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1. Please describe the EPR paradox introduced by Einstein, Podolsky, Rosen at
1935, and explain the contradiction between quantum theory and local realism
theory.

Answer: Assumption by local realism theory:

(a). Locality: If two measurements are performed in space-like separated lo-
cations, their outcomes should not be causal correlated.

(b). Realism: Every element of the physical reality must have a counter part
in the physical theory.

Contraction: In quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of one precludes the
knowledge of the other. Then either (1) the description of reality given by
the wave function in quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality.

Consider that Alice and Bob share a singlet state |ψ−⟩ = 1√
2
(|10⟩ − |01⟩), once

Alice obtains a measurement outcome by measuring particle along arbitrary
direction, she could correctly predict the corresponding observable value for
Bob’s particle, and all observables can be predicted, they should have defi-
nite values. Following the realism assumption, every observable corresponding
Bob’s particle, such as σBx , σBy , σBz , is a physical realism element. While fol-
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lowing quantum theory, only commutative observables may have eigenvalues
simultaneously, i.e. σBx , σBy , σBz can’t have definite values simultaneously.

2. (1) Prove the CHSH inequality

|E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2)| ≤ 2,

in which E(AiBj) is the expectation value of the correlation experiment
Ai, Bj.

(2) For the singlet state
|ψ−⟩ = 1√

2
(|01⟩ − |10⟩),

prove that the correlation function E(AiBj)quantum = ⟨ψ−|Ai ⊗ Bj |ψ−⟩ ≡
⟨ψ−| (⃗ai · σ⃗)⊗ (⃗bj · σ⃗) |ψ−⟩ is

E(AiBj)quantum = −a⃗i · b⃗j .

(3) What’s the maximal violation of the CHSH inequality allowed by quan-
tum mechanics? Give the corresponding quantum state and specify the
measurement operators.

Answer:

(1)
E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2)

=E(A1B1 + A1B2 + A2B1 − A2B2)

=E(A1(B1 +B2) + A2(B1 − B2))

=
∑

a1,a2,b1,b2

p(a1, a2, b1, b2) [a1(b1 + b2) + a2(b1 − b2)] .

Note that a1, a2, b1, b2 ∈ {+1,−1}. If b1 = b2, then b1 + b2 = ±2, b1 − b2 = 0,
thus a1(b1 + b2) + a2(b1 − b2) = ±2a1 ∈ {+2,−2}. If b1 = −b2, then b1 + b2 =

0, b1 − b2 = ±2, thus a1(b1 + b2) + a2(b1 − b2) = ±2a2 ∈ {+2,−2}.
In either case, a1(b1+b2)+a2(b1−b2) = ±2. Since

∑
a1,a2,b1,b2

p(a1, a2, b1, b2) =

1, ∑
a1,a2,b1,b2

p(a1, a2, b1, b2) [a1(b1 + b2) + a2(b1 − b2)] ∈ [−2,+2] ,

⇒ |E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2)| ≤ 2.
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(2) Due to the asymmetric property of |ψ−⟩, we have

I ⊗ (⃗bj · σ⃗) |ψ−⟩ = −(⃗bj · σ⃗)⊗ I |ψ−⟩

⇒ (⃗ai · σ⃗)⊗ (⃗bj · σ⃗) |ψ−⟩ = −(⃗ai · σ⃗)(⃗bj · σ⃗)⊗ I |ψ−⟩ .

Thus,
E(AiBj)quantum = ⟨ψ−| (⃗ai · σ⃗)⊗ (⃗bj · σ⃗) |ψ−⟩

= −⟨ψ−| (⃗ai · σ⃗)(⃗bj · σ⃗)⊗ I |ψ−⟩

= −aikbjl ⟨ψ−| σkσl ⊗ I |ψ−⟩

= −aikbjl ⟨ψ−| (iϵklmσm + δklI)⊗ I |ψ−⟩

= −aikbjlδkl = −aikbjk = −a⃗i · b⃗j ,
where aik denotes the kth component of a⃗i, similar for bjl.

(3) The maximal violation allowed by quantum mechanics is 2
√
2. The corre-

sponding state is |ψ−⟩ = 1√
2
(|01⟩ − |10⟩), and the measurement operators

are
A1 = X, A2 = Z, B1 =

X + Z√
2

, B2 =
X − Z√

2
.

3. (Tsirelson’s inequality) Suppose Q = q⃗ · σ⃗, R = r⃗ · σ⃗, S = s⃗ · σ⃗, T = t⃗ · σ⃗, where q⃗,
r⃗, s⃗ and t⃗ are real unit vectors in three dimensions and σ⃗ = (σx σy σz). Show
that

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2 = 4I + [Q,R]⊗ [S, T ].

Use this result to prove that

⟨Q⊗ S⟩+ ⟨R⊗ S⟩+ ⟨R⊗ T ⟩ − ⟨Q⊗ T ⟩ ≤ 2
√
2.

Answer: For a real unit vector n⃗ in three dimensions, (n⃗ · σ⃗)2 = I, then

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2

=4I + (Q⊗ S) · (R⊗ S) + (R⊗ S) · (Q⊗ S)− (R⊗ T ) · (Q⊗ T )− (Q⊗ T ) · (R⊗ T )

−(Q⊗ S) · (Q⊗ T )− (Q⊗ T ) · (Q⊗ S) + (Q⊗ T ) · (Q⊗ S) + (R⊗ S) · (R⊗ T )

+(Q⊗ S) · (R⊗ T )− (R⊗ S) · (Q⊗ T )− (Q⊗ T ) · (R⊗ S) + (R⊗ T ) · (Q⊗ S)

=4I +QR⊗ I +RQ⊗ I −RQ⊗ I −QR⊗ I − I ⊗ ST − I ⊗ TS + I ⊗ ST + I ⊗ TS

+QR⊗ ST −RQ⊗ ST −QR⊗ TS +RQ⊗ TS

=4I + [Q,R]⊗ [S, T ].
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As [Q,R] ≤ 2, [S, T ] ≤ 2, we have 4I + [Q,R]⊗ [S, T ] ≤ 8. That is

⟨Q⊗ S⟩+ ⟨R⊗ S⟩+ ⟨R⊗ T ⟩ − ⟨Q⊗ T ⟩ ≤ 2
√
2.

4. Derive the Bell’s theorem without inequalities from the GHZ state

|ψ⟩GHZ =
1√
2
(|000⟩ − |111⟩).

Answer:
Read page 40-41 in the lecture ”QIP2022chapt_3_1_Kai Chen.pdf” for ref-
erence.

5. Consider the CHSH game in which the referee chooses questions r, s ∈ {0, 1}
uniformly, and Alice and Bob must each answer a single bit: a for Alice, b for
Bob, in which a, b ∈ {0, 1} . They win if a⊕ b = r ∧ s and lose otherwise.

(1) Give the maximum probability of winning with the classical strategy.

(2) Suppose Alice and Bob share a maximum quantum entangled state |ψ⟩ =
1√
2
(|00⟩+ |11⟩), please derive the maximum probability of winning and give

the corresponding quantum strategy.

Answer:
Read page 22-26 in the lecture “QIP2022chapt_3_1_Kai Chen.pdf” for ref-
erence.

6. Consider the GHZ game in which the referee chooses questions rst ∈ {000, 011, 101, 110}
uniformly, and Alice, Bob and Charles must each answer a single bit: a

for Alice, b for Bob, c for Charles, in which a, b, c ∈ {0, 1} . They win if
a⊕ b⊕ c = r∨ s∨ t and lose otherwise. Suppose Alice, Bob and Charles share a
GHZ state |ψ⟩ = 1

2(|000⟩ − |011⟩ − |101⟩ − |110⟩), give a quantum strategy that
maximize the probability of winning.

Answer:
Read page 18-21 in the lecture “QIP2022chapt_3_1_Kai Chen.pdf” for ref-
erence.
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7. Two players, Alice and Bob, are required to independently fill a 3 × 3 magic
square. As shown in Fig. 1, the referee randomly sends two queries x, y ∈
{0, 1, 2} to Alice and Bob, respectively. Here, x labels rows and y labels
columns. Alice and Bob are required to reply with three numbers with specific
conditions. Denote Alice’s answers in a row as [ax0 , a

x
1 , a

x
2 ] and Bob’s answers

in a column as [by0, b
y
1, b

y
2], where axi , b

y
j ∈ {−1,+1} for i, j ∈ {0, 1, 2}. Alice’s

answers must satisfy
∏

i a
x
i = +1, while Bob’s should satisfy

∏
j b

y
j = −1 for

any x and y. During the game, Alice and Bob are forbidden to communicate
with each other. They win the game if the overlapped entry of Alice’s row
and Bob’s column is always the same, i.e.,axy = byx for each x and y.

(1) Give the maximum probability of winning with the classical strategy.

(2) Suppose Alice and Bob share a maximum quantum entangled state
|ϕ⟩A1A2B1B2

= |ψ⟩A1B1
⊗ |ψ⟩A2B2

with |ψ⟩ = (|00⟩ + |11⟩)/
√
2 where Alice

has systems A1A2 and Bob has B1B2. Please derive the maximum proba-
bility of winning and give the corresponding quantum strategy.

FIG. 1. The Mermin-Peres magic square game.

Answer:
Read page 29-32 in the lecture “QIP2022chapt_3_1_Kai Chen.pdf” for ref-
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FIG. 2. The quantum strategy of Mermin-Peres magic square game.

erence.

(1) The maximum probability of winning with the classical strategy is 8/9.

(2) The maximum probability of winning with the quantum strategy is 1, the
strategy is shown in Fig. 2.

8. Define the rotation operator Rn̂(θ) = exp(−iθn̂ · σ⃗/2), where n̂ is a real three-
dimensional unit vector. Prove that an arbitrary single qubit unitary operator
can be written in the form U = exp(iα)Rn̂(θ). Find values for α, θ, and n̂ giving
the Hadamard gate H.

Answer:

A single qubit operator U =

(
a b

c d

)
can be expanded in terms of {X,Y, Z, I}

as U = a0I + a1X + a2Y + a3Z, where

a0 =
a+ d

2
, a1 =

b+ c

2
, a2 =

c− b

2i
, a3 =

a− d

2
,

U is unitary if U †U = I. This requires that

|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1

a∗0a1 + a∗1a0 + ia∗2a3 − ia∗3a2 = 0

a∗0a2 − ia∗1a3 + a∗2a0 + ia∗3a1 = 0

a∗0a3 + ia∗1a2 − ia∗2a1 + a∗3a0 = 0
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Define cos(θ2) = |a0|, then |a1|2 + |a2|2 + |a3|2 = sin2(θ2). Define

nx = |a1| /
∣∣∣∣sin(θ2)

∣∣∣∣
ny = |a2| /

∣∣∣∣sin(θ2)
∣∣∣∣

nz = |a3| /
∣∣∣∣sin(θ2)

∣∣∣∣
Define exp(iα) = a0/ cos(

θ
2). Denote the phase of a1, a2, a3 as α1, α2, α3 respec-

tively. We can get cos(α − α1) = 0, sin(α2 − α3) = 0. Hence, α1 = α − π/2,
α2 = α3. Similarly, we find, α2 = α3 = α− π/2, α1 = α2 = α3. Therefore,

α0 = exp(iα) cos(
θ

2
)

α1 =− i exp(iα) sin(
θ

2
)nx

α2 =− i exp(iα) sin(
θ

2
)ny

α3 =− i exp(iα) sin(
θ

2
)nz

That is

U = exp(iα)(cos(
θ

2
)I − i sin(

θ

2
)(nxX + nyY + nzZ)) = exp(iα)Rn̂(θ).

9. (1) A state ρ is a pure state if and only if tr(ρ2) = 1. Prove that this is
equivalent to S(ρ) = 0, where S(ρ) is the Von Neumann entropy.

(2) Prove that a state |ψ⟩ of a composite system AB is a product state if and
only if it has Schmidt number 1.

(3) Prove that |ψ⟩ is a product state if and only if ρA (and thus ρB) are pure
states.

Answer:

(1) If tr(ρ2) = 1, ∑
k

λ2k =
∑
k

λk = 1.
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Therefore, ∑
k

λk(λk − 1) = 0.

Since 0 ≤ λk ≤ 1, ∀k, we know that λk(λk−1) ≥ 0, ∀k, ans thus the only way
for the above condition to be satisfied is for λk = 0, 1, ∀k. Therefore tr(ρ2) =

1 if and only if ρ has a single eigenvalue of 1 with all other eigenvalues 0.

S(ρ) = −
∑
k

λk log2(λk) = 0.

Since 0 ≤ λk ≤ 1, ∀k, we know that λk log2(λk) ≥ 0, ∀k. Therefore, the
only way for the above condition to be satisfied is for λk = 0, 1, ∀k, and
thus S(ρ) = 1 if and only if ρ has a single eigenvalue of 1 with all other
eigenvalues 0. Therefore, for density matrices, tr(ρ2) = 1 and S(ρ) = 0 are
equivalent statements.

(2) A state is a product state if and only if it can be represented as |ψ⟩ =

|ψA⟩ ⊗ |ψB⟩. If a state has a Schmidt number 1, it can be represented
as a product state

∑
k

√
λk|kA⟩|kB⟩ = |ψA⟩ ⊗ |ψB⟩ since only one Schmidt

coefficient is nonzero. If it has a Schmidt number greater than 1, it has
no such representation as |ψA⟩ ⊗ |ψB⟩, because if it did it would have a
Schmidt number of 1 through the above representation.

(3) If an entangled state between Alice and Bob has the Schmidt decom-
position

∑
k

√
λk|kA⟩|kB⟩. Then Alice’s reduced density matrix is ρA =∑

k λk|kA⟩⟨kA|. Therefore, if |ψ⟩ has a Schmidt number of 1, the reduced
density matrices ρA, ρB have only one non-zero eigenvalue and are pure
states. If |ψ⟩ has a Schmidt number greater than 1, the reduced density
matrices ρA, ρB have multiple non-zero eigenvalues and are mixed states.

10. Let n⃗ be a normalized real vector in three dimensions and let θ be real. Prove
that the equality

f(θn⃗ · σ⃗) = f(θ) + f(−θ)
2

I +
f(θ)− f(−θ)

2
n⃗ · σ⃗

holds for any function f (·).
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Answer: The spectral decomposition of n⃗·σ⃗ is n⃗·σ⃗ = |n,+⟩ ⟨n,+|−|n,−⟩ ⟨n,−|.
Thus,

f(θn⃗ · σ⃗) =f(θ |n,+⟩ ⟨n,+| − θ |n,−⟩ ⟨n,−|)

=f(θ) |n,+⟩ ⟨n,+|+ f(−θ) |n,−⟩ ⟨n,−|

=

(
f(θ) + f(−θ)

2
+
f(θ)− f(−θ)

2

)
|n,+⟩ ⟨n,+|

+

(
f(θ) + f(−θ)

2
− f(θ)− f(−θ)

2

)
|n,−⟩ ⟨n,−|

=
f(θ) + f(−θ)

2
(|n,+⟩ ⟨n,+|+ |n,−⟩ ⟨n,−|)

+
f(θ)− f(−θ)

2
(|n,+⟩ ⟨n,+| − |n,−⟩ ⟨n,−|)

=
f(θ) + f(−θ)

2
I +

f(θ)− f(−θ)
2

n⃗ · σ⃗.

11. Consider a particle with initial state |0⟩. We perform N sequential measure-
ments σk ≡ n⃗k · σ⃗ with n⃗k =

(
sin
(
kπ
2N

)
, 0, cos

(
kπ
2N

))
and k = 1, 2, · · · , N . What’s

the probability that all outcomes are +1? What if N → ∞?

Answer: The probability that the first measurement gives outcome +1 is

P1 = tr

[
I + n⃗1 · σ⃗

2
|0⟩ ⟨0|

]
=

1

2
tr (|0⟩ ⟨0|) + 1

2
n1i tr (σi |0⟩ ⟨0|)

=
1

2
+

1

2
n1i · ⟨0| σi |0⟩

=
1

2
+

1

2
n13 =

1

2
+

1

2
cos
(
π

2N

)
= cos2

(
π

4N

)
.

The resulting state is thus |n1,+⟩ ⟨n1,+| = (I + n⃗1 · σ⃗)/2. Thus, the probability
that the (k + 1)th measurement gives outcome +1 conditioned on the kth
measurement gives outcome +1 is

PK+1 = tr

[
I + n⃗k+1 · σ⃗

2

I + n⃗k · σ⃗
2

]
=

1

4
tr I +

1

4
n⃗k+1 · n⃗k tr I

=
1

2
+

1

2

[
sin

(
kπ

2N

)
sin

(
(k + 1)π

2N

)
+ cos

(
kπ

2N

)
cos

(
(k + 1)π

2N

)]
=

1

2
+

1

2
cos
(
π

2N

)
= cos2

(
π

4N

)
.
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Therefore, the probability that all outcomes are +1 is P1·P2 · · ·PN = cos2N
(

π
4N

)
.

The limitation is
lim

N→∞
cos2N

(
π

4N

)
= exp

(
lim

N→∞
2N ln(cos

(
π

4N

)
)
)

N=1/t
= exp

(
lim
t→0

2 ln(cos
(
πt

4

)
)/t
)

= exp

(
lim
t→0

2
−π

4 sin
(
πt
4

)
cos
(
πt
4

) )
= 1.

12. Consider a 2-qubit quantum state ρAB = 1
8I + 1

2 |ψ
−⟩ ⟨ψ−|, where |ψ−⟩ =

1√
2
(|01⟩ − |10⟩).

(1) Give the spectral decomposition of ρAB.
(2) Suppose one measures n⃗·σ⃗A and measures m⃗·σ⃗B with n⃗·m⃗ = cos θ, calculate

the probability that both outcomes are +1.
(3) Use the realignment criterion to find out whether ρAB is entangled or not.

Answer:

(1) The density matrix of ρAB in computational basis is

ρAB =


1/8 0 0 0

0 3/8 −1/4 0

0 −1/4 3/8 0

0 0 0 1/8

 .

The above matrix has eigenvalues λ1,2,3 = 1/8, λ4 = 5/8, with corre-
sponding eigenvectors |ϕ+⟩ , |ϕ−⟩ , |ψ+⟩ , |ψ−⟩. Thus, ρAB = 1

8(|ϕ
+⟩ ⟨ϕ+| +

|ϕ−⟩ ⟨ϕ−|+ |ψ+⟩ ⟨ψ+|) + 5
8 |ψ

−⟩ ⟨ψ−|.
(2) The probability that both outcomes are +1 is given by

P = tr

[
I + n⃗ · σ⃗A

2
⊗ I + m⃗ · σ⃗B

2
ρAB

]
=

1

8
tr

[
I + n⃗ · σ⃗A

2
⊗ I + m⃗ · σ⃗B

2

]
+

1

2
tr

[
I + n⃗ · σ⃗A

2
⊗ I + m⃗ · σ⃗B

2
|ψ−⟩ ⟨ψ−|

]
=

1

8
tr

(
I

4

)
+

1

2

[
tr
(
1

4
|ψ−⟩ ⟨ψ−|

)
+

1

4
⟨ψ−| (n⃗ · σ⃗A)⊗ (m⃗ · σ⃗B) |ψ−⟩

]
=

1

8
+

1

8
− 1

8
n⃗ · m⃗ =

1

4
− 1

8
cos θ,
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In the third line, we used tr(M⊗N) = tr(M)·tr(N), tr
(
I ⊗ (m⃗ · σ⃗B) |ψ−⟩ ⟨ψ−|

)
=

tr
(
(n⃗ · σ⃗A)⊗ I |ψ−⟩ ⟨ψ−|

)
= 0 since unilateral Pauli operation changes one

Bell state into another, and the cyclic property of trace operation. In the
fourth line, we used the result of question 2.(2).

(3)

ρ̃AB =


1/8 0 0 3/8

0 0 −1/4 0

0 −1/4 0 0

3/8 0 0 1/8

 .

The eigenvalues are
{
1
2 ,−

1
4 ,−

1
4 ,

1
4

}
. Thus, ∥ρ̃AB∥ = 1

2 + 1
4 + 1

4 + 1
4 = 5

4 > 1.

Therefore, ρAB is entangled.

13. Consider a composite system consisting of two qubits. Find the Schmidt
decompositions of the states |ϕ⟩ = 1√

3
(|00⟩+ |01⟩+ |11⟩)

Answer:

We can see that Alice’s reduced density matrix is ρA = 1
3

(
2 1

1 1

)
, having eigen-

values

λ1 =
3 +

√
5

6
, λ2 =

3−
√
5

6
,

eigenvectors

|ϕA1⟩ =
(1+

√
5

2 , 1)T√
1 + (1+

√
5

2 )2
, |ϕA2⟩ =

(1−
√
5

2 , 1)T√
1 + (1−

√
5

2 )2
.

Likewise, Bob’s reduced density matrix is ρB = 1
3

(
1 1

1 2

)
, having eigenvalues

λ1 =
3 +

√
5

6
, λ2 =

3−
√
5

6
,

eigenvectors

|ϕB1⟩ =
(1, 1+

√
5

2 )T√
1 + (1+

√
5

2 )2
, |ϕB2⟩ =

(−1,
√
5−1
2 )T√

1 + (
√
5−1
2 )2

.

Therefore, the Schmidt decomposition will be |ϕ⟩ =
√
λ1|ϕA1⟩|ϕB1⟩+

√
λ2|ϕA2⟩|ϕB2⟩.
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14. Consider the density matrix ρw = r|ϕ+⟩⟨ϕ+|+ 1−r
4 I4, where |ϕ+⟩ = 1√

2
(|00⟩+|11⟩)

is Bell state and 0 ≤ r ≤ 1. Calculate the concurrence of ρw.

Answer: We have

ρw =


(1 + r)/4 0 0 r/2

0 (1− r)/4 0 0

0 0 (1− r)/4 0

r/2 0 0 (1 + r)/4.


The eigenvalues of ρw are (1 + 3r)/4 and (1 − r)/4 with multiplicity 3, then
λ1 − λ2 − λ3 − λ4 = (3r − 1)/2. The concurrence is C(ρw) = max{(3r − 1)/2, 0}.

15. (1) For the 3-qubit W state |W3⟩ = 1√
3
(|100⟩ + |010⟩ + |001⟩), if one particle is

lost, what’s the reduced density matrix of the remaining two particles?

(2) For the n-qubit W state |Wn⟩ = 1√
n
(|10 · · · 0⟩ + |01 · · · 0⟩ + · · · + |00 · · · 1⟩), if

n−2 particles are lost, what’s the reduced density matrix of the remaining
two particles? Use the PPT criterion to find out whether the remaining
two particles are entangled or not.

Answer: Without loss of generality, we suppose the remaining two particles
are particle 1 and 2.

(1) ρ12 = tr3(|W3⟩ ⟨W3|) = 1
3

(
2 |ψ+⟩ ⟨ψ+|+ |00⟩ ⟨00|

)
.

(2) ρ12 = tr3···n(|Wn⟩ ⟨Wn|) = 1
n

(
2 |ψ+⟩ ⟨ψ+|+ (n− 2) |00⟩ ⟨00|

)
.

ρ12 =


n−2
n 0 0 0

0 1
n

1
n 0

0 1
n

1
n 0

0 0 0 0

 , ρT1

12 =


n−2
n 0 0 1

n

0 1
n 0 0

0 0 1
n 0

1
n 0 0 0

 .

The eigenvalues of ρT1

12 are
{

1
n ,

1
n ,

n−2+
√
n2−4n+8
2n , n−2−

√
n2−4n+8
2n

}
, where

the last one is negative. Thus, the remaining two particles are still entan-
gled.

16. Suppose Pi is a complete set of orthogonal projectors and ρ is a density op-
erator. Prove that the entropy of the state ρ′ ≡

∑
i PiρPi of the system after
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the measurement is at least as great as the orignal entropy, S(ρ′) ≥ S(ρ), with
equality if and only if ρ = ρ′.

Answer:
The proof is to apply Klein’s inequality to ρ and ρ′,

0 ≤ S(ρ||ρ′) = −S(ρ)− tr(ρ log ρ′).

The result will follow if we can prove that −tr(ρ log ρ′) = S(ρ′). We apply the
completeness relation

∑
i Pi = I, the relation P 2

i = Pi, and the cyclic property
of the trace, to obtain

−tr(ρ log ρ′) =− tr(
∑
i

Piρ log ρ
′)

=− tr(
∑
i

Piρ log ρ
′Pi).

Note that ρ′Pi = PiρPi = Piρ
′. That is, Pi commutes with ρ′ and thus with

log ρprime, so

−tr(ρ log ρ′) =− tr(
∑
i

PiρPi log ρ
′)

=− tr(ρ′ log ρ′) = S(ρ′).

This completes the proof.


