Graph Theory Final Exam, 2023Fall

BY Tuan Tran

2024.1.10

Problem 1. Show that the number of the spanning trees of $K_{n}-e$ is $(n-2) n^{n-3}$. (20 points)

Problem 2. (a) T is a tree with m vertices. Show that every graph with minimum degree at least $m-1$ contains T as a subgraph. (10 points)
(b) T is a tree with m vertices. Show that $R\left(T, K_{n}\right)=(m-1)(n-1)+1$. (10 points)

Problem 3. In a bipartite graph $G=(L \cup R, E)$, we say a subset $S \subset L \cup R$ is expanding if $|N(S)| \geq|S|$. Show that if $|L|=|R|=n$ and there are two nonnegative integers p, q such that $p+q=n$ and every subset of L with size at most p as well as every subset of R with size at most q are expanding, then G has a perfect matching. (10 points)

Problem 4. (a) Show that $\chi(G)+\chi(\bar{G}) \leq|G|+1$. (10 points)
(b) Show that $\chi(G) \chi(\bar{G}) \leq\left\lfloor\frac{(|G|+1)^{2}}{4}\right\rfloor$, and for every $n \in \mathbb{N}^{+}$, construct a graph G with n vertices such that $\chi(G) \chi(\bar{G})=\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor \cdot(10$ points $)$

Problem 5. (a) For a graph H and two positive integers m, n, we denote the maximum number of edges of the H-free bipartite graph with m vertices in the left side and n vertices in the right side by $\operatorname{ex}(m, n, H)$.

Show that (10 points):

$$
\operatorname{ex}\left(m, n, K_{s, t}\right) \leq(t-1)^{1 / s} m n^{1-1 / s}+(s-1) n
$$

(b) S is a set with n elements. $S_{1}, S_{2}, \ldots, S_{m}$ are m subsets of S with average size $\frac{n}{\omega}$. Show that if $m>2 k \omega$, then there exists k integers $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m$ such that $\left|S_{i_{1}} \cap \cdots \cap S_{i_{k}}\right| \geq\left\lfloor\frac{n}{(2 \omega)^{k}}\right\rfloor \cdot(10$ points $)$
Problem 6. Show that $K_{k, m}$ is k-choosable if and only if $m<k^{k}$. (20 points)

