
Simply-Typed Lambda Calculus

(Slides mostly follow Dan Grossman’s teaching materials)

https://homes.cs.washington.edu/~djg/teachingMaterials/gpl/


Review of untyped -calculus

• Syntax: notation for defining functions

(Terms)  M, N  ::=  x  |  x. M  |  M N

• Semantics: reduction rules

λ𝑥.𝑀 𝑁 → 𝑀[𝑁/𝑥]
()

𝑀 → 𝑀′

𝑀 𝑁 → 𝑀′𝑁

𝑀 → 𝑀′

λ𝑥.𝑀 → λ𝑥.𝑀′

𝑁 → 𝑁′

𝑀 𝑁 → 𝑀 𝑁′



(f. z. f (f z)) (y. y+x)

z. (y. y+x) ((y. y+x) z)

z. (y. y+x) (z+x)

z. z+x+x

λ𝑥.𝑀 𝑁 → 𝑀[𝑁/𝑥]
()

𝑀 → 𝑀′

𝑀 𝑁 → 𝑀′𝑁

𝑀 → 𝑀′

λ𝑥.𝑀 → λ𝑥.𝑀′

𝑁 → 𝑁′

𝑀 𝑁 → 𝑀 𝑁′



Review of untyped -calculus

(x. x x) (x. x x) 

 (x. x x) (x. x x) 

 …

This class: adding a type system

(We will see that well-typed terms in STLC always terminate.)



Why types

• Type checking catches “simple” mistakes early
• Example: 2 + true + “a”

• (Type safety) Well-typed programs will not go wrong
• Ensure execution never reach a “meaningless” state 

• But “meaningless” depends on the semantics (each language 
typically defines some as type errors and others run-time errors)

• Typed programs are easier to analyze and optimize
• Compilers can generate better code (e.g. access components of 

structures by known offset)

Cons: impose constraints on the programmer
• Some valid programs might be rejected



Why formal type systems

• Many typed languages have informal descriptions 
of the type systems (e.g., in language reference 
manuals)

• A fair amount of careful analysis is required to 
avoid false claims of type safety

• A formal presentation of a type system is a precise 
specification of the type checker

• And allows formal proofs of type safety



What we will study about types

• Type system
• Typing rules: assign types to terms

• Type safety (soundness of typing rules): well-typed 
terms cannot go wrong

• Connection to constructive propositional logic
• Curry-Howard isomorphism: “Propositions are Types”, 

“Proofs are Programs”



Adding types to -calculus –
wrong attempt

(Types) ,  ::=  T  | fun

base type 
(e.g. int, bool)

function type



Adding types to -calculus –
wrong attempt

• Typing judgment (to assign types to terms)

• Typing rules (to derive the typing judgment)

⊢ M ∶ τ M is of type 

Judgment

• A statement J about certain formal properties

• Has a derivation ⊢ J (i.e. “a proof”)

• Has a meaning (“judgment semantics”)  ⊨ J



Adding types to -calculus –
wrong attempt

⊢ 𝑀 ∶ 𝐟𝐮𝐧 ⊢ 𝑁 ∶ T

⊢ 𝑀 𝑁 ∶ T

⊢ λ𝑥.𝑀 ∶ 𝐟𝐮𝐧

Not type safe, since well-typed terms may go wrong 
(reduce to a “meaningless” state)

e.g. ((f. f 1) 3) will go “wrong”, though ⊢ (f. f 1) 3 ∶ int

Typing rules



Adding types to -calculus –
getting it right

• Classify functions using argument and result types

• (x. x) and (f. f 1) should be of different types: ((x. x) 3) 
is acceptable, but ((f. f 1) 3) is not

• Explicitly specify argument types in function syntax

• Type-check function bodies, which have free 
variables

• Types of free variables are the context:  type of (f 1) 
depends on the type of f



Simply-typed -calculus (STLC)

(Types) ,  ::=  T  |  

base type 
(e.g. int, bool)

function type

An infinite number of types:
int  int,  int  (int  int),  (int  int)  int,  …

 is right-associative:      is    (  )



Simply-typed -calculus (STLC)

(Terms)  M, N  ::=  x  |  x : . M  |  M N

(Types) ,  ::=  T  |  



Reduction rules

λ𝑥: 𝜏.𝑀 𝑁 → 𝑀[𝑁/𝑥]

𝑀 → 𝑀′

𝑀 𝑁 → 𝑀′𝑁

𝑀 → 𝑀′

λ𝑥: 𝜏.𝑀 → λ𝑥: 𝜏.𝑀′

𝑁 → 𝑁′

𝑀 𝑁 → 𝑀 𝑁′

Same as 
untyped -calculus

()



Typing judgment

• Typing context (a set of typing assumptions)

• Include types of all the free variables in M (each free 
variable 𝑥 is of type τ)

• Empty context ∙ is for closed terms 

• Under , M is a well-typed term of type 

Γ ⊢ M ∶ τ

Γ ∷= ∙ | Γ, 𝑥: τ

M is of type  in context 



Typing rules

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ

(var)

(app)

(abs)



Typing derivation 
examples

⋅ ⊢ λ𝑥: τ. 𝑥 ∶ τ → τ

𝑥: τ ⊢ 𝑥: τ
(var)

(abs)

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ
(var)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ
(abs)



Typing derivation 
examples

⋅ ⊢ λ𝑥: τ. λ𝑦: σ. 𝑥 ∶ τ → σ → τ

𝑥: τ ⊢ λ𝑦: σ. 𝑥 ∶ σ → τ

(var)

(abs)

𝑥: τ, 𝑦: σ ⊢ 𝑥 ∶ 𝜏
(abs)

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ
(var)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ
(abs)



Typing derivation 
examples

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ
(var)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ
(abs)

⋅ ⊢ λ𝑥: τ → τ. λ𝑦: τ. 𝑥 𝑦 ∶ (τ → τ) → τ → τ

𝑥: τ → τ ⊢ λ𝑦: τ. 𝑥 𝑦 ∶ τ → τ

(var)

(abs)

(abs)

𝑥: τ → τ, 𝑦: τ ⊢ 𝑥 𝑦 ∶ τ
(app)

𝑥: τ → τ, 𝑦: τ ⊢ 𝑥: τ → τ 𝑥: τ → τ, 𝑦: τ ⊢ 𝑦: τ
(var)



Soundness and completeness

• A sound type system never accepts a program that 
can go wrong
• No false negatives 

• The language is type-safe

• A complete type system never rejects a program that 
can’t go wrong 
• No false positives 

• However, for any Turing-complete PL, the set of 
programs that may go wrong is undecidable
• Type system cannot be sound and complete

• Choose soundness, try to reduce false positives in practice



Soundness – well-typed terms in STLC
never go wrong 

Theorem (Type Safety): 

That is,  the reduction of a well-typed term either diverges, or terminates 
in a value of the expected type.

Follows from two key lemmas (next page). 

If ⋅ ⊢ 𝑀: 𝜏 and 𝑀 →∗ 𝑀′, then

Defined in language semantics 
(e.g. -abstraction, constants)

⋅ ⊢ 𝑀′: 𝜏, and either 𝑀′ ∈ Values or ∃𝑀′′.𝑀′ → 𝑀′′



Soundness – well-typed terms in STLC
never go wrong 

• Preservation (subject reduction): well-typed terms 
reduce only to well-typed terms of the same type

• Progress: a well-typed term is either a value or can 
be reduced

If ⋅ ⊢ 𝑀: 𝜏 and 𝑀 → 𝑀′, then ⋅ ⊢ 𝑀′: 𝜏

If ⋅ ⊢ 𝑀: 𝜏, then either 𝑀 ∈ Values or ∃𝑀′. 𝑀 → 𝑀′



Not complete – the type system may 
reject terms that do not go wrong

• (x. (x (y. y)) (x 3)) (z. z)

Cannot find ,  such that 

because we have to pick one type for x

• But

𝑥: σ ⊢ 𝑥 𝜆𝑦. 𝑦 𝑥 3 ∶ τ

(x. (x (y. y)) (x 3)) (z. z) 

 ((z. z) (y. y)) ((z. z) 3) 

 (y. y) 3  3



Well-typed terms in STLC always 
terminate  (strong normalization theorem)

• Recall

• (x. x x) (x. x x) cannot be assigned a type

(x. x x) (x. x x) 

 (x. x x) (x. x x) 

 …

𝑥: σ ⊢ 𝑥 𝑥 ∶ ?

𝑥: σ ⊢ 𝑥: ? 𝑥: σ ⊢ 𝑥: σ

Expect  to be in the form of  ,
which is impossible!



Main points of STLC

(Terms)  M, N  ::=  x  |  x : . M  |  M N

(Types) ,  ::=  T  |  

λ𝑥: 𝜏.𝑀 𝑁 → 𝑀[𝑁/𝑥]
()

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ
(var)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ
(abs)

Reduction rules

Typing rules

Soundness (type safety)



Adding stuff

Use STLC as a foundation for understanding other 
common language constructs

• Extend the syntax (types & terms)

• Extend the operational semantics (reduction rules)

• Extend the type system (typing rules)

• Extend the soundness proof (new proof cases)



Adding product type

struct date{
int year;
int month;
int day;

}

Consider structures in C:

(Terms)  M, N  ::=  …  |  <M, N>  |  proj1 M  |  proj2 M

(Types) ,  ::=  …  |    



Product type

(Terms)  M, N  ::=  …  |  <M, N>  |  proj1 M  |  proj2 M

(Types) ,  ::=  …  |    

Reduction rules

proj1 <M, N>   M proj2 <M, N>   N

<M, N>   <M’, N>

M   M’

<M, N>   <M, N’>

N   N’

proj1 M  proj1 M’

M   M’

proj2 M  proj2 M’

M   M’



Product type

(Terms)  M, N  ::=  …  |  <M, N>  |  proj1 M  |  proj2 M

(Types) ,  ::=  …  |    

Typing rules

Γ ⊢ M: 𝜎 Γ ⊢ N: τ

Γ ⊢ <M, N> ∶ σ × τ
(pair)

Γ ⊢ M: 𝜎 × τ

Γ ⊢ proj1 M ∶ σ
(proj1)

Γ ⊢ M: 𝜎 × τ

Γ ⊢ proj2 M ∶ τ
(proj2)



Typing derivation example

⋅ ⊢ λ𝑥: σ × τ. <proj2 𝑥, proj1 𝑥> ∶ (σ × τ) → (τ × σ)

𝑥: σ × τ ⊢ <proj2 𝑥, proj1 𝑥> ∶ τ × σ

(var)

(abs)

(pair)

𝑥: σ × τ ⊢ proj2 𝑥 ∶ τ

(var)

𝑥: σ × τ ⊢ proj1 𝑥 ∶ σ

𝑥: σ × τ ⊢ 𝑥: σ × τ
(proj2)

𝑥: σ × τ ⊢ 𝑥: σ × τ
(proj1)



Soundness theorem (type safety)

• Preservation:

• Progress: 

If ⋅ ⊢ 𝑀: 𝜏 and 𝑀 → 𝑀′, then ⋅ ⊢ 𝑀′: 𝜏

If ⋅ ⊢ 𝑀: 𝜏, then either 𝑀 ∈ Values or ∃𝑀′. 𝑀 → 𝑀′

Include <v1, v2> now



Adding sum type

union data{
int i;
float f;
char c;

}

Consider unions in C:

Using the same location
for multiple data. 
Can contain only one value 
at any given time.

(Terms)  M, N  ::=  …  |  left M  |  right M  |  case M do M1 M2

(Types) ,  ::=  …  |   + 



Adding sum type

(Terms)  M, N  ::=  …  |  left M  |  right M  |  case M do M1 M2

(Types) ,  ::=  …  |   + 

Subclasses in Java:
abstract class t {abstract t’ m();} 

class A extends t { t1 x; t’ m(){...}} 

class B extends t { t2 x; t’ m(){...}} 

... 

e.m(); 

case e do A.m B.m



Adding sum type

(Terms)  M, N  ::=  …  |  left M  |  right M  |  case M do M1 M2

(Types) ,  ::=  …  |   + 

Inductive bool : Set :=

| true : bool

| false : bool.

Definition not (b : bool) : bool :=

match b with

| true => false

| false => true

end.

In Coq:



Sum type: reduction rules

case (left M) do M1 M2   M1 M

left M   left M’

M   M’

right M   right M’

M   M’

case (right M) do M1 M2   M2 M

case M do M1 M2   case M’ do M1 M2

M   M’

case M do M1 M2   case M do M1’ M2

M1   M1’

case M do M1 M2   case M do M1 M2’

M2   M2’



Sum type: typing rules

Γ ⊢ M: 𝜎

Γ ⊢ left M ∶ σ + τ
(left)

Γ ⊢ M: 𝜎 + τ Γ ⊢ M1: σ → ρ Γ ⊢ M2: τ → ρ

Γ ⊢ case M do 𝑀1𝑀2: ρ
(case)

Γ ⊢ M: τ

Γ ⊢ right M ∶ σ + τ
(right)



Typing derivation examples

⋅ ⊢ λ𝑥: τ. <left 𝑥, left 𝑥> ∶ τ → τ + σ × (τ + 𝜌)

𝑥: τ ⊢ <left 𝑥, left 𝑥> ∶ τ + σ × (τ + 𝜌)

(var)

(abs)

(pair)

𝑥: τ ⊢ left 𝑥: τ + σ

(var)

𝑥: τ ⊢ left 𝑥: τ + 𝜌

𝑥: τ ⊢ 𝑥: τ
(proj2)

𝑥: τ ⊢ 𝑥: τ
(proj1)

other side can be anything



Soundness theorem (type safety)

• Preservation:

• Progress: 

If ⋅ ⊢ 𝑀: 𝜏 and 𝑀 → 𝑀′, then ⋅ ⊢ 𝑀′: 𝜏

If ⋅ ⊢ 𝑀: 𝜏, then either 𝑀 ∈ Values or ∃𝑀′. 𝑀 → 𝑀′

Include “left v” and “right v” now



Products vs. sums

• “logical duals” (more on this later)

• To make a   , we need a  and a 

• To make a  + , we need a  or a 

• Given a   , we can get a  or a  or both (our “choice”)

• Given a  + , we must be prepared for either a  or a 
(the value’s “choice”)



Main points till now

• STLC extended with products and sums:

• Next: recursion

(Terms)  M, N  ::=  x  |  x : . M  |  M N

|  <M, N>  |  proj1 M  |  proj2 M

|  left M  |  right M  |  case M do M1 M2

(Types) ,  ::= T  |    |     |   + 



Recursion

• Recall in untyped -calculus, every term has a 
fixpoint
• Fixpoint combinator is a higher-order function h satisfying

for all f,    (h f) gives a fixpoint of f

i.e.   h f = f (h f)

• Turing’s fixpoint combinator 

Let  A  =  x. y. y (x x y)  and   = A A

• Church’s fixpoint combinator Y

Let  Y =  f. (x. f (x x)) (x. f (x x)) 



Recursion

• Recall “strong normalization theorem”: well-typed 
terms in STLC always terminate
• Extensions so far (products & sums) preserve termination

• Recursion is not allowed by the typing rules: it is 
impossible to find types for fixed-point combinators

• So we add an explicit construct for recursion

(Terms)  M, N  ::=  …  |  fix M

(Types) ,  ::=  …             (no new types)



Reduction rules for fix

𝐟𝐢𝐱 λ𝑥.𝑀 → 𝑀[𝐟𝐢𝐱 λ𝑥.𝑀/𝑥]
𝑀 → 𝑀′

𝐟𝐢𝐱 𝑀 → 𝐟𝐢𝐱 𝑀′

( fix f.  n.  if  (n == 0)  then  1  else  n * f(n-1) ) 3

 (n. if (n == 0) then 1 else n*((fix f.  n.  if  (n == 0)  then  1  else  n * f(n-1))(n-1))) 3

 if (3 == 0) then 1 else 3 * ((fix f.  n.  if  (n == 0)  then  1  else  n * f(n-1))(3-1))

 3 * ((fix f.  n.  if  (n == 0)  then  1  else  n * f(n-1))(3-1))

 …



Typing fix

• Math explanation: If M is a function from τ to τ , then fix M, 
the fixed-point of M, is some τ with the fixed-point property

• Operational explanation: fix λx.M’ reduces to M’[fix λx.M’/x].  

• The substitution means x and fix λx.M’ need the same type

• The result means M’ and fix λx.M’ need the same type

• Soundness (type safety) is straightforward

• But strong normalization is eliminated

Γ ⊢ 𝑀 ∶ 𝜏 → 𝜏

Γ ⊢ 𝐟𝐢𝐱 𝑀 ∶ 𝜏
(fix)



Main points till now

• STLC with products and sums:

• We can also add recursion

• Next: Curry-Howard isomorphism

(Terms)  M, N  ::=  x  |  x : . M  |  M N

|  <M, N>  |  proj1 M  |  proj2 M

|  left M  |  right M  |  case M do M1 M2

(Types) ,  ::= T  |    |     |   + 



Curry-Howard Isomorphism

• What we did:
• Define a programming language

• Define a type system to rule out “bad” programs

• What logicians do:
• Define logic propositions

• E.g.    p, q ::= B | p  q | p  q | p  q

• Define a proof system to prove “good” propositions

• Turn out to be related
• Propositions are Types

• Proofs are Programs



Curry-Howard Isomorphism

• Slogans
• Propositions are Types

• Proofs are Programs

In this class, we will show correspondence between formulas 
of constructive propositional logic 

and types of STLC with products and sums

(Types) ,  ::=  T  |    |     |   + 

(Prop)   p, q    ::=  B  |  p  q  |  p  q  |  p  q



Examples of terms and types

x: . x

has type

  



Examples of terms and types

x: . f:   . f x

has type

  (  ) 



Examples of terms and types

f:    . x: . y: . f y x

has type

(   )   



Examples of terms and types

x: . <left x, left x>

has type

  (( + )  ( + ))



Examples of terms and types

f:   . g:  . x:  + . (case x do f g)

has type

(  )  ( )  ( + ) 



Examples of terms and types

x:   . y: . < <y, proj1 x>, proj2 x >

has type

(  )  ((  )  )



Empty and nonempty types

Have seen several “nonempty” types (closed terms of that type)

  
  (  ) 
(   )   
 (( + )  ( + ))
(  )  ( )  ( + ) 
(  )  ((  )  )

There’re also lots of “empty” types (no closed terms of that type)

     + (  )   ( ) 

How to know whether a type is nonempty?



How to know whether a type is nonempty?

Let’s replace  with ,   with ,  + with :

  
  (  ) 
(   )   
 ((  )  (  ))
(  )  ( )  (  ) 
(  )  ((  )  )


  

  (  )

  ( ) 

Can be proved in 
propositional logic

Cannot be proved in propositional logic

(corresponding to 
nonempty types 
– have closed terms)

(corresponding to 
empty types – no closed terms)



Example – propositional-logic proof

⋅ ⊢ τ ⇒ τ ⇒ σ ⇒ σ

τ ⊢ τ ⇒ σ ⇒ σ

τ, τ ⇒ σ ⊢ σ

τ, τ ⇒ σ ⊢ ττ, τ ⇒ σ ⊢ τ ⇒ σ

Γ ⊢ 𝑝

assumptions



Propositional logic (natural deduction)

(Prop)    p, q    ::=  B  |  p  q  |  p  q  |  p  q

(Ctxt)         ::=    |  , p

Γ ⊢ 𝑝

Γ ⊢ 𝑝 ∨ 𝑞
(-intro-l)

Γ ⊢ 𝑝 ∨ 𝑞 Γ ⊢ 𝑝 ⇒ 𝑟 Γ ⊢ 𝑞 ⇒ 𝑟

Γ ⊢ 𝑟
(-elim)

Γ ⊢ 𝑞

Γ ⊢ 𝑝 ∨ 𝑞
(-intro-r)

Γ ⊢ 𝑝 Γ ⊢ 𝑞

Γ ⊢ 𝑝 ∧ 𝑞
(-intro)

Γ ⊢ 𝑝 ∧ 𝑞

Γ ⊢ 𝑝
(-elim-l)

Γ, 𝑝 ⊢ 𝑝
(axiom)

Γ ⊢ 𝑝 ⇒ 𝑞 Γ ⊢ 𝑝

Γ ⊢ 𝑞
(-elim)

Γ, 𝑝 ⊢ 𝑞

Γ ⊢ 𝑝 ⇒ 𝑞
(-intro)

Γ ⊢ 𝑝 ∧ 𝑞

Γ ⊢ 𝑞
(-elim-r)



This is exactly our type system, erasing terms, 
replacing  with ,   with ,  + with 

Γ ⊢ M: 𝜎

Γ ⊢ left 𝑀 ∶ σ + τ
(left)

Γ ⊢ M: 𝜎 + τ Γ ⊢ M1: σ → ρ Γ ⊢ M2: τ → ρ

Γ ⊢ case 𝑀 do 𝑀1𝑀2: ρ
(case)

Γ ⊢ M: τ

Γ ⊢ right 𝑀 ∶ σ + τ
(right)

Γ ⊢ M: 𝜎 Γ ⊢ N: τ

Γ ⊢ <M, N> ∶ σ × τ
(pair)

Γ ⊢ M: 𝜎 × τ

Γ ⊢ proj1 M ∶ σ
(proj1)

Γ ⊢ M: 𝜎 × τ

Γ ⊢ proj2 M ∶ τ
(proj2)

Γ, 𝑥 ∶ τ ⊢ 𝑥 ∶ τ
(var)

Γ ⊢ 𝑀 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑁 ∶ 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑀 ∶ 𝜏

Γ ⊢ λ𝑥: 𝜎.𝑀 ∶ 𝜎 → τ
(abs)



Curry-Howard isomorphism

• Given a well-typed closed term, take the typing derivation, 
erase the terms, and have a propositional-logic proof 

• Given a propositional-logic proof, there exists a closed term 
with that type 

• A term that type-checks is a proof — it tells you exactly how 
to derive the logic formula corresponding to its type 

• Constructive (hold that thought) propositional logic and 
simply-typed lambda-calculus with pairs and sums are the 
same thing. 

• Computation and logic are deeply connected 

• λ is no more or less made up than implication 



Revisit our examples: “terms are proofs”

x: . x

is a proof that

  



x: . f:   . f x

is a proof that

  (  ) 

Revisit our examples: “terms are proofs”



Revisit our examples: “terms are proofs”

f:    . x: . y: . f y x

is a proof that

(   )   



Revisit our examples: “terms are proofs”

x: . <left x, left x>

is a proof that

  ((  )  (  ))



Revisit our examples: “terms are proofs”

f:   . g:  . x:  + . (case x do f g)

is a proof that

(  )  ( )  (  ) 



Revisit our examples: “terms are proofs”

x:   . y: . < <y, proj1 x>, proj2 x >

is a proof that

(  )  ((  )  )



Coq example: proof can be written as 
functional program

Proof of commutativity of addition on nat in Coq.



Why care? 
Because: 

• This is just fascinating 

• Don’t think of logic and computing as distinct fields 

• Thinking “the other way” can help you know what’s 
possible/impossible 

• Can form the basis for automated theorem provers 

• Type systems should not be ad hoc piles of rules! 

So, every typed λ-calculus is a proof system for some logic... 

Is STLC with pairs and sums a complete proof system for 
propositional logic? Almost...



Classical vs. constructive

• Classical propositional logic has the “law of the 
excluded middle”: 

• STLC does not support it:  e.g.  no closed term has 
type 𝜌 + (𝜌 → 𝜎)

• Logics without this rule are called “constructive” or 
“intuitionistic”. 
• Formulae are only considered "true" when we have 

direct evidence (“proofs produce examples”)

Γ ⊢ 𝑝 ∨ (𝑝 ⇒ 𝑞)
Think "𝑝 ∨ ¬𝑝"



Example classical proof 

• Theorem: There exist two irrational numbers 𝑎 and 
𝑏 such that 𝑎𝑏 is rational. 

• Can be proved using “the law of exclusive middle”.
• It’s known that 2 is irrational. 

• Consider the number 2
2

. 
• If it is rational, the proof is complete, and 𝑎 = 𝑏 = 2.

• If it is irrational, then let 𝑎 = 2
2

and 𝑏 = 2. Then 𝑎𝑏 =

( 2
2
) 2 = 2

2× 2
= ( 2)2 = 2, and the proof is complete.

• Constructive logics would not accept this argument



Classical vs. constructive

• In constructive logics, “branch on possibilities” by 
making “excluded middle” an explicit assumption: 

• “if any number is either rational or irrational, then 
there exist two irrational numbers 𝑎 and 𝑏 such 
that 𝑎𝑏 is rational” 

(𝑝 ∨ 𝑝 ⇒ 𝑞 ) ∧ (𝑝 ⇒ 𝑟) ∧ 𝑝 ⇒ 𝑞 ⇒ 𝑟 ⇒ 𝑟



What about “fix”?

• A “non-terminating proof” is no proof at all 

• Remember the typing rule 

• It lets us prove anything! E.g.  fix λx:. x has type 

• So the “logic” is inconsistent

Γ ⊢ 𝑀 ∶ 𝜏 → 𝜏

Γ ⊢ 𝐟𝐢𝐱 𝑀 ∶ 𝜏
(fix)



Last word on Curry-Howard

• Not just constructive propositional logic & STLC

• Every logic has a corresponding typed system
• Classical logics

• Inconsistent logics

• If you remember one thing:

Γ ⊢ 𝑝 ⇒ 𝑞 Γ ⊢ 𝑝

Γ ⊢ 𝑞
(-elim)

Γ ⊢ 𝑀: 𝜎 → 𝜏 Γ ⊢ 𝑁: 𝜎

Γ ⊢ 𝑀 𝑁 ∶ τ
(app)


