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Introduction

Daniel A. Spielman August 29, 2018

1.1 First Things

1. Please call me “Dan”. If such informality makes you uncomfortable, you can try “Professor
Dan”. If that fails, I will also answer to “Prof. Spielman”.

2. If you are going to take this course, please sign up for it on Canvas. This is the only way you
will get emails like “Problem 3 was false, so you don’t have to solve it”.

3. This class meets this coming Friday, September 31, but not on Labor Day, which is Monday,
September 3.

1.2 Introduction

I have three objectives in this lecture: to give you an overview of the material we will cover this
semester, to help you decide if this course is right for you, and to tell you how the course will work.

As the title suggests, this course is about the eigenvalues and eigenvectors of matrices associated
with graphs, and their applications. I will never forget my amazement at learning that combinatorial
properties of graphs could be revealed by an examination of the eigenvalues and eigenvectors of
their associated matrices. I hope to both convey my amazement to you and to make it feel like
common sense. I’m now shocked when any important property of a graph is not revealed by its
eigenvalues and eigenvectors.

This class will fundamentally be a math class, and my emphasis is on material that I find beautiful
and/or useful. I’ll present a lot of theorems, a few algorithms, and a bunch of open problems.

1.3 Mechanics

There is no book for this course, but I will produce notes for every lecture. You should read
the lecture notes. They will often contain material that I did not have time to cover in class.
They will sometimes contain extra expositions of elementary topics. I will try to make the notes
available before lecture. Some students will want to print them out for reference during lecture.

Given that I am providing lecture notes, you might not need to take notes during lecture. I,
however, take notes during every lecture that I attend. It helps me pay attention and remember
what is going on. But, there are many different learning styles. You may prefer to just listen.

1-1



Lecture 1: August 29, 2018 1-2

If you would like a book that covers some of the material from the course, I suggest one of

“Algebraic Graph Theory” by Chris Godsil and Gordon Royle,

“Spectral Graph Theory” by Fan Chung, or

“Algebraic Combinatorics” by Chris Godsil.

I expect to produce around 5 or 6 problem sets during the semester. Some of the problems I assign
in these will be very hard. You will be allowed to work on them in small groups.

For some lectures, such as today’s, I have assigned a number of “exercises” at the end of the lecture
notes. You should solve these on your own, as soon after lecture as possible. You should not
hand them in. They are just to help you practice the material. Today’s exercises are a review of
fundamental linear algebra. I will put the solutions to some of them on Canvas.

There will be no tests or exams.

1.3.1 This is a graduate course

As some undergrads are thinking about taking this course, I thought I should explain the main
differences between an undergraduate course and a graduate course, and the differences in outlook
between undergrads and graduate students.

Graduate school is essentially pass/fail. Graduate students either write a thesis and graduate, or
they do not. Their grades in courses do not matter very much. Most are here because they think
they might learn something in this course that they will find useful in their careers. This means
that some of them will work very hard.

Graduate students are also occasionally occupied with other responsibilities, like teaching and
research. For this reason, I will give students at least two weeks to complete the problems I assign.
However, I recommend that you solve the easier problems immediately.

Graduate students routinely take courses for which they do not have all the prerequisite knowledge.
I assume that they can learn anything elementary as needed. Wikipedia makes this much easier
than it used to be.

Finally, graduate courses are not as “user friendly” as undergraduate courses. I make no guarantees
about what will happen in this course. I may assign more or fewer problem sets than I have
announced. I may completely change the topics that I decide to cover. You have been warned.

1.3.2 Other courses

I have adjusted my selection of material for this course to decrease overlap with others. For example,
I am omitting some material that will be included in S&DS 684a: Statistical Inference on Graphs
and S&DS 615b: Introduction to Random Matrix Theory.
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1.4 Background: Graphs

First, we recall that a graph G = (V,E) is specified by its vertex1 set, V , and edge set E. In an
undirected graph, the edge set is a set of unordered pairs of vertices. Unless otherwise specified, all
graphs will be undirected, simple (having no loops or multiple edges) and finite. We will sometimes
assign weights to edges. These will usually be real numbers. If no weights have been specified, we
view all edges as having weight 1. This is an arbitrary choice, and we should remember that it has
an impact.

Graphs (also called “networks”) are typically used to model connections or relations between things,
where “things” are vertices. However, I often prefer to think of the edges in a graph as being more
important than the vertices. In this case, I may just specify an edge set E, and ignore the ambient
vertex set.

Common “natural” examples of graphs are:

• Friendship graphs: people are vertices, edges exist between pairs of people who are friends
(assuming the relation is symmetric).

• Network graphs: devices, routers and computers are vertices, edges exist between pairs that
are connected.

• Circuit graphs: electronic components, such as transistors, are vertices: edges exist between
pairs connected by wires.

• Protein-Protein Interaction graphs: proteins are vertices. Edges exist between pairs that
interact. These should really have weights indicating the strength and nature of interaction.
Most other graphs should to.

It is much easier to study abstract, mathematically defined graphs. For example,

• The path on n vertices. The vertices are {1, . . . n}. The edges are (i, i+ 1) for 1 ≤ i < n.

• The ring on n vertices. The vertices are {1, . . . n}. The edges are all those in the path, plus
the edge (1, n).

• The hypercube on 2k vertices. The vertices are elements of {0, 1}k. Edges exist between
vertices that differ in only one coordinate.

1.5 Matrices for Graphs

The naive view of a matrix is that it is essentially a spreadsheet—a table we use to organize
numbers. This is like saying that a car is an enclosed metal chair with wheels. It says nothing
about what it does!

1I will use the words “vertex” and “node” interchangeably. Sorry about that.



Lecture 1: August 29, 2018 1-4

I will use matrices to do two things. First, I will view a matrix M as providing an function that
maps a vector x to the vector M x . That is, I view M as an operator. Second, I view a matrix
M as providing a function that maps a vector x to a number xTM x . That is, I use M to define
a quadratic form.

1.5.1 A spreadsheet

We will usually write V for the set of vertices of a graph, and let n denote the number of vertices.
There are times that we will need to order the vertices and assign numbers to them. In this case,
they will usually be {1, . . . , n}. For example, if we wish to draw a matrix as a table, then we need
to decide which vertex corresponds to which row and column.

The most natural matrix to associate with a graph G is its adjacency matrix2, M G, whose entries
M G(a, b) are given by

M G(a, b) =

{
1 if (a, b) ∈ E
0 otherwise.

It is important to observe that I index the rows and columns of the matrix by vertices, rather than
by number. Almost every statement that we make in this class will remain true under renaming
of vertices. The first row of a matrix has no special importance. To understand this better see the
exercises at the end of the lecture.

While the adjacency matrix is the most natural matrix to associate with a graph, I also find it the
least useful. Eigenvalues and eigenvectors are most meaningful when used to understand a natural
operator or a natural quadratic form. The adjacency matrix provides neither.

1.5.2 An operator

The most natural operator associated with a graph G is probably its diffusion operator. This
operator describes the diffusion of stuff among the vertices of a graph and how random walks
behave. We will save further discussion of this perspective for a later lecture.

1.5.3 A quadratic form

The most natural quadratic form associated with a graph is defined in terms of its Laplacian matrix,

LG
def
= DG −M G,

where DG is the diagonal matrix in which DG(a, a) is the degree of vertex a. We will usually write
d(a) for the degree of vertex a. In an unweighted graph, the degree of a vertex is the number of
edges attached to it. In the case of a weighted graph, we use the weighted degree: the sum of the
weights of the edges attached to the vertex a.

2I am going to try to always use the letter M for the adjacency matrix, in contrast with my past practice which
was to use A. I will use letter like a and b to denote vertices.
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Given a function on the vertices, x ∈ IRV , the Laplacian quadratic form is

xTLGx =
∑

(a,b)∈E

(x (a)− x (b))2. (1.1)

This form measures the smoothness of the function x . It will be small if the function x does not
jump too much over any edge.

I use the notation x (a) to denote the coordinate of vector x corresponding to vertex a. Other
people often use subscripts for this, like x a. I reserve subscripts for other purposes.

1.6 Background: Spectral Theory

I now review the highlights of the spectral theory for symmetric matrices. Almost all of the matrices
we consider in this course will be symmetric or will be similar3 to symmetric matrices.

We recall that a vector ψ is an eigenvector of a matrix M with eigenvalue λ if

Mψ = λψ. (1.2)

That is, λ is an eigenvalue if and only if λI −M is a singular matrix. Thus, the eigenvalues are
the roots of the characteristic polynomial of M :

det(xI −M ).

Theorem 1.6.1. [The Spectral Theorem] If M is an n-by-n, real, symmetric matrix, then there
exist real numbers λ1, . . . , λn and n mutually orthogonal unit vectors ψ1, . . . ,ψn and such that ψi

is an eigenvector of M of eigenvalue λi, for each i.

This is the great fact about symmetric matrices. If the matrix is not symmetric, it might not have
n eigenvalues. And, even if it has n eigenvalues, their eigenvectors will not be orthogonal4. In fact,
if M is not symmetric, then its eigenvalues and eigenvalues might be the wrong thing to look at.

I remind you that the eigenvectors are not uniquely determined, although the eigenvalues are. If
ψ is an eigenvector, then −ψ is as well. Some eigenvalues can be repeated. If λi = λi+1, then
ψi + ψi+1 will also be an eigenvector of eigenvalue λi. Generally, the eigenvectors of a given
eigenvalue are only determined up to an orthogonal transformation.

Fact 1.6.2. The Laplacian matrix of a graph is positive semidefinite. That is, all its eigenvalues
are nonnegative.

Proof. Let ψ be a unit eigenvector of L of eigenvalue λ. Then,

ψTLψ = ψTλψ = λ =
∑

(a,b)∈E

(ψ(a)−ψ(b))2 > 0.

3A matrix M is similar to a matrix B if there is a non-singular matrix X such that X−1M X = B . In this case,
M and B have the same eigenvalues. See the exercises at the end of this lecture.

4You can prove that if the eigenvectors are orthogonal, then the matrix is symmetric.
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We always number the eigenvalues of the Laplacian from smallest to largest. Thus, λ1 = 0. We
will refer to λ2, and in general λk for small k, as low-frequency eigenvalues. λn is a high-frequency
eigenvalue. We will see why in a moment.

1.7 Overview of the course

We will begin the course by learning about the eigenvalues and eigenvectors of many special graphs.
These will include simple graphs like paths, rings, stars, trees and hypercubes, and we will eventually
get to Cayley graphs and Strongly Regular Graphs.

Before we get to any theorems, I would like to convince you that the eigenvalues and eigenvectors
of graphs are meaningful by showing you some examples. I will do these examples in Julia using
a Jupyter notebook. I include snippets of the code and the images they generate in this text, and
have provided the notebook on the course webpage.

1.7.1 Paths

A path graph has vertices {1, . . . , n} and edges (i, i+1) for 1 ≤ i < n. Here is the adjacency matrix
of a path graph on 4 vertices.

M = path_graph(4)

Matrix(M)

0.0 1.0 0.0 0.0

1.0 0.0 1.0 0.0

0.0 1.0 0.0 1.0

0.0 0.0 1.0 0.0

And, here is its Laplacian matrix

Matrix(lap(M))

1.0 -1.0 0.0 0.0

-1.0 2.0 -1.0 0.0

0.0 -1.0 2.0 -1.0

0.0 0.0 -1.0 1.0

Here are the eigenvalues of a longer path.

L = lap(path_graph(10))

E = eigen(Matrix(L))

println(E.values)

[0.0, 0.097887, 0.381966, 0.824429, 1.38197, 2.0, 2.61803, 3.17557, 3.61803, 3.90211]
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The eigenvector of the zero-eigenvalue is a constant vector (up to numerical issues):

E.vectors[:,1]

0.31622776601683755

0.31622776601683716

0.31622776601683766

0.3162277660168381

0.31622776601683855

0.3162277660168381

0.3162277660168385

0.31622776601683805

0.3162277660168378

0.3162277660168378

The eigenvector of λ2 is the lowest frequency eigenvector, as we can see that it increases monoton-
ically along the path:

v2 = E.vectors[:,2]

-0.44170765403093937

-0.39847023129620024

-0.316227766016838

-0.20303072371134553

-0.06995961957075425

0.06995961957075386

0.2030307237113457

0.31622776601683766

0.3984702312961997

0.4417076540309382

Let’s plot that.
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plot(v2,marker=5,legend=false)

xlabel!("vertex number")

ylabel!("value in eigenvector")

The x-axis is the name/number of the vertex, and the y-axis is the value of the eigenvector at that
vertex. Now, let’s look at the next few eigenvectors.
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Plots.plot(E.vectors[:,2],label="v2",marker = 5)

Plots.plot!(E.vectors[:,3],label="v3",marker = 5)

Plots.plot!(E.vectors[:,4],label="v4",marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

You may now understand why I refer to these as the low-frequency eigenvectors. The curves
they trace out resemble the low-frequency modes of vibration of a string. The reason for this is



Lecture 1: August 29, 2018 1-9

that the path graph can be viewed as a discretization of the string, and its Laplacian matrix is a
discretization of the Laplace operator. We will relate the low-frequency eigenvalues to connectivity.

In contrast, the highest frequency eigenvalue alternates positive and negative with every vertex.
We will show that these may be related to problems of graph coloring and finding independent sets.
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Plots.plot(E.vectors[:,10],label="v10",marker=5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

1.7.2 Spectral Graph Drawing

We can often use the low-frequency eigenvalues to obtain a nice drawing of a graph. For example,
here is 3-by-4 grid graph, and its first two non-trivial eigenvectors. Looking at them suggests that
they might provide nice coordinates for the vertices.

M = grid2(3,4)

L = lap(M)

E = eigen(Matrix(L))

V = E.vectors[:,2:3]

-0.377172 0.353553

-0.15623 0.353553

0.15623 0.353553

0.377172 0.353553

-0.377172 -1.66533e-16

-0.15623 -4.16334e-16

0.15623 -5.82867e-16

0.377172 2.77556e-16
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-0.377172 -0.353553

-0.15623 -0.353553

0.15623 -0.353553

0.377172 -0.353553

In the figure below, we use these eigenvectors to draw the graph. Vertex a be been plotted at
coordinates ψ2(a),ψ3(a). That is, we use ψ2 to provide a horizontal coordinate for every vertex,
and ψ3 to obtain a vertical coordinate. We then draw the edges as straight lines.

plot_graph(M,V[:,1],V[:,2])

Let’s do a fancier example that should convince you something interesting is going on. I begin by
generating points by sampling them from the Yale logo.
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@load "yale.jld2"

scatter(xy[:,1],xy[:,2],legend=false)

I then construct a graph on them by forming their Delaunay triangulation. I won’t get to teach
about Delaunay triangulations during this course. But, they are terrific and I recommend that you
look them up.

Since the vertices came with coordinates, it was easy to draw a nice picture of the graph. But, what
if we just knew the graph, and not the coordinates? We could generate coordinates by computing
two eigenvectors, and using each as a coordinate. Below, I plot vertex a at position ψ2(a),ψ3(a),
and again draw the edges as straight lines.

plot_graph(a,xy[:,1],xy[:,2])
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plot_graph(a, v2,v3, dots=false)

That’s a great way to draw a graph if you start out knowing nothing about it. It’s the first thing I
do whenever I meet a strange graph. Note that the middle of the picture is almost planar, although
edges do cross near the boundaries.

1.7.3 Graph Isomorphism

It is important to note that the eigenvalues do not change if we relabel the vertices. Moreover, if we
permute the vertices then the eigenvectors are similarly permuted. That is, if P is a permutation
matrix, then

Lψ = λψ if and only if (PLPT )(Pψ) = λ(Pψ),

because PTP = I . To prove it by experiment, let’s randomly permute the vertices, and plot the
permuted graph.
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Random.seed!(1)

p = randperm(size(a,1))

M = a[p,p]

E = eigen(Matrix(lap(M)))

V = E.vectors[:,2:3]

plot_graph(M,V[:,1],V[:,2], dots=false)

Note that this picture is slightly different from the previous one: it has flipped vertically. That’s
because eigenvectors are only determined up to signs, and that’s only if they have multiplicity 1.
This gives us a very powerful heuristic for testing if one graph is a permutation of another (this is
the famous “Graph Isomorphism Testing Problem”). First, check if the two graphs have the same
sets of eigenvalues. If they don’t, then they are not isomorphic. If they do, and the eigenvalues
have multiplicity one, then draw the pictures above. If the pictures are the same, up to horizontal
or vertical flips, and no vertex is mapped to the same location as another, then by lining up the
pictures we can recover the permutation.

As some vertices can map to the same location, this heuristic doesn’t always work. We will learn
about it to the extent to which it does. In particular, we will see that if every eigenvalue of two
graphs G and H have multiplicity 1, then we can efficiently test whether or not they are isomorphic.

These algorithms have been extended to handle graph in which the multiplicity of every eigenvalue
is bounded by a constant. But, there are graphs in which every non-trivial eigenvalue has large
multiplicity. We will learn how to construct and analyze these, as they constitute fundamental
examples and counter-examples to many natural conjectures. For example, here are the eigenvalues
of a Latin Square Graph on 25 vertices. These are a type of Strongly Regular Graph.

M = latin_square_graph(5);

println(eigvals(Matrix(lap(M))))

[0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0]



Lecture 1: August 29, 2018 1-14

All Latin Square Graphs of the same size have the same eigenvalues, whether or not they are
isomorphic. We will learn some surprisingly fast (but still not polynomial time) algorithms for
checking whether or not Strongly Regular Graphs are isomorphic.

1.7.4 Platonic Solids

Of course, somme graphs are not meant to be drawn in 3 dimensions. For example let’s try this
with the dodecahedron.

M = readIJV("dodec.txt")

spectral_drawing(M)

You will notice that this looks like what you would get if you squashed the dodecahedron down to
the plane. The reason is that we really shouldn’t be drawing this picture in two dimensions: the
smallest non-zero eigenvalue of the Laplacian has multiplicity three.

E = eigen(Matrix(lap(M)))

println(E.values)

So, we can’t reasonably choose just two eigenvectors. We should be choosing three that span the
eigenspace. If we do, we would get the canonical representation of the dodecahedron in three
dimensions.
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x = E.vectors[:,2]

y = E.vectors[:,3]

z = E.vectors[:,4]

pygui(true)

plot_graph(M, x, y, z; setaxis=false)

As you would guess, this happens for all Platonic solids. In fact, if you properly re-weight the edges,
it happens for every graph that is the one-skeleton of a convex polytope. Let me state that more
concretely. A weighted graph is a graph along with a weight function, w, mapping every edge to a
positive number. The adjacency matrix of a weighted graph has the weights of edges as its entries,
instead of 1s. The diagonal degree matrix of a weighted graph, DG, has the weighted degrees on
its diagonal. That is,

DG(i, i) =
∑

j:(i,j)∈E

w(i, j).

The Laplacian then becomes LG = DG − AG. Given a convex polytope in IRd, we can treat its
1-skeleton as a graph on its vertices. We will prove that there is a way of assigning weights to edges
so that the second-smallest Laplacian eigenvalue has multiplicity d, and so that the corresponding
eigenspace is spanned by the coordinate vectors of the vertices of the polytope.

Before we turn off the computer, let’s take a look at the high-frequency eigenvectors of the dodec-
ahedron.
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x = E.vectors[:,11]

y = E.vectors[:,12]

z = E.vectors[:,10]

pygui(true)

plot_graph(M, x, y, z; setaxis=false)

1.7.5 The Fiedler Value

The second-smallest eigenvalue of the Laplacian matrix of a graph is zero if and only if the graph
is disconnected. If G is disconnected, then we can partition it into two graphs G1 and G2 with no
edges between them, and then write

LG =

(
LG1 0

0 LG2

)
.

As the eigenvalues of LG are the union, with multiplicity, of the eigenvalues of LG1 and LG2 we see
that LG inherits a zero eigenvalue from each. Conversely, if G is connected then we can show that
the only vectors x for which xTLGx = 0 are the constant vectors. If x is not constant and G is
connected then there must be an edge (a, b) for which x (a) 6= x (b). And, this edge will contribute
a positive term to the sum (1.1).

Fiedler suggested that we make this qualitative observation quantitative and think of λ2 as a mea-
sure of how well connected the graph is. For this reason, he called it the “Algebraic Connectivity”
of a graph, and we call it the “Fiedler value”.

Fiedler proved that the further λ2 is from 0, the better connected the graph is. We will cover the
ultimate extension of this result: Cheeger’s inequality.

In short, we say that a graph is poorly connected if one can cut off many vertices by removing
only a few edges. We measure how poorly connected it is by the ratio of these quantities (almost).



Lecture 1: August 29, 2018 1-17

Cheeger’s inequality gives a tight connection between this ratio and λ2. If λ2 is small, then for
some t, the set of vertices

Si
def
= {i : v2(i) < t}

may be removed by cutting much less than |Si| edges. This spectral graph partitioning heuristic
has proved very successful in practice.

In general, it will be interesting to turn qualitative statements like this into quantitative ones. For
example, we will see that the smallest eigenvalue of the diffusion matrix is zero if and only if the
graph is bipartite. One can relate the magnitude of this eigenvalue to how far a graph is from being
bipartite.

1.7.6 Bounding Eigenvalues

We will often be interested in the magnitudes of certain eigenvalues. For this reason, we will learn
multiple techniques for proving bounds on eigenvalues. The most prominent of these will be proofs
by test vectors and proofs by comparison with simpler graphs.

1.7.7 Planar Graphs

We will prove that graphs that can be drawn nicely must have small Fiedler value, and we will
prove very tight results for planar graphs.

We will also see how to use the graph Laplacian to draw planar graphs: Tutte proved that if one
reasonably fixes the locations of the vertices on a face of a planar graph and then lets the others
settle into the positions obtained by treating the edges as springs, then one obtains a planar drawing
of the graph!

1.7.8 Random Walks on Graphs

Spectral graph theory is one of the main tools we use for analyzing random walks on graphs. We
will spend a few lecture on this theory, connect it to Cheeger’s inequality, and use tools developed
to study random walks to derive a fascinating proof of Cheeger’s inequality.

1.7.9 Expanders

We will be particularly interested in graphs that are very well connected. These are called expanders.
Roughly speaking, expanders are sparse graphs (say a number of edges linear in the number of
vertices), in which λ2 is bounded away from zero by a constant. They are among the most important
examples of graphs, and play a prominent role in Theoretical Computer Science.

Expander graphs have numerous applications. We will see how to use random walks on expander
graphs to construct pseudo-random generators about which one can actually prove something. We
will also use them to construct good error-correcting codes.
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Error-correcting codes and expander graphs are both fundamental objects of study in the field of
Extremal Combinatorics and are extremely useful. If students in the class have not learned about
these, I will teach about them. We will also use error-correcting codes to construct crude expander
graphs.

We will learn at least one construction of good expanders. The best expanders are the Ramanujan
graphs. These were first constructed by Margulis and Lubotzky, Phillips and Sarnak. We might
finish the class by proving the existence of Ramanujan graphs.

1.7.10 Approximations of Graphs

We will ask what it means for one graph to approximate another. Given graphs G and H, we will
measure how well G approximates H by the closeness of their Laplacian quadratic forms. We will
see that expanders are precisely the sparse graphs that provide good approximations of the complete
graph, and we will use this perspective for most of our analysis of expanders. We will show that
every graph can be well-approximated by a sparse graph through a process called sparsification.

1.7.11 Solving equations in and computing eigenvalues of Laplacians

We will also ask how well a graph can be approximated by a tree, and see that low-stretch spanning-
trees provide good approximations under this measure.

My motivation for this material is not purely graph-theoretic. Rather, it is inspired by the need
to design fast algorithms for computing eigenvectors of Laplacian matrices and for solving linear
equations in Laplacian matrices. This later problem arises in numerous contexts, including the
solution of elliptic PDEs by the finite element method, the solution of network flow problems by
interior point algorithms, and in classification problems in Machine Learning.

In fact, our definition of graph approximation is designed to suit the needs of the Preconditioned
Conjugate Gradient algorithm. We may finish the semester by learning how these algorithms work.

1.8 Eigenvalues and Optimization

One of the reasons that the eigenvalues of matrices have meaning is that they arise as the solution
to natural optimization problems. We will spend a lot of time on this connection next lecture. For
now, we start with one result in this direction. Observe that its proof does not require the spectral
theorem.

Theorem 1.8.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes the
Rayleigh quotient with respect to M :

xTM x

xTx
.

Then, x is an eigenvector of M with eigenvalue equal to the Rayleigh quotient. Moreover, this
eigenvalue is the largest eigenvalue of M .
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Proof. We first observe that the maximum is achieved: As the Rayleigh quotient is homogeneous,
it suffices to consider unit vectors x . As the set of unit vectors is a closed and compact set, the
maximum is achieved on this set.

Now, let x be a non-zero vector that maximizes the Rayleigh quotient. We recall that the gradient
of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have
∇xTx = 2x ,

and
∇xTM x = 2M x .

So,

∇xTM x

xTx
=

(xTx )(2M x )− (xTM x )(2x )

(xTx )2
.

In order for this to be zero, we must have

M x =
xTM x

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient.

1.9 Exercises

The following exercises are for your own practice. They are intended as a review of fundamental
linear algebra. I have put the solutions in a separate file that you can find on Classes V2. I
recommend that you try to solve all of these before you look at the solutions, so that you can get
back in practice at doing linear algebra.

1. Orthogonal eigenvectors. Let M be a symmetric matrix, and let ψ and φ be vectors so that

Mψ = µψ and Mφ = νφ.

Prove that if µ 6= ν then ψ must be orthogonal to φ. Note that your proof should exploit the
symmetry of M , as this statement is false otherwise.

2. Invariance under permutations.

Let Π be a permutation matrix. That is, there is a permutation π : V → V so that

Π(u, v) =

{
1 if u = π(v), and

0 otherwise.

Prove that if
Mψ = λψ,

then (
ΠM ΠT

)
(Πψ) = λ(Πψ).
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That is, permuting the coordinates of the matrix merely permutes the coordinates of the eigenvec-
tors, and does not change the eigenvalues.

3. Invariance under rotations.

Let Q be an orthonormal matrix. That is, a matrix such that QTQ = I . Prove that if

Mψ = λψ,

then (
QM QT

)
(Qψ) = λ(Qψ).

4. Similar Matrices.

A matrix M is similar to a matrix B if there is a non-singular matrix X such that X−1M X = B .
Prove that similar matrices have the same eigenvalues.

5. Spectral decomposition.

Let M be a symmetric matrix with eigenvalues λ1, . . . , λn and let ψ1, . . . ,ψn be a corresponding
set of orthonormal column eigenvectors. Let Ψ be the orthonormal matrix whose ith column is
ψi. Prove that

ΨTM Ψ = Λ,

where Λ is the diagonal matrix with λ1, . . . , λn on its diagonal. Conclude that

M = ΨΛΨT =
∑
i∈V

λiψiψ
T
i .



Spectral Graph Theory Lecture 2

Essential spectral theory, Hall’s spectral graph drawing, the Fiedler value

Daniel A. Spielman August 31, 2018

2.1 Eigenvalues and Optimization

The Rayleigh quotient of a vector x with respect to a matrix M is defined to be

xTMx

xTx
.

At the end of the last class, I gave the following characterization of the largest eigenvalue of a
symmetric matrix in terms of the Rayleigh quotient.

Theorem 2.1.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes the
Rayleigh quotient with respect to M :

xTMx

xTx
.

Then, x is an eigenvector of M with eigenvalue equal to the Rayleigh quotient. Moreover, this
eigenvalue is the largest eigenvalue of M .

Proof. We first observe that the maximum is achieved: As the Rayleigh quotient is homogeneous,
it suffices to consider unit vectors x . As the set of unit vectors is a closed and compact set, the
maximum is achieved on this set.

Now, let x be a non-zero vector that maximizes the Rayleigh quotient. We recall that the gradient
of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have
∇xTx = 2x ,

and
∇xTMx = 2Mx .

So,

∇xTMx

xTx
=

(xTx )(2Mx )− (xTMx )(2x )

(xTx )2
.

In order for this to be zero, we must have

Mx =
xTMx

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient.

2-1
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Of course, the analogous characterization holds for the smallest eigenvalue. A substantial general-
ization of these characterizations is given by the Courant-Fischer Theorem. We will state it for the
Laplacian, as that is the case we will consider for the rest of the lecture.

Theorem 2.1.2 (Courant-Fischer Theorem). Let L be a symmetric matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. Then,

λk = min
S⊆IRn

dim(S)=k

max
x∈S

xTLx

xTx
= max

T⊆IRn

dim(T )=n−k+1

min
x∈T

xTLx

xTx
.

For example, consier the case k = 1. In this case, S is just the span of ψ1 and T is all of IRn. For
general k, the proof reveals that the optimum is achieved when S is the span of ψ1, . . . ,ψk and
when T is the span of ψk, . . . ,ψn.

As many proofs in Spectral Graph Theory begin by expanding a vector in the eigenbasis of a matrix,
we being by carefully stating a key property of these expansions.

Lemma 2.1.3. Let M be a symmetric matrix with eigenvalues µ1, . . . , µn and a corresponding
orthnormal basis of eigenvectors ψ1, . . . ,ψn. Let x be a vector and expand x in the eigenbasis as

x =
n∑

i=1

ciψi.

Then,

xTMx =

n∑
i=1

c2iλi.

You should check for yourself (or recall) that ci = xTψi (this is obvious if you consider the standard
coordinate basis).

Proof. Compute:

xTMx =

(∑
i

ciψi

)T

M

∑
j

cjψj


=

(∑
i

ciψi

)T
∑

j

cjλjψj


=
∑
i,j

cicjλjψ
T
i ψj

=
∑
i

c2iλi,

as ψT
i ψj = 0 for i 6= j.
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Proof of 2.1.2. Letψ1, . . . ,ψn be an orthonormal set of eigenvectors of L corresponding to λ1, . . . , λn.
We will just verify the first characterization of λk. The other is similar.

First, let’s verify that λk is achievable. Let Sk be the span of ψ1, . . . ,ψk. We can expand every
x ∈ Sk as

x =
k∑

i=1

ciψi.

Applying Lemma 2.1.3 we obtain

xTLx

xTx
=

∑k
i=1 λic

2
i∑k

i=1 c
2
i

≤
∑k

i=1 λkc
2
i∑k

i=1 c
2
i

= λk.

To show that this is in fact the maximum, we will prove that for all subspaces S of dimension k,

max
x∈S

xTLx

xTx
≥ λk.

Let Tk be the span of ψk, . . . ,ψn. As Tk has dimension n− k + 1, every S of dimension k has an
intersection with Tk of dimension at least 1. So,

max
x∈S

xTLx

xTx
≥ max

x∈S∩Tk

xTLx

xTx
.

Any such x may be expressed as

x =
n∑

i=k

ciψi,

and so
xTLx

xTx
=

∑n
i=k λic

2
i∑n

i=k c
2
i

≥
∑n

i=k λkc
2
i∑n

i=k c
2
i

= λk.

We give one last characterization of the eigenvalues and eigenvectors of a symmetric matrix. Its
proof is similar, so we will save it for an exercise.

Theorem 2.1.4. Let L be an n × n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with
corresponding eigenvectors ψ1, . . . ,ψn. Then,

λi = min
x⊥ψ1,...,ψi−1

xTLx

xTx
,

and the eigenvectors satisfy

ψi = arg min
x⊥ψ1,...,ψi−1

xTLx

xTx
.
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2.2 Drawing with Laplacian Eigenvalues

I will now explain the motivation for the pictures of graphs that I drew last lecture using the
Laplacian eigenvalues. Well, the real motivation was just to convince you that eigenvectors are
cool. The following is the technical motivation. It should come with the caveat that it does not
produce nice pictures of all graphs. In fact, it produces bad pictures of most graphs. But, it is still
the first thing I always try when I encounter a new graph that I want to understand.

This approch to using eigenvectors to draw graphs was suggested by Hall [Hal70] in 1970.

To explain Hall’s approach, I’ll begin by describing the problem of drawing a graph on a line. That
is, mapping each vertex to a real number. It isn’t easy to see what a graph looks like when you do
this, as all of the edges sit on top of one another. One can fix this either by drawing the edges of
the graph as curves, or by wrapping the line around a circle.

Let x ∈ IRV be the vector that describes the assignment of a real number to each vertex. We would
like most pairs of vertices that are neighbors to be close to one another. So, Hall suggested that
we choose an x minimizing

xTLx . (2.1)

Unless we place restrictions on x , the solution will be degenerate. For example, all of the vertices
could map to 0. To avoid this, and to fix the scale of the embedding overall, we require∑

a∈V
x (a)2 = ‖x‖2 = 1. (2.2)

Even with this restriction, another degenerate solution is possible: it could be that every vertex
maps to 1/

√
n. To prevent this from happening, we add the additional restriction that∑

a

x (a) = 1Tx = 0. (2.3)

On its own, this restriction fixes the shift of the embedding along the line. When combined with
(2.2), it guarantees that we get something interesting.

As 1 is the eigenvector of the 0 eigenvalue of the Laplacian, the nonzero vectors that minimize (2.1)
subject to (2.2) and (2.3) are the unit eigenvectors of the Laplacian of eigenvalue λ2.

Of course, we really want to draw a graph in two dimensions. So, we will assign two coordinates
to each vertex given by x and y . As opposed to minimizing (2.1), we will minimize

∑
(a,b)∈E

∥∥∥∥(x (a)
y(a)

)
−
(
x (b)
y(b)

)∥∥∥∥2 .
This turns out not to be so different from minimizing (2.1), as it equals∑

(a,b)∈E

(x (a)− x (b))2 + (y(a)− y(b))2 = xTLx + yTLy .
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As before, we impose the scale conditions

‖x‖2 = 1 and ‖y‖2 = 1,

and the centering constraints
1Tx = 0 and 1Ty = 0.

However, this still leaves us with the degnerate solution x = y = ψ2. To ensure that the two
coordinates are different, Hall introduced the restriction that x be orthogonal to y . One can use
the spectral theorem to prove that the solution is then given by setting x = ψ2 and y = ψ3, or by
taking a rotation of this solution (this is a problem on the first problem set).

2.3 Isoperimetry and λ2

Computer Scientists are often interested in cutting, partitioning, and clustering graphs. Their
motivations range from algorithm design to data analysis. We will see that the second-smallest
eigenvalue of the Laplacian is intimately related to the problem of dividing a graph into two pieces
without cutting too many edges.

Let S be a subset of the vertices of a graph. One way of measuring how well S can be separated
from the graph is to count the number of edges connecting S to the rest of the graph. These edges
are called the boundary of S, which we formally define by

∂(S)
def
= {(a, b) ∈ E : a ∈ S, b 6∈ S} .

We are less interested in the total number of edges on the boundary than in the ratio of this number
to the size of S itself. For now, we will measure this in the most natural way–by the number of
vertices in S. We will call this ratio the isoperimetric ratio of S, and define it by

θ(S)
def
=
|∂(S)|
|S|

.

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at most
half the vertices:

θG
def
= min
|S|≤n/2

θ(S).

We will now derive a lower bound on θG in terms of λ2. We will present an upper bound, known
as Cheeger’s Inequality, in a later lecture.

Theorem 2.3.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.
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Proof. As

λ2 = min
x :xT 1=0

xTLGx

xTx
,

for every non-zero x orthogonal to 1 we know that

xTLGx ≥ λ2xTx .

To exploit this inequality, we need a vector related to the set S. A natural choice is χS , the
characteristic vector of S,

χS(a) =

{
1 if a ∈ S
0 otherwise.

We find
χT
SLGχS =

∑
(a,b)∈E

(χS(a)− χS(b))2 = |∂(S)| .

However, χS is not orthogonal to 1. To fix this, use

x = χS − s1,

so

x (a) =

{
1− s for a ∈ S, and

−s otherwise.

We have xT1 = 0, and

xTLGx =
∑

(a,b)∈E

((χS(a)− s)− (χS(b)− s))2 = |∂(S)| .

To finish the proof, we compute

xTx = |S| (1− s)2 + (|V | − |S|)s2 = |S| (1− 2s+ s2) + |S| s− |S| s2 = |S| (1− s).

This gives

λ2 ≤
χT
SLGχS

χT
SχS

=
|∂(S)|

|(S)| (1− s)
.

This theorem says that if λ2 is big, then G is very well connected: the boundary of every small set
of vertices is at least λ2 times something just slightly smaller than the number of vertices in the
set.

We will use the computation in the last line of that proof often, so we will make it a claim.

Claim 2.3.2. Let S ⊆ V have size s |V |. Then

‖χS − s1‖2 = s(1− s) |V | .
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2.4 Exercises

The following exercises are for your own practice. They are intended as a review of fundamental
linear algebra. I will put the solutions in a separate file that you can find on Canvas. I recommend
that you try to solve all of these before you look at the solutions, so that you can get back in
practice at doing linear algebra.

1. Characterizing Eigenvalues.

Prove Theorem 2.1.4.

2. Traces.

Recall that the trace of a matrix A, written Tr (A), is the sum of the diagonal entries of A. Prove
that for two matrices A and B ,

Tr (AB) = Tr (BA) .

Note that the matrices do not need to be square for this to be true. They can be rectangular
matrices of dimensions n×m and m× n.

Use this fact and the previous exercise to prove that

Tr (A) =

n∑
i=1

λi,

where λ1, . . . , λn are the eigenvalues of A. You are probably familiar with this fact about the trace,
or it may have been the definition you were given. This is why I want you to remember how to
prove it.

3. The Characteristic Polynomial

Let M be a symmetric matrix. Recall that the eigenvalues of M are the roots of the characteristic
polynomial of M :

p(x)
def
= det(xI −M ) =

n∏
i=1

(x− µi).

Write

p(x) =

n∑
k=0

xn−kck(−1)k.

Prove that
ck =

∑
S⊆[n],|S|=k

det(M (S, S)).

Here, we write [n] to denote the set {1, . . . , n}, and M (S, S) to denote the submatrix of M with
rows and columns indexed by S.

4. Reversing products.

Let M be a d-by-n matrix. Prove that the multiset of nonzero eigenvalues of MM T is the same
as the multiset of nonzero eigenvalues of M TM .
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Spectral Graph Theory Lecture 3

Fundamental Graphs

Daniel A. Spielman September 5, 2018

3.1 Overview

We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs,
including complete graphs, star graphs, ring graphs, path graphs, and products of these that
yield grids and hypercubes. As all these graphs are connected, they all have eigenvalue zero with
multiplicity one. We will have to do some work to compute the other eigenvalues.

We derive some meaning from the eigenvalues by using them to bound isoperimetric numbers of
graphs, which I recall are defined by

θ(S)
def
=
|∂(S)|
|S|

.

We bound this using the following theorem from last lecture.

Theorem 3.1.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.

3.2 The Laplacian Matrix

We beging this lecture by establishing the equivalence of multiple expressions for the Laplacian.
These will be necessary to derive its eigenvalues.

The Laplacian Matrix of a weighted graph G = (V,E,w), w : E → IR+, is designed to capture the
Laplacian quadratic form:

xTLGx =
∑

(a,b)∈E

wa,b(x (a)− x (b))2. (3.1)

We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge. Let’s call it G1,2. We have

xTLG1,2x = (x (1)− x (2))2. (3.2)

3-1
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Consider the vector δ1 − δ2, where by δi I mean the elementary unit vector with a 1 in coordinate
i. We have

x (1)− x (2) = δT1 x − δT2 x = (δ1 − δ2)Tx ,

so

(x (1)− x (2))2 =
(
(δ1 − δ2)Tx

)2
= xT (δ1 − δ2) (δ1 − δ2)T x = xT

[
1 −1
−1 1

]
x .

Thus,

LG1,2 =

[
1 −1
−1 1

]
.

Now, let Ga,b be the graph with just one edge between u and v. It can have as many other vertices
as you like. The Laplacian of Ga,b can be written in the same way: LGa,b

= (δa − δb)(δa − δb)T .
This is the matrix that is zero except at the intersection of rows and columns indexed by u and v,
where it looks looks like [

1 −1
−1 1

]
.

Summing the matrices for every edge, we obtain

LG =
∑

(a,b)∈E

wa,b(δa − δb)(δa − δb)T =
∑

(a,b)∈E

wa,bLGa,b
.

You should check that this agrees with the definition of the Laplacian from the first class:

LG = DG −AG,

where
DG(a, a) =

∑
b

wa,b.

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx )(a) = d(a)x (a)−
∑

(a,b)∈E

wa,bx (b) =
∑

(a,b)∈E

wa,b(x (a)− x (b)). (3.3)

3.3 The complete graph

The complete graph on n vertices, Kn, has edge set {(a, b) : a 6= b}.

Lemma 3.3.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s
vector, so ∑

a

ψ(a) = 0. (3.4)
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We now compute the first coordinate of LKnψ. Using (3.3), we find

(LKnψ) (1) =
∑
v≥2

(ψ(1)−ψ(b)) = (n− 1)ψ(1)−
n∑

v=2

ψ(b) = nψ(1), by (3.4).

As the choice of coordinate was arbitrary, we have Lψ = nψ. So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn = nI − 11T .

We often think of the Laplacian of the complete graph as being a scaling of the identity. For every
x orthogonal to the all-1s vector, Lx = nx .

Now, let’s see how our bound on the isoperimetric number works out. Let S ⊂ [n]. Every vertex
in S has n− |S| edges connecting it to vertices not in S. So,

θ(S) =
|S| (n− |S|
|S|

= n− |S| = λ2(LKn)(1− s),

where s = |S| /n. Thus, Theorem 3.1.1 is sharp for the complete graph.

3.4 The star graphs

The star graph on n vertices Sn has edge set {(1, a) : 2 ≤ a ≤ n}.

To determine the eigenvalues of Sn, we first observe that each vertex a ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 3.4.1. Let G = (V,E) be a graph, and let a and b be vertices of degree one that are both
connected to another vertex c. Then, the vector ψ = δa − δb is an eigenvector of LG of eigenvalue
1.

Proof. Just multiply LG by ψ, and check (using (3.3)) vertex-by-vertex that it equals ψ.

As eigenvectors of different eigenvalues are orthogonal, this implies that ψ(a) = ψ(b) for every
eigenvector with eigenvalue different from 1.

Lemma 3.4.2. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

Proof. Applying Lemma 3.4.1 to vertices i and i+1 for 2 ≤ i < n, we find n−2 linearly independent
eigenvectors of the form δi − δi+1, all with eigenvalue 1. As 0 is also an eigenvalue, only one
eigenvalue remains to be determined.
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Recall that the trace of a matrix equals both the sum of its diagonal entries and the sum of its
eigenvalues. We know that the trace of LSn is 2n− 2, and we have identified n− 1 eigenvalues that
sum to n− 2. So, the remaining eigenvalue must be n.

To determine the corresponding eigenvector, recall that it must be orthogonal to the other eigen-
vectors we have identified. This tells us that it must have the same value at each of the points of
the star. Let this value be 1, and let x be the value at vertex 1. As the eigenvector is orthogonal
to the constant vectors, it must be that

(n− 1) + x = 0,

so x = −(n− 1).

3.5 Products of graphs

We now define a product on graphs. If we apply this product to two paths, we obtain a grid. If we
apply it repeatedly to one edge, we obtain a hypercube.

Definition 3.5.1. Let G = (V,E) and H = (W,F ) be graphs. Then G×H is the graph with vertex
set V ×W and edge set (

(a, b), (â, b)

)
where (a, â) ∈ E and(

(a, b), (a, b̂)

)
where (b, b̂) ∈ F .

Figure 3.1: An m-by-n grid graph is the product of a path on m vertices with a path on n vertices.
This is a drawing of a 5-by-4 grid made using Hall’s algorithm.

Theorem 3.5.2. Let G = (V,E) and H = (W,F ) be graphs with Laplacian eigenvalues λ1, . . . , λn
and µ1, . . . , µm, and eigenvectors α1, . . . ,αn and β1, . . . ,βm, respectively. Then, for each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, G×H has an eigenvector γi,j of eigenvalue λi + µj such that

γi,j(a, b) = αi(a)βj(b).
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Proof. Let α be an eigenvector of LG of eigenvalue λ, let β be an eigenvector of LH of eigenvalue
µ, and let γ be defined as above.

To see that γ is an eigenvector of eigenvalue λ+ µ, we compute

(Lγ)(a, b) =
∑

(a,â)∈E

(γ(a, b)− γ(â, b)) +
∑

(b,b̂)∈F

(
γ(a, b)− γ(a, b̂)

)
=

∑
(a,â)∈E

(α(a)β(b)−α(â)β(b)) +
∑

(b,b̂)∈F

(
α(a)β(b)−α(a)β(b̂)

)
=

∑
(a,â)∈E

β(b) (α(a)−α(â)) +
∑

(b,b̂)∈F

α(a)
(
β(b)− β(b̂)

)
=

∑
(a,â)∈E

β(b)λα(a) +
∑

(b,b̂)∈F

α(a)µβ(b)

= (λ+ µ)(α(a)β(b)).

3.5.1 The Hypercube

The d-dimensional hypercube graph, Hd, is the graph with vertex set {0, 1}d, with edges between
vertices whose names differ in exactly one bit. The hypercube may also be expressed as the product
of the one-edge graph with itself d− 1 times, with the proper definition of graph product.

Let H1 be the graph with vertex set {0, 1} and one edge between those vertices. It’s Laplacian
matrix has eigenvalues 0 and 2. As Hd = Hd−1 ×H1, we may use this to calculate the eigenvalues
and eigenvectors of Hd for every d.

Using Theorem 3.1.1 and the fact that λ2(Hd) = 2, we can immediately prove the following isoperi-
metric theorem for the hypercube.

Corollary 3.5.3.
θHd
≥ 1.

In particular, for every set of at most half the vertices of the hypercube, the number of edges on the
boundary of that set is at least the number of vertices in that set.

This result is tight, as you can see by considering one face of the hypercube, such as all the vertices
whose labels begin with 0. It is possible to prove this by more concrete combinatorial means. In
fact, very precise analyses of the isoperimetry of sets of vertices in the hypercube can be obtained.
See [Har76] or [Bol86].

3.6 Bounds on λ2 by test vectors

We can reverse our thinking and use Theorem 3.1.1 to prove an upper bound on λ2. If you recall
the proof of that theorem, you will see a special case of proving an upper bound by a test vector.
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By Theorem 2.1.3 we know that every vector v orthogonal to 1 provides an upper bound on λ2:

λ2 ≤
vTLv

vTv
.

When we use a vector v in this way, we call it a test vector.

Let’s see what a test vector can tell us about λ2 of a path graph on n vertices. I would like to use
the vector that assigns i to vertex a as a test vector, but it is not orthogonal to 1. So, we will use
the next best thing. Let x be the vector such that x (a) = (n+ 1)− 2a, for 1 ≤ a ≤ n. This vector
satisfies x ⊥ 1, so

λ2(Pn) ≤
∑

1≤a<n(x(a)− x(a+ 1))2∑
a x(a)2

=

∑
1≤a<n 22∑

a(n+ 1− 2a)2

=
4(n− 1)

(n+ 1)n(n− 1)/3
(clearly, the denominator is n3/c for some c)

=
12

n(n+ 1)
. (3.5)

We will soon see that this bound is of the right order of magnitude. Thus, Theorem 3.1.1 does not
provide a good bound on the isoperimetric number of the path graph. The isoperimetric number
is minimized by the set S = {1, . . . , n/2}, which has θ(S) = 2/n. However, the upper bound
provided by Theorem 3.1.1 is of the form c/n2. Cheeger’s inequality, which we will prove later in
the semester, will tell us that the error of this approximation can not be worse than quadratic.

The Courant-Fischer theorem is not as helpful when we want to prove lower bounds on λ2. To
prove lower bounds, we need the form with a maximum on the outside, which gives

λ2 ≥ max
S:dim(S)=n−1

min
v∈S

vTLv

vTv
.

This is not too helpful, as it is difficult to prove lower bounds on

min
v∈S

vTLv

vTv

over a space S of large dimension. We will see a technique that lets us prove such lower bounds
next lecture.

But, first we compute the eigenvalues and eigenvectors of the path graph exactly.

3.7 The Ring Graph

The ring graph on n vertices, Rn, may be viewed as having a vertex set corresponding to the
integers modulo n. In this case, we view the vertices as the numbers 0 through n − 1, with edges
(a, a+ 1), computed modulo n.
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(a) The ring graph on 9 vertices.
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(b) The eigenvectors for k = 2.

Figure 3.2:

Lemma 3.7.1. The Laplacian of Rn has eigenvectors

x k(a) = cos(2πka/n), and

yk(a) = sin(2πka/n),

for 0 ≤ k ≤ n/2, ignoring y0 which is the all-zero vector, and for even n ignoring yn/2 for the
same reason. Eigenvectors x k and yk have eigenvalue 2− 2 cos(2πk/n).

Note that x 0 is the all-ones vector. When n is even, we only have xn/2, which alternates ±1.

Proof. We will first see that x 1 and y1 are eigenvectors by drawing the ring graph on the unit
circle in the natural way: plot vertex u at point (cos(2πa/n), sin(2πa/n)).

You can see that the average of the neighbors of a vertex is a vector pointing in the same direction
as the vector associated with that vertex. This should make it obvious that both the x and y
coordinates in this figure are eigenvectors of the same eigenvalue. The same holds for all k.

Alternatively, we can verify that these are eigenvectors by a simple computation.

(LRnx k) (a) = 2x k(a)− x k(a+ 1)− x k(a− 1)

= 2 cos(2πka/n)− cos(2πk(a+ 1)/n)− cos(2πk(a− 1)/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n) + sin(2πka/n) sin(2πk/n)

− cos(2πka/n) cos(2πk/n)− sin(2πka/n) sin(2πk/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n)− cos(2πka/n) cos(2πk/n)

= (2− 2 cos(2πk/n)) cos(2πka/n)

= (2− cos(2πk/n))x k(a).

The computation for yk follows similarly.
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3.8 The Path Graph

We will derive the eigenvalues and eigenvectors of the path graph from those of the ring graph. To
begin, I will number the vertices of the ring a little differently, as in Figure 3.3.

1

23

4

8

7 6

5

Figure 3.3: The ring on 8 vertices, numbered differently

Lemma 3.8.1. Let Pn = (V,E) where V = {1, . . . , n} and E = {(a, a+ 1) : 1 ≤ a < n}. The
Laplacian of Pn has the same eigenvalues as R2n, excluding 2. That is, Pn has eigenvalues namely
2(1− cos(πk/n)), and eigenvectors

vk(a) = cos(πku/n− πk/2n).

for 0 ≤ k < n

Proof. We derive the eigenvectors and eigenvalues by treating Pn as a quotient of R2n: we will
identify vertex u of Pn with vertices u and u+ n of R2n (under the new numbering of R2n). These
are pairs of vertices that are above each other in the figure that I drew.

Let I n be the n-dimensional identity matrix. You should check that

(
I n I n

)
LR2n

(
I n

I n

)
= 2LPn .

If there is an eigenvector ψ of R2n with eigenvalue λ for which ψ(a) = ψ(a + n) for 1 ≤ a ≤ n,
then the above equation gives us a way to turn this into an eigenvector of Pn: Let φ ∈ IRn be the
vector for which

φ(a) = ψ(a), for 1 ≤ a ≤ n.

Then, (
I n

I n

)
φ = ψ, LR2n

(
I n

I n

)
φ = λψ, and

(
I n I n

)
LR2n

(
I n

I n

)
ψ = 2λφ.
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So, if we can find such a vector ψ, then the corresponding φ is an eigenvector of Pn of eigenvalue
λ.

As you’ve probably guessed, we can find such vectors ψ. I’ve drawn one in Figure 3.3. For each of
the two-dimensional eigenspaces of R2n, we get one such a vector. These provide eigenvectors of
eigenvalue

2(1− cos(πk/n)),

for 1 ≤ k < n. Thus, we now know n− 1 distinct eigenvalues. The last, of course, is zero.

The type of quotient used in the above argument is known as an equitable partition. You can find
a extensive exposition of these in Godsil’s book [God93].
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Spectral Graph Theory Lecture 4

Bounding Eigenvalues

Daniel A. Spielman September 10, 2018

4.1 Overview

It is unusual when one can actually explicitly determine the eigenvalues of a graph. Usually one is
only able to prove loose bounds on some eigenvalues.

In this lecture we will see a powerful technique that allows one to compare one graph with another,
and prove things like lower bounds on the smallest eigenvalue of a Laplacians. It often goes by the
name “Poincaré Inequalities” (see [DS91, SJ89, GLM99]), although I often use the name “Graphic
inequlities”, as I see them as providing inequalities between graphs.

4.2 Graphic Inequalities

I begin by recalling an extremely useful piece of notation that is used in the Optimization commu-
nity. For a symmetric matrix A, we write

A < 0

if A is positive semidefinite. That is, if all of the eigenvalues of A are nonnegative, which is
equivalent to

vTAv ≥ 0,

for all v . We similarly write
A < B

if
A−B < 0

which is equivalent to
vTAv ≥ vTBv

for all v .

The relation 4 is called the Loewner partial order. It applies to some pairs of symmetric matrices,
while others are incomparable. But, for all pairs to which it does apply, it acts like an order. For
example, we have

A < B and B < C implies A < C ,

and
A < B implies A + C < B + C ,

4-1
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for symmetric matrices A, B and C .

I find it convenient to overload this notation by defining it for graphs as well. Thus, I’ll write

G < H

if LG < LH . For example, if G = (V,E) is a graph and H = (V, F ) is a subgraph of G, then

LG < LH .

To see this, recall the Laplacian quadratic form:

xTLGx =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

It is clear that dropping edges can only decrease the value of the quadratic form. The same holds
for decreasing the weights of edges.

This notation is most powerful when we consider some multiple of a graph. Thus, I could write

G < c ·H,

for some c > 0. What is c ·H? It is the same graph as H, but the weight of every edge is multiplied
by c.

Using the Courant-Fischer Theorem, we can prove

Lemma 4.2.1. If G and H are graphs such that

G < c ·H,

then
λk(G) ≥ cλk(H),

for all k.

Proof. The Courant-Fischer Theorem tells us that

λk(G) = min
S⊆IRn

dim(S)=k

max
x∈S

xTLGx

xTx
≥ c min

S⊆IRn

dim(S)=k

max
x∈S

xTLHx

xTx
= cλk(H).

Corollary 4.2.2. Let G be a graph and let H be obtained by either adding an edge to G or increasing
the weight of an edge in G. Then, for all i

λi(G) ≤ λi(H).
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4.3 Approximations of Graphs

An idea that we will use in later lectures is that one graph approximates another if their Laplacian
quadratic forms are similar. For example, we will say that H is a c-approximation of G if

cH < G < H/c.

Surprising approximations exist. For example, expander graphs are very sparse approximations of
the complete graph. For example, the following is known.

Theorem 4.3.1. For every ε > 0, there exists a d > 0 such that for all sufficiently large n there is
a d-regular graph Gn that is a (1 + ε)-approximation of Kn.

These graphs have many fewer edges than the complete graphs!

In a later lecture we will also prove that every graph can be well-approximated by a sparse graph.

4.4 The Path Inequality

By now you should be wondering, “how do we prove that G < c · H for some graph G and H?”
Not too many ways are known. We’ll do it by proving some inequalities of this form for some of
the simplest graphs, and then extending them to more general graphs. For example, we will prove

(n− 1) · Pn < G1,n, (4.1)

where Pn is the path from vertex 1 to vertex n, and G1,n is the graph with just the edge (1, n). All
of these edges are unweighted.

The following very simple proof of this inequality was discovered by Sam Daitch.

Lemma 4.4.1.
(n− 1) · Pn < G1,n.

Proof. We need to show that for every x ∈ IRn,

(n− 1)
n−1∑
i=1

(x (i+ 1)− x (i))2 ≥ (x (n)− x (1))2.

For 1 ≤ i ≤ n− 1, set
∆(i) = x (i+ 1)− x (i).

The inequality we need to prove then becomes

(n− 1)
n−1∑
i=1

∆(i)2 ≥

(
n−1∑
i=1

∆(i)

)2

.
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But, this is just the Cauchy-Schwartz inequality. I’ll remind you that Cauchy-Schwartz just follows
from the fact that the inner product of two vectors is at most the product of their norms:

(n− 1)
n−1∑
i=1

∆(i)2 = ‖1n−1‖2 ‖∆‖2 = (‖1n−1‖ ‖∆‖)2 ≥
(
1T
n−1∆

)2
=

(
n−1∑
i=1

∆(i)

)2

.

4.4.1 Bounding λ2 of a Path Graph

I’ll now demonstrate the power of Lemma 4.4.1 by using it to prove a lower bound on λ2(Pn) that
will be very close to the upper bound we obtained from the test vector.

To prove a lower bound on λ2(Pn), we will prove that some multiple of the path is at least the
complete graph. To this end, write

LKn =
∑
i<j

LGi,j ,

and recall that
λ2(Kn) = n.

For every edge (i, j) in the complete graph, we apply the only inequality available in the path:

Gi,j 4 (j − i)
j−1∑
k=i

Gk,k+1 4 (j − i)Pn. (4.2)

This inequality says that Gi,j is at most (j − i) times the part of the path connecting i to j, and
that this part of the path is less than the whole.

Summing inequality (4.2) over all edges (i, j) ∈ Kn gives

Kn =
∑
i<j

Gi,j 4
∑
i<j

(j − i)Pn.

To finish the proof, we compute

∑
1≤i<j≤n

(j − i) =
n−1∑
k=1

k(n− k) = n(n+ 1)(n− 1)/6.

So,

LKn 4
n(n+ 1)(n− 1)

6
· LPn .

Applying Lemma 4.2.1, we obtain

6

(n+ 1)(n− 1)
≤ λ2(Pn).

This only differs from the upper bound we obtained last lecture using a test vector by a factor of
2.
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4.5 The Complete Binary Tree

Let’s do the same analysis with the complete binary tree.

One way of understanding the complete binary tree of depth d+ 1 is to identify the vertices of the
tree with strings over {0, 1} of length at most d. The root of the tree is the empty string. Every
other node has one ancestor, which is obtained by removing the last character of its string, and
two children, which are obtained by appending one character to its label.

Alternatively, you can describe it as the graph on n = 2d+1− 1 nodes with edges of the form (i, 2i)
and (i, 2i+ 1) for i < n. We will name this graph Td. Pictures of this graph appear below.

Pictorially, these graphs look like this:

1 1

1

2
2

2

3 3

3

5 6

74

Figure 4.1: T1, T2 and T3. Node 1 is at the top, 2 and 3 are its children. Some other nodes have
been labeled as well.

Let’s first upper bound λ2(Td) by constructing a test vector x. Set x(1) = 0, x(2) = 1, and
x(3) = −1. Then, for every vertex u that we can reach from node 2 without going through node 1,
we set x(u) = 1. For all the other nodes, we set x(u) = −1.

0

1
−1

1

11

1

11

−1
−1

−1−1−1−1

Figure 4.2: The test vector we use to upper bound λ2(T3).

We then have

λ2 ≤
∑

(i,j)∈Td
(xi − xj)2∑
i x

2
i

=
(x1 − x2)2 + (x1 − x3)2

n− 1
= 2/(n− 1).

We will again prove a lower bound by comparing Td to the complete graph. For each edge (i, j) ∈
Kn, let T i,j

d denote the unique path in T from i to j. This path will have length at most 2d. So,
we have

Kn =
∑
i<j

Gi,j 4
∑
i<j

(2d)T i,j
d 4

∑
i<j

(2 log2 n)Td =

(
n

2

)
(2 log2 n)Td.
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So, we obtain the bound (
n

2

)
(2 log2 n)λ2(Td) ≥ n,

which implies

λ2(Td) ≥ 1

(n− 1) log2 n
.

In the next problem set, I will ask you to improve this lower bound to 1/cn for some constant c.

4.6 The weighted path

Lemma 4.6.1. Let w1, . . . , wn−1 be positive. Then

G1,n 4

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

wiGi,i+1.

Proof. Let x ∈ IRn and set ∆(i) as in the proof of the previous lemma. Now, set

γ(i) = ∆(i)
√
wi.

Let w−1/2 denote the vector for which

w−1/2(i) =
1
√
wi
.

Then, ∑
i

∆(i) = γTw−1/2,

∥∥∥w−1/2∥∥∥2 =
∑
i

1

wi
,

and
‖γ‖2 =

∑
i

∆(i)2wi.

So,

xTLG1,nx =

(∑
i

∆(i)

)2

=
(
γTw−1/2

)2
≤
(
‖γ‖

∥∥∥w−1/2∥∥∥)2 =

(∑
i

1

wi

)∑
i

∆(i)2wi =

(∑
i

1

wi

)
xT

(
n−1∑
i=1

wiLGi,i+1

)
x .
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4.7 Exercises

1. Let v be a vector so that vT1 = 0. Prove that

‖v‖2 ≤ ‖v + t1‖2 ,

for every real number t.
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Spectral Graph Theory Lecture 5

Cayley Graphs

Daniel A. Spielman September 12, 2018

5.1 Cayley Graphs

Ring graphs and hypercubes are types of Cayley graph. In general, the vertices of a Cayley graph
are the elements of some group Γ. In the case of the ring, the group is the set of integers modulo
n. The edges of a Cayley graph are specified by a set S ⊂ Γ, which are called the generators of the
Cayley graph. The set of generators must be closed under inverse. That is, if s ∈ S, then s−1 ∈ S.
Vertices u, v ∈ Γ are connected by an edge if there is an s ∈ S such that

u ◦ s = v,

where ◦ is the group operation. In the case of Abelian groups, like the integers modulo n, this
would usually be written u+ s = v. The generators of the ring graph are {1,−1}.

The d-dimensional hypercube, Hd, is a Cayley graph over the additive group (Z/2Z)d: that is the
set of vectors in {0, 1}d under addition modulo 2. The generators are given by the vectors in {0, 1}d
that have a 1 in exactly one position. This set is closed under inverse, because every element of
this group is its own inverse.

We require S to be closed under inverse so that the graph is undirected:

u+ s = v ⇐⇒ v + (−s) = u.

Cayley graphs over Abeliean groups are particularly convenient because we can find an orthonormal
basis of eigenvectors without knowing the set of generators. They just depend on the group1. Know-
ing the eigenvectors makes it much easier to compute the eigenvalues. We give the computations
of the eigenvectors in sections ?? and A.

We will now examine two exciting types of Cayley graphs: Paley graphs and generalized hypercubes.

5.2 Paley Graphs

The Paley graph are Cayley graphs over the group of integer modulo a prime, p, where p is equivalent
to 1 modulo 4. Such a group is often written Z/p.

1More precisely, the characters always form an orthonormal set of eigenvectors, and the characters just depend
upon the group. When two different characters have the same eigenvalue, we obtain an eigenspace of dimension
greater than 1. These eigenspaces do depend upon the choice of generators.

5-1
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I should begin by reminding you a little about the integers modulo p. The first thing to remember
is that the integers modulo p are actually a field, written Fp. That is, they are closed under
both addition and multiplication (completely obvious), have identity elements under addition and
multiplication (0 and 1), and have inverses under addition and multiplication. It is obvious that
the integers have inverses under addition: −x modulo p plus x modulo p equals 0. It is a little less
obvious that the integers modulo p have inverses under multiplication (except that 0 does not have
a multiplicative inverse). That is, for every x 6= 0, there is a y such that xy = 1 modulo p. When
we write 1/x, we mean this element y.

The generators of the Paley graphs are the squares modulo p (usually called the quadratic residues).
That is, the set of numbers s such that there exits an x for which x2 ≡p s. Thus, the vertex set
is {0, . . . , p− 1}, and there is an edge between vertices u and v if u − v is a square modulo p. I
should now prove that −s is a quadratic residue if and only if s is. This will hold provided that p
is equivalent to 1 modulo 4. To prove that, I need to tell you one more thing about the integers
modulo p: their multiplicative group is cyclic.

Fact 5.2.1. For every prime p, there exists a number g such that for every number x between 1
and p− 1, there is a unique i between 1 and p− 1 such that

x ≡ gi mod p.

In particular, gp−1 ≡ 1.

Corollary 5.2.2. If p is a prime equivalent to 1 modulo 4, then −1 is a square modulo p.

Proof. We know that 4 divides p− 1. Let s = g(p−1)/4. I claim that s2 = −1. This will follow from
s4 = 1.

To see this, consider the equation
x2 − 1 ≡ 0 mod p.

As the numbers modulo p are a field, it can have at most 2 solutions. Moreover, we already know
two solutions, x = 1 and x = −1. As s4 = 1, we know that s2 must be one of 1 or −1. However,
it cannot be the case that s2 = 1, because then the powers of g would begin repeating after the
(p− 1)/2 power, and thus could not represent every number modulo p.

We now understand a lot about the squares modulo p (formally called quadratic residues). The
squares are exactly the elements gi where i is even. As gigj = gi+j , the fact that −1 is a square
implies that s is a square if and only if −s is a square. So, S is closed under negation, and the
Cayley graph of Z/p with generator set S is in fact a graph. As |S| = (p − 1)/2, it is regular of
degree

d =
p− 1

2
.

5.3 Eigenvalues of the Paley Graphs

It will prove simpler to compute the eigenvalues of the adjacency matrix of the Paley Graphs. Since
these graphs are regular, this will immediately tell us the eigenvalues of the Laplacian. Let L be
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the Laplacians matrix of the Paley graph on p vertices. A remarkable feature of Paley graph is
that L2 can be written as a linear combination of L, J and I , where J is the all-1’s matrix. We
will prove that

L2 = pL +
p− 1

4
J − p(p− 1)

4
I . (5.1)

The proof will be easiest if we express L in terms of a matrix X defined by the quadratic character :

χ(x) =


1 if x is a quadratic residue modulo p

0 if x = 0, and

−1 otherwise.

This is called a character because it satisfies χ(xy) = χ(x)χ(y). We will use this to define a matrix
X by

X (u, v) = χ(u− v).

An elementary calculation, which I skip, reveals that

X = pI − 2L− J . (5.2)

Lemma 5.3.1.
X 2 = pI − J .

When combined with (5.2), this lemma immediately implies (5.1).

Proof. The diagonal entries of X 2 are the squares of the norms of the columns of X . As each
contains (p − 1)/2 entries that are 1, (p − 1)/2 entries that are −1, and one entry that is 0, its
squared norm is p− 1.

To handle the off-diagonal entries, we observe that X is symmetric, so the off-diagonal entries are
the inner products of columns of X . That is,

X (u, v) =
∑
x

χ(u− x)χ(v − x) =
∑
y

χ(y)χ((v − u) + y),

where we have set y = u − x. For convenience, set w = v − u, so we can write this more simply.
As we are considering a non-diagonal entry, w 6= 0. The term in the sum for y = 0 is zero. When
y 6= 0, χ(y) ∈ ±1, so

χ(y)χ(w + y) = χ(w + y)/χ(y) = χ(w/y + 1).

Now, as y varies over {1, . . . , p− 1}, w/y varies over all of {1, . . . , p− 1}. So, w/y + 1 varies over
all elements other than 1. This means that

∑
y

χ(y)χ((v − u) + y) =

(
p−1∑
z=0

χ(z)

)
− χ(1) = 0− 1 = −1.

So, every off-diagonal entry in X 2 is −1.
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This gives us a quadratic equation that every eigenvalue other than d must obey. Let φ be an
eigenvector of L of eigenvalue λ 6= 0. As φ is orthogonal to the all-1s vector, Jφ = 0. So,

λ2φ = L2φ = pLφ− p(p− 1)

4
Iφ == (pλ− p(p− 1)/4)φ.

So, we find

λ2 + pλ− p(p− 1)

4
= 0.

This gives

λ =
1

2
(p±√p) .

This tells us at least two interesting things:

1. The Paley graph is (up to a very small order term) a 1+
√

1/p approximation of the complete
graph.

2. Payley graphs have only two nonzero eigenvalues. This places them within the special family
of Strongly Regular Graphs, that we will study later in the semester.

5.4 Generalizing Hypercubes

To generalize the hypercube, we will consider this same group, but with a general set of generators.
We will call then g1, . . . , gk, and remember that each is a vector in {0, 1}d, modulo 2.

Let G be the Cayley graph with these generators. To be concrete, I set V = {0, 1}d, and note that
G has edge set {

(x ,x + g j) : x ∈ V, 1 ≤ j ≤ k
}
.

Using the analysis of products of graphs, we can derive a set of eigenvectors of Hd. We will now
verify that these are eigenvectors for all generalized hypercubes. Knowing these will make it easy
to describe the eigenvalues.

For each b ∈ {0, 1}d, define the function ψb from V to the reals given by

ψb(x ) = (−1)b
T x .

When I write bTx , you might wonder if I mean to take the sum over the reals or modulo 2. As
both b and x are {0, 1}-vectors, you get the same answer either way you do it.

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient is,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem. As this
graph is k-regular, the eigenvectors of the adjacency and Laplacian matrices will be the same.
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Lemma 5.4.1. For each b ∈ {0, 1}d the vector ψb is a Laplacian matrix eigenvector with eigenvalue

k −
k∑

i=1

(−1)b
T g i .

Proof. We begin by observing that

ψb(x + y) = (−1)b
T (x+y) = (−1)b

T x (−1)b
T y = ψb(x )ψb(y).

Let L be the Laplacian matrix of the graph. For any vector ψb for b ∈ {0, 1}d and any vertex
x ∈ V , we compute

(Lψb)(x ) = kψb(x )−
k∑

i=1

ψb(x + g i)

= kψb(x )−
k∑

i=1

ψb(x )ψb(g i)

= ψb(x )

(
k −

k∑
i=1

ψb(g i)

)
.

So, ψb is an eigenvector of eigenvalue

k −
k∑

i=1

ψb(g i) = k −
k∑

i=1

(−1)b
T g i .

5.5 A random set of generators

We will now show that if we choose the set of generators uniformly at random, for k some constant
multiple of the dimension, then we obtain a graph that is a good approximation of the complete
graph. That is, all the eigenvalues of the Laplacian will be close to k. I will set k = cd, for some
c > 1. Think of c = 2, c = 10, or c = 1 + ε.

For b ∈ {0, 1}d but not all zero, and for g chosen uniformly at random from {0, 1}d, bTg modulo
2 is uniformly distributed in {0, 1}, and so

(−1)b
T g

is uniformly distributed in ±1. So, if we pick g1, . . . , gk independently and uniformly from {0, 1}d,
the eigenvalue corresponding to the eigenvector ψb is

λb
def
= k −

k∑
i=1

(−1)b
T g i .
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The right-hand part is a sum of independent, uniformly chosen ±1 random variables. So, we
know it is concentrated around 0, and thus λb will be concentrated around k. To determine how
concentrated the sum actually is, we use a Chernoff bound. There are many forms of Chernoff
bounds. I will not use the strongest, but settle for one which is simple and which gives results that
are qualitatively correct.

Theorem 5.5.1. Let x1, . . . , xk be independent ±1 random variables. Then, for all t > 0,

Pr

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ t
]
≤ 2e−t

2/2k.

This becomes very small when t is a constant fraction of k. In fact, it becomes so small that it is
unlikely that any eigenvalue deviates from k by more than t.

Theorem 5.5.2. With high probability, all of the nonzero eigenvalues of the generalized hypercube
differ from k by at most

k

√
2

c
,

where k = cd.

Proof. Let t = k
√

2/c. Then, for every nonzero b,

Pr [|k − λb | ≥ t] ≤ 2e−t
2/2k ≤ 2e−k/c = 2e−d.

Now, the probability that there is some b for which λb violates these bounds is at most the sum of
these terms:

Pr [∃b : |k − λb | ≥ t] ≤
∑

b∈{0,1}d,b 6=0d

Pr [|k − λb | ≥ t] ≤ (2d − 1)2e−d,

which is always less than 1 and goes to zero exponentially quickly as d grows.

I initially suggested thinking of c = 2 or c = 10. The above bound works for c = 10. To get a useful
bound for c = 2, we need to sharpen the analysis. A naive sharpening will work down to c = 2 ln 2.
To go lower than that, you need a stronger Chernoff bound.

5.6 Conclusion

We have now seen that a random generalized hypercube of degree k probably has all non-zero
Laplacian eigenvalues between

k(1−
√

2/c) and k(1 +
√

2/c).

If we let n be the number of vertices, and we now multiply the weight of every edge by n/k, we
obtain a graph with all nonzero Laplacian eigenvalues between

n(1−
√

2/c) and n(1 +
√

2/c).
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Thus, this is essentially a 1 +
√

2/c approximation of the complete graph on n vertices. But, the
degree of every vertex is only c log2 n. Expanders are infinite families of graphs that are constant-
factor approximations of complete graphs, but with constant degrees.

We know that random regular graphs are probably expanders. If we want explicit constructions,
we need to go to non-Abelian groups.

Explicit constructions that achieve bounds approaching those of random generalized hypercubes
come from error-correcting codes.

Explicit constructions allow us to use these graphs in applications that require us to implicitly deal
with a very large graph. A few weeks from now, we will see how to use such graphs to construct
pseudo-random generators.

5.7 Non-Abelian Groups

In the homework, you will show that it is impossible to make constant-degree expander graphs from
Cayley graphs of Abelian groups. The best expanders are constructed from Cayley graphs of 2-by-2
matrix groups. In particular, the Ramanujan expanders of Margulis [Mar88] and Lubotzky, Phillips
and Sarnak [LPS88] are Cayley graphs over the Projective Special Linear Groups PSL(2, p), where
p is a prime. These are the 2-by-2 matrices modulo p with determinant 1, in which we identify A
with −A.

They provided a very concrete set of generators. For a prime q modulo to 1 modulo 4, it is known
that there are p+ 1 solutions to the equation

a21 + a22 + a23 + a24 = p,

where a1 is odd and a2, a3 and a4 are even. We obtain a generator for each such solution of the
form:

1
√
p

[
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

]
,

where i is an integer that satisfies i2 = −1 modulo p.

Even more explicit constructions, which do not require solving equations, may be found in [ABN+92].

A Eigenvectors of Cayley Graphs of Abelian Groups

The wonderful thing about Cayley graphs of Abelian groups is that we can construct an orthornor-
mal basis of eigenvectors for these graphs without even knowing the set of generators S. That
is, the eigenvectors only depend upon the group. Related results also hold for Cayley graphs of
arbitrary groups, and are related to representations of the groups. See [Bab79] for details.

As Cayley graphs are regular, it won’t matter which matrix we consider. For simplicity, we will
consider adjacency matrices.
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Let n be an integer and let G be a Cayley graph on Z/n with generator set S. When S = {±1},
we get the ring graphs. For general S, I think of these as generalized Ring graphs. Let’s first see
that they have the same eigenvectors as the Ring graphs.

Recall that we proved that the vectors x k and yk were eigenvectors of the ring graphs, where

x k(u) = sin(2πku/n), and

yk(u) = cos(2πku/n),

for 1 ≤ k ≤ n/2.

Let’s just do the computation for the x k, as the yk are similar. For every u modulo n, we have

(Ax k)(u) =
∑
g∈S

x k(u+ g)

=
1

2

∑
g∈S

x k(u+ g) + x k(u− g)


=

1

2

∑
g∈S

sin(2πk(u+ g)/n) + sin(2πk(u− g)/n)


=

1

2

∑
g∈S

2 sin(2πku/n) cos(2πkg/n)


= sin(2πku/n)

∑
g∈S

cos(2πkg/n)

= x k(u)
∑
g∈S

cos(2πkg/n).

So, the corresponding eigenvalue is ∑
g∈S

cos(2πkg/n).
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Spectral Graph Theory Lecture 6

High-Frequency Eigenvalues

Daniel A. Spielman September 17, 2018

6.1 Overview

In this lecture we will see how high-frequency eigenvalues of the Laplacian matrix can be related to
independent sets and graph coloring. Some of the bounds we obtained will be more easilys stated
in terms of the adjacency matrix, M . Recall the we number the Laplacian matrix eigenvalues in
increasing order:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

We call the adjacency matrix eigenvalues µ1, . . . , µn, and number them in the reverse order:

µ1 ≥ · · · ≥ µn.

The reason is that for d-regular graphs, µi = d− λi.

6.2 Graph Coloring and Independent Sets

A coloring of a graph is an assignment of one color to every vertex in a graph so that each edge
connects vertices of different colors. We are interested in coloring graphs while using as few colors
as possible. Formally, a k-coloring of a graph is a function c : V → {1, . . . , k} so that for all
(u, v) ∈ V , c(u) 6= c(v). A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph, written χG, is the least k for which G is k-colorable. A graph G is 2-colorable if and only if
it is bipartite. Determining whether or not a graph is 3-colorable is an NP-complete problem. The
famous 4-Color Theorem [AH77a, AH77b] says that every planar graph is 4-colorable.

A set of vertices S is independent if there are no edges between vertices in S. In particular, each
color class in a coloring is an independent set. The problem of finding large independent sets
in a graph is NP-Complete, and it is very difficult to even approximate the size of the largest
independent set in a graph.

However, for some carefully chosen graphs one can obtain very good bounds on the sizes of in-
dependent sets by using spectral graph theory. We may later see some uses of this theory in the
analysis of error-correcting codes and sphere packings.

6-1
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6.3 Hoffman’s Bound

One of the first results in spectral graph theory was Hoffman’s proof the following upper bound on
the size of an independent set in a graph G.

Theorem 6.3.1. Let G = (V,E) be a d-regular graph, and let µn be its smallest adjacency matrix
eigenvalue. Then

α(G) ≤ n −µn
d− µn

.

Recall that µn < 0. Otherwise this theorem would not make sense. We will prove a generalization
of Hoffman’s theorem due to Godsil and Newman [GN08]:

Theorem 6.3.2. Let S be an independent set in G, and let dave(S) be the average degree of a
vertex in S. Then,

|S| ≤ n
(

1− dave(S)

λn

)
.

This is a generalization because in the d-regular case dave = d and λn = d− µn. So, these bounds
are the same for regular graphs:

1− dave(S)

λn
=
λn − d
λn

=
−µn
d− µn

.

Proof. Let S be an independent set of vertices and let d(S) be the sum of the degrees of vertices
in S.

Recall that

λn = max
x

xTLx

xTx
.

We also know that the vector x that maximizes this quantity is ψn, and that ψn is orthogonal to
ψ1. So, we can refine this expression to

λn = max
x⊥1

xTLx

xTx
.

Consider the vector
x = χS − s1,

where s = |S| /n. As S is independent, we have

xTLx = |∂(S)| = d(S) = dave(S) |S| .

Claim 2.3.2 tells us that the square of the norm of x is

xTx = n(s− s2).
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So,

λn ≥
dave(S) |S|
n(s− s2)

=
dave(S)sn

n(s− s2)
=
dave(S)

1− s
.

Re-arranging terms, this gives

1− dave(S)

λn
≥ s,

which is equivalent to the claim of the theorem.

6.4 Application to Paley graphs

Let’s examine what Hoffman’s bound on the size of the largest independent set tells us about Paley
graphs.

If G is a Paley graph and S is an independent set, we have n = p, d = (p−1)/2, and λn = (p+
√
p)/2,

so Hoffman’s bound tells us that

|S| ≤ n
(

1− dave(S)

λn

)
= p

(
1− p− 1

p+
√
p

)
= p

(√
p+ 1

p+
√
p

)
=
√
p.

One can also show that every clique in a Paley graph has size at most
√
p.

A graph is called a k-Ramsey graph if it contains no clique or independent set of size k. It is a
challenge to find large k-Ramsey graphs. Equivalently, it is challenging to find k-Ramsey graphs
on n vertices for which k is small. In one of the first papers on the Probabilistic Method in
Combinatorics, Erdös proved that a random graph on n vertices in which each edge is included
with probability 1/2 is probably 2 log2 n Ramsey [Erd47].

However, constructing explicit Ramsey graphs has proved much more challening. Until recently,
Paley graphs were among the best known. A recent construction of Barak, Rao, Shatltiel and
Wigderson [BRSW12] constructs explicit graphs that are 2(logn)

o(1)
Ramsey.

6.5 Lower Bound on the chromatic number

As a k-colorable graph must have an independent set of size at least n/k, an upper bound on the
sizes of independent sets gives a lower bound on its chromatic number. However, this bound is not
always a good one.

For example, consider a graph on 2n vertices consisting of a clique on n vertices and n vertices of
degree 1, each of which is connected to a different vertex in the clique. The chromatic number of
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this graph is n, because each of the vertices in the clique must have a different color. However,
the graph also has an independent set of size n, which would only give a lower bound of 2 on the
chromatic number.

Hoffman proved the following lower bound on the chromatic number of a graph that does not
require the graph to be regular. Numerically, it is obtained by dividing n by the bound in Theorem
6.3.1. But, the proof is very different because that theorem only applies to regular graphs.

Theorem 6.5.1.

χ(G) ≥ µ1 − µn
−µn

= 1 +
µ1
−µn

.

The proof of this theorem relies on one inequality that I will not have time to cover in class. So, I
will put its proof in Section B.

Lemma 6.5.2. Let

A =


A1,1 A1,2 · · · A1,k

AT
1,2 A2,2 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · Ak,k


be a block-partitioned symmetric matrix with k ≥ 2. Then

(k − 1)λmin(A) + λmax(A) ≤
∑
i

λmax(Ai,i).

Proof of Theorem 6.5.1. Let G be a k-colorable graph. After possibly re-ordering the vertices, the
adjacency matrix of G can be written

0 A1,2 · · · A1,k

AT
1,2 0 · · · A2,k
...

...
. . .

...

AT
1,k AT

2,k · · · 0

 .
Each block corresponds to a color.

As each diagonal block is all-zero, Lemma 6.5.2 implies

(k − 1)λmin(A) + λmax(A) ≤ 0.

Recalling that λmin(A) = µn < 0, and λmax(A) = µ1, a little algebra yields

1 +
µ1
−µn

≤ k.

To return to our example of the n clique with n degree-1 vertices attached, I examined an example
with n = 6. We find µ1 = 5.19 and µ12 = −1.62. This gives a lower bound on the chromatic
number of 4.2, which implies a lower bound of 5. We can improve the lower bound by re-weighting
the edges of the graph. For example, if we give weight 2 to all the edges in the clique and weight 1
to all the others, we obtain a bound of 5.18, which agrees with the chromatic number of this graph
which is 6.
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6.6 Coloring and The Adjacency Matrix

I would also like to show how to use spectral graph theory to color a graph. I do not know how to
do this using the Laplacian matrix, so we will work with the Adjacency matrix. This will provide
me with a good opportunity to cover some material about adjacency matrices that I have neglected.

6.7 The Largest Eigenvalue, µ1

We now examine µ1 for graphs which are not necessarily regular. Let G be a graph, let dmax be
the maximum degree of a vertex in G, and let dave be the average degree of a vertex in G.

Lemma 6.7.1.
dave ≤ µ1 ≤ dmax.

Proof. The lower bound follows by considering the Rayleigh quotient with the all-1s vector:

µ1 = max
x

xTMx

xTx
≥ 1TM1

1T1
=

∑
i,j M (i, j)

n
=

∑
i d(i)

n
.

To prove the upper bound, Let ψ1 be an eigenvector of eigenvalue µ1. Let v be the vertex on which
it takes its maximum value, so ψ1(v) ≥ ψ1(u) for all u, and assume without loss of generality that
ψ1(v) 6= 0. We have

µ1 =
(Mψ1)(v)

ψ1(v)
=

∑
u∼v ψ1(u)

ψ1(v)
=
∑
u∼v

ψ1(u)

ψ1(v)
≤
∑
u∼v

1 ≤ d(v) ≤ dmax. (6.1)

Lemma 6.7.2. If G is connected and µ1 = dmax, then G is dmax-regular.

Proof. If we have equality in (6.1), then it must be the case that d(v) = dmax and φ1(u) = φ1(v)
for all (u, v) ∈ E. Thus, we may apply the same argument to every neighbor of v. As the graph
is connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that φ1(z) = φ1(v) and d(z) = dmax for all z ∈ V .

6.8 Wilf’s Theorem

While we may think of µ1 as being a related to the average degree, it does behave differently. In
particular, if we remove the vertex of smallest degree from a graph, the average degree can increase.
On the other hand, µ1 can only decrease when we remove a vertex. Let’s prove that now.

Lemma 6.8.1. Let A be a symmetric matrix with largest eigenvalue α1. Let B be the matrix
obtained by removing the last row and column from A, and let β1 be the largest eigenvalue of B.
Then,

α1 ≥ β1.
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Proof. For any vector y ∈ IRn−1, we have

yTBy =

(
y
0

)T

A

(
y
0

)
.

So, for y an eigenvector of B of eigenvalue β1,

β1 =
yTBy

yTy
=

(
y
0

)T

A

(
y
0

)
(
y
0

)T (
y
0

) ≤ max
x∈IRn

xTAx

xTx
.

Of course, this holds regardless of which row and column we remove, as long as they are the same
row and column.

It is easy to show that every graph is (dmax +1)-colorable. Assign colors to the vertices one-by-one.
As each vertex has at most dmax neighbors, there is always some color one can assign that vertex
that is different that those assigned to its neighbors. The following theorem of Wilf improves upon
this bound.

Theorem 6.8.2.
χ(G) ≤ bµ1c+ 1.

Proof. We prove this by induction on the number of vertices in the graph. To ground the induction,
consider the graph with one vertex and no edges. It has chromatic number 1 and largest eigenvalue
zero1. Now, assume the theorem is true for all graphs on n − 1 vertices, and let G be a graph on
n vertices. By Lemma 6.7.1, G has a vertex of degree at most bµ1c. Let v be such a vertex and
let G − {v} be the graph obtained by removing this vertex. By Lemma 6.8.1 and our induction
hypothesis, G−{v} has a coloring with at most bµ1c+1 colors. Let c be any such coloring. We just
need to show that we can extend c to v. As v has at most bµ1c neighbors, there is some color in
{1, . . . , bµ1c+ 1} that does not appear among its neighbors, and which it may be assigned. Thus,
G has a coloring with bµ1c+ 1 colors.

For an example, consider a path graph with at least 3 vertices. We have dmax = 2, but α1 < 2.

6.9 Perron-Frobenius Theorey

The eigenvector corresponding to the largest eigenvalue of the adjacency matrix of a graph is usually
not a constant vector. However, it is always a positive vector if the graph is connected.

This follows from the Perron-Frobenius theory. In fact, the Perron-Frobenius theory says much
more, and it can be applied to adjacency matrices of strongly connected directed graphs. Note that

1If this makes you uncomfortable, you could use both graphs on two vertices
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these need not even be diagonalizable! We will defer a discussion of the general theory until we
discuss directed graphs, which will happen towards the end of the semester. If you want to see it
now, look at the third lecture from my notes from 2009.

In the symmetric case, the theory is made much easier by both the spectral theory and the char-
acterization of eigenvalues as extreme values of Rayleigh quotients.

Theorem 6.9.1. [Perron-Frobenius, Symmetric Case] Let G be a connected weighted graph, let M
be its adjacency matrix, and let µ1 ≥ µ2 ≥ · · · ≥ µn be its eigenvalues. Then

a. µ1 ≥ −µn, and

b. µ1 > µ2,

c. The eigenvalue µ1 has a strictly positive eigenvector.

Before proving Theorem 6.9.1, we will prove a lemma that will be useful in the proof and a few
other places today. It says that non-negative eigenvectors of non-negative adjacency matrices of
connected graphs must be strictly positive.

Lemma 6.9.2. Let G be a connected weighted graph (with non-negative edge weights), let M be
its adjacency matrix, and assume that some non-negative vector φ is an eigenvector of M . Then,
φ is strictly positive.

Proof. Assume by way of contradiction that φ is not strictly positive. So, there is some vertex u
for which φ(u) = 0. Thus, there must be some edge (u, v) for which φ(u) = 0 but φ(v) > 0. We
would then

(Mφ)(u) =
∑

(u,z)∈E

w(u, z)φ(z) ≥ w(u, v)φ(v) > 0,

as all the terms w(u, z) and φ(z) are non-negative. But, this must also equal µφ(u) = 0, where µ
is the eigenvalue corresponding to φ. This is a contradiction.

So, we conclude that φ must be strictly positive.

We probably won’t have time to say any more about Perron-Frobenius theory, so I defer the proof
of the theorem to the appendix.

A Perron-Frobenius, continued

Proof of Theorem 6.9.1. Let φ1, . . . ,φn be the eigenvectors corresponding to µ1, . . . , µn.

We start with part c. Recall that

µ1 = max
x

xTMx

xTx
.

Let φ1 be an eigenvector of µ1, and construct the vector x such that

x (u) = |φ1(u)| , for all u.
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We will show that x is an eigenvector of eigenvalue µ1.

We have xTx = φT
1 φ1. Moreover,

φT
1 Mφ1 =

∑
u,v

M (u, v)φ1(u)φ1(v) ≤
∑
u,v

M (u, v) |φ1(u)| |φ1(v)| = xTMx .

So, the Rayleigh quotient of x is at least µ1. As µ1 is the maximum possible Rayleigh quotient,
the Rayleigh quotient of x must be µ1 and x must be an eigenvector of µ1.

So, we now know that M has an eigenvector x that is non-negative. We can then apply Lemma 6.9.2
to show that x is strictly positive.

To prove part b, let φn be the eigenvector of µn and let y be the vector for which y(u) = |φn(u)|.
In the spirit of the previous argument, we can again show that

|µn| = |φnMφn| ≤
∑
u,v

M (u, v)y(u)y(v) ≤ µ1yTy = µ1.

To show that the multiplicity of µ1 is 1 (that is, µ2 < µ1), consider an eigenvector φ2. As φ2 is
orthogonal to φ1, it must contain both positive and negative values. We now construct the vector
y such that y(u) = |φ2(u)| and repeat the argument that we used for x . We find that

µ2 =
φT
2 Mφ2

φ2φ2

≤ yTMy

yTy
≤ µ1.

From here, we divide the proof into two cases. First, consider the case in which y is never zero. In
this case, there must be some edge (u, v) for which φ2(u) < 0 < φ2(v). Then the above inequality
must be strict because the edge (u, v) will make a negative contribution to φT

2 Mφ2 and a positive
contribution to yTMy .

We will argue by contradiction in the case that y has a zero value. In this case, if µ2 = µ1 then
y will be an eigenvector of eigenvalue µ1. This is a contradiction, as Lemma 6.9.2 says that a
non-negative eigenvector cannot have a zero value. So, if y has a zero value then yTMy < µ1 and
µ2 < µ1 as well.

The following characterization of bipartite graphs follows from similar ideas.

Proposition A.1. If G is a connected graph, then µn = −µ1 if and only if G is bipartite.

Proof. First, assume that G is bipartite. That is, we have a decomposition of V into sets U and
W such that all edges go between U and W . Let φ1 be the eigenvector of µ1. Define

x (u) =

{
φ1(u) if u ∈ U, and
−φ1(u) if u ∈W.

For u ∈ U , we have

(Mx )(u) =
∑

(u,v)∈E

x (v) = −
∑

(u,v)∈E

φ(v) = −µ1φ(u) = −µ1x (u).
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Using a similar argument for u 6∈ U , we can show that x is an eigenvector of eigenvalue −µ1.

To go the other direction, assume that µn = −µ1. We then construct y as in the previous proof,
and again observe

|µn| = |φnMφn| =

∣∣∣∣∣∑
u,v

M (u, v)φn(u)φn(v)

∣∣∣∣∣ ≤∑
u,v

M (u, v)y(u)y(v) ≤ µ1yTy = µ1.

For this to be an equality, it must be the case that y is an eigenvalue of µ1, and so y = ‘φ1. For
the first inequality above to be an equality, it must also be the case that all the terms φn(u)φn(v)
have the same sign. In this case that sign must be negative. So, we every edge goes between a
vertex for which φn(u) is positive and a vertex for which φn(v) is negative. Thus, the signs of φn

give the bi-partition.

B Proofs for Hoffman’s lower bound on chromatic number

To prove Lemma 6.5.2, we begin with the case of k = 2. The general case follows from this one by
induction.

Lemma B.1. Let

A =

[
B C

C T D

]
be a symmetric matrix. Then

λmin(A) + λmax(A) ≤ λmax(B) + λmax(D).

Proof. Let x be an eigenvector of A of eigenvalue λmax(A). To simplify formulae, let’s also assume

that x is a unit vector. Write x =

(
x 1

x 2

)
, using the same partition as we did for A.

We first consider the case in which neither x 1 nor x 2 is an all-zero vector. In this case, we set

y =

( ‖x2‖
‖x1‖x 1

−‖x1‖
‖x2‖x 2

)
.

The reader may verify that y is also a unit vector, so

yTAy ≥ λmin(A).
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We have

λmax(A) + λmin(A) ≤ xTAx + yTAy

= xT
1 Bx 1 + xT

1 Cx 2 + xT
2 C

Tx 1 + xT
2 Dx 2+

+
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 − xT

1 Cx 2 − xT
2 C

Tx 1 +
‖x 1‖2

‖x 2‖2
xT
2 Dx 2

= xT
1 Bx 1 + xT

2 Dx 2 +
‖x 2‖2

‖x 1‖2
xT
1 Bx 1 +

‖x 1‖2

‖x 2‖2
xT
2 Dx 2

≤

(
1 +
‖x 2‖2

‖x 1‖2

)
xT
1 Bx 1 +

(
1 +
‖x 1‖2

‖x 2‖2

)
xT
2 Dx 2

≤ λmax(B)
(
‖x 1‖2 + ‖x 2‖2

)
+ λmax(D)

(
‖x 1‖2 + ‖x 2‖2

)
= λmax(B) + λmax(D),

as x is a unit vector.

We now return to the case in which ‖x 2‖ = 0 (or ‖x 1‖ = 0, which is really the same case). Lemma
6.8.1 tells us that λmax(B) ≤ λmax(A). So, it must be the case that x 1 is an eigenvector of
eigenvalue λmax(A) of B , and thus λmax(B) = λmax(A). To finish the proof, also observe that
Lemma 6.8.1 implies

λmax(D) ≥ λmin(D) ≥ λmin(A).

Proof of Lemma 6.5.2. For k = 2, this is exactly Lemma B.1. For k > 2, we apply induction. Let

B =


A1,1 A1,2 · · · A1,k−1
AT

1,2 A2,2 · · · A2,k−1
...

...
. . .

...

AT
1,k−1 AT

2,k−1 · · · Ak−1,k−1

 .
Lemma 6.8.1 now implies.

λmin(B) ≥ λmin(A).

Applying Lemma B.1 to B and the kth row and column of A, we find

λmin(A) + λmax(A) ≤ λmax(B) + λmax(Ak,k)

≤ −(k − 2)λmin(B) +

k−1∑
i=1

λmax(Ai,i) + λmax(Ak,k) (by induction)

≤ −(k − 1)λmin(A) +

k∑
i=1

λmax(Ai,i),

which proves the lemma.
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Spectral Graph Theory Lecture 7

Fiedler’s Theorems on Nodal Domains

Daniel A. Spielman September 19, 2018

7.1 Overview

In today’s lecture we will justify some of the behavior we observed when using eigenvectors to draw
graphs in the first lecture. First, recall some of the drawings we made of graphs:

We will show that the subgraphs obtained in the right and left halfs of each image are connected.

Path graphs exhibited more interesting behavior: their kth eigenvector changes sign k times:
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Here are the analogous plots for a path graph with edge weights randomly chosen in [0, 1]:

7-1
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Here are the first few eigenvectors of another:
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Random.seed!(1)

M = spdiagm(1=>rand(10))

M = M + M’

L = lap(M)

E = eigen(Matrix(L))

Plots.plot(E.vectors[:,2],label="v2",marker = 5)

Plots.plot!(E.vectors[:,3],label="v3",marker = 5)

Plots.plot!(E.vectors[:,4],label="v4",marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

savefig("rpath2v24.pdf")

We see that the kth eigenvector still changes sign k times. We will see that this always happens.
These are some of Fiedler’s theorems about “nodal domains”. Nodal domains are the connected
parts of a graph on which an eigenvector is negative or positive.
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7.2 Sylverter’s Law of Interia

Let’s begin with something obvious.

Claim 7.2.1. If A is positive semidefinite, then so is BTAB for every matrix B.

Proof. For any x,
xTBTABx = (Bx)TA(Bx) ≥ 0,

since A is positive semidefinite.

In this lecture, we will make use of Sylvester’s law of intertia, which is a powerful generalization of
this fact. I will state and prove it now.

Theorem 7.2.2 (Sylvester’s Law of Intertia). Let A be any symmetric matrix and let B be any
non-singular matrix. Then, the matrix BABT has the same number of positive, negative and zero
eigenvalues as A.

Note that if the matrix B were orthonormal, or if we used B−1 in place of BT , then these matrices
would have the same eigenvalues. What we are doing here is different, and corresponds to a change
of variables.

Proof. It is clear that A and BABT have the same rank, and thus the same number of zero
eigenvalues.

We will prove that A has at least as many positive eigenvalues as BABT . One can similarly prove
that that A has at least as many negative eigenvalues, which proves the theorem.

Let γ1, . . . , γk be the positive eigenvalues of BABT and let Yk be the span of the corresponding
eigenvectors. Now, let Sk be the span of the vectors BTy , for y ∈ Yk. As B is non-singluar, Sk
has dimension k. Let α1 ≥ · · · ≥ αn be the eigenvalues of A. By the Courant-Fischer Theorem, we
have

αk = max
S⊆IRn

dim(S)=k

min
x∈S

xTAx

xTx
≥ min

x∈Sk

xTAx

xTx
= min

y∈Yk

yTBABTy

yTBBTy
≥ γkyTy

yTBBTy
> 0.

So, A has at least k positive eigenvalues (The point here is that the denominators are always
positive, so we only need to think about the numerators.)

To finish, either apply the symmetric argument to the negative eigenvalues, or apply the same
argument with B−1.

7.3 Weighted Trees

We will now examine a theorem of Fiedler [Fie75].
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Theorem 7.3.1. Let T be a weighted tree graph on n vertices, let LT have eigenvalues 0 = λ1 <
λ2 · · · ≤ λn, and let ψk be an eigenvector of λk. If there is no vertex u for which ψk(u) = 0, then
there are exactly k − 1 edges for which ψk(u)ψk(v) < 0.

One can extend this theorem to accomodate zero entries and prove that the eigenvector changes
k − 1 times. We will just prove this theorem for weighted path graphs.

Our analysis will rest on an understanding of Laplacians of paths that are allowed to have negative
edges weights.

Lemma 7.3.2. Let M be the Laplacian matrix of a weighted path that can have negative edge
weights:

M =
∑

1≤a<n

wa,a+1La,a+1,

where the weights wa,a+1 are non-zero and we recall that La,b is the Laplacian of the edge (a, b).
The number of negative eigenvalues of M equals the number of negative edge weights.

Proof. Note that

xTM x =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

We now perform a change of variables that will diagonalize the matrix M . Let δ(1) = x (1), and
for every a > 1 let δ(a) = x (a)− x (a− 1).

Every variable x (1), . . . ,x (n) can be expressed as a linear combination of the variables δ(1), . . . , δ(n).
In particular,

x (a) = δ(1) + δ(2) + · · ·+ δ(a).

So, there is a square matrix L of full rank such that

x = Lδ.

By Sylvester’s law of intertia, we know that

LTM L

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

δTLTM Lδ =
∑

1≤a<n

wa,a+1(δ(v))2.

So, this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are
negative wa,a+1.

Proof of Theorem 7.3.1. We assume that λk has multiplicity 1. One can prove it, but we
will skip it.

Let Ψk denote the diagonal matrix with ψk on the diagonal, and let λk be the corresponding
eigenvalue. Consider the matrix

M = Ψk(LP − λkI )Ψk.
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The matrix LP − λkI has one zero eigenvalue and k− 1 negative eigenvalues. As we have assumed
that ψk has no zero entries, Ψk is non-singular, and so we may apply Sylvester’s Law of Intertia
to show that the same is true of M .

I claim that
M =

∑
(u,v)∈E

wu,vψk(u)ψk(v)Lu,v.

To see this, first check that this agrees with the previous definition on the off-diagonal entries. To
verify that these expression agree on the diagonal entries, we will show that the sum of the entries
in each row of both expressions agree. As we know that all the off-diagonal entries agree, this
implies that the diagonal entries agree. We compute

Ψk(LP − λkI )Ψk1 = Ψk(LP − λkI )ψk = Ψk(λkψk − λkψk) = 0.

As Lu,v1 = 0, the row sums agree. Lemma 7.3.2 now tells us that the matrix M , and thus LP−λkII,
has as many negative eigenvalues as there are edges (u, v) for which ψk(u)ψk(v) < 0.

7.4 More linear algebra

There are a few more facts from linear algebra that we will need for the rest of this lecture. We
stop to prove them now.

7.4.1 The Perron-Frobenius Theorem for Laplacians

In Lecture 3, we proved the Perron-Frobenius Theorem for non-negative matrices. I wish to quickly
observe that this theory may also be applied to Laplacian matrices, to principal sub-matrices of
Laplacian matrices, and to any matrix with non-positive off-diagonal entries. The difference is that
it then involves the eigenvector of the smallest eigenvalue, rather than the largest eigenvalue.

Corollary 7.4.1. Let M be a matrix with non-positive off-diagonal entries, such that the graph
of the non-zero off-diagonally entries is connected. Let λ1 be the smallest eigenvalue of M and
let v1 be the corresponding eigenvector. Then v1 may be taken to be strictly positive, and λ1 has
multiplicity 1.

Proof. Consider the matrix A = σI −M , for some large σ. For σ sufficiently large, this matrix
will be non-negative, and the graph of its non-zero entries is connected. So, we may apply the
Perron-Frobenius theory to A to conclude that its largest eigenvalue α1 has multiplicity 1, and the
corresponding eigenvector v1 may be assumed to be strictly positive. We then have λ1 = σ − α1,
and v1 is an eigenvector of λ1.

7.4.2 Eigenvalue Interlacing

We will often use the following elementary consequence of the Courant-Fischer Theorem. I will
assign it as homework.
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Theorem 7.4.2 (Eigenvalue Interlacing). Let A be an n-by-n symmetric matrix and let B be a
principal submatrix of A of dimension n− 1 (that is, B is obtained by deleting the same row and
column from A). Then,

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn−1 are the eigenvalues of A and B , respectively.

7.5 Fiedler’s Nodal Domain Theorem

Given a graph G = (V,E) and a subset of vertices, W ⊆ V , recall that the graph induced by G on
W is the graph with vertex set W and edge set

{(i, j) ∈ E, i ∈W and j ∈W} .

This graph is sometimes denoted G(W ).

Theorem 7.5.1 ([Fie75]). Let G = (V,E,w) be a weighted connected graph, and let LG be its
Laplacian matrix. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of LG and let ψ1, . . . ,ψn be the
corresponding eigenvectors. For any k ≥ 2, let

Wk = {i ∈ V : ψk(i) ≥ 0} .

Then, the graph induced by G on Wk has at most k − 1 connected components.

Proof. To see that Wk is non-empty, recall that ψ1 = 1 and that ψk is orthogonal ψ1. So, ψk

must have both positive and negative entries.

Assume that G(Wk) has t connected components. After re-ordering the vertices so that the vertices
in one connected component of G(Wk) appear first, and so on, we may assume that LG and ψk

have the forms

LG =


B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

CT
1 CT

2 · · · CT
t D

 ψk =


x 1

x 2
...

x t

y

 ,

and 
B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

CT
1 CT

2 · · · CT
t D




x 1

x 2
...

x t

y

 = λk


x 1

x 2
...

x t

y

 .

The first t sets of rows and columns correspond to the t connected components. So, x i ≥ 0 for
1 ≤ i ≤ t and y < 0 (when I write this for a vector, I mean it holds for each entry). We also know
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that the graph of non-zero entries in each Bi is connected, and that each Ci is non-positive, and
has at least one non-zero entry (otherwise the graph G would be disconnected).

We will now prove that the smallest eigenvalue of Bi is smaller than λk. We know that

Bix i + Ciy = λkx i.

As each entry in Ci is non-positive and y is strictly negative, each entry of Ciy is non-negative and
some entry of Ciy is positive. Thus, x i cannot be all zeros,

Bix i = λkx i − Ciy ≤ λkx i

and
xT
i Bix i ≤ λkxT

i x i.

If x i has any zero entries, then the Perron-Frobenius theorem tells us that x i cannot be an eigen-
vector of smallest eigenvalue, and so the smallest eigenvalue of Bi is less than λk. On the other
hand, if x i is strictly positive, then xT

i Ciy > 0, and

xT
i Bix i = λkxT

i x i − xT
i Ciy < λkxT

i x i.

Thus, the matrix 
B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bt


has at least t eigenvalues less than λk. By the eigenvalue interlacing theorem, this implies that
LG has at least t eigenvalues less than λk. We may conclude that t, the number of connected
components of G(Wk), is at most k − 1.

We remark that Fiedler actually proved a somewhat stronger theorem. He showed that the same
holds for

W = {i : ψk(i) ≥ t} ,

for every t ≤ 0.

This theorem breaks down if we instead consider the set

W = {i : ψk(i) > 0} .

The star graphs provide counter-examples.
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Figure 7.1: The star graph on 5 vertices, with an eigenvector of λ2 = 1.



Spectral Graph Theory Lecture 8

Testing Isomorphism of Graphs with Distinct Eigenvalues

Daniel A. Spielman September 24, 2018

8.1 Introduction

I will present an algorithm of Leighton and Miller [LM82] for testing isomorphism of graphs in
which all eigenvalues have multiplicity 1. This algorithm was never published, as the results were
technically subsumed by those in a paper of Babai, Grigoriev and Mount [BGM82], which gave a
polynomial time algorithm for testing isomorphism of graphs in which all eigenvalues have multi-
plicity bounded by a constant.

I present the weaker result in the interest of simplicity.

Testing isomorphism of graphs is a notorious problem. Until very recently, the fastest-known

algorithm for it took time time 2
√

O(n logn) (See [Bab81, BL83, ZKT85]). Babai [Bab16] recently

announced a breakthrough that reduces the complexity to 2(logn)
O(1)

.

However, testing graph isomorphism seems easy in almost all practical instances. Today’s lecture
and one next week will give you some idea as to why.

8.2 Graph Isomorphism

Recall that two graphs G = (V,E) and H = (V, F ) are isomorphic if there exists a permutation π
of V such that

(a, b) ∈ E ⇐⇒ (π(a), π(b)) ∈ F.

Of course, we can express this relation in terms of matrices associated with the graphs. It doesn’t
matter much which matrices we use. So for this lecture we will use the adjacency matrices.

Every permutation may be realized by a permutation matrix. For the permutation π, this is the
matrix Π with entries given by

Π(a, b) =

{
1 if π(a) = b

0 otherwise.

For a vector ψ, we see1 that
(Πψ) (a) = ψ(π(a)).

1I hope I got that right. It’s very easy to confuse the permutation and its inverse.

8-1
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Let A be the adjacency matrix of G and let B be the adjacency matrix of H. We see that G and
H are isomorphic if and only if there exists a permutation matrix Π such that

ΠAΠT = B.

8.3 Using Eigenvalues and Eigenvectors

If G and H are isomorphic, then A and B must have the same eigenvalues. However, there are
many pairs of graphs that are non-isomorphic but which have the same eigenvalues. We will see
some tricky ones next lecture. But, for now, we note that if A and B have different eigenvalues,
then we know that the corresponding graphs are non-isomorphic, and we don’t have to worry about
them.

For the rest of this lecture, we will assume that A and B have the same eigenvalues, and that each
of these eigenvalues has multiplicity 1. We will begin our study of this situation by considering
some cases in which testing isomorphism is easy.

Recall that we can write
A = ΨΛΨT ,

where Λ is the diagonal matrix of eigenvalues of A and Ψ is an orthonormal matrix holding its
eigenvectors. If B has the same eigenvalues, we can write

B = ΦΛΦT .

If Π is the matrix of an isomorphism from G to H, then

ΠΨΛΨTΠT = ΦΛΦT .

As each entry of Λ is distinct, this looks like it would imply ΠΨ = Φ. But, the eigenvectors
(columns of Φ and Ψ) are only determined up to sign. So, it just implies

ΠΨ = ΦS,

where S is a diagonal matrix with ±1 entries on its diagonal.

Lemma 8.3.1. Let A = ΨΛΨT and B = ΦΛΦT where Λ is a diagonal matrix with distinct
entries and Ψ and Φ are orthogonal matrices. A permutation matrix Π satisfies ΠAΠT = B if
and only if there exists a diagonal ±1 matrix S for which

ΠΨ = ΦS .

Proof. Let ψ1, . . . ,ψn be the columns of Ψ and let φ1, . . . ,φn be the columns of Φ. Assuming
there is a Π for which ΠAΠT = B ,

ΦΛΦT =
n∑

i=1

φiλiφ
T
i =

n∑
i=1

(Πψi)λi(ψ
T
i ΠT ),
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which implies that for all i
φiφ

T
i = (Πψi)(Πψi)

T .

This in turn implies that
φi = ±Πψi.

To go the other direction, assume ΠΨ = ΦS . Then,

ΠAΠT = ΠΨΛΨTΠT = ΦSΛSΦT = ΦΛSSΦT = ΦΛΦT = B ,

as S and Λ are diagonal and thus commute, and S2 = I .

Our algorithm for testing isomorphism will determine all such matrices S . Let S be the set of all
diagonal ±1 matrices. We will find diagonal matrices S ∈ S such that the set of rows of ΦS is the
same as the set of rows of Ψ . As the rows of Ψ are indexed by vertices a ∈ V , we will write the
row indexed by a as the row-vector

va
def
= (ψ1(a), . . . ,ψn(a)).

Similarly denote the rows of Φ by vectors ua. In this notation, we are searching for matrices S ∈ S
for which the set of vectors {va}a∈V is identical to the set of vectors {uaS}a∈V We have thus
transformed the graph isomorphism problem into a problem about vectors:

8.4 An easy case

I will say that an eigenvector ψi is helpful if for all a 6= b ∈ V , |ψi(a)| 6= |ψi(b)|. In this case, it is
very easy to test if G and H are isomorphic, because this helpful vector gives us a canonical name
for every vertex. If Π is an isomorphism from G to H, then Πψi must be an eigenvector of B. In
fact, is must be ±φi. If the sets of absolute values of entries of ψi and φi are the same, then we
may find the permutation that maps A to B by mapping every vertex a to the vertex b for which
|ψi(a)| = |φi(b)|.

The reason that I put absolute values in the definition of helpful, rather than just taking values, is
that eigenvectors are only determined up to sign. On the other hand, a single eigenvector determines
the isomorphism if ψi(a) 6= ψi(b) for all a 6= b and there is a canonical way to choose a sign for
the vector ψi. For example, if the sum of the entries in ψi is not zero, we can choose its sign to
make the sum positive. In fact, unless ψi and −ψi have exactly the same set of values, there is a
canonical choice of the sign for this vector.

Even if there is no canonical choice of sign for this vector, it leaves at most two choices for the
isomorphism.

8.5 All the Automorphisms

The graph isomorphism problem is complicated by the fact that there can be many isomorphisms
from one graph to another. So, any algorithm for finding isomorphisms must be able to find many
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of them.

Recall that an automorphism of a graph is an isomorphism from the graph to itself. These form
a group which we denote aut(G): if Π and Γ are automorphisms of A then so is ΠΓ. Let A ⊆ S
denote the corresponding set of diagonal ±1 matrices. The set A is in fact a group and is isomorphic
to aut(G).

Here is a way to make this isomorphism very concrete: Lemma 8.3.1 implies that the Π ∈ aut(G)
and the S ∈ A are related by

Π = ΨSΨT and S = ΨTΠΨ .

As diagonal matrices commute, we have that for every Π1 and Π2 in aut(G) and for S1 = ΨTΠ1Ψ
and S2 = ΨTΠ2Ψ ,

Π1Π2 = ΨS1Ψ
TΨS2Ψ

T = ΨS1S2Ψ
T = ΨS2S1Ψ

T = ΨS2Ψ
TΨS1Ψ

T = Π2Π1.

Thus, the automorphism group of a graph with distinct eigenvalues is commutative, and it is
isomorphic to a subgroup of S.

It might be easier to think about these subgroups by realizing that they are isomorphic to subspaces
of (Z/2Z)n. Let f : S → (Z/2Z)n be the function that maps the group of diagonal matrices with
±1 entries to vectors t modulo 2 by setting t(i) so that S(i, i) = (−1)t(i). You should check that
this is a group homomorphism: f(S1S2) = f(S1) + f(S2). You should also confirm that f is
invertible.

For today’s lecture, we will focus on the problem of finding the group of automorphisms of a graph
with distinct eigenvalues. We will probably save the slight extension to finding isomorphisms for
homework. Note that we will not try to list all the isomorphisms, as there could be many. Rather,
we will give a basis of the corresponding subspace of (Z/2Z)n.

8.6 Equivalence Classes of Vertices

Recall that the orbit of an element under the action of a group is the set of elements to which it is
mapped by the elements of the group. Concretely, the orbit of a vertex a in the graph is the set
of vertices to which it can be mapped by automorphisms. We will discover the orbits by realizing
that the orbit of a vertex a is the set of b for which vaS = v b for some S ∈ A.

The set of orbits of vertices forms a partition of the vertices. We say that a partition of the vertices
is valid if every orbit is contained entirely within one set in the partition. That is, each class of the
partition is a union of orbits. Our algorithm will proceed by constructing a valid partition of the
vertices and then splitting classes in the partition until each is exactly an orbit.

Recall that a set is stabilized by a group if the set is unchanged when the group acts on all of its
members. We will say that a group G ⊆ S stabilizes a set of vertices C if it stabilizes the set of
vectors {va}a∈C . Thus, A is the group that stabilizes V .
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An orbit is stabilized by A, and so are unions of orbits and thus classes of valid partitions. We
would like to construct the subgroup of S that stabilizes each orbit Cj . However, I do not yet see
how to do that directly. Instead, we will construct a particular valid partition of the vertices, and
find for each class in the partition Cj the subgroup of Aj ⊆ S that stabilizes Cj , where here we
are considering the actions of matrices S ∈ S on vectors va. In fact, Aj will act transitively2 on
the class Cj . As A stabilizes every orbit, and thus every union of orbits, it is a subgroup of Aj . In
fact, A is exactly the intersection of all the groups Aj .

We now observe that we can use linear algebra to efficiently construct A from the groups Aj by
exploiting the isomorphism between S and (Z/2)n. Each subgroup Aj is isomorphic to a subgroup
of (Z/2)n. Each subgroup of (Z/2)n is precisely a vector space modulo 2, and thus may be described
by a basis. It will eventually become clear that by “compute Aj” we mean to compute such a basis.
From the basis, we may compute a basis of the nullspace. The subgroup of (Z/2)n corresponding
to A is then the nullspace of the span of the nullspaces of the subspaces corresponding to the Aj .
We can compute all these using Gaussian elimination.

8.7 The first partition

We may begin by dividing vertices according to the absolute values of their entries in eigenvectors.
That is, if |ψi(a)| 6= |ψi(b)| for some i, then we may place vertices a and b in different classes, as
there can be no S ∈ S for which vaS = v b. The partition that we obtain this way is thus valid,
and is the starting point of our algorithm.

8.8 Unbalanced vectors

We say that an eigenvector ψi is unbalanced if there is some value x for which

|{a : ψi(a) = x}| 6= |{a : ψi(a) = −x}| .

Such vectors cannot change sign in an automorphism. That is, S(i, i) must equal 1. The reason is
that an automorphism with S(i, i) = −1 must induce a bijection between the two sets above, but
this is impossible if their sizes are different.

Thus, an unbalanced vector tells us that all vertices for which ψi(a) = x are in different orbits from
those for which ψi(a) = −x. This lets us refine classes.

We now extend this idea in two ways. First, we say that ψi is unbalanced on a class C if there is
some value x for which

|{a ∈ C : ψi(a) = x}| 6= |{a ∈ C : ψi(a) = −x}| .

By the same reasoning, we can infer that the sign of S(i, i) must be fixed to 1. Assuming, as will
be the case, that C is a class in a valid partition and thus a union of orbits, we are now able to

2That is, for every a and b in Cj , there is an S ∈ Aj for which vaS = bb.
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split C into two smaller classes

C0 = {a ∈ C : ψi(a) = x} and C1 = {a ∈ C : ψi(a) = −x} .

The partition we obtain by splitting C into C1 and C2 is thus also valid. Of course, it is only useful
if both sets are non-empty.

Finally, we consider vectors formed from products of eigenvectors. For R ⊆ {1, . . . , n}, define ψR

to be the component-wise product of the ψi for i ∈ R:

ψR(a) =
∏
i∈R

ψi(a).

We say that the vector ψR is unbalanced on class C if there is some value x for which

|{a ∈ C : ψR(a) = x}| 6= |{a ∈ C : ψR(a) = −x}| .

An unbalanced vector of this form again tells us that the vertices in the two sets belong to different
orbits. So, if both sets are nonempty we can use such a vector to split the class C in two to obtain
a more refined valid partition. It also provides some relations between the entries of S , but we will
not exploit those.

We say that a vector is balanced if it is not unbalanced.

We say that a subset of the vertices C ⊆ V is balanced if every non-constant product of eigenvectors
is balanced on C. Thus, orbits are balanced. Our algorithm will partition the vertices into balanced
classes.

My confusion over this lecture stemmed from thinking that all balanced classes must be orbits.
But, I don’t know if this is true.

Question: Is every balanced class an orbit of A?

8.9 The structure of the balanced classes

Let Cj be a balanced class. By definition, the product of every subset of eigenvectors is either
constant or balanced on Cj . We say that a subset of eigenvectors Q is independent on Cj if all
products of subsets of eigenvectors in Q are balanced on Cj (except for the empty product). In
particular, none of these eigenvectors is zero or constant on Cj . Construct a matrix MCj ,Q whose
rows are indexed by vertices in a ∈ Cj , whose columns are indexed by subsets R ⊆ Q, and whose
entries are given by

MCj ,Q(a,R) = sgn(ψR(a)),where I recall sgn(x) =


1 if x > 0

−1 if x < 0, and

0 if x = 0.

Lemma 8.9.1. If Q is independent on C then the columns of MC,Q are orthogonal.
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Proof. Let R1 and R2 index two columns of MC,Q. That is, R1 and R2 are two different subsets of
Q. Let R0 be their symmetric difference. We have

MC,Q(a,R1)MC,Q(a,R2) = sgn(ψR1
(a))sgn(ψR2

(a)) =∏
i∈R1

sgn(ψi(a))
∏
i∈R2

sgn(ψi(a)) =
∏
i∈R0

sgn(ψi(a)) = sgn(ψR0
(a)) = MC,Q(a,R0).

As all the nonempty products of subsets of eigenvectors in Q are balanced on C, MC,Q(a,R0) is
positive for half the a ∈ C and negative for the other half. So,

MC,Q(:, R1)
TMC,Q(:, R2) =

∑
a∈C

MC,Q(a,R1)MC,Q(a,R2) =
∑
a∈C

MC,Q(a,R0) = 0.

Lemma 8.9.2. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that are
independent on C, then for every a and b in C there is an i ∈ Q for which ψi(a) 6= ψi(b).

Proof. Assume by way of contradiction that this does not hold. There must be some eigenvector i
for which ψi(a) 6= ψi(b). We will show that if we added i to Q, the product of every subset would
still be balanced. As we already know this for subsets of Q, we just have to prove it for subsets of
the form R ∪ {i}, where R ⊆ Q. As ψh(a) = ψh(b) for every h ∈ Q, ψR(a) = ψR(b). This implies
ψR∪{i}(a) 6= ψR∪{i}(b). Thus, ψR∪{i} is not uniform on C, and so it must be balanced on C.

Lemma 8.9.3. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that are
independent on C, then the rows of MC,Q are orthogonal.

Proof. Let a and b be in C. From Lemma 8.9.2 we know that there is an i ∈ Q for which
ψi(a) = −ψi(b). To prove that the rows MC,Q(a, :) and MC,Q(b, :) are orthogonal, we compute
their inner product:∑

R⊆Q
sgn(ψR(a)ψR(b)) =

∑
R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR∪{i}(a)ψR∪{i}(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψi(a)ψR(b)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψR(b))sgn(ψi(a)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b))− sgn(ψR(a)ψR(b))

= 0.

Corollary 8.9.4. Let C be a balanced subset of vertices. Then the size of C is a power of 2. If Q
is an independent set of eigenvectors on C, then |Q| ≤ log2 |C|.
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Proof. Let C be an orbit and let Q be a maximal set of eigenvectors that are independent on C.
As the rows and columns of MC,Q are both orthogonal, MC,Q must be square. This implies that
|C| = 2|Q|. If we drop the assumption that Q is maximal, we still know that all the columns of
MC,Q are orthogonal. This matrix has 2|Q| columns. As they are vectors in |C| dimensions, there
can be at most |C| of them.

We can now describe the structure of a balanced subset of vertices C. We call a maximal set of
eigenvectors that are independent on C a base for C. Every other eigenvector j is either constant
on C or becomes constant when multiplied by the product of some subset R of eigenvectors in Q.
In either case, we can write

ψj(a) = γ
∏
i∈R

ψi(a) for all a ∈ C, (8.1)

for some constant γ.

Let va(Q) denote the vector (va(i))i∈Q—the restriction of the vector va to the coordinates in Q.
I claim that every one of the 2|Q| ± sign patterns of length |Q| must appear in exactly one of the
vectors v q(Q). The reason is that there are |C| = 2|Q| of these vectors, and we established in
Lemma 8.9.2 that va(Q) 6= v b(Q) for all a 6= b in Q. Thus, for every diagonal ± matrix SQ of
dimension |Q|, we have

{va(Q)SQ : a ∈ C} = {va(Q) : a ∈ C} .
That is, this set of vectors is stabilized by ±1 diagonal matrices.

As equation (8.1) gives a formula for the value taken on C by every eigenvector not in Q in terms
of the eigenvectors in Q, we have described the structure of the subgroup of S that stabilizes C:
the diagonals corresponding to Q are unconstrained, and every other diagonal is some product of
these. This structure is something that you are used to seeing in subspaces. Apply f to map this
subgroup of S to (Z/2)n, and let B be a n-by-log2(|C|) matrix containing a basis of the subspace
in its columns. Any independent subset of log2(|C|) rows of B will form a basis of the row-space,
and is isomorphic to a base for C of the eigenvectors.

8.10 Algorithms

Let Cj be a balanced class. We just saw how to compute Aj , assuming that we know Cj and a
base Q for it. Of course, by “compute” we mean computing a basis of f(Aj). We now show how
to find a base for a balanced class Cj . We do this by building up a set Q of eigenvectors that are
independent on Cj . To do this, we go through the eigenvectors in order. For each eigenvector ψi,
we must determine whether or not its values on Cj can be expressed as a product of eigenvectors
already present in Q. If it can be, then we record this product as part of the structure of Aj . If
not, we add i to Q.

The eigenvector ψi is a product of eigenvectors in Q on Cj if and only if there is a constant γ and
yh ∈ {0, 1} for h ∈ Q such that

ψi(a) = γ
∏
h∈Q

(ψh(a))yh ,
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for all vertices a ∈ Cj . This happens if and only if

sgn(ψi(a)) =
∏
h∈Q

sgn(ψh(a))yh .

We can tell whether or not these equations have a solution using linear algebra modulo 2. Let B
be the matrix over Z/2 such that

ψi(a) = (−1)B(i,a).

Then, the above equations become

B(i, a) =
∑
h∈Q

yhB(h, a) for all a ∈ Cj .

Thus, we can solve for the coefficients yh in polynomial time, if they exist. If they do not, we add
i to Q.

Once we have determined a base Q and how to express on Cj the values of every other eigenvector
as a product of eigenvectors in Q, we have determine Aj .

It remains to explain how we partition the vertices into balanced classes. Consider applying the
above procedure to a class Cj that is not balanced. We will discover that Cj is not balanced by
finding a product of eigenvectors that is neither constant nor balanced on Cj . Every time we add an
eigenvector ψi to Q, we will examine every product of vectors in Q to check if any are unbalanced
on Cj . We can do this efficiently, because there are at most 2|Q| ≤ |Cj | such products to consider.
As we have added ψi to Q, none of the products of vectors in Q can be constant on Cj . If we find
a product that it not balanced on Cj , then it must also be non-constant, and thus provide a way
of splitting class Cj into two.

We can now summarize the entire algorithm. We first compute the partition by absolute values of
entries described in section 8.7. We then go through the classes of the partition one-by-one. For
each, we use the above procedure until we have either split it in two or we have determined that
it is balanced and we have computed its automorphism group. If we do split the class in two, we
refine the partition and start over. As the total number of times we split classes is at most n, this
algorithm runs in polynomial time.

After we have computed a partition into balanced classes and have computer their automorphisms
groups, we combine them to find the automorphisms group of the entire graph as described at the
end of section 8.6.
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Spectral Graph Theory Lecture 9

Testing Isomorphism of Strongly Regular Graphs

Daniel A. Spielman September 26, 2018

9.1 Introduction

In the last lecture we saw how to test isomorphism of graphs in which every eigenvalue is distinct.
So, in this lecture we will consider the opposite case: graphs that only have 3 distinct eigenvalues.
These are the strongly regular graphs.

Our algorithm for testing isomorphism of these will not run in polynomial time. Rather, it takes
time nO(n1/2 logn). This is at least much faster than the naive algorithm of checking all n! possible
permutations. In fact, this was the best known running time for general algorithms for graph
isomorphism until three years ago.

9.2 Definitions

A graph G is strongly regular if

1. it is d-regular, for some integer d;

2. there exists an integer α such that for every pair of vertices x and y that are neighbors in G,
there are exactly α vertices z that are neighbors of both x and y;

3. there exists an integer β such that for every pair of vertices x and y that are not neighbors
in G, there are exactly β vertices z that are neighbors of both x and y.

These conditions are very strong, and it might not be obvious that there are any non-trivial graphs
that satisfy these conditions. Of course, the complete graph and disjoint unions of complete graphs
satisfy these conditions. Before proceeding, I warn you that there is a standard notation in the
literature about strongly regular graphs, and I am trying not to use it. In this literature, d becomes
k, α becomes λ and β becomes µ. Many other letters are bound as well.

For the rest of this lecture, we will only consider strongly regular graphs that are connected and
that are not the complete graph. I will now give you some examples.

9-1
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9.3 Paley Graphs and The Pentagon

The Paley graphs we encountered are strongly regular. The simplest of these is the pentagon. It
has parameters

n = 5, d = 2, α = 0, β = 1.

9.4 Lattice Graphs

For a positive integer n, the lattice graph Ln is the graph with vertex set {1, . . . n}2 in which vertex
(a, b) is connected to vertex (c, d) if a = c or b = d. Thus, the vertices may be arranged at the
points in an n-by-n grid, with vertices being connected if they lie in the same row or column.
Alternatively, you can understand this graph as the product of two complete graphs on n vertices.

The parameters of this graph are:

d = 2(n− 1), α = n− 2, β = 2.

9.5 Latin Square Graphs

A Latin square is an n-by-n grid, each entry of which is a number between 1 and n, such that no
number appears twice in any row or column. For example,

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 ,


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 , and


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1


are Latin squares. Let me remark that the number of different Latin squares of size n grows very
quickly—at least as fast as n!(n− 1)!(n− 2)! . . . 2!. Two Latin squares are said to be isomorphic if
there is a renumbering of their rows, columns, and entries, or a permutation of these, that makes
them the same. As this provides 6(n!)3 isomorphisms, and this is much less than the number of
Latin squares, there must be many non-isomorphic Latin squares of the same size. The two of the
Latin squares above are isomorphic, but one is not.

From such a Latin square, we construct a Latin square graph. It will have n2 nodes, one for each
cell in the square. Two nodes are joined by an edge if

1. they are in the same row,

2. they are in the same column, or

3. they hold the same number.

So, such a graph has degree d = 3(n− 1). Any two nodes in the same row will both be neighbors
with every other pair of nodes in their row. They will have two more common neighors: the nodes in
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their columns holding the other’s number. So, they have n common neighbors. The same obviously
holds for columns, and is easy to see for nodes that have the same number. So, every pair of nodes
that are neighbors have exactly α = n common neighbors.

On the other hand, consider two vertices that are not neighbors, say (1, 1) and (2, 2). They lie in
different rows, lie in different columns, and we are assuming that they hold different numbers. The
vertex (1, 1) has two common neighbors of (2, 2) in its row: the vertex (1, 2) and the vertex holding
the same number as (2, 2). Similarly, it has two common neighbors of (2, 2) in its column. Finally,
we can find two more common neighbors of (2, 2) that are in different rows and columns by looking
at the nodes that hold the same number as (1, 1), but which are in the same row or column as
(2, 2). So, β = 6.

9.6 The Eigenvalues of Strongly Regular Graphs

We will consider the adjacency matrices of strongly regular graphs. Let A be the adjacency matrix
of a strongly regular graph with parameters (d, α, β). We already know that A has an eigenvalue
of d with multiplicity 1. We will now show that A has just two other eigenvalues.

To prove this, first observe that the (a, b) entry of A2 is the number of common neighbors of vertices
a and b. For a = b, this is just the degree of vertex a. We will use this fact to write A2 as a linear
combination of A, I and J , the all 1s matrix. To this end, observe that the adjacency matrix of
the complement of A (the graph with non-edges where A has edges) is J − I −A. So,

A2 = αA+ β(J − I −A) + dI = (α− β)A+ βJ + (d− β)I.

For every vector v orthogonal to 1,

A2v = (α− β)Av + (d− β)v .

So, every eigenvalue λ of A other than d satisfies

λ2 = (α− β)λ+ d− β.

Thus, these are given by

λ =
α− β ±

√
(α− β)2 + 4(d− β)

2
.

These eigenvalues are traditionally denoted r and s, with r > s. By convention, the multiplicty of
the eigenvalue r is always denoted f , and the multiplicty of s is always denoted g.

For example, for the pentagon we have

r =

√
5− 1

2
, s = −

√
5 + 1

2
.

For the lattice graph Ln, we have
r = n− 2, s = −2.
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For the Latin square graphs of order n, we have

r = n− 3, s = −3.

One can prove that every connected regular graph whose adjacency (or Laplacian) matrix has just
three distinct eigenvalues is a strongly regular graph.

9.7 Testing Isomorphism by Individualization and Refinement

The problem of testing isomorphism of graphs is often reduced to the problem of giving each vertex
in a graph a unique name. If we have a way of doing this that does not depend upon the initial
ordering of the vertices, then we can use it to test graph isomorphism: find the unique names of
vertices in both graphs, and then see if it provides an isomorphism. For example, consider the
graph below.

We could begin by labeling every vertex by its degree.

1

2 3

2

1

3

The degrees distinguish between many nodes, but not all of them. We may refine this labeling by
appending the labels of every neighbor of a node.

3, {2, 2, 3}

1, {3}

2, {1,3}

3, {1, 2, 3}

1, {2}
2, {3, 3}

Now, every vertex has its own unique label. If we were given another copy of this graph, we could
use these labels to determine the isomorphism between them. This procedure is called refinement,
and it can be carried out until it stops producing new labels. However, it is clear that this procedure
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will fail to produce unique labels if the graph has automorphisms, or if it is a regular graph. In
these cases, we need a way to break symmetry.

The procedure called individualization breaks symmetry arbitrarily. It chooses some nodes in the
graph, arbitrarily, to give their own unique names. Ideally, we pick one vertex to give a unique
name, and then refine the resulting labeling. We could then pick another troubling vertex, and
continue. We call a set of vertices S ⊂ V a distinguishing set if individualizing this set of nodes
results in a unique name for every vertex, after refinement. How would we use a distinguishing set
to test isomorphism? Assume that S is a distinguishing set for G = (V,E). To test if H = (W,F )
is isomorphic to G, we could enumerate over every possible set of |S| vertices of W , and check if
they are a distinguishing set for H. If G and H are isomorphic, then H will also have an isomorphic
distinguishing set that we can use to find an isomorphism between G and H. We would have to
check

(
n
|S|
)

sets, and try |S|! labelings for each, so we had better hope that S is small.

9.8 Distinguishing Sets for Strongly Regular Graphs

We will now prove a result of Babai [Bab80] which says that every strongly regular graph has a
distinguishing set of size O(

√
n log n). Babai’s result won’t require any refinement beyond naming

every vertex by the set of individualized nodes that are its neighbors. So, we will prove that a set
of nodes S is a distinguishing set by proving that for every pair of distinct vertices a and b, either
there is an s ∈ S that is a neighbor of a but not of b, or the other way around. This will suffice to
distinguish a and b. As our algorithm will work in a brute-force fashion, enumerating over all sets
of a given size, we merely need to show that such a set S exists. We will do so by proving that a
random set of vertices probably works.

I first observe that it suffices to consider strongly-regular graphs with d < n/2, as the complement
of a strongly regular graph is also a strongly regular graph (that would have been too easy to assign
as a homework problem). We should also observe that every strongly-regular graph has diameter
2, and so d ≥

√
n− 1.

Lemma 9.8.1. Let G = (V,E) be a connected strongly regular graph with n vertices and degree
d < n/2. Then for every pair of vertices a and b, there are at least d/3 vertices that are neighbors
of a but not b.

Before I prove this, let me show how we may use it to prove the theorem. This lemma tells us that
there are at least

√
n− 1/3 nodes that are neighbors of a but not of b. Let T be the set of nodes

that are neighbors of a but not neighbors of b. So, if we choose a vertex at random, the probability
that it is in T is at least

|T |
n
≥
√
n− 1

3n
≥ 1

3
√
n+ 2

.

If we choose a set S of 3
√
n+ 2 lnn2 vertices at random, the probability that none of them is in T

is (
1− 1

3
√
n+ 2

)3
√
n+2 lnn2

≤ 1

n2
.
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So, the probability that a random set of this many nodes fails to distinguish all
(
n
2

)
pairs is at most

1/2.

Proof of Lemma 9.8.1. Write a ∼ b if a is a neighbor of b, and a 6∼ b otherwise. If a ∼ b, then the
number of nodes that are neighbors of a but not of b is d− 1−α, and if a 6∼ b the number if d− β.
So, we need to prove that neither α nor β is too close to d.

We will do this by establishing some elementary relations between these parameters. First, consider
the case in which a ∼ b. Let z be any vertex such that a 6∼ z and b 6∼ z. We will use z to prove an
upper bound on the number of vertices w that are neighbors of a but not of b (I know this looks
like the wrong direction, but be patient). Let

Z0 = {w : w ∼ a,w 6∼ z} , and Z1 = {w : w 6∼ b, w ∼ z} .

Clearly, every w that is a neighbor of a but not of b lies in either Z0 or Z1. As z is neither a
neighbor of a nor of b,

|Z0| = |Z1| = d− β.

So,
d− α− 1 ≤ 2(d− β) =⇒ 2β ≤ d+ α+ 1. (9.1)

So, if β is close to d, α must also be close to d.

We will obtain an inequality in the other direction when a 6∼ b by exploiting a z such that z ∼ a
and z ∼ b. Now, for any w ∼ a but w 6∼ b, we have either

(w ∼ a and w 6∼ z) or (w ∼ z and w 6∼ b).

So,
d− β ≤ 2(d− α− 1) =⇒ 2(α+ 1) ≤ d+ β. (9.2)

This tells us that if α is close to d, then β is also.

We require one more relation between α and β. We obtain this relation by picking any vertex a,
and counting the pairs b, z such that b ∼ z, a ∼ b and a 6∼ z.
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Every node b that is a neighbor of a has α neighbors in common with a, and so has d − α − 1
neighbors that are not neighbors of a. This gives

|{(b, z) : b ∼ z, a ∼ b, a 6∼ z}| = d(d− α− 1).

On the other hand, there are n− d− 1 nodes z that are not neighbors of a, and each of them has
β neighbors in common with a, giving

|{(b, z) : b ∼ z, a ∼ b, a 6∼ z}| = (n− d− 1)β.

Combining, we find
(n− d− 1)β = d(d− α− 1). (9.3)

As d < n/2, this equation tells us

d(d− α− 1) ≥ dβ =⇒ d− α− 1 ≥ β. (9.4)

Adding inequality 9.1 to (9.4) gives

2d ≥ 3β =⇒ β ≤ 2

3
d,

while adding inequality 9.2 to (9.4) gives

α+ 1 ≤ 2

3
d.

Thus, for every a 6= b the number of vertices that are neighbors of a but not of b is at least
min(d− α− 1, d− β) ≥ d/3.

9.9 Notes

You should wonder if we can make this faster by analyzing refinement steps. In, [Spi96], I improved

the running time bound to 2O(n1/3 logn) by analyzing two refinement phases. The algorithm required
us to handle certain special families of strongly regular graphs separately: Latin square graphs
and Steiner graphs. Algorithms for testing isomorphism of strongly regular graphs were recently
improved by Babai, Chen, Sun, Teng, and Wilmes [BCS+13, BW13, SW15]. The running times
of all these algorithms are subsumed by that in Babai’s breakthrough algorithm for testing graph
isomorphism [Bab16].
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[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, pages 684–697. ACM, 2016.
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Spectral Graph Theory Lecture 10

Random Walks on Graphs

Daniel A. Spielman October 1, 2018

10.1 Overview

We will examine how the eigenvalues of a graph govern the convergence of a random walk on the
graph.

10.2 Random Walks

In this lecture, we will consider random walks on undirected graphs. Let’s begin with the definitions.
Let G = (V,E,w) be a weighted undirected graph. A random walk on a graph is a process
that begins at some vertex, and at each time step moves to another vertex. When the graph is
unweighted, the vertex the walk moves to is chosen uniformly at random among the neighbors of the
present vertex. When the graph is weighted, it moves to a neighbor with probability proportional to
the weight of the corresponding edge. While the transcript (the list of vertices in the order they are
visited) of a particular random walk is sometimes of interest, it is often more productive to reason
about the expected behavior of a random walk. To this end, we will investigate the probability
distribution over vertices after a certain number of steps.

We will let the vector pt ∈ IRV denote the probability distribution at time t. I will write pt(a)
to indicate the value of pt at a vertex a–that is the probability of being at vertex a at time t. A
probability vector p is a vector such that p(a) ≥ 0, for all a ∈ V , and∑

u

p(a) = 1.

Our initial probability distribution, p0, will typically be concentrated one vertex. That is, there
will be some vertex a for which p0(a) = 1. In this case, we say that the walk starts at a.

To derive a pt+1 from pt, note that the probability of being at a vertex a at time t+ 1 is the sum
over the neighbors b of a of the probability that the walk was at b at time t, times the probability
it moved from b to a in time t+ 1. We can state this algebraically as

pt+1(a) =
∑

b:(a,b)∈E

w(a, b)

d(b)
pt(b), (10.1)

where d(b) =
∑

aw(a, b) is the weighted degree of vertex b.

10-1
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We will often consider lazy random walks, which are the variant of random walks that stay put
with probability 1/2 at each time step, and walk to a random neighbor the other half of the time.
These evolve according to the equation

pt+1(a) = (1/2)pt(a) + (1/2)
∑

b:(a,b)∈E

w(a, b)

d(b)
pt(a). (10.2)

10.3 Diffusion

There are a few types of diffusion that people study in a graph, but the most common is closely
related to random walks. In a diffusion process, we imagine that we have some substance that can
occupy the vertices, such as a gas or fluid. At each time step, some of the substance diffuses out
of each vertex. If we say that half the substance stays at a vertex at each time step, and the other
half is distributed among its neighboring vertices, then the distribution of the substance will evolve
according to equation (10.2). That is, probability mass obeys this diffusion equation.

I remark that often people consider finer time steps in which smaller fractions of the mass leave
the vertices. In the limit, this results in continuous random walks that are modeled by the matrix
exponential. These are in many ways more natural than discrete time random walks. But, I do not
think we will discuss them in this course.

10.4 Matrix form

The right way to understand the behavior of random walks is through linear algebra.

Equation (10.2) is equivalent to:

pt+1 = (1/2)
(
I + M D−1

)
pt. (10.3)

You can verify this by checking that it is correct for any entry pt+1(u), and you should do this
yourself. It will prevent much confusion later.

For the rest of the course, I will let W G denote the lazy walk matrix of the graph G, where

W G
def
= (1/2)

(
I + MGD−1G

)
. (10.4)

This is the one asymmetric matrix that we will deal with in this course. It is related to the
normalized Laplacian, which is symmetric and which is defined by

N = D−1/2LD−1/2 = I −D−1/2M D−1/2.

Thus, the normalized Laplacian is positive semidefinite, and has the same rank as the ordinary
(sometimes called “combinatorial”) Laplacian. There are many advantages of working with the
normalized Laplacian: the mean of its eigenvalues is 1, so they are always on a degree-independent
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scale. One can prove that νn ≤ 2, with equality if and only if the graph is bipartite. I recommend
proving νn ≤ 2 by showing that

L < −M ,

which follows from consideration of the quadratic form
∑

(a,b)∈E wa,b(x (a)− x (b))2.

The walk matrix is similar to a symmetric matrix that is related to the normalized Laplacian:

W = I − 1

2

(
I −M D−1

)
= I − 1

2
D1/2

(
I −D−1/2M D−1/2

)
D−1/2

= I − 1

2
D1/2N D−1/2,

So, we know that W is diagonalizable, and that for every eigenvector ψi of N with eigenvalue νi,
the vector D1/2ψi is a right-eigenvector of W of eigenvalue 1− νi/2:

W
(

D1/2ψi

)
=

(
I − 1

2
D1/2N D−1/2

)
D1/2ψi

= D1/2ψi −
1

2
D1/2Nψi

= D1/2ψi −
νi
2

D1/2ψi

= (1− νi/2)D1/2ψi.

The key thing to remember in the asymmetric case is that the eigenvectors of W are not necessarily
orthogonal.

You may be wonder why I have decided to consider only lazy walks, rather than the more natural
walk given by M D−1. There are two equivalent reasons. The first is that all the eigenvalues of W
are between 1 and 0. The second reason is explained in the next section.

For the rest of the semester, we will let the eigenvalues of W be:

1 = ω1 ≥ ω2 ≥ · · · ≥ ωn ≥ 0, where ωi = (1− νi/2).

Yes, I know that ω is not a greek equivalent of w, but it sure looks like it.

10.5 The stable distribution

Regardless of the starting distribution, the lazy random walk on a connected graph always converges
to one distribution: the stable distribution. This is the other reason that we forced our random walk
to be lazy. Without laziness1, there can be graphs on which the random walks never converge. For
example, consider a non-lazy random walk on a bipartite graph. Every-other step will bring it to

1Strictly speaking, any nonzero probability of staying put at any vertex in a connected graph will guarantee
convergence. We don’t really need a half probability at every vertex.
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the other side of the graph. So, if the walk starts on one side of the graph, its limiting distribution
at time t will depend upon the parity of t.

In the stable distribution, every vertex is visited with probability proportional to its weighted
degree. We denote the vector encoding this distribution by π, where

π = d/(1Td)

and we recall that d is the vector of degrees. We can see that π is a right-eigenvector of W of
eigenvalue 1:

M D−1π = M D−1 d/(1Td) = M1/(1Td) = d/(1Td) = π,

so
Wπ = (1/2)Iπ + (1/2)M D−1π = (1/2)π + (1/2)π = π.

This agrees with the translation we have established between eigenvectors of W and eigenvectors of
N . For a connected graph the nullspace of N is spanned by d1/2, and π is a multiple of D1/2d1/2.

To see that the walk converges to π, we expand D−1/2 times the initial distribution in the eigen-
vectors ψ1, . . . ,ψn of N . Let

D−1/2p0 =
∑
i

ciψi.

Note that

c1 = ψT1 (D−1/2p0) =
(d1/2)T

‖d1/2‖
(D−1/2p0) =

1Tp0

‖d1/2‖
=

1

‖d1/2‖
,

as p0 is a probability vector. We have

pt = W tp0

= (D1/2(I −N /2)D−1/2)tp0

= (D1/2(I −N /2)tD−1/2)p0

= D1/2(I −N /2)t
∑
i

ciψi

= D1/2
∑
i

(1− νi/2)tciψi

= D1/2c1ψ1 + D1/2
∑
i≥2

(1− νi/2)tciψi.

As 0 < νi ≤ 2 for i ≥ 2, the right-hand term must go to zero. On the other hand, ψ1 = d1/2/‖d1/2‖,
so

D1/2c1ψ1 = D1/2

(
1

‖d1/2‖

)
d1/2

‖d1/2‖
=

d

‖d1/2‖2
=

d∑
j d(j)

= π.

This is a perfect example of one of the main uses of spectral theory: to understand what happens
when we repeatedly apply an operator.
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10.6 The Rate of Convergence

The rate of convergence of a lazy random walk to the stable distribution is dictated by ω2. There
are many ways of saying this. We will do so point-wise. Assume that the random walk starts at
some vertex a ∈ V . For every vertex b, we will bound how far pt(b) can be from π(b).

Theorem 10.6.1. For all a, b and t, if p0 = δa, then

|pt(b)− π(b)| ≤

√
d(b)

d(a)
ωt2.

Proof. Observe that
pt(b) = δTb pt.

From the analysis in the previous section, we know

pt(b) = δTb p = π(b) + δTb D1/2
∑
i≥2

ωticiψi.

We need merely prove an upper bound on the magnitude of the right-hand term. To this end, recall
that

ci = ψTi D−1/2δa.

So,

δTb D1/2
∑
i≥2

ωticiψi =

√
d(b)

d(a)
δTb
∑
i≥2

ωtiψiψ
T
i δa.

Analyzing the right-hand part of this last expression, we find∣∣∣∣∣∣δTb
∑
i≥2

ωtiψiψ
T
i δa

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i≥2

ωti
(
δTb ψi

) (
ψTi δa

)∣∣∣∣∣∣
≤
∑
i≥2

ωti
∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣

≤ ωt2
∑
i≥2

∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣ .
To prove an upper bound on this last term, let Ψ be the matrix having the eigenvectors ψ1, . . . ,ψn
in its columns. This is an orthonormal matrix, and so its rows must be orthonormal as well. Thus,∑

i≥2

∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣ ≤∑
i≥1

∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣
≤
√∑

i≥1

(
δTb ψi

)2√∑
i≥1

(
δTaψi

)2
= ‖Ψ(b, :)‖ ‖Ψ(a, :)‖
= 1.
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As ω2 = 1− ν2/2, and
ωt2 = (1− ν2/2)t ≈ e−tν2/2,

we should expect random walks to converge once t reaches the order of (log n)/ν2 or 1/ν2.

10.7 Examples

We should now do some examples. I’d like to understand each in two ways: by examining ν2 for
each graph and by thinking about how a random walk on each graph should behave. While we
have explicitly worked out λ2 for many graphs, we have not done this for ν2. The following lemma
will allow us to relate bounds on λ2 into bounds on ν2:

Lemma 10.7.1. Let L be the Laplacian matrix of a graph, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
and let N be its normalized Laplacian, with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ ν2. Then, for all i

λi
dmin

≥ νi ≥
λi
dmax

,

where dmin and dmax are the minimum and maximum degrees of vertices in the graph.

Proof. The Courant-Fischer theorem tells us that

νi = min
dim(S)=i

max
x∈S

xTN x

xTx
.

As the change of variables y = D−1/2x is non-singular, this equals

min
dim(T )=i

max
y∈T

yTLy

yTDy
.

So,

min
dim(T )=i

max
y∈T

yTLy

yTDy
≥ min

dim(T )=i
max
y∈T

yTLy

dmaxyTy
=

1

dmax
min

dim(T )=i
max
y∈T

yTLy

yTy
=

λi
dmax

.

The other bound may be proved similarly.

10.7.1 The Path

As every vertex in the path on n vertices has degree 1 or 2, ν2 is approximately λ2, which is
approximately c/n2 for some constant c.

To understand the random walk on the path, think about what happens when the walk starts in
the middle. Ignoring the steps on which it stays put, it will either move to the left or the right with
probability 1/2. So, the position of the walk after t steps is distributed as the sum of t random
variables taking values in {1,−1}. Recall that the standard deviation of such a sum is

√
t. So, we

need to have
√
t comparable to n/4 for there to be a reasonable chance that the walk is on the left

or right n/4 vertices.
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10.7.2 The Complete Binary Tree

As with the path, ν2 for the tree is within a constant of λ2 for the tree, and so is approximately
c/n for some constant c. To understand the random walk on Tn, first note that whenever it is at a
vertex, it is twice as likely to step towards a leaf as it is to step towards the root. So, if the walk
starts at a leaf, there is no way the walk can mix until it reaches the root. The height of the walk
is like a sum of ±1 random variables, except that they are twice as likely to be −1 as they are to
be 1, and that their sum never goes below 0. One can show that we need to wait approximately n
steps before such a walk will hit the root. Once it does hit the root, the walk mixes rapidly.

10.7.3 The Dumbbell

Now, let’s consider another one of my favorite graphs, the dumbbell. The dumbell graph Dn

consists of two complete graphs on n vertices, joined by one edge. So, there are 2n vertices in total.
The isoperimetric number of this graph is

θDn ∼
1

n
.

Using the test vector that is 1 on one complete graph and −1 on the other, we can show that

λ2(Dn) / 1/n.

Lemma 10.7.1 then tells us that
ν2(Dn) / 1/n2.

To prove that this bound is almost tight, we use the following lemma.

Lemma 10.7.2. Let G be an unweighted graph of diameter at most r. Then,

λ2(G) ≥ 2

r(n− 1)
.

Proof. For every pair of vertices (a, b), let P (a, b) be a path in G of length at most r. We have

L(a,b) 4 r · LP (a,b) 4 rLG.

So,

Kn 4 r

(
n

2

)
G,

and

n ≤ r
(
n

2

)
λ2(G),

from which the lemma follows.
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The diameter of Dn is 3, so we have λ2(Dn) ≥ 2/3(n − 1). As every vertex of Dn has degree at
least n− 1, we may conclude ν2(Dn) ' 2/3(n− 1)2.

To understand the random walk on this graph, consider starting it at some vertex that is not
attached to the bridge edge. After the first step the walk will be well mixed on the vertices in the
side on which it starts. Because of this, the chance that it finds the edge going to the other side is
only around 1/n2: there is only a 1/n chance of being at the vertex attached to the bridge edge,
and only a 1/n chance of choosing that edge when at that vertex. So, we must wait some multiple
of n2 steps before there is a reasonable chance that the walk reaches the other side of the graph.

10.7.4 The Bolas Graph

I define the bolas2 graph Bn to be a graph containing two n-cliques connected by a path of length
n. The bolas graph has a value of ν2 that is almost as small as possible. Equivalently, random
walks on a bolas graph mix almost as slowly as possible.

The analysis of the random walk on a bolas is similar to that on a dumbbell, except that when the
walk is on the first vertex of the path the chance that it gets to the other end before moving back
to the clique at which we started is only 1/n. So, we must wait around n3 steps before there is a
reasonable chance of getting to the other side.

Next lecture, we will learn that we can upper bound ν2 with a test vector using the fact that

ν2 = min
x⊥d

xTLx

xTDx
.

To prove an upper bound on ν2, form a test vector that is n/2 on one clique, −n/2 on the other,
and increases by 1 along the path. We can use the symmetry of the construction to show that
this vector is orthogonal to d . The numerator of the generalized Rayleigh quotient is n, and the
denominator is the sum of the squares of the entries of the vectors times the degrees of the vertices,
which is some constant times n4. This tells us that ν2 is at most some constant over n3.

To see that ν2 must be at least some constant over n3, and in fact that this must hold for every
graph, apply Lemmas 10.7.1 and 10.7.2.

10.8 Final Notes

The procedure we have described—repeatedly multiplying a vector by W and showing that the
result approximates π—is known in Numerical Linear Algebra as the power method. It is one of
the common ways of approximately computing eigenvectors.

In the proof of Theorem 10.6.1, we were a little loose with some of the terms. The slack comes
from two sources. First, we upper bounded ωi by ω2 for all i, while many of the ωi are probably
significantly less than ω2. This phenomenon is often called “eigenvalue decay”, and it holds in
many graphs. This sloppiness essentially costs us a multiplicative factor of log n in the number of

2A bolas is a hunting weapon consisting of two balls or rocks tied together with a cord.
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steps t we need to achieve the claimed bound. You will note that in the examples above, the time
to approximate convergence is typically on the order of 1/ν2, not (log n)/ν2. This is because of
eigenvalue decay.

The second source of slack appeared when we upper bounded the absolute value of a sum by the
sum of the absolute value. I am not sure how much this cost us.



Spectral Graph Theory Lecture 11

Conductance, the Normalized Laplacian, and Cheeger’s Inequality

Daniel A. Spielman October 3, 2018

11.1 Overview

As the title suggests, in this lecture I will introduce conductance, a measure of the quality of a
cut, and the normalized Laplacian matrix of a graph. I will then prove Cheeger’s inequality, which
relates the second-smallest eigenvalue of the normalized Laplacian to the conductance of a graph.

Cheeger [Che70] first proved his famous inequality for manifolds. Many discrete versions of Cheeger’s
inequality were proved in the late 80’s [SJ89, LS88, AM85, Alo86, Dod84, Var85]. Some of these
consider the walk matrix instead of the normalized Laplacian, and some consider the isoperimetic
ratio instead of conductance.

The proof that I present today follows an approach developed by Luca Trevisan [Tre11]. For
simplicity, we do the proof in the unweighted case, and indicate how to extend it to weighted
graphs at the end of the notes.

11.2 Conductance

Back in Lecture 2, we related to isoperimetric ratio of a subset of the vertices to the second
eigenvalue of the Laplacian. We proved that for every S ⊂ V

θ(S) ≥ λ2(1− s),

where s = |S| / |V | and

θ(S)
def
=
|∂(S)|
|S|

.

Re-arranging terms slightly, this can be stated as

|V | |∂(S)|
|S| |V − S|

≥ λ2.

Cheeger’s inequality provides a relation in the other direction. However, the relation is tighter and
cleaner when we look at two slightly different quantities: the conductance of the set and the second
eigenvalue of the normalized Laplacian.

The formula for conductance has a different denominator that depends upon the sum of the degrees
of the vertices in S. I will write d(S) for the sum of the degrees of the vertices in S. Thus, d(V ) is

11-1
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twice the number of edges in the graph. We define the conductance of S to be

φ(S)
def
=

|∂(S)|
min(d(S), d(V − S))

.

Note that many similar, although sometimes slightly different, definitions appear in the literature.
For example, we would instead use

d(V )∂(S)

d(S)d(V − S)
,

which appears below in (11.5).

We define the conductance of a graph G to be

φG
def
= min

S⊂V
φ(S).

The conductance of a graph is more useful in many applications than the isoperimetric number.
I usually find that conductance is the more useful quantity when you are concerned about edges,
and that isoperimetric ratio is most useful when you are concerned about vertices. Conductance is
particularly useful when studying random walks in graphs.

11.3 The Normalized Laplacian

It seems natural to try to relate the conductance to the following generalized Rayleigh quotient:

yTLy

yTDy
. (11.1)

If we make the change of variables
D1/2y = x ,

then this ratio becomes
xTD−1/2LD−1/2x

xTx
.

That is an ordinary Rayleigh quotient, which we understand a little better. The matrix in the
middle is called the normalized Laplacian (see [Chu97]). We reserve the letter N for this matrix:

N
def
= D−1/2LD−1/2.

This matrix often proves more useful when examining graphs in which nodes have different degrees.
We will let 0 = ν1 ≤ ν2 ≤ · · · ≤ νn denote the eigenvalues of N .

The conductance is related to ν2 as the isoperimetric number is related to λ2:

ν2/2 ≤ φG. (11.2)

I include a proof of this in the appendix.
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My goal for today’s lecture is to prove Cheeger’s inequality,

φG ≤
√

2ν2,

which is much more interesting. In fact, it is my favorite theorem in spectral graph theory.

The eigenvector of eigenvalue 0 of N is d1/2, by which I mean the vector whose entry for vertex u
is the square root of the degree of u. Observe that

D−1/2LD−1/2d1/2 = D−1/2L1 = D−1/20 = 0.

The eigenvector of ν2 is given by

arg min
x⊥d1/2

xTNx

xTx
.

Transfering back into the variable y , and observing that

xTd1/2 = yTD1/2d1/2 = yTd ,

we find

ν2 = min
y⊥d

yTLy

yTDy
.

11.4 Cheeger’s Inequality

Cheeger’s inequality proves that if we have a vector y , orthogonoal to d , for which the generalized
Rayleigh quotient (11.1) is small, then one can obtain a set of small conductance from y . We obtain
such a set by carefully choosing a real number t, and setting

St = {u : y(u) ≤ t} .

Theorem 11.4.1. Let y be a vector orthogonal to d . Then, there is a number t for which the set
St = {u : y(u) < t} satisfies

φ(St) ≤

√
2
yTLy

yTDy
.

Before proving the theorem, I wish to make one small point about the denominator in the expression
above. It is essentially minimized when yTd = 0, at least with regards to shifts.

Lemma 11.4.2. Let v s = y + z1. Then, the minimum of vT
z DvT

z is achieved at the z for which
vT
z d = 0.

Proof. The derivative with respect to z is

2dTv z,

and the minimum is achieved when this derivative is zero.



Lecture 11: October 3, 2018 11-4

We begin our proof of Cheeger’s inequality by defining

ρ =
yTLy

yTDy
.

So, we need to show that there is a t for which φ(St) ≤
√

2ρ.

By renumbering the vertices, we may assume without loss of generality that

y(1) ≤ y(2) ≤ · · · ≤ y(n).

We begin with some normalization. Let j be the least number for which

j∑
u=1

d(u) ≥ d(V )/2.

We would prefer a vector that is centered at j. So, set

z = y − y(j)1.

This vector z satisfies z (j) = 0, and, by Lemma 11.4.2,

z TLz

z TDz
≤ ρ.

We also multiply z by a constant so that

z (1)2 + z (n)2 = 1.

Recall that

φ(S) =
|∂(S)|

min(d(S), d(V − S))
.

We will define a distribution on t for which we can prove that

E [|∂(St)|] ≤
√

2ρ E [min(d(St), d(V − St))] .

This implies1 that there is some t for which

|∂(St)| ≤
√

2ρ min(d(St), d(V − St)),

which means φ(S) ≤
√

2ρ.

To switch from working with y to working with z , define We will set St = {u : z (u) ≤ t}. Trevisan
had the remarkable idea of choosing t between z (1) and z (n) with probability density 2 |t|. That
is, the probability that t lies in the interval [a, b] is∫ b

t=a
2 |t| .

1If this is not immediately clear, note that it is equivalent to assert that E
[√

2ρmin(d(S), d(V − S))− |∂(S)|
]
≥ 0,

which means that there must be some S for which the expression is non-negative.
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To see that the total probability is 1, observe that∫ z (n)

t=z (1)
2 |t| =

∫ 0

t=z (1)
2 |t| = +

∫ z (n)

t=0
2 |t| = z (n)2 + z (1)2 = 1,

as z (1) ≤ z (j) ≤ z (n) and z (j) = 0.

Similarly, the probability that t lies in the interval [a, b] is∫ b

t=a
2 |t| = sgn(b)b2 − sgn(a)a2,

where

sgn(x) =


1 if x > 0

0 if x = 0, and

−1 if x < 0.

Lemma 11.4.3.

Et [|∂(St)|] =
∑

(u,v)∈E

Prt [(u, v) ∈ ∂(St)] ≤
∑

(u,v)∈E

|z (u)− z (v)| (|z (u)|+ |z (v)|). (11.3)

Proof. An edge (u, v) with z (u) ≤ z (v) is on the boundary of S if

z (u) ≤ t < z (v).

The probability that this happens is

sgn(z (v))z (v)2 − sgn(z (u))z (u)2 =

{∣∣z (u)2 − z (v)2
∣∣ when sgn(u) = sgn(v),

z (u)2 + z (v)2 when sgn(u) 6= sgn(v).

We now show that both of these terms are upper bounded by

|z (u)− z (v)| (|z (u)|+ |z (v)|).

Regardless of the signs,∣∣z (u)2 − z (v)2
∣∣ = |(z (u)− z (v))(z (u) + z (v))| ≤ |z (u)− z (v)| (|z (u)|+ |z (v)|).

When sgn(u) = −sgn(v),

z (u)2 + z (v)2 ≤ (z (u)− z (v))2 = |z (u)− z (v)| (|z (u)|+ |z (v)|).

We now derive a formula for the expected denominator of φ.

Lemma 11.4.4.

Et [min(d(St), d(V − St))] = z TDz .
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Proof. Observe that

Et [d(St)] =
∑
u

Prt [u ∈ St] d(u) =
∑
u

Prt [z (u) ≤ t] d(u).

The result of our centering of z at j is that

t < 0 =⇒ d(S) = min(d(S), d(V − S)), and

t ≥ 0 =⇒ d(V − S) = min(d(S), d(V − S)).

That is, for u < j, u is in the smaller set if t < 0; and, for u ≥ j, u is in the smaller set if t ≥ 0. So,

Et [min(d(St), d(V − St))] =
∑
u<j

Pr [z (u) < t and t < 0] d(u) +
∑
u≥j

Pr [z (u) > t and t ≥ 0] d(u)

=
∑
u<j

Pr [z (u) < t < 0] d(u) +
∑
u≥j

Pr [z (u) > t ≥ 0] d(u)

=
∑
u<j

z (u)2d(u) +
∑
u≥j

z (u)2d(u)

=
∑
u

z (u)2d(u)

= z TDz .

Recall that our goal is to prove that

E [|∂(St)|] ≤
√

2ρ E [min(d(St), d(V − St))] ,

and we know that

Et [min(d(St), d(V − St))] =
∑
u

z (u)2d(u)

and that

Et [|∂(St)|] ≤
∑

(u,v)∈E

|z (u)− z (v)| (|z (u)|+ |z (v)|).

We may use the Cauchy-Schwartz inequality to upper bound the term above by√ ∑
(u,v)∈E

(z (u)− z (v))2
√ ∑

(u,v)∈E

(|z (u)|+ |z (v)|)2. (11.4)

We have defined ρ so that the term under the left-hand square root is at most

ρ
∑
u

z (u)2d(u).

To bound the right-hand square root, we observe∑
(u,v)∈E

(|z (u)|+ |z (v)|)2 ≤ 2
∑

(u,v)∈E

z (u)2 + z (v)2 = 2
∑
u

z (u)2d(u).
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Putting all these inequalities together yields

E [|∂(S)|] ≤
√
ρ
∑
u

z (u)2d(u)

√
2
∑
u

z (u)2d(u)

=
√

2ρ
∑
u

z (u)2d(u)

=
√

2ρ E [min (d(S), d(V − S))] .

I wish to point out two important features of this proof:

1. This proof does not require y to be an eigenvector–it obtains a cut from any vector y that is
orthogonal to d .

2. This proof goes through almost without change for weighted graphs. The main difference is
that for weighted graphs we measure the sum of the weights of edges on the boundary instead
of their number. The main difference in the proof is that lines (11.3) and (11.4) become

E [w(∂(S))] =
∑

(u,v)∈E

Pr [(u, v) ∈ ∂(S)]wu,v

≤
∑

(u,v)∈E

|z (u)− z (v)| (|z (u)|+ |z (v)|)wu,v

≤
√ ∑

(u,v)∈E

wu,v(z (u)− z (v))2
√ ∑

(u,v)∈E

wu,v(|z (u)|+ |z (v)|)2,

and we observe that ∑
(u,v)∈E

wu,v(|z (u)|+ |z (v)|)2 ≤ 2
∑
u

z (u)2d(u).

The only drawback that I see to the approach that we took in this proof is that the application of
Cauchy-Schwartz is a little mysterious. Shang-Hua Teng and I came up with a proof that avoids
this by introducing one inequality for each edge. If you want to see that proof, look at my notes
from 2009.

A Proof of (11.2)

Lemma A.1. For every S ⊂ V ,
φ(S) ≥ ν2/2.

Proof. As in Lecture 2, we would like to again use χS as a test vector. But, it is not orthogonal to
d . To fix this, we subtrat a constant. Set

y = χS − σ1,
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where
σ = d(S)/d(V ).

You should now check that yTd = 0:

yTd = χT
Sd − σ1Td = d(S)− (d(S)/d(V ))d(V ) = 0.

We already know that
yTLy = |∂(S)| .

It remains to compute yTDy . If you remember the previous computation like this, you would
guess that it is d(S)(1− σ) = d(S)d(V − S)/d(V ), and you would be right:

yTDy =
∑
u∈S

d(u)(1− σ)2 +
∑
u6∈S

d(u)σ2

= d(S)(1− σ)2 + d(V − S)σ2

= d(S)− 2d(S)σ + d(V )σ2

= d(S)− d(S)σ

= d(S)d(V − S)/d(V ).

So,

ν2 ≤
yTLy

yTDy
=
|∂(S)| d(V )

d(S)d(V − S)
. (11.5)

As the larger of d(S) and d(V − S) is at least half of d(V ), we find

ν2 ≤ 2
|∂(S)|

min(d(S), d(V − S))
.
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Spectral Graph Theory Lecture 12

Walks, Springs, and Resistor Networks

Daniel A. Spielman October 8, 2018

12.1 Overview

In this lecture we will see how the analysis of random walks, spring networks, and resistor networks
leads to the consideration of systems of linear equations in Laplacian matrices. The main purpose
of this lecture is to introduce concepts and language that we will use extensively in the rest of the
course.

12.2 Harmonic Functions

The theme of this whole lecture will be harmonic functions on graphs. These will be defined in
terms of a weighted graph G = (V,E,w) and a set of boundary vertices B ⊆ V . We let S = V −B
(I use “-” for set-minus). We will assume throughout this lecture that G is connected and that B
is nonempty.

A function x : V → R is said to be harmonic at a vertex a if the value of x at a is the weighted
average of its values at the neighbors of a where the weights are given by w:

x (a) =
1

da

∑
b∼a

wa,bx (b). (12.1)

The function x is harmonic on S if it is harmonic for all a ∈ S.

12.3 Random Walks on Graphs

Consider the standard (not lazy) random walk on the graph G. Recall that when the walk is at a
vertex a, the probability it moves to a neighbor b is

wa,b

da
.

Distinguish two special nodes in the graph that we will call s and t, and run the random walk until
it hits either s or t. We view s and t as the boundary, so B = {s, t}.

Let x (a) be the probability that a walk that starts at a will stop at s, rather than at t. We have
the boundary conditions x (s) = 1 and x (t) = 0. For every other node a the chance that the walk

12-1
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stops at s is the sum over the neighbors b of a of the chance that the walk moves to b, times the
chance that a walk from b stops at s. That is,

x (a) =
∑
b∼a

wa,b

da
x (b).

So, the function x is harmonic at every vertex in V −B.

For example, consider the path graph Pn. Let’s make s = n and t = 1. So, the walk stops at either
end. We then have x (n) = 1, x (1) = 0. It is easy to construction at least one solution to the
harmonic equations (12.1): we can set

x (a) =
a− 1

n− 1
.

It essentially follows from the definitions that there can be only one vector x that solves these
equations. But, we will prove this algebraically later in lecture.

These solutions tell us that if the walk starts at node a, the chance that it ends at node n is
(a− 1)/(n− 1). This justifies some of our analysis of the Bolas graph from Lecture 10.

Of course, the exact same analysis goes through for the lazy random walks: those give

x (a) = (1/2)x (a) + (1/2)
∑
b∼a

wa,b

da
x (b) ⇐⇒ x (a) =

∑
b∼a

wa,b

da
x (b).

12.4 Spring Networks

We begin by imagining that every edge of a graph G = (V,E) is an ideal spring or rubber band.
They are joined together at the vertices. Given such a structure, we will pick a subset of the vertices
B ⊆ V and fix the location of every vertex in B. For example, you could nail each vertex in B
onto a point in the real line, or onto a board in IR2. We will then study where the other vertices
wind up.

We can use Hooke’s law to figure this out. To begin, assume that each rubber band is an ideal
spring with spring constant 1. If your graph is weighted, then the spring constant of each edge
should be its weight. If a rubber band connects vertices a and b, then Hooke’s law tells us that the
force it exerts at node a is in the direction of b and is proportional to the distance between a and
b. Let x (a) be the position of each vertex a. You should begin by thinking of x (a) being in IR, but
you will see that it is just as easy to make it a vector in IR2 or IRk for any k.

The force the rubber band between a and b exerts on a is

x (b)− x (a).

In a stable configuration, all of the vertices that have not been nailed down must experience a zero
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net force. That is ∑
b∼a

(x (b)− x (a)) = 0 ⇐⇒
∑
b∼a

x (b) = dax (a)

⇐⇒ 1

da

∑
b∼a

x (b) = x (a).

In a stable configuration, every vertex that is not on the boundary must be the average of its
neighbors.

In the weighted case, we would have for each a ∈ V −B

1

da

∑
b∼a

wa,bx (b) = x (a).

That is, x is harmonic on V −B.

We will next show that the equations (12.1) have a solution, and that it is unique1 if the underlying
graph is connected and B is nonempty But first, consider again the path graph Pn with the
endpoints fixed: B = {1, n}. Let us fix them to the values f (1) = 1 and f (n) = n. The only
solution to the equations (12.1) is the obvious one: vertex i is mapped to i: x (i) = i for all i.

12.5 Laplacian linear equations

If we rewrite equation (12.1) as

dax (a)−
∑
b∼a

wa,bx (b) = 0, (12.2)

we see that it corresponds to the row of the Laplacian matrix corresponding to vertex a. So, we
may find a solution to the equations (12.1) by solving a system of equations in the submatrix of
the Laplacian indexed by vertices in V −B.

To be more concete, I will set up those equations. For each vertex a ∈ B, let its position be fixed
to f (a). Then, we can re-write equation (12.2) as

dax (a)−
∑

b 6∈B:(a,b)∈E

wa,bx (b) =
∑

b∈B:(a,b)∈E

wa,bf (b),

for each a ∈ V −B. So, all of the boundary terms wind up in the right-hand vector.

Let S = V −B. We now see that this is an equation of the form

L(S, S)x (S) = r , with r = M (S, :)f .

By L(S, S) I mean the submatrix of L indexed by rows and columns of S, and by x (S) I mean the
sub-vector of x indexed by S.

1It can only fail to be unique if there is a connected component that contains no vertices of B.
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We can then write the condition that entries of B are fixed to f by

x (B) = f (B).

We have reduced the problem to that of solving a system of equations in a submatrix of the
Laplacian.

Submatrices of Laplacians are a lot like Laplacians, except that they are positive definite. To see
this, note that all of the off-diagonals of the submatrix of L agree with all the off-diagonals of the
Laplacian of the induced subgraph on the internal vertices. But, some of the diagonals are larger:
the diagonals of nodes in the submatrix account for both edges in the induced subgraph and edges
to the vertices in B.

Claim 12.5.1. Let L be the Laplacian of G = (V,E,w), let B ⊆ V , and let S = V −B. Then,

L(S, S) = LG(S) + X S ,

where G(S) is the subgraph induced on the vertices in S and X S is the diagonal matrix with entries

X S(a, a) =
∑

b∼a,b∈B
wa,b, for a ∈ S.

Lemma 12.5.2. Let L be the Laplacian matrix of a connected graph and let X be a nonnegative,
diagonal matrix with at least one nonzero entry. Then, L + X is positive definite.

Proof. We will prove that xT (L + X )x > 0 for every nonzero vector x . As both L and X are
positive semidefinite, we have

xT (L + X )x ≥ min
(
xTLx ,xTX x

)
.

As the graph is connected, xTLx is positive unless x is a constant vector. If x = c1 for some
c 6= 0, then we obtain

c21T (L + X )1 = c21TX 1 = c2
∑
i

X (i, i) > 0.

Lemma 12.5.3. Let L be the Laplacian matrix of a connected graph G = (V,E,w), let B be a
nonempty, proper subset of V , and let S = V −B. Then, L(S, S) is positive definite.

Proof. Let S1, . . . , Sk be the connected components of vertices of G(S). We can use these to write
L(S, S) as a block matrix with blocks equal to L(Si, Si). Each of these blocks can be written

L(Si, Si) = LGSi
+XSi .

As G is connected, there must be some vertex in Si with an edge to a vertex not in Si. This
implies that XSi is not the zero matrix, and so we can apply Lemma 12.5.2 to prove that L(Si, Si)
is invertible.

As the matrix L(S, S) is invertible, the equations have a solution, and it must be unique.
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12.6 Energy

Physics also tells us that the vertices will settle into the position that minimizes the potential
energy. The potential energy of an ideal linear spring with constant w when stretched to length l
is

1

2
wl2.

So, the potential energy in a configuration x is given by

E (x )
def
=

1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2. (12.3)

For any x that minimizes the energy, the partial derivative of the energy with respect to each
variable must be zero. In this case, the variables are x (a) for a ∈ S. The partial derivative with
respect to x (a) is

1

2

∑
b∼a

wa,b2(x (a)− x (b)) =
∑
b∼a

wa,b(x (a)− x (b)).

Setting this to zero gives the equations we previously derived: (12.1).

12.7 Resistor Networks

We now consider a related physical model of a graph in which we treat every edge as a resistor.
If the graph is unweighted, we will assume that each resistor has resistance 1. If an edge e has
weight we, we will give the corresponding resistor resistance re = 1/we. The reason is that when
the weight of an edge is very small, the edge is barely there, so it should correspond to very high
resistance. Having no edge corresponds to having a resistor of infinite resistance.

Recall Ohm’s law:
V = IR.

That is, the potential drop across a resistor (V ) is equal to the current flowing over the resistor (I)
times the resistance (R). To apply this in a graph, we will define for each edge (a, b) the current
flowing from a to b to be i(a, b). As this is a directed quantity, we define

i(b, a) = −i(a, b).

I now let v ∈ IRV be a vector of potentials (voltages) at vertices. Given these potentials, we can
figure out how much current flows on each edge by the formula

i(a, b) =
1

ra,b
(v(a)− v(b)) = wa,b (v(a)− v(b)) .

That is, we adopt the convention that current flows from high voltage to low voltage. We would
like to write this equation in matrix form. The one complication is that each edge comes up twice
in i . So, to treat i as a vector we will have each edge show up exactly once as (a, b) when a < b.
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We now define the signed edge-vertex adjacency matrix of the graph U to be the matrix with rows
indexed by edges and columns indexed by vertices such that

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

Thus the row of U corresponding to edge (a, b) is U((a, b), :) = δTa − δTb .

Define W to be the diagonal matrix with rows and columns indexed by edges with the weights of
the edges on the diagonals. We then have

i = W U v .

Also recall that resistor networks cannot hold current. So, all the current entering a vertex a from
edges in the graph must exit a to an external source. Let i ext ∈ IRV denote the external currents,
where i ext(a) is the amount of current entering the graph through node a. We then have

i ext(a) =
∑
b∼a

i(a, b).

In matrix form, this becomes
i ext = U T i = U TW U v . (12.4)

The matrix
L

def
= U TW U

is, of course, the Laplacian. This is another way of writing the expression that we derived in Lecture
3:

L =
∑
a∼b

wa,b(δa − δb)(δa − δb)T .

It is often helpful to think of the nodes a for which i ext(a) 6= 0 as being boundary nodes. We will
call the other nodes internal. Let’s see what the equation

i ext = Lv .

means for the internal nodes. If the graph is unweighted and a is an internal node, then the ath
row of this equation is

0 = (δTa L)v =
∑
a∼b

(v(a)− v(b)) = dav(a)−
∑
a∼b

v(b).

That is,

v(a) =
1

da

∑
a∼b

v(b),

which means that v is harmonic at a. Of course, the same holds in weighted graphs.



Lecture 12: October 8, 2018 12-7

12.8 Solving for currents

We are often interested in applying (12.4) in the reverse: given a vector of external currents i ext
we solve for the induced voltages by

v = L−1i ext.

This at first appears problematic, as the Laplacian matrix does not have an inverse. The way
around this problem is to observe that we are only interested in solving these equations for vectors
i ext for which the system has a solution. In the case of a connected graph, this equation will have a
solution if the sum of the values of i ext is zero. That is, if the current going in to the circuit equals
the current going out. These are precisely the vectors that are in the span of the Laplacian.

To obtain the solution to this equation, we multiply i ext by the Moore-Penrose pseudo-inverse of
L.

Definition 12.8.1. The pseudo-inverse of a symmetric matrix L, written L+, is the matrix that
has the same span as L and that satisfies

LL+ = Π,

where Π is the symmetric projection onto the span of L.

I remind you that a matrix Π is a symmetric projetion if Π is symmetric and Π2 = Π. This is
equivalent to saying that all of its eigenvalues are 0 or 1. We also know that Π = (1/n)LKn .

The symmetric case is rather special. As LΠ = L, the other following properties of the Moore-
Penrose pseudo inverse follow from this one:

L+L = Π,

LL+L = L

L+LL+ = L+.

It is easy to find a formula for the pseudo-inverse. First, let Ψ be the matrix whose ith column is
ψi and let Λ be the diagonal matrix with λi on the ith diagonal. Recall that

L = ΨΛΨT =
∑
i

λiψiψ
T
i .

Claim 12.8.2.
L+ =

∑
i>1

(1/λi)ψiψ
T
i .

12.9 Electrical Flows and Effective Resistance

We now know that if a resistor network has external currents i ext, then the voltages induced at the
vertices will be given by

v = L+i ext.
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Consider what this means when i ext corresponds to a flow of one unit from vertex a to vertex b.
The resulting voltages are

v = L+(δa − δb).

Now, let c and d be two other vertices. The potential difference between c and d is

v(c)− v(d) = (δc − δd)Tv = (δc − δd)TL+(δa − δb).

Note the amazing reciprocity here: as L is symmetric this is equal to

(δa − δb)TL+(δc − δd).

So, the potential difference between c and d when we flow one unit from a to b is the same as the
potential difference between a and b when we flow one unit from c to d.

The effective resistance between vertices a and b is the resistance between a and b when we view
the entire network as one complex resistor.

To figure out what this is, recall the equation

i(a, b) =
v(a)− v(b)

ra,b
,

which holds for one resistor. We use the same equation to define the effective resistance of the
whole network between a and b. That is, we consider an electrical flow that sends one unit of
current into node a and removes one unit of current from node b. We then measure the potential
difference between a and b that is required to realize this current, define this to be the effective
resistance between a and b, and write it Reff(a, b). As it equals the potential difference between a
and b in a flow of one unit of current from a to b:

Reff(a, b) = (δa − δb)TL+(δa − δb).

12.10 Exercise

Prove that for every p > 0

Lp = ΨΛpΨT =
∑
i

λpiψiψ
T
i .

Moreover, this holds for any symmetric matrix. Not just Laplacians.

References
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Effective Resistance and Schur Complements

Daniel A. Spielman October 10, 2018

13.1 Introduction

In the last lecture, we encountered two types of physical problems on graphs. The first were
problems with fixed boundary conditions. In these, we are given fixed values of x (b) for some
nodes b ∈ B, and must either find the values of x (a) for a ∈ S = V − B that either minimize the
Laplacian quadratic form (energy) or so that the vector x is harmonic at all of these a. These are
the same problems.

We learned that the solution is given by

x (S) = L(S, S)−1M (S,B)x (B).

As M is the adjacency matrix and S and B are disjoint, we have M (S,B) = −L(S,B), giving the
formula

x (S) = −L(S, S)−1L(S,B)x (B).

The other problem we saw was that of computing the voltages that are induced by fixing certain
external flows. These were solved by the equations

v = L+i ext.

For those vertices a for which i ext(a) = 0, this equation will result in v being harmonic at a. The
previous problem corresponds to fixing voltages at some vertices, rather than fixing flows.

We then defined the effective resistance between vertices a and b to be the potential difference
between a and b in the unit flow of one unit from a to b:

Reff(a, b) = (δa − δb)TL+(δa − δb).

That is, this is the resistance between a and b imposed by the network as a whole.

An alternative way of saying that is that if we only care about vertices a and b, we can reduce the
rest of the network to a single edge.

In general, we will see that if we wish to restrict our attention to a subset of the vertices, B, and
if we require all other vertices to be internal, then we can construct a network just on B that
factors out the contributions of the internal vertices. The process by which we do this is Gaussian
elimination, and the Laplacian of the resulting network on B is called a Schur Complement.

We will also show that effective resistance is a distance. Other important properties of effective
resistance will appear in later lectures.

13-1
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For now, I observe that effective resistance is the square of a Euclidean distance.

To this end, let L+/2 denote the square root of L+. Recall that every positive semidefinite matrix
has a square root: the square root of a symmetric matrix M is the symmetric matrix M 1/2 such
that (M 1/2)2 = M . If

M =
∑
i

λiψiψ
T

is the spectral decomposition of M , then

M 1/2 =
∑
i

λ
1/2
i ψiψ

T .

We now have

(δa − δb)TL+(δa − δb) =
(
L+/2(δa − δb)

)T
L+/2(δa − δb) =

∥∥∥L+/2(δa − δb)
∥∥∥2

=
∥∥∥L+/2δa − L+/2δb

∥∥∥2
= dist(L+/2δa,L

+/2δb)
2.

13.2 Effective Resistance through Energy Minimization

As you would imagine, we can also define the effective resistance through effective spring constants.
In this case, we view the network of springs as one large compound network. If we define the spring
constant to be the number w so that when a and b are stretched to distance l the potential energy
in the spring is wl2/2, then we should define the effective spring constant to be twice the entire
energy of the network,

2E (x )
def
=

∑
(u,v)∈E

wu,v(x (u)− x (v))2,

when x (a) is fixed to 0 and x (b) is fixed to 1.

Fortunately, we already know how compute such a vector x . Set

y = L+(δb − δa)/Reff(a, b).

We have
y(b)− y(a) = (δb − δa)TL+(δb − δa)/Reff(a, b) = 1,

and y is harmonic on V − {a, b}. So, we choose

x = y − 1y(a).

The vector x satisfies x (a) = 0, x (b) = 1, and it is harmonic on V − {a, b}. So, it is the vector
that minimizes the energy subject to the boundary conditions.
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To finish, we compute the energy to be

xTLx = yTLy

=
1

(Reff(a, b))2

(
L+(δb − δa)

)T
L
(
L+(δb − δa)

)
=

1

(Reff(a, b))2
(δb − δa)TL+LL+(δb − δa)

=
1

(Reff(a, b))2
(δb − δa)TL+(δb − δa)

=
1

Reff(a, b)
.

As the weights of edges are the reciprocals of their resistances, and the spring constant corresponds
to the weight, this is the formula we would expect.

Resistor networks have an analogous quantity: the energy dissipation (into heat) when current
flows through the network. It has the same formula. The reciprocal of the effective resistance is
sometimes called the effective conductance.

13.3 Examples: Series and Parallel

In the case of a path graph with n vertices and edges of weight 1, the effective resistance between
the extreme vertices is n− 1.

In general, if a path consists of edges of resistance r1,2, . . . , rn−1,n then the effective resistance
between the extreme vertices is

r1,2 + · · ·+ rn−1,n.

To see this, set the potential of vertex i to

v(i) = ri,i+1 + · · ·+ rn−1,n.

Ohm’s law then tells us that the current flow over the edge (i, i+ 1) will be

(v(i)− v(i+ 1)) /ri,i+1 = 1.

If we have k parallel edges between two nodes s and t of resistances r1, . . . , rk, then the effective
resistance is

Reff(s, t) =
1

1/r1 + · · ·+ 1/rk
.

To see this, impose a potential difference of 1 between s and t. This will induce a flow of 1/ri = wi

on edge i. So, the total flow will be ∑
i

= 1/ri =
∑
i

wi.
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13.4 Equivalent Networks, Elimination, and Schur Complements

We have shown that the impact of the entire network on two vertices can be reduced to a network
with one edge between them. We will now see that we can do the same for a subset of the vertices.
I will do this in two ways: first by viewing L as an operator, and then by considering it as a
quadratic form.

Let B be the subset of nodes that we would like to understand (B stands for boundary). All nodes
not in B will be internal. Call them I = V −B.

As an operator, the Laplacian maps vectors of voltages to vectors of external currents. We want to
examine what happens if we fix the voltages at vertices in B, and require the rest to be harmonic.
Let v(B) ∈ IRB be the voltages at B. We want the matrix LB such that

iB = LBv(B)

is the vector of external currents a vertices in B when we impose voltages v(B) at vertices of B.
As the internal vertices will have their voltages set to be harmonic, they will not have any external
currents.

The remarkable fact that we will discover is that LB is in fact a Laplacian matrix, and that it is
obtained by performing Gaussian elimination to remove the internal vertices. Warning: LB is not
a submatrix of L. To prove this, we will move from V to B by removing one vertex at a time.
We’ll start with a graph G = (V,E,w), and we will set B = {2, . . . , n}, and we will treat vertex 1
as internal. Let N denote the set of neighbors of vertex 1.

We want to compute Lv given that v(b) = v(B)(b) for b ∈ B, and

v(1) =
1

d1

∑
a∈N

w1,av(a). (13.1)

That is, we want to substitute the value on the right-hand side for v(1) everywhere that it appears
in the equation i ext = Lv . The variable v(1) only appears in the equation for i ext(a) when a ∈ N .
When it does, it appears with coefficient w1,a. Recall that the equation for i ext(b) is

i ext(b) = dbv(b)−
∑
c∼b

wb,cv(c).

For b ∈ N we expand this by making the substitution for v(1) given by (13.1).

i ext(b) = dbv(b)− wb,1v(1)−
∑

c∼b,c 6=1

wb,cv(c)

= dbv(b)− wb,1
1

d1

∑
a∈N

w1,av(a)−
∑

c∼b,c6=1

wb,cv(c)

= dbv(b)−
∑
a∈N

wb,1wa,1

d1
v(a)−

∑
c∼b,c 6=1

wb,cv(c).
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To finish, observe that b ∈ N , so we are counting b in the middle sum above. Removing the
double-count gives.

i ext(b) = (db − w2
b,1/d1)v(b)−

∑
a∈N,a6=b

wb,1wa,1

d1
v(a)−

∑
c∼b,c 6=1

wb,cv(c).

We will show that these revised equations have two interesting properties: they are the result of
applying Gaussian elimination to eliminate vertex 1, and the resulting equations are Laplacian.

Let’s look at exactly how the matrix has changed. In the row for vertex b, the edge to vertex 1 was
removed, and edges to every vertex a ∈ N were added with weights

wb,1wa,1

d1
. And, the diagonal

was decreased by
wb,1wb,1

d1
. That should look familiar to you! Overall, the star of edges based at 1

were removed, and a clique on N was added in which edge (a, b) has weight

wb,1w1,a

d1
.

If the initial graph only consisted of a star centered at 1, then the graph we produce on eliminating
vertex 1 is exactly the weighted clique you considered in Homework 2. In the next section, we will
see that we can use this to solve that problem.

To see that this new system of equations comes from a Laplacian, we observe that

1. It is symmetric.

2. The off-diagonal entries that have been added are negative.

3. The sum of the changes in diagonal and off-diagonal entries is zero, so the row-sum is still
zero. This follows from

w2
b,1

d1
−
∑
a∈N

wb,1wa,1

d1
= 0.

13.4.1 In matrix form by energy

I’m now going to try doing this in terms of the quadratic form. That is, we will compute the matrix
LB so that

v(B)TLBv(B) = vTLv ,

given that v is harmonic at vertex 1 and agrees with v(B) elsewhere. The quadratic form that we
want to compute is thus given by( 1

d1

∑
b∼1w1,bv(b)

v(B)

)T

L

( 1
d1

∑
b∼1w1,bv(b)

v(B)

)
.

So that I can write this in terms of the entries of the Laplacian matrix, note that d1 = L(1, 1), and
so

v(1) =
1

d1

∑
b∼1

w1,bv(b) = −(1/L(1, 1))L(1, B)v(B).
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Thus, we can write the quadratic form as(
−(1/L(1, 1))L(1, B)v(B)

v(B)

)T

L

(
−(1/L(1, 1))L(1, B)v(B)

v(B)

)
.

If we expand this out, we find that it equals

v(B)TL(B,B)v(B) + L(1, 1) (−(1/L(1, 1))L(1, B)v(B))2 + 2v(1)L(1, B) (−(1/L(1, 1))L(1, B)v(B))

= v(B)TL(B,B)v(B) + (L(1, B)v(B))2 /L(1, 1)− 2 (L(1, B)v(B))2 /L(1, 1)

= v(B)TL(B,B)v(B)− (L(1, B)v(B))2 /L(1, 1).

Thus,

LB = L(B,B)− L(B, 1)L(1, B)

L(1, 1)
.

To see that this is the matrix that appears in rows and columns 2 through n when we eliminate the
entries in the first column of L by adding multiples of the first row, note that we eliminate entry
L(a, 1) by adding −L(a, 1)/L(1, 1) times the first row of the matrix to L(a, :). Doing this for all
rows in B = {2, . . . , n} results in this formula.

We can again check that LB is a Laplacian matrix. It is clear from the formula that it is symmetric
and that the the off-diagonal entries are negative. To check that the constant vectors are in the
nullspace, we can show that the quadratic form is zero on those vectors. If v(B) is a constant
vector, then v(1) must equal this constant, and so v is a constant vector and the value of the
quadratic form is 0.

13.5 Eliminating Many Vertices

We can of course use the same procedure to eliminate many vertices. We begin by partitioning the
vertex set into boundary vertices B and internal vertices I. We can then use Gaussian elimination to
eliminate all of the internal vertices. You should recall that the submatrices produced by Gaussian
elimination do not depend on the order of the eliminations. So, you may conclude that the matrix
LB is uniquely defined.

Or, observe that to eliminate the entries in row a ∈ B and columns in S, using the rows in S, we
need to add those rows, L(S, :) to row L(a, :) with coefficients c so that

L(a, S) + cL(S, S) = 0.

This gives
c = −L(a, S)L(S, S)−1,

and thus row a becomes
L(a, :)− L(a, S)L(S, S)−1L(S, :).
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Restricting to rows and columns in B, we are left with the matrix

L(B,B)− L(B,S)L(S, S)−1L(S,B).

This is called the schur complement on B (or with respect to S).

This is equivalent to requiring that the variables in S be harmonic. Partition a vector v into v(B)
and v(S). The harmonic equations become

L(S, S)v(S) + L(S,B)v(B) = 0,

which implies
v(S) = −L(S, S)−1L(S,B)v(B).

This gives

i ext(B) = L(B,S)v(S) + L(B,B)v(B) = −L(B,S)L(S, S)−1L(S,B)v(B) + L(B,B)v(B),

and so

i ext(B) = LBv(B), where LB = L(B,B)− L(B,S)L(S, S)−1L(S,B)v(B).

13.6 Effective Resistance is a Distance

A distance is any function on pairs of vertices such that

1. δ(a, a) = 0 for every vertex a,

2. δ(a, b) ≥ 0 for all vertices a, b,

3. δ(a, b) = δ(b, a), and

4. δ(a, c) ≤ δ(a, b) + δ(b, c).

We claim that the effective resistance is a distance. The only non-trivial part to prove is the triangle
inequality, (4).

From the previous section, we know that it suffices to consider graphs with only three vertices: we
can reduce any graph to one on just vertices a, b and c without changing the effective resistances
between them.

Lemma 13.6.1. Let a, b and c be vertices in a graph. Then

Reff(a, b) + Reff(b, c) ≥ Reff(a, c).

Proof. Let
z = wa,b, y = wa,c, andx = wb,c.
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If we eliminate vertex c, we create an edge between vertices a and b of weight

xy

x+ y
.

Adding this to the edge that is already there produces weight z + xy
x+y , for

Reffa,b =
1

z + xy
x+y

=
1

zx+zy+xy
x+y

=
x+ y

zx+ zy + xy

Working symmetrically, we find that we need to prove that for all positive x, y, and z

x+ y

zx+ zy + xy
+

y + z

zx+ zy + xy
≥ x+ z

zx+ zy + xy
,

which is of course true.

13.7 An interpretation of Gaussian elimination

This gives us a way of understand how Gaussian elimination solves a system of equations like
i ext = Lv . It constructs a sequence of graphs, G2, . . . , Gn, so that Gi is the effective network on
vertices i, . . . , n. It then solves for the entries of v backwards. Given v(i+ 1), . . . , v(n) and i ext(i),
we can solve for v(i). If i ext(i) = 0, then v(i) is set to the weighted average of its neighbors. If
not, then we need to take i ext(i) into account here and in the elimination as well. In the case in
which we fix some vertices and let the rest be harmonic, there is no such complication.
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14.1 Introduction

My plan for this lecture is to teach too much:

1. The Matrix Tree Theorem.

2. Effective Resistance / Leverage Scores, and the probability an edge appears in a random
spanning tree.

3. Estimating effective resistances quickly.

4. Rayleigh’s Monotonicity Theorem.

14.2 Effective Resistance and Energy Dissipation

In the last lecture we saw two ways of defining effective resistance. I will define it one more way,
but skip the proof. If a current f flows through a resistor of resistance R, the amount of energy
that is dissipated as heat is proportional to Rf2. If the potential difference across the resistor is v,
then f = v/R, and the energy dissipation is

Rf2 = v2/R = wv2,

where w is the weight of the edge. We can define the effective resistance between vertices a and
b to be the minimum of the total energy dissipation when we flow one unit of current from a to
b. You could compute this by evaluating the Laplacian quadratic form on the vector of voltages
induced by this flow.

14.3 Determinants

To begin, we review some facts about determinants of matrices and characteristic polynomials. We
first recall the Leibniz formula for the determinant of a square matrix A:

det(A) =
∑
π

(
sgn(π)

n∏
i=1

A(i, π(i))

)
, (14.1)

14-1
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where the sum is over all permutations π of {1, . . . , n}.

Also recall that the determinant is multiplicative, so for square matrices A and B

det(AB) = det(A) det(B). (14.2)

Elementary row operations do not change the determinant. If the columns of A are the vectors
aaa1, . . . ,aaan, then for every c

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,aaa2, . . . ,aaan + caaa1

)
.

This fact gives us two ways of computing the determinant. The first comes from the fact that we
can apply elementary row operations to transform A into an upper triangular matrix, and (14.1)
tells us that the determinant of an upper triangular matrix is the product of its diagonal entries.

The second comes from the observation that the determinant is the volume of the parallelepiped with
axes aaa1, . . . ,aaan: the polytope whose corners are the origin and

∑
i∈S aaai for every S ⊆ {1, . . . , n}.

Let
Πaaa1

be the symmetric projection orthogonal to aaa1. As this projection amounts to subtracting off a
multiple of aaa1 and elementary row operations do not change the determinant,

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,Πaaa1aaa2, . . . ,Πaaa1aaan

)
.

The volume of this parallelepiped is ‖aaa1‖ times the volume of the parallelepiped formed by the
vectors Πaaa1aaa2, . . . ,Πaaa1aaan. I would like to write this as a determinant, but must first deal with the
fact that these are n− 1 vectors in an n dimensional space. The way we first learn to handle this
is to project them into an n− 1 dimensional space where we can take the determinant. Instead, we
will employ other elementary symmetric functions of the eigenvalues.

14.4 Characteristic Polynomials

Recall that the characteristic polynomial of a matrix A is

det(xI −A).

I will write this as
n∑
k=0

xn−k(−1)kσk(A),

where σk(A) is the kth elementary symmetric function of the eigenvalues of A, counted with
algebraic multiplicity:

σk(A) =
∑
|S|=k

∏
i∈S

λi.

Thus, σ1(A) is the trace and σn(A) is the determinant. From this formula, we know that these
functions are invariant under similarity transformations.
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In Exercise 3 from Lecture 2, you were asked to prove that

σk(A) =
∑
|S|=k

det(A(S, S)). (14.3)

This follows from applying the Leibnitz formula (14.1) to det(xI −A).

If we return to the vectors Πaaa1aaa2, . . . ,Πaaa1aaan from the previous section, we see that the volume of
their parallelepiped may be written

σn−1

(
0n,Πaaa1aaa2, . . . ,Πaaa1aaan

)
,

as this will be the product of the n− 1 nonzero eigenvalues of this matrix.

Recall that the matrices BBT and BTB have the same eigenvalues, up to some zero eigenvalues
if they are rectangular. So,

σk(BBT ) = σk(B
TB).

This gives us one other way of computing the absolute value of the product of the nonzero eigen-
values of the matrix (

Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

We can instead compute their square by computing the determinant of the square matrixΠaaa1aaa2
...

Πaaa1aaan

(Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

When B is a singular matrix of rank k, σk(B) acts as the determinant of B restricted to its span.
Thus, there are situations in which σk is multiplicative. For example, if A and B both have rank
k and the range of A is orthogonal to the nullspace of B , then

σk(BA) = σk(B)σk(A). (14.4)

We will use this identity in the case that A and B are symmetric and have the same nullspace.

14.5 The Matrix Tree Theorem

We will state a slight variant of the standard Matrix-Tree Theorem. Recall that a spanning tree of
a graph is a subgraph that is a tree.

Theorem 14.5.1. Let G = (V,E,w) be a connected, weighted graph. Then

σn−1(LG) = n
∑

spanning trees T

∏
e∈T

we.



Lecture 14: October 15, 2018 14-4

Thus, the eigenvalues allow us to count the sum over spanning trees of the product of the weights
of edges in those trees. When all the edge weights are 1, we just count the number of spanning
trees in G.

We first prove this in the case that G is just a tree.

Lemma 14.5.2. Let G = (V,E,w) be a weighted tree. Then,

σn−1(LG) = n
∏
e∈E

we.

Proof. For a ∈ V , let Sa = V − {a}. We know from (14.3)

σn−1(LG) =
∑
a∈V

det(LG(Sa, Sa).

We will prove that for every a ∈ V ,

det(LG(Sa, Sa)) =
∏
e∈E

we.

Write LG = U TWU , where U is the signed edge-vertex adjacency matrix and W is the diagonal
matrix of edge weights. Write B = W 1/2U , so

LG(Sa, Sa) = B(:, Sa)
TB(:, Sa),

and
det(LG(Sa, Sa)) = det(B(:, Sa))

2,

where we note that B(:, Sa) is square because a tree has n− 1 edges and so B has n− 1 rows.

To see what is going on, first consider the case in which G is a weighted path and a is the first
vertex. Then,

U =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
0 0 0 · · · −1

 , and B(:, S1) =


−√w1 0 · · · 0√
w2 −√w2 · · · 0
...

...
0 0 · · · −√wn−1

 .

We see that B(:, S1) is a lower-triangular matrix, and thus its determinant is the product of its
diagonal entries, −√wi.

To see that the same happens for every tree, renumber the vertices (permute the columns) so that
a comes first, and that the other vertices are ordered by increasing distance from 1, breaking ties
arbitrarily. This permutations can change the sign of the determinant, but we do not care because
we are going to square it. For every vertex c 6= 1, the tree now has exactly one edge (b, c) with
b < c. Put such an edge in position c−1 in the ordering, and let wc indicate its weight. Now, when
we remove the first column to form B(:, S1), we produce a lower triangular matrix with the entry
−√wc on the cth diagonal. So, its determinant is the product of these terms and

det(B(:, Sa))
2 =

n∏
c=2

wc.
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Proof of Theorem 14.5.1 . As in the previous lemma, let LG = U TWU and B = W 1/2U . So,

σn−1(LG) = σn−1(BTB)

= σn−1(BBT )

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)B(S, :)T ) (by (14.3) )

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)TB(S, :))

=
∑

|S|=n−1,S⊆E

σn−1(LGS
),

where by GS we mean the graph containing just the edges in S. As S contains n − 1 edges, this
graph is either disconnected or a tree. If it is disconnected, then its Laplacian has at least two zero
eigenvalues and σn−1(LGS

) = 0. If it is a tree, we apply the previous lemma. Thus, the sum equals∑
spanning trees T⊆E

σn−1(LGT
) = n

∑
spanning trees T

∏
e∈T

we.

14.6 Leverage Scores and Marginal Probabilities

The leverage score of an edge, written `e is defined to be weReff(e). That is, the weight of the edge
times the effective resistance between its endpoints. The leverage score serves as a measure of how
important the edge is. For example, if removing an edge disconnects the graph, then Reff(e) = 1/we,
as all current flowing between its endpoints must use the edge itself, and `e = 1.

Consider sampling a random spanning tree with probability proportional to the product of the
weights of its edges. We will now show that the probability that edge e appears in the tree is
exactly its leverage score.

Theorem 14.6.1. If we choose a spanning tree T with probability proportional to the product of
its edge weights, then for every edge e

Pr [e ∈ T ] = `e.

For simplicity, you might want to begin by thinking about the case where all edges have weight 1.

Recall that the effective resistance of edge e = (a, b) is

(δa − δb)TL+
G(δa − δb),

and so
`a,b = wa,b(δa − δb)TL+

G(δa − δb).
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We can write a matrix Γ that has all these terms on its diagonal by letting U be the edge-vertex
adjacency matrix, W be the diagonal edge weight matrix, B = W 1/2U , and setting

Γ = BL+
GB

T .

The rows and columns of Γ are indexed by edges, and for each edge e,

Γ(e, e) = `e.

For off-diagonal entries corresponding to edges (a, b) and (c, d), we have

Γ((a, b), (c, d)) =
√
wa,b
√
wc,d(δa − δb)

TL+
G(δc − δd).

Claim 14.6.2. The matrix Γ is a symmetric projection matrix and has trace n− 1.

Proof. The matrix Γ is clearly symmetric. To show that it is a projection, it suffices to show that
all of its eigenvalues are 0 or 1. This is true because, excluding the zero eigenvalues, Γ has the
same eigenvalues as

L+
GB

TB = L+
GLG = Π,

where Π is the projection orthogonal to the all 1 vector. As Π has n− 1 eigenvalues that are 1, so
does Γ.

As the trace of Γ is n− 1, so is the sum of the leverage scores:∑
e

`e = n− 1.

This is a good sanity check on Theorem 14.6.1: every spanning tree has n− 1 edges, and thus the
probabilities that each edge is in the tree must sum to n− 1.

We also obtain another formula for the leverage score. As a symmetric projection is its own square,

Γ(e, e) = Γ(e, :)Γ(e, :)T = ‖Γ(e, :)‖2 .

This is the formula I introduced in Section 14.2. If we flow 1 unit from a to b, the potential
difference between c and d is (δa− δb)

TL+
G(δc− δd). If we plug these potentials into the Laplacian

quadratic form, we obtain the effective resistance. Thus this formula says

wa,bReffa,b = wa,b
∑

(c,d)∈E

wc,d
(
(δa − δb)

TL+
G(δc − δd)

)2
.

Proof of Theorem 14.6.1. Let Span(G) denote the set of spanning trees of G. For an edge e,

PrT [e ∈ T ] =
∑

T∈Span(G):e∈T

σn−1(LGT
)

σn−1(LG)

=
∑

T∈Span(G):e∈T

σn−1(LGT
)σn−1(L+

G)

=
∑

T∈Span(G):e∈T

σn−1(LGT
L+
G),
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by (14.4). Recalling that the subsets of n− 1 edges that are not spanning trees contribute 0 allows
us to re-write this sum as ∑

|S|=n−1,e∈S

σn−1(LGS
L+
G).

To evaluate the terms in the sum, we compute

σn−1(LGS
L+
G) = σn−1(B(:, S)B(:, S)TL+

G)

= σn−1(B(:, S)TL+
GB(:, S))

= σn−1(Γ(S, S))

= σn−1(Γ(S, :)Γ(:, S)).

Let γe = Γ(e, :) and let Πγe
denote the projection orthogonal to γe. As e ∈ S, we have

σn−1(Γ(S, :)Γ(:, S)) = ‖γe‖
2 σn−2(Γ(S, :)Πγe

Γ(:, S)) = ‖γe‖
2 σn−2((ΓΠγe

Γ)(S, S)).

As γe is in the span on Γ, the matrix ΓΠγe
Γ is a symmetric projection onto an n− 2 dimensional

space, and so
σn−2(ΓΠγe

Γ) = 1.

To exploit this identity, we return to our summation:∑
|S|=n−1,e∈S

σn−1(LGS
L+
G) =

∑
|S|=n−1,e∈S

‖γe‖
2 σn−2((ΓΠγe

Γ)(S, S))

= ‖γe‖
2

∑
|S|=n−1,e∈S

σn−2((ΓΠγe
Γ)(S, S))

= ‖γe‖
2 σn−2(ΓΠγe

Γ)

= ‖γe‖
2

= `e.

14.7 Quickly estimating effective resistances

We can compute Reff(a, b) by solving a system of equations in L. We know how to solve such
systems of linear equations to high accuracy in time nearly linear in the number of nonzero entries
in L [?]. But, what if we want to know the effective resistance of every edge or between every pair
of vertices?

We will see that we can do this by solving on O(log n) systems of equations in L. The reason is
that the effective resistances are the squares of Euclidean distances:

Reff(a, b) =
∥∥∥L+/2

G (δa − δb)
∥∥∥2

=
∥∥∥L+/2

G δa − L
+/2
G δa

∥∥∥2
.

The reason is that we can exploit the Johnson-Lindenstrauss Theorem [?].
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Theorem 14.7.1. [Johnson Lindenstrauss] Let v1, · · · , vn be vectors in an m dimensional vector
space. Let R be a d-by-m matrix of independent Gaussian random variables of variance 1/d. If

d ≥ 8

δ2
ln(n/ε),

then with probability at most ε for all i 6= j,

1− δ ≤ ‖Rv i −Rv j‖
‖v i − v j‖

≤ 1 + δ.

That is, the distances between all pairs of vectors Rv i are approximately the same as between the
vectors v i.

One can prove this by using tail bounds on χ-square random variables. I’ll include a proof in the
Appendix.

Here’s one way we could try to use this. If we want to estimate all effective resistances to within
error δ, with probability at least 1− ε, we set

d =

⌈
8

δ2
ln(n/ε)

⌉
,

choose R to be a d-by-n matrix of independent random Gaussians, and then compute

RL+/2.

This requires solving d systems of linear equations in L1/2.

But, that is not quite the same as solving systems in L. To turn this into a problem of solving
systems in L, we exploit a slightly different formula for effective resistances. As before, write
L = U TWU . We then have

L+U TW 1/2W 1/2UL+ = L+LL+ = L+.

So, ∥∥∥W 1/2UL+(δa − δb)
∥∥∥2

= Reff(a, b).

Now, we let R be a d-by-|E| matrix of random Gaussians of variance 1/d, and compute

RW 1/2UL+ = (RW 1/2U )L+.

This requires solving d systems of linear equations in L. We then set

va = (RW 1/2U )L+δa.

Each of these is a vector in d dimensions, and with high probability ‖va − v b‖2 is a good approxi-
mation of Reff(a, b).
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14.8 Monotonicity

Rayleigh’s Monotonicity Principle tells us that if we alter the spring network by decreasing some
of the spring constants, then the effective spring constant between s and t will not increase. In
terms of effective resistance, this says that if we increase the resistance of some resistors then the
effective resistance can not decrease. This sounds obvious. But, it is in fact a very special property
of linear elements like springs and resistors.

Theorem 14.8.1. Let G = (V,E,w) be a weighted graph and let Ĝ = (V,E, ŵ) be another weighted
graph with the same edges and such that

ŵa,b ≤ wa,b

for all (a, b) ∈ E. For vertices s and t, let cs,t be the effective spring constant between s and t in G

and let ĉs,t be the analogous quantity in Ĝ. Then,

ĉs,t ≤ cs,t.

Proof. Let x be the vector of minimum energy in G such that x (s) = 0 and x (t) = 1. Then, the
energy of x in Ĝ is no greater:

1

2

∑
(a,b)∈E

ŵa,b(x (a)− x (b))2 ≤ 1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2 = cs,t.

So, the minimum energy of a vector x in Ĝ such that x (s) = 0 and x (t) = 1 will be at most cs,t,
and so ĉs,t ≤ cs,t.

While this principle seems very simple and intuitively obvious, it turns out to fail in just slightly
more complicated situations.

14.9 Notes

A Proof of Johnson Lindenstrauss



Spectral Graph Theory Lecture 15

Tutte’s Theorem: How to draw a graph

Daniel A. Spielman October 22, 2018

15.1 Overview

We prove Tutte’s theorem [Tut63], which shows how to use spring embeddings to obtain planar
drawings of 3-connected planar graphs. One begins by selecting a face, and then nailing down the
positions of its vertices to the corners of a strictly convex polygon. Of course, the edges of the
face should line up with the edges of the polygon. Ever other vertex goes where the springs say
they should—to the center of gravity of their neighbors. Tutte proved that the result is a planar
embedding of the planar graph. Here is an image of such an embedding

The presentation in this lecture is a based on notes given to me by Jim Geelen. I begin by recalling
some standard results about planar graphs that we will assume.

15.2 3-Connected, Planar Graphs

A graph G = (V,E) is k-connected if there is no set of k−1 vertices whose removal disconnects the
graph. That is, for every S ⊂ V with |S| ≥ |V | − (k − 1), G(S) is connected. In a classical graph
theory course, one usually spends a lot of time studying things like 3-connectivity.

A planar drawing of a graph G = (V,E) consists of mapping from the vertices to the plane,
z : V → IR2, along with interior-disjoint curves for each edge. The curve for edge (a, b) starts at
z (a), ends at z (b), never crosses itself, and its interior does not intersect the curve for any other
edge. A graph is planar if it has a planar drawing. There can, of course, be many planar drawings
of a graph.

15-1
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If one removes the curves corresponding to the edges in a planar drawing, one divides the plane
into connected regions called faces. In a 3-connected planar graph, the sets of vertices and edges
that border each face are the same in every planar drawing. There are planar graphs that are
not 3-connected, like those in Figures 15.2 and 15.2, in which different planar drawings result in
combinatorially different faces. We will only consider 3-connected planar graphs.

Figure 15.1: Planar graphs that are merely one-connected. Edge (c, d) appears twice on a face in
each of them.

Figure 15.2: Two different planar drawings of a planar graph that is merely two-connected. Vertices
g and h have switched positions, and thus appear in different faces in each drawing.

We state a few properties of 3-connected planar graphs that we will use. We will not prove
these properties, as we are more concerned with algebra and these properly belong in a class
on combinatorial graph theory.

Claim 15.2.1. Let G = (V,E) be a planar graph. Then, there exists a set of faces F , each of which
corresponds to a cycle in G, so that no vertex appears twice in a face, no edge appears twice in a
face, and every edge appears in exactly two faces.

We call the face on the outside of the drawing the outside face. The edges that lie along the outside
face are the boundary edges.

Another standard fact about planar graphs is that they remain planar under edge contractions.
Contracting an edge (a, b) creates a new graph in which a and b become the same vertex, and all
edges that went from other vertices to a or b now go to the new vertex. Contractions also preserve
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Figure 15.3: 3-connected planar graphs. Some faces of the graph on the left are abf , fgh, and
afhe. The outer face is abcde. The graph on the right is obtained by contracting edge (g, h).

3-connectivity. Figure 15.2 depicts a 3-connected planar graph and the result of contracting an
edge.

A graph H = (W,F ) is a minor of a graph G = (V,E) if H can be obtained from G by contracting
some edges and possibly deleting other edges and vertices. This means that each vertex in W
corresponds to a connected subset of vertices in G, and that there is an edge between two vertices
in W precisely when there is some edge between the two corresponding subsets. This leads to
Kuratowski’s Theorem [Kur30], one of the most useful characterizations of planar graphs.

Theorem 15.2.2. A graph G is planar if and only if it does not have a minor isomorphic to the
complete graph on 5 vertices, K5, or the bipartite complete graph between two sets of 3 vertices,
K3,3.

Figure 15.4: The Peterson graph appears on the left. On the right is a minor of the Peterson graph
that is isomorphic to K5, proving that the Peterson graph is not planar.

We will use one other important fact about planar graphs, whose utility in this context was observed
by Jim Geelen.

Lemma 15.2.3. Let (a, b) be an edge of a 3-connected planar graph and let S1 and S2 be the sets of
vertices on the two faces containing (a, b). Let P be a path in G that starts at a vertex of S1−{a, b},
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ends at a vertex of S2−{a, b}, and that does not intersect a or b. Then, every path in G from a to
b either intersects a vertex of P or the edge (a, b).

Proof. Let s1 and s2 be the vertices at the ends of the path P . Consider a planar drawing of G and
¡the closed curve in the plane that follows the path P from s1 to s2, and then connects s1 to s2 by
moving inside the faces S1 and S2, where the path only intersects the curve for edge (a, b). This
curve separates vertex a from vertex b. Thus, every path in G that connects a to b must intersect
this curve. This means that it must either consist of just edge (a, b), or it must intersect a vertex
of P . See Figure 15.2.

Figure 15.5: A depiction of Lemma 15.2.3. S1 = abcde, S2 = abf , and the path P starts at d, ends
at f , and contains the other unlabeled vertices.

15.3 Strictly Convex Polygons

This is a good time to remind you what exactly a convex polygon is. A subset C ⊆ IR2 is convex
if for every two points x and y in C, the line segment between x and y is also in C. A convex
polygon is a convex region of IR2 whose boundary is comprised of a finite number of straight lines.
It is strictly convex if in addition the angle at every corner is less than π. We will always assume
that the corners of a strictly convex polygon are distinct. Two corners form an edge of the polygon
if the interior of the polygon is entirely on one side of the line through those corners. This leads
to another definition of a strictly convex polygon: a convex polygon is strictly convex if for every
edge, all of the corners of the polygon other than those two defining the edge lie entirely on one
side of the polygon. In particular, none of the other corners lie on the line.

Definition 15.3.1. Let G = (V,E) be a 3-connected planar graph. We say that z : V → IR2 is a
Tutte embedding if

a. There is a face F of G such that z maps the vertices of F to the corners of a strictly convex
polygon so that every edge of the face joins consecutive corners of the polygon;
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(a) A polygon (b) A convex polygon (c) A strictly convex
polygon

Figure 15.6: Polygons

b. Every vertex not in F lies at the center of gravity of its neighbors.

We will prove Tutte’s theorem by proving that every face of G is embedded as a strictly convex
polygon. In fact, we will not use the fact that every non-boundary vertex is exactly the average of
its neighbors. We will only use the fact that every non-boundary vertex is inside the convex hull
of its neighbors. This corresponds to allowing arbitrary spring constants in the embedding.

Theorem 15.3.2. Let G = (V,E) be a 3-connected planar graph, and let z be a Tutte embedding
of G. If we represent every edge of G as the straight line between the embedding of its endpoints,
then we obtain a planar drawing of G.

Note that if the graph were not 3-connected, then the embedding could be rather degenerate. If
there are two vertices a and b whose removal disconnects the graph into two components, then all
of the vertices in one of those components will embed on the line segment from a to b.

Henceforth, G will always be a 3-connected planar graph and z will always be a Tutte embedding.

15.4 Possible Degeneracies

The proof of Theorem 15.3.2 will be easy once we rule out certain degeneracies. There are two
types of degeneracies that we must show can not happen. The most obvious is that we can not have
z (a) = z (b) for any edge (a, b). The fact that this degeneracy can not happen will be a consequence
of Lemma 15.5.1.

The other type of degeneracy is when there is a vertex a such that all of its neighbors lie on one
line in IR2. We will rule out such degeneracies in this section.

We first observe two simple consequences of the fact that every vertex must lie at the average of
its neighbors.

Claim 15.4.1. Let a be a vertex and let ` be any line in IR2 through z (a). If a has a neighbor that
lines on one side of `, then it has a neighbor that lies on the other.

Claim 15.4.2. All vertices not in F must lie strictly inside the convex hull of the polygon of which
the vertices in F are the corners.
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Proof. For every vertex a not in F , we can show that the position of a is a weighted average of the
positions of vertices in F by eliminating every vertex not in F ∪ {a}. As we learned in Lecture 13,
this results in a graph in which all the neighbors of a are in F , and thus the position of a is some
weighted average of the position of the vertices in F . As the graph is 3-connected, we can show
that this average must assign nonzero weights to at least 3 of the vertices in F .

Note that it is also possible to prove Claim 15.4.2 by showing that one could reduce the potential
energy by moving vertices inside the polygon. See Claim 8.8.1 from my lecture notes from 2015.

Lemma 15.4.3. Let H be a halfspace in IR2 (that is, everything on one side of some line). Then
the subgraph of G induced on the vertices a such that z (a) ∈ H is connected.

Proof. Let t be a vector so that we can write the line ` in the form tTx = µ, with the halfspace
consisting of those points x for which tTx ≥ µ. Let a be a vertex such that z (a) ∈ H and let b be
a vertex that maximizes tT z (b). So, z (b) is as far from the line defining the halfspace as possible.
By Claim 15.4.2, b must be on the outside face, F .

For every vertex c, define t(c) = tT z (c). We will see that there is a path in G from a to b along
which the function t never decreases, and thus all the vertices along the path lie in the halfspace.
We first consider the case in which t(a) = t(b). In this case, we also know that a ∈ F . As the
vertices in F embed to a strictly convex polygon, this implies that (a, b) is an edge of that polygon,
and thus the path from a to b.

If t(a) < t(b), it suffices to show that there is a path from a to some other vertex c for which
t(c) > t(a) and along which t never decreases: we can then proceed from c to obtain a path to b.
Let U be the set of all vertices u reachable from a for which t(u) = t(a). As the graph is connected,
there must be a vertex u ∈ U that has a neighbor c 6∈ U . By Claim 15.4.1 u must have a neighbor
c for which t(c) > t(u). Thus, the a path from a through U to c suffices.

Lemma 15.4.4. No vertex is colinear with all of its neighbors.

Proof. This is trivially true for vertices in F , as no three of them are colinear.

Assume by way of contradiction that there is a vertex a that is colinear with all of its neighbors. Let
` be that line, and let S+ and S− be all the vertices that lie above and below the line, respectively.
Lemma 15.4.3 tells us that both sets S+ and S− are connected. Let U be the set of vertices u
reachable from a and such that all of us neighbors lie on `. The vertex a is in U . Let W be the set
of nodes that lie on ` that are neighbors of vertices in U , but which themselves are not in U . As
vertices in W are not in U , Claim 15.4.1 implies that each vertex in W has neighbors in both S+

and S−. As the graph is 3-connected, and removing the vertices in W would disconnect U from
the rest of the graph, there are at least 3 vertices in W . Let w1, w2 and w3 be three of the vertices
in W .

We will now obtain a contradiction by showing that G has a minor isomorphic to K3,3. The three
vertices on one side are w1, w2, and w3. The other three are obtained by contracting the vertex
sets S+, S−, and U .
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Figure 15.7: An illustration of the proof of Lemma 15.4.4.

15.5 All faces are convex

We now prove that every face of G embeds as a strictly convex polygon.

Lemma 15.5.1. Let (a, b) be any non-boundary edge of the graph, and let ` be a line through z (a)
and z (b) (there is probably just one). Let F0 and F1 be the faces that border edge (a, b) and let S0
and S1 be the vertices on those faces, other than a and b. Then all the vertices of S0 and S1 lie on
opposite sides of `, and none lie on `.

Note: if z (a) = z (b), then we can find a line passing through them and one of the vertices of S0.
This leads to a contradiction, and thus rules out this type of degeneracy.

Proof. Assume by way of contradiction that the lemma is false. Without loss of generality, we may
then assume that there are vertices of both S0 and S1 on or below the line `. Let s0 and s1 be such
vertices. By Lemma 15.4.4 and Claim 15.4.1, we know that both s0 and s1 have neighbors that lie
strictly below the line `. By Lemma 15.4.3, we know that there is a path P that connects s0 and
s1 on which all vertices other than s0 and s1 lie strictly below `.

On the other hand, we can similarly show that that both a and b have neighbors above the line `,
and that they are joined by a path that lies strictly above `. Thus, this path cannot consist of the
edge (a, b) and must be disjoint from P . This contradicts Lemma 15.2.3.

So, we now know that the embedding z contains no degeneracies, that every face is embedded as
a strictly convex polygon, and that the two faces bordering each edge embed on opposites sides of
that edge. This is all we need to know to prove Tutte’s Theorem. We finish the argument in the
proof below.

Proof of Theorem 15.3.2. We say that a point of the plane is generic if it does not lie on any z (a)
for on any segment of the plane corresponding to an edge (a, b). We first prove that every generic
point lies in exactly one face of G.
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Figure 15.8: An illustration of the proof of Lemma 15.5.1.

Begin with a point that is outside the polygon on which F is drawn. Such a point lies only in the
outside face. For any other generic point we can draw a curve between these points that never
intersects a z (a) and never crosses the intersection of the drawings of edges. That is, it only crosses
drawings of edges in their interiors. By Lemma 15.5.1, when the curve does cross such an edge it
moves from one face to another. So, at no point does it ever appear in two faces.

Now, assume by way of contradiction that the drawings of two edges cross. There must be some
generic point near their intersection that lies in at least two faces. This would be a contradiction.

15.6 Notes

This is the simplest proof of Tutte’s theorem that I have seen. Over the years, I have taught many
versions of Tutte’s proof by building on expositions by Lovász [LV99] and Geelen [Gee12], and an
alternative proof of Gortler, Gotsman and Thurston [GGT06].
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Spectral Graph Theory Lecture 16

The Second Eigenvalue of Planar Graphs

Daniel A. Spielman October 24, 2018

16.1 Overview

Spectral Graph theory first came to the attention of many because of the success of using the second
Laplacian eigenvector to partition planar graphs and scientific meshes [DH72, DH73, Bar82, PSL90,
Sim91].

In this lecture, we will attempt to explain this success by proving, at least for planar graphs, that
the second smallest Laplacian eigenvalue is small. One can then use Cheeger’s inequality to prove
that the corresponding eigenvector provides a good cut.

This was already known for the model case of a 2-dimensional grid. If the grid is of size
√
n-by-

√
n,

then it has λ2 ≈ c/n. Cheeger’s inequality then tells us that it has a cut of conductance c/
√
n.

And, this is in fact the cut that goes right accross the middle of one of the axes, which is the cut
of minimum conductance.

Theorem 16.1.1 ([ST07]). Let G be a planar graph with n vertices of maximum degree d, and let
λ2 be the second-smallest eigenvalue of its Laplacian. Then,

λ2 ≤
8d

n
.

The proof will involve almost no calculation, but will use some special properties of planar graphs.
However, this proof has been generalized to many planar-like graphs, including the graphs of well-
shaped 3d meshes.

16.2 Geometric Embeddings

We typically upper bound λ2 by evidencing a test vector. Here, we will upper bound λ2 by
evidencing a test embedding. The bound we apply is:

Lemma 16.2.1. For any d ≥ 1,

λ2 = min
v1,...,vn∈IRd:

∑
v i=0

∑
(i,j)∈E ‖v i − v j‖2∑

i ‖v i‖
2 .

(16.1)

Proof. Let v i = (xi, yi, . . . , zi). We note that∑
(i,j)∈E

‖v i − v j‖2 =
∑

(i,j)∈E

(xi − xj)2 +
∑

(i,j)∈E

(yi − yj)2 + · · ·+
∑

(i,j)∈E

(zi − zj)2.

16-1
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Similarly, ∑
i

‖v i‖2 =
∑
i

x2i +
∑
i

y2i + · · ·+
∑
i

z2i .

It is now trivial to show that λ2 ≥ RHS: just let xi = yi = · · · = zi be given by an eigenvector of
λ2. To show that λ2 ≤ RHS, we apply my favorite inequality: A+B+···+C

A′+B′+···+C′ ≥ min
(
A
A′ ,

B
B′ , . . . ,

C
C′

)
,

and then recall that
∑
xi = 0 implies∑

(i,j)∈E(xi − xj)2∑
i x

2
i

≥ λ2.

For an example, consider the natural embedding of the square with corners (±1,±1).

The key to applying this embedding lemma is to obtain the right embedding of a planar graph.
Usually, the right embedding of a planar graph is given by Koebe’s embedding theorem, which I
will now explain. I begin by considering one way of generating planar graphs. Consider a set of
circles {C1, . . . , Cn} in the plane such that no pair of circles intersects in their interiors. Associate
a vertex with each circle, and create an edge between each pair of circles that meet at a boundary.
See Figure 16.2. The resulting graph is clearly planar. Koebe’s embedding theorem says that every
planar graph results from such an embedding.

(a) Circles in the plane (b) Circles with their
intersection graph

Theorem 16.2.2 (Koebe). Let G = (V,E) be a planar graph. Then there exists a set of circles
{C1, . . . , Cn} in IR2 that are interior-disjoint such that circle Ci touches circle Cj if and only if
(i, j) ∈ E.

This is an amazing theorem, which I won’t prove today. You can find a beautiful proof in the book
“Combinatorial Geometry” by Agarwal and Pach.

Such an embedding is often called a kissing disk embedding of the graph. From a kissing disk
embedding, we obtain a natural choice of v i: the center of disk Ci. Let ri denote the radius of this
disk. We now have an easy upper bound on the numerator of (16.1): ‖v i − v j‖2 = (ri + rj)

2 ≤
2r2i + 2r2j . On the other hand, it is trickier to obtain a lower bound on

∑
‖v i‖2. In fact, there are

graphs whose kissing disk embeddings result in

(16.1) = Θ(1).
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Figure 16.1: Stereographic Projection.

These graphs come from triangles inside triangles inside triangles. . . Such a graph is depicted below:

Discs

Graph

We will fix this problem by lifting the planar embeddings to the sphere by stereographic projection.
Given a plane, IR2, and a sphere S tangent to the plane, we can define the stereographic projection
map, Π, from the plane to the sphere as follows: let s denote the point where the sphere touches the
plane, and let n denote the opposite point on the sphere. For any point x on the plane, consider
the line from x to n . It will intersect the sphere somewhere. We let this point of intersection be
Π(x ).

The fundamental fact that we will exploit about stereographic projection is that it maps circles
to circles! So, by applying stereographic projection to a kissing disk embedding of a graph in the
plane, we obtain a kissing disk embedding of that graph on the sphere. Let Di = Π(Ci) denote the
image of circle Ci on the sphere. We will now let v i denote the center of Di, on the sphere.

If we had
∑

i v i = 0, the rest of the computation would be easy. For each i, ‖v i‖ = 1, so the
denominator of (16.1) is n. Let ri denote the straight-line distance from v i to the boundary of Di.
We then have (see Figure 16.2)

‖v i − v j‖2 ≤ (ri + rj)
2 ≤ 2r2i + 2r2j .
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Figure 16.2: Stereographic Projection.

Figure 16.3: A Spherical Cap.

So, the denominator of (16.1) is at most 2d
∑

i r
2
i . On the other hand, a theorem of Archimedes

tells us that the area of the cap encircled by Di is at exactly πr2i . Rather than proving it, I will
convince you that it has to be true because it is true when ri is small, it is true when the cap is a
hemisphere and ri =

√
2, and it is true when the cap is the whole sphere and ri = 2.

As the caps are disjoint, we have ∑
i

πr2i ≤ 4π,

which implies that the denominator of (16.1) is at most∑
(a,b)∈E

‖va − v b‖2 ≤ 2r2a + 2r2b ≤ 2d
∑
a

r2a ≤ 8d.

Putting these inequalities together, we see that

min
v1,...,vn∈IRd:

∑
v i=0

∑
(i,j)∈E ‖v i − v j‖2∑

i ‖v i‖
2 .

≤ 8d

n
.
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Thus, we merely need to verify that we can ensure that∑
i

v i = 0. (16.2)

Note that there is enough freedom in our construction to believe that we could prove such a thing:
we can put the sphere anywhere on the plane, and we could even scale the image in the plane before
placing the sphere. By carefully combining these two operations, it is clear that we can place the
center of gravity of the v is close to any point on the boundary of the sphere. It turns out that this
is sufficient to prove that we can place it at the origin.

16.3 The center of gravity

We need a nice family of maps that transform our kissing disk embedding on the sphere. It is
particularly convenient to parameterize these by a point ω inside the sphere. For any point α on
the surface of the unit sphere, I will let Πα denote the stereographic projection from the plane
tangent to the sphere at α.

I will also define Π−1α . To handle the point −α, I let Π−1α (−α) = ∞, and Πα(∞) = −α. We also
define the map that dilates the plane tangent to the sphere at α by a factor a: Da

α. We then define
the following map from the sphere to itself

fω(x )
def
= Πω/‖ω‖

(
D

1−‖ω‖
ω/‖ω‖

(
Π−1ω/‖ω‖(x )

))
.

For α ∈ S and ω = aα, this map pushes everything on the sphere to a point close to α. As a
approaches 1, the mass gets pushed closer and closer to α.

Instead of proving that we can achieve (16.2), I will prove a slightly simpler theorem. The proof
of the theorem we really want is similar, but about just a few minutes too long for class. We will
prove

Theorem 16.3.1. Let v1, . . . , vn be points on the unit-sphere. Then, there exists an ω such that∑
i fω(v i) = 0.

The reason that this theorem is different from the one that we want to prove is that if we apply a
circle-preserving map from the sphere to itself, the center of the circle might not map to the center
of the image circle.

To show that we can achieve
∑

i v i = 0, we will use the following topological lemma, which follows
immediately from Brouwer’s fixed point theorem. In the following, we let B denote the ball of
points of norm less than 1, and S the sphere of points of norm 1.

Lemma 16.3.2. If φ : B → B be a continuous map that is the identity on S. Then, there exists
an ω ∈ B such that

φ(ω) = 0.

We will prove this lemma using Brouwer’s fixed point theorem:
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Theorem 16.3.3 (Brouwer). If g : B → B is continuous, then there exists an α ∈ B such that
g(α) = α.

Proof of Lemma 16.3.2. Let b be the map that sends z ∈ B to z/ ‖z‖. The map b is continuous
at every point other than 0. Now, assume by way of contradiction that 0 is not in the image of
φ, and let g(z ) = −b(φ(z )). By our assumption, g is continuous and maps B to B. However, it is
clear that g has no fixed point, contradicting Brouwer’s fixed point theorem.

Lemma 16.3.2, was our motivation for defining the maps fω in terms of ω ∈ B. Now consider
setting

φ(ω) =
1

n

∑
i

fω(v i).

The only thing that stops us from applying Lemma 16.3.2 at this point is that φ is not defined on
S, because fω was not defined for ω ∈ S. To fix this, we define for α ∈ S

fα(z ) =

{
α if z 6= −α
−α otherwise.

We then encounter the problem that fα(z ) is not a continuous function of α because it is discon-
tinuous at α = −v i. But, this shouldn’t be a problem because the point ω at which φ(ω) = 0 won’t
be on or near the boundary. The following argument makes this intuition formal.

We set

hω(z ) =

{
1 if dist(ω, z ) < 2− ε, and

(2− dist(ω, z ))/ε otherwise.

Now, the function fα(z )hα(z ) is continuous on all of B. So, we may set

φ(ω)
def
=

∑
i fω(v i)hω(v i)∑

i hω(v i),

which is now continuous and is the identity map on S.

So, for any ε > 0, we may now apply Lemma 16.3.2 to find an ω for which

φ(ω) = 0.

To finish the proof, we need to get rid of this ε. That is, we wish to show that ω is bounded away
from S, say by µ, for all sufficiently small ε. If that is the case, then we will have dist(ω, v i) ≥ µ > 0
for all sufficiently small ε. So, for ε < µ and sufficiently small, hω(v i) = 1 for all i, and we recover
the ε = 0 case.

One can verify that this holds provided that the points v i are distinct and there are at least 3 of
them.

Finally, recall that this is not exactly the theorem we wanted to prove: this theorem deals with
v i, and not the centers of caps. The difficulty with centers of caps is that they move as the caps
move. However, this can be overcome by observing that the centers remain inside the caps, and
move continuously with ω. For a complete proof, see [ST07, Theorem 4.2]
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16.4 Further progress

This result has been improved in many ways. Jonathan Kelner [Kel06] generalized this result to
graphs of bounded genus. Kelner, Lee, Price and Teng [KLPT09] obtained analogous bounds for
λk for k ≥ 2. Biswal, Lee and Rao [BLR10] developed an entirely new set of techniques to prove
these results. Their techniques improve these bounds, and extend them to graphs that do not have
Kh minors for any constant h.
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Spectral Graph Theory Lecture 17

Properties of Expander Graphs

Daniel A. Spielman October 29, 2018

17.1 Overview

We say that a d-regular graph is a good expander if all of its adjacency matrix eigenvalues are small.
To quantify this, we set a threshold ε > 0, and require that each adjacency matrix eigenvalue, other
than d, has absolute value at most εd. This is equivalent to requiring all non-zero eigenvalues of
the Laplacian to be within εd of d.

In this lecture, we will:

1. Show that this condition is equivalent to approximating the complete graph.

2. Prove that this condition implies that the number of edges between sets of vertices in the
graph is approximately the same as in a d-regular random graph.

3. Prove Tanner’s Theorem: that small sets of vertices have many neighbors.

4. Derive the Alon-Boppana bound, which says that ε cannot be asymptotically smaller than
2
√
d− 1/d. This will tell us that the asymptotically best expanders are the Ramanujan

graphs.

Random d-regular graphs are expander graphs. Explicitly constructed expander graphs have proved
useful in a large number of algorithms and theorems. We will see some applications of them next
week.

17.2 Expanders as Approximations of the Complete Graph

One way of measuring how well two matrices A and B approximate each other is to measure the
operator norm of their difference: A−B . Since I consider the operator norm by default, I will just
refer to it as the norm. Recall that the norm of a matrix M is defined to be its largest singular
value:

‖M ‖ = max
x

‖Mx‖
‖x‖

,

where the norms in the fraction are the standard Euclidean vector norms. The norm of a symmetric
matrix is just the largest absolute value of one of its eigenvalues. It can be very different for a non
symmetric matrix.

17-1
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For this lecture, we define an ε-expander to be a d-regular graph whose adjacency matrix eigenvalues
satisfy |µi| ≤ εd for µi ≥ 2. As the Laplacian matrix eigenvalues are given by λi = d − µi, this is
equivalent to |d− λi| ≤ εd for i ≥ 2. It is also equivalent to

‖LG − (d/n)LKn‖ ≤ εd.

For this lecture, I define a graph G to be an ε-approximation of a graph H if

(1− ε)H 4 G 4 (1 + ε)H,

where I recall that I say H 4 G if for all x

xTLHx ≤ xTLGx .

I warn you that this definition is not symmetric. When I require a symmetric definition, I usually
use the condition (1 + ε)−1H 4 G instead of (1− ε)H 4 G.

If G is an ε-expander, then for all x ∈ IRV that are orthogonal to the constant vectors,

(1− ε)dxTx ≤ xTLGx ≤ (1 + ε)dxTx .

On the other hand, for the complete graph Kn, we know that all x orthogonal to the constant
vectors satisfy

xTLKnx = nxTx .

Let H be the graph

H =
d

n
Kn,

so
xTLHx = dxTx .

So, G is an ε-approximation of H.

This tells us that LG − LH is a matrix of small norm. Observe that

(1− ε)LH 4 LG 4 (1 + ε)LH implies − εLH 4 LG − LH 4 εLH .

As LG and LH are symmetric, and all eigenvalues of LH are 0 or d, we may infer

‖LG − LH‖ ≤ εd. (17.1)

17.3 Quasi-Random Properties of Expanders

There are many ways in which expander graphs act like random graphs. Conversely, one can prove
that a random d-regular graph is an expander graph with reasonably high probability [Fri08].

We will see that all sets of vertices in an expander graph act like random sets of vertices. To make
this precise, imagine creating a random set S ⊂ V by including each vertex in S independently
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with probability α. How many edges do we expect to find between vertices in S? Well, for every
edge (u, v), the probability that u ∈ S is α and the probability that v ∈ S is α, so the probability
that both endpoints are in S is α2. So, we expect an α2 fraction of the edges to go between vertices
in S. We will show that this is true for all sufficiently large sets S in an expander.

In fact, we will prove a stronger version of this statement for two sets S and T . Imagine including
each vertex in S independently with probability α and each vertex in T with probability β. We
allow vertices to belong to both S and T . For how many ordered pairs (u, v) ∈ E do we expect to
have u ∈ S and v ∈ T? Obviously, it should hold for an αβ fraction of the pairs.

For a graph G = (V,E), define

~E(S, T ) = {(u, v) : u ∈ S, v ∈ T, (u, v) ∈ E} .

We have put the arrow above the E in the definition, because we are considering ordered pairs of
vertices. When S and T are disjoint ∣∣∣ ~E(S, T )

∣∣∣
is precisely the number of edges between S and T , while∣∣∣ ~E(S, S)

∣∣∣
counts every edge inside S twice.

The following bound is a slight extension by Beigel, Margulis and Spielman [BMS93] of a bound
originally proved by Alon and Chung [AC88].

Theorem 17.3.1. Let G = (V,E) be a d-regular graph that ε-approximates d
nKn. Then, for every

S ⊆ V and T ⊆ V , ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2),

where |S| = αn and |T | = βn.

Observe that when α and β are greater than ε, the term on the right is less than αβdn.

In class, we will just prove this in the case that S and T are disjoint.

Proof. The first step towards the proof is to observe

χTSLGχT = d |S ∩ T | −
∣∣∣ ~E(S, T )

∣∣∣ .
Let H = d

nKn. As G is a good approximation of H, let’s compute

χTSLHχT = χTS

(
dI − d

n
J

)
χT = d |S ∩ T | − d

n
|S| |T | = d |S ∩ T | − αβdn.

So, ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ =

∣∣χTSLGχT − χTSLHχT
∣∣ .
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As
‖LG − LH‖ ≤ εd,

χTSLHχT − χTSLGχT = χTS (LH − LG)χT

≤ ‖χS‖ ‖(LH − LG)χT ‖
≤ ‖χS‖ ‖LH − LG‖ ‖χT ‖
≤ εd ‖χS‖ ‖χT ‖

= εdn
√
αβ.

This is almost as good as the bound we are trying to prove. To prove the claimed bound, recall
that LHx = LH(x + c1) for all c. So, let xS and xT be the result of orthogonalizing χS and χT
with respect to the constant vectors. By Claim 2.4.2 (from Lecture 2), ‖xS‖ = n(α− α2). So, we
obtain the improved bound

xTS (LH − LG)xT = χTS (LH − LG)χT ,

while
‖xS‖ ‖xT ‖ = n

√
(α− α2)(β − β2).

So, we may conclude ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2).

We remark that when S and T are disjoint, the same proof goes through even if G is irregular and
weighted if we replace ~E(S, T ) with

w(S, T ) =
∑

(u,v)∈E,u∈S,v∈T

w(u, v).

We only need the fact that G ε-approximates d
nKn. See [BSS12] for details.

17.4 Vertex Expansion

The reason for the name expander graph is that small sets of vertices in expander graphs have
unusually large numbers of neighbors. For S ⊂ V , let N(S) denote the set of vertices that are
neighbors of vertices in S. The following theorem, called Tanner’s Theorem, provides a lower
bound on the size of N(S).

Theorem 17.4.1 ([Tan84]). Let G = (V,E) be a d-regular graph on n vertices that ε-approximates
d
nKn. Then, for all S ⊆ V ,

|N(S)| ≥ |S|
ε2(1− α) + α

,

where |S| = αn.
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Note that when α is much less than ε2, the term on the right is approximately |S| /ε2, which can
be much larger than |S|. We will derive Tanner’s theorem from Theorem 17.3.1.

Proof. Let R = N(S) and let T = V −R. Then, there are no edges between S and T . Let |T | = βn
and |R| = γn, so γ = 1− β. By Theorem 17.3.1, it must be the case that

αβdn ≤ εdn
√

(α− α2)(β − β2).

The lower bound on γ now follows by re-arranging terms. Dividing through by dn and squaring
both sides gives

α2β2 ≤ ε2(α− α2)(β − β2) ⇐⇒
αβ ≤ ε2(1− α)(1− β) ⇐⇒
β

1− β
≤ ε2(1− α)

α
⇐⇒

1− γ
γ
≤ ε2(1− α)

α
⇐⇒

1

γ
≤ ε2(1− α) + α

α
⇐⇒

γ ≥ α

ε2(1− α) + α
.

If instead of N(S) we consider N(S)−S, then T and S are disjoint, so the same proof goes through
for weighted, irregular graphs that ε-approximate d

nKn.

17.5 How well can a graph approximate the complete graph?

Consider applying Tanner’s Theorem with S = {v} for some vertex v. As v has exactly d neighbors,
we find

ε2(1− 1/n) + 1/n ≥ 1/d,

from which we see that ε must be at least 1/
√
d+ d2/n, which is essentially 1/

√
d. But, how small

can it be?

The Ramanujan graphs, constructed by Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88]
achieve

ε ≤ 2
√
d− 1

d
.

We will see that if we keep d fixed while we let n grow, ε cannot exceed this bound in the limit.
We will prove an upper bound on ε by constructing a suitable test function.
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As a first step, choose two vertices v and u in V whose neighborhoods to do not overlap. Consider
the vector x defined by

x (i) =



1 if i = u,

1/
√
d if i ∈ N(u),

−1 if i = v,

−1/
√
d if i ∈ N(v),

0 otherwise.

Now, compute the Rayleigh quotient with respect to x . The numerator is the sum over all edges
of the squares of differences across the edges. This gives (1 − 1/

√
d)2 for the edges attached to u

and v, and 1/d for the edges attached to N(u) and N(v) but not to u or v, for a total of

2d(1− 1/
√
d)2 + 2d(d− 1)/d = 2

(
d− 2

√
d+ 1 + (d− 1)

)
= 2

(
2d− 2

√
d
)
.

On the other hand, the denominator is 4, so we find

xTLx

xTx
= d−

√
d.

If we use instead the vector

y(i) =



1 if i = u,

−1/
√
d if i ∈ N(u),

−1 if i = v,

1/
√
d if i ∈ N(v),

0 otherwise,

we find
yTLy

yTy
= d+

√
d.

This is not so impressive, as it merely tells us that ε ≥ 1/
√
d, which we already knew. But, we can

improve this argument by pushing it further. We do this by modifying it in two ways. First, we
extend x to neighborhoods of neighborhoods of u and v. Second, instead of basing the construction
at vertices u and v, we base it at two edges. This way, each vertex has d − 1 edges to those that
are farther away from the centers of the construction.

The following theorem is attributed to A. Nilli [Nil91], but we suspect it was written by N. Alon.

Theorem 17.5.1. Let G be a d-regular graph containing two edges (u0, u1) and (v0, v1) that are at
distance at least 2k + 2. Then

λ2 ≤ d− 2
√
d− 1 +

2
√
d− 1− 1

k + 1
.

Proof. Define the following neighborhoods.

U0 = {u0, u1}
Ui = N(Ui−1)− ∪j<iUj , for 0 < i ≤ k,
V0 = {v0, v1}
Vi = N(Vi−1)− ∪j<iVj , for 0 < i ≤ k.
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Figure 17.1: The construction of x .

That is, Ui consists of exactly those vertices at distance i from U0. Note that there are no edges
between any vertices in any Ui and any Vj .

Our test vector for λ2 will be given by

x (a) =


1

(d−1)−i/2 for a ∈ Ui
− β

(d−1)−i/2 for a ∈ Vi

0 otherwise.

We choose β so that x is orthogonal to 1.

We now find that the Rayleigh quotient of x with respect to L is at most

X0 + β2Y0
X1 + β2Y1

,

where

X0 =
k−1∑
i=0

|Ui| (d− 1)

(
1− 1/

√
d− 1

(d− 1)−i/2

)2

+ |Uk| (d− 1)−k+1, and X1 =
k∑
i=0

|Ui| (d− 1)−i

and

Y0 =
k−1∑
i=0

|Vi| (d− 1)

(
1− 1/

√
d− 1

(d− 1)−i/2

)2

+ |Vk| (d− 1)−k+1, and Y1 =
k∑
i=0

|Vi| (d− 1)−i.
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By my favorite inequality, it suffices to prove upper bounds on X0/X1 and Y0/Y1. So, consider∑k−1
i=0 |Ui| (d− 1)

(
1−1/

√
d−1

(d−1)−i/2

)2
+ |Uk| (d− 1)−k+1∑k

i=0 |Ui| (d− 1)−i
.

For now, let’s focus on the numerator,

k−1∑
i=0

|Ui| (d− 1)

(
1− 1/

√
d− 1

(d− 1)−i/2

)2

+ |Uk| (d− 1)(d− 1)−k

=
k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 1)

=
k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1)

=
k∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1).

To upper bound the Rayleigh quotient, we observe that the left-most of these terms contributes∑k
i=0

|Ui|
(d−1)i (d− 2

√
d− 1)∑k

i=0 |Ui| (d− 1)−i
= d− 2

√
d− 1.

To bound the impact of the remaining term,

|Uk|
(d− 1)k

(2
√
d− 1− 1),

note that
|Uk| ≤ (d− 1)k−i |Ui| .

So, we have

|Uk|
(d− 1)k

≤ 1

k + 1

k∑
i=0

|Ui|
(d− 1)i

.

Thus, the last term contributes at most
2
√
d− 1

k + 1

to the Rayleigh quotient.

17.6 Open Problems

What can we say about λn? In a previous iteration of this course, I falsely asserted that the same
proof tells us that

λn ≥ d+ 2
√
d− 1− 2

√
d− 1− 1

k + 1
.
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But, the proof did not work.

Another question is how well a graph of average degree d can approximate the complete graph.
That is, let G be a graph with dn/2 edges, but let G be irregular. While I doubt that irregularity
helps one approximate the complete graph, I do not know how to prove it.

We can generalize this question further. Let G = (V,E,w) be a weighted graph with dn/2 edges.
Can we prove that G cannot approximate a complete graph any better than the Ramanujan graphs
do? I conjecture that for every d and every β > 0 there is an n0 so that for every graph of average
degree d on n ≥ n0 vertices,

λ2
λn
≤ d− 2

√
d− 1

d+ 2
√
d− 1

+ β.
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Spectral Graph Theory Lecture 18

A simple construction of expander graphs

Daniel A. Spielman October 31, 2018

18.1 Overview

Our goal is to prove that for every ε > 0 there is a d for which we can efficiently construct an infinite
family of d-regular ε-expanders. I recall that these are graphs whose adjacency matrix eigenvalues
satisfy |µi| ≤ εd and whose Laplacian matrix eigenvalues satisfy |d− λi| ≤ εd. Viewed as a function
of ε, the d that we obtain in this construction is rather large. But, it is a constant. The challenge
here is to construct infinite families with fixed d and ε.

Before we begin, I remind you that in Lecture 5 we showed that random generalized hybercubes
were ε expanders of degree f(ε) log n, for some function f . The reason they do not solve today’s
problem is that their degrees depend on the number of vertices. However, today’s construction
will require some small expander graph, and these graphs or graphs like them can serve in that
role. So that we can obtain a construction for every number of vertices n, we will exploit random
generalized ring graphs. Their analysis is similar to that of random generalized hypercubes.

Claim 18.1.1. There exists a function f(ε) so that for every ε > 0 and every sufficiently large n
the Cayley graph with group Z/n and a random set of at least f(ε) log n generators is an ε-expander
with high probability.

I am going to present the simplest construction of expanders that I have been able to find. By
“simplest”, I mean optimizing the tradeoff of simplicity of construction with simplicty of analysis.
It is inspired by the Zig-Zag product and replacement product constructions presented by Reingold,
Vadhan and Wigderson [RVW02].

For those who want the quick description, here it is. Begin with an expander. Take its line graph.
Obseve that the line graph is a union of cliques. So, replace each clique by a small expander. We
need to improve the expansion slightly, so square the graph. Square one more time. Repeat.

The analysis will be simple because all of the important parts are equalities, which I find easier to
understand than inequalities.

While this construction requires the choice of two expanders of constant size, it is explicit in the
sense that we can obtain a simple implict representation of the graph: if the name of a vertex in
the graph is written using b bits, then we can compute its neighbors in time polynomial in b.

18-1



Lecture 18: October 31, 2018 18-2

18.2 Squaring Graphs

We will first show that we can obtain a family of ε expanders from a family of β-expanders for any
β < 1. The reason is that squaring a graph makes it a better expander, although at the cost of
increasing its degree.

Given a graph G, we define the graph G2 to be the graph in which vertices u and v are connected
if they are at distance 2 in G. Formally, G2 should be a weighted graph in which the weight of an
edge is the number of such paths. When first thinking about this, I suggest that you ignore the
issue. When you want to think about it, I suggest treating such weighted edges as multiedges.

We may form the adjacency matrix of G2 from the adjacency matrix of G. Let M be the adjacency
matrix of G. Then M 2(u, v) is the number of paths of length 2 between u and v in G, and M 2(v, v)
is always d. We will eliminate those self-loops. So,

MG2 = M 2
G − dIn.

If G has no cycles of length up to 4, then all of the edges in its square will have weight 1. The
following claim is immediate from this definition.

Claim 18.2.1. The adjacency matrix eigenvalues of G2 are precicely

µ2i − d,

where µ1, . . . , µn are the adjacency matrix eigenvalues of G.

Lemma 18.2.2. If {Gi}i is an infinite family of d-regular β-expanders for β ≥ 1/
√
d− 1, then{

G2
i

}
i

is an infinite family of d(d− 1)-regular β2 expanders.

We remark that the case of β > 1/
√
d− 1, or even larger, is the case of interest. We are not

expecting to work with graphs that beat the Ramanujan bound, 2
√
d− 1/d.

Proof. For µ an adjacency matrix eigenvalue of Gi other than d, we have

µ2 − d
d(d− 1)

=
µ2 − d
d2 − d

≤ µ2

d2
≤ β2.

On the other hand, every adjacency eigenvalue of G2
i is at least −d, which is at least −β2d(d−1).

So, by squaring enough times, we can convert a family of β expanders for any β < 1 into a family
of ε expanders.

18.3 The Relative Spectral Gap

To measure the qualities of the graphs that appear in our construction, we define a quantity that
we will call the relative spectral gap of a d-regular graph:

r(G)
def
= min

(
λ2(G)

d
,
2d− λn

d

)
.
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The graphs with larger relative spectral gaps are better expanders. An ε-expander has relative
spectral gap at least 1− ε, and vice versa. Because we can square graphs, we know that it suffices
to find an infinite family of graphs with relative spectral gap strictly greater than 0.

We now state exactly how squaring impacts the relative spectral gap of a graph.

Corollary 18.3.1. If G has relative spectral gap β, then G2 has relative spectral gap at least

2β − β2.

Note that when β is small, this gap is approximately 2β.

18.4 Line Graphs

Our construction will leverage small expanders to make bigger expanders. To begin, we need a way
to make a graph bigger and still say something about its spectrum.

We use the line graph of a graph. Let G = (V,E) be a graph. The line graph of G is the graph
whose vertices are the edges of G in which two are connected if they share an endpoint in G. That
is,
(
(u, v), (w, z)

)
is an edge of the line graph if one of {u, v} is the same as one of {w, z}. The line

graph is often written L(G), but we won’t do that in this class so that we can avoid confusion with
the Laplacian.

(a) A graph (b) Its line graph.

Let G be a d-regular graph with n vertices, and let H be its line graph1.As G has dn/2 edges, H
has dn/2 vertices. Each vertex of H, say (u, v), has degree 2(d− 1): d− 1 neighbors for the other
edges attached to u and d− 1 for v. In fact, if we just consider one vertex u in V , then all vertices
in H of form (u, v) of G will be connected. That is, H contains a d-clique for every vertex in V .
We see that each vertex of H is contained in exactly two of these cliques.

Here is the great fact about the spectrum of the line graph.

Lemma 18.4.1. Let G be a d-regular graph with n vertices, and let H be its line graph. Then the
spectrum of the Laplacian of H is the same as the spectum of the Laplacian of G, except that it has
dn/2− n extra eigenvalues of 2d.

1If G has multiedges, which is how we interpret integer weights, then we include a vertex in the line graph for
each of those multiedges. These will be connected to each other by edges of weight two—one for each vertex that
they share. All of the following statements then work out.
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Before we prove this lemma, we need to recall the factorization of a Laplacian as the product of the
signed edge-vertex adjacency matrix times its transpose. We reserved the letter U for this matrix,
and defined it by

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

For an unweighted graph, we have
LG = U TU .

Recall that each edge indexes one column, and that we made an arbitrary choice when we ordered
the edge (a, b) rather than (b, a). But, this arbitrary choice factors out when we multiply by U T .

18.5 The Spectrum of the Line Graph

Define the matrix |U | to be the matrix obtained by replacing every entry of U by its absolute
value. Now, consider |U |T |U |. It looks just like the Laplacian, except that all of its off-diagonal
entries are 1 instead of −1. So,

|U |T |U | = DG + MG = dI + MG,

as G is d-regular. We will also consider the matrix |U | |U |T . This is a matrix with nd/2 rows and
nd/2 columns, indexed by edges of G. The entry at the intersection of row (u, v) and column (w, z)
is

(δu + δv)T (δw + δz).

So, it is 2 if these are the same edge, 1 if they share a vertex, and 0 otherwise. That is

|U | |U |T = 2Ind/2 + MH .

Moreover, |U | |U |T and |U |T |U | have the same eigenvalues, except that the later matrix has
nd/2− n extra eigenvalues of 0.

Proof of Lemma 18.4.1. First, let λi be an eigenvalue of LG. We see that

λi is an eigenvalue of DG −MG =⇒
d− λi is an eigenvalue of MG =⇒
2d− λi is an eigenvalue of DG + MG =⇒
2d− λi is an eigenvalue of 2Ind/2 + MH =⇒
2(d− 1)− λi is an eigenvalue of MH =⇒
λi is an eigenvalue of DH −MH .

Of course, this last matrix is the Laplacian matrix of H. We can similarly show that the extra
dn/2− n zero eigenvalues of 2Ind/2 + MH become 2d in LH .
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While the line graph operation preserves λ2, it causes the degree of the graph to grow. So, we are
going to need to do more than just take line graphs to construct expanders.

Proposition 18.5.1. Let G be a d-regular graph with d ≥ 7 and let H be its line graph. Then,

r(H) =
λ2(G)

2(d− 1)
≥ r(G)/2.

Proof. For G a d-regular graph other than Kd+1, λ2(G) ≤ d+ 1. By the Perron-Frobenius theorem
(Lemma 6.A.1) λmax(G) ≤ 2d (with equality if and only G is bipartite). So, λmax(H) = 2d and
λ2(H) = λ2(G) ≤ d. So, the term in the definition of the relative spectral gap corresponding to
the largest eigenvalue of H satisfies

2(2d− 2)− λmax(H)

2d− 2
=

2(2d− 2)− 2d

2d− 2
= 1− 2

d
≥ 5/7,

as d ≥ 7. On the other hand,
λ2(H)

2d− 2
≤ d

2d− 2
≤ 2/3.

As 2/3 < 5/7,

min

(
λ2(H)

2d− 2
,
2(2d− 2)− λmax(H)

2d− 2

)
=
λ2(H)

2d− 2
=
λ2(G)

2d− 2
≥ r(G/2).

While the line graph of G has more vertices, its degree is higher and its relative spectral gap is
approximately half that of G. We can improve the relative spectral gap by squaring. In the next
section, we show how to lower the degree.

18.6 Approximations of Line Graphs

Our next step will be to construct approximations of line graphs. We already know how to approx-
imate complete graphs: we use expanders. As line graphs are sums of complete graphs, we will
approximate them by sums of expanders. That is, we replace each clique in the line graph by an
expander on d vertices. Since d will be a constant in our construction, we will be able to get these
small expanders from known constructions, like the random generalized ring graphs.

Let G be a d-regular graph and let Z be a graph on d vertices of degree k (we will use a low-degree
expander). We define the graph

G L©Z

to be the graph obtained by forming the edge graph of G, H, and then replacing every d-clique in
H by a copy of Z. Actually, this does not uniquely define G L©Z, as there are many ways to replace
a d-clique by a copy of Z. But, any choice will work. Note that every vertex of G L©Z has degree
2k.
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Lemma 18.6.1. Let G be a d-regular graph, let H be the line graph of G, and let Z be a k-regular
α-expander. Then,

(1− α)
k

d
H 4 G L©Z 4 (1 + α)

k

d
H

Proof. As H is a sum of d-cliques, let H1, . . . ,Hn be those d-cliques. So,

LH =
n∑

i=1

LHi .

Let Zi be the graph obtained by replacing Hi with a copy of Z, on the same set of vertices. To
prove the lower bound, we compute

LG L©Z =
n∑

i=1

LZi < (1− α)
k

d

n∑
i=1

LHi = (1− α)
k

d
LH .

The upper bound is proved similarly.

Corollary 18.6.2. Under the conditions of Lemma 18.6.1,

r(G L©Z) ≥ 1− α
2

r(G).

Proof. The proof is similar to the proof of Proposition 18.5.1. We have

λ2(G L©Z) ≥ (1− α)
kλ2(G)

d
,

and
λmax(G L©Z) ≤ (1 + α)2k.

So,

min (λ2(G L©Z), 2(2k)− λmax(G L©Z)) ≥ min

(
(1− α)

kλ2(G)

d
, (1− α)2k

)
= (1− α)

kλ2(G)

d
,

as λ2(G) ≤ d. So,

r(G L©Z) ≥ 1

2k
(1− α)kr(G) =

1− α
2

r(G).

So, the relative spectral gap of G L©Z is a little less than half that of G. But, the degree of G L©Z
is 2k, which we will arrange to be much less than the degree of G, d.

We will choose k and d so that squaring this graph improves its relative spectral gap, but still leaves
its degree less than d. If G has relative spectral gap β, then G2 has relative spectral gap at least

2β − β2.

It is easy to see that when β is small, this gap is approximately 2β. This is not quite enough to
compensate for the loss of (1− ε)/2 in the corollary above, so we will have to square the graph once
more.
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18.7 The whole construction

To begin, we need a “small” k-regular expander graph Z on

d
def
= (2k(2k − 1))2 − 2k(2k − 1)

vertices. It should be an ε-expander for some small ε. I believe that ε = 1/6 would suffice. The
other graph we will need to begin our construction will be a small d-regular expander graph G0.
We use Claim 18.1.1 to establish the existence of both of these. Let β be the relative spectral gap
of G0. We will assume that β is small, but greater than 0. I believe that β = 1/5 will work. Of
course, it does not hurt to start with a graph of larger relative spectral gap.

We then construct G0 L©Z. The degree of this graph is 2k, and its relative spectral gap is a little
less than β/2. So, we square the resulting graph, to obtain

(G0 L©Z)2.

It has degree approximately 4k2, and relative spectral gap slightly less than β. But, for induction,
we need it to be more than β. So, we square one more time, to get a relative spectral gap a little
less than 2β. We now set

G1 =
(

(G0 L©Z)2
)2
.

The graph G1 is at least as good an approximation of a complete graph as G0, and it has degree
approximately 16k4. In general, we set

Gi+1 =
(

(Gi L©Z)2
)2
.

To make the inductive construction work, we need for Z to be a graph of degree k whose number
of vertices equals the degree of G. This is approximately 16k4, and is exactly

(2k(2k − 1))2 − 2k(2k − 1).

I’ll now carry out the computation of relative spectral gaps with more care. Let’s assume that G0

has a relative spectral gap of β ≥ 4/5, and assume, by way of induction, that ρ(Gi) ≥ 4/5. Also
assume that Z is a 1/6-expander. We then find

r(Gi L©Z) ≥ (1− ε)(4/5)/2 = 1/3.

So, Gi L©Z is a 2/3-expander. Our analysis of graph squares then tells us that Gi+1 is a (2/3)4-
expander. So,

r(Gi+1) ≥ 1− (2/3)4 = 65/81 > 4/5.

By induction, we conclude that every Gi has relative spectral gap at least 4/5.

To improve their relative spectral gaps of the graphs we produce, we can just square them a few
times.



Lecture 18: October 31, 2018 18-8

18.8 Better Constructions

There is a better construction technique, called the Zig-Zag product [RVW02]. The Zig-Zag con-
struction is a little trickier to understand, but it achieves better expansion. I chose to present
the line-graph based construction because its analysis is very closely related to an analysis of the
Zig-Zag product.

References

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
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PSRGs via Random Walks on Graphs

Daniel A. Spielman November 5, 2018

19.1 Overview

There has been a lot of work on the design of Pseudo-Random Number Generators (PSRGs) that
can be proved to work for particular applications. In this class, we will see one of the foundational
results in this area, namely Impagliazzo and Zuckerman’s [IZ89] use of random walks on expanders
to run the same algorithm many times. We are going to perform a very crude analysis that is easy
to present in class. Rest assured that much tighter analyses are possible and much better PSRGs
have been constructed since.

19.2 Why Study PSRGs?

Pseudo-random number generators take a seed which is presumably random (or which has a lot of
randomness in it), and then generate a long string of random bits that are supposed to act random.
We should first discuss why we would actually want such a thing. I can think of two reasons.

1. Random bits are scarce. This might be surprising. After all, if you look at the last few
bits of the time that I last hit a key, it is pretty random. Similarly, the low-order bits of
the temperature of the processor in my computer seem pretty random. While these bits are
pretty random, there are not too many of them.

Many randomized algorithms need a lot of random bits. Sources such as these just do not
produce random bits with a frequency sufficient for many applications.

2. If you want to re-run an algorithm, say to de-bug it, it is very convenient to be able to use
the same set of random bits by re-running the PSRG with the same seed. If you use truly
random bits, you can’t do this.

You may also wonder how good the standard pseudo-random number generators are. The first
answer is that the default ones, such as rand in C, are usually terrible. There are many applications,
such as those in my thesis, for which these generators produce behavior that is very different from
what one would expect from truly random bits (yes, this is personal). On the other hand, one can
use cryptographic functions to create bits that will act random for most purposes, unless one can
break the underlying cryptography [HILL99]. But, the resulting generators are usually much slower
than the fastest pseudo-random generators. Fundamentally, it comes down to a time-versus-quality
tradeoff. The longer you are willing to wait, the better the pseudo-random bits you can get.

19-1
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19.3 Expander Graphs

In today’s lecture we will require an infinite family of d-regular 1/10-expander graphs. We require
that d be a constant, that the graphs have 2r vertices for all sufficiently large r, and that we can
construct the neighbors of a vertex in time polynomial in r. That is, we need the graphs to have a
simple explicit description. One can construct expanders families of this form using the techniques
from last lecture. For today’s purposes, the best expanders are the Ramanujan graphs produced
by Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88]. Ramanujan graphs of degree
d = 400 are 1/10-expanders. See also the work of Alon, Bruck, Naor, Naor and Roth [ABN+92]
for even more explicit constructions.

While the explicit Ramanujan graphs only exist in certain sizes, none of which do have exactly 2r

vertices, some of them have just a little more that 2r vertices. It is possible to trim these to make
them work, say by ignoring all steps in which the vertex does not correspond to r bits.

19.4 Today’s Application : repeating an experiment

Imagine you are given a black box that takes r bits as input and then outputs either 0 or 1.
Moreover, let’s assume that the black box is very consistent: we know that it returns the same
answer at least 99% of the time. If it almost always returns 0, we will call it a 0-box and if it
almost always returns 1, we will call it a 1-box. Our job is to determine whether a given box is a
0 or 1 box. We assume that r is big, so we don’t have time to test the box on all 2r settings of r
bits. Instead, we could pick r bits at random, and check what the box returns. If it says“1”, then
it is probably a 1-box. But, what if we want more than 99% confidence? We could check the box
on many choices of r random bits, and report the majority value returned by the box.1. But, this
seems to require a new set of random bits for each run. In this lecture, we will prove that 9 new
bits per run suffice. Note that the result would be interesting for any constant other than 9.

Since we will not make any assumptions about the black box, we will use truly random bits the
first time we test it. But, we will show that we only need 9 new random bits for each successive
test. In particular, we will show that if we use our PSRG to generate bits for t + 1 test, then the
probability that majority answer is wrong decreases exponentially in t.

You are probably wondering why we would want to do such a thing. The reason is to increase
the accuracy of randomized algorithms. There are many randomized algorithms that provide weak
guarantees, such as being correct 99% or 51% of the time. To obtain accurate answers from such
algorithms, we run them many times with fresh random bits. You can view such an algorithm has
having two inputs: the problem to be solved and its random bits. The black box is the behavior of
the algorithm when the problem to be solved is fixed, so it is just working on the random bits.

1Check for yourself that running it twice doesn’t help
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19.5 The Random Walk Generator

Let r be the number of bits that our black box takes as input. So, the space of random bits is
{0, 1}r. Let X ⊂ {0, 1}r be the settings of the random bits on which the box gives the minority
answer, and let Y be the settings on which it gives the majority answer.

Our pseudo-random generator will use a random walk on a 1/10-expander graph whose vertex set
is {0, 1}r. Recall that we can use d = 400. For the first input we feed to the black box, we will
require r truly random bits. We treat these bits as a vertex of our graph. For each successive test,
we choose a random neighbor of the present vertex, and feed the corresponding bits to the box.
That is, we choose a random i between 1 and 400, and move to the ith neighbor of the present
vertex. Note that we only need log2 400 ≈ 9 random bits to choose the next vertex. So, we will
only need 9 new bits to generate each input we feed to the box after the first.

19.6 Formalizing the problem

Assume that we are going to test the box t + 1 times. Our pseudo-random generator will begin at
a truly random vertex v, and then take t random steps. Recall that we defined X to be the set
of vertices on which the box outputs the minority answer, and we assume that |X| ≤ 2r/100. If
we report the majority of the outcomes of the t + 1 outputs of the box, we will return the correct
answer as long as the random walk is inside X less than half the time. To analyze this, let v0 be
the initial random vertex, and let v1, . . . , vt be the vertices produced by the t steps of the random
walk. Let T = {0, . . . , t} be the time steps, and let S = {i : vi ∈ X}. We will prove

Pr [|S| > t/2] ≤
(

2√
5

)t+1

.

To begin our analysis, recall that the initial distribution of our random walk is p0 = 1/n. Let
χX and χY be the characteristic vectors of X and Y , respectively, and let DX = diag(χX) and
DY = diag(χY ). Let

W =
1

d
M (19.1)

be the transition matrix of the ordinary random walk on G. We are not using the lazy random walk:
it would be silly to use the lazy random walk for this problem, as there is no benfit to re-running
the experiment with the same random bits as before. Let ω1, . . . , ωn be the eigenvalues of W . As
the graph is a 1/10-expander, |ωi| ≤ 1/10 for all i ≥ 2.

Let’s see how we can use these matrices to understand the probabilities under consideration. For
a probability vector p on vertices, the probability that a vertex chosen according to p is in X may
be expressed

χT
Xp = 1TDXp.

The second form will be more useful, as
DXp
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is the vector obtained by zeroing out the events in which the vertices are not in X. If we then want
to take a step in the graph G, we multiply by W . That is, the probability that the walk starts at
vertex in X, and then goes to a vertex i is q(i) where

q = WDXp0.

Continuing this way, we see that the probability that the walk is in X at precisely the times i ∈ R
is

1TDZtWDZt−1W · · ·DZ1WDZ0p0,

where

Zi =

{
X if i ∈ R

Y otherwise.

We will prove that this probability is at most (1/5)|R|. It will then follow that

Pr [|S| > t/2] ≤
∑

|R|>t/2

Pr [the walk is in X at precisely the times in R]

≤
∑

|R|>t/2

(
1

5

)|R|

≤ 2t+1

(
1

5

)(t+1)/2

=

(
2√
5

)t+1

.

19.7 Matrix Norms

Recall that the operator norm of a matrix M (also called the 2-norm) is defined by

‖M ‖ = max
v

‖Mv‖
‖v‖

.

The matrix norm measures how much a vector can increase in size when it is multiplied by M .
When M is symmetric, the 2-norm is just the largest absolute value of an eigenvalue of M (prove
this for yourself). It is also immediate that

‖M 1M 2‖ ≤ ‖M 1‖ ‖M 2‖ .

You should also verify this yourself. As DX , DY and W are symmetric, they each have norm 1.

Warning 19.7.1. While the largest eigenvalue of a walk matrix is 1, the norm of an asymmetric
walk matrix can be larger than 1. For instance, consider the walk matrix of the path on 3 vertices.
Verify that it has norm

√
2.

Our analysis rests upon the following bound on the norm of DXW .
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Lemma 19.7.2.
‖DXW ‖ ≤ 1/5.

Let’s see why this implies the theorem. For any set R, let Zi be as defined above. As p0 = Wp0,
we have

1TDZtWDZt−1W · · ·DZ1WDZ0p0 = 1T (DZtW )
(
DZt−1W

)
· · · (DZ0W )p0.

Now, ∥∥DZt−1W
∥∥ ≤ {1/5 for i ∈ R, and

1 for i 6∈ R.

So, ∥∥(DZtW )
(
DZt−1W

)
· · · (DZ0W )

∥∥ ≤ (1/5)|R|.

As ‖p0‖ = 1/
√
n and ‖1‖ =

√
n, we may conclude

1T (DZtW )
(
DZt−1W

)
· · · (DZ0W )p0 ≤

∥∥1T∥∥∥∥(DZtW )
(
DZt−1W

)
· · · (DZ0W )p0

∥∥
≤
∥∥1T∥∥ (1/5)|R| ‖p0‖

= (1/5)|R|.

19.8 The norm of DXW

Proof of Lemma 19.7.2. Let x be any non-zero vector, and write

x = c1 + y ,

where 1Ty = 0. We will show that ‖DXWx‖ ≤ ‖x‖ /5.

We know that the constant vectors are eigenvectors of W . So, W 1 = 1 and

DXW 1 = χX .

This implies
‖DXW c1‖ = c ‖χX‖ = c

√
|X| ≤ c

√
n/10.

We will now show that ‖Wy‖ ≤ ‖y‖ /10. The easiest way to see this is to consider the matrix

W − J/n,

where we recall that J is the all-1 matrix. This matrix is symmetric and all of its eigenvalues have
absolute value at most 1/10. So, it has norm at most 1/10. Moreover, (W −J/n)y = Wy , which
implies ‖Wy‖ ≤ ‖y‖ /10. Another way to prove this is to expand y in the eigenbasis of W , as in
the proof of Lemma 2.1.3.

Finally, as 1 is orthogonal to y ,

‖x‖ =

√
c2n + ‖y‖2.
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So,

‖DXWx‖ ≤ ‖DXW c1‖+ ‖DXWy‖ ≤ c
√
n/10 + ‖y‖ /10 ≤ ‖x‖ /10 + ‖x‖ /10 ≤ ‖x‖ /5.

19.9 Conclusion

We finished lecture by observing that this is a very strange proof. When considering probabilities,
it seems that it would be much more natural to sum them. But, here we consider 2-norms of
probability vectors.
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The Lovàsz - Simonovits Approach to Random Walks
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20.1 Introduction

These notes are still very rough, and will be finished later.

For a vector f and an integer k, we define f {k} to be the sum of the largest k entries of f . For
convenience, we define f {0} = 0. Symbolically, you can define this by setting π to be a permutation
for which

f (π(1)) ≥ f (π(2)) ≥ ... ≥ f (π(n)),

and then setting

f {k} =

k∑
i=1

f (π(i)).

For real number x between 0 and n, we define f {x} by making it be piece-wise linear between
consecutive integers. This means that for x between integers k and k + 1, the slope of f {} at x is
f (π(k + 1)). As these slopes are monotone nonincreasing, the function f {x} is concave.

We will prove the following theorem of Lovàsz and Simonovits [LS90] on the behavior of Wf .

Theorem 20.1.1. Let W be the transition matrix of the lazy random walk on a d-regular graph
with conductance at least φ. Let g = Wf . Then for all integers 0 ≤ k ≤ n

g{k} ≤ 1

2
(f {k − φh}+ f {k + φh}) ,

where h = min(k, n− k).

I remark that this theorem has a very clean extension to irregular, weighted graphs. I just present
this version to simplify the exposition.

We can use this theorem to bound the rate of convergence of random walks in a graph. Let pt be
the probability distribution of the walk after t steps, and plot the curves pt{x}. The theorem tells
us that these curves lie beneath each other, and that each curve lies beneath a number of chords
drawn across the previous. The walk is uniformly mixed when the curve reaches a straight line
from (0, 0) to (n, 1). This theorem tells us how quickly the walks approach the straight line.

Today, we will use the theorem to prove a variant of Cheeger’s inequality.

20-1
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20.2 Definitions and Elementary Observations

We believe that larger conductance should imply faster mixing. In the case of Theorem 20.1.1, it
should imply lower curves. This is because wider chords lie beneath narrower ones.

Claim 20.2.1. Let h(x) be a convex function, and let z > y > 0. Then,

1

2
(h(x− z) + h(x+ z)) ≤ 1

2
(h(x− y) + h(x+ y)) .

Claim 20.2.2. Let f be a vector, let k ∈ [0, n], and let α1, . . . , αn be numbers between 0 and 1 such
that ∑

i

αi = k.

Then, ∑
i

αif (i) ≤ f {k}.

This should be obvious, and most of you proved something like this when solving problem 2 on
homework 1. It is true because the way one would maximize this sum is by setting x to 1 for the
largest values.

Throughout this lecture, we will only consider lazy random walks on regular graphs. For a set S
and a vertex a, we define γ(a, S) to be the probability that a walk that is at vertex a moves to S
in one step. If a is not in S, this equals one half the fraction of edges from a to S. It is one half
because there is a one half probability that the walk stays at a. Similarly, if a is in S, then γ(a, S)
equals one half plus one half the fraction of edges of a that end in S.

20.3 Warm up

We warm up by proving that the curves must lie under each other.

For a vector f and a set S, we define

f (S) =
∑
a∈S

f (a).

For every k there is at least one set S for which

f (S) = f {k}.

If the values of f are distinct, then the set S is unique.

Lemma 20.3.1. Let f be a vector and let g = Wf . Then for every x ∈ [0, n],

g{x} ≤ f {x}.
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Proof. As the function g{x} is piecewise linear between integers, it suffices to prove it at integers
k. Let k be an integer and let S be a set of size k for which f (S) = f {k}. As g = Wf ,

g(S) =
∑
a∈V

γ(a, S)f (a).

As the graph is regular, ∑
a∈V

γ(a, S) = k.

Thus, Claim 20.2.2 implies ∑
a∈V

γ(a, S)f (a) ≤ f {k}.

20.4 The proof

Recall that the conductance of a subset of vertices S in a d-regular graph is defined to be

φ(S)
def
=

|∂(S)|
dmin(|S| , n− |S|)

.

Our proof of the main theorem improves the previous argument by exploiting the conductance
through the following lemma.

Lemma 20.4.1. Let S be any set of k vertices. Then∑
a6∈S

γ(a, S) = (φ(S)/2) min(k, n− k).

Proof. For a 6∈ S, γ(a, S) equals half the fraction of the edges from a that land in S. And, the
number of edges leaving S equals dφ(S) min(k, n− k).

Lemma 20.4.2. Let W be the transition matrix of the lazy random walk on a d-regular graph,
and let g = Wf . For every set S of size k with conductance at least φ,

g(S) ≤ 1

2
(f {k − φh}+ f {k + φh}) ,

where h = min(k, n− k).

Proof. To ease notation, define γ(a) = γ(a, S). We prove the theorem by rearranging the formula

g(S) =
∑
a∈V

γ(a)f (a).

Recall that
∑

a∈V γ(a) = k.
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For every vertex a define

α(a) =

{
γ(a)− 1/2 if a ∈ S
0 if a 6∈ S

and β(a) =

{
1/2 if a ∈ S
γ(a) if a 6∈ S.

As α(a) + β(a) = γ(a),

g(S) =
∑
a∈V

α(a)f (a) +
∑
a∈V

β(a)f (a).

We now come to the point in the argument where we exploit the laziness of the random walk,
which manifests as the fact that γ(a) ≥ 1/2 for a ∈ S, and so 0 ≤ α(a) ≤ 1/2 for all a. Similarly,
0 ≤ β(a) ≤ 1/2 for all a. So, we can write∑

a∈V
α(a)f (a) =

1

2

∑
a∈V

(2α(a))f (a), and
∑
a∈V

β(a)f (a) =
1

2

∑
a∈V

(2β(a))f (a)

with all coefficients 2α(a) and 2β(a) between 0 and 1. As∑
a∈V

β(a) =
k

2
+
∑
a6∈S

γ(a),

we can set
z =

∑
a6∈S

γ(a)

and write ∑
a∈V

(2α(a)) = k − 2z and
∑
a∈V

(2β(a)) = k + 2z.

Lemma 20.4.1 implies that
z ≥ φh/2.

By Claim 20.2.2,

g(S) ≤ 1

2
(f {k − z}+ f {k + z}) .

So, Claim 20.2.1 implies

g(S) ≤ 1

2
(f {k − φh}+ f {k + φh}) .

Theorem 20.1.1 follows by applying Lemma 20.4.2 to sets S for which f (S) = f {k}, for each integer
k between 0 and n.

20.5 Andersen’s proof of Cheeger’s inequality

Reid Andersen observed that the technique of Lovàsz and Simonovits can be used to give a new
proof of Cheeger’s inequality. I will state and prove the result for the special case of d-regular
graphs that we consider in this lecture. But, one can of course generalize this to irregular, weighted
graphs.
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Theorem 20.5.1. Let G be a d-regular graph with lazy random walk matrix W , and let ω2 = 1−λ
be the second-largest eigenvalue of W . Then there is a subset of vertices S for which

φ(S) ≤
√

8λ.

Proof. Let ψ be the eigenvector corresponding to ω2. As ψ is orthogonal to the constant vectors,
ψ{n} = 0. Define

k = arg max
0≤k≤n

ψ{k}√
min(k, n− k)

.

Then, set γ to be the maximum value obtained:

γ =
ψ{k}√

min(k, n− k)
.

We will assume without loss of generality that k ≤ n/2: if it is not then we replace ψ by −ψ to
make it so and obtain the same γ. Now, ψ{k} = γ

√
k.

We let S be a set (there is probably only one) for which

ψ(S) = ψ{k}.

As ψ is an eigenvector with positive eigenvalue, we also know that

(Wψ)(S) = Wψ{k}.

We also know that
(Wψ)(S) = (1− λ)ψ(S) = (1− λ)γ

√
k.

Let φ be the conductance of S. Lemma 20.4.2 tells us that

(Wψ)(S) ≤ 1

2
(ψ{k − φk}+ψ{k + φk}) .

By the construction of k and γ at the start of the proof, we know this quantity is at most

1

2

(
γ
√
k − φk + γ

√
k + φk

)
= γ
√
k

1

2

(√
1− φ+

√
1 + φ

)
.

Combining the inequalities derived so far yields

(1− λ) ≤ 1

2

(√
1− φ+ γ

√
1 + φ

)
.

An examination of the Taylor series for the last terms reveals that

1

2

(√
1− φ+ γ

√
1 + φ

)
≤ 1− φ2/8.

This implies λ ≥ φ2/8, and thus φ(S) ≤
√

8λ.
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Spectral Graph Theory Lecture 21

Sparsification by Random Sampling

Daniel A. Spielman November 12, 2018

21.1 Overview

Two weeks ago, we learned that expander graphs are sparse approximations of the complete graph.
This week we will learn that every graph can be approximated by a sparse graph. Today, we will see
how a sparse approximation can be obtained by careful random sampling: every graph on n vertices
has an ε-approximation with only O(ε−2n log n) edges (a result of myself and Srivastava [SS11]).
We will prove this using a matrix Chernoff bound due to Tropp [Tro12].

We originally proved this theorem using a concentration bound of Rudelson [Rud99]. This required
an argument that used sampling with replacement. When I taught this result in 2012, I asked if
one could avoid sampling with replacement. Nick Harvey pointed out to me the argument that
avoids replacement that I am presenting today.

In the next lecture, we will see that the log n term is unnecessary. In fact, almost every graph can
be approximated by a sparse graph almost as well as the Ramanujan graphs approximate complete
graphs.

21.2 Sparsification

For this lecture, I define a graph H to be an ε-approximation of a graph G if

(1− ε)LG 4 LH 4 (1 + ε)LG.

We will show that every graph G has a good approximation by a sparse graph. This is a very
strong statement, as graphs that approximate each other have a lot in common. For example,

1. the effective resistance between all pairs of vertices are similar in the two graphs,

2. the eigenvalues of the graphs are similar,

3. the boundaries of all sets are similar, as these are given by χTSLGχS , and

4. the solutions of linear equations in the two matrices are similar.

We will prove this by using a very simple random construction. We first carefully1 choose a proba-
bility pa,b for each edge (a, b). We then include each edge (a, b) with probabilty pa,b, independently.

1For those who can’t stand the suspense, we reveal that we will choose the probabilities to be proportional to
leverage scores of the edges.

21-1
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If we do include edge (a, b), we give it weight wa,b/pa,b. We will show that our choice of probabilities
ensures that the resulting graph H has at most 4n lnn/ε2 edges and is an ε approximation of G
with high probability.

The reason we employ this sort of sampling–blowing up the weight of an edge by dividing by the
probability that we choose it—is that it preserves the matrix in expectation. Let La,b denote the
elementary Laplacian on edge (a, b) with weight 1, so that

LG =
∑

(a,b)∈E

wa,bLa,b.

We then have that
ELH =

∑
(a,b)∈E

pa,b(wa,b/pa,b)La,b = LG.

21.3 Matrix Chernoff Bounds

The main tool that we will use in our analysis is a theorem about the concentration of random
matrices. These may be viewed as matrix analogs of the Chernoff bound that we saw in Lecture 5.
These are a surprisingly recent development, with the first ones appearing in the work of Rudelson
and Vershynin [Rud99, RV07] and Ahlswede and Winter [AW02]. The best present source for these
bounds is Tropp [Tro12], in which the following result appears as Corollary 5.2.

Theorem 21.3.1. Let X 1, . . . ,Xm be independent random n-dimensional symmetric positive semidef-
inite matrices so that ‖X i‖ ≤ R almost surely. Let X =

∑
iX i and let µmin and µmax be the

minimum and maximum eigenvalues of

E [X ] =
∑
i

E [X i] .

Then,

Pr

[
λmin(

∑
i

X i) ≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

, for 0 < ε < 1, and

Pr

[
λmax(

∑
i

X i) ≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax/R

, for 0 < ε.

It is important to note that the matrices X 1, . . . ,Xm can have different distributions. Also note
that as the norms of these matrices get bigger, the bounds above become weaker. As the expressions
above are not particularly easy to work with, we often use the following approximations.(

e−ε

(1− ε)1−ε

)
≤ e−ε2/2, for 0 < ε < 1, and(

eε

(1 + ε)1+ε

)
≤ e−ε2/3, for 0 < ε < 1.
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Chernoff (and Hoeffding and Bernstein) bounds rarely come in exactly the form you want. Some-
times you can massage them into the needed form. Sometimes you need to prove your own. For
this reason, you may some day want to spend a lot of time reading how these are proved.

21.4 The key transformation

Before applying the matrix Chernoff bound, we make a transformation that will cause µmin =
µmax = 1.

For positive definite matrices A and B , we have

A 4 (1 + ε)B ⇐⇒ B−1/2AB−1/2 4 (1 + ε)I .

The same things holds for singular semidefinte matrices that have the same nullspace:

LH 4 (1 + ε)LG ⇐⇒ L
+/2
G LHL

+/2
G 4 (1 + ε)L

+/2
G LGL

+/2
G ,

where L
+/2
G is the square root of the pseudo-inverse of LG. Let

Π = L
+/2
G LGL

+/2
G ,

which is the projection onto the range of LG. We now know that LG is an ε-approximation of LH
if and only if L

+/2
G LHL

+/2
G is an ε-approximation of Π.

As multiplication by a fixed matrix is a linear operation and expectation commutes with linear
operations,

EL+/2
G LHL

+/2
G = L

+/2
G (ELH)L

+/2
G = EL+/2

G LGL
+/2
G = Π.

So, we really just need to show that this random matrix is probably close to its expectation, Π. It
would probably help to pretend that Π is in fact the identity, as it will make it easier to understand
the analysis. In fact, you don’t have to pretend: you could project all the vectors and matrices
onto the span of Π and carry out the analysis there.

21.5 The probabilities

Let

X a,b =

{
(wa,b/pa,b)L

+/2
G L(a,b)L

+/2
G with probability pa,b

0 otherwise,

so that
L

+/2
G LHL

+/2
G =

∑
(a,b)∈E

X a,b.

We will choose the probabilities to be

pa,b
def
=

1

R
wa,b

∥∥∥L+/2
G L(a,b)L

+/2
G

∥∥∥ ,
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for an R to be chosen later. Thus, when edge (a, b) is chosen, ‖Xa,b‖ = R. Making this value
uniform for every edge optimizes one part of Theorem 21.3.1.

You may wonder what we should do if one of these probabilities pa,b exceeds one. There are many
ways of addressing this issue. For now, pretend that it does not happen. We will then explain how
to deal with this at the end of lecture.

Recall that the leverage score of edge (a, b) written `a,b was defined in Lecture 14 to be the weight
of an edge times the effective resistance between its endpoints:

`a,b = wa,b(δa − δb)
TL+

G(δa − δb).

To see the relation between the leverage score and pa,b, compute

∥∥∥L+/2
G L(a,b)L

+/2
G

∥∥∥ =
∥∥∥L+/2

G (δa − δb)(δa − δb)
TL

+/2
G

∥∥∥
=
∥∥∥(δa − δb)

TL
+/2
G L

+/2
G (δa − δb)

∥∥∥
= (δa − δb)

TL+
G(δa − δb)

= Reff(a, b).

As we can quickly approximate the effective resistance of every edge, we can quickly compute
sufficient probabilities.

Recall that the leverage score of an edge equals the probability that the edge appears in a random
spanning tree. As every spanning tree has n − 1 edges, this means that the sum of the leverage
scores is n− 1, and thus ∑

(a,b)∈E

pa,b =
n− 1

R
≤ n

R
.

This is a very clean bound on the expected number of edges in H. One can use a Chernoff bound
(on real variables rather than matrices) to prove that it is exponentially unlikely that the number
of edges in H is more than any small multiple of this.
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For your convenience, I recall another proof that the sum of the leverage scores is n− 1:∑
(a,b)∈E

`a,b =
∑

(a,b)∈E

wa,bReff(a, b)

=
∑

(a,b)∈E

wa,b(δa − δb)
TL+

G(δa − δb)

=
∑

(a,b)∈E

wa,bTr
(
L+
G(δa − δb)(δa − δb)

T
)

= Tr

 ∑
(a,b)∈E

L+
Gwa,b(δa − δb)(δa − δb)

T


= Tr

L+
G

∑
(a,b)∈E

wa,bLa,b


= Tr

(
L+
GLG

)
= Tr (Π)

= n− 1.

21.6 The analysis

We will choose

R =
ε2

3.5 lnn
.

Thus, the number of edges in H will be at most 4(lnn)ε−2 with high probability.

We have ∑
(a,b)∈E

EX a,b = Π.

It remains to show that it is unlikely to deviate from this by too much.

We first consider the case in which p(a,b) ≤ 1 for all edges (a, b). If this is the case, then Theorem
21.3.1 tells us that

Pr

∑
a,b

X a,b ≥ (1 + ε)Π

 ≤ n exp
(
−ε2/3R

)
= n exp (−(3.5/3) lnn) = n−1/6.

For the lower bound, we need to remember that we can just work orthogonal to the all-1s vector,
and so treat the smallest eigenvalue of Π as 1. We then find that

Pr

∑
a,b

X a,b ≤ (1− ε)Π

 ≤ n exp
(
−ε2/2R

)
= n exp (−(3.5/2) lnn) = n−3/2,
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We finally return to deal with the fact that there might be some edges for which pa,b ≥ 1 and
so definitely appear in H. There are two natural ways to deal with these—one that is easiest
algorithmically and one that simplifies the proof. The algorithmically natural way to handle these
is to simply include these edges in H, and remove them from the analysis above. This requires a
small adjustment to the application of the Matrix Chernoff bound, but it does go through.

From the perspective of the proof, the simplest way to deal with these is to split each such X a,b

into many independent random edges: k = b`a,b/Rc that appear with probability exactly 1, and
one more that appears with probability `a,b/R − k. This does not change the expectation of their
sum, or the expected number of edges once we remember to add together the weights of edges that
appear multiple times. The rest of the proof remains unchanged.

21.7 Open Problem

If I have time in class, I will sketch a way to quickly approximate the effective resistances of every
edge in the graph. The basic idea, which can be found in [SS11] and which is carried out better
in [KLP12], is that we can compute the effective resistance of an edge (a, b) from the solution
to a logarithmic number of systems of random linear equations in LG. That is, after solving a
logarithmic number of systems of linear equations in LG, we have information from which we can
estimates all of the effective resistances.

In order to sparsify graphs, we do not actually need estimates of effective resistances that are always
accurate. We just need a way to identify many edges of low effective resistance, without listing
any that have high effective resistance. I believe that better algorithms for doing this remain to be
found. Current fast algorithms that make progress in this direction and that exploit such estimates
may be found in [KLP12, Kou14, CLM+15, LPS15]. These, however, rely on fast Laplacian equation
solvers. It would be nice to be able to estimate effective resistances without these. A step in this
direction was recently taken in the works [CGP+18, LSY18], which quickly decompose graphs into
the union of short cycles plus a few edges.
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Spectral Graph Theory Lecture 22

Linear Sized Sparsifiers

Daniel A. Spielman November 14, 2018

22.1 Overview

In this lecture, we will prove a slight simplification of the main result of [BSS12, BSS14]. This will
tell us that every graph with n vertices has an ε-approximation with approximately 4ε−2n edges.
To translate this into a relation between approximation quality and average degree, note that such
a graph has average degree dave = 8ε−2. So,

ε ≈ 2
√

2√
d
,

which is about twice what you would get from a Ramanujan graph. Interestingly, this result even
works for average degree just a little bit more than 1.

22.2 Turning edges into vectors

In the last lecture, we considered the Laplacian matrix of a graph G times the square root of the
pseudoinverse on either side. That is,

L
+/2
G

 ∑
(a,b)∈E

wa,bL(a,b)

L
+/2
G .

Today, it will be convenient to view this as a sum of outer products of vectors. Set

v (a,b) =
√
wa,bL

+/2
G (δa − δb).

Then,

L
+/2
G

 ∑
(a,b)∈E

wa,bL(a,b)

L
+/2
G =

∑
(a,b)∈E

v (a,b)v
T
(a,b) = Π,

where we recall that Π = 1
nLKn is the projection orthogonal to the constant vectors.

The problem of sparsification is then the problem of finding a small subset of these vectors, S ⊆ E,
along with scaling factors, c : S → IR, so that

(1− ε)Π 4
∑

(a,b)∈S

ca,bv (a,b)v
T
(a,b) 4 (1 + ε)Π

22-1



Lecture 22: November 14, 2018 22-2

If we project onto the span of the Laplacian, then the sum of the outer products of vectors v (a,b)

becomes the identity, and our goal is to find a set S and scaling factors ca,b so that

(1− ε)I 4
∑

(a,b)∈S

ca,bv (a,b)v
T
(a,b) 4 (1 + ε)I .

That is, so that all the eigenvalues of the matrix in the middle lie between (1− ε) and (1 + ε).

22.3 The main theorem

Theorem 22.3.1. Let v1, . . . , vm be vectors in IRn so that∑
i

v iv
T
i = I .

Then, for every ε > 0 there exists a set S along with scaling factors ci so that

(1− ε)2I 4
∑
i∈S

civ iv
T
i 4 (1 + ε)2I ,

and
|S| ≤

⌈
n/ε2

⌉
.

The condition that the sum of the outer products of the vectors sums to the identity has a name,
isotropic position. I now mention one important property of vectors in isotropic position

Lemma 22.3.2. Let v1, . . . , vm be vectors in isotropic position. Then, for every matrix M ,∑
i

vTi Mv i = Tr (M ) .

Proof. We have
vTMv = Tr

(
vvTM

)
,

so ∑
i

vTi Mv i =
∑
i

Tr
(
v iv

T
i M

)
= Tr

((∑
i

v iv
T
i

)
M

)
= Tr (IM ) = Tr (M ) .

Today, we will prove that we can find a set of 6n vectors for which all eigenvalues lie between 1n
and 13n. If you divide all scaling factors by

√
13n, this puts the eigenvalues between 1/

√
13 and√

13. You can tighten the argument to prove Theorem 22.3.1.

We will prove this theorem by an iterative argument in which we choose one vector at a time to
add to the set S. We will set the scaling factor of a vector when we add it to S. It is possible that
we will add a vector to S more than once, in which case we will increase its scaling factor each
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time. Throughout the argument we will maintain the invariant that the eigenvalues of the scaled
sum of outer produces is in the interval [l, u], where l and u are quantities that will change with
each addition to S. At the start of the algorithm, when S is empty, we will have

l0 = −n and u0 = n.

Every time we add a vector to S, we increase l by δL and u by δU , where

δL = 1/3 and δU = 2.

After we have done this 6n times, we will have l = n and u = 13n.

22.4 Rank-1 updates

We will need to understand what happens to a matrix when we add the outer product of a vector.

Theorem 22.4.1 (Sherman-Morrison). Let A be a nonsingular symmetric matrix and let v be a
vector and let c be a real number. Then,

(A− cvvT )−1 = A−1 + c
A−1vvTA−1

1− cvTA−1v
.

Proof. The easiest way to prove this is to multiply it out, gathering vTA−1v terms into scalars:

(A− cvvT )

(
A−1 + c

A−1vvTA−1

1− cvTA−1v

)
= I − cvvTA−1 + c

vvTA−1

1− cvTA−1v
− c2vv

TA−1vvTA−1

1− cvTA−1v

= I − cvvTA−1
(

1− 1

1− cvTA−1v
+

cvTAv

1− cvTA−1v

)
= I .

22.5 Barrier Function Arguments

To prove the main theorem we need a good way to measure progress. We would like to keep all the
eigenvalues of the matrix we have constructed at any point to lie in a nice range. But, more than
that, we need them to be nicely distributed within this range. To enforce this, we need to measure
how close the eigenvalues are to the limits.

Let A be a symmetric matrix with eigenvalues λ1 ≤ . . . ≤ λn. If u is larger than all of the
eigenvalues of A, then we call u an upper bound on A. To make this notion quantitive, we define
the upper barrier function

Φu(A) =
∑
i

1

u− λi
.
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This is positive for all upper bounds u, goes to infinity as u approaches the largest eigenvalue,
decreases as u grows, and is convex for u > λn. In particular, we will use

Φu+δ(A) < Φu(A), for δ > 0. (22.1)

Also, observe that
λn ≤ u− 1/Φu(A). (22.2)

We will exploit the following formula for the upper barrier function:

Φu(A) = Tr
(
(uI −A)−1

)
.

For a lower bound on the eigenvalues l, we will define an analogous lower barrier function

Φl(A) =
∑
i

1

λi − l
= Tr

(
(A− lI )−1

)
.

This is positive whenever l is smaller than all the eigenvalues, goes to infinity as l approaches the
smallest eigenvalue, and decreases as l becomes smaller. In particular,

l + 1/Φl(A) ≤ λ1. (22.3)

The analog of (22.1) is the following.

Claim 22.5.1. Let l be a lower bound on A and let δ < 1/Φl(A). Then,

Φl+δ(A) ≤ 1

1/Φl(A)− δ
.

Note that this inequality is an equality when A is one-dimensional. In that case,

1

λ1 − l − δ
=

1

1/(1/λ1 − l)− δ
.

Proof. After rearranging terms, we see that the inequality is equivalent to

Φl+δ(A)− Φl(A) ≤ δΦl+δ(A)Φl(A).

We then prove this by expanding in the eigenvalues, keeping in mind that all the terms λi − l − δ
are positive:

Φl+δ(A)− Φl(A) =
∑
i

1

λi − l − δ
−
∑
i

1

λi − l

=
∑
i

δ

(λi − l − δ)(λi − l)

≤ δ

(∑
i

1

(λi − l − δ)

)(∑
i

1

(λi − l)

)
.

Initially, we will have

Φl0(0) = Φ−n(0) = 1 and Φu0(0) = Φn(0) = 1.
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22.6 Barrier Function Updates

The most important thing to understand about the barrier functions is how they change when we
add a vector to S. The Sherman-Morrison theorem tells us that happens when we change A to
A + cvvT :

Φu(A + cvvT ) = Tr
(
(uI −A− cvvT )−1

)
= Tr

(
(uI −A)−1

)
+ c

Tr
(
(uI −A)−1vvT (uI −A)−1

)
1− cvT (uI −A)−1v

= Φu(A) + c
Tr
(
vT (uI −A)−1(uI −A)−1v

)
1− cvT (uI −A)−1v

= Φu(A) + c
vT (uI −A)−2v

1− cvT (uI −A)−1v
.

This increases the upper barrier function, and we would like to counteract this increase by increasing
u at the same time. If we advance u to û = u+ δU , then we find

Φu+δU (A + cvvT ) = Φu+δU (A) + c
vT (ûI −A)−2v

1− cvT (ûI −A)−1v

= Φu(A)−
(

Φu(A)− Φu+δU (A)
)

+
vT (ûI −A)−2v

1/c− vT (ûI −A)−1v
.

We would like for this to be less than Φu(A). If we commit to how much we are going to increase
u, then this gives an upper bound on how large c can be. We want(

Φu(A)− Φu+δU (A)
)
≥ vT (ûI −A)−2v

1/c− vT (ûI −A)−1v
,

which is equivalent to

1

c
≥ vT (ûI −A)−2v

(Φu(A)− Φu+δU (A))
+ vT (ûI −A)−1v .

Define

UA =
((u+ δu)I −A)−2

(Φu(A)− Φu+δU (A))
+ ((u+ δu)I −A)−1.

We have established a clean condition for when we can add cvvT to S and increase u by δU without
increasing the upper barrier function.

Lemma 22.6.1. If
1

c
≥ vTUAv ,

then
Φu+δU (A + cvvT ) ≤ Φu(A).
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The miracle in the above formula is that the condition in the lemma just involves the vector v as
the argument of a quadratic form.

We also require the following analog for the lower barrier function. The difference is that increasing
l by setting l̂ = l + δL increases the barrier function, and adding a vector decreases it.

Lemma 22.6.2. Define

LA =
(A− l̂I )−2

(Φl+δL(A)− Φl(A))
− (A− l̂I )−1.

If
1

c
≤ vTLAv ,

then
Φl+δL(A + cvvT ) ≤ Φl(A).

If we fix the vector v and an increment δL, then this gives a lower bound on the scaling factor by
which we need to multiply it for the lower barrier function not to increase.

22.7 The inductive argument

It remains to show that there exits a vector v and a scaling factor c so that

Φu+δU (A + cvvT ) ≤ Φu(A) and Φl+δL(A + cvvT ) ≤ Φl(A).

That is, we need to show that there is a vector v i so that

vTi UAv i ≤ vTi LAv i.

Once we know this, we can set c so that

vTi UAv i ≤
1

c
≤ vTi LAv i.

Lemma 22.7.1. ∑
i

vTi UAv i ≤
1

δU
+ Φu(A).

Proof. By Lemma 22.3.2, we know ∑
i

vTi UAv i = Tr (UA) .

To bound this, we break it into two parts

Tr
(
(ûI −A)−2

)
(Φu(A)− Φu+δU (A))
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and
Tr
(
(ûI −A)−1

)
.

The second term is easiest

Tr
(
(ûI −A)−1

)
= Φu+δ(A) ≤ Φu(A).

To bound the first term, consider the derivative of the barrier function with respect to u:

∂

∂u
Φu(A) =

∂

∂u

∑
i

1

u− λi
= −

∑
i

(
1

u− λi

)2

= −Tr (uI −A)−2 .

As Φu(A) is convex in u, we may conclude that

Φu(A)− Φu+δU (A) ≥ −δU
∂

∂u
Φu+δu(A) = δUTr (ûI −A)−2 .

The analysis for the lower barrier is similar, but the second term is slightly more complicated.

Lemma 22.7.2. ∑
i

vTi LAv i ≥
1

δL
− 1

1/Φl(A)− δL
.

Proof. As before, we bound

Tr
(

(A− (l + δLI ))−2
)

Φl+δL(A)− Φl(A)

by recalling that
∂

∂l
Φl(A) = Tr (A− lI )−2 .

As Φl(A) is convex in l, we have

Φl+δL(A)− Φl(A) ≤ δL
∂

∂l
Φl+δL(A) = δLTr (A− (l + δL)I )−2 .

To bound the other term, we use Claim 22.5.1 to prove

Tr
(
(A− (l + δLI )−1

)
≤ 1

1/Φl(A)− δL
.

So, for there to exist a v i that we can add to S with scale factor c so that neither barrier function
increases, we just need that

1

δU
+ Φu(A) ≤ 1

δL
− 1

1/Φl(A)− δ
.
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If this holds, then there is a v i so that

v iUAv i ≤ v iLAv i.

We then set c so that

v iUAv i ≤
1

c
≤ v iLAv i.

We now finish the proof by checking that the numbers I gave earlier satisfy the necessary conditions.
At the start both barrier functions are less than 1, and we need to show that this holds throughout
the algorithm. At every step, we will have by induction

1

δU
+ Φu(A) ≤ 1

2
+ 1 =

3

2
,

and
1

δL
− 1

1/Φl(A)− δL
≥ 3− 1

1− 1/3
=

3

2
.

So, there is always a v i that we can add to S and a scaling factor c so that both barrier function
remain upper bounded by 1.

If we now do this for 6n steps, we will have

l = −n+ 6n/3 = n and u = n+ 2 · 6n = 13n.

The bound stated at the beginning of the lecture comes from tightening the analysis. In particular,
it is possible to improve Lemma 22.7.2 so that it says∑

i

vTi LAv i ≥
1

δL
− 1

1/Φl(A)
.

I recommend the paper for details.

22.8 Progress and Open Problems

• It is possible to generalize this result to sums of positive semidefinite matrices, instead of
outer products of vectors [dCSHS11].

• It is now possible to compute sparsifiers that are almost this good in something close to linear
time. [AZLO15, LS15].

• Given last lecture, it seems natural to conjecture that the scaling factors of edges should
be proportional to their weights times effective resistances. Similarly, one might conjecture
that if all vectors v i have the same norm, then the scaling factors are unnecessary. This
is true, but not obvious. In fact, it is essentially equivalent to the Kadison-Singer problem
[MSS14, MSS15].
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Spectral Graph Theory Lecture 23

Iterative solvers for linear equations

Daniel A. Spielman November 26, 2018

23.1 Overview

In this and the next lecture, I will discuss iterative algorithms for solving linear equations in positive
semidefinite matrices, with an emphasis on Laplacians. Today’s lecture will cover Richardson’s
first-order iterative method and the Chebyshev method.

23.2 Why iterative methods?

One is first taught to solve linear systems like

Ax = b

by direct methods such as Gaussian elimination, computing the inverse of A, or the LU factorization.
However, all of these algorithms can be very slow. This is especially true when A is sparse. Just
writing down the inverse takes O(n2) space, and computing the inverse takes O(n3) time if we do
it naively. This might be OK if A is dense. But, it is very wasteful if A only has O(n) non-zero
entries.

In general, we prefer algorithms whose running time is proportional to the number of non-zero
entries in the matrix A, and which do not require much more space than that used to store A.

Iterative algorithms solve linear equations while only performing multiplications by A, and per-
forming a few vector operations. Unlike the direct methods which are based on elimination, the
iterative algorithms do not find exact solutions. Rather, they get closer and closer to the solution
the longer they work. The advantage of these methods is that they need to store very little, and
are often much faster than the direct methods. When A is symmetric, the running times of these
methods are determined by the eigenvalues of A.

Throughout this lecture we will assume that A is positive definite or positive semidefinite.

23.3 First-Order Richardson Iteration

To get started, we will examine a simple, but sub-optimal, iterative method, Richardson’s iteration.
The idea of the method is to find an iterative process that has the solution to Ax = b as a fixed

23-1
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point, and which converges. We observe that if Ax = b, then for any α,

αAx = αb, =⇒
x + (αA− I)x = αb, =⇒

x = (I − αA)x + αb.

This leads us to the following iterative process:

x t = (I − αA)x t−1 + αb, (23.1)

where we will take x 0 = 0. We will show that this converges if

I − αA

has norm less than 1, and that the convergence rate depends on how much the norm is less than 1.
This is analogous to our analysis of random walks on graphs.

As we are assuming A is symmetric, I −αA is symmetric as well, and so its norm is the maximum
absolute value of its eigenvalues. Let 0 < λ1 ≤ λ2 . . . ≤ λn be the eigenvalues of A. Then, the
eigenvalues of I − αA are

1− αλi,

and the norm of I − αA is

max
i
|1− αλi| = |max (1− αλ1, 1− αλn)| .

This is minimized by taking

α =
2

λn + λ1
,

in which case the smallest and largest eigenvalues of I − αA become

±λn − λ1
λn + λ1

,

and the norm of I − αA becomes

1− 2λ1
λn + λ1

.

While we might not know λn+λ1, a good guess is often sufficient. If we choose an α < 2/(λn+λ1),
then the norm of I − αA is at most

1− αλ1.

To show that x t converges to the solution, x , consider x − x t. We have

x − x t = ((I − αA)x + αb)−
(
(I − αA)x t−1 + αb

)
= (I − αA)(x − x t−1).

So,
x − x t = (I − αA)t(x − x 0) = (I − αA)tx .
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and ∥∥x − x t
∥∥ =

∥∥(I − αA)tx
∥∥ ≤ ∥∥(I − αA)t

∥∥ ‖x‖
= ‖(I − αA)‖t ‖x‖

≤
(

1− 2λ1
λn + λ1

)t
‖x‖ .

≤ e−2λ1t/(λn+λ1) ‖x‖ .

So, if we want to get a solution x t with ∥∥x − x t
∥∥

‖x‖
≤ ε,

it suffices to run for
λn + λ1

2λ1
ln(1/ε) =

(
λn
2λ1

+
1

2

)
ln(1/ε).

iterations. The term
λn
λ1

is called the condition number1 of the matrix A, when A is symmetric. It is often written κ(A),
and the running time of iterative algorithms is often stated in terms of this quantity. We see that
if the condition number is small, then this algorithm quickly provides an approximate solution.

23.4 A polynomial approximation of the inverse

I am now going to give another interpretation of Richardson’s iteration. It provides us with a
polynomial in A that approximates A−1. In particular, the tth iterate, x t can be expressed in the
form

pt(A)b,

where pt is a polynomial of degree t.

We will view pt(A) as a good approximation of A−1 if∥∥Apt(A)− I
∥∥

is small. From the formula defining Richardson’s iteration (23.1), we find

x 0 = 0,

x 1 = αb,

x 2 = (I − αA)αb + αb,

x 3 = (I − αA)2αb + (I − αA)αb + αb, and

x t =
t∑
i=0

(I − αA)iαb.

1For general matrices, the condition number is defined to be the ratio of the largest to smallest singular value.
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To get some idea of why this should be an approximation of A−1, consider what we get if we let
the sum go to infinity. Assuming that the infinite sum converges, we have

α
∞∑
i=0

(I − αA)i = α (I − (I − αA))−1 = α(αA)−1 = A−1.

So, the Richardson iteration can be viewed as a truncation of this infinite summation.

In general, a polynomial pt will enable us to compute a solution to precision ε if∥∥pt(A)b − x
∥∥ ≤ ε ‖x‖ .

As b = Ax , this is equivalent to ∥∥pt(A)Ax − x
∥∥ ≤ ε ‖x‖ ,

which is equivalent to ∥∥Apt(A)− I
∥∥ ≤ ε

23.5 Better Polynomials

This leads us to the question of whether we can find better polynomial approximations to A−1.
The reason I ask is that the answer is yes! As A, pt(A) and I all commute, the matrix

Apt(A)− I

is symmetric and its norm is the maximum absolute value of its eigenvalues. So, it suffices to find
a polynomial pt such that ∣∣λipt(λi)− 1

∣∣ ≤ ε,
for all eigenvalues λi of A.

To reformulate this, define
qt(x) = 1− xp(x).

Then, it suffices to find a polynomial qt of degree t+ 1 for which

qt(0) = 1, and∣∣qt(x)
∣∣ ≤ ε, for λ1 ≤ x ≤ λn.

We will see that there are polynomials of degree

ln(2/ε)
(√

λn/λ1 + 1
)
/2

that satisfy these conditions and thus allow us to compute solutions of accuracy ε. In terms of the
condition number of A, this is a quadratic improvement over Richardson’s first-order method.
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Theorem 23.5.1. For every t ≥ 1, and 0 < λmin ≤ λmax, there exists a polynomial qt(x) such
that

1.
∣∣qt(x)

∣∣ ≤ ε , for λmin ≤ x ≤ λmin, and
2. qt(0) = 1,

for
ε ≤ 2(1 + 2/

√
κ)−t ≤ 2e−2t/

√
κ,

where

κ =
λmax
λmin

.

23.6 Chebyshev Polynomials

I’d now like to explain how we find these better polynomials. The key is to transform one of the
most fundamental polynomials: the Chebyshev polynomials. These polynomials are as small as
possible on [−1, 1], and grow quickly outside this interval. We will translate the interval [−1, 1] to
obtain the polynomials we need.

The tth Chebyshev polynomial, Tt(x) has degree t, and may be defined by setting

T0(x) = 1, T1(x) = 2x− 1,

and for t ≥ 2
Tt(x) = 2xTt−1(x)− Tt−2(x).

These polynomials are best understood by realizing that they are the polynomials for which

cos(tθ) = Tt(cos(θ)) and cosh(tθ) = Tt(cosh(θ)).

It might not be obvious that one can express cos(tθ) as a polynomial in cos(θ). To see this, and
the correctness of the above formulas, recall that

cos(θ) =
1

2

(
eiθ + e−iθ

)
, and cosh(θ) =

1

2

(
eθ + e−θ

)
.

To verify that these satisfy the stated recurrences, compute

1

2

(
eθ + e−θ

)(
e(t−1)θ + e−(t−1)θ

)
− 1

2

(
e(t−2)θ + e−(t−2)θ

)
=

1

2

(
e(tθ + e−tθ

)
+

1

2

(
e(t−2)θ + e−(t−2)θ

)
− 1

2

(
e(t−2)θ + e−(t−2)θ

)
=

1

2

(
e(tθ + e−tθ

)
.

Claim 23.6.1. For x ∈ [−1, 1], |Tt(x)| ≤ 1.
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Proof. For x ∈ [−1, 1], there is a θ so that cos(θ) = x. We then have Tt(x) = cos(tθ), which must
also be between −1 and 1.

To compute the values of the Chebyshev polymomials outside [−1, 1], we use the hyperbolic cosine
function. Hyperbolic cosine maps the real line to [1,∞] and is symmetric about the origin. So, the
inverse of hyperbolic cosine may be viewed as a map from [1,∞] to [0,∞], and satisfies

acosh(x) = ln
(
x+

√
x2 − 1

)
, for x ≥ 1.

Claim 23.6.2. For γ > 0,
Tt(1 + γ) ≥ (1 +

√
2γ)t/2.

Proof. Setting x = 1 + γ, we compute

Tt(x) =
1

2

(
et acosh(x) + e−t acosh(x)

)
≥ 1

2

(
et acosh(x)

)
=

1

2
(x+

√
x2 − 1)t

=
1

2
(1 + γ +

√
(1 + γ)2 − 1)t

=
1

2
(1 + γ +

√
2γ + γ2)t

≥ 1

2
(1 +

√
2γ)t.

23.7 Proof of Theorem 23.5.1

We will exploit the following properties of the Chebyshev polynomials:

1. Tt has degree t.

2. Tt(x) ∈ [−1, 1], for x ∈ [−1, 1].

3. Tt(x) is monotonically increasing for x ≥ 1.

4. Tt(1 + γ) ≥ (1 +
√

2γ)t/2, for γ > 0.

To express qt(x) in terms of a Chebyshev polynomial, we should map the range on which we want
p to be small, [λmin, λmax] to [−1, 1]. We will accomplish this with the linear map:

l(x)
def
=

λmax + λmin − 2x

λmax − λmin
.
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Note that

l(x) =


−1 if x = λmax

1 if x = λmin
λmax+λmin
λmax−λmin

if x = 0.

To guarantee that the constant coefficient in qt(x) is one (qt(0) = 1), we should set

qt(x)
def
=

Tt(l(x))

Tt(l(0))
.

We know that |Tt(l(x))| ≤ 1 for x ∈ [λmin, λmax]. To find q(x) for x in this range, we must compute
Tt(l(0)). We have

l(0) ≥ 1 + 2/κ(A),

and so by properties 3 and 4 of Chebyshev polynomials,

Tt(l(0)) ≥ (1 + 2/
√
κ)t/2.

Thus,
q(x) ≤ 2(1 + 2/

√
κ)−t,

for x ∈ [λmin, λmax], and so all eigenvalues of q(A) will have absolute value at most 2(1 + 2/
√
κ)−t.

23.8 Laplacian Systems

One might at first think that these techniques do not apply to Laplacian systems, as these are
always singular. However, we can apply these techniques without change if b is in the span of
L. That is, if b is orthogonal to the all-1s vector and the graph is connected. In this case the
eigenvalue λ1 = 0 has no role in the analysis, and it is replaced by λ2. One way of understanding
this is to just view L as an operator acting on the space orthogonal to the all-1s vector.

By considering the example of the Laplacian of the path graph, one can show that it is impossible
to do much better than the

√
κ iteration bound that I claimed at the end of the last section. To

see this, first observe that when one multiplies a vector x by L, the entry (Lx )(i) just depends on
x (i−1),x (i), and x (i+1). So, if we apply a polynomial of degree at most t, x t(i) will only depend
on b(j) with i− t ≤ j ≤ i+ t. This tells us that we will need a polynomial of degree on the order
of n to solve such a system.

On the other hand,
√
λn/λ2 is on the order of n as well. So, we should not be able to solve the

system with a polynomial whose degree is significantly less than
√
λn/λ2.

23.9 Warning

The polynomial-based approach that I have described here only works in infinite precision arith-
metic. In finite precision arithmetic one has to be more careful about how one implements these
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algorithms. This is why the descriptions of methods such as the Chebyshev method found in Nu-
merical Linear Algebra textbooks are more complicated than that presented here. The algorithms
that are actually used are mathematically identical in infinite precision, but they actually work.
The problem with the naive implementations are the typical experience: in double-precision arith-
metic the polynomial approach to Chebyshev will fail to solve linear systems in random positive
definite matrices in 60 dimensions!

References
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Preconditioning Laplacians

Daniel A. Spielman November 28, 2018

A preconditioner for a positive semidefinite matrix A is a positive semidefinite matrix B such that
it is easy to solve systems of linear equations in B and the condition number of B−1A is small. A
good preconditioner allows one to quickly solve systems of equations in A.

In this lecture, we will measure the quality of preconditioners in terms of the ratio

κ(A,B)
def
= β/α,

where α is the largest number and β is the smallest such that

αB 4 A 4 βB .

Lemma 24.0.1. Let α and β be as defined above. Then, α and β are the smallest and largest
eigenvalues of B−1A, excluding possible zero eigenvalues corresponding to a common nullspace of
A and B .

We need to exclude the common nullspace when A and B are the Laplacian matrices of connected
graphs. If these matrices have different nullspaces α = 0 or β =∞ and the condition number β/α
is infinite.

Proof of Lemma 24.0.1. We just prove the statement for β, in the case where neither matrix is
singular. We have

λmax(B−1A) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xTx

= max
y

yTAy

yTBy
, settting y = B−1/2x ,

which equals β.

Recall that the eigenvalues of B−1A are the same as those of B−1/2AB−1/2 and A1/2B−1A1/2.

24.1 Approximate Solutions

Recall the A-norm:
‖x‖A =

√
xTAx =

∥∥∥A1/2x
∥∥∥ .

We say that x̃ is an ε-approximate solution to the problem Ax = b if

‖x̃ − x‖A ≤ ε ‖x‖A .

24-1
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24.2 Iterative Refinement

We will now see how to use a very good preconditioner to solve a system of equations. Let’s consider
a preconditioner B that satisfies

(1− ε)B 4 A 4 (1 + ε)B .

So, all of the eigenvalues of
A1/2B−1A1/2 − I

have absolute value at most ε.

The vector B−1b is a good approximation of x in the A-norm. We have∥∥B−1b − x
∥∥
A

=
∥∥∥A1/2B−1b −A1/2x

∥∥∥
=
∥∥∥A1/2B−1Ax −A1/2x

∥∥∥
=
∥∥∥A1/2B−1A1/2(A1/2x )−A1/2x

∥∥∥
≤
∥∥∥A1/2B−1A1/2 − I

∥∥∥∥∥∥A1/2x
∥∥∥

≤ ε
∥∥∥A1/2x

∥∥∥
= ε ‖x‖A .

Remark: This result crucially depends upon the use of the A-norm. It fails under the Euclidean
norm.

If we want a better solution, we can just compute the residual and solve the problem in the residual.
That is, we set

x 1 = B−1b,

and compute
r1 = b −Ax 1 = A(x − x 1).

We then use one solve in B to compute a vector x 2 such that

‖(x − x 1)− x 2‖A ≤ ε ‖x − x 1‖A ≤ ε
2 ‖x‖A .

So, x 1 + x 2, our new estimate of x , differs from x by at most an ε2 factor. Continuing in this way,
we can find an εk approximation of x after solving k linear systems in B . This procedure is called
iterative refinement.

24.3 Iterative Methods in the Matrix Norm

The iterative methods we studied last class can also be shown to produce good approximate so-
lutions in the matrix norm. Given a matrix A, these produce ε-approximation solutions after t
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iterations if there is a polynomial q of degree t for which q(0) = 1 and |q(λi)| ≤ ε for all eigenvalues
of A. To see this, recall that we can define p(x) so that q(x) = 1− xp(x), and set

x̃ = p(A)b,

to get
‖x̃ − x‖A = ‖p(A)b − x‖A = ‖p(A)Ax − x‖A .

As I , A, p(A) and A1/2 all commute, this equals∥∥∥A1/2p(A)Ax −A1/2x
∥∥∥ =

∥∥∥p(A)AA1/2x −A1/2x
∥∥∥

≤ ‖p(A)A− I ‖
∥∥∥A1/2x

∥∥∥
≤ ε ‖x‖A .

24.4 Preconditioned Iterative Methods

Preconditioned iterative methods can be viewed as the extension of Iterative Refinement by algo-
rithms like Chebyshev iteration and the Preconditioned Conjugate Gradient. These usually work
with condition numbers much larger than 2.

In each iteration of a preconditioned method we will solve a system of equations in B , multiply a
vector by A, and perform a constant number of other vector operations. For this to be worthwhile,
the cost of solving equations in B has to be low.

We begin by seeing how the analysis with polynomials translates. Let λi be the ith eigenvalue of
B−1A. If qt(x) = 1− xpt(x) is a polynomial such that |qt(λi)| ≤ ε for all i, then

x t
def
= pt(B

−1A)B−1b

will be an ε-approximate solution to Ax = b:

‖x − x t‖A =
∥∥∥A1/2x −A1/2x t

∥∥∥
=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1b
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1Ax
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1A1/2(A1/2x )
∥∥∥

≤
∥∥∥I −A1/2pt(B

−1A)B−1A1/2
∥∥∥∥∥∥(A1/2x )

∥∥∥ .
We now prod this matrix into a more useful form:

I −A1/2pt(B
−1A)B−1A1/2 = I − pt(A1/2B−1A1/2)A1/2B−1A1/2 = qt(A

1/2B−1A1/2).

So, we find

‖x − x t‖A ≤
∥∥∥qt(A1/2B−1A1/2)

∥∥∥∥∥∥(A1/2x )
∥∥∥ ≤ ε ‖x‖A .
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The Preconditioned Conjugate Gradient (PCG) is a magical algorithm that after t steps (each of
which involves solving a system in B , multiplying a vector by A, and performing a constant number
of vector operations) produces the vector x t that minimizes

‖x t − x‖A

over all vectors x t that can be written in the form pt(b) for a polynomial of degree at most t.
That is, the algorithm finds the best possible solution among all iterative methods of the form
we have described. We first bound the quality of PCG by saying that it is at least as good as
Preconditioned Chebyshev, but it has the advantage of not needing to know α and β. We will then
find an improved analysis.

24.5 Preconditioning by Trees

Vaidya [Vai90] had the remarkable idea of preconditioning the Laplacian matrix of a graph by the
Laplacian matrix of a subgraph. If H is a subgraph of G, then

LH 4 LG,

so all eigenvalues of L−1H LG are at least 1. Thus, we only need to find a subgraph H such that LH
is easy to invert and such that the largest eigenvalue of L−1H LG is not too big.

It is relatively easy to show that linear equations in the Laplacian matrices of trees can be solved
exactly in linear time. One can either do this by finding an LU -factorization with a linear number
of non-zeros, or by viewing the process of solving the linear equation as a dynamic program that
passes up once from the leaves of the tree to a root, and then back down.

We will now show that a special type of tree, called a low-stretch spanning tree provides a very
good preconditioner. To begin, let T be a spanning tree of G. Write

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T .

We will actually consider the trace of L−1T LG. As the trace is linear, we have

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T Lu,v

)
=

∑
(u,v)∈E

wu,vTr
(
L−1T (χu − χv)(χu − χv)

T
)

=
∑

(u,v)∈E

wu,vTr
(
(χu − χv)

TL−1T (χu − χv)
)

=
∑

(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv).

To evaluate this last term, we need to know the value of (χu − χv)
TL−1T (χu − χv). You already

know something about it: it is the effective resistance in T between u and v. In a tree, this equals
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the distance in T between u and v, when we view the length of an edge as the reciprocal of its
weight. This is because it is the resistance of a path of resistors in series. Let T (u, v) denote the
path in T from u to v, and let w1, . . . , wk denote the weights of the edges on this path. As we view
the weight of an edge as the reciprocal of its length,

(χu − χv)
TL−1T (χu − χv) =

k∑
i=1

1

wi
. (24.1)

Even better, the term (24.1) is something that has been well-studied. It was defined by Alon, Karp,
Peleg and West [AKPW95] to be the stretch of the unweighted edge (u, v) with respect to the tree
T . Moreover, the stretch of the edge (u, v) with weight wu,v with respect to the tree T is defined
to be exactly

wu,v

k∑
i=1

1

wi
,

where again w1, . . . , wk are the weights on the edges of the unique path in T from u to v. A
sequence of works, begining with [AKPW95], has shown that every graph G has a spanning tree
in which the sum of the stretches of the edges is low. The best result so far is due to [AN12], who
prove the following theorem.

Theorem 24.5.1. Every weighted graph G has a spanning tree subgraph T such that the sum of
the stretches of all edges of G with respect to T is at most

O(m log n log log n),

where m is the number of edges G. Moreover, one can compute this tree in time O(m log n log logn).

Thus, if we choose a low-stretch spanning tree T , we will ensure that

Tr
(
L−1T LG

)
=

∑
(u,v)∈E

wu,v(χu − χv)
TL−1T (χu − χv) ≤ O(m log n log log n).

In particular, this tells us that λmax(L−1T LG) is at most O(m log n log log n), and so the Precon-
ditioned Conjugate Gradient will require at most O(m1/2 log n) iterations, each of which requires
one multiplication by LG and one linear solve in LT . This gives an algorithm that runs in time
O(m3/2 log n log 1/ε), which is much lower than the O(n3) of Gaussian elimination when m, the
number of edges in G, is small.

This result is due to Boman and Hendrickson [BH01].

24.6 Improving the Bound on the Running Time

We can show that the Preconditioned Conjugate Gradient will actually run in closer to O(m1/3)
iterations. Since the trace is the sum of the eigenvalues, we know that for every β > 0, L−1T LG has
at most

Tr
(
L−1T LG

)
/β
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eigenvalues that are larger than β.

To exploit this fact, we use the following lemma. It basically says that we can ignore the largest
eigenvalues of B−1A if we are willing to spend one iteration for each.

Lemma 24.6.1. Let λ1, . . . , λn be positive numbers such that all of them are at least α and at most
k of them are more than β. Then, for every t ≥ k, there exists a polynomial p(X) of degree t such
that p(0) = 1 and

|p(λi)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

for all λi.

Proof. Let r(X) be the polynomial we constructed using Chebyshev polynomials of degree t − k
for which

|r(X)| ≤ 2

(
1 +

2√
β/α

)−(t−k)
,

for all X between α and β. Now, set

p(X) = r(X)
∏

i:λi>β

(1−X/λi).

This new polynomial is zero at every λi greater than β, and for X between α and β

|p(X)| = |r(X)|
∏

i:λi>β

|(1−X/λi)| ≤ |r(X)| ,

as we always have X < λi in the product.

Applying this lemma to the analysis of the Preconditioned Conjugate Gradient, with β = Tr
(
L−1T LG

)2/3
and k = Tr

(
L−1T LG

)1/3
, we find that the algorithm produces ε-approximate solutions within

O(Tr
(
L−1T LG

)1/3
ln(1/ε)) = O(m1/3 log n ln 1/ε)

iterations.

This result is due to Spielman and Woo [SW09].

24.7 Further Improvements

We now have three families of algorithms for solving systems of equations in Laplaican matrices in
nearly-linear time.
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• By subgraph preconditioners. These basically work by adding back edges to the low-stretch
trees. The resulting systems can no longer be solved directly in linear time. Instead, we use
Gaussian elimination to eliminate the degree 1 and 2 vertices to reduce to a smaller system,
and then solve that system recursively. The first nearly linear time algorithm of this form ran
in time O(m logc n log 1/ε), for some constant c [ST09]. An approach of this form was first
made practical (and much simpler) by Koutis, Miller, and Peng [KMP11]. The asymptotically
fastest method also works this way. It runs in time O(m log1/2m logc log n log 1/ε), [CKM+14]
(Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu).

• By sparsification (see my notes from Lecture 19 from 2015). These algorithms work rather
differently, and do not exploit low-stretch spanning trees. They appear in the papers [PS14,
KLP+16].

• Accelerating Gaussian elimination by random sampling, by Kyng and Sachdeva [KS16].
This is the most elegant of the algorithms. While the running time of the algorithms,
O(m log2 n log 1/ε) is not the asymptotically best, the algorithm is so simple that it is the
best in practice. An optimized implementation appears in the package Laplacian.jl.

There are other algorithms that are often fast in practice, but for which we have no theoretical
analysis. I suggest the Algebraic Multigrid of Livne and Brandt, and the Combinatorial Multigrid
of Yiannis Koutis.

24.8 Questions

I conjecture that it is possible to construct spanning trees of even lower stretch. Does every graph
have a spanning tree of average stretch 2 log2 n? I do not see any reason this should not be true. I
also believe that this should be achievable by a practical algorithm. The best code that I know for
computing low-stretch spanning trees, and which I implemented in Laplacians.jl, is a heuristic
based on the algorithm of Alon, Karp, Peleg and West. However, I do not know an analysis of their
algorithm that gives stretch better than O(m2

√
logn). The theoretically better low-stretch trees of

Abraham and Neiman are obtained by improving constructions of [EEST08, ABN08]. However,
they seem too complicated to be practical.

The eigenvalues of L−1H LG are called generalized eigenvalues. The relation between generalized
eigenvalues and stretch is the first result of which I am aware that establishes a combinatorial
interpretation of generalized eigenvalues. Can you find any others?
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Spectral Graph Theory Lecture 25

Bipartite Ramanujan Graphs

Daniel A. Spielman December 3, 2018

25.1 Overview

Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88] presented the first explicit construc-
tions of infinite families of Ramanujan graphs. These had degrees p+ 1, for primes p. There have
been a few other explicit constructions, [Piz90, Chi92, JL97, Mor94], all of which produce graphs of
degree q + 1 for some prime power q. Over this lecture and the next we will prove the existence of
infinite families of bipartite Ramanujan of every degree. While today’s proof of existence does not
lend itself to an explicit construction, it is easier to understand than the presently known explicit
constructions.

We think that much stronger results should be true. There is good reason to think that random
d-regular graphs should be Ramanujan [MNS08]. And, Friedman [Fri08] showed that a random
d-regular graph is almost Ramanujan: for sufficiently large n such a graph is a 2

√
d− 1 + ε approx-

imation of the complete graph with high probability, for every ε > 0.

In today’s lecture, we will use the method of interlacing families of polynomials to prove (half) a
conjecture of Bilu and Linial [BL06] that every bipartite Ramanujan graph has a 2-lift that is also
Ramanujan. This theorem comes from [MSS15a], but today’s proof is informed by the techniques
of [HPS15]. We will use theorems about the matching polynomials of graphs that we will prove
next lecture.

In the same way that a Ramanujan graph approximates the complete graph, a bipartite Ramanujan
graph approximates a complete bipartite graph. We say that a d-regular graph is a bipartite
Ramanujan graph if all of its adjacency matrix eigenvalues, other than d and −d, have absolute
value at most 2

√
d− 1. The eigenvalue of d is a consequence of being d-regular and the eigenvalue

of −d is a consequence of being bipartite. In particular, recall that the adjacency matrix eigenvalues
of a bipartite graph are symmetric about the origin. This is a special case of the following claim,
which you can prove when you have a sparse moment.

Claim 25.1.1. The eigenvalues of a symmetric matrix of the form(
0 A

AT 0

)
are symmetric about the origin.

We remark that one can derive bipartite Ramanujan graphs from ordinary Ramanujan graphs—just
take the double cover. However, we do not know any way to derive ordinary Ramanujan graphs
from the bipartite ones.

25-1
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As opposed to reasoning directly about eigenvalues, we will work with characteristic polynomials.
For a matrix M , we write its characteristic polynomial in the variable x as

χx(M )
def
= det(xI −M ).

25.2 2-Lifts

We saw 2-lifts of graphs in Problem 3 from Problem Set 2:

We define a signed adjacency matrix of G to be a symmetric matrix S with the same
nonzero pattern as the adjacency matrix A, but such that each nonzero entry is either
1 or −1.

We will use it to define a graph GS . Like the double-cover, the graph GS will have
two vertices for every vertex of G and two edges for every edge of G. For each edge
(u, v) ∈ E, if S(u, v) = −1 then GS has the two edges

(u1, v2) and (v1, u2),

just like the double-cover. If S(u, v) = 1, then GS has the two edges

(u1, v1) and (v2, u2).

You should check that G−A is the double-cover of G and that GA consists of two disjoint
copies of G.

Prove that the eigenvalues of the adjacency matrix of GS are the union of the eigenvalues
of A and the eigenvalues of S .

The graphs GS that we form this way are called 2-lifts of G.

Bilu and Linial [BL06] conjectured that every d-regular graph G has a signed adjacency matrix
S so that ‖S‖ ≤ 2

√
d− 1. This would give a simple procedure for constructing infinite families

of Ramanujan graphs. We would begin with any small d-regular Ramanujan graph, such as the
complete graph on d+ 1 vertices. Then, given any d-regular Ramanujan graph we could construct
a new Ramanujan graph on twice as many vertices by using GS where ‖S‖ ≤ 2

√
d− 1.

We will prove something close to their conjecture.

Theorem 25.2.1. Every d-regular graph G has a signed adjacency matrix S for which the minimum
eigenvalue of S is at least −2

√
d− 1.

We can use this theorem to build infinite families of bipartite Ramanujan graphs, because their
eigenvalues are symmetric about the origin. Thus, if µn ≥ −2

√
d− 1, then we know that |µi| ≤

2
√
d− 1 for all 1 < i < n. Note that every 2-lift of a bipartite graph is also a bipartite graph.
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25.3 Random 2-Lifts

We will prove Theorem 25.2.1 by considering a random 2-lift. In particular, we consider the expected
characteristic polynomial of a random signed adjacency matrix S :

ES [χx(S)] . (25.1)

Godsil and Gutman [GG81] proved that this is equal to the matching polynomial of G! We will
learn more about the matching polynomial next lecture.

For now, we just need the following bound on its zeros which was proved by Heilmann and Lieb
[HL72].

Theorem 25.3.1. The eigenvalues of the matching polynomial of a graph of maximum degree at
most d are real and have absolute value at most 2

√
d− 1.

Now that we know that the smallest zero of (25.1) is at least −2
√
d− 1, all we need to do is to show

that there is some signed adjacency matrix whose smallest eigenvalue is at least this bound. This is
not necessarily as easy as it sounds, because the smallest zero of the average of two polynomials is
not necessarily related to the smallest zeros of those polynomials. We will show that, in this case,
it is.

25.4 Laplacianized Polynomials

Instead of directly reasoning about the characteristic polynomials of signed adjacency matrices S ,
we will work with characteristic polynomials of dI − S . It suffices for us to prove that there exists
an S for which the largest eigenvalue of dI − S is at most d+ 2

√
d− 1.

Fix an ordering on the m edges of the graph, associate each S with a vector σ ∈ {±1}m, and define

pσ(x) = χx(dI − S).

The expected polynomial is the average of all these polynomials.

We define two vectors for each edge in the graph. If the ith edge is (a, b), then we define

v i,σi = δa − σiδb.

For every σ ∈ {±1}m, we have
m∑
i=1

v i,σiv
T
i,σi = dI − S ,

where S is the signed adjacency matrix corresponding to σ. So, for every σ ∈ {±1}m,

pσ(x) = χx

(
m∑
i=1

v i,σiv
T
i,σi

)
.
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25.5 Interlacing Families of Polynomials

Here is the problem we face. We have a large family of polynomials, say p1(x), . . . , pm(x), for which
we know each pi is real-rooted and that their sum is real rooted. We would like to show that there
is some polynomial pi whose largest zero is at most the largest zero of the sum. This is not true in
general. But, it is true in our case because the polynomials form an interlacing family.

For a polynomial p(x) =
∏n
i=1(x−λi) of degree n and a polynomial q(x) =

∏n−1
i=1 (x−µi) of degree

n− 1, we say that q(x) interlaces p(x) if

λn ≤ µn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

If r(x) =
∏n
i=1(x− µi) has degree n, we write r(x)→ p(x) if

µn ≤ λn ≤ µn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

That is, if the zeros of p and r interlace, with the zeros of p being larger. We also make these
statements if they hold of positive multiples of p, r and q.

The following lemma gives the examples of interlacing polynomials that motivate us.

Lemma 25.5.1. Let A be a symmetric matrix and let v be a vector. For a real number t let

pt(x) = χx(A + tvvT ).

Then, for t > 0, p0(x)→ pt(x) and there is a monic1 degree n− 1 polynomial q(x) so that for all t

pt(x) = χx(A)− tq(x).

Proof. The fact that p0(x)→ pt(x) for t > 0 follows from the Courant-Fischer Theorem.

We first establish the existence of q(x) in the case that v = δ1. As the matrix tδ1δ
T
1 is zeros

everywhere except for the element t in the upper left entry and the determinant is linear in each
entry of the matrix,

χx(A + tδ1δ
T
1 ) = det(xI −A− tδ1δT1 ) = det(xI −A)− t det(xI (1) −A(1)) = χx(A)− tχx(A(1)),

where A(1) is the submatrix of A obtained by removing its first row and column. The polynomial
q(x) = χx(A(1)) has degree n− 1.

For arbitrary, v , let Q be a rotation matrix for which Qv = δ1. As determinants, and thus
characteristic polynomials, are unchanged by multiplication by rotation matrices,

χx(A + tvvT ) = χx(Q(A + tvvT )QT )

= χx(QAQT + tδ1δ
T
1 )) = χx(QAQT )− tq(x) = χx(A)− tq(x),

for some q(x) of degree n− 1.

1A monic polynomial is one whose leading coefficient is 1.
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For a polynomial p, let λmax(p) denote its largest zero. When polynomials interlace, we can relate
the largest zero of their sum to the largest zero of at least one of them.

Lemma 25.5.2. Let p1(x), p2(x) and r(x) be polynomials so that r(x) → pi(x). Then, r(x) →
p1(x) + p2(x) and there is an i ∈ {1, 2} for which

λmax(pi) ≤ λmax(p1 + p2).

Proof. Let µ1 be the largest zero of r(x). As each polynomial pi(x) has a positive leading coefficient,
each is eventually positive and so is their sum. As each has exactly one zero that is at least µ1 each
is nonpositive at µ1, and the same is also true of their sum. Let λ be the largest zero of p1 + p2.
We have established that λ ≥ µ1.

If pi(λ) = 0 for some i, then we are done. If not, there is an i for which pi(λ) > 0. As pi only has
one zero larger than µ1, and it is eventually positive, the largest zero of pi must be less than λ.

If p1, . . . , pm are polynomials such that there exists an r(x) for which r(x) → pi(x) for all i, then
these polynomials are said to have a common interlacing. Such polynomials satisfy the natural
generalization of Lemma 25.5.2.

The polynomials pσ(x) do not all have a common interlacing. However, they satisfy a property
that is just as useful: they form an interlacing family. Rather than defining these in general, we
will just explain the special case we need for today’s theorem.

We define polynomials that correspond to fixing the signs of the first k edges and then choosing
the rest at random. We indicate these by shorter sequences σ ∈ {±1}k. For k < m and σ ∈ {±1}k
we define

pσ(x)
def
= Eρ∈{±1}n−k [pσ,ρ(x)] .

So,
p∅(x) = Eσ∈{±1}m [pσ(x)] .

We view the strings σ, and thus the polynomials pσ, as vertices in a complete binary tree. The
nodes with σ of length m are the leaves, and ∅ corresponds to the root. For σ of length less than
n, the children of σ are (σ, 1) and (σ,−1). We call such a pair of nodes siblings. We will eventually
prove in Lemma 25.6.1 that all the polynomials pσ(x) are real rooted and in Corollary 25.6.2 that
every pair of siblings has a common interlacing.

But first, we show that this implies that there is a leaf indexed by σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).

This implies Theorem 25.2.1, as we know from Theorem 25.3.1 that λmax(p∅) ≤ d+ 2
√
d− 1.

Lemma 25.5.3. There is a σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).
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Proof. Corollary 25.6.2 and Lemma 25.5.2 imply that every non-leaf node in the tree has a child
whose largest zero is at most the largest zero of that node. Starting at the root of the tree, we find
a node whose largest zero is at most the largest zero of p∅. We then proceed down the tree until we
reach a leaf, at each step finding a node labeled by a polynomial whose largest zero is at most the
largest zero of the previous polynomial. The leaf we reach, σ, satisfies the desired inequality.

25.6 Common Interlacings

We can now use Lemmas 25.5.1 and 25.5.2 to show that every σ ∈ {±1}m−1 has a child (σ, s) for
which λmax(pσ,s) ≤ λmax(pσ). Let

A =

m−1∑
i=1

v i,σiv
T
i,σi .

The children of σ, (σ, 1) and (σ,−1) have polynomials p(σ,1) and p(σ,−1) that equal

χx(A + vm,1v
T
m,1) and χx(A + vm,−1v

T
m,−1).

By Lemma 25.5.1, χx(A)→ χx(A+ vm,sv
T
m,s) for s ∈ {±1}, and Lemma 25.5.2 implies that there

is an s for which the largest zero of p(σ,s) is at most the largest zero of their average, which is pσ.

To extend this argument to nodes higher up in the tree, we will prove the following statement.

Lemma 25.6.1. Let A be a symmetric matrix and let w i,s be vectors for 1 ≤ i ≤ k and s ∈ {0, 1}.
Then the polynomial ∑

ρ∈{0,1}k
χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

is real rooted, and for each s ∈ {0, 1},

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

Corollary 25.6.2. For every k < n and σ ∈ {±1}k, the polynomials pσ,s(x) for s ∈ {±1} are real
rooted and have a common interlacing.

25.7 Real Rootedness

To prove Lemma 25.6.1, we use the following two lemmas which are known collectively as Obreschkoff’s
Theorem [Obr63].

Lemma 25.7.1. Let p and q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x). If
pt is real rooted for all t ∈ IR, then q interlaces p.
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Proof Sketch. Recall that the roots of a polynomial are continuous functions of its coefficients, and
thus the roots of pt are continuous functions of t. We will use this fact to obtain a contradiction.

For simplicity,2 I just consider the case in which all of the roots of p and q are distinct. If they are
not, one can prove this by dividing out their common divisors.

If p and q do not interlace, then p must have two roots that do not have a root of q between them.
Let these roots of p be λi+1 and λi. Assume, without loss of generality, that both p and q are
positive between these roots. We now consider the behavior of pt for positive t.

As we have assumed that the roots of p and q are distinct, q is positive at these roots, and so pt
is negative at λi+1 and λi. If t is very small, then pt will be close to p in value, and so there must
be some small t0 for which pt0(x) > 0 for some λi+1 < x < λi. This means that pt0 must have two
roots between λi+1 and λi.

As q is positive on the entire closed interval [λi+1, λi], when t is large pt will be negative on this
entire interval, and thus have no roots inside. As we vary t between t0 and infinity, the two roots
at t0 must vary continuously and cannot cross λi+1 or λi. This means that they must become
complex, contradicting our assumption that pt is always real rooted.

Lemma 25.7.2. Let p and q be polynomials of degree n and n− 1 that interlace and have positive
leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is real rooted and

p(x)→ pt(x).

Proof Sketch. For simplicity, I consider the case in which all of the roots of p and q are distinct.
One can prove the general case by dividing out the common repeated roots.

To see that the largest root of pt is larger than λ1, note that q(x) is positive for all x > µ1, and
λ1 > µ1. So, pt(λ1) = p(λ1)− tq(λ1) < 0. As pt is monic, it is eventually positive and it must have
a root larger than λ1.

We will now show that for every i ≥ 1, pt has a root between λi+1 and λi. As this gives us d − 1
more roots, it accounts for all d roots of pt. For i odd, we know that q(λi) > 0 and q(λi+1) < 0.
As p is zero at both of these points, pt(λi) > 0 and pt(λi+1) < 0, which means that pt has a root
between λi and λi+1. The case of even i is similar.

Lemma 25.7.3. Let p0(x) and p1(x) be degree n monic polynomials for which there is a third
polynomial r(x) Such that

r(x)→ p0(x) and r(x)→ p1(x).

Then
r(x)→ (1/2)p0(x) + (1/2)p1(x),

and the latter is a real rooted polynomial.

Sketch. Assume for simplicity that all the roots of r are distinct and different from the roots of p0
and p1. Let µn < µn−1 < · · · < µ1 be the roots of r. Our assumptions imply that both p0 and p1

2I thank Sushant Sachdeva for helping me work out this particularly simple proof.
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are negative at µi for odd i and positive for even i. So, the same is true of their average. This tells
us that their average must have at least n − 1 real roots between µn and µ1. As their average is
monic, it must be eventually positive and so must have a root larger than µ1. That accounts for
all n of its roots.

Proof of Lemma 25.6.1. We prove this by induction on k. Assuming that we have proved it for
k − 1, we now prove it for k. Let u be any vector and let t ∈ IR. Define

pt(x) =
∑

ρ∈{0,1}k
χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + tuuT

)
.

By Lemma 25.5.1, we can express this polynomial in the form

pt(x) = p0(x)− tq(x),

where q has positive leading coefficient and degree n − 1. By absorbing tuuT into A we may use
induction on k to show that pt(x) is real rooted for all t. Thus, Lemma 25.7.1 implies that q(x)
interlaces p0(x), and Lemma 25.7.2 tells us that for t > 0

p0(x)→ pt(x).

So, we may conclude that for every s ∈ {±1},

∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

So, Lemma 25.7.3 implies that

∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

and that the latter polynomial is real rooted.

25.8 Conclusion

The major open problem left by this work is establishing the existence of regular (non-bipartite)
Ramanujan graphs. The reason we can not prove this using the techniques in this lecture is that the
interlacing techniques only allow us to reason about the largest or smallest eigenvalue of a matrix,
but not both.

To see related papers establishing the existence of Ramanujan graphs, see [MSS15b, HPS15]. For
a survey on this and related material, see [MSS14].
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Spectral Graph Theory Lecture 26

Matching Polynomials of Graphs

Daniel A. Spielman December 5, 2018

26.1 Overview

The coefficients of the matching polynomial of a graph count the numbers of matchings of various
sizes in that graph. It was first defined by Heilmann and Lieb [HL72], who proved that it has some
amazing properties, including that it is real rooted. They also proved that all roots of the matching
polynomial of a graph of maximum degree d are at most 2

√
d− 1. Our proofs today come from a

different approach to the matching polynomial that appears in the work of Godsil [God93, God81].
A theorem of Godsil and Gutman [GG81] implies that the expected characteristic polynomial of
a randomly signed adjacency matrix is the matching polynomial of a graph. Last lecture we used
these results to establish the existence of infinite families of bipartite Ramanujan graphs.

26.2 2
√
d− 1

We begin by explaining where the number 2
√
d− 1 comes from: it is an upper bound on the

eigenvalues of a tree of maximum degree at most d. One can also show that the largest eigenvalue
of an d-ary tree approaches 2

√
d− 1 as the depth of the tree (and number of vertices) increases.

We prove this statement in two steps. The first is similar to proofs we saw at the beginning of the
semester.

Lemma 26.2.1. Let M be a (not necessarily symmetric) nonnegative matrix. Let s = ‖M1‖∞ be
the maximum row sum of M . Then, |λ| ≤ s for every eigenvalue of M .

Proof. Let Mψ = λψ, and let a be an entry of ψ of largest absolute value. Then,

|λ| |ψ(a)| = |λψ(a)|
= |(Mψ)(a)|

=

∣∣∣∣∣∑
b

M (b, a)ψ(a)

∣∣∣∣∣
≤

∣∣∣∣∣∑
b

M (b, a)

∣∣∣∣∣ |ψ(a)|

≤ s |ψ(a)| .

This implies |λ| ≤ s.

26-1
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Theorem 26.2.2. Let T be a tree in which every vertex has degree at most d. Then, all eigenvalues
of χx(M T ) have absolute value at most 2

√
d− 1.

Proof. Let M be the adjacency matrix of T . Choose some vertex to be the root of the tree, and
define its height to be 0. For every other vertex a, define its height, h(a), to be its distance to the
root. Define D to be the diagonal matrix with

D(a, a) =
(√

d− 1
)h(a)

.

Recall that the eigenvalues of M are the same as the eigenvalues of DMD−1. We will use the fact
that all eigenvalues of a nonnegative matrix are upper bounded in absolute value by its maximum
row sum.

So, we need to prove that all row sums of DMD−1 are at most 2
√
d− 1. There are three types of

vertices to consider. First, the row of the root has up to d entries that are all 1/
√
d− 1. For d ≥ 2,

d/
√
d− 1 ≤ 2

√
d− 1. The intermediate vertices have one entry in their row that equals

√
d− 1,

and up to d− 1 entries that are equal to 1/
√
d− 1, for a total of 2

√
d− 1. Finally, every leaf only

has one nonzero entry in its row, and that entry equals
√
d− 1.

26.3 The Matching Polynomial

A matching in a graph G = (V,E) is a subgraph of G in which every vertex has degree 1. We say
that a matching has size k if it has k edges. We let

mk(G)

denote the number of matchings in G of size k. Throughout this lecture, we let |V | = n. Observe
that m1(G) is the number of edges in G, and that mn/2(G) is the number of perfect matchings in
G. By convention we set m0(G) = 1, as the empty set is matching with no edges. Computing the
number of perfect matchings is a #P -hard problem [Val79]. This means that it is much harder
than solving NP -hard problems, so you shouldn’t expect to do it quickly on large graphs.

The matching polynomial of G, written µx [G], is

µx [G]
def
=

n/2∑
k=0

xn−2k(−1)kmk(G).

Our convention that m0(G) = 1 ensures that this is a polynomial of degree n.

This is a fundamental example of a polynomial that is defined so that its coefficients count some-
thing. When the “something” is interesting, the polynomial usually is as well.

Godsil and Gutman [GG81] proved that this is equal to the matching polynomial of G!

Lemma 26.3.1. Let G be a graph and let S be a uniform random signed adjacency matrix of G.
Then,

E [χx(S)] = µx [G] .
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Proof. Expand the expected characterstic polynomial as

E [χx(S)] = E [det(xI − S)]

= E [det(xI + S)]

= E

∑
π∈Sn

sgn(π)x|{a:π(a)=a}|
∏

a:π(a)6=a

(S(a, π(a))).


=
∑
π∈Sn

sgn(π)x|{a:π(a)=a}|E

 ∏
a:π(a)6=a

(S(a, π(a)))

 .
As E [S(a, π(a))] = 0 for every a so that π(a) 6= a, the only way we can get a nonzero contribution
from a permutation π is if for all a so that π(a) 6= a,

a. (a, π(a)) ∈ E, and

b. π(π(a)) = a.

The latter condition guarantees that whenever S(a, π(a)) appears in the product, S(π(a), a) does
as well. As these entries are constrained to be the same, their product is 1.

Thus, the only permtuations that count are the involuations (the permutations in which all cycles
have length 1 or 2). These correspond exactly to the matchings in the graph. Finally, the sign of
an involution is exactly its number of two-cycles, which is exactly its number of edges.

We will prove that the matching polynomial of every d-regular graph divides the matching polyno-
mial of a larger tree of maximum degree d.

The matching polynomials of trees are very special—they are exactly the same as the characteristic
polynomial of the adjacency matrix.

Theorem 26.3.2. Let G be a tree and let M be its adjacency matrix. Then

µx [G] = χx(M ).

Proof. Expand
χx(M ) = det(xI −M )

by summing over permutations. We obtain∑
π∈Sn

sgn(π)x|{a:π(a)=a}|
∏

a:π(a) 6=a

(−M (a, π(a))).

We will prove that the only permutations that contribute to this sum are those for which π(π(a)) = a
for every a. And, these correspond to matchings.
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If π is a permutation for which there is an a so that π(π(a)) 6= a, then there are a = a1, . . . , ak with
k > 2 so that π(ai) = ai+1 for 1 ≤ i < k, and π(ak) = a1. For this term to contribute, it must be
the case that M (ai, ai+1) = 1 for all i, and that M (ak, a1) = 1. For k > 2, this would be a cycle
of length k in G. However, G is a tree and so cannot have a cycle.

So, the only permutations that contribute are the involutions: the permutations π that are their
own inverse. An involution has only fixed points and cycles of length 2. Each cycle of length
2 that contributes a nonzero term corresponds to an edge in the graph. Thus, the number of
permutations with k cycles of length 2 is equal to the number of matchings with k edges. As the
sign of an involution with k cycles of length 2 is (−1)k, the coefficient of xn−2k is (−1)kmk(G).

26.4 Properties of the Matching Polynomial

We begin by establishing some fundamental properties of the matching polynomial. For graphs G
and H on different vertex sets, we write G ∪H for their disjoint union.

Lemma 26.4.1. Let G and H be graphs on different vertex sets. Then,

µx [G ∪H] = µx [G]µx [H] .

Proof. Every matching in G ∪H is the union of a matching in G and a matching in H. Thus,

mk(G ∪H) =
k∑
j=0

mj(G)mk−j(H).

The lemma follows.

For a a vertex of G = (V,E), we write G − a for the graph G(V − {a}). This notation will prove
very useful when reasoning about matching polynmomials. Fix a vertex a of G, and divide the
matchings in G into two classes: those that involve vertex a and those that do not. The number of
matchings of size k that do not involve a is mk(G− a). On the other hand, those that do involve a
connect a to one of its neighbors. To count these, we enumerate the neighbors b of a. A matching
of size k that includes edge (a, b) can be written as the union of (a, b) and a matching of size k− 1
in G− a− b. So, the number of matchings that involve a is∑

b∼a
mk−1(G− a− b).

This gives a recurrence for the number of matchings of size k in G:

mk(G) = mk(G− a) +
∑
b∼a

mk−1(G− a− b).

To turn this into a recurrence for µx [G], write

xn−2k(−1)kmk(G) = x · x(n−1)−2k(−1)kmk(G− a)− x(n−2)−2(k−1)(−1)k−1mk−1(G− a− b).

This establishes the following formula.



Lecture 26: December 5, 2018 26-5

Lemma 26.4.2.
µx [G] = xµx [G− a]−

∑
b∼a

µx [G− a− b] .

26.5 The Path Tree

Godsil proves that the matching polynomial of a graph is real rooted by proving that it divides the
matching polynomial of a tree. Moreover, the maximum degree of vertices in the tree is at most
the maximum degree of vertices in the graph. As the matching polynomial of a tree is the same as
its characteristic polynomial, and all zeros of the characteristic polynomial of a tree of maximum
degree at most d have absolute value at most 2

√
d− 1, all the zeros of the matching polynomial of

a d-regular graph have absolute value at most 2
√
d− 1.

The tree that Godsil uses is the path tree of G starting at a vertex of G. For a a vertex of G, the
path tree of G starting at a, written Ta(G) is a tree whose vertices correspond to paths in G that
start at a and do not contain any vertex twice. One path is connected to another if one extends
the other by one vertex. For example, here is a graph and its path tree starting at a.

 

When G is a tree, Ta(G) is isomorphic to G.

Godsil’s proof begins by deriving a somewhat strange equality. Since I haven’t yet found a better
proof, I’ll take this route too.

Theorem 26.5.1. For every graph G and vertex a of G,

µx [G]

µx [G− a]
=

µx [Ta(G)]

µx [Ta(G)− a]
.

The term on the upper-right hand side is a little odd. It is a forrest obtained by removing the root
of the tree Ta(G). We may write it as a disjoint union of trees as

Ta(G)− a =
⋃
b∼a

Tb(G− a).

Before proving this, we use it to prove our main theorem.

Theorem 26.5.2. For every vertex a of G, the polynomial µx [G] divides the polynomial µx [Ta(G)].
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Proof. We prove this by induction on the number of vertices in G, using as our base case graphs
with at most 2 vertices. We then know, by induction, that for b ∼ a,

µx [G− a] divides µx [Tb(G− a)] .

As
Ta(G)− a = ∪b∼aTb(G− a),

µx [Tb(G− a)] divides µx [Ta(G)− a] .

Thus,
µx [G− a] divides µx [Ta(G)− a] ,

and so
µx [Ta(G)− a]

µx [G− a]

is a polynomial in x. To finish the proof, we apply Theorem 26.5.1, which implies

µx [Ta(G)] = µx [Ta(G)− a]
µx [G]

µx [G− a]
= µx [G]

µx [Ta(G)− a]

µx [G− a]
.

Proof of Theorem 26.5.1. If G is a tree, then the left and right sides are identical, and so the
equality holds. As the only graphs on less than 3 vertices are trees, the theorem holds for all graphs
on at most 2 vertices. We will now prove it by induction on the number of vertices.

We may use Lemma 26.4.2 to expand the the left-hand side:

µx [G]

µx [G− a]
=
xµx [G− a]−

∑
b∼a µx [G− a− b]

µx [G− a]
= x−

∑
b∼a

µx [G− a− b]
µx [G− a]

.

By applying the inductive hypothesis to G− a, we see that this equals

x−
∑
b∼a

µx [Tb(G− a)− b]
µx [Tb(G− a)]

. (26.1)

To simplify this expression, we examine these graphs carefully. By the observtion we made before
the proof,

Tb(G− a)− b =
⋃

c∼b,c 6=a
Tc(G− a− b).

Similarly,

Ta(G)− a =
⋃
c∼a

Tc(G− a),

which implies

µx [Ta(G)− a] =
∏
c∼a

µx [Tc(G− a)] .



Lecture 26: December 5, 2018 26-7

Let ab be the vertex in Ta(G) corresponding to the path from a to b. We also have

Ta(G)− a− ab =

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪
 ⋃
c∼b,c6=a

Tc(G− a− b)


=

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪ (Tb(G− a)− b) .

which implies

µx [Ta(G)− a− ab] =

 ∏
c∼a,c6=b

µx [Tc(G− a)]

µx [Tb(G− a)− b] .

Thus,

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=

(∏
c∼a,c6=b µx [Tc(G− a)]

)
µx [Tb(G− a)− b]∏

c∼a µx [Tc(G− a)]

=
µx [Tb(G− a)− b]
µx [Tb(G− a)]

.

Plugging this in to (26.1), we obtain

µx [G]

µx [G− a]
= x−

∑
b∼a

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=
xµx [Ta(G)− a]−

∑
b∼a µx [Ta(G)− a− ab]

µx [Ta(G)− a]

=
µx [Ta(G)]

µx [Ta(G)− a]
.
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