Simply-Typed Lambda Calculus

(Slides mostly follow Dan Grossman’s teaching materials)



https://homes.cs.washington.edu/~djg/teachingMaterials/gpl/

Review of untyped A-calculus

* Syntax: notation for defining functions
(Terms) M, N :=x | 2x. M | M N

* Semantics: reduction rules

(Ox. M)N —» M[N/x] (P)

M- M N - N’ M- M

MN - M'N MN - MN’ Ax.M — Ax. M’



(Ax.M)N - M][N/x] (P)

M->M
(Af. Az. T (f 2)) (Ay. y+Xx) MN - M'N
5 hz. (. yx) ((Ay. y+x) 2) N - N’
MN - MN'
— Az. (Ay. y+Xx) (z+xX)
M- M

—> AZ. Z+X+X o M — o M’



Review of untyped A-calculus

(AX. X X) (AX. X X)
— (AX. X X) (AX. X X)
— ...

This class: adding a type system

(We will see that well-typed terms in STLC always terminate.)



Why types

* Type checking catches “simple” mistakes early

ou”n

 Example: 2 + true + “a

* (Type safety) Well-typed programs will not go wrong
* Ensure execution never reach a “meaningless” state

* But “meaningless” depends on the semantics (each language
typically defines some as type errors and others run-time errors)

* Typed programs are easier to analyze and optimize

* Compilers can generate better code (e.g. access components of
structures by known offset)

Cons: impose constraints on the programmer
* Some valid programs might be rejected



Why formal type systems

* Many typed languages have informal descriptions
of the type systems (e.g., in language reference
manuals)

* A fair amount of careful analysis is required to
avoid false claims of type safety

* A formal presentation of a type system is a precise
specification of the type checker

* And allows formal proofs of type safety



What we will study about types

* Type system
* Typing rules: assign types to terms

* Type safety (soundness of typing rules): well-typed
terms cannot go wrong

* Connection to constructive propositional logic

* Curry-Howard isomorphism: “Propositions are Types”,
“Proofs are Programs”



Adding types to A-calculus —

wrong attempt

base type

(e.g. int, bool)

(Types) 1,0 =T | fun



Adding types to A-calculus —
wrong attempt

* Typing judgment (to assign types to terms)

-v

Judgment
* A statement J about certain formal properties
 Has a derivation ] (i.e. “a proof”)

* Has a meaning (“judgment semantics”) ]

* Typing rules (to derive the typing judgment)



Adding types to A-calculus —
wrong attempt

Typing rules

F (Ax.M) : fun

F M : fun FN:T
FMN:T

Not type safe, since well-typed terms may go wrong
(reduce to a “meaningless” state)

e.g. ((Af. f 1) 3) will go “wrong”, though - (Af.f1) 3 : int



Adding types to A-calculus —
getting it right

e Classify functions using argument and result types

e (Ax. x) and (Af. f 1) should be of different types: ((Ax. x) 3)
is acceptable, but ((Af. f 1) 3) is not

* Explicitly specify argument types in function syntax
* Type-check function bodies, which have free
variables

* Types of free variables are the context: type of (f 1)
depends on the type of f



Simply-typed A-calculus (STLC)

base type
i function type

(e.g. int, bool)

(Types) 1,0 @:==T | o>

An infinite number of types:
int = int, int > (int > int), (int > int) > int, ...

—> is right-associative: T >t —> 71 is T (t > 1)



Simply-typed A-calculus (STLC)

(Types) 1,6 =T | 6>

(Terms) M,N ::=x | A2x:t.M | MN



Reduction rules

Ox: . M)N — M[N/x] "

M- M
MN - M'N

Same as
untyped A-calculus
N-> N

MN - MN’

M- M
Ax:T.M = Ax: . M’




Typing judgment

M is of type T in context I'
[ FM:T

* Typing context (a set of typing assumptions)
[ = | Tx:t

* Include types of all the free variables in M (each free
variable x is of type 1)

* Empty context - is for closed terms

e UnderI’, M is a well-typed term of type t



Typing rules

(var)
I, x:tTFXx:7T

['FM: 0-o1 'EN: o

(app)
'FMN :T

Lx:0oFM:7

b
' (Ax:0.M):0->T1 (@bs)




(var)

Typing derivation [oxith xit
examples (Mot TENGDO (o

'FMN:t

Lx:oFM:1

(abs)
' (Ax:o.M):0->1

(var)

X:T FX:T

(abs)
FAx:iT.x):ToT



Typing derivation
examples

L x:TtThkFx:T

(var)

I''EFM: 0-o1 'FN: o

(app)

'FMN:t

Lx:oFM:1

(abs)

' (Ax:o.M):0->1

X:T,Vy:0 FX:T

(var)

(abs)

x:T F (Ay:0.x)

0 —1

(abs)

(AT Ay:0.x) : T2 0T




(var)

Typing derivation I

exam |eS I'FM: 0-71 [FN: o
p [FMN:t (@pp)
Lx:oFM:1 (abs)
' (Ax:o.M):0->1
(var) (var)
X T=TY:TEFEXITDT X:ToTY:T FY:'T
(app)
X.T—=TY:1T |—X}/1T
(abs)
X:T>TF QAyTXxy):T1oT
(abs)

FAx:tT> T Ayt xy):i (T2 1) > 1T—oT



Soundness and completeness

* A sound type system never accepts a program that
can go wrong
* No false negatives
* The language is type-safe

* A complete type system never rejects a program that
can’t go wrong

* No false positives

* However, for any Turing-complete PL, the set of
programs that may go wrong is undecidable

* Type system cannot be sound and complete
* Choose soundness, try to reduce false positives in practice



Soundness — well-typed terms in STLC
never go wrong

Theorem (Type Safety):

If -+ M:tand M =-* M’', then
-+ M'": 7,and either M' € ValuesoraM"'.M' - M"

Defined in language semantics

(e.g. A-abstraction, constants)

That is, the reduction of a well-typed term either diverges, or terminates
in a value of the expected type.

Follows from two key lemmas (next page).



Soundness — well-typed terms in STLC
never go wrong

* Preservation (subject reduction): well-typed terms
reduce only to well-typed terms of the same type

If --M:tand M - M',then-+ M": 1

* Progress: a well-typed term is either a value or can
be reduced

If -+ M:7,then either M € ValuesoraM'.M - M’



Not complete — the type system may
reject terms that do not go wrong

o (AX. (X (Ay.y)) (x 3)) (Az. 2)
Cannot find o, T such that

X:0 (x (Ay.y))(x 3): T
because we have to pick one type for x

* But (Ax. (x (Ay.y)) (x 3)) (Az. 2)
— ((Az. 2) (Ay. y)) ((Az. 2) 3)
— (Ay.y)3 >3



Well-typed terms in STLC always

terminate (strong normalization theorem)

e Recall (Ax.xx) (Ax.xx)
— (AX. X x) (AX. X X)
— ...

e (AX. X X) (AX. x x) cannot be assigned a type

Expect o to be in the form of 6 — T,

which is impossible!

X:0 F x:? X:0 Fx:0

X:0 F xx:7?



Main points of STLC

(Types) 1,0 =T | o>
(Terms) M,N == x | A2 x:t.M | MN

Reduction rules

(Ax:t.M)N - M][N/x] P)
Typing rules
Lx:oF-M:1 (abs)
abs
I‘,x:rl—x:r(var) ' (Ax:o.M):0->T

[FM: 0-o1 'FN: o
'EFMN:<t

(app)

Soundness (type safety)



Adding stuff

Use STLC as a foundation for understanding other
common language constructs

* Extenc
* Extenc

* Extenc

* Extenc

t
t
t
t

ne syntax (types & terms)
ne operational semantics (reduction rules)

ne type system (typing rules)

ne soundness proof (new proof cases)



Adding product type

.. | ox71

(Types) t,0
. | <M, N> | projlM | proj2 M

(Terms) M, N ::

Consider structures in C:

struct date{
int year;
int month;
int day;

)



Product type

.. | ox71
. | <M, N> | projlM | proj2 M

(Types) 7,0
(Terms) M, N ::

Reduction rules

projl<M, N> > M proj2 <M, N> — N

M —> M N —> N

<M, N> — <M’, N> <M, N> — <M, N’>

M- M M —> M

projl1 M — projl M’ proj2 M — proj2 M’



Product type

(Types) 1,0 = .. | ox=1
(Terms) M, N == ... | <M, N> | proj1 M | proj2 M
Typing rules

'-FM:o T'FN:T

(pair)
[ F<M,N>:0XT
' FM: 0 Xt (oroil) ' FM: 0 Xt (oroi2)
ro ro
e I‘I—proj2M:TpJ

[ FprojlM:o



Typing derivation example

(var) (var)
X:0OXT FX:0XT X:0OXT FX:0XT
(proj2) (proj1)
X:0XT HFpro2x:t X:0XT Fprojlx:o
(pair)

X:0XT F<proj2x,projlx>:TtXo

(abs)
-+ (Ax: 0 X T.<proj2 x, projl x>) : (0 X 1) = (T X 0)



Soundness theorem (type safety)

 Preservation:

If --M:tandM - M’ then-+ M": 1

* Progress:

If -+ M: 7, then either M € ValuesoraM'.M - M’

Include <v1, v2> now




Adding sum type

(Types) 1,0 = .. | o+
(Terms) M, N ::= ... | leftM | right M | case M do M1 M2

Consider unions in C:

union data{ . .
it Using the same location
’ for multiple data.
float f; ,
Can contain only one value
char c;

at any given time.

}



Adding sum type

(Types) 1,0 == .. | o+1

(Terms) M, N ::= ... | leftM | right M | case M do M1 M2

Subclasses in Java:

abstract class t {abstract t’ m();}
class A extends t { tl x; t/" m(){...}}
class B extends t { t2 x; t/" m(){...}}

e.m();



Adding sum type

(Types) 1,6 1= .. | o+1
(Terms) M, N ::= ... | leftM | right M | case M do M1 M2
In Coq:
Inductive bool : Set :=
| true : bool
| false : bool.
Definition not (b : bool) : bool :=

match b with
| true => false
| false => true
end.



Sum type: reduction rules

case (left M) doM1 M2 — M1 M

case (right M) do M1 M2 —» M2 M

M —> M
case M do M1 M2 — case M’ do M1 M2

M —> M

left M — left M’

M1l —> MY’
case M do M1 M2 — case M do M1’ M2 M > M
M2 — M2’ right M — right M’

case M do M1 M2 — case M do M1 M2’



Sum type: typing rules

' WHM: o [ HFM:t _
(left) (right)

' leftM:o+T ' FrightM:o+ T

'+-M:o+1t T'EMlio->p T FMZ2:T—op
[' -case Mdo M1 M2:p

(case)



Typing derivation examples

(var) (var)

X:T FHXx:t X'T Fx:T

(proj2) (proj1)
x:T Fleftx:t+o x:T Fleftx:t+p

(pair)
x:T F<leftx, leftx>: (t+4+ 0) X (T+ p)

(abs)
F (Ax:t.<leftx, leftx>) : 1t > (t+0) X (T+ p)

other side can be anything




Soundness theorem (type safety)

 Preservation:

If --M:tandM - M’ then-+ M": 1

* Progress:

If -+ M: 7, then either M € ValuesoraM'.M - M’

Include “left v’ and “right v’ now



Products vs. sums

* “logical duals” (more on this later)
* Tomakeaoxt,weneedacandart
* Tomakeaoc+t,weneedacorarct
 Givena o X T, we can geta c or a T or both (our “choice”)

* Given a o + 1T, we must be prepared for eitheracorar
(the value’s “choice”)



Main points till now

e STLC extended with products and sumes:
(Types) 1,6 =T | oc—>1 | oxt | o+7

(Terms) M,N ::=x | Ax:t.M | MN
| <M, N> | projl M | proj2 M
| left M | right M | case M do M1 M2

* Next: recursion



Recursion

e Recall in untyped A-calculus, every term has a
fixpoint
* Fixpoint combinator is a higher-order function h satisfying
forall f, (hf) gives a fixpoint of f

i.,e. hf=f(hf)

* Turing’s fixpoint combinator ®
Let A = AX. Ay.y(xxy) and ®©=AA

e Church’s fixpoint combinator Y
Let Y= Af (Ax. f(xx)) (Ax. f (X x))



Recursion

e Recall “strong normalization theorem”: well-typed
terms in STLC always terminate

e Extensions so far (products & sums) preserve termination

* Recursion is not allowed by the typing rules: it is
impossible to find types for fixed-point combinators

* So we add an explicit construct for recursion

(Terms) M, N == ... | fixM

(Types) t,0 (no new types)



Reduction rules for fix

M->M
fixAx. M - M][fix Ax. M /x] fix M - fix M’

( fix Af. An. if (n==0) then 1 else n *f(n-1))3
— (An. if (n == 0) then 1 else n*((fixt an. if (1==0) then 1 else n*fin-1)(N-1))) 3
— if (3 ==0) then 1 else 3 * ((fix1f an. if (n==0) then 1 else n*f(n-1))(3-1))
—> 3 * ((fix af. an. if (n==0) then 1 else n*f(n-1))(3-1))



Typing fix

' -FM: 1T->71
[ HFfixM:1

(fix)

Math explanation: If M is a function from t to t, then fix M,
the fixed-point of M, is some t with the fixed-point property

Operational explanation: fix Ax.M’ reduces to M’[fix Ax.M’/x].
* The substitution means x and fix Ax.M’ need the same type

* The result means M’ and fix Ax.M’ need the same type

Soundness (type safety) is straightforward

But strong normalization is eliminated



Main points till now

e STLC with products and sums:

(Types) 1,0 =T | o—>1 | ox1t | o+
(Terms) M,N ::=x | Ax:t.M | MN
| <M, N> | proj1M | proj2 M
| left M | right M | case M do M1 M2

 We can also add recursion

* Next: Curry-Howard isomorphism



Curry-Howard Isomorphism

 What we did:

e Define a programming language

* Define a type system to rule out “bad” programs
* What logicians do:

* Define logic propositions

* Eg p,gqu=BlpAaqglpvalp=q
e Define a proof system to prove “good” propositions

* Turn out to be related
* Propositions are Types
* Proofs are Programs



Curry-Howard Isomorphism

 Slogans
* Propositions are Types
* Proofs are Programs

In this class, we will show correspondence between formulas
of constructive propositional logic

(Prop) p,g =B | p=>aq | paqg | pvq
and types of STLC with products and sums

(Types) 1,0 :=T | o>t | ox1t | o+



Examples of terms and types

AX: T. X

has type

T—>7



Examples of terms and types

Aot AT ol fx

has type

T>(t—>o0)—>o0



Examples of terms and types

M:to>o0—op. AXio.Ay:T.fyX

has type

(t>0—>p)>c—>1—>p



Examples of terms and types

Ax: T. <left x, left x>

has type

T ((t+0)x(t+p))



Examples of terms and types

Mit—>p.Agioc—>p.AxiTt+ 0. (casexdofg)

has type

(t—op)o(c—>p)>(t+0)—>p



Examples of terms and types

AX: T X G. Ay: p. <<y, projl x>, proj2 x >

has type

(txo)—>p—((px1)*x0)



Empty and nonempty types

Have seen several “nonempty” types (closed terms of that type)

T—>1T

T>((t—>0o)>o
(t>0c—>p)>c—>1op

T ((t+0) x(t+p))
(top)o>(c—op)>(t+o)—>p
(txo)—>p—((px1)x0)

There’re also lots of “empty” types (no closed terms of that type)

T T—>0 T+ (t— o) T>(c—>1)—>0

How to know whether a type is nonempty?



How to know whether a type is nonempty?

Let’s replace — with =, x with A, + with v:

T=>T )
T=>(t=0)=o0
t=>o=p)=>o=>1=p
T=((tvo)a(tvp))
(t=>p)=>(c=>p)=>(tve)=>p | (corresponding to
(tAro)=p=((pAT)Aro) nonempty types

_
. ~ — have closed terms)

Can be proved in
~ propositional logic

T=0
TV (T= 0) > Cannot be proved in propositional logic

(corresponding to
— empty types — no closed terms)

T=>(o=>1)=0



Example — propositional-logic proof

[ Fp

T,T=>>0FT>0 T,T>0FT

T,T>0FO

TrH(t=>0)>o0

FTtT=>(t=>0)=>0



Propositional logic (natural deduction)

B|p=q]| parqg]| pva

(Prop) p,q
(Ctxt) I

[,pkq 'p=>q T'kFp

(axiom) (=-intro)

ILbpkp '-p=>q I'+q

' FpAq ' FpAq .
(A-elim-1) (A-elim-r)

I Fp ' g

I' Fq
(v-intro-l)
' FpVq

(=-elim)

I'p T'kgq
' FpAq
' Fp

' FpVq

'+pvg TFkp=>r ThHg=>Tr (v-elim)
' +r

(A-intro)

(v-intro-r)




This is exactly our type system, erasing terms,
replacing —» with =, x with A, + with v

LLx:oF-M:1

(abs)
F,x:rl—x:r(var) ' (Ax:o.M):0->7
I'-kM:0->1t T'FN:o ' -M:o0 T' N1
(app) (pair)
[FMN:< [ F<M,N>:0XT
' WFM:o Xt 4 ' WFM:oXT (oroi2)
ro
[ FprojlM:o (proj1) [ Fproj2M: T Pre)
' -M: o (left ' WM:t (right)
' FleftM:0+ 7 : ' Fright M:0+ 7 e

'+-M:o+t TT'EMl:o—-»>p T EFM2:Tt->p
I' -case M do M1 M2:p

(case)




Curry-Howard isomorphism

* Given a well-typed closed term, take the typing derivation,
erase the terms, and have a propositional-logic proof

e Given a propositional-logic proof, there exists a closed term
with that type

* A term that type-checks is a proof — it tells you exactly how
to derive the logic formula corresponding to its type

e Constructive (hold that thought) propositional logic and
simply-typed lambda-calculus with pairs and sums are the
same thing.

 Computation and logic are deeply connected
e Ais no more or less made up than implication



Revisit our examples: “terms are proofs”

AX: T. X
is a proof that

T=>7T



Revisit our examples: “terms are proofs”

Aot AT ol fx

is a proof that

T=>(t=>0)=o0



Revisit our examples: “terms are proofs”

M:to>o0—op. AXio.Ay:T.fyX

is a proof that

(t=>o=>p)>o=>1t=p



Revisit our examples: “terms are proofs”

Ax: T. <left x, left x>

is a proof that

T=>((tvo)altvp))



Revisit our examples: “terms are proofs”

Mit—>p.Agioc—>p.AxiTt+ 0. (casexdofg)

is a proof that

(t=p)=(c=p)=(tve)=p



Revisit our examples: “terms are proofs”

AX: T X G. Ay: p. <<y, projl x>, proj2 x >
is a proof that

(tArc)=p=(pArT)ArO)



Coqg example: proof can be written as
functional program

B 2r202F2Q

[Btumamed puter]
plus_comm =
fun n m : nat =
nat_ind (fun nO : nat => n0 + m = m + n0)
(plus_n_0 m)
(fun (v : nat) (H: yv+m=m+vy) =
eg_ind (S (m + v))
(fun nO : nat = S (v + m) = n0)
(f_equal S H)
(m + S vy)
(plus_n_Sm m y)) n
: forall nm : nat, n + m=m + n

7!
heady Line:  1Char. 1 Coglde started

Proof of commutativity of addition on nat in Coq.



Why care?

Because:
* This is just fascinating
* Don’t think of logic and computing as distinct fields

* Thinking “the other way” can help you know what’s
possible/impossible

e Can form the basis for automated theorem provers

* Type systems should not be ad hoc piles of rules!
So, every typed A-calculus is a proof system for some logic...

Is STLC with pairs and sums a complete proof system for
propositional logic? Almost...



Classical vs. constructive

* Classical propositional logic has the “law of the
excluded middle”:

C FpV(p=q) Think "p V —p

e STLC does not support it: e.g. no closed term has
type p + (p = o)

* Logics without this rule are called “constructive” or
“intuitionistic”.

 Formulae are only considered "true" when we have
direct evidence (“proofs produce examples”)



Example classical proof

e Theorem: There exist two irrational numbers a and
b such that a? is rational.

* Can be proved using “the law of exclusive middle”.
e It’s known that V2 is irrational.

e Consider the number \/?/E.

e Ifit is rational, the proof is complete, and a = b = V2.

V2
e Ifitisirrational, thenleta =v2 and b = V2. Thena? =

V2 V2x+y2
(V2 2)‘/E =2 PVE = (v/2)? = 2, and the proof is complete.

* Constructive logics would not accept this argument



Classical vs. constructive

* In constructive logics, “branch on possibilities” by
making “excluded middle” an explicit assumption:

PV@=2)AP=2>rA((p=2 =>1)=>7r

* “if any number is either rational or irrational, then
there exist two irrational numbers a and b such
that a? is rational”



What about “fix”?

* A “non-terminating proof” is no proof at all
* Remember the typing rule

' -FM: 1T->71
[ HFfixM:1

(fix)

* It lets us prove anything! E.g. fix Ax:t. x has type t

* So the “logic” is inconsistent



Last word on Curry-Howard

* Not just constructive propositional logic & STLC

e Every logic has a corresponding typed system
* Classical logics
* Inconsistent logics

* If you remember one thing:

-M:0->1 FI—N:O’( ) 'Fp=>gq Fl—p( im)
d -
[FMN :t PPl 4 [+ g o




