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Why Group Theory ?

Group Theory is the study of symmetries.

Symmetries in Physics :

Gauss law in electrostatics,
¿

~E ¨ d~s “ Q{�0 ù ~E “
1

4��0

Q~r
r3

The dynamical law for a charged particle in electromagnetic field,

d~p
dt

“ q~E `~J ˆ ~B

Lagrangian describing Strong, weak and electromagnetic
interactions,

Lint „ igΨ̄�ΨTiAi
�



Group:

A group G is a set of elements with a rule for assigning to every (ordered)
pair of elements, satisfying

If f; g P G, then fg P G.
For f; g; h P G, fpghq “ pfgqh.
There is an identity element, e, such that for all f P G, ef “ fe “ f.
Every element f P G has an inverse, f´1, such that ff´1 “ f´1f “ 1.

Therefore, a group G is a multiplication table specifying g1g2 for both g1
and g2 belonging to G. e.g.,

e g1 g2
e e g1 g2
g1 g1 g1g1 g1g2
g2 g2 g2g1 g2g2



Focus:

Our focus in this course will be on the Group Representation Theory.

Group Representations:

A representation DpGq of group G is a mapping between the elements
g P G and a set of linear operators Dpgq with the properties,

1 Dpeq “ 1

2 Dpg1qDpg2q “ Dpg1g2q

The representation of a group G does also form a group.
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Finite group: Z3

A group is finite if it has a finite number of elements. The number of
elements in a finite group G is called the order of G.
The group Z3 is a finite group of order 3.

e a b
e e a b
a a b e
b b e a

Notice that every row and column of the multiplication table contains
each group elements exactly once. This is because

a2 “ b; b2 “ a; ab “ ba “ e ù e´1 “ e; a´1 “ b

An Abelian group is one in which the multiplication of arbitrary two
elements is commutative,

g1g2 “ g2g1

Evidently, Z3 is Abelian.
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Finite group: Z3

A representation of Z3:

Dpeq “ 1; Dpaq “ e2�i{3; Dpbq “ e´2�i{3:

Multiplication table reads,

Dpeq Dpaq Dpbq

Dpeq Dpeq Dpaq Dpbq

Dpaq Dpaq Dpbq Dpeq
Dpbq Dpbq Dpeq Dpaq

=

1 e2�i{3 e´2�i{3

1 1 e2�i{3 e´2�i{3

e2�i{3 e2�i{3 e´2�i{3 1
e´2�i{3 e´2�i{3 1 e2�i{3

The dimension of a representation is the dimension of the linear space
on which the operators in the representation act. Hence, The above
representation of Z3 is 1dimensional.
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Regular Representation

Here is another representation of Z3, which is 3dimensional,

Dpeq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl ; Dpaq “

»

–

0 0 1
1 0 0
0 1 0

fi

fl ; Dpbq “

»

–

0 1 0
0 0 1
1 0 0

fi

fl :

This is called the regular representation of Z3.
Definition :

The regular representation of a group is constructed by
taking the group elements tg1; g2; ¨ ¨ ¨ u themselves as
the orthonormal base vectors t|g1y ; |g2y ; ¨ ¨ ¨ u of the
representation space,

Dregpg1q |g2y “ |g1g2y

Hence,

rDregpgqsij “ xgi|Dregpgq |gjy “ xgi|ggjy

The dimension of DregpGq is the order of group G.
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DregpZ3q:

We now construct the regular representation of Z3. Let |1y “ |ey,
|2y “ |ay and |3y “ |by and

xi|jy “ �ij;

3
ÿ

i“1

|iy xi| “ 1;

we get

rDregpaqs11 “ xe|aey “ xe|ay “ 0; rDregpaqs12 “ xe|aay “ xe|by “ 0;

rDregpaqs13 “ xe|aby “ xe|ey “ 1; rDregpaqs21 “ xa|aey “ xa|ay “ 1;

rDregpaqs22 “ xa|aay “ xa|by “ 0; rDregpaqs23 “ xa|aby “ xa|ey “ 0;

rDregpaqs31 “ xb|aey “ xb|ay “ 0; rDregpaqs32 “ xb|aay “ xb|by “ 1;

rDregpaqs33 “ xb|aby “ xb|ey “ 0:

Namely,

Dpaq “

»

–

0 0 1
1 0 0
0 1 0

fi

fl :
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Similarly we can get another matrices Dregpeq and Dregpbq of the regular
representation of group Z3.

Trace of a matrix is defined as the sum of its diagonal elements.
Therefore, for a regular representation of a group G, we have:

TrrDregpeqs “ N; TrrDregpgqs “ 0 pg ‰ eq;

where N is the order of the group G.

A general pdimensional representation of G is spanned by p
orthonormal base vectors t|1y ; |2y ; ¨ ¨ ¨ ; |pyu satisfying the
conditions xi|jy “ �ij and

ř

i |iy xi| “ 1. The representation
matrices are defined as:

rDpgqsij “ xi|Dpgq |jy ; g P G

These matrices do indeed form a representation of the G, relying on
the fact Dpg1g2q “ Dpg1qDpg2q.
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Equivalent Representations

What makes the idea of group representations so powerful is the fact that
they live in linear spaces. The powerful thing about linear spaces is that
we are free to choose the base vectors (states) by making a linear
transformation, | y ù | 1y “ S´1 | y.

Such a transformation on the base vectors of the linear space induces a
similarity transformation on the linear operators:

Dpgq ù D1pgq “ S´1DpgqS

Obviously, D1pGq is a representation of G if DpGq is,
1 D1peq “ 1

2 D1pg1g2q “ D1pg1qD1pg2q

D1pGq and DpGq are said to be equivalent because they differ just by a
trivial choice of base vectors.
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Unitary Representations:

1 A representation of group G “ tgu is unitary if and only if all the
matrix elements tDpgqu of DpGq are unitary,

rDpgqs: “ rDpgqs´1; @g P G

2 It will turn out that all representations of finite groups are
equivalent to unitary representations.
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Examples:

Both given two representations of Abelian group Z3 are unitary:

1dimensional representation:

D1peq “ 1; D1paq “ e2�i{3; D1pbq “ e´2�i{3:

3dimensional representation:

D2peq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl ; D2paq “

»

–

0 0 1
1 0 0
0 1 0

fi

fl ;

D2pbq “

»

–

0 1 0
0 0 1
1 0 0

fi

fl :
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Reducible Representations:

A representation is called reducible if it has an invariant subspace: the
action of any Dpgq on any vector in the subspace is still in the subspace.

Projection operator:

Let P1 be the projection operator of the subspace S1 of space S,
then

1 P1S “ S1
2 P21 “ P1

Consequently, P1 is an identity operator on S1: P1 |'y “ |'y,
@ |'y P S1.

If DpGq has an invariant subspace (so that D is reducible), we have:

p1 ´ P1qDpgqP1 “ 0; @g P G

ù DpgqP1 „ P1; @g P G
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Examples :
The trivial D “ tDpgq “ 1; @g P Gu of every group
G is a reducible representation.

The regular representation of Z3 is reducible, due to
the fact it has an invariant subspace projected on by

P “ P2
“

1

3

»

–

1 1 1
1 1 1
1 1 1

fi

fl

Checking : Because

Dregpeq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl

; Dregpaq “

»

–

0 0 1
1 0 0
0 1 0

fi

fl

;

Dregpbq “

»

–

0 1 0
0 0 1
1 0 0

fi

fl

;

we have:
DregpgqP “ P; @g P Z3
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Irreducible Representations:

A representation is irreducible if it has no nontrivial invariant space.

Completely Reducible Representations:

A representation is completely reducible if it is equivalent to a
representation whose matrix elements have the following
block diagonal form:

Dpgq “

»

—

–

D1pgq 0 ¨ ¨ ¨

0 D2pgq ¨ ¨ ¨
...

...
. . .

fi

ffi

fl

; @ g P G

where DjpGq “ tDjpgqu are irreducible representations of G for all
subscripts j.
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1 A representation D in block diagonal form is said to be the direct
sum of the subrepresentations Dj,

D “ D1 ‘ D2 ‘ ¨ ¨ ¨ ‘ DM “ ‘M
j“1Dj

Consequently, A completely reducible representation can be decomposed into
a direct sum of irreducible representations.

Question:
Construct a similarity transformation so that the regular representation
of Z3 is written as the direct sum of some of its irreducible
representations.

Solution:
Consider the unitary matrix S,

S “
1

?
3

»

–

1 1 1

1 e´2�i{3 e2�i{3

1 e2�i{3 e´2�i{3

fi

fl

we see:
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1.
D1

regpeq “ S:DregpeqS

“ 1
3

»

–

1 1 1
1 e2�i{3 e´2�i{3

1 e´2�i{3 e2�i{3

fi

fl

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

1 1 1
1 e´2�i{3 e2�i{3

1 e2�i{3 e´2�i{3

fi

fl

“

»

–

1 0 0
0 1 0
0 0 1

fi

fl

2.
D1

regpaq “ S:DregpaqS

“ 1
3

»

–

1 1 1
1 e2�i{3 e´2�i{3

1 e´2�i{3 e2�i{3

fi

fl

»

–

0 0 1
1 0 0
0 1 0

fi

fl

»

–

1 1 1
1 e´2�i{3 e2�i{3

1 e2�i{3 e´2�i{3

fi

fl

“ 1
3

»

–

1 1 1
1 e2�i{3 e´2�i{3

1 e´2�i{3 e2�i{3

fi

fl

»

–

1 e2�i{3 e´2�i{3

1 1 1
1 e´2�i{3 e2�i{3

fi

fl

“

»

–

1 0 0
0 e2�i{3 0
0 0 e´2�i{3

fi

fl
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3.

D1
regpbq “ S:DregpbqS

“ 1
3

»

–

1 1 1
1 e2�i{3 e´2�i{3

1 e´2�i{3 e2�i{3

fi

fl

»

–

0 1 0
0 0 1
1 0 0

fi

fl

»

–

1 1 1
1 e´2�i{3 e2�i{3

1 e2�i{3 e´2�i{3

fi

fl

“ 1
3

»

–

1 1 1
1 e2�i{3 e´2�i{3

1 e´2�i{3 e2�i{3

fi

fl

»

–

1 e´2�i{3 e2�i{3

1 e2�i{3 e´2�i{3

1 1 1

fi

fl

“

»

–

1 0 0
0 e´2�i{3 0
0 0 e2�i{3

fi

fl

Hence, in DregpZ3q, the involved irreducible representations of Abelian
group Z3 “ te; a; bu are

1 D1pZ3q “ t1; 1; 1u

2 D2pZ3q “ t1; e2�i{3; e´2�i{3u

3 D3pZ3q “ t1; e´2�i{3; e2�i{3u

All of these irreducible representations are 1dimensional.
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Transformation Groups:

There is a natural multiplication law for transformations of a physics system.
If the transformation group G “ tgu is the symmetry of a quantum
mechanical system, then,

For each group element g, there is a unitary operator Dpgq that
maps the Hilbert space into itself,

Dpgq : | y Ñ | 1y “ Dpgq | y

The full set of these unitary operators tDpgqu form a unitary
representation of G on the Hilbert space.

The transformed states are subject to the same Schrödinger
equation as the original states,

iℏ d
dt | y “ H | y

iℏ d
dt rDpgq | ys “ H rDpgq | ys

,

.

-

ù rDpgq;Hs “ 0
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rDpgq;Hs “ 0 implies:
1 The transformed states have the same energy as the original states.
2 The full set of the energy eigenstates belonging to the same energy

eigenvalue forms a complete set of basis vectors of an irreducible
representation of the transformation group G.

Problems:
1 Find the multiplication table for a group with 3 elements and prove

that it is unique.
2 Find all essentially different multiplication tables for groups with 4

elements (which can not be related by renaming elements).
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Parity:

Parity:

Parity is the operation of reflection in a mirror. Reflecting twice gets you
back to where you started,

p2 “ e

The group including parity operation is Z2:

e p
e e p
p p e
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Representations of Z2:

Z2 has only 2 irreducible representations. The first one is trivial,

D1peq “ D1ppq “ 1:

The second irreducible representation of Z2 consists of

D2peq “ 1; D2ppq “ ´1:

Any representation of Z2 is completely reducible. The Hilbert space
of any parity invariant system can be decomposed into states that
behave like irreducible representations, on which Dppq is either 1
or ´1.

1 The energy eigensates on which Dppq “ 1 have an even parity.
2 The energy eigensates on which Dppq “ ´1 have an odd parity.
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S3:

Definition:

S3 is the permutation group (or symmetric group) on 3 objects,

a1 “

„

1 2 3
2 3 1

ȷ

“ p123q “ p231q “ p312q

a2 “

„

1 2 3
3 1 2

ȷ

“ p132q “ p213q “ p321q

a3 “

„

1 2 3
2 1 3

ȷ

“ p12q “ p21q

a4 “

„

1 2 3
1 3 2

ȷ

“ p23q “ p32q
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a5 “

„

1 2 3
3 2 1

ȷ

“ p13q “ p31q

e “

„

1 2 3
1 2 3

ȷ

Properties:

Basically,
1 pabq “ pbaq

2 pabqpbaq “ e
3 pabqpbcq “ pabcq

In general,
1 p123 ¨ ¨ ¨Nq “ p12qp23qp34q ¨ ¨ ¨ pN ´ 1;Nq

2 p123 ¨ ¨ ¨Nq “ p1Nqp1;N ´ 1qp1;N ´ 2q ¨ ¨ ¨ p13qp12q

ù a1a2 “ p123qp321q “ e; a1a3 “ p123qp12q “ p13q “ a5
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Generators:

S3 has two generators. They can be chosen as

ta1 “ p123q; a3 “ p12qu

From these generators, we have a2 “ a1a1, a4 “ a3a1, a5 “ a1a3 and
e “ a1a1a1 “ a3a3.

NonAbelian:

S3 is nonabelian because its multiplication law is not commutative.
e.g.,

a4 “ a3a1‰ a1a3 “ a5

It is the lack of commutativity that makes group theory very useful in
physics.
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Multiplication Table of S3:

e a1 a2 a3 a4 a5
e e a1 a2 a3 a4 a5
a1 a1 a2 e a5 a3 a4
a2 a2 e a1 a4 a5 a3
a3 a3 a4 a5 e a1 a2
a4 a4 a5 a3 a2 e a1
a5 a5 a3 a4 a1 a2 e

Permutation group is an important transformation group in quantum
mechanics, in particular in the system of identical particles.
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An irreducible representation of S3:

Dpeq “

„

1 0
0 1

ȷ

Dpa1q “

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

Dpa2q “

„

´1{2
?
3{2

´
?
3{2 ´1{2

ȷ

Dpa3q “

„

´1 0
0 1

ȷ

Dpa4q “

„

1{2
?
3{2?

3{2 ´1{2

ȷ

Dpa5q “

„

1{2 ´
?
3{2

´
?
3{2 ´1{2

ȷ

Discussions:
The nontrivial representations of a nonAbelian group must be
matrices rather than numbers. Only matrices can reproduce the
noncommutative multiplication laws.
In an irreducible representation, Not all of the matrices are
diagonal.
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Question:

How to obtain this representation ?

My Explanation:

The two generators of S3 obey,

pa1q3 “ pa3q2 “ 1

We can identify a1 by a rotation in XY plane at an angle 2�{3 with
respect to Xaxis, and a3 a reflection about Yaxis. Therefore, on

an arbitrary vector,~r “ x~i ` y~j „

„

x
y

ȷ

,

µ

O
X

Y

P (x, y)

1
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we have:

Dpa3q

„

x
y

ȷ

“

„

´x
y

ȷ

Hence,

Dpa3q “

„

´1 0
0 1

ȷ

Similarly,

Dpa1q “

„

cosp2�{3q ´ sinp2�{3q

sinp2�{3q cosp2�{3q

ȷ

“

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ
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Based on these two generators, we get:

Dpa2q “ rDpa1qs2

“

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

¨

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

“

„

´1{2
?
3{2

´
?
3{2 ´1{2

ȷ

Dpa4q “ Dpa3qDpa1q

“

„

´1 0
0 1

ȷ

¨

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

“

„

1{2
?
3{2?

3{2 ´1{2

ȷ

11 / 27



Dpa5q “ Dpa1qDpa3q

“

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

¨

„

´1 0
0 1

ȷ

“

„

1{2 ´
?
3{2

´
?
3{2 ´1{2

ȷ

Of course,

Dpeq “ rDpa3qs2

“

„

´1 0
0 1

ȷ

¨

„

´1 0
0 1

ȷ

“

„

1 0
0 1

ȷ
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Addition of integers:

The integers form an infinite group Z under addition:

x ˝ y :“ x ` y

Checking:
1 If x and y are integers, x ` y is also an integer.
2 For three integers x, y and z, px ` yq ` z “ x ` py ` zq:
3 Identity element exists, e “ 0.
4 Inverse elements exist, x´1 “ ´x.

Multiplication table:

Since this group is infinite, the explicit multiplication table for it is
impossible.
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The additive group Z has a representation as follows:

Dpxq “

„

1 x
0 1

ȷ

; @x P Z

Checking:

Dpeq “

„

1 e
0 1

ȷ

“

„

1 0
0 1

ȷ

DpxqDpyq “

„

1 x
0 1

ȷ „

1 y
0 1

ȷ

“

„

1 x ` y
0 1

ȷ

“ Dpx ` yq

This representation is reducible but it is not completely reducible.
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Reducibility:

Construct the projection operator P for subspace spanned by the base

vectors
„

1
0

ȷ

and
„

0
1

ȷ

,

P1 “

„

1 0
0 0

ȷ

; P2 “

„

0 0
0 1

ȷ

:

Because

DpxqP1 “

„

1 x
0 1

ȷ „

1 0
0 0

ȷ

“

„

1 0
0 0

ȷ

“ P1

this representation is reducible.

However,

DpxqP2 “

„

1 x
0 1

ȷ „

0 0
0 1

ȷ

“

„

0 x
0 1

ȷ

‰ P2

Therefore, it is not completely reducible.
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Theorem 1:
Every representation of a finite group is equivalent to a unitary

representation.

Proof:

Suppose DpGq is a representation of a finite group G “ tgu, from which
we can construct a hermitian matrix S,

S “
ÿ

gPG

“

Dpgq
‰:Dpgq

Consider the eigenvalue equation of this hermitian matrix,

S |�ny “ �n |�ny ; n “ 1; 2; 3; ¨ ¨ ¨

Hence,

�n “ x�n| S |�ny “ x�n|
ÿ

gPG

“

Dpgq
‰:Dpgq |�ny “

ÿ

gPG

}Dpgq |�ny}2
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Proof (continued):
i.e.,

�n “ }Dpeq |�ny}2 ` ¨ ¨ ¨ ě }Dpeq |�ny}2 “ }|�ny}2 ą 0

All of the eigenvalues of the hermitian matrix S are not only real but also
positive.

As is well known, a hermitian matrix can be diagonalized via a unitary
transformation,

S “ U:

»

—

–

�1 0 ¨ ¨ ¨

0 �2 ¨ ¨ ¨
...

...
. . .

fi

ffi

fl

U

Relying on the fact that �n ą 0, the square root of S is also a hermitian
matrix

X “
?
S “ U:

»

—

–

?
�1 0 ¨ ¨ ¨

0
?
�2 ¨ ¨ ¨

...
...

. . .

fi

ffi

fl

U
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Proof (continued):

This hermitian matrix is invertible,

X´1 “
1

?
S

“ U:

»

—

–

1?
�1

0 ¨ ¨ ¨

0 1?
�2

¨ ¨ ¨

...
...

. . .

fi

ffi

fl

U

Construct a similarity transformation with this invertible X, we have:

D1pgq “ X Dpgq X´1; @g P G

The new representation D1pGq is equivalent to the old representation
DpGq. Moreover, it is unitary.
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Proof (continued):

“

D1pgq
‰:D1pgq “

“

XDpgqX´1
‰:XDpgqX´1

“ pX´1q:
“

Dpgq
‰:X:XDpgqX´1

“ X´1
“

Dpgq
‰:X2DpgqX´1

“ X´1
“

Dpgq
‰:SDpgqX´1

“ X´1
“

Dpgq
‰:

!

ř

hPG
“

Dphq
‰:Dphq

)

DpgqX´1

“ X´1
!

ř

hPG
“

Dphgq
‰:Dphgq

)

X´1

“ X´1SX´1 “ 1

Theorem 2:
Every representation of a finite group is completely reducible.
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Proof:

It is sufficient to consider unitary representations.
If the representation is irreducible, the required proof is achieved
because it is already in block diagonal form.
If the representation DpGq “ tDpgqu is reducible, there exists a
projection operator P1 such that

p1 ´ P1qDpgqP1 “ 0; @ g P G

Taking its hermitian conjugation gives,

0 “ P1 rDpgqs
:

p1 ´ P1q “ P1 rDpgqs
´1

p1 ´ P1q

“ P1Dpg´1qp1 ´ P1q; @g P G
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Proof (continued):

Equivalently,

P1Dpgqp1 ´ P1q “ 0; @g P G

This equation demonstrates that the subspace of the complementary
projection operator P2 “ p1 ´ P1q is also invariant under DpGq:

p1 ´ P2qDpgqP2 “ 0; @ g P G

By induction, we eventually completely reduce the representation
DpGq.
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Subgroups:

Subgroup :
A group H whose elements are all elements of a group G
is called a subgroup of G.

Examples :
1 The identity e. (trivial)
2 The group G itself. (trivial)
3 S3 “ te; a1; a2; a3; a4; a5u has the following

nontrivial subgroups:

G1 “ te; a1; a2u

G2 “ te; a3u

G3 “ te; a4u

G4 “ te; a5u
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Cosets:

Right Coset of subgroup H:

The right coset of subgroup H in G is the set of elements of the form Hg
for some fixed element g P G.

Examples:
The cosets of subgroup Z3 “ te; a1; a2u of the permutation group S3
consist of the following elements,

Z3a1 “ te; a1; a2ua1 “ ta1; a2; eu “ Z3

Z3a4 “ te; a1; a2ua4 “ ta4; a3; a5u

Properties:
The number of elements in each coset is the order of subgroup H.
Every element of G must belong to one and only one coset.
For a finite group G, the order of its subgroup H must be a factor
of the order of G.
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Coset space G{H:

It is the linear space in which each coset of subgroup H is taken as a
single element.

Normal Subgroup:

A subgroup H of G is called an invariant or normal subgroup if for every
g P G,

gH “ Hg

The trivial subgroups e and G are normal for any group G.

If H is normal, gH “ Hg, the coset space G{H forms a group under the
same multiplication law in G:

pHg1qpHg2q “ Hpg1Hqg2 “ HpHg1qg2 “ Hpg1g2q P G{H

In this case, the coset space G{H is called Factor group of G by H.
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Normal subgroup of S3:

1 Among the nontrivial subgroups of S3, only is Z3 the normal
subgroup:

eZ3 “ ete; a1; a2u “ te; a1; a2u “ te; a1; a2ue “ Z3e
a1Z3 “ a1te; a1; a2u “ ta1; a2; eu “ te; a1; a2ua1 “ Z3a1
a2Z3 “ a2te; a1; a2u “ ta2; e; a1u “ te; a1; a2ua2 “ Z3a2
a3Z3 “ a3te; a1; a2u “ ta3; a4; a5u “ te; a2; a1ua3 “ Z3a3
a4Z3 “ a4te; a1; a2u “ ta4; a5; a3u “ te; a2; a1ua4 “ Z3a4
a5Z3 “ a5te; a1; a2u “ ta5; a3; a4u “ te; a2; a1ua5 “ Z3a5

2 The other subgroups of S3 are not normal subgroups. e.g.,

a5te; a4u “ ta5; a2u ‰ ta5; a1u “ te; a4ua5

3 The factor group S3{Z3 is,

S3{Z3 “ Z2 ù Z2 is parity group.
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Center of a group:
The center of a group G is the set of all elements of G that commute with
all elements of G.

Discussions:

1 The center is always an Abelian, normal subgroup of G.
2 It may be trivial, consisting only of the identity, or of the whole

group G.
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Homework:

1 There is a simple ndimensional representation D of Sn called the
defining representation, where the objects being permuted are
just the basis vectors of an ndimensional vector space:

|1y ; |2y ; ¨ ¨ ¨ ; |ny

The representation D is defined as Drp�j�kqs |jy “ |ky. Show that
this representation is reducible.
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Conjugate elements:

Given two elements f and g of a group G, one can define the third
element g´1fg P G. Let

g´1fg “ h

Two elements f and h of G connected this way are called
conjugate.

If the element f is conjugate to h and h is conjugate to p,
then f is conjugate of p.

The set of all elements in G that are conjugate one another is
called to form a conjugacy class. The element f is in the
conjugacy class Cf , given by

Cf “

!

g´1fg; @g P G
)
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Conjugacy classes:

In a group G, the conjugacy class S “ tg1; g2; ¨ ¨ ¨ u consisting of some
elements of G has the property

g´1Sg “ S; @g P G

Corollaries:

1 A subgroup that is a union of conjugacy classes is a normal subgroup.

2 In an Abelean group, each group element forms an independent
conjugacy class.

Example:
Group S3 has 3 conjugacy classes:

1 C1 “ teu

2 C2 “ ta1; a2u

3 C3 “ ta3; a4; a5u
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Checking:
The identity teu forms a conjugacy class itself, due to the fact that

g´1eg “ e; @ g P S3

Moreover,

pa3q´1a1a3 “ a3a1a3 “ a4a3 “ a2

pa4q´1a1a4 “ a4a1a4 “ a5a4 “ a2

pa5q´1a1a5 “ a5a1a5 “ a3a5 “ a2

The set C2 “ ta1; a2u forms another conjugacy class of S3.
Similar calculations yield,

pa1q´1a3a1 “ a2a3a1 “ a4a1 “ a5

pa2q´1a3a2 “ a1a3a2 “ a5a2 “ a4

pa4q´1a3a4 “ a4a3a4 “ a2a4 “ a5

pa5q´1a3a5 “ a5a3a5 “ a1a5 “ a4

Namely, C3 “ ta3; a4; a5u forms the 3rd conjugacy class of S3.
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Other concepts in group theory:

1 An isomorphism is a onetoone mapping of group onto another
group that preserves the multiplication law.

2 An automorphism is a onetoone mapping of a group onto itself
that preserve the multiplication law.

3 An inner automorphism is an automorphism that can be cast as the
mapping

G Ñ G1 “ gGg´1

for a fixed group element g P G.

4 An outer automorphism is an automorphism that can not be
written as gGg´1 for any group element g P G.
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Schur’s second lemma:
If

D1pgqA “ AD2pgq; @g P G

where D1 and D2 are inequivalent, irreducible representations of group
G, then A “ 0.

Proof:

The spaces and their dimensions of these two nonequivalent irreducible
representations are denoted as S1pd1q and S2pd2q respectively, with
d1 ě d2.

Let A be an operator which maps from S2 into S1. When applied to S2,
this A generates a subspace S3 of S1:

S3 “ tA j	y P S1; @ j	y P S2u

with dimension d3 ď d2 ď d1.
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It follows from the proposed assumption that,

D1pgqA j	y “ AD2pgq j	y “ A rD2pgq j	ys ” Aj	gy P S3

Because j	gy ” D2pgq j	y P S2. Thus, D1pgqS3 “ S3. ù S3 is an
invariant subspace of S1.

That D1pGq is an irreducible representation of G implies S1 has no true
invariant subspace.

Because S3 is an invariant subspace of S1, there is a contradiction
unless S3 is either a null space (A “ 0) or the full S1.
The second possibility is excluded by the assumption that D1pGq

and D2pGq are different (nonequivalent) representations1.
Therefore, the single possibility A “ 0 remains.

1The second possibility happens when d3 “ d1 “ d2. However, if d2 “ d1, we
could invert A so that the two representations would be equivalent,

D1pgq “ AD2pgqA
´1
; @g P G:
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Schur’s first lemma:
If

DpgqA “ ADpgq; @g P G

where D is a finite dimensional irreducible representation of group G,
thena, A 9 I .

aIn other words, if a matrix A commutes with all elements of a finite dimensional
irreducible representation, it must be proportional to the unit matrix I .

Proof:
The condition of a finite dimensional representation is important. Any
finite dimensional matrix A has at least one eigenvalue,

A j�y “ � j�y ù pA´ �Iq j�y “ 0:

This is because the characteristic equation

detpA´ �Iq “ 0

has at least one root for finite dimensional A.
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Proof (continued):

Let P be the projection operator of the corresponding eigenstate j�y,

pA´ �IqP “ 0

The assumption DpgqA “ ADpgq for all g P G does then imply,

pA´ �IqDpgqP “ DpgqpA´ �IqP “ 0

This equation has two possible solutions:
1 either DpgqP 9 P

2 or A “ �I

The first possibility is excluded because DpGq is assumed to be an
irreducible representation of G.

Consequently,
A “ �I 9 I
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Remark:

Schur’s first lemma can be alternatively written as,

A´1DpgqA “ Dpgq; @g P G ù A 9 I

for any irreducible representation DpGq.

Appendix:

In Schur’s second lemma, the nonsingularity of matrix A if A ‰ 0 can
be justified as follows. By assumption, A satisfies the equality

D1pgqA “ AD2pgq; @ g P G

where D1pGq and D2pGq could reasonably be assumed to be two
unitary representations of G. Taking its Hermitian conjugate,

A:
”

D1pgq

ı:

“

”

D2pgq

ı:

A: ù A:
”

D1pgq

ı´1

“

”

D2pgq

ı´1

A:

Since
“

Dpgq
‰´1

“ Dpg´1q, the above equation can be recast as
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A:D1pg´1q “ D2pg´1qA:; @ g P G

Equivalently,

A:D1pgq “ D2pgqA:; @ g P G

By Combining this with AD2pgq “ D1pgqA, which is the assumed
equality in Schur’s second lemma, we have:

`

AA:
˘

D1pgq “ A
”

A:D1pgq

ı

“ A
”

D2pgqA:
ı

“

”

AD2pgq

ı

A: “

”

D1pgqA
ı

A: “ D1pgq
`

AA:
˘

Because D1pGq is assumed to be an irreducible representation of G,

AA:9I

according to Schur’s first lemma.Therefore, A is nonsingular, detA ‰ 0.
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Schur’s lemma in QM:

Hilbert Space:

The orthonormal basis states of an QM object are of the form,

ja; j; xy; p1 ď j ď naq

where a labels the irreducible representation DapGq, j lables the states
within DapGq and x lables the other physical parameters. These states
satisfy the relations:

xb; k; y|a; j; xy “ �ba�kj�yx;
ÿ

a;j;x

ja; j; xy xa; j; xj “ I

Symmetry:

In QM, the symmetry is expressed as
“

H;Dpgq
‰

“ 0; @g P G
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Under the symmetry transformation, the states in Hilbert space
transform like,

j y Ñ
�
� 1

D

“ Dpgq j y

x j Ñ
@

 1
�
� “ x j rDpgqs

:

The operators transform like

O Ñ O 1 “ DpgqO rDpgqs
:

so that all matrix elements x�jO j y kept unchanged.

An invariant observable satisfies,

O Ñ O 1 “ DpgqO rDpgqs
:

“ O

i.e.,
rO; Dpgqs “ 0; @ g P G
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We have supposed that DpGq forms a finite dimensional representation
of group G.

Hence, DpGq can be equivalent to a unitary and completely reducible
representation:

xa; j; xjDpgq jb; k; yy “ �ab�xy rDapgqsjk

Consequently,

Dpgq “
ÿ

a;j;k;x

ja; j; xy rDapgqsjk xa; k; xj
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In detail,

Dpgq “

„

ÿ

a;j;x

ja; j; xy xa; j; xj

ȷ

Dpgq

„

ÿ

b;k;y

jb; k; yy xb; k; yj

ȷ

“
ÿ

a;j;x

ÿ

b;k;y

ja; j; xy

„

xa; j; xjDpgq jb; k; yy

ȷ

xb; k; yj

“
ÿ

a;j;x

ÿ

b;k;y

ja; j; xy

"

�ab�xy rDapgqsjk

*

xb; k; yj

“
ÿ

a;j;k;x

ja; j; xy rDapgqsjk xa; k; xj
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WignerEckart Theorem:

For an invariant observable operator O ,
“

O; Dpgq
‰

“ 0; @ g P G

we get:

0 “ xa; j; xj rO; Dpgqs jb; k; yy

“
ÿ

i

"

xa; j; xjO jb; i; yy rDbpgqsik ´ rDapgqsji xa; i; xjO jb; k; yy

*

The matrix element xa; j; xjO jb; k; yy satisfies the hypotheses of
Schur’s Lemmas. Therefore, it either vanishes when a ‰ b or is
proportional to identity �jk for a “ b,

xa; j; xjO jb; k; yy “ fapx; yq�ab�jk

This conclusion is called the WignerEckart theorem.
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Orthogonality relations:

Suppose that DapGq and DbpGq are two finite dimensional irreducible
representations of G. We define a linear operator:

Aab
jl ”

ÿ

gPG

Dapg´1q ja; jy xb; ljDbpgq

Then,

Dapg1qAab
jl “

ÿ

gPG

Dapg1qDapg´1q ja; jy xb; ljDbpgq

“
ÿ

gPG

Dapg1g
´1q ja; jy xb; ljDbpgq

“
ÿ

hPG

Daph´1q ja; jy xb; ljDbphg1q

“
ÿ

hPG

Daph´1q ja; jy xb; ljDbphqDbpg1q

“

«

ÿ

hPG

Daph´1q ja; jy xb; ljDbphq

ff

Dbpg1q “ Aab
jlDbpg1q
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Schur’s lemmas indicate that,

Aab
jl “

ÿ

gPG

Dapg´1q ja; jy xb; ljDbpgq“ �ab�
a
jlI

By computing the trace of the above equation in the subHilbert space of
dimension na,

�ab�
a
jl na “ �ab�

a
jl TrI “ TrAab

jl

“ Tr

«

ÿ

hPG

Daph´1q ja; jy xb; ljDbphq

ff

“ �ab

«

ÿ

hPG

xa; ljDaphqDaph´1q ja; jy

ff

“ �ab

«

ÿ

hPG

xa; ljDaphh´1q ja; jy

ff

“ �ab
ÿ

hPG

xa; l|a; jy “ N�ab�jl ù �ajl “
N

na
�jl
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Therefore,
ÿ

gPG

Dapg´1q ja; jy xb; ljDbpgq “
N

na
�ab�jlI

Orthogonality relations:
The matrix element of the above equation between the states ja; ky and
jb;my reads,

N

na
�ab�jl�km “

N

na
�ab�jl xa; k|a;my

“ xa; kj

„

N

na
�ab�jlI

ȷ

jb;my

“ xa; kj

„

ÿ

gPG

Dapg´1q ja; jy xb; ljDbpgq

ȷ

jb;my

“
ÿ

gPG

xa; kjDapg´1q ja; jy xb; ljDbpgq jb;my
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These equations are known as the orthogonality relations for the matrix
elements of irreducible representations. They can be rewritten as:

ÿ

gPG

na

N

“

Dapg´1q
‰

kj
rDbpgqslm “ �ab�jl�km

Notice:
The matrix elements rDapgqsjk are linearly independent of one
another.
The whole set of rDapgqsjk are complete. An arbitrary function of
g can be expanded in them.
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For the unitary irreducible representations, the orthogonality can be
recast as,

ÿ

gPG

na

N

“

Dapgq
‰˚

jk

“

Dbpgq
‰

lm
“ �ab�jl�km

With proper normalization,

�
a
jkpgq ”

c

na

N
rDapgqsjk

the matrix elements of unitary irreducible representations become the
orthonormal functions of the group elements tgu:

ÿ

gPG

“

�
a
jkpgq

‰˚
�
b
lmpgq “ �ab�jl�km
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Characters:

Definition:

The characters �Dpgq of a group representation DpGq are the traces of
the matrices tDpgqu in the representation,

�Dpgq “ Tr rDpgqs “
ÿ

i

rDpgqsii

Orthogonality:

The characters of nonequivalent irreducible representations are different
from each other. In fact, they satisfy the socalled orthogonality relations,

1

N

ÿ

gPG

�˚
Da

pgq�Db
pgq “ �ab

Therefore, the characters of different irreducible representations are
different.
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Proof:

Notice that na “
ř

i �ii is the dimension of DapGq. It follows from the
orthogonality relations

ÿ

gPG

na

N

“

Dapg´1q
‰

kj

“

Dbpgq
‰

lm
“ �ab�jl�km

that

�abna “ �ab
ÿ

j

�jj “
ÿ

j

ÿ

l

�ab�jl�jl

“
ÿ

j

ÿ

l

"

ÿ

gPG

na

N

“

Dapg´1q
‰

jj
rDbpgqsll

*

“
ÿ

gPG

na

N

"

ÿ

j

rDapgqs
˚
jj

*"

ÿ

l

rDbpgqsll

*

“
na

N

ÿ

gPG

�˚
Da

pgq�Db
pgq ù

1

N

ÿ

gPG

�˚
Da

pgq�Db
pgq “ �ab
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Properties of �DpGq:

The characters are constants on conjugacy classes.

�Dpgq “ TrDpgq “ Tr
“

Dphq´1DpgqDphq
‰

“ Tr
“

Dph´1qDpgqDphq
‰

“ TrDph´1ghq

“ �Dph´1ghq

By labeling the conjugacy classes in integers � and letting �� be
the number of elements in C�, we can rewrite the previous
orthogonality relations of the characters as,

1

N

ÿ

�

���
˚
Da

pg�q�Db
pg�q “ �ab
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From this we get,

�Db
pg�q “

ÿ

a

“

�ab�Da
pg�q

‰

“
ÿ

a

“

�Da
pg�q

1

N

ÿ

�

���
˚
Da

pg�q�Db
pg�q

‰

“
1

N

ÿ

�

��

„

ÿ

a

�˚
Da

pg�q�Da
pg�q

ȷ

�Db
pg�q

Therefore,
ÿ

a

�˚
Da

pg�q�Da
pg�q “

N

��
���
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Corollaries:

The finite dimensional representation DpGq of group G is
irreducible iff

1

N

ÿ

�

��|�Dpg�q|2 “ 1

There is a relation between the order of group G and the
dimensions of its irreducible representations

N “
ÿ

a

n2a
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Remark:

The formula N “
ř

a n
2
a is shown below.

Suppose that G has a finite dimensional reducible representation DpGq,
which can be expressed as the direct sum of a set of irreducible
representations,

Dpgq „ ‘M
a“1caDapgq; @ g P G

This implies �Dpgq “
řM

a“1
ca�Da

pgq. Therefore,

1

N

ÿ

gPG

�˚
Da

pgq�Dpgq “

M
ÿ

b“1

cb

„

1

N

ÿ

gPG

�˚
Da

pgq�Db
pgq

ȷ

“

M
ÿ

b“1

cb�ab

“ ca ù ca “
1

N

ÿ

gPG

�˚
Da

pgq�Dpgq
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Consider the regular representation DregpGq, where

�regpeq “ TrDregpeq “ N;

�regpgq “ TrDregpgq “ 0; @ g ‰ e

Hence,
ca “

1

N

ÿ

gPG

�˚
Da

pgq�regpgq “ �˚
Da

peq “ na

and

N “ �regpeq “

M
ÿ

a“1

ca�Da
peq “

M
ÿ

a“1

n2a

Corollary:
The number of nonequivalent irreducible representations of a finite
group is equal to the number of its conjugacy classes.
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Explanation:

Let F pg1q be a function of group element g1 that is some constant on
each conjugacy class,

F pg1q “ F ph´1g1hq

The full set of rDapgqsjk of the irreducible representations are
complete. Thereby, F pg1q can be expanded in terms of these
matrix elements,

F pg1q “
ÿ

a;j;k

cajk
“

Dapg1q
‰

jk

That F pg1q is some constant on each conjugacy class further suggests:

F pg1q “
ÿ

a

„

ÿ

j

ˆ

cajj

na

˙ȷ

�Da
pg1q
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In detail,

F pg1q “
1

N

ÿ

gPG

F pg´1g1gq “
1

N

ÿ

gPG

ÿ

a;j;k

cajk
“

Dapg´1g1gq
‰

jk

“
1

N

ÿ

gPG

ÿ

a;j;k

cajk

"

“

Dapg´1q
‰

jl
rDapg1qslm rDapgqsmk

*

“
1

N

ÿ

a;j;k

cajk

"

ÿ

gPG

“

Dapg´1q
‰

jl
rDapgqsmk

*

¨ rDapg1qslm

“
1

N

ÿ

a;j;k

cajk

"

N

na
�lm�jk

*

¨ rDapg1qslm

“
ÿ

a

„

ÿ

j

ˆ

cajj

na

˙ȷ

rDapg1qsll

“
ÿ

a

„

ÿ

j

ˆ

cajj

na

˙ȷ

�Da
pg1q
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This formula

F pg1q “
ÿ

a

„

ÿ

j

ˆ

cajj

na

˙ȷ

�Da
pg1q

for functions that are constants on the conjugacy classes implies that the
characters of the independent irreducible representations form a
complete, orthonormal set of basis vectors in “Class Space”.

Therefore,

the number of irreducible representations of a group G equals to the number
of its conjugacy classes.

Recall that N “
ř

a n
2
a.

All of the irreducible representations of a finite Abelian group are
1dimensional.
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An example:

Question:

Determine the characters of all independent irreducible representations
of permutation group S3.

Solution:

There are 3 independent conjugacy classes in S3. Hence S3 has 3
nonequivalent irreducible representations D0, D1 and D2 in total.

D0 is the trivial 1dimensional irreducible representation,

D0pgq “ 1; @ g P S3

It means �0pgq “ 1; @g P S3. The constraint N “
ř

a n
2
a further

indicates:
6 “ 1 ` n21 ` n22

Hence, n1 “ 1 and n2 “ 2. ù Besides D0, S3 has a 1d irreducible
representation D1 and a 2d irreducible representation D2.
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The elements of the Factor Group S3{Z3 “ Z2 form the cosets of
subgroup Z3,

Z3 “ te; a1; a2u; Z3a3 “ ta3; a4; a5u

We can identify D1 as this Z2 “ t1; ´1u:
"

D1peq “ D1pa1q “ D1pa2q “ 1;

D1pa3q “ D1pa4q “ D1pa5q “ ´1:

The corresponding characters read,
"

�1peq “ �1pa1q “ �1pa2q “ 1;

�1pa3q “ �1pa4q “ �1pa5q “ ´1:
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So far we have got an unfinished Characters table for S3:

teu ta1; a2u ta3; a4; a5u

�0 1 1 1

�1 1 1 ´1

�2 2 ? ?

We can fill the remaining 2 entries by using orthogonality relations of
the characters,

ÿ

�

���
˚
Da

pg�q�Db
pg�q “ N �ab

Concretely,

6 “ |�2peq|2 ` 2|�2pa1q|2 ` 3|�2pa3q|2

“ 4 ` 2|�2pa1q|2 ` 3|�2pa3q|2

0 “ �˚
1peq�2peq ` 2�˚

1pa1q�2pa1q ` 3�˚
1pa3q�2pa3q

“ 2 ` 2�2pa1q ´ 3�2pa3q

0 “ �˚
0peq�2peq ` 2�˚

0pa1q�2pa1q ` 3�˚
0pa3q�2pa3q

“ 2 ` 2�2pa1q ` 3�2pa3q
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Therefore,
�2pa1q “ ´1; �2pa3q “ 0:

Exercise (optional):
Show these results by checking the alternative orthogonality relations

ÿ

a

�˚
Da

pg�q�Da
pg�q “

N

��
���

The finished Characters Table of S3 is,

teu ta1; a2u ta3; a4; a5u

�0 1 1 1

�1 1 1 ´1

�2 2 ´1 0
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Homework:

1 Suppose that D1 and D2 are equivalent, irreducible representations
of a finite group G such that

D2pgq “ SD1pgqS´1; @g P G:

What can you say about an operator A that satisfies

AD1pgq “ D2pgqA; @g P G ?
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Projection Operator:

Characters can be used to decompose an reducible representation into
its irreducible ingredients. The key bridge to this end is the Projection
Operator of an irreducible component representation.

Let DpGq be an arbitrary representation of finite group G “ tgu (of
order N ) that contains an nadimensional irreducible representation
DapGq with characters t�apgqu. Then

Pa “
na

N

ÿ

gPG

�˚
Da

pgqDpgq

is the projection operator onto the subspace of DapGq.

The matrix elements of Pa in a given representation space of DpGq

read
rPasij “

na

N

ÿ

gPG

�˚
Da

pgq rDpgqsij
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Explanation:

Recall that every representation of a finite group is equivalently unitary
and completely reducible,

Dpgq „ ‘s
a“1caDapgq; @ g P G

we see,

rPasij “
na

N

ÿ

gPG

�˚
Da

pgq rDpgqsij „
na

N

ÿ

gPG

�˚
Da

pgq r‘s
b“1cbDbpgqsij

Recall the orthogonality relations between irreducible representations:
na

N

ÿ

gPG

rDapgqs
˚
jk rDbpgqslm “ �ab�jl�km

We have
na

N

ÿ

gPG

�˚
Da

pgq rDbpgqslm “ �ab�lm

Hence, Pa gives 1 on the subspaces that transform like DapGq and 0 on
all the other subspaces.
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An example:

Question:

Here is a 3dimensional representation of S3,

Dpeq “

»

–

1 0 0

0 1 0

0 0 1

fi

fl Dpa1q “

»

–

0 0 1

1 0 0

0 1 0

fi

fl Dpa2q “

»

–

0 1 0

0 0 1

1 0 0

fi

fl

Dpa3q “

»

–

0 1 0

1 0 0

0 0 1

fi

fl Dpa4q “

»

–

1 0 0

0 0 1

0 1 0

fi

fl Dpa5q “

»

–

0 0 1

0 1 0

1 0 0

fi

fl

1 Is it irreducible ?
2 Is it the regular representation of S3 ?
3 Evaluate the projection operators of the irreducible representations

of S3 in this 3dimensional reducible representation.
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Solution:
1 No. It is not an irreducible because its dimension is n “ 3,

violating the required relation
ř

a n
2
a “ 6.

2 No. The regular representation of S3 should be 6dimensional.

3 The projection operators of 3 irreducible representations of S3 are
evaluated from Pa “ na

N

ř

gPG �˚
Da

pgqDpgq. The results are as
follows:

P0 “ 1

6

ř

gPS3
Dpgq “ 1

3

»

–

1 1 1

1 1 1

1 1 1

fi

fl

P1 “ 1

6

”

Dpeq `
ř

2

j“1
Dpajq ´

ř

5

j“3
Dpajq

ı

“ 0

P2 “ 2

6

”

2Dpeq ´
ř

2

j“1
Dpajq

ı

“ 1

3

»

–

2 ´1 ´1

´1 2 ´1

´1 ´1 2

fi

fl

Simple calculations lead to pPjq
2 “ Pj “ pPjq

: for j “ 0; 1; 2.
Hence, D “ D0 ‘ D2.
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QM Background:

In QM, we are interested in the eigenstates of an invariant hermitian
operator, in particular the invariant hamiltonian under group G,

rDpgq; Hs “ 0

where
H jny “ �n jny ; n “ 0; 1; 2; ¨ ¨ ¨

Theorem:
1 If H commutes with all the elements tDpgqu of a representation of

group G, then you can choose the eigenstates of H to transform
according to irreducible representations of G.

2 If an irreducible representation appears only once in the Hilbert
space, every state in the irreducible representation is an eigenstate
of H with the same eigenvalue.
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Proof:

Due to the assumption that rDpgq; Hs “ 0, the transformations in
the representation DpGq do not change the eigenvalues of operator
H,

H jny “ �n jny ;

H rDpgq jnys “ DpgqH jny “ �n rDpgq jnys

If G is finite, DpGq can be decomposed into a direct sum of some
irreducible representations DipGq:

DpGq “ ‘iDipGq

Thus we can divide up the Hilbert space into some subspaces:
1 The ith subspace is labelled by the eigenvalue �i of H.
2 The ith subspace furnishes an irreducible representation DipGq of

group G.
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Eigenvectors tji; �y ; � “ 1; 2; ¨ ¨ ¨ ; niu of H belonging to �i

H ji; �y “ �i ji; �y

can be chosen in terms of the irreducible representation DipGq:

g : Dipgq ji; �y “ ji; �y ; @g P G

where �; � “ 1; 2; ¨ ¨ ¨ ; ni and i “ 1; 2; 3; ¨ ¨ ¨ .

Consider an arbitrary vector in the whole Hilbert space,

ja; j; xy ; 1 ď j ď na;

where x stands for the times the DipGq appearing in Hilbert
space. Then,

H ja; j; xy “
ÿ

y

cy ja; j; yy

If x and y take only one value, ja; j; xy becomes an eigenvector
of H.
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Tensor product representation:

Question:

How to put known representations together to form a new
representation (with higher dimensions) ?
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Suppose that D1 is an mdimensional representation acting on a space
with basis vectors

jiy ; pi “ 1; 2; ¨ ¨ ¨ ;mq

D2 is an ndimensional representation acting on a space with basis
vectors

j�y ; p� “ 1; 2; ¨ ¨ ¨ ; nq

We can make an mndimensional representation space, called the tensor
product space, by defining its basis vectors as,

ji; �y “ jiy b j�y ; pi “ 1; 2; ¨ ¨ ¨ ;m; � “ 1; 2; ¨ ¨ ¨ ; nq

In this space we define the socalled tensor product representation D1ˆ2

“ D1 b D2,

xi; �jD1ˆ2pgq jj; �y ” xijD1pgq jjy ¨ x�jD2pgq j�y
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Remarks:
1 The tensor product representation is indeed a representation of

group G [Homework (optional)].
2 In general, the tensor product representation is not an irreducible

representation.
3 One of our favorite pastimes is to decompose a reducible tensor

representation into the direct sum of irreducible representations
of the group G.

Example:
Three blocks are connected by springs in a triangle. The system is
suposed to be free to slide on a frictionless surface.

Y

X
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Properties of the model:
The system has an S3 symmetry.
The system has 6 degrees of freedom, described by the x and y
coordinates of the 3 blocks:

j~ry “

»

—

—

—

—

—

—

–

x1
y1
x2
y2
x3
y3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

r11
r12
r21
r22
r31
r32

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ jri�y

where � labels coordinate x or y, and i labels the blocks.
Y

X
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This 6dimensional configuration space can be viewed as a tensor
product space of a 3dimensional space of the blocks

j�y “

»

–

�1
�2
�3

fi

fl

and a 2dimensional space of coordinates x and y,

j�y “

„

x

y

ȷ

“

„

�1
�2

ȷ

That is:
jri�y “ j�y b j�y

Namely,
ri� “ �i��; pi “ 1; 2; 3; � “ 1; 2:q
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Suppose that the representations of S3 on 3dimensional space
tj�yu and 2dimensional space tj�yu could respectively be given by
the previous D3,

D3peq “

»

–

1 0 0

0 1 0

0 0 1

fi

fl D3pa1q “

»

–

0 0 1

1 0 0

0 1 0

fi

fl

D3pa2q “

»

–

0 1 0

0 0 1

1 0 0

fi

fl D3pa3q “

»

–

0 1 0

1 0 0

0 0 1

fi

fl

D3pa4q “

»

–

1 0 0

0 0 1

0 1 0

fi

fl D3pa5q “

»

–

0 0 1

0 1 0

1 0 0

fi

fl
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and D2,

D2peq “

„

1 0

0 1

ȷ

D2pa1q “

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

D2pa2q “

„

´1{2
?
3{2

´
?
3{2 ´1{2

ȷ

D2pa3q “

„

´1 0

0 1

ȷ

D2pa4q “

„

1{2
?
3{2?

3{2 ´1{2

ȷ

D2pa5q “

„

1{2 ´
?
3{2

´
?
3{2 ´1{2

ȷ

we have a 6dimensional representation D6pS3q whose elements read,

rD6pS3qsi�j� “ rD3pS3qsij ¨ rD2pS3qs��

The characters of D6pS3q are:

�6pS3q “
ÿ

i�

rD6pS3qsi�i� “

"

ÿ

i

rD3pS3qsii

*

¨

"

ÿ

�

rD2pS3qs��

*

“ �3pS3q�2pS3q
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Theorem:
The characters of a tensor product representation are the products of the
characters of the factor representations,

�D1ˆD2
“ �D1

�D2

The characters of D6pS3q are then given by,

teu ta1; a2u ta3; a4; a5u

�3 3 0 1

�2 2 ´1 0

�6 6 0 0

D6pS3q has the same characters as the regular representation DregpS3q.
Consequently,

1 D6pS3q and DregpS3q are equivalent to each other (because the
similarity transformations do not change the characters).

2 D6pS3q contains D0 and D1 once but D2 twice.
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For completeness, we write down explicitly an element of D6pS3q:

D6pa1q “

»

–

0 0 1

1 0 0

0 1 0

fi

fl b

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

“

»

—

—

—

—

—

—

–

0 0 0 0 ´1{2 ´
?
3{2

0 0 0 0
?
3{2 ´1{2

´1{2 ´
?
3{2 0 0 0 0?

3{2 ´1{2 0 0 0 0

0 0 ´1{2 ´
?
3{2 0 0

0 0
?
3{2 ´1{2 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Group Sn:

Permutation group Sn:

1 Any element of the permutation group Sn on nobjects can be
expressed in terms of cycles. e.g.,

$

&

%

e “ p1qp2q ¨ ¨ ¨ pnq

a1 “ p12qp3qp4q ¨ ¨ ¨ pnq

aj “ p1243qp5qp6qp79qp8q ¨ ¨ ¨ pnq

2 Each cycle is written as a set of numbers in parentheses, indicating
the set of objects that are cyclically permuted.

3 Each element of Sn involves each integer from 1 to n in exactly one
cycle.

Illustration:

p1q means x1 Ñ x1.
p1372q means x1 Ñ x3 Ñ x7 Ñ x2 Ñ x1.
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jcycle:

Definition of jcycle in Sn:

In Sn, a jcycle is defined as

p�1�2�3 ¨ ¨ ¨ �jq; 1 ď j ď n:

If an element of Sn has kj jcycles, then
n

ÿ

j“1

jkj “ n

An Example in S9:

p123qp456qp78qp9q ù

$

&

%

k1 “ k2 “ 1

k3 “ 2

k4 “ k5 “ ¨ ¨ ¨ “ k9 “ 0
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Interchange:

An interchange is a 2cycle, the permutation between two objects,

p�i�jq; 1 ď i; j ď n; pi ‰ jq

Remarks:

Except the trivial 1cycle, each group element in Sn can be written
out in terms of the ordered product of interchanges. e.g. in S9,

p123qp456qp78qp9q “ p12qp23qp45qp56qp78qp9q

The inner automorphism built from “interchanges” does not
change the cycle structure tk1k2 ¨ ¨ ¨ knu of any element in Sn.
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p�j�iqp¨ ¨ ¨ �1�i�2 ¨ ¨ ¨ qp¨ ¨ ¨ �3�j�4 ¨ ¨ ¨ qp�i�jq

“ p¨ ¨ ¨ �1�j�2 ¨ ¨ ¨ qp¨ ¨ ¨ �3�i�4 ¨ ¨ ¨ q

p�j�iqp¨ ¨ ¨ �1�i�2 ¨ ¨ ¨ �3�j�4 ¨ ¨ ¨ qp�i�jq

“ p¨ ¨ ¨ �1�j�2 ¨ ¨ ¨ �3�i�4 ¨ ¨ ¨ q

Therefore, the inner automorphism gg1g
´1 built from an arbitrary

permutation g P Sn does not change the cycle structure of element
g1 P Sn.

Examples in S4:

1 p12q ¨ p1234q ¨ p12q “ p1342q

2 p12q ¨ p23q ¨ p12q “ p13q

3 p12q ¨ p13qp24q ¨ p12q “ p14qp23q
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Conjugacy classes in Sn:

1 In Sn, the conjugacy classes consist of all possible permutations
with a particular cycle structure.

2 The conjugacy classes can be labeled by the set of integers
tk1; k2; ¨ ¨ ¨ ; knu, where ki is the number of icycle but i the
length of icycle1.

3 The number of group elements in each conjugacy class
tk1; k2; ¨ ¨ ¨ ; knu of Sn is,

# “
n!

śn
j“1

jkj pkjq!

1For example, the group elements p1qp234q; p2qp341q; p3qp412q and p4qp123q in
S4 are in the same conjugacy class.
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Proof:

Each permutation of objects (from 1 to n) gives a permutation in the
class, the total number is n!. Hence, the number of group elements
in class tk1; k2; ¨ ¨ ¨ ; knu should be proportional to n!,

# 9 n!

But cyclic order doesn’t matter within a cycle, e.g., p1234q is the same
as p2341q; p3412q and p4123q,

# 9
n!

śn
j“1

jkj

Furthermore, the order does not matter also at all between cycles of
the same length, e.g., p12qp34q is the same as p34qp12q,

ù # “
n!

śn
j“1

jkj
¨

1
śn

j“1
pkjq!

“
n!

śn
j“1

jkj pkjq!
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Example: S3

In S3, there are totally 3 conjugacy classes2:

C1 “ teu; C2 “ tp12q; p23q; p31qu; C3 “ tp123q; p321qu

The number of group elements in each class is calculated as,

#C1 “
3!

p13 ¨ 3!qp20 ¨ 0!qp30 ¨ 0!q
“ 1

#C2 “
3!

p11 ¨ 1!qp21 ¨ 1!qp30 ¨ 0!q
“ 3

#C3 “
3!

p10 ¨ 0!qp20 ¨ 0!qp31 ¨ 1!q
“ 2

2In S3, e “ p1qp2qp3q and the group element p12q stands for p12qp3q, and so on.
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Example: S4

There are totally 5 conjugacy classes in S4,

C1 “ teu

C2 “ tp12q; p13q; p14q; p23q; p24q; p34qu

C3 “ tp123q; p124q; p134q; p234q; p321q; p421q; p431q; p432qu

C4 “ tp12qp34q; p13qp24q; p14qp23qu

C5 “ tp1234q; p1243q; p1324q; p1342q; p1423q; p1432qu

The number of group elements in each class is calculated as follows:

#C1 “
4!

p14 ¨ 4!qp20 ¨ 0!qp30 ¨ 0!qp40 ¨ 0!q
“ 1

#C2 “
4!

p12 ¨ 2!qp21 ¨ 1!qp30 ¨ 0!qp40 ¨ 0!q
“ 6

#C3 “
4!

p11 ¨ 1!qp20 ¨ 0!qp31 ¨ 1!qp40 ¨ 0!q
“ 8
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Homework:

#C4 “
4!

p10 ¨ 0!qp22 ¨ 2!qp30 ¨ 0!qp40 ¨ 0!q
“ 3

#C5 “
4!

p10 ¨ 0!qp20 ¨ 0!qp30 ¨ 0!qp41 ¨ 1!q
“ 6

Problems:
1 How many conjugacy classes are there in symmetric group S6 ?

How many group elements are there in each of these classes ?
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Young Tableaux:

Definition of Young Tableaux:

It is convevient (and then useful) to represent each jcycle by a column
of boxes of length j, topjustified and arranged in order of decreasing j
as you go to the right. In Sn, the total number of boxes is n.

These collections of boxes are called Young Tableaux.

Importance of Young tableaux:

1 Each different tableaux of nboxes represents a different conjugacy
class of Sn.

2 The Young tableaux are in onetoone correspondence with the
irreducible representations of Sn.
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Illustration:

1 The identity element in S4 consists of four 1cycles. It is
represented as

2 The elements p1324qp658qp7q and p1qp362qp5478q in S8
contain a 4cycle, a 3cycle and a 1cycle.

Both elements are represented as
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Example:

S3 has 3 conjugacy classes, i.e.,

teu; tp12q; p23q; p31qu; tp123q; p321qu

With Young tableaux they could be represented as,

respectively.

The numbers of group elements in these conjugacy classes are:

3!

3!
“ 1;

3!

2
“ 3;

3!

3
“ 2:
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Example:

The classes and the corresponding numbers of group elements of S4 are,

4!

4!
“ 1

4!

2 ˆ 2
“ 6

4!

22 ˆ 2!
“ 3

4!

3
“ 8

4!

4
“ 6
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Representation of Sn:

Young tableaux can be used to construct the irreducible representations
of Sn.

Steps:

We begin by putting the integers from 1 to n in the boxes of the
tableaux in all possible ways. There are n! ways to do this.

We identify each assignment of integers 1 to n to the boxes with
a state in the regular representation of Sn.
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Concretely,

by defining a standard ordering, saying from left to right and then top to
down, we translate from the integers in the boxes of the Young tableaux
to a state associated with a particular permutation.

An example in S7:

6 5 3 2
1 7
4

ù j6532174y

This state is associated with the permutation:

j1234567y ù j6532174y

Obviously, it is p167425qp3q.
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For a particular tableaux, we first symmetrize the corresponding
state in the numbers in each row, and then antisymmetrize it in
the numbers in each column.

e.g.,

1 2 ù re` p12qs j12y “ j12y ` j21y

1 2
3

ù

re´ p13qsre` p12qs j123y “ j123y ` j213y ´ j321y ´ j231y

6 5 3 2
1 7
4

ù ?

The set of states constructed in this way spans some subspaces of
the regular representation. Such a subspace defines actually an
irreducible representation of Sn.
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Illustration

Question:

Find all of the irreducible representations of S3 by using Young tableaux.

Solution:
The Young tableau gives a completely symmetrized state:

1 2 3

ù j	0y “ j123y ` j231y ` j312y ` j132y ` j213y ` j321y

Because
D0rgs j	0y “ j	0y ; @g P S3

is associated with a 1dimensional subspace which defines
the trivial (irreducible) representation of S3:

D0res “ D0rp12qs “ D0rp13qs

“ D0rp23qs “ D0rp123qs “ D0rp132qs “ 1
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The Young tableau gives a completely antisymmetric state,

1
2
3

ù j	1y “ j123y ´ j213y ´ j321y ´ j132y ` j231y ` j312y

This state spans another 1dimensional irreducible subspace which
defines the socalled alternate representation D1 of S3:

D1res j	1y “ D1rp123qs j	1y “ D1rp132qs j	1y “ j	1y

D1rp12qs j	1y “ D1rp23qs j	1y “ D1rp13qs j	1y “ ´ j	1y

Therefore,

D1res “ D1rp123qs “ D1rp132qs “ 1

D1rp12qs “ D1rp23qs “ D1rp13qs “ ´1
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The Young tableau gives the following states:

1 2
3

ù j 21y “ j123y ` j213y ´ j321y ´ j231y

1 3
2

ù j 22y “ j132y ` j312y ´ j231y ´ j321y

2 1
3

ù j213y ` j123y ´ j312y ´ j132y “ j 21y ´ j 22y

2 3
1

ù j231y ` j321y ´ j132y ´ j312y “ ´ j 22y

3 1
2

ù j312y ` j132y ´ j213y ´ j123y “ ´ j 21y ` j 22y

3 2
1

ù j321y ` j231y ´ j123y ´ j213y “ ´ j 21y

Therefore, is associated with a 2d irreducible representation

of S3.
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Explanation:

The state related to the Young tableau

2 1
3

is determined as follows:

j 213y “ re´ p23qsre` p12qs j213y

“ re´ p23q ` p12q ´ p132qs j213y

“ j213y ´ j312y ` j123y ´ j132y

Recall that,

j 21y “ j123y ` j213y ´ j321y ´ j231y

j 22y “ j132y ` j312y ´ j231y ´ j321y

Hence,
j 213y “ j 21y ´ j 22y

12 / 24



To find this 2dimensional representation, we need only consider
the socalled standard Young tableaux:

1 2
3

ù j 21y “ j123y ` j213y ´ j321y ´ j231y

1 3
2

ù j 22y “ j132y ` j312y ´ j231y ´ j321y

Standard Young tableaux:
1 In a standard Young tableau, the filled numbers increase within a

row from left to right and within a column from top to down.

2 For a given Young tableau, the number of the standard Young
tableaux is the same as the dimensions of the corresponding
irreducible representation.
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Remark:
The standard Young tableaux of S3 are as follows:

1 2 3 ;
1
2
3

;
1 2
3

;
1 3
2

:

Go back to the construction of the 2d irreducible representation of
S3. On the states j 21y and j 22y that correspond to the standard
Young tableaux,

1 2
3

1 3
2

we have,

D2rp12qs j 21y “ D2rp12qs

"

j123y ` j213y ´ j321y ´ j231y

*

“

"

j213y ` j123y ´ j312y ´ j132y

*

“ j 21y ´ j 22y
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D2rp12qs j	22y “ D2rp12qs

"

j132y ` j312y ´ j231y ´ j321y

*

“

"

j231y ` j321y ´ j132y ´ j312y

*

“ ´ j	22y

By setting j 21y “

„

1

0

ȷ

and j 22y “

„

0

1

ȷ

, we get:

D2rp12qs “

„

1 0

´1 ´1

ȷ
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Besides,

D2rp23qs j 21y “ D2rp23qs

"

j123y ` j213y ´ j321y ´ j231y

*

“

"

j132y ` j312y ´ j231y ´ j321y

*

“ j	22y

D2rp23qs j 22y “ D2rp23qs

"

j132y ` j312y ´ j231y ´ j321y

*

“

"

j123y ` j213y ´ j321y ´ j231y

*

“ j 21y

Hence,

D2rp23qs “

„

0 1

1 0

ȷ
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The remaining representation matrices are calculated in terms of the
above two. For example,

D2rp123qs “ D2rp12qp23qs “ D2rp12qsD2rp23qs

“

„

1 0

´1 ´1

ȷ „

0 1

1 0

ȷ

“

„

0 1

´1 ´1

ȷ

In conclusion, the 2d irreducible Rep. D2pS3q is realized by,

D2res “

„

1 0

0 1

ȷ

D2rp12qs “

„

1 0

´1 ´1

ȷ

D2rp13qs “

„

´1 ´1

0 1

ȷ

D2rp23qs “

„

0 1

1 0

ȷ

D2rp123qs “

„

0 1

´1 ´1

ȷ

D2rp132qs “

„

´1 ´1

1 0

ȷ
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Discussions:

The obtained 2d representation D2 is indeed irreducible, because
it leads to the expected characters,

�2res “ 2

�2rp123qs “ �2rp132qs “ ´1

�2rp12qs “ �2rp13qs “ �2rp23qs “ 0

Obviously, D2 is not a unitary representation.

To get the equivalent unitary representation, we introduce an auxiliary
hermitian matrix H,

H “
ÿ

gPS3

“

D2pgq
‰:
D2pgq “

„

8 4

4 8

ȷ
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The eigenvalue equation of matrix H reads,
„

8 4

4 8

ȷ „

a

b

ȷ

“ �

„

a

b

ȷ

ù 0 “

ˇ

ˇ

ˇ

ˇ

8 ´ � 4

4 8 ´ �

ˇ

ˇ

ˇ

ˇ

“ p8 ´ �q2 ´ 16. As expected, both

eigenvalues are positive:

� “

"

12

4

The corresponding eigenvectors of H read,

j� “ 12y “
1

?
2
ei�1

„

1

1

ȷ

; j� “ 4y “
1

?
2
ei�2

„

1

´1

ȷ

where �1 and �2 are two arbitrary real parameters (phases). These two
eigenvectors can be used to define a unitary matrix

u “

«

ei�1?
2

ei�2?
2

ei�1?
2

´ei�2?
2

ff
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With u we can diagonalize H,

H “

„

8 4

4 8

ȷ

“ u

„

12 0

0 4

ȷ

u:

“

«

ei�1?
2

ei�2?
2

ei�1?
2

´ei�2?
2

ff

„

12 0

0 4

ȷ

«

e´i�1
?
2

e´i�1
?
2

e´i�2
?
2

´e´i�2
?
2

ff

We define the square root matrix 
 “
?
H,


 “ u

„
?
12 0

0
?
4

ȷ

u:

“

«

ei�1?
2

ei�2?
2

ei�1?
2

´ei�2?
2

ff

„

2
?
3 0

0 2

ȷ

«

e´i�1
?
2

e´i�1
?
2

e´i�2
?
2

´e´i�2
?
2

ff

“

„
?
3 ` 1

?
3 ´ 1?

3 ´ 1
?
3 ` 1

ȷ

20 / 24



Matrix 
:

 is a hermitian matrix.
Since det
 “ 4

?
3 ‰ 0; 
 has an inverse. The inverse matrix is

also a hermitian.
The inverse of 
 reads,


´1 “
1

4
?
3

„

1 `
?
3 1 ´

?
3

1 ´
?
3 1 `

?
3

ȷ

The 2dimensional unitary irreducible representation of S3 is then
constructed as,

D
unitary
2 pgq “ 
D2pgq
´1; @ g P S3

Explicitly,

D
unitary
2 res “

„

1 0

0 1

ȷ

D
unitary
2 rp12qs “

„
?
3{2 ´1{2

´1{2 ´
?
3{2

ȷ
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D
unitary
2 rp13qs “

„

´
?
3{2 ´1{2

´1{2
?
3{2

ȷ

D
unitary
2 rp23qs “

„

0 1

1 0

ȷ

D
unitary
2 rp123qs “

„

´1{2
?
3{2

´
?
3{2 ´1{2

ȷ

D
unitary
2 rp132qs “

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

Warning:

The matrix forms of the 2dimensional unitary irreducible representation
of S3 are still not unique, although they are equivalent to each other.
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An alternative realization of this 2d irreducible unitary representation
for S3 is,

D2peq “

„

1 0

0 1

ȷ

D2rp123qs “

„

´1{2 ´
?
3{2?

3{2 ´1{2

ȷ

D2rp132qs “

„

´1{2
?
3{2

´
?
3{2 ´1{2

ȷ

D2rp12qs “

„

´1 0

0 1

ȷ

D2rp23qs “

„

1{2
?
3{2?

3{2 ´1{2

ȷ

D2rp13qs “

„

1{2 ´
?
3{2

´
?
3{2 ´1{2

ȷ
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Homework:

Question (optional):
1 Please find a similarity transformation to relate these two equivalent

unitary representations of S3.

Hint: Try to diagonize the matrix Dunitary
2 rp12qs. We conclude

that the two unitary representations are equivalent to each
other by a similarity transformation,

u “ u: “ u´1 “
1

2
?
2

„
?
3 ´ 1

?
3 ` 1?

3 ` 1 1 ´
?
3

ȷ

Problem:

1 Find the group of all the discrete rotations that leave a regular
tetrahedron invariant by labeling the four vertices and considering
the rotations as permutations on the four vertices. This defines a
four dimensional representation of a group. Find the conjugacy
classes and the characters of the irreducible representations of this
group.
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Lie Groups:

Lie groups G are groups where the group elements g P G depends
smoothly on a set of continuous real parameters,

g “ gp�q

where
� “ t�1; �2; ¨ ¨ ¨ ; �Nu “ t�a |1 ď a ď Nu

In general, we choose parameters t�au so that the identity can be
expressed as

e “ gp�q |�“0“ gp0q

If we find a representation DpGq, we have similarly,

1 “ Dp�q |�“0“ Dp0q

2 / 32



Generators:

In some neighborhood of the identity, the elements of a Lie group G or
its representation DpGq can be Taylor expanded as,

Dpd�q “ 1 `

N
ÿ

a“1

d�a

„

BDp�q

B�a

ȷ

�“0

` ¨ ¨ ¨

“ 1 ` i

N
ÿ

a“1

d�aXa ` ¨ ¨ ¨

« 1 ` id�aXa

where
Xa “ ´i

BDp�q

B�a
|�“0 ; pa “ 1; 2; ¨ ¨ ¨ ; Nq

are called the generators of group G in its representation DpGq.
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Discussions:

1 Xa are independent of one another.

2 The factor i is included in the definition of generators Xa so that
if the representation is unitary, Xa will be hermitian matrices.

3 The representation of the group elements for finite parameters
� “ t�au can be defined as,

Dp�q “ lim
kÑ8

”

1 ` i
´�a

k

¯

Xa

ık

“ exppi�aXaq “ ei�aXa

This procedure is called exponential mapping. It implies that, at least
in some neighborhood of identity, the group elements can be written
out in terms of the generators.

4 The exponential of a matrix is always defined as a power series,

ei�aXa “

8
ÿ

n“0

in

n!
p�aXaqn

4 / 32



We now consider the multiplication of two group elements of a Lie
group G,

g� “ ei�aXa ; g� “ ei�aXa :

That the generators Xa are matrices indicates,

g�g� “ ei�aXaei�bXb ‰ eip�`�aqXa

Because the exponentials form a representation of the group G,
it must be true that the product of two exponentials is also an
exponential of the generators,

g�g� “ ei�aXaei�bXb

“ eiaXa

“ g
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The parameters a are determined by,

iaXa “ ln
´

ei�aXaei�bXb

¯

“ lnr1 ` pei�aXaei�bXb ´ 1qs

“ lnp1 ` Kq

“ K ´
K2

2
`
K3

3
´ ¨ ¨ ¨

whereK “ ei�aXaei�bXb ´ 1. Explicitly,

K “
“

1 ` ip�aXaq ´
1

2
p�aXaq2 ` ¨ ¨ ¨

‰

¨
“

1 ` ip�bXbq ´
1

2
p�bXbq

2 ` ¨ ¨ ¨
‰

´ 1

“ ip�a ` �aqXa ´ �a�bXaXb

´
1

2

„

p�aXaq2 ` p�aXaq2
ȷ

` ¨ ¨ ¨

and

K2 «
“

ip�a`�aqXa

‰

2
“ ´�a�bpXaXb`XbXaq´

“

p�aXaq2`p�aXaq2
‰
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Therefore,

iaXa “ K ´ K2{2 ` ¨ ¨ ¨

“ ip�a ` �aqXa ´
1

2
�a�b

´

XaXb ´ XbXa

¯

“ ip�a ` �aqXa ´
1

2
�a�b rXa; Xbs

where
rA; Bs “ AB ´ BA

is called the Lie bracket between two generators A and B.

We conclude that,

p�a�bqrXa; Xbs “ ´2ipc ´ �c ´ �cqXc

That is to say: the generators of the Lie group G form an closed algebra
under Lie brackets. It is called the Lie algebra.
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Lie algebras:

Lie algebras are generally written as,

rXa; Xbs “ ifabcXc

The coefficients fabc are known as the structure constants of the Lie
group G.

Properties of fabc:

1 fabc “ ´fbac

2 The generators of a unitary representation of Lie group G are hermitian
matrices. Consequently, all of the structure constants are real,

f˚
abc “ fabc

3 The structure constants satisfy the socalled Jacobi identity,

fabdfdce ` fbcdfdae ` fcadfdbe “ 0:
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Proof:
The reality of fabc is proved as follows,

´if˚
abcXc “ pifabcXcq

: “ trXa; Xbsu
: “ pXaXb ´ XbXaq:

“ pXbq
:pXaq: ´ pXaq:pXbq

:

“ XbXa ´ XaXb “ ´rXa; Xbs “ ´ifabcXc

Hence, f˚
abc “ fabc.

Similar to the Poisson brackets in classical mechanics, the Lie brackets
obey the socalled Jacobi identity,

rrXa; Xbs; Xcs ` Cyclic Permutations “ 0:

Explicitly,

rrXa; Xbs; Xcs ` rrXb; Xcs; Xas ` rrXc; Xas; Xbs “ 0:
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Here we check this formula. By definition of the Lie brackets

rrXa; Xbs; Xcs “ rXaXb ´ XbXa; Xcs

“ pXaXb ´ XbXaqXc ´ XcpXaXb ´ XbXaq

“ XaXbXc ´ XbXaXc ´ XcXaXb ` XcXbXa

Cyclic permutations of above equation lead to

rrXb; Xcs; Xas “ XbXcXa ´ XcXbXa ´ XaXbXc ` XaXcXb

rrXc; Xas; Xbs “ XcXaXb ´ XaXcXb ´ XbXcXa ` XbXaXc

Obviously, the sum of these three terms vanishes:

rrXa; Xbs; Xcs ` rrXb; Xcs; Xas ` rrXc; Xas; Xbs “ 0:

Because

rrXa; Xbs; Xcs “ rifabdXd; Xcs “ ´fabdfdceXe

The Jacobi identities put some stringent constraints on the structure
constants:

fabdfdce ` fbcdfdae ` fcadfdbe “ 0:
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Adjoint Representation:

Define a set of hermitian matrices Ta from the structure constants,

pTaqbc “ ´ifabc ; pTaqbc “ pTaq˚
cb:

We can rewrite the above Jacobi identities as,

0 “ fabdfdce ` fbcdfdae ` fcadfdbe

“ ´fabdfcde ` fcbdfade ´ facdfdbe

“ pTaqbdpTcqde ´ pTcqbdpTaqde ´ ifacdpTdqbe

“
`

rTa; Tcs
˘

be
´ ifacdpTdqbe

Therefore, the structure constants themselves generate a representation
of the Lie algebra:

rTa; Tcs “ ifacd Td

It is called the adjoint representation.
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Discussions:

For a unitary adjoint representation of a Lie group G, because

pTaqbc “ ´ifabc

its hermitian generators are pure imaginary and then antisymmetric
matrices. Hence, fabc becomes totally antisymmetric about its
indices. In particular,

fabc “ ´facb:

The dimension of the adjoint representation is just the number
of independent generators, which is also the number of real
parameters required to describe a group element.
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The scalar product in the linear space of the generators is defined
as the following trace,

TrpXaXbq

which is symmetric for interchanging indices a and b.
In the adjoint representation,

TrpTaTbq “ pTaqcdpTbqdc

“ p´ifacdqp´ifbdcq

“ ´facdfbdc

“ facdfbcd

Since the basic symmetric quantity is �ab, this scalar product can
be cast as a simple canonical form,1

TrpTaTbq “ �a�ab

Therefore,
facdfbcd 9 �ab

1There is no sum over index a.
13 / 32



Explanation:

If TrpTaTbq ‰ �a�ab, we can give pTaqbc “ ´ifabc up and redefine a set
of new generators for the adjoint representation. Firstly, let us do a linear
transformation on generators Xa,

Xa ù X 1
a “ LabXb

L must be invertible, Xb “ pL´1qbcX
1
c. The Lie bracket between new

generators X 1
a and X 1

b is either

rX 1
a; X

1
bs “ if 1

abcX
1
c

or

rX 1
a; X

1
bs “ LaiLbjrXi; Xjs “ LaiLbj pifijkXkq

“ iLaiLbjpL
´1qkcfijk X

1
c

Therefore,
fabc ù f 1

abc “ LaiLbjpL
´1qkcfijk
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The new generators of adjoint representation are then defined as:

pT 1
aqbc “ ´if 1

abc

“ LaiLbjpL
´1qkcpTiqjk

The trace of the product of two new generators T 1
a and T 1

b reads,

TrpT 1
aT

1
bq “ pT 1

aqcdpT 1
bqdc

“ LaiLcjpL
´1qkdpTiqjk LbmLdnpL´1qlcpTmqnl

“ �jl�kn LaiLbmpTiqjkpTmqnl

“ LaiLbmpTiqjkpTmqkj

“ LaiTrpTiTmqpLT qmb

The matrix consisting of TrpTiTmq is real symmetrical which turns out
to be a Hermitian matrix. Hence, we can diagonalize it with an
appropriate orthogonal matrix L (LT “ L´1). Suppose we have done
this, so that

TrpT 1
aT

1
bq “ ka�ab pno summation over index aq
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Compact Lie algebras:

From now on we shall assume that all of the coefficients in t�au are
positive and equal to each other. This defines a class of algebras
called compact Lie algebras:

TrpTaTbq “ � �ab

The structure constants of a compact Lie algebra are completely
antisymmetric,

fabc “ ´i�´1pifabdq��dc

“ ´i�´1pifabdqTrpTdTcq
“ ´i�´1Tr

“

pifabdTdqTc
‰

“ ´i�´1Tr
␣

rTa; TbsTc
(

“ ´i�´1TrpTaTbTc ´ TbTaTcq

Namely,

fabc “ ´fbac “ fbca “ ´fcba “ fcab “ ´facb
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Theorem:
The adjoint representation of a compact Lie algebra is unitary.

In fact, the reality of fabc and its symmetry guarantee that the generators
pTaqbc “ ´ifabc are not only pure imaginary but antisymmetric also.

Therefore,

rpTaq:sbc “ rpTaq˚scb

“ rpTaqcbs
˚

“ p´ifacbq
˚

“ ifacb

“ ´ifabc

“ pTaqbc

Namely,
pTaq: “ Ta

This is very the expected hermitility.
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Invariant subalgebra:

An invariant subalgebra is some set of generatorsH “ tXau which goes
into itself under Lie brackets with any element Yb of the whole algebra,

rXa; Ybs “ ifabcXc

for an arbitrary generator Yb of group G.

When exponentiated, an invariant subalgebra generates an subgroup
H “ thu of G,

h “ ei�aXa ; @ Xa P H:

For an arbitrary group element g “ ei�bYb in G, we see,

g´1hg “ e´i�bYbei�aXaei�cYc “ e´i�bYb

„ 8
ÿ

n“0

in

n!
p�aXaqn

ȷ

ei�cYc

“

8
ÿ

n“0

in

n!

„

e´i�bYbp�aXaqei�cYc
ȷn

“

8
ÿ

n“0

in

n!
p�aX

1
aqn “ ei�aX

1
a
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where

X 1
a “ e´i�bYbXae

i�cYc

“ Xa ´ i�brYb; Xas ´
1

2!
�b�crYb; rYc; Xass ` ¨ ¨ ¨

does still belong to the subalgebraH. As a result, the considered
exponentials form an invariant subgroup of G.

Remark:
The whole algebra and the null set � are two trivial invariant subalgebras.
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Simple Lie Algebras:

Definition:
A Lie algebra which has no nontrivial invariant subalgebras is called
simple Lie algebra.
A simple Lie algebra generates a simple Lie group.

Theorem:
The adjoint representation of a simple Lie group G with generators
pTaqbc “ ´ifabc satisfying

TrpTaTbq “ � �ab

is irreducible.

Proof:

If the adjoint representation were reducible, there were an invariant
subspace in the adjoint representation sapnned by some subset of
generators,

Tj ; 1 ď j ď K
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The rest of the generators are labeled as,

T�; K ` 1 ď � ď N

Because the indices j pj “ 1; 2; ¨ ¨ ¨ ;Kq label an invariant subspace, we
must have

´ifaj� “ pTaqj� “ 0;

$

&

%

1 ď a ď N

1 ď j ď K

K ` 1 ď � ď N

If TrpTaTbq “ ��ab; the structure constants are completely antisymmetric
about their three indices. Consequently, faj� “ 0 means:

fij� “ fj�i “ f�ij “ 0; p1 ď i; j ď K; K ` 1 ď � ď Nq

and

f�j� “ fj�� “ f��j “ 0; p1 ď j ď K; K ` 1 ď �; � ď Nq

The nonzero structure constants would be:

fijk; p1 ď i; j; k ď Kq

f�� ; pK ` 1 ď �; �;  ď Nq
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The algebra contained two nontrivial invariant subalgebras, and not
simple. Contrary to the initial assumption ! Q.E.D.

Abelian invariant subalgebras:

An abelian invariant subalgebra consists of a single generator which
commutes with all of the generators of the Lie group G.

1 We call such a subalgebra a Up1q factor of the group.
2 If Xa is a Up1q generator, fabc “ 0 for all possible b and c.

Semisimple Lie algebras:

The Lie algebras without Abelian invariant subalgebras are called
semisimple Lie algebras.
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Cartan subalgebra:

In any Lie group, the maximum set of mutually commuting generators
Ha pa “ 1; 2; ¨ ¨ ¨ ; rq generates an abelian subalgebra h,

rHa; Hbs “ 0

which is called the Cartan subalgebra.

1 The number of generators in h is the rank of the corresponding Lie
algebra g.

2 The Cartan generators Ha can be simultaneously diagonalized, and
their eigenvalues or diagonal elements are the weights

Ha j�; x;Dy “ �a j�; x;Dy

in which D labels the representation and x whatever other variables
are needed to specify the state.

3 The vector ~� “ p�1; �2; ¨ ¨ ¨ ; �rq is called the weight vector.
4 The weights of the adjoint representation is called the roots.
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States and operators:

Consider a Lie group G and its representation spanned by the states or
column vectors

jiy ; i “ 1; 2; 3; ¨ ¨ ¨

Generators:

The generators tXau of this representation can be thought of as either
linear operators acting on the representation space,

Xa jiy “
ÿ

j

jjy xjjXa jiy “
ÿ

j

jjy pXaqji

Group elements:

The group elements ei�aXa can be thought of as transformations of the
states,

ei�aXa : jiy ù
�
�i1
D

“ ei�aXa jiy ; xij ù
@

i1
�
� “ xij e´i�aXa :
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For a state generated from jiy by acting an operator O : O jiy, we see,

ei�aXa : O jiy ù O 1 ji1y “ ei�aXaO jiy

“ ei�aXaOe´i�bXbei�cXc jiy

“ ei�aXaOe´i�bXb

�
�i1
D

Hence,
ei�aXa : O ù O 1 “ ei�aXaOe´i�bXb

Invarant operators:

If O is an invariant operator under G “ tei�aXau, then

rei�aXa ; Os “ 0

Equivalently,
rXa; Os “ 0; @ a
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This conclusion can alternativley be obtained in the following manner.
Under an infinitesimal transformation of Lie group G,

ei�aXa « 1 ` i�aXa

the variation of the operator O can be expressed as,

�O “ O 1 ´ O

“ ei�aXaOe´i�bXb ´ O

“ p1 ` i�aXaqOp1 ´ i�bXbq ´ O

Namely,
�O « i�arXa; Os

The invariance of O under this Lie group transformation is then
recast as:

rXa; Os “ 0; @ a:
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Fun with exponentials:

As remarked previously, the exponential is alternatively defined as a
power series expansion,

exppi�aXaq “

8
ÿ

n“0

in

n!
p�aXaqn

In general, the generators do not commute mutually, rXa; Xbs ‰ 0.
However,

r�aXa; �bXbs “ p�a�bqrXa; Xbs “ ip�a�bqfabcXc

“
i

2
p�a�bqfabcXc `

i

2
p�a�bqfabcXc

“
i

2

“

p�a�bqfabcXc ` p�b�aqfbacXc

‰

“
i

2

“

p�a�bqfabcXc ´ p�a�bqfabcXc

‰

“ 0
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As a result, for an arbitrary real parameter �,

B
B�

exppi��aXaq “ ip�bXbq exppi��aXaq

“ i exppi��aXaqp�bXbq

Question:

B

B�b
ei�aXa “ ?

It follows from the above definition that,

B
B�b

ei�aXa “

8
ÿ

n“0

in

n!
B�b

p�aXaqn

“

8
ÿ

n“1

1

n!

«

n´1
ÿ

m“0

pi�aXaqmiXbpi�cXcq
n´1´m

ff
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Using the famous mathematical identity,

pn ´ 1 ´ mq!m!

n!
“

�pn ´ mq�pm ` 1q

�pn ` 1q

“ Bpn ´ m;m ` 1q

“

ż

1

0

d��mp1 ´ �qpn´1´mq

i.e,

1 “
n!

m!pn ´ 1 ´ mq!

ż

1

0

d��mp1 ´ �qpn´1´mq

we reexpress the above derivative as,

B

B�b
ei�aXa “

8
ÿ

n“1

1

n!

«

n´1
ÿ

m“0

n!

m!pn ´ 1 ´ mq!

ż

1

0

d��mp1 ´ �qpn´1´mq

pi�aXaqmiXbpi�cXcq
pn´1´mq

ff
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i.e.,

B

B�b
ei�aXa “

8
ÿ

n“0

n
ÿ

m“0

ż

1

0

d�

„

pi��aXaqm

m!

ȷ

piXbq

¨

"

rip1 ´ �q�cXcs
pn´mq

pn ´ mq!

*

Because the factorial of an arbitrary negative integer is infinity, e.g.,

p´3q! “ 8

we can recast the above equation as

B
B�b

ei�aXa “

8
ÿ

n“0

8
ÿ

m“0

ż

1

0

d�

„

pi��aXaqm

m!

ȷ

piXbq

¨

#

rip1 ´ �q�cXcs
pn´mq

pn ´ mq!

+
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By order exchange of summations, we have:

B
B�b

ei�aXa “

8
ÿ

m“0

8
ÿ

n“0

ż

1

0

d�

„

pi��aXaqm

m!

ȷ

piXbq

¨

#

rip1 ´ �q�cXcs
pn´mq

pn ´ mq!

+

“

8
ÿ

m“0

8
ÿ

n“m

ż

1

0

d�

„

pi��aXaqm

m!

ȷ

piXbq

¨

#

rip1 ´ �q�cXcs
pn´mq

pn ´ mq!

+

Equivalently,
B

B�b
ei�aXa

“

ż

1

0

d�

„ 8
ÿ

m“0

pi��aXaqm

m!

ȷ

piXbq

" 8
ÿ

k“0

rip1 ´ �q�cXcs
k

k!

*
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That is,

B

B�b
ei�aXa “

ż

1

0

d� ei��aXa iXb e
ip1´�q�cXc

Homework:
1 Find the explicit expression of the matrix ei�A with

A “

»

–

0 0 1

0 0 0

1 0 0

fi

fl :

2 If rA; Bs “ B, calculate ei�ABe´i�A.

3 Carry out the expansion of c in

ei�aXaei�bXb “ eicXc

to third order of �a and �b.
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Rotation group SOp3q:

Consider a vector ~r in 3dimensional space,

~r “

3
ÿ

a“1

~eaxa „

»

–

x1
x2
x3

fi

fl

Rotation:
A linear transformation g

g :

»

–

x1
x2
x3

fi

fl ù

»

–

x1
1

x1
2

x1
3

fi

fl “ g

»

–

x1
x2
x3

fi

fl

that leaves the bilinear form
ř

3

a“1
xaxa “ x2

1
` x2

2
` x2

3
invariant is

called a 3dimensional rotation.
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Because

x2
1

` x2
2

` x2
3

“
“

x1 x2 x3
‰

»

–

x1
x2
x3

fi

fl

x12
1

` x12
2

` x12
3

“
“

x1
1

x1
2

x1
3

‰

»

–

x1
1

x1
2

x1
3

fi

fl

“
“

x1 x2 x3
‰

gT g

»

–

x1
x2
x3

fi

fl

the 3dimensional rotation transformations should be expressed as a set
of 3 ˆ 3 real orthogonal matrices,

gT g “ 1

Therefore,

1 “ det
`

gT g
˘

“
“

detpgq
‰

2
ù detpgq “ ˘1
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The determinant of every orthogonal matrix is either

detpgq “ `1

in which case the transformation describes pure rotation, or

detpgq “ ´1

in which case it describes a rotationreflection.

Orthogonal group Op3q:

The aggregate of all real orthogonal 3dimensional matrices

gT g “ 1; dettgu “ ˘1

forms a Lie group, Op3q, the socalled 3dimensional orthogonal group.

4 / 58



SOp3q:

Special orthogonal group SOp3q:

The aggregate of all pure 3dimensional rotations

gT g “ 1; detpgq “ 1

forms a Lie group, SOp3q, the 3dimensional special orthogonal group.

Question:

What is the orthogonal matrix describing a pure rotation with an angle
 about some direction

~n “ sin � cos�~e1 ` sin � sin�~e2 ` cos �~e3 „

»

–

sin � cos�

sin � sin�

cos �

fi

fl ?
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SOp3q:

Solution:

In 3dimensional Cartesian space, the other two independent unit vectors
orthogonal to ~n read

~t1 “ cos � cos�~e1 ` cos � sin�~e2 ´ sin �~e3;

~t2 “ ´ sin�~e1 ` cos�~e2:

From these three unit vectors we find the following pure rotation from ~e3
to ~n:

h “

»

–

cos � cos� ´ sin� sin � cos�

cos � sin� cos� sin � sin�

´ sin � 0 cos �

fi

fl

Evidently,

h : ~e3 „

»

–

0

0

1

fi

fl ù h~e3 „ h

»

–

0

0

1

fi

fl“

»

–

sin � cos�

sin � sin�

cos �

fi

fl „ ~n
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The expected orthogonal matrix describing the pure rotation with an
angle  about the direction ~n is,

g “ h

»

–

cos ´ sin 0

sin cos 0

0 0 1

fi

flhT

“

»

–

cos � cos� ´ sin� sin � cos�

cos � sin� cos� sin � sin�

´ sin � 0 cos �

fi

fl

»

–

cos ´ sin 0

sin cos 0

0 0 1

fi

fl

¨

»

–

cos � cos� cos � sin� ´ sin �

´ sin� cos� 0

sin � cos� sin � sin� cos �

fi

fl

The explicit expressions for matrix elements, for example, read

g11 “ c ` s2�c
2

�p1 ´ c q; g12 “ s2�c�s�p1 ´ c q ´ c�s ;

g13 “ s�c�c�p1 ´ c q ` s�s�s ; ¨ ¨ ¨

where c� “ cos � and s “ sin , eta.
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In general,
“

gp�; �;  q
‰

ab
“ �abc ` nanbp1 ´ c q ´ �abcncs 

where indices a; b and c take their values from 1 to 3, and n1 “ s�c�,
n2 “ s�s� and n3 “ c�.

Generators of SOp3q:

In this definition representation, the generators of SOp3q are defined by,
“

Xp�; �q
‰

ab
“ ´iB 

“

gp�; �;  q
‰

ab
| “0 “ i�abcnc

Along the 3 axes of the Cartisian coordinate frame, we have:

pX1qab “ i�ab1 “ ip�a2�b3 ´ �a3�b2q; ù X1 “

»

–

0 0 0

0 0 i

0 ´i 0

fi

fl

pX2qab “ i�ab2 “ ip�a3�b1 ´ �a1�b3q; ù X2 “

»

–

0 0 ´i

0 0 0

i 0 0

fi

fl
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pX3qab “ i�ab3 “ ip�a1�b2 ´ �a2�b1q; ù X3 “

»

–

0 i 0

´i 0 0

0 0 0

fi

fl

In short, in Cartisian coordinates, the generators of SOp3q are as follows:

pXaqmn “ i�mna

Based on the famous mathematical identity

�ijk�mnk “ p�im�jn ´ �in�jmq

we get:

rXa; Xbsmn “ pXaqmkpXbqkn ´ pXbqmkpXaqkn

“ ´�mka�knb ` �mkb�kna “ �amk�bnk ´ �bmk�ank

“ �ab�mn ´ �an�mb ´ �ba�mn ` �bn�ma

“ �am�bn ´ �an�bm “ �abc�mnc

“ ´i�abcpi�mncq “ ´i�abcpXcqmn
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That is,
rXa; Xbs “ ´i�abcXc

The structure constants of SOp3q are components �ijk of the LeviCivita
antisymmetric tensor.

Relying on the fact,
´pXaqbc “ ´i�abc

the definition representation of SOp3q is just its adjoint representation.

Casimir operators:

Casimir operators of a Lie group are such operators that commute with
all generators of the group.

SOp3q has one Casimir operator:

X2 “

3
ÿ

a“1

XaXa
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Racah Theorem :

Here is a simple check:

rX2; Xas “

3
ÿ

b“1

rXbXb; Xas “

3
ÿ

b“1

"

rXb; XasXb `XbrXb; Xas

*

“

3
ÿ

b;c“1

p´i�bacXcXb ´ i�bacXbXcq

“ i

3
ÿ

b;c“1

�abcpXbXc `XcXbq “ 0:

Racah theorem:
For any semisimple Lie group G of rank l, there exists a set of l Casimir
operators,

C� “ C�pX1; X2; ¨ ¨ ¨ ; XN q; p1 ď � ď lq

that commute with every generator of the group and therefore also amongst
themselves, rC�; C�s “ 0.
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Group elements of SOp3q:

The general group elements of SOp3q, which describe the pure rotation
with an angle  about the direction ~n “ ps�c�; s�s�; c�q, read:1

“

gp�; �;  q
‰

ab
“ �ab c ` nanb p1 ´ c q ´ �abcnc s 

where n1 “ s�c�; n2 “ s�s� and n3 “ c�.

O

Z

X

Y

~n

θ

φ

1The ranges for the parameters take their values are 0 ď � ď � and 0 ď �;  ď 2�.
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In particular,

g
´�

2
; 0;  

¯

” Rxp q “

»

–

1 0 0

0 cos ´ sin 

0 sin cos 

fi

fl

Similarly,

g
´�

2
;
�

2
;  

¯

” Ryp q “

»

–

cos 0 sin 

0 1 0

´ sin 0 cos 

fi

fl

and

gp0; 0;  q ” Rzp q “

»

–

cos ´ sin 0

sin cos 0

0 0 1

fi

fl
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With the previously defined generators,

X1 “

»

–

0 0 0

0 0 i

0 ´i 0

fi

fl X2 “

»

–

0 0 ´i

0 0 0

i 0 0

fi

fl X3 “

»

–

0 i 0

´i 0 0

0 0 0

fi

fl

these special group elements of SOp3q can be expressed as

Rxp q “ ei X1 ; Ryp q “ ei X2 ; Rzp q “ ei X3

In general,

gp�; �;  q ” R~np q “ ei ~n¨ ~X “ ei ps�c�X1`s�s�X2`c�X3q

Our check is as follows:

p~n ¨ ~Xqij “ napXaqij “ i�ijana
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”

p~n ¨ ~Xq2
ı

ij
“ p~n ¨ ~Xqikp~n ¨ ~Xqkj

“ pi�ikanaqpi�kjbnbq

“ ´�ika�kjbnanb

“ �iak�jbknanb

“ p�ij�ab ´ �ib�jaqnanb

“ �ijnana ´ ninj

“ �ij ´ ninj

In the last step, we have used the the condition nana “ 1 for unit vector
~n. Moreover,

”

p~n ¨ ~Xq3
ı

ij
“

”

p~n ¨ ~Xq2
ı

ik
p~n ¨ ~Xqkj

“ p�ik ´ ninkqp´i�kjanaq

“ ´i�ijana ` i�akjnankni

“ ´i�ijana “ p~n ¨ ~Xqij
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”

p~n¨ ~Xq4
ı

ij
“ rp~n¨ ~Xq3sikp~n¨ ~Xqkj “ p~n¨ ~Xqikp~n¨ ~Xqkj “ rp~n ¨ ~Xq2sij

In general, for an arbitrary positive integer m P Z`,

rp~n ¨ ~Xq2m´1sij “ i�ijana; rp~n ¨ ~Xq2msij “ �ij ´ ninj :

Hence,
“

ei p~n¨ ~Xq
‰

ij
“

„

1 ` i p~n ¨ ~Xq `
i2 2

2!
p~n ¨ ~Xq2 `

i3 3

3!
p~n ¨ ~Xq3 ` ¨ ¨ ¨

ȷ

ij

“ �ij ` ip~n ¨ ~Xqij

„

 ´
 3

3!
` ¨ ¨ ¨

ȷ

`rp~n ¨ ~Xq2sij

„

´
 2

2!
`
 4

4!
´ ¨ ¨ ¨

ȷ

“ �ij ` ip~n ¨ ~Xqijs ` rp~n ¨ ~Xq2sijpc ´ 1q

“ �ij ´ �ijanas ` p�ij ´ ninjqpc ´ 1q
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As expected,
“

ei p~n¨ ~Xq
‰

ij
“ c �ij ` ninjp1 ´ c q ´ �ijknks “

“

gp�; �;  q
‰

ij

In matrix form,
the group elements of SOp3q in its adjoint representation are expressed
as:

gp�; �;  q “ ei p~n¨ ~Xq “ ei ps�c�X1`s�s�X2`c�X3q

where 0 ď � ď � and 0 ď �;  ď 2�.

Evidently,
3 parameters are required to describe an arbitrary 3dimensional
rotation. They may be related to the rotation axis2 and the angle
 of rotation.

2The axis ~n is described by 2 parameters � and �. Since gp~n;  q “ gp´~n; 2� ´  q,
the space of SOp3q group parameters is a sphere of radius �, i.e., 0 ď � ď 2� and
0 ď �;  ď �, if the onetoone correspondence exists between the parameters and the
SOp3q group elements.
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Euler angles

Alternatively, the 3 parameters may be chosen as Euler angles, defined as
the three successive angles of rotation by the sequent rotations from the
fixed system of axes Oxyz:

O

Z

X
Y

u

Z ′

X ′

Y ′

α

β

γ

1
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1 Rotate through angle � about axis Oz, carrying Oy into Ou;
2 Rotate through angle � about axis Ou, carrying Oz into Oz1;
3 Rotate through angle  about axis Oz1, carrying Ou into Oy1;

At the end of this process Ox will have been carried into Ox1. The
range of these Euler angles is 0 ď �;  ď 2� and 0 ď � ď �.

Euler angle representation:

The net rotation is described by the orthogonal matrix,

Rp�; �; q “ eiXz1ei�Xuei�Xz “ Rz1pqRup�qRzp�q

Because the factor rotation Rzp�q “ ei�Xz carries axis Oy into ou,

Xu “ Rzp�qXyRzp´�q “ ei�XzXye
´i�Xz

Hence,
Rup�q “ ei�Xu “ ei�Xzei�Xye´i�Xz
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Similarly, because Rup�q carries axis Oz into Oz1, we have,

Rz1pq “ eiXz1 “ ei�XueiXze´i�Xu

Consequently,

Rp�; �; q “ Rz1pqRup�qRzp�q

“

”

ei�XueiXze´i�Xu

ı

ei�Xu Rzp�q

“ ei�Xu eiXz Rzp�q

“

”

ei�Xz ei�Xy e´i�Xz

ı

eiXz ei�Xz

“ ei�Xzei�XyeiXz

In conclusion, an arbitrary pure rotation in 3dimensional Cartesian
space can be recast as

Rp�; �; q “ Rzp�qRyp�qRzpq “ ei�Xzei�XyeiXz

in terms of Euler angles �; � and  in the original fixed coordinate
system Oxyz. 20 / 58



The range of Euler angles:

It follows from the explicit orthogonal matrices Ryp�q and Rzp�q that,

Rzpq

»

–

0

0

1

fi

fl “

»

–

c ´s 0

s c 0

0 0 1

fi

fl

»

–

0

0

1

fi

fl “

»

–

0

0

1

fi

fl

Ryp�q

»

–

0

0

1

fi

fl “

»

–

c� 0 s�
0 1 0

´s� 0 c�

fi

fl

»

–

0

0

1

fi

fl “

»

–

s�
0

c�

fi

fl

Rzp�q

»

–

s�
0

c�

fi

fl “

»

–

c� ´s� 0

s� c� 0

0 0 1

fi

fl

»

–

s�
0

c�

fi

fl “

»

–

s�c�
s�s�
c�

fi

fl

It implies,

Rp�; �; q

»

–

0

0

1

fi

fl “ Rzp�qRyp�qRzpq

»

–

0

0

1

fi

fl “

»

–

s�c�
s�s�
c�

fi

fl
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Namely,

Rp�; �; q~e3 “ ~n “ s�c�~e1 ` s�s�~e2 ` c�~e3

Hence 0 ď � ď 2� and 0 ď � ď �:

Similarly,

rRzp�qsT

»

–

0

0

1

fi

fl “

»

–

c� s� 0

´s� c� 0

0 0 1

fi

fl

»

–

0

0

1

fi

fl “

»

–

0

0

1

fi

fl

rRyp�qsT

»

–

0

0

1

fi

fl “

»

–

c� 0 ´s�
0 1 0

s� 0 c�

fi

fl

»

–

0

0

1

fi

fl “

»

–

´s�
0

c�

fi

fl

rRzpqsT

»

–

´s�
0

c�

fi

fl “

»

–

c c 0

´s c 0

0 0 1

fi

fl

»

–

´s�
0

c�

fi

fl “

»

–

´s�c
s�s
c�

fi

fl
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These formulae yield,

rRp�; �; qsT

»

–

0

0

1

fi

fl “ rRzpqsT rRyp�qsT rRzp�qsT

»

–

0

0

1

fi

fl

“

»

–

´s�c
s�s
c�

fi

fl

That is to say,

rRp�; �; qsT~e3 “ ~n1

“ ´s�c~e1 ` s�s~e2 ` c�~e3

“ s�cp�´q~e1 ` s�sp�´q~e2 ` c�~e3

Hence 0 ď p� ´ q ď 2� or equivalently ´� ď  ď �:

We conclude that the range of Euler angles in Rp�; �; q are:

0 ď �;  ď 2�; 0 ď � ď �:

23 / 58



SOp3q rotation in Hilbert space:

Scalar wave function :

Scalar wavefunction has onecomponent  p~xq. Under a rotation of
position coordinates, ~x ù ~x1 “ R~x, it remains invariant,

 p~xq ù  1p~x1q “  p~xq

As a result,
 1p~xq “  pR´1~xq

Here R´1 is the inverse of a 3 ˆ 3 coordinate rotation matrix R.

Let us introduce the operatorR in Hilbert space to describe the rotation
of the wave functions themselves,

~x ù ~x1 “ R~x;

 p~xq ù  1p~xq “ R p~xq

Therefore,
R p~xq “  pR´1~xq 24 / 58



The complete set of operators tRu defines a representation of SOp3q,
called the rotation group in Hilbert space.

Proof:

The unit element in tRu does trivially exist. Moreover, under two
successive coordinate rotations,

~x ù ~x1 “ R1~x ù ~x2 “ R2~x
1 “ R2R1~x

the scalar wave function  p~xq transforms into:

 p~xq ù  1p~x1q “  p~xq ù  2p~x2q “  1p~x1q “  p~xq

Namely,
 2p~xq “  ppR2R1q´1~xq

On the other hand,R1 p~xq “  1p~xq andR2 
1p~xq “  2p~xq. Hence,

 2p~xq “ R2 
1p~xq “ R2R1 p~xq
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By comparison, we get

R2R1 p~xq “  ppR2R1q´1~xq

This justifies that the rule

R p~xq “  pR´1~xq

is kept by the successive transformations, as expected. So tRu forms a
representation of SOp3q in Hilbert space.

Recall that the rotation matrices in coordinate space are expressed
as R~np q “ ei p~n¨ ~Xq, whose infinitesimal form reads,

rR~np'qsij « �ij ` i'p~n ¨ ~Xqij “ �ij ´ '�ijknk

Hence, the infinitesimal rotation in Hilbert space should satisfy,

R~np'q p~xq “  pR´1

~n p'q~xq “  prR´1

~n p'qsijxjq

“  pxi ` '�ijkxjnkq

“  p~xq ` '�ijkxjnkBxi p~xq ` ¨ ¨ ¨
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Namely,
R~np'q p~xq «  p~xq ´ 'ni�ijkxjBk p~xq

Generators:

Define the generators Li pi “ 1; 2; 3q of SOp3q in Hilbert space by

R~np'q « 1 ´ i'p~n ¨ ~Lq

These generators turn out to be the orbital angular momentum
operators:

Li “ ´i�ijkxjBk

It is easy to check that

rLi; Ljs “ i�ijkLk
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Multicomponent wave functions :

Under a 3dimensional rotation ~x ù ~x1 “ R~x in coordinate space, the
components of a multicomponent wave function

»

—

—

—

–

 1p~xq

 2p~xq
...

 N p~xq

fi

ffi

ffi

ffi

fl

transform as,

R ap~xq “ Dab bpR
´1~xq; pa; b “ 1; 2; ¨ ¨ ¨ ; Nq

In addition to the coordinate transformation R´1~x, a N ˆN matrix D
has to act on the internal degrees of freedom so that a linear combination of
the wave function components forms.

Hence,
R~np'q “ e´i'p~n¨~LqD~np'q
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The matrix D must be unitary and so it can be written as:

D~np'q “ e´i'p~n¨~Sq

with the N ˆN hermitian matrices ~S obeying Lie brackets

rSi; Sjs “ i�ijkSk

and
rSi; Ljs “ 0

Such a ~S is called the spin angular momentum of the particle described
by the given multicomponent wave function. e.g.,

1 N “ 1, scalar.
2 N “ 2, spinor.
3 N “ 3, vector.
4 N “ 4, doublespinor ?
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SOpNq:

OpNq :

The orthogonal group OpNq is formed by the set of all N ˆN real
orthogonal matrices

RTR “ 1; R˚ “ R

under the matrix multiplications.

Obviously,
detR “ ˘1

The condition RTR “ 1 stands for NpN ` 1q{2 independent
constraints

RijRik “ �jk

Hence, the number of independent real parameters for describing
an OpNq group element is:

g “ N2 ´
1

2
NpN ` 1q “

1

2
NpN ´ 1q
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SOpNq:

SOpNq is the normal subgroup of OpNq consisting of the N ˆN real
orthogonal matrices with unit determinant,

detR “ 1

Remarks:

The total number of real independent parameters for describing a
SOpNq group element is NpN ´ 1q{2.
These real parameters can be written as

!ab; pa; b “ 1; 2; ¨ ¨ ¨ ; Nq

with antisymmetry,
!ab “ ´!ba
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Consequently, an arbitrary SOpNq group element is expressed as,

R “ exp

«

´i
ÿ

bąa

N´1
ÿ

a“1

!ab Tab

ff

where Tab with symmetry Tab “ ´Tba are NpN ´ 1q{2 generators
of SOpNq.

Discussions:

Because R is real and unitary, each generator Tab is purely
imaginary and antisymmetric hermitian matrix.

detR “ 1 requires that all Tab are traceless.
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sopNq Algebra

We choose the generators of SOpNq in its definition representation as

pTabqjk “ ´ip�aj�bk ´ �ak�bjq

where indices a; b label the name of the generator Tab, while indices j; k
specify the matrix element of Tab.

Obviously,
1 Tab are purely imaginary.

2 pTabqjk “ ´pTabqkj

3 TrpTabq “ pTabqjj “ ´ip�aj�bj ´ �aj�bjq “ ´ip�ab ´ �abq “ 0
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sopNq algebra is,

rTab; Tcdsij “ pTabqikpTcdqkj ´ pTcdqikpTabqkj

“ ´p�ai�bk ´ �ak�biqp�ck�dj ´ �cj�dkq

`p�ci�dk ´ �ck�diqp�ak�bj ´ �aj�bkq

“ ´i�bcpTadqij ` i�bdpTacqij ` i�acpTbdqij ´ i�adpTbcqij

Namely,

rTab; Tcds “ ´ip�adTbc ` �bcTad ´ �acTbd ´ �bdTacq

Equivalently,
rTab; Tcds “ ifab;cd;ijTij

where the structure constants

fab;cd;ij “
1

2

”

�ad�ci�bj ´ �ad�bi�cj ` �bc�di�aj ´ �bc�ai�dj

´ �ac�di�bj ` �ac�bi�dj ´ �bd�ci�aj ` �bd�ai�cj

ı

are completely antisymmetric for exchanging any two groups of indices.
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Note:

The definition representation of SOpNq is not its adjoint
representation for N ‰ 3. The former is N dimensional,
but the latter has dimension NpN ´ 1q{2.
Due to the complete antisymmetry of the structure constants, the
adjoint representation of SOpNq is unitary.
For SOp2Mq and SOp2M ` 1q, the mutually commuting
generators are:

Ha “ Tp2a´1qp2aq; p1 ď a ď Mq

The normalization conditions of the SOpNq generators in its definition
representation read,

TrpTabTcdq “ pTabqijpTcdqji

“ ´p�ai�bj ´ �aj�biqp�cj�di ´ �ci�djq

“ 2p�ac�bd ´ �ad�bcq
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SUpNq

Definition Rep. of SUpNq:

The aggregate of all N ˆN unitary matrices tuu with unit determinant
provides the group SUpNq,

u:u “ uu: “ 1; detu “ 1

Number of the real parameters :

The unitary condition can be written as

�ij “ pu:qikukj “ u˚
kiukj

It gives N real constraints when i “ j while NpN ´ 1q{2 complex
constraints or equivalently NpN ´ 1q real constraints when i ‰ j.

detu “ 1 gives an additional constraint.
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Totally, the number of real independent parameters for describing an
arbitrary SUpNq group element should be,

g “ 2N2 ´N ´NpN ´ 1q ´ 1 “ N2 ´ 1

These N2 ´ 1 real parameters could be chosen to be
$

’

&

’

%

!
p1q

ab

!
p2q

ab

!
p3q
c a “ 1; 2; ¨ ¨ ¨ ; N ´ 1; a ă b; b; c “ 2; 3; ¨ ¨ ¨ ; N

with properties
!

p1q

ab “ !
p1q

ba ; !
p2q

ab “ ´!
p2q

ba :
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Generators:

The pN2 ´ 1q traceless hermitian generators of the definition Rep. of
unitary group SUpNq could be chosen as follows:

1 NpN ´ 1q{2 hermitian T p1q

ab pa ă bq with T p1q

ab “ T
p1q

ba

2 NpN ´ 1q{2 hermitian T p2q

ab pa ă bq with T p2q

ab “ ´T
p2q

ba

3 pN ´ 1q diagonal hermitian T p3q
c

so that

u “ exp

„

ÿ

aăb

N
ÿ

b“2

`

!
p1q

ab T
p1q

ab ` !
p2q

ab T
p2q

ab

˘

`

N
ÿ

c“2

!
p3q
c T

p3q
c

ȷ

The matrix elements of these traceless hermitian generators can explicitly
be defined as,

pT
p1q

ab qij “
1

2

´

�ai�bj ` �aj�bi

¯
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pT
p2q

ab qij “ ´
i

2

´

�ai�bj ´ �aj�bi

¯

and

pT
p3q
c qij “

$

’

’

&

’

’

%

�ij
1?

2cpc´1q
; if i ă c ;

´�ij

b

pc´1q

2c
; if i “ c ;

0; if i ą c:

For SUp2q, they are simply related to the famous Pauli matrices

�1 “

„

0 1

1 0

ȷ

�2 “

„

0 ´i

i 0

ȷ

�3 “

„

1 0

0 ´1

ȷ

Obviously,

T
p1q
12

“ �1{2; T
p2q
12

“ �2{2; T
p3q
2

“ �3{2:
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SUp2q:

Remainder:
The aggregate of all unitary matrices of order 2 and determinant unity
forms the group SUp2q.

An arbitrary SUp2q group element has the form,

up!q “ e
i
”

!
p1q
12
T

p1q
12

`!
p2q
12
T

p2q
12

`!
p3q
2
T

p3q
2

ı

Equivalently,
up~n;  q “ ei p~n¨~�q{2

where
~n “ c�~e3 ` s�c�~e1 ` s�s�~e2

is a twoparameter unit vector in the 3dimensional parameter space. So,
´~n “ cp�´�q~e3 ` sp�´�qcp�`�q~e1 ` sp�´�qsp�`�q~e2.

40 / 58



The Pauli matrices satisfy relation

�a�b “ �ab ` i�abc�c:

Hence,

p~n ¨ ~�q2 “ nanb�a�b “ nanbp�ab ` i�abc�cq “ nana “ 1

The SUp2q group element becomes,

up~n;  q “ ei p~n¨~�q{2

“

8
ÿ

n“0

in

n!
p {2qnp~n ¨ ~�qn

“ cosp {2q ` i sinp {2qp~n ¨ ~�q

“ cosp {2q ` i sinp {2q

„

n3 n1 ´ in2
n1 ` in2 ´n3

ȷ

“

„

cosp {2q ` i sinp {2qc� i sinp {2qs�e
´i�

i sinp {2qs�e
i� cosp {2q ´ i sinp {2qc�

ȷ
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It follows from

up~n;  q “

„

cosp {2q ` i sinp {2qc� i sinp {2qs�e
´i�

i sinp {2qs�e
i� cosp {2q ´ i sinp {2qc�

ȷ

that:
1 detu “ cos2p {2q ` sin2p {2qc2� ` sin2p {2qs2� “ 1.
2 up~n;  q is indeed unitary, u:p~n;  q “ u´1p~n;  q, with

u:p~n;  q “

„

cosp {2q ´ i sinp {2qc� ´i sinp {2qs�e
´i�

´i sinp {2qs�e
i� cosp {2q ` i sinp {2qc�

ȷ

3 up~n; 2�q “ ´1 while up~n;  q “ ´up´~n; 2� ´  q: Therefore,
the range for these 3 real parameters taking their values could be,

0 ď � ď �; 0 ď � ď 2�; 0 ď  ď 2�:

4 There is a Homomorphism between the groups SOp3q and SUp2q,

u:p~n;  q�bup~n;  q “

3
ÿ

a“1

�a
“

Rp~n;  q
‰

ab
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Homomorphism between SOp3q and SUp2q:

So, two SUp2q matrices, up~n;  q and up´~n; 2� ´  q, correspond to
the same SOp3q rotation Rp~n;  q.

Proof:
Consider an arbitrary vector ~r in the SUp2q parameter space,

~r “ x1~e1 ` x2~e2 ` x3~e3 “

»

–

x1
x2
x3

fi

fl

Because

up~n;  q “ ei p~n¨~�q{2 “ cosp {2q ` i sinp {2qp~n ¨ ~�q

we have

u:p~n;  qp~r ¨ ~�qup~n;  q

“

”

cosp {2q ´ i sinp {2qp~n ¨ ~�q

ı

p~r ¨ ~�q

¨

”

cosp {2q ` i sinp {2qp~n ¨ ~�q

ı
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“ cos2p {2qp~r ¨ ~�q ´ i sinp {2q cosp {2q
“

p~n ¨ ~�q; p~r ¨ ~�q
‰

` sin2p {2qp~n ¨ ~�qp~r ¨ ~�qp~n ¨ ~�q

Employment of identity �a�b “ �ab ` i�abc�c yields,

rp~n ¨ ~�q; p~r ¨ ~�qs “ naxbr�a; �bs “ 2inaxb�abc�c “ 2ip~nˆ ~r q ¨ ~�

and

p~n ¨ ~�qp~r ¨ ~�qp~n ¨ ~�q “ nanbxc�a�c�b

“ nanbxcp�ac ` i�acd�dq�b

“ p~n ¨ ~rqp~n ¨ ~�q ` inanbxc�acdp�db ` i�dbe�eq

“ p~n ¨ ~rqp~n ¨ ~�q ´ inanbxc�abc ´ nanbxcp�acd�bedq�e

“ p~n ¨ ~rqp~n ¨ ~�q ´ nanbxcp�ab�ce ´ �ae�cbq�e

“ p~n ¨ ~rqp~n ¨ ~�q ´ p~r ¨ ~�q ` p~n ¨ ~rqp~n ¨ ~�q

“ 2p~n ¨ ~rqp~n ¨ ~�q ´ p~r ¨ ~�q
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Therefore,

u:p~n;  qp~r ¨ ~�qup~n;  q “

”

cos2p {2q ´ sin2p {2q

ı

p~r ¨ ~�q

` 2 sinp {2q cosp {2qp~nˆ ~r q ¨ ~�

` 2 sin2p {2qp~n ¨ ~rqp~n ¨ ~�q

“ cos p~r ¨ ~�q ` sin p~nˆ ~r q ¨ ~� ` p1 ´ cos qp~n ¨ ~rqp~n ¨ ~�q

“ cos �axa ` sin �a�acbncxb ` p1 ´ cos qnbxbna�a

“ �a

”

�ab cos ` nanbp1 ´ cos q ´ �abcnc sin 
ı

xb

Recall that the SOp3q group element

Rp~n;  q ” gp�; �;  q “ ei p~n¨ ~Xq

can explicitly be expressed as
“

Rp~n;  q
‰

ab
“ �ab cos ` nanbp1 ´ cos q ´ �abcnc sin 
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Therefore,

u:p~n;  qp~r ¨ ~�qup~n;  q “ �a
“

Rp~n;  q
‰

ab
xb

It implies that the unitary group SUp2q is homomorphic to the
orthogonal group SOp3q,

u:p~n;  q �b up~n;  q “ �a
“

Rp~n;  q
‰

ab

Recall that
Rp´~n; 2� ´  q “ Rp~n;  q

we have also,

u:p´~n; 2� ´  q �b up´~n; 2� ´  q “ �a
“

Rp´~n; 2� ´  q
‰

ab

“ �a
“

Rp~n;  q
‰

ab

Therefore, two unitary matrices of SUp2q:

up~n;  q; up´~n; 2� ´  q “ ´up~n;  q

are mapped to the same rotation matrix Rp~n;  q in SOp3q.
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Lorentz group SOp3; 1q:

The genuine Lorentz transformations (LTs), called boost, are those
connecting two inertial frames moving with a relative speed v.

If the relative motion ia along the common
x1direction, boost is:

x1
1 “ px1 ´ �ctq

x1
2 “ x2

x1
3 “ x3

ct1 “ pct´ �x1q

where � “ v{c and  “ 1{
a

1 ´ �2.

Σ
Σ′

~v

O

O ′

x

x ′

y y ′

z
z ′
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Introduce the socalled boost parameter � by setting,

 “ cosh � ; � “ ´ sinh � :

Genuine LTs can be viewed as pseudoorthogonal transformations in
4dimensional Minkowski space M4,

»

—

—

–

ct1

x1
1

x1
2

x1
3

fi

ffi

ffi

fl

“

»

—

—

–

cosh � sinh � 0 0

sinh � cosh � 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

fl

»

—

—

–

ct

x1
x2
x3

fi

ffi

ffi

fl

As expected,

cosh2 � ´ sinh2 � “ 2 ´ 2�2 “

«

1
a

1 ´ �2

ff

2

p1 ´ �2q “ 1

The characteristic of Lorentz transformations is that they preserve
the invariance of the interval:

S2 “ x21 ` x22 ` x23 ´ c2t2 “ x12
1 ` x12

2 ` x12
3 ´ c2t12
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The boost matrix

B “

»

—

—

–

cosh � sinh � 0 0

sinh � cosh � 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

fl

are not orthogonal matrices, BBT ‰ 1. However, by introducing the
metric matrix � in M4,

� “

»

—

—

–

´1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

fl

we have:

B´1 “ �BT� “

»

—

—

–

cosh � ´ sinh � 0 0

´ sinh � cosh � 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

fl
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Let

X “

»

—

—

–

ct

x1
x2
x3

fi

ffi

ffi

fl

the boosts and the interval can be expressed as

X 1 “ BX; S2 “ XT�X

The interval invariance under the boosts is then manifest,

S12 “ X 1T�X 1 “ XTBT�BX

“ XT�p�BT�qBX “ XT�B´1BX “ XT�X “ S2
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The general form of boosts reads,
#

ct1 “ pct´ ~� ¨ ~xq

~x1 “ ´~�ct` ~x`
2

`1
~�p~� ¨ ~xq

Thereby,

B “

»

—

—

—

—

–

 ´�1 ´�2 ´�3

´�1 1 `
2�2

1

`1

2�1�2
`1

2�1�3
`1

´�2
2�2�1
`1

1 `
2�2

2

`1

2�2�3
`1

´�3
2�3�1
`1

2�3�2
`1

1 `
2�2

3

`1

fi

ffi

ffi

ffi

ffi

fl

Describing an arbitrary boost requires 3 real independent
parameters.
These parameters can be chosen as �a pa “ 1; 2; 3q.
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Using these parameters, the infinitesimal Lorentz boosts can be cast as,

B « 1 ` �a
BB

B�a
|~�“0

“ 1 ` i�aKa

The generators for Lorentz boost are then:

Ka “ ´i
BB

B�a
|~�“0

; pa “ 1; 2; 3q:

Recall  “ 1{
a

1 ´ �2. We have,

B

B�a
“ ´3�a

This formula enables us to find out the explicit matrices of the boost
generators:

52 / 58



K1 “ ´i

»

—

—

–

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

fl

K2 “ ´i

»

—

—

–

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

fi

ffi

ffi

fl

K3 “ ´i

»

—

—

–

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

fi

ffi

ffi

fl

Obviously, these generators are not hermitian matrices:

K:
a “ ´Ka:

In terms of matrix elements, these boost generators have the form:

pKaq�� “ ´ip��0��a ` ��a��0q; pa “ 1; 2; 3q:
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Therefore,

rKa; Kbs�� “ pKaq��pKbq�� ´ pKbq��pKaq��

“ ´p��0��a ` ��a��0qp��0��b ` ��b��0q

`p��0��b ` ��b��0qp��0��a ` ��a��0q

“ ´p�a��b� ´ �a��b�q

Namely,

rKa; Kbs�0 “ 0;

rKa; Kbs0� “ 0;

rKa; Kbsde “ ´p�ad�be ´ �ae�bdq “ ´�abc�cde

Introducing 4 ˆ 4 matrices pJaq�� pa “ 1; 2; 3q by,

pJaq�0 “ pJaq0� “ 0; pJaqbc “ ´i�abc

then,

rKa; Kbs�� “ ´i�abcpJcq�� ù rKa; Kbs “ ´i�abcJc

We see that the genuine Lorentz boosts do not form a group.
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sop3; 1q algebra :

The above matrix Ja pa “ 1; 2; 3q can be written into compact forms,

pJaq�� “ ´
i

2
�abc

”

�b��c� ´ �b��c�

ı

Each Ja is purely imaginary and antisymmetric. So, all three Ja’s
are hermitian matrices.
In fact, Ja are generators of 3d rotations in 4dimensional
Minkowski space.

Together with the boost generators Ka pa “ 1; 2; 3q, these six traceless
matrices form a closed algebra under Lie brackets,

$

’

’

&

’

’

%

rKa; Kbs “ ´i�abcJc
rKa; Jbs “ i�abcKc

rJa; Kbs “ i�abcKc

rJa; Jbs “ i�abcJc

It is called Lorentz algebra or sop3; 1q algebra.
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sop3; 1q „ sup2q ˆ sup2q:

We can redefine the hermitian generators of Lorentz group SOp3; 1q as
follows:

J˘
a “

1

2

”

Ja ˘ iKa

ı

pa “ 1; 2; 3q:

Evidently,

pJ˘
a q: “

1

2

”

J:
a ¯ iK:

a

ı

“
1

2

”

Ja ˘ iKa

ı

“ J˘
a

With these hermitian generators, sop3; 1q algebra becomes,

rJ`
a ; J

`
b s “ i�abcJ

`
c

rJ´
a ; J

´
b s “ i�abcJ

´
c

rJ`
a ; J

´
b s “ 0

This shows that tJ`
a u and tJ´

a u each generate a group SUp2q, and the
two groups commute.
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Hence the Lorentz algebra sop3; 1q is equivalent to two copies of sup2q,

sop3; 1q „ sup2q ˆ sup2q

SOp3; 1q group elements:

In terms of the exponential parameterization, the group elements of
Lorentz group SOp3; 1q are expressed as:

Dpθ;λq “ exp

«

´i

3
ÿ

a“1

p�aJa ` �aKaq

ff

in some finitedimensional representations. Surprisingly, each of them
is a direct product of two SUp2q group elements in their nonunitary
representations:

Dpθ;λq “ e´ip�a´i�aqJ
`
a e´ip�a`i�aqJ

´
a
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Homework:

1 The generators of Lorentz group SOp3; 1q are

pKaq�� “ ´i
”

��0��a ` ��a��0

ı

pJaq�� “ ´
i

2
�abc

”

�b��c� ´ �b��c�

ı

where a; b; c “ 1; 2; 3 but �; � “ 0; 1; 2; 3.
Please check the sop3; 1q algebra by computing all possible Lie
brackets.
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sup2q algebra:

Unitary group SUp2q has 3 independent generators

Ja; a “ 1; 2; 3

which satisfy the Lie brackets,

rJa; Jbs “ i�abcJc ; p1 ď a; b; c ď 3q

This is known as sup2q algebra.

Remark:

The SUp2q structure constants �abc is completely anti symmetric
for exchanging any two indices. Therefore,

the adjoint representation of SUp2q is unitary.

2 / 48



Question :

What is the adjoint representation of sup2q algebra ?
Answer :
The adjoint representation of SUp2q is generated by the following
traceless hermitian matrices,

pTaqbc “ ´i�abc; p1 ď a; b; c ď 3q

It is 3dimensional.

Obviously,

rTa; Tbsij “ pTaqikpTbqkj ´ pTbqikpTaqkj

“ ´�aik �bkj ` �bik �akj

“ ´�aj �bi ` �ai �bj

“ �abc �ijc

“ i�abc

”

´ i�cij

ı

“ i�abc pTcqij

ù rTa; Tbs “ i�abc Tc
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The explicit matrices of the SUp2q adjoint representation generators
read,

T1 “

»

–

0 0 0

0 0 ´i

0 i 0

fi

fl; T2 “

»

–

0 0 i

0 0 0

´i 0 0

fi

fl;

T3 “

»

–

0 ´i 0

i 0 0

0 0 0

fi

fl:

1 Relying on the fact that pTaqjk “ ´i�ajk, we have:

TrpTaTbq “ pTaqjkpTbqkj “ p´iq2�ajk�bkj “ �ajk�bjk “ 2�ab

Therefore, the adjoint representation of SUp2q is irreducible.

Our Goal here is to find out all of the finite dimensional irreducible
representations of SUp2q.
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J3 eigenstates:

To conveniently find a finitedimensional irreducible representations of a
Lie algebra, we have to diagonalize as many of the generators in the
algebra as possible.

sup2q is a simple Lie algebra, in which the 3 generators don’t commute
with one another.

Consequently, we can only diagonalize one generator, say J3,

J3 “

»

—

–

m1 0 0

0 m2 0

0 0
. . .

fi

ffi

fl

where mi is the eigenvalues of J3,

J3 jmiy “ mi jmiy

and i “ 1; 2; ¨ ¨ ¨ ; N .
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Discussions:

1 In an irreducible representation with finite dimensions, the number
of J3’s eigenvalues is obviously finite, i.e.,

N takes a finite value;

among which exists the highest eigenvalue.

2 Call the highest eigenvalue of J3 as j,

J3 jj; �y “ j jj; �y

where � is another label necessary if there is more than one state of
highest J3.

3 The states of the representation space can be normalized so that

xj; �|j; �y “ ���

6 / 48



sup2q’s adjoint representation :

Consider the adjoint representation of sup2q.

Let the eigenvalue equation of T3 be

T3 j�y “ � j�y

Recall that

T3 “

»

–

0 ´i 0

i 0 0

0 0 0

fi

fl

we see that the eigenvalues of T3 obey an algebraic equation,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´� ´i 0

i ´� 0

0 0 ´�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 ù ´�3 ` � “ 0;

Its solutions are:
� “ 0; ˘1:
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The highest eigenvalue of T3 is 1.

Complete list of solutions to the eigenvalue problem of T3 is:

j�1y “ 1?
2

»

–

1

i

0

fi

fl j�2y “

»

–

0

0

1

fi

fl j�3y “ 1?
2

»

–

1

´i

0

fi

fl

�1 “ 1 �2 “ 0 �3 “ ´1

From these eigenvectors we can define a unitary matrix U :

U “

»

–

1{
?
2 0 1{

?
2

i{
?
2 0 ´i{

?
2

0 1 0

fi

fl

Its inverse reads,

U´1 “ U: “

»

–

1{
?
2 ´i{

?
2 0

0 0 1

1{
?
2 i{

?
2 0

fi

fl
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The matrix U enables us to diagonalize the SUp2q adjoint representation
generator T3,

T 1
3 “ U:T3U

“

»

–

1{
?
2 ´i{

?
2 0

0 0 1

1{
?
2 i{

?
2 0

fi

fl

«

0 ´i 0

i 0 0

0 0 0

ff

»

–

1{
?
2 0 1{

?
2

i{
?
2 0 ´i{

?
2

0 1 0

fi

fl

“

»

–

1{
?
2 ´i{

?
2 0

0 0 0

´1{
?
2 ´i{

?
2 0

fi

fl

»

–

1{
?
2 0 1{

?
2

i{
?
2 0 ´i{

?
2

0 1 0

fi

fl

“

»

–

1 0 0

0 0 0

0 0 ´1

fi

fl
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The other two generators of SUp2q in its adjoint representation become,

T 1

1 “ U:T1U “ ´
1

?
2

»

–

0 1 0

1 0 ´1

0 ´1 0

fi

fl;

T 1

2 “ U:T2U “
i

?
2

»

–

0 1 0

´1 0 ´1

0 1 0

fi

fl:

Remark:

Among the 3 independent generators T 1
a of SUp2q adjoint

representation, only is T 1
3 a diagonal matrix.

Consequently,

The adjoint representation of sup2q algebra is irreducible.
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J˘ :

The sup2q algebra can alternatively be formulated as:

rJ3; J˘s “ ˘J˘; rJ`; J´s “ J3

if we introduce the socalled raising and lowering operators

J˘ “
1

?
2

”

J1 ˘ iJ2

ı

J˘ are not hermitian. The meaning of J˘ can be revealed by the
comparison of eigenvalue equation

J3 jmy “ m jmy

and its inference,

J3J˘ jmy “

!

rJ3; J˘s ` J˘J3

)

jmy

“

!

˘ J˘ ` J˘m
)

jmy “ pm˘ 1qJ˘ jmy
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We now try to build the finite dimensional irreducible representations of
sup2q. The key idea is to use the raising and lowering operators J˘.

Step 1.

Because we have assumed that j is the highest value of J3, there is no
state with J3 “ j ` 1: Therefore,

J` jj; �y “ 0; @ �

Of course, the states jj; �y with different � are orthogonal

xj; �|j; �y “ ���

On the other hand,

J´ jj; �y “ Njp�q jj ´ 1; �y

with Njp�q the normalization coefficient.
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Notice that
´

J˘

¯:

“ J¯;
´

j y

¯:

“ x j

and
xj ´ 1; �|j ´ 1; �y “ ���

we have:

Njp�q˚Njp�q��� “ Njp�q˚Njp�q xj ´ 1; �|j ´ 1; �y

“ xj; �|J`J´|j; �y

“ xj; �|rJ`; J´s|j; �y

“ xj; �|J3|j; �y “ xj; �|j|j; �y

“ j xj; �|j; �y

“ j��� ù Njp�q “
a

j ” Nj

Hence,

J´ jj; �y “ Nj jj ´ 1; �y ; ù jj ´ 1; �y “
1

Nj
J´ jj; �y
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The last equation further implies that,

J` jj ´ 1; �y “ 1

Nj
J`J´ jj; �y

"

Reminder: Nj “
?
j .

*

“ 1

Nj
rJ`; J´s jj; �y

“ 1

Nj
J3 jj; �y

“
j
Nj

jj; �y “ Nj jj; �y

So far we have achieved the following conclusion:

J´ jj; �y “ Nj jj ´ 1; �y ; J` jj ´ 1; �y “ Nj jj; �y :

Step 2:

Focus on the states J´ jj ´ 1; �y.

By an similar procedure, we can find out a set of orthonormal states
jj ´ 2; �y which satisfy,

xj ´ 2; �|j ´ 2; �y “ ���
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and

J´ jj ´ 1; �y “ Nj´1 jj ´ 2; �y ; J` jj ´ 2; �y “ Nj´1 jj ´ 1; �y :

Question :

What is the coefficient Nj´1 equal to ? Nj´1

?
“

?
j ´ 1

Step 3:

By continuing the procedure, we can easily build a series of orthonormal
states jj ´ k; �y,

xj ´ k; �|j ´ k; �y “ ���; k “ 0; 1; 2; ¨ ¨ ¨

such that
"

J´ jj ´ k; �y “ Nj´k jj ´ k ´ 1; �y ;

J` jj ´ k ´ 1; �y “ Nj´k jj ´ k; �y :

15 / 48



Explanation :

In general, we should express the action of J˘ as follows:
"

J´ jj ´ k; �y “ Nj´k jj ´ k ´ 1; �y ;

J` jj ´ k ´ 1; �y “ rNj´k jj ´ k; �y :

Notice that,

Nj´k “ Nj´k xj ´ k ´ 1; �|j ´ k ´ 1; �y

“ xj ´ k ´ 1; �|J´|j ´ k; �y

Because we have assumed that Nj´k is real, we have:

Nj´k “ N˚
j´k

“ xj ´ k; �|J`|j ´ k ´ 1; �y

“ rNj´k xj ´ k; �|j ´ k; �y

That is,
Nj´k “ rNj´k

Hence, it is not necessary to distinguish Nj´k and rNj´k.
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The normalization coefficients Nj´k are generally chosen to be real, and
determined by a recursion relation. Because,

´

Nj´k

¯

2

“

´

Nj´k

¯

2

xj ´ k ´ 1; �|j ´ k ´ 1; �y

“ xj ´ k; �j J`J´ jj ´ k; �y

“ xj ´ k; �j
!

rJ`; J´s ` J´J`

)

jj ´ k; �y

“ xj ´ k; �j J3 jj ´ k; �y ` xj ´ k; �j J´J` jj ´ k; �y

“ pj ´ kq `

´

Nj´k`1

¯

2

the expected recursion relation is,
´

Nj´k

¯

2

´

´

Nj´k`1

¯

2

“ j ´ k; k “ 0; 1; 2; ¨ ¨ ¨

Setting k “ 1 in the recursion relation gives,
´

Nj´1

¯

2

“

´

Nj

¯

2

` pj ´ 1q “ j ` pj ´ 1q “ 2j ´ 1

ù Nj´1 “
?
2j ´ 1 ‰

?
j ´ 1 :
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It follows from the above recursion relation that,
pNjq

2 “ j

pNj´1q2 ´ pNjq
2 “ j ´ 1

pNj´2q2 ´ pNj´1q2 “ j ´ 2

pNj´3q2 ´ pNj´2q2 “ j ´ 3

¨ ¨ ¨ ¨ ¨ ¨

pNj´kq2 ´ pNj´k`1q2 “ j ´ k

The summation of these equations yields:
´

Nj´k

¯

2

“

k
ÿ

n“0

pj´nq “ jpk`1q ´
kpk ` 1q

2
“

1

2
pk`1qp2j´kq

i.e.,
Nm “

1
?
2

a

pj `mqpj ´m` 1q

Consequently,

J´ jm;�y “ 1?
2

a

pj `mqpj ´m` 1q jm´ 1; �y

J` jm´ 1; �y “ 1?
2

a

pj `mqpj ´m` 1q jm;�y @ m ď j
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Step 4:

The representations under consideration are assumed to have finite
dimensions. Therefore, there must be some maximum number of
the lowering operators, p, that we can apply to jj; �y

`

J´

˘p
jj; �y 9 jj ´ p; �y

so that
J´ jj ´ p; �y “ 0 :

Since,

J´ jj ´ k; �y “ Nj´k jj ´ k ´ 1; �y “

c

p2j ´ kqpk ` 1q

2
jj ´ k ´ 1; �y

we have:

Nj´p “

c

p2j ´ pqpp` 1q

2
“ 0; ù j “

p

2

p is obviously a nonnegative integer. As a result,

j “ 0;
1

2
; 1;

3

2
; 2; ¨ ¨ ¨
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Discussions:

1 The lowest value of m (the eigenvalue of J3) is,

mmin “ j ´ p “ j ´ 2j “ ´j

2 The operator J3 has p2j ` 1q possible eigenvalues in total,

J3 jm;�y “ m jm;�y ; ´j ď m ď j :

Remark :

The parameter � for denoting the states jm;�y is in fact unwanted.

All of the SUp2q generators do not change �. The representation
space breaks into subspaces that are invariant under sup2q, one for
each value of �.
Due to the assumption of irreducibility, there must be only one
� value. So we can drop the parameter � entirely.
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In standard notation, we label the states of the irreducible representations
of sup2q by 2 parameters

jjmy

where,
1 j is the highest eigenvalue of J3 in the considered representation.
2 m is the eigenvalue of J3 in a concrete state in the representation.

In short, the spinj representation of sup2q is defined by
#

J3 jjmy “ m jjmy

J˘ jjmy “ 1?
2

a

pj ¯mqpj ˘m` 1q jj;m˘ 1y

where
j “ 0;

1

2
; 1;

3

2
; 2; ¨ ¨ ¨

and
´j ď m ď j

The spinj representation of sup2q has dimensions of p2j ` 1q.
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In spinj representation, the matrix elements of the SUp2q generators
are given by,

pJ
j
3qm1m “ xjm1j J3 jjmy “ m �m1m

pJ
j
`qm1m “ xjm1j J` jjmy “

a

pj ´mqpj `m` 1q{2 �m1;m`1

pJ
j
´qm1m “ xjm1j J´ jjmy “

a

pj `mqpj ´m` 1q{2 �m1;m´1

The last two equations can be recast as

`

J
j
1

˘

m1m
“

1

2

«

a

pj ´mqpj `m` 1q �m1;m`1

`
a

pj `mqpj ´m` 1q �m1;m´1

ff

`

J
j
2

˘

m1m
“

1

2i

«

a

pj ´mqpj `m` 1q �m1;m`1

´
a

pj `mqpj ´m` 1q �m1;m´1

ff
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Examples :

Spin1{2 Representation of sup2q.

j “ 1{2 ⇛ m “ ˘1{2

Hence,

J
1{2
3 “ 1

2

„

1 0

0 ´1

ȷ

“ �3{2; J
1{2
1 “ 1

2

„

0 1

1 0

ȷ

“ �1{2;

J
1{2
2 “ 1

2

„

0 ´i

i 0

ȷ

“ �2{2:

Exponentiating the above generators yields the general elements of
group SUp2q in spin1{2 representation:

g “ e
i
2
~�¨~� “

8
ÿ

n“0

pi{2qn

n!

`

~� ¨ ~�
˘n
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Since,

p~� ¨ ~�q2 “ �a�bp�a�bq “ �a�bp�ab ` i�abc�cq

“ �a�b�ab “ �a�a ” �2

we have:
"

p~� ¨ ~�q2n “ �2n

p~� ¨ ~�q2n`1 “ �2np~� ¨ ~�q

where n is an arbitrary nonnegative integer. Therefore,

e
i
2
~�¨~� “ cosp�{2q ` ip~n ¨ ~�q sinp�{2q

“

„

cosp�{2q ` in3 sinp�{2q pin1 ` n2q sinp�{2q

pin1 ´ n2q sinp�{2q cosp�{2q ´ in3 sinp�{2q

ȷ

where � “
?
�a�a and na are the Cartesian components of the unit

vector
~n “ ~�{� “ ~e3c� ` ~e1s�c� ` ~e2s�s�

This is obviously a unitary matrix with unity determinant.
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Spin1 Representation of sup2q.

j “ 1 ⇛ m “ 0; ˘1:

Hence,

J13 “

»

–

1 0 0

0 0 0

0 0 ´1

fi

fl; J11 “ 1?
2

»

–

0 1 0

1 0 1

0 1 0

fi

fl;

J12 “ 1?
2

»

–

0 ´i 0

i 0 ´i

0 i 0

fi

fl:

The corresponding 3d irreducible representation of group SUp2q

is given by,
ei~�¨ ~J1 “ eip�1J

1

1
`�2J

1

2
`�3J

1

3
q
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Spin3{2 Representation of sup2q.

j “ 3{2 ⇛ m “ ˘3{2; ˘1{2:

Hence,

J
3{2
3 “

»

—

—

–

3

2
0 0 0

0 1

2
0 0

0 0 ´1

2
0

0 0 0 ´3

2

fi

ffi

ffi

fl

;

J
3{2
1 “

»

—

—

—

—

—

—

–

0

b

3

2
0 0

b

3

2
0 2 0

0 2 0

b

3

2

0 0

b

3

2
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;
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and

J
3{2
2 “

»

—

—

—

—

—

—

–

0 ´i
b

3

2
0 0

i
b

3

2
0 ´2i 0

0 2i 0 ´i
b

3

2

0 0 i
b

3

2
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

:

The corresponding 4d irreducible representation of group SUp2q is
given by,

ei~�¨ ~J3{2

“ eip�1J
3{2
1

`�2J
3{2
2

`�3J
3{2
3

q

Let us now consider the homomorphism between SUp2q and SOp3q.
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Question:

Why the magnetic quantum numberm of orbital angular momentum ~L

of an object must be an integer ?

The angular momentum operator is defined as ~L “ ~r ˆ ~p. In coordinate
representation,

~L “ ´iℏ~r ˆ ~r

To solve the eigenvalue problem of ~L, we generally employ the spherical
coordinates pr; �; �q.

O

Z

X

Y

~er

θ

φ
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So ~r “ r~er,
~er “ ~e3c� ` ~e1s�c� ` ~e2s�s�;

and

~e� “ B�~er

“ ´~e3s� ` ~e1c�c� ` ~e2c�s�;

~e� “
1

s�
B�~er

“ ´~e1s� ` ~e2c�:

In spherical coordinates, the gradient operator ~r becomes:

~r “ ~er Br `
1

r
~e�B� `

1

rs�
~e�B�

Hence,

~L “ ´iℏpr~erq ˆ ~r “ ´iℏ
„

~e�B� ´ ~e�
1

s�
B�

ȷ
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Equivalently,

~L “ ´i

„

p´~e1s� ` ~e2c�qB� ´ p´~e3s� ` ~e1c�c� ` ~e2c�s�q
1

s�
B�

ȷ

Consequently, the Cartesian components of orbital angular momentum
~L can be expressed as

L1 “ i
“

s�B� ` cot �c�B�
‰

L2 “ ´i
“

c�B� ´ cot �s�B�
‰

L3 “ ´iB�

in terms of the spherical coordinates p�; �q.

Casimir operator L2 of SOp3q :

Notice that ~e� ¨ ~e� “ ~e� ¨ ~e� “ 1 and ~e� ¨ ~e� “ 0. The derivatives of the
first two orthonormal conditions with respect to the angles � and � give,

~e� ¨ B�~e� “ ~e� ¨ B�~e� “ 0; ~e� ¨ B�~e� “ ~e� ¨ B�~e� “ 0:
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Therefore,

L2 “ ~L ¨ ~L

“ ´

„

~e�B� ´ ~e�
1

s�
B�

ȷ

¨

„

~e�B� ´ ~e�
1

s�
B�

ȷ

“ ´B2� ` p~e� ¨ B�~e�q
1

s�
B� ` p~e� ¨ B�~e�q

1

s�
B� ´

1

s2�
B2�

Recall the transformation of basis vectors between the Cartesian and
spherical coordinate systems

~er “ ~e3c� ` ~e1s�c� ` ~e2s�s�

~e� “ ´~e3s� ` ~e1c�c� ` ~e2c�s�

~e� “ ´~e1s� ` ~e2c�

we see that: ~ers� ` ~e�c� “ ~e1c� ` ~e2s�: Therefore,

B�~e� “ ´~e3c� ´ ~e1s�c� ´ ~e2s�s� “ ´~er

B�~e� “ ´~e1c� ´ ~e2s� “ ´~ers� ´ ~e�c�
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Hence,
p~e� ¨ B�~e�q “ 0; p~e� ¨ B�~e�q “ ´c�:

Substitution of these results into the previous formula yields,

L2 “ ´B2� ´ cot �B� ´
1

s2�
B2�

In QM textbooks, L2 is commonly recast as:

L2 ““ ´

„

1

s�
B�ps�B�q `

1

s2�
B2�

ȷ

L2 is called the Casimir operator of sop3q. Its crucial property is,

rL2; Las “ 0; a “ 1; 2; 3:

Thereby, L2 and L3 can have common eigenvectors.
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The eigenvalue problem

L3 jlmy “ m jlmy ; L2 jlmy “ lpl` 1q jlmy

in spherical coordinates becomes,
#

B�Y “ imY;

s�B�ps�B�qY `

”

s2�lpl` 1q ´m2

ı

Y “ 0:

The common eigenfunction Y p�; �q of L3 and L2 can be
factorized into

Y p�; �q “ �p�qeim�

Insight:

If Y p�; �q is singlevalued under rotation: Y p�; �` 2�q “ Y p�; �q ;

the magnetic quantum number m has to be some integers: m P Z.
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Question :

Why should Y p�; �q be singlevalued under rotation ?
Remarks :

In QM, physical significance is attached, not to wavefunction Y
itself, but to its bilinear functions, e.g., |Y |2.
These bilinear functions are unchanged by a 2� rotation even if
m is a halfinteger and Y changes sign.

For l “ m “ 1{2, the common eigenfunction of Casimir operator L2

and L3 becomes:
Y “ �p�qe

i
2
�

where the factor function � obeys,

s�B�ps�B�q� `
1

4

“

3s2� ´ 1
‰

� “ 0
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A special solution to this equation reads,

�p�q “
?
s�

Checking:
If �p�q “

?
s� , we see that

ps�B�q� “
1

2

?
s� c�

s�B�ps�B�q� “
1

2
s�B�p

?
s� c�q “

1

4

?
s� pc2� ´ 2s2�q

“
1

4

?
s� p1 ´ 3s2�q

“ ´
1

4

“

3s2� ´ 1
‰

�

This is just what we have expected.

Y p�; �q “
?
s� e

i�{2 appears to be an acceptable wave function in QM
because |Y |2 “ |s�| is well defined in the unit spherical surface,

0 ď � ď �; 0 ď � ď 2�:
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Puzzle :

What is wrong in the above argument ?
Go back to the primary definition of orbital angular momentum:1

~L “ ´i~r ˆ ~r

In Cartesian coordinates,

La “ ´i�abcxbBxc ; pa “ 1; 2; 3:q

Particularly, L3 consists of four linear operators
!

x1; x2; Bx1 ; Bx2

)

:

L3 “ ´i
“

x1Bx2 ´ x2Bx1
‰

1It holds only for the orbital angular momentum operator of a quantum particle.
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To expose L3’s interesting intrinsic structure, we now introduce four new
linear operators:

q1 “ 1?
2

`

x1 ´ iBx2
˘

; q2 “
1

?
2

`

x1 ` iBx2
˘

;

p1 “ ´ 1?
2

`

x2 ` iBx1
˘

; p2 “
1

?
2

`

x2 ´ iBx1
˘

:

Notice that rBxa ; xbs “ �ab. The Lie brackets between these operators
are

rqa; qbs “ rpa; pbs “ 0; rqa; pbs “ i�ab:

In terms of these new operators,

x1 “ 1?
2

`

q1 ` q2
˘

; x2 “ ´
1

?
2

`

p1 ´ p2
˘

;

Bx1 “ i?
2

`

p1 ` p2
˘

; Bx2 “
i

?
2

`

q1 ´ q2
˘

:
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and L3 is recast as:

L3 “ ´i
`

x1Bx2 ´ x2Bx1
˘

“
1

2

”

`

q1 ` q2
˘`

q1 ´ q2
˘

`
`

p1 ´ p2
˘`

p1 ` p2
˘

ı

“
1

2

”

pq21 ` p21q ´ pq22 ` p22q

ı

“ H1 ´H2

where
Ha “

1

2

`

q2a ` p2a
˘

; pa “ 1; 2:q

are hamiltonian operators of two independent oscillators, each having
mass M “ 1 and angular frequency ! “ 1.

Insight :

The eigenvalues of L3 should be the difference of eigenvalues of two
independent (but with identical parametersM “ ! “ 1) harmonic
oscillator Hamiltonians.
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The eigenvalues of a harmonic oscillator Hamiltonian Ha “ 1

2
pq2a ` p2aq

are wellknown,
Ena “ na `

1

2

with na some nonnegative integers.

Consequently, the eigenvalues of orbital angular momentum L3 are
equal to,

m “

ˆ

n1 `
1

2

˙

´

ˆ

n2 `
1

2

˙

“ n1 ´ n2 P Z

Namely, the orbital angular momentum eigenvalues must be some
integers. The possibility form being a halfinteger is forbidden. 2

2This demonstration can be regarded as an indirect justification for the conventional
boundary condition Y p�; � ` 2�q “ Y p�; �q that leads to the same result.
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Tensor product representations:

Consider the tensor product representations of a Lie group G.

Suppose

Dpgq jiy “

N
ÿ

j“1

“

D1pgq
‰

ji
jjy ; Dpgq j�y “

M
ÿ

�“1

“

D2pgq
‰

��
j�y

On states of tensor product jiy j�y, we have:

D1ˆ2pgq jiy j�y “

N
ÿ

j“1

M
ÿ

�“1

”

D1pgq D2pgq

ı

j�;i�
jjy j�y

“

N
ÿ

j“1

M
ÿ

�“1

”

D1pgq

ı

ji

”

D2pgq

ı

��
jjy j�y

“

" N
ÿ

j“1

rD1pgqsji jjy

*

¨

" M
ÿ

�“1

rD2pgqs�� j�y

*
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i.e.,
”

D1ˆ2pgq

ı

j�;i�
“

“

D1pgq
‰

ji

“

D2pgq
‰

��

Consider the infinitesimal group elements of the relevant representations,

D1pgq « 1`i�aJ
1

a ; D2pgq « 1`i�aJ
2

a ; D1ˆ2pgq « 1`i�aJ
1ˆ2

a :

The above relation can be recast as:
r1 ` i�aJ

1ˆ2
a sj�;i� “ r1 ` i�bJ

1

b sjir1 ` i�cJ
2
c s��

ù pJ1ˆ2
a qj�;i� “ pJ1aqji��� ` �jipJ

2
aq��

i.e.,
J1ˆ2

a “ J1a ˆ 1 ` 1 ˆ J2a

The action of generators on the tensor product of states is as follows:

J1ˆ2

a

"

jiy j�y

*

“

"

J1a jiy

*

¨ j�y ` jiy ¨

"

J2a j�y

*
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J3’s value add :
Because we work in a basis jjmy in which J3 ia diagonal, the J3 values
of tensor product states are just the sums of the J3 values of the factors.

Explanation :

J3

"

jj1m1y jj2m2y

*

“

"

J3 jj1m1y

*

jj2m2y ` jj1m1y

"

J3 jj2m2y

*

“ pm1 `m2q

"

jj1m1y jj2m2y

*

The irreducible representation
!

jjmy

)

of SUp2q is related to its tensor

product representation
!

jj1m1y jj2m2y

)

through,

jjmy “

j1
ÿ

m1“´j1

cj1j2j;m1pm´m1qm

"

jj1m1y jj2;m´m1y

*
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Remarks :
1 The coefficients cj1j2j;m1pm´m1qm are called ClebschGordon

coefficients of SUp2q.
2 In particular, we define:

cj1j2pj1`j2q;j1j2pj1`j2q “ 1:

Question :

How to systematically determine the ClebschGordon coefficients ?
Answer :

The highest weight procedure.

Example :

Consider the spin1{2 representation and spin1 representation of sup2q,

j1 “
1

2
; j2 “ 1 ù j1 ` j2 “

3

2
:
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The assumption cj1j2pj1`j2q;j1j2pj1`j2q “ 1 means,
ˇ

ˇ

ˇ

ˇ

3

2
;
3

2

F

“

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

¨ j1; 1y

Therefore,
b

3

2

ˇ

ˇ

3

2
; 1
2

D

“ J´

ˇ

ˇ

3

2
; 3
2

D

“ J´

!

ˇ

ˇ

1

2
; 1
2

D

¨ j1; 1y

)

“

"

J
1{2
´

ˇ

ˇ

1

2
; 1
2

D

*

¨ j1; 1y `
ˇ

ˇ

1

2
; 1
2

D

¨

"

J1´ j1; 1y

*

“ 1?
2

ˇ

ˇ

1

2
;´1

2

D

¨ j1; 1y `
ˇ

ˇ

1

2
; 1
2

D

¨ j1; 0y

Equivalently,
ˇ

ˇ

ˇ

ˇ

3

2
;
1

2

F

“
1

?
3

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

¨ j1; 1y `

c

2

3

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

¨ j1; 0y
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Continuing this procedure yields:

ˇ

ˇ

ˇ

ˇ

3

2
;´

1

2

F

“

c

2

3

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

¨ j1; 0y `

c

1

3

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

¨ j1;´1y

ˇ

ˇ

ˇ

ˇ

3

2
;´

3

2

F

“

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

¨ j1;´1y

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

“

c

2

3

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

¨ j1; 1y ´

c

1

3

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

¨ j1; 0y

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

“

c

1

3

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

¨ j1; 0y ´

c

2

3

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

¨ j1;´1y
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ClebschGordon coefficients:

Hence, the decomposition of tensor product of spin1{2 and spin1
representations of SUp2q

D1{2 ˆD1 „ ‘
3{2

j“1{2 Dj

is determined by the following nonvanishing ClebschGordon
coefficients cj1j2j;m1pm´m1qm:

c 1
2
1
3

2
; 1
2
1
3

2

“ 1 c 1
2
1
3

2
;´ 1

2
1
1

2

“ 1{
?
3

c 1
2
1
3

2
; 1
2
0
1

2

“
a

2{3 c 1
2
1
3

2
;´ 1

2
´1´ 3

2

“ 1

c 1
2
1
3

2
;´ 1

2
´1´ 1

2

“ 1{
?
3 c 1

2
1
3

2
;´ 1

2
0´ 1

2

“
a

2{3

c 1
2
1
1

2
;´ 1

2
1
1

2

“
a

2{3 c 1
2
1
1

2
; 1
2
0
1

2

“ ´1{
?
3

c 1
2
1
1

2
;´ 1

2
0´ 1

2

“
a

1{3 c 1
2
1
1

2
; 1
2

´1´ 1

2

“ ´
a

2{3

46 / 48



Homework :

1. Let
!

k
)

be the spink representation of sup2q. Show that

!

j
)

ˆ

!

s
)

“ ‘
j`s
l“|j´s|

!

l
)

2. Calculate
exp

”

i~� ¨ ~�
ı

where ~� “

!

�1; �2; �3

)

are the pauli matrices and ~� a common
3dimensional vector.

3. Show explicitly that the spin1 representation of sup2q obtained
by the highest weight procedure with j “ 1 is equivalent to the
adjoint representation with fabc “ �abc by finding the similarity
transformation that implements the equivalence.
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4. Suppose that
´

�a

¯

ij
and

´

�a

¯

xy
are pauli matrices in two

different 2dimensional spaces. In the 4dimensional tensor
product space, define the basis vectors as

j1y “ ji “ 1y jx “ 1y

j2y “ ji “ 1y jx “ 2y

j3y “ ji “ 2y jx “ 1y

j4y “ ji “ 2y jx “ 2y

Write out the matrix elements of �2 ˆ �1 in this basis.
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Tensor operators

Goal :
In this lecture, we will define and discuss the tensor operators of
the sup2q [or equivalently sop3q] algebra.

A tensor operator transforming under the spins representation of
sup2q consists of a set of operators

Os
l ; p´s ď l ď sq

such that

rJa; Os
l s “ Os

mpJs
aqml; pa “ 1; 2; 3:q



Orbital angular momentum :

The sup2q algebra can be realized by the orbital angular
momentum operators of a quantum mechanics particle,
Ja “ La “ �abcxbpc :

Because rxa; pbs “ i�ab,

rJa; xbs “ �acdxcrpd; xbs “ �acdxcp´i�dbq “ ´i�acbxc



Tensor operator examples

Recalling
pJ adj

a qcb “ ´i�acb ;

we get:

rJa; xbs “ ´i�acbxc

“ xcpJ
adj
a qcb ù xcpJ

1

aqcb

We conclude that :
1 The position vector ~r “

ř

3

a“1
xa~ea is a tensor operator of

sup2q that transforms under the spin1 representation.



Similarly,

rJa; pbs “ �acdrxc; pbspd “ �acdpi�cbqpd “ i�abdpd

“ ´i�acbpc “ pcpJ
adj
a qcb

rJa; Jbs “ i�abcJc “ ´i�acbJc “ JcpJ
adj
a qcb

1 The momentum ~p “
ř

3

a“1
pa~ea and the orbital angular

momentum itself are also the tensor operators of sup2q

under the spin1 representation.



Operator basis
we now consider the question about choosing an operator basis so
that the standard spins representation generators Js

a appears in
the Lie brackets,

rJa; Os
l s “ Os

mpJs
aqml; pa “ 1; 2; 3:q

Suppose
1 we are given a tensor operator O that transforms under a

representation D of sup2q algebra,

rJa; O�s “ O�pJD
a q�� ; p´s ď �; � ď sq :

2 D is equivalent to the spins irreducible representation of
sup2q. Namely, there is a nonsingular matrix S (detS ‰ 0)
such that:

JD
a “ S´1Js

aS ù pJD
a q�� “ pS´1q�jpJ

s
aqjiSi�



we get,
rJa; O�s “ O�pS´1q�jpJ

s
aqjiSi�

It leads to:

rJa; O�spS´1q�k “ O�pS´1q�jpJ
s
aqjk

Definition :
Os
i ” O�pS´1q�i

The above commutator is rewritten as:

rJa; Os
i s “ Os

j pJs
aqji; ´s ď i; j ď s:



In the standard basis, the SUp2q’s generator J3 is a diagonal
matrix: pJs

3
qjk “ j�jk; pj; k “ ´s;´s ` 1; ¨ ¨ ¨ ; s ´ 1; sq.

Namely,

Js
3

“

»

—

—

—

—

—

–

s 0 0 0 0

0 s ´ 1 0 0 0

0 0 s ´ 2 0 0

0 0 0
. . . 0

0 0 0 0 ´s

fi

ffi

ffi

ffi

ffi

ffi

fl

Therefore,

rJ3; Os
ks “ Os

j pJs
3
qjk “ Os

j j�jk “ kOs
k



Remark :
What does the commutator rJ3; Os

ks “ kOs
k mean ?

If we find a linear combination of the operators tOs
�u which

has a definite value k of J3 (with |k| ď s),

rJ3; Os
�s “ k

ÿ

�

c��O
s
�

we can take that combination to be the tensor component
Os
k,

Os
k “

ÿ

�

fk�O
s
�

The other components tOs
i ; i ‰ ku of the tensor operator

Os can be built up by applying raising and lowering
operators.



Example：
Let

V 1 “

!

V 1

1
; V 1

0
; V 1

´1

)

be the position vector operator [the tensor operator in spin1
representation of sup2q] in standard basis.

1 Since rJ3; V
1

k s “ kV 1

k , we see

rJ3; V
1

0
s “ 0:

On the other hand, we have rJa; xbs “ ´i�acbxc that
implies

rJ3; x3s “ ´i�3c3xc “ 0:

Therefore, we can identify V 1

0
as x3,

V 1

0
” x3

2 Since rJa; Os
i s “ Os

j pJs
aqji, we have

rJ˘; V
1

0
s “ V 1

j pJ1

˘qj0 “ V 1

j �j;˘1 “ V 1

˘1
;



i.e.,
V 1

˘1
“ rJ˘; V

1

0
s

“ 1?
2
rJ1 ˘ iJ2; x3s

“ 1?
2
pi�132x2 ˘ i2�231x1q

“ 1?
2
p´ix2 ¯ x1q

“ ¯ 1?
2
px1 ˘ ix2q

In conclusion, we have:

V 1

1
“ ´

1
?
2

px1 ` ix2q

V 1

0
“ x3

V 1

´1
“

1
?
2

px1 ´ ix2q



WignerEckart theorem

Consider the sup2q transformation of the state

Os
l jjm;�y

Straightforwardly,

JaOs
l jjm;�y “ rJa; Os

l s jjm;�y ` Os
l Ja jjm;�y

“
řs

k“´s Os
kpJs

aqkl jjm;�y

`Os
l

řj

k“´j jjk; �y xjk; �jJa jjm;�y

“
řs

k“´s Os
kpJs

aqkl jjm;�y

`Os
l

řj

k“´jpJ
j
aqkm jjk; �y



In particular,
J3’s value of the product of a tensor operator with a state is
just the sum of the J3’s values of the operator and the state,

J3Os
l jjm;�y “

řs

k“´s Os
kpJs

3
qkl jjm;�y

`
řj

k“´j Os
l pJ

j
3qkm jjk; �y

“
řs

k“´s Os
kpk�klq jjm;�y

`
řj

k“´j Os
l pk�kmq jjk; �y

“ pl ` mqOs
l jjm;�y

The product of a tensor operator and a state behaves under sup2q

just like the tensor products of two states. Therefore, it can be
decomposed into the direct sum of irreducible representations of
sup2q.



Notice that,
1 Os

s jjj; �y is the highest weight state in spinpj ` sq Rep. of
sup2q, with J3 eigenvalue being J3 “ j ` s. We can lower it
to construct the rest states of the spinpj ` sq representation.

2 We can find a linear combination of J3 “ j ` s ´ 1 states
that is the highest weight state of the spinpj ` s ´ 1q

representation. By lowering it we can get the entire states of
the representation.

3 The explicit states of the irreducible representations of sup2q

algebra can be constructed in terms of linear combinations of
the states tOs

l jjm;�yu,

jJMy “

s
ÿ

l“´s

dsjl;JMOs
l jj;M ´ l; �y

where |j ´ s| ď J ď j ` s and ´J ď M ď J .



Recalling,

jJMy “

s
ÿ

l“´s

csjJ;lpM´lqM

”

jsly ˆ jj;M ´ ly
ı

with csjJ;lpM´lqM C.G. coefficients. The sup2q transformation
properties of states

Os
l jj;M ´ l; �y ;

”

jsly ˆ jj;M ´ ly
ı

are identical for a given J . Hence, the coefficients must be
proportional:

dsjl;JM “
1

k�J
csjJ;lpM´lqM

i.e.,

k�J jJMy “

s
ÿ

l“´s

csjJ;lpM´lqMOs
l jj;M ´ l; �y

Question :

What is the inverse relation ?



The C.G.coefficients are defined as:

cj1j2j;m1pm´m1qm “

”

xj1m1j ˆ xj2;m ´ m1j
ı

jjmy

their complex conjugates read,

c˚
j1j2j;m1pm´m1qm “ xjmj

”

jj1m1y ˆ jj2;m ´ m1y

ı

The completeness relation
ř

j;m jjmy xjmj “ Î then implies that,
ÿ

j;m

cj1j2j;m1pm´m1qmc
˚
j1
1
j1
2
j;m1

1
pm´m1

1
qm “ �j1j1

1
�j2j1

2
�m1m

1
1

Consequently,

Os
l jjm;�y “

j`s
ÿ

J“|j´s|

c˚
sjJ;lmpm`lqk

�
J jJ;m ` ly



WignerEckart Theorem :

The physics comes in when we express the state k�J jJ;m ` ly in
terms of the Hilbert space basis states jJ;m ` l; �y,

k�J jJ;m ` ly “
ÿ

�

k�� jJ;m ` l; �y

where,
k�� are known as the reduced matrix elements which depend
only on �, j and Os.
k�� are generically denoted as,

k�� “ xxJ; �|Os|j; �yy

If we know any nonvanishing reduced matrix element of a tensor
operator between states of some given pJ; �q and pj; �q, we can
compute all other matrix elements using the algebra.



That is to say,

xJ 1m1; �jOs
l jjm;�y

“
ÿ



k�

j`s
ÿ

J“|j´s|

c˚
sjJ;lmpm`lq xJ 1m1; �|J;m ` l; y

“
ÿ



k�

j`s
ÿ

J“|j´s|

c˚
sjJ;lmpm`lq�J 1J�m1;m`l��

“ k���m1;m`lc
˚
sjJ 1;lmpm`lq

Namely,

xJ 1m1; �jOs
l jjm;�y “ �m1;m`lc

˚
sjJ 1; lmpm`lq ¨ xxJ 1; �|Os|j; �yy

This conclusion is called WignerEckart Theorem.

1 WignerEckart theorem has founded wide applications in
quantum mechanics.



Problem :
Suppose x1{2; 1{2; �jX3 j1{2; 1{2; �y “ A .
Find x1{2; 1{2; �jX1 j1{2;´1{2; �y “ ?

Solution :

The tensor operator related to the position vector ~r has the standard
components as follows,

V 1

1 “ ´
1

?
2

pX1 ` iX2q; V 1

0 “ X3; V 1

´1 “
1

?
2

pX1 ´ iX2q:

Equivalently,

X1 “
1

?
2

pV 1

´1 ´ V 1

1 q; X2 “
i

?
2

pV 1

´1 ` V 1

1 q; X3 “ V 1

0 :

It follows from the WignerEckart theorem that

A “ x1{2; 1{2; �jV 1

0 j1{2; 1{2; �y “ c˚
1
1

2

1

2
;0 1

2

1

2

@@

1{2; �|V 1|1{2; �
DD



Similarly,

x1{2; 1{2; �jV 1

1 j1{2;´1{2; �y “ c˚
1
1

2

1

2
;1´ 1

2

1

2

@@

1{2; �|V 1|1{2; �
DD

x1{2; 1{2; �jV 1

´1 j1{2;´1{2; �y “ 0

These equations imply,

x1{2; 1{2; �jX1 j1{2;´1{2; �y

“
1

?
2

x1{2; 1{2; �j pV 1

´1 ´ V 1

1 q j1{2;´1{2; �y

“ ´
1

?
2

x1{2; 1{2; �jV 1

1 j1{2;´1{2; �y

“ ´
1

?
2
c˚
1
1

2

1

2
;1´ 1

2

1

2

@@

1{2; �|V 1|1{2; �
DD

“ ´
1

?
2
c˚
1
1

2

1

2
;1´ 1

2

1

2

A

c˚
1
1

2

1

2
;0 1

2

1

2



We knew from the last lecture that

c
1
1

2

1

2
;1´ 1

2

1

2

“
a

2{3; c
1
1

2

1

2
;0 1

2

1

2

“ ´
a

1{3:

Hence,
x1{2; 1{2; �jX1 j1{2;´1{2; �y “ A



Discussions :

The similar applications of WignerEckart theorem will yield,

x1{2; 1{2; �jX2 j1{2;´1{2; �y “ ´iA

x1{2;´1{2; �jX3 j1{2;´1{2; �y “ ´A

x1{2; 1{2; �jX3 j1{2;´1{2; �y “ 0

x1{2;´1{2; �jX3 j1{2; 1{2; �y “ 0

However, the WignerEckart theorem is not enough for us to
evaluate the matrix elements such as

x3{2; 1{2; �jX3 j1{2; 1{2; �y

because we are not told the relevant reduced matrix element
@@

3{2; �|V 1|1{2; �
DD

.



Products of tensor operators

One of the reason that tensor operators are important is that a product
of two tensor operators, Os1

m1
and Os2

m2
in the spins1 and spins2

representations, transforms under the tensor product representation
s1 ˆ s2:

rJa; Os1
m1

Os2
m2

s “ rJa; Os1
m1

sOs2
m2

` Os1
m1

rJa; Os2
m2

s

“ Os1
m1

1

Os2
m2

pJs1a qm1
1
m1

` Os1
m1

Os2
m1

2

pJs2a qm1
2
m2

“ Os1
m1

1

Os2
m1

2

“

pJs1a qm1
1
m1

�m1
2
m2

` �m1
1
m1

pJs2a qm1
2
m2

‰

“ Os1
m1

1

Os2
m1

2

“

Js1a ˆ 1 ` 1 ˆ Js2a
‰

m1
1
m1

2
;m1m2

In particular,

rJ3; Os1
m1

Os2
m2

s “ pm1 ` m2qOs1
m1

Os2
m2



Homework :

1 Consider an operator Ox for x “ 1 to 2, transforming according
to the spin1{2 representation of sup2q as follows,

rJa; Oxs “ Oyp�a{2qyx;

where �a are Pauli matrices. Given

x3{2;´1{2; �j O1 j1;´1; �y “ A;

Please find x3{2;´3{2; �j O2 j1;´1; �y.



Outline

Goal :
We are going to generalize the analysis of the irreducible representations
of sup2q to those of an arbitrary simple Lie algebra.

1 Firstly, we are necessary to find the largest possible set of
commuting hermitian generators and use their eigenvalues to
label the states. These generators are the analog of J3 in
sup2q.

2 The rest of the generators will be analogous to the raising and
lowering operators J˘.



Cartan generators

Cartan subalgebra :

A subset of commuting Hermitian generators which is as large as
possible is called a Cartan subalgebra.

1 These commuting generators are called the Cartan generators.

2 The total number m of the independent Cartan generators is
called the rank of the Lie algebra.

3 In a particular irreducible representation D, the Cartan
generators are formulated as m Hermitian matrices
Hi pi “ 1; 2; ¨ ¨ ¨ ;mq,

Hi “ H
:
i ; rHi; Hjs “ 0:



Weights

For compact Lie algebra, we can choose a basis in which

TrpHiHjq “ kD�ij

with kD some constant that depends on the representation and on
the normalization of the generators.

After simultaneously diagonalization of the Cartan generators, the
basis vectors (states) of the representaton space (of Rep. D) can be
cast as,

j�; �;Dy

such that

Hi j�; �;Dy “ �i j�; �;Dy ; pi “ 1; 2; ¨ ¨ ¨ ;m:q

where � stands for any other parameters necessary for specifying
the state.



Weights :

The eigenvalues �i pi “ 1; 2; ¨ ¨ ¨ ;mq of the Cartan
generators tHiu are called weights.

Weights are real.

The whole set of weights t�iu forms a mcomponent vector
~�,

~� “ p�1; �2; ¨ ¨ ¨ ; �mq

in weight space, called weight vector.



Adjoint representation

The adjoint representation of a Lie algebra rXa; Xbs “ ifabcXc is
defined as,

pTaqbc “ ´ifabc

Due to the Jacobi identity, this definition leads to

rTa; Tbs “ ifabcTc

The rows and columns of the generators tTau are labeled by
the same indices as that labels the generators themselves.



Thus,
The basis vectors (states) of the adjoint representation space
have a onetoone correspondence with the generators,

Ta ô jTay

which implies,

� jTay ` � jTby “ j�Ta ` �Tby

The action of a generator on the basis states of the adjoint
representation gives,

Ta jTby “
ř

c jTcy xTcjTa jTby “
ř

c jTcy pTaqcb

“
ř

cpifabcq jTcy “ j
ř

c ifabcTcy

“ jrTa; Tbsy



Its hermitian conjugate leads to:

xTbjT
:
a “ xrTa; Tbsj

In adjoint representation, the scalar product between any two
basis states jTay and jTby is defined by1,

xTa|Tby “ �´1TrpT :
aTbq

In adjoint representation, the states jHiy corresponding to
Cartan generators are called the Cartan states. Obviously,

Hi jHjy “ jrHi; Hjsy “ j0y “ j0 ¨ Hjy “ 0 jHjy “ 0

Besides, the Cartan states are orthonormal,

xHi|Hjy “ �´1TrpHiHjq “ �´1 ¨ ��ij “ �ij:

1This formula is valid only for a compact Lie algebra.



Roots
Roots :
Weights of a Lie algebra in its adjoint representation are called roots.

Notice that,
In the adjoint representation, Hi jHjy “ 0, the Cartan states
tjHjyu have zero weights.
The other states tjE�yu in the adjoint representation, which
correspond to nonCartan generators E�, have nonzero
weights:

Hi jE�y “ �i jE�y ; pi “ 1; 2; ¨ ¨ ¨ ;m:q

i.e., jrHi; E�sy “ j�iE�y.
This indicates:

rHi; E�s “ �iE� ; pi “ 1; 2; ¨ ¨ ¨ ;m:q



Definition :
The weights

!

�i| i “ 1; 2; ¨ ¨ ¨ ;m
)

of the adjoint representation are called roots. The weight
vector

~� “ p�1; �2; ¨ ¨ ¨ ; �mq

is called a root vector of the Lie algebra.

Remarks :
Like the sup2q raising and lowering operators, the generators
tE�u related to the nonzero root vectors are not hermitian.
The reason is as follows. Since rHi; E�s “ �iE�,

�iE
:
� “ p�iE�q: “ prHi; E�sq: “ ´rHi; E

:
�s

i.e.,
rHi; E

:
�s “ ´�iE

:
�

By comparison we see that E� ‰ E:
�. Instead, E:

� “ E´�.



In adjoint representation, states corresponding to different
roots must be orthogonal.

This is because they have different eigenvalues of at least one of the
Cartan generators,

xE�|E�y “ ���

It gives moreover,

TrpE:
�E�q “ � xE�|E�y “ ����



The generators tE˘�u are raising and lowering operators for
the weights.

Proof :
Consider a representation D of Lie algebra in which

Hi j�;Dy “ �i j�;Dy ; pi “ 1; 2; ¨ ¨ ¨ ;m:q

Then,

HiE˘� j�;Dy “ rHi; E˘�s j�;Dy ` E˘�Hi j�;Dy

“ ˘�iE˘� j�;Dy ` E˘��i j�;Dy

“ p~� ˘ ~�qiE˘� j�;Dy

This result is valid for any representation, particularly true for the
adjoint representation.



Go back to the adjoint representation. We consider the state,

E� jE´�y

This is an eigenstate of Cartan generators belonging to
vanishing eigenvalue:

HiE� jE´�y “ p~� ´ ~�qiE� jE´�y “ 0

Therefore,

E� jE´�y “ ci jHiy ù jrE�; E´�sy “ jciHiy

and from this we get the commutators:

rE�; E´�s “ ciHi



We now determine the coefficients ci:

ci “ cj�ij “ cj xHi|Hjy “ xHi|cjHjy “ xHi|rE�; E´�sy

“
1

�
TrpHirE�; E´�sq

where � ‰ 0. Equivalently,

�ci “ TrpHiE�E´� ´ HiE´�E�q

“ TrpE´�HiE� ´ E´�E�Hiq

“ TrpE´�rHi; E�sq

“ TrpE:
��iE�q

“ �iTrpE:
�E�q

“ �i � ù ci “ �i

In other words,

rE�; E´�s “ �iHi “ ~� ¨ ~H

This is the analog of rJ`; J´s “ J3 of sup2q algebra.



In adjoint representation, we now focus on the state,

E� jE�y

for ~� ` ~� ‰ 0. This is an eigenstate of Cartan generators
belonging to root vector ~� ` ~�,

HiE� jE�y “ p~� ` ~�qiE� jE�y

Therefore,

E� jE�y “ N�� jE�`�y ù jrE�; E�sy “ jN��E�`�y

The relevant Lie brackets read,

rE�; E�s “ N��E�`�

Q: N�� “ ?



CartanWeyl formalism
We have reformulated the Lie algebra rXi; Xj;“sifijkXk into
the socalled CartanWeyl basis,

rHi; Hjs “ 0 ;

rHi; E�s “ �iE� ;

rE�; E´�s “ �iHi ;

rE�; E�s “ N�;�E�`� ; p for ~� ` ~� ‰ 0: q

The structure constants N�;� will be determined systematically.
Lots of sup2qs :

1 For each pair of nonzero root vectors ˘~�, there is an sup2q

algebra of the Lie algebra g, with generators,

E˘ “
E˘�

�
; E3 “

~� ¨ ~H

�2

where � “ |~�|.



Checking:

rE3; E˘s “ �´3�irHi; E˘�s

“ ˘�´3�i�iE˘� “ ˘�´1E˘� “ ˘E˘ ;

rE`; E´s “ �´2rE�; E´�s “ �´2�iHi “ E3 :

Corollaries :
The 3 states tjE3y ; jE˘yu in adjoint representation form a
spin1 representation of the associated sup2q subalgebra
tE3; E˘u.

The nontrivial scalar products in subspace tjE3y ; jE˘yu are,

xE3|E3y “ �´4�i�j xHi|Hjy “ �´2 ;

xE˘|E˘y “ �´2 xE˘�|E˘�y “ �´2 :



On these states, the action of generators tE3; E˘u is calculated
below:

E3 jE˘y “ jrE3; E˘sy “ j˘E˘y “ ˘ jE˘y ;

E3 jE3y “ jrE3; E3sy “ j0y “ 0 jE3y “ 0 :

and

E` jE`y “ jrE`; E`sy “ j0y “ 0 ;

E` jE3y “ jrE`; E3sy “ j´E`y “ ´ jE`y ;

E` jE´y “ jrE`; E´sy “ jE3y :

By introducing the normalized basis states,

j1y “ � jE`y “ jE�y

j2y “ � jE3y “ �´1�i jHiy

j3y “ � jE´y “ jE´�y



we get:

E3 “

»

–

1 0 0

0 0 0

0 0 ´1

fi

fl E` “

»

–

0 ´1 0

0 0 1

0 0 0

fi

fl

E´ “ pE`q: “

»

–

0 0 0

´1 0 0

0 1 0

fi

fl

This is the very spin1 representation of sup2q algebra.



If ~� is a root vector, no nonzero multiple of ~� (except ´~�)
is a root vector.

Proof :
Suppose k~� were a root vector for k ‰ ˘1. The corresponding
generator and the state in adjoint representation read,

Ek�; jEk�y :

Then,

E3 jEk�y “ jrE3; Ek�sy “ �´2�i jrHi; Ek�sy

“ �´2�i jk�iEk�y

“ k jEk�y

jEk�y becomes an eigenstate of E3 belonging to eigenvalue k.
Because E3 could be recast as a generator of sup2qalgebra, its
eigenvalue k must be a halfinteger.



There are two possibilities:
k is an integer.

When k is an integer, jEk�y will be in such a sup2q

representation that contains another state jE1
�y related to

root vector ~�.

We will show that a root vector corresponds uniquely to a
generator.

Hence,
jE1

�y “ jE�y ô E�

Recall that jE�y is in the spin1 representation of sup2q

algebra generated by E3 “ �´2~� ¨ ~H and E˘ “ �´1E˘�,
´1 ď k ď 1. We conclude that, jEk�y’s existence is
impossible unless k ‰ ˘1.



k is half an odd integer.

In this case, there were a state (and then a generator E�{2)
with root vector ~�{2.

We have seen that if ~� is a root vector, 2~� is not a root vector.

Thus, if ~�{2 were a root vector, ~� “ 2p~�{2q would not be a
root vector ù absurd.

We conclude that k cannot be half an odd integer.

1 There is a onetoone correspondence between root vectors
and the generators.

Proof:
Suppose the contrary: there were 2 independent generators E�

and E1
� corresponding to the same root vector ~�.



Choosing appropriate linear combination of E� and E1
�, we could

have:

0 “ xE�|E1
�y “ �´1TrpE:

�E
1
�q “ �´1TrpE´�E

1
�q

Consider the action of sup2q algebra (related to root ~�) on the
state jE1

�y. Because,

rHi; E�s “ �iE�; rHi; E
1
�s “ �iE

1
�; i “ 1; 2; ¨ ¨ ¨ ;m

In adjoint representation, we have:

HiE´ jE1
�y “ �´1HiE´� jE

1
�y

“ �´1rHi; E´�s jE1
�y ` �´1E´�Hi jE

1
�y

“ ´�´1�iE´� jE
1
�y ` �´1E´� jrHi; E

1
�sy

“ ´�´1�iE´� jE
1
�y ` �´1E´� j�iE

1
�y “ 0

It implies,
E´ jE1

�y “ cj jHjy



The coefficient cj turns out to be vanishing:

cj “ xHjjE´ jE1
�y “ xHj|rE´; E

1
�sy “ �´1TrpHjrE´; E

1
�sq

“ ´�´1TrpE´rHj; E
1
�sq

“ ´�´1�´1�jTrpE´�E
1
�q “ 0

Therefore E´ jE1
�y “ 0. It implies,

jE1
�y is the lowest E3 eigenstate in sup2q representation.

However,

E3 jE
1
�y “ �´2�jHj jE

1
�y “ �´2�j jrHj; E

1
�sy

“ �´2�j j�jE
1
�y “ jE1

�y

This alternatively indicates that jE1
�y is an eigenstate of E3

belonging to eigenvalue E3 “ 1. A contradiction emerges:
jE1

�y cannot be the lowest value of E3.

The above contradiction shows that the generator E1
� cannot exist.

E� is the unique generator related to the root vector ~�.



More generaically, for any weight ~� of a representation D of Lie
algebra g, the E3 value is determined by,

E3 j�; �;Dy “
~� ¨ ~H

�2
j�; �;Dy

“
~� ¨ ~�

�2
j�; �;Dy

Because the E3’s value must be integers or half odd integers,

2~� ¨ ~�

�2
“ integer

From the perspective of E3 related sup2q algebra, this eigenvalue
equation suggests that the state j�; �;Dy is among the spinj
representation of this sup2q for some nonnegative half integer j.



Accurately, there is some nonnegative integer p such that,

jjjysup2q “ pE`qp j�; �;Dy ‰ 0

on which

E3 jjjysup2q “ j jjjysup2q

E` jjjysup2q “ pE`qp`1 j�; �;Dy “ 0 :

Notice that

rE3; E˘s “ ˘E˘

rE3; pE˘q2s “ E˘rE3; E˘s ` rE3; E˘sE˘ “ ˘2 pE˘q2

rE3; pE˘q3s “ E˘rE3; pE˘q2s ` rE3; E˘s pE˘q2 “ ˘3 pE˘q3

¨ ¨ ¨

rE3; pE˘qps “ ˘p pE˘qp



we get,

j jjjysup2q “ E3pE`qp j�; �;Dy

“ rE3; pE`qps j�; �;Dy ` pE`qpE3 j�; �;Dy

“ ppE`qp j�; �;Dy ` pE`qp
`

�´2~� ¨ ~�
˘

j�; �;Dy

“ pp ` �´2~� ¨ ~�qpE`qp j�; �;Dy

“ pp ` �´2~� ¨ ~�q jjjysup2q

i.e.,

j “ p `
~� ¨ ~�

�2

Likewise, there is some nonnegative integer q such that,

jj;´jysup2q “ pE´qq j�; �;Dy ‰ 0

on which

E3 jj;´jysup2q “ ´j jj;´jysup2q ;

E´ jj;´jysup2q “ pE´qq`1 j�; �;Dy “ 0 :



From these equations we see that there is another expression for
the highest eigenvalue j of E3,

´j jj;´jysup2q “ E3pE´qq j�; �;Dy

“ rE3; pE´qqs j�; �;Dy ` pE´qqE3 j�; �;Dy

“ ´qpE´qq j�; �;Dy ` pE´qq
`

�´2~� ¨ ~�
˘

j�; �;Dy

“ p´q ` �´2~� ¨ ~�qpE´qq j�; �;Dy

“ p´q ` �´2~� ¨ ~�q jj;´jysup2q

i.e.,

j “ q ´
~� ¨ ~�

�2



Comparison of the above two expressions of j yields

j “ pp ` qq{2

and the socalled Master formula :

2~� ¨ ~�

�2
“ q ´ p

1 In master formula, p and q are two nonnegative integers.
2 For a given weight ~� and root ~�, p and q are determined by

pE�qp`1 j�; �;Dy “ 0; pE´�qq`1 j�; �;Dy “ 0

respectively.



For each weight vector ~� of the representation D of Lie algebra g,
there is a spinj representation

“

j “ pp ` qq{2
‰

of sup2q

subalgebra tE3; E˘u related to the root vector ~�,
Its p2j ` 1q basis states are as follows:

pE´�qq j�; �;Dy ; pE´�qq´1 j�; �;Dy ; ¨ ¨ ¨ ;

E´� j�; �;Dy ; j�; �;Dy ; E� j�; �;Dy ;

pE�q2 j�; �;Dy ; ¨ ¨ ¨ ; pE�qp´1 j�; �;Dy ;

pE�qp j�; �;Dy :

with

E3pE´�qq j�; �;Dy “ ´
pp ` qq

2
pE´�qq j�; �;Dy

E3pE�qp j�; �;Dy “
pp ` qq

2
pE�qp j�; �;Dy



In view of the mother algebra g, the weights of these states
are given by,

~� ` n~�; p´q ď n ď pq:

The roots of g are weights of its adjoint representation. For
each root vector ~�, there is a root vector chain as follows:

~� ` n~�; p´q ď n ď pq:

where the nonnegative integers p and q are determined by
conditions that both ~� ` pp` 1q~� and ~� ´ pq ` 1q~� are not
roots.



Properties of N�;�

The structure constants N�;� appear in the Lie brackets,

rE�; E�s “ N�;�E�`�

Properties of N�;� :
Evidently, N�;� “ ´N�;� .

There is a onetoone correspondence between the generators
and the root vectors.

Therefore, only when all of ~�; ~� and ~� ` ~� are root vectors
of g, N�;� ‰ 0. Otherwise, N�;� “ 0.

For root vector chain t ~� ` n~� | ´ q ď n ď p u,

N�;p�`p�q “ N´�;p�´q�q “ 0



In adjoint representation, xE�|E�y “ ��� . So, for three
nonzero root vectors �; � and � ` �,

xE�jE´� jE�`�y “ xE�|rE´�; E�`�sy

“ xE�|N´�;�`�E�y

“ N´�;�`� xE�|E�y “ ´N�`�;´�

Alternatively,

xE�jE´� “ xE�jE
:
� “ xrE�; E�sj

leads to:

xE�jE´� jE�`�y “ xrE�; E�s|E�`�sy

“ xN�;�E�`�|E�`�y

“ N�;� xE�`�|E�`�y “ ´N�;�

Therefore,
N�`�;´� “ N�;� :



Consider the generators related to the root vector chain
t ~� ` n~� u with ´q ď n ď p. Let

Fn “ ´N�`n�;�N�`pn`1q�;´�

we see Fp “ F´q´1 “ 0. Moreover,

0 “ rE�`n�; rE�; E´�ss ` rE�; rE´�; E�`n�ss

`rE´�; rE�`n�; E�ss

“ �jrE�`n�; Hjs ` N´�;�`n�rE�; E�`pn´1q�s

`N�`n�;�rE´�; E�`pn`1q�s

“ ´�jp�j ` n�jqE�`n� ` N´�;�`n�N�;�`pn´1q�E�`n�

`N�`n�;�N´�;�`pn`1q�E�`n�

“
“

´ ~� ¨ p~� ` n~�q ´ Fn´1 ` Fn

‰

E�`n�

This yields a recursion relation :

Fn “ Fn´1 ` ~� ¨ p~� ` n~�q



Therefore,

Fn “ Fn´1 ` ~� ¨ p~� ` n~�q

“ Fn´2 ` ~� ¨ p~� ` n~�q ` ~� ¨
“

~� ` pn ´ 1q~�
‰

“ Fn´3 ` ~� ¨ p~� ` n~�q ` ~� ¨
“

~� ` pn ´ 1q~�
‰

`~� ¨
“

~� ` pn ´ 2q~�
‰

“ ¨ ¨ ¨

“ Fn´pn`q`1q `
řn`q

i“0
~� ¨

“

~� ` pn ´ iq~�
‰

“ F´q´1 ` pn ` q ` 1qp~� ¨ ~�q

`
“

npn ` q ` 1q ´ 1

2
pn ` q ` 1qpn ` qq

‰

p~� ¨ ~�q

“ 1

2
pn ` q ` 1q

“

2p~� ¨ ~�q ` pn ´ qq�2
‰

When n “ p, this equation is reduced to the expected master
formula,

2p~� ¨ ~�q

�2
“ q ´ p



When n “ 0, it gives

F0 “
1

2
pq ` 1q

“

2p~� ¨ ~�q ´ q�2
‰

“ ´
1

2
ppq ` 1q�2

Notice that F0 “ ´N�;�N�`�;´� “ ´N�;�N�;�, we finally get:

pN�;�q2 “
1

2
ppq ` 1q�2

Consider the scalar product of root vectors ~� and ~�,

2p~� ¨ ~�q

�2
“ q ´ p

or
2p~� ¨ ~�q

�2
“ q1 ´ p1



The first master formula implies the existence of root vector chain
t ~� ` n~� u with ´q ď n ď p,while the second formula implies
the existence of another root vector chain t ~� ` n1~� u with
´q1 ď n1 ď p1. Hence,

`

cos ���
˘

2

“
p~� ¨ ~�q2

�2�2
“

pq ´ pqpq1 ´ p1q

4

What is remarkable is that pq ´ pqpq1 ´ p1q must be a
nonnegative integer.

Relying on the fact that

´1 ď cos ��� ď 1

there are only 4 choices for the angle between two distinct root
vectors:



Table: The possible angles between two distinct root vectors

pq ´ pqpq1 ´ p1q ���
0 �{2

1 �{3 or 2�{3

2 �{4 or 3�{4

3 �{6 or 5�{6

The basic formula for such an angle is,

cos ��� “ ˘
1

2

a

pq ´ pqpq1 ´ p1q

The possibility pq ´ pqpq1 ´ p1q “ 4, which corresponds to
��� “ 0 or ��� “ �, is not interesting.



Problems :

1 Show that rE�; E�s must be proportional to E�`� . What
happens if ~� ` ~� is not a root vector ?

2 Suppose that the raising operators of some Lie algebra g satisfy
rE�; E�s “ NE�`� for some nonzero N . Calculate
rE�; E´�´�s.

3 Consider the simple Lie algebra g formed by the 10 matrices

t�a; �a�1; �a�3; �2u

for a “ 1 to 3, where �a and �a are Pauli matrices in orthogonal
spaces. Take H1 “ �3 and H2 “ �3�3 as the Cartan generators.
Find: (1) the weights of the 4dimensional Rep. generated by these
matrices; (2) the weights of the adjoint representation.



SUp3q Definition Rep.

In its definition representation, SUp3q is the group of 3 ˆ 3

unitary matrices tu | uu: “ u:u “ 1u with unity determinant
(detu “ 1).

The group elements of SUp3q have the form

u “ ei
ř

8

a“1
�aXa

with Xa a set of linearly independent 3 ˆ 3 traceless hermitian
generators:

X1 “ T
p1q
12 ; X2 “ T

p2q
12 ; X3 “ T

p3q
2 ;

X4 “ T
p1q
13 ; X5 “ T

p2q
13 ; X6 “ T

p1q
23 ;

X7 “ T
p2q
23 ; X8 “ T

p3q
3 :



where

pT
p1q

ab qij “
1

2
p�ai�bj ` �aj�biq;

pT
p2q

ab qij “
1

2i
p�ai�bj ´ �aj�biq

for a ‰ b , and

pT p3q
a qij “

$

’

’

&

’

’

%

�ij
1?

2apa´1q
; if i ă a ;

´�ij

b

a´1

2a
; if i “ a ;

0; if i ą a:

We can recast the generators as

Xa “ �a{2

Such �a pa “ 1; 2; ¨ ¨ ¨ ; 8q are called GellMann matrices.



GellMann Matrices :

GellMann matrices are explicitly written out as follows,

�1 “

»

–

0 1 0

1 0 0

0 0 0

fi

fl �2 “

»

–

0 ´i 0

i 0 0

0 0 0

fi

fl �3 “

»

–

1 0 0

0 ´1 0

0 0 0

fi

fl

�4 “

»

–

0 0 1

0 0 0

1 0 0

fi

fl �5 “

»

–

0 0 ´i

0 0 0

i 0 0

fi

fl �6 “

»

–

0 0 0

0 0 1

0 1 0

fi

fl

�7 “

»

–

0 0 0

0 0 ´i

0 i 0

fi

fl �8 “ 1?
3

»

–

1 0 0

0 1 0

0 0 ´2

fi

fl

The SUp3q group is a compact Lie group, because its generators

Xa “ �a{2 pa “ 1; 2; ¨ ¨ ¨ ; 8q

satisfy the uniform orthonormal conditions:

TrpXaXbq “
1

2
�ab



Consequently, the structure constants tfabcu appearing in the Lie
brackets rXa; Xbs “ ifabcXc are completely antisymmetric.

With GellMann matrices, the sup3q algebra could be recast as:

r�a; �bs “ 2ifabc�c

where fabc are completely antisymmetric in the indices.
The nonzero fabc are

f123 “ 1

f147 “ f165 “ f246 “ f257 “ f345 “ f376 “ 1{2

f458 “ f678 “
?
3{2



Besides, the GellMann matrices have the following additional
properties:

1 Trp�a�bq “ 2�ab

2 Completeness relation reads,

p�aqijp�aqkl “ ´
2

3
�ij�kl ` 2�il�jk

where i; j; k; l “ 1; 2; 3.

3 There exists a group of completely symmetric constants dabc
such that,

␣

�a; �b
(

“
4

3
�ab ` 2dabc�c



For completeness, we list the nonzero components of dabc below:
$

’

’

’

’

&

’

’

’

’

%

d118 “ d228 “ d338 “ 1{
?
3

d146 “ d157 “ d256 “ d344 “ d355 “ 1{2

d247 “ d366 “ d377 “ ´1{2

d448 “ d558 “ d668 “ d778 “ ´ 1

2
?
3

d888 “ ´1{
?
3

Casimir operators :

SUp3q has two independent Casimir operators

C2 “

8
ÿ

a“1

XaXa; C3 “

8
ÿ

a;b;c“1

dabcXaXbXc

In definition representation, we have:

C2 “ 4{3; C3 “ 10{9:



Checking TrpXaXbq “ 1
2
�ab

Notice that in T
p1q

ab and T p2q

ab , a ‰ b. T p3q
a are diagonal matrices.

Thus,

pT
p1q

ab qijpT
p1q

cd qji “
1

4
p�ai�bj ` �aj�biqp�cj�di ` �ci�djq

“
1

2
p�ac�bd ` �ad�bcq;

pT
p1q

ab qijpT
p2q

cd qji “
1

4i
p�ai�bj ` �aj�biqp�cj�di ´ �ci�djq “ 0;

pT
p1q

ab qijpT
p3q
c qji “

1

2
p�ai�bj ` �aj�biqpT p3q

c qji

“
1

2

“

pT p3q
c qab ` pT p3q

c qba
‰

“ 0;

pT
p2q

ab qijpT
p2q

cd qji “ ´
1

4
p�ai�bj ´ �aj�biqp�cj�di ´ �ci�djq

“
1

2
p�ac�bd ´ �ad�bcq



pT
p2q

ab qijpT
p3q
c qji “

1

2i
p�ai�bj ´ �aj�biqpT p3q

c qji

“
1

2i

“

pT p3q
c qba ´ pT p3q

c qab
‰

“ 0

Besides, when a ă b,

pT p3q
a qijpT

p3q

b qji “ pa ´ 1q

„

1
a

2apa ´ 1q
¨

1
a

2bpb ´ 1q

ȷ

´

c

a ´ 1

2a

1
a

2bpb ´ 1q
“ 0

while when a “ b,

pT p3q
a qijpT

p3q
a qji “ pa ´ 1q

„

1

2apa ´ 1q

ȷ

`
a ´ 1

2a

“
1

2

Checking is finished.



Cartan generators
Among these generators, there are two commute mutually and they form
the Cartan generators of group SUp3q:

H1 “ X3 “ 1

2

»

–

1 0 0

0 ´1 0

0 0 0

fi

fl ; H2 “ X8 “ 1

2
?
3

»

–

1 0 0

0 1 0

0 0 ´2

fi

fl :

Because H1 and H2 are already diagonal, the weights of sup3q definition
representation can be read off through

Hi j~�ay “ p~�aqi j~�ay

with i “ 1; 2 but a “ 1; 2; 3. The result is as follows:

~�1 “
`

1

2
; 1

2
?
3

˘

~�2 “
`

´ 1

2
; 1

2
?
3

˘

~�3 “
`

0;´ 1?
3

˘

j~�1y “

»

–

1

0

0

fi

fl j~�2y “

»

–

0

1

0

fi

fl j~�3y “

»

–

0

0

1

fi

fl



Weight diagram
In weight diagram, these weight vectors form an equilateral
triangle:

H2

H1

~µ1~µ2

~µ3

Here,

~�1 “
`1

2
;

1

2
?
3

˘

; ~�2 “
`

´
1

2
;

1

2
?
3

˘

; ~�3 “
`

0;´
1

?
3

˘

:

Among them, ~�1 is the highest weight vector.



Roots of sup3q :

Question :

How many root vectors does sup3q algebra have ?

Because

sup3q has 6 nonCartan generators.

There is a onetoone correspondence between the root vectors and the
nonCartan generators.

sup3q has 6 distinct root vectors: half of which are positive, another half are
negative.

The 3 distinct positive root vectors can be read off from the difference of weight
vectors of the above definition representation:

~�1 “ ~�1 ´ ~�2 “ p1; 0q; ~�2 “ ~�1 ´ ~�3 “ p1{2;
?
3{2q

~�3 “ ~�3 ´ ~�2 “ p1{2;´
?
3{2q

Their negative counterparts are,

´~�1 “ p´1; 0q; ´~�2 “ p´1{2;´
?
3{2q; ´~�3 “ p´1{2;

?
3{2q:



The corresponding generators are those that have only one offidiagonal entry,

E˘�1 “ 1?
2

pX1 ˘ iX2q; E˘�2 “ 1?
2

pX4 ˘ iX5q;

E˘�3 “ 1?
2

pX6 ¯ iX7q:

Explicitly,

E�1 “ 1?
2

»

–

0 1 0

0 0 0

0 0 0

fi

fl ; E�2 “ 1?
2

»

–

0 0 1

0 0 0

0 0 0

fi

fl ;

E�3 “ 1?
2

»

–

0 0 0

0 0 0

0 1 0

fi

fl ;

and

E´�1 “ 1?
2

»

–

0 0 0

1 0 0

0 0 0

fi

fl ; E´�2 “ 1?
2

»

–

0 0 0

0 0 0

1 0 0

fi

fl ;

E´�3 “ 1?
2

»

–

0 0 0

0 0 1

0 0 0

fi

fl :



In weight diagram, the 6 nonzero root vectors of sup3q

˘~�1 “ p˘1; 0q; ˘~�2 “ p˘1{2;˘
?
3{2q; ˘~�3 “ p˘1{2;¯

?
3{2q;

form a regular hexagon:
H2

H1~α1

~α2

~α3

−~α1

−~α2

−~α3



Homework

Problems :

1 Calculate f147 and f458 in the sup3q definition representation.

2 The SUp3q structure constants have the property facdfbcd “ 3�ab.
Please show

fabc�b�c “ 3i�a

and
�b�a�b “ ´2�a{3

by making use of this relation.

3 Show that X1; X2 and X3 generate an sup2q subalgebra of sup3q.
How does the representation generated by the GellMann matrices
transform under this subalgebra ?
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Simple Roots :

Definition :

Simple roots are those positive root vectors that cannot be written as a sum of
other positive root vectors.

Properties of Simple Roots :

If ~� and ~� are different simple roots, then p~� ´ ~�q is not a root vector.

Proof : Let ~� be the larger so that p~� ´ ~�q ą 0. The assumption that
~� and ~� are simple roots and the fact

~� “ ~� ` p~� ´ ~�q

indicate that p~� ´ ~�q is not a positive root vector.

The angle ��� between any pair of simple roots ~� and ~� satisfies the
constraint,

�

2
ď ��� ă � :



Proof : Consider two distinct simple roots ~� and ~�. Because p~� ´ ~�q

is not a root vector, in the adjoint representation, we have:

E´� jE�y “ E´� jE�y “ 0:

Then, in the root vector chains t~� ` n~� | ´ q ď n ď pu and
t~� ` n1~� | ´ q1 ď n1 ď p1u, q “ q1 “ 0. The master formula
between these two simple roots gives,

2~� ¨ ~�

�2
“ ´p ď 0;

2~� ¨ ~�

�2
“ ´p1 ď 0;

where p; p1 are two nonnegative integers. Hence, cos ��� ď 0.
Accurately, by combining the above two equations we get:

cos ��� “ ´

d

~� ¨ ~�

�2
¨
~� ¨ ~�

�2
“ ´

1

2

a

pp1 ď 0

Besides, the largest angle between any two positive root vectors
cannot take values beyond �. As a result,

�

2
ď ��� ă � :



The simple roots are linearly independent from one another.

Proof : Consider a linear combination of the simple roots,

~ “
ÿ

�

x�~�

If all of the nonvanishing coefficients xi have the same sign,
~ ‰ 0. If there are some coefficients of each sign, we can
write,

~ “ ~� ` ~�

where ~� “
ř

� x�~� with all x� ą 0, and ~� “
ř

� x�
~� with

all x� ă 0. Relying on the fact �
2

ď ��� ă �, ~� ¨ ~� ď 0.So,

~� ¨ ~� “
ÿ

�;x�ą0

ÿ

�;x�ă0

x�x�~� ¨ ~� ě 0:

From this we see,

~2 “ p~� ` ~�q2 “ ~�2 ` ~�2 ` 2~� ¨ ~� ą 0 :

~ “ 0 is possible iff all coefficients x� vanish. In conclusion,
the simple roots are linearly independent of one another.



Any positive root vector ~� can be written as a linear combination of all
simple roots with nonnegative integer coefficients k�,

~� “
ÿ

�;k�ě0

k�~�

Corolleries :

1 The simple roots are not only linearly independent of each other only,
they are also complete.

2 Because the root vector space has dimension m, the rank of the Lie algebra
g, the number of simple roots is equal to m (the rank of the algebra),
which is also the number of Cartan generators.



Question :

How to determine all the root vectors of an algebra g ?

It is only necessary to find out all positive root vectors,

~�k “
ÿ

�;k�ě0

k�~�

where ~� stands for simple roots and k “
ř

� k�.

All of the ~�1’s are roots because they are just the simple roots.

Suppose we have determined the positive roots ~�k for k ď n. To find out
t~�n`1u, for all simple roots t~�u, we consider the states

E� jE�ny

in g’s adjoint representation. These states are related to the possible roots
t~�n`1u of the form

t~�n`1u “ t~�nu ` ~�



Question :

Is t~�n`1u really a root ?

t~�n`1u being a root means that E� jE�ny is a true state in the adjoint
representation of the Lie algebra g.

From the perspective of accessory sup2q (related to the simple root ~�),

E3 “ �´2~� ¨ ~H; E˘ “ �´1E˘�;

this means that there must be a positive integer p such that,

pE�qp jE�ny ‰ 0; pE�qp`1 jE�ny “ 0:

Similarly, there must exist another nonnegative integer q such that,

pE´�qq jE�ny ‰ 0; pE´�qq`1 jE�ny “ 0:



Claiming that these states form the spinj representation of the above accessory
sup2q, we have in g’s adjoint representation,

pE´�qq jE�ny “ jj;´jysup2q ; pE�qp jE�ny “ jjjysup2q :

So,
´jpE´�qq jE�ny “ E3pE´�qq jE�ny

“ �´2�iHipE´�qq jE�ny

“ �´2p~� ¨ ~�n ´ q�2qpE´�qq jE�ny

and
jpE�qp jE�ny “ E3pE�qp jE�ny

“ �´2�iHipE�qp jE�ny

“ �´2p~� ¨ ~�n ` p�2qpE�qp jE�ny

Hence,
~� ¨ ~�n

�2
` p “ j;

~� ¨ ~�n

�2
´ q “ ´j:

Summation of these two equations gives,

2~� ¨ ~�n

�2
“ q ´ p



Warning !

The significance of equation 2~�¨ ~�n
�2

“ q ´ p :

The equation is used to determine the integer p.

We always know q, because we know the history of how ~�n got built up
by the action of the raising operators from ~�k with the smaller k.

If p ą 0, ~�n ` ~� is a (positive) root vector.



Example 1 :

Suppose ~� and ~� are two simple roots of a Lie algebra. Is ~� ` ~� a root
vector ?

Solution :

Take ~�1 “ ~�. Because ~� and ~� are simple roots,

E´� jE�1y “ 0:

Comparing with pE´�qq`1 jE�1y “ 0, we see that q “ 0. So,

2~� ¨ ~�1

�2
“

2~� ¨ ~�

�2
“ ´p

If 2~�¨~�
�2

“ 0, ��� “ �{2, p “ 0, ~� ` ~� is not a root vector. If 2~�¨~�
�2

ă 0,
�{2 ă ��� ă �, p ą 0, ~� ` ~� is a positive root.



Example 2 :

The sup3q algebra has rank 2. Among its 3 positive roots of

~�1 “ p1{2;
?
3{2q; ~�2 “ p1{2;´

?
3{2q; ~�3 “ p1; 0q

there are only 2 simple roots. Because

~�3 “ ~�1 ` ~�2

~�1 and ~�2 are the expected simple roots of sup3q algebra.

Question :

Is p ~�2 ` 2 ~�1q a root vector of sup3q ?



Solution :

Construct SUp2q generators from the generators related to the simple
root ~�1,

E˘ “ �´1

1
E˘�1 “ E˘�1 ; E3 “ �´2

1
~�1 ¨ ~H “ ~�1 ¨ ~H;

where we have noticed that

�2

1 “ �2

2 “ 1; ~�1 ¨ ~�2 “ ´1{2:

Now focus on p ~�2 ` 2 ~�1q “ ~�3 ` ~�1:

2 ~�3 ¨ ~�1

�2
1

“ 2 ~�3 ¨ ~�1 “ 1 “ q ´ p; ù q ´ p “ 1:

On the other hand,
~�3 ´ ~�1 “ ~�2 is a root but ~�3 ´ 2 ~�1 “ ~�2 ´ ~�1 is not. This implies
q “ 1.
So, p “ 0. ~�3 ` ~�1 “ 2 ~�2 ` ~�1 is not a sup3q root vector.



Constructing Lie algebra :

1 The basis states of the adjoint representation space have a onetoone
correspondence with the generator,

Ta ô jTay ; Ta jTby “ jrTa; Tbsy

Thus, knowing the states in adjoint representation enable us to obtain
the Lie algebra itself

rTa; Tbs “ ifabcTc

2 There is also a onetoone correspondence between root vectors and the
nonCartan generators. Therefore, in adjoint representation, each root
vector ~� corresponds uniquely to a basis state jE�y.

3 Associated with a simple root ~�, we can define an accessory sup2q�
subalgebra,

E˘ “ �´1E˘�; E3 “ �´2~� ¨ ~H:

Some of the states tjE�yu will form a spinj representation of this
sup2q�,

j “
1

2
pp ` qq



where p; q are two integers, determined by

pE´qq`1 jE�y “ 0;
2~� ¨ ~�

�2
“ q ´ p:

Notice that,

E3 jE�y “
~� ¨ ~�

�2
jE�y

The state jE�y can be recast as a standard sup2q� form jjmy,

jE�y “

�
�
�
�
�
j;
~� ¨ ~�

�2

G

In this way, the knowledge of sup2q enable us to know exactly how E˘ act
(up to a phase).

Remark :

This procedure will enable us to determine rE�; E�s “ N��E�`� and then
the whole algebra.



Now we illustrate the above procedure by constructing the sup3q algebra from
the knowledge of its simple roots.

Starting point : The algebra sup3q has 2 simple roots ~�1 and ~�2,

~�1 “ p1{2;
?
3{2q; ~�2 “ p1{2;´

?
3{2q:

Evidently, �2

1
“ �2

2
“ 1, ~�1 ¨ ~�2 “ ´1{2.

sup2q�1 : We construct a sup2q�1 algebra tE˘ “ E˘�1 , E3 “ ~�1 ¨ ~Hu

based on simple root ~�1. Since rE´�1 ; E�2s “ 0; in adjoint
representation, we have:

0 “ jrE´�1 ; E�2sy “ E´�1 jE�2y “ E´ jE�2y

i.e., q “ 0. Together with pq ´ pq “ 2 ~�2 ¨ ~�1{�2

1
“ ´1 we

see p “ 1, j “ pp ` qq{2 “ 1{2. So, in sup2q�1 language,
jE�2y can be written as

jE�2y “

ˇ

ˇ

ˇ

ˇ

j;
~�2 ¨ ~�1

�2

1

F

�1

“

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

�1



Consequently,

jrE�1 ; E�2sy “ E�1 jE�2y “ E`

ˇ

ˇ

ˇ

ˇ

1

2
;´

1

2

F

�1

“
1

?
2

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

�1

On the other hand, in adjoint representation, the state jE�3y related to the
positive root vector ~�3 “ ~�1 ` ~�2 satisfies,

E3 jE�3y “ ~�1 ¨ ~�3 jE�3y “
1

2
jE�3y

i.e.,

jE�3y “

ˇ

ˇ

ˇ

ˇ

1

2
;
1

2

F

�1

The consistency between the above results implies that,

jrE�1 ; E�2sy “
1

?
2
jE�3y

i.e.,
rE�1 ; E�2s “

1
?
2
E�3



For sup3q, the other Lie brackets can be calculated by using Jacobi identities.
e.g,

rE´�1 ; E�3s “
?
2rE´�1 ; rE�1 ; E�2ss

“ ´
?
2rE�1 ; rE�2 ; E´�1ss ´

?
2rE�2 ; rE´�1 ; E�1ss

“
?
2�1irE�2 ; His

“ ´
?
2p ~�1 ¨ ~�2qE�2 “ 1?

2
E�2

i.e.,
rE´�1 ; E�3s “

1
?
2
E�2

Similarly (Please check it yourself ),

rE´�2 ; E�3s “ ´
1

?
2
E�1

By taking the hermitian conjugation of above commutation relations, we
further get

rE�1 ; E´�2s “ 0; rE´�1 ; E´�2s “ ´ 1?
2
E´�3 ;

rE�1 ; E´�3s “ ´ 1?
2
E´�2 ; rE�2 ; E´�3s “ 1?

2
E´�1 :



Defintions :

Cartan Matrix A : Let t ~�iu be simple roots of a Lie algebra g, its Cartan
matrix is defined as,

A “ pAijq; Aij “
2 ~�i ¨ ~�j

�2

j

Dynkin Diagrm : A Dykin diagram is a shorthand notation for writing
down the simple roots.

Rules : 1 Each simple root is expressed as an open or solid circle.
2 Pairs of circles are connected by lines, depending on the

angle between the pair of roots to which the circles
correspond (�{2 ď ��� ă �):

α β

α β

α β

α β

θαβ = π/2

θαβ = 2π/3

θαβ = 3π/4

θαβ = 5π/6



Meaning of Cartan Matrix Aij :

Let t ~�iu be simple roots of a Lie algebra g. The accessory sup2q generators
related to simple root ~�j are

E3 “ �´2

j ~�j ¨ ~H; E˘ “ �´1

j E˘�j :

Therefore, in g’s adjoint representation, on the state jE�iy related to some
simple root ~�i,

E3 jE�iy “
~�i ¨ ~�j

�2

j

jE�iy “
Aij

2
jE�iy ;

i.e., Aij is twice of the eigenvalue of E3 on state jE�iy.

Example : sup3q’s Dynkin diagram and Cartan matrix:

A “

„

2 ´1

´1 2

ȷ

α1 α2
θα1α2

= 2π/3



G2 :

Example: G2 The algebra G2 has 2 simple roots,

~�1 “ p0; 1q; ~�2 “ p
?
3{2;´3{2q:

Obviously,

p�1q2 “ 1; p�2q2 “ 3; ~�1 ¨ ~�2 “ ´3{2:

The Cartan matrix is,

A “

„

2 ´1

´3 2

ȷ

The angle �12 between two simple roots is calculated through,

cos �12 “
~�1 ¨ ~�2

�1�2

“ ´
?
3{2 ù �12 “

5�

6
:

G2’s Dynkin diagram is:

1 2 θ12 = 5π/6



Starting point :

We now search for all positive root vectors of G2 algebra based on the its simple
roots t�1u,

~�1 “ p0; 1q; ~�2 “ p
?
3{2;´3{2q; pk “ 1q:

Finding t�2u :

Is ~�1 ` ~�2 a positive root vector of k “ 2 ?
To answer this question, we examine the properties of states E˘�1 jE�2y in
G2’s adjoint representation. Construct an accessory sup2q algebra based on
simple root ~�1,

E3 “ �´2

1
~�1 ¨ ~H; E˘ “ �´1

1
E˘�1 :

We claim that the states E˘�1 jE�2y are in the spinj representation of this
sup2q�1 . Because p ~�1 ´ ~�2q is not a root, we have

E´�1 jE�2y “ 0; ù jE�2y “ jj;´jy�1

So,
´j jE�2y “ E3 jE�2y “

1

2
A21 jE�2y “ ´

3

2
jE�2y



i.e., j “ 3{2 and
jE�2y “ j3{2;´3{2y�1

Assuming
pE�1qp jE�2y ‰ 0; pE�1qp`1 jE�2y “ 0;

i.e.,
pE`qp j3{2;´3{2y�1 “ j3{2; 3{2y�1

This gives that p “ 3 pą 0q. Therefore, ~�2 “ p ~�1 ` ~�2q is a root vector of G2

with k “ 2.

Corollaries : Relying on the facts,

pE�1q3 jE�2y ‰ 0; pE�1q4 jE�2y “ 0;

the algebra G2 has the following positive root vectors as well,
"

~�2 ` 2 ~�1; k “ 3;

~�2 ` 3 ~�1; k “ 4:

Finding t�3u :

We have found out a positive root vector of k “ 3: ~�2 ` 2 ~�1. The remaining
candidate is then unique, which is ~�1 ` 2 ~�2.
We define another accessory sup2q related to the simple root ~�2,

E1
3

“ �´2

2
~�2 ¨ ~H; E1

˘ “ �´1

2
E˘�2 :



Notice that ~�1 ` 2 ~�2 “ p ~�1 ` ~�2q ` ~�2. In adjoint representation of G2,
assume that

pE1
`qp

1
j�1 ` �2y ‰ 0; pE1

`qp
1`1 j�1 ` �2y “ 0;

and
pE1

´qq
1
j�1 ` �2y ‰ 0; pE1

´qq
1`1 j�1 ` �2y “ 0:

Because the difference between two simple roots is not a root vector,

pE´�2q2 j�1 ` �2y “ 0; ù q1 “ 1:

Besides,

pq1 ´ p1q “
2 ~�2 ¨ p ~�1 ` ~�2q

�2

2

“ 2 ` A12 “ 1; ù p1 “ 0:

As a result, ~�1 ` 2 ~�2 is not a root vector of G2.

Finding t�4u :

G2 has a unique positive root vector of k “ 4, which is the one founded
previously,

~�4 “ ~�2 ` 3 ~�1:



Finding t�5u :

There is a unique candidate for the positive root vector of k “ 5,

~�5 “ 2 ~�2 ` 3 ~�1 “ p ~�2 ` 3 ~�1q ` ~�2:

Is it really a root vector of G2 ?
As before, in G2’s adjoint representation, assume that

pE1
`qp

2
j3�1 ` �2y ‰ 0; pE1

`qp
2`1 j3�1 ` �2y “ 0;

and
pE1

´qq
2
j3�1 ` �2y ‰ 0; pE1

´qq
2`1 j3�1 ` �2y “ 0:

Because the integer multiple of a simple root is not a root vector,

E´�2 j3�1 ` �2y “ 0; ù q2 “ 0:

Furthermore,

pq2 ´ p2q “
2 ~�2 ¨ p3 ~�1 ` ~�2q

�2

2

“ 2 ` 3A12 “ ´1; ù p2 “ 1:

Hence, p2 ~�2 ` 3 ~�1q is a true positive root vector of G2 with k “ 5.



It is easy to know that G2 has no more positive roots ~�k with k ě 6.

In conclusion, G2 has 12 nonzero root vectors. They are listed as

˘ ~�1 “ p0;˘1q; ˘ ~�2 “ p˘
?
3{2;¯3{2q;

and ˘p ~�1 ` ~�2q, ˘p2 ~�1 ` ~�2q, ˘p3 ~�1 ` ~�2q and ˘p3 ~�1 ` 2 ~�2q.

In weight diagram,

H2

H1

~α1

~α2

~α1 + ~α2

2~α1 + ~α2

3~α1 + ~α2

3~α1 + 2 ~α2



Constructing G2 :

Generators :

H1; H2;

E˘�1 ; E˘�2 ;

E˘p�1`�2q; E˘p2�1`�2q; E˘p3�1`�2q; E˘p3�1`2�2q:

Two sup2q subalgebras based on simple roots :

1 sup2q�1 : E3 “ ~�1 ¨ ~H; E˘ “ E˘�1 :

2 sup2q�2 : E1
3

“ 1

3
~�2 ¨ ~H; E1

˘ “ 1?
3
E˘�2 :

Construction procedure :

Step 1 :

Obviously,
rE�1 ; E´�2s “ rE´�1 ; E�2s “ 0:



Step 2 :

Starting from the state jE�2y in G2’s adjoint representation. For sup2q�1 , this
state has:

q “ 0; p “ 3; j “ pp ` qq{2 “ 3{2:

In the standard notation of sup2q�1 representation, we rewrite this state as,

jE�2y “ j3{2;´3{2y�1

Hence,

jrE�1 ; E�2sy “ E�1 jE�2y “ E` j3{2;´3{2y�1 “

c

3

2
j3{2;´1{2y�1

Ignoring the possible phase factor, we define:

jE�1`�2y “ j3{2;´1{2y�1



Consequently,

rE�1 ; E�2s “

c

3

2
E�1`�2

It is better to regard this commutator as the definition of generator
E�1`�2 .

Applying E` once more gives,

jrE�1 ; rE�1 ; E�2ssy “ E�1 jrE�1 ; E�2sy “

b

3

2
E�1 jE�1`�2y

“

b

3

2
E` j3{2;´1{2y�1

“
?
3 j3{2; 1{2y�1

Defining:
jE�2`2�1y “ j3{2; 1{2y�1

Then,
E�2`2�1 “

1
?
3

rE�1 ; rE�1 ; E�2ss



Repeating this procedure, we get,

jrE�1 ; rE�1 ; rE�1 ; E�2sssy “ E�1 jrE�1 ; rE�1 ; E�2ssy

“
?
3E�1 jE�2`2�1y

“
?
3E` j3{2; 1{2y�1

“ 3?
2
j3{2; 3{2y�1

Defining:
jE�2`3�1y “ j3{2; 3{2y�1

Then,

E�2`3�1 “

?
2

3
rE�1 ; rE�1 ; rE�1 ; E�2sss



Step 3 :

In view of sup2q�2 , the state jE�2`3�1y in G2’s adjoint representation has the
properties,

0 “ E´�2 jE�2`3�1y ⋍ E1
´ jE�2`3�1y ;

0 “ pE�2q2 jE�2`3�1y ⋍ pE1
`q2 jE�2`3�1y :

we see,
q1 “ 0; p1 “ 1; j1 “ pp1 ` q1q{2 “ 1{2

i.e.,
jE�2`3�1y “ j1{2;´1{2y�2

Consequently,

jrE�2 ; E�2`3�1sy “ E�2 jE�2`3�1y “
?
3E1

` jE�2`3�1y

“
?
3E1

` j1{2;´1{2y�2

“

b

3

2
j1{2; 1{2y�2

Defining:
jE3�1`2�2y “ j1{2; 1{2y�2



we get,

E3�1`2�2 “

b

2

3
rE�2 ; E�2`3�1s

“ 2

3
?
3

rE�2 ; rE�1 ; rE�1 ; rE�1 ; E�2ssss

The above are enough for determining all the commutation relations of G2. For
example,

rE´�1 ; E�1`�2s “

b

2

3
rE´�1 ; rE�1 ; E�2ss

“ ´

b

2

3
rE�2 ; rE´�1 ; E�1ss

“

b

2

3
�1irE�2 ; His

“ ´

b

2

3
p ~�1 ¨ ~�2qE�2

“

b

3

2
E�2



Highest weights representation D:

Let t ~�i |i “ 1; 2; ¨ ¨ ¨ ;mu be the simple roots of a simple Lie algebra g.
Consider an irreducible representation D of g, in which there is a state jMy

satisfying,
E�i jMy “ 0; Hi jMy “ Mi jMy

where ~M “ pM1;M2; ¨ ¨ ¨ ;Mmq is the weight vector related to jMy.

Properties of ~M :

~M is the highest weight vector in Representation D.

There must exist some nonnegative integers tliu so that,

2 ~M ¨ ~�i

�2

i

“ li

„

tliu are called Dynkin coefficients.
ȷ



Definition : The fundamental weights t ~Miu of a simple Lie algebra g is
defined by,

2 ~Mi ¨ ~�j

�2

j

“ �ij ; pi; j “ 1; 2; ¨ ¨ ¨ ;m:q

Properties of t ~Miu :

Each ~Mi defines an irreducible representation of g, in which ~Mi is the
highest weight vector.

# ~Mi “ m (rank of g).

The highest weight vectors t ~Miu are called the fundamental weights of g.
The cooresponding irreducible representations are called the fundamental
representations.

The highest weight vector ~M of an arbitrary irreducible representation D
can be expressed as

~M “
ÿ

i

li ~Mi

or equivalently,
~M “ pl1; l2; ¨ ¨ ¨ ; lmq:



The highest weight state jMy in an irreducible representation D is
unique.

Proof : Obviously, if

Hi jMy “ Mi jMy ; Hi jMy
1

“ Mi jMy
1
;

there will be some positive root vectors t~�; ~�; ¨ ¨ ¨ u so that

jMy
1

“ E� ¨ ¨ ¨E�E´� ¨ ¨ ¨E´� jMy :

It is enough to consider t~�; ~�; ¨ ¨ ¨ u as the simple roots here,
because

E�`� “ rE�; E�s{N�;�

Hence, these two highest weight states are actually the same
one:

jMy
1

“ p~� ¨ ~Mq ¨ ¨ ¨ p~� ¨ ~Mq jMy :



Homework :

1 Consider the algebra C3 corresponding to the following Dynkin diagram.
Let �2

1
“ �2

2
“ 1 and �2

3
“ 2. Find the Cartan matrix A and all of the

positive root vectors.

α1 α2 α3
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Fundamental weights of sup3q :

The algebra sup3q is specified by Dynkin diagram

sup3q:

It has two simple roots ~�1 and ~�2, with properties �2

1
“ �2

2
“ 1

and ~�1 ¨ ~�2 “ ´1{2. Therefore, sup3q has 2 fundamental weight
vectors :

~Mi “
`

ai; bi
˘

;

"

i “ 1; 2:

*

To find ~Mi (i “ 1; 2), we first parameterize the simple roots as
follows,

~�1 “
`

1{2;
?
3{2

˘

; ~�2 “
`

1{2; ´
?
3{2

˘

:



Because

�i1 “
2 ~Mi ¨ ~�1

�2
1

“ ai `
?
3bi; �i2 “

2 ~Mi ¨ ~�2

�2
2

“ ai ´
?
3bi

we see
"

a1 `
?
3b1 “ 1

a1 ´
?
3b1 “ 0

"

a2 `
?
3b2 “ 0

a2 ´
?
3b2 “ 1

The solution to this system of algebraic equations is unique,
"

a1 “ 1{2

b1 “ 1{2
?
3

"

a2 “ 1{2

b2 “ ´1{2
?
3



We conclude that :
1 sup3q has 2 fundamental weight vectors. One reads,

~M1 “

„

1

2
;

1

2
?
3

ȷ

and the another reads,

~M2 “

„

1

2
; ´

1

2
?
3

ȷ

2 sup3q has 2 fundamental representations, D1 and D2. D1 is
defined by fundamental weight vector ~M1, and can be recast
as

Rep.p1; 0q

D2 is defined by ~M2, and can be recast as

Rep.p0; 1q



Fundamental Rep. D1 of sup3q

We now want to find all of the basis states of this representation.
Our starting point is the highest weight state jM1y satisfying

E�1 jM1y “ E�2 jM1y “ 0:

Procedure :
Build two sup2q algebras associated to simple roots ~�1 and ~�2.
sup2q1 consists of

E3 “ ~�1 ¨ ~H; E˘ “ E˘�1

but sup2q2 consists of

E1
3

“ ~�2 ¨ ~H; E1
˘ “ E˘�2



The state jM1y could be embedded into the spinj representation
of sup2q1 with

j “
1

2
rp ` qs

or the spinj 1 representation of sup2q2 with

j 1 “
1

2
rp1 ` q1s

so that
"

pE`qp`1 jM1y “ pE´qq`1 jM1y “ 0

pE1
`qp

1`1 jM1y “ pE1
´qq

1`1 jM1y “ 0

Since E�1 jM1y “ 0 and 2 ~M1 ¨ ~�1 “ 1, we have p “ 0, q “ 1

and j “ 1{2.

Hence,
jM1y “ j1{2; 1{2y

1

The second basis state in D1 is found to be:

E´�1 jM1y “ E´ j1{2; 1{2y
1

“
1

?
2

j1{2;´1{2y
1



Similarly, the state E´�1 jM1y can also be embedded into the
spinj2 representation of sup2q2 with

j2 “
1

2
rp2 ` q2s

where

pE1
`qp

2`1E´�1 jM1y “ pE1
´qq

2`1E´�1 jM1y “ 0:

Alternatively, pq2 ´ p2q is given by

q2 ´ p2 “ 2p ~M1 ´ ~�1q ¨ ~�2 “ ´2 ~�1 ¨ ~�2 “ 1:

The difference of two simple roots is not a root vector,
“

E´�1 ; E�2

‰

“ 0

Therefore,

E�2 rE´�1 jM1ys “ E´�1rE�2 jM1ys “ 0; ù p2 “ 0; q2 “ 1

i.e., j2 “ 1{2.



The state E´�1 jM1y can be equivalently cast as,

E´�1 jM1y “
1

?
2

j1{2; 1{2y
2

The third state in D1 reads,

E´�2E´�1 jM1y “ E1
´

„

1
?
2

j1{2; 1{2y
2

ȷ

“
1

2
j1{2;´1{2y

2

There are no more basis states in D1.

Conclusions:

Rep. D1 or Rep.(1, 0) is 3dimensional.
D1 is conveniently written as 3.



The weight vectors in D1 are,

~M1 “

„

1

2
;

1

2
?
3

ȷ

(highest weight)

~M1 ´ ~�1 “

„

0; ´
1

?
3

ȷ

~M1 ´ ~�1 ´ ~�2 “

„

´
1

2
;

1

2
?
3

ȷ

In weight diagram,
H2

H1

~M1
~M1 − ~α1 − ~α2

~M1 − ~α1



In D1, three orthogonal basis states vectors are

jM1y ; E´�1 jM1y ; E´�2E´�1 jM1y :

Let xM1|M1y “ 1. Then,

xM1jE�1E´�1 jM1y “ xM1j rE�1 ; E´�1s jM1y

“ xM1j p ~�1 ¨ ~Hq jM1y

“ p ~�1 ¨ ~M1q

“ 1{2

and

xM1jE�1E�2E´�2E´�1 jM1y

“ xM1jE�1rE�2 ; E´�2sE´�1 jM1y

“ �2i xM1jE�1HiE´�1 jM1y

“ �2ip ~M1 ´ ~�1qi xM1jE�1E´�1 jM1y

“
1

2
~�2 ¨ p ~M1 ´ ~�1q

“ 1{4



Consequently,

jM1y “

»

–

1

0

0

fi

fl ; E´�1 jM1y “ 1?
2

»

–

0

1

0

fi

fl ;

E´�2E´�1 jM1y “ 1

2

»

–

0

0

1

fi

fl :

D2 or Rep.(0, 1) of sup3q is defined by the fundamental weight
vector ~M2:

~M2 “

„

1

2
; ´

1

2
?
3

ȷ

Highest weight state inD2 :

The highest weight state jM2y in D2 satisfies

E�1 jM2y “ E�2 jM2y “ 0:



Besides,
2 ~M2 ¨ ~�2

�2
2

“ 1

Thus, jM2y is also the highest weight state in the spin1
2

Rep. of
the accessory sup2q2,

jM2y “ j1{2; 1{2y
2

Other basis states inD2 :

The second basis state in D2 is

E´�2 jM2y “ E1
´ jM2y “

1
?
2

j1{2;´1{2y
2

Notice that E�1pE´�2 jM2yq “ 0. Moreover,

2p ~M2 ´ ~�2q ¨ ~�1

�2
1

“ ´2 ~�2 ¨ ~�1 “ 1



Because of these two equalities, E´�2 jM2y is not only the lowest
weight state in spin1{2 representation of sup2q2, it is also the
highest weight state in spin1{2 representation of sup2q1:

E´�2 jM2y “
1

?
2

j1{2; 1{2y
1

As a result, the third basis state in D2 is probably to be,

E´�1E´�2 jM2y “
1

2
j1{2;´1{2y

1

There are no more basis states in D2.

Conclusion :

D2 of sup3q is also 3dimensional.
D2 is conveniently recast as �3.



The weight vectors in D2 are,

~M2 “

”

1

2
; ´ 1

2
?
3

ı

(highest)
~M2 ´ ~�2 “

”

0; 1?
3

ı

~M2 ´ ~�1 ´ ~�2 “

”

´1

2
; ´ 1

2
?
3

ı

In weight diagram,

H2

H1

~M2
~M2 − ~α1 − ~α2

~M2 − ~α2



Complex conjugation :
The weight vectors of �3 are just the negatives of those of 3.
Weights in 3 :

~M1 “

”

1

2
; 1

2
?
3

ı

;

~M1 ´ ~�1 “

”

0; ´ 1?
3

ı

;

~M1 ´ ~�1 ´ ~�2 “

”

´1

2
; 1

2
?
3

ı

:

Weights in �3 :

~M2 “

”

1

2
; ´ 1

2
?
3

ı

;

~M2 ´ ~�2 “

”

0; 1?
3

ı

;

~M2 ´ ~�1 ´ ~�2 “

”

´1

2
; ´ 1

2
?
3

ı

:

Question : What does this mean ?



This means that the two representations 3 and �3 are related by
complex conjugation.

Insight 1 :
Let Xa be the generators of some representation D of some Lie
groupG. The group elements can be expressed as

ei�aXa

As a result, we have the following expressions for the group
elements of its complex conjugate �D:

pei�aXaq˚ “ e´i�aX
˚
a “ ei�ap´X˚

a
q

Besides, ´X˚
a obey the same Lie brackets as Xa,

rXa; Xbs “ ifabcXc ù rp´X˚
a q; p´X˚

b qs “ ifabcp´X˚
c q

Therefore, ´X˚
a are the generators of the complex conjugate Rep.

�D of the representation D.



Insight 2 :

The Cartan generators of the complex conjugate representation are
´H˚

i . Because each Hi are Hermitian matrices, H˚ have the
same eigenvalues as Hi.

Conclusion:
If ~� is a weight vector of Rep.D, ´~� is a weight vector of the
complex conjugate Rep. �D.

For sup3q, we have seen:

Rep. p1; 0q “ 3; Rep. p0; 1q “ �3:

In general, for sup3q, the complex conjugate of Rep.pn;mq is
Rep.pm;nq.



Proof :

Because the lowest weight vector of Rep.p1; 0q is the minus of the
highest weight vector of Rep.p0; 1q, and vice versa. We have for
Rep.pn;mq,

Highest weight : n ~M1 ` m ~M2

Lowest weight : ´n ~M2 ´ m ~M1

Consequently, the highest weight vector of its complex conjugate
representation should be,

n ~M2 ` m ~M1

Hence, Rep.pm;nq is the complex conjugate of Rep.pn;mq.

Corollary:

Rep.pn; nq are real representations of sup3q.



Rep.p1; 1q of sup3q :
We now look for the basis states of the real irreducible
representation Rep.p1; 1q of sup3q.

Rep.p1; 1q is defined by the highest weight vector,
~M “ ~M1 ` ~M2 “ p1; 0q

so 2 ~M ¨ ~�1{�
2

1
“ 1, 2 ~M ¨ ~�2{�

2

2
“ 1.

Consider the highest weight state jMy in Rep.p1; 1q, which
satisfies,

E�1 jMy “ E�2 jMy “ 0:

jMy can also be regarded as the highest weight state of the
spin1{2 representations of either sup2q1 or sup2q2,

jMy “ j1{2; 1{2y
1

“ j1{2; 1{2y
2
:

Consequently, the second and the third basis states in Rep.p1; 1q

are found to be:
E´�1 jMy “ 1?

2
j1{2;´1{2y

1

E´�2 jMy “ 1?
2

j1{2;´1{2y
2



To find out the 4th basis state in Rep.p1; 1q, we examine
E´�1 jMy in view of sup2q2.

Notice that
E�2

"

E´�1 jMy

*

“ 0

and
2p ~M ´ ~�1q ¨ ~�2

�2
2

“ 1 ´
2 ~�1 ¨ ~�2

�2
2

“ 1 ´ 2

„

´
1

2

ȷ

“ 2

we alternatively have

E´�1 jMy “
1

?
2

j1; 1y
2

It leads to the following 4th and 5th basis states in Rep.p1; 1q:

E´�2E´�1 jMy “
1

2
j1; 0y

2
; pE´�2q2E´�1 jMy “

1

2
?
2

j1;´1y
2
:



Similarly,

E´�2 jMy “
1

?
2

j1; 1y
1

The 6th and 7th basis states of Rep.p1; 1q should be:

E´�1E´�2 jMy “
1

2
j1; 0y

1
; pE´�1q2E´�2 jMy “

1

2
?
2

j1;´1y
1
:

Recall that
E´�2E´�1 jMy “

1

2
j1; 0y

2

Remark :
The basis states E´�1E´�2 jMy and E´�2E´�1 jMy are linearly
independent of each other, although they are not orthogonal.

Question :
Are there any other independent states in Rep.p1; 1q ?



To answer this question, we reexamine the 7th basis state

pE´�1q2E´�2 jMy “
1

2
?
2

j1;´1y
1

in view of sup2q2.
Since E´�1 jMy « j1{2;´1{2y

1
, we have pE´�1q2 jMy “ 0.

Consequently,

E�2pE´�1q2E´�2 jMy “ pE´�1q2
“

E�2 ; E´�2

‰

jMy

“ p ~�2 ¨ ~MqpE´�1q2 jMy

“ 0

and
2 ~�2 ¨ p ~M ´ 2 ~�1 ´ ~�2q{�2

2
“ 1 ` 2 ´ 2 “ 1:

This implies that

pE´�1q2E´�2 jMy “
1

2
?
2

j1{2; 1{2y
2



Followed which is the 8th basis state in Rep.p1; 1q,

E´�2pE´�1q2E´�2 jMy “
1

4
j1{2;´1{2y

2

The procedure ends here1.

Conclusion :

Rep.p1; 1q of sup3q is 8dimensional (i.e., adjoint), 8. It is
spanned by the following independent basis states:

jMy ; E´�1E´�2 jMy ;

pE´�1q2E´�2 jMy ; E´�1 jMy ;

E´�2E´�1 jMy ; pE´�2q2E´�1 jMy

E´�2 jMy E´�2pE´�1q2E´�2 jMy

1Because the 8th state and E´�1pE´�2q2E´�1 jMy are linearly
dependent.



The corresponding weight vectors read,

~M “ p1; 0q; ~M ´ ~�1 “ p1{2;´
?
3{2q;

~M ´ ~�2 “ p1{2;
?
3{2q; ~M ´ 2 ~�1 ´ ~�2 “ p´1{2;´

?
3{2q;

~M ´ ~�1 ´ ~�2 “ p0; 0q; pDegenerateq
~M ´ ~�1 ´ 2 ~�2 “ p´1{2;

?
3{2q; ~M ´ 2 ~�1 ´ 2 ~�2 “ p´1; 0q:

Rep.p1; 1q of sup3q is real. Its weight diagram is:
H2

H1
~M

~M − ~α2

~M − ~α1
~M − 2 ~α1 − ~α2

~M − 2 ~α1 − 2 ~α2

~M − ~α1 − 2 ~α2

~M − ~α1 − ~α2



Appendix :
Now we examine the linear dependence between the basis states of Rep.p1; 1q of
sup3q.

Theorem :

Two states jAy and jBy are linearly dependent iff

xA|By xB|Ay “ xA|Ay xB|By :

Proof:
Consider the linear equation,

c1 jAy ` c2 jBy “ 0

The coefficients c1 and c2 can be viewed as the unknown quantities of

xA|Ay c1 ` xA|By c2 “ 0;

xB|Ay c1 ` xB|By c2 “ 0:

Having nonzero c1 and c2 requires,
ˇ

ˇ

ˇ

ˇ

xA|Ay xA|By

xB|Ay xB|By

ˇ

ˇ

ˇ

ˇ

“ 0: (QED)



Firstly, we examine the linear dependence of states jAy “ E´�1E´�2 jMy and
jBy “ E´�2E´�1 jMy.

Because
xA|Ay “ xM jE�2E�1E´�1E´�2 jMy

“
`

~�1 ¨ p ~M ´ ~�2q
˘

p ~�2 ¨ ~Mq “ p1{2 ` 1{2q1{2 “ 1{2

xB|By “ 1{2

xA|By “ xM jE�2E�1E´�2E´�1 jMy

“ p ~�1 ¨ ~Mqp ~�2 ¨ ~Mq “ p1{2q ¨ p1{2q “ 1{4

xB|Ay “ 1{4

we see,
ˇ

ˇ

ˇ

ˇ

xA|Ay xA|By

xB|Ay xB|By

ˇ

ˇ

ˇ

ˇ

“ p1{2q2 ´ p1{4q2 “
3

16
‰ 0:

Hence, these two states are linearly independent.

Secondly, we examine the linearly dependence of states

j�y “ E´�1pE´�2q2E´�1 jMy ; j�y “ E´�2pE´�1q2E´�2 jMy :

The norm of j�y is calculated below,

x�|�y “ xM jE�1pE�2q2E�1E´�1pE´�2q2E´�1 jMy

“ xM jE�1pE�2q2p ~�1 ¨ ~H ` E´�1E�1qpE´�2q2E´�1 jMy

“
“

~�1 ¨ p ~M ´ ~�1 ´ 2 ~�2q
‰

xM jE�1pE�2q2pE´�2q2E´�1 jMy

` xM jE�1pE�2q2E´�1E�1pE´�2q2E´�1 jMy



where,

Term 2 “ p ~�1 ¨ ~Mq2 xM j pE�2q2pE´�2q2 jMy

“ p ~�1 ¨ ~Mq2 xM jE�2p ~�2 ¨ ~H ` E´�2E�2qE´�2 jMy

“ p ~�1 ¨ ~Mq2p ~�2 ¨ ~Mq
“

~�2 ¨ p ~M ´ ~�2q ` ~�2 ¨ ~M
‰

“ p1{2q2p1{2qp1{2 ´ 1 ` 1{2q

“ 0:

Rep.p1; 1q “ 8 is the adjoint representation of sup3q. Its highest weight vector
is nothing but the positive root vector of the highest rank,

~M “ ~�1 ` ~�2:

Consequently,

x�|�y “
“

~�1 ¨ p ~M ´ ~�1 ´ 2 ~�2q
‰

xM jE�1pE�2q2pE´�2q2E´�1 jMy

“ ´p ~�1 ¨ ~�2q xM jE�1pE�2q2pE´�2q2E´�1 jMy

“ ´p ~�1 ¨ ~�2q xM jE�1E�2p ~�2 ¨ ~H ` E´�2E�2qE´�2E´�1 jMy

“ ´p ~�1 ¨ ~�2q
“

~�2 ¨ p ~M ´ ~�1 ´ ~�2q
‰

xM jE�1E�2E´�2E´�1 jMy

´p ~�1 ¨ ~�2q xM jE�1E�2E´�2E�2E´�2E´�1 jMy

“ ´p ~�1 ¨ ~�2q xM jE�1E�2E´�2E�2E´�2E´�1 jMy

“ ´p ~�1 ¨ ~�2q
“

~�2 ¨ p ~M ´ ~�1q
‰

xM jE�1E�2E´�2E´�1 jMy

“ ´p ~�1 ¨ ~�2q
“

~�2 ¨ p ~M ´ ~�1q
‰2

p ~�1 ¨ ~Mq

“ p1{2qp1{2 ` 1{2q2p1{2q

“ 1{4



i.e. x�|�y “ 1{4. Similar calculations yield,

x�|�y “ x�|�y “ x�|�y “ 1{4

Therefore,
ˇ

ˇ

ˇ

ˇ

x�|�y x�|�y

x�|�y x�|�y

ˇ

ˇ

ˇ

ˇ

“ p1{4q2 ´ p1{4q2 “ 0

The involved two states j�y and j�y are linearly dependent.



Rep.p2; 0q of sup3q :
Rep.p2; 0q of sup3q is defined by the highest weight vector

~M “ 2 ~M1 “

„

1;
1

?
3

ȷ

that obeys the master formulae 2 ~M ¨ ~�1{�
2

1
“ 2 and

2 ~M ¨ ~�2{�
2

2
“ 0.

In Rep.p2; 0q, the highest weight state jMy satisfies,

E�1 jMy “ E�2 jMy “ 0:

As a product of the Master formula 2 ~M ¨ ~�2{�
2

2
“ 0, it also

satisfies,
E´�2 jMy “ 0:

In view of the accessory sup2q1 related to the simple root ~�1, jMy

can be formulated as,

jMy “ j1; 1y
1



Then two other basis states of Rep.p2; 0q follow,

E´�1 jMy “ j1; 0y
1
; pE´�1q2 jMy “ j1;´1y

1
:

Relying on the facts

E�2E´�1 jMy “ 0;
2p ~M ´ ~�1q ¨ ~�2

�2
2

“ 1;

the second basis state E´�1 jMy can alternatively be regarded
as the highest weight state

E´�1 jMy “ j1{2; 1{2y
2

in the spin1{2 representation of sup2q2.

This observation leads to the 4th basis state of Rep.p2; 0q,

E´�2E´�1 jMy “
1

?
2

j1{2;´1{2y
2



Notice that

E�2pE´�1q2 jMy “ 0;
2p ~M ´ 2 ~�1q ¨ ~�2

�2
2

“ 2;

the third basis state pE´�1q2 jMy can alternatively be viewed
as the highest weight state

pE´�1q2 jMy “ j1; 1y
2

in the spin1 representation of sup2q2.

As a result of sup2q2, the 5th and 6th basis states of Rep.p2; 0q

emerge. They are

E´�2pE´�1q2 jMy “ j1; 0y
2

and
pE´�2q2pE´�1q2 jMy “ j1;´1y

2

respectively.

Question:
Does Rep.p2; 0q contain any more basis states ?



Let us examine the 4th basis state E´�2E´�1 jMy.

Obviously,

E�1

"

E´�2E´�1 jMy

*

“ p ~�1 ¨ ~MqE´�2 jMy “ 0;

2

�2
1

„

p ~M ´ ~�1 ´ ~�2q ¨ ~�1

ȷ

“ 2 ´ 2 ` 1 “ 1:

This suggests that E´�2E´�1 jMy forms the highest weight state

E´�2E´�1 jMy “
1

?
2

j1{2; 1{2y
1

of the spin1{2 representation of sup2q1.

Therefore, Rep.p2; 0q does probably have the 7th basis state as
follows:

E´�1E´�2E´�1 jMy “
1

2
j1{2;´1{2y

1
:



However2, E´�1E´�2E´�1 jMy and E´�2pE´�1q2 jMy, the 5th
basis state in Rep.p2; 0q are not only of the same weight, but
linearly dependent also.

Conclusion :

Rep.p2; 0q of sup3q is a 6dimensional irreducible representation,

Rep.p2; 0q “ 6

Its 6 independent basis states read,

jMy ;

E´�2E´�1 jMy ;

E´�1 jMy ;

E´�2pE´�1q2 jMy ;

pE´�1q2 jMy ;

pE´�2q2pE´�1q2 jMy :

2Please check this claim yourself.



The weight vectors of Rep.p2; 0q are as follows:

~M “ p1; 1{
?
3q;

"

Highest
*

~M ´ ~�1 ´ ~�2 “ p0; 1{
?
3q;

~M ´ ~�1 “ p1{2;´1{2
?
3q;

~M ´ 2 ~�1 ´ ~�2 “ p´1{2;´1{2
?
3q;

~M ´ 2 ~�1 “ p0;´2{
?
3q;

~M ´ 2 ~�1 ´ 2 ~�2 “ p´1; 1{
?
3q:

Its weight diagram is
H2

H1

~M

~M − ~α1

~M − 2 ~α1

~M − 2 ~α1 − ~α2

~M − 2 ~α1 − 2 ~α2
~M − ~α1 − ~α2



Homework :

1 Consider the following matrices defined in the 6dimensional
tensor product space of the GellMann matrices �a and the
Pauli matrices �i,

1

2
�a�2; for a “ 1; 3; 4; 6 and 8;

1

2
�a; for a “ 2; 5; 7 and 7:

Show that these matrices generate a reducible representation
of sup3q and reduce it.

2 Decompose the tensor product of 3 ˆ 3, using the highest
weight techniques.
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Tensor methods :

Lower & upper indices:
We begin with relabeling the basis states of sup3q fundamental
representation p1; 0q “ 3,

jM1y “
ˇ

ˇ1{2; 1{2
?
3
D

“ j1y

E´�1 jM1y “
ˇ

ˇ0; ´1{
?
3

D

“ j3y

?
2E´�2E´�1 jM1y “

ˇ

ˇ´1{2; 1{2
?
3
D

“ j2y

,

/

/

/

/

.

/

/

/

/

-

The basis states of another sup3q fundamental representation
p0; 1q “ �3 are relabelled as:

jM2y “
ˇ

ˇ1{2; ´1{2
?
3

D

“
�
�2

D

E´�2 jM2y “
ˇ

ˇ0; 1{
?
3

D

“
�
�3

D

?
2E´�1E´�2 jM2y “

ˇ

ˇ´1{2; ´1{2
?
3

D

“
�
�1

D

,

/

/

/

/

.

/

/

/

/

-
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In Rep. 3, the matrices of SUp3q generators Xa are expressed as
`

Xa

˘i

j

so that :
Xa jjy “ jiy

`

Xa

˘i

j

Because the Rep. �3 is the complex conjugate of Rep. 3, with generators
´X˚

a , i.e.,
´

`

X˚
a

˘ i

j
“ ´

`

XT
a

˘ i

j
“ ´

`

Xa

˘i

j

Then,

Xa

�
�
�
i
D

“
�
�
�
j
E

`

´ X˚
a

˘ i

j

“ ´
�
�
�
j
E

`

Xa

˘i

j

Now, we can define the tensor product representation of sup3q.
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A typical tensor product representation of sup3q is:

3 ˆ 3 ˆ ¨ ¨ ¨ ˆ 3
loooooooomoooooooon

n

ˆ �3 ˆ �3 ˆ ¨ ¨ ¨ ˆ �3
loooooooomoooooooon

m

The basis states of tensor product representation are:
ˇ

ˇ

ˇ

i1i2¨¨¨im
j1j2¨¨¨jn

E

“
�
�
�
i1

E �
�
�
i2

E

¨ ¨ ¨
�
�
�
im

E

jj1y jj2y ¨ ¨ ¨ jjny

Recalling
XD1ˆD2

a “ XD1

a ˆ 1 ` 1 ˆ XD2

a

under the generator action, these basis states transform as follows:

Xa

ˇ

ˇ

ˇ

i1i2¨¨¨im
j1j2¨¨¨jn

E

“

n
ÿ

l“1

ˇ

ˇ

ˇ

i1i2¨¨¨im
j1j2¨¨¨jl´1kjl`1¨¨¨jn

E

`

Xa

˘k

jl

´

m
ÿ

l“1

ˇ

ˇ

ˇ

i1i2¨¨¨il´1kil`1¨¨¨im
j1j2¨¨¨jn

E

`

Xa

˘il

k

4 / 50



An arbitrary state in this tensor product space is,

jvy “

ˇ

ˇ

ˇ

i1i2¨¨¨im
j1j2¨¨¨jn

E

v
j1j2¨¨¨jn
i1i2¨¨¨im

Discussions :

v “

´

v
j1j2¨¨¨jn
i1i2¨¨¨im

¯

is called a SUp3q tensor.
In analogy with the concept of wave function in QM, we can
express the tensor’s components as:

v
j1j2¨¨¨jn
i1i2¨¨¨im

“

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ
v

E

We can think of the action of the generator Xa on state jvy

as an effective action of Xa on the tensor components:

Xa jvy “ jXavy

Consequently,
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`

Xav
˘j1j2¨¨¨jn

i1i2¨¨¨im
“

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ
Xav

E

“

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ
Xa

ˇ

ˇ

ˇ
v

E

“

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ
Xa

ˇ

ˇ

ˇ

k1k2¨¨¨km
l1l2¨¨¨ln

E

vl1l2¨¨¨ln
k1k2¨¨¨km

“

n
ÿ

q“1

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ

k1k2¨¨¨km
l1¨¨¨lq´1plq`1¨¨¨ln

E

`

Xa

˘p

lq
vl1l2¨¨¨ln
k1k2¨¨¨km

´

m
ÿ

q“1

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ

k1¨¨¨kq´1pkq`1¨¨¨km
l1l2¨¨¨ln

E

`

Xa

˘kq

p
vl1l2¨¨¨ln
k1k2¨¨¨km

“

n
ÿ

q“1

`

Xa

˘p

lq
v
j1¨¨¨jq´1lqjq`1¨¨¨jn
i1i2¨¨¨im

�
jq
p

´

m
ÿ

q“1

pXaq
kq
p v

j1j2¨¨¨jn
i1¨¨¨iq´1kqiq`1¨¨¨im

�
p
iq

The action of the SUp3q generators on an arbitrary tensor reads,

`

Xav
˘j1¨¨¨jn

i1¨¨¨im
“

n
ÿ

l“1

`

Xa

˘jl

k
v
j1¨¨¨jl´1kjl`1¨¨¨jn
i1i2¨¨¨im

´

m
ÿ

l“1

`

Xa

˘k

il
v
j1j2¨¨¨jn
i1¨¨¨il´1kil`1¨¨¨im
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Invariant tensors :

An invariant tensor of SUp3q is referred to one that does not change
under any SUp3q transformations.

SUp3q invariant tensors :

For SUp3q, three invariant tensors exist,
1 �ij
2 �ijk

3 �ijk

Proof :
The invariance of �ij is obvious,

`

Xa�
˘i

j
“

`

Xa

˘i

k
�kj ´

`

Xa

˘k

j
�ik

“
`

Xa

˘i

j
´

`

Xa

˘i

j

“ 0
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Next we consider the invariance of �ijk and �ijk. e.g.,
`

Xa�
˘ijk

“
`

Xa

˘i

l
�ljk `

`

Xa

˘j

l
�ilk `

`

Xa

˘k

l
�ijl

By definition,

�ijk “ �ijk “

$

&

%

1 if pijkq is an even permutation of p123q

´1 if pijkq is an odd permutation of p123q

0 other cases
Hence,

`

Xa�
˘

123
“

`

Xa

˘

1

i
�i23 `

`

Xa

˘

2

j
�1j3 `

`

Xa

˘

3

k
�12k

“
`

Xa

˘

1

1
`

`

Xa

˘

2

2
`

`

Xa

˘

3

3

“ Tr
`

Xa

˘

“ 0
`

Xa�
˘

112
“

`

Xa

˘

1

3
�312 `

`

Xa

˘

1

3
�132 `

`

Xa

˘

2

k
�11k

“
`

Xa

˘

1

3
´

`

Xa

˘

1

3
“ 0

`

Xa�
˘

111
“

`

Xa

˘

1

i
�i11 `

`

Xa

˘

1

j
�1j1 `

`

Xa

˘

1

k
�11k “ 0
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Therefore, for arbitrary i; j; k “ 1; 2; 3, we have
`

Xa�
˘ijk

“ 0

and similarly,
`

Xa�
˘

ijk
“ 0

Namely, �ijk and �ijk are two invariant tensors of SUp3q.

Warning :

Though �ij is a SUp3q invariant, both �ij and �ij are not invariant under
SUp3q transformations.

Explanation :
Since,

`

Xa�
˘ij

“
`

Xa

˘i

k
�kj `

`

Xa

˘j

k
�ik

we have:
`

Xa�
˘

11
“

`

Xa

˘

1

k
�k1 `

`

Xa

˘

1

k
�1k “ 2

`

Xa

˘

1

1
‰ 0
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Irreducible representations and symmetry :

We now pick out the states in tensor product representation according to
the irreducible Rep.pn;mq.

The highest weight of Rep.pn;mq of SUp3q reads:

~M “ n ~M1 ` m ~M2

where ~M1 “

´

1

2
; 1

2
?
3

¯

and ~M2 “

´

1

2
; ´ 1

2
?
3

¯

. Therefore, the highest
weight state of Rep. pn;mq is

ˇ

ˇ

222¨¨¨
111¨¨¨

D

;

"

#2 “ m; #1 “ n

*

which corresponds to the tensor vH below,

pvHq
j1j2¨¨¨jn
i1i2¨¨¨im

“

A

i1i2¨¨¨im
j1j2¨¨¨jn

ˇ

ˇ

ˇ

222¨¨¨
111¨¨¨

E

“ N �j11�j21 ¨ ¨ ¨ �jn1�i12�i22 ¨ ¨ ¨ �im2

with N the normalization constant.
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Discussions :

The tensor vH is symmetric for the exchange of any two upper
indices, and also symmetric for the exchange of any two lower
indices.

pvHq
j1j2¨¨¨jn
i1i2¨¨¨im

“ N �j11�j21 ¨ ¨ ¨ �jn1�i12�i22 ¨ ¨ ¨ �im2

“ pvHq
j2j1¨¨¨jn
i1i2¨¨¨im

“ pvHq
j1j2¨¨¨jn
i2i1¨¨¨im

The tensor vH is traceless for one upper and one lower indices,

�i1j1 pvHq
j1j2¨¨¨jn
i1i2¨¨¨im

“ 0

Both properties of vH are preserved by SUp3q transformations, under
which vH ù XavH :

`

XavH
˘j1j2¨¨¨jn

i1i2¨¨¨im
“

`

XavH
˘j2j1¨¨¨jn

i1i2¨¨¨im
“

`

XavH
˘j1j2¨¨¨jn

i2i1¨¨¨im
;

�i1j1

`

XavH
˘j1j2¨¨¨jn

i1i2¨¨¨im
“ 0:

,

/

.

/

-
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Dimension of SUp3q Rep.pn;mq :

In Rep.pn;mq of SUp3q, the tensor related to the state
ˇ

ˇ

ˇ

i1i2¨¨¨im
j1j2¨¨¨jn

E

is

v “ v
j1j2¨¨¨jn
i1i2¨¨¨im

v has n upper and m lower indices.
v is separately symmetric in each type of the indices. If there were
no further constraints, the number of independent components of
v would be:

Bpn;mq “
pn ` 2q!

n!2!

pm ` 2q!

m!2!
“

1

4
pn`1qpn`2qpm`1qpm`2q

Unfortunately, v has to be traceless. As a result, v has to satisfy
Bpn ´ 1;m ´ 1q additional constraints such as vkj2j3¨¨¨jn

i1ki3¨¨¨im
“ 0.
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The correct number of independent components of SUp3q tensor in its
irreducible Rep. pn;mq is then,

Dpn;mq “ Bpn;mq ´ Bpn ´ 1;m ´ 1q

“ 1

4
pn ` 1qpm ` 1q

“

pn ` 2qpm ` 2q ´ nm
‰

“ 1

2
pn ` 1qpm ` 1qpn ` m ` 2q

Dpn;mq could also be interpreted as the dimension of the irreducible
Rep.pn;mq.

Examples :

Dp1; 0q “ Dp0; 1q “ 3;

Dp1; 1q “ 8;

Dp2; 0q “ Dp0; 2q “ 6;

Dp2; 1q “ Dp1; 2q “ 15;

Dp2; 2q “ 27;

Dp3; 0q “ Dp0; 3q “ 10:
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ClebschGordan decomposition :

Suppose u and v are two SUp3q tensors in Rep. pn;mq and Rep. pp; qq,
respectively,

u “

´

u
j1j2¨¨¨jn
i1i2¨¨¨im

¯

; v “

´

v
a1a2¨¨¨ap
b1b2¨¨¨bq

¯

The tensor product of these two tensors

u b v “
`

u b v
˘j1¨¨¨jna1¨¨¨ap

i1¨¨¨imb1¨¨¨bq
“

´

u
j1j2¨¨¨jn
i1i2¨¨¨im

v
a1a2¨¨¨ap
b1b2¨¨¨bq

¯

yields a SUp3q tensor in a reducible representation.

Strategy for picking out irreducible representations from the
above reducible representation is,

Making irreducible representations out of the product of tensors
u and v;
Expressing u b v as a sum of such terms that are proportional
to some irreducible representations of SUp3q.

14 / 50



Consider the CGdecomposition of 3 ˆ 3.

Because 3 is Rep.p1; 0q, the tensor of 3 has the form of u “ puiq.
Consequently, an arbitrary SUp3q tensor of 3 ˆ 3 can be written
as

`

u b v
˘ij

“ uivj ; i; j “ 1; 2; 3

We do the ClebschGordan decomposition as follows:

uivj “
1

2
puivj ` ujviq `

1

2
puivj ´ ujviq

The number of the independent components of symmetric
combination 1

2
puivj ` ujviq is 1

2
¨ 3 ¨ 4 “ 6. This tensor

belongs to the irreducible representation 6 “ Rep.p2; 0q.
The second term (antisymmetric combination) can be recast
as

1

2
puivj ´ ujviq “

1

2
p�ik�

j
l ´ �il�

j
kqukvl “

1

2
�ijm�klmu

kvl
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In view of product uivj , �ijm is an invariant tensor. The remaining
factor �klmukvl forms a tensor in �3 “ Rep.p0; 1q as it has only one
bare lower index.

We conclude that
3 ˆ 3 “ 6 ` �3

Alternatively but equivalently,

p1; 0q b p1; 0q “ p2; 0q ‘ p0; 1q

Consider the tensor product of 3 ˆ �3.

Because the tensors of 3 and �3 are u “ puiq and v “ pvjq, respectively,
the tensor in 3 ˆ �3 should be

pu b vqij “ uivj

The ClebschGordan decomposition is,
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uivj “

„

uivj ´
1

3
�iju

kvk

ȷ

`
1

3
�iju

kvk

As a result,
p1; 0q b p0; 1q “ p1; 1q ‘ p0; 0q

or
3 ˆ �3 “ 8 ` 1

Consider the tensor product of 3 ˆ 8.

The tensors of 3 and 8 are u “ puiq and v “ pv
j
kq, respectively1.

Therefore, the tensor of 3 ˆ 8 has the form
`

u b v
˘ij

k
“ uiv

j
k

1The tensor of 8 must be traceless, i.e., vj j “ 0.
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The ClebschGordan decomposition is carried out in the way,

uiv
j
k “

1

2
puiv

j
k ` ujvi kq `

1

2
puiv

j
k ´ ujvi kq

“
1

2
puiv

j
k ` ujvi kq `

1

2
�ijm�mnlu

nvl k

The first term
term 1 “

1

2
puiv

j
k ` ujvi kq

has been symmetrized about the upper indices i and j. To make it
traceless further, we recast it as

term 1 “
1

2

”

puiv
j
k ` ujvi kq ´ a�iku

lv
j
l ´ b�

j
ku

lvi l

ı

`
1

2

´

a�iku
lv
j
l ` b�

j
ku

lvi l

¯

The first row is expected to be in Rep.p2; 1q but the second row in
Rep.p1; 0q.
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The traceless condition in Rep.p2; 1q requires,

ulv
j
lp1 ´ 3a ´ bq “ 0; ulvi lp1 ´ a ´ 3bq “ 0:

Hence a “ b “ 1{4. We finally recast the first term as:

term 1 “
1

2

„

puiv
j
k ` ujvi kq ´

1

4
p�iku

lv
j
l ` �

j
ku

lvi lq

ȷ

`
1

8

´

�iku
lv
j
l ` �

j
ku

lvi l

¯

In the previous formula for decomposition of tensor product uivj k, the
second term reads,

term 2 “
1

2
�ijm�mnlu

nvl k

After discarding the invariant tensor �ijm, it has only two lower indices
m and k, effectively.
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Irreducibility requires the symmetrization about these two indices.
Therefore,

term 2 “
1

2
�ijm

„

1

2
p�mnlu

nvl k ` �knlu
nvl mq

`
1

2
p�mnlu

nvl k ´ �knlu
nvl mq

ȷ

“
1

4
�ijm

´

�mnlu
nvl k ` �knlu

nvl m

¯

`
1

4
�ijm�pnlu

nvl qp�pm�
q
k ´ �qm�

p
kq

“
1

4
�ijm

´

�mnlu
nvl k ` �knlu

nvl m

¯

`
1

4
�ijm�pnlu

nvl q�mkr�
pqr

On RHS, the first row stands for a symmetric tensor in Rep.p0; 2q.
Let us now focus on the second row.
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1

4
�ijm�pnlu

nvl q�mkr�
pqr “

1

4
unvl q

`

�ik�
j
r ´ �

j
k�

i
r

˘`

�qn�
r
l ´ �rn�

q
l

˘

“
1

4
unvl q

„

�ikp�
j
l �

q
n ´ �jn�

q
l q ´ �

j
kp�il�

q
n ´ �in�

q
l q

ȷ

“
1

4

„

�ikpulv
j
l ´ ujvl lq ´ �

j
kpulvi l ´ uivl lq

ȷ

“
1

4

´

�iku
lv
j
l ´ �

j
ku

lvi l

¯

which stands for the tensor of Rep.p1; 0q.

In summary,

uiv
j
k “

1

2

„

puiv
j
k ` ujvi kq ´

1

4
p�iku

lv
j
l ` �

j
ku

lvi lq

ȷ

`
1

4
�ijm

´

�mnlu
nvl k ` �knlu

nvl m

¯

`
1

8

´

3�iku
lv
j
l ´ �

j
ku

lvi l

¯

21 / 50



It implies:
p1; 0q b p1; 1q “ p2; 1q ‘ p0; 2q ‘ p1; 0q

Equivalently,
3 ˆ 8 “ 15 ` �6 ` 3

Consider the CGdecomposition of 6 ˆ 3.

The tensors of 6 and 3 are u “ puijq and v “ pvkq, respectively.
Consequently, the tensor of 6 ˆ 3 has the form

`

u b v
˘ijk

“ uijvk

where u is a symmetric tensor of SUp3q in Rep.p2; 0q,

uij “ uji
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By symmetrizing all of the upper indices,

uijvk “
1

3

´

uijvk ` ujkvi ` ukivj
¯

`
1

3

´

2uijvk ´ ujkvi ´ ukivj
¯

The first term on RHS

1

3

´

uijvk ` ujkvi ` ukivj
¯

is symmetric for exchanging any two indices. It describes a tensor in
irreducible Rep.p3; 0q of SUp3q.

The second term is recast as:

1

3
p2uijvk ´ ujkvi ´ ukivjq

“
1

3

´

uijvk ´ ujkvi
¯

`
1

3

´

uijvk ´ ukivj
¯
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“
1

3

´

�im�
k
n ´ �in�

k
m

¯

umjvn `
1

3

´

�jm�
k
n ´ �jn�

k
m

¯

uimvn

“
1

3

„

�ikl �lmnu
mjvn

looooomooooon

traceless �lmnu
ml “ 0

` � jkl �lmnu
imvn

looooomooooon

traceless �lmnu
lm “ 0

ȷ

Apart from the invariant tensors �ikl and �jkl, the term is involved in
some traceless tensors

�lmnu
mjvn; �lmnu

imvn

Hence, it describes a tensor in the SUp3q irreducible Rep.p1; 1q.

In summary,

uijvk “
1

3

´

uijvk ` ujkvi ` ukivj
¯

`
1

3

´

�ikl�lmnu
mjvn ` � jkl�lmnu

imvn
¯
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It implies that,
p2; 0q b p1; 0q “ p3; 0q ‘ p1; 1q

Equivalently,
6 ˆ 3 “ 10 ` 8

Corollary :

3 ˆ 3 ˆ 3 “ p6 ` �3q ˆ 3 “ 10 ` 8 ` 8 ` 1

Equivalently,

p1; 0q b p1; 0q b p1; 0q “ p3; 0q ‘ p1; 1q ‘ p1; 1q ‘ p0; 0q
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Homework :

Problems :
1 Decompose the product of tensor components uivjk, where
vjk “ vkj transforms like a tensor in Rep.6 of SUp3q.

2 Find the matrix elements xu|Xa|vy, where Xa stand for the SUp3q

generators and juy and jvy are states in the adjoint representation
of SUp3q with tensor components uij and vij . Write the result in
terms of the tensor components and the GellMann Matrices.

3 In Rep. 6 of SUp3q, for each weight find the corresponding tensor
component vij .
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Young tableaux in SUp3q :

Young tableaux is very convenient in dealing with the ClebschGordan
decomposition of the Lie group representations. Here we consider its
application in SUp3q.

A crucial observation:

The representation �3 of SUp3q is the antisymmetric product of two 3’s,

wi “ �ijku
jvk

An irreducible SUp3q tensor A in Rep.pn;mq has the component
structure

A i1i2¨¨¨in
j1j2¨¨¨jm

1 A is symmetric in upper and lower indices, separately.
2 A is traceless for one upper and one lower indices.
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We can raise all the lower tensor indices by using the invariant tensor
�ijk of SUp3q,

�j1k1l1�j2k2l2 ¨ ¨ ¨ �jmkmlmA i1i2¨¨¨in
j1j2¨¨¨jm

“ Bk1l1k2l2¨¨¨kmlmi1i2¨¨¨in

Bk1l1k2l2¨¨¨kmlmi1i2¨¨¨in is antisymmetric in each pair tka; lau

for interchange

ka ú la; pa “ 1; 2; ¨ ¨ ¨ ; mq

and symmetric for exchange of pairs
!

ka; la

)

ú

!

kb; lb

)

; pa; b “ 1; 2; ¨ ¨ ¨ ; mq

Traceless condition of A becomes:

�i1k1l1B
k1l1k2l2¨¨¨kmlmi1i2¨¨¨in

“ �i2k2l2B
k1l1k2l2¨¨¨kmlmi1i2¨¨¨in

“ ¨ ¨ ¨ “ 0
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The traceless condition of tensor B could be shown as follows:

�i1k1l1B
k1l1k2l2¨¨¨kmlmi1i2¨¨¨in

“ �i1k1l1�
j1k1l1 �j2k2l2 ¨ ¨ ¨ �jmkmlm A i1i2¨¨¨in

j1j2¨¨¨jm

“ 2�
j1
i1
�j2k2l2 ¨ ¨ ¨ �jmkmlm A i1i2¨¨¨in

j1j2¨¨¨jm

“ 2�j2k2l2 ¨ ¨ ¨ �jmkmlmA i1i2¨¨¨in
i1j2¨¨¨jm

“ 0

With such a SUp3q tensor Bk1l1k2l2¨¨¨kmlmi1i2¨¨¨in in Rep.pn;mq, we
associate a Young tableau

k1 k2 ¨ ¨ ¨ km i1 i2 ¨ ¨ ¨ in

l1 l2 ¨ ¨ ¨ lm
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The Young tableau

k1 k2 ¨ ¨ ¨ km i1 i2 ¨ ¨ ¨ in

l1 l2 ¨ ¨ ¨ lm

describes a tensor

B “

´

Bk1l1k2l2¨¨¨kmlmi1i2¨¨¨in
¯

with the following properties:
It has pn ` 2mq upper indices.

It is antisymmetric for index interchange in every pair
!

ka; la

)

,
where a “ 1; 2; ¨ ¨ ¨ ;m.
It is symmetric under arbitrary permutations of the indices ib and
ka, and separately symmetric under arbitrary permutations of la,
where a “ 1; 2; ¨ ¨ ¨ ;m and b “ 1; 2; ¨ ¨ ¨ ; n.
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Question : Why ?

Because A “ E´vH
2, and the SUp3q transformation preserves the

permutational symmetries in tensor indices, we are necessary to analyze
the claimed symmetries for tensor BH ,

Bk1l1k2l2¨¨¨kmlmi1i2¨¨¨in
H

“ �j1k1l1�j2k2l2 ¨ ¨ ¨ �jmkmlm
`

vH
˘i1i2¨¨¨in

j1j2¨¨¨jm

“ N �j1k1l1�j2k2l2 ¨ ¨ ¨ �jmkmlm�i11�i21 ¨ ¨ ¨ �in1�j12�j22 ¨ ¨ ¨ �jm2

“ N �2k1l1�2k2l2 ¨ ¨ ¨ �2kmlm�i11�i21 ¨ ¨ ¨ �in1

The independent components of BH read,

B1313¨¨¨1311¨¨¨1
H “ N �213�213 ¨ ¨ ¨ �213 “ ˘N

corresponding to

k1 “ k2 “ ¨ ¨ ¨ “ km “ i1 “ i2 “ ¨ ¨ ¨ “ in “ 1

l1 “ l2 “ ¨ ¨ ¨ “ lm “ 3

2E´ stands for some SUp3q generator.
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Therefore,
1 BH is symmetric for interchanging the indices in the same rows of

the corresponding Young tableau.
2 BH is antisymmetric for exchanging the indices in the same

columns of the corresponding Young tableau.
3 Young tableaux can be directly used to represent the irreducible

representations of SUp3q.

Example 1:

Young tableau

i

can be used to stand for either a SUp3q tensor ui of irreducible
representation 3 or 3 itself3.

3For SUp3q, 3 is Rep.p1; 0q. Similarly, 6 “ Rep.p2; 0q.
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Example 2:
Young tableau

i j

describes either a symmetric SUp3q tensor

uij “ uji

in Rep.p2; 0q “ 6 or 6 itself.

Example 3:
Young tableau

i
j

describes either the antisymmetric SUp3q tensor

uij “ ´uji “ �ijkvk

in Rep.p0; 1q “ �3 or �3 itself.
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Example 4:
Young tableau

i j
k

describes either a SUp3q tensor

uijk “ ujik “ ´ukji “ �iklv
j
l

in Rep.p1; 1q “ 8 or 8 itself.

Example 5:
Young tableau

i
j
k

is related to the invariant SUp3q tensor �ijk. It represents the trivial
Rep.p0; 0q “ 1.
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Example 6:

Young tableau

i
j
k
l

is not allowed in SUp3q. The antisymmetric SUp3q tensor

uijkl;

"

i; j; k; l “ 1; 2; 3

*

does not exist in any of its representations.

35 / 50



Warning :

1 In Young tableaux of SUp3q, any columns with 3 boxes contribute
a factor proportional to �123 and should be ignored. e.g,

a b c d e f g

h i j

k l

should be reduced to

c d e f g

j

2 The SUp3q tensor which relates to a Young tableau with more than
3 boxes in any column vanishes!
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Calculating Dpn;mq by using Young tableaux :

The irreducible Rep.pn;mq of SUp3q has dimension

Dpn;mq “
1

2
pn ` 1qpm ` 1qpn ` m ` 2q

Question:

Can Dpn;mq be deduced from the corresponding Young tableau ?

The answer is absolutely yes. We draw the corresponding Young tableau

k1 k2 ¨ ¨ ¨ km i1 i2 ¨ ¨ ¨ in

l1 l2 ¨ ¨ ¨ lm

and represent Dpn;mq as a fraction:

Dpn;mq “
apn;mq

bpn;mq
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We now introduce the rules for calculating apn;mq and bpn;mq.
To this end, we need define two concepts:

1 Content mij

2 Hook number hij
for related Young tableau. For later convenience, consider SUpNq for
a generic N ě 3. The content mij for a box at the jth column of the
ith row is,

mij “ j ´ i

Example : For Young tableau

we have m23 “ 1, m14 “ 3 but m32 “ ´1.
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To define hook number hij , we have to introduce the socalled hook for
each box in Young tableau.

Here is the hook for box at the third column of the first row,

The hook number hij is the total number of boxes along the hook of the
box at the jth column of the ith row in the Young tableau.

In given example, we have:

h13 “ 5; h22 “ 3; h21 “ 5:
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Dimensions of SUpNq irreducible representations :

dr�s

`

SUpNq
˘

:

The dimension of the irreducible representation of SUpNq described by
Young tableau r�s is expressed by a quotient,

dr�s

`

SUpNq
˘

“
ź

ij

N ` mij

hij

For SUp3q, this formula reduces to:

Dpn;mq “
apn;mq

bpn;mq

where

apn;mq “
ź

ij

p3 ` mijq; bpn;mq “
ź

ij

hij :

By define the socalled Numerator Young tableau:
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3 4 ¨ ¨ ¨ m ` 2 m ` 3 m ` 4 ¨ ¨ ¨ m ` n ` 2

2 3 ¨ ¨ ¨ m ` 1

we can easily get:

apn;mq “

n`m`2
ź

i“3

m`1
ź

j“2

ij “
1

2
pn ` m ` 2q!pm ` 1q!

We introduce the denominator Young tableau as follows:

h11 h12 ¨ ¨ ¨ h1m n n ´ 1 ¨ ¨ ¨ 1

h21 h22 ¨ ¨ ¨ h2m

where h11 “ n ` m ` 1, h12 “ n ` m, h1m “ n ` 2, h21 “ m,
h22 “ m ´ 1 and h2m “ 1. Therefore,

bpn;mq “
pn ` m ` 1q!m!

pn ` 1q
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Consequently,

Dpn;mq “
apn;mq

bpn;mq

“
pn ` m ` 2q!pm ` 1q!

2
¨

pn ` 1q

pn ` m ` 1q!m!

“
1

2
pn ` 1qpm ` 1qpn ` m ` 2q

This is what we have expected.
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ClebschGordan decomposition :

Let us now to discuss the Young tableau rules for decomposing the
tensor product of two SUp3q irreducible representations. e.g.,

b “ ?

CGdecomposition rules :

Mark each box of the second empty tableau with the corresponding
number of its row. e.g.,

1 1 1 1 1 1
2 2 2 2 2

Continue by adding all the boxes of the second tableau to the first
one. These boxes may only be added to the right or the bottom of
the first tableau.
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Each resulting tableau has to be an allowed configuration, i.e., no
row is longer than the row above.

In the case of SUpNq, no column must contain more than N
boxes.

Within a row, the numbers in the boxes originating from the
second tableau must not decrease from left to right.

Within a column, the numbers in the boxes originating from the
second tableau must increase from top to bottom.

A box of the ith row of the second Young tableau must not be
attached to the first pi ´ 1q rows of the first Young tableau.

If two tableaux of the same shape are produced, they are counted as
different only if the labels are different.
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Reading along the rows from right to left and from the top row
down to the bottom row, the number of 1s must be greater than or
equal to the number of 2s.

Examples :

Focus on the tensor products of some irreducible representations of
SUp3q.

The first example is,
b “ ?

By the studied rules,

b ù b 1 “ 1 ‘
1

Namely,
3 ˆ 3 “ 6 ` �3
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Our second example is about the CGdecomposition of

b

By the studied rules,

b ù b 1 “
1

‘

1

i.e.,
�3 ˆ 3 “ 8 ` 1
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Another example is to ask

b “ ?

By the studied rules, we have:

b ù b
1
2

“

!

b 1

)

b 2

“

"

1 ‘
1

*

b 2

“
1

2
‘ 1

2

“ ‘

i.e.,

3 ˆ �3 “ 8 ` 1
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As the 4th example in SUp3q, we consider

b “ ?

By the studied rules, we see that

b ù b
1
2

“

"

b 1

*

b 2

“

#

1
‘

1

+

b 2

“
1

2

‘
1
2

“ ‘

i.e.,
�3 ˆ �3 “ 3 ` �6

48 / 50



Finally, we consider the CGdecomposition of tensor product of

b

By the studied rules, we have :

b
1 1
2

“
1

1
2

‘
1

2
1

‘
1 1

2

‘
1

1 2
‘ 1

1 2

‘
1 1

2

i.e.,
8 ˆ 8 “ 8 ` 8 ` 27 ` 10 ` 1 ` 10
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Homework :

Problems :

1 Find p2; 1q b p2; 1q for SUp3q. Can you determine which
representations appear antisymmetrically in the tensor
product, and which appear symmetrically?

2 Find 10 ˆ 8.

3 For any Lie group, the tensor product of the adjoint representation
with any arbitrary nontrivial representation D must contain D
(think about the action of the generators on the states of D and
see if you can figure out why this is so.). In particular, you know
that for any nontrivial SUp3q representation D. How can you see
this using Young tableaux?
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SUpNq :

Special unitary group SUpNq has pN2 ´ 1q hermitian generators Ta,
a “ 1; 2; ¨ ¨ ¨ ; pN2 ´ 1q:

In defining Rep., Ta are hermitian, traceless, N ˆ N matrices with
normalization

Tr
"

TaTb

*

“
1

2
�ab

They can be defined as a generalization of the GellMann matrices:

“

T
p1q

ab

‰

ij
“

1

2

"

�ai�bj ` �aj�bi

*

“

T
p2q

ab

‰

ij
“ ´

i

2

"

�ai�bj ´ �aj�bi

*

“

T
p3q
c

‰

ij
“

$

’

’

&

’

’

%

�ij
1?

2cpc´1q
; if i ă c ;

´�ij

b

pc´1q

2c
; if i “ c ;

0; if i ą c:

where a; b “ 1; 2; ¨ ¨ ¨ ; N but a ă b, and c “ 2; 3; ¨ ¨ ¨ ; N .



The N ´ 1 generators T p3q
c form the Cartan subalgebra of supNq. We

relabel them as Hm “ T
p3q
m`1, so m “ 1; 2; ¨ ¨ ¨ ; N ´ 1. In defining

Rep.,

“

Hm

‰

ij
“

1
a

2mpm ` 1q

«

m
ÿ

k“1

�ik ´ m�i;m`1

ff

�ij

The generators of the raising and lowering operators are defined by,

E˘�ab “
1

?
2

”

T
p1q

ab ˘ iT
p2q

ab

ı

so that

E
:
˘�ab “ E¯�ab ; Tr

"

E�abE´�cd

*

“
1

2
�ac�bd:

In defining Rep.,

“

E�ab

‰

ij
“

1
?
2
�ai�bj ;

“

E´�ab

‰

ij
“

1
?
2
�aj�bi:



Weights of defining Rep. of SUpNq :

The defining Rep. of SUpNq has dimension N . It can be characterized
by N (dependent) weights

�j ; j “ 1; 2; ¨ ¨ ¨ ; N

Each weight �j is a pN ´ 1qdimensional vector in weight space, whose
mth component reads,

“

�j
‰

m
“

“

Hm

‰

jj
“

1
a

2mpm ` 1q

«

m
ÿ

k“1

�jk ´ m�j;m`1

ff

They satisfy,

�i ¨ �j “ ´
1

2N
`

1

2
�ij

So the weights all have the same length, |�i|2 “ pN ´ 1q{2N , and the
angles between any two distinct weights are equal:

�i ¨ �j “ ´
1

2N
for i ‰ j:



Proof :

For j “ 1; 2; ¨ ¨ ¨ ; N , we have

p�jq2 “

N´1
ÿ

m“1

“

�j
‰

m

“

�j
‰

m
“

N´1
ÿ

m“1

1

2mpm ` 1q

«

m
ÿ

k“1

�jk ´ m�j;m`1

ff

2

“

j´1
ÿ

m“1

1

2mpm ` 1q
r´m�j;m`1s

2

`

N´1
ÿ

m“j

1

2mpm ` 1q

«

m
ÿ

k“1

�jk ´ m�j;m`1

ff

2

“
pj ´ 1q2

2jpj ´ 1q
`

N´1
ÿ

m“j

1

2mpm ` 1q

“
pj ´ 1q

2j
`

1

2

N´1
ÿ

m“j

ˆ

1

m
´

1

m ` 1

˙

“
pj ´ 1q

2j
`

1

2

ˆ

1

j
´

1

N

˙

“
N ´ 1

2N



and for i ă j,

�i ¨ �j “

N´1
ÿ

m“1

“

�i
‰

m

“

�j
‰

m

“

N´1
ÿ

m“1

1

2mpm ` 1q

«

m
ÿ

k“1

�ik ´ m�i;m`1

ff «

m
ÿ

l“1

�jl ´ m�j;m`1

ff

“ ´
1

2j

j´1
ÿ

m“1

«

m
ÿ

k“1

�ik ´ m�i;m`1

ff

�m;j´1

`

N´1
ÿ

m“j

1

2mpm ` 1q

«

m
ÿ

k“1

�ik ´ m�i;m`1

ff

“ ´
1

2j
`

N´1
ÿ

m“j

1

2mpm ` 1q

“ ´
1

2j
`

1

2

ˆ

1

j
´

1

N

˙

“ ´
1

2N



Explicitly, the mth component1 of supNq weights in its defining
representation read

“

�1
‰

m
“

1
a

2mpm ` 1q

“

�2
‰

m
“

1
a

2mpm ` 1q

˜

m
ÿ

k“1

�k2 ´ �m;1

¸

“

�3
‰

m
“

1
a

2mpm ` 1q

˜

m
ÿ

k“1

�k3 ´ 2�m;2

¸

¨ ¨ ¨

“

�j
‰

m
“

1
a

2mpm ` 1q

«

m
ÿ

k“1

�kj ´ pj ´ 1q�m;j´1

ff

¨ ¨ ¨

“

�N
‰

m
“ ´

c

N ´ 1

2N
�m;N´1

1Evidently, 1 ď m ď N ´ 1.



We see, for all possible m p1 ď m ď N ´ 1q,

řN
j“1

“

�j
‰

m
“

1
a

2mpm ` 1q

N
ÿ

j“1

«

m
ÿ

k“1

�kj ´ m�j;m`1

ff

“
1

a

2mpm ` 1q

«

m
ÿ

j;k“1

�kj ´ m

N
ÿ

j“1

�j;m`1

ff

“
1

a

2mpm ` 1q
rm ´ ms

“ 0

It turns out to be the traceless condition of the Cartan generator Hm.
Namely,

N
ÿ

j“1

�j “ 0

This result is an implication of the fact that in pN ´ 1qdimensional
weight space, the maximum number of independent vectors is N ´ 1.



The supNq weights in its defining representation are listed below:

�1 “

«

1

2
;

1

2
?
3
; ¨ ¨ ¨ ;

1
a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

�2 “

«

´
1

2
;

1

2
?
3
; ¨ ¨ ¨ ;

1
a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

�3 “

«

0; ´
1

?
3
;

1

2
?
6

¨ ¨ ¨ ;
1

a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

¨ ¨ ¨

�m “

«

0; 0; ¨ ¨ ¨ ;
1

a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

�m`1 “

«

0; 0; ¨ ¨ ¨ ; ´
m

a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

¨ ¨ ¨

�N “

«

0; 0; ¨ ¨ ¨ ; 0; ¨ ¨ ¨ ; ´
N ´ 1

a

2NpN ´ 1q

ff



Discussions :
�1 is the highest weight of the defining representation of supNq

�1 “

«

1

2
;

1

2
?
3
; ¨ ¨ ¨ ;

1
a

2mpm ` 1q
; ¨ ¨ ¨ ;

1
a

2NpN ´ 1q

ff

and
�1 ą �2 ą �3 ą ¨ ¨ ¨ ą �N´1 ą �N

The raising and lowering operators take us from one weight to
another, so the supNq roots �ij are differences of its weights,
�ij “ �i ´ �j for i ‰ j.
The roots all have length 1.

p�i ´ �jq2 “ p�iq2 ` p�jq2 ´ 2�i ¨ �j

“ 2

ˆ

N ´ 1

2N

˙

´ 2

ˆ

1

2
�ij ´

1

2N

˙

“ 1

The last step has used the fact i ‰ j.



For supNq, the positive roots are �ij “ �i ´ �j for i ă j. As expected,
their number is NpN ´ 1q{2.

The simple roots of supNq are

�i “ �i ´ �i`1; i “ 1; 2; ¨ ¨ ¨ ; N ´ 1:

Relying on the fact,

�i ¨ �j “ p�i ´ �i`1q ¨ p�j ´ �j`1q

“ �i ¨ �j ` �i`1 ¨ �j`1 ´ �i ¨ �j`1 ´ �i`1 ¨ �j

“ �ij ´
1

2

`

�i;j`1 ` �i;j´1

˘

ù �i;i˘1 “ 2�{3

the Dynkin diagram of supNq is:

¨ ¨ ¨supNq:



Explicit forms of positive roots of supNq :

For completeness, we give the explicit expressions of supNq positive
roots:

r�ijsm “
1

a

2mpm ` 1q

«

m
ÿ

k“1

p�ki ´ �kjq ´ mp�m;i´1 ´ �m;j´1q

ff

where m; i “ 1; 2; ¨ ¨ ¨ ; N ´ 1; j “ 2; 3; ¨ ¨ ¨ ; N and i ă j.

Equivalently,

r�ijsm “

$

&

%

r´m�m;i´1s{
a

2mpm ` 1q if m ă i ;
r1 ` m�m;j´1s{

a

2mpm ` 1q if i ď m ă j ;
0 if m ě j .

Exercise (optional) :

Please check
rHm; E˘�ij s “ ˘r�ijsmE˘�ij

for SUpNq.



Fundamental weights of supNq :

Group SUpNq has pN ´ 1q inequivalent irreducible fundamental Reps.
Each of them is characterized by a fundamental weight. e.g., Dj by �j ,
satisfying

2�i ¨ �j

p�iq2
“ �ij

The supNq fundamental weights read explicitly,

�j “

j
ÿ

k“1

�k; j “ 1; 2; 3; ¨ ¨ ¨ ; N ´ 1:

�1 “ �1 is the highest weight of D1, the defining Rep. of supNq.

1 The highest weight of any irreducible Rep. of supNq can be
written as

� “

N´1
ÿ

i“1

qi�
i

qis are nonnegative integers, called the Dynkin coefficients.



Checking :

2�i ¨ �j

p�iq2
“ 2p�i ´ �i`1q ¨

j
ÿ

k“1

�k

“ 2

j
ÿ

k“1

”

p�i ¨ �kq ´ p�i`1 ¨ �kq

ı

“ 2

j
ÿ

k“1

„ˆ

´
1

2N
`

1

2
�ki

˙

`

ˆ

1

2N
´

1

2
�k;i`1

˙ȷ

“

j
ÿ

k“1

r�ki ´ �k;i`1s

“ �ij

In the last step, we have analyzed three cases of i ă j, i “ j and i ą j.



SUpNq tensors :

As in SUp3q, we can associate SUpNq states with SUpNq tensors.

The basis vectors of SUpNq defining Rep. are
�
�
��i

D

, i “ 1; 2; ¨ ¨ ¨ ; N .

Hm

�
�
��i

E

“ r�ism

�
�
��i

E

where m “ 1; 2; ¨ ¨ ¨ ; N ´ 1 and

r�ism “
1

a

2mpm ` 1q

«

m
ÿ

k“1

�ki ´ m�i;m`1

ff

Let us relabel the basis states
�
�
��i

D

as jiy. An arbitrary state in SUpNq

defining Rep. could be
juy “ ui jiy

The wave function ui is called a SUpNq vector.



The arbitrary representations of SUpNq could be built as the tensor
products of the defining Reps.

Consider the antisymmetric tensor product of m defining Reps.. The
basis vectors of such a tensor Rep. are

ji1i2¨¨¨imy “ ji1y ^ ji2y ^ ¨ ¨ ¨ ^ jimy

The general states in this Rep. are:

jAy “ Ari1i2¨¨¨ims ji1i2¨¨¨imy

where the wave function Ari1i2¨¨¨ims forms a completely antisymmetric
SUpNq tensor.

Because of the antisymmetry, this set of states forms an irreducible
representation of SUpNq.
Because of antisymmetry, no two indices among i1, i2, ¨ ¨ ¨ , im
can take on the same value.



Consequently, the highest weight state in such Rep. is,

jAHy “ A12¨¨¨m
H j12¨¨¨my 9

„

�
�
��1

D

^
�
�
��2

D

^ ¨ ¨ ¨ ^ j�my

ȷ

The highest weight of this tensor Rep. reads,

�highest “

m
ÿ

k“1

�k

It turns out to be the fundamental weight �m if 1 ď m ď N ´ 1.

Insight:

The antisymmetric tensor products of m defining Reps. of SUpNq for
1 ď m ď N ´ 1 are the fundamental representations Dm.

Question :

What is the lowest weight of Rep. Dm ?



To answer this question, we have to notice the facts that
Rep. Dm is the antisymmetric tensor product of m Rep. D1s.
In defining Rep. D1, the weight sequence is:

�1 ą �2 ą ¨ ¨ ¨ ą �N

Thereby, the lowest weight state jALy in Rep. Dm should be:

jALy 9

„

�
�
��N´m`1

D

^
�
�
��N´m`2

D

^ ¨ ¨ ¨ ^
�
�
��N

D

ȷ

The lowest weight of this tensor Rep. reads,

�lowest “

N
ÿ

k“N´m`1

�k

The SUpNq tensor Ari1i2¨¨¨ims associated with the fundamental Rep.
Dm could be denoted as a Young tableau with one column of m boxes:



Ari1i2¨¨¨ims „ ...

We will sometimes denote the representation corresponding to a
Young tableau by giving the number of boxes in each column of
the tableau, a series of nonincreasing integers, rl1; l2; ¨ ¨ ¨ s.
In this notation, Dm is rms.

The dimension of fundamental Rep.rms of SUpNq is,

drms “ Cm
N “

N !

m!pN ´ mq!

where 1 ď m ď N ´ 1. As expected,

dr1s “ N



Now consider a general SUpNq irreducible Rep. of highest weight

� “

N´1
ÿ

k“1

qk�
k

The Dynkin coefficients qk are some nonnegative integers.
The tensor associated with this representation has, for each k from
1 to N ´ 1, qk sets of k indices that are antisymmetric within
each set.
The tensor can be identified to a Young tableau with qk columns
of k boxes:



Example :

Consider the SUpNq irreducible Rep. with highest weight2

� “ �1 ` �2

The tensor associated with this Rep. is represented by Young tableau

so the Rep. can be denoted as r2; 1s.

Let us study the dimension of Rep.r2; 1s now. r2; 1s tensor does only
allow the following independent components:

i j
k

; i k
j

; i i
j

; i j
j

where i; j; k “ 1; 2; ¨ ¨ ¨ ; N but i ă j ă k.

2This highest weight can alternatively be cast as: � “ 2�1 ` �2.



The number of tensor components

i j
k

; i k
j

for i ă j ă k are clearly,

d1 “ 2 ¨ C3

N “ 2 ¨
NpN ´ 1qpN ´ 2q

3!
“

1

3
NpN ´ 1qpN ´ 2q

The number of tensor components

i i
j

; i j
j

for i ă j are,

d2 “ 2

„

pN ´ 1q ` pN ´ 2q ` pN ´ 3q ` ¨ ¨ ¨ ` 1

ȷ

“ 2 ¨
1

2
NpN ´ 1q “ NpN ´ 1q

Consequently, the dimension of SUpNq Rep.r2; 1s is,

dr2;1s “ d1`d2 “
1

3
NpN´1qpN´2q`NpN´1q “

1

3
NpN`1qpN´1q



If N “ 3, dr2;1s “ 8. As is well known, r2; 1s is the adjoint Rep. of
SUp3q.

Example :

Consider the SUpNq irreducible Rep. with highest weight3

� “ 3�1

The tensor associated with this Rep. is represented by Young tableau

so the Rep. can be denoted as r1; 1; 1s.

The dimension of Rep.r1; 1; 1s is calculated as follows. It is known that
the independent components of a tensor correspond to the standard Young
tableaux. Consequently,

3This highest weight can alternatively be cast as: � “ 3�1.



The tensor of Rep. r1; 1; 1s has the following independent components:

i j k

where i; j; k “ 1; 2; ¨ ¨ ¨ ; N and i ď j ď k. In other words,

i ă j ` 1 ă k ` 2

are 3 different integers from the set 1, 2, ¨ ¨ ¨ , pN ` 2q.

The number of independent components of SUpNq tensor r1; 1; 1s is
therefore equal to the number of ways of selecting 3 different integers
from the set 1, 2, ¨ ¨ ¨ , pN ` 2q:

dr1;1;1s “ C3

N`2 “
pN ` 2q!

3!pN ´ 1q!
“

1

6
NpN ` 1qpN ` 2q

If N “ 3,
dr1;1;1s “ 10:



Adjoint Rep. of SUpNq :

By definition, the adjoint Rep. of SUpNq has dimension pN2 ´ 1q.
Because SUpNq is compact, its adjoint Rep. is real.

In adjoint Rep., the SUpNq tensor should have one upper index and
one lower index, uij , satisfying the traceless condition:

uii “ 0

Therefore,

uij 9 �ji2i3¨¨¨iN

„

vi b vi2 ^ vi3 ^ ¨ ¨ ¨ ^ viN
ȷ

where vi is the SUpNq vector in its defining Rep.r1s, and

�i1i2¨¨¨iN “

$

&

%

1 if pi1i2 ¨ ¨ ¨ iN q is an even permutation of p12 ¨ ¨ ¨Nq;
´1 if pi1i2 ¨ ¨ ¨ iN q is an odd permutation of p12 ¨ ¨ ¨Nq;
0 other cases

is an invariant tensor of SUpNq.



This implies that the SUpNq tensor in its adjoint Rep. can be described
by Young tableau4

...

The adjoint Rep. of SUpNq is therefore denoted as Rep.rN ´ 1; 1s.

Question :

How to calculate the dimension drN´1;1s of SUpNq adjoint Rep.
directly from the given Young tableau ?

4Hence, the SUpNq adjoint Rep. is not among its fundamental irreducible
representations.



Factors over hooks Rule :

The dimension of an irreducible Rep. of SUpNq specified by a Young
tableau can simply be calculated with the factors over hooks rule,

d “
F

H

1 The factors are defined as follows. Put an N in the upper left hand
corner of the Young tableau. Then put factors in all the other boxes,
by adding 1 each time you move to the right, and subtracting 1

each time you move down. The product of all these factors is F .

2 There is one hook for each box. Call the number of boxes the hook
passes through h. The product of all these hs for all hooks is H.



Sample : Please calculate the dimension dr2;1s of SUpNq irreducible
Rep.r2; 1s by using factors over hooks rule.

Solution :

The SUpNq tensor in Rep.r2; 1s corresponds to Young tableau,

Hence5,
F “

x y
z

“ xyz “ pN ` 1qNpN ´ 1q

H “
3 1
1

“ 3

Therefore,
dr2;1s “ F {H “

1

3
NpN ` 1qpN ´ 1q

5Here we set x “ N , y “ N ` 1 and z “ N ´ 1.



Sample : Please calculate the dimension drN´1;1s of SUpNq adjoint
Rep.rN ´ 1; 1s by using factors over hooks rule.

Solution :

The SUpNq tensor in Rep.rN ´ 1; 1s corresponds to Young tableau,

...

Hence, the product of factors is6,

F “

a b
c
d
...
f

“ bacd ¨ ¨ ¨ f “ pN ` 1q!

6Here we set a “ N , b “ N ` 1, c “ N ´ 1, d “ N ´ 2, e “ N ´ 3 and f “ 1.



The product of hooks is7,

H “

a 1
d
e
...
f

“ ade ¨ ¨ ¨ f “ NpN ´ 2q!

As expected,

drN´1;1s “
F

H
“

pN ` 1q!

NpN ´ 2q!
“ pN ` 1qpN ´ 1q “ N2 ´ 1

7Recall that a “ N , b “ N ` 1, c “ N ´ 1, d “ N ´ 2, e “ N ´ 3 and f “ 1.



Complex Reps. of SUpNq :

Most of the representations of SUpNq are complex.

Example :
The lowest weight of the SUpNq defining Rep. is �N . It follows from
the traceless conditions of Cartan generators Hm that

N
ÿ

j“1

�j “ 0

Thus

�N “ ´

N´1
ÿ

j“1

�j “ ´�N´1

Therefore the Rep.r1s is complex. Its complex conjugate is Rep.rN ´ 1s

or DN´1,
r1s “ rN ´ 1s



Example :

The lowest weight of Rep.rms is the sum of the m smallest �is,

�lowest “

N
ÿ

j“N´m`1

�j “ ´

N´m
ÿ

j“1

�j “ ´�N´m

This result yields,
rms “ rN ´ ms

General conclusion :

The complex conjugate of Rep. rl1; ¨ ¨ ¨ ; lns of SUpNq is,

rl1; ¨ ¨ ¨ ; lns “ rN ´ ln; ¨ ¨ ¨ ; N ´ l1s

The Young tableau corresponding to a Rep. and its complex conjugate
fit together into a rectangle N boxes high.

The adjoint Rep. rN ´ 1; 1s of SUpNq is real,

rN ´ 1; 1s “ rN ´ 1; 1s



Symmetry breaking in SUpNq :

Symmetry breaking is a crucial concept in modern physics.

The typical example in particle physics is the spontaneous breaking
of electroweak gauge symmetries

SUp2q ˆ Up1q Ñ Up1q

Another example is

SUp5q Ñ SUp3q ˆ SUp2q ˆ Up1q

in GUT, the socalled Grand Unification Theory. It is among the
research frontiers beyond SM.

To understand the symmetry breaking mechanism better, we now study
the subgroup structure of SUpNq.



sup2q ˆ up1q P sup3q :

We begin with the defining Rep.r1s of SUp3q.

Rep.r1s is generated by Ta “ �a{2 (a “ 1; 2; ¨ ¨ ¨ ; 8), with �a the
GellMann matrices:

�1 “

¨

˝

0 1 0

1 0 0

0 0 0

˛

‚ �2 “

¨

˝

0 ´i 0

i 0 0

0 0 0

˛

‚

�3 “

¨

˝

1 0 0

0 ´1 0

0 0 0

˛

‚ �4 “

¨

˝

0 0 1

0 0 0

1 0 0

˛

‚

�5 “

¨

˝

0 0 ´i

0 0 0

i 0 0

˛

‚ �6 “

¨

˝

0 0 0

0 0 1

0 1 0

˛

‚

�7 “

¨

˝

0 0 0

0 0 ´i

0 i 0

˛

‚ �8 “ 1?
3

¨

˝

1 0 0

0 1 0

0 0 ´2

˛

‚



Generators Ta for 1 ď a ď 3 could be recast as

Ta “
1

2

ˆ

�a 0

0 0

˙

; pa “ 1; 2; 3:q

Since
r�a; �bs “ 2i�abc�c

these generators generate a subgroup SUp2q in SUp3q.

Besides, we can define a socalled hypercharge Y from the generator T8,
Y “ 2T8{

?
3, which could generate a subgroup Up1q P SUp3q.

By introducing the 2 ˆ 2 unit matrix, we can rewrite Y as

Y “
1

3

ˆ

I 0

0 ´2

˙

Hence,
“

Y; Ta
‰

“ 0; 1 ď a ď 3:

Totally speaking, SUp3q has a subgroup SUp2q ˆ Up1q.



Now we study the decomposition of a SUp3q irreducible Rep. in terms
of the irreducible Reps. of its subgroup SUp2q ˆ Up1q.

First consider the defining Rep.3 of SUp3q. The SUp3q vector in 3 is
written as

v�; p� “ 1; 2; 3q

In terms of SUp2q ˆ Up1q,

v� “

"

vi; if � “ i, Y “ `1{3

va; if � “ a, Y “ ´2{3

where � “ 1; 2; 3, i “ 1; 2 and a “ 3.

With Young tableaux, this decomposition reads:

“

ˆ

‚

˙

‘

ˆ

‚

˙

where ‚ stands for the trivial tableau with no boxes. Equivalently,

3 “ 21{3 ‘ 1´2{3



Second look at the 6. The SUp3q tensor in Rep.6 is of rank2

S�� ; p�; � “ 1; 2; 3q

with symmetry S�� “ S��. In terms of subgroup SUp2q ˆ Up1q,

S�� “

$

&

%

Sij ; if � “ i; � “ j, Y “ `2{3

Sib; if � “ i; � “ b, Y “ ´1{3

Sab; if � “ a; � “ b, Y “ ´4{3

where i; j “ 1; 2 but a; b “ 3.
With Young tableaux, this decomposition reads:

“

ˆ

‚

˙

‘

ˆ ˙

‘

ˆ

‚

˙

Equivalently,
6 “ 32{3 ‘ 2´1{3 ‘ 1´4{3



Thirdly we consider the �3. The SUp3q tensor in Rep.�3 is of rank2

A�� ; p�; � “ 1; 2; 3q

with symmetry A�� “ ´A��. In terms of subgroup SUp2q ˆ Up1q,

A�� “

$

&

%

Aij ; if � “ i; � “ j, Y “ `2{3

Aib; if � “ i; � “ b, Y “ ´1{3

Aab; if � “ a; � “ b, Y “ ´4{3

where i; j “ 1; 2 but a; b “ 3. Obviously, Aab “ 0.
With Young tableaux, this decomposition reads:

“

ˆ

‚

˙

‘

ˆ ˙

Equivalently,
�3 “ �12{3 ‘ 2´1{3



Next we consider the adjoint Rep.8 of SUp3q. The SUp3q tensor in 8 is
represented by Young tableau

In terms of subgroup SUp2q ˆ Up1q,

“

ˆ

‚

˙

21

‘

ˆ ˙

30

‘

ˆ ˙

10

‘

ˆ ˙

2´1

Namely,
8 “ 21 ‘ 30 ‘ 10 ‘ 2´1



Hypercharge :

Question :
How to determine the hypercharge of a tensor component in SUp3q

Ñ SUp2q ˆ Up1q ?

The SUp3q tensor u in some irreducible Rep. forms the common
eigenstates of T3 P sup2q and hypercharge operator Y P up1q.

Hence,
Y u “ yu

Consider a tensor u represented by a Young tableau of n boxes. We
examine its components with j boxes belong to sup2q and pn ´ jq

boxes belong to up1q. The hypercharge of such components is:

y “
j

3
´

2pn ´ jq

3
“ j ´

2

3
n



Warning :

For Up1q P SUp3q, the antisymmetric tensor such as

Aab „

does not exist. Because a “ b “ 3, we see that Aab “ ´Aba “ 0.

Problems :
1 Show that the supNq algebra has an supN ´ 1q subalgebra. How

do the fundamental Rep.r1s of SUpNq decompose into
SUpN ´ 1q representations ?

2 Find r3s b r1s in SUp5q. Check that the dimensions work out.

3 Find r3; 1s b r2; 1s in SUp6q.

4 Find r2s b r1; 1s in SUpNq, using the factors over hooks rule
to check that the dimensions work out for arbitrary N .
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