Graph Theory Final Exam, 2023Fall

BY Tuan Tran

2024.1.10

Problem 1. Show that the number of the spanning trees of $K_n - e$ is $(n-2)n^{n-3}$. (20 points)

Problem 2. (a) T is a tree with m vertices. Show that every graph with minimum degree at least m - 1 contains T as a subgraph. (10 points)

(b) T is a tree with m vertices. Show that $R(T, K_n) = (m-1)(n-1)+1$. (10 points)

Problem 3. In a bipartite graph $G = (L \cup R, E)$, we say a subset $S \subset L \cup R$ is expanding if $|N(S)| \ge |S|$. Show that if |L| = |R| = n and there are two nonnegative integers p, q such that p + q = n and every subset of L with size at most p as well as every subset of R with size at most q are expanding, then G has a perfect matching. (10 points)

Problem 4. (a) Show that
$$\chi(G) + \chi(\overline{G}) \leq |G| + 1$$
. (10 points)
(b) Show that $\chi(G)\chi(\overline{G}) \leq \left\lfloor \frac{(|G|+1)^2}{4} \right\rfloor$, and for every $n \in \mathbb{N}^+$, construct a graph G with n vertices such that $\chi(G)\chi(\overline{G}) = \left\lfloor \frac{(n+1)^2}{4} \right\rfloor$. (10 points)

Problem 5. (a) For a graph H and two positive integers m, n, we denote the maximum number of edges of the H-free bipartite graph with m vertices in the left side and n vertices in the right side by ex(m, n, H).

Show that (10 points):

$$\exp(m, n, K_{s,t}) \le (t-1)^{1/s} m n^{1-1/s} + (s-1)n$$

(b) *S* is a set with *n* elements. S_1, S_2, \ldots, S_m are *m* subsets of *S* with average size $\frac{n}{\omega}$. Show that if $m > 2k\omega$, then there exists *k* integers $1 \le i_1 < i_2 < \cdots < i_k \le m$ such that $|S_{i_1} \cap \cdots \cap S_{i_k}| \ge \left\lfloor \frac{n}{(2\omega)^k} \right\rfloor$. (10 points)

Problem 6. Show that $K_{k,m}$ is k-choosable if and only if $m < k^k$. (20 points)