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1. (1) You are given the stabilizer S = {XXIZ, Y XIY, IZIX,ZZII,−Y Y IZ,XY IY,
ZIIX, IIII}. Give a minimal list of elements of S which can be combined
by multiplication to produce all the elements in S, i.e., the generators of
S.

(2) You are given that {XIX,ZIY } generate S. Give a list of additional op-
erators which are also in S.

(3) If S acts on an n-qubit space, and the minimal generator set for S has d
elements, then what is the dimension of the vector space which is stabilized
by S?

Answer:

(1) {XXIZ, IZIX,ZIIX} .

(2) {Y IZ, III} .

(3) 2n−d.

2. (a) Give stabilizer generator sets for the following states.

(1) (|0⟩+ i |1⟩)/
√
2 (2) |1⟩

(3) (|00⟩+ |11⟩)/
√
2 (4) (|00⟩ − |11⟩)/

√
2

(5) (|01⟩+ |10⟩)/
√
2 (6) (|01⟩ − |10⟩)/

√
2

(7) (|000⟩+ |111⟩)/
√
2 (8) (|+0+⟩+ |−1−⟩)/

√
2,

where |±⟩ denote the eigenkets of Pauli X.
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(b) Give stabilizer generator sets for the following vector spaces, specified by
the basis sets given.

(1) {|001⟩ , |110⟩}

(2)
{
(|00⟩+ |11⟩)/

√
2, (|01⟩+ |10⟩)/

√
2
}
.

Answer:

(a) (1) {Y } (2) {−Z}

(3) {XX,ZZ} (4) {−XX,ZZ}

(5) {XX,−ZZ} (6) {−XX,−ZZ}

(7) {XXX,ZZI, IZZ} (8) {ZXZ,XZI, IZX}

(b) (1) {ZZI,−IZZ} (2) {XX} .

3. (1) For the 4-qubit state |ψ⟩ = (|0011⟩+ |1100⟩) /
√
2, write down its stabilizer

generator sets.

(2) For 4-qubit cluster state |ψ⟩ = (|+⟩|0⟩|+⟩|0⟩ + |+⟩|0⟩|−⟩|1⟩ + |−⟩|1⟩|−⟩|0⟩ +
|−⟩|1⟩|+⟩|1⟩)/2, write down its stabilizer generator sets.

Answer:

(1) An example is as following: g1 = ZZII, g2 = −IZZI, g3 = IIZZ, g4 =

XXXX.(Other answers are welcome.)

(2) An example is as following: g1 = XZII, g2 = ZXZI, g3 = IZXZ, g4 = IIZX.

4. (a) Denote the controlled-NOT gate as U , calculate the following and express
your results with only Pauli operators. The subscripts denote the labels
of qubits.

(1) U(X1I2)U
† (2) U(Z1I2)U

† (3) U(I1X2)U
† (4) U(I1Z2)U

†.

(b) Consider the following quantum circuit: The input state is |00⟩, which is
stabilized by S0 = ⟨IZ, ZI⟩. Give the generators of the stabilizers describ-
ing the state after the Hadamard S1 and after the controlled-NOT gate
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S2. Work this out by using the fact that U acting on a state stabilized by
S produces a state stabilized by USU †.

Answer:
(a)

(1) X1X2 (2) Z1I2 (3) I1X2 (4) Z1Z2.

(b)
S1 = ⟨IZ,XI⟩, S2 = ⟨ZZ,XX⟩.

5. Please write down the difference between quantum error correction and clas-
sical error correction.

Answer:
Please read page 3-6 in the lecture “QIP2022chapt 5 Kai Chen.pdf” for refer-
ence.

6. Find a parity check matrix H for the [6, 2] repetition code defined by the
generator matrix G. Then verify that HG = 0.

G =



1 0

1 0

1 0

0 1

0 1

0 1


Answer:
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For example,

H =


1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

1 1 0 0 1 1

 .

(Other answers are welcome.)

7. Please give a parity check matrix H for the [7, 4] Hamming code, and write
down its distance.

Answer:

H =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


d = 3.

8. Please draw the quantum circuit of the 3-qubit bit flip code, and certify that
it can encode the qubit a |0⟩+ b |1⟩ to a |000⟩+ b |111⟩.

Answer:
The quantum circuit is as following:

The encoding progress is as following:
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|ψ⟩ |0⟩ |0⟩ = (a |0⟩+ b |1⟩) |0⟩ |0⟩
C-NOT

GGGGGGGGGGGA (a |00⟩+ b |11⟩) |0⟩

C-NOT
GGGGGGGGGGGA (a |000⟩+ b |111⟩)

9. For 9-qubit Shor code, its logical bit code is

|0⟩L = (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)/2
√
2,

|1⟩L = (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)/2
√
2.

(1) Please give all the generators of the stabilizers;
(2) Please draw the encoding quantum circuit;
(3) For a bit/phase flip error of a certain bit, how to detect and correct it?

Please take the bit flip error and phase flip error for example, write down
the program of error detection and correction.

Answer:

(1) The generators of the stabilizers are as following:
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(2) The encoding quantum circuit is as following:

(3) Please read page 433 of Nielsen’s ”Quantum Computation and Quantum
Information” , or page 80 of the Chinese version translated by Qian-Chuan
Zhao.

10. Single qubit quantum operations E(ρ) model quantum noise which is corrected
by quantum error correction codes.

(1) Construct operation elements for E such that upon input of any state ρ

replaces it with the completely randomized state I/2.

(2) The action of the bit flip channel can be described by the quantum oper-
ation E(ρ) = (1 − p)ρ + pXρX. Show that this may be given an alternate
operator-sum representation as E(ρ) = (1 − 2p)ρ + 2pP+ρP+ + 2pP−ρP−,
where P+ and P− are projectors onto the +1 and −1 eigenstates of X,
(|0⟩+ |1⟩)/

√
2 and (|0⟩ − |1⟩)/

√
2, respectively.

Answer:
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(1) We apply I,X, Y, Z gates with equal probability;

E0 =
I

2
, E1 =

X

2
, E2 =

Y

2
, E3 =

Z

2
.

We may describe the density matrix of one qubit as ρ = I/2+aX+bY +cZ.
Since I commutes with all operators, this component is left alone. Since
X,Y, Z commute with half of the Ek and anticommute with half, these
components will go to zero in the outputted density matrix, for example:

E(X) =
∑
k

EkXE
†
k = 0,

and likewise for Y, Z. Therefore, by linearity for all inputs ρ : E(ρ) = I/2.

(2) We use the identities X = P+ − P−, I = P+ + P−. And then

E(ρ) = (1− p)ρ+ pXρX

= (1− 2p)ρ+ p(XρX + IρI)

= (1− 2p)ρ+ 2pP+ρP+ + 2pP−ρP−,

which is equivalent to measuring the state in the |+⟩, |−⟩ basis with prob-
ability 2p.

11. Please see the next page about “Model single-photon imaging”.
Answer: See the last two pages.
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Model single-photon imaging

Figure 1 depicts the signal-acquisition model underlying a standard single-photon imaging setup. We index the scene pixels

as (i, j), where i, j = 1, 2, . . . , n. The reflectivity for pixel (i, j) is ↵i,j � 0. A periodically pulsed laser is used to illuminate

the scene in a raster-scanned manner, and its repetition period is Tr and the waveform of a single pulse is denoted by s(t).
A single-photon avalanche diode (SPAD) detector provides time-resolved single-photon detections, called clicks. Its quantum

efficiency ⌘ is the fraction of photons that are detected. Each pixel (i, j) is illuminated with N laser pulses. We record the total

number of photon detections ki,j . We also shine background light, with photon flux b� at the operating optical wavelength �,

onto the detector, and define the SPAD’s dark noise rate as d. Note that the system is working at low-flux condition where the

photon-flux per pixel per pulse-repetition period is much less than 1.

Question. Please derive the probability distribution of the numbers of detected photons, Ki,j , accross N illumination
pulses, i.e., Pr[Ki,j = ki,j ; ↵i,j ].

Answer. Illuminating pixel (i, j) with the pulse s(t) results in backreflected light with photon flux ri,j(t) = ↵i,js(t �
2zi,j/c) + b� at the detector. The photon detections produced by the SPAD in response to the backreflected light from

transmission of s(t) constitute an inhomogeneous Poisson process with time-varying rate function ⌘ri,j(t). To these photon

detections we must add the detector dark counts, which come from an independent homogeneous Poisson process with rate d.

Lumping the dark counts together with the background-generated counts yields the observation process at the SPAD’s output,

viz., as shown in Figure 1, an inhomogeneous Poisson process with rate function

�i,j(t) = ⌘ri,j(t) + d

= ⌘↵i,js(t� 2zi,j/c) + (⌘b� + d), (1)

when only a single pulse is transmitted. Figure 1 shows the rate function �i,j(t) for the pulse-stream transmission.

Define S =
R
s(t) dt and B = (⌘b� + d)Tr as the total signal and background count per pulse-repetition period, where we

have used—and will use in all that follows—background counts to include dark counts as well as counts arising from ambient

light. Using Poisson process properties, we have that the probability of the SPAD detector not recording a detection at pixel

(i, j) from one illumination trial is

P0(↵i,j) = exp[�(⌘↵i,jS +B)]. (2)

Fig. 1. The observation model of single-photon imaging. Here, N = 2 and ki,j = 2. A background count (red) occurred after the second pulse was

transmitted, and a signal count (blue) occurred after the third pulse was transmitted.
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Because we illuminate with a total of N pulses, and the low-flux condition ensures that multiple detections per repetition

interval can be neglected, the number of detected photons Ki,j is binomially distributed with probability mass function

Pr [Ki,j = ki,j ;↵i,j ] (3)

=

✓
N

ki,j

◆
P0(↵i,j)

N�ki,j [1� P0(↵i,j)]
ki,j , (4)

for ki,j = 0, 1, . . . , N .
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