑝𝑘, then 𝑙𝑗 ≤ 𝑙𝑘).

2. The two longest codewords have the same length.

3. Two of the longest codewords differ only in the last bit and correspond to the two least likely symbols.

Without loss of generality, we will assume that the probability masses are ordered, so that

𝑝1 ≥ 𝑝2 ≥· · ·≥ 𝑝𝑚. Recall that a code is optimal if ∑𝒑𝒊𝒍𝒊 is minimal. For any optimal

coding scheme

0.1

5

0.1

5
0.2

0.2

5

0.2

5

0.3
0.4

5

0.5

5

1

 If there is a maximal-length codeword without a

sibling(兄弟姐妹), we can delete the last bit of the

codeword and still satisfy the prefix property

Optimality: Strategy

We prove the optimality of Huffman coding for a binary alphabet

 When 𝑚 = 2, it is trivial

 For any probability mass function for an alphabet of size 𝑚, p = (𝑝1, 𝑝2, … , 𝑝𝑚) with

𝑝1 ≥ 𝑝2 ≥ ··· ≥ 𝑝𝑚, we define p′ = (𝑝1, 𝑝2, … , 𝑝𝑚−2, 𝑝𝑚−1 + 𝑝𝑚) over an alphabet

of size 𝑚 − 1.

Now we need to prove the optimality Huffman coding on p by the Huffman code on p′
Challenge: Not so obvious

Huffman coding for 𝒎− 𝟏 Huffman coding for 𝒎

Huffman coding for 𝒎 Huffman coding for 𝒎− 𝟏

Optimality: 𝑚 − 1 → 𝑚

◼ Expand an optimal code for p′ to construct a code for p
𝑳 𝐩 = 𝑳∗ 𝐩′ + 𝒑𝒎−𝟏 + 𝒑𝒎

(𝐿 and 𝐿∗)

◼ For any probability mass function for an alphabet of size 𝑚, p = (𝑝1, 𝑝2, … , 𝑝𝑚) with

𝑝1 ≥ 𝑝2 ≥ ··· ≥ 𝑝𝑚, we define p′ = (𝑝1, 𝑝2, … , 𝑝𝑚−2, 𝑝𝑚−1 + 𝑝𝑚) over an alphabet of

size 𝑚 − 1.

◼ Let 𝐶𝑚−1
∗ (p′) be an optimal code for p′. Let 𝐶𝑚(p) be a code for p

𝐶𝑚−1
∗ p′ ⇒ 𝐶𝑚(𝑝)

𝑪𝒎 𝒑 is a Huffman code. Maybe not optimal

Optimality: 𝑚 → 𝑚 − 1

 Expand an optimal code for p′ to construct a code for p
𝐿 p = 𝐿∗ p′ + 𝑝𝑚−1 + 𝑝𝑚

 Condense an optimal canonical code for p to construct a code for the reduction p′
𝐿 p′ = 𝐿∗ p − 𝑝𝑚−1 − 𝑝𝑚

 Together,

𝐿 p + 𝐿 p′ = 𝐿∗ p + 𝐿∗(p′)
Since 𝐿 p ≥ 𝐿∗(p), 𝐿 p′ ≥ 𝐿∗ p′

𝑳 𝐩 = 𝑳∗(𝐩) and 𝑳 𝐩′ = 𝑳∗(𝐩′)
◼ Let the optimal code on p′ be a Huffman code, then the expanded code on p is also a

Huffman code and it is optimal for p.

From the canonical code for 𝐩, we construct a code for 𝐩′ by merging the codewords for

the two lowest-probability symbols 𝑚 − 1 and 𝑚 with probabilities 𝑝𝑚−1 and 𝑝𝑚, which

are siblings by the properties of the canonical code. The new code for 𝐩′ has average

length:

Huffman coding is optimal; that is, if 𝑪∗ is a Huffman code and

𝑪′ is any other uniquely decodable code, 𝑳(𝑪∗) ≤ 𝑳(𝑪′).

David Huffman
“Huffman code is one of the fundamental

ideas that people in computer science and

data communications are using all the time”

Donald E. Knuth, Stanford University

David Albert Huffman

(1925 – 1999)

He then served in the U.S. Navy as a radar

maintenance officer on a destroyer that

helped to clear mines in Japanese and Chinese

waters after World War II.

◼ Huffman worked on the problem for months, developing a

number of approaches, but none that he could prove to be

the most efficient. Finally, he despaired of ever reaching

a solution and decided to start studying for the final.

Just as he was throwing his notes in the garbage, the

solution came to him. “It was the most singular moment of

my life,” Huffman says. “There was the absolute lightning of

sudden realization.”

◼ Huffman says he might never have tried his hand at the

problem—much less solved it at the age of 25—if he had

known that Fano, his professor, and Claude E. Shannon, the

creator of information theory, had struggled with it. “It was

my luck to be there at the right time and also not have my

professor discourage me by telling me that other good

people had struggled with this problem,” he says.

◼ https://www.huffmancoding.com/my-uncle/scientific-

american

https://www.huffmancoding.com/my-uncle/scientific-american

Shannon–Fano–Elias Coding

◼ The step size is 𝑝(𝑥). ത𝐹 𝑥 is the midpoint

◼ ഥ𝑭 𝒙 can determine 𝒙. Thus is a code for 𝒙

◼ Motivation: the codeword lengths 𝑙 𝑥 = log
1

𝑝 𝑥
⇒ Kraft’s inequality

◼ Without loss of generality, we can take 𝒳 = {1, 2, . . . , 𝑚}. Assume that 𝑝(𝑥) > 0 for all 𝑥. The

cumulative(累积) distribution function 𝑭(𝒙) is defined as 𝐹 𝑥 = ∑𝑎≤𝑥 𝑝(𝑎) .

◼ Consider the modified cumulative distribution function

ഥ𝑭 𝒙 = ෍

𝒂<𝒙

𝒑 𝒂 +
𝟏

𝟐
𝒑 𝒙 = 𝑭 𝒙 −

𝟏

𝟐
𝒑(𝒙)

◼ ത𝐹 𝑥 is a real number. Truncate ത𝐹 𝑥 to 𝑙(𝑥) bits and use the

first 𝑙(𝑥) bit of ത𝐹 𝑥 as a code for 𝑥. Denote by ത𝐹 𝑥
𝑙(𝑥)

.

◼ We have: ത𝐹 𝑥 − ത𝐹 𝑥
𝑙(𝑥)

≤
1

2𝑙 𝑥

◼ If 𝒍 𝒙 = log
𝟏

𝒑 𝒙
+ 𝟏,

1

2𝑙(𝑥)
≤
𝑝 𝑥

2
= ത𝐹 𝑥 − ത𝐹 𝑥 − 1

◼ ത𝐹 𝑥
𝑙(𝑥)

lies within the step corresponding to 𝑥. Thus, 𝑙(𝑥)

bits suffice to describe 𝑥. (Prefix-free code)

𝑳 = ∑𝒑 𝒙 𝒍 𝒙 < 𝑯 𝑿 + 𝟐

𝒑 𝒙 ⇒ 𝑭 𝒙 =෍

𝒂≤𝒙

𝒑(𝒂) ⇒ ഥ𝑭 𝒙 = 𝑭 𝒙 −
𝟏

𝟐
𝒑 𝒙 ⇒ 𝑙 𝑥 + 1 bits

Shannon–Fano–Elias Coding

The average codeword length is 2.75 bits and the entropy is 1.75 bits. The Huffman

code for this case achieves the entropy bound.

◼ Direct application of Shannon–Fano–Elias coding would also need arithmetic

whose precision grows with the block size, which is not practical when we deal with

long blocks.

◼ Shannon–Fano–Elias ⇒ Arithmetic coding

(Optimality) Let 𝑙(𝑥) be the codeword lengths associated with the Shannon code, and let 𝑙′(𝑥) be

the codeword lengths associated with any other uniquely decodable code. Then

𝐏𝐫 𝒍 𝑿 ≥ 𝒍′ 𝑿 + 𝒄 ≤
𝟏

𝟐𝒄−𝟏
Hence, no other code can do much better than the Shannon code most of the time.

𝒑 𝒙 ⇒ 𝑭 𝒙 =෍

𝒂≤𝒙

𝒑(𝒂) ⇒ ഥ𝑭 𝒙 = 𝑭 𝒙 −
𝟏

𝟐
𝒑 𝒙 ⇒ 𝑙 𝑥 + 1 bits

Summary

Cover: 5.6, 5.7, 5.8, 5.9, 5.10

