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EDITION 

T he purpose of the third edition is the same as that of the earlier editions: to pro- 
vide a teaching instrument, in the classroom or independently. for the study of 
compressible fluid flow, and at the same time to make this instrument ~~t l t l e r -  

standuble and enjoyable for the reader. As mentioned in the Preface to the Fir\t Edi- 
tion, this book is intentionally written in a rather informal style in order to t ~ l l l l  to the 
reader, to gain his or her interest, and to keep the reader absorbed from cover to 
cover. Indeed, all of the philosophical aspects of the first two editions, including the 
inclusion of a historical perspective, are carried over to the third edition. 

The response to the first two editions from students, faculty, and practicing pro- 
fessionals has been overwhelmingly favorable. Therefore, for the third edition. a11 of 
the content of the second edition has been carried over virtually intact, with only 
minor changes made here and there for updating. The principal difference between 
the third and second editions is the addition of much new material. as f o l l o ~ \ :  

Each chapter starts with a Preview Box, an educational tool that gives the 
reader an overall perspective of the nature and importance of the material to be 
discussed in that chapter. The Preview Boxes are designed to heighten the 
reader's interest in the chapter. Also, chapter roadmaps are provided to help the 
reader see the bigger picture, and to navigate through the mathematical and 
physical details buried in the chapter. 

Increased emphasis has been placed on the physics associated with compress 
ible flow, in order to enhance the fundamental nature of the material. 
To expedite this physical understanding, a number of new illustrative worked 
examples have been added that explore the physics of compressiblc flow. 
Because computational fluid dynamics (CFD) continues to take on a stronger 
role in various aspects of compressible flow, the flavor of CFD in the third 
edition has been strengthened. This is not a book on CFD. but CFD is 
discussed in a self-contained fashion to the extent necessary to enhance the 
fundamentals of compressible flow. 
New homework problems have been added to the existing ones. There is a 
solutions manual for the problems available from McGraw-Hill for the use of 
the classroom instructor. 
Consistent with all the new material, a number of new illustrations and pho- 
tographs have been added. 

This book is designed to be used in advanced undergraduate and lirst-year grad- 
uate courses in compressible flow. The chapters divide into three general categories, 

xiii 



xiv Preface to The Third Edition 

which the instructor can use to mold a course suitable to his or her needs: 

1. Chapters 1-5 make up the core of a basic introduction to classical compress- 
ible flow, with the treatment of shock waves, expansion waves, and nozzle 
flows. The mathematics in these chapters is mainly algebra. 

2. Chapters 6-10 deal with slightly more advanced aspects of classical compress- 
ible flow, with mathematics at the level of partial differential equations. 

3. Chapters 11-17 cover more modem aspects of compressible flow, dealing with 
such features as the use of computational fluid dynamics to study more com- 
plex phenomena, and the general nature of high-temperature flows. 

Taken in total, the book provides the twenty-first-century student with a bal- 
anced treatment of both the classical and modem aspects of compressible flow. 

Special thanks are given to various people who have been responsible for the 
materialization of this third edition: 

My students, as well as students and readers from all over the world, who have 
responded so enthusiastically to the first two editions, and who have provided 
the ultimate joy to the author of being an engineering educator. 

My family, who provide the other ultimate joy of being a husband, father, and 
grandfather. 
My colleagues at the University of Maryland, the National Air and Space 
Museum, and at many other academic and research institutions, as well as 
industry, around the world, who have helped to expand my horizons. 

Susan Cunningham, who, as my scientific typist, has done an excellent job of 
preparing the additional manuscript. 

Finally, compressible flow is an exciting subject--exciting to learn, exciting to 
teach, and exciting to write about. The purpose of this book is to excite the reader, 
and to make the study of compressible flow an enjoyable experience. So this author 
says-read on and enjoy. 

John D. Anderson, Jr. 



P R E I i ' A C E T O T H E T  EBTTION 

T his book is designed to be a teaching instrument, in the classroom or indepen- 
dently, for the study of compressible fluid flow. It is intentionally written in a 
rather informal style in order to tulk to the reader, to gain his or her interest, 

and to be absorbed from cover to cover. It is aimed primarily at senior undergradu- 
ate and first-year graduate students in aerospace engineering, mechanical engineer- 
ing, and engineering mechanics; it has also been written for use by the practicing 
engineer who wants to obtain a cohesive picture of compressible flow from a modern 
perspective. In addition, because the principles and results of compressible flow per- 
meate virtually all fields of physical science, this book should be useful to en,' w e e r s  
in general, as well as to physicists and chemists. 

This is a book on modern compressible flows. An extensive definition of the 
word "modern" in this context is given in Sec. 1.6. In essence, this book presents the 
fundamentals of classical compressible flow as they have evolved over the past two 
centuries, but with added emphasis on two new dimensions that have become so im- 
portant over the past two decades, namely: 

1. Modern c~omnpututionalJuid dynanzics. The high-speed digital computer has 
revolutionized analytical fluid mechanics, and has made possible the solution 
of problems heretofore intractable. The teaching of compressible flow today 
must treat such numerical approaches as an integral part of the subject; this 
is one facet of the present book. For example, the reader will find lengthy 
discussions of finite-difference techniques, including the time-marching 
approach, which has worked miracles for some important applications. 

2. High-trrnp~raturrflo~.*~~s. Modern compressible flow problems frequently 
involve high-speed aerodynamics, combustion, and energy conversion, all of 
which can be dominated by the flow of high-temperature gases. Therefore, 
such high-temperature effects must be incorporated in any basic study of 
compressible flow; this is another facet of the present book. For example, 
the reader will find extensive presentations of both equilibrium and nonequilib- 
rium flows, with application to some basic problems such as shock waves 
and nozzle flows. 

In short, the modern compressible flow of today is a mutually supportive mixture of 
classical analysis along with computational techniques, with the treatment of high- 
temperature effects being almost routine. One purpose of this book is to provide an 
understanding of compressible flow from this modern point of view. Its intent is to 
interrelate the important aspects of classical compressible flow with the recent 
techniques of computational fluid dynamics and high-temperature gas dynamics. In 
this sense, the present treatment is somewhat unique; it represents a substantial 
departure from existing texts in classical compressible flow. However, at the same 



Preface to The First Edition 

time, the classical fundamentals along with their important physical implications are 
discussed at length. Indeed, the first half of this book, as seen from a glance at the 
Table of Contents, is very classical in scope. Chapters 1 through 7, with selections 
from other chapters, constitute a solid, one-semester senior-level course. The second 
half of the book provides the "modern" color. The entire book constitutes a complete 
one-year course at the senior and first-year graduate levels. 

Another unique aspect of this book is the inclusion of an historical perspective 
on compressible flow. It is the author's strong belief that an appreciation for the his- 
torical background and traditions associated with modern technology should be an 
integral part of engineering education. The vast majority of engineering profession- 
als and students have little knowledge or appreciation of such history; the present 
book attempts to fill this vacuum. For example, such questions are addressed as who 
developed supersonic nozzles and under what circumstances, how did the modern 
equations of compressible fluid flow develop over the centuries, who were Bernoulli, 
Euler, Helmholtz, Rankine, Prandtl, Busemann, Glauert, etc., and what did they con- 
tribute to the modern science of compressible flow? In this vein, the present book 
continues the tradition established in one of the author's previous books (Introduc- 
tion to Flight: Its Engineering and History, McGraw-Hill, New York, 1978) wherein 
historical notes are included with the technical material. 

Homework problems are given at the end of most of the chapters. These prob- 
lems are generally straightforward, and are designed to give the student a practical 
understanding of the material. 

In order to keep the book to a reasonable and affordable length, the topics of 
transonic flow and viscous flow are not included. However, these are topics which 
are best studied after the fundamental material of this book is mastered. 

This book is the product of teaching the first-year graduate course in compress- 
ible flow at the University of Maryland since 1973. Over the years, many students 
have urged the author to expand the class notes into a book. Such encouragement 
could not be ignored, and this book is the result. Therefore, it is dedicated in part to 
all my students, with whom it has been a joy to teach and work. 

This book is also dedicated to my wife, Sarah-Allen, and my two daughters, 
Katherine and Elizabeth, who relinquished untold amounts of time with their hus- 
band and father. Their understanding is much appreciated, and to them I once again 
say hello. Also, hidden behind the scenes but ever so present are Edna Brothers and 
Sue Osborn, who typed the manuscript with such dedication. In addition, the author 
wishes to thank Dr. Richard Hallion, Curator of the National Air and Space Museum 
of the Smithsonian Institution, for his helpful comments and for continually opening 
the vast archives of the museum for the author's historical research. Finally, I wish to 
thank my many professional colleagues for stimulating discussions on compressible 
flow and what constitutes a modern approach to its teaching. Hopefully, this book is 
a reasonable answer. 

John D. Anderson, Jr. 



Compressible Flow-Some 
History and Introductory 
Thoughts 

It required an unhesitating boldness to undertake a venture so few thought could 
succeed, an almost exuberant enthusiasm to carry across the many obstacles and 
unknowns, but most of all a completely unprejudiced imagination in departing so 
drastically from the known way. 

J. van Lonkhuyzen, 1951, in discussing the problems faced in designing 
the Bell XS-1, the first supersonic airplane 
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fast from one place to another. For long-distance travel, Shock waves are an important aspect of compressible 
flying is by far the fastest way to go. We fly in airplanes, flow-they occur in almost all practical situations where 
which today are the result of an exponential griwth in supersonic flow exists. In this book, you will leam a lot 
technology over the last 100 years. In 1930, airline pas- about shock waves. When the Concorde flies overhead 
sengers were lumbering along in the likes of the Fokker at supersonic speeds, a "sonic boom" is heard by those 
trimoter (Fig. I .  I), which cruised at about 100 mi&. In of uson the earth's surface. The sonic boom is a result of 
this airplane, it took a total elapsed time of 36 hours to the shock waves emanating from the supersonic vehicle. 
fly from New York t o  Los Angeles, including I I stops Today, the environmental impact of the sonic boom lim- - 
along the way. By 1936, the new, streamlined Douglas its the Concorde to supersonic speeds only over water. 
DC-3 (Fig. 1.2) was flying passengers at 180 mih, tak- However, modem research is striving to find a way to 
ing 17 hours and 40 minutes from New York to Los design a "quiet" supersonic airplane. Perhaps some of - - 
Angeles, making three stops along the way. By 1955, the the readers of this book will help to unlock such secrets 
Douglas DC-7, the most advanced of the generation in the future-maybe even pioneering the advent of 
of reciprocating engineJpropeller-driven transports practical hypersonic airplanes (more than five times the 
(Fig. 1.3) made the same trip in 8 hours with no s top .  speed d sound). In my opinion, the future applications 
However, this generation of airplane was quickly sup- of compressible flow are boundless. 
planted by the jet transport in 1958. Today, the modem Compressible flow is the subject of this book. 
Boeing 777 (Fig. 1.4) whisks us from New York to Los Within these pages you will discover the intellectual 
Angeles nonstop in about 5 hours, cruising at 0.83 the beauty and the powerful applications of compressible 
speed of sound. This airplane is powered by advanced, flow. You will learn to appreciate why modem airplanes 
third-generation turbofan engines, such as the Pratt and are shaped the way they are, and to marvel at the won- 
Whitney 4000 turbofan shown in Fig. 1.5, each capable derfully complex and interesting flow processes through 
of producing up to 84,000 pounds of thrust. a jet engine. You will learn about supersonic shock 

Modern high-speed airplanes and the jet engines waves, and why in most cases we would like to do with- 
that power them are wonderful examples of the applica- out them if we could. You will learn much more. You 
tion of a branch of fluid dynamics called compressible will learn the fundamental physical and mathematical 
Jlow. Indeed, look again at the Boeing 777 shown in aspects of compressible flow, which you can apply to 
Fig. 1.4 and the turbofan engine shown in Fig. 1.5-they any flow situation where the flow speeds exceed that of 
are compressible flow personified. The principles of about 0.3 the speed of sound. In the modem world of 
compressible flow dictate the external aerodynamic aerospace and mechanical engineering, an understand- 
flow over the airplane. The internal flow through the ing of the principles of compressible flow is essential. 
turbofan-the inlet, compressor, combustion chamber, The purpose of this book is to help you learn, under- 
turbine, nozzle, and the fan-is all compressible flow. In- stand, and appreciate these fundamental principles, 
deed. jet engines are one of the best examples in modem while at the same time giving you some insight as to 
technology of compressible flow machines. how compressible flow is practiced in the modem engi- 

Toclay we can transport ourselves at speeds faster neering world (hence the word "modem" in the title of 
than sound-supersonic speeds. The Anglo-French Con- this book). 
corde supersonic transport (Fig. 1.6) is such a vehicle. Compressible flow is a fun subject. This book is de- 
(A few years ago I had the opportunity to cross the signed to convey this feeling. The format of the book 
Atlantic Ocean in the Concorde, taking off from New and its conversational style are intended to provide a 
York's Kennedy Airport and arriving at London's smooth and intelligible learning process. To help this, 
Heathrow Airport just 3 hours and 15 minutes later- each chapter begins with a preview box and road map to 
what a way to travel!) Supersonic flight is accompanied help you see the bigger picture, and to navigate around 
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Figure 1.3 1 Douglas DC-7 airliner, from the middle 1950s. 

Figure 1.4 1 Boeing 777 jet airliner, from the 1990s. 

(continued on next page) 
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some of the mathematical and physical details that are 
buned in the chapter. The road map for the entire book is 
given in Fig. 1.7. To help keep our equilibrium, we will 
periodically refer to Fig. 1.7 as we progress through the 
book. For now, let us just survey Fig. 1.7 for some gen- 
eral guidance. After an introduction to the subject and a 
brief review of thermodynamics (box I in Fig. 1.7), we 
derive the governing fundamental conservation equa- 
tions (box 2). We first obtain these equations in integral 
form (box 3), which some people will argue is philo- 
sophically a more fundamental form of the equations 

than the differential form obtained later in box 7. Using 
just the integral form of the conservation equations, we 
will study one-dimensional flow (box 4), including nor- 
mal shock waves, oblique shock, and expansion waves 
(box 5) ,  and the quasi-one-dimensional flow through 
nozzles and diffusers, with applications to wind tunnels 
and rocket engines (box 6). All of these subjects can 
be studied by application of the integral form of the 
conservation equations, which usually reduce to alge- 
braic equations for the application listed in boxes 4-6. 
Boxes 1-6 frequently constitute a basic "first course" in 

COMPRESSIBLE n o w  
17 H~gh-temperature flow< 

1. What ~t is, and how it blends 
wlth thermodynamcs 

I 

I 

3. In integral form 

4.One-dimensional flow m 
Normal shock waves 
Flow with heat addition 

Oblique shock waves 
Expansion waves 
Wave interactions 

I 

6. Quasi-one-dimensional flow 

Nozzles 
Diffusers 
Wind tunnels 
and rocket engines 

/ 7. In differential form t- 
10. Unsteady moving shock 

and expansion waves 

I 1. Conical flow u 
1 8. Velocity potential equation I 

9. Linearized flow 1 
I I-- Method of characteristics 

Finite difference methods 

[ technique 
I I 

I 1- Flow around blunt bodies 
Two-dimensional nozzle flows 

r I 1 14. Three-dimensional flows I 

15. Transonic flow 

Subsonic flow t ,upersonic flow 

Figure 1.7 1 Roadmap for the book. 
(continued on next page) 
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1 . I  Historical High-Water Marks 9 

effects on the properties of a system. Hence, compress- The remainder of thls chapter simply deals with 

ible flow embraces thermodynamics. I know of no corn- other introductory thoughts necessary to provide you 
pressible flow problem that can be understood and solved with smooth sail~ng through the rest of the book. I w~sh 
without involving some aspect of thermodynamics. So you a pleasant voy'lge. 
that is why we start out with a review of thermodynamics. 

1.1 I HISTORICAL HIGH-WATER MARKS 
The year is 1893. In Chicago, the World Columbian Exposition has been opened by 
President Grover Cleveland. During the year. more than 27 million people will \isit 
the 666-acre expanse of gleaming white buildings, specially constructed from ;I com- 
posite of plaster of paris and jute fiber to simulate white tnarble. Located adjacent to 
the newly endowed University of Chicago, the Exposition commemorates the dis- 
covery of America by Christopher Columbus 400 years exlier. Exhibitions related to 
engineering, architecture. and domestic and liberal arts. as well as collections of all 
modes of transportation, are scattered over 150 buildings. In the largest. the Manu- 
facturer's and Liberal Arts Building, engineering exhibits from all over the uorld 
herald the rapid advance of technology that will soon reach explosive proportions in 
the twentieth century. Almost lost in this massive 3 I-acre building. undcr a roof of 
iron and glass, is a small machine of great importance. A single-stage steam turbine 
is being displayed by the Swedish engineer, Carl G. P. de Laval. The machine is less 
than 6 ft long; designed for marine use, it has two independent turbine wheels. one 
for forward motion and the other for the reverse direction. But what is novel about 

this device is that the turbine blades are driven by a stream of hot. high-pressure 
steam from a series of unique convergent-divergent nozzles. As sketched in Fig. 1 .X, 
these nozzles, with their convergent-divergent shape representing a complete depar- 
ture from previous engineering applications, feed a high-speed flow of steam to the 
blades of the turbine wheel. The deflection and consequent change in momentum 
of the steam ;IS it flows past the turbine blades exerts an impulse that rotates the 
wheel to speeds previously unattainable-over 30,000 rlmin. Little does de Laval 
realize that his convergent-divergent steam nozzle will open the door to the super- 
sonic wind tunnels and rocket engines of the midtwentieth century. 

The year is now 1947. The morning of October 14 dawns bright and beautiful 
over the Muroc Dry Lake, a large expanse of flat, hard lake bed in the Mojave Dehert 
in California. Beginning at 6:00 A.M.,  teams of engineers and technicians at the 
Muroc Army Air Field ready a small rocket-powered airplane for flight. Painted 
orange and resembling a 50-caliber machine gun bullet mated to a pair of straight. 
stubby wings, the Bell XS-I research vehicle is carefully installed in thc bomb bay 
of a four-engine B-29 bomber of World War I1 vintage. At 10:00 A.M. the B-29 with 
its soon-to-be-historic cargo takes off and climbs to an altitude of 20,000 ft. In the 
cockpit of the XS-1 is Captain Charles (Chuck) Yeager, a veteran P-5 1 pilot from the 
European theater during the war. This morning Yeager is in pain from two broken 
ribs incurred during a horseback riding accident the previous weekend. However. not 
wishing to disrupt the events of the day. Yeager informs no one at Muroc about his 
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Figure 1.8 1 Schematic of de Laval's 
turbine incorporating a convergent- 
divergent nozzle. 

condition. At 10:26 A.M., at a speed of 250 milh (1 12 m/s), the brightly painted XS-1 
drops free from the bomb bay of the B-29. Yeager fires his Reaction Motors XLR-11 
rocket engine and, powered by 6000 Ib of thrust, the sleek airplane accelerates and 
climbs rapidly. Trailing an exhaust jet of shock diamonds from the four convergent- 
divergent rocket nozzles of the engine, the XS-1 is soon flying faster than Mach 0.85, 
that speed beyond which there is no wind tunnel data on the problems of transonic 
flight in 1947. Entering this unknown regime, Yeager momentarily shuts down two 
of the four rocket chambers, and carefully tests the controls of the XS-I as the Mach 
meter in the cockpit registers 0.95 and still increasing. Small shock waves are now 
dancing back and forth over the top surface of the wings. At an altitude of 40,000 ft, 
the XS-1 finally starts to level off, and Yeager fires one of the two shutdown rocket 
chambers. The Mach meter moves smoothly through 0.98, 0.99, to 1.02. Here, the 
meter hesitates, then jumps to 1.06. A stronger bow shock wave is now formed in the 
air ahead of the needlelike nose of the XS-1 as Yeager reaches a velocity of 700 mih,  
Mach 1.06, at 43,000 ft. The flight is smooth; there is no violent buffeting of the air- 
plane and no loss of control as was feared by some engineers. At this moment, Chuck 
Yeager becomes the first pilot to successfully fly faster than the speed of sound, and 
the small but beautiful Bell XS-1, shown in Fig. 1.9, becomes the first successful su- 
personic airplane in the history of flight. (For more details, see Refs. 1 and 2 listed at 
the back of this book.) 

Today, both de Laval's 10-hp turbine from the World Columbian Exhibition and 
the orange Bell XS-1 are part of the collection of the Smithsonian Institution of 
Washington, D.C., the former on display in the History of Technology Building and 
the latter hanging with distinction from the roof of the National Air and Space 
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Figure 1.9 1 The Bell XS- I ,  first manned supersonic aircraft. (Courte.c\* 
of the National Air c~nd Space Museum.) 

Museum. What these two machines have in common is that, separated by more than 
half a century, they represent high-water marks in the engineering application of the 
principles of compressible flow-where the density of the flow is not constant. In 
both cases they represent marked departures from previous fluid dynamic practice 
and experience. 

The engineering fluid dynamic problems of the eighteenth, nineteenth, and early 
twentieth centuries almost always involved either the flow of liquids or the low- 
speed flow of gases; for both cases the assumption of constant density is quite valid. 
Hence, the familiar Bernoulli's equation 

p + i p v 2  = const (1.1) 

was invariably employed with success. However, with the advent of high-speed 
flows, exemplified by de Laval's convergent-divergent nozzle design and the super- 
sonic flight of the Bell XS- I ,  the density can no longer be assumed constant through- 
out the flowfield. Indeed, for such flows the density can sometimes vary by orders of 
magnitude. Consequently, Eq. ( I .  I )  no longer holds. In this light, such events were 
indeed a marked departure from previous experience in fluid dynamics. 

This book deals exclusively with that "marked departure," i.e., it deals with 
compressible jows, in which the density is not constant. In modern engineering 
applications, such flows are the rule rather than the exception. A few important 
examples are the internal flows through rocket and gas turbine engines. high-speed 
subsonic, transonic, supersonic, and hypersonic wind tunnels, the external flow over 
modern airplanes designed to cruise faster than 0.3 of the speed of sound, and the 
flow inside the common internal combustion reciprocating engine. The purpose of 
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this book is to develop the fundamental concepts of compressible flow, and to illus- 
trate their use. 

1.2 1 DEFINITION OF COMPRESSIBLE FLOW 
Compressible flow is routinely defined as variable densityjow; this is in contrast to 
incompressible flow, where the density is assumed to be constant throughout. Obvi- 
ously, in real life every flow of every fluid is compressible to some greater or lesser 
extent; hence, a truly constant density (incompressible) flow is a myth. However, as 
previously mentioned, for almost all liquid flows as well as for the flows of some 
gases under certain conditions, the density changes are so small that the assumption 
of constant density can be made with reasonable accuracy. In such cases, Bernoulli's 
equation, Eq. (1.1), can be applied with confidence. However, for the subject of this 
book-compressible flow-Eq. (1.1) does not hold, and for our purposes here, the 
reader should dismiss it from his or her thinking. 

The simple definition of compressible flow as one in which the density is vari- 
able requires more elaboration. Consider a small element of fluid of volume v.  The 
pressure exerted on the sides of the element by the neighboring fluid is p. Assume the 
pressure is now increased by an infinitesimal amount dp.  The volume of the element 
will be correspondingly compressed by the amount d v .  Since the volume is reduced, 
d v  is a negative quantity. The compressibility of the fluid, t ,  is defined as 

Physically, the compressibility is the fractional change in volume of the fluid element 
per unit change in pressure. However, Eq. (1.2) is not sufficiently precise. We know 
from experience that when a gas is compressed (say in a bicycle pump), its tempera- 
ture tends to increase, depending on the amount of heat transferred into or out of the 
gas through the boundaries of the system. Therefore, if the temperature of the fluid 
element is held constant (due to some heat transfer mechanism), then the isothermal 
compressibility is defined as 

On the other hand, if no heat is added to or taken away from the fluid element (if the 
compression is adiabatic), and if no other dissipative transport mechanisms such as 
viscosity and diffusion are important (if the compression is reversible), then the com- 
pression of the fluid element takes place isentropically, and the isentropic compress- 
ibility is defined as 

where the subscript s denotes that the partial derivative is taken at constant entropy. 
Compressibility is a property of the fluid. Liquids have very low values of 

compressibility ( tT for water is 5 x lo-'' m2/iV at 1 atm) whereas gases have high 
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compressibilities (rr  for air is 1 0 - b 2 / N  at 1 atm, more than four orders of magni- 
tude larger than water). Sf the fluid element is assumed to have unit mass, 1 1  is the spe- 
cific volume (volume per unit mass), and the density is p = I /v. In terms of density, 
Eq. (1.2) becomes 

Therefore, whenever the fluid experiences a change in pressure, dp, the correspond- 
ing change in density will be dp, where from Eq. (1.5) 

To this point, we have considered just the fluid itself. with compressibility being 
a property of the fluid. Now assume that the fluid is in motion. Such flows are initi- 
ated and maintained by forces on the fluid, usually created by, or at least accompanied 
by, changes in the pressure. In particular, we shall see that high-speed flows generally 
involve large pressure gradients. For a given change in pressure, d p ,  due to the flow, 
Eq. (1.6) demonstrates that the resulting change in density will be small for liquids 
(which have low values of r), and large for gases (which have high values o f  r). 
Therefore, for the flow of liquids, relatively large pressure gradients can create high 
velocities without much change in density. Hence, such flows are usually assumed to 
be incompressible, where p is constant. On the other hand, for the flow of gases with 
their attendant large values of r ,  moderate to strong pressure gradients lead to sub- 
stantial changes in the density via Eq. (1.6). At the same time, such pressure gradients 
create large velocity changes in the gas. Such flows are defined as coml7re.vsiblr,flon.s, 
where p is a variable. 

We shall prove later that for gas velocities less than about 0.3 of the speed of 
sound, the associated pressure changes are small, and even though 7 is large for 
gases, dp in Eq. (1.6) may still be small enough to dictate a small dp. For this reason, 
the low-speed flow of gases can be assumed to be incompressible. For example, the 
flight velocities of most airplanes from the time of the Wright brothers in 1903 to the 
beginning of World War IS in 1939 were generally less than 250 milh ( 1  12 rnls), 
which is less than 0.3 of the speed of sound. As a result, the bulk of early aerody- 
namic literature treats incompressible flow. On the other hand, flow velocities higher 
than 0.3 of the speed of sound are associated with relatively large pressure changes, 
accompanied by correspondingly large changes in density. Hence, compressibility 
effects on airplane aerodynamics have been important since the advent of high- 
performance aircraft in the 1940s. Indeed, for the modern high-speed subsonic and 
supersonic aircraft of today, the older incompressible theories are wholly inadequate, 
and compressible flow analyses must be used. 

In summary, in this book a compressible flow will be considered as one where 
the change in pressure, dp, over a characteristic length of the flow, multiplied by the 
compressibility via Eq. (1.6), results in a fractional change in density. dplp, which 
is too large to be ignored. For most practical problems, if the density changes by 
5 percent or more, the flow is considered to be compressible. 
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Consider the low-speed flow of air over an airplane wing at standard sea level conditions; the 
free-stream velocity far ahead of the wing is 100 milh. The flow accelerates over the wing, 
reaching a maximum velocity of 150 miih at some point on the wing. What is the percentage 
pressure change between this point and the free stream? 

Solution 
Since the airspeeds are relatively low, let us (for the first and only time in this book) assume 
incompressible flow, and use Bernoulli's equation for this problem. (See Ref. 1 for an ele- 
mentary discussion of Bernoulli's equation, as well as Ref. 104 for a more detailed presenta- 
tion of the role of this equation in the solution of incompressible flow. Here, we assume that 
the reader is familiar with Bernoulli's equation-its use and its limitations. If not, examine 
carefully the appropriate discussions in Refs. 1 and 104.) Let points 1 and 2 denote the free 
stream and wing points, respectively. Then, from Bernoulli's equation, 

At standard sea level, p = 0.002377 slug/ft3. Also, using the handy conversion that 60 miih = 
88 ft/s, we have Vl = 100 milh = 147 ft/s and V2 = 150 miih = 220 ftls. (Note that, as 
always in this book, we will use consistent units; for example, we will use either the English 
Engineering System, as in this problem, or the International System. See the footnote in 
Sec. 1.4 of this book, as well as Chap. 2 of Ref. 1. By using consistent units, none of our basic 
equations will ever contain conversion factors, such as q, and J, as is found in some refer- 
ences.) With this information, we have 

The fractional change in pressure referenced to the free-stream pressure, which at standard sea 
level is p,  = 21 16 lb/ft2, is obtained as 

Therefore, the percentage change in pressure is 1.5 percent. In expanding over the wing surface, 
the pressure changes by only 1.5 percent. This is a case where, in Eq. (1.6), d p  is small, and 
hence d p  is small. The purpose of this example is to demonstrate that, in low-speed flow prob- 
lems, the percentage change in pressure is always small, and this, through Eq. (1.6), justifies the 
assumption of incompressible flow (dp  = 0) for such flows. However, at high flow velocities, 
the change in pressure is not small, and the density must be treated as variable. This is the regime 
of compressible flow-the subject of this book. Note: Bernoulli's equation used in this example 
is good only for incompressible flow, therefore it will not appear again in any of our subsequent 
discussions. Experience has shown that, because it is one of the first equations usually encoun- 
tered by students in the study of fluid dynamics, there is a tendency to use Bernoulli's equation 
for situations where it is not valid. Compressible flow is one such situation. Therefore, for our 
subsequent discussions in this book, remember never to invoke Bernoulli's equation. 
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1.3 1 FLOW REGIMES 
The age of successful manned flight began on December 17, 1903, when Orville and 
Wilbur Wright took to the air in their historic Flyer I, and soared over the windswept 
sand dunes of Kill Devil Hills in North Carolina. This age has continued to the pre- 
sent with modern, high-performance subsonic and supersonic airplanes. as well as 
the hypersonic atmospheric entry of space vehicles. In the twentieth century, nlanned 
flight has been a major impetus for the advancement of fluid dynamics in general. 
and compressible flow in particular. Hence, although the fundamentals of conipress- 
ible flow are applied to a whole spectrum of modern engineering problems. their 
application to aerodynamics and propulsion geared to airplanes and missiles i \  fre- 
quently encountered. 

In this vein, it is useful to illustrate different regimes of compressible flow by 
considering an aerodynamic body in a flowing gas, as sketched in Fig. 1 . 1 0 .  First. 
consider some definitions. Far upstream of the body, the flow is uniform with a , f k r -  
streum velocity of V,. A streamline is a curve in the flowfield that is tangent to the 
local velocity vector V at every point along the curve. Figure 1.10 illustrates only a 
few of the infinite number of streamlines around a body. Consider an arbitrary point 
in the flowfield, where p ,  T, p,  and V are the local pressure. temperature. density, 
and vector velocity at that point. All of these quantities are point properties and vary 
from one point to another in the flow. In Chap. 3, we will show the speed of sound r l  

to be a thermodynamic property of the gas; hence a also varies from point to point in 
the flow. If a ,  is the speed of sound in the uniform free stream, then the ratio 1', ltr, 
defines the free-stream Mach number M,. Similarly, the local Mach number ,A! is 
detined as M = V/a,  and varies from point to point in the flowfield. Further physical 
significance of Mach number will be discussed in Chap. 3. In the present section. M 
simply will be used to define four different flow regimes in fluid dynamics. a \  dis- 
cussed next. 

1.3.1 Subsonic Flow 

Consider the flow over an airfoil section as sketched in Fig. 1.100. Here, the local 
Mach number is everywhere less than unity. Such a flow. where M < I at c ~ e r y  
point, and hence the flow velocity is everywhere less than the speed of sound. is 
detined as .subsonic ,flouj. This flow is characterized by smooth streamlines and 
continuously varying properties. Note that the initially straight and parallel stream- 
lines in the free stream begin to deflect far upstream of the body. i.e.. the flow is 
forewarned of the presence of the body. This is an important property of subsonic 
flow and will be discussed further in Chap. 4. Also, as the flow passes over the air- 
foil, the local velocity and Mach number on the top surface increase above 
their free-stream values. However, if M, is sufficiently less than 1 .  the local 
Mach number everywhere will remain subsonic. For airfoils in common use, if 
M, 5 0.8, the flowfield is generally completely subsonic. Therefore. to the air- 
plane aerodynamicist, the subsonic regime is loosely identified with a free stream 
where M, 5 0.8. 
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Figure 1.10 1 Illustration of different regimes of flow. 



1.3 Flow Regimes 

1.3.2 TransonicFlow 

If M ,  remains subsonic, but is sufficiently near 1, the flow expansion over the 
top surface of the airfoil may result in locally supersonic regions, as sketched in 
Fig. 1 .  lob. Such a mixed region flow is defined as transonicjow. In Fig. 1.10b, M ,  
is less than 1 but high enough to produce a pocket of locally supersonic flow. In most 
cases, as sketched in Fig. 1 .lob, this pocket terminates with a shock wave across 
which there is a discontinuous and sometimes rather severe change in flow proper- 
ties. Shock waves will be discussed in Chap. 4. If M ,  is increased to slightly above 
unity, this shock pattern will move to the trailing edge of the airfoil, and a second 
shock wave appears upstream of the leading edge. This second shock wave is called 
the bow shock, and is sketched in Fig. 1 . 1 0 ~ .  (Referring to Sec. 1.1, this is the type of 
flow pattern existing around the wing of the Bell XS-1 at the moment it was "break- 
ing the sound barrier" at M ,  = 1.06.) In front of the bow shock, the streamlines are 
straight and parallel, with a uniform supersonic free-stream Mach number. In passing 
through that part of the bow shock that is nearly normal to the free stream, the flow 
becomes subsonic. However, an extensive supersonic region again forms as the flow 
expands over the airfoil surface, and again terminates with a trailing-edge shock. 
Both flow patterns sketched in Figs. 1.10b and c are characterized by mixed regions 
of locally subsonic and supersonic flow. Such mixed flows are defined as transonic 
jows ,  and 0.8 5 M ,  5 1.2 is loosely defined as the transonic regime. Transonic 
flow is discussed at length in Chap. 14. 

1.3.3 Supersonic Flow 

A flowfield where M > 1 everywhere is defined as supersonic. Consider the super- 
sonic flow over the wedge-shaped body in Fig. 1. lOd. A straight, oblique shock wave 
is attached to the sharp nose of the wedge. Across this shock wave, the streamline di- 
rection changes discontinuously. Ahead of the shock, the streamlines are straight, 
parallel, and horizontal; behind the shock they remain straight and parallel but in the 
direction of the wedge surface. Unlike the subsonic flow in Fig. 1. 10a, the supersonic 
uniform free stream is not forewarned of the presence of the body until the shock 
wave is encountered. The flow is supersonic both upstream and (usually, but not 
always) downstream of the oblique shock wave. There are dramatic physical and 
mathematical differences between subsonic and supersonic flows, as will be dis- 
cussed in subsequent chapters. 

1.3.4 Hypersonic Flow 

The temperature, pressure, and density of the flow increase almost explosively 
across the shock wave shown in Fig. 1.10d. As M ,  is increased to higher supersonic 
speeds, these increases become more severe. At the same time, the oblique shock 
wave moves closer to the surface, as sketched in Fig. 1.10e. For values of M ,  > 5, 
the shock wave is very close to the surface, and the flowfield between the shock and 
the body (the shock layer) becomes very hot-indeed, hot enough to dissociate or 
even ionize the gas. Aspects of such high-temperature chemically reacting flows are 
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discussed in Chaps. 16 and 17. These effects-thin shock layers and hot, chemically 
reacting gases-add complexity to the analysis of such flows. For this reason, the 
flow regime for M ,  > 5 is given a special label-hypersonicflow. The choice of 
M ,  = 5 as a dividing point between supersonic and hypersonic flow is a rule of 
thumb. In reality, the special characteristics associated with hypersonic flow appear 
gradually as M ,  is increased, and the Mach number at which they become important 
depends greatly on the shape of the body and the free-stream density. Hypersonic 
flow is the subject of Chap. 15. 

It is interesting to note that incompressible flow is a special case of subsonic 
flow; namely, it is the limiting case where M ,  + 0. Since M ,  = V,/a,, we have 
two possibilities: 

M ,  + 0 because V,  + 0 

M ,  -+ 0 because a ,  + oo 

The former corresponds to no flow and is trivial. The latter states that the speed of 
sound in a truly incompressible flow would have to be infinitely large. This is com- 
patible with Eq. (1.6), which states that, for a truly incompressible flow where 
dp = 0, t must be zero, i.e., zero compressibility. We shall see in Chap. 3 that the 
speed of sound is inversely proportional to the square root of t; hence t = 0 implies 
an infinite speed of sound. 

There are other ways of classifying flowfields. For example, flows where the ef- 
fects of viscosity, thermal conduction, and mass diffusion are important are called 
viscousflows. Such phenomena are dissipative effects that change the entropy of the 
flow, and are important in regions of large gradients of velocity, temperature, and 
chemical composition. Examples are boundary layer flows, flow in long pipes, 
and the thin shock layer on high-altitude hypersonic vehicles. Friction drag, flowfield 
separation, and heat transfer all involve viscous effects. Therefore, viscous flows are 
of major importance in the study of fluid dynamics. In contrast, flows in which vis- 
cosity, thermal conduction, and diffusion are ignored are called inviscidj7ows. At first 
glance, the assumption of inviscid flows may appear highly restrictive; however, 
there are a number of important applications that do not involve flows with large gra- 
dients, and that readily can be assumed to be inviscid. Examples are the large regions 
of flow over wings and bodies outside the thin boundary layer on the surface, flow 
through wind tunnels and rocket engine nozzles, and the flow over compressor and 
turbine blades for jet engines. Surface pressure distributions, as well as aerodynamic 
lift and moments on some bodies, can be accurately obtained by means of the as- 
sumption of inviscid flow. In this book, viscous effects will not be treated except in 
regard to their role in forming the internal structure and thickness of shock waves. 
That is, this book deals with compressible, inviscidflows. 

Finally, we will always consider the gas to be a continuum. Clearly, a gas is com- 
posed of a large number of discrete atoms and/or molecules, all moving in a more or 
less random fashion, and frequently colliding with each other. This microscopic 
picture of a gas is essential to the understanding of the thermodynamic and chemical 
properties of a high-temperature gas, as described in Chaps. 16 and 17. However, 
in deriving the fundamental equations and concepts for fluid flows, we take advantage 
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of the fact that a gas usually contains a large number of molecules (over 2 x 10'%0l- 
ecules/cm3 for air at normal room conditions), and hence on a macroscopic basis, the 
fluid behaves as if it were a continuous material. This continuum assumption is vio- 
lated only when the mean distance an atom or molecule moves between collisions 
(the mean free path) is so large that it is the same order of magnitude as the charac- 
teristic dimension of the flow. This implies low density, or rarejied$ow. The extreme 
situation, where the mean free path is much larger than the characteristic length and 
where virtually no molecular collisions take place in the flow, is called free-molecular 
$ow. In this case, the flow is essentially a stream of remotely spaced particles. Low- 
density and free-molecular flows are rather special cases in the whole spectrum of 
fluid dynamics, occumng in flight only at very high altitudes (above 200,000 ft), and 
in special laboratory devices such as electron beams and low-pressure gas lasers. Such 
rarefied gas effects are beyond the scope of this book. 

1.4 1 A BRIEF REVIEW OF THERMODYNAMICS 
The kinetic energy per unit mass, v2/2, of a high-speed flow is large. As the flow 
moves over solid bodies or through ducts such as nozzles and diffusers, the local 
velocity, hence local kinetic energy, changes. In contrast to low-speed or incom- 
pressible flow, these energy changes are substantial enough to strongly interact with 
other properties of the flow. Because in most cases high-speed flow and compressible 
flow are synonymous, energy concepts play a major role in the study and under- 
standing of compressible flow. In turn, the science of energy (and entropy) is ther- 
modynamics; consequently, thermodynamics is an essential ingredient in the study of 
compressible flow. 

This section gives a brief outline of thermodynamic concepts and relations nec- 
essary to our further discussions. This is in no way an exposition on thermodynam- 
ics; rather it is a review of only those fundamental ideas and equations which will be 
of direct use in subsequent chapters. 

1.4.1 Perfect Gas 

A gas is a collection of particles (molecules, atoms, ions, electrons, etc.) that are in 
more or less random motion. Due to the electronic structure of these particles, a force 
field pervades the space around them. The force field due to one particle reaches out 
and interacts with neighboring particles, and vice versa. Hence, these fields are called 
intermolecular forces. The intermolecular force varies with distance between parti- 
cles; for most atoms and molecules it takes the form of a weak attractive force at 
large distance, changing quickly to a strong repelling force at close distance. In gen- 
eral, these intermolecular forces influence the motion of the particles; hence they also 
influence the thermodynamic properties of the gas, which are nothing more than the 
macroscopic ramification of the particle motion. 

At the temperatures and pressures characteristic of many compressible flow 
applications, the gas particles are, on the average, widely separated. The average 
distance between particles is usually more than 10 molecular diameters. which 
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corresponds to a very weak attractive force. As a result, for a large number of engi- 
neering applications, the effect of intermolecular forces on the gas properties is neg- 
ligible. By definition, a perfect gas is one in which intermolecular forces are 
neglected. By ignoring intermolecular forces, the equation of state for a perfect gas 
can be derived from the theoretical concepts of modem statistical mechanics or ki- 
netic theory. However, historically it was first synthesized from laboratory measure- 
ments by Robert Boyle in the seventeenth century, Jacques Charles in the eighteenth 
century, and Joseph Gay-Lussac and John Dalton around 1800. The empirical result 
which unfolded from these observations was 

where p is pressure (N/m2 or lb/ft2), 'Yis the volume of the system (m3 or ft3), 
M is the mass of the system (kg or slug), R is the specific gas constant [J/(kg . K) or 
(ft . lb)/(slug .OR)], which is a different value for different gases, and T is the tem- 
perature (K or OR).+ This equation of state can be written in many forms, most of 
which are summarized here for the reader's convenience. For example, if Eq. (1.7) is 
divided by the mass of the system, 

where v is the specific volume (m3/kg or ft3/slug). Since the density p = 111.1, 
Eq. (1.8) becomes 

Along another track that is particularly useful in chemically reacting systems, 
the early fundamental empirical observations also led to a form for the equation of 
state: 

p Y = .A'.% T (1.10) 

where ./Yis the number of moles of gas in the system, and & is the universal gas con- 
stant, which is the same for all gases. Recall that a mole of a substance is that amount 
which contains a mass numerically equal to the molecular weight of the gas, and 
which is identified with the particular system of units being used, i.e., a kilogram- 
mole (kg . mol) or a slug-mole (slug . rnol). For example, for pure diatomic oxygen 
(OZ), 1 kg . rnol has a mass of 32 kg, whereas 1 slug . rnol has a mass of 32 slug. 
Because the masses of different molecules are in the same ratio as their molecular 
weights, 1 rnol of different gases always contains the same number of molecules, i.e., 
1 kg . rnol always contains 6.02 x molecules, independent of the species of the 
gas. Continuing with Eq. (1. lo), dividing by the number of moles of the system yields 

'TWO sets of consistent units will be used throughout this book, the International System (SI) and the 
English Engineering System. In the SI system, the units of force, mass, length, time, and temperature are 
the newton (N), kilogram (kg), meter (m), second (s), and Kelvin (K), respectively; in the English 
Engineering System they are the pound (lb), slug, foot (ft), second (s), and Rankine (OR), respectively. 
The respective units of energy are joules (J) and foot-pounds (ft . Ib). 
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where 7 " is the molar volume [m3/(kg . mol) or ft3/(slug . mol)]. Of more use in 
gasdynamic problems is a form obtained by dividing Eq. (1.10) by the mass of the 
system: 

(1.12) 

where v is the specific volume as before, and q is the mole-mass ratio [(kg . mol)/kg 
and (slug . mol)/slug]. (Note that the kilograms and slugs in these units do not can- 
cel, because the kilogram-mole and slug-mole are entities in themselves; the "kilo- 
gram" and "slug" are just identifiers on the mole.) Also, Eq. (1.10) can be divided by 
the system volume, yielding 

p = C.#T (1.13) 

where C is the concentration [(kg . mol)/m3 or (slug . mol)/ft3]. 
Finally, the equation of state can be expressed in terms of particles. Let NA be 

the number of particles in a mole (Avogadro's number, which for a kilogram-mole is 
6.02 x particles). Multiplying and dividing Eq. (1.13) by N A ,  

Examining the units, N A  C is physically the number density (number of particles 
per unit volume), and . 8 / N A  is the gas constant per particle, which is precisely the 
Boltzmann constant k.  Hence, Eq. (1.14) becomes 

where n denotes number density. 
In summary, the reader will frequently encounter the different forms of the per- 

fect gas equation of state just listed. However, do not be confused; they are all the 
same thing and it is wise to become familiar with them all. In this book, particular use 
will be made of Eqs. (1.8), (1.9), and (1.12). Also, do not be confused by the variety 
of gas constants. They are easily sorted out: 

1. When the equation deals with moles, use the universal gas constant, which is 
the "gas constant per mole." It is the same for all gases, and equal to the 
following in the two systems of units: 

:4' = 8314 J/(kg . mol . K) 

.Y? = 4.97 x lo4 (ft . lb)/(slug . mol . OR) 

2. When the equation deals with mass, use the specific gas constant R ,  which is 
the "gas constant per unit mass." It is different for different gases, and is 
related to the universal gas constant, R = /R/. M, where . K is the molecular 
weight. For air at standard conditions: 

R = 1716 (ft . lb)l(slug . OR) 
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3. When the equation deals with particles, use the Boltzmann constant k, which is 
the "gas constant per particle": 

k = 1.38 x JIK 

k = 0.565 x (ft . lb) /OR 

How accurate is the assumption of a perfect gas? It has been experimentally de- 
termined that, at low pressures (near 1 atm or less) and at high temperatures (standard 
temperature, 273 K, and above), the value pu/RT for most pure gases deviates from 
unity by less than 1 percent. However, at very cold temperatures and high pressures, 
the molecules of the gas are more closely packed together, and consequently inter- 
molecular forces become more important. Under these conditions, the gas is defined 
as a real gas. In such cases, the perfect gas equation of state must be replaced by 
more accurate relations such as the van der Waals equation 

where a and b are constants that depend on the type of gas. As a general rule of 
thumb, deviations from the perfect gas equation of state vary approximately as p / ~ 3 .  
In the vast majority of gasdynamic applications, the temperatures and pressures are 
such that p = pRT can be applied with confidence. Such will be the case through- 
out this book. 

In the early 1950s, aerodynamicists were suddenly confronted with hypersonic 
entry vehicles at velocities as high as 26,000 ftls (8 kmls). The shock layers about 
such vehicles were hot enough to cause chemical reactions in the airflow (dissocia- 
tion, ionization, etc.). At that time, it became fashionable in the aerodynamic litera- 
ture to denote such conditions as "real gas effects." However, in classical physical 
chemistry, a real gas is defined as one in which intermolecular forces are important, 
and the definition is completely divorced from the idea of chemical reactions. In the 
preceding paragraphs, we have followed such a classical definition. For a chemically 
reacting gas, as will be discussed at length in Chap. 16, most problems can be treated 
by assuming a mixture of perfect gases, where the relation p = pRT still holds. 
However, because R = %/A and .A varies due to the chemical reactions, then R is 
a variable throughout the flow. It is preferable, therefore, not to identify such 
phenomena as " real gas effects," and this term will not be used in this book. Rather, 
we will deal with "chemically reacting mixtures of perfect gases," which are the 
subject of Chaps. 16 and 17. 

A pressure vessel that has a volume of 10 m3 is used to store high-pressure air for operating a 
supersonic wind tunnel. If the air pressure and temperature inside the vessel are 20 atm and 
300 K, respectively, what is the mass of air stored in the vessel? 

Solution 
Recall that 1 atm = 1.01 x lo5 N/m2. From Eq. (1.9) 
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The total mass stored is then 

Calculate the isothermal compressibility for air at a pressure of 0.5 atm. 

Solution 
From Eq. (1.3) 

From Eq. (1 3)  

Thus 

Hence 

We see that the isothermal compressibility for a perfect gas is simply the reciprocal of the 

pressure: 

In terms of the International System of units, where p = (0.5)(1.01 x lo5) = 5.05 x lo4 
~ l r n ' ,  

r, = -1 
In terms of the English Engineering System of units, where p = (0.5) (21 16) = 1058 Ib/ft2, 

1.4.2 Internal Energy and Enthalpy 

Returning to our microscopic view of a gas as a collection of particles in random mo- 
tion, the individual kinetic energy of each particle contributes to the overall energy 
of the gas. Moreover, if the particle is a molecule, its rotational and vibrational mo- 
tions (see Chap. 16) also contribute to the gas energy. Finally, the motion of electrons 
in both atoms and molecules is a source of energy. This small sketch of atomic and 
molecular energies will be enlarged to a massive portrait in Chap. 16; it is sufficient 
to note here that the energy of a particle can consist of several different forms of mo- 
tion. In turn, these energies, summed over all the particles of the gas, constitute the 
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internal energy, e ,  of the gas. Moreover, if the particles of the gas (called the system) 
are rattling about in their state of "maximum disorder" (see again Chap. 16), the sys- 
tem of particles will be in equilibrium. 

Return now to the macroscopic view of the gas as a continuum. Here, equilib- 
rium is evidenced by no gradients in velocity, pressure, temperature, and chemical 
concentrations throughout the system, i.e., the system has uniform properties. For an 
equilibrium system of a real gas where intermolecular forces are important, and also 
for an equilibrium chemically reacting mixture of perfect gases, the internal energy 
is a function of both temperature and volume. Let e denote the specific internal en- 
ergy (internal energy per unit mass). Then, the enthalpy, h,  is defined, per unit mass, 
as h = e + pv, and we have 

for both a real gas and a chemically reacting mixture of perfect gases. 
If the gas is not chemically reacting, and if we ignore intermolecular forces, the 

resulting system is a thermally perfiect gas, where internal energy and enthalpy are 
functions of temperature only, and where the specific heats at constant volume and 
pressure, c,  and c,, are also functions of temperature only: 

e = e ( T )  

The temperature variation of c ,  and c, is associated with the vibrational and elec- 
tronic motion of the particles, as will be explained in Chap. 16. 

Finally, if the specific heats are constant, the system is a calorically perfect gas, 
where 

In Eq. (1.19), it has been assumed that h = e = 0 at T = 0 .  
In many compressible flow applications, the pressures and temperatures are 

moderate enough that the gas can be considered to be calorically perfect. Indeed, 
there is a large bulk of literature for flows with constant specific heats. For the first 
half of this book, a calorically perfect gas will be assumed. This is the case for at- 
mospheric air at temperatures below 1000 K. However, at higher temperatures the 
vibrational motion of the 0 2  and N2 molecules in air becomes important, and the air 
becomes thermally perfect, with specific heats that vary with temperature. Finally, 
when the temperature exceeds 2500 K, the 0 2  molecules begin to dissociate into 
0 atoms, and the air becomes chemically reacting. Above 4000 K, the N2 molecules 
begin to dissociate. For these chemically reacting cases, from Eqs. (1.17), e depends 
on both T and v ,  and h depends on both T and p. (Actually, in equilibrium thermo- 
dynamics, any state variable is uniquely determined by any two other state variables. 
However, it is convenient to associate T and v withe, and T and p with h.) Chapters 16 



1.4 A Brief Review of Thermodynamics 

and 17 will discuss the thermodynamics and gasdynamics of both thermally perfect 
and chemically reacting gases. 

Consistent with Eq. (1.9) and the definition of enthalpy is the relation 

where the specific heats at constant pressure and constant volume are defined as 

and 

respectively. Equation (1.20) holds for a calorically perfect or a thermally perfect 
gas. It is not valid for either a chemically reacting or a real gas. Two useful forms of 
Eq. (1.20) can be simply obtained as follows. Divide Eq. (1.20) by c,: 

Define y = c,/c,. For air at standard conditions, y = 1.4. Then Eq. (1.21) becomes 

Solving for c,, 

Similarly, by dividing Eq. (1.20) by cu, we find that 

Equations (1.22) and (1.23) hold for a thermally or calorically perfect gas; they will 
be useful in our subsequent treatment of compressible flow. 

For the pressure vessel in Example 1.2, calculate the total internal energy of the gas stored in 
the vessel. 

Solution 
From Eq. (1.23) 
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From Eq. (1.19) 

From Example 1.2, we calculated the mass of air in the vessel to be 234.6 kg. Thus, the total 
internal energy is 

1.4.3 First Law of Thermodynamics 

Consider a system, which is a fixed mass of gas separated from the surroundings by 
a flexible boundary. For the time being, assume the system is stationary, i.e., it has no 
directed kinetic energy. Let Sq be an incremental amount of heat added to the system 
across the boundary (say by direct radiation or thermal conduction). Also, let Sw de- 
note the work done on the system by the surroundings (say by a displacement of 
the boundary, squeezing the volume of the system to a smaller value). Due to the 
molecular motion of the gas, the system has an internal energy e. (This is the specific 
internal energy if we assume a system of unit mass.) The heat added and work done 
on the system cause a change in energy, and since the system is stationary, this 
change in energy is simply de: 

69 +Sw = de E I  (1.24) 
This is the3rst law of thermodynamics; it is an empirical result confirmed by labo- 
ratory and practical experience. In Eq. (1.24), e is a state variable. Hence, de is an 
exact differential, and its value depends only on the initial and final states of the sys- 
tem. In contrast, 69 and Sw depend on the process in going from the initial and final 
states. 

For a given de, there are in general an infinite number of different ways 
(processes) by which heat can be added and work done on the system. We will be 
primarily concerned with three types of processes: 

1. Adiabatic process-one in which no heat is added to or taken away from the 
system 

2. Reversible process-one in which no dissipative phenomena occur, i.e., where 
the effects of viscosity, thermal conductivity, and mass diffusion are absent 

3. Isentropic process-one which is both adiabatic and reversible 

For a reversible process, it can be easily proved (see any,good text on thermo- 
dynamics) that Sw = -p dv, where dv is an incremental c y g e  in specific volume 
due to a displacement of the boundary of the system. Hence, Eq. (1.24) becomes 

If, in addition, this process is also adiabatic (hence isentropic), Eq. (1.25) leads to 
some extremely useful thermodynamic formulas. However, before obtaining these 
formulas, it is useful to review the concept of entropy. 
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1.4.4 Entropy and the  Second Law of Thermodynamics 

Consider a block of ice in contact with a red-hot plate of steel. Experience tells us 
that the ice will warm up (and probably melt) and the steel plate will cool down. 
However, Eq. (1.24) does not necessarily say this will happen. Indeed, the first law 
allows that the ice may get cooler and the steel plate hotter-just as long as energy is 
conserved during the process. Obviously, this does not happen; instead, nature im- 
poses another condition on the process, a condition which tells us in which direction 
a process will take place. To ascertain the proper direction of a process, let us define 
a new state variable, the entropy. as 

where s is the entropy of the system, Sq,,, is an incremental amount of heat added re- 
versibly to the system, and T is the system temperature. Do not be confused by this 
definition. It defines a change in entropy in terms of a reversible addition of heat, 
Sq,,,. However, entropy is a state variable, and it can be used in conjunction with any 
type of process, reversible or irreversible. The quantity 6q,,, is just an artifice; an ef- 
fective value of Sq,,, can always be assigned to relate the initial and end points of an 
irreversible process, where the actual amount of heat added is Sq. Indeed, an alterna- 
tive and probably more lucid relation is 

( 1.26) 

Equation (1.26) applies in general; it states that the change in entropy during any in- 
cremental process is equal to the actual heat added divided by the temperature, Sq/T, 
plus a contribution from the irreversible dissipative phenomena of viscosity, thermal 
conductivity, and mass diffusion occurring within the system, dsimeV . These dissipa- 
tive phenomena always increase the entropy: 

The equal sign denotes a reversible process, where, by definition, the dissipative phe- 
nomena are absent. Hence, a combination of Eqs. (1.26) and (1.27) yields 

Furthermore, if the process is adiabatic, 6q = 0, and Eq. (1.28) becomes 

Equations (1.28) and (1.29) are forms of the second law of thermodynamics. The sec- 
ond law tells us in what direction a process will take place. A process will proceed in 
a direction such that the entropy of the system plus surroundings always increases, or 
at best stays the same. In our example at the beginning of Section 1.4.4, consider the 
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system to be both the ice and steel plate combined. The simultaneous heating of 
the ice and cooling of the plate yields a net increase in entropy for the system. On the 
other hand, the impossible situation of the ice getting cooler and the plate hotter 
would yield a net decrease in entropy, a situation forbidden by the second law. In 
summary, the concept of entropy in combination with the second law allows us to 
predict the direction that nature takes. 

1.4.5 Calculation of Entropy 

Consider again the first law in the form of Eq. (1.25). If we assume that the heat is re- 
versible, and we use the definition of entropy in the form Sq, = T  d s ,  then 
Eq. (1.25)  becomes 

T d s - p d v = d e  

T d s  = d e + p d v  

Another form can be obtained in terms of enthalpy. For example, by definition, 

h = e + p v  
Differentiating, we obtain 

d h  = d e + p d v  + v d p  

Combining Eqs. (1.30) and (1.31), we have 

Equations (1.30) and (1.32) are important, and should be kept in mind as much as the 
original form of the first law, Eq. (1.24). 

For a thermally perfect gas, from Eq. (1.18), we have d h  = c, d T .  Substitution 
into Eq. (1.32) gives 

dT v d p  
d s  = c , -  - - (1.33) 

T T  

Substituting the perfect gas equation of state pv = RT into Eq. (1.33), we have 

Integrating Eq. (1.34) between states 1 and 2, 

Equation (1.35) holds for a thermally perfect gas. It can be evaluated if c, is known 
as a function of T .  If we further assume a calorically perfect gas, where c, is con- 
stant, Eq. (1.35) yields 
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Similarly, starting with Eq. (1.30), and using de = c,, dT, the change in entropy 
can also be  obtained as 

T2 
sz - SI = C ,  In - + R l n  - 

TI V l  I 
As an exercise, show this yourself. Equations (I  .36) and (1 3 7 )  allow the calculation 
of the change in entropy between two states of a calorically perfect gas in terms of ei- 
ther the pressure and temperature, or the volume and temperature. Note that entropy 
is a function of both p and T, or v and T, even for the simplest case of a calorically 
perfect gas. 

Consider the air in the pressure vessel in Example 1.2. Let us now heat the gas in the vessel. 
Enough heat is added to increase the temperature to 600 K. Calculate the change in entropy of 
the air inside the vessel. 

rn Solution 
The vessel has a constant volume; hence as the air temperature is increased, the pressure also 
increases. Let the subscripts 1 and 2 denote the conditions before and after heating, respec- 
tively. Then, from Eq. ( 1  3). 

In  Example 1.4, we found that c,. = 7 17.5 Jkg . K. Thus, from Eq. (1.20) 

From Eq. (1.36) 

From Example 1.2, the mass of air inside the vessel is 234.6 kg. Thus, the total entropy 
change is 

S2 - SI  = M(.s2 - $ 1 )  = (234.6)(497.3) = 

1.4.6 Isentropic Relations 

An isentropic process was already defined as adiabatic and reversible. For an adia- 
batic process, 6 q  = 0, and for a reversible process, ds,,, = 0. Hence, from 
Eq. (1.26), an isentropic process is one in which ds = 0, i.e., the entropy is constant. 
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Important relations for an isentropic process can be obtained directly from 
Eqs. (1.36) and (1.37), setting s2 = s1. For example, from Eq. (1.36) 

T2 P2 O=c,ln- - Rln- 
TI P1 

P2 cp T2 In- = -In- 
P1 R Tl 

Recalling Eq. (1.22), 

and substituting into Eq. (1.38), 

Similarly, from Eq. (1.37) 

From Eq. (1.23) 

Substituting into Eq. (1.40), we have 

Recall that hip1 = V I  /v2.  Hence, from Eq. (1.41) 

Summarizing Eqs. (1.39) and (1.42), 

Equation (1.43) is important. It relates pressure, density, and temperature for an isen- 
tropic process, and is very frequently used in the analysis of compressible flows. 
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You might legitimately ask the questions why Eq. (1.43) is so important, and 
why it is frequently used. Indeed, at first thought the concept of an isentropic 
process itself may seem so restrictive-adiabatic as well as reversible-that one 
might expect it to find only limited applications. However, such is not the case. For 
example, consider the flows over an airfoil and through a rocket engine. In the re- 
gions adjacent to the airfoil surface and the rocket nozzle walls, a boundary layer is 
formed wherein the dissipative mechanisms of viscosity, thermal conduction, and 
diffusion are strong. Hence, the entropy increases within these boundary layers. On 
the other hand, consider the fluid elements outside the boundary layer, where dissi- 
pative effects are negligible. Moreover, no heat is being added or taken away from 
the fluid elements at these points-hence, the flow is adiabatic. As a result, the fluid 
elements outside the boundary layer are experiencing adiabatic and reversible 
processes-namely, isentropic flow. Moreover, the viscous boundary layers are 
usually thin, hence large regions of the flowfields are isentropic. Therefore, a study 
of isentropic flows is directly applicable to many types of practical flow problems. 
In turn, Eq. (1.43) is a powerful relation for such flows, valid for a calorically per- 
fect gas. 

This ends our brief review of thermodynamics. Its purpose has been to give a 
quick summary of ideas and equations that will be employed throughout our subse- 
quent discussions of compressible flow. Aspects of the thermodynamics associated 
with a high-temperature chemically reacting gas will be developed as necessary in 
Chap. 16. 

Consider the flow through a rocket engine nozzle. Assume that the gas flow through the nozzle 
is an isentropic expansion of a calorically perfect gas. In the combustion chamber, the gas 
which results from the combustion of the rocket fuel and oxidizer is at a pressure and temper- 
ature of 15 atm and 2500 K, respectively; the molecular weight and specific heat at constant 
pressure of the combustion gas are 12 and 41 57 Jkg . K, respectively. The gas expands to su- 
personic speed through the nozzle, with a temperature of 1350 K at the nozzle exit. Calculate 
the pressure at the exit. 

Solution 
From our earlier discussion on the equation of state, 

From Eq. (1.20) 

C ,  = c, - R = 4157 - 692.8 = 3464 Jlkg . K 

Thus 

c 4157 Y = P = - - -  - 1.2 
c,, 3464 
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From Eq. (1.43), we have 

p2 = 0 . 0 2 5 ~ 1  = (0.0248)(15 atm) = -1 

Calculate the isentropic compressibility for air at a pressure of 0.5 atm. Compare the result 
with that for the isothermal compressibility obtained in Example 1.3. 

Solution 
From Eq. (1.4), the isentropic compressibility is defined as 

Since v = l/p, we can write Eq. (1.4) as 

The variation between p and p for an isentropic process is given by Eq. (1.43) 

which is the same as writing 
p = cpY 

where c is a constant. From Eq. (E.2) 

From Eqs. (E.l) and (E.3), 

Hence, 

Recall from Example 1.3 that t~ = l/p. Hence, 

Note that rs is smaller than r~ by the factory. From Example 1.3, we found that for p = 0.5 atm, 
tr = 1.98 x m2/N. Hence, from Eq. (E.5) 
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1.5 1 AERODYNAMIC FORCES ON A BODY 
The history of fluid dynamics is dominated by the quest to predict forces on a body 
moving through a fluid-ships moving through water, and in the nineteenth and 
twentieth centuries, aircraft moving through air, to name just a few examples. 
Indeed, Newton's treatment of fluid flow in his Principia (1687) was oriented in part 
toward the prediction of forces on an inclined surface. The calculation of aero- 
dynamic and hydrodynamic forces still remains a central thrust of modern fluid 
dynamics. This is especially true for compressible flow, which governs the aerody- 
namic lift and drag on high-speed subsonic, transonic, supersonic, and hypersonic 
airplanes, and missiles. Therefore, in several sections of this book, the fundamentals 
of compressible flow will be applied to the practical calculation of aerodynamic 
forces on high-speed bodies. 

The mechanism by which nature transmits an aerodynamic force to a surface is 
straightforward. This force stems from only two basic sources: surface pressure 
and surface shear stress. Consider, for example, the airfoil of unit span sketched in 
Fig. 1.11. Let s be the distance measured along the surface of the airfoil from the 
nose. In general, the pressure p and shear stress r are functions of s; p = p ( s )  and 
t = t ( 5 ) .  These pressure and shear stress distributions are the only means that nature 
has to communicate an aerodynamic force to the airfoil. To be more specific, con- 
sider an elemental surface area dS on which is exerted a pressure p acting normal to 
d S  and a shear stress t acting tangential to d S ,  as sketched in Fig. 1.11 Let n and m 
be unit vectors perpendicular and parallel, respectively, to the element d S ,  as shown 
in Fig. 1.11. For future discussion, it is convenient to define a vector d S  = n d S ;  
hence dS is a vector normal to the surface with a magnitude d S .  From Fig. 1.1 1 ,  the 
elemental force dF acting on d S  is then 

Note from Fig. 1.11 that p acts toward the surface, whereas d S  = n d S  is directed 
away from the surface. This is the reason for the minus sign in Eq. (1.44). The total 

Figure 1.11 1 Sources of aerodynamic force; resultant force and its resolution 
into lift and drag. 
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aerodynamic force F acting on the complete body is simply the sum of all the ele- 
ment forces acting on all the elemental areas. This can be expressed as a surface in- 
tegral, using Eq. (1 4): 

On the right-hand side of Eq. (1.45), the first integral is the pressure force on the 
body, and the second is the shear, or friction force. The integrals are taken over the 
complete surface of the body. 

Consider x, y , z orthogonal coordinates as shown in Fig. 1.1 1. Let x and y be 
parallel and perpendicular, respectively, to V,. If F is the net aerodynamic force 
from Eq. (1.45), then the lift L and drag D are defined as the components of F in 
the y and x directions, respectively. In aerodynamics, V,  is called the relative wind, 
and lift and drag are always defined as perpendicular and parallel, respectively, to the 
relative wind. For most practical aerodynamic shapes, L is generated mainly by the 
surface pressure distribution; the shear stress distribution generally makes only a 
small contribution. Hence from Eq. (1.45) and Fig. 1.1 1, the aerodynamic lift can be 
approximated by 

L % y component of [ -# dsl 
With regard to drag, from Eq. (1.45) and Fig. 1.1 1, 

D = x component of + x component of [#rmdS] (1.47) 

pressure drag skin-friction drag 

In this book, inviscid flows are dealt with exclusively, as discussed in Sec. 1.3. 
For many bodies, the inviscid flow accurately determines the surface pressure distri- 
bution. For such bodies, the results of this book in conjunction with Eq. (1.46) allow 
a reasonable prediction of lift. On the other hand, drag is due both to pressure and 
shear stress distributions via Eq. (1.47). Since we will not be considering viscous 
flows, we will not be able to calculate skin friction drag. Moreover, the pressure drag 
in Eq. (1.47) is often influenced by flow separation from the body-also a viscous 
effect. Hence, the fundamentals of inviscid compressible flow do not lead to an ac- 
curate prediction of drag for many situations. However, for pressure drag on slender 
supersonic shapes due to shock waves, so-called wave drag, inviscid techniques are 
usually quite adequate, as we shall see in subsequent chapters. 

A flat plate with a chord length of 3 ft and an infinite span (perpendicular to the page in 
Fig. 1.12) is immersed in a Mach 2 flow at standard sea level conditions at an angle of attack 
of 10". The pressure distribution over the plate is as follows: upper surface, p2 = const = 
1132 lb/ft2; lower surface, p3 = const = 3568 Ib/ft2. The local shear stress is given by 
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Pressure distribution 

Shear stress distribution 

Figure 1.12 1 Geometry for Example 1.8. 

r ,  = 13 / t0  ', where t, is in pounds per square feet and < is the distance in feet along the 
plate from the leading edge. Assume that the distribution of s,,, over the top and bottom sur- 

faces is the same. (We make this assumption for simplicity in this example. In reality, the 
shear stress distributions over the top and bottom surfaces will be different because the flow 
properties over these two surfaces are different.) Both the pressure and shear stress distribu- 
tions are sketched qualitatively in Fig. 1.12. Calculate the lift and drag per unit span on 
the plate. 

Solution 
Considering a unit span, 
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From Eq. (1.46) 

L = y component of 

From Eq. (1.47) 

Pressure drag = wave drag = D, = x component of 

Hence 

D, = 7308 sin 10" = 

Also from Eq. (1.46) 

Skin-friction drag = Df = x component of [Itm dsl 

Hence, recalling that shear stress acts on both sides, 

Df = 2(39.13) cos 10" = 1 77.1 Ib I per unit span 

The total drag is 
D = D, + D, 

D = 1 2 6 9 I b + 7 7 . 1 I b =  1346Ib E l  
Note: For this example, the drag is mainly wave drag; skin-friction drag accounts for only 
5.7 percent of the total drag. This illustrates an important point. For supersonic flow over slen- 
der bodies at a reasonable angle of attack, the wave drag is the primary drag contributor at sea 
level, far exceeding the skin-friction drag. For such applications, the inviscid methods dis- 
cussed in this book suffice, because the wave drag (pressure drag) can be obtained from such 
methods. We see here also why so much attention is focused on the reduction of wave drag- 
because it is frequently the primary drag component. At smaller angles of attack, the relative 
proportion of Df to D increases. Also, at higher altitudes, where viscous effects become 
stronger (the Reynolds number is lower), the relative proportion of Df to D increases. 

1.6 1 MODERN COMPRESSIBLE FLOW 
In Sec. 1.1, we saw how the convergent-divergent steam nozzles of de Lava1 helped 
to usher compressible flow into the world of practical engineering applications. How- 
ever, compressible flow did not begin to receive major attention until the advent of jet 
propulsion and high-speed flight during World War 11. Indeed, between 1945 and 
1960, the fundamentals and applications of compressible flow became essentially 
"classic," generally characterized by 

1. Treatment of a calorically perfect gas, i.e., constant specific heats. 
2. Exact solutions of flows in one dimension, but usually approximate solutions 

(based on linearized equations) for two- and three-dimensional flows. These 
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solutions were closed form, yielding equations or formulas for the desired 
information. Exceptions were the method of characteristics, an exact numerical 
approach applicable to certain classes of compressible flows (see Chap. 1 I ) ,  
and the exact Taylor-Maccoll solution to the flow over a sharp, right-circular 
cone at zero angle of attack (see Chap. 10). Both of these exceptions required 
numerical solutions, which were laborious endeavors before the advent of the 
modern high-speed digital computer. 

Many good textbooks on classical compressible flow have been written since 1945. 
Some of them are listed as Refs. 3 through 17 at the end of this book. The reader is 
strongly encouraged to study these references, because a thorough understanding of 
classical compressible flow is essential to modern applications. 

Since approximately 1960, compressible flow has entered a "modern" period, 
characterized by 

1. The necessity of dealing with high-temperature, chemically reacting gases 
associated with hypersonic flight and rocket engines, hence requiring a major 
extension and modification of the classical literature based on a calorically 
perfect gas. (See, for example, Ref. 1 19.) 

2. The rise of computational fluid dynamics, which is a new third dimension in 
fluid dynamics, complementing the previous existing dimensions of pure 
experiment and pure theory. With the advent of modem high-speed digital 
computers, and the subsequent development of computational fluid dynamics 
as a distinct discipline, the practical solution of the exact governing equations 
for a myriad of complex compressible flow problems is now at hand. In brief, 
computational fluid dynamics is the art of replacing the governing partial 
differential equations of fluid flow with numbers, and advancing these numbers 
in space and/or time to obtain a final numerical description of the complete 
fl owfield of interest. The end product of computational fluid dynamics is 
indeed a collection of numbers, in contrast to a closed-form analytical solution. 
However, in the long run the objective of most engineering analyses, closed- 
form or otherwise, is a quantitative description of the problem, i.e., numbers. 
(See, for example, Ref. 18.') 

The modern compressible flow of today is a mutually supportive mixture of clas- 
sical analyses along with computational techniques, with the treatment of noncalori- 
cally perfect gases as almost routine. The purpose of this book is to provide an 
understanding of compressible i-low from this point of view. Its intent is to blend the 
important aspects of classical compressible flow with the recent techniques of com- 
putational fluid dynamics. Moreover, the first part of the book will deal almost ex- 
clusively with a calorically perfect gas. In turn, the second part will contain a logical 
extension to realms of high-temperature gases, and the results will be contrasted 
with those from classical analyses. In addition, various historical aspects of the 
development of compressible flow, both classical and modem, will be included along 
with the technical material. In this fashion, it is hoped that the reader will gain an ap- 
preciation of the heritage of the discipline. The author feels strongly that a knowledge 
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of such historical traditions and events is important for a truly fundamental under- 
standing of the discipline. 

1.7 1 SUMMARY 
The compressibility is generically defined as 

hence 

dp = p t d p  (1.6) 

From Eq. (1.6), a flow must be treated as compressible when the pressure gradients 
in the flowfield are large enough such that, in combination with a large enough value 
of the compressibility, t ,  the resulting density changes are too large to ignore. For 
gases, this occurs when the flow Mach number is greater than about 0.3. In short, for 
high-speed flows, the density becomes a variable; such variable-density flows are 
called compressible flows. 

High-speed, compressible flow is also high-energy flow. Thermodynamics is the 
science of energy and entropy; hence a study and application of compressible flow 
involves a coupling of purely fluid dynamic fundamentals with the results of ther- 
modynamics. 

Compressible flow pertains to flows at Mach numbers from 0.3 to infinity. In turn, 
this range of Mach number is subdivided into four regimes, each with its own distin- 
guishing physical characteristics and different analytical methods. These regimes are 
subsonic, transonic, supersonic, and hypersonic flow. Each of these regimes is dis- 
cussed at length in this book. 

PROBLEMS 
At the nose of a missile in flight, the pressure and temperature are 5.6 atm 
and 850°R, respectively. Calculate the density and specific volume. 
(Note: 1 atm = 21 16 lb/ft2.) 
In the reservoir of a supersonic wind tunnel, the pressure and temperature of 
air are 10 atm and 320 K, respectively. Calculate the density, the number 
density, and the mole-mass ratio. (Note: 1 atm = 1.01 x lo5 ~ / m ~  .) 

For a calorically perfect gas, derive the relation c, - c, = R.  Repeat the 
derivation for a thermally perfect gas. 
The pressure and temperature ratios across a given portion of a shock wave in 
air are p2/p1 = 4.5 and T2/Tl = 1.687, where 1 and 2 denote conditions 
ahead of and behind the shock wave, respectively. Calculate the change in 
entropy in units of (a )  (ft . lb)/(slug . OR) and (b) J/(kg . K). 
Assume that the flow of air through a given duct is isentropic. At one point in 
the duct, the pressure and temperature are pl = 1800 lb/ft2 and TI = 500°R, 
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respectively. At a second point, the temperature is 400"R. Calculate the 
pressure and density at this second point. 

1.6 Consider a room that is 20 St long, 15 ft wide, and 8 ft high. For standard sea 
level conditions, calculate the mass of air in the room in slugs. Calculate the 
weight in pounds. (Note: If you do not know what standard sea level 
conditions are, consult any aerodynamics text, such as Refs. 1 and 104, for 
these values. Also, they can be obtained from any standard atmosphere table.) 

1.7 In the infinitesimal neighborhood surrounding a point in an inviscid flow, the 
small change in pressure, dp, that corresponds to a small change in velocity, 
d V, is given by the differential relation dp = - p  V d V . (This equation is 
called Euler's Equation; it is derived in chapter 6.) 

a. Using this relation, derive a differential relation for the fractional change 
in density, dplp, as a function of the fractional change in velocity, d V / V ,  
with the compressibility t as a coefficient. 

b. The velocity at a point in an isentropic flow of air is 10 mls (a low speed 
flow), and the density and pressure are 1.23 kg/m%nd 1.01 x 10' ~ / m '  
respectively (corresponding to standard sea level conditions). The 
fractional change in velocity at the point is 0.01. Calculate the fractional 
change in density. 

c. Repeat part (b), except for a local velocity at the point of 1000 mts 
(a high-speed flow). Compare this result with that from part (b), and 
comment on the differences. 





Integral Forms of the 
Conservation Equations 
for Inviscid Flows 

Mathematics up to the present day have been quite useless to us in regard toJying. 
From the 14th Annual Report of the Aeronautical Society of Great 
Britain, 1879 

Mathematical theories from the happy hunting grounds of pure mathematicians are 
found suitable to describe the airjlow produced by aircraft with such excellent 
accuracy that they can be applied directly to airplane design. 

Theodore von Karman, 1954 
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2.2 Approach 

2.1 1 PHILOSOPHY 
Consider the flowfield over an arbitrary aerodynamic body. We are interested in cal- 
culating the properties (p, p ,  T. V, etc.) of the flowfield at all points within the flow. 
Why? Because, if we can calculate the flow properties throughout the flow, then we 
can certainly compute them on the surface of the body. In turn, from the surface dis- 
tributions of p. T, p ,  V, etc., we can compute the aerodynamic forces (lift and drag), 
moments, and heat transfer on the body. Indeed, the calculation of such practical in- 
formation is one of the main functions of theoretical fluid mechanics, whether the 
body be a supersonic missile in flight, a submarine under water, or a high-rise apart- 
ment building in a hurricane. The essential point here is that in order to obtain prac- 
tical information on engineering devices involving fluid flows, it is frequently neces- 
sary to approach the theoretical solution of the complete flowfield. 

How do we calculate the flowfield properties? The answer is from equations, al- 
gebraic, differential, or integral, which relate p, p ,  T. V,  etc., to each other, along 
with suitable boundary conditions for the problem. The equations are obtained from 
the fundamental laws of nature applied to fluid flows. These laws and equations are 
a necessary prerequisite for an understanding of compressible flow. Therefore, let us 
proceed to establish these fundamental results. 

2.2 1 APPROACH 
In obtaining the basic equations of fluid motion, the following approach is always 
taken: 

1. Choose the appropriate fundamental physical principles from the laws of 
nature, such as 
a. Mass is conserved. 
b. Force = mass x acceleration. 
c. Energy is conserved. 

2. Apply these physical principles to a suitable model of the flow. 
3. From this application, extract the mathematical equations which embody such 

physical principles. 

We first consider step 2, namely, what constitutes a suitable model of the flow? 
This is a somewhat subtle question. In contrast to the dynamics of well-defined solid 
bodies, on which it is usually apparent where to apply forces and moments, the dy- 
namics of a fluid are complicated by the "squishy" nature of a rather elusive contin- 
uous medium that generally extends over large regions in space. Consequently, fluid 
dynamicists have to focus on specific regions of the flow, and apply the fundamental 
laws to a subscale model of the fluid motion. Three such models can be employed. 

2.2.1 Finite Control Volume Approach 

Consider a general flowfield, as represented by the streamlines in Fig. 2.2. Let us 
imagine a closed volume drawn within a finite region of the flow. This is defined as 
a control volume with volume Y ' and surface area S. The control volume may be 
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Finite control volume fixed 
in space with the fluid moving 
through it. 

Figure 2.2 1 Finite control volume approach. 

Volume, d Y 

4 

Finite control volume moving with the 
fluid such that the same fluid particles 
are always in the same control volume 

Volume, d 7' 

Infinitesimal fluid element fixed in 
space with the fluid moving through it 

Infinitesimal fluid element moving along a 
streamline with the velocity V equal to the 
flow velocity at each point 

Figure 2.3 1 Infinitesimal fluid element approach. 

eitherhed in space with the fluid moving through it, or moving with the fluid such 
that the same fluid particles are always inside it. 

With the application of the already mentioned fundamental physical principles 
to these finite control volumes, fixed or moving, integral equations for the fluid prop- 
erties can be directly obtained. With some further manipulation, differential equa- 
tions for the fluid properties can be indirectly extracted. 

2.2.2 Infinitesimal Fluid Element Approach 

Consider a general flowfield as represented by the streamlines in Fig. 2.3. Let us 
imagine an infinitesimally smalljuid element in the flow, with volume d Y  The fluid 
element is infinitesimal in the same sense as differential calculus; however, it is large 
enough to contain a huge number of molecules so that it can be viewed as a continu- 
ous medium (see the discussion of a continuum in Sec. 1.3). The fluid element may 
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be fixed in space with the fluid moving through it, or it may be moving along a 
streamline with velocity V equal to the flow velocity at each point. With the applica- 
tion of the fundamental physical principles to these fluid elements, fixed or moving, 
differential equations for the fluid properties can be directly obtained. 

2.2.3 Molecular Approach 

In actuality, of course, the motion of a fluid is a ramification of the mean molecular 
motion of its particles. Therefore, a third model of the flow can be a microscopic ap- 
proach wherein the fundamental laws of nature are applied directly to the molecules, 
with suitable statistical averaging. This leads to the Boltzmann equation from kinetic 
theory, from which the governing differential equations for the fluid properties can 
be extracted. This is an elegant approach, with many advantages in the long run. 
However, it is beyond the scope of the present book. The reader should consult the 
authoritative book by Hirchfelder, Curtis, and Bird (Ref. 19) for more details. 

In summary, although many variations on the theme can be found in different 
texts for the derivation of the general equations of fluid flow, the flow model can 
usually be categorized as one of the approaches described above. For the sake of 
consistency, the model of a fixed finite control volume will be employed for the 
remainder of this chapter. 

2.3 1 CONTINUITY EQUATION 

2.3.1 Physical Principle 

Mass Can Be Neither Created Nor Destroyed. Let us apply this principle to the 
model of a fixed control volume in a flow, as illustrated in Fig. 2.4. The volume 
is %,'and the area of the closed surface is S. First, consider point B on the control 
surface and an elemental area around B, dS. Let n be a unit vector normal to the sur- 
face at B. Define d s  = n d s .  Also, let V and p be the local velocity and density at B. 

Figure 2.4 1 Fixed control volume for derivation 
of the governing equations. 
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The mass flow (slugls or kgls) through any elemental surface arbitrarily oriented in a 
flowing fluid is equal to the product of density, the component of velocity normal to 
the surface, and the area. (Prove this to yourself.) Letting m denote the mass flow 
through dS, and refemng to Fig. 2.4, 

[Note: The product pVn is called the massflux, i.e., the flow of mass per unit area per 
unit time. Whenever you see a product of (density x velocity) in fluid mechanics, it 
can always be interpreted as mass flow per second per unit area perpendicular to the 
velocity vector.] The net mass flow into the control volume through the entire control 
surface S is the sum of the elemental mass flows from Eq. (2. l), namely, 

S 

where the minus sign denotes inflow (in the opposite direction of V and dS in 
Fig. 2.4). Consider now an infinitesimal volume d 7" inside the control volume. The 
mass of this infinitesimal volume is p d Y. Hence, the total mass inside the control 
volume is the sum of these elemental masses, namely, 

The time rate of change of this mass inside the control volume is therefore 

Finally, the physical principle that mass is conserved (given at the beginning of this 
section) states that the net mass flow into the control volume must equal the rate of 
increase of mass inside the control volume. In terms of the integrals just given, a 
mathematical representation of this statement is simply 

This equation is called the continuity equation; it is the integral formulation of the 
conservation of mass principle as applied to a fluid flow. Equation (2.2) is quite gen- 
eral; it applies to all flows, compressible or incompressible, viscous or inviscid. 

2.4 1 MOMENTUM EQUATION 

2.4.1 Physical Principle 

The Time Rate of Change of Momentum of a Body Equals the Net Force Exerted 
on It. Written in vector form, this statement becomes 



For constant mass, Eq. (2.3) yields 

2.4 Momentum Equation 

which is the more familiar form of Newton's second law, namely, that force = mass x 
acceleration. However, the physical principle with Eq. (2.3) is a more general 
statement of Newton's second law than Eq. (2.4). In this section, we wish to put 
Newton's second law [Eq. (2.3)] in fluid mechanic terms by employing the same con- 
trol volume utilized in Sec. 2.3 and sketched in Fig. 2.4. 

First, consider the forces on the control volume. Using some intuitive physical 
sense, we can visualize these forces as two types: 

1. Body forces acting on the fluid inside '2". These forces stem from "action at a 
distance," such as gravitational and electromagnetic forces that may be exerted 
on the fluid inside 7' due to force fields acting through space. Let f represent 
the body force per unit mass of fluid. Considering an elemental volume, d 7 , 
inside 7 ', the elemental body force on d 7 ' is equal to the product of its mass 
and the force per unit mass, namely, ( p  d 7 ) f .  Hence, summing over the 
complete control volume, 

Total body force = 

7 

Surface farces acting on the boundary of the control volume. As discussed in 
Sec. 1.5, surface forces in a fluid stem from two sources: pressure and shear 
stress distributions over the surface. Since we are dealing with inviscid flows 
here, the only surface force is therefore due to pressure. Consider the elemental 
area dS sketched in Fig. 2.4. The elemental surface force acting on this area is 
- p  dS,  where the minus sign signifies that pressure acts inward, opposite to 
the outward direction of the vector dS.  Hence, summing over the complete 
control surface, 

Total surface force due to pressure = - 8 d~ (2.6)  
S 

Note that the sum of Eqs. (2.5) and (2.6) represent F in Eq. (2.3). That is, at any 
given instant in time, the total force F acting on the control volume is 

[Please note that, if an aerodynamic body were inserted inside the control volume, 
there would be an additional force on the fluid-the equal and opposite reaction to 
the force on the body. However, in dealing with control volumes, it is always possi- 
ble to wrap the control surface around the body in such a fashion that the body is 
always outside the control volume, and the body force then shows up as part of the 
pressure distribution on the control surface. This is already taken into account by the 
last term in Eq. (2.7).] 
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Now consider the left-hand side of Eq. (2.3). In terms of our fluid dynamic 
model, how is the time rate of change of momentum, m(dV/dt) ,  expressed? To an- 
swer this question, again use some physical intuition. Look at the control volume in 
Fig. 2.4. Because it is fixed in space, mass flows into the control volume from the left 
at the same time that other mass is streaming out toward the right. The mass flowing 
in brings with it a certain momentum. At the same time, the mass flowing out also has 
momentum. With this picture in mind, let Al represent the net rate of flow of mo- 
mentum across the surface S. The elemental mass flow across dS is given by 
Eq. (2.1) as pV dS.  With this elemental mass flow is associated a momentum flow 
(or flux) (pV dS)V.  Note from Fig. 2.4 that, when the direction of V is away from 
the control volume, this physically represents an ou@ow of momentum and mathe- 
matically represents a positive value of V dS .  Conversely, when the direction of 
V is toward the control volume, this physically represents an inflow of momentum 
and mathematically represents a negative value of V dS.  The net rate of flow of 
momentum, summed over the complete surface S, is 

At this stage, it would be tempting to claim that Al represents the left-hand side 
of Eq. (2.3). However, consider an unsteady flow, where, by definition, the flow 
properties at any given point in the flowfield are functions of time. Examples would 
be the flow over a body that is oscillating back and forth with time, and the flow 
through a nozzle where the supply valves are being twisted off and on. If our control 
volume in Fig. 2.4 were drawn in such an unsteady flow, then the momentum of the 
fluid inside the control volume would be fluctuating with time simply due to the time 
variations in p and V .  Therefore, Al does not represent the whole contribution to the 
left-hand side of Eq. (2.3). There is, in addition, a time rate of change of momentum 
due to unsteady, transient effects in the flowfield inside 7. Let A2 represent this fluc- 
tuation in momentum. Also consider an elemental mass of fluid, p d 'Y. This mass has 
momentum (p d'2")V. Summing over the complete control volume 'Y, we have 

Total momentum inside 'Y = 

7' 

Hence, the change in momentum in 'Y due to unsteady fluctuations in the local flow 
properties is 

[Note that in Eq. (2.9) the partial derivative can be taken inside the integral because 
we are considering a volume of integration that is fixed in space. If the limits of inte- 
gration were not fixed, then Leibnitz's rule from calculus would yield a different 
form for the right-hand term of Eq. (2.9).] 

Finally, the sum A, + A2 represents the total instantaneous time rate of change 
of momentum of the fluid as it flows through the control volume. This is the fluid 
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mechanical counterpart of the left-hand side of Eq. (2.31, i.e., 

Therefore, to repeat the physical principle stated at the beginning of this section, 
the time rate of change of momentum of the fluid that is flowing through the control 
volume at any instant is equal to the net force exerted on the fluid inside the volume. 
In turn, these words can be directly translated into an equation by combining 
Eqs. (2.3), (2.7), and (2.10): 

Equation (2.1 1) is called the momentum equation; it is the integral formulation of 
Newton's second law applied to inviscid fluid flows. Note that Eq. (2.1 1 )  does not in- 
clude the effects of friction. If friction were to be included, it would appear as an ad- 
ditional surface force, namely, shear and normal viscous stresses integrated over the 
control surface. If FVi,,,,, represents this surface integral, then Eq. (2.1 l ) ,  modified 
for the inclusion of friction, becomes: 

Since this book mainly treats inviscid flows, Eq. (2.11) is of primary interest here, 
rather than Eq. (2.1 la).  

2.5 1 A COMMENT 
The continuity equation, Eq. (2.2), and the momentum equation, Eq. (2.1 I ) ,  despite 
their complicated-looking integral forms, are powerful tools in the analysis and 
understanding of fluid flows. Although it may not be apparent at this stage in our dis- 
cussion, these conservation equations will find definite practical applications in sub- 
sequent chapters. It is important to become familiar with these equations and with the 
energy equation to be discussed next, and to understand fully the physical funda- 
mentals they embody. 

For a study of incompressible flow, the continuity and momentum equations are 
sufficient tools to do the job. These equations govern the mechanical aspects of such 
flows. However, for a compressible flow, the principle of the conservation of energy 
must be considered in addition to the continuity and momentum equations, for the 
reasons discussed in Sec. 1.4. The energy equation is where thermodynamics enters 
the game of compressible flow, and this is our next item of business. 
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2.6 1 ENERGY EQUATION 

2.6.1 Physical Principle 

Energy Can Be Neither Created Nor Destroyed; It Can Only Change in Form. 
This fundamental principle is contained in the first law of thermodynamics, Eq. (1.24). 
Let us apply the first law to the fluid flowing through the fixed control volume in 
Fig. 2.4. Let 

B1 = rate of heat added to the fluid inside the control volume from the 
surroundings 

B2 = rate of work done on the fluid inside the control volume 
B3 = rate of change of the energy of the fluid as it flows through the 

control volume 

From the first law, 

BI + B2 = B3 

First, consider the rate of heat transferred to or from the fluid. This can be visu- 
alized as volumetric heating of the fluid inside the control volume due to the absorp- 
tion of radiation orginating outside the system, or the local emission of radiation by 
the fluid itself, if the temperature inside the control volume is high enough. Also, if 
the flow were viscous, there could be heat transferred across the boundary by thermal 
conduction and diffusion; however, these effects are not considered here. Finally, if 
the flow were chemically reacting, it might be tempting to consider energy released 
or absorbed by such reactions as a volumetric heating term. This is done in many 
treatments of reacting flows. However, the energy exchange due to chemical reac- 
tions is more fundamentally treated as part of the overall internal energy of the gas 
mixture and not as a separate heating term in the energy equation. This matter will be 
discussed at length in Chaps. 16 and 17. In any event, we can simply handle the rate 
of heat added to the control volume by first defining q to be the rate of heat added 
per unit mass, and then writing the rate of heat added to an elemental volume as 
q ( p  d V). Summing over the complete control volume, 

Before considering the rate of work done on the fluid inside the control volume, 
consider a simpler case of a solid object in motion, with a force F being exerted on 
the object, as sketched in Fig. 2.5. The position of the object is measured from a fixed 
origin by the radius vector r .  In moving from position rl to r2 over an interval of time 
dt, the object is displaced through dr .  By definition, the work done on the object 
in time dt is F dr .  Hence, the time rate of doing work is simply F drldt. But 
drldt = V, the velocity of the moving object. Hence, we can state that 

The rate of doing work = F ,  
on a moving body I 
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-Lb2 Later time, t + d t  

Figure 2.5 1 Rate of doing work 

In words, the rate of work done on a moving body is equal to the product of its ve- 
locity and the component of force in the direction of the velocity. 

This result leads to an expression for B2, as follows. Consider the elemental area 
d S  of the control surface in Fig. 2.4. The pressure force on this elemental area is 
- p  dS ,  as explained in Sec. 2.4. From the result just reached, the rate of work done 
on the fluid passing through d S  with velocity V is (-p dS) V. Hence, summing 
over the complete control surface, 

Rate of work done on 
the fluid inside 7 ' due ] = - j f ( p d ~ ) .  v (2.14) 
to pressure forces on S s 

In addition, consider an elemental volume inside the control volume. Recalling that 
f is the body force per unit mass. the rate of work done on the elemental volume due 
to body force is (pf d Y * )  . V. Summing over the complete control volume, 

Rate of work done on 
the fluid inside 7 due] = (.f d 7 ) v (2.15) 
to body forces 

Thus, the total work done on the fluid inside the control volume is the sum of 
Eqs. (2.14) and (2.15), 

S 7 

To visualize the energy inside the control volume, recall that in Sec. 1.4 the sys- 
tem was stationary and the energy inside the system was the internal energy e (per 
unit mass). However, the fluid inside the control volume in Fig. 2.4 is not stationary; 
it is moving at the local velocity V with a consequent kinetic energy per unit mass of 
v2/2. Hence, the energy per unit mass of the moving fluid is the sum of both internal 
and kinetic energies, e + v2/2. 

Keep in mind that mass flows into the control volume of Fig. 2.4 from the left at 
the same time that other mass is streaming out towards the right. The mass flowing 
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in brings with it a certain energy, while at the same time the mass flowing out also has 
energy. The elemental mass flow across d S  is given by Eq. (2.1) as pV d S  and 
therefore the elemental flux of energy across d S  is (pV dS)(e + v2/2). Summing 
over the complete control surface, 

Net rate of flow 
[of energy across ] = #(pv  d ~ )  (e + :) (2.17) 

the control surface 

However, this is not necessarily the total energy change inside the control volume. 
Analogous to the discussion surrounding Eq. (2.9), if the flow is unsteady there 
is also a rate of change of energy due the local transient fluctuations of the flow- 
field variables inside the control volume. The energy of an elemental volume is 
p(e + v2/2) d Y, and hence the energy inside the complete control volume at any in- 
stant in time is 

Therefore, 

r Time rate of change 1 
of energy inside f' due 
to transient variations I = t f l P ( e + : ) d 7 -  (2.18) 

L of the flowfield variables] 

In turn, B3 is the sum of Eqs. (2.17) and (2.18): 

Repeating the physical principle stated at the beginning of this section, the rate 
of heat added to the fluid plus the rate of work done on the fluid is equal to the rate 
of change of energy of the fluid as it flows through the control volume, i.e., energy is 
conserved. In turn, these words can be directly translated into an equation by com- 
bining Eqs. (2.12), (2.13), (2.16), and (2.19): 

Equation (2.20) is called the energy equation; it is the integral formulation of the first 
law of thermodynamics applied to an inviscid fluid flow. 



2.7 Final Comment 

Note that Eq. (2.20) does not include these phenomena: 

1. The rate of work done on the fluid inside the control volume by a rotating shaft 
that crosses the control surface. Wlhali 

2. The rate of work done by viscous stresses on the control surface, W,,,,,,,. 

3. The heat added across the control surface due to thermal conduction and 
diffusion. In combination with radiation, denote the total rate of heat addition 
from all these effects as Q. 

If all of these phenomena were included, then Eq. (2.20) would be modified as 

For the inviscid flows treated in this book, there is no thermal conduction or diffusion 
and there is no work done by viscous stresses. Moreover. for the basic flow problems 
discussed in later chapters, there is no shaft work. Therefore, Eq. (2.20) is of primary 
interest here, rather than Eq. (2.20a). 

2.7 1 FINAL COMMENT 
The three conservation equations derived, Eqs. (2.2), (2. l I), and (2.20), in con.junc- 
tion with the equation of state 

(7 = pRT 

and the thermodynamic relation 

(which simplifies to r = c,,T for a calorically perfect gas) are sufficient tools to ana- 
lyze inviscid compressible flows of an equilibrium gas-including equilibrium 
chemically reacting gases. The more complex case of a nonequilibrium gas will be 
treated in Chaps. 16 and 17. The conservation equations have been derived in  inte- 
gral form in this chapter; however, in Chap. 6 we will extract partial differential 
equations of continuity, momentum, and energy from these integral forms. In the 
meantime, we will do something even simpler: In the applications treated in Chaps. 3 
through 5 ,  the integral forms presented here will be applied to important, practical 
problems where algebraic equations fortunately can be extracted for the conservation 
principles. 

Finally, note that Eqs. (2.2), (2.1 I), and (2.20) are written in vector notation. and 
therefore have the advantage of not being limited to any one particular coordinate 
system: cartesian, cylindrical, spherical, etc. These equations describe the motion 
of an inviscid fluid in three dimensions. They speak words-mass is conserved, 
force = mass x acceleration, and energy is conserved. Never let the mathematical 
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formulation cause you to lose sight of the physical meaning of these equations. In 
their integral formulation they are particularly powerful equations from which all of 
our subsequent analyses will follow. 

2.8 1 AN APPLICATION OF THE MOMENTUM 
EQUATION: JET PROPULSION 
ENGINE THRUST 

The integral form of the conservation equations is immediately useful for many prac- 
tical applications. We discuss one such important application here-the calculation 
of the thrust of a jet propulsion device, such as a gas turbine jet engine, or a rocket 
engine. Our purpose here simply is to illustrate the power of the equations derived in 
this chapter. However, our choice of application to jet propulsion is not entirely arbi- 
trary, because a study of flight propulsion is a fertile field for the principles of com- 
pressible flow, as discussed in the preview box for Chap. 1. 

This section highlights two important principles that we have already discussed: 

1. The force exerted on a body by the fluid flow over or through the body is due 
only to the pressure distribution and the shear stress distribution exerted over 
the entire exposed surface of the body [see Sec. 1.5 and Eq. (1.45)]. 

2. The integral form of the momentum equation [see Sec. 2.4 and Eq. (2.1 I)]. 

All jet propulsion engines-turbojet engines, turbofans, ramjets, rockets, etc.- 
depend on the flow of a gas through and around the engines. In turn, this gas flow 
creates a pressure and shear stress distribution that are exerted over all the exposed 
surface areas of the engine, and it is the net integrated result of these two local dis- 
tributions that is the source of the thrust from the engine. The pressure and shear 
stress distributions can be very complex, such as those exerted over the compressor 
blades, combustor cans, turbine blades, and the nozzle of a turbojet engine, or more 
simple such as those exerted over the walls of the combustion chamber and exhaust 
nozzle of a rocket engine. In each case, however, it is these two hands of nature-the 
pressure and shear stress distributions-that reach out, grab hold of the engine, and 
create the thrust. 

It would seem, therefore, that the calculation of the thrust of a jet propulsion 
device would require detailed theoretical or experimental measurements of pressure 
and shear stress distributions exerted over every component of the engine. Obtaining 
such complex data is most formidable to say the least. Fortunately, it is not necessary, 
because the integral form of the momentum equation leads to a much simpler means 
to calculate the thrust of a jet propulsion device. The purpose of this section is to 
show how this is done, and to obtain a straightforward equation for the thrust of a jet 
propulsion device. In the process, we will highlight the tremendous advantage that 
sometimes comes from the use of the integral forms of the conservation equations 
derived in this chapter. 

The pressure distribution is by far the dominant contributor to the thrust; the 
shear stress distribution has only a very small effect. Therefore, in what follows we 
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Open 
neck 

Figure 2.6 1 Illustration of thrust o n  a balloon. 

will neglect shear stress and consider the pressure distribution only. Also, the sim- 
plest cxarnple of how pressure creates thrust is to consider a toy rubber balloon, 
sketched in Fig. 2.6. Imagine that you inflate the balloon with air, tie the neck of the 
balloon shut. and let go. The balloon will gradually sink to the ground under its own 
weight. hut i t  will not surge forward because there is no net thrust exerted on the bal- 
loon. This is because the pressure distribution over the inside and outside surfaces of 
the balloon integrates to a zero net force. This is sketched in Fig. 2.6~1, where the ex- 
ternal atmospheric pressure is p,  and the slightly higher internal pressure is p, .  The 
external pressure p,  is equal on all parts of the closed external surface, and hence 
integrates to a zero net force. Similarly, the internal pressure pi is equal on all parts 
of the closed internal surface, and hence also integrates to a zero net force. As a re- 
sult. there is no net pressure force on the balloon, i.e., no thrust. However, after you 
inflate the balloon, imagine that you do not tie the neck shut, but rather pinch it shut 
with your fingers for a moment, and then let go. The balloon will scoot forward and 
propel itself through the air for a few moments. This case is illustrated in Fig. 2.6b. 
Here. the neck of the balloon is open with area A l .  The equal projected area on the 
opposite side of the balloon is A?.  The internal pressure p; acts on the rubber surface 
A?.  tending to push the balloon to the left. However, there is no corresponding rubber 
surface area at A 1 for p, to push the balloon to the right, as is the case in Fig. 2 . 6 ~ .  
As a rcsult, there is an imbalance of forces on the balloon in Fig. 2.6b, resulting in a 
net thrust propelling the balloon to the left. The thrust is essentially equal to 
( p ,  - p x ) A 2 .  This is the simplest example of how pressure distribution is the source 
of thrust for a jet propulsion device, the device in this case being an inflated balloon 
scooting through the air, with a jet of air exhausting in the opposite direction through 
its open neck. The fundamental idea is the same for all jet propulsion devices. 

Let us now consider the generic jet propulsion device sketched in Fig. 2.70. The 
device is represented by a duct through which air flows into the inlet at the left, is pres- 
wrized, is burned with fuel inside the duct, and is exhausted out the exit with an exit 
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Inlet 

A, Positive x direction 

(c) (4 

Figure 2.7 1 Sketches for the development of the thrust equation. 

jet velocity, V,. The internal pressure acting on the inside surface of the engine is pi, 
which varies with location inside the engine, as sketched in Fig. 2.7b. The external 
pressure acting on the outside surface of the engine is assumed to be the free-stream 
ambient pressure p,, constant over the outside surface. (This, of course, is not cor- 
rect because the pressure will vary as the air flows over the curved outside surface. 
However, for an actual engine, the duct shown in Figs. 2 . 7 ~  and b will be installed in 
some type of housing, or nacelle, on a flight vehicle, which will certainly affect the ex- 
ternal air pressure. The assumption of constant p ,  on the outer surface as sketched in 
Fig. 2.7b yields a thrust value that is dejined as the uninstalled engine thrust. Hence, 
in this section we are deriving an equation for the uninstalled engine thrust.) 

The net force on the engine due to the pressure distribution is given by 
Eq. (1.45). With the shear stress neglected, this yields 

Recall that the minus sign in Eq. (2.21) is due to dS being directed away from the 
surface, whereas the pressure exerts a force into the surface. The net force F is the 
thrust of the engine. Because of the symmetry of the flow and the engine shown in 
Fig. 2.7, F acts in the horizontal direction, which we will denote as the x direction. 
Hence, Eq. (2.21) can be written in scalar form as 
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where the vector force F has been replaced by the scalar thrust T acting in the x di- 
rection. The subscript x denotes the x component of the vector p dS ,  and the first and 
second terms on the right-hand side represent the integrated force due to the internal 
and external pressure distributions respectively. Let us take the positive x direction as 
that acting toward the left, as shown in Fig. 2.7b. 

Consider the last term in Eq. (2.22). Since p, is a constant value, the integral 
can be written as 

Recall from Fig. 2.7b that the integral is taken over the outer surface, and that the 
vector d S  is directed away from the surface. For those vectors d S  that are inclined to- 
wards the positive x direction (toward the left in Fig. 2.7b), (dS), is positive, and for 
those that are inclined towards the negativex direction (toward the right in Fig. 2.7b), 
(dS), is negative. Since (dS), is the x component of the vector dS, its absolute value 
is simply the projection of the elemental area as seen by looking along the .w axis. 
Hence IJ(dS), I is simply the net projected area of the solid surface as seen by look- 
ing along the x axis, which is the inlet area minus the exit area, Ai - A,. This pro- 
jected area is sketched in Fig. 2 . 7 ~ .  However, the sign of the integral /(dS)., is 
determined by the net sum of the positive and negative components (dS),,. When A, 
is less than Ai ,  as is the case here, the sum of the negative components is greater than 
the sum of the positive components (more of the surface area has rearward sloping 
vectors d S  than it has forward sloping). Hence, the sign of /(dS), is negative, and 
we must rewrite 

S (dS), = -I(dS),I = -(A; - A,) 

Hence, Eq. (2.23) becomes 

Substituting Eq. (2.24) into Eq. (2.22), we have 

Recall that physically the last term in Eq. (2.25) is the force on the engine due to the 
constant p ,  acting on the external surface. Since A, is smaller than Ai, the force due 
to pw acting on the rearward part of the surface pushing the engine toward the left in 
Fig. 2.7b is larger than the force due to p ,  acting on the forward part of the surface, 
pushing the engine toward the right. Hence, physically the effect of p, distributed 
over the external surface must be a force toward the left in Fig. 2.7b, i.e., adding to 
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the thrust. The last term in Eq. (2.25), p,(Ai - A,),  is indeed a positive value, con- 
sistent with the physics discussed here. 

Now consider the first term on the right-hand side of Eq. (2.25). Recall that it 
physically represents the force exerted by the gas on the internal solid surface. To 
make this explicit in the upcoming steps, we write Eq. (2.25) as 

To evaluate the integral in Eq. (2.26), we turn to the integral form of the mo- 
mentum equation, Eq. (2 .  ll).  We apply this equation to the control volume defined 
by the dashed lines in Fig. 2.7b, where the upper and lower boundaries of the control 
volume are adjacent to the internal solid surface, and the left and right sides of the 
control volume are drawn perpendicular across the inlet and exit, respectively. The 
control volume is drawn in Fig. 2.7d. The dashed lines in Fig. 2.7d are not solid sur- 
faces, but are simply the boundaries of the control volume that contains the gas that 
flows through the jet engine. We make the assumption that the gas flowing into the 
control volume through the inlet area Ai at the left enters at the free-stream velocity 
and pressure V ,  and p,, respectively. The gas flowing out of the control volume 
through the exit area Ae at the right leaves at the exit velocity and pressure V, and p,, 
respectively. Along the upper and lower surfaces of the control volume, the sur- 
roundings (in this case the surroundings are the solid internal surfaces of the engine) 
exert a distributed pressure pi directed into the control volume. This distributed pres- 
sure acting on the gas is equal and opposite to the distributed pressure acting on the 
solid surface as sketched in Fig. 2.7b. This is Newton's third law-for every action 
there is an equal and opposite reaction. For example, if you press your hand down on 
a desk with a force of 20 newtons, the desk presses back on your hand with an equal 
and opposite force of 20 newtons. By analogy, your hand is the gas exerting a pres- 
sure distribution on the internal surface of the engine (Fig. 2.7b), and the desk press- 
ing back on your hand is the internal engine surface exerting an equal and opposite 
pressure distribution on the gas (Fig. 2.7d). 

The flow through the control volume in Fig. 2.7d is steady with no body forces 
acting on it. Hence, for this case the momentum equation, Eq. (2.11), can be 
written as 

Taking the x component of Eq. (2.27), we have 

where Vx is the x component of the flow velocity, and the integrals are taken along 
the entire boundary of the control volume denoted by abcda in Fig. 2.7d. To evalu- 
ate the left side of Eq. (2.28), note that there is no flow across the upper and lower 
boundaries of the control volume, denoted by surfaces ab  and cd ,  respectively, in 
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Fig. 2.7d, i.e., V and d S  are everywhere mutually perpendicular along a b  and cd,  and 
hence the dot product pV d S  = 0 along these boundaries. Thus, 

Along the inlet boundary ad,  V and dS are in opposite directions (dS always acts 
away from the control surface, in this case toward the left, whereas V is toward the 
right). Hence, the dot product pV d S  is negative. Also, along a d ,  V, and p are uni- 
form and equal to - V,  and p,, respectively. (Note that the positive x direction is 
toward the left, as shown in Fig. 2.7b, and V, is toward the right, hence along 
ad V, = - V, .) Thus, 

Since p,V, Ai is the mass flow across the inlet, denoted by mi ,  the last equation can 
be written as 

L d l p v .  ~ s ) v ,  = m, V, (2.30) 

Along the exit boundary bc,  V and d S  are in the same direction, and V, and p are 
uniform, equal to -V, and p,, respectively. Hence, 

~ ( ( P v .  ds)vx = ( ~ e  v e  ~ e ) ( - v e )  = -me ve (2.3 1 ) 

where me is the mass flow across the exit boundary. Returning to Eq. (2.28), the left 
hand side can be written as 

Substituting Eqs. (2.29), (2.30), and (2.31) into this, we have 

Hence, Eq. (2.28) becomes 

Finally, the integral on the right side of Eq. (2.33) is also taken over the entire bound- 
ary of the control surface in Fig. 2.7d. Hence, in Eq. (2.33), 
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From Fig. 2.7d, note that along ad ,  d S  acts to the left (the positive direction), and 
along bc, dS acts to the right (the negative direction), 

Along the boundaries ab  and cd, pi is the distributed pressure acting on the gas due 
to the equal and opposite reaction on the solid interior surface of the engine. Hence, 
we can write 

Substituting Eqs. (2.35)-(2.37) into (2.34), we have 

Substituting Eq. (2.38) into Eq. (2.33), we have 

hi V, - he ve = -p, Ai + pi A, - (pi dS), (2.39) 
ahrd 

The last term in Eq. (2.39) is physically the force on the gas due to the reaction from 
the solid interior surface of the engine, i.e., 

- /' (pi ds), - (2.40) 
abcd force on the gas due to the solid surface 

Hence, Eq. (2.39) can be written as 

+ [- /'(Pi m] (2.41) 
force on the gas due to the solid surface 

or. 

[- /'(Pi d ~ ) , ]  
force on the gas due to the solid surface 

Return to Eq. (2.26) for the engine thrust; here the bracketed term is the force on the 
solid surface due to the gas, which from Newton's third law is equal and opposite to 
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the force on the gas due to the solid surface. That is, 

= - [-I (pi d s ) ,  ] (2.43) 
torce on the gas due to thc d i d  wrfacc 

Replacing the bracketed term on the right side of Eq. (2.43) with Eq. (2.42), we have 

Substituting Eq. (2.44) into Eq. (2.26), yields 

Equation (2.45) is the desired equation for the uninstalled engine thrust of a jet 
propulsion device. 

The derivation of the thrust equation in this section has been quite lengthy, but 
our purpose was to illustrate an application of the integral form of the momentum 
equation with all its details. Notice what happened. We started with the concept that 
the thrust of the engine is due to the net integrated pressure distribution over all the 
exposed solid surfaces of the engine, which is the fundamental source of the thrust. 
However, for practical cases, the calculation or measurement of this detailed pressure 
distribution is usually so complex and costly in terms of personpower and money that 
is not done. On the other hand. we do not need the detailed pressure distribution to 
calculate the thrust. Through the beauty of the integral form of the momentum equa- 
tion, where the details of the pressure distribution inside the engine are buried inside 
the control volume and hence do not explicitly appear in the integral form of the 
equation, the thrust of the engine can be calculated just by knowing the net time rate 
of change of the momentum of the gas exhausting out the exit compared to that en- 
tering through the inlet, which is the physical meaning of the term ( t n ,  V ,  - liz, V,) 
in Eq. (2.45), and by knowing the exit pressure p , ,  which appears in the term 
(17 ,  - p,)A, in Eq. (2.45). All of this simplification occurs with no loss of general- 
ity or accuracy. The derivation of the straightforward thrust equation is one of the tri- 
umphs of the integral form of the momentum equation. 

Students of propulsion will recognize that the physical model sketched in 
Fig. 2.7 making the assumption that the streamtube of air entering the inlet is at free- 
stream conditions of V,, p,, and p,, is only a special "on-design" case. In actual 
flight, the conditions at the inlet can be slightly different than free-stream conditions. 
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For the derivation of the thrust equation in this case, the streamtube is extended far 
enough into the airflow ahead of the engine s o  that free-stream conditions d o  exist at 
the inlet to the streamtube. For such an extended streamtube, its inlet area will be  
different from the inlet area of the engine. However, in this case the resulting equa- 
tion for the uninstalled engine thrust turns out to  be  the same as Eq. (2.45). See, for 
example, the definitive book by Mattingly, Elements of Gas Turbine Propulsion, 
McGraw-Hill, 1996, page 215, for more details. 

Consider a turbojet-powered airplane flying at a velocity of 300 m/s at an altitude of 10 km, 
where the free-stream pressure and density are 2.65 x lo4 ~ / m '  and 0.414 kg/m3, respec- 
tively. The turbojet engine has inlet and exit areas of 2 m2 and 1 m2, respectively. The veloc- 
ity and pressure of the exhaust gas are 500 m/s and 2.3 x lo4 N/m2 respectively. The fuel-to- 
air mass ratio is 0.05. Calculate the thrust of the engine. 

Solution 
The mass flow of air through the inlet is 

Fuel is added and burned inside the engine at the ratio of 0.05 kg of fuel for every kg of air. 
Hence, the mass flow at the exit, me, is 

me = 1.05 m, = 1 .O5(248.4) = 260.8 kgls 

From Eq. (2.45) 

Since 4.45 N = 1 lb, the thrust in pounds is 

Consider a liquid-fueled rocket engine burning liquid hydrogen as the fuel and liquid oxygen 
as the oxidizer. The hydrogen and oxygen are pumped into the combustion chamber at rates of 
11 kgls and 89 kgls, respectively. The flow velocity and pressure at the exit of the engine are 
4000 m/s and 1.2 x 10' ~ / m ~ ,  respectively. The exit area is 12 m2. The engine is part of a 
rocket booster that is sending a payload into space. Calculate the thrust of the rocket engine as 
it passes through an altitude of 35 km, where the ambient pressure is 0.584 x lo3 ~ / m ' .  



8 Solution 
For the case of a rocket engine, there is no mass flow of air through an inlet; the propellants 
are injected directly into the combustion chamber. Hence, for a rocket engine, Eq. (2.45) be- 
comes, with r i l ,  = 0, 

Since the total mass flow of propellants pumped into the combustion chamber is I I + 89 = 
100 kgls, this is also the mass flow of the burned gases that exhausts through the rocket engine 
nozzle. That is. m, = 100 kg/s. Thus. 

= 4 x 10' + 7.392 x 10' = 

In pounds, 

2.9 1 SUMMARY 
The analysis of compressible flow is based on three fundamental physical principles; 
in turn, these principles are expressed in terms of the basic flow equations. They are: 

1. Principle: Mass can be neither created nor destroyed. 
Continuity equation: 

2. Principle: Time  rate of change of momentum of a body equals  the net force 
exerted on it. (Newton's second law.) 

Momentum equation: 

3. Principle: Energy can be neither created nor destroyed, it can only change in 
form. 
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Energy equation: 

These equations are expressed in integral form; such a form is particularly useful for 
the topics to be discussed in Chapters 3-5. In Chapter 6, the preceding integral forms 
will be reexpressed as partial differential equations. 

PROBLEMS 
When the National Advisory Committee for Aeronautics (NACA) measured 
the lift and drag on airfoil models in the 1930s and 40s in their specially 
designed airfoil wind tunnel at the Langley Aeronautical Laboratory, they 
made wings that spanned the entire test section, with the wing tips butted 
against the two side-walls of the tunnel. This was done to ensure that the flow 
over each airfoil section of the wing was essentially two-dimensional (no 
wing-tip effects). Such an arrangement prevented measuring the lift and drag 
with a force balance. Instead, using a Pitot tube, the NACA obtained the drag 
by measuring the velocity distribution behind the wing in a plane 
perpendicular to the plane of the wing, i.e., the Pitot tube, located a fixed 
distance downstream of the wing, traversed the height from the top to the 
bottom of the test section. Using a control volume approach, derive a formula 
for the drag per unit span on the model as a function of the integral of the 
measured velocity distribution. For simplicity, assume incompressible flow. 
In the same tests described in problem 2.1, the NACA measured the lift per 
unit span by measuring the pressure distribution in the flow direction on the 
top and bottom walls of the wind tunnel. Using a control volume approach, 
derive a formula for the lift per unit span as a function of the integral of these 
pressure distributions. 



C H A P T E R  

One-Dimensional Flow 

The Aeronautical engineer is pounding hard on the closed door leading into the 
jeld of supersonic motion. 

Theodore von Karman, 1941 
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3.1 1 INTRODUCTION 
On October 14, 1947, when Chuck Yeager nudged the Bell XS-I to a speed slightly 
over Mach 1 (see Sec. 1 .  l),  he entered a new flight regime where shock waves dom- 
inate the flowfield. At Mach 1.06, the bullet-shaped rocket-powered research air- 
plane created a bow shock wave that was detached from the body, slightly upstream 
of the nose, as sketched in Fig. 3 . 2 ~ .  During a later flight, on March 26, 1948, Yeager 
pushed the XS-I to Mach 1.45 in a dive. For this flight, the Mach number was high 

r Detached shock wave 

Attached oblique 
shock wave 

M, = 1.45 -e (b  1 

Figure 3.2 1 Attached and detached shock waves on a supersonic 
vehicle. 
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Figure 3.3a I Shock wave on the Apollo command module. Wind tunnel model at a = 33' 
in the NASA Langley Mach 8 variable-density wind tunnel ion air. (Courtesy of the NASA 
Langley Research Center) 

enough that the shock wave attached itself to the pointed nose of the aircraft, as 
sketched in Fig. 3.2b. The difference between the two flows sketched in Fig. 3.2 is 
that the bow shock is nearly normal to the free-stream direction as in Fig. 3.2a, 
whereas the attached shock wave is oblique to the free-stream direction in Fig. 3.2b. 
For a blunt-nosed body in a supersonic flow, as shown in Fig. 3.34 the bow shock 
wave is always detached from the body. Moreover, near the nose, the shock is nearly 
normal to the free stream; away from the nose, the shock gradually becomes oblique. 
For further illustration, photographs taken in supersonic wind tunnels of shock 
waves on various aerodynamic shapes are shown in Fig. 3.3. 

The portions of the shock waves in Figs. 3.2 and 3.3 that are perpendicular to 
the free stream are called normal shocks. A normal shock wave is illustrated in 
Fig. 3.4, and it is an excellent example of a class of flowfields that is called one- 
dimensional flow. By definition, a one-dimensional flow is one in which the flow- 
field properties vary only with one coordinate direction-ie., in Fig. 3.4, p, p ,  T, 
and the velocity u are functions of x only. In this chapter, we will examine the 



Figure 3.3b I Shock waves on a sharp-nosed slender cone at angle of attack. (Co~rrteq ~f ' rhe  
Nrrrwl SLW$UCP Wc~(~pom Ce~lter; White Oak, MD.)  

properties of such one-dimensional flows, with normal shock waves as one impor- 
tant example. A \  indicated in Figs. 3.2 and 3.3, normal shock waves play an im- 
portant role in many supersonic flows. 

Oblique shock waves are two-dimensional phenomena, and will be discussed 
in Chap. 4. Also. consider the two streamtubes in Fig. 3.5. In Fig. 3 . 5 ~ .  a truly one- 
dimensional flow is illustrated, where the flowfield variables are a function of .\- only, 
and as a consequence the streamtube area must be constmt (as we shall prove later). 
On  the other hand, there are many flow problems wherein the streamtube area varies 
with .v. as sketched in Fig. 3.5h. For such a variable area streamtube, nature dictates 
that thc flowtield is three-dimensional flow, where the flow properties in general are 
l'unctions of .\-. j,. and :. However. if the variation of area A = A(x) is gradual, it is 
often convenient and sufficiently accurate to neglect the y and r flow variations, and 
to u.s.sume that the flow properties are functions of x only, as  noted in Fig. 3.5h. This 
is tantamount to assuming uniform properties across the flow at every .r jtation. 
Such a flow, where the area varies as A = A(x) but where it is assumed that p ,  p. T, 
and ii are still functions of x- only, is detined as quus i -on~-d i rnens ionc~I~o~~ .  This will 
be the subject of Chap. 5 .  

In summary. the present chapter will treat one-dimensional, hence constant-area, 
flows. The general integral conservation equations derived in Chap. 2 will be applied 
to one-dimensional flow, yielding straightforward algebraic relations which allow us 
to study the properties and characteristics of such flows. 
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Figure 3.312 I Shock wave on a wind tunnel model of the space shuttle. (Courtesy of the 
NASA Langley Research Center.) 

Given conditions II Unknown conditions 
ahead of the behind the shock wave 
shock wave Normal shock 

Figure 3.4 1 Diagram of a normal shock. 



A - constant 
P " /J(x) 
P ' p ( x )  
T - T ( x )  
u == U(X) 

3.2 One-Dimens~onal Flow Eauations 

( 11 )  One-d~nien~iondl  !lo\+ ( b )  Qudsi-one-dmensional t lou 

Figure 3.5 1 Comparison between one-dimensional and quasi-one-dimensional flow\ 

1 ,' Rectangular control v o l u r n z ~  

* 
x direction 

Figure 3.6 1 Rectangular control kolume for one-d~menwnal 
llou. 

3.2 1 ONE-DIMENSIONAL FLOW EQUATIONS 
Consder  the flow through ,I one-dimensional region, a \  replesented by the shaded 
area in Fig. 3.6. This region may be a normal shock wave. or it may be a region with 
heat addition; in either case. the flow properties change as a function of .\- as the gas 
flows through the region. To the left of this region, the flowfield velocity, pressure, 
temperature, density, and internal energy are u 1 .  pl . T I .  pl , and el, respectively. To 
the right of this region, the properties have changed, and are given by ~ r l ,  pz. T2. pz. 

and e:!. (Since we are now dealing with one-dimensional flow, we are using u to de- 
note velocity. Later on, in dealing with multidimensional flows, u is the x component 
of velocity.) To calculate the changes, apply the integral conservation equations from 
Chap. 2 to the rectangular control volume shown by the dashed lines in Fig. 3.6. 
Since the flow is one-dimensional, LL p , .  T I ,  p i ,  and el are uniform over the left- 
hand side of the control volume, and similarly 112. p2. TZ. p2. and (.? are uniform 
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over the right-hand side of the control volume. Assume that the left- and right-hand 
sides each have an area equal to A perpendicular to the flow. Also, assume that the 
flow is steady, such that all derivatives with respect to time are zero, and assume that 
body forces are not present. 

With this information in mind, write the continuity equation (2.2): 

For steady flow, Eq. (2.2) becomes 

I p V * d S = O  

S 

Evaluating the surface integral over the left-hand side, where V and dS are parallel 
but in opposite directions, we obtain -p lulA;  over the right-hand side, where V and 
dS are parallel and in the same direction, we obtain p2u2A. The upper and lower hor- 
izontal faces of the control volume both contribute nothing to the surface integral be- 
cause V and ds are perpendicular to each other on these faces. Hence, from Eq. (3 .  I), 

Equation (3.2) is the continuity equation for steady one-dimensional flow. 
The momentum equation (2.11) is repeated here for convenience: 

The second term is zero because we are considering steady flow. Also, because there 
are no body forces, the third term is zero. Hence, Eq. (2.11) becomes 

Equation (3.3) is a vector equation. However, since we are dealing with one- 
dimensional flow, we need to consider only the scalar x component of Eq. (3.3), 
which is 

S S 

In Eq. (3.4), the expression ( p  d S ) ,  is the x component of the vector p d S .  Evaluat- 
ing the surface integrals in Eq. (3.4) over the left- and right-hand sides of the dashed 
control volume in Fig. 3.6, we obtain 

pl(-ulA)ul + ~ 2 ( ~ 2 A b 2  = -(-p1A + p2A) 
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3.2 One-Dimensional Flow Equations 

Equation (3.5) is the momentum equation for steady one-dimensional flow. 
The energy equation (2.20) is written here for convenience: 

The first term on the left physically represents the total rate of heat added to the gas 
inside the control volume. For simplicity, let us denote this volume integral by Q. 
The third and fourth terms are zero because of zero body forces and steady flow, re- 
spectively. Hence, Eq. (2.20) becomes 

Evaluating the surface integrals over the left- and right-hand faces of the control vol- 
ume in Fig. 3.6, we obtain 

Q - ( - ~ I u I A  + p m A )  = - P I  

Rearranging, 

Dividing by Eq. (3.2), i.e., dividing the left-hand side of Eq. (3.7) by plul and the 
right-hand side by ~ 2 ~ 2 ,  

Considering the first term in Eq. (3.8), Q is the net rate of heat (energyls) added to 
the control volume, and pl u 1 A is the mass flow (massls) through the control volume. 
Hence, the ratio Q / ~ ~ U ~ A  is simply the heat added per unit mass, q. Also, in 
Eq. (3.8) recall the definition of enthalpy, h = e + pv. Hence, Eq. (3.8) becomes 

I I 

Equation (3.9) is the energy equation for steady one-dimensional flow. 
In summary, Eqs. (3.2), ( 3 3 ,  and (3.9) are the governing fundamental equa- 

tions for steady one-dimensional flow. Look closely at these equations. They are 
algebraic equations that relate properties at two different locations, 1 and 2, along 
a one-dimensional, constant-area flow. The assumption of one-dimensionality has 
afforded us the luxury of a great simplification over the integral equations from 
Chap. 2. However, within the assumption of steady one-dimensional flow, the 
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algebraic equations (3.2), (3.5), and (3.9) still represent the full authority and 
power of the integral equations from whence they came-i.e., they still say that 
mass is conserved [Eq. (3.2)], force equals time rate of change of momentum [Eq. 
(3.31, and energy is conserved [Eq. (3.9)]. Also, keep in mind that Eq. (3.5) ne- 
glects body forces and viscous stresses, and that Eq. (3.9) does not include shaft 
work, work done by viscous stresses, heat transfer due to thermal conduction or 
diffusion, and changes in potential energy. 

Returning to our roadmap in Fig. 3.1, we have finished the first box on the left- 
hand side. Before proceeding down the left-hand column, in Secs. 3.3-3.5 we will 
take the side excursion shown on the right-hand side of Fig. 3.1. Here we will deal 
with some important general aspects of compressible flow that are not limited to one- 
dimensional flow. It is necessary for us to define and discuss the speed of sound and 
to obtain some alternative forms of the energy equation before we can move on to ad- 
dress the remaining boxes in Fig. 3.1. 

3.3 1 SPEED OF SOUND AND MACH NUMBER 
As you read this page, look up for a moment and consider the air around you. The air 
is composed of molecules that are moving about in a random motion with different 
instantaneous velocities and energies at different times. However, over a period of 
time, the average (mean) molecular velocity and energy can be defined, and for a per- 
fect gas are functions of the temperature only. Now assume that a small firecracker 
detonates nearby. The energy released by the firecracker is absorbed by the sur- 
rounding air molecules, which results in an increase in their mean velocity. These 
faster molecules collide with their neighbors, transferring some of their newly ac- 
quired energy. In turn, these neighbors eventually collide with others, resulting in a 
net transfer or propagation of the firecracker energy through space. This wave of en- 
ergy travels through the air at a velocity that must be somewhat related to the mean 
molecular velocity, because molecular collisions are propagating the wave. Through 
the wave, the energy increase also causes the pressure (as well as density, tempera- 
ture, etc.) to change slightly. As the wave passes by you, this small pressure variation 
is picked up by your eardrum, and is transmitted to your brain as the sense of sound. 
Therefore, such a weak wave is defined as a sound wave, and the purpose of this sec- 
tion is to calculate how fast it is propagating through the air. As we will soon appre- 
ciate, the speed of sound through a gas is one of the most important quantities in a 
study of compressible flow. 

Consider that the sound wave is moving with velocity a through the gas. Let us 
hop on the wave and move with it. As we ride along with the wave, we see that the 
air ahead of the wave moves toward the wave at the velocity a, as shown in Fig. 3.7. 
Because there are changes in the flow properties through the wave, the flow behind 
the wave moves away at a different velocity. However, these changes are slight. A 
sound wave, by definition, is a weak wave. (If the changes through the wave are 
strong, it is identified as a shock wave, which propagates at a higher velocity than a, 
as we will soon see.) Therefore, consider the change in velocity through the sound 
wave to be an infinitesimal quantity, da. Consequently, from our vantage point riding 
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3.3 Speed of Sound and Mach Number 

Figure 3.7 1 Schematic of a sound 
wave. 

along with the wave, we see the picture shown in Fig. 3.7 where the wave appears to 
be stationary, the flow ahead of it moves toward the wave at velocity u with pressure, 
density, and temperature p ,  p ,  and T, respectively, and the flow behind it moves 
away from the wave at velocity t r  + da with pressure p + dp,  density p + dp. and 
temperature T + d T. 

The flow through the sound wave is one-dimensional and hence we can apply 
the equations from Sec. 3.2 to the picture in Fig. 3.7. If regions 1 and 2 are in front of 
and behind the wave, respectively, Eq. (3.2) yields 

The product of two infinitesimal quantities dp da is very small (of second order) in 
comparison to the other terms in Eq. (3.10), and hence can be ignored. Thus. from 
Eq. (3. lo), 

Next, Eq. (3.5) yields 

p + pa' = ( p  +LIP) + ( p  + dp)(a + da)' (3.12) 

Ignoring products of differentials as before, Eq. (3.12) becomes 

Solve Eq. (3.13) for dn: 

Substitute Eq. (3.14) into Eq. (3.1 I): 
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Solving Eq. (3.15) for a 2 ,  

Pause for a moment and consider the physical process occurring through a sound 
wave. First, the changes within the wave are slight, i.e., the flow gradients are small. 
This implies that the irreversible, dissipative effects of friction and thermal conduc- 
tion are negligible. Moreover, there is no heat addition to the flow inside the wave 
(the gas is not being irradiated by a laser, for example). Hence, from Sec. 1.4, the 
process inside the sound wave must be isentropic. In turn, the rate of change of pres- 
sure with respect to density, dpldp,  which appears in Eq. (3.16) is an isentropic 
change, and Eq. (3.16) can be written as 

Equation (3.17) is a fundamental expression for the speed of sound. It shows that the 
speed of sound is a direct measure of the compressibility of a gas, as defined in 
Sec. 1.2. To see this more clearly, recall that p = l /v ,  hence dp  = -dv/v2. Thus, 
Eq. (3.17) can be written as 

Recalling the definition of isentropic compressibility, t,, given by Eq. (1.4), we find 

This confirms the statement in Sec. 1.3 that incompressible flow (t, = 0) implies an 
infinite speed of sound. 

For a calorically perfect gas, Eq. (3.18) becomes more tractable. In this case, the 
isentropic relation [see Eq. (1.43)] becomes 

where c is a constant. Differentiating, and recalling that v = l / p ,  we find 

Hence, Eq. (3.18) becomes 
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3.4 Some Convemently Def~ned Flow Parameters 

Going one step further, from the equation of slate, p / p  = RT. Hence. Eq. (3.19) 
becomes 

(3.20) 

In summary, Eq. (3.18) gives a general relation for the speed of sound in a gas; 
this reduces to Eqs. (3.19) and (3.20) for a perfect gas. Indeed. we will demonstrate 
in Chap. 17 that Eqs. (3.19) and (3.20) hold for thermally perfect as well as calori- 
cally perfect gases, but are invalid for chemically reacting gases or real gases. How- 
ever, the general relation, Eq. (3.18). is valid for all gase4. 

Note that, for a perfect gas, Eq. (3.20) gives the speed of sound as a function of 
temperature only; indeed. it is proportional to the square root of the temperature. This 
is consistent with our previous discussion linking the speed of sound to the average 
molecular velocity, which from kinetic theory is given by 1/-. Note that the 
speed of sound is about three-quarters of the average molecular velocity. 

The speed of sound in air at standard sea level conditions is a useful value to 
remember. It is 

r r ,  = 340.9 m/s = 1 1 17 ftls 

Finally, recall that the Mach number was defined in Sec. 1.3 as M = V / a .  
which leads to the following classifications of different flow regimes: 

M < 1 (subsonic flow) 

M = 1 (sonic fow)  

M > I (supersonic flow) 

Also, it is interesting to attach some additional physical meaning to the Mach num- 
ber at this stage of our discussion. Consider a fluid element moving along a stream- 
line. The kinetic and internal energies per unit mass of this fluid element are v2/2 
and e, respectively. Forming their ratio, and recalling Eqa. ( 1.23) and (3.20), we have 

Thus, we see that, for a calorically perfect gas (where r = c , ,T ) ,  the square of the 
Mach number is proportional to the ratio of kinetic to internal energy. It is a measure 
of the directed motion of the gas compared to the random thermal motion of the 
molecules. 

3.4 1 SOME CONVENIENTLY DEFINED 
FLOW PARAMETERS 

In this chapter the fundamentals of one-dimensional con~pressible flow will be ap- 
plied to the practical problen~s of normal shock waves, flow with heat addition, and 
flow with wall friction. However, before making these applications an inventory of 
useful definitions and supporting equations must be established. This is the purpose 
of Secs. 3.4 and 3.5. 
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To begin with, consider point A in an arbitrary flowfield, as sketched in Fig. 2.3. 
At this point a fluid element is traveling at some Mach number M ,  velocity V, with 
a static pressure and temperature p and T, respectively. Let us now imagine that we 
take this fluid element and adiabatically slow it down (if M > 1) or speed it up 
(if M < 1) until its Mach number at point A is 1. As we do this, common sense tells 
us that the temperature will change. When the fluid element arrives at M = 1 (in our 
imagination) from its initial state at M and T (its real properties at point A), the new 
temperature (that it has in our imagination at Mach 1) is dejned as T*. Furthermore, 
we now define the speed of sound at this hypothetical Mach 1 condition as a* ,  where 

Therefore, for any given flow with a given M and Tat some point A, we can associ- 
ate with it values of T* and a* at the same point, as already defined. Means of cal- 
culating T *  (and hence a*)  will be discussed in Sec. 3.5. 

In the same spirit, consider again our fluid element at point A with velocity, tem- 
perature, and pressure equal to V ,  T ,  andp, respectively. Let us now imagine that we 
isentropically slow this fluid element to zero velocity, i.e., let us stagnate the fluid 
element. The pressure and temperature which the fluid element achieves when V = 0 
are defined as total pressure po and total temperature To, respectively. (They are fre- 
quently called stagnation pressure and temperature; the adjectives "stagnation" and 
"total" are synonymous.) Both po and To are properties associated with the fluid 
element while it is in actuality moving at velocity V with an actual pressure and tem- 
perature equal to p and T,  respectively. The actual p and T are called static pressure 
and static temperature, respectively, and are ramifications of the random molecular 
motion at point A. 

Using these definitions, we can introduce other parameters: 

Characteristic Mach number M* = V l a * .  (Note that the real Mach number is 
M = V l a . )  

Stagnation speed of sound a, = m. 
Total (or stagnation) density p, = p,/ RT,. 

3.5 1 ALTERNATIVE FORMS OF THE 
ENERGY EQUATION 

Consider again Eq. (3.9). Assuming no heat addition, this becomes 

I I 

where points 1 and 2 correspond to the regions 1 and 2 identified in Fig. 3.6. Spe- 
cializing further to a calorically perfect gas, where h = c,T, Eq. (3.21) becomes 
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Using Eq. ( 1.22). this becomes 

Since a = m, Eq. (3.23) becomes 

From Eq. (3.19), this can also be written as 

Since Eq. (3.21) was written for no heat addition, it, as well as the corollary 
Eqs. (3.22) through (3.25), holds for an adiabatic flow. With this in mind, let us re- 
turn to the definitions presented in Sec. 3.4. Let point 1 in these equations correspond 
to point A in Fig. 2.3, and let point 2 in these equations correspond to our irmgined 
conditions where the fluid element is brought adiabatically to Mach 1 at point A. The 
actual speed of sound and velocity at point A are a and u,  respectively. At the imag- 
ined condition of Mach 1 (point 2 in the above equations), the speed of sound is rr* 

and the flow velocity is sonic, hence uz = a*. Thus, Eq. (3.24) yields 

a2  J (1*2 a*2 

-+-=-  + -  
y - l  2 y - 1  2 

Equation (3.26) provides a formula from which the defined quantity a* can be 
calculated for the given actual conditions of a and u at any given point in a general 
flowfield. Remember, the actual flowfield itself does not have to be adiabatic from 
one point to the next, say from point A to point B in Fig. 2.3. In Eq. (3.26). the adia- 
batic process is just in our minds as part of the de$nition of a* (see again Sec. 3.3). 
Applied at point A in Fig. 2.3, Eq. (3.26) gives us the value of a* that is rrssoc~icirrtl 
with point A. Denote this value as a;. Similarly, applied at point 6,  Eq. (3.26) gives 
us the value of a* that is nssociatt:d with point B, namely, a;. If the actual flowfield 
is nonudiabntic from A to B, then aT, # a;.  On the other hand, if the general flow- 
field in Fig. 2.3 is adiabatic throughout, then a* is a constant value at every point in 
the flow. Since many practical aerodynamic flows are reasonably adiabatic, this is an 
important point to remember. 

Now return to our definition of total conditions in Sec. 3.4. Let point 1 i n  
Eq. (3.22) correspond to point A in Fig. 2.3, and let point 2 in Eq. (3.22) correspond 
to our inzuginetl conditions where the fluid element is brought to rest isentropically at 
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point A. If T and u are the actual values of static temperature and velocity, respec- 
tively, at point A, then TI = T and ul = u. Also, by definition of total conditions, 
242 = 0 and T2 = To. Hence, Eq. (3.22) becomes 

Equation (3.27) provides a formula from which the defined total temperature, To, can 
be calculated for the given actual conditions of T and u at any point in a general flow- 
field. Remember that total conditions are defined in Sec. 3.4 as those where the fluid 
element is isentropically brought to rest. However, in the derivation of Eq. (3.27), 
only the energy equation for an adiabatic flow [Eq. (3.21)] is used. Isentropic condi- 
tions have not been imposed so far. Hence, the definition of To such as expressed in 
Eq. (3.27) is less restrictive than the definition of total conditions given in Sec. 3.4. 
From Sec. 1.4, isentropic flow implies reversible and adiabatic conditions; Eq. (3.27) 
tells us that, for the definition of To, only the "adiabatic" portion of the isentropic de- 
finition is required. That is, we can now redefine To as that temperature that would 
exist if the fluid element were brought to rest adiabatically. However, for the defini- 
tion of total pressure, p,, and total density, p,, the imagined isentropic process is still 
necessary, as defined in Sec. 3.4. 

Several very useful equations for total conditions are obtained as shown next. 
From Eqs. (3.27) and (1.22), 

Hence, 

Equation (3.28) gives the ratio of total to static temperature at a point in a flow as a 
function of the Mach number M at that point. Furthermore, for an isentropic process, 
Eq. (1.43) holds, such that 

Combining Eqs. (3.28) and (3.29), we find 
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Equations (3.30) and (3.31) give the ratios of total to static pressure and density, re- 
spectively, at a point in the flow as a function of Mach number M at that point. Along 
with Eq. (3.28), they represent important relations for total properties-so important 
that their values are tabulated in Table A. 1 (see Appendix A) as a function of M for 
y  = 1.4 (which corresponds to air at standard conditions). 

It should be emphasized again that Eqs. (3.27), (3.28), (3.30), and (3.3 1) provide 
formulas from which the defined quantities To, p,,, and p,, can be calculated from the 
actual conditions of M, u ,  T, p, and p at a given point in a general flowfield, as 
sketched in Fig. 2.3. Again, the actual flowfield itself does nor have to be adiabatic or 
isentropic from one point to the next. In these equations, the isentropic process is just 
in our minds as part of the dejinition of total conditions at a point. Applied at point A 
in Fig. 2.3, the above equations give us the values of T,, p,, and p ,  ussociatrd with 
point A. Similarly, applied at point B, the earlier equations give us the values of 
T,,, p,,, and p,, associated with point B. If the actual flow between A and B is nonadi- 
abatic and irreversible, then To, # Tin, p , ,  # p,,, and p,, # p ,,. On the other 
hand, if the general flowfield is isentropic throughout, then T,, po. and p,, are 
constant valurs at every point in the flow. The idea of constant total (stagnation) con- 
ditions in an isentropic flow will be very useful in our later discussions of various 
practical applications in compressible flow-keep it in mind! 

A few additional equations will be useful in subsequent sections. For example, 
from Eq. (3.24), 

7 1 

u2 1 2  + - = -  
y - l  2 y - 1  I -  a: I 

where ti,, is the stagnation speed of sound defined in Sec. 3.4. From Eqs. (3.26) and 
(3.32). 

Solving Eq. (3.33) for a*/u,, and invoking Eq. (3.20), 

Recall that p* and p* are defined for conditions at Mach I ;  hence, Eqs. (3.30) and 
(3.3 1 ) with M = 1 lead to 
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For air at standard conditions, where y = 1.4, these ratios are 
T* 
- = 0.833 
To 

which will be useful numbers to keep in mind for subsequent discussions. Finally, 
dividing Eq. (3.26) by u2, we have 

2 

[ ( y  + ~ ) l M * ~ l  - (Y - 1) 
I I 

Equation (3.37) provides a direct relation between the actual Mach number M and 
the characteristic Mach number M*, defined in Sec. 3.4. Note from Eq. (3.37) that 

Hence, qualitatively, M* acts in the same fashion as M, except when M goes to in- 
finity. In future discussions involving shock and expansion waves, M* will be a use- 
ful parameter because it approaches a finite number as M approaches infinity. 

All the equations in this section, either directly or indirectly, are alternative 
forms of the original, fundamental energy equation for one-dimensional, adiabatic 
flow, Eq. (3.21). Make certain that you examine these equations and their derivations 
closely. It is important at this stage that you feel comfortable with these equations, 
especially those with a box around them for emphasis. 

3.5.1 A Comment on Generality 

This section began with Eq. (3.21), which was obtained from the one-dimensional 
energy equation, Eq. (3.9), specialized to adiabatic flow. The use of the x component 
of the flow velocity, u, in Eq. (3.21) clearly identifies it with one-dimensional flow. 
For one-dimensional flow, the velocity u is the velocity of the flow, and the use of the 
symbol u is simply consistent with the geometry of the flow. However, Eq. (3.21) is 
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a general statement of the energy equation for any steady, adiabatic flow, whether in 
one, two, o r  three dimensions. For a general three-dimensional flow, the velocity at 
any point in  the flow is denoted by V.  For a three-dimensional, steady, adiabatic flow, 
Eq. (3.21) becomes 

Similarly, for every form of the energy equation obtained in this section, u i and 
u2 can be replaced by V I  and V2. S o  Eqs. (3.21)-(3.37) hold with u replaced by V 
everywhere. This general application of Eq. (3.21) to a three-dimensional case will 
be rigorously derived in Chap. 6. 

At a point in the flow over an F- 15 high-performance fighter airplane, the pressure, tempera- 
ture, and Mach number are 1890 Ib/ft2, 450 R, and 1.5, respectively. At this point, calculate 
T,,, p,,, T*, p* ,  and the flow velocity. 

Solution 
From Table A. I ,  for M = 1.5: p,,/p = 3.67 1 and T,,/T = 1.45. Thus 

From Table A. 1, for M = 1 .O: pJp* = 1.893 and TJT*  = 1.2. Keeping in mind that, for our 
imaginary process where the flow is slowed down isentropically to Mach I ,  hence defining p*,  
the total pressure is constant during this process; also, where the flow is slowed down adiabat- 
ically to Mach I ,  hence defining T*, the total temperature is constant. Thus 

Note: These answers exemplify the definitions of p , ,  T,, p * .  and T*. In the actual flow at 
Mach 1.5, the actual static pressure and static temperature are 1890 lb/ft2 and 450 R ,  respec- 
tively. However, the dejned values that are associated with the flow at this point (but not ac- 
tually in existence at this point) are p* = 3665 1b/ft2. p,, = 6938 Ib/ft2, T* = 543.8 R ,  and 
T, = 652.5"R. Finally, the actual flow velocity is obtained from 

where 
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Return to Example 1.6. Calculate the Mach number and velocity at the exit of the rocket 
nozzle. 

rn Solution 
In the combustion chamber the flow velocity is very low; hence we can assume that the pres- 
sure and temperature in the combustion chamber are essentially p, and To, respectively. More- 
over, since the flow expansion through the nozzle is isentropic, then p, and To are constant 
values throughout the nozzle flow. From Eq. (3.30), we have at the nozzle exit (denoted by the 
subscript 2) 

Solving for M2,  we have 

Note: An alternative solution to this problem, which constitutes a check on these results, is as 
shown next. From Eq. (3.22) 

[Recall from Sec. 3.5.1 that the various forms of the energy equation obtained in this section 
hold for flow of any dimensions-two or three dimensions as well as one dimension; this is be- 
cause Eq. (3.21) is simply a statement that the total enthalpy, h ,  = h + V2/2, is constant for 
any adiabatic flow, no matter what the dimension. This will become clear repeatedly as we 
progress through the following chapters. Hence, Eqs. (3.21) through (3.37) are general, and 
are not in any way restricted to one-dimensional flow. Therefore, we can use Eq. (3.22) in the 
form given here to solve our rocket nozzle flow, even though such flow is not constant-area 
flow, i.e., it is not truly one-dimensional flow. Rather, this nozzle flow must be analyzed as 
either a quasi-one-dimensional flow as discussed in Chap. 5, or more precisely as a two- 
dimensional or axisymmetric flow as discussed in Chap. 11, because the flow through a noz- 
zle encounters a changing, variable cross-sectional area as it expands through the nozzle.] 

From Eq. (3.22) written above, solving for V2, 
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This agrees with the value already obtained. Of course, since a? = 1059.4m/s as obtained. 
then 

which also agrees with the earlier results. 

Return to Example 1 . 1 .  Calculate the percentage density change between the given point on 
the wing and the free stream, trssuming compress ib le~?~~.  

Solution 
The standard sea level values of density and temperature are 0.002377 slug/ft3 and 5 19 R, 
respectively. Also, for air, 

Let points 1 and 2 in Eq. (3.22) denote the free stream and the wing points, respectively. Nore: 
The flow over the wing is adiabatic and frictionless; hence it is isenrropic. From Eq. (3.22) 

From Eq. (1.43) 

Thus 

That is, the density changes by I. This is a very small change and clearly justifies 
the assumption of incompressible flow in the solution of Example 1.1. Moreover, note from 
this material that the temperature change is only 2.23 R, which represents a 0.43 pcrcent 
change in temperature. This illustrates that low-speed flows are virtually constant temperature 
flows, and this is why, in the analysis of inviscid incompressible flow, the energy equation is 
never needed. 

Consider again the rocket engine discussed in Examples 1.6 and 3.2. If the thrust of the engine 
is 4.5 x lo5 N at an altitude where the ambient pressure is 0.372 atm, calculate the mas\ flow 
through the engine and the area of the exit. 
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Solution 
From Example 1.6, the pressure at the exit is p2 = 0.372 atm. From Example 3.2, the velocity 
at the exit is V2 = 3092 m/s. From the thrust equation, Eq. (2.45), applied to a rocket engine, 
using the subscript 2 to denote exit conditions, we have 

Since p2 = p ,  = 0.372 atm, the pressure term on the right-hand side of this equation is zero, 
and we have 

From Example 1.6, we have for the specific gas constant of the gas expanding through the en- 
gine, R = 692.8 Jlkg . K, and the temperature at the exit T2 = 1350 K.  Hence, from the equa- 
tion of state the density at the exit is (recalling that 1 atm = 1.01 x lo5 N/m2) 

The mass flow is given by 

3.6 1 NORMAL SHOCK RELATIONS 
Let us now apply the previous information to the practical problem of a normal shock 
wave. With this, we travel back to the left-hand side of our roadmap in Fig. 3.1, and 
start discussing the physical phenomena that can cause a change in properties of a 
one-dimensional (constant area) flow. Our first consideration is the case of a normal 
shock wave. As discussed in Sec. 3.1, normal shocks occur frequently as part of 
many supersonic flowfields. By definition, a normal shock wave is perpendicular to 
the flow, as sketched in Fig. 3.4. The shock is a very thin region (the shock thickness 
is usually on the order of a few molecular mean free paths, typically 1 0W5 cm for air 
at standard conditions). The flow is supersonic ahead of the wave, and subsonic be- 
hind it, as noted in Fig. 3.4. Furthermore, the static pressure, temperature, and den- 
sity increase across the shock, whereas the velocity decreases, all of which we will 
demonstrate shortly. 

Nature establishes shock waves in a supersonic flow as a solution to a perplex- 
ing problem having to do with the propagation of disturbances in the flow. To obtain 
some preliminary physical feel for the creation of such shock waves, consider a flat- 
faced cylinder mounted in a flow, as sketched in Fig. 3.8. Recall that the flow consists 
of individual molecules, some of which impact on the face of the cylinder. There is 
in general a change in molecular energy and momentum due to impact with the 



3.6 Normal Shock Relations 

(a) Subsonic 

Supersonic flow 

Figure 3.8 1 Comparison between subsonic and supersonic streamline\ 
for flow over a flat-faced cylinder or slab. 

cylinder, which is seen as an obstruction by the molecules. Therefore, just as in our 
example of the creation of a sound wave in Sec. 3.3, the random motion of the mol- 
ecules communicates this change in energy and momentum to other regions of the 
flow. The presence of the body tries to be propagated everywhere, including directly 
upstream, by sound waves. In Fig. 3 . 8 ~ .  the incoming stream is subsonic. V, <: (L,, 

and the sound waves can work their way upstream and forewarn the flow about the 
presence of the body. In this fashion, as shown in Fig. 3.80, the flow streamlines 
begin to change and the flow properties begin to compensate for the body jiir up- 
stream (theoretically, an infinite distance upstream). In contrast, if the flow is super- 
sonic. then V, > a,, and the sound waves can no longer propagate upstream. In- 
stead. they tend to coalesce a short distance ahead of the body. In so doing. their 
coalescence forms a thin shock wave. as shown in Fig. 3.8h. Ahead of the \hock 
wave, the flow has no idea of the presence of the body. Immediately behind the nor- 
mal shock, however, the flow is subsonic, and hence the streamlines quickly con-  
pensate for the obstruction. Although the picture shown in Fig. 3.817 is only one of 
many situations in which nature creates shock waves, the physical mechanism just 
discussed is quite general. 

To begin a quantitative analysis of changes across a normal shock wave. con- 
sider again Fig. 3.4. Here, the normal shock is assumed to be a discontinuity across 
which the flow properties suddenly change. For purposes of discussion. assume that 
all conditions are known ahead of the shock (region 1 ), and that we want to solve for 
all conditions behind the shock (region 2). There is no heat added or taken away from 
the flow as it traverses the shock wave (for example, we are not putting the shock in 
a refrigerator, nor are we irradiating it with a laser); hence the flow across the shock 
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wave is adiabatic. Therefore, the basic normal shock equations are obtained directly 
from Eqs. (3.2), (3.3, and (3.9) (with q = 0 )  as 

P l U l  = P2u2 (continuity) (3.38) 

Equations (3.38) through (3.40) are general-they apply no matter what type of gas 
is being considered. Also, in general they must be solved numerically for the proper- 
ties behind the shock wave, as will be discussed in Chap. 17 for the cases of ther- 
mally perfect and chemically reacting gases. However, for a calorically perfect gas, 
we can immediately add the thermodynamic relations 

and h = c,T (3.42) 

Equations (3.38) through (3.42) constitute five equations with five unknowns: 
p2, u2, p2, h2, and T2. Hence, they can be solved algebraically, as follows. 

First, divide Eq. (3.39) by (3.38): 

Recalling that a = m, Eq. (3.43) becomes 

Equation (3.44) is a combination of the continuity and momentum equations. The 
energy equation (3.40) can be utilized in one of its alternative forms, namely, 
Eq. (3.26), which yields 

and 

Since the flow is adiabatic across the shock wave, a* in Eqs. (3.45) and (3.46) is the 
same constant value (see Sec. 3.5). Substituting Eqs. (3.45) and (3.46) into (3.44), we 
obtain 
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Dividing by (u2 - u I ), 

Solving for a*, this gives 

Equation (3.47) is called the Prarzdtl relation, and is a useful intermediate relation for 
normal shocks. For example, from this simple equation we obtain directly 

Based on our previous physical discussion, the flow ahead of a shock wave must be 
supersonic, i.e., M I  > I .  From Sec. 3.5, this implies MT > 1 .  Thus, from Eq. (3.48). 
M; < 1 and thus MZ < 1. Hence, the Mach number behind thr normal shock is a/- 
ways subsonic. This is a general result, not just limited to a calorically perfect gas. 

Recall Eq. (3.37), which, solved for M * ,  gives 

Substitute Eq. (3.49) into (3.48): 

Solving Eq. (3.50) for M ; :  
I I 

Equation (3.5 1) demonstrates that, for a calorically perfect gas with a constant value 
of y ,  the Mach number behind the shock is a function of only the Mach number 
ahead of the shock. It also shows that when M I  = I, then M 2  = 1. This is the case of 
an infinitely weak normal shock, which is defined as a Mach  wave. In contrast. as M I  
increases above 1 ,  the normal shock becomes stronger and M2 becomes progres- 
sively less than 1. However, in the limit, as M I  + oo, M2 approaches a tinite mini- 
mum value, M2 -t J (y  - 1)/2 y , which for air is 0.378. 

The upstream Mach number M I  is a powerful parameter which dictates shock 
wave properties. This is already seen in Eq. (3.5 1). Ratios of other properties across 
the shock can also be found in terms of M I .  For example, from Eq. (3.38) combined 
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with (3.47), 

Substituting Eq. (3.49) into (3.52), 

To obtain the pressure ratio, return to the momentum equation (3.39), 

2 2 P2 - PI = PlUl - p2u2 

which, combined with Eq. (3.38), yields 

Dividing Eq. (3.54) by pl,  and recalling that a: = y p l / p l ,  we obtain 

Substitute Eq. (3.53) for u l / u 2  into Eq. (3.55): 

Equation (3.56) simplifies to 
I I 

To obtain the temperature ratio, recall the equation of state, p  = pRT.  Hence 

Substituting Eqs. (3.57) and (3.53) into Eq. (3.58), 

Examine Eqs. (3.5 I), (3.53), (3.57), and (3.59). For a calorically perfect gas with 
a given y ,  they give M2, p2/p1, p2/p1,  and T ~ / T I  as functions of MI only. This is 
our first major demonstration of the importance of Mach number in the quantitative 
governance of compressible flowfields. In contrast, as will be shown in Chap. 17 for 
an equilibrium thermally perfect gas, the changes across a normal shock depend on 
both MI and T I ,  whereas for an equilibrium chemically reacting gas they depend on 
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M I ,  TI ,  and pl . Moreover, for such high-temperature cases, closed-form expressions 
such as Eqs. (3.51) through (3.59) are generally not possible, and the normal shock 
properties must be calculated numerically. Hence, the simplicity brought about by 
the calorically perfect gas assumption in this section is clearly evident. Fortunately, 
the results of this section hold reasonably accurately up to approximately MI = 5 in 
air at standard conditions. Beyond Mach 5, the temperature behind the normal shock 
becomes high enough that y is no longer constant. However, the flow regime MI < 5 
contains a large number of everyday practical problems, and therefore the results of 
this section are extremely useful. 

The limiting case of MI + cc can be visualized as u I + cc, where the calori- 
cally perfect gas assumption is invalidated by high temperatures, or as ul + 0, 
where the perfect gas equation of state is invalidated by extremely low temperatures. 
Nevertheless, it is interesting to examine the variation of properties across the normal 
shock as MI -+ oo in Eqs. (3.5 I), (3.53), (3.57), and (3.59). We find, for y = 1.4, 

- 
= 0378 (as discussed previously) 

MI-cc 

At the other extreme, for MI = 1 ,  Eqs. (3.51), (3.53), (3.57), and (3.59) yield 
MI  = p2/pI = p2/pI = T2/TI = 1 .  This is the case of an infinitely weak normal 
shock degenerating into a Mach wave, where no finite changes occur across the 
wave. This is the same as the sound wave discussed in Sec. 3.3. 

Earlier in this section, it was stated that the flow ahead of the normal shock wave 
must be supersonic. This is clear from our previous physical discussion on the for- 
mation of shocks. However, it is interesting to note that Eqs. (3.51), (3.53). (3.57), 
and (3.59) muthematically hold for MI < 1 as well as MI > 1 .  Therefore, to prove 
that these equations have physical meaning only when MI > I ,  we must appeal to 
the second law of thermodynan~ics (see Sec. 1.4). From Eq. (1.36), repeated here, 

with Eqs. (3.57) and (3.59), we have 
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Equation (3.60) demonstrates that the entropy change across the normal shock is also 
a function of MI only. Moreover, it shows that, if MI = 1 then s2 - sl = 0, if 
MI < 1 then s2 - s1 < 0, and if M I  > 1 then $2 - sl > 0. Therefore, since it is nec- 
essary that s2 - S I  2 0 from the second law, the upstream Mach number M1 must be 
greater than or equal to 1. Here is another example of how the second law tells us the 
direction in which a physical process will proceed. If M1 is subsonic, then Eq. (3.60) 
says that the entropy decreases across the normal shock-an impossible situation. 
The only physically possible case is M1 p 1, which in turn dictates from Eqs. (3.5 l), 
(3.53), (3.57), and (3.59) that M2 5 1, p 2 / p 1  > 1, p 2 / p I  2 1, and T2/T1 2 1. Thus, 
we have now established the phenomena sketched in Fig. 3.4, namely, that across a 
normal shock wave the pressure, density, and temperature increase, whereas the 
velocity decreases and the Mach number decreases to a subsonic value. 

What really causes the entropy increase across a shock wave? To answer this, 
recall that the changes across the shock occur over a very short distance, on the order 
of lop5 cm. Hence, the velocity and temperature gradients inside the shock structure 
itself are very large. In regions of large gradients, the viscous effects of viscosity and 
thermal conduction become important. In turn, these are dissipative, irreversible phe- 
nomena that generate entropy. Therefore, the net entropy increase predicted by the 
normal shock relations in conjunction with the second law of thermodynamics is ap- 
propriately provided by nature in the form of friction and thermal conduction inside 
the shock wave structure itself. 

Finally, in this section we need to resolve one more question, namely, how do 
the total (stagnation) conditions vary across a normal shock wave? Consider Fig. 3.9, 
which illustrates the definition of total conditions before and after the shock. In 
region 1 ahead of the shock, a fluid element is moving with actual conditions of 

Fluid element Imaginary state l a  
in real state where fluid element 
withM,, p l ,  has been brought to 
T I ,  and s l  rest isentropically. 

Thus, in state l a ,  
the pressure is pol 
(by definition). 
Entropy is still s , .  
Temperature is To,. 

.- -3 
f-7- I 

L-L*' 
Imaginary state 2 0  
where fluid element 
has been brought to 
rest isentropically. 
Thus, in state Zu, 
pressure is po2 and 
entropy is s 2 .  
Temperature is To2. 

Figure 3.9 1 Illustration of total (stagnation) conditions ahead of and behind 
a normal shock wave. 
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M I ,  pl, TI, and X I .  Consider in this region the imaginary state la where the fluid 
element has been brought to rest isentropically. Thus, by definition, the pressure and 
temperature in state l a  are the total values pol ,  and To,,  respectively. The entropy at 
state l a  is still s l  because the stagnating of the fluid element has been done isentrop- 
ically. In region 2 behind the shock, a fluid element is moving with actual conditions 
of M2, p2, T2, and $2. Consider in this region the imaginary state 2a where the fluid 
element has been brought to rest isentropically. Here, by definition, the pressure and 
temperature in state 2a are the total values of pol and c?, respectively. The entropy 
at state 2a is still ~ 2 ,  by definition. The question is now raised how pOz and T,, behind 
the shock compare with p,, and To,,  respectively, ahead of the shock. To answer this 
question, consider Eq. (3.22), repeated here: 

From Eq. (3.27), the total temperature is given by 

u2 
c,T, = c,T + - 

2 
Hence. 

and thus (3.61) 

From Eq. (3.61), we see that the total temperature is constant across LL stationary 
normal shock wave. [Note that Eq. (3.6 I), which holds for a calorically perfect gas, 
is a special case of the more general result that the total enthalpy is constant across 
the shock, as demonstrated by Eq. (3.40). For a stationary normal shock, the total 
enthalpy is always constant across the shock wave, which for calorically or ther- 
mally perfect gases translates into a constant total temperature across the shock. 
However, for a chemically reacting gas. the total temperature is not constant across 
the shock, as described in Chap. 17. Also, if the shock wave is not stationary-if 
it is moving through space-neither the total enthalpy nor total temperature are 
constant across the wave. This becomes a matter of reference systems, as discussed 
in Chap. 7.1 

Considering Fig. 3.9 again, write Eq. (1.36) between the imaginary states la 
and 2a: 

However, SZ,  = s2, SI, = S I  . T2rl = 7;) = Tla,  pzu = P ( , ~  , and PI, ,  = p , ,  . Hence, 
Eq. (3.62) becomes 
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Figure 3.10 1 Properties behind a normal shock wave as a function of upstream Mach 
number. 

From Eqs. (3.64) and (3.60) we see that the ratio of total pressures across the normal 
shock depends on M I  only. Also, because s2 > s l ,  Eqs. (3.63) and (3.64) show that 
p,, < p,, . The total pressure decreases across a shock wave. 

The variations of p2/pI ,  p2/p1, T 2 / T l ,  p,,/p,, , and M2 with M I  as obtained 
from the above equations are tabulated in Table A.2 (in the Appendix A at the back of 
this book) for y = 1.4. In addition, to provide more physical feel, these variations 
are also plotted in Fig. 3.10. Note that (as stated earlier) these curves show how, as 
M1 becomes very large, T2/ Tl and p 2 / p 1  also become very large, whereas p2/p1 and 
M2 approach finite limits. 

A normal shock wave is standing in the test section of a supersonic wind tunnel. Upstream of 
the wave, M I  = 3, p,  = 0.5 atm, and TI  = 200 K. Find M 2 ,  p2,  T2. and uz downstream of the 
wave. 



3.6 Normal Shock Relations 

Solution 
From Table A.2, for MI = 3: p2/pI = 10.33, T ~ / T I  = 2.679. and M2 = 1. Hence 

A blunt-nosed missile is flying at Mach 2 at standard sea level. Calculate the temperature and 
pressure at the nose of the missile. 

Solution 
The nose of the missile is a stagnation point. and the streamline through the stagnation point 
has also passed through the normal portion of the bow shock wave. Hence, the temperature 
and pressure at the nose are equal to the total temperature and pressure behind a normal shock. 

Also, at standard sea level, TI = 5 19-R and p l  = 21 16 lb/ft2. 
From Table A. I ,  for MI = 2: T,,,/Tl = 1.8 and p , , / p ,  = 7.824. Also, for adiabatic flow 

through a normal shock, To2 = T,,, . Hence 

From Table A.2, for MI = 2: p,,/p,,, = 0.7209. Hence 

Consider a point in a supersonic flow where the static pressure is 0.4 atm. When a Pitot tube is 
inserted in the flow at this point, the pressure measured by the Pitot tube is 3 atm. Calculate the 

Mach number at this point. 

Solution 
(We assume that the reader is familiar with the concept of a Pitot tube; see Sec. 8.7 of Ref. 104 
for a discussion of the Pitot tube.) The pressure measured by a Pitot tube is the total pressure. 
However, when the tube is inserted into a supersonic flow, a normal shock is formed a short 

distance ahead of the mouth of the tube. In this case, the Pitot tube is sensing the total pressure 
behind the normal shock. Hence 

From Table A.2, for p,,,/pl = 7.5: MI = w. 



CHAPTER 3 One-Dimensional Flow 

Note: As usual, in using the tables in Appendix A, we use the nearest entry for simplicity 
and efficiency; for improved accuracy, interpolation between the nearest entries should be 
used. 

For the normal shock that occurs in front of the Pitot tube in Example 3.7, calculate the entropy 
change across the shock. 

Solution 
From Table A.2, for M 1  = 2.35: p, , /p , ,  = 0.5615. From Eq. (3.63) 

S 2  - S l  - = -In Po' = - ln(O.5615) = 0.577 
R Po, 

Transonic flow is a mixed subsonic-supersonic flow where the local Mach number is near one. 
Such flows are discussed at length in Chap. 14, and are briefly described in Sec. 1.3. A typical 
example is the flow over the wing of a high-speed subsonic transport, such as the Boeing 777 
shown in Fig. 1.4. When the airplane is flying at a free-stream Mach number on the order of 
0.85, there will be a pocket of locally supersonic flow over the wing, as sketched in Fig. 1.10b. 
This pocket is terminated by a weak shock wave, also shown in Fig. 1.10b. Early numerical 
calculations of such transonic flows over an airfoil assumed the flow to be isentropic, hence ig- 
noring the entropy increase and total pressure loss across the shock wave. Making the as- 
sumption that the shock wave in Fig. 1.10b is locally a normal shock, calculate the total pres- 
sure ratio and entropy increase across the shock for M I  = 1.04,1.08, 1.12,1.16, and 1.2. 
Comment on the appropriateness of the isentropic flow assumption for the solution of tran- 
sonic flows involving shocks of this nature. 

Solution 
From Table A.2, for M I  = 1.04 

From Eq. (3.63), 

- 
Forming a table for the remaining calculations, we have 

joule 
s - (-1 1 0.0287 0.172 0.517 1.12 2.07 

kg.  K 
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From this table, the entropy increase across a normal shock with M I  = 1.04 1s very small; the 

shock is extremely weak. By comparison, the entropy increase for MI = 1.12 is 72 times 
larger than the case for MI = 1.04. The shock strength increases rapidly as M I  increases 

above one. From these numbers, we might feel comfortable with the approximation of isen- 
tropic flow for transonic flows where the local Mach number in front of the shock is on the 
order of 1.08 or less. On the other hand, if the local Mach number is on the order of 1.3, the 

isentropic assumption is clearly suspect. 

Consider two Rows, one of helium and one of air, at the same Mach number of 5. Denoting the 
strength of a normal shock by the pressure ratio across the shock, p 2 / p I .  which gas will result 

in the stronger shock? For a monatomic gas such as helium, y = 1.67, and for a diatomic gas 

such as air, y = 1.4. 

Solution 
For air, from Table A.2, for MI = 5 

P2 
- = 29 (air) 
P I  

For helium, we cannot use Table A.2, which is for y = 1.4 only. Returning to Eq. (3 .57)  for 
the presure ratio across a normal shock, 

Hence, 

P2 - = 3 1 (helium) 
PI 

From this, we conclude that for equal upstream Mach numbers. the rhock strength is greater in 
helium as compared to air. 

Repeat Example 3.10, except assuming equal velocities of 1700 mls and temperatures of 288 K 
for both gas flows. 

rn Solution 
For air, with y = 1.4 and R = 287joulekg . K ,  the speed of sound at TI = 288 K is. from 
Eq. (3.20). 

a l  = mr = J(I  .4)(287)(288) = 340mls 

Hence, 
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From Table A.2, we have 

Pz - = 29 (air) 
PI 

For helium, the molecular weight is 4. As given in Sec. 1.4, 

R 8314 joule R = - = - = 2078.5 - 
M 4 kg. K 

Hence, 

a, = = J(1.67)(2078.5)(288) = 999.81111s 

From Eq. (3.57) 

Hence 

P2 - = 3.36 (helium) 
P I  

From this, we conclude that, for equal upstream velocities and temperatures, the shock 
strength in helium is much weaker than in air. This is because the speed of sound in helium is 
much larger than air at the same temperature, due to the smaller molecular weight for helium. 
Since shock strength is dictated by Mach number, not velocity, the shock is much weaker in 
helium because d the much lower upstream Mach number. 

3.7 1 HUGONIOT EQUATION 
The results obtained in Sec. 3.6 for the normal shock wave were couched in terms of 
velocities and Mach numbers-uantities which quite properly emphasize the fluid 
dynamic nature of shock waves. However, because the static pressure always in- 
creases across a shock wave, the wave itself can also be visualized as a thermody- 
namic device which compresses the gas. Indeed, the changes across a normal shock 
wave can be expressed in terms of purely thermodynamic variables without explicit 
reference to a velocity or Mach number, as follows. 

From the continuity equation (3.38), 

Substitute Eq. (3.65) into the momentum equation (3.39): 



Snlve Eq. (3.66) for u:: 

3.7 Hugoniot Equation 

(3.67) 

Alternatively, writing Eq. (3.38) as 

and again substituting into Eq. (3.39), this time solving for u2, we obtain 

From the energy equation (3.40), 

and recalling that by definition h = e + p/p. we have 

Substituting Eqs. (3.67) and (3.68) into (3.69), the velocities are eliminated, yielding 

This simplities to 

Equation (3.72) is called the Hugoniot equation. It has certain advantages because it 
relates only thermodynamic quantities across the shock. Also, we have made no as- 
sumption about the type of gas-Eq. (3.72) is a general relation that holds for a per- 
fect gas, chemically reacting gas, real gas, etc. In addition, note that Eq. (3.72) has 
the form of Ae = -p,,,Av, i.e., the change in internal energy eqllals the mean pres- 
sure across the shock times the change in specific volume. This strongly reminds us 
of the first law of thermodynamics in the form of Eq. (1.25), with S q  = 0 for the adi- 
abatic process across the shock. 

In general, in equilibrium thermodynamics any state variable can be expre5sed 
as a function of any other two state variables, for example e = e(p,  v ) .  This relation 
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Isentropic curve (pv7 = constant) 

Figure 3.11 1 Hugoniot curve; comparison with 
isentropic compression. 

could be substituted into Eq. (3.72), resulting in a functional relation 

For given conditions of pl and vl upstream of the normal shock, Eq. (3.73) 
represents p2 as a function of v2. A plot of this relation on a pv graph is called 
the Hugoniot curve, which is sketched in Fig. 3.11. This curve is the locus of all pos- 
sible pressure-volume conditions behind normal shocks of various strengths for one 
specific set of upstream values for pl and vl (point 1 in Fig. 3.11). Each point on the 
Hugoniot curve in Fig. 3.11 therefore represents a different shock with a different 
upstream velocity ul. 

Now consider a specific shock with a specific value of upstream velocity ul. 
How can we locate the specific point on the Hugoniot curve, point 2, which corre- 
sponds to this particular shock? To answer this question, return to Eq. (3.67), substi- 
tuting v = l l p :  

Rearranging Eq. (3.74), we obtain 

Examining Eq. (3.75), the left-hand side is geometrically the slope of the straight line 
through points 1 and 2 in Fig. 3.11. The right-hand side is a known value, fixed by the 



upstream velocity and specific volume. Hence, by calculating - (u l /v l  )' from the 
known upstream conditions, and by drawing a straight line through point 1 with this 
slope, the line will intersect the Hugoniot curve at point 2, as sketched in Fig. 3.1 1. 
Consequently, point 2 represents conditions behind the particular normal shock 
which has velocity u l  with upstream pressure and specific volume pl and v l ,  
respectively. 

Shock wave compression is a very effective (not necessarily efficient, but effec- 
tive) process. For example, cornpare the isentropic and Hugoniot curves drawn 
through the same initial point ( p l ,  vl ) as sketched in Fig. 3.11. At this point, both 
curves have the same slope (prove this yourself, recalling that point 1 on the 
Hugoniot curve corresponds to an infinitely weak shock, i.e., a Mach wave). How- 
ever, as v decreases, the Hugoniot curve climbs above the isentropic curve. There- 
fore, for a given decrease in specific volume. a shock wave creates a higher pressure 
increase than an isentropic compression. However, the shock wave costs more be- 
cause of the entropy increase and consequent total pressure loss, i.e., the shock com- 
pression is less efficient than the isentropic compression. 

Finally, noting that for a calorically perfect gas e = c,.T and T = p v / R ,  
Eq. (3.72) takes the form 

I 
1'2 - - - 
P 1 

Prove this to yourself. 

Consider the normal shock wave properties calculated in Example 3.5. Show that these prop- 
erties satisfy the Hugoniot equation for a calorically perfect gas. 

Solution 
The Hugoniot equation for a calorically perfect gas is given by the last equation in this section, 
namely, 

Let us calculate vl /u2 from the inforination given in Example 3.5, substitute the value of 111 / u 2  
into the last equation, and see if the resulting value of p2/pl  agrees with that obtained in 

Example 3.5. 
From Example 3.5, pl = 0.5 atm, TI  = 200 K,  pz = 5.165 atm, and Tz = 535.8 K .  From 

the equation of state 
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Hence, 

From the Hugoniot equation, 

From Example 3.5, the calculated pressure ratio was p 2 / p 1  = 10.33, which agrees within 
round-off error with the result computed above from the Hugoniot equation. (Please note: All 
of the worked examples in this book were computed by the author using a hand calculator, 
hence the answers are subject to round-off errors that accumulate during the calculation.) 

3.8 1 ONE-DIMENSIONAL FLOW WITH 
HEAT ADDITION 

Consider again Fig. 3.6, which illustrates a control volume for one-dimensional flow. 
Inside this control volume some action is occurring which causes the flow properties 
in region 2 to be different than in region 1. In the previous sections, this action has 
been due to a normal shock wave, where the large gradients inside the shock struc- 
ture ultimately result in an increase in entropy via the effects of viscosity and thermal 
conduction. However, these effects are taking place inside the control volume in 
Fig. 3.6 and therefore the governing normal shock equations relating conditions in 
regions 1 and 2 did not require explicit terms accounting for friction and thermal 
conduction. 

The action occurring inside the control volume in Fig. 3.6 can be caused by 
effects other than a shock wave. For example, if the flow is through a duct, friction 
between the moving fluid and the stationary walls of the duct causes changes 
between regions 1 and 2. This can be particularly important in long pipelines trans- 
ferring gases over miles of land, for example. Another source of change in a one- 
dimensional flow is heat addition. If heat is added to or taken away from the gas 
inside the control volume in Fig. 3.6, the properties in region 2 will be different than 
those in region 1. This is a governing phenomenon in turbojet and ramjet engine 
burners, where heat is added in the form of fuel-air combustion. It also has an im- 
portant effect on the supersonic flow in the cavities of modem gasdynamic and 
chemical lasers, where heat is effectively added by chemical reactions and molecu- 
lar vibrational energy deactivation. Another example would be the heat added to an 
absorbing gas by an intense beam of radiation; such an idea has been suggested for 
laser-heated wind tunnels. In general, therefore, changes in a one-dimensional flow 
can be created by both friction and heat addition without the presence of a shock 
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wave. One-dimensional flow with heat addition will be discussed in this section. 
Flow with friction, a somewhat analogous phenomenon, is the subject of Sec. 3.9. 

Consider the one-dimensional flow in Fig. 3.6, with heat addition (or extraction) 
taking place between regions 1 and 2. The governing equations are Eqs. (3.2), (3.5), 
and (3.9), repeated here for convenience: 

If conditions in region 1 are known, then for a specified amount of heat added per unit 
mass, q, these equations along with the appropriate equations of state can be solved 
for conditions in region 2. In general, a numerical solution is required. However. for 
the specific case of a calorically perfect gas, closed-form analytical expressions can 
be obtained-just as in the normal shock problem. Therefore, the remainder of this 
section will deal with a calorically perfect gas. 

Solving Eq. (3.9) for q, with h = c,T, 

From the definition of total temperature, Eq. (3.27), the terms on the right-hand side 
of Eq. (3.76) simply result in 

Equation (3.77) clearly indicates that the effect of heat addition is to directly change 
the total temperature of the,flow. If heat is added, T ,  increases: if heat is extracted. T,, 
decreases. 

Let us proceed to find the ratios of properties between regions 1 and 2 in terms 
of the Mach numbers MI and M 2 .  From Eq. (3 .9 ,  and noting that 

we obtain 

Hence. 

Also, from the perfect gas equation of state and Eq. (3.2). 
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From Eq. (3.20) and the definition of Mach number, 

--  -- - - 

Substituting Eqs. (3.78) and (3.80) into (3.79), 

Since p2/p1 = (p2/pl ) (Tl /T2) ,  Eqs. (3.78) and (3.81) yield 

The ratio of total pressures is obtained directly from Eqs. (3.30) and (3.78), 

L I 

The ratio of total temperatures is obtained directly from Eqs. (3.28) and (3.81), 

Finally, the entropy change can be found from Eq. (1.36) with T2/T1 and p2/p1 
given by Eqs. (3.81) and (3.78), respectively. 

A scheme for the solution of one-dimensional flow with heat addition can now 
be outlined as follows. All conditions in region 1 are given. Therefore, for a given q, 
To, can be obtained from Eq. (3.77). With this value of To,, Eq. (3.84) can be solved 
for M2. Once M2 is known, then p 2 / p 1 ,  T2/ T I ,  and p2/p1 are directly obtained from 
Eqs. (3.78), (3.81), and (3.82), respectively. This is a straightforward procedure; 
however, the solution of Eq. (3.84) for M2 must be found by trial and error. There- 
fore, a more direct method of solving the problem of one-dimensional flow with heat 
addition is given below. 

For convenience of calculation, we use sonic flow as a reference condition. Let 
MI = 1; the corresponding flow properties are denoted by pi = p*, Tl = T * ,  
p1 = p*, po, = pz, and To, = T z .  The flow properties at any other value of M are 
then obtained by inserting M I  = 1 and M2 = M into Eq. (3.78) and Eqs. (3.81) to 
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(3.84), yielding 

Equations (3.85) through (3.89) are tabulated as a function of M for y = 1.4 in 
Table A.3. Note that, for a given flow, no matter what the local flow properties are, the 
reference sonic conditions (the starred quantities) are constant values. These starred 
values, although defined as conditions that exist at Mach I ,  are fundamentally differ- 
ent than T*, p*. and p* defined in Sec. 3.4. There, T *  was defined as the temperature 
that would exist at a point in the flow if the flow at that point were imagined to be 
locally slowed down (for a supersonic case) or speeded up (for a subsonic case) to 
Mach 1 adiabatically. In the present section we are dealing with a one-dimensional 
flow with heat addition-definitely a nonadiabatic process. Here, T*, p*, and p* are 
those conditions in a one-dimensional flow that would exist if enough heat is added 
to achieve Mach 1 .  To see this more clearly, consider two different locations in a one- 
dimensional flow with heat addition, denoted by stations 1 and 2 as sketched in 
Fig. 3 . 1 2 ~ .  The flow at station 1 is given by M I ,  pl ,  and TI. For the sake of discus- 
sion, let MI = 3. Now, let an amount of heat ql be added to this flow between sta- 
tions 1 and 2. As a result, the flow properties at location 2 are M 2 ,  p2, and TI as 
shown in Fig. 3 . 1 2 ~ .  Assume that ql was a sufficient amount to result in M2 = 1.5. 
(We will soon demonstrate that adding heat to a supersonic flow reduces the Mach 
number of the flow.) Now, return to station 1, where the local Mach number is 
M I  = 3. Imagine that we add enough heat downstream of this station to cause the 
flow to slow down to Mach 1 as shown in Fig. 3.126; denote this amount of heat by 
qT . Clearly, q: > ql . The conditions in the duct where M = 1 after q;  is added are 
denoted by T*, p*,  p*, p:, and T,*. Now, return to station 2, where M2 = 1.5. Imag- 
ine that we add enough heat downstream of this station to cause the flow to slow 
down to Mach 1 as sketched in Fig. 3 . 1 2 ~ ;  denote this amount of heat by q;. The 
conditions in the duct where M = 1 after q; is added are denoted by T*, p*, p*, p,*, 
and T,*. These are precisely the same values that were obtained by adding qT down- 
stream of station 1. In other words, for a given one-dimensional flow, the values of 
T*, p*, p*, etc., achieved when enough heat is added to bring the flow to Mach 1 are 
the same values, no matter whether the heat is added as q; downstream of station 1 
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Figure 3.12 1 Illustration of the meaning of the starred quantities at Mach 1 for 
one-dimensional flow with heat addition. 

or as q; downstream of station 2. This is why, in Eqs. (3.85) through (3.89), the 
starred quantities are simply reference quantities that are fixed values for a given 
flow entering a one-dimensional duct with heat addition. With this concept, 
Eqs. (3.85) through (3.89), or rather the tabulated values in Table A.3 obtained from 
these equations, simplify the calculation of problems involving one-dimensional 
flow with heat addition. 

Air enters a constant-area duct at MI = 0.2, pl = 1 atm, and TI = 273 K. Inside the duct, the 
heat added per unit mass is q = 1.0 x 10"kg. Calculate the flow properties M2, p2, T2, p2, 
To,, and p,, at the exit of the duct. 

Solution 
From TableA.1, for MI = 0.2: To, /Tl  = 1.008 and p O 1 / p l  = 1.028. Hence 

To, = 1.008Tl = 1.008(273) = 275.2 K 

pol = 1 . 0 2 8 ~ 1  = 1.028(1 atm) = 1.028 atm 
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From Eq. (3.77) 

From Table A.3, for M I  = 0.2: T I I T *  = 0.2066, p l / p *  = 2.273, p,,,/& = 1.235, and 

T,,, IT,* = 0.1736. Hence 

From Table A.3. this comesponds to 1 3 .  
Also from 'Table A3, for M2 = 0.58: T2/ T* = 0.8955, p / p *  = 1.632, p,,2/p,: = 1.083 

Hence 

112 I )*  
1'2 = - - 

I 
pl = 1.632- 1 atm = 

P *  PI  2.273 

Since I atrn = 1 .O1 x 10" N/m2. 

Air enters a constant-area duct at MI  = 3, p ,  = I atm, and TI = 300 K.  Inside the duct, the 
heat added per unit mass is q = 3 x I O" Jlkg. Calculate the flow properties M2, I)?. T2. ,Q. T,,:. 

and p<,? at the exit of the duct. 

Solution 
From Table A. I .  for M I  = 3: T,,, /TI  = 2.8. Hence 

From Eq. (3.77) 

Thus 
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From Table A.3, for M I  = 3: p l / p *  = 0.1765, T l / T *  = 0.2803, and T,,,/T: = 0.6540. 
Hence 

From Table A.3, for T,,/T,* = 0.8868: M2 = w. Also from Table A.3, p z l p *  = 0.5339 
and T 2 / T *  = 0.7117. Thus 

From Table A.3, for M I  = 3: p, , /p ,*  = 3.424. For M2 = 1.58: pO2/po* = 1.164. Thus 

From Table A. 1, For M I  = 3: p,, / p i  = 36.73. Hence 

Po2 POI 
Po2 = - - p ,  = (0.340)(36.73)(1 atm) = 

POI PI 

Certain physical trends reflected by the numbers obtained from such solutions 
are important, and are summarized here: 

1. For supersonicJlow in region 1 ,  i.e., M1 > 1, when heat is added 
a. Mach number decreases, M2 < M I  
b. Pressure increases, p2 > pl 
c. Temperature increases, T2 > Tl 
d. Total temperature increases, To, > To, 
e. Total pressure decreases, p,, < p, ,  

fi Velocity decreases, u2 < u 1 

2. For subsonic flow in region 1, i.e., M1 < 1, when heat is added 
a. Mach number increases, M2 > M I  
b. Pressure decreases, p2 < pl 
c. Temperature increases for M I  < y - ' I 2  and decreases for M I  > y - ' I2  
d. Total temperature increases, To, > To, 
e. Total pressure decreases, p,, < p,, 

$ Velocity increases, u2 > ul 

For heat extraction (cooling of the flow), all of the above trends are opposite. 
From the development here, it is important to note that heat addition always 

drives the Mach numbers toward 1, decelerating a supersonic flow and accelerating 
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(Sonic flow) 

Figure 3.13 1 The Rayleigh curve 

a subsonic flow. This is emphasized in Fig. 3.13, which is a Mollier diagram (en- 
thalpy versus entropy) of the one-dimensional heat-addition process. The curve in 
Fig. 3.13 is called the Rayleigh curve, and is drawn for a set of given initial condi- 
tions. If the conditions in region I are given by point 1 in Fig. 3.13, then the particu- 
lar Rayleigh curve through point 1 is the locus of all possible states in region 2. Each 
point on the curve corresponds to a different value of q added or taken away. Point a 
corresponds to maximum entropy; also at point a the flow is sonic. The lower branch 
of the Rayleigh curve below point a corresponds to supersonic flow; the upper 
branch above point a corresponds to subsonic flow. If the flow in region 1 of Fig. 3.6 
is supersonic and corresponds to point 1 in Fig. 3.13, then heat addition will cause 
conditions in region 2 to move closer to point a,  with a consequent decrease of Mach 
number towards unity. As q is made larger, conditions in region 2 get closer and 
closer to point a. Finally, for a certain value of q, the flow will become sonic in re- 
gion 2. For this condition, the flow is said to be choked, because any further increase 
in q is not possible without a drastic revision of the upstream conditions in region 1. 
For example, if the initial supersonic conditions in region 1 were obtained by expan- 
sion through a supersonic nozzle, and if a value of q is added to the flow above that 
allowed for attaining Mach 1 in region 2, then a normal shock will form inside the 
nozzle and conditions in region 1 will suddenly become subsonic. 
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Now consider an alternative case where the initial flow in region 1 in Fig. 3.6 is 
subsonic, say given by point 1' in Fig. 3.13. If heat is added to the flow, conditions in 
the downstream region 2 will move closer to point a. If q is increased to a sufficiently 
high value, then point a will be reached and the flow in region 2 will be sonic. The 
flow is again choked, and any further increase in q is impossible without an adjust- 
ment of the initial conditions in region 1. If q is increased above this value, then a se- 
ries of pressure waves will propagate upstream, and nature will adjust the conditions 
in region 1 to a lower subsonic Mach number, to the left of point 1' in Fig. 3.13. 

Note from the Rayleigh curve in Fig. 3.13 that it is theoretically possible to de- 
celerate a supersonic flow to a subsonic value by first heating it until sonic flow 
(point a) is reached, and then cooling it thereafter. Similarly, an initially subsonic 
flow can be made supersonic by first heating it until sonic flow (point a) is reached, 
and then cooling it thereafter. 

Finally, just as in the case of a normal shock wave, heat addition to a flow- 
subsonic or supersonic-always decreases the total pressure. This effect is of prime 
importance in the design of jet engines and in the pressure recovery attainable in gas- 
dynamic and chemical lasers. 

In Example 3.14, how much heat per unit mass must be added to choke the flow? 

Solution 
From Example 3.14, To, = 840 K .  Also from Table A.3, for MI = 3: To, IT,' = 0.6540. Thus 

When the flow is choked, the Mach number at the end of the duct is M2 = 1. Thus 

C. 4cr the supersonic inflow conditions given in Example 3.14. If an amount of heat equal 
to " 15 J k g  is added to this flow, what will happen to it qualitatively and quantitatively? 

S ,Jn 
From 4, llt given in Example 3.15, we see that q = 6 x lo5 J k g  is more than that required 
to chokk. !?w. In this case, the flow mechanism that is producing the incoming flow at 
MI = 3 d ,  *.-,ompletely changed by strong pressure waves propagating upstream so that 
new inflow, 'ons will prevail that will accommodate this increased amount of heat addi- 
tion, still c h o ~  9 c flow at the exit of the duct. Nature will change the originally supersonic 
inflow to a sub, , nflow with just the right value of M I  < 1 such that the heat added will 
just choke the sur flow. 
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To calculate the new inflow Mach number, we assume that whatever mechanism that 
nature uses to change the supersonic inflow to a subsonic inflow will not change the total tem- 
perature of the inflow. For example, if the mechanism is that of a normal shock wave, the total 
temperature is not changed across the shock. Hence, To, remains the same; To, = 840 K .  To 
calculate To, = T,* , we have 

From Table A.3, we find for T,,/T: = 0.5846, M I  = 0.43. 
Hence, when q = 6 x lo5 Jlkg is added to the flow, the initial supersonic inflow at 

MI = 3 will be modified through a complex transient process to become a subsonic inflow 
with M I  = 0.43. 

3.9 1 ONE-DIMENSIONAL FLOW WITH FRICTION 
With this section we arrive at the last box at the bottom of our roadmap in Fig. 3.1. 
Consider the one-dimensional flow of a compressible inviscid fluid in a constant-area 
duct. If the flow is steady, adiabatic, and shockless, Eqs. (3.2), (3.3, and (3.9) yield 
the trivial solution of constant property flow everywhere along the duct. However, in 
reality, all fluids are viscous, and the friction between the moving fluid and the 
stationary walls of the duct causes the flow properties to change along the duct. 
Although viscous flows are not the subject of this book, if the frictional effect is mod- 
eled as a shear stress at the wall acting on a fluid with uniform properties over any 
cross section, as illustrated in Fig. 3.14, then the equations developed in Sec. 3.2, 
with one modification, describe the mean properties of frictional flow in constant-area 

Figure 3.14 1 Model of one-dimensional flow 
with friction. 
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ducts. The analysis and results are analogous to one-dimensional flow with heat addi- 
tion, treated in Sec. 3.8. 

The aforementioned modification applies to the momentum equation. As seen in 
Fig. 3.14, the frictional shear stress r, acts on the surface of the cylindrical control 
volume, thus contributing an additional surface force in the integral formulation of 
the momentum equation. Equation (3.4) is the x component of the momentum equa- 
tion for an inviscid gas; with the shear stress included, this equation becomes 

Applied to the cylindrical control volume of diameter D and length L sketched in 
Fig. 3.14, Eq. (3.90) becomes 

Since A = n ~ ' 1 4 ,  Eq. (3.91) becomes 

The shear stress t, varies with distance x along the duct, thus complicating the inte- 
gration on the right-hand side of Eq. (3.92). This can be circumvented by taking the 
limit of Eq. (3.92) as L shrinks to dx, as shown in Fig. 3.14, resulting in the differ- 
ential relation 

From Eq. (3.2), pu = const. Hence, d(pi2)  = pu du + u d(pu) = pu du + u(0) = 
pu du. Thus Eq. (3.93) becomes 

The shear stress can be expressed in terms of a friction coefficient f, defined as 
r, = ipu2  f .  Hence, Eq. (3.94) becomes 

1 4 f  dx dp + pudu = -Tpu2- 
D 

Returning to Fig. 3.14, the driving force causing the mean cross-sectional flow 
properties to vary as a function of x is friction at the wall of the duct, and this varia- 
tion is governed by Eq. (3.95). For practical calculations dealing with a calorically 
perfect gas, Eq. (3.95) is recast completely in terms of the Mach number M. This can 
be accomplished by recalling that, a2  = yp/p, M' = u2/a2, p = pRT, pu = const, 
and c,T + u2/2 = const. The derivation is left as an exercise for the reader; the 
result is 



3.9 01~e-Dimensional Flo*:d witli F ~ t i o n  

Integrating E:q. (3.96) between A = \ I  (where h4 = MI) and t = \. (~chere  
M = M2), 

Equation (3.97) relates the Mach numbers at two different sections to the integrated 
ett'ect of friction betwoen the sections. 

The ratios ol'static temperature, pressure. density. and total pressure hctwet~n the 
two sections are readily obtained. The flow is adiabatic. hence 7;, =: cxmst. T l i ~ ~ s .  
from Eq. (3.28), we h a w  

I 

Sutxt~tuting Eq. (3.98) into (3.90). we have 

From the equation of \rate, p2Anl = (l12/p1 ) ( T 1 / 7 ) .  Subbtituting Eqs. (3.981 and 
(3.100) into this result. we obtain 

Finall). from Eqs. (-3.30) and (3.100). the ratlo ot total p ~ c s w e \  I \  

Analogou\ to our previous discussion of one-dimen\iorlal flow with hcar acldi- 
tion. calculations of H o b  M ith friction we expedited bh using sonic f ou. rc1~~1.eni.e 
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conditions, where the flow properties are denoted by p*, p * ,  T*, and px. From 
Eqs. (3.98) and (3.100) through (3.102), 

Also, if we define x = L* as the station where M = 1, then Eq. (3.97) becomes 

where f is an average friction coefficient defined as 
i r L *  

Equations (3.103) through (3.107) are tabulated versus Mach number in Table A.4 
for y = 1.4. 

The local friction coefficient f depends on whether the flow is laminar or turbu- 
lent, and is a function of Mach number, Reynolds number, and surface roughness, 
among other variables. In almost all practical cases, the flow is turbulent, and the 
variation off must be obtained empirically. Extensive friction coefficient data can be 
obtained from Schlicting's classical book (Ref. 20) among others; hence, no further 
elaboration will be given here. For our purposes, it is reasonable to assume an ap- 
proximate constant value of f = 0.005, which holds for R, > 105 and a surface 
roughness of 0.001 0. 

Consider the flow of air through a pipe of inside diameter = 0.15 m and length = 30 m. The 
inlet flow conditions are M I  = 0.3, p, = 1 atm, and TI = 273 K. Assuming f = const = 
0.005, calculate the flow conditions at the exit, M,  , p2, T2, and p,, . 

Solution 
From Table A. 1, for M I  = 0.3: pol / p l  = 1.064. Thus 

pol = 1.064(1 atm) = 1.064 atm 



3.9 One-Dimensional Flow with Friction 

From Table A.4, for MI = 0.3: 4 ~ L T / D  = 5.299, pl /p* = 3.619, TI IT*  = 1.179. and 
p,,,/p* = 2.035. Since L = 30m = LT - L;, then L; = Lf - L and 

From Table A.4, for ~ ? L * / D  = 1.2993: M, T2/T* = 1.148, pz/p* = 2.258, and 
p,,, /pa = 1.392. Hence 

P2 P* I 
PZ = --PI = 2.258-(1 atm) = 

P* PI 3.169 

Po2 P,* 
Po2 = - - 

1 
p, ,  = 1.392---- 

P: POI 2.035 

Consider the flow of air through a pipe of inside diameter = 0.4 ft and length = 5 ft. The inlet 
flow conditions are MI = 3. p l  = 1 atm, and TI = 300 K.  Assuming f = const = 0.005, cal- 
culate the flow conditions at the exit. M2, p ? ,  TI .  and po2. 

Solution 
LT - Lr = L. Hence 

4fL; 4fL; 4 f ~  
-- - - p-- 

D D D 

From Table A.4, for MI = 3: 4 ~ L T / D  = 0.5222, TI  IT* = 0.4286, and p l  /p* = 0.2182. 
Thus 

From Table A.4, for ~ ~ L T / D  = 0.2722: 1 M L  = I .91. Also from Table A.4: T2/T* = 0.6969 
and pZ/p* = 0.4394. Thus 

From Table A.4, for MI .= 3: p,, /pJ = 4.235. Also for M2 = 1.9: p,,?/pX = 1.555. Thus 

From Table A.1, for MI = 3: p,, / p l  = 36.73. Thus 

Po2 Pol p 0 2  = - -pl = (0.367)(36.73)(1 atm) = 
P o ,  PI 
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Certain physical trends reflected by the numbers obtained from such solutions 
are summarized here: 

1. For supersonic inlet flow, i.e., M1 > 1, the effect of friction on the downstream 
flow is such that 
a. Mach number decreases, M2 < M1 
b. Pressure increases, p2 > pl 
c. Temperature increases, T2 > TI 
d. Total pressure decreases, p,, < p,, 
e. Velocity decreases, u2 < u 1 

2. For subsonic inlet flow, i.e., M I  < 1, the effect of friction on the downstream 
flow is such that 
a. Mach number increases, M2 > M I  
b. Pressure decreases, p2 < pl 
c. Temperature decreases, T2 < TI  
d. Total pressure decreases, p,, < p,, 
e. Velocity increases, 2.42 > ul 

From this, note that friction always drives the Mach number toward 1, deceler- 
ating a supersonic flow and accelerating a subsonic flow. This is emphasized in 
Fig. 3.15, which is a Mollier diagram of one-dimensional flow with friction. The 
curve in Fig. 3.15 is called the Fanno curve, and is drawn for a set of given initial 
conditions. Point a corresponds to maximum entropy, where the flow is sonic. This 
point splits the Fanno curve into subsonic (upper) and supersonic (lower) portions. If 

S 

Figure 3.15 1 The Fanno curve. 



3.10 Historical Note: Sound Waves and Shock Waves 

the inlet flow is supersonic and corresponds to point 1 in Fig. 3.15, then friction 
causes the downstream flow to move closer to point a ,  with a consequent decrease of 
Mach number toward unity. Each point on the curve between points 1 and a corre- 
sponds to a certain duct length L. As L is made larger, the conditions at the exit move 
closer to point a. Finally, for a certain value of L, the flow becomes sonic. For this 
condition, the flow is choked, because any further increase in L is not possible with- 
out a drastic revision of the inlet conditions. For example, if the inlet conditions at 
point 1 were obtained by expansion through a supersonic nozzle, and if L were larger 
than that allowed for attaining Mach 1 at the exit, then a normal shock would form 
inside the nozzle, and the duct inlet conditions would suddenly become subsonic. 

Consider the alternative case where the inlet flow is subsonic, say given by point I '  
in Fig. 3.15. As L increases, the exit conditions move closer to point a. If L is increased 
to a sufficiently large value, then point a is reached and the flow at the exit becomes 
sonic. The flow is again choked, and any further increase in L is impossible without an 
adjustment of the inlet conditions to a lower inlet Mach number, i.e., without moving 
the inlet conditions to the left of point I '  in Fig. 3.15. 

Finally, note that friction always causes the total pressure to decrease whether 
the inlet flow is subsonic or supersonic. Also, unlike the Rayleigh curve for flow with 
heating and cooling, the upper and lower portions of the Fanno curve cannot be tra- 
versed by the same one-dimensional flow. That is, within the framework of one- 
dimensional theory, it is not possible to first slow a supersonic flow to sonic condi- 
tions by friction, and then further slow it to subsonic speeds also by friction. Such a 
subsonic deceleration would violate the second law of thermodynamics. 

In  Example 3.18, what is the length of the duct required to choke the flow? 

Solution 
From Table A.4, for M I  = 3: ~ ~ L T , I D  = 0.5222. The length of the duct required to achieve 
Mach I at the exit of the duct is, by definition, LT. Thus 

3.10 1 HISTORICAL NOTE: SOUND WAVES 
AND SHOCK WAVES 

Picking up the thread of history from Sec. 1.1, the following questions are posed: 
When was the speed of sound first calculated and properly understood? What is the 
origin of normal shock theory? Who developed the principal equations discussed in 
this chapter? Let us examine these questions further. 

By the seventeenth century. it was clearly appreciated that sound propagates 
through the air at some finite velocity. Indeed, by the time Isaac Newton published 
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the first edition of his Principia in 1687, artillery tests had already indicated that the 
speed of sound was approximately 1140 fth. These tests were performed by standing 
a known large distance away from a cannon, and noting the time delay between the 
light flash from the muzzle and the sound of the discharge. In Proposition 50, Book 11, 
of his Principia, Newton correctly theorized that the speed of sound was related to 
the "elasticity" of the air (the reciprocal of the compressibility defined in Sec. 1.2). 
However, he made the erroneous assumption that a sound wave is an isothermal 
process, and consequently proposed the following incorrect expression for the speed 
of sound: 

where t~ is the isothermal compressibility defined in Sec. 1.1. Much to his dismay, 
Newton calculated a value of 979 ft/s from this expression-15 percent lower than 
the existing gunshot data. Undaunted, however, he followed a now familiar ploy of 
theoreticians; he proceeded to explain away the difference by the existence of solid 
dust particles and water vapor in the atmosphere. This misconception was corrected 
a century later by the famous French mathematician, Pierre Simon Marquis de 
Laplace, who in a paper entitled "Sur la vitesse du son dans l'aire et dan l'eau" from 
the Annales de Chimie et de Physique (1816) properly assumed that a sound wave 
was adiabatic, not isothermal. Laplace went on to derive the proper expression 

where t, is the isentropic compressibility defined in Sec. 1.1. This equation is the 
same as Eq. (3.18) derived in Sec. 3.3. Therefore, by the time of the demise of 
Napoleon, the process and relationship for the propagation of sound in a gas was 
fully understood. 

The existence of shock waves was also recognized by this time, and following 
the successful approach of Laplace to the calculation of the speed of sound, it 
was natural for the German mathematician G. F. Bernhard Riemann in 1858 to first 
attempt to calculate shock properties by also assuming isentropic conditions. Of 
course, this was doomed to failure. However, 12 years later, the first major break- 
through in shock wave theory was made by the Scottish engineer, William John 
Macquorn Rankine (1820-1872). (See Fig. 3.16.) Born in Edinburgh, Scotland, on 
July 5, 1820, Rankine was one of the founders of the science of thermodynamics. At 
the age of 25, he was offered the Queen Victoria Chair of Civil Engineering and 
Mechanics at the University of Glasgow, a post he occupied until his death on 
December 24, 1872. During this period, Rankine worked in the true sense as an 
engineer, applying scientific principles to the fatigue in metals of railroad-car axles, 
to new methods of mechanical construction, and to soil mechanics dealing with earth 
pressures and the stability of retaining walls. Perhaps his best-known contributions 
were in the field of steam engines and the development of a particular thermody- 
namic cycle bearing his name. Also, an engineering unit of absolute temperature was 
named in his honor. 
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Figure 3.16 1 W. J. M. Rankine 
( 1820-1 872). 

Rankine's contribution to shock wave theory came late in life-2 years before 
his death. In a paper published in 1870 in the Philosophicd Transactions of'thr R o y 1  
Societ~ entitled "On the Thermodynamic Theory of Waves of Finite Longitudinal 
Disturbance," Rankine clearly presented the proper normal shock equations for con- 
tinuity. momentum, and energy in much the same form as our Eqs. (3.38) through 
(3.40). (It is interesting that in these equations Rankine defined a quantity he called 
"bulkiness," which is identical to what we now define as "specific volume." Appar- 
ently the usage of the term "bulkiness" later died out of its own cumbersomeness.) 
Moreover, Rankine properly assumed that the internal structure of the shock wave 
was not isentropic, but rather that it was a region of dissipation. He was thinking 
about thermal conduction, not the companion effect of viscosity within the shock. 
However, Rankine was able to successfully derive relationships for the thermody- 
namic changes across a shock wave analogous to the equations we have derived in 
Sec. 3.7. (It is also interesting to note that Rankine's paper coined the symbol y for 
the ratio of specific heats, c,,/c,,,: we are still following this notation a century later. 
He also recognized that the value of y was "nearly 1.41 for air, oxygen, nitrogen, and 
hydrogen, and for steam-gas nearly 1.3.") 

The equations obtained by Rankine were subsequently rediscovered by the 
French ballistician Pierre Henry Hugoniot. Not cognizant of Rankine's work, 
Hugoniot in 1887 published a paper in the Journal de 1'Ecolr Polytechnique entitled 
"MCmoire sur la propagation du Mouvement dans les Corps et SpCcialement dans les 
Gases Parfaits" in which the equations for normal shock thermodynamic properties 
were presented, essentially the equations we have derived in Sec. 3.7. As a result of 
this pioneering work by Hugoniot and by Rankine before him, a rather modern 
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Figure 3.17 1 Lord Rayleigh (1 842-1 91 9). 

generic term has come into use for all equations dealing with changes across shock 
waves, namely, the Rankine-Hugoniot relations. This label appears frequently in 
modern gasdynamic literature. 

However, the work of both Rankine and Hugoniot did not establish the direction 
of changes across a shock wave. Noted in both works is the mathematical possibility 
of either compression (pressure increases) or rarefaction (pressure decreases) shocks. 
This same possibility is discussed in Sec. 3.6. It was not until 1910 that this ambigu- 
ity was resolved. In two almost simultaneous and independent papers, first Lord 
Rayleigh (see Fig. 3.17) and then G. I. Taylor invoked the second law of thermody- 
namics to show that only compression shocks are physically possible-i.e., the 
Rankine-Hugoniot relations apply physically only to the case where the pressure be- 
hind the shock is greater than the pressure in front of the shock, Rayleigh's paper was 
published in Volume 84 of the Proceedings of the Royal Society, September 15, 1910, 
and was entitled "Aerial Plane Waves of Finite Amplitude." Here, Lord Rayleigh 
summarizes his results as follows: 

But here a question arises which Rankine does not seem to have considered. In order to 
secure the necessary transfers of heat by means of conduction it is an indispensable con- 
dition that the heat should pass from the hotter to the colder body. If maintenance of type 
be possible in a particular wave as a result of conduction, a reversal of the motion will 



give a wave whose type cannol be so maintained. We have wen reason already for the 
conclusion that a dissipative agency can serve t o  maintain thc type o n l y  \vhen ~ h c  gu\ 
passes from a less to a more condensed state. 

In addition to applying the second law of thermodynamics, Kayleigh also showed 
that viscosity played as essential a role in the structure of a shock as conduction. 
(Recall that Rankine considered conduction. only: a lw.  Hugoniot ohtainetl his 
results without reference to any dissipative mechanism.) 

One month later, in the same journal, a young G. 1. Taylor (who wa( to become 
one of the leading fluid dynamicists of the twentieth century) published a short paper 
entitled "The Conditions Necessary for Discontinuous Motion in Gases." which sup- 
ported Rayleigh's conclusions. Finally, over a course of 30 years. culminating in the 
second decade of this century. the theory of shock waves as presented in this chapter 
was fully established. 

It should be noted that the shock wave studies by Rankine, Hugoniot. Rayleigh. 
and Taylor were viewed at the time as interesting basic mechanics research on n rel- 
atively academic problem. The on-rush o f  the application of this theory did not hegin 
until 3 0  years later with blooming of interest in supersonic vehicles during World 
War 11. However, this is a classic example of the benefits of basic research. even 
when such work appears obscure at the moment. Rapid advances in supersonic flight 
during the 1940s were clearly expedited because shock wave theory was sittin: 
there, fully developed and ready for application. 

3.11 1 SUMMARY 
This chapter has dealt with one-dimensional flow, i.e., where all f ow properties are 
functions of one space dimension, say .x. only. This implies flow with constant cross- 
sectional area. Three physical mechanisms that cause the flow propertics to change 
with x even though the area is constant are: ( I )  a normal shock wave. ( 2 )  heat addi- 
tion, and (3) friction. Return to the roadmap in Fig. 3.1, and review the flow of ideas 
that highlight this chapter. 

The basic normal shock equations are: 

Continuity: ( 3 . 3 8 )  

Energy: 

A combination of these equations, along with the equation of state leads to the 
Prandtl relation 

which in turn leads to an expression for the Mach number behind a normal (hock: 
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Further combinations of the basic normal shock equations give 

and 

Important: Note that the changes across a normal shock wave in a calorically perfect 
gas are functions of just M I  and y .  For normal shock waves, the upstream Mach 
number is a pivotal quantity. Also, across a normal shock wave, T, is constant, s in- 
creases, and p, decreases. (However, if the gas is not calorically or thermally perfect, 
To is not constant across the shock.) A purely thermodynamic relation across a nor- 
mal shock wave is the Hugoniot equation, 

a graph of which, on the p - u plane, is called the Hugoniot curve. 
The governing equations for one-dimensional flow with heat addition are: 

Continuity: P I ~ I  = P2u2 (3.2) 

Energy: h i + - + q = h 2 + -  4 4 
2 2 

(3.9) 

The heat addition causes an increase in total temperature, given by 

for a calorically perfect gas. Also for this case, the governing equations lead to rela- 
tionships for the flow properties before and after heat addition in terms of the Mach 
numbers M1 and M2 before and after heat addition, respectively. Note that heat 
added to an initially supersonic flow slows the flow. If enough heat is added, the flow 
after heat addition can be slowed to Mach 1; this is the case of thermal choking. Heat 
added to an initially subsonic flow increases the flow speed. If enough heat is added, 
the flow after heat addition can reach Mach 1, again becoming thermally choked. In 
both cases of choked flow, if additional heat is added, nature adjusts the upstream 
quantities to allow for the extra heat. An initially supersonic flow that becomes 
thermally choked will become totally subsonic when additional heat is added, 
i.e., the inlet Mach number is changed to a subsonic value. An initially subsonic flow 
that becomes thermally choked will have its inlet Mach number reduced when addi- 
tional heat is added. A plot of the thermodynamic properties for one-dimensional 
flow with heat addition on a Mollier diagram is called a Rayleigh curve; hence, such 
flow with heat addition is called Rayleigh-linejow. 



3.1 1 Summary 

The governing equations for one-dimensional flow with friction are: 

Continuity: P I U I  = p2u2 (3.2) 

Energy: 

This fl ow is adiabatic, hence T, is constant. The entropy is increased due to the pres- 
ence of friction. The governing equations lead to relationships for the flow properties 
at the inlet and exit in terms of M I  and M2 at the inlet and exit, respectively. M2 is 
related to M I  through Eq. (3.97). The same type of choking phenomena occurs here 
as the case of flow with heat addition. An initially supersonic flow slows due to the 
influence of friction; if the constant-area duct is long enough, the exit Mach number 
becomes unity, and the flow is said to be choked. If the duct is made longer after the 
flow is choked, nature readjusts the flow in the duct so as to become subsonic at the 
inlet. An initially subsonic flow experiences an increase in velocity due to friction- 
a seemingly incongruous result because intuition tells us that friction would always 
reduce the flow velocity. However, the pressure gradient along the duct in this case 
is one of decreasing pressure in the x direction; this is in order to obey the governing 
equations. This favorable pressure gradient tends to increase the flow velocity. In- 
deed, the effect of decreasing pressure in the flow direction dominates over the re- 
tarding effect of friction at the walls of the duct, and hence one-dimensional subsonic 
flow with friction results i n  an increase in velocity through the duct. Another way to 
look at this situation is to recognize that, in order to set up subsonic one-dimensional 
flow with friction, a high pressure must be exerted at the inlet and a lower pressure at 
the exit. A plot of the thermodynamic properties of flow with friction on a Mollier di- 
agram is called a Fanno curve, and such flow is called Funno-linejow. 

In this chapter, a number of conveniently defined flow quantities are introduced: 
(1) total temperature, which is the temperature that would exist if the flow were re- 
duced to zero velocity udinbatically; (2) total pressure, which is the pressure that 
would exist if the flow were reduced to zero velocity i.sentr~~pical/y; (3) T* (and 
hence a* = d m ) ,  which is the temperature that would exist if the flow were 
slowed down or speeded up (as the case may be) to Mach 1; (4) characteristic Mach 
number, M* = Via*. Section 3.5 gives many alternative forms of the energy equa- 
tion in terms of these quantities. Study this section carefully. Of particular impor- 
tance are the following relations which hold for a calorically perfect gas: 
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PROBLEMS 
(Note: Use the tables at the end of this book as extensively as you wish to solve the 
following problems. Also, when the words "pressure" and "temperature" are used 
without additional modification, they refer to the static pressure and temperature.) 

At a given point in the high-speed flow over an airplane wing, the local Mach 
number, pressure and temperature are 0.7,0.9 atm, and 250 K, respectively. 
Calculate the values of p,, To, p*, T*, and a*  at this point. 
At a given point in a supersonic wind tunnel, the pressure and temperature are 
5 x lo4 ~ / m ~  and 200 K, respectively. The total pressure at this point is 
1.5 x lo6 ~ / m ' .  Calculate the local Mach number and total temperature. 
At a point in the flow over a high-speed missile, the local velocity and 
temperature are 3000 ft/s and 500°R, respectively. Calculate the Mach 
number M and the characteristic Mach number M* at this point. 
Consider a normal shock wave in air. The upstream conditions are given by 
M I  = 3, pl = 1 atm, and pl = 1.23 kg/m3. Calculate the downstream values 
of p2, T2, ~ 2 ,  M2, ~ 2 ,  PO,, and To,. 
Consider a Pitot static tube mounted on the nose of an experimental airplane. 
A Pitot tube measures the total pressure at the tip of the probe (hence 
sometimes called the Pitot pressure), and a Pitot static tube combines this 
with a simultaneous measurement of the free-stream static pressure. The Pitot 
and free-stream static measurements are given below for three different flight 
conditions. Calculate the free-stream Mach number at which the airplane is 
flying for each of the three different conditions: 
a. Pitot pressure = 1.22 x lo5 N/m2, static pressure = 1 .O1 x lo5 N/m2 

b. Pitot pressure = 7222 lb/ft2, static pressure = 21 16 lb/ft2 
c. Pitot pressure = 13 107 lb/ft2, static pressure = 1020 1b/ft2 

Consider the compression of air by means of (a )  shock compression and 
(b) isentropic compression. Starting from the same initial conditions of pl and 
v l ,  plot to scale the pv diagrams for both compression processes on the same 
graph. From the comparison, what can you say about the effectiveness of 
shock versus isentropic compression? 
During the entry of the Apollo space vehicle into the Earth's atmosphere, 
the Mach number at a given point on the trajectory was M = 38 and the 
atmosphere temperature was 270 K. Calculate the temperature at the 
stagnation point of the vehicle, assuming a calorically perfect gas with 
y = 1.4. Do you think this is an accurate calculation? If not, why? If not, is 
your answer an overestimate or underestimate? 



Problems 

3.8 Consider air entering a heated duct at p1 = 1 atm and Ti = 288 K. Ignore the 
effect of friction. Calculate the amount of heat per unit mass (in joules per 
kilogram) necessary to choke the flow at the exit of the duct, as well as the 
pressure and temperature at the duct exit, for an inlet Mach number of 
(a) M I  = 2.0 (b) M I  = 0.2. 

3.9 Air enters the combustor of a jet engine at pl = 10 atm, TI = 1000'R, and 
M I  = 0.2. Fuel is injected and burned. with a fuel-air ratio (by mass) of 0.06. 
The heat released during the combustion is 4.5 x lo8 ft-lb per slug of fuel. 
Assuming one-dimensional frictionless flow with y = 1.4 for the fuel-air 
mixture, calculate M 2 ,  p?, and T2 at the exit of the combustor. 

3.10 For the inlet conditions of Prob. 3.9, calculate the maximum fuel-air ratio 
beyond which the flow will be choked at the exit. 

3.11 At the inlet to the combustor of a supersonic combustion ramjet (SCRAMjet), 
the flow Mach number is supersonic. For a fuel-air ratio (by mass) of 0.03 and 
a combustor exit temperature of 4800cR, calculate the inlet Mach number 
above which the flow will be unchoked. Assume one-dimensional frictionless 
flow with y = 1.4, with the heat release per slug of fuel equal to 4.5 x 
10' ft . lb. 

3.12 Air is flowing through a pipe of 0.02-m inside diameter and 40-m length. The 
conditions at the exit of the pipe are M2 = 0.5, p2 = 1 atm, and T2 = 270 K. 
Assuming adiabatic, one-dimensional flow, with a local friction coefficient of 
0.005, calculate M , ,  pl , and T I  at the entrance to the pipe. 

3.13 Consider the adiabatic flow of air through a pipe of 0.2-ft inside diameter and 
3-ft length. The inlet flow conditions are M I  = 2.5, pl = 0.5 atm. and 
T I  = 52OR. Assuming the local friction coefficient equals a constant of 
0.005, calculate the following flow conditions at the exit: M 2 ,  p?. T?, 
and p,?.  

3.14 The stagnation chamber of a wind tunnel is connected to a high-pressure air 
bottle farm which is outside the laboratory building. The two are connected 
by a long pipe of 4-in inside diameter. If the static pressure ratio between the 
bottle farm and the stagnation chamber is 10, and the bottle-farm static 
pressure is 100 atm, how long can the pipe be without choking? Assume 
adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005. 

3.15 Starting with Eq. (3.93, derive in detail Eq. (3.96). 
3.16 Consider a Mach 2.5 flow of air entering a constant-area duct. Heat is added 

to this flow in the duct; the amount of heat added is equal to 30 percent of the 
total enthalpy at the entrance to the duct. Calculate the Mach number at the 
exit of the duct. Comment on the fluid dynamic significance of this problem, 
where the exit Mach number does not depend on a number for the actual heat 
added, but rather only on the dimensionless ratio of heat added to the total 
enthalpy of the inflowing gas. 





Oblique Shock and 
Expansion Waves 

I believe we have now urrived at the stage where knowledge of supersonic 
aerodvnamics should he considered by the aeronauriccrl engineer as a necessary 
pre-requisite to his urt. 

Theodore von Karman, 1947 
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Figure 4.1 shows the computed shock wave and expan- of the most important physical aspects of compressible 
sion wave pattern in the flow field over a hypersonic test flow, So get ready for a whirlwind and hopefully enjoy- 
vehicle at the moment of its separation from a booster able ride through the ins and outs of the basic physics and 
rocket at Mach 7. This is NASA's Hyper-X supersonic- mathematics of oblique shock and expansion waves. 
combustion ramjet (scramjet) powered unmanned test The roadmap for this chapter is given in Fig. 4.3. 
aircraft also designated the X-43, which should make its After a discussion of the physical source of oblique 
first flight in 2003. The flow field is a complex mixture of waves, we will next discuss oblique shock waves and 
oblique shock and expansion waves. Figure 4.2 shows the related items, as shown down the left side of Fig. 4.3. 
computed detailed shock wave and expansion wave pat- Then we move to the right side of the roadmap to study 
tern in the internal flow through a scramjet engine. Again, oblique expansion waves, concentrating on the special 
the supersonic flow is dominated by a complex pattern of type labeled Prandtl-Meyer expansions. Finally, as 
interacting oblique shock and expansion waves. shown at the bottom of Fig. 4.3, we combine these two 

Oblique shock and expansion waves, and their vari- types of oblique waves into a method of analysis called 
ous interactions, are the subject of this chapter, For the shock-expansion theory, which allows the direct and 
study of supersonic and hypersonic flow, this is a "bread- exact calculation of the lift and drag on a number of 
and-butter" chapter-it contains what is perhaps some two-dimensional supersonic body shapes. 

Figure 4.1 1 Computational fluid dynamic solution for the shock wave pattern on 
NASA's Hyper-X hypersonic research vehicle at the instant of its separation from 
the boost vehicle at Mach 7. (Griffin Anderson, Charles McClinton, and John 
Weidner, "Scramjet Performance," in Scramjet Propulsion, edited by E.  T. Curran 
and S. N. B. Murthy, AIAA Progress in Astronautics and Aeronautics, Vol. 189, 
Reston, Virginia, p. 43 1 .) 



Figure 4.2 1 Computational fluid dynamic solution for the wave pattern for a 
simulated scramjet engine. (James Hunt and John Martin, "Rudiments and 
Methodology for Design and Analysis of Hypersonic Air-Breathing 
Vehicles," in Scramjet Propulsiott, p. 960.) 

OBLIQUE SUPERSONIC WAVES w 
Oblique shock waves e 

Wedge and cone flows 
Shock polar 
Shock reflect~on from a sohd boundary 
Shock mtersectlons 
Detached shocks 
Three-dimensional shocks 

:r expansion) 1 

Figure 4.3 1 Roadmap for Chapter 4. 

4.1 1 INTRODUCTION 
The normal shock wave, as considered in Chap. 3, is a special case of a more general 
family of oblique waves that occur in supersonic flow. Oblique shock waves are illus- 
trated in Figs. 3.3 and 3.3. Such oblique shocks usually occur when supersonic flow 
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(a) Concave corner (b) Convex corner 

Figure 4.4 1 Supersonic flow over a comer. 

is "turned into itself," as shown in Fig. 4 . 4 ~ .  Here, an originally uniform supersonic 
flow is bounded on one side by a surface. At point A, the surface is deflected upward 
through an angle 8. Consequently, the flow streamlines are deflected upward, toward 
the main bulk of the flow above the surface. This change in flow direction takes place 
across a shock wave which is oblique to the free-stream direction. All the flow stream- 
lines experience the same deflection angle 8 at the shock. Hence the flow downstream 
of the shock is also uniform and parallel, and follows the direction of the wall down- 
stream of point A. Across the shock wave, the Mach number decreases, and the pres- 
sure, temperature, and density increase. 

In contrast, when supersonic flow is "turned away from itself" as illustrated in 
Fig. 4.4b, an expansion wave is formed. Here, the surface is deflected downward 
through an angle 8. Consequently the flow streamlines are deflected downward, 
away from the main bulk of flow above the surface. This change in flow direction 
takes place across an expansion wave, centered at point A. Away from the surface, 
this oblique expansion wave fans out, as shown in Fig. 4.4b. The flow streamlines are 
smoothly curved through the expansion fan until they are all parallel to the wall be- 
hind point A. Hence, the flow behind the expansion wave is also uniform and paral- 
lel, in the direction of 8 shown in Fig. 4.4b. In contrast to the discontinuities across a 
shock wave, all flow properties through an expansion wave change smoothly and 
continuously, with the exception of the wall streamline which changes discontinu- 
ously at point A.  Across the expansion wave, the Mach number increases and the 
pressure, temperature, and density decrease. 

Oblique shock and expansion waves are prevalent in two- and three-dimensional 
supersonic flows. These waves are inherently two-dimensional in nature, in contrast 
to the one-dimensional normal shock waves in Chap. 3. That is, the flowfield proper- 
ties are functions of x and y in Fig. 4.4. The main thrust of this chapter is to present 
the properties of these two-dimensional waves. 
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4.2 1 SOURCE OF OBLIQUE WAVES 
Oblique waves are created by the same physical mechanism discussed at the begin- 
ning of Sec. 3.6-disturbances which propagate by molecular collisions at the speed 
of sound, some of which eventually coalesce into shocks and others of which spread 
out in the form of expansion waves. l o  more clearly see this process for an oblique 
wave, consider a moving point source of sound disturbances in a gas, as illustrated in 
Fig. 4.5. For lack of a better term, let us call this source a "beeper." The beeper is con- 
tinually emitting sound waves as it moves through the stationary gas. Consider first 
the case when the beeper is moving at a velocity V ,  which is less than the speed of 
sound, as shown in Fig. 4 . 5 ~ .  When the beeper is at point A,  it emits a sound distur- 
bance which propagates in all directions at the speed of sound, a .  After an interval of 
time t ,  this sound wave is represented by the circle of radius ( a t )  in Fig. 3%. How- 
ever, during this same time interval, the beeper has moved a distance V t  to point B .  
Moreover, during its transit from A to B, the beeper has emitted several other sound 
waves, which at time t are represented by the smaller circles in Fig. 4.5n. Note from 
this figure, which is a picture of the situation at time t ,  that the beeper always stays 
inside the family of circular sound waves, and that the waves continuously move 
ahead of the beeper. This is because the beeper is traveling at a subsonic speed, 
V < a. Now consider the case when the beeper is moving at supersonic speeds, 
V > a .  This is illustrated in Fig. 3.5b. Again, when the beeper is at point A, it emits 
a sound wave. After an interval of time t ,  this wave is the circle with radius (a t ) .  Dur- 
ing the same interval of time, the beeper has moved a distance V t  to point B. More- 
over, during its transit from A to B, the beeper has emitted several other sound 
waves, which at time t are represented by the smaller circles in Fig. 4.5b. However, 
in contrast to the subsonic case, the beeper is now constantly outside the family of 
circular sound waves, i.e., it is moving ahead of the wave fronts because V > u .  
Moreover, something new is happening; these wave fronts form a disturbance enve- 
lope given by the straight line B C ,  which is tangent to the family of circles. This line 
of disturbances is defined as a Mach wave. In addition, the angle ABC which the 
Mach wave makes with respect to the direction of motion of the beeper is defined 
as the Mach angle, p. The Mach angle is easily calculated from the geometry of 
Fig. 4.5b: 

Therefore, the Mach angle is simply determined by the local Mach number as 

The propagation of weak disturbances and their coalescence into a Mach wave are 
clearly seen in Fig. 4 . 5 ~ .  
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Subsonic 
V < a  

Supersonic 

u 

\ 

Figure 4.5 1 The propagation of disturbances in (a) subsonic and (b) supersonic flow. 

Figure 4.5 1 Wave system established by a supersonic .22 caliber bullet passing under a 
perforated plate. The bow shock wave on the bullet, in passing over the holes in the plate, 
sends out weak disturbances above the plate which coalesce into a Mach wave above the 
plate. This is a photographic illustration of the schematic in Fig. 4.5b. (Photo is courtesy of 
Daniel Bershadel; Stanford University.) 
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Figure 4.6 1 Comparison between the wave angle 
and the Mach angle. 

If the disturbance is stronger than a small beeper emitting sound waves, such as 
a wedge blasting its way through a gas at supersonic speeds as shown in Fig. 4.6, the 
wave front becomes stronger than a Mach wave. The strong disturbances coalesce 
into an oblique shock wave at an angle ,5 to the free stream, where f i  > 11. However, 
the physical mechanism creating the oblique shock is essentially the same as that de- 
scribed above for the Mach wave. Indeed, a Mach wave is a limiting case for oblique 
shocks, i.e., it is an infinitely weak oblique shock. 

4.3 1 OBLIQUE SHOCK RELATIONS 
The geometry of flow through an oblique shock is given in Fig. 4.7. The velocity up- 
stream of the shock is V I ,  and is horizontal. The corresponding Mach number is M I .  
The oblique shock makes a wave angle B with respect to V 1 .  Behind the shock, the 
flow is deflected toward the shock by the flow-deflection angle 8 .  The velocity and 
Mach number behind the shock are V? and M 2 ,  respectively. The components of V I  
perpendicular and parallel, respectively, to the shock are ul and uj l ;  the analogous 
components of V? are U ?  and w2, as shown in Fig. 4.7. Therefore, we can consider the 
normal and tangential Mach numbers ahead of the shock to be M,,, and M,, , respec- 
tively; similarly, we have M,? and M,, behind the shock. 

The integral forms of the conservation equations from Chap. 2 were applied in 
Sec. 3.2 to a specific control volume in one-dimensional flow, ultimately resulting 
in the normal shock equations given in Sec. 3.6. Let us take a similar tack here. Con- 
sider the control volume drawn between two streamlines through an oblique shock, as 
illustrated by the dashed lines at the top of Fig. 4.7. Faces a and d are parallel to the 
shock wave. Apply the integral continuity equation (2.2) to this control volume for a 
steady flow. The time derivative in Eq. (2.2) is zero. The surface integral evaluated over 
faces a and d of the control volume in Fig. 4.7 yields - p l u l A l  + P ? u ~ A > .  where 
A ,  = A2 = area of faces a and d. The faces 6, c, e,  and f of the control volume are 
parallel to the velocity, and hence contribute nothing to the surface integral (i.e., 
V . dS = 0 for these faces). Thus, the continuity equation for an oblique shock wave is 

The integral form of the momentum equation (2.1 1 ) is a vector equation. Con- 
sider this equation resolved into two components, parallel and perpendicular to the 
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Figure 4.7 1 Oblique shock wave geometry. 

shock wave in Fig. 4.7. Again, considering steady flow with no body forces, the 
tangential component of Eq. (2.1 1 )  applied to the control surface in Fig. 4.7 yields 
(noting that the tangential component of p dS is zero on faces a and d ,  and that the 
components on b cancel those on f ;  similarly with faces c and e )  

Dividing Eq. (4.3) by (4.2), we find that 

This is a striking result-the tangential component of the$ow velocity is preserved 
across an oblique shock wave. 

Returning to Fig. 4.7, and applying the normal component of Eq. (2.1 I) ,  we find 

The integral form of the energy equation is Eq. (2.20). Applied to the control 
volume in Fig. 4.7 for a steady adiabatic flow with no body forces, it yields 
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Dividing Eq. (4.4) by (4.2), 

However, recall trom the geometry of Fig. 4.7 that V' = 11' + w b n d  that 1111 = u l l .  
Hence, 

Therefore, Eq. (4.5) becomes 

Look carefully at Eqc. (4.2), (4.3tr), and (4.6). They are identical in form to the 
normal shock continuity. momentum, and energy equations (3.38) through (3.10). 
Moreover, in both sets of equations, the velocities are notwzul to the wave. Therefore, 
the changes across an oblique shock wave are governed by the normal component of 
the free-stream velocity. Furthermore. precisely the same algebra as applied to the 
normal shock equations in Sec. 3.6, when applied to Eqs. (4.2). (4.30). and (4.6). will 
lead to identical expressions for changes across an oblique shock in terms of the nor- 
mal component of the upstream Mach number M,,, . That is, for an oblique shock 
wave with 

M,,, = MI s inp (4.7) 

we have, for a calorically perfect gas, 

Note that the Mach number behind the oblique shock, M?, can be found from M,,, 
and the geometry of Fig. 4.7 as 

In Sec. 3.6, we emphasized that changes across a normal shock were a function of 
one quantity only-the upstream Mach number. Now. from Eqs. (4.7) thro~~gh (1. I I ). 
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we see that changes across an oblique shock are a function of two quantities-both M I  
and B. We also see, in reality, normal shocks are just a special case of oblique shocks 
where /3 = n/2. 

Equation (4.12) demonstrates that M2 cannot be found until the flow deflection 
angle 8 is obtained. However, 8 is also a unique function of M1 and #?, as follows. 
From the geometry of Fig. 4.7, 

and 

Combining Eqs. (4.13) and (4.14), noting that wl = w2, we have 

tan(#? - 8) uz  - - - 
tan #? u 1 

Combining Eq. (4.15) with Eqs. (4.2), (4.7), and (4 .Q  we obtain 

tan@ - 8) 2 + (y - 1 ) ~ :  sin2 j3 - - 
tan ,9 (y + 1 ) ~ :  sin2 B 

With some trigonometric manipulation, this equation can be expressed as 

M; sin2 #? - 1 
tan 0 = 2 cot #? 

[M:(y + cos 28) + 2 

Equation (4.17) is called the 8-#?-M relation, and specifies 0 as a unique function of 
MI and B. 

This relation is vital to an analysis of oblique shocks, and results obtained from 
it are plotted in Fig. 4.8 for y = 1.4. Examine this figure closely. It is a plot of wave 
angle versus deflection angle, with the Mach number as a parameter. In particular, 
note that: 

For any given MI,  there is a maximum deflection angle Om,,. If the physical 
geometry is such that 8 > Om,,, then no solution exists for a straight oblique 
shock wave. Instead, the shock will be curved and detached, as sketched in 
Fig. 4.9, which compares wedge and comer flow for situations where 0 is less 
than or greater than Om,,. 
For any given 8 < Om,, there are two values of B predicted by the 8-B-M 
relation for a given Mach number, as sketched in Fig. 4.10. Because changes 
across the shock are more severe as B increases [see Eqs. (4.8) and (4.9), for 
example], the large value of B is called the strong shock solution; in turn, the 
small value of B is called the weak shock solution. In nature, the weak shock 
solution is favored, and usually occurs. For typical situations such as those 
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Deflection angle 6 ,  degrees 

Figure 4.8 1 6'-B-M curves. Oblique shock properties. Importunt: See front end pages for a 
more detailed chart. 

Figure 4.9 1 Attached and detached shocks 
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Figure 4.10 1 Weak and strong shocks. 

sketched in Fig. 4.10, the weak shock is the one we would normally see. 
However, whether the weak or strong shock solution occurs is determined by 
the backpressure; in Fig. 4.10, if the downstream pressure were increased by 
some independent mechanism, then the strong shock shown as the dashed line 
could be forced to occur. In the strong shock solution, M2 is subsonic. In the 
weak shock solution, M2 is supersonic except for a small region near Q,,, 
(see Fig. 4.8). 

3. If 8 = 0, then /3 = n/2 (corresponding to a normal shock) or ,6 = p 
(corresponding to a Mach wave). 

4. For a fixed deflection angle 8, as the free-stream Mach number decreases from 
high to low supersonic values, the wave angle increases (for the weak shock 
solution). Finally, there is a Mach number below which no solutions are 
possible; at this Mach number, 8 = 8,,,,,. For lower Mach numbers the shock 
becomes detached, as sketched in Fig. 4.9. 

These variations are important, and should be studied carefully. It is important to 
obtain a feeling for the physical behavior of oblique shocks. Considering Fig. 4.8 to- 
gether with the oblique shock relations given by Eqs. (4.7) through (4.12), we can 
see, for example, that for a fixed Mach number, as 8 is increased, /3, p2, T2, and p, in- 
crease while M2 decreases. However, if 8 increases beyond &,, the shock wave be- 
comes detached. Alternatively, for a fixed 8, as M I  increases from unity, the shock 
wave is first detached, then becomes attached when M I  equals that value for which 
8 = Om,,. (See again Fig. 3.2 for the Bell XS- 1 aircraft shock patterns.) As the Mach 
number is increased further, the shock remains attached, B decreases, and p2, T2, p2, 
and M2 increase. The above comments apply to the weak shock solutions; the reader 
can trace through the analogous trends for the strong shock case. 

A uniform supersonic stream with M I  = 3.0, p ,  = 1 atm, and TI  = 288 K encounters a com- 
pression corner (see Fig. 4 . 4 ~ )  which deflects the stream by an angle 6' = 2 0 .  Calculate the 
shock wave angle, and pz,  T2, M 2 ,  pol, and To, behind the shock wave. 
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w Solutiion 
For the geometrical picture, refer to Fig. 4.7. Also, from Fig. 4.8, for MI  = 3 and H = 20 , 
m-q. Thus, 

M,,, = M I  s inp = 3 sin 37.8- = 1.839 

From Table A.2, for M,,,  = 1.839: p 2 / p I  = 3.783, T 2 / T I  = 1.562, M,,L = 0.6078, and 
IJ,,? / p < , ,  = 0.7948. Hence. 

I)? 112 = - 
PI 

M,, - 
- 

0.6078 
---- = pGq 

M 2  = sin(B- sin 17.8 

From Table A. I ,  for M I  = 3: p,,, / / ) I  = 36.73 and T,, / T I  = 2.8. Hence, 

Note: In this example, we used the fact that the total pressure ratio across the oblique shock is 

dictated by the component of the upstream Mach number perpendicular to the shock, M,,, . 
This is consistent with the fact that all thermodynamic properties across the shock are deter- 
mined by M,,, including the entropy change s? - s l  . From Eq. (3.63), this determines the total 

pressure ratio, p , , z /p , , l .  We can check the value of p , , , /p , , ,  obtained from Table A.2 by mak- 
ing an alternative calculation as 

From Table A. I, for M2 = 1.988, p o ? / p z  = 7.68 1 (obtained by interpolating between entries 
In the table). We have already obtained from the earlier calculation\ that p 2 / p I  = 3.783 and 
pl,, / p l  = 36.73. Hence, 

P O ?  - - - --- 
1 P2 = (7.681)(3.783) (=) = 0.791 1 

Po,  P 2 P l P 0 ,  

This result compares within 0.46 percent with the value of 0.7948 read directly from 

Table A.2. The small inaccuracy is due to inaccuracy in reading B from the 8-B-M diagram, 
and in taking the nearest entries in Tables A. I and A.2. 
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Comment on accuracy. All the worked examples in this book that require the use of graphs 
and tabulated data will therefore have only graphical and tabulated accuracy. In many of our 
calculations using the tables, we will use the nearest entry in the table so as not to have to 
spend the time to interpolate between entries. Using the nearest entry is usually sufficient for 
our purposes. 

In Example 4.1, the deflection angle is increased to 0 = 30". Calculate the pressure and Mach 
number behind the wave, and compare these results with those of Example 4.1. 

Solution 
From the 8-B-M chart (see end pages), for M I  = 3 and 8 = 30": B = 52". Hence 

M,, = M I  sin /? = 3 sin 52" = 2.364 

From Table A.2, for M,, = 2.364: p2 /p1  = 6.276 (nearest entry) and M,, = 0.5286. Thus 

Note: Compare the above results with those from Example 4.1. When 0 is increased, the shock 
wave becomes strongel; as evidenced by the increased pressure behind the shock (6.276 atm 
compared to 3.783 atm). The Mach number behind the shock is reduced (1.41 compared to 
1.988). Also, as 8 is increased, /? also increases (52" compared to 37.8"). 

In Example 4.1, the free-stream Mach number is increased to 5. Calculate the pressure and 
Mach number behind the wave, and compare these results with those of Example 4.1. 

Solution 
From the 0-B-M chart, for M I  = 5 and 0 = 20": B = 30". Hence, 

M,,, = M I  sin /? = 5 sin 30" = 2.5 

FromTableA.2, for M,,, = 2.5: p 2 / p 1  = 7.125 and M,,, = 0.513. Thus, 

Mn2 - - 
0.513 

M2 = 
sin@ - 8 )  sin 10" 
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Note: Compare the above results with those from Example 4.1. When M I  is increased, the shock 

wave becomes .sfrorlger, as evidenced by the increased pressure behind the shoch (7.125 atm 
compared to 3.783 arm). The Mach number behind the shock is increased (2.95 compared to 
1.988). Also, as MI  is increased, B is decreased (30 compared to 37.8 ). 

The net rewlts of Examples 4.1 through 4.3  are these basic variations. 

1. Anything that increases the normal component of the Mach number ahead of 
the shock M,,, increases the strength of the shock. In Example 4.2, M,,, was 
increased by increasing the wave angle B ;  in turn, the increased B was brought 
about by increasing 0 .  In Example 4.3, MI,, was increased by increasing M I  ; 
although the wave angle 0 decreases in this case (which works to reduce M,, ). 

the increased value of MI (which works to increase MI,,) more than 
compensates, and the net result is a larger M,,, . 

2. It is a general rule that, as H increases (holding M I  constant), the shock wave 
becomes stronger, and increases. 

3. It is a general rule that, as M I  increases (holding H constant), the shock wave 
becomes stronger, and B decreases. 

Consider a Mach 2.8 supersonic flow over a compression corner with a deflection angle of 15 . 
If the deflection angle is doubled to 3 0 .  what is the increase in shock strength? Is it also 
doubled? 

Solution 
From the 0 - P - M  chart, for 0 = 15 , /3 = 33.8 . and for (9 = 30 . P = 54.7 

For H = 15 : M,,, = M I  s inp  = 2.Hsin33.X = 1.558. From Tahlc A.2, for M,,, = 1.56 
(nearest entry), 

For H = 30 : M,,, = 2.8 un  54.7 == 3.285. From Table A.2, lor M,, , = 2.3 (ncare\t entry) 

Clearly, if the angle of the compression corner is doubled. the strength of the shoch u a v c  

is more than doubled; in this case, the shock strength is increased by a factor of 2.3. 

Consider a compression corner with a deflection angle of 28 . Calculate the shoch strengths 

when M I  = 3 and when Mi is doubled to 6. Is the shock strength also doubled'? 

Solution 
From the H-B-M diagram for M I  = 3, P = 48.5 . Hence. 

M,,, = MI sin B = 3 sin48.5 = 2.247 
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From Table A.2, for M,, = 2.25 (nearest entry) 

From the 8-B-M diagram for M I  = 6, j3 = 38.0". Hence, 

M,, = M I  sinp = 6 sin 38" = 3.69 

From Table A.2, for M,, = 3.7 (nearest entry), 

Clearly, if the Mach number is doubled, the strength of the shock is more than doubled; 
in this case, the shock strength is increased by a factor of 2.75. 

The physical results in Examples 4.4 and 4.5 are reflective of the nonlinear be- 
havior of shock waves. The nonlinearity of shock wave phenomena is mathemati- 
cally reflected in the equations obtained in this section, such as Eqs. (4.7)-(4.12), 
where the Mach number appears as squared, and sometimes in an intricate fashion in 
the equations. This is especially true of the 0-j?-M relation, Eq. (4.17). In Chap. 9 we 
will discuss an approximate theory for analyzing supersonic flows over bodies, 
where the theory involves linear equations. However, we will also see that such lin- 
earized theory deals with slender bodies at small angles of attack, where in reality the 
shock waves are weak. Indeed, linearized supersonic theory does not deal with shock 
waves explicitly-the theory pretends that they are not here. This will all make more 
sense when we discuss the material in Chap. 9. At present, we are just introducing a 
small precursor to the intellectual model contained in Chap. 9. 

4.3.1 The B-0-M Relation: An Alternative Form for the 6-B-M Relation 

The 6-B-M relation expressed by Eq. (4.17) gives 6 as an explicit function of ,6 and M. 
In classical treatments of compressible flow, this is the equation used to relate de- 
flection angle, wave angle, and Mach number. However, for many practical applica- 
tions, we are given the deflection angle and upstream Mach number, because these 
are the parameters we can easily see and measure, and we want to find the corre- 
sponding wave angle, j?. Equation (4.17) does not allow us to calculate j? explicitly. 
Rather, we can plot the 6-j?-M curves from Eq. (4.17) as shown in Fig. 4.8, and then 
find B from the graph as demonstrated in Examples 4.14.5. Alternatively, we can set 
up a short computer program to calculate j? by iterating Eq. (4.17). 

It is not commonly known that an alternative equation can be derived that relates 
B explicitly in terms of 6 and M. There are at least four different derivations in the 
literature, found in Refs. 130-133. The key is to write Eq. (4.17) as a cubic equation, 
and then find the roots of this cubic equation. The earliest work along these lines 
appears to be that of Thompson (Ref. 130) who recognized that Eq. (4.17) can be 
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expressed as a cubic in sin2 p :  

However, Emanuel found it more convenient analytically to express Eq. (4.17) as a 
cubic in tan B :  

t a n 0 t a n 3 ~  - ( ~ ~ - 1 ) t a n ~ ~  

Emanuel observed that Eq. (4.18) has three real, unequal roots for an attached shock 
wave with a given 0 and M. One root is negative, hence nonphysical. The other two 
positive roots correspond to the weak and strong shock solutions. These roots can be 
expressed as 

M' - 1 + 2h cos[(4n6 + cos-I x ) / 3 ]  
tan /3 = - (4.19) 

3 ( I+-- Y - 1 M 2 ) t a n Q  2 

where S = 0 yields the strong shock solution, 6 = 1 yields the weak shock solution, 
and 

and 

Equation (4.19) represents an alternative form of the relation between B,Q .  and M; in 
analogy with Eq. (4.17), which is called the 8-@-M relation, we will label Eq. (4.19) 
as the P-0-M relation. Eq. (4.19), along with Eqs. (4.20) and (4.21), allows an exact 
explicit calculation for B when 0 and M are known, albeit a more lengthy calculation 
than that associated with Eq. (4.17). We emphasize that no simplifying mathematical 
assumptions go into the derivation of Eq. (4.19); it is an exact relationship. 

Consider a Mach 4 flow over a compression comer with a deflection angle of 32 . Calculate 
the oblique shock wave angle for the weak shock case using (a) Fig. 4.8, and (b) the p-H-M 
equation, Eq. (4.19). Compare the results from the two sets of calculations. 
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Solution 
a. From Fig. 4.8, we have for M = 4 and H = 32", m. 
b. To use Eq. (4.19), we first calculate h and x from Eqs. (4.20) and (4.21), respectively. 

In these equations, we have 

(M2 - 112 = [(412 - 112 = ( 1 5 ) ~  = 225 

( M ~  - I ) '  = (1.5)' = 3375 

From Eq. (4.20), 

From Eq. (4.2 1 ), 

For Eq. (4.19), using 6 = 1 for the weak shock solution, we need 

c o s  ' x = cos--I (0.7439) = 0.7334 rad 

[Note: the factor in Eq. (4.19) involving cos-' x is in radians]: 

4x8 + c o s '  x 
= 4.433 rad 

3 

= cos 4.433 = -0.2752 

From Eq. (4.19), 

M2 - 1 + 2hcos[4nJ + cos-I x]/3 
tan B = 

- 
16 - 1 + 2(11.208)(-0.2752) 

- 
3(4.2) tan 32" 
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Hence, 

This result agrees very well with the graphical solution obtained in part (a) 

4.4 1 SUPERSONIC FLOW OVER WEDGES 
AND CONES 

The oblique shock properties discussed above represent the exact solution for the 
flow over a wedge or a two-dimensional compression corner, as sketched on the left- 
hand side of Fig. 4.9. The fl ow streamlines behind the shock are straight and parallel 
to the wedge surface. The pressure on the surface of the wedge is constant and equal 
to p2, as further illustrated in Fig. 4.1 l a .  

Straight oblique shocks are also attached to the tip of a sharp cone in supersonic 
flow, as sketched in Fig. 4. I 1 b. The properties immediately behind this conical shock 
are given by the oblique shock relations. However, because the flow over a cone is 
inherently three-dimensional, the flowfield between the shock and cone surface is no 
longer uniform, as in the case of the wedge. As shown in Fig. 4.1 1 h, the streamlines 
are curved, and the pressure at the cone surface p ,  is not the same as p2 immediately 
behind the shock. Moreover, the addition of a third dimension provides the flow with 
extra space to move through, hence relieving some of the obstructions set up by the 
presence of the body. This is called the "three-dimensional relieving effect." which is 
characteristic of all three-dimensional flows. For the flow over a cone, the three- 
dimensional relieving effect results in a weaker shock wave than for a wedge of the 
same angle. For example, Fig. 4.1 1 shows that a 2 0  half-angle wedge creates a 5.1 
oblique shock for M 1  = 2; by comparison, the shock on a 20" half-angle cone is at a 
wave angle of 37 , with an attendant lower p2, p2, and T? immediately behind the 
shock. Because of these differences, the study in this book of supersonic flow over 
cones will be delayed until Chap. 10. 

Figure 4.11 1 Comparison between wedge and cone flow; illustration of the 
three-dimensional relieving effect. 
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A 10" half-angle wedge is placed in a "mystery flow" of unknown Mach number. Using a 
Schlieren system, the shock wave angle is measured as 44". What is the free-stream Mach 
number? 

Solution 
From the 8-p -M chart, for 8 = 10" and B = 44", we have 

Note: This technique has actually been used in some experiments for the measurement of 
Mach number. However, it is usually more accurate and efficient to use a Pitot tube to measure 
Mach number, as described in Example 3.7. 

Consider a 15" half-angle wedge at zero angle of attack. Calculate the pressure coefficient on 
the wedge surface in a Mach 3 flow of air. 

w Solution 
The pressure coefficient is defined as 

where p ,  is the free-stream pressure and q, is the free-stream dynamic pressure, defined by 
q, = k p ,  V: . For a calorically perfect gas, q,  can also be expressed in terms of p ,  and 
M ,  as 

Thus, the pressure coefficient can be written as 

In terms of the nomenclature being used in this chapter, where the free-stream properties in 
front of the shock are denoted by a subscript 1, then C, is written as 

For M I  = 3 and 8 = 15", we have from the 8-p-M diagram /3 = 32.2". Hence 

M,,, = M I  sinp = 3 sin 32.2 = 1.6 
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From Table A.2, for M,, = 1.6: p 2 / p ,  = 2.82. Thus, 

Note: For this example, we can deduce that C,, is strictly a function of y and MI 

Consider a 15" half-angle wedge at zero angle of attack in a Mach 3 f ow of air. Calculate the 
drag coefficient. Assume that the pressure exerted over the base of the wedge, the base pres- 
sure, is equal to the free-stream pressure. 

Solution 
The physical picture is sketched in Fig. 4.12. The drag is the net force in the x direction; is 
exerted perpendicular to the top and bottom faces, and pl  is exerted over the base. The chord 
length of the wedge is c. Consider a unit span of the wedge, i.e.. a length of unity perpendicu- 
lar to the xy plane. The drag per unit span, denoted by D', is 

By definition, the drag coefficient is 

where S is the planform area (the projected area seen by viewing the wedge from the top). 
Thus, S = ( c )  ( I ) .  Hence 

Figure 4.12 1 Geometry for Example 4.9 
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From Example 4.8, we saw that 

C d = -  [(2)(c)(1)p2 - sin 150 - (2c tan 1 5 ~ ) p ~  
ypl M f c  cos 15" 1 

- - 
4 4 

(p2 - P I )  tan 15" = - (R - 1) tan 150 
YPI M: YM: 

From Example 4.8, which deals with the same wedge at the same flow conditions, we have 
p2 /pI  = 2.82. Thus 

4 
cd = - (2.82 - 1) tan 15" = 0.155 

(1 .4)(312 0 
An alternative solution to this problem can be developed using the pressure coefficient 

given in Example 4.8. The drag coefficient for an aerodynamic body is given by the integral of 
the pressure coefficient over the surface, as shown in Sec. 1.5 of Ref. 104. To be specific, from 
Ref. 104 we have 

Here, the integral is taken over the surface from the leading edge (LE) to the trailing edge 
(TE), and C," and C,, are the pressure coefficients over the upper and lower surfaces, respec- 
tively. In this problem, due to the symmetry, clearly CPu = C,, . On the upper surface, 

On the lower surface (because y decreases as x increases), 

Thus, 

cr = [ I c  S.(tan ISo) d x  - C,,(- tan 15') dx I' I 
Since tan 15" = 0.2679, then 

From Example 4.8, CPu = C,, = 0.289. Thus, 

This is the same answer as obtained from the first method described above. 



4.5 Shock Polar 

Note: The only information given in this problem was the body shape, free-stream Mach 
number, and the fact that we are dealing with air (hence we know that y = 1.4). To calculate 
the drag coefficient for a given body shape, we only need M I  and y. This is consistent with the 
results of dimensional analysis (see Chap. 1 of Ref. 104) that the drag coefficient for a com- 
pressible inviscid flow is a function of Mach number and y ottb; c.d does not depend on the 
size of the body (denoted by c), the free-stream density, pressure, or velocity. It depends only 
on the Mach number and y .  Thus 

Cd = . f ( M l .  Y) 

This relation is verified by the results of this example. Also, the drag in this problem is due to 
the pressure distribution only; since we are dealing with an inviscid flow, shear stress due to 
friction is not included. The drag in this problem is therefore a type of "pressure drag"; i t  is fre- 
quently identified as wave drug, and hence c d  calculated here is the wave drag coefficient. 

4.5 1 SHOCK POLAR 
Graphical explanations go a long way towards the understanding of supersonic flow 
with shock waves. One such graphical representation of oblique shock properties is 
given by the shock polar, described next. 

Consider an oblique shock with a given upstream velocity VI and deflection 
angle H g ,  as sketched in Fig. 4.13. Also, consider an xy  cartesian coordinate system 
with the x axis in the direction of VI . Figure 4.13 is called the physical plane. Define 
V,, , V,., , VX2,  and VY2 as the x and y components of velocity ahead of and behind the 
shock, respectively. Now plot these velocities on a graph that uses V ,  and V,. as axes, 
as shown in Fig. 4.14. This graph of velocity components is called the hddograph 
plane. The line OA represents V1 ahead of the shock; the line OB represents V2 be- 
hind the shock. In turn, point A in the hodograph plane of Fig. 4.14 represents the en- 
tireJlowJield of region 1 in the physical plane of Fig. 4.13. Similarly, point B in the 
hodograph plane represents the entire flowfield of region 2 in the physical plane. If 

Figure 4.13 1 The physical (xy)  plane. 
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Figure 4.14 1 The hodograph plane. 

Figure 4.15 1 Shock polar for a given Vl . 

now the deflection angle in Fig. 4.13 is increased to a larger value, say Bc, then the 
velocity V2 is inclined further to angle Bc, and its magnitude is decreased because the 
shock wave becomes stronger. This condition is shown as point C in the hodograph 
diagram of Fig. 4.15. Indeed, if the deflection angle 8 in Fig. 4.12 is carried through 
all possible values for which there is an oblique shock solution (8 < em,,), then the 
locus of all possible velocities behind the shock is given in Fig. 4.15. This locus is 
defined as a shock polar. Points A ,  B ,  and C in Figs. 4.14 and 4.15 are just three 
points on the shock polar for a given Vl . 

For convenience, let us now nondimensionalize the velocities in Fig. 4.15 by a * ,  
defined in Sec. 3.4. Recall that the flow across a shock is adiabatic, hence a* is the 
same ahead of and behind the shock. Consequently, we obtain a shock polar which is 
the locus of all possible M; values for a given MT, as sketched in Fig. 4.16. The con- 
venience of using M* instead of M or V to plot the shock polar is that, as 
M + oo, M* -+ 2.45 (see Sec. 3.5). Hence, the shock polars for a wide range of 
Mach numbers fit compactly on the same page when plotted in terms of M * .  Also 
note that a circle with radius M* = 1 defines the sonic circle shown in Fig. 4.16. 
Inside this circle, all velocities are subsonic; outside it, all velocities are supersonic. 



4.5 Shock Polar 

Figure 4.16 1 Geometric constructions using the 
shock polar. 

Several important properties of the shock polar are illustrated in Fig. 4.16: 

For a given deflection angle 6 ,  the shock polar is cut at two points B and D. 
Points B and D represent the weak and strong shock solutions, respectively. 
Note that D is inside the sonic circle, as would be expected. 

The line OC drawn tangent to the shock polar represents the maximum 
deflection angle Q,,, for the given MT (hence also for the given M I  ). For 
H > Om,,, there is no oblique shock solution. 

Points E and A represent flow with no deflection. Point E is the normal shock 
solution; point A corresponds to a Mach line. 

If a line is drawn through A and B, and line OH is drawn perpendicular to A B .  
then the angle HOA is the wave angle B corresponding to the shock solution at 
point B. This can be proved by simple geometric argument, recalling that the 
tangential component of velocity is preserved across the shock wave. Try i t  
yourself. 

The shock polars for different Mach numbers form a family of curves, as 
drawn in Fig. 4.17. Note that the shock polar for MT = 2.45(Ml -+ cm) is 
a circle. 

The analytic equation for the shock polar (V,/a* versus V,/a*) can be obtained 
from the oblique shock equations given in Sec. 4.3. The derivation is given in such 
classic texts as those by Ferri (Ref. 5) or Shapiro (Ref. 16). The result is given here 
for reference: 
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Figure 4.17 1 Shock polars for different Mach numbers. 

Figure 4.18 1 Regular reflection from a solid boundary. 

4.6 1 REGULAR REFLECTION FROM 
A SOLID BOUNDARY 

Consider an oblique shock wave incident on a solid wall, as sketched in Fig. 4.18. 
Question: Does the shock wave disappear at the wall, or is it reflected downstream? 
If it is reflected, at what angle and what strength? The answer lies in the physical 
boundary condition at the wall, where the flow immediately adjacent to the wall must 
be parallel to the wall. In Fig. 4.18, the flow in region 1 with Mach number M1 is de- 
flected through an angle 8 at point A. This creates an oblique shock wave that im- 
pinges on the upper wall at point B. In region 2 behind this incident shock, the 
streamlines are inclined at an angle 8 to the upper wall. All flow conditions in re- 
gion 2 are uniquely defined by M1 and 8 through the oblique shock relations dis- 
cussed in Sec. 4.5. At point B, in order for the flow to remain tangent to the upper 



4.6 Regular Reflection from a Solid Boundary 

wall, the streamlines in region 2 must be deflected downward through the angle H .  
This can only be done by a second shock wave, originating at B, with sufficient 
strength to turn the flow through an angle 8 ,  with an upstream Mach number of M 2 .  
This second shock is called a rejected shock; its strength is uniquely detined by M 2  
and 8 ,  yielding the consequent properties in region 3. Because M7 < M I .  the re- 
flected shock wave is weaker than the incident shock, and the angle @ it makes with 
the upper wall is not equal to (i.e., the reflected shock wave is not specularly 
reflected). 

Consider a horizontal supersonic flow at Mach 2.8 with a static pressure and temperature of 
I atm and 519'R, respectively. This flow passes over a compression corner with a defection 
angle of 1 6 .  The oblique shock generated at the corner propagates into the flou,. and is inci- 
dent on a horizontal wall. as shown in Fig. 4.18. Calculate the angle Q, made by the reflected 
shock wave with respect to the wall, and the Mach number, pressure, and temperature behind 
the reflected shock. 

Solution 
The flowfield is as shown in Fig. 4.18. From the H-j3-M diagram, PI  = 35 . 

M,,, = MI sin j3, = 2.8 sin 35 = 1.606 

FromTableA.2, for M,, = 1.606: k / p I  = 2.82, T2/Tl = 1.388. and M,,! = 0.6684. Hence 

From the 6-B-M diagram, for M = 2.053 and H = 16': P2 = 45.5 . The component o f  the 
Mach number ahead of the reflected shock normal to the shock is M,,,. given by 

M,,2 = M2 sin P2 = 2.053 sin 45.5 = 1.46 

From Table A.2, for M,,, = 1.46: p i / p 2  = 2.32. c / T 2  = 1.294, and M,,, = 0.7157. where 
M,, is the component of the Mach number behind the reflected shock normal to the shock. The 
Mach number in region 3 behind the reflected shock is given by 

Also 
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Note: The incident shock makes the angle 35" with respect to the upper wall; the reflected 
shock wave lies closer to the wall, at an angle of 29.5". Clearly, the shock wave is not specu- 
larly reflected. 

Consider the geometry shown in Fig. 4.19. Here a supersonic flow with Mach number, pres- 
sure, and temperature M I ,  pl , and T I ,  respectively, is deflected through an angle O l  by a com- 
pression corner at point A on the lower wall, creating an oblique shock wave emanating from 
point A. This shock impinges on the upper wall at point B. Also precisely at point B the upper 
wall is bent downward through the angle 02 .  The incident shock is reflected at point B, creat- 
ing a reflected shock which propagates downward and to the right in Fig. 4.19. Consider a flow 
where MI = 3, p,  = 1 atm, and TI = 300 K .  Consider the geometry as sketched in Fig. 4.19 
where O1 = 14" and O2 = 10'. Calculate the Mach number, pressure, and temperature in 
region 3 behind the reflected shock wave. 

Solution 
From the 8-#?-M diagram, #?I = 31.2", 

From Table A.2, for M,, = 1.56 (nearest entry), 

The flow in region 2, at M2 = 2.3, is deflected downward through the combined angle 
01 + O2 = 14" + 10' = 24'. From the 8-p-M diagram for M = 2.3 and 0 = 2 4 ,  B2 = 52.S0, 

M,,, = M2 sin B2 = 2.3 sin 52.5" = 1.82 

Figure 4.19 1 Reflected shock geometry for Example 4.11. 
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From Table A.2, for M = 1.82. 

Consider the supersonic flow described in Example 4.10, where M I  = 2.8, p1 = 1 atm, 
and M? = 1.45. This flow is shown in Fig. 4 . 2 0 ~ .  Calculate the total pressure in region 3 

where M? = 1.45. 
Consider the supersonic flow shown in Fig. 4.20b, where the upstream Mach number 
and pressure are the same as in part (a), i.e., M I  = 2.8 and p, = I atm. This flow is 
deflected through the angle 0 such that the Mach number behind the single oblique 
shock in Fig. 4.20b is the same as that behind the reflected shock in Fig. 4.200, 

i.e., M z  = 1.45 in Fig. 4.20b. For the flow in Fig. 4.20b, calculate 0 and the total 
pressure in region 2, 1 7 , ~ ~ .  

Comment on the relative values of the total pressure obtained in parts (a) and (b) 

Solution 
a. From Example 4.10, M,,, = 1.606, and M,,: = 1.46. From Table A.2, for M,, , = 1.606, 

From Table A.2, for M,,? = 1.46, 

( a )  

Figure 4.20 1 Shock waves for Example 4.12 
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From Table A.1, for M I  = 2.8, 

Hence: 

Pa3 = (&) (&) (&) P I  = (0.9420)(0.8952)(27.14)(1) = F) 
Po2 P o ,  PI 

b. For the single shock wave shown in Fig. 4.20b, to find 8 such that M2 = 1.45 when 
M I  = 2.8, we have to carry out an iterative (trial-and-error) solution where we assume 
various values of 0, calculate M2 for each value, and finally obtain the specific value 
of 0 ,  which will yield M2 = 1.45. To begin, we arbitrarily assume Q = 20". Using the 
8-B-M diagram and Table A.2, we find 

Here, M2 is too high. We need to assume a larger Q so that the shock is stronger. Assume 
0 =30". 

Here, M2 is too low. We need to assume a slightly smaller Q so that the shock is slightly 
weaker. Assume 8 = 28". 

Here, M2 is slightly too low. Assume 0 = 27" so that the shock wave is marginally 
weaker. 

For Q = 27": /? = 49", M,,, = 2.11, M,, = 0.5613, M2 = 1.50 

Here, M2 is slightly too high. The correct value of 0 is somewhere between 27" and 28". 
Since this example is subject to graphical accuracy only, as well as the level of accuracy 
obtained by taking the nearest entry in Table A.2, let us simply interpolate between 
0 = 27" where M2 = 1 SO, and Q = 28" where M2 = 1.43, to obtain 0 where 
M2 = 1.45: 

The total pressure in region 2 in Fig. 4.20b is obtained from Table A.2, using the nearest 
entry for M,, = 2.15, where p,,/p,, = 0.651 1. Also, from Table A.1 for M I  = 2.8, 
po , /p l  = 27.14. Hence, 

Comparing the two values for total pressure obtained in parts (a) and (b), we see that 

p,, = 22.9 atm (from part (a)) 

p,, = 17.67 atm (from part (b)) 



4.7 Comment on Flow Through Multiple Shock Systems 

Clearly, the case of the flow through the single shock wave shown in Fig. 4.20h results in a 
lower total pressure than the case of the flow through the double shock system shown in 

Fig. 4 .20~.  

4.7 1 COMMENT ON FLOW THROUGH MULTIPLE 
SHOCK SYSTEMS 

The results of Example 4.12 illustrate an important physical phenomena associated 
with flow through shock waves. Here we have a flow with an initial Mach number of 
2.8, which in both cases shown in Fig. 4.20 is slowed to a lower Mach number of 
1.45. In Fig. 4.20a, this is accomplished by passing the flow through two weaker 
shocks, and in Fig. 4.206 this is accomplished by passing the flow through a single 
stronger shock. The process of slowing the flow to the same Mach number by means 
of two shocks compared to that of a single shock results in a higher total pressure. 
That is, the system shown in Fig. 4.20 results in a smaller loss of total pressure, hence 
it is an aerodynamically more efficient system. This phenomena has a major practi- 
cal impact on engine inlet design for supersonic airplanes, and for the diffuser design 
in supersonic wind tunnels, where it is always preferable to slow the incoming su- 
personic flow by passing it through a multiple system of weaker shocks than through 
a single stronger shock. Problem 4.8 at the end of this chapter reinforces this fact. 
Also, the geometry for a simulated scramjet engine shown in Fig. 4.2 is designed 
specifically to initiate the multiple shock pattern in the flow seen in Fig. 4.2 in order 
to decrease the total pressure losses in the engine and therefore achieve better propul- 
sion efficiency. 

It is interesting to compare the sum of the two turning angles of the flow in 
Fig. 4 . 2 0 ~  with the single turning angle in Fig. 4.206. In Fig. 4.20a, the flow is first 
turned into itself through a deflection of 16, across the incident shock, and then 
turned again into itself through a deflection of 1 6  across the reflected shock, the sum 
of the turning angles being 32". In contrast, the turning angle for the single shock in 
Fig. 4.20b is calculated (in Example 4.12) to be a smaller value, namely, 27.7' . 
Hence, the flow through the multiple shock system experiences a net turning angle 
that is actually larger than that for the single shock system. In spite of this, the multi- 
ple shock system is more efficient, resulting in a smaller loss of total pressure (hence 
a smaller increase in entropy). The reason for this is the highly nonlinear increase in 
entropy and decrease in total pressure as the Mach number ahead of a shock wave in- 
creases. Examine again Fig. 3.10, where the changes in physical properties across a 
normal shock are plotted versus upstream Mach number. Note the rapid and highly 
nonlinear decrease in the total pressure ratio, p02/p,,  , as M I  increases. For example, 
doubling the upstream Mach number results in a much larger than proportional de- 
crease in total pressure. Returning to the double shock system in Fig. 4.20a, the key 
to its better efficiency is that the Mach number ahead of the second shock has been 
reduced by first flowing across the first shock. Even though the flow is going through 
twice as many shocks with a net turning angle larger than the single shock case, the 
smaller local Mach number ahead of the second shock more than compensates by 
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causing a sufficiently smaller increase in entropy across the second shock. Hence, the 
net total pressure loss across the multiple shock system is less than that across the sin- 
gle shock. The progressive slowing down of the flow through a multiple system of 
progressively weaker shocks is always more efficient than achieving the same de- 
crease in Mach number across a single shock. 

4.8 1 PRESSURE-DEFLECTION DIAGRAMS 
The shock wave reflection discussed in Sec. 4.6 is just one example of a wave inter- 
action process-in the above case it was an interaction between the wave and a solid 
boundary. There are other types of interaction processes involving shock and expan- 
sion waves, and solid and free boundaries. To understand some of these interactions, 
it is convenient to introduce the pressure-deflection diagram, which is nothing more 
than the locus of all possible static pressures behind an oblique shock wave as a func- 
tion of deflection angle for given upstream conditions. Consider Fig. 4.21, which at 
the top shows oblique shock waves of two different orientations. The top left shows 
a left-running wave-so called because, when standing at a point on the wave and 
looking downstream, you see the wave running off toward your left. The flow de- 
flection angle e2 is upward, and is considered positive. In contrast, the top right 
shows a right-running wave; since an oblique shock wave always deflects the flow 
toward the wave, the deflection angle 8; is downward and is considered negative. 
The static pressure ahead of the wave, where 8 = 0, is p l ;  the static pressure behind 
the left-running wave, where 8 = e2, is p2. These two conditions are illustrated by 
points 1 and 2, respectively, on a plot of pressure versus deflection at the bottom of 

Figure 4.21 1 Pressure-deflection diagram for a given M I  
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I For M ,  

Figure 4.22 1 The reflected shock process on a 
pressure-deflection diagram. 

Fig. 4.21. For the right-running wave, if H2 and 0; are equal in absolute magnitude 
(but different in sign). the pressure in region 2' will also be p2. This condition is given 
by point 2' on Fig. 4.2 1. When H ranges over all possible values 18 1 < Om,, for an 
oblique shock solution, the locus of all possible pressures (for the given M I  and p l )  
is given by the pressure-deflection diagram, sketched in Fig. 4.2 1 .  The right-hand 
lobe of this figure corresponds to positive 0, the left-hand lobe to negative 8 .  

The shock reflection process of Sec. 4.6 is sketched in terms of pressure- 
deflection (pH) diagrams in Fig. 4.22. A pH diagram is first drawn for M I ,  where 
point 1 corresponds to the pressure in region 1 of Fig. 4.18. Conditions in region 2 
are given by point 2 on the pQ diagram. At this point, a new pressure-deflection dia- 
gram is drawn for a free-stream Mach number equal to M2. The vertex of this pH 
diagram is at point 2 because the "free stream" of region 2 is already bent upward by 
the angle 8. Since the flow in region 3 must have 8 = 0, then we move along the left- 
hand lobe of this second p6' diagram until H = 0. This defines point 3 in Fig. 4.22, 
which yields the conditions behind the reflected shock. Hence, in Fig. 4.22, we move 
from point 1 to point 2 across the incident shock, and then from point 2 to point 3 
across the reflected shock. 

4.9 1 INTERSECTION OF SHOCKS 
OF OPPOSITE FAMILIES 

Consider the intersection of left- and right-running shocks as sketched in Fig. 4.23. 
The left- and right-running shocks are labeled A and B, respectively. Both are inci- 
dent shocks, and correspond to deflections Q2 and 8-3, respectively. These shocks con- 
tinue as the refracted shocks C and D downstream of the intersection at point E. 
Assume O2 > 03. Then shock A is stronger than B, and a streamline going through the 
shock system A and C experiences a different entropy change than the streamline 
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Figure 4.23 1 Intersection of shocks of opposite families. 

going through the shock system B and D. Therefore, the entropy in regions 4 and 4' 
is different. Consequently, the dividing streamline EF between these two regions is a 
line across which the entropy changes discontinuously. Such a line is defined as a slip 
line. However, on a physical basis, these conditions must hold across the slip line in 
Fig. 4.23: 

1. The pressure must be the same, p4 = p41. Otherwise, the slip line would be 
curved, inconsistent with the geometry of Fig. 4.23. 

2. The velocities in regions 4 and 4' must be in the same direction, although they 
in general differ in magnitude. If the velocities were in different directions, 
there would be the chance of a complete void in the flowfield in the vicinity of 
the slip line-an untenable physical situation. 

These two conditions, along with the known properties in region 1 as well as the 
known O2 and 03, completely determine the shock interaction in Fig. 4.23. Also, note 
that the temperature and density, as well as the entropy and velocity magnitude, are 
different in regions 4 and 4'. 

Pressure-deflection diagrams are particularly useful in visualizing the solution of 
this shock interaction process. The p8 diagram corresponding to MI is drawn as the 
solid curve in Fig. 4.24. Point 1 denotes conditions in region 1, ahead of the shocks. 
In region 2 of Fig. 4.23, the flow is deflected through the angle 82. Therefore, point 2 
on the p8 diagram is located by moving along the curve until 0 = 02. At point 2, a 
new p8 diagram corresponding to M2 is drawn, as shown by the dashed curve to the 
right in Fig. 4.24. Note that the pressure in region 4' must lie on this curve. Similarly, 
point 3 is located by moving along the solid curve until O3 is reached; remember that 
this deflection is downward, hence we must move in the negative 8 direction. Point 3 
corresponds to region 3 in Fig. 4.23. At point 3, a new p0 diagram corresponding to 
M3 is drawn, as shown by the dashed curve to the left in Fig. 4.24. The pressure in 
region 4 must lie on this curve. Because p4 = p41, the point corresponding to regions 4 
and 4' in Fig. 4.24 is the intersection of the two dashed p8 diagrams. This point defines 
the flow direction (hence slip line direction) in regions 4 and 4', namely the angle @ in 
Figs. 4.23 and 4.24. In turn, the flow deflections across the refracted shocks D and C 
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Figure 4.24 1 Pressure-deflection diagrams for the shock intersection picture 
given i n  Fig. 4.23. 

are determined: H4 = Q, - H3 and O4 = H2 - @. With these deflections, and with the 
Mach numbers in regions 3 and 2, respectively, the strengths of the refracted shocks 
D and C are now determined. 

Note from Fig. 4.23 that, if H2 = H 3 ,  the intersecting shocks would be of equal 
strength, the flow pattern would be completely symmetrical, and there would be no 
slip line. 

4.10 1 INTERSECTION OF SHOCKS 
OF THE SAME FAMILY 

Consider the compression corner sketched in Fig. 4.25, where the supersonic flow in 
region 1 is deflected through an angle 8 ,  with the consequent oblique shock wave 
emanating from point B. Now consider a Mach wave generated at point A ahead of 
the shock. Will this Mach wave intersect the shock, or will it simply diverge, i.e., is 
C( greater than or less than B? To find out, consider Eq. (4.7), which written in terms 
of velocities is 

U I  = Vl sinP 

U  I 
Hence, sin B = - (4.23) 

Vl 

In addition, from Eq. (4. I), 
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Figure 4.25 1 Mach waves ahead of and behind 
a shock wave. 

We have already proven that, for a shock to exist, the normal component of the flow 
velocity ahead of the shock wave must be supersonic. Thus, ul > a l ;  consequently, 
from Eqs. (4.23) and (4.24), B > p l .  Therefore, referring to Fig. 4.25, the Mach 
wave at A must intersect the shock wave, as shown. 

Now consider a Mach wave generated at point C behind the shock. From 
Eq. (4.12) 

Hence, 
u2 

sin(B - 0 )  = - (4.25) v2 
In addition, from Eq. (4 .  I), 

We have already proven that the normal component of the flow velocity behind a 
shock wave is subsonic. Thus, u2 < a2; consequently, from Eqs. (4.25) and (4.26), 
/3 - 0 < p2. Therefore, referring to Fig. 4.25, the Mach wave at C must intersect the 
shock wave, as shown. 

It is now not difficult to extrapolate to the case of two left-running oblique shock 
waves generated at comers A and B in Fig. 4.26. Because shock wave BC must be in- 
clined at a steeper angle than a Mach wave in region 2, and we have already shown 
that a left-running Mach wave will intersect a left-running shock, then it is obvious 
that shock waves AC and BC will intersect as shown in Fig. 4.26. Above the point of 
intersection C ,  a single shock CD will propagate. 

Now consider a streamline passing through regions 1 ,  2, and 3 as sketched in 
Fig. 4.26. The pressure and flow direction in region 3 are p3 and Q3, respectively, and 
are determined by the upstream conditions in region 1, as well as the deflection an- 
gles O2 and 83. Properties in region 3 are processed by the dual shocks AC and BC. 
On the other hand, consider a streamline passing through regions 1 and 5. The pres- 
sure and flow direction in region 5 are pg and 05, respectively. Properties in region 5 
are processed by the single shock CD. Therefore, the entropy change across this 



4.1 1 Mach Reflection 
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Figure 4.26 1 Intersection of shocks of the same family 

single shock will be different than across the two shocks, and hence a slip line must 
exist downstream, originating at the intersection point C. As discussed in Sec. 4.9, 
the pressures and flow directions across the slip line must be the same. If no other 
wave existed in the system, this would require p~ = p? and Hs = Q3 simultaneously. 
However, it is generally not possible to find a single shock CD that will give simul- 
taneously the same pressure and flow deflection as two i~termediate shocks AC and 
BC, with both systems starting from the same upstream conditions in region 1. 
Therefore, nature removes this problem by creating a weak reflected wave from the 
intersection point C. Depending on the upstream conditions and 8 ,  and 6'?, this re- 
flected wave CE may be a weak shock or expansion wave. Its purpose is to process the 
flow in region 4 such that pd = pj and O4 = O5 simultaneously, thus satisfying the nec- 
essary physical conditions across a slip line. The flowfield can be solved numerically 
by iteratively adjusting waves CD and CE such that the above conditions between 
regions 4 and 5 are obtained. 

4.11 1 MACH REFLECTION 
Return again to the shock wave reflection from a solid wall as discussed in Sec. 4.6 
and as sketched in Fig. 4.18. The governing condition is that the flow must be de- 
flected through the angle 6' from regions 2 to 3 by the reflected shock so that the 
streamlines are parallel to the upper wall. In the discussion of Sec. 4.6, this value of 
H' was assumed to be less than Om,, for M2, and hence a solution was allowed for a 
straight, attached reflected shock. Consider the 8-/3-M curves for both M I  and M 2 ,  as 
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(For M 2 )  (For M I )  

Figure 4.27 1 Maximum deflection angle for two 
different Mach numbers. 

Figure 4.28 1 Mach reflection. 

sketched in Fig. 4.27. In Sec. 4.6, it was assumed that 8 was to the left of Omax for M2 
in Fig. 4.27. However, what happens when (Om, for M 2 )  < O < (Om,, for M I ) ?  This 
situation is illustrated in Fig. 4.27. For the incident shock with an upstream Mach 
number of M I ,  0 < and hence the incident shock is an allowable straight 
oblique shock solution. This straight incident shock is sketched in Fig. 4.28. On the 
other hand, when the flow in region 2 at Mach number M2 wants to again deflect 
through the angle 0 via the reflected shock, it finds that 8 > Om, for M;?, and a regu- 
lar reflection is not possible. Instead, a normal shock is formed at the upper wall to 
allow the streamlines to continue parallel to the wall. Away from the wall, this nor- 
mal shock transits into a curved shock which intersects the incident shock, with a 
curved reflected shock propagating downstream. This shock pattern is sketched in 
Fig. 4.28 and is labeled a Mach rejection in contrast to the regular reflection dis- 
cussed in Sec. 4.6. The Mach reflection is characterized by large regions of subsonic 
flow behind the normal or near normal shocks, and its analysis must be carried out by 
the more sophisticated numerical techniques to be discussed in Chaps. 11 and 12. 
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4.12 1 DETACHED SHOCK WAVE IN FRONT 
OF A BLUNT BODY 

Consider the supersonic flow over a blunt-nosed body as illustrated in Fig. 4.29. A 
strong curved bow shock wave is created in front of this body, with the shock de- 
tached from the nose by a distance 6.  At point a, the upstream flow is normal to the 
wave; hence point a corresponds to a normal shock wave. Away from the centerline, 
the shock wave becomes curved and weaker, eventually evolving into a Mach wave 
at large distances from the body (illustrated by point e in Fig. 4.29). 

Moreover, between points a and e,  the curved shock goes through all possible 
conditions allowed for oblique shocks for an upstream Mach number of M I .  To see 
this more clearly, consider the Q-P-M,  curve sketched in Fig. 4.30. At point u, a nor- 
mal shock exists. Slightly above the centerline at point b in Fig. 4.29, the shock is 
oblique but pertains to the strong-shock solution in Fig. 4.30. Further along the 
shock, point c is the dividing point between strong and weak solutions; the streamline 
through point c experiences the maximum deflection, O,,,. Slightly above point c in 
Fig. 4.29, at point c', the flow becomes sonic behind the shock. From points cr to c.', 
the flow behind the shock is subsonic. Above point c' the flow is supersonic behind 
the shock. Hence, the flowfield between the blunt body and its curved bow shock is 

M ,  > 1 - 
Uniform free stream 

- 
v1 = v- 
h ,  

Figure 4.29 1 Flow over a supersonic blunt body. 
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Figure 4.30 1 8-B-M diagram for the sketch in Fig. 4.23. 

a mixed subsonic-supersonic flow, and the imaginary dividing curve between these 
two regions (where M = 1) is denoted as the sonic line, as shown in Fig. 4.29. 

The shape of the detached shock wave, its detachment distance 6, and the com- 
plete flowfield (with curved streamlines) between the shock and the body depend on 
M I  and the size and shape of the body. The solution of this flowfield is not trivial. 
Indeed, the supersonic blunt body problem was a major focus for supersonic aerody- 
namicists during the 1950s and 1960s spurred by the need to understand the high- 
speed flow over blunt-nosed missiles and reentry bodies. The situation in 1957 was 
precisely described in the classic text by Liepmann and Roshko (Ref. 9), where, in 
their discussion of blunt body flows, they categorically state that "the shock shape 
and detachment distance cannot, at present, be theoretically predicted." Indeed, it 
was not until a decade later that truly sufficient numerical techniques became avail- 
able for satisfactory engineering solutions of supersonic blunt body flows. These 
modern techniques are discussed at length in Chap. 12. 

4.13 1 THREE-DIMENSIONAL SHOCK WAVES 
In treating oblique shock waves in this chapter, two-dimensional (plane) flow has been 
assumed. However, many practical supersonic flow problems are three-dimensional, 
with correspondingly curved shock waves extending in three-dimensional space. The 
shock wave around a supersonic axisymmetric blunt body at angle of attack is one 
such example, as sketched in Fig. 4.3 1. For such three-dimensional shock waves, the 
two-dimensional theory of the present chapter is still appropriate for calculating prop- 
erties immediately behind the shock surface at some local point. For example, con- 
sider an elemental area dS around point A on the curved shock surface shown in 
Fig. 4.31. Let n be the unit normal vector at A. The component of the upstream Mach 
number normal to the shock is then 

With the Mach number component normal to the three-dimensional shock wave 
obtained from Eq. (4.27), values of p2, p2, T2, h2 ,  and M,, can be calculated 
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Figure 4.31 1 Three-dimensional shock surface. 

immediately behind the shock at point A from the shock wave relations given in 
Eqs. (4.8) through (4. I 1 ). We again emphasize that these results hold just immediately 
behind the shock surface at the local point A. Further downstream, the flowtield expe- 
riences a complex nonuniform variation which must be analyzed by appropriate three- 
dimensional techniques beyond the scope of this chapter. Such matters are discussed 
in Chap. 13. 

4.14 1 PRANDTL-MEYER EXPANSION WAVES 
We have now finished our discussion of oblique shock waves as itemized in the left 
column of the roadmap in Fig. 4.3. We now move to the right side of the roadmap, 
which deals with expansion waves. When a supersonic flow is turned away from it- 
self as discussed in Sec. 4.1, an expansion wave is formed as sketched in Fig. 3.4b. 
This is directly opposite to the situation when the flow is turned into itself, with the 
consequent shock wave as sketched in Fig. 4 . 4 ~ .  Expansion waves are the antithesis 
of shock waves. To appreciate this more fully, some qualitative aspects of flow 
through an expansion wave are itemized as follows (referring to Fig. 4.4b): 

1. M? > M I .  An expansion corner is a means to increcw the flow Mach number. 

2. p 2 / p I  < 1 ,  p2/pI < I ,  T 2 / T I  < 1 .  The pressure, density, and temperature 
d~rrease through an expansion wave. 
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Figure 4.32 1 Prandtl-Meyer expansion. 

3. The expansion fan itself is a continuous expansion region, composed of an 
infinite number of Mach waves, bounded upstream by pl and downstream by 
p2 (see Fig. 4.32), where pl = arcsin(l/Ml) and p2 = arcsin(lIM2). 

4. Streamlines through an expansion wave are smooth curved lines. 
5. Since the expansion takes place through a continuous succession of Mach 

waves, and ds = 0 for each Mach wave, the expansion is isentropic. 

An expansion wave emanating from a sharp convex corner such as sketched in 
Figs. 4.4b and 4.32 is called a centered expansion fan. Moreover, because Prandtl in 
1907, followed by Meyer in 1908, first worked out the theory for such a supersonic 
flow, it is denoted as a Prandtl-Meyer expansion wave. 

The quantitative problem of a Prandtl-Meyer expansion wave can be stated as 
follows (referring to Fig. 4.32): For a given MI,  p l  , TI, and B2, calculate M2, p2, and 
T2. The analysis can be started by considering the infinitesimal changes across a very 
weak wave (essentially a Mach wave) produced by an infinitesimally small flow de- 
flection, dB, as illustrated in Fig. 4.33.From the law of sines, 

However, from trigonometric identities, 

Substitute Eqs. (4.29) and (4.30) into (4.28): 

dV cos p 

+ 7 = cospcosdB - sinpsind0 
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Figure 4.33 1 Geometric construction for the infinitesimal 
changes across a Mach wave; for use in the derivation of the 
Prandtl-Meyer function. Note that the change in velocity 
across the wave is normal to the wave. 

For small dB, we can make the small-angle assumptions sindQ dB and cos d6' I. 
Then, Eq. (4.3 1 ) becomes 

d V  cos /A 
I + - = -  - - 

I 
(4.32) 

V c o s p - d B s i n p  1 -dHtanp  

Recalling the series expansion (for x < 1 ), 

Eq. (4.32) can be expanded as (ignoring terms of second and higher order) 

Thus, from Eq. (4.32a), 

d V/V 
dB = - 

tan p 

However, from Eq. (4.1 ), 

1 
p = sin-' - 

M 

which can be written as 

1 
tan y = 

d m  
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Substitute Eq. (4.34) into (4.33) 

Equation (4.35) is the governing differential equation for Prandtl-Meyer flow. Note 
these aspects of it: 

1. It is an approximate equation for a finite dB, but becomes a true equality as 
dQ -+ 0. 

2. It was derived strictly on the basis of geometry, where the only real physics is 
that associated with the definition of a Mach wave. Hence, it is a general 
relation which holds for perfect gases, chemically reacting gases, and real 
gases. 

3. It treats an infinitesimally small expansion angle, dB. To analyze the entire 
Prandtl-Meyer expansion in Fig. 4.32, Eq. (4.35) must be integrated over the 
complete angle 82. Integrating Eq. (4.35) from regions 1 to 2, 

The integral on the right-hand side can be evaluated after dV/V is obtained in terms 
of M, as follows. From the definition of Mach number, 

Hence, 1nV = l n M + l n a  

Differentiating Eq. (4.37), 

dV d M  da -- ----+- 
V M a  

Specializing to a calorically perfect gas, the adiabatic energy equation can be written 
from Eq. (3.28) as 

or, solving for a, 

Differentiating Eq. (4.39), 
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Substituting Eq. (4.40) into (4.38), we obtain 

Equation (4.41) is the desired relation for dV/V in terms of M ;  substitute it into 
Eq. (4.36): 

L 

In Eq. (4.42), the integral 

is called the Prundtl-Mever,function, and is given the symbol v. Performing the in- 
tegration, Eq. (4.43) becomes 

I 

The constant of integration that would ordinarily appear in Eq. (4.44) is not impor- 
tant, because it drops out when Eq. (4.44) is substituted into (4.42). For convenience, 
i t  is chosen as zero such that v ( M )  = 0 when M = 1 .  Finally, we can now write 
Eq. (4.42), combined with (4.43), as 

where v ( M )  is given by Eq. (4.44) for a calorically perfect gas. The Prandtl-Meyer 
function [Eq. (4.44)l is tabulated as a function of M in Table A.5 for y = 1.4, along 
with values of the Mach angle F ,  for convenience. 

Returning again to Fig. 4.32, Eqs. (4.45) and (4.44) allow the calculation of a 
Prandtl-Meyer expansion wave, as follows: 

1. Obtain v (  M I  ) from Table A.5 for the given M I .  

2. Calculate v ( M 2 )  from Eq. (4.45) using the given Q2 and v ( M I )  obtained in 
step I .  

3. Obtain M 2  from Table A.5 corresponding to the value of v ( M 2 )  from Ftep 2 

4. Recognizing that the expansion is isentropic, and hence that T,, and p,, are 
constant through the wave, Eqs. (3.28) and (3.30) yield 
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A uniform supersonic stream with MI = 1.5, p l  = 17001b/ft2, and TI = 460"R encounters 
an expansion comer (see Fig. 4.32) which deflects the stream by an angle 82 = 20". Calculate 
M2,  p2,  T2, pO2, To2, and the angles the forward and rearward Mach lines make with respect to 
the upstream flow direction. 

Solution 
FromTableA.5,for MI = 1.5: ul = 11.91" a n d p l  = 41.81". So 

From Table AS,  for u2 = 3 1 .91° : 

and ~2 = 26.95" 

From Table A. 1, for MI = 1.5: 

From Table A. 1, for M2 = 2.207: 

To2 = 10.81 and - = 1.974 
P2 7.2 

The flow through an expansion wave is isentropic; hence po2 = pol  and K,, = To,. Thus, 

Returning to Fig. 4.32: 

Angle of forward Mach line = pl = 1 41.81" 1 
Angle of rearward Mach line = p2 - K: = 26.95 - 20 = 



4.14 Prandtl-Meyer Expansion Waves 173 

Consider the arrangement shown in Fig. 4.34. A 15'- half-angle diamond wedge airfoil is in a 
supersonic flow at zero angle of attack. A Pitot tube is inserted into the flow at the location 
shown in Fig. 4.34. The pressure measured by the Pitot tube is 2.596 atm. At point a on the 

backface, the pressure is 0.1 atm. Calculate the free-stream Mach number M I .  

rn Solution 
There will be a normal shock wave in front of the face of the Pitot tube immersed in region 3 
in Fig. 4.34. Let the region immediately behind this normal shock be denoted as region 4. The 
Pitot tube senses the total pressure in region 4, i.e., p,,, . The pressure at point a is the static 
pressure in region 3. Thus 

From Table A.2, for p,,/p, = 25.96: M3 = 4.45. From Table AS. for M3 = 4.45, we have 
u3 = 7 1.27". From Eq. (4.45) 

From Table A.5, for u2 = 41.27": M2 = 2.6. In region 2, we have 

M,, = M2 sin@ - 0) = 2.6 sin(B - 15' ) (E.1) 

In this equation, both M,,, and j are unknown. We must solve by trial and error, as follows. 

Assume M I  = 4. Then B = 27", M,, = M I  sin B = 4 sin 27' = 1.816. Hence, from 
Table A.2, M,, = 0.612. Putting these results into Eq. (E.l) above, 

0.612 = 2.6 sin 12' = 0.54 

This does not check. 
Assume M I  = 4.5.ThenP = 25S0, M,, = 4.5 sin 25.5" = 1.937. Hence,fromTable A.2, 

M,,, = 0.588. Putting these results into Eq. (E. I), 

0.588 = 2.6 sin 10.5" = 0.47 

Figure 4.34 1 Geometry for Example 4.14. 



CHAPTER 4 Oblique Shock and Expansion Waves 

This does not check. We are going in the wrong direction. 
Assume M I  = 3.5.ThenB = 29.2", M,, = 3.5sin29.2" = 1.71.Hence,fromTableA.2, 

M,, = 0.638. Putting these results into Eq. (E.11, 

0.638 A 2.6 sin 14.2" = 0.638 

This checks. Thus 

4.15 1 SHOCK-EXPANSION THEORY 
In this section we move to the bottom of our roadmap in Fig. 4.3 and discuss shock- 
expansion theory, which is a logical and natural combination of the items in both the 
left and right columns of the roadmap. The shock and expansion waves discussed in 
this chapter allow the exact calculation of the aerodynamic force on many types of 
two-dimensional supersonic airfoils made up of straight-line segments. For exam- 
ple, consider the symmetrical diamond-shaped airfoil at zero angle of attack in 
Fig. 4.35. The supersonic flow is first compressed and deflected through the angle E 

by an oblique shock wave at the leading edge. At midchord, the flow is expanded 
through an angle 2~ by the expansion wave. At the trailing edge, the flow is again 
deflected through the angle E by another oblique shock; this deflection is necessary 
to make the flow downstream of the airfoil parallel to the free-stream direction due 
to symmetry conditions. Hence, the surface pressure on segments a and c are found 
from oblique shock theory, and on segments b and d from Prandtl-Meyer expansion 
theory. 

At zero angle of attack, the only aerodynamic force on the diamond airfoil will 
be drag; the lift is zero because the pressure distributions on the top and bottom 

Figure 4.35 1 Symmetrical diamond-wedge airfoil. 
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surfaces are the same. From Eq. (1.47), the pressure drag is 

D = x component of [- Fdsl 
In terms of scalar quantities, and referring to Fig. 4.35, the surface integral yields for 
the drag per unit span 

t 
D = 2(p21 sin E - psi sin E) = 2(p2 - ps) - 

2 

Hence, 

It is a well-known aerodynamic result that two-dimensional inviscid flow over a 
wing of infinite span at subsonic velocity gives zero drag-a theoretical result given 
the name dlAlembertS paradox. (The paradox is removed by accounting for the ef- 
fects of friction). In contrast, for supersonic inviscid flow over an infinite wing, 
Eq. (4.46) clearly demonstrates that the drag per unit span isfinite. This new source 
of drag encountered when the flow is supersonic is called wave drag, and is inher- 
ently related to the loss of total pressure and increase of entropy across the oblique 
shock waves created by the airfoil. 

Consider an infinitely thin flat plate at a 5' angle of attack in a Mach 2.6 free stream. Calcu- 
late the lift and drag coefficients. 

Solution 
From Table A S ,  for M I  = 2.6: vl  = 41.41 . Thus, from Eq. (4.45) 

From Table A S ,  for v2 = 46.41 : M2 = 2.85. From Table A . l ,  for M I  = 2.6: p,, /pl = 

19.95. From Table A. I ,  for M2 = 2.85: pO2 /pz = 29.29. Hence 

From the 8 - / - M  diagram, for M I  = 2.6 and H = a = 5': B = 26.5'. Thus 

M,, = M I  sinb = 2.6sin26.5' = 1.16 

From Table A.2, for M , ,  = 1.16: p3/pl = 1.403. From Fig. 4.36, the lift per unit span L' is 

L' = (p3 - p2)c  cos a 

The drag per unit span D' is 

D' = (p3 - p2)c sin (Y 
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Figure 4.36 1 Geometry for Example 4.15. 

Recalling that ql = ( y / 2 ) p l  M : ,  we have 

- - 2 
(1 A03 - 0.681) sin 5" = 

(1 .4)(2.6)2 

Figure 4.36 shows only part of the wave system associated with the supersonic 
flow over a flat plate at angle of attack. After the flow passes over the flat plate, it will 
move downstream of the trailing edge in approximately, but not exactly, the free- 
stream direction. As shown in Fig. 4.37, the supersonic flow over the top surface is 
turned into itself at the trailing edge, hence generating a left-running shock wave em- 
anating from the trailing edge. The supersonic flow over the bottom surface is turned 
away from itself at the trailing edge, hence generating a right-running expansion 
wave. The streamline ab trailing downstream from the trailing edge makes the angle 
@ with respect to the free-stream direction. The flow in region 4, above ab, has 
passed through both the leading edge expansion wave and the trailing edge shock 
wave, and similarly the flow in region 5,  below ab, has passed through both the lead- 
ing edge shock wave and the trailing edge expansion wave. Because the strengths 
of both shock waves are different, the entropy in region 4 is different than that in 
region 5 ,  $4 # sg. Therefore, ab is a slip line dividing the two regions of different 
entropy. As discussed in Section 4.9, the pressure is the same across the slip line, 
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Figure 4.37 1 Illustration of the tailing edge streamline for a flat plate 
at an angle of attack i n  a supersonic flow. 

174 = p5, and the flow velocities in regions 4 and 5 are in the same direction, but have 
different magnitudes. These two conditions dictate the properties of the flow down- 
stream of the leading edge, including the flow direction angle @. Indeed, the ultimate 
physical reason why the flow downstream of the trailing edge does not return to ex- 
actly the free-stream conditions and direction is because the entropy of the down- 
stream flow is increased by the shock waves, and hence the conditions downstream 
of the trailing edge can never be exactly the same as those in the free stream. 

However, interestingly enough the downstream flow angle @ is usually quite 
small, on the order of a degree or less. The precise value of @ is a function of M I  and 
angle of attack, as will be illustrated in Example 4.16. For values of MI  above 
about 1.3, the downstream flow is canted upward, above the free-stream direction. 
This is the case shown in Fig. 4.37. This result may at first appear to be against our 
intuition, because the production of lift on an aerodynamic body creates a downward 
canting of the downstream flow (downwash). Indeed, Newton's third law dictates 
that if lift is generated on the body by the flow, the equal and opposite reaction pushes 
the airflow in the general downward direction downstream of the body. This is a gen- 
eral result for any flow. subsonic or supersonic. However. the flow sketched in 
Fig. 4.37 appears to violate physics. This paradox is resolved when the wave pattern 
over a much larger extent of the flow is examined, such as the wave interaction pat- 
tern in the far wake of the flat plate shown in Fig. 4.38. The overall effect of the flow 
through this much larger region results in an overall downwash when viewed over 
the whole domain. For example, the upwash (upward deflection of @ )  shown in 
Fig. 4.37 is compensated by a net downwash over other parts of the flowfield. 

We note that the downstream flow shown in Figs. 4.37 and 4.38 does not affect 
the lift and drag on the plate. For an inviscid flow, the aerodynamic force on the plate 
is due only to the integrated pressure distribution on the surface of the plate. as 
sketched in Fig. 4.36. In steady supersonic flow, disturbances do not propagate up- 
stream, and hence the flow downstream of the trailing edge does not affect the pres- 
sure distribution over the plate. This is a basic physical property of steady supersonic 
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Figure 4.38 1 Schematic of the far-fie 
wave pattern downstream of a flat plate at 
an angle of attack in a supersonic flow. 

flow-disturbances can not feed upstream. In contrast, for a completely subsonic 
flow, a disturbance initiated somewhere in the flow will eventually propagate 
throughout the entire flowfield. These different physical phenomena for subsonic and 
supersonic flow are ingrained in the sketches shown in Figs. 4 . 5 ~  and b, respectively. 

Consider an infinitely thin flat plate at an angle of attack of 20" in a Mach 3 free stream. Cal- 
culate the magnitude of the flow direction angle 4, downstream of the trailing edge, as 
sketched in Fig. 4.37. 

Solution 
Figure 4.37 illustrates the nature of the flow over the flat plate. The flow properties in each 
region shown in Fig. 4.37 are calculated as shown next. 

Region 2: This flow has passed through the leading edge expansion wave, where the 
deflection angle 8 = a = 20" and MI = 3. From Table A S ,  vl  = 49.76". Hence, 

From Table A S ,  for v2 = 69.76", M2 = 4.3 19. 

Note: Because 4, is generally a very small angle in this example, rather than using the nearest 
entry, we will interpolate between entries in the table in order to obtain more accuracy. 

From Table A.1, for M I  = 3, p,, / p l  = 36.73. For M2 = 4.319, pO2/pz = 230.4. Hence, 
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Region 3: This f ow has passed through the leading edge shock wave, where MI  = 3 and 
H = 20 . From the ti-p-M d~agram, P = 37.8 . 

M,, ,  = M I  s in6  = 3sir137.8~ = 1.839 

From Table A.2 for M,, , = 1.839, 

P1 I"' = 0.795. M,, = 0.6079 -=3 .781 ,  - 
P I  P,, I 

Regions 4 und 5: Here we have to set up an iterative solution in order to simultaneously 
match the pressures in regions 4 and 5. The steps are: 

Assume a value for Q,. 

Calculate the strength of the trailing edge shock for the local compression angle, cu + Q,. 

From this, we can obtain pj. or alternatively, p s / p I .  

Calculate the strength of the trailing edge expansion wave for a local expansion angle, 
cu + Q,. From this, we can obtain p5, or alternatively, p S / p I .  

Compare p ~ / p ~ ,  and p 5 / p l  from the steps 3 and 4. If they are different, assume a new 
value of Q,. 

Repeat steps 2 4  until p 4 / p 1  = p 5 / p I .  When this condition is satisfied, the iteration has 

converged, and the flow downstream of the trailing edge is now determined. 

A.s.sumr = 0: We know that this is not the answer, but the calculated wave strengths 
for this assumption provide a convenient base to start the iterations. For region 4, the oblique 
shock angle for M2 = 4.3 19 and 0 = 20- is = 3 1.5 . 

M,,, = M? sin B = 4.3 19 sin 31.5 = 2.257 

For reglon 5, the expanslon angle i\ 0 = 20 Since M i  = 1.989, v? = 26 08 . Then 1 '5  = 

26.08 + 20 = 46 08 . Hence, M5 = 2 8 15. From Table A. I ,  for M5 = 2.8 15, p,,, /p5 = 27.79. 

1'5 - P5 POT Po1 P O I  - - 
I 

= (=) (1)(0.795)136.73) = 1.05 
P I  POT Po, Po, PI 

Comparing the values of p 4 / p l  = 0.921 and p 5 / p 1  = 1.05, we need to assume Q, such as to 

strengthen both the trailing edge shock and expansion waves. This is done by choosing Q, such 
that line ah in Fig. 4.37 is canted upward slightly. Already we can see that the result will be an 
upwa\h, as d~scussed earher 

As rume Q, = I The d e f l e ~ t ~ o n  angle tor both waves w ~ l l  be a + Q, = 20 + 1 = 21 

Hence, f i  = 33 6, M,,, = 2 39, and p4/pZ  = 6 498 
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For region 5, 0 = 21°, v5 = v3 + 8 = 26.08 + 21 + 47.08". Hence, M5 = 2.865. Thus 
po,/p5 = 29.98. 

Comparing p 4 / p l  = 1.036 and p 5 / p I  = 0.974, we see that @ = l o  is slightly too large. 
Since the two iterations carried out here clearly illustrate the technique, rather than carry 

out any more iterations, we can interpolate between the cases for cP = 0" and @ = I". For the 
first iteration with @ = 0", the difference between the two pressure ratios is 1.050 - 0.921 = 
0.129. For the second iteration with @ = I ', the difference is 0.974 - 1.036 = -0.062. Inter- 
polating between these differences, where the correct value of @ would give a zero pressure 
difference, we have 

Rounding off, we can state that, approximately, 

It is important to note that an expansion wave is a strong mechanism for turn- 
ing a supersonic flow through large deflection angles. For example, return to the 
Prandtl-Meyer function given by Eq. (4.44). In the limit of M -+ a, the terms in 
Eq. (4.44) involving the inverse tangent become 9W because the tan90° -+ m. 
Hence, from Eq. (4.44) 

This means that an initially sonic flow over a flat surface theoretically can be ex- 
panded through a maximum deflection angle of 130.45", as sketched in Fig. 4.39. 
The corresponding pressure and temperature downstream of this expansion are both 
zero-a physically impossible situation. For upstream Mach numbers larger than 
one, the maximum deflection angle is correspondingly smaller. However, the case 
shown in Fig. 4.39 clearly demonstrates that large deflection angles can occur 
through expansion waves. 

In this light, return to Example 4.9 and Fig. 4.12. There, we did not account for 
the expansion waves that trail downstream from the upper and lower corners of the 
base, and in Example 4.9 we simply assumed that a constant pressure was exerted 
over the base of the wedge, equal to freestream pressure. In reality, the flow down- 
stream of the base, and the variation of pressure over the base, is much more com- 
plicated than the picture shown in Fig. 4.12. Base flow and the corresponding base 
pressure distribution are influenced by flow separation in the base region, which in 
turn is governed in part by viscous flow effects that are beyond the scope of this 
book. However, in Example 4.17 we make some arbitrary assumptions about the 
effect of the corner expansion waves on the base pressure, and recalculate the drag 
coefficient for the wedge. In this fashion, we wish to demonstrate the effect that base 
pressure can have on the overall drag coefficient. 
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Figure 4.39 1 Maximum expansion angle for a 
Prandtl-Meyer centered expansion wave. 

Consider the 15 half-angle wedge shown in Fig. 3.40. This is the same flow problem sketched 
in Fig. 4.12, with the added feature of the expansion waves at the corners of the base. We make 
the assumptions that (1) the flow separates at the comers, with the streamlines trailing 
downstream of the corners deflected toward the base at an angle of 15 from the horizontal, 
as shown in Fig. 4.40, and (2)  the base pressure p8 is the arithmetic average between the 
pressure downstream of the expansion waves, p3,  and the freestream pressure, 1 ' 1 .  i.e., 
p~ = 1/2(p3 + p l ) .  We emphasize that both of these assumptions are purely arbitrary; 
they represent a qualitative model of the flow with arbitrary numbers, and do not necessarily 
reflect the actual quantitative flowfield values that actually exist in the base flow region. On the 
basis of the model flow sketched in Fig. 4.40. calculate the drag coefficient of the wedge, and 
compare with the result obtained in Example 4.9 where the base pressure was assumed to 
equal p l  . 

Solution 
From Example 4.8, we have these results for the leading edge shock wave and properties in 
region 2 behind the shock: 6' = 15-, f i = 32.2 , M,,  = 1.6, p 2 / p I  = 2.82. From Table A.2, 
we obtain M,,: = 0.6684. Hence, 

From Table A.1, for M 2  = 2.26, po2 /p2  = 11 75. From Table A S ,  for M z  = 2.26, v2 = 

33.27 . Examining Fig. 4.40, the flow expands from region 2 to reglon 3 through a total 
deflect~on angle of 15 + 15 = 30 . Hence, 
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Figure 4.40 1 Sketch for Example 4.17. 

From Table AS, for v3 = 63.27" we obtain M3 = 3.82. From Table A.l, for M g  = 3.82, 
p,, /p3 = 119.1. Hence, 

Assume ps = 1/2(pl + ps). Hence 

From Example 4.9, the drag coefficient for the wedge, with the base pressure now denoted by 
ps , is given by 

4 
cd = - ( ~ 2  - PB) tan 15" 

YPlM? 

- - 4 
tan 15" 

- - * (2.82 - 0.639) tan 15" = 
(1 .4)(3)2 

The value of cd obtained from Example 4.9 was the lower value of 0.155. The present exam- 
ple indicates that a 36 percent reduction in base pressure results in a 20 percent increase in drag 
coefficient. 

The result of Example 4.17 illustrates the important effect that base pressure has 
on the drag coefficient on the wedge shown in Fig. 4.40. The accurate calculation of 
base pressure for real flow situations involving any aerodynamic body shape with a 
blunt base is difficult to achieve, even with modern techniques in computational fluid 
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dynamics. The accurate determination of base pressure remains today a state-of-the- 
art research problem. 

4.16 1 HISTORICAL NOTE: PRANDTL'S 
EARLY RESEARCH ON SUPERSONIC 
FLOWS AND THE ORIGIN OF THE 
PRANDTL-MEYER THEORY 

The small German city of Giittingen nestles on the Leine River, which winds its 
way through lush countryside once part of the great Saxon empire. GBttingen was 
chartered in 121 1 ,  and quickly became a powerful member of the mercantilistic 
Hanseatic League in the fourteenth century. The wall around the town, many narrow 
cobblestone streets, and numerous medieval half-timbered houses survive to this day 
as reminders of Gottingen's early origin. However, this quaint appearance belies the 
fact that Giittingen is the home of one of the most famous universities in Europe- 
the Georgia Augusta University founded in 1737 by King George I1 of England 
(the Hanover family that ruled England during the eighteenth century was of German 
origin). The university, simply known as "Gottingen" throughout the world, has been 
the home of many giants of science and mathematics-Gauss, Weber, Riemann, 
Planck, Hilbert, Born, Lorentz, Runge, Nernst, and Heisenberg, among others. 

One such man, equal in stature to those above, was Ludwig Prandtl. Born in 
Friesing, Germany, on February 4, 1875, Prandtl became a professor of applied me- 
chanics at Giittingen in 1904. In that same year, at the Congress of Mathematicians in 
Heidelberg, Prandtl introduced his concept of the boundary layer-an approach that 
was to revolutionize theoretical fluid mechanics in the twentieth century. Later, dur- 
ing the period from 19 12 to 19 19, he evolved a theoretical approach for calculating lift 
and induced drag on finite wings-Prandtl's lifting line and lifting surface theories. 
This work established Prandtl as the leading fluid dynamicist of modern times; he has 
clearly been accepted as the father of aerodynamics. Although no Nobel P r i ~ e  has 
ever been awarded to a fluid dynamicist, Prandtl probably came closest to deserving 
such an accolade. (See Sec. 9.10 for a more complete biographical sketch of Prandtl.) 

I t  is not recognized by many students that Prandtl also made major contributions 
to the theory and understanding of compressible flow. However, in 1905, he built a 
small Mach 1.5 supersonic nozzle for the purpose of studying steam turbine flows and 
(of all things) the movement of sawdust in sawmills. For the next 3 years, he was cu- 
rious about the flow patterns associated with such supersonic nozzles; Fig. 4.41 shows 
some stunning photographs made in Prandtl's laboratory during this period which 
clearly illustrate a progression of expansion and oblique shock waves emanating from 
the exit of a supersonic nozzle. (Using nomenclature to be introduced in Chap. 5, the 
flow progresses from an "underexpanded" nozzle at the top of Fig. 4.4 1 to an "over- 
expanded nozzle at the bottom of the figure. At the top of the figure, we see expan- 
sion waves; at the bottom are shock waves followed by expansion waves.) The 
dramatic aspect of these photographs is that Prandtl was learning about supersonic 

at the same time that the Wright brothers were just introducing practical powered 
airplane flight to the world, with maximum velocities no larger than 40 mih!  



CHAPTER 4 Oblique Shock and Expansion Waves 

Figure 4.41 1 Schlieren photographs of wave patterns 
downstream of the exit of a supersonic nozzle. The 
photographs were obtained by Prandtl and Meyer during 
1907-1908. 
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The observation of such shock and expansion waves naturally prompted Prandtl 
Lo explore their theoretical properties. Consequently. Theodor Meyer, ow of 
Prandtl's students at Giittingen, presented his doctoral dissertation in 1908 entitled 
"Ueber Zweidimensionale Bewegungsvorgange in einem Ga<, das mit Ueber- 
schallgeschwindigkeit Stromt" ("On the Two-Dimensional Flow Proceses  in a Gas 
Flowing at Supersonic Velocities"). In this dissertation, Meyer presents the first prac- 
tical theoretical development of the relations for both expansion waves and oblique 
shock waves-essentially the same theory as  developed in this chapter. He begins by 
first defining a Mach wave and Mach angle as given by Eq. (4.1 ). Then, starting with 
geometry similar to that shown in Fig. 4.32, he derives the Prandtl-Meyer function 
[see Eq. (4.44) in Sec. 4.141 and tabulates it, not versus Mach number. but rather as 
a function of pip,,. (It is interesting to note that the term "Mach number" had not yet 
been coined; it was introduced by Jakob Ackeret 20 years later in honor of Ernst 
Mach, an Austrian scientist and philosopher who studied high-speed flow for a brief 
period in the 1870s. S o  Mach number is of fairly recent use.) In the same dissertation. 
Meyer follows these fundamental results with a companion study of oblique >hock 
waves. deriving relations similar to those discussed in this chapter. and presenting 
limited shock wave tables of wave angle, deflection angle. and pressure ratio. Almost 
without fanfare, Meyer ends his paper with a spectacular photograph of internal flow 
within a supersonic nozzle, reproduced here as Fig. 4.42. The walls of the n o u k  have 
been intentionally roughened so  that weak waves-essentially Mach waves-\\ ill be 

Figure 4.42 1 Mach waves in a supersonic noule. The wa\es are generated by roughening the noztle wall. An 
original photograph front Meyer's Ph.D. dissertation. 1908 
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visible in the schlieren photograph. The reader should marvel over such a picture 
being taken in 1908; it has the appearance of coming from a modern supersonic lab- 
oratory in the 2000s. 

We emphasize that Prandtl's and Meyer's work on expansion and oblique shock 
waves was contemporary with the normal shock studies of Rayleigh and Taylor in 
1910 (see Sec. 3.10). So once again we are reminded of the value of basic research on 
problems that appear purely academic at the time. The true practical value of Meyer's 
dissertation did not come to fruition until the advent of supersonic flight in the 1940s. 

Throughout subsequent decades, Prandtl maintained his interest in high-speed 
compressible flow; for example, his work on compressibility corrections for sub- 
sonic flow in the 1920s will be discussed in Sec. 9.9. Moreover, many of his students 
went on to distinguish themselves in high-speed flow research, most notably 
Theodore von Karman and Adolf Busemann. But this is the essence of other stories, 
to be told in later sections. 

4.17 1 SUMMARY 
Whenever a supersonic flow is turned into itself, shock waves can occur; when the 
flow is turned away from itself, expansion waves can occur. In either case, if the 
wave is infinitely weak, it becomes a Mach wave, which makes an angle p, with 
respect to the upstream flow direction; p, is called the Mach angle, defined as 

Across an oblique shock wave, the tangential components of velocity in front of 
and behind the wave are equal. (However, the tangential components of Mach num- 
ber are not the same.) The thermodynamic properties across the oblique shock are 
dictated by the normal component of the upstream Mach number M,, . The values of 
p2 /p1 ,  p2 /p I ,  T2 /T l ,  s 2  - sl , and p,,/p,, across the oblique shock are the same as for 
a normal shock wave with an upstream Mach number of M,, . In this fashion, the 
normal shock tables in Appendix A.2 can be used for oblique shocks. The value of 
M,, depends on both M I  and the wave angle, j?, via 

M,, = M I  sin j? (4.7) 

In turn, B is related to M I  and the flow deflection angle Q through the 0-,!I-M relation 

M: sin2 B - 1 
tan Q = 2 cot p 

[ M : ( y  + cos 2B) + 2 I 
In light of this, we can make the following comparison: (I)  In Chap. 3, we noted that 
the changes across a normal shock depended only on one flow parameter, namely the 
upstream Mach number M I .  (2) In the present chapter, we note that two flow 
parameters are needed to uniquely define the changes across an oblique shock. Any 
combination of two parameters will do. For example, an oblique shock is uniquely 
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defined by any one of the following pairs of parameters: MI and f i .  MI and 8, H and 
B ,  MI and ~ 2 1 ~ 1 ,  B and P ~ P I  etc. 

For the solution of shock wave problems, especially cases involving shock in- 
tersections and reflections, the graphical constructions associated with the shock 
polar and the pressure-deflection diagrams are instructional. 

For the curved, detached bow shock wave in front of a supersonic blunt body, 
the properties at any point immediately behind the shock are given by the oblique 
shock relations studied in this chapter, for the values of M I  and the local B .  Indeed, 
the oblique shock relations studied here apply in general to points immediately be- 
hind any curved, three-dimensional shock wave, so long as the component of the up- 
stream Mach number normal to the shock at a given point is used to obtain the shock 
properties. 

The properties through and behind a Prandtl-Meyer expansion fan are dictated 
by the differential relation 

d V  
(4.35) 

When integrated across the wave, this equation becomes 

where Q1 is assumed to be zero and v is the Prandtl-Meyer function given by 

The flow through an expansion wave is isentropic; from the local Mach numbers ob- 
tained from the above relations, all other flow properties are given by the isentropic 
flow relations discussed in Section 3.5. 

PROBLEMS 
Consider an oblique shock wave with a wave angle equal to 35". Upstream 
of the wave, pl = 20001b/ft2, TI = 520°R, and VI = 3355 ft/s. Calculate 
172, T2, V2, and the flow deflection angle. 
Consider a wedge with a half-angle of 1 0  flying at Mach 2. Calculate the 
ratio of total pressures across the shock wave emanating from the leading 
edge of the wedge. 

Calculate the maximum surface pressure (in newtons per square meter) that 
can be achieved on the forward face of a wedge flying at Mach 3 at standard 
sea level conditions ( p l  = 1 .O1 x 10"/m2) with an attached shock wave. 

In the flow past a compression comer, the upstream Mach number and 
pressure are 3.5 and 1 atm, respectively. Downstream of the corner, the 
pressure is 5.48 atm. Calculate the deflection angle of the corner. 

Consider a 20" half-angle wedge in a supersonic flow at Mach 3 at standard 
sea level conditions ( p l  = 21 161b/ft2 and TI = 5 19"R). Calculate the wave 
angle, and the surface pressure, temperature, and Mach number. 
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A supersonic stream at M I  = 3.6 flows past a compression comer with a 
deflection angle of 20". The incident shock wave is reflected from an 
opposite wall which is parallel to the upstream supersonic flow, as sketched 
in Fig. 4.18. Calculate the angle of the reflected shock relative to the 
straight wall. 
An incident shock wave with wave angle = 30" impinges on a straight wall. 
If the upstream flow properties are M I  = 2.8, pl = 1 atm, and TI = 300 K, 
calculate the pressure, temperature, Mach number, and total pressure 
downstream of the reflected wave. 
Consider a streamline with the properties M 1  = 4.0 and pl = 1 atm. Consider 
also the following two different shock structures encountered by such a 
streamline: (a) a single normal shock wave, and (b) an oblique shock with 
j3 = 40°, followed by a normal shock. Calculate and compare the total 
pressure behind the shock structure of each (a) and (b) above. From this 
comparison, can you deduce a general principle concerning the efficiency of 
a single normal shock in relation to an oblique shock plus normal shock in 
decelerating a supersonic flow to subsonic speeds (which, for example, is the 
purpose of an inlet of a conventional jet engine)? 
Consider the intersection of two shocks of opposite families, as sketched in 
Fig. 4.23. For M 1  = 3, p l  = 1 atm, Q2 = 20", and O3 = 15", calculate the 
pressure in regions 4 and 4', and the flow direction Q, behind the refracted 
shocks. 

4.10 Consider the flow past a 30" expansion corner, as sketched in Fig. 4.32. The 
upstream conditions are M 1  = 2, p l  = 3 atm, and TI = 400 K. Calculate the 
following downstream conditions: M 2 ,  p2. T2, To2, and po2. 

4.11 For a given Prandtl-Meyer expansion, the upstream Mach number is 3 and 
the pressure ratio across the wave is p2/p1 = 0.4. Calculate the angles of 
the forward and rearward Mach lines of the expansion fan relative to the 
free-stream direction. 

4.12 Consider a supersonic flow with an upstream Mach number of 4 and pressure 
of 1 atm. This flow is first expanded around an expansion comer with 
8 = 15", and then compressed through a compression comer with equal angle 
8 = 15" so that it is returned to its original upstream direction. Calculate the 
Mach number and pressure downstream of the compression comer. 

4.13 Consider the incident and reflected shock waves as sketched in Fig. 4.17. 
Show by means of sketches how you would use shock polars to solve for 
the reflected wave properties. 

4.14 Consider a supersonic flow past a compression comer with 6 = 20". The 
upstream properties are M I  = 3 and pl = 21 161b/ft2. A Pitot tube is inserted 
in the flow downstream of the comer. Calculate the value of pressure 
measured by the Pitot tube. 

4.15 Can shock polars be used to solve the intersection of shocks of opposite 
families, as sketched in Fig. 4.23? Explain. 
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4.16 Using shock-expansion theory, calculate the lift and drag (in pounds) on a 
symmetrical diamond airfoil of semiangle E = 15 (see Fig. 4.35) at an angle 
of attack to the free stream of 5" when the upstream Mach number and 
pressure are 2.0 and 21 16 1b/ft2, respectively. The maximum thickness of the 
airfoil is t = 0.5 ft. Assume a unit length of 1 ft in the span direction 
(perpendicular to the page in Fig. 4.35). 

4.17 Consider a flat plate with a chord length (from leading to trailing edge) of 
1 m. The free-stream flow properties are M I  = 3, pl = 1 atm, and TI = 
270 K. Using shock-expansion theory, tabulate and plot on graph paper these 
properties as functions of angle of attack from 0 to 30" (use increments of 5 ' ) :  

a. Pressure on the top surface 

b. Pressure on the bottom surface 
c .  Temperature on the top surface 

d. Temperature on the bottom surface 

e. Lift per unit span 
f. Drag per unit span 

g. Liftldrag ratio 

(Note: The results from this problem will be used for comparison with linear 
supersonic theory in Chap. 9.) 

4.18 A flat plate is immersed in a Mach 2 flow at standard sea level conditions at 
an angle of attack of 2'. Assuming the same shear stress distribution given in 
Example 1.8, calculate, per unit span: (a) lift, ( 6 )  wave drag, and ( c )  skin 
friction drag. What percentage of the total drag is skin-friction drag? Compare 
this percentage with the 10" angle of attack case discussed in Example 1.8. 

4.19 Calculate the drag coefficient for a wedge with a 20" half-angle at Mach 4. 
Assume the base pressure is free-stream pressure. 

4.28 The flow of a chemically reacting gas is sometimes approximated by the use 
of relations obtained assuming a calorically perfect gas, such as in this 
chapter, but using an "effective gamma", a ratio of specific heats less than 1.4. 
Consider the Mach 3 flow of chemically reacting air, where the flow is 
approximated by a ratio of specific heats equal to 1.2. If this gas flows over a 
compression corner with a deflection angle of 20 degrees, calculate the wave 
angle of the oblique shock. Compare this result with that for ordinary air with 
a ratio of specific heats equal to 1.4. What conclusion can you make about the 
general effect of a chemically reacting gas on wave angle? 

4.21 For the two cases treated in Problem 4.20, calculate and compare the pressure 
ratio (shock strength) across the oblique shock wave. What can you conclude 
about the effect of a chemically reacting gas on shock strength? 
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Quasi-One-Dimensional Flow 

The vvhole pmblem of uerodynumics, both subsonic und supersonic, mu? he 
surrnnrd up in one sentence: Aerodynamics is the sciencr of'slowing-dmvn the clir 
without loss, c!frrr it hubs once been accrlemted by any device, such us wing or ci 
wind tunnel. I t  is thus good aerodynamic practice to aiwirl ucmlerating the air 
mow than is necessary 

W. F. Hilton, 1951 
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1 Control osnel 5 Comnressw 

Figure 5.1 1 The NASA Ames 6 x 6-foot supersonic wind tunnel with supporting facilities. The 6 x &foot label 
applies to the test section with a square cross-section six feet on each side. 
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two- ox three-dimmsiona& shape, such as sketched in very special and important relation for quasi-one- 
Fig. 5.4, seems contradictory. We will dscuss and re- dimensional f l o ~  called the area-velocity relation, 
solve this apparent contradiction in the present chapter. which will tell us a lot about the physics of such flows. 

The roadmap for the present chapter is given in With these equations and relations, we go to the main 
Fig. 5.5. Under the banner of quasi-one-dimensional features of this chapter. rhe study of flows through noz- 
flow, we first move to the left side of the roadmap and zles and diffusers. The material of this chapter is pivotal 
obtain the Fundamental equations that govern such to many applications in  compressible flow-please pay 

of the Ames 6 x 6-foot supersonic wind tunnel. The test 

(continued on next page) 
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Nozzles m 

QUASI-ONE-DIMENSIONAL FLOW 

I 
I 

I 

Figure 9.9 I Roadmap for Chapter 5. 

Fundamental governing 
equations 

5.1 1 INTRODUCTION 

Area-veloc~ty 
relatmn 

The distinction between one-dimensional flow and quasi-one-dimensional fl on was 
discussed in Sec. 3.1, which should be reviewed by the reader before proceeding fur- 
ther. In Sec. 3.1, as throughout all of Chap. 3, one-dimensional flow was treated as 
strictly constant-area flow. In the present chapter, this restriction will be relaxed by 
allowing the streamtube area A to vary with distance x, as shown in Figs. 3.511 and 
5.4. At the same time, we will continue to assume that all flow properties are uniform 
across any given cross section of the flow, and hence are functions of .x only (and time 
t if the flow is unsteady). Such a flow, where A = A(.\-). p = p(a), p = p ( . ~ ) .  and 
V = 11 = u(.r)  for steady flow, is defined as q~~a.si-one-di:~~et~~sioi~cil ,$'on,. For this 
flow, it is the urea chutzge that causes the flow properties to vary as a function of .t-; in 
contrast, for the purely one-dimensional constant area flow treated in Chap. 3. it  is a 
normal shock, heat addition and/or friction that causes the flow properties to vary as 
a function of x. In Sec. 5.2, the governing equations for steady quasi-one-dimensional 
flow will be derived by applying our conservation principles to a control volume of 
variable area. In the process, the reader is cautioned that quasi-one-dimensional flow 
is an approximation-the flow in the variable-area streamtube shown i n  Figs. 3% 
and 5.4 is (strictly speaking) three-dimensional, and its exact solution must be carried 
out by methods such as those discussed in Chaps. 11 and 12. However, for a wide 
variety of engineering problems, such as the study of flow through wind tunnels and 
rocket engines, quasi-one-dimensional results are frequently sufficient. Indeed. the 
material developed in this chapter is used virtually daily by practicing gas dynami- 
cists and aerodynamicists, and is indispensable toward a full understanding of corn- 
pressible flow. 

- Continuity - Momentum - Energy 

I 
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5.2 1 GOVERNING EQUATIONS 
Let us first examine the physical implications of the assumption of quasi-one- 
dimensional flow. Return to Fig. 3.5b for a moment, where the actual physical flow 
through the variable-area duct is three-dimensional, and the flow properties vary as 
a function of x ,  y,  and z .  Now examine Fig. 5.4, which illustrates the quasi-one- 
dimensional assumption that the flow through the variable-area duct varies only as a 
function of x, i.e., u = u(x) ,  p ( x ) ,  etc. This is tantamount to assuming that the flow 
properties are uniform across any given cross section of area A, and that they repre- 
sent values that are some kind of mean of the actual flow properties distributed over 
the cross section. It is clear that quasi-one-dimensional flow is an approximation to 
the actual physics of the flow. 

On the other hand, we obtain in this section the governing equations for quasi-one- 
dimensional flow which exactly enforce mass conservation, Newton's second law, 
and the first law of thermodynamics for such a flow. Hence, the equations are not 
approximate-they are exact representations of our conservation equations applied to 
a physical model that is approximate. Please keep in mind that the equations derived in 
this section exactly enforce our basic flow conservation principles; there are no com- 
promises here in regard to the overall physical integrity of the flow. We preserve this 
physical integrity by utilizing the integral forms of the conservation equations ob- 
tained in Chap. 2, applied in a mathematically exact manner to the model of the flow 
shown in Fig. 5.4, which is physically approximate. Let us see how this is done. 

Algebraic equations for steady quasi-one-dimensional flow can be obtained 
by applying the integral form of the conservation equations to the variable-area con- 
trol volume sketched in Fig. 5.6. For example, the continuity equation, Eq. (2.2), 
repeated here for convenience, 

Figure 5.6 1 Finite control volume for 
quasi-one-dimensional flow. 
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when integrated over the control volume in Fig. 5.6 leads, for steady flow, directly to 

This is the continuity equation for steady quasi-one-dimensional flow. Note that in 
Eq. (5.1) the term pl u 1 A I is the surface integral over the cross section at location 1, 
and p2u2A2 is the surface integral over the cross section at location 2. The surface 
integral taken over the side of the control surface between locations 1 and 2 is zero, 
because the control surface is a streamtube; hence V is assumed oriented along the 
surface, and hence V .  d S  = 0 along the side. 

The integral form of the momentum equation, repeated from Eq. (2.1 I), is 

Applied to Fig. 5.6, assuming steady flow and no body forces, it directly becomes 

This is the momentum equation for steady quasi-one-dimensional flow. Note that it 
is not strictly an algebraic equation because of the integral term which represents the 
pressure force on the sides of the control surface between locations 1 and 2. 

The integral form of the energy equation, repeated from Eq. (2.20), is 

Applied to Fig. 5.6, and assuming steady adiabatic flow with no body forces, it di- 
rectly yields 

Rearranging, 

Divide Eq. (5.3) by (5.1): 
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Noting that h = e + p/p, Eq. (5.4) becomes 
I I 

This is the energy equation for steady adiabatic quasi-one-dimensional flow-it 
states that the total enthalpy is constant along the flow: 

Note that Eqs. (5.5) and (5.6) are identical to the adiabatic one-dimensional en- 
ergy equation derived in Chap. 3 [see Eq. (3.40)]. Indeed, this is a general result; in 
any adiabatic steady flow, the total enthalpy is constant along a streamline-a result 
that will be proven in Chap. 6. Also note that Eqs. (5.1) and (5.2), when applied to the 
special case where Al  = A2,  reduce to the corresponding one-dimensional results 
expressed in Eqs. (3.2) and (3.5). 

In Chap. 6,  the general conservation laws will be expressed in differential rather 
than integral or algebraic forms, as done so far. As a precursor to this, differential 
expressions for the steady quasi-one-dimensional continuity, momentum, and energy 
equations will be of use to us now. For example, from Eq. (5. I ) ,  

Hence, 

u f d u  
To obtain a differential form of the momentum equation, apply Eq. (5.2) to the 

+ dp infinitesimal control volume sketched in Fig. 5.7, where the length in the x direction 
is dx: 

Figure 5.7 1 
Incremental 

Dropping all second-order terms involving products of differentials, this becomes 

volume. ~ d ~ + ~ u ~ d ~ + ~ u ~ d ~ + 2 p u ~ d u  = O  (5.8) 

Expanding Eq. (5.7), and multiplying by u, 

Subtracting this equation from Eq. (5.8), we obtain 

Equation (5.9) is called Euler's equation, to be discussed in Sec. 6.4. Finally, a dif- 
ferential form of t!le energy equation is obtained from Eq. (5.5), which states that 
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Hence, 

To reinforce the comments made at the beginning of this section, we emphasize 
that Eqs. (5.1), (5.2), (5.5), (5.7). (5.9), and (5.10) are exact representations of 
physics as applied to the approximate model of quasi-one-dimensional flow. So the 
basic fundamental physical principles stated in Chap. 2 are not compromised here. 
The only compromise with the true nature of the flow is the use of the simplified 
model of quasi-one-dimension4 flow. 

Return to the roadmap in Fig. 5.5. We have completed the left column, and we are 
now ready to use the fundamental governing equations for quasi-one-dimensional 
flow to study the properties of nozzle and diffuser flows. However. before going to 
these applications, we move to the right side of the roadmap and obtain the area- 
velocity relation. This relation is vital to understanding the physics of'the,fio~.: and we 
need this understanding before we go to the applications. 

5.3 1 AREA-VELOCITY RELATION 
A wealth of physical information regarding quasi-one-dimensional flow can be ob- 
tained from a particular combination of the differential forms of the conservation 
equations presented at the end of Sec. 5.2 as shown next. From Eq. (5.7). 

To eliminate dp/p from Eq. (5.1 l ) ,  consider Eq. (5.9): 

Recall that we are considering adiabatic, inviscid flow, i.e., there are no dissipative 
mechanisms such as friction, thermal conduction, or diffusion acting on the flow. 
Thus, the flow is isentropic. Hence, any change in pressure, dp, in the flow is ac- 
companied by a corresponding isentropic change in density, d p .  Therefore, we can 
write 

Combining Eqs. (5.12) and (5.13), 

dp u d u  u ' d u  
- -- 

. d u  
- - - - - M - -  

P ci a 7 u  ii 
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u ~ncreaslng 4 u decreasing 

u increasing - - u decreasing 

Figure 5.8 1 Flow in converging and diverging ducts. 

Substituting Eq. (5.14) into Eq. (5.1 l), 

Equation (5.15) is an important result. It is called the area-velocity relation, and it 
tells us this information: 

For M -+ 0, which in the limit corresponds to incompressible flow, Eq. (5.15) 
shows that Au = const. This is the familiar continuity equation for 
incompressible flow. 

For 0 5 M < 1 (subsonic flow), an increase in velocity (positive du) is 
associated with a decrease in area (negative dA), and vice versa. Therefore, 
the familiar result from incompressible flow that the velocity increases in a 
converging duct and decreases in a diverging duct still holds true for subsonic 
compressible flow (see top of Fig. 5.8). 
For M > 1 (supersonic flow), an increase in velocity is associated with an 
increase in area, and vice versa. Hence, we have a striking difference in 
comparison to subsonic flow. For supersonic flow, the velocity increases in a 
diverging duct and decreases in a converging duct (see bottom of Fig. 5.8). 

For M = 1 (sonic flow), Eq. (5.15) yields dA/A = 0, which mathematically 
corresponds to a minimum or maximum in the area distribution. The minimum 
in area is the only physically realistic solution, as described next. 

These results clearly show that for a gas to expand isentropically from subsonic 
to supersonic speeds, it must flow through a convergent-divergent duct (or stream- 
tube), as sketched at the top of Fig. 5.9. Moreover, at the minimum area that divides 
the convergent and divergent sections of the duct, we know from item 4 above that the 
flow must be sonic. This minimum area is called a throat. Conversely, for a gas 
to compress isentropically from supersonic to subsonic speeds, it must also flow 
through a convergent-divergent duct, with a throat where sonic flow occurs, as 
sketched at the bottom of Fig. 5.9. 

From this discussion, we recognize why rocket engines have large, bell-like 
nozzle shapes as sketched in Fig. 5.10-to expand the exhaust gases to high-velocity, 



u increasing 
M < I  - M > l  

Figure 5.9 1 Flow i n  a convcrgcnt- 
divergent duct. 

Combustion 
Exhaust nozrle - 

Figure 5.10 1 Schematic o f  a rocket engine. 

supersonic speeds. This bell-like shape is clearly evident in the photograph of the 
space shuttle main engine shown in Fig 5.3. Moreover, we can infer the configuration 
of a supersonic wind tunnel, which is designed to first expand a stagnant gas to su- 
personic speeds for aerodynamic testing, and then compress the supersonic stream 
back to a low-speed subsonic flow before exhausting it to the atmosphere. This gen- 
eral configuration is illustrated in Fig. 5.1 I .  Stagnant gas is taken from a reservoir 
and expanded to high subsonic velocities in the convergent portion of thc nozzle. At 
the minimum area (the first throat), sonic flow is achieved. Downstream of the throat. 
the flow goes supersonic in the divergent portion of the n o ~ ~ l e .  At the end of the no/- 
zle, designed to achieve a specified Mach number. the supersonic flow enters the test 
section. where a test model or other experimental device is usually situated. Down- 
stream of the test section, the supersonic flow enters a diffuser, where it is slowed 
down in a convergent duct to sonic flow at the second throat, and then further slowed 
to low subsonic speeds in a divergent duct. finally being exhausted to the atmosphere. 
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1st throat 2d throat 

1 
M > l  M = l  p = p ,  M <  I 

Reservoir I de Lava1 - Test - A Diffuser 
4 - - - - - 

nozzle section 

Figure 5.11 1 Schematic of a supersonic wind tunnel. 

This discussion, along with Fig. 5.11, is a simplistic view of real supersonic wind 
tunnels, but it serves to illustrate the basic phenomena as revealed by the area- 
velocity relation, Eq. (5.15). Also note that a convergent-divergent nozzle is some- 
times called a de Laval (or Laval) nozzle, after Carl G. P. de Laval, who first used 
such a configuration in his steam turbines in the late nineteenth century, as described 
in Secs. 1.1 and 5.8. 

The derivation of Eq. (5.15) utilized only the basic conservation equations-no 
assumption as to the type of gas was made. Hence, Eq. (5.15) is a general relation 
which holds for real gases and chemically reacting gases, as well as for a perfect 
gas-as long as the flow is isentropic. We will visit this matter again in Chap. 17. 

The area-velocity relation is a differential relation, and in order to make quanti- 
tative use of it, we need to integrate Eq. (5.15). However, there is a more direct way 
of obtaining quantitative relations for quasi-one-dimensional flow, which we will see 
in the next section. The primary importance of the area-velocity relation is the in- 
valuable physical information it provides, as we have already discussed. 

We now move to the bottom of our roadmap in Fig. 5.5. Using the fundamental 
governing equations as well as the physical information provided by the area-velocity 
relation, we examine the first of the two central applications in this chapter-flows 
through nozzles. 

5.4 1 NOZZLES 
The analysis of flows through variable-area ducts in a general sense requires numer- 
ical solutions such as those to be discussed in Chap. 17. However, based on our ex- 
perience obtained in Chaps. 3 and 4, we suspect (correctly) that we can obtain 
closed-form results for the case of a calorically perfect gas. We will divide our dis- 
cussion into two parts: (1) purely isentropic subsonic-supersonic flow through noz- 
zles and (2) the effect of different pressure ratios across nozzles. 

5.4.1 Isentropic Subsonic-Supersonic Flow of  a Perfect 
Gas through Nozzles 

Consider the duct shown in Fig. 5.12. At the throat, the flow is sonic. Hence, denot- 
ing conditions at sonic speed by an asterisk, we have, at the throat, M* = 1 and 
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Figure 5.12 1 Geometry for 
derivation of the area Mach 
number relation. 

u* = a*. The area of the throat is A*. At any other section of the duct, the local area, 
Mach number, and velocity are A ,  M, and u, respectively. Apply Eq. (5. I) between 
these two locations: 

Since u* = a*,  Eq. (5.16) becomes 

where p, is the stagnation density defined in Sec. 3.4, and is constant throughout the 
isentropic flow. Repeating Eq. (3.3 I ) ,  

and apply this to sonic conditions, we have 

Also, by definition, and from Eq. (3.37), 
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Squaring Eq. (5.17), and substituting Eqs. (3.31), (5.18), and (5.19), we have 

Equation (5.20) is called the area-Mach number relation, and it contains a striking 
result. Turned inside out, Eq. (5.20) tells us that M = f (AIA*), i.e., the Mach num- 
ber at any location in the duct is a function of the ratio of the local duct area to the 
sonic throat area. As seen from Eq. (5.15), A must be greater than or at least equal to 
A*; the case where A < A* is physically not possible in an isentropic flow. Also, 
from Eq. (5.20) there are two values of M that correspond to a given A/A* > 1, a 
subsonic and a supersonic value. The solution of Eq. (5.20) is plotted in Fig. 5.13. 

Area ratio, AlA*  

Figure 5.13 1 Area-Mach number relation. 
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Figure 5.14 1 Isentropic supersonic nozzle flow 

which clearly delineates the subsonic and supersonic branches. Values of A/A* as a 
function of M are tabulated in Table A. 1 for both subsonic and supersonic flow. 

Consider a given convergent-divergent nozzle, as sketched in Fig. 5 . 14~ .  Assume 
that the area ratio at the inlet AJA* is very large, A;/A* + m, and that the inlet is fed 
with gas from a large reservoir at pressure and temperature p, and To, respectively. 
Because of the large inlet area ratio, M = 0; hence p, and T, are essentially stagna- 
tion (or total) values. (The Mach number cannot be precisely zero in the reservoir, 
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or else there would be no mass flow through the nozzle. It is a finite value, but small 
enough to assume that it is essentially zero.) Furthermore, assume that the given 
convergent-divergent nozzle expands the flow isentropically to supersonic speeds at 
the exit. For the given nozzle, there is only one possible isentropic solution for super- 
sonic flow, and Eq. (5.20) is the key to this solution. In the convergent portion of the 
nozzle, the subsonic flow is accelerated, with the subsonic value of M dictated by the 
local value of A/A* as given by the lower branch of Fig. 5.13. The consequent vari- 
ation of Mach number with distance x along the nozzle is sketched in Fig. 5.146. At 
the throat, where the throat area A, = A*, M = 1. In the divergent portion of the 
nozzle, the flow expands supersonically, with the supersonic value of M dictated by 
the local value of A/A* as given by the upper branch of Fig. 5.13. This variation of 
M with x in the divergent nozzle is also sketched in Fig. 5.146. Once the variation of 
Mach number through the nozzle is known, the variations of static temperature, pres- 
sure, and density follow from Eqs. (3.28), (3.30), and (3.31), respectively. The result- 
ing variations of p and Tare shown in Figs. 5 . 1 4 ~  and d, respectively. Note that the 
pressure, density, and temperature decrease continuously throughout the nozzle. Also 
note that the exit pressure, density, and temperature ratios, p,/p,,  p,/p,, and T, /T ,  
depend only on the exit area ratio, A,/A* via Eq. (5.20). If the nozzle is part of a 
supersonic wind tunnel, then the test section conditions are completely determined 
by APIA* (a geometrical design condition) and p, and T, (gas properties in the 
reservoir). 

5.4.2 The Effect of Different Pressure Ratios Across a Given Nozzle 

If a convergent-divergent nozzle is simply placed on a table, and nothing else is done, 
obviously nothing is going to happen; the air is not going to start rushing through the 
nozzle of its own accord. To accelerate a gas, a pressure difference must be exerted, 
as clearly stated by Euler's equation, Eq. (5.9). Therefore, in order to establish a flow 
through any duct, the exit pressure must be lower than the inlet pressure, i.e., 
pe/p ,  < 1.  Indeed, for completely shockfree isentropic supersonic flow to exist in 
the nozzle of Fig. 5.14a, the exit pressure ratio must be precisely the value of pe/p,  
shown in Fig. 5 .14~ .  

What happens when p,/p,  is not the precise value as dictated by Fig. 5.14c? In 
other words, what happens when the backpressure downstream of the nozzle exit is 
independently governed (say by exhausting into an infinite reservoir with control- 
lable pressure)? Consider a convergent-divergent nozzle as sketched in Fig. 5 . 1 5 ~ .  
Assume that no flow exists in the nozzle, hence p, = p,. Now assume that p, is 
minutely reduced below p,. This small pressure difference will cause a small wind 
to blow through the duct at low subsonic speeds. The local Mach number will in- 
crease slightly through the convergent portion of the nozzle, reaching a maximum at 
the throat, as shown by curve I of Fig. 5.15b. This maximum will not be sonic; in- 
deed it will be a low subsonic value. Keep in mind that the value A* defined earlier 
is the sonic throat area, i.e., that area where M = 1.  In the case we are now consid- 
ering, where M < 1 at the minimum-area section of the duct, the real throat area 
of the duct, A, ,  is larger than A*, which for completely subsonic flow takes on the 
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Figure 5.15 1 Subsonic flow in a convergent-divergent nozzle. 

character of a reference quantity different from the actual geometric throat area. 
Downstream of the throat, the subsonic flow encounters a diverging duct. and hence 
M decreases as shown in Fig. 5.15b. The corresponding variation of static pressure is 

given by curve 1 in Fig. 5 . 1 5 ~ .  Now assume p, is further reduced. This stronger pres- 
sure ratio between the inlet and exit will now accelerate the flow more, and the vari- 
ations of subsonic Mach number and static pressure through the duct will be larger. 
as indicated by curve 2 in Figs. 5.15b and c. If p, is further reduced, there will be 
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some value of p, at which the flow will just barely go sonic at the throat, as given by 
the curve 3 in Figs. 5.15b and c. In this case, A, = A*. Note that all the cases 
sketched in Figs 5.15b and c are subsonic flows. Hence, for subsonic flow through 
the convergent-divergent nozzle shown in Fig. 5.15a, there are an infinite number of 
isentropic solutions, where both p,/p,  and A/A,  are the controlling factors for the 
local flow properties at any given section. This is a direct contrast with the supersonic 
case discussed in Sec. 5.4.1, where only one isentropic solution exists for a given 
duct, and where AIA* becomes the only controlling factor for the local flow proper- 
ties (relative to reservoir properties). 

For the cases shown in Figs. 5.15a, b, and c, the mass flow through the duct in- 
creases as p, decreases. This mass flow can be calculated by evaluating Eq. (5.1) 
at the throat, m = p,A,u, .  When p, is reduced to p,,, where sonic flow is attained 
at the throat, then m = p*A*a*.  If p, is now reduced further, p, < p,,, the Mach 
number at the throat cannot increase beyond M = 1; this is dictated by Eq. (5.15). 
Hence, the flow properties at the throat, and indeed throughout the entire subsonic 
section of the duct, become "frozen" when p, < p,,, i.e., the subsonic flow be- 
comes unaffected and the mass flow remains constant for p, < p,,. This condition, 
after sonic flow is attained at the throat, is called chokedjow. No matter how low p, 
is made, after the flow becomes choked, the mass flow remains constant. This phe- 
nomenon is illustrated in Fig. 5.16. Note from Eq. (3.35) that sonic flow at the throat 
corresponds to a pressure ratio p*/p, = 0.528 for y = 1.4; however, because of the 
divergent duct downstream of the throat, the value of p, , /p ,  required to attain sonic 
flow at the throat is larger than 0.528, as shown in Figs. 5 . 1 5 ~  and 5.16. 

What happens in the duct when p, is reduced below p,,? In the convergent 
portion, as we stated, nothing happens. The flow properties remain as given by the 
subsonic portion of curve 3 in Fig. 5.1% and c. However, a lot happens in the di- 
vergent portion of the duct. No isentropic solution is allowed in the divergent duct 
until p, is adequately reduced to the specified low value dictated by Fig. 5 . 1 4 ~ .  For 
values of exit pressure above this, but below p,, , a normal shock wave exists inside 
the divergent duct. This situation is sketched in Fig. 5.17. Let the exit pressure be 
given by p,, . There is a region of supersonic flow ahead of the shock. Behind the 

Exit pressure 

Figure 5.16 1 Variation of mass flow with exit 
pressure; illustration of choked flow. 
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Figure 5.17 1 Flow with a shock wave inside a convergent-divergent nozzle 

shock, the flow is subsonic, hence the Mach number decreases towards the exit and 
the static pressure increases to p,, at the exit. The location of the normal shock 
wave in the duct is determined by the requirement that the increase of static pres- 
sure across the wave plus that in the divergent portion of the subsonic flow behind 
the shock be just right to achieve p,, at the exit. As the exit pressure is reduced fur- 
ther, the normal shock wave will move downstream, closer to the nozzle exit. It 
will stand precisely at the exit when p, = p,, ,  where p,, is the static pressure 
behind a normal shock at the design Mach number of the nozzle. This is illustrated 
in Figs. 5.18u, b, and c. In Fig. 5.18c, p,, represents the proper isentropic value for 
the design exit Mach number, which exists immediately upstream of the normal 
shock wave standing at the exit. When the downstream backpressure p~ is further 
decreased such that p,, < ps < p,, , the flow inside the nozzle is fully supersonic 
and isentropic, with the behavior the same as given earlier in Figs. 5.14 a ,  b, c, 
and d .  The increase to the backpressure takes place across an oblique shock at- 
tached to the nozzle exit, but outside the duct itself. This is sketched in Fig. 5.18d. 
If the backpressure is further reduced below p,,, equilibration of the flow takes 
place across expansion waves outside the duct, as shown in Fig. 5.18e. 

When the situation in Fig. 5.18d exists, the nozzle is said to be overexpanded, 
because the pressure at the exit has expanded below the back pressure, p,, i p ~ .  
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Normal shock 

I 

Flow - II 

Figure 5.18 1 Flow with shock and expansion waves at the exit 
of a convergent-divergent nozzle. 

Conversely, when the situation in Fig. 5.18e exists, the nozzle is said to be underex- 
panded, because the exit pressure is higher than the back pressure, p,, > p ~ ,  and 
hence the flow is capable of additional expansion after leaving the nozzle. 

The results of this section are particularly important and useful. The reader 
should make certain to reread this section until he or she feels comfortable with 
the concepts and results before proceeding further. Also, keep in mind that these 
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quasii-one-dimensional considerations allow the analysis of cross-sectional averaged 
properties inside a nozzle of given shape. They d o  not tell us much about how to de- 
sign the contour of a nozzle-especially that for a supersonic nozrle in order to en- 
sure shockfree, isentropic flow. If the shape of the walls of a supersonic nozzle is not 
just right, oblique shock waves can occur inside the nozzle. The proper contour for a 
supersonic nozzle can be determined from the method of characteristics. to be diu- 
cussed in Chap. I I .  

Consider the isentropic subsonic-supersonic flow through a convergent-divergent norrlc. The 
reservoir pressure and temperature are 10 atm and 300 K, respectively. There are two locations 
in the nozzle where A/AX = 6: one in the convergent section and the other in the divergent 
section. At each location, calculate M. p ,  T, and u.  

Solution 
In the convergrnt section, the flow is subsonic. From the front of Table A. 1, for subsonic flow 

with A/A* = 6: 1 M = 0.097 1. p,,/p = 1.006, and T,,/T = 1.002. Hence 

T 
T = - T,, = ( 1.002) ' (300) = 

T,, 

In the divergerlt section, the flow is supersonic. From the supersonic section of Table A.  I. for 
A/A* = 6: 1. p 3 , h  = 663.13, and T,,/T = 3.269. Hence 

-- 

A supersonic wind tunnel is designed to produce Mach 2.5 flow in the test section with stan- 
dard sea level conditions. Calculate the exit area ratio and reservoir conditions necessary to 
achieve these design conditions. 

Solution 
From Table A. I .  for M,  = 2.5: 

-4 p,./p'> = 17.09 T,,,lT, = 2.25 
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Also, at standard sea level conditions, p, = 1 atm and T, = 288 K. Hence, 

Consider a rocket engine burning hydrogen and oxygen; the combustion chamber temperature 
and pressure are 3517 K and 25 atm, respectively. The molecular weight of the chemically 
reacting gas in the combustion chamber is 16, and y = 1.22. The pressure at the exit of the 
convergent-divergent rocket nozzle is 1.174 x atm. The area of the throat is 0.4 m2. 
Assuming a calorically perfect gas and isentropic flow, calculate: (a) the exit Mach number, 
(b) the exit velocity, (c) the mass flow through the nozzle, and (d) the area of the exit. 

Solution 
Note that for this problem, where y = 1.22, the compressible flow tables in the appendix 
cannot be used since the tables are calculated for y = 1.4. Thus, to solve this problem, we 
have to use the governing equations directly. 

a. To obtain the exit Mach number, use the isentropic relation given by Eq. (3.30): 

To obtain the exit velocity: 

From Sec. 1.4, we know that 

c. Since we are given A* = 0.4 m2, let us calculate the mass flow at the throat. First, obtain 
p, from the equation of state: 

p, (25)(1.01 x lo5) 
p,, = - = = 1.382 kg/m3 

7 ;  (519.6)(3517) 
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From Eq. (3.36) 

p* = 0.622p,, = (0.622)(1.382) = 0.860kglm' 
From Eq. (3.34) 

rn = pA V = pXA*a* = (0.860)(0.4)(1417) = 

d. At the exit, since m = const, 

Consider the flow through a convergent-divergent duct with an exit-to-throat area ratio of 2. 
The reservoir pressure is 1 atm, and the exit pressure is 0.95 atm. Calculate the Mach numbers 

at the throat and at the exit. 

Solution 
First, let us analyze this problem. If the flow were supersonic in the divergent portion. then 
from Table A. l ,  for an area ratio of A,IA* = 2, p , , /p ,  = 10.69; thus p ,  would have to be 
pe = p,,/ 10.69 = ( l atm)/ 10.69 = 0.0935 atm. This is considerably less than the given p ,  = 

0.95 attn. Therefore, we do not have a subsonic-supersonic isentropic flow as was the case in 
Examples 5.1 through 5.3. Question: Is the flow completely subsonic'? If this were the case, the 
throat area A, is not equal to A*, and A, > A*. Let us examine A, and A * .  From Table A. I .  for 
p,,/p<. = 110.95 = 1.053, A,/A* = 2.17 (nearest entry). However, for the given problem, 
A,/A, = 2. Thus. A, > A', and the flow is completely subsonic. From Table A. 1 ,  since 
p,,/pc. = 1.053, we have 

At the throat, 

From Table A. I ,  for A,IA* = 1.085, we have 
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Consider a convergent-divergent duct with an exit-to-throat area ratio of 1.6. Calculate the 
exit-to-reservoir pressure ratio required to achieve sonic flow at the throat, but subsonic flow 
everywhere else. 

rn Solution 
Since M = 1 at the throat, A, = A*. Thus 

From Table A.l, the subsonic entry that corresponds to A,/A" = 1.6 is p,/p, = 1.11 17. 
Hence 

For this area ratio of Ae/A, = 1.6, if the exit-to-reservoir pressure ratio is greater than 0.9, 
the flow through the duct is completely subsonic. If this pressure ratio is less than 0.9, 
then the flow will expand to supersonic speed downstream of the throat. However, unless 
p,/p, = 117.128 = 0.1403, which corresponds to an isentropic expansion to the exit, there 
will be shock waves either at the lip of the nozzle (overexpanded case) or a normal shock 
somewhere inside the duct. Which of these cases hold depends upon the prescribed value 

of P ~ I P O .  

Consider a convergent-divergent nozzle with an exit-to-throat area ratio of 3. A normal shock 
wave is inside the divergent portion at a location where the local area ratio is A/A, = 2. Cal- 
culate the exit-to-reservoir pressure ratio. 

rn Solution 
For this case, we have an isentropic subsonic-supersonic expansion through the part of the 
nozzle upstream of the normal shock. Let the subscripts 1 and 2 denote conditions immediately 
upstream and downstream of the shock, respectively. The local Mach number MI just ahead 
of the shock is obtained from Table A.l for AI /AT = 2, namely MI = 2.2. From Table A.2, 
for MI =2.2, M2 =0.5471 andp,,/p,, =0.6281. FromTableA.1, for M2 =0.5471, we 
have A2/A; = 1.27. Note an important fact at this stage of our calculation. The normal shock 
is assumed to be infinitely thin, hence Al = A2. However, we have previously shown that 
A1/A; = 2 and A2/A; = 1.27. Clearly, the value of A* changes across the shock wave. 

This is due to the entropy increase across the shock. A; is the flow area necessary to achieve 
Mach 1 isentropically in the flow upstream of the shock, and A; is the flow area necessary 
to achieve Mach 1 isentropically in the flow downstream of the shock. Since the entropy is 
different for these two flows, then A* is different for the two flows. Proceeding with the 
calculation, 
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The flow is subsonic behind the normal shock wave, and hence is subsonic throughout the 
remainder of the divergent portion downstream of the shock. Thus, from the subsonic entries 
in Table A.1, we have for A,/Af = 1.905, Me = 0.32 and p,,( /p, = 1.074. Thus, since p,, = 

I),,, and P , ~  = p,,, , we have 

PP PC Po, PO? POI - -  - - (I)(O.6281 ) ( I )  = 
Po Po, Po2 Pol 1'0 

Example 5.6 treated the case of a normal shock standing inside a nozzle. In this 
example, the location of the normal shock inside the nozzle was given, and the exit-to- 
reservoir pressure ratio. pt,/p, , ,  was calculated. This is a straightforward calculation, 
as demonstrated in Example 5.6. However, in most applications we are not given the 
location of the shock, but rather we know the pressure ratio p , / p ,  across the nozzle, 
and we want to find the location of the shock (i.e., the value of AIA,, where the shock 
is standing). In this situation, we can take either of two approaches. 

The first approach is an iterative solution. Assume the location of the shock in 
the nozzle, i.e., assume the value of AIA, for the shock. Then calculate the pressure 
ratio pP/po  that would correspond to the shock in this assumed location, using the ap- 
proach taken in Example 5.6. Check to see if p , /p ,  from this calculation agrees with 
the specified value of p, /p , .  If not, assume another location of the shock, and calcu- 
late the new value of p , /p ,  corresponding to this new shock location. Repeat this 
iterative process until the proper shock location is found that will yield a calculated 
p,/p,,  that agrees with the specified value. 

The second approach is direct, but more elaborate. Consider a normal shock 
standing inside a nozzle, as sketched in Fig. 5.19. The reservoir pressure is p ,  and the 
static pressure at the exit is p,;  the pressure ratio across the nozzle is therefore p,/p,, .  
Immediately upstream of the shock (condition l), the total pressure is p,,, . Because 
the flow is isentropic between the reservoir and location 1, p,,, = p,.  Recall that A* is 
a constant value everywhere upstream of the shock, and is equal to the throat area, A, .  
Denote this value of A* by AT. Immediately downstream of the shock (condition 2), 
the total pressure is pO,. Also, recall that the value of A* changes across the shock. 
Denote the value of A* downstream of the shock by A;, which is a constant value 

Figure 5.19 1 Conditions associated with a normal 
shock standing inside a nozzle. 
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everywhere downstream of the shock. The mass flow at any location in the nozzle is 
m = puA. In Problem 5.6 at the end of this chapter, you are asked to derive this 
equation for the mass flow through a choked nozzle: 

where A* is equal to the throat area, and po and To are the reservoir pressure and tem- 
perature, respectively. Since Eq. (5.21) is of the form 

we see that mass flow is directly proportional to ~ , A * / ( T , ) ' / ~ .  Since both the mass 
flow and To are constant across the shock wave in Fig. 5.19, we have from Eq. (5.21): 

poA* = constant across a shock wave 

Pol A; = (5.22) 

Referring to Fig. 5.19, since the flow is isentropic from location 2 to the exit, 
poe = poz and A: = A;. Thus, Eq. (5.22) becomes 

pol AT = pOe A: 

Hence, from Eq. (5.23) we can write 

In Eq. (5.24), pe/po, is the specified pressure ratio across the given nozzle. Also, 
A,/AT is the known exit-to-throat area ratio for the given nozzle. Hence the right- 
hand side of Eq. (5.24) is a known number, and therefore the ratio ( p e A e ) / ( p o e A : )  is 
a known number. This ratio can be expressed in terms of the exit Mach number as 
shown next. 

From Eq. (3.30), we can write 

Y - 1  
-Y/(Y-~) 

fi = (1 + M:) 
Po, 

and from Eq. (5.20) we can write 

The product of Eqs. (5.25) and (5.26) is 
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Solving Eq. (5.27) for M:, we have 

Since p O e A : / p , A .  is a known number from Eq. (5.24), Eq. (5.28) allows the direct 
calculation of the exit Mach number. Keep in mind that for the flow shown in 
Fig. 5.19, M ,  will be a subsonic value. 

The remaining steps required to solve for the location of the normal shock are 

1. For the value of M ,  obtained from Eq. (5.28), obtain p , , / p ,  from Table A. 1 .  

2. Calculate the ratio of the total pressure across the shock from 

where pe /po ,  is the specified pressure ratio across the nozzle. 

3. For the value of p , , / p o l  calculated from Eq. (5.29), obtain M I  from Table A.2. 
4. For the value of M I ,  obtain A I /AT from Table A. 1. 

Since A I /AT = A 1 / A , ,  the value of A I /A;  obtained from step 4 is the location of the 
normal shock wave inside the nozzle. 

Consider a convergent-divergent nozzle with an exit-to-throat area ratio of 3. The inlet reser- 
voir pressure is I atm and the exit static pressure is 0.5 atm. For this pressure ratio, a normal 
shock will stand somewhere inside the divergent portion of the nozzle. Calculate the location 
of the shock wave using (a) a trial-and-error solution and (b) the direct solution. Compare the 
results. 

Solution 
a. Assume AIA, = A/A; = 2.3. From TableA.l, M I  = 2.35. From TableA.2, M2 = 0.5286 

and p, l , /pol  = 0.5615. From Table A.1, for M2 = 0.5286, A / A ;  = 1.303. (Recall that 
we are using nearest entries in the table.) Hence, 

A,. A, A; A ----- - 
A: AT A A; 

For A, /A;  = 1.7, from Table A. I ,  M, = 0.36, and po , /p ,  = 1.094. Hence, 

Pe Po? I 
pr = - - p o l  = -(0.5615)(1) = 0.513atm 

Po? Po 1 1.094 

Since p, should be 0.5 atm, assume a new A / A ;  (closer to the exit), and start over 
again. Assume A/AY = 2.4. For this, M I  = 2.4, M2 = 0.5231, pO2/p , ,  = 0.5401 , and 
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A/Af = 1.303. (Again, recall that we are using nearest entries.) Hence, A,/A; = 

(3)(1/2.4) (1.303) = 1.629. With this, Me = 0.39 and p,</p, = 1.1 11. Hence, 

Pe POZ 
pe = --pol = L(0.5401)(1) = 0.486atm 

Po, Po1 1.111 

Since p, should be 0.5 atm, the value of 0.486 atm is too low by about the same amount 
as the first iteration is too high. Splitting the difference, the correct location of the normal 

shock wave is approximately -1. 
b. Using the direct method, from the specified conditions 

From Eq. (5.24), 

~e Ae 
- = 1.5 
PO, A: 

From Eq. (5.28) 

Hence, 

M, = 0.38 

From Table A. l for M, = 0.38, p,< /pe = 1.094. From Eq. (5.29), 

Po2 Po, Pe - - - 
Pol PePol 

From Table A.2, for po,/pol = 0.547, MI = 2.38. From Table A.l, for M I  = 2.38, 

A/AT = A/A, = 1. This direct answer compares to that obtained with the iteration in 

part (a) to within 0.4 percent. 

5.5 1 DIFFUSERS 
Let us go through a small thought experiment. Assume that we want to design a 
supersonic wind tunnel with a test section Mach number of 3 (see Fig. 5.1 1). Some 
immediate information about the nozzle is obtained from Table A.l; at M = 3 ,  
A,/A* = 4.23 and p,/p, = 36.7. Assume the wind tunnel exhausts to the atmos- 
phere. What value of total pressure p, must be provided by the reservoir to drive the 
tunnel? There are several possible alternatives. The first is to simply exhaust the 
nozzle directly to the atmosphere, as sketched in Fig. 5.20. In order to avoid shock 



5.5 Diffusers 

Figure 5.20 1 Nozzle exhausting directly 
to the atmosphere. 

p, = l atrn 

Po = 3.55 atrn 

normal shock 

Figure 5.21 1 Nozzle with a normal shock at the exit. 
exhausting to the atmosphere. 

or expansion waves in the test region downstream of the exit, the exit pressure p, 
must be equal to the surrounding atmospheric pressure, i.e., p, = 1 atm. Since 
p,/p<, = 36.7, the driving reservoir pressure for this case must be 36.7 atm. How- 
ever, a second alternative is to exhaust the nozzle into a constant-area duct which 
serves as the test section, and to exhaust this duct into the atmosphere, as sketched in 
Fig. 5.21. In this case, because the testing area is inside the duct, shock waves from 
the duct exit will not affect the test section. Therefore, assume a normal shock stands 
at the duct exit. The static pressure behind the normal shock is pz, and because the 
flow is subsonic behind the shock, p2 = p, = 1 atm. In this case, the reservoir pres- 
sure p,, is obtained from 

Po Pe 1 p,, = - - p, = 36.7- 1 = 3.55 atm 
P e  P2 10.33 

where pz /p ,  is the static pressure ratio across a normal shock at Mach 3, obtained 
from Table A.2. Note that, by the simple addition of a constant-area duct with a nor- 
mal shock at the end, the reservoir pressure required to drive the wind tunnel has 
markedly dropped from 36.7 to 3.55 atm. Now, as a third alternative, add a divergent 
duct behind the normal shock in Fig. 5.21 in order to slow the already subsonic flow 
to a lower velocity before exhausting to the atmosphere. This is sketched in Fig. 5.22. 
At the duct exit, the Mach number is a very low subsonic value, and for all practical 
purposes the local total and static pressure are the same. Moreover, assuming an 
isentropic flow in the divergent duct behind the shock, the total pressure at the 
duct exit is equal to the total pressure behind the normal shock. Consequently, 
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M S 1  
p ,  = 1 atm 

Pm = P o 2  

Figure 5.22 1 Nozzle with a normal-shock diffuser. The normal shock is 
slightly upstream of the divergent duct. 

p,, % p, = 1 atm. From Table A.2, the Mach number immediately behind the shock 
is M2 = 0.475, and the ratio of total to static pressure at this Mach number (from 
Table A. 1) is p,,/p2 = 1.17. Hence 

This is even better yet-the total pressure required to drive the wind tunnel has been 
further reduced to 3.04 atm. 

Take a look at what has happened! From Table A.2, note the ratio of total pres- 
sures across a normal shock wave at Mach 3 is p,,/p,, = 0.328. Hence p,, lp,, = 
110.328 = 3.04; this is precisely the pressure ratio required to drive the wind tunnel 
in Fig. 5.22! Thus, from this thought experiment, we infer that the reservoir pressure 
required to drive a supersonic wind tunnel (and hence the power required from the 
compressors) is considerably reduced by the creation of a normal shock and subse- 
quent isentropic diffusion to M % 0 at the tunnel exit, and that this pressure is sim- 
ply determined by the total pressure loss across a normal shock wave at the test sec- 
tion Mach number. 

The normal shock and divergent exhaust duct in Fig. 5.22 are acting as a specific 
mechanism to slow the air to low subsonic speeds before exhausting to the atmos- 
phere. Such mechanisms are called diffusers, and their function is to slow the JEow 
with as small a loss of total pressure as possible. Of course, the ideal diffuser would 
compress the flow isentropically, hence with no loss of total pressure. For example, 
consider the wind tunnel sketched in Fig. 5.11. After isentropically expanding 
through the supersonic nozzle and passing through the test section, conceptually the 
supersonic flow could be isentropically compressed by the convergent part of the dif- 
fuser to sonic velocity at the second throat, and then further isentropically com- 
pressed to low velocity in the divergent section downstream of the throat. This would 
take place with no loss in total pressure, and hence the pressure ratio required to drive 
the tunnel would be unity-a perpetual motion machine! Obviously, something 
is wrong. The problem can be seen by reflecting on the results of Chap. 4. When 
the convergent part of the diffuser changes the direction of the supersonic flow at 
the wall, it is extremely difficult to prevent oblique shock waves from occurring 
inside the duct. Moreover, even without shocks, the real-life effects of friction 
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between the flow and the diffuser surfaces cause a loss of total pressure. Therefore, 
the design of a perfect iaentropic diffuser is physically impossible. 

Accepting the fact that a perfect diffuser cannot be built. can we still hope to do 
better than the normal shock diffuser sketched in Fig. 5.22'? The answer is yes, be- 
cause it can easily be shown that the total pressure loss across a series of oblique 
shocks and a terminating weak normal shock is less than that across a single strong 
normal shock at the same upstream Mach number. (See Example 4.12 and Sec. 4.7.) 
Therefore, it would appear wise to replace the normal shock diffuser in Fig. 5.22 with 
an oblique shock diffuser as sketched in Fig. 5.23. Here, the test section flow at Mach 
number Mi, and static pressure pi, is slowed down through a series of oblique shock 
waves initiated by a compression corner at the inlet of the diffuser. further slowed by 
a weak normal shock wave at the end of the constant-area section, and then subsoni- 
cally compressed by a divergent section which exhausts to the atmosphere. At the 
diffuser exit, the static pressure is pi,, which for subsonic flow at the exit is equal to 
pm. In concept, this oblique shock diffuser should provide greater pressure recovery 
(smaller loss in total pressure) than a normal shock diffuser. However, in practice. the 
interaction of the shock waves in Fig. 5.23 with the viscous boundary layer on the 
diffuser walls creates an additional total pressure loss which tends to partially miti- 
gate the advantages of an oblique shock diffuser. The real flow through an oblique 
shock diffuser is shown in the photograph of Fig. 5.24. The shock waves and bound- 
ary layers are made visible by a schlieren system-an optical technique sensitive to 
density gradients in the flow. Note the decay of the diamond-shaped oblique shock 

" 
A,, -; A * (nozzle throat) ApZ  (diffuser throat) 

Figure 5.23 1 N o r h  with a conventional supersonic diffuser. 

Figure 5.24 1 Oblique shock pattern in a two-dimensional supersonic diffuser. The flow is 

from left to right, and the inlet Mach number is 5. (Photo was taken b?' the author at the 
Aerospclce Re.seurch 1,crhorurory. Wright-Puttrrsotl Air Force Ruse. OH.)  
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pattern due to viscous interaction downstream. The net result is that the full potential 
of an oblique shock diffuser is never fully achieved. 

In the literature, there are several figures of merit used to denote the efficiency 
of diffusers. For wind tunnel work, the most common definition of diffuser efficiency 
is to compare the actual total pressure ratio across the diffuser, pd,,/po, with the total 
pressure ratio across a hypothetical normal shock wave at the test section Mach 
number, p,,/p,, (using the nomenclature of Fig. 3.9). Let ;rlo denote diffuser effi- 
ciency. Then 

VD = 
(po2  shock at Me 

If, V D  = 1, then the actual diffuser is performing as if it were a normal shock diffuser. 
For low supersonic test section Mach numbers, diffusers in practice usually perform 
slightly better than normal shock (qD > 1); however, for hypersonic conditions, nor- 
mal shock recovery is about the best to be expected, and usually VD < 1 .+ 

Note from Figs. 5.1 1 and 5.23 that oblique shock diffusers have a minimum-area 
section, i.e., a throat. In wind tunnel nomenclature, the nozzle throat is called thefirst 
throat, with cross-sectional area A,, = A*; the diffuser throat is called the second 
throat, with area A,. Due to the entropy increase in the diffuser, A,, > At, . To prove 
this, assume that sonic flow exists at both the first and second throats. From Eq. (5.1) 
evaluated between the two throats, 

At, pi+ a? - - -- - 
At, 

From Secs. 3.4 and 3.5, a* and hence T* are constant throughout a given adiabatic 
flow. Thus, a;/a; = 1, and Eq. (5.32) becomes 

However, from the equation of state, 

Substituting Eq. (5.34) into (5.33), 

 o or a more extensive discussion of supersonic diffusers, as well as their application in a modem 
situation, see Chap. 12 of Ref. 21. 
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Since M I  = M l  = I .  and from Eq. (3.30) evaluated at locations I and 2, 

Eq. (5.35) can be written as 

Since the total pressure always decreases across shock waves and within boundary 
layers, p,,? will always be less than p,,, . Thus, from Eq. (5.36), the second throat must 
always be larger than the first throat. Indeed, if we know the values of total pressure 
at the two throats, then Eq. (5.36) tells us precisely how large to make the second 
throat. If A,, is made smaller than demanded by Eq. (5.36), the mass flow through the 
tunnel cannot be handled by the diffuser; the diffuser "chokes," and supersonic (low 
in the nozzle and test section is not possible. Note from Eq. (5.36) that only for a hy- 
pothetical perfect diffuser (with isentropic flow throughout) would the area of the 
second throat be equal to that of the first throat. 

For typical supersonic diffusers, the efficiency rlu is very sensitive to A,,. as 
sketched in Fig. 5.25. Note that as A,, is decreased from a large value. first in- 
creases, reaches a peak value, then rapidly decreases. The peak efficiency is obtained 
by a value of A,, slightly larger than given by Eq. (5.36). Keep in mind that the value 
of A,, obtained from Eq. (5.36) is the minimum allowed value that will pass the in- 
coming mass flow from the nozzle. Below this value, the flow will be choked, and the 
diffuser efficiency plummets. The value of A,2 from Eq. (5.36) is represented by the 
dashed vertical line in Fig. 5.25. At much higher values of A,, , there are no problems 
with passing the incoming mass flow; however, the diffuser efficiency is compro- 
mised because the supersonic flow from the inlet is not sufficiently compressed and 
hence remains supersonic in the second throat. In the downstream divergent portion, 
this supersonic flow tirst accelerates, and then passes through a normal shock near 
the diffuser exit. Since the Mach number is fairly high in front of the shock, the total 
pressure loss across the normal shock is large. This defeats the purpose of an oblique 
shock diffuser (namely. to have a weak normal shock occur at the second throat in a 
near sonic flow). As a result, for large A,,, the diffuser efficiency is low, as sketched 
in Fig. 5.25. 

Up to this stage in our discussion, the most serious problem with diffusers has 
not yet been mentioned-the starting problem. Consider again the wind tunnel 
sketched in Fig. 5.11. When the flow through this tunnel is first started (say by 
rapidly opening a pressure valve from the reservoir), a complicated transient flow 
pattern is established, which after a certain time interval settles to the familiar steady 
How which we have been discussing in this chapter. The starting process is complex 
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given Me r l  

Figure 5.25 1 Schematic of the variation of diffuser efficiency with second 
throat area. 

and is still not perfectly understood. However, it is usually accompanied by a normal 
shock wave that sweeps through the complete duct from the nozzle to the diffuser. 
When this starting normal shock wave is momentarily at the inlet to the diffuser, the 
second throat area must be large enough to pass the mass flow behind a normal shock. 
This value of A,, is given by Eq. (5.36) where now po,/po, is the total pressure ratio 
across a normal shock at the test section Mach number. This starting value of A, is 
represented by the solid vertical line in Fig. 5.25, and is always larger than the throat 
area for peak efficiency. If A,, is less than the starting value, the normal shock will re- 
main upstream of the diffuser, and the tunnel flow will not start properly. If A,, is 
equal to or greater than the starting value, the normal shock will proceed through (be 
"swallowed" by) the diffuser, and the tunnel flow will start properly. Therefore, 
examining Fig. 5.25, we see that a fixed-geometry diffuser designed with a second 
throat area large enough to allow the flow to start will operate at an efficiency 
less than maximum. Herein lies the advantage of variable-geometry diffusers, where 
the throat area can be changed by some mechanical or fluid dynamic means. In such 
a diffuser, the throat area is made large enough to start the flow, and then later is de- 
creased to obtain higher efficiency during running of the tunnel. However, the design 



and fabrication of variable-geometry diffusers is usually complex and expensive. and 
for this reason most operational wind tunnels use tixed-geometry diffusers. 

Our discussion on diffusers has focused on a wind tunnel application for illus- 
tration of the general phenomena. However. the analysis of the flow through inlets 
and diffusers for air-breathing jet engines follows similar argu~nents. The reader is 
encouraged to read Shapiro (Ref. 16) or Zucrow and Hoffman (Ref. 17) for extensive 
discussions on such supersonic inlets. 

The reader is cautioned not to take this discussion on diffusers too literall\. The 
actual flow through diffusers is a complicated three-dimensional interaction of {hock 
waves and boundary layers which is not well understood-even after a half-century 
o f  serious work on diffusers. Therefore, diffuser clrsi~n is i t l o w  of t r t l  urt t l ~ t r r ~  t r  

.scirncc.. Diffuser efficiency is influenced by a myriad of parameters such as A , ~ / A , ,  . 
M,,, entrance angle, second throat length, etc. Therefore. the design of a diffitser for 
a given application must be based on empirical data and inspiration. Rarely is the first 
version of the new diffuser ever completely successful. In this context, the discussion 
of diffusers in this section is intended for general guidance only. 

Consider the wind tunnel described in Example 5.2. Estimate the ratio of diffuser throat area 
to noule throat area required to allow the tunnel to start. Also, assuming that the diffuw efti- 
ciency is 1.2 after the t~lnnel has started. calculate the pressure ratio across the tunnel neces- 
sary for running, i.e., calculate the ratio of total pressure at the diffuser exit to the rewl-voir 
pressure. 

Solution 
From Table A.2, for M = 2.5: pc,. / I ) ~ , ,  = 0.499. From Eq. (5.36) 

From Eq. (5.30) 

Note: In Example 5.2, standard sea level conditions were stipulated in the test section. For this 
case, the pressure at the diffuser exit is far above atmospheric pressure. Specitically. 1'1-om 
Example 5.2, I J ~ ,  = 17.09atm; hence I),,,, = (0.599)( 17.09) = 10.23atni. I f  the diffuwr ex -  

hausted directly to the atinosphere, the How would rapidly expand to supersonic velocity in the 
free jet downstream of the tunnel exit. with accompanying tremendous losses. Therefore, for 
this particular wind tunnel, a closed circuit design i5 by far the best. That is, the low \uhsonic 
How at the exit of the diffuser is ducted right back to the entrance of the nozzle. The tunnel 
forms a closed loop, and the pressure loss in passing through the tunnel and the return loop is 
made up by a fan with a motor drive. Since the gas is also heated by the addition of power from 
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this motor drive, a cooler must also be inserted in the return loop. See Chap. 5 of Ref. 9 
for a more detailed discussion of the design of a closed-loop (or closed-return) supersonic 
wind tunnel. 

5.6 1 WAVE REFLECTION FROM 
A FREE BOUNDARY 

Although they are not inherently quasi-one-dimensional flows, the wave patterns 
shown emanating from the nozzle exit in Figs. 5.18d and e are frequently encoun- 
tered in the study of nozzle flows. Therefore, it is appropriate to discuss them at 
this stage. 

The gas jet from a nozzle which exhausts into the atmosphere has a boundary 
surface which interfaces with the surrounding quiescent gas. As in the case of the slip 
lines discussed in Chap. 4, the pressure across this boundary must be preserved; 
hence the jet boundary pressure must equal p, along its complete length. Therefore, 
the oblique shock waves shown in Fig. 5.18d and the expansion waves sketched in 
Fig. 5.18e must reflect from the jet boundary in such a fashion as to preserve the 
pressure at the boundary downstream of the nozzle exit. This jet boundary is not a 
solid surface as treated in Chap. 4; rather, it is a free boundary which can change in 
size and direction. For example, consider the incident shock wave impinging on a 
constant-pressure free boundary as shown in Fig. 5.26. In region 1 ,  the pressure is 
p,, equal to the surrounding atmosphere. In region 2 behind the incident shock, 
p2 > pw. However, at the edge of the jet boundary (the dashed line in Fig. 5.26), the 
pressure must always be p,. Therefore, when the incident shock hits the boundary, 
it must be reflected in such a fashion as to obtain p, in region 3 behind the reflected 
wave. Since pg = p, < p2, this reflected wave must be an expansion wave, as 
sketched in Fig. 5.26. In turn, the flow is deflected upward by both the incident shock 
and reflected expansion, causing the free boundary to deflect upward also. The 
strength of the reflected expansion wave is readily obtained from the theory pre- 
sented in Chap. 4. 

Reflected 
. expansion 

Figure 5.26 1 Shock wave incident on a constant-pressure boundary. 
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Figure 5.27 1 Reflection of an expansion wave incident 
on a constant-pressure boundary. 

Figure 5.28 1 Schematic of the diamond wave pattern in the 
exhaust from a supersonic nozzle. 

Analogously, the incident expansion wave shown in Fig. 5.27 is reflected from a 
free boundary as a compression wave. This finite compression wave quickly coa- 
lesces into a shock wave, as shown. The wave interaction shown in Fig. 5.27 must be 
analyzed by the method of characteristics, to be discussed in Chap. 11. 

From this discussion combined with our results of Chap. 4, we conclude that 

1. Waves incident on a solid boundary reflect in like manner, i.e., a compression 
wave reflects as a compression and an expansion wave reflects as an 
expansion. 

2. Waves incident on a free boundary reflect in opposite manner, i.e., a 
compression wave reflects as an expansion and an expansion wave reflects 
as a compression. 

Considering the overexpanded nozzle flow in Fig. 5.18d, the flow pattern down- 
stream of the nozzle exit will appear as sketched in Fig. 5.28. The various reflected 
waves form a diamond-like pattern throughout the exhaust jet. Such a diamond wave 
pattern is visible in the exhaust from the free jet shown in Fig. 5.29. The reader is 
left to sketch the analogous wave pattern for the underexpanded nozzle flow in 
Fig. 5.18e. 
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Figure 5.29 1 Diamond wave patterns from an axisymmetric free jet (similar to the 
exhaust from a rocket engine). Taken from E. S. Love, C. E. Grigsby, L. P. Lee, and 
M. J. Woodling, "Experimental and Theoretical Studies of Axisymmetric Free Jets," 
NASA Tech. Report No. TR R-6, 1959. M is the wavelength of the first diamond. 

5.7 1 SUMMARY 
This brings to an end the technical discussion of the present chapter. The quasi-one- 
dimensional duct flows discussed herein, in concert with the shock and expansion 
waves discussed in Chaps. 3 and 4, constitute a first tier in the overall structure of 
compressible flow. You should take this material very seriously, and should make 
certain that you feel comfortable with the major concepts and results. This will pro- 
mote a smoother excursion into the remaining chapters. 

5.8 1 HISTORICAL NOTE: DE LAVAL- 
A BIOGRAPHICAL SKETCH 

The first practical use of a convergent-divergent supersonic nozzle was made before 
the twentieth century. As related in Sec. 1.1, the Swedish engineer, Carl G. P. de 
Laval, designed a steam turbine in the late 1800s which incorporated supersonic 
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expansion nozzles upstream of the turbine blades (see Fig. 1.8). For this reason, such 
convergent-divergent nozzles are frequently referred to as "Laval nozzles" in the lit- 
erature. Who was de Laval? What prompted him to design a supersonic nozzle for 
steam turbines'? What kind of man was he? Let us take a closer look. 

Carl Gustaf Patrick de Laval was born at Blasenborg, Sweden, on May 9, 1845. 
The son of a Swedish army captain, de Laval showed an early interest in mechanical 
mechanisms, disassembling and then reassembling such devices as watches and gun 
locks. His parents encouraged his development along these lines, and at the age of 18 
de Laval entered the University of Upsala, graduating in 1866 with high honors in 
engineering. He was then employed by a Swedish mining company. the Stora 
Kopparberg, where he quickly realized that he needed more education. (This is a 
phenomenon which has affected young engineers through the ages.) Therefore, he re- 
turned to Upsala, where he studied chemistry, physics, and mathematics, and gradu- 
ated with a Ph.D. in 1872. From there, he returned to the Stora Company for 3 years, 
and then joined the Kloster Iron Works in Germany in 1875. By this time, his inven- 
tive genius was beginning to surface: he developed a sieve for improving the distrib- 
ution of air in bessemer converters, and a new apparatus for galvanizing processes. 
Also, during his time with Kloster, de Laval was experimenting with centrifugal ma- 
chines for the separation of cream in milk. Unable to convince Kloster to manufac- 
ture his cream separator, de Laval resigned in 1877, moved to Stockholm, and started 
his own company. Within 30 years, he had sold more than a million de Laval cream 
separators, and to the present day he is better known in Europe for cream separators 
then for steam turbines. 

However, it was with his steam turbine designs that de Laval made a lasting con- 
tribution to the advancement of compressible flow. In 1882, he constructed his first 
steam turbine using rather conventional nozzles. Such nozzles were convergent 
shapes, indeed nothing more than orifices in some designs of that day. In turn, the 
kinetic energy of the steam entering the rotor blades was low, resulting in low 
rotational turbine speeds. The cause of this deficiency was recognized-the pressure 
ratio across such nozzles was never less than one-half. Today, as described in 
Secs. 5.3 and 5.4, we know that such nozzles were choked, and that the flow ex- 
hausted from the nozzle exit at a velocity that was not greater than sonic. However, 
in 1882, engineers did not fully understand such phenomena. Finally, in 1888, de 
Laval hit upon the system of further expanding the gas by adding a divergent section 
to the original convergent shape. Suddenly, his steam turbines began to operate at in- 
credible rotational speeds-over 30,000 rimin. Overcoming the many mechanical 
problems introduced by such an improvement in rotational speed, de Laval devel- 
oped his turbine business into a large corporation in Stockholm. and quickly obtained 
a number of international affiliates, in France, Germany, England, the Netherlands, 
Austria-Hungary, Russia, and the United States. Subsequently, his design was 
demonstrated at the World Columbian Exposition in Chicago in 1893, as related in 
Sec. 1.1. 

In addition to his successes as an engineer and businessman, de Laval was also 
adroit in his social relations. He was respected and liked by his social peers and em- 
ployees. He held national office-being elected to the Swedish Parliament during 
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1888 to 1890, and later becoming a member of the Senate. He was awarded numer- 
ous honors and decorations, and was a member of the Swedish Royal Academy of 
Science. 

After a full and productive life, Carl G. P. de Laval died in Stockholm in 1912 at 
the age of 67. However, his influence and his company have lasted to the present day. 

It is interesting to note that, on a technical basis, de Laval and other contempo- 
rary engineers in 1888 were not quite certain that supersonic flow actually existed in 
the "Laval nozzle." This was a point of contention that was not properly resolved 
until the experiments of Stodola in 1903. But Stodola's story is told in the next 
section. 

5.9 1 HISTORICAL NOTE: STODOLA, AND 
THE FIRST DEFINITIVE SUPERSONIC 
NOZZLE EXPERIMENTS 

The innovative steam turbine nozzle design by de Laval (see Secs. 1.1 and 5.8) 
sparked interest in the fluid mechanics of flow through convergent-divergent nozzles 
at the turn of the century. Leading this interest was an Hungarian-born engineer by 
the name of Aurel Boleslav Stodola, who was to eventually become the leading ex- 
pert in Europe on steam turbines. However, whereas de Laval was an idea and design 
man, Stodola was a scholarly professor who tied up the loose scientific and technical 
strings associated with Laval nozzles. Stodola is a major figure in the advancement 
of compressible flow, thermodynamics, and steam turbines. Let us see why, and at 
the same time take a look at the man himself. 

Stodola was born on May 10, 1859, in Liptovsky Mikulas, Hungary, a small 
Slovakian town at the foot of the High Tatra mountains. The second son of a leather 
manufacturer, he attended the Budapest Technical University for 1 year in 1876. He 
was an exceptional student, and in 1877 he shifted to the University of Zurich in 
Switzerland, and then to the Eidgenossische Technische Hochschule in 1878, also in 
Zurich. Here, he graduated in 1880 with a mechanical engineering degree. Subse- 
quently, he served a brief time with Ruston and Company in Prague, where he was 
responsible for the design of several different types of steam engines. However, his 
superb performance as a student soon earned him a "Chair for Thermal Machinery" 
back at the Eidgenossische Technische Hochschule in Zurich, a position he held until 
his retirement in 1929. 

There, Stodola established a glowing academic career which included teaching, 
industrial consultation, and engineering design. However, his main contributions 
were in applied research. Stodola had a synergistic combination of high mathemati- 
cal competence with an intense devotion to practical applications. Moreover, he un- 
derstood the importance of engineering research at a time when it was virtually 
nonexistent throughout the world. In 1903 (the same year as the Wright brothers' first 
powered airplane flight), Stodola wrote: 

We engineers of course know that machine building, through widely extended practical 
experimenting, has solved problems, with the utmost ease, which baffled scientific inves- 
tigation for years. But this "cut and try method," as engineers ironically term it, is often 
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extremely costly; and one of the most important questions of all technical activity, that ot 
efficiency, should lead us not to underestimate the results of scientific technical work. 

This commentary on the role of basic scientific research was aimed primarily at the 
design of steam turbines. But it was prophetic of the massive and varied research pro- 
grams to come during the latter half of the twentieth century. 

The importance of Stodola to our consideration in the present book lies in his 
pioneering work on the flow of steam through Lava1 nozzles. As mentioned in 
See. 5.8, the possibility of supersonic flow in such nozzles, although theoretically es- 
tablished, had not been experimentally verified, and therefore was a matter of con- 
troversy. To study this problem, Stodola constructed a convergent-divergent no~z le  
with the shape illustrated at the top of Fig. 5.30. He could vary the backpressure over 

Figure 5.30 1 Stodola's original supersonic nozzle data. 1903. The 
curves are pressure distributions for different backpresures. 



CHAPTER 5 Quasi-One-Dimensional Flow 

any desired range by closing a valve downstream of the nozzle exit. With pressure 
taps in a long, thin tube extended through the nozzle along its centerline (also shown 
in Fig. 5.30), Stodola measured the axial pressure distributions associated with dif- 
ferent backpressures. These data are shown below the nozzle configuration in 
Fig. 5.30. This figure is taken directly from Stodola's original publication, a book en- 
titled Steam Turbines, first published in 1903. Here, for the first time in history, the 
characteristics of the flow through a supersonic nozzle were experimentally con- 
firmed. In Fig. 5.30, the lowest curve corresponds to a complete isentropic expansion 
(as illustrated in Fig. 5.14~).  The curves D through L in Fig. 5.30 correspond to a 
shock wave inside the nozzle, induced by higher backpressures (as illustrated in 
Fig. 5.17~). The curves A,  B, and C in Fig. 5.30 correspond to completely subsonic 
flow induced by high backpressures (as illustrated in Fig. 5.15~). With regard to the 
large jumps in pressure shown by some of the data in Fig. 5.30, Stodola comments: 

I see in these extraordinary heavy increases of pressure a realization of the "compression 
shock" theoretically derived by von Riemann; because steam particles possessed of great 
velocity strike against a slower moving steam mass and are therefore compressed to a 
higher degree. 

(In this quote, Stodola is referring to G. F. Bernhard Riemann mentioned in Sec. 3.10; 
however, he would be historically more correct to refer instead to Rankine and 
Hugoniot, as described in Sec. 3.10.) Stodola's nozzle experiments, as described, and 
his original data shown in Fig. 5.30, represented a quantum-jump in the understand- 
ing of supersonic nozzle flows. Taken in conjunction with de Laval's contributions, 
Stodola's work represents the original historical underpinning for the material given 
in this chapter. Furthermore, this work was quickly picked up by Ludwig Prandtl at 
GMtingen, who went on to make dramatic schlerien photographs of waves in super- 
sonic nozzle flows, as described in Sec. 4.16. 

Stodola died in Zurich on December 25, 1942, at the age of 83. During his life- 
time, he became the leading world expert on steam turbines, and his students perme- 
ated the Swiss steam turbine manufacturing companies, making those companies 
into international leaders in this field. Moreover, he had exceptional personal charm. 
The loyalty of his friends was extraordinary, and he acquired an almost disciplelike 
group during his long life in Zurich. Even upon his death, the number and persua- 
siveness of his eulogies were exceptional. Clearly, Stodola has left a permanent mark 
in the history of compressible flow. 

5.10 1 SUMMARY 
Quasi-one-dimensional flow is defined as flow wherein all the flow properties are 
functions of one space dimension only, say x, whereas the flow cross-sectional area 
is a variable, i.e., u = u ( x ) ,  p = p(x) ,  T = T ( x )  , and A = A(x) .  This is in contrast 
to the purely one-dimensional flows discussed in Chap. 3, where the flow cross- 
sectional area is constant. The governing flow equations for quasi-one-dimensional 
flow, obtained from a control volume model, are 

Continuity: piuiAi = p2~2A2 (5.1) 



Energy: 

The differential forms of these equations are: 

Continuity: d ( p u A )  = 0 (5.7)  

Momentum: d p  = -pu du (5.9) 

Energy: d l z+udu  = O  (5.10) 

These equations hold for inviscid, adiabatic flow-hence isentropic flow. They can 
be combined to yield the area-velocity relation 

c-1 A -- du  
- ( M -  - 1)- 

A 11 

which states, among other aspects, that 

1. If the flow is subsonic, an increase in velocity corresponds to a decrease 
in area. 

2. If the flow is supersonic, an increase in velocity corresponds to an irzcr-eusr 
in area. 

3. If the flow is sonic, the area is at a local minimum. 

These results clearly state that, in order to expand an isentropic flow from subsonic 
to supersonic speeds, a convergent-divergent duct must be used, where Mach I will 
occur at the minimum area (the throat) of the duct. 

Quasi-one-dimensional isentropic flow is dictated by the urea-Mtrclz ~zuniher 
relation, 

where A* is the flow area at a local value of Mach 1. From Eq. (5.20) we note the 
pivotal result that local Mach number is a function of only AIA* (and, of course. y ). 

To understand the various flowfields possible in a quasi-one-dimensional. 
convergent-divergent duct, imagine that the reservoir pressure is held fixed and the 
backpressure downstream of the exit is progressively reduced. These cases are pos- 
sible, as we progressively reduce the backpressure: 

1. First, the flow is completely subsonic, including both the convergent and the 
divergent sections. The maximum value of the Mach number (still subsonic) 
occurs at the throat. The mass flow continually increases as the backpressure is 
reduced. 
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At some specific value of the backpressure, the flow at the throat becomes 
sonic. The Mach numbers both upstream and downstream of the throat are still 
subsonic. The mass flow reaches a maximum value; when the backpressure 
is further reduced, the mass flow remains constant. The flow is choked. 
As the backpressure is further reduced, a region of supersonic flow occurs 
downstream of the throat, terminated by a normal shock wave standing inside 
the divergent region. 

At some specific value of the backpressure, the normal shock will be located 
exactly at the exit. The fully isentropic, subsonic-supersonic flow pattern now 
exists throughout the entire duct, except right at the exit. 

As the backpressure is further reduced, the normal shock is replaced by 
oblique shocks emanating from the edge of the nozzle exit. This is called an 
overexpanded nozzle flow. 

At some specific value of the backpressure, corresponding to the isentropic 
flow value, no waves of any kind will exist in the flow; we will have the purely 
isentropic subsonic-supersonic expansion through the nozzle, with no waves 
at the exit. 
Finally, for a lower backpressure, expansion waves will emanate from the edge 
of the nozzle exit. This is called an underexpanded nozzle flow. 

The function of a diffuser is to slow a flow with the smallest possible loss of total 
pressure. For a supersonic or hypersonic wind tunnel, the diffuser must slow the flow 
to a low subsonic speed at the end of the tunnel. For a measure of how efficient the 
diffuser is, the normal shock diffuser efficiency is defined as 

where pd,,/p, is the actual ratio of total pressure between the exit of the diffuser and 
the nozzle reservoir, and p , , / p , ,  is the usual total pressure ratio across a normal 
shock wave at the design Mach number at the nozzle exit. A supersonic diffuser has 
a local minimum of cross-sectional area called the second throat; the ratio of the sec- 
ond throat area (diffuser) to the first throat area (nozzle) is given by 

At, - Po, - 
At, Po, 

PROBLEMS 
5.1 A supersonic wind tunnel is designed to produce flow in the test section at 

Mach 2.4 at standard atmospheric conditions. Calculate: 

a. The exit-to-throat area ratio of the nozzle 

b. Reservoir pressure and temperature 
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The reservoir pressure of a supersonic wind tunnel is 10 atm. A Pitot tube 
inserted in the test section measures a pressure of 0.627 atm. Calculate the 
test section Mach number and area ratio. 

The reservoir pressure of a supersonic wind tunnel is 5 atm. A static pressure 
probe is moved along the center-line of the nozzle, taking measurements at 
various stations. For these probe measurements, calculate the local Mach 
number and area ratio: 

a. 4 atm 
b. 2.64 atm 

c. 0.5 atm 

Consider the purely subsonic flow in a convergent-divergent duct. The inlet. 
throat, and exit area are 1 m', 0.7 ni', and 0.85 m', respectively. If the inlet 
Mach number and pressure are 0.3 and 0.8 x lo5 ~ / m ' ,  respectively, 
calculate: 

a. M and p at the throat 

b. M and p at the exit 

Consider the subsonic flow through a divergent duct with area ratio A 2 / A  I = 
1.7. If the inlet conditions are TI = 300 K and u = 250 mls, and the preswre 
at the exit i5 pl = 1 atm, calculate: 

a. Inlet pressure pi 

b. Exit velocity ri,. 

The mass flow of a calorically perfect gas through a choked nozzle is 
given by 

Derive this relation. 

When the reservoir pressure and temperature of a supersonic wind tunnel are 
15 atm and 750 K, respectively, the mass flow is 1.5 kgls. If the reservoir 
conditions are changed to p,, = 20 atm and To = 600 K .  calculate the 
mass flow. 

A blunt-nosed aerodynamic model is mounted in the test section of a 
supersonic wind tunnel. If the tunnel reservoir pressure and temperature are 
I0 atm and 800"R, respectively, and the exit-to-throat area ratio is 25, 
calculate the pressure and temperature at the nose of the model. 

Consider a f a t  plate mounted in the test section of a supersonic wind tunnel. 
The plate is at an angle of attack of 10" and the static pressure on the top 
surface of the plate is I .O atm. The nozzle throat area is 0.05 m' and the exit 
area is 0.0844 m'. Calculate the reservoir pressure of the tunnel. 

5.10 Consider a supersonic nozzle with a Pitot tube mounted at the exit. The 
reservoir pressure and temperature are I0 atm and 500 K, respectively. The 
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pressure measured by the Pitot tube is 0.6172 atm. The throat area is 0.3 m2. 
Calculate: 
a. Exit Mach number Me 

b. Exit area A, 
c. Exit pressure and temperature p, and T, 

d. mass flow through the nozzle 

5.11 Consider a convergent-divergent duct with exit and throat areas of 0.5 m2 and 
0.25 m2, respectively. The inlet reservoir pressure is 1 atm and the exit static 
pressure is 0.6 atm. For this pressure ratio, the flow will be supersonic in a 
portion of the nozzle, terminating with a normal shock inside the nozzle. 
Calculate the local area ratio (AIA*) at which the shock is located inside the 
nozzle. 

5.12 Consider a supersonic wind tunnel where the nozzle area ratio is A,/A,, = 
104.1. The throat area of the nozzle is A,, = 1.0 cm2. Calculate the minimum 
area of the diffuser throat, A,,, which will allow the tunnel to start. 

5.13 At the exit of the diffuser of a supersonic wind tunnel which exhausts directly 
to the atmosphere, the Mach number is very low ( ~ 0 . 1 ) .  The reservoir 
pressure is 1.8 atm, and the test section Mach number is 2.6. Calculate the 
diffuser efficiency q ~ .  

5.14 In a supersonic nozzle flow, the exit-to-throat area ratio is 10, p, = 10 atm, 
and the backpressure p~ = 0.04 atm. Calculate the angle 19 through which the 
flow is deflected immediately after leaving the edge (or lip) of the nozzle exit. 

5.15 Consider an oblique shock wave with M I  = 4.0 and B = 50". This shock 
wave is incident on a constant-pressure boundary, as sketched in Fig. 5.26. 
For the flow downstream of the reflected expansion wave, calculate the Mach 
number M3 and the flow direction relative to the flow upstream of the shock. 

5.16 Consider a rocket engine burning hydrogen and oxygen. The combustion 
chamber temperature and pressure are 4000 K and 15 atm, respectively. The 
exit pressure is 1.174 x lop2 atm. Calculate the Mach number at the exit. 
Assume that y = constant = 1.22 and that R = 5 19.6 J k g  K. 

5.17 We wish to design a Mach 3 supersonic wind tunnel, with a static pressure 
and temperature in the test section of 0.1 atm and 400°R, respectively. 
Calculate: 
a. The exit-to-throat area ratio of the nozzle 

b. The ratio of diffuser throat area to nozzle throat area 
c. Reservoir pressure 
d. Reservoir temperature 

5.18 Consider two hypersonic wind tunnels with the same reservoir temperature of 
3000 K in air. (a) One tunnel has a test-section Mach number of 10. Calculate 
the flow velocity in the test section. (b) The other tunnel has a test-section 
Mach number of 20. Calculate the flow velocity in the test section. 
(c) Compare the answers from (a) and (b), and discuss the physical 
significance of this comparison. 
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5.19 Consider a hypersonic wind tunnel with a reservoir temperature o f 3 0 0 0  K in 
air. Calculate the theosetical maximum velocity obtainable in the test sec~ion.  
Compare this result with the result\ of Problem 5.18 ( a )  and (b) .  

5.20 As Problems 5.18 and 5.19 reflect. the air tcmpernture in the test section of 
conventional hypersonic wind tunnels is low. In reality. air liquefies at a 
temperature of about 50 K I depending in part on the local pressure as well). 
In the practical operation ot'a hypersonic wind tunnel. liquefaction of the test 
stream gas should he avoided; when liquefaction occurs. the test stream is a 
two-phase flow, and the test data is compromised. For a Mach 20 tunnel 
using air. calculate the minimum reservoir temperature required to avoid 
liquefaction in the test section. 

5.21 The reservoir temperature calculated in Problem 5.20 is beyond the 
capabilities of heaters in the reservoir of continuous-flow wind tunnels using 
air. This is why you d o  not see a Mach 20 continuous-flow tunnel using air. 
On the other hand, consider the flow of helium, which has a liquefaction 
temperature of 2.2 K at the low pressures in the test section. This temperature 
is much lower than that of air. For a Mach 20 wind tunnel using helium. 
calculate the minimum reservoir temperature required to avoid liquefaction in 
the test section. For helium. the ratio of specific heats is 1.67. 

5.22 The result from Problem 5.21 shows that the reservoir temperature for a 
Mach 20 helium tunnel can be very reasonable. This is why several very high 
Mach number helium hypersonic wind tunnels exist. For the helium wind 
tunnel in Problem 5.2 1, calculate the n o ~ z l e  exit-to-throat area ratio. Compare 
this with the exit-to-throat area ratio required for an air Mach 20 tunnel. 





Differential Conservation 
Equations for Inviscid Flows 

The information needed by design engineers of either aircraft o r j o w  machinery is 
the pressure, the shearing stress, the temperature, and the heat jux  vector imposed 
by the moving fluid over the surjace of a specz$ed solid body or bodies in a j u i d  
stream ofspec$ed conditions. To supply this information is the main purpose of the 
tiiscipline of gasdynamics. 

H. S. Tsien, 1953 
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6.1 Introduction 

tools to our toolbox. These tools will make it possible 
for us to examine a number of exciting applications later 
in the book. 

The roadmap for this chapter is given in Fig. 6.1. 
We derive two forms of the differential conservation 
equations: the conservat~on form and the nonconserva- 
tion form. (Do not be put off by the term "nonconserva- 
tion form"-it is strictly nomenclature and does not 

imply any violation of the physics. The classification 
of the equations under the conservation and nonconser- 
vation forms is a fairly recent artifact that has come from 
the rise of computational fluid dynamics, and because 
this nomenclature is becoming more widespread, we use 
it here.) The chapter ends with two additional equations, 
the entropy equation and Crocco's theorem, which have 
certain special applications to our further studies. 

6.1 1 INTRODUCTION 
The analysis of problems in fluid dynamics requires three primary steps: 

1. Determine a model of the fluid. 

2. Apply the basic principles of physics to this model in order to obtain 
appropriate mathematical equations embodying these principles. 

3. Use the resulting equations to solve the specific problem of interest. 

In Chap. 2, the model of the fluid chosen was a control volume. The basic principles 
of mass conservation, Newton's second law, and energy conservation were applied to 
a finite control volume to obtain integral forms of the conservation equations. In turn, 
these equations were applied to specific problems in Chaps. 3 ,4 ,  and 5 .  These appli- 
cations were such that the integral conservation equations nicely reduced to algebraic 
equations describing properties at different cross sections of the flow. However, we 
are now climbing to a higher tier in our study of compressible flow, where most of 
the previous algebraic equations no longer hold. We will soon be dealing with prob- 
lems of unsteady flow, as well as flows with two or three spatial dimensions. For such 
cases. the integral forms of the conservation equations from Chap. 2 must be applied 
to a small neighborhood surrounding a point in the flow, resulting in difrrrntial 
rquations, which describe flow properties at that point. To expedite our analysis, we 
will make use of these vector identities: 

where A and @ are vector and scalar functions, respectively, of time and space. and 
7 ' is a control volume surrounded by a closed control surface S ,  as sketched in 
Fig. 2.4. 
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6.2 1 DIFFERENTIAL EQUATIONS 
IN CONSERVATION FORM 

6.2.1 Continuity Equation 

Repeating for convenience the continuity equation, Eq. (2.2), 

and using Eq. (6.1) in the form 

we combine Eqs. (2.2) and (6.3) to obtain 

It might be argued that a control volume could be chosen such that, in some special 
case, integration of Eq. (6.4) over one part of the volume would exactly cancel the in- 
tegration over the remaining part, giving zero for the right-hand side. However, the 
control volume is an arbitrary shape and size, and in general the only way Eq. (6.4) 
can be satisfied is for the integrand to be zero at each point within the volume. 
Hence, 

Equation (6.4) is the differential form of the continuity equation. 

6.2.2 Momentum Equation 

Repeating for convenience the momentum equation, Eq. (2.1 I),  

and using Eq. (6.2) in the form 



6.2 Differential Eauations in Conservation Form 

we combine Eqs. (2.1 1) and (6.6) to obtain 

Equation (6.7) is a vector equation; for convenience, let us consider cartesian scalar 
components in the x ,  y ,  and z directions, respectively (see Fig. 2.4). The x compo- 
nent of Eq. (6.7) is 

However, from Eq. (6.1 ), 

Substituting Eq. (6.9) into (6.8). 

By the same reasoning used to obtain Eq. (6.5) from Eq. (6.4), Eq. (6.10) yields 

Equation (6.11) is the diffrrentia1,fot-m of the x component of the rnomentum equa- 
tion. The analogous p and z components are 

6.2.3 Energy Equation 

Repeating for convenience the energy equation, Eq. (2.20), 
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and using Eq. (6.1) in the forms 

and 

we combine Eqs. (2.20), (6.14), and (6.15) to obtain 

Setting the integrand equal to zero, we obtain 

Equation (6.17) is the differential form of the energy equation. 

6.2.4 Summary 

Equations (6.5), (6.11) through (6.13), and (6.17) are general equations that apply 
at any point in an unsteady, three-dimensional flow of a compressible inviscid 
fluid. They are nonlinear partial differential equations, and they contain all of the 
physical information and importance of the integral equations from which they were 
extracted. For virtually the remainder of this book, such differential forms of the 
basic conservation equations will be employed. Also, note that these equations con- 
tain divergence terms of the quantities pV, puV, pvV, pwV, and p(e + v2/2)V. 
For this reason, these equations are said to be in divergence form. This form of the 
equations is also called the conservation form since they stem directly from the inte- 
gral conservation equations applied to a fixed control volume. However, other forms 
of these equations are frequently used, as will be derived in Secs. 6.3 and 6.4. We 
have now finished the left-hand column of our roadmap in Fig. 6.1, and we move on 
to the right-hand column. 

6.3 1 THE SUBSTANTIAL DERIVATIVE 
Consider a small fluid element moving through cartesian space as illustrated in 
Figs. 6 . 2 ~  and b. The x,  y, and z axes in these figures are fixed in space. Figure 6 . 2 ~  
shows the fluid element at point 1 at time t = t l .  Figure 6.2b shows the same fluid 
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Figure 6.2 1 Illustration of the substantial derivative (the xy: coordinate system above 
is tixed in space, and the fluid element is moving from point 1 to point 2). 

element at point 2 in the flowfield at some later time, t2. Throughout the (x. y, :) 
space, the velocity field is given by 

where 

and i ,  j, and k are unit vectors in the x ,  y,  and z directions, respectively. In addition, 
the density field is given by 

At time t l ,  the density of the fluid element is pl = p(x , ,  4.1, , - I ,  t l ) .  At time t?,  the 
density of the same fluid element is pz = p(x2, y2, 22. t2) .  Since p = p(x .  y, 2. t ) ,  
we can expand this function in a Taylor's series about point 1 as follows: 

($1 (ti - 11) + higher-order term 

Dividing by (t2 - t i ) ,  and ignoring higher-order terms, 

Keep in mind the physical meaning of the left-hand side of Eq. (6.18). The quantity 
(p2 - P I )  is the change of density of the particular fluid element as it moves from 
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point 1 to point 2. The quantity (t2 - t l )  is the time it takes for this particular fluid 
element to move from point 1 to point 2. If we now let time t2 approach tl in a limit- 
ing sense, the quantity 

becomes the instantaneous time rate of change of density of the particular fluid ele- 
ment as it moves through point 1. This quantity is denoted by the symbol DplDt .  
Note that DplDt is the rate of change of density of a givenfluid element as it moves 
through space. Here, our eyes are fixed on the fluid element as it is moving. This is 
physically different than (ap la t ) ,  , which is the time rate of change of density at the 
jixed point 1. For (ap la t ) ,  , we fix our eyes on the stationary point 1 and watch the 
density change due to transient fluctuations in the flowfield. Thus, DplDt  and 
(ap /a t ) l  are physically and numerically different quantities. 

Continuing with our limiting procedures, and again remembering that we are 
following a given fluid element, 

lim ( ~ 2 - ~ 1 )  

'2+'1 (t2 - t l )  

lim 
( z 2  - Z I )  = w 

'2+'1 (t2 - t l )  

Hence, returning to Eq. (6.18) and taking the limit as t2 -+ tl , we obtain 

From this. we can define the notation 

as the substantial derivative. The time rate of change of any quantity associated with 
a particular moving fluid element is given by the substantial derivative. For example, 

where DelDt is the time rate of change of internal energy per unit mass of the fluid 
element a.s it moves through a point in the flowfield, aelat is the local time deriva- 
tive at the point, and 
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is the convective derivative. Again, physically, the properties of the fluid element are 
changing as it moves past a point in a flow because the flowfield itself may be fluc- 
tuating with time (the local derivative) and because the fluid element is simply on its 
way to another point in the flowfield where the properties are different (the convec- 
tive derivative). 

This example will help to reinforce the physical meaning of the substantial 
derivative. Consider the substantial derivative of the temperature, which from 
Eq. (6.19) is written as 

Imagine that you are hiking in the mountains on a summer day, and you are about to 
enter a cave. The air temperature inside the cave is cooler than outside. Thus, as you 
walk through the mouth of the cave, you feel a temperature decrease-this is analo- 
gous to the convective derivative, (V g V ) T ,  in Eq. (6 .19~) .  Moreover, being i n  the 
mountains, assume that some patches of snow remain from the previous winter. 
Imagine that you are with a friend who scoops up some of this snow and makes a 
snowball. Consider a point at the entrance to the cave. If the snowball were thrown 
through this point, there would be a momentary fluctuation in local temperature at 
the point due to the cold snowball. This temperature fluctuation is the local time de- 
rivative, aT/ijt, in Eq. (6.19a). Imagine now that your friend throws the snowball 
past the entrance of the cave at the same instant you are walking through the en- 
trance, hitting you with the snowball. You will feel an additional, but momentary, 
temperature drop when the snowball hits you-analogous to the local time derivative 
in Eq. ( 6 . 1 9 ~ ) .  The net temperature drop you feel as you walk through the mouth of 
the cave is therefore a combination of both the act of moving into the cave, where it 
is cooler, and being struck by the snowball at the same instant-this net temperature 
drop is anaIogous to the substantial derivative, D T I D t ,  in Eq. (6 .19~) .  

6.4 1 DIFFERENTIAL EQUATIONS 
IN NONCONSERVATION FORM 

6.4.1 Continuity Equation 

Returning to Eq. (6.5) and expanding the divergence term (recalling the vector iden- 
tity that V (aB) = nV . B + B - Va,  where a is a scalar and B is a vector), we have 

Slightly rearranging Eq. (6.20). 
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Incorporating the nomenclature of Eq. (6.19) into (6.21), 

Equation (6.22) is an alternative form of the continuity equation given by Eq. (6.5). 
Physically, Eq. (6.22) says that the mass of a fluid element made up of a fixed set of 
particles (molecules and atoms) is constant as the fluid element moves through space. 
[For a chemically reacting flow, we have to think in terms of a fluid element made up 
of a fixed set of electrons and nuclei because the molecules and atoms inside the fluid 
element may increase or decrease due to chemical reaction; nevertheless, Eq. (6.22) 
is still valid for a chemically reacting flow.] 

6.4.2 Momentum Equation 

Returning to Eq. (6.11) and again expanding the divergence term as well as the time 
derivative, 

Multiply Eq. (6.5) by u: 

Subtract Eq. (6.24) from (6.23): 

Using the substantial derivative given in Eq. (6.19), 

By similar manipulation of Eqs. (6.12) and (6.13), we have 

In vector form, Eqs. (6.26) through (6.28) can be written as 



6.4 Differential Equations in Nonconservation Form 

Equations (6.26) through (6.29) are different forms of Euler S equation, which is an 
alternative form of the momentum equation given in Eqs. (6.11) through (6.13). 
Euler's equation physically is a statement of Newton's second law, F = ma, applied 
to a moving fluid element of fixed identity. 

6.4.3 Energy Equation 

Returning to Eq. (6.17) and expanding, 

The second and third terms of Eq. (6.30), from the continuity equation, Eq. (6.5), 
give 

Hence, along with the substantial derivative nomenclature, Eq. (6.30) becomes 

Equation (6.31) is an alternative form of the energy equation given in Eq. (6.17). 
Equation (6.31) is a physical statement of the first law of thermodynamics applied 
to a moving fluid element of fixed identity; however, note that for a moving fluid, 
the energy is the total energy, c1 + v2/2, i.e., the sum of both internal and kinetic 
energies per unit mass. 

The energy equation is multifaceted-it can be written in many different forms, 
all of which you will sooner or later encounter in the literature. Therefore, it is 
important to sort out these different forms now. For example, let us obtain a form 
of Eq. (6.31) in terms of internal energy e only. Consider the left-hand 5ide of 
Eq. (6.31), 

Considering the first term of the right-hand side of Eq. (6.3 I ) ,  

Substitute Eqs. (6.32) and (6.33) into Eq. (6.3 1): 
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Form the scalar product of V with the vector form of Euler's equation, Eq. (6.29): 

DV 
p v *  - = -V* V p + p ( f  V) 

Dt 
(6.35) 

Subtracting Eq. (6.35) from (6.34), 

Equation (6.36) is an alternative form of the energy equation dealing with the rate of 
change of the internal energy of a moving fluid element. 

Let us now obtain a form of the energy equation in terms of enthalpy h only. By 
definition of enthalpy, 

Thus, 

Rearranging, 

Hence, 

However, recall Eq. (6.22), where 

Combining Eqs. (6.37) and (6.38), 

and substituting Eq. (6.39) into (6.36), we have 

Equation (6.40) is an alternative form of the energy equation dealing with the rate of 
change of static enthalpy of a moving fluid element. 
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Let us now obtain a form of the energy equation in terms of total enthalpy 
h,, = h + ~ ' 1 2 .  Add Eqs. (6.31) and (6.40): 

Recalling that D p l D t  = ap /a t  + V . Vp,  and subtracting Eq. (6.36) from (6.41), 

Cancelling terms in Eq. (6.42), and writing h,, = h + v2/2. we have 

Of all the alternative forms of the energy equation obtained to this point, Eq. (6.43) 
is probably the most useful and revealing. It states physically that the total enthalpy 
of a moving fluid element in an inviscid flow can change due to 

1. Unsteady flow, i t . ,  i3pldt # 0 
2. Heat transfer, i.e., 4 # 0 
3. Body forces. i.e., f . V # 0 

Au we have already seen. many invixid problems in compressible flow are also 
udiabtrtic with no body forces. For this ca\e. Eq. (6.43) becomes 

Furthermore, for a .steadyJow, Eq. (6.44) reduces to 

which when integrated, yields 

Equation (6.45) is an important result-for an inviscid, adiabatic steady flow with no 
body forces, the total enthalpy is constant along a given streamline. This is to be 
expected almost from intuition and common sense; it is presaged by the steady shock 
wave results of Chaps. 3 and 4, and by the steady adiabatic duct flows of Chap. 5, 
where the total enthalpy is constant throughout the flow. Equation (6.45) holds only 
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along a streamline because in the previous equations we are following a moving fluid 
element as it makes its way along a streamline. However, if the particular flowfield 
under study originates from a reservoir of common total enthalpy, such as the free 
stream far ahead of a body moving in the atmosphere, then the total enthalpy is the 
same value for all streamlines, and hence Eq. (6.45) holds throughout the complete 
flowfield. Finally, note that Eq. (6.45) is a simple algebraic statement of a funda- 
mental physical result which holds no matter how complex the geometry of the flow 
may be. Although the continuity and momentum equations have to be dealt with as 
partial differential equations, the energy equation can be utilized as Eq. (6.45), sub- 
ject of course to the stated restrictions. This will prove to be extremely useful in our 
subsequent discussions. 

Let us obtain yet another alternative form of the energy equation. Solve 
Eq. (6.22) for V V, 

Substitute Eq. (6.46) into (6.36): 

Recalling that l/p = v ,  hence 

then Eq. (6.47) becomes 

Compare Eq. (6.48) with the first law of thermodynamics as given by Eq. (1.25)- 
the two are identical. However, in Eq. (6.48), the changes in internal energy and spe- 
cific volume are those taking place in a moving fluid element, and hence the differ- 
entials de and d v  in Eq. (1.25) are physically replaced by the substantial derivatives 
De/Dt  and D v l D t .  Indeed, in hindsight, Eq. (6.48) could have been derived 
directly by applying Eq. (1.25) to a moving fluid element. Instead, we chose to derive 
Eq. (6.48) from a consistent evolution of our general energy equation for a moving 
fluid, Eq. (6.31), where we recognized that the energy of the fluid is both internal 
energy and kinetic energy. In the process, we have obtained a rather striking physical 
result-the internal and kinetic energies of a moving fluid can be separated such that 
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the first law written strictly in terms of internal energy only does indeed apply to a 
moving fluid element, as clearly proven by Eq. (6.48). 

6.4.4 Comment  

All the forms of the equations derived in the present section are labeled the norlcon- 
servation form of the governing equations. They involve changes of fluid properties 
of a given fluid element as it moves tlzrough thejowjeld,  and hence they all involve 
substantial derivatives. This is in contrast to the conservation form derived in 
Sec. 6.2, which was obtained from the point of view of a control volumej.red in 
.space. The label "nonconservation" is perhaps misleading. This does not mean 
that the physics of the flow is being violated and that something physically in the 
flow is not being conserved that should be conserved. Indeed, either form of the gov- 
erning equations-conservation or nonconservation-are equally valid theoretical 
descriptions of the flowfield variables as a function of space and time. The label 
"nonconservation" is an artifact from computational fluid dynamics, where it has 
some numerical implications. Indeed, if you were to pick up a standard classical fluid 
dynamics text book and look for the words "conservation form" or "nonconservation 
form" in the index, you would most likely not find them. This nomenclature is a 
recent artifact from the discipline of computational fluid dynamics (CFD). Prior to 
the advent of CFD, the form of the governing equations used was purely arbitrary. To 
carry out an aerodynamic analysis, the choice of the form of the equations was, and 
still is, purely a matter of personal preference. The theoretical results are the same, 
no matter which form is used. So there is no need to make any real distinction 
between the different forms except when dealing with CFD. 

However, CFD is an emerging discipline that plays a strong role i n  the study and 
applications of fluid dynamics. Indeed, I am of the opinion that CFD today takes on 
a role equal to those of pure experiment and pure theory in the practice of fluid 
dynamics. Therefore, it is appropriate in this book to at least identify the various 
forms of the governing equations as to conservation or nonconservation form, 
because you will encounter those labels with increasing frequency in your future 
work in fluid dynamics. Moreover, this matter will be addressed again in the discus- 
sions of CFD applications in Chaps. 1 1 ,  12, and 16. Therefore, you should examine 
these equations carefully enough such that you feel comfortable with them in both 
forms. 

6.5 1 THE ENTROPY EQUATION 
Consider the combined form of the first and second laws of thermodynamics, as 
given by Eq. (1.30). From Sec. 6.4, we are justified in applying Eq. (1.30) directly to 
a moving fluid element, where it takes the form 
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Equation (6.49) is labeled simply the entropy equation, and it holds in general for a 
nonadiabatic viscous flow. However, for an inviscid adiabatic flow, Eq. (6.48) says 
that 

Combining Eqs. (6.49) and (6.50), we have 

Equations (6.51) and (6.52) say that the entropy of a moving fluid element is con- 
stant. If the flow is steady, the entropy is constant along a streamline in an adiabatic, 
inviscid flow. Moreover, if the flow originates in a constant entropy reservoir, such as 
the free stream far ahead of a moving body, each streamline has the same value of 
entropy, and hence Eq. (6.52) holds throughout the complete flowfield. (In some 
literature, this is denoted as "homentropic" flow.) Note that Eqs. (6.51) and (6.52) are 
valid for both steady and unsteady flows. 

For the solution of most problems in compressible flow, the continuity, momen- 
tum, and energy equations are sufficient; the entropy equation is not needed except to 
calculate the direction in which a given process may be occumng. However, for isen- 
tropic flows, Eqs. (6.5 1) or (6.52) are frequently a convenience, and may be used to 
substitute for either the energy or momentum equations. This advantage will be 
demonstrated in subsequent discus sions. ' 

6.6 

Cons 

CROCCO'S THEOREM: A RELATION 
BETWEEN THE THERMODYNAMICS 
AND FLUID KINEMATICS OF A 
COMPRESSIBLE FLOW 

jer again an element of fluid as it moves through a flowfield. The movement of ;ic 
this fluid element is both translational and rotational. The translational motion is 
denoted by the velocity V. The rotational motion is denoted by the angular velocity, o. 
In any basic fluid mechanic text, it is readily shown that o = $ V x V; hence the curl 
of the velocity field at any point is a measure of the rotation of a fluid element at that 
point. The quantity V x V is itself denoted as the vorticity of the fluid; the vorticity is 
equal to twice the angular velocity. 

In this section, we will derive a relationship between the fluid vorticity (a kine- 
matic property of the flow) and the pertinent thermodynamic properties. To begin, 
consider Euler's equation, Eq. (6.29), without body forces, 



6.6 Crocco's Theorem 

Writing out the substantial derivative. Eq. (6.53) is 

a v 
p- + p(V V ) V  = - V p  (6.54) 

a t  

Recall the combined tirst and second laws of thermodynamics in the form of Eq. ( 1.32). 
In terms of changes in three-dimensional space, the differentials in Eq. (1.32) can be 
replaced by the gradient operator, 

V P  T V s  = V h  - v V p  = V h  - - 
P 

Combining Eqs. (6.54) and (6.55). 

However, from the definition of total enthalpy, 

Hence, (6.57)  

Substitute Eq. (6.57) into (6.56): 

Using the vector identity 

Eq. (6.58) becomes 

TVs = V h ,  -V  x ( V  x V )  + - 
at 

Equation (6.59) is called Croccok theorem, because it was first obtained by 
L. Crocco in 1937 in a paper entitled "Eine neue Stromfunktion fur die Erforschung 
der Bewegung der Gase mit Rotation," Z Angew. Math. Mech. vol. 17, 1937, pp. 1-7. 

For steady flow, Crocco's theorem becomes 

1 T V r  = Vh , ,  - V x ( V  x V )  1 
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Keep in mind that Eqs. (6.59) and (6.60) hold for an inviscid flow with no body 
forces. 

Rearranging Eq. (6.60), 

V x (V x V) = Vh, - T V s  
vorticity V - 

total enthalpy gradlent of 
gradient 

Equation (6.61) has an important physical interpretation. When a steady flow- 
field has gradients of total enthalpy and/or entropy, Eq. (6.61) dramatically shows 
that it is rotational. This has definite practical consequences in the flow behind a 
curved shock wave, as sketched in Fig. 4.29. In region 1 ahead of the curved 
shock, all streamlines in the uniform free stream have the same total enthalpy, 
h,, = h, + ~ 2 1 2 .  Across the stationary shock wave, the total enthalpy does not 
change; hence, in region 2 behind the shock, h,, = h,, . Hence, all streamlines in the 
flow behind the shock have the same total enthalpy; thus, behind the shock, Vh, = 0. 
However, in Fig. 4.29 streamline (b) goes through a strong portion of the curved 
shock and hence experiences a higher entropy increase than streamline (d), which 
crosses a weaker portion of the shock. Therefore, in region 2, Vs  # 0. Consequently, 
from Crocco's theorem as given in Eq. (6.61), V x (V x V) # 0 behind the shock. 
Thus, 

V x V # 0 behind the shock 

Hence, Crocco's theorem shows that the JlowJield behind a curved shock is rota- 
tional. This is unfortunate, because rotational flowfields are inherently more difficult 
to analyze than flows without rotation (irrotational flows). We will soon come to ap- 
preciate the full impact of this statement. 

6.7 1 HISTORICAL NOTE: EARLY DEVELOPMENT 
OF THE CONSERVATION EQUATIONS 

In his Principia of 1687, Isaac Newton devoted the entire second book to the study of 
fluid mechanics. To some extent, there was a practical reason for Newton's interest in 
the flow of fluids-England had become a major sea power under Queen Elizabeth, 
and its growing economic influence was extended through the world by means of its 
merchant marine. Consequently, by the time Newton was laying the foundations for 
rational mechanics, there was intense practical interest in the calculation of the resis- 
tance of ship hulls as they move through water, with the ultimate objective of 
improving ship design. However, the analysis of fluid flow is conceptually more dif- 
ficult than the dynamics of solid bodies; a solid body is usually geometrically well- 
defined, and its motion is therefore relatively easy to describe. On the other hand, a 
fluid is a "squishy" substance, and in Newton's time, it was difficult to decide even 
how to qualitatively model its motion, let alone obtain quantitative relationships. As 
will be described in more detail in Sec. 12.4, Newton considered a fluid flow as a uni- 
form, rectilinear stream of particles, much like a cloud of pellets from a shotgun blast. 
Newton assumed that, upon striking a surface inclined at an angle 8 to the stream, the 
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particles would transfer their normal momentum to the surface, but their tangential 
momentum would be preserved. Hence, after collision with the surface, the particles 
would then move along the surface. As derived in Sec. 12.4, this leads to an expres- 
sion for the hydrodynamic force on the surface which varies as sin2H. This is 
Newton's famous "sine-squared" law; however, its accuracy left much to be desired, 
and of course the physical model was not appropriate. Indeed, it was not until the 
advent of hypersonic aerodynamics in the 1950s that Newton's sine-squared law 
could be used in an environment that actually reasonably approached Newton's 
physical model. This is described in more detail in Secs. 12.4 and 12.9. Nevertheless, 
Newton's efforts at the end of the seventeenth century represent the first meaningful 
fluid dynamic analysis, and they stimulated the interest of other scientists. 

The discipline of fluid dynamics first bloomed under the influence of Daniel and 
Johann Bernoulli, and especially through the work of Leonhard Euler, during the 
period 1730 to 1760. Euler had great physical insight that allowed him to visualize a 
fluid as a collection of moving fluid elements. Moreover. he recognized that pressure 
was a point property that varied throughout a flow, and that differences in this pres- 
sure provided a mechanism to accelerate the fluid elements. He put these ideas in 
terms of an equation, obtaining for the first time in history those relations we have 
derived as Eqs. (6.26) through (6.29) in this chapter. Therefore, the momentum equa- 
tion in the form we frequently use in modern compressible flow dates back to 1748, 
as derived by Euler during his residence in St. Petersburg, Russia. Euler went further 
to explain that the force on an object moving in a fluid is due to the pressure distrib- 
ution over the object's surface. Although he completely ignored the influence of 
friction, Euler had established the modern idea for one important source of the aero- 
dynamic force on a body (see Sec. 1.5). 

The origin of the continuity equation in the form of Eq. (6.5) also stems back to 
the mideighteenth century. Although Newton had postulated the obvious fact that the 
mass of a specified object was constant, this principle was not appropriately applied 
to fluid mechanics until 1749. In this year, the famous French scientist, Jean le Rond 
d'Alembert gave a paper in Paris entitled "Essai d'une nouvelle theorie de la resi- 
tance des fluides" in which he formulated differential equations for the conservation 
of mass in special applications to plane and axisymmetric flows. However, the gen- 
eral equation in the form of Eq. (6.5) was tirst expressed 8 years later by Euler in a 
series of three basic papers on fluid mechanics that appeared in 1757. 

I t  is therefore interesting to observe that two of the three basic conservation 
equations used today in modern compressible flow were well-established long before 
the American Revolutionary War, and that such equations were contemporary with 
the time of George Washington and Thomas Jefferson! 

The origin of the energy equation in the form of Eqs. (6.17) or (6.31) has its 
roots in the development of thermodynamics in the nineteenth century. It is known 
that as early as 1839 B. de Saint Venant used a one-dimensional form of the energy 
equation to derive an expression for the exit velocity from a nozzle in terms of the 
pressure ratio across the nozzle. But the precise first use of Eq. (6.17) or its deriva- 
tives is obscure and is buried somewhere in the rapid development of physical 
science in the nineteenth century. 
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The reader who is interested in a concise and interesting history of fluid 
mechanics in general is referred to the excellent discussion by R. Giacomelli and 
E. Pistolesi in Volume I of the series Aerodynamic T h e o q  edited by W. F. Durand in 
1934. (See Ref. 22.) Here, the evolution of fluid mechanics from antiquity to 1930 is 
presented in a very cohesive fashion. You are also referred to the author's recent book 
A History of Aerodynamics (Ref. 134) for a presentation on the evolution of our 
intellectual understanding of aerodynamics starting with ancient Greek science. 

6.8 1 HISTORICAL NOTE: LEONHARD 
EULER-THE MAN 

Euler was a giant among eighteenth-century mathematicians and scientists. As a 
result of his contributions, his name is associated with numerous equations and tech- 
niques, e.g. the Euler numerical solution of ordinary differential equations, Eulerian 
angles in geometry, and the momentum equations for inviscid fluid flow [Eqs. (6.26) 
through (6.29) in this book]. As indicated in Sec. 6.7, Euler played the primary role 
in establishing fluid mechanics as a rational science. Who was this man whose phi- 
losophy and results still pervade modern fluid mechanics? Let us take a closer look. 

Leonhard Euler was born on April 15, 1707, in Basel, Switzerland. His father 
was a Protestant minister who enjoyed mathematics as a pastime. Therefore, Euler 
grew up in a family atmosphere that encouraged intellectual activity. At the age 
of 13, Euler entered the University of Basel, which at that time had about 100 stu- 
dents and 19 professors. One of those professors was Johann Bernoulli, who tu- 
tored Euler in mathematics. Three years later, Euler received his master's degree in 
philosophy. 

It is interesting that three of the people most responsible for the early develop- 
ment of theoretical fluid dynamics-Johann Bernoulli, his son Daniel, and Euler- 
lived in the same town of Basel, were associated with the same University, and 
were contemporaries. Indeed, Euler and the Bernoullis were close and respected 
friends-so much so that, when Daniel Bernoulli moved to teach and study at the 
St. Petersburg Academy in 1725, he was able to convince the Academy to hire 
Euler as well. At this invitation, Euler left Base1 for Russia; he never returned to 
Switzerland, although he remained a Swiss citizen throughout his life. 

Euler's interaction with the Bernoullis in the development of fluid mechanics 
grew strong during these early years at St. Petersburg. There, Daniel Bernoulli for- 
mulated most of the concepts that were eventually published in his book Hydrody- 
n a m i c ~  in 1738. The book's contents ranged over such topics as jet propulsion, 
monometers, and flow in pipes. Bernoulli also attempted to obtain a relation between 
pressure and velocity in a fluid, but his derivation was obscure. In fact, even though 
the familiar Bernoulli's equation [Eq. (I. 1) in this book] is usually ascribed to Daniel 
via his Hydrodynamica, the precise equation is not to be found in the book! Some im- 
provement was made by his father, Johann, who about the same time also published 
a book entitled Hydraulica. It is clear from this latter book that the father understood 
Bernoulli's equation better than the son-Daniel thought of pressure strictly in terms 
of the height of a monometer column, whereas Johann had the more fundamental 
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understanding that pressure was a force acting on the fluid. However, it was Euler a 
few years later who conceived of pressure as a point property that can vary from 

point to point throughout a fluid, and obtained a differential equation relating pres- 
sure and velocity [Eq. (6.29) in this book]. In turn, Euler integrated the differential 
equation to obtain, for the first time in history, Bernoulli's equation [Eq. ( I .  I)]. 
Hence we see that Bernoulli's equation is really a historical misnomer; credit for i t  is 
legitimately shared by Euler. 

Daniel Bernoulli returned to Basel in 1733, and Euler succeeded him at 
St. Petersburg as a professor of physics. Euler was a dynamic and prolitic man: by 
1741 he had prepared 90 papers for publication and written the two-volume book 
Mrchuaica. The atmosphere surrounding St. Petersburg was conducive to such 
achievement. Euler wrote in 1749: "I and all others who had the good fortune to be for 
some time with the Russian Imperial Academy cannot but acknowledge that we owe 
everything which we are and possess to the favorable conditions which we had there." 

However, in 1740, political unrest in St. Petersburg caused Euler to leave for the 
Berlin Society of Sciences, at that time just formed by Frederick the Great. Euler 
lived in Berlin for the next 25 years, where he transformed the Society into a major 
Academy. In Berlin, Euler continued his dynamic mode of working, preparing at 
least 380 papers for publication. Here, as a competitor with d'Alembert and others. 
Euler formulated the basis for mathematical physics. 

In 1766, after a major disagreement with Frederick the Great over some fi nalv 
cia1 aspects of the Academy, Euler moved back to St. Petersburg. This second period 
of his life in Russia became one of physical suffering. In that same year, he became 
blind in one eye after a short illness. An operation in 177 1 resulted in restoration of 
his sight, but only for a few days. He did not take proper precautions after the opera- 
tion, and within a few days he was completely blind. However, with the help of 
others, he continued with his work. His mind was as sharp as ever, and his spirit did 
not diminish. His literary output even increased--about half his total papers were 
written after 1765! 

On September 18, 1783, Euler conducted business as usual-giving a mathe- 
matics lesson, making calculations of the motion of balloons, and discussing with 
friends the planet of Uranus which had recently been discovered. About 5 P.M. he suf- 
fered a brain hemorrhage. His only words before losing consciousness were "I am 
dying." By I I P.M., one of the greatest minds in history had ceased to exist. 

Euler is considered to be the "great calculator" of the eighteenth century. He 
made lasting contributions to mathematical analysis, theory of numbers, mechanics, 
astronomy, and optics. He participated in the founding of the calculus of variations, 
theory of differential equations, complex variables, and special functions. He in- 
vented the concept of finite difference~ (to be used so extensively in modern fluid dy- 
namics, as described in Chaps. 11  and 12). In retrospect, his work in fluid dynamics 
was just a small percentage of his total impact on mathematics and science. 

Someday, when you have nothing better to do, count the number of times Euler's 
equations are used and referenced throughout this book. In so doing, you will en- 
hance your appreciation of just how much that eighteenth century giant dominates 
the foundations of modern compressible flow today. 
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6.9 1 SUMMARY 
This chapter, though it may appear to be virtually wall-to-wall equations, is ex- 
tremely important for our further discussions. Therefore you should become very fa- 
miliar with, and feel at home with, all the equations in boxes-they are the primary 
results-as well as how they were obtained. Therefore, before proceeding to the next 
chapter, take the time to reread the present chapter until these equations become 
firmly fixed in your mind. 

The equations in this chapter describe the general unsteady, three-dimensional 
flow of an inviscid compressible fluid. They are nonlinear partial differential equa- 
tions. Moreover, the continuity, momentum, and energy equations are coupled, and 
must be solved simultaneously. There is no general solution to these equations. Their 
solution for given problems (hence given boundary conditions) constituted the prin- 
ciple effort of theoretical gasdynamicists and aerodynamicists over the past half- 
century. Their efforts are still going on. 

Historically, because no general closed-form solution of these nonlinear equa- 
tions has been found, they have been linearized by the imposition of simplifying 
assumptions. In turn, the linearized equations can be solved by existing analytical 
techniques, and although approximate, yield valuable information on some special- 
ized problems of interest. This will be the subject of Chap. 9. 

Also historically, there have been a few specific problems that have lent them- 
selves to an exact solution of the governing nonlinear equations. The unsteady one- 
dimensional expansion waves to be discussed in Chap. 7, and the flow over a sharp 
right-circular cone at zero angle of attack to be discussed in Chap. 10, are two such 
examples. Even these solutions require some type of limited numerical technique for 
completion. 

In recent years, the high-speed digital computer has provided a new dimension 
to the solution of compressible flow problems. With such computers, the method 
of characteristics, an exact numerical technique which was applied laboriously by 
hand in the 1930s, 1940s, and 1950s, is now routinely employed to solve many 
nonlinear compressible flow problems of interest. The method of characteristics 
for unsteady one-dimensional flow will be discussed in Chap. 7, and for two- and 
three-dimensional steady flows in Chap. 11. But the major impact of computers has 
been the growth of computational fluid dynamic solutions of the nonlinear governing 
equations for a whole host of important problems; some computational fluid dynamic 
techniques will be discussed in Chaps. 11, 12, and 17. Thus, the advent of computa- 
tional fluid dynamics has recently opened new vistas for the solution of compressible 
flow problems, and one purpose of the present book is to incorporate these modern 
vistas into a general study of the discipline. (See also the discussion of computational 
fluid dynamics in Sec. 1.6.) 



Unsteady Wave Motion 

A wave of sudden rarefaction, though mathematically possible, is an un.vtublr 
condition of motion; any deviation,from absolute suddenness tending to make the 
disturbance become more and more gradual. Hence the only wave of sudden 
disturbance whose permanency of type is physically possible, is one of sudden 
compression. 

W. J. M. Rankine, 1870, attributed by him to a comment 
from Sir William Thomson 
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This chapter is all about traveling waves-pressure flow relative to us. However, there is no need to study 
waves that propagate with finite velocity relative to a the shock waves from this unsteady point of view, be- 
fixed coordinate system. This is in contrast to our previ- cause we can hop on the airplane and ride with it; in this 
ous discussions, where we considered shock waves and case, the shocks appear stationary relative to us, and we 
expansion waves to be stationary relative to a fixed co- can use the steady flow techniques of the previous chap- 
ordinate system, and the gas ahead of the wave moves ters to study the waves. This is analogous to placing the 
with a finite velocity. As far as the waves are concerned, airplane in a hypothetical very large supersonic wind 
these two pictures are equivalent; as we will soon appre- tunnel and blowing air at supersonic speeds over the 
ciate, the wave properties depend on the velocity of the stationary airplane. Our perspective in the previous 
gas ahead of the wave relative to the wave, no matter chapters was that of the airplane fixed in the wind tunnel 
whether the wave is propagating into a stagnant gas or with the air blowing over it. The physical properties of 
the gas is moving through a stationary wave. However, the shock waves are the same in either case, so we take 
from our point of view, there is a big difference in the the easier path and study the shock phenomena from a 
methods used to analyze such waves. A wave traveling steady flow point of view. 
through the laboratory creates an unsteady flow relative On the other hand, there are some devices and ap- 
to the laboratory, whereas the flow through a stationary plications that make direct use of the unsteady flows 
wave relative to the laboratory is steady. Steady flow is generated by traveling waves, and in these situations we 
inherently easier to calculate, and that is why we treated have to study the actual unsteady flow problem. For ex- 
the waves as stationary in the previous chapters. For ex- ample, the exhaust system on an internal combustion 
ample, the shock waves generated by a supersonic air- reciprocating engine powering a motor vehicle is full of 
plane flying overhead are moving past us on the ground unsteady pressure waves propagating along the exhaust 
at the same velocity as the airplane-this is an unsteady pipes, and it is important to understand and calculate this 

Figure 7.la I Naval Ordnance Laboratory (NOL) Figure 7.lb I Close-up view of the end-wall flange, 
shock tube. Extended view of the shock tube length. rectangular test cavity, and dump tank of the NOL 
(Courtesy of Dr. John S. Varnos, Naval Surface shock tube. With the test cavity and dump tank in this 
Warfare Center.) installation, the facility is operating as a shock tunnel. 

(Dr. John S. Vamos) 
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unsteady flow in order to properly tune the design of the 
exhaust system. 

Another important application is a shock tube, which 
is a laboratory device for producing high-&mperature, 
high-pressure gases for the purpose of studying the ther- 
modynamic and chemical properties of such gases at 
temperatures and pressures higher than obtainable in 
other laboratory devices. A typical shock tube is shown 
in Figs. 7. la  and b. The shock tube is a very long pipe, 
as can be seen in Fig. 7.la,  in which a strong shock 
wave is generated inside the tube and propagates along 
the tube (from left to right in Fig. 7.1), producing a high- 
temperature, high-pressure gas behind it. In the particu- 
lar shock tube shown in Figs. 7.1a and b, the shock runs 
into an end wall at the flange seen in the middle of 
Fig. 7.1 b, and reflects back to the left, producing an even 
higher temperature gas behind the reflected shock 
wave. In the NOL shock tube in the configuration shown 
here, this slug of very high temperature, high-pressure 
gas then expands through a bank of small supersonic 
nozzles, creating a supersonic flow in the rectangular 
shaped test section seen in the middle of Fig. 7.lb,  
which subsequently exhausts into the large dump tank 
shown a& the right. In this special configuration shown in 

Fig. 7.1, with COz and N2 as the test gas, the supersonic 
flow in the rectangular test section becomes a laser gas, 
and the shock tube is configured to be a gasdynamic 
laser, an exciting device for a high power laser that was 
studied extensively in the 1960s and 70s (see Ref. 21 for 
more details on gasdynamic lasers). To understand and 
calculate the operation of such a device as shown in 
Fig. 7.1, the material in this chapter on unsteady wave 
motion is essential. Indeed, a major focus of this chapter 
1s the understanding and calculation of shock tube wave 
patterns and flowfields. 

The roadrnap for this chapter is given in Fig. 7.2. 
We begin our study of unsteady wave motion by consid- 
ering moving normal shock waves, which is the left 
branch shown in Fig. 7.2. Then we move to the right 
branch to study moving expansion waves, which requires 
as preliminaries a discuss~on of linear sound wave prop- 
agation (acoustic theory) and of nonlinear finite wave 
motion. Finally, we combine both branches to examine 
the flowfield in shock tubes, which is a combination of 
shock and expansion wave motion. When you reach the 
end of this roadmap, you will have the essential tools to 
understand the unsteady wave motion in mechanical 
devices such as the shock tube shown in Fig. 7.1. 

UNSTEADY WAVE MOTION 

Moving normal shock 
waves 

Acoustic theory (sound 

Finite (nonlinear) 
waves 

Figure 7.2 1 Roadrnap for Chapter 7. 

7.1 1 INTRODUCTION 
Consider again the normal shock wave, as discussed in Chap. 3. In that discussion the 
shock is viewed as a stationary wave, fixed in space, as sketched in Fig. 7 .3~1 .  How- 
ever, in Secs. 3.3 and 3.6, the wave is described as a physical disturbance in the flow, 
where the wave is propagated by molecular collisions. Hence, sound waves and 
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Stationary normal shock 

f' 
wave fixed in the laboratory 

Gas motion down- - 
stream of the wave U~ 

/Normal shock wave 
movlng with velocity W 

Gas motion up- 
U I  stream of the wave 

0 

Mass motion induced up > 0 
by the moving shock - Stagnant gas ahead of 

wave the moving shock 

0 , x axis, fixed in 
the laboratory 

the laboratory 

( b )  

0 

Figure 7.3 1 Schematic of stationary and moving shock waves. 

0 

shock waves have definite propagation velocities, sonic in the case of sound and su- 
personic in the case of shocks. However, if the wave is propagating into a flow that 
itself is moving in the opposite direction at the same velocity magnitude as the 
wave velocity, then the wave appears stationary in space. This is the case shown in 
Fig. 7 . 3 ~ ;  here, the shock wave with a propagation velocity of ul is trying to move 
toward the right. However, it is precisely balanced by the upstream gas which is 
moving toward the left, also with a velocity of u , .  Consequently, the normal shock 
wave appears stationary in space (i.e., the shock wave is fixed "relative to the labo- 
ratory"), and we see the familiar picture of a standing normal shock wave with a 
supersonic flow velocity ul ahead of the wave and a subsonic flow velocity u2 behind 
the wave. This was the picture used in Chaps. 3 and 4. 

Now assume that the flow velocity ul in Fig. 7 . 3 ~  is turned off, i.e., let ul = 0. 
Then the shock wave is no longer constrained, and it propagates through space to 
the right. This picture is sketched in Fig. 7.3b; here we relabel the wave propagation 
velocity as W to emphasize that the wave is now propagating through the labora- 
tory. The magnitude of ul in Fig. 7 . 3 ~  and Win Fig. 7.3b are the same. However, 
in Fig. 7.3b we are now watching a normal shock wave propagate with velocity W 
(relative to the laboratory) into a quiescent gas. In the process, the moving wave 
induces the gas behind it to move in the same direction as the wave; this mass motion 
is shown as up in Fig. 7.3b. Returning to the stationary wave in Fig. 7.3a, all 

..x axis, fixed in 
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Driver section Driven section 

&/ 
A 

\ 

Distance 

Figure 7.4 1 Initial conditions in a pressure-driven shock tube. 

High pressure 

@ p4, T 4 . d 4 \  a4, Y~ 

properties of the flowfield depend on x only, i.e., p = p(.u). T = T (s), u = u ( . Y ) .  

etc. This is a steady flow. In contrast, for the moving wave in Fig. 7.3b, all properties 
of the flowfield depend on both x and r ,  i.e., p = p(x,  1 ) .  T = T (x, I ) .  L{ = I((.\-.  t ) ,  
etc. This is an unsteadjjuw, and hence the picture in Fig. 7.36 is that of unstrc~ci? 
wave motion. Such unsteady wave motion is the subject of this chapter. 

An important application of unsteady wave motion is a shock tube, sketched in 
Fig. 7.4. This is a tube closed at both ends, with a diaphragm separating a region of 
high-pressure gas on the left (region 4) from a region of low-pressure gas on the right 
(region 1). The pressure distribution is also illustrated in Fig. 7.4. The gases in re- 
gions 1 and 4 can be at different temperatures and have different molecular weights, 
I NI and . //4. In Fig. 7.4, region 4 is called the driver section, and region 1 is the dri- 
v m  section. When the diaphragm is broken (for example, by electrical current, or by 
mechanical means), a shock wave propagates into section 1 and an expansion wave 
propagates into section 4. This picture is sketched in Fig. 7.5. As the normal shock 
wave propagates to the right with velocity W,  it increases the pressure of the gas 
behind it (region 2), and induces a mass motion with velocity u,,. The interface be- 
tween the driver and driven gases is called the contact .suij$uce, which also moves 
with velocity u p .  This contact surface is somewhat like the slip lines discussed in 
Chap. 4; across it the entropy changes discontinuously. However, the pressure and 
velocity are preserved: p = p2 and u3 = u2 = u p .  The expansion wave propagates 
to the left, smoothly and continuously decreasing the pressure in region 4 to the 
lower value pi behind the expansion wave. The flowfield in the tube after the 
diaphragm is broken (Fig. 7.5) is completely determined by the given conditions in 
regions 1 and 4 before the diaphragm is broken (Fig. 7.4). 

Shock tubes are valuable gasdynamic instruments; they have important appli- 
cations in the study of high-temperature gases in physics and chemistry. in the test- 
ing of supersonic bodies and hypersonic entry vehicles, and more recently in the 
development of high-power gasdynamic and chemical lasers. Many of the high- 
temperature thermodynamic and chemical kinetic properties to be discussed in 
Chap. 16 were measured in shock tubes. They are basic tools in the understanding 

Low pressure 

p l .  T l ,At ' , .  a l .  y l  0 
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Contact surface (interface between 
the driver and driven gases) moving Normal shock wave 

~ ~ ~ ~ ~ s i o n  wave at  the of the gas behind the to  the right with wave velocity 
propagating to  Shock ' P  W (relative to the laboratory) 
the left 

\h I 

Distance 

Figure 7.5 1 Flow in a shock tube after the diaphragm is broken. 

of high-speed compressible flow. Therefore, this chapter first discusses unsteady nor- 
mal shock waves, followed by a treatment of unsteady one-dimensional finite wave 
motion, and then focuses the results on the important application of shock tubes. 

7.2 1 MOVING NORMAL SHOCK WAVES 
Consider again the stationary normal shock wave sketched in Fig. 7 . 3 ~ .  For this pic- 
ture, we know from Eqs. (3.38) through (3.40) that the continuity, momentum, and 
energy equations are, respectively, 

P l u ~  = P 2 u 2  (3.38) 
2 

PI + P l U ,  = p 2  + ~ 2 4  (3.39) 

h l  + u:/2 = h2 + u i / 2  (3.40) 

Looking at Fig. 7.30, a literal interpretation of u l  and u 2  is easily seen as 

u = velocity of the gas ahead of the shock wave, relative to the wave 

u 2  = velocity of gas behind the shock wave, relative to the wave 

It just so happens in Fig. 7 . 3 ~  that the shock wave is stationary, so therefore u l  and 
u:! are also the flow velocities we see relative to the laboratory. However, the inter- 
pretation of u l  and u 2  as relative to the shock wave is more fundamental; Eqs. (3.38) 
through (3.40) always hold for gas velocities relative to the shock wave, no matter 
whether the shock is moving or stationary. Therefore, examining the moving shock 
in Fig. 7.3b, we immediately deduce from the geometry that 

W = velocity of the gas ahead of the shock wave, relative to the wave 

W - up = velocity of the gas behind the shock wave, relative to the wave 
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Hence. for the p~cture of the mo\ ing shock wave in Fig. 7.3h. the normal-shoch con- 
tlnuity. momentum, and energy equations, Eqs. (3.38) through (3.40). hecomc 

Equations (7.1) through (7.3) are the governing normal-shock equations for a shock 
nzoving with velocity W into a slagnant gas. 

Let us rearrange thcse equations into a more convenient form. From Eq. (7.1) 

Substitute E q  (7.4) into (7.2): 

and rearranging, 

Returning to Eq. (7. I ) ,  

Pz W = (CY - I / / , )  - 
P 1 

Substitute Eq. (7.6) into (7.5): 

Substitute Eqs. (7.5) and (7.7) into (7.31, and recall that h = r + p/p. to obt~nn 
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Equation (7.8) algebraically simplifies to 

Equation (7.9) is the Hugoniot equation, and is identically the same form as 
Eq. (3.72) for a stationary shock. In hindsight, this is to be expected; the Hugoniot 
equation relates changes of thermodynamic variables across a normal shock wave, 
and these are physically independent of whether or not the shock is moving. 

In general, Eqs. (7.1) through (7.3) must be solved numerically. However, let 
us specialize to the case of a calorically perfect gas. In this case, e = c,,T, and 
v = RTIp; hence Eq. (7.9) becomes 

Similarly, 

Note that Eqs. (7.10) and (7.11) give the density and temperature ratios across the 
shock wave as a function of pressure ratio. Unlike a stationary shock wave, where it 
is convenient to think of Mach number MI as the governing parameter for changes 
across the wave, for a moving shock wave it now becomes convenient to think of 
p2/pI as the major parameter governing changes across the wave. To reinforce this 
statement, define the moving shock Mach number as 

Incorporating this definition along with the calorically perfect gas relations into 
Eqs. (7.1) through (7.3), and proceeding with a derivation identical to that used to 
obtain Eq. (3.57) for a stationary shock, we obtain 

Solving Eq. (7.12) for M,, 
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However, since M, = w / a l ,  ~ q .  (7. I 3 )  yields 

Equation (7.14) is important; it relates the wave velocity of the moving shock wave 
to the pressure ratio across the wave and the speed qf sound of the gas into which the 
wave is propagating. 

As mentioned earlier, a shock wave propagating into a stagnant gas induces a 
mass motion with velocity u p  behind the wave. From Eq. (7. I), 

Substituting Eqs. (7.10) and (7.14) into Eq. (7.15), and simplifying, we obtain 

Note from Eq. (7.16) that, as in the case of W, the mass-motion velocity up also de- 
pends on the pressure ratio across the wave and the speed of sound of the gas ahead 
of the wave. 

In summary, for a given pressure ratio p2 /p I  and speed of sound al .  the corre- 
sponding values of p2 /p I ,  T 2 / T l ,  W ,  and u ,  are obtained from Eqs. (7. lo), (7.1 I ) ,  
(7.14), and (7.16), respectively. 

Before leaving this section, let us further explore the characteristics of the in- 
duced mass motion behind the moving shock wave. The velocity of this mass mo- 
tion, u,,, is relative to the laboratory, i.e., it is what we would observe if we were 
standing motionless in the laboratory and a shock wave swept by us with velocity W .  
After the wave passed by, we would feel a rush of air in the same direction as the 
wave motion, and the velocity of this rush of air is u , .  How large a value can u,, ob- 
tain? Can it ever be a supersonic velocity? To answer these questions, note that the 
Mach number of the induced motion (relative to the laboratory) is u,,/a2, where 

Substitute Eqs. (7.11) and (7.16) into (7.17): 
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Consider an intinitely strong shock, where p2/p1 + co. From Eq. (7.18), 

For y = 1.4, Eq. (7.19) shows that up/a2  + 1.89 as p2/pI  + co. Hence, we see 
that u p  is not always a gentle wind-it can be a high-velocity flow, even supersonic. 
However, the Mach number cannot exceed a limiting value, which in general turns 
out to be moderately supersonic. As already calculated for a calorically perfect gas 
with y = 1.4, the Mach number of the induced flow cannot exceed 1.89. Neverthe- 
less, it is important to recognize that a strong moving shock wave can induce a su- 
personic mass motion behind it. 

There is a fundamental distinction between steady and unsteady wave motion 
that must be appreciated-the stagnation properties of the two flows are different. 
For example, consider again the steady wave in Fig. 7 . 3 ~ .  In Chap. 3 we have shown 
that the total enthalpy (hence, for a calorically perfect gas, the total temperature) is 
constant across the stationary wave, i.e., h,, = h,, . In contrast, for the moving shock 
wave in Fig. 7.3h, the total enthalpy is not constant across the shock wave, i.e., 
h,, # h,, . This is easily seen by inspection. In front of the moving wave the gas is 
motionless, and hence h,, = h l  . However, behind the wave, h,, = h2 + 4 1 2 ;  since 
h2 > hl and because u p  is finite, obviously h,, > h,, . Similarly, the total pressure 
behind the moving shock wave, p,, , is not given by Eq. (3.63), which holds only for 
a stationary shock. Rather, p,, for a moving shock must be calculated from the 
known properties of the induced mass motion. 

The above is a special example of a general result: "In an unsteady adiabatic in- 
viscid flow, the total enthalpy is not constant." This is easily proven from an exami- 
nation of the energy equation in the form of Eq. (6.44), repeated here: 

Clearly, if the flow is unsteady, ap/at # 0, and hence h ,  is not constant. 

Consider a normal shock wave propagating into stagnant air where the ambient temperature is 
300 K. The pressure ratio across the shock is 10. Calculate the shock wave velocity, the ve- 
locity of the induced mass motion behind the shock wave, and the temperature ratio across the 
wave, using (a) the equations of this section and (b) the tabulated numbers in Table A.2. 
Compare tht two sets of results. 

Solution 
a. The speed of sound in the ambient air is 

a, = = J( 1.4)(287)(300) = 347.2 m/s 

From Eq. (7.14), 
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From Eq. (7.16), 

Froni Eq. (7.10), 

b. From Table A.3, for p / p  = 10. the upstream Mach number is 2.95 (nearest entry). 
Thk  is the Mach number of the gas ahead of the wave, relative to the wave. Since thc 
ga\ ahead o f  the wave is motionless relative to the laboratory, then this is also the Mach 
number o f  the moving \hock wave relative to the laboratory. Hence, 

Thus, 

This result obtained from the tables compares within 0.07 percent with that obtained 
from the exact equation in part (a). 

Also, from Table A.2, T2/TI  = 12.6211. This compares within 0.08 percent of that ob- 
tained from the cxact eq~~at ion in part (a). 

From Table A.2, M I  = 0.4782. This is the Mach number of the gas behind the shock rel- 
ative to the shock. The speed of sound in the gar behind the shock is 

f--- -- 
( I .  = yRT2 - j y K ( T 2 / T I ) T l  = ,/(1.4)(287)(2.621)(300) = 562.1 m/s 

Hencc, the velocity of the gas behind the shock relative to the shock is 

The belocity ot' the induced mass motion behind the shock, relative to the laboratory. is de- 
noted by l l , , .  where 

11,. = W - 11: = 1024.2 - 268.8 = 

This conlpares within 0. I percent of that obtained from the exact equation in part (a).  

Calculate the change in total enthalpy across the moving shock wave in Example 7.1 

Solution 
From Eq. ( 1.22). for air 
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In region 1, in the stagnant gas ahead of the moving wave, the velocity is zero. Hence the total 
enthalpy is the same as the static enthalpy. 

The temperature of the gas in region 2 behind the shock is T2 = (T2/T1)T1 = 2.623(300) = 

786.9 K. The velocity of the gas behind the shock relative to the laboratory is up .  Hence 

= 10.76 x lo5 J k g  

Thus, 

The total enthalpy increases by the factor of 3.57 across the moving shock wave, clearly 
demonstrating that the total enthalpy is not constant across a moving shock wave. 

Consider the same shock wave as in Example 7.1 propagating into air that is not stagnant, but 
rather is moving with a velocity of 200 m/s relative to the laboratory in a direction opposite to 
that of the wave motion. Calculate the velocity of the wave relative to the laboratory, and the 
velocity of the induced mass motion of the gas behind the wave relative to the laboratory. 

Solution 
Since the wave velocity W = 1024.9 m/s calculated from Eq. (7.14) is the same as the veloc- 
ity of the gas ahead of the shock wave relative to the wave, then in the present example: 

Velocity of wave relative to the laboratory = 1024.9 - 200 = 

Since W - up is the velocity of the gas behind the shock relative to the shock, and from 
Example 7.1, W - up = 1024.9 - 756.2 = 268.7 m/s, then the velocity of the gas behind the 
shock relative to the laboratory in the present example where the shock is moving at a veloc- 
ity of 824.9 m/s relative to the laboratory is: 

Velocity of gas behind the wave relative to the laboratory = 824.9 - 268.7 = 1 556.2 m/s I 
and it is the same direction in which the shock is moving. 

Note: The two answers in this example could have been obtained more directly by subtract- 
ing the velocity of the air ahead of the wave relative to the laboratory, namely, 200 m/s, from 
both W and up obtained in Example 7.1. For example, the velocity of 556.2 m/s obtained 
here for the velocity of the gas behind the wave relative to the laboratory is simply 
up  - 200 = 756.2 - 200 = 556.2 m/s. Hence, we have proven that when the gas in front of 
the shock is given some finite velocity relative to the laboratory, the other velocities relative to 
the laboratory are simply changed by the same amount. 
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For the case treated in Example 7.3 ,  calculate the change in the total enthalpy acrou the \hock 
wave 

Solution 
Designate the velocity of the air ahead of the shock relative to the laboratory by V , .  In this 
case, V ,  = 200 mls. Also, designate the velocity of the air behind the shock relative to the 
laboratory by V?. In this case, V2 = 556.2 mls. For the gas ahead of the shock, 

For the gas behind the shock, the static temperature is still T2 = 786.9 K (from Example 7.2). 
Hence, 

Thus. 

Compare this result with that from Example 7.2. I t  is different, even though the strength o f  the 
shock is the same in both cases, namely with a pressure ratio p2/p I  = 10. This is a further 
demonstration that for unsteady wave motion, the total enthalpy changes across the shock. and 
this change depends not only on the strength of the shock but also on the velocity of the gas 
relative to the laboratory into which the shock is propagating. 

7.3 1 REFLECTED SHOCK WAVE 
Consider a normal shock wave propagating to the right with velocity W, as shown in 
Fig. 7 . 6 ~ ~ .  Assume this moving shock is incident on a flat endwall, as  also sketched in 
Fig. 7.6a. In front of the incident shock, the mass motion u I = 0. Behind the incident 
shock, the mass velocity is u,, toward the endwall. At the instant the incident shock 
wave impinges on the endwall, it would appear that the flow velocity at the wall 
would be u p ,  directed into the wall. However, this is physically impossible; the wall 
is solid. and the fl ow velocity normal to the surface must be zero. To avoid this am- 
biguity, nature immediately creates a rejected normal shock wave which travels to 
the left with velocity W R  (relative to the laboratory), as shown in Fig. 7.6b. The 
strength of this reflected shock (hence the value of W R )  is such that the originally in- 
duced mass motion with velocity u ,  is stopped dead in its tracks. The mass motion 
behind the reflected shock wave must be zero, i.e., u5 = 0 in Fig. 7.6b. Thus. the 
zero-velocity boundary condition is preserved by the reflected shock wave. (This is 
directly analogous to the steady reflected oblique shock wave discussed in Sec. 4.6, 
where the reflected shock is necessary to preserve, at the surface, flow tangent to 
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Figure 7.6 1 Incident and reflected shock waves. 
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the wall.) Indeed, for an incident normal shock of specified strength, the reflected 
normal shock strength is completely determined by imposing the boundary condition 
ug = 0. 

In dealing with unsteady wave motion, it is convenient to construct wave dia- 
grams (xt diagrams) such as sketched in Fig. 7.7. A wave diagram is a plot of the 
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wave motion on a graph o f t  versus .r. At time t = 0, the incident shock wave is just 
starting at the diaphragm location. Therefore, at t = 0, the incident shock is at loca- 
tion x = 0. At some instant later, say time t = t i ,  the shock wave is traveling to the 
right. and is located at point x = xl  . This is labeled as point 1 in the x t  diagram. Note 
that the path of the incident shock is a straight line in the wave diagram. When the in- 
cident shock hits the wall at .r = x2 (point 2 in Fig. 7.7), i t  reflects toward the left 
with velocity WR. At some later instant t = t i ,  the reflected shock is at location 
.r = .ri (point 3 in Fig. 7.7). The path of the reflected shock wave is also a straight 
line in the wave diagram. The slopes of the incident and reflected shock paths are 
I /  W and I /  WR, respectively. Also note as a general characteristic of reflected 
shocks that WR < W; hence the reflected shock path is more steeply inclined than 
the incident shock path. 

In addition to wave motion. particle motion can also be sketched on the 1-t dia- 
gram. For example, consider a fluid element originally located at .r = 11. During the 
time interval 0 5 t 5 t l ,  the incident shock has not yet passed over the element, and 
hence the element simply stands still. This is indicated by the vertical dashed line 
through point 1 in Fig. 7.7. At time 1 1 ,  the incident shock passes over the fluid ele- 
ment located at xl, and sets it into motion with velocity u,,. The path of the particle 
is then given by the inclined dashed line above point I .  The fluid element continues 
along this path until it encounters the reflected shock, which brings the element to a 
standstill again. The complete dashed curve in Fig. 7.7 represents a pal-tick pith in 
the .rt diagram. 

Return again to the picture of a reflected shock as sketched in Fig. 7.61). By 
inspection, we note that 

WR + uI, = velocity of the gas rrhend of the shock wave relatira to the wave 

WR = velocity of the gas behind the shock wave relcttive to thc wave 

Hence, from Eqs. (3.48) through (3.50) and the literal interpretation of the veloc- 
ities u I and uz ,  we can write for the rejected shock: 

These are the continuity, momentum. and energy equations, respectively, for a re- 
flected shock wave. 

Examine Figs. 7.6a and 6. The incident shock propagates into the gas ahead of 
it with a Mach number M, = W/cll. The reflected shock propagates into the gas 
ahead of it with a Mach number MR = (WK + u1,)/aZ.  From the incident shock 
equations, Eqs. (7.1) through (7.3), and the reflected shock equations, Eqs. (7.20) 
through (7.22), and specializing to a calorically perfect gas, a relation between MR 
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and M, can be obtained as 

The derivation is left as an exercise for the reader. However, Eq. (7.23) explicitly dra- 
matizes that the reflected shock properties are a unique function of the incident shock 
strength-a result that only makes common sense. 

With this we have finished our basic discussions of moving normal shock waves. 
Returning to our roadmap in Fig. 7.2, we have finished the left-hand branch. We now 
move on to the right-hand branch and prepare for the discussion of moving expan- 
sion waves. 

Consider the normal shock in Example 7.1 to be an incident shock on an end wall. Calculate 
the reflected shock Mach number, the pressure ratio across the reflected shock, and the gas 
temperature behind the shock. 

4 Solution 
From Example 7.1, Ms = 2.95, T2/T1 = 2.623, and TI = 300 K .  From Eq. (7.23), 

Thus, 

0 . 6 2 ~ :  - M R  - 0.62 = 0 

Solving the quadratic, MR = 1 (we throw away the negative root). This is the Mach 
number of the reflected wave relative to the gas ahead of it. From Table A.2, for M R  = 2.09, 
we have for the pressure ratio across the reflected shock, 

= 14.978 (nearest entry) 
P2 

Also, 

T5 - = 1.77 (nearest entry). 
T2 

Hence, 
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Note: The temperature increase across the incident shock is T2 - TI = 786.9 - 300 = 486.9 K. 
The temperature increase across the rejlected shock is TS - Tz = 1393 - 786.9 = 606.1 K, 

even larger than that across the incident shock. So the reflected shock is a useful mechanism for 
obtaining high temperatures in a gas, and many shock tubes are designed to use the very hot slug 
of gas behind the reflected shock at the end wall as the test gas 

7.4 1 PHYSICAL PICTURE OF WAVE PROPAGATION 
Refer again to the flow in a shock tube illustrated in Fig. 7.5. In Secs. 7.2 and 7.3, we 
have discussed the traveling shock waves that propagate into the driven gas. We now 
proceed to examine the expansion wave that propagates into the driver gas. This 
topic will be introduced in the present section by considering a physical definition of 
tinite wave propagation, followed in Sec. 7.5 by a study of the special aspect of the 
propagation of a sound wave in one dimension. Then in Secs. 7.6-7.9, the quantita- 
tive aspects of finite compression and expansion waves will be developed. 

Consider a long duct where properties vary only in the x direction, as sketched 
in Fig. 7 . 8 ~ .  At time t = r l ,  let all properties be constant except in some small local 
region near x = X I .  For example, the density distribution is a constant value p,. ex- 
cept near x = xl. where there is a change in density Ap, as sketched in Fig. 7.8b. 

Figure 7.8 1 Propagation of a pulse in a one-dimensional tube. 



CHAPTER 7 Unsteady Wave Motion 

Figure 7.9 1 Propagation of a finite wave in the x direction. 

This little pulse in density, Ap, can be imagined as created by pushing a piston in the 
x direction for a moment and then stopping it, as illustrated at the left of Fig. 7 . 8 ~ .  
The pulse Ap moves to the right so that, at a later time t = t;?, it is located at x = x2,  

as sketched in Fig. 7 . 8 ~ .  
The motion of this pulse on an xt diagram (with p added as a third axis for ad- 

ditional clarification) is illustrated in Fig. 7.9. Here, x~ denotes the location of the 
head of the pulse, x~ the location of the tail of the pulse, and x, the location of the 
peak value of the pulse. As shown in Fig. 7.9, the head, tail, and peak are propagat- 
ing relative to the laboratory with velocities W H ,  W T ,  and w,, respectively. In 
the most general case, w~ # W T  # w p ;  hence the shape of the pulse continually 
deforms as it propagates along the x axis. Because the disturbance Ap moves along 
the x axis, the region where Ap # 0 is called afinite wave. The velocity with which 
an element of this wave moves is called the local wave velocity w. In general, the 
value of w varies through the wave. For example, consider two specific numerical 
values of Ap within the wave, Apl and Ap2. The velocity with which Apl propa- 
gates along the x axis will, in general, be different than the velocity with which Ap2 
propagates. 

Finally, do not confuse wave velocity with mass-motion velocity. The local 
wave velocity w is not the local velocity of a fluid element of the gas, u. Keep in 
mind that the wave is propagated by molecular collisions, which is a phenomenon 
superimposed on top of the mass motion of the gas. 
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7.5 1 ELEMENTS OF ACOUSTIC THEORY 
In order to calculate the local value of such wave properties as A p  and w we must 
apply the physical principles of conservation of mass, momentum, and energy as em- 
bodied in our general equations of motion for an inviscid adiabatic flow. For exam- 
ple, consider Eqs. (6.5) ,  (6.29), and (6.5 1 )  repeated here: 

Let us apply these equations to the flowtield in Figs. 7.80, b, and c, keeping in mind 
that the local change in density, h p ,  is accompanied by corresponding changes in the 
other tlowtield variables, such as a change in the mass-motion velocity, Au. Both Ap 
and AH are called perturbatiorzs; in general they are not necessarily small. Because 
the undisturbed density and velocity are p, and u ,  = 0, respectively. we can ex- 
press the local density and velocity, p and u ,  respectively, as 

Note that both A p  and A u  are functions of x and t .  From Eq. (6.5), written for one- 
dimensional flow, 

Substituting Eqs. (7.24) and (7.25) into Eq. (7.26), we have 

Because p, is constant, Eq. (7.27) becomes 

Consider Eq. (6.29) for one-dimensional flow: 

Consider also the discussion of thermodynamics in Chap. 1, where it was stated that, 
for a gas in equilibrium, any thermodynamic state variable is uniquely specified by 
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any two other state variables. For example, 

Hence. 

However, for the physical picture as shown in Figs. 7.8a, b, and c, before the initia- 
tion of the wave the gas properties are constant throughout the one-dimensional 
space. This includes the entropy, which is the same for all fluid elements. Equa- 
tion (6.5 l)  states that the entropy of a given fluid element remains constant. There- 
fore, for the inviscid adiabatic wave motion considered here, s = const in both time 
and space; i.e., the wave motion is isentropic. Thus in Eq. (7.30), ds = 0, and we have 

Considering changes of p and p in the x direction, Eq. (7.3 1) becomes 

Let (aplap), = a2. A quick glance at Eq. (3.17) reveals that a is the local speed of 
sound. However, at this stage in our analysis, we do not as yet have to identify a as 
the speed of sound; indeed, it will be proven as part of the solution. Thus, for the time 
being, simply consider a2 as an abbreviation for (aplap),, and assume we do not 
identify it with the speed of sound. Then, Eq. (7.32) becomes 

Substitute Eq. (7.33) into (7.29): 

Substitute Eqs. (7.24) and (7.25) into Eq. (7.34): 

Let us recapitulate at this stage. Equations (7.28) and (7.35) represent the conti- 
nuity and combined momentum and energy equations, respectively. Although they 
are in terms of the perturbation quantities Ap and Au, they are still exact equations 
for one-dimensional isentropic flow. Also, keep in mind that they are nonlinear 
equations. 
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Now let us consider the wave in Fig. 7.86 and c to be very weak, i.e., consider 
Ap and Au as very small pertur-bations. In this case, the wave becomes, by defini- 
tion, a sound wave. Here, Ap -=Z p, and Au -=Z a.  Also, since a2 = (dplap) ,  is a 
thermodynamic state variable, we can consider it as a function of any two other state 
variables, say a2  = a 2 ( p ,  s ) .  But s = const, so a2 = a 2 ( p ) .  Expand a2  in a Taylor's 
series about the point p,: 

In Eq. (7.36), a2 is the value at any point in the wave, whereas a: is the value of u' 
in the undisturbed gas. Substitute Eq. (7.36) into (7.35): 

Since Ap and Au are very small quantities, products of these quantities and their de- 
rivatives are extremely small. That is, the second-order terms ( A L ~ ' .  ( A u ) ( A p ) ,  
( A u ) ( i ) A p / i ) t ) ,  etc., are very small when compared with the Jirst-order trrms 
p, ( a  Aul i f t ) .  p, (8 A ~ i l a x ) ,  etc. In Eqs. (7.28) and (7.37), ignore the second-order 
terms as being inconsequentially small. The resulting equations are 

Equations (7.38) and (7.39) are called the acoustic equations because they describe 
the motion of a gas induced by the passage of a sound wave. Due to our assumption 
of small perturbations, and ignoring higher-order terms, these equations are no 
longer exact-they are approximute equations, which become more and more accu- 
rate as the perturbations become smaller and smaller. However, they have one 
tremendous advantage-they are linear equations, and hence can be readily solved 
in closed form. 

For future reference, it is important to note that the above analysis is a specific 
example of general small perturbation theory, leading to linearized equations of mo- 
tion. Such linearized theor?, is discussed at length in Chap. 9. 
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Let us now solve Eqs. (7.38) and (7.39). Differentiate Eq. (7.38) with respect 
to t :  

Differentiate Eq. (7.39) with respect to x :  

Substitute Eq. (7.41) into (7.40): 

The reader may note that Eq. (7.42) is the one-dimensional form of the classic wave 
equation from mathematical physics. Its solution is of the form 

This is easily proven as follows. From Eq. (7.43), 

or a AP 
- = F1(-a,) + G1(a,) 

at 

a2ap 
Hence, - = a& F" + a&G" 

at2 

where the primes denote differentiation with respect to the argument o 
spectively. Also from Eq. (7.43), 

f F and G, re- 

a2Ap 
Hence, - = F" + G" 

ax2 

Substituting Eqs. (7.44) and (7.45) into Eq. (7.42), we find the identity 

U ~ F "  + u&G'/ = U;(F" + G") 

Hence, Eq. (7.43) is indeed a solution of Eq. (7.42). Moreover, the acoustic equa- 
tions, Eqs. (7.38) and (7.39), can be manipulated in an analogous fashion to solve for 
u as 
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In both Eqs. (7.43) and (7.46), F. G ,  f ,  and g are urhitrary functions of their 
argument. Thus, i t  would appear that our solution for the flow induced by a sound 
wave is still not specific enough. However, a very powerful physical interpretation 
lurks behind Eqs. (7.43) and (7.46). For example. consider Eq. (7.43). For simplicity, 
since F and G are arbitrary, let G = 0. Then, from Eq. (7.43), 

Consider a wave propagating along the .Y axis as sketched in  Fig. 7.8. Let us watch 
the propagation of a given constant value of Ap, say A p l .  Since Apl is chosen as a 
constant magnitude, Eq. (7.47) becomes 

Hence, (x - a,t) must be constant, and thus 

Equation (7.48) dictates that the fixed value of the disturbance Apl must move such 
that (x - u,t) remains constant. Thus, Apl moves with 2 velocity dx ld t  = ( I ,  in 
the positive x direction. Moreover, all other parts of the wave also move with veloc- 
ity a,. Indeed, from this discussion, we can infer that in the wave equation 

the constant coefficient u h  always represents the square of the speed of propagation 
of the general quantity @. 

For the sound wave discussed in this section, a figure analogous to Fig. 7.9 can 
be drawn, as shown in Fig. 7.10. Here, all parts of the sound wave propagate with the 
same velocity a,. The shape of the wave stays the same for all time. This is a 

Figure 7.10 1 Left- and right-runnlng sound waves. 
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consequence of our linearized equations as obtained above. If in Eq. (7.43) we 
assume that F = 0, then 

represents a sound wave moving to the left, as also illustrated in Fig. 7.10. 
Look what has happened! As a direct result of the above analysis, we have 

proven that the quantity a&, defined as [(aplap),],, is indeed the velocity of prop- 
agation of the wave. Moreover, the wave we are considering is a sound wave. There- 
fore, we have just proven from acoustic theory that the velocity of sound is given by 
(aplap), evaluated locally in the gas through which it is propagating. Note that a 
completely separate derivation led to the same result in Eq. (3.17). 

Equations (7.43) and (7.46) give Ap and Au, respectively. However, we should 
have enough fluid dynamic intuition by now to suspect that Ap and Au are not inde- 
pendent. Indeed, for a given change in density, there is a corresponding change in 
mass-motion velocity. The relation between Au and Ap for a sound wave is obtained 
as follows. From Eq. (7.46), letting g = 0, we obtain Au = f ( x  - a&). Hence, 

and 

Hence, 

Substitute Eq. (7.49) into the linearized continuity equation (7.38): 

Po0 Ap - - Au = const 
am 

The constant is easily evaluated by applying Eq. (7.50) in the undisturbed gas, where 
Ap = Au = 0. Hence, the constant is zero, and Eq. (7.50) yields 

This is the desired relation between Au and Ap. A similar relation between Au and 
Ap can be obtained by noting that the flow is isentropic, and hence any change in 
pressure Ap causes an isentropic change in Ap. Thus, AplAp = (aplap), = a&, 
and Eq. (7.51) becomes 
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Recall that Eqs. (7.51) and (7.52) were obtained by assuming g = 0 in Eq. (7.46); 
hence they apply to a wave moving to the right, as shown in Fig. 7.10. For a wave 
moving to the left, as also shown in Fig. 7.10, let f = 0 in Eq. (7.46). This results in 
expresions similar to Eqs. (7.5 1 )  and (7.52), except with a negative sign. The results 
are therefore generalized as 

where the + and - signs pertain to right- and left-running waves, respectively. Also 
note that a positive Au denotes mass motion in the positive x direction (to the right), 
and a negative Au denotes mass motion in the negative x direction (to the left). 

In acoustic terminology, that part of a sound wave where Ap > 0 is called a 
cnndensation, and that part where A p  < 0 is called a rurrlfhctiorz. Note from 
Eq. (7.53) that for a condensation (where p and p increase above ambient condi- 
tions), the induced mass motion of the gas is always in the same direction as the wave 
motion, analogous to the effect of a traveling shock wave. For a rarefaction (where p 
and p decrease below ambient conditions), the induced mass motion is always in the 
opposite direction as the wave motion. As we shall find in the following sections, this 
is analogous to the effect of a traveling expansion wave. 

7.6 1 FINITE (NONLINEAR) WAVES 
In Sec. 7.5 we studied the properties of a traveling wave where the perturbation from 
ambient conditions, say Ap, was small. This type of wave was defined as a weak 
wave, or a sound wave. In the present section, the previous constraint will be lifted, 
and Ap will not necessarily be small. Such waves, where the perturbations can be 
large, are called$nite nlaves. 

Consider a finite wave propagating to the right, as shown in Fig. 7.11. Here, the 
density, temperature, local speed of sound, and mass motion are sketched as func- 
tions of x for some instant in time. At the leading portion of the wave, (around 
.u = xZ), p is higher than ambient; at the trailing portion (around x = X I ) ,  p is lower 
than ambient. Because the flow is isentropic, the temperature follows the density via 
Eq. (1.43). Since a = m, the local speed of sound also varies through the wave, 
in the same manner as T. With regard to the mass-motion velocity u ,  we can induce 
from the results of Sec. 7.5 that it will be positive (in the direction of wave motion) 
where the density is above ambient, and negative (opposite to the direction of wave 
motion) where the density is below ambient. In Fig. 7.11, the portions of the wave 
where the density is increasing (ahead of x2 and behind X I )  are called$rzite conzpres- 
sion regions, and the portion where the density is decreasing (between xl and xz) is 
called an expansion region. 

In contrast to the linearized sound wave discussed in Sec. 7.5, different parts of 
the finite wave in Fig. 7.1 1 propagate at different velocities relative to the laboratory. 
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I Right-running wave 

I 

Figure 7.11 1 Schematic of property variations in a finite wave. 

Consider a fluid element located at xz in Fig. 7.11. At this point, it is moving to the 
right with velocity U Z .  In addition, the wave is propagating through the gas due to 
molecular collisions. In fact, if we are riding along with the fluid element, we see the 
wave propagating by us at the local velocity of sound, az. Therefore, relative to the 
laboratory, the portion of the wave at location xz is propagating at the velocity 
wz = 242 + a2. Indeed, all portions of the wave are propagating at a velocity u + a 
relative to the laboratory, where u and a are local values of mass velocity and speed 
of sound, respectively. Physically, the propagation of a local part of the finite wave is 
the local speed of sound superimposed on top of the local gas mass motion. 

Again, reflecting on Fig. 7.1 1 at x2 the mass velocity u2 is toward the right, 
whereas at xl the mass velocity ul is toward the left. Moreover, at x2 the speed of 
sound is larger than at xl .  Therefore u2 + a2 u 1 + a , ,  and the portion of the wave 
around x2 is traveling faster to the right than the portion around X I .  Indeed, if ul is a 
large enough negative number, larger in magnitude than a , ,  then the trailing portion 
of the wave will actually propagate to the left in such a case. So it is clearly evident 
that the wave shape will distort as it propagates through space. The compression 
wave will continually steepen until it coalesces into a shock wave, whereas the ex- 
pansion wave will continually spread out and become more gradual. This distortion 
of the wave form is illustrated in Fig. 7.9. 

Let us now contrast a sound wave with a finite wave. For an acoustic wave: 

1. Ap,  AT,  Au, etc., are very small. 
2. All parts of the wave propagate with the same velocity relative to the 

laboratory, namely, at the velocity a,. 

3. The wave shape stays the same. 
4. The flow variables are governed by linear equations. 
5. This is an ideal situation, which is closely approached by audible sound waves. 
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For a,finite w m e :  

1. Ap, AT,  A u ,  etc., can be large. 

2. Each local part of the wave propagates at the local velocity u + a relative to 
the laboratory. 

3. The wave shape changes with time. 
4. The flow variables are governed by the full nonlinear equations. 

5. This is the "real-life" situation, followed by nature for all real waves. 

To develop the governing equations for a finite wave, first consider the continu- 
ity equation in the form of Eq. (6.22): 

Recall that, from thermodynamics. p = p ( p ,  s). Hence, 

For isentropic flow, ds = 0. Thus, Eq. (7.54), written in terms of the substantial de- 
rivative following a fluid element, becomes 

Substitute Eq. (7.55) into Eq. (6.22): 

Write Eq. (7.56) for one-dimensional flow: 

Now consider the momentum equation in the form of Eq. (6.29), without body 
forces: 

For one-dimensional flow, this becomes 
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The specific path through point 1 
in the x t  plane which has slope 

/ (u +a) - '  

1 

Figure 7.12 1 A preferred path in the xt plane. 

Adding Eqs. (7.57) and (7.58), 

a u 
[ z + ( u + a ) -  a x ]  + -  b. [ z  - + ( u + a ) -  ax = O  (7.59) 

a p  I 
Subtracting Eq. (7.57) from Eq. (7.58), 

Examine Eqs. (7.59) and (7.60). In principle, a solution of these equations gives 
u = U ( X ,  t )  and p = p(x,  t ) ,  where ( x ,  t )  is any point in the xt plane, as sketched in 
Fig. 7.12. Moreover, from the definition of a differential, 

In general, we can consider arbitrary changes in t and x ,  say dt and d x ,  and calculate 
the corresponding change in u ,  given by du from Eq. (7.61). However, let us not 
consider arbitrary values of dt and d x ;  rather, let us consider a specific path through 
point 1 in Fig. 7.12. This specific path is chosen so that it satisfies the equation 

That is, the path we are defining is the dashed line in Fig. 7.12 that goes through 
point 1 and has a slope (dt ldx) ,  = l / ( u l  + a , ) .  Hence, from Eq. (7.61) combined 
with (7.62), the value of du that corresponds to dt and d x  constrained to move along 
the path in Fig. 7.12 is 

Similarly for dp ,  
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Figure 7.13 1 Illustration of the characteristic lines through point I in the .\ t plane. 

Compatibihty equation: du - dg- = 0 
pa 

'\4! \ /. 
\ ,A, //' C+ character~stic h e ,  with ;T; d  \- = u + a 

dp . Compatibility equation: du + - = 0 
pa 
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\ 
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\ 

Substituting Eqs. (7.63) and (7.64) into Eq. (7.59), 

where du and dp are changes along a specitic path defined by the slope cl.r/dr = 

u + (I in the .rt plane. [Note the similarity between Eq. (7.65) for finite waves and 
Eq. (7.53) for sound waves.] 

We now interject the fact that the above analysis is a specific example of a 
powerful technique in compressible flow-the rnrthod of char-uc.ter-i.stic.v. Consider 
any given point (xl, t l )  in the xt  plane as shown in Fig. 7.13. In this analysis. we have 
found a path through (xI,  t i )  along which the governing partial differential equation 
(7.59) reduces to an ontinary differential equation (7.65). The path is called a C'+ 
charc~cteristic lirze in the xt plane, and Eq. (7.65) is called the compatibility eqlltrtiorz 
along the C ,  characteristic. Equation (7.65) holds ordy rrlong tlw ch~rcu.~er-i.~/i(. l i ~ e .  
'The method of characteristics will be discussed at length in Chap. 1 1 ; the specific ap- 
plication to finite unsteady wave motion in this chapter serves as an illustrative in- 
troduction to some of the general concepts. 

From Eq. (7.60) we can find another characteristic line, C .  through the point 
(x,, ti ) in Fig. 7.11, where the slope of the C- characteristic is d.r/dt = u - u ,  and 
along which the following compatibility equation holds: 
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The two characteristics and their respective compatibility equations are illustrated in 
Fig. 7.13, which should be studied carefully. Note that the C+ and C- characteristic 
lines are physically the paths of right- and left-running sound waves, respectively, in 
the xt plane. 

Integrating Eq. (7.65) along the C+ characteristic, we have 

J+ = u + 5 $ = const (along a C+ characteristic) (7.67) 

Integrating Eq. (7.66) along the C- characteristic, we have 

J- = u - - = const (along a C- characteristic) St (7.68) 

In Eqs. (7.67) and (7.68) J+ and J- are called the Riemann invariants. Specializing 
to a calorically perfect gas, from Eq. (3.19), a 2  = yplp; thus 

P = yp/a2 (7.69) 

Also, since the process is isentropic, 

= c, TYI(Y-1) = C2a2~/(~-1)  (7.70) 

where cl and c2 are constants. Differentiating Eq. (7.70), we have 

Substitute Eq. (7.70) into (7.69): 

P = c2ya L~Y/(Y -1)-21 (7.72) 

Substitute Eqs. (7.71) and (7.72) into Eqs. (7.67) and (7.68): 

2a 
J + = u + -  = const (along a C+ characteristic) 

Y - 1  

Equations (7.73) and (7.74) give the Riemann invariants for a calorically perfect gas. 
The usefulness of the Riemann invariants is clearly seen by solving Eqs. (7.73) and 
(7.74) for u and a :  

(7.73) 

2a 
J - = u - -  = const (along a C- characteristic) 

Y - 1  
(7.74) 
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If' the values of J ,  and J are known at a given point in the x t  plane, then Eqs. (7.75) 
and (7.76) immediately give the local values of u and a at that point. 

Considering agair. the shock tube in Fig. 7.5, with the above analysis we now 
have enough tools to solve the flowfield in a one-dimensional expansion wave. This 
is the subject of Sec. 7.7. Also, this brings us to the bottom of the right-hand column 
in our roadmap in Fig. 7.2. 

7.7 1 INCIDENT AND REFLECTED 
EXPANSION WAVES 

Consider the high- and low-pressure regions separated by a diaphragm in  a tube. as 
sketched in Fig. 7.14. When the diaphragm is removed, as discussed in Sec. 7.1, an 
expansion wave travels to the left, as also shown in Fig. 7.14. With the removal of 
the diaphragm, the gas in region 4 feels as if a piston is being withdrawn to the right 
with velocity 11, as sketched in Fig. 7.14. The piston is purely imaginary in this pic- 
ture; 111 is really the mass-motion velocity of the gas (relative to the laboratory) 
behind the expansion wave. The expansion wave is shown on an x t  diagram in 
Fig. 7.15, where .x = 0 is the location of the diaphragm. The head of the expansion 
wave moves to the left into region 4. Recall from Sec. 7.6 that any part of a right- 
running finite wave moves with the local velocity u + a .  The same reasoning shows 
that any part of a left-running wave moves with the local velocity u - a .  The expan- 
sion wave in Figs. 7.14 and 7.15 is a left-running wave, and hence the local velocity 
of any part of the wave is u - a .  In region 4, the mass-motion velocity is Lero; hence 
the head of the wave propagates to the left with a velocity u l  - ad = 0 - a4 = --04. 

Therefore, the path of the head of the wave in the .rt plane is a straight line 
with dxldt  = 144 - a4 = - t r4 .  In light of Sec. 7.6, this path must therefore also be a 
C characteristic, as shown in Fig. 7.15. 

Within the expansion wave, the induced mass motion is u ,  and it is directed to- 
ward the right. Also, the temperature, and hence u ,  is reduced inside the wave. There- 
fore, although the head of the wave advances into region 4 at the speed of sound, 
other parts of the wave propagate at slower velocities (relative to the laboratory). 
Hence, the expansion wave spreads out as it propagates down the tube. This is clearly 
seen in Fig. 7.15. where several C- characteristics have been sketched for internal 

Figure 7.14 1 Generation of an expansion wave. 

Diaphragm 

@ 111gh pressure Low pressure 
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Figure 7.15 1 The C+ and C- characteristics for a centered expansion wave 
(on an xt diagram). 

portions of the wave. Note that the tail of the wave propagates at the velocity 
dxldt = us - a3. Also note that, if u3 is supersonic, i.e., larger than a3, the tail of the 
wave will actually move toward the right relative to the laboratory, although the 
wave is a left-running wave. 

In Fig. 7.15, the C- characteristics have been drawn as straight lines. We need 
to prove that this is indeed the case. To do this, add the C+ characteristics to the pic- 
ture, as also shown in Fig. 7.15. In the constant-property region 4, u4 = 0 and a4 is a 
constant. Thus, in region 4, all the C+ characteristics have the same slope. Moreover, 
J+ is the same everywhere in region 4. Hence, considering the two points a and b in 
Fig. 7.15, 

However, recall from Sec. 7.6 that a constant value of J+ is carried along a C+ char- 
acteristic. Hence, in Fig. 7.15, 

and 
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Comparing Eqs. (7.78) and (7.79) with (7.77), we have 

Point\ e and J', by definition, are on the same C- characteristic, and recalling that a 
constant value of J- is carried along a C characteristic, we have 

Thus, substituting Eqs. (7.80) and (7.8 1 ) into Eqs. (7.75) and (7.76), we have c r ,  = ut 
and u ,  = u+ . Therefore, at points e and f on the C characteristic, the value rl.r/dt = 

14 - ri is the same; since points e and f are any arbitrary points on the same C- 
characteristic, the slope is the same at all points; the C- characteristic must therefore 
be a straight line in Fig. 7.15. Moreover, we have just shown that the values of u 
and ( I .  and hence of p. p .  T, etc., are constant along the given straight-line C- 
characteristic. 

The pictures shown in Figs. 7.14 and 7.15 are for a wave propagating into a 
constant-property region (region 4). Such a wave is defined as a siinple N Y W ~ ;  a left- 
running simple wave has straight C- characteristics along which the flow properties 
are constant. Similarly, a right-running simple wave has straight C ,  characteristics 
along which the flow properties are constant. Moreover, because the wave in 
Figs. 7.14 and 7.15 originates at a given point (the origin in the xt  plane), i t  is called 
a centered MYIVP.  Note the analogy between an unsteady one-dimensional centered 
expansion wave (Fig. 7.13) and the steady two-dimensional Prandtl-Meyer expan- 
sion wave in Fig. 4.32. 

Repeating, a simple wave is one for which one family of characteristics is 
straight lines: this can only be the case when the wave is propagating into a uniform 
region. Note from Fig. 7.15 that the other family (in this case, the C+ characteristics) 
can be curved through the wave. In contrast, a nonsinzple wave has both families of 
characteristics as curved lines. This is the case, for example, of a reflected expansion 
wave during part of its reflection process. When the head of the expansion wave in 
Fig. 7.15 impinges on the endwall, the mass motion must remain zero at the wall. 
Therefore, the expansion wave must reflect toward the right. The head of the re- 
flected expansion wave, now a right-running wave, propagates through the incident 
left-running wave. This region of mixed left- and right-running waves is called a 
nonsinzple rrgiorl, and is sketched in Fig. 7.16. The properties of the reflected expan- 
sion wave in both the nonsimple and simple regions can be calculated througho~~t the 
grid shown in Fig. 7.16 by applying the method of characteristics discussed in 
Sec. 7.6, and by using the boundary condition that u = 0 at the endwall. This be- 
comes a numerical (or graphical) procedure, where the characteristic lines and the 
compatibility conditions (the Riemann invariants) are pieced together point by point. 

In contrast, the solution for a simple centered expansion wave can be obtained in 
closed analytical form, as follows. Returning to Fig. 7.15 we have shown that J+ at 
all the points a ,  h,  c, d ,  e, f ,  etc., is the same value, i.e., J+ is constarlr through the 
expansion wave. From Eq. (7.73), therefore. 

2a 
u + --- = const through the wave (7.82) 

Y - 1  
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Figure 7.16 1 Reflected expansion wave on an xt diagram. 

Evaluate the constant by applying Eq. (7.82) in region 4: 

Combining Eqs. (7.82) and (7.83), 

Equation (7.84) relates a and u at any local point in a simple expansion wave. Be- 
cause a = rn, Eq. (7.84) also gives 



7.7 Incident and Reflected Expans~on Waves 

Also, because the flow is isentropic, p/p4 = (p/pS). = (T/T4)y~ll'-l1 . Hence, 
Eq. (7.85) yields 

Equations (7.84) through (7.87) give the properties in a simple expansion wave as a 
function of the local gas velocity in the wave. 

To obtain the variation of properties in a centered expansion wave as a funclion 
of x and t ,  consider the C characteristics in Fig. 7.15. The equation of any C char- 
acteristic is 

or, because the characteristic ib a straight line through the orig~n 

Combining Eq\. (7.84) and (7.88), we have 

Equation (7.89) holds for the region between the head and tail of the centered ex- 
pansion wave in Fig. 7.15, i.e., -04 5 . r / t  5 113 - (13. 

In summary, for a centered expansion wave moving toward the left as shown in 
Fig. 7.15, Eq. (7.89) gives LI as a function of .r and t .  In turn, n .  T .  17,  and p as func- 
tions of x and t are obtained by substituting 11 = f( . \-,  t )  into Eqs. (7.84) through 
(7.87). The results are sketched in Fig. 7.17, which illustrates the spatial variations of 
u ,  p .  T, and p through the wave at some instant in time. Note from Eq. (7.89) that 1 1  

varies linearly with x through a centered expansion wave. For the left-running wave 
we have been considering, Eq. (7.89) also shows that u is positive, i.e., the mass mo- 
tion is toward the right, opposite to the direction of propagation of the wave. Also 
note that the density, temperature, and pressure all decrease through the wave. with 
the strongest gradients at the head of the wave. 

Analogous relations and results are obtained for a right-running expansion uave, 
except some of the signs in the equations are changed. The analog of Eqs. (7.82) 
through (7.89) for a right-running centered expansion wave is left for the reader to 
derive. 

Referring again to Fig. 7.16, properties at the grid points defined by the inter- 
section of C, and C characteristics in the nonsimplc region are obtained from 
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0 Physical picture at 
some time t ,  . 

From Eq. (7.89) 
I U, 

4 From Eq. (7.87) 

p3 

P p4 From the equation of state or Eq. (7.86) 

p3 

T 

Figure 7.17 1 Variation of physical properties within a centered expansion wave. 

T4 From Eq. (7.85) 

T3 

> 

Eqs. (7.73) through (7.76). For example, J+ and J- at points 1,2,3,  and 4 are known 
from the incident expansion wave. At point 5 ,  a5 is determined by (J-)5 = (J-)2  and 
by the boundary condition u5 = 0. At point 6, both a6 and us are determined from 
Eqs. (7.75) and (7.76), knowing that (J-)6 = (J-)3  and (J+)6 = ( J + ) 5 .  The location 
of point 6 in the xt space is found by the intersection of the C- characteristic through 
point 3 and the C+ characteristic through point 5. These characteristics are drawn as 
straight lines with slopes that are averages between the connecting points. For exam- 
ple, for line 3-6, 

X 

and for line 5-6, 

In this fashion, the flow properties in the entire nonsimple region can be obtained. 



7.8 Shock Tube Relat~ons 

Finally, the properties behind the reflected expansion wave after it completely 
leaves the interaction region are equal to the calculated properties at point 10. 

With this we have completed the right-hand column of our roadmap in Fig. 7.2. 
We are now ready to combine our knowledge of moving shock waves (left column) 
and moving expansion waves (right column) in order to study the properties of shock 
tubes, the last box at the bottom of our roadmap. We have come full circle back to the 
type of application represented by the shock tube shown in Fig. 7.1. 

7.8 1 SHOCK TUBE RELATIONS 
Consider again the shock tube sketched in Figs. 7.4 and 7.5. Initially, a high-pressure 
gas with molecular weight . /I4 and ratio of specific heats y4 is separated from a low- 
pressure gas with corresponding . and yl by a diaphragm. The ratio p 4 / p l  is 
called the diaphragm pressure ratio. Along with the initial conditions of the driver 
and driven gas, p4/p1 determines uniquely the strengths of the incident shock and 
expansion waves that are set up after the diaphragm is removed. We are now in a po- 
sition to calculate these waves from the given initial conditions. 

As discussed in Sec. 7.1, u3 = u2 = u p ,  and p2 = p3 across the contact surface. 
Repeating Eq. (7.16) for the mass motion induced by the incident shock, 

Also, applying Eq. (7.86) between the head and tail of the expansion wave, 

Solving Eq. (7.90) for u1, we have 

However, since p3 = pz.  Eq. (7.01) becomes 

Recall that u2 = u3; Eqs. (7.16) and (7.92) can be equated as 
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Equation (7.93) can be algebraically rearranged to give 

Equation (7.94) gives the incident shock strength p2/p1 as an implicit function of the 
diaphragm pressure ratio p4 /p I .  Although it is difficult to see from inspection of 
Eq. (7.94), an evaluation of this relation shows that, for a given diaphragm pressure 
ratio p 4 / p I ,  the incident shock strength p 2 / p I  will be made stronger as a l / a4  is 
made smaller. Because a = = Jy(.H/, / / ) T ,  the speed of sound in a light 
gas is faster than in a heavy gas. Thus, to maximize the incident shock strength for a 
given p 4 / p I ,  the driver gas should be a low-molecular-weight gas at high tempera- 
ture (hence high a4), and the driven gas should be a high-molecular-weight gas at low 
temperature (hence low al) .  For this reason, many shock tubes in practice use H2 or 
He for the driver gas, and heat the driver gas by electrical means (arc-driven shock 
tubes) or by chemical combustion (combustion-driven shock tubes). 

The analysis of the flow of a calorically perfect gas in a shock tube is now 
straightforward. For a given diaphragm pressure ratio p4/p1 : 

1. Calculate p2/pI  from Eq. (7.94). This defines the strength of the incident 
shock wave. 

2. Calculate all other incident shock properties from Eqs. (7. lo), (7.1 I), (7.14), 
and (7.16). 

3. Calculatepdp4 = ( P ~ P I ) / ( P ~ / P I )  = (~2/~1)/(~4/~1).Thisdefinesthe 
strength of the incident expansion wave. 

4. All other thermodynamic properties immediately behind the expansion wave 
can be found from the isentropic relations 

5. The local properties inside the expansion wave can be found from Eqs. (7.84) 
through (7.87) and (7.89). 

7.9 1 FINITE COMPRESSION WAVES 
Consider the sketch shown in Fig. 7.18. Here, a piston is gradually accelerated from 
zero to some constant velocity to the right in a tube. The piston path is shown in the 
xt  diagram. When the piston is first started at t = 0, a wave propagates to the right 
into the quiescent gas with the local speed of sound, W H  = a,. This is the head of a 
compression wave, because the piston is moving in the same direction as the wave, 
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Compression wave 

X 

Figure 7.18 1 Finite compression wave. 

causing a local increase in pressure and temperature. Indeed, inside the wave, the 
local speed of sound increases, a > a,, and there is an induced mass motion u 

toward the right. Hence, inside the wave, u + a  > W H .  Since the characteristic 
lines are given by dx ld t  = u + a ,  we see that the C+ characteristics in Fig. 7.18 
progressively approach each other, coalescing into a shock wave. The tail of the com- 
pression wave travels faster than the head, and therefore a finite compression wave 
will always ultimately become a discontinuous shock wave. This is in contrast to an 
expansion wave, which, as we have already seen, always spreads out as it propagates. 
These phenomena were recognized as early as 1870; witness the quotation at the 
beginning of this chapter. 

In regard to our discussion of shock tubes, it is interesting to note that, after the 
breaking of the diaphragm, the incident shock is not formed instantly. Rather, in the 
immediate region downstream of the diaphragm location, a series of finite compres- 
sion waves are first formed because the diaphragm breaking process is a con~plex 
three-dimensional picture requiring a finite amount of time. These compression 
waves quickly coalesce into the incident shock wave in a manner analogous to that 
shown in Fig. 7.18. 
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7.10 1 SUMMARY 
This brings to an end our discussion of unsteady one-dimensional wave motion. In 
addition to having important practical applications, this study has given us several 
"firsts" in our discussion and development of compressible flow. In this chapter, we 
have encountered 

1. Our first real need to apply the general conservation equations in the form of 
partial differential equations as derived in Chap. 6. 

2. Our first introduction to the idea and results of linearized flow-acoustic 
theory. 

3. Our first introduction to the concept of the method of characteristics-finite 
wave motion. 

In subsequent chapters, these philosophies and concepts will be greatly expanded. 

PROBLEMS 
Starting with Eq. (7.9), derive Eqs. (7.10) and (7.11). 

Consider a normal shock wave moving with a velocity of 680 rnls into still 
air at standard atmospheric conditions (p l  = 1 atm and TI = 288 K). 

a. Using the equations of Sec. 7.2, calculate T2, p2, and u p  behind the 
shock wave. 

b. The normal shock tables, Table A.2, can be used to solve moving shock 
wave problems simply by noting that the tables pertain to flow velocities 
(hence Mach numbers) relative to the wave. Use Table A.2 to obtain 
T2, p2, and u p  for this problem. 

For the conditions of Prob. 7.2, calculate the total pressure and temperature of 
the gas behind the moving shock wave. 

Consider motionless air with pl = 0.1 atm and TI = 300 K in a constant-area 
tube. We wish to accelerate this gas to Mach 1.5 by sending a normal shock 
wave through the tube. Calculate the necessary value of the wave velocity 
relative to the tube. 

Consider an incident normal shock wave that reflects from the end wall of 
a shock tube. The air in the driven section of the shock tube (ahead of the 
incident wave) is at p ,  = 0.01 atm and TI = 300 K. The pressure ratio across 
the incident shock is 1050. With the use of Eq. (7.23), calculate 

a. The reflected shock wave velocity relative to the tube 
b. The pressure and temperature behind the reflected shock 

The reflected shock wave associated with a given incident shock can be 
calculated strictly from the use of Table A.2, without using Eq. (7.23). 
However, the use of Table A.2 for this case requires a trial-and-error solution, 
converging on the proper boundary condition of zero mass motion behind 
the reflected shock wave. Repeat Prob. 7.5, using Table A.2 only. 



Problems 

7.7 Consider a blunt-nosed aerodynamic model mounted inside the driven section 
o f  a shock tube. The axis o f  the model is aligned parallel to the axis o f  the 
shock tube, and the nose o f  the model faces towards the on-coming incident 
shock wave. The driven gas is air initially at a temperature and pressure o f  
300 K and 0.1 atm, respectively. After the diaphragm is broken, an incident 
shock wave with a pressure ratio o f  pr /p l  = 40.4 propagates into the driven 
section. 

a. Calculate the pressure and temperature at the nose o f  the model shortly 
after the incident shock sweeps by the model. 

b. Calculate the pressure and temperature at the nose o f  the model after the 
reflected shock sweeps by the model. 

7.8 Consider a centered, one-dimensional, unsteady expansion wave propagating 
into quiescent air with p~ = 10 atm and T4 = 2500 K. The strength o f  the 
wave is given by p?/p4 = 0.4. Calculate the velocity and Mach number o f  
the induced mass motion behind the wave, relative to the laboratory. 

7.9 The driver section o f  a shock tube contains He at p~ = 8 atm and T4 = 300 K. 
y4 = 1 .67. Calculate the maximum strength o f  the expansion wave formed 
after removal o f  the diaphragm (minimum p3/p4) for which the incident 
expansion wave will remain completely in the driver section. 

7.10 The driver and driven gases o f  a pressure-driven shock tube are both air at 
300 K. I f  the diaphragm pressure ratio is p4 /p I  = 5.  calculate: 

a. Strength o f  the incident shock ( p 2 / p 1 )  

b. Strength o f  the reflected shock ( p s / p 2 )  

c. Strength o f  the incident expansion wave (p3 /p i )  

7.11 For the shock tube in Prob. 7.10, the lengths o f  the driver and driven sections 
are 3 and 9 m, respectively. On graph paper, plot the wave diagram 
(x t  diagram) showing the wave motion in the shock tube, including the 
incident and reflected shock waves, the contact surface, and the incident and 
reflected expansion waves. To construct the nonsimple region o f  the reflected 
expansion wave, use the method o f  characteristics as outlined in Sec. 7.6. Use 
at least four characteristic lines to define the incident expansion wave, as 
shown in Fig. 7.16. 

7.12 Let the uniform region behind the reflected expansion wave be denoted 
by the number 6. For the shock tube in Probs. 7.10 and 7.1 1,  calculate 
the pressure ratio pc,/p3 and the temperature T6 behind the reflected 
expansion wave. 

7.13 111 Probs. 5.20 and 5.2 1, we noted that the reservoir temperature required for a 
continuous flow air Mach 20 hypersonic wind tunnel was beyond the 
capabilities o f  heaters in the reservoir. On the other hand, as discussed in 
regard to Fig. 7.1, the high temperature gas behind the reflected shock wave 
at the end-wall o f  a shock tube can be expanded through a nozzle mounted 
at the end o f  the tube. This device is called a shock tunnel, wherein very 
large reservoir temperatures can be created. The flow duration through a 
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shock tunnel, however, is limited typically to a few milliseconds. This is the 
trade-off necessary to achieve a very high reservoir temperature. Consider a 
shock tunnel with a Mach 20 nozzle using air. The air temperature in the 
region behind the reflected shock (the reservoir temperature for the shock 
tunnel) is 4050 K. In the driven section of the shock tube, before the tube 
diaphram is broken, the air temperature is 288 K. Calculate the Mach number 
of the incident shock wave required to obtain a temperature of 4050 K behind 
the reflected shock. 



General Conservation Equations 
Revisited: Velocity Potential 
Equation 

Dynurnics o f  con~pre.ssihle,fluid.s, like other subjects in rvhich the nonlinear 
charcrcrer of the basic equufions plays a decisive role, i.s,far,from the perfection 
envisaged by Laplace as the goal of a mathenzatical theoty 

Richard Courant and K. 0. Friedrichs. 1948 
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8.1 l INTRODUCTION 
In this chapter, the general conservation equations derived in Chap. 6 are simplified 
for the special case of irrotational flow, discussed below. This simplification is quite 
dramatic; it allows the separate continuity, momentum, and energy equations with 
the requisite dependent variables p ,  p, V, T ,  etc., to cascade into one governing 
equation with one dependent variable-a new variable defined below as the velocity 
potential. In this chapter, the velocity potential equation will be derived; in turn, in 
Chap. 9 it will be employed for the approximate solution of several important prob- 
lems in compressible flow. 

8.2 1 IRROTATIONAL FLOW 
The concept of rotation in a moving fluid was introduced in Sec. 6.6. The vorticity is 
a point property of the flow, and is given by V x V. Vorticity is twice the angular 
velocity of a fluid element, V x V = 2w. A flow where V x V # 0 throughout is 
called a rotationaljow. Some typical examples of rotational flows are illustrated in 



Viscous flow inside a 
boundary layer 

Figure 8.1 1 Examples of rotational flows. 

8.2 lrrotational Flow 

Inviscid flow behind a 
curved shock wave 

vxV = 0 -+ Two-dimensional or axisymmetric 
nozzle flows 

Flowfield behind the shock wave 
on a slender, sharpnosed body is 
almost irrotational. For analysis, 
we usually assume VxV = 0 for 
this case. 

Figure 8.2 1 Examples of irrotational flows. 

Fig. 8.1 for the region inside a boundary layer and the inviscid flow behind a curved 
shock wave (see Sec. 6.6). In contrast, a flow where V x V = 0 everywhere is called 
an irrotutionul $OW. Some typical examples of irrotational flows are shown in 
Fig. 8.2 for the flowfield over a sharp wedge or cone, the two-dimensional or ax- 
isymmetric flow through a nozzle, and the flow over slender bodies. If the slender 
body is moving supersonically, the attendant shock wave will be slightly curved, and 
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hence, strictly speaking, the flowfield will be slightly rotational. However, it is usu- 
ally practical to ignore this, and to assume V x V 0 for such cases. 

Irrotational flows are usually simpler to analyze than rotational flows; the irrota- 
tionality condition V x V = 0 adds an extra simplification to the general equations 
of motion. Fortunately, as exemplified in Fig. 8.2, a number of practical flowfields 
can be treated as irrotational. Therefore, a study of irrotational flow is of great prac- 
tical value in fluid dynamics. 

Consider an irrotational flow in more detail. In cartesian coordinates, the math- 
ematical statement of irrotational flow is 

For this equality to hold at every point in the flow, 

v x v =  

Equations (8.1) are called the irrotationality conditions. Now consider Euler's equa- 
tion [Eq. (6.29)] without body forces. 

a a a  - - 
ax  6 a z  

For steady flow, the x component of this equation is 

ap -- a u a u a u 
dx  = pu- dx  + pv- dx  + pw- dx  ax  ax  ay a z  

But from Eq. (8.1), 

au - av - - au aw  - and - - - - 
ay ax a z  a x  

Substituting the above relations into Eq. (8.2), we have 

ap a u av aw 
-- dx  = pu- dx  + p v -  dx  +pw-  dx  

ax ax ax ax 



8.2 lrrotational Flow 

Similarly, by considering the y and ,- components of Euler's equation, 

Adding Eqs. (8.3) through (8.5), we obtain 

where v2 = i t2  + v2  + w 2 .  
Equation (8.6) i\ in the form of perfect differential\. and can be written a\ 

Equation (8.7) is a special form of Euler's equation which holds for any direction 
throughout an irrotutional inviscid flow with no body forces. If the flow were rota- 
tional, Eq. (8.7) would hold only along a streamline. However, for an inotational 
flow, the changes in pressure d p  and velocity d V  in Eq. (8.7) can be taken in any 
direction, not necessarily just along a streamline. 

Euler's equation embodies one of the most fundamental physical characteristics 
of fluid flow-a physical characteristic that is easily seen in the form given by 
Eq. (8.7). Namely, in an inviscid flow if the pressure decreases along a given direc- 
tion [ d p  is negative in Eq. (8.7)1, the velocity must increase in the same direction 
[ i n  Eq. (8.7), d V  must be positive]: similarly, if the pressure increases along a given 
direction [ d p  is positive in Eq. (8.7)], the velocity must decrease in the same direc- 
tion [in Eq. (8.7), dV must be negativel. In the popular literature this is sometimes 
called the "Bernoulli principle" because in the early eighteenth century Daniel 
Bernoulli observed this physical effect. Although he worked hard to properly quan- 
tify it, he was unsuccessful. His friend and colleague, Leonard Euler, was the first to 
obtain the proper quantitative relation, namely Eq. (8.7). This equation dates from 
1753. (See Reference 134 for more historical details on Bernoulli and Euler, and 
their contribution to fluid dynamics.) 

The Bernoulli principle is very easy to understand physically. Consider a f uid 
element moving with velocity V  in the s direction as sketched in Fig. 8.3. If the pres- 
sure decreases in the s direction as shown in Fig. 8 . 3 ~  (this is defined as a , fu~~r -ab le  
pressure gradient), the pressure on the left face will be higher than that on the right 
face, exerting a net force on the fluid element acting toward the right, and hence 
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Pressure decreases in the s direction, Pressure increases in the s direction, 
thus accelerating the fluid element thus decelerating the 

towards the right 

v - 
Net force 

fluid elemen; 

(dp is negative) - I Net force (dp is positive) 

Figure 8.3 1 Illustration of pressure gradient effect on the velocity of a fluid element. (a) Decreasing 
pressure in the flow direction increases the velocity. (b) Increasing pressure in the flow direction 
decreases the velocity. 

accelerating it in the s direction. Clearly, in a region of decreasing pressure, the fluid 
element will increase its velocity. Conversely, if the pressure increases in the s di- 
rection as shown in Fig. 8.3b (this is defined as an adverse pressure gradient), the 
pressure on the right face will be higher than that on the left face, exerting a net force 
on the fluid element acting toward the left, and hence decelerating it in the s direc- 
tion. Clearly, in a region of increasing pressure, the fluid element will decrease its 
velocity. 

8.3 1 THE VELOCITY POTENTIAL EQUATION 
Consider a vector A. If V x A = 0 everywhere, then A can always be expressed 
as VJ, where J is a scalar function. This stems directly from the vector identity, 
curl (grad) - 0. Hence, 

where J is any scalar function. For irrotationaljow, V x V = 0. Hence, we can de- 
fine a scalar function, Q, = @(x, y,  z ) ,  such that 

where Q, is called the velocity potential. In cartesian coordinates, since 

and 
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then. by comparison, 

Hence, if the velocity potential is known, the velocity can be obtained directly from 
Eq. (8.8) or (8.9). 

As derived next, the velocity potential can be obtained from a single partial dif- 
ferential equation which physically describes an irrotational flow. In addition. we 
will assume steady, isentropic How. For simplicity, we will adopt subscript notation 
for derivatives of as follows: i )@/ax - i)@/i3y - a,. i )@/i):  = a;. etc. 
Thus, the continuity equation, Eq. (6.5) ,  for steady flow becomes 

Since we are striving for an equation completely in terms of @, we eliminate p from 
Eq. (8.10) by using Euler's equation in the form of Eq. (8.7), which for an irrotational 
flow applies in any direction: 

From the speed of sound, ti' = (ap l i f p ) ,  . Recalling that the flow is isentropic. any 
change in pressure dp in the How is followed by a corrcsponding isentropic change 
in density, dp.  Hence, 

Combining Eqs. (8. I 1 ) and (8.12): 
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Considering changes in the x direction, Eq. (8.13) directly yields 

or 

Similarly, 

Substituting Eqs. (8.14) through (8.16) into Eq. (8.10), canceling the p that appears 
in each term, and factoring out the second derivatives of @, we have 

( I - -  ") a,,+ ( 1-2 a?) my,+ ( I - -  "i) 
a2 a a 

Equation (8.17) is called the velocity potential equation. 
Equation (8.17) is not strictly in terms of @ only; the variable speed of sound a 

still appears. We need to express a in terms of @. From the energy equation, 
Eq. (6.45), 

Hence, for a calorically perfect gas, this equation can be expressed as 
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Since a ,  is a known constant of the flow, Eq. (8.18) gives the speed of sound t i  as a 
function of a. 

In summary, Eq. (8.17) coupled with Eq. (8.18) represents a single equation for 
the unknown variable @. Equation (8.18) represents a combination of the continuity, 
momentum, and energy equations. This leads to a general procedure for the solution 
of irrotational, isentropic flowfields: 

1. Solve for Q from Eqs. (8.17) and (8.18) for the specified boundary conditions 
of the given problem. 

2. Calculate u ,  v ,  and w from Eq. (8.9). Hence, V = J u 2  + v 2  + ul2. 

3. Calculate a from Eq. (8.18). 
4. Calculate M = V / a .  

5. Calculate T, p, and p from Eqs. (3.28), (3.30), and (3.31) respectively. 

Hence, we see that once Q = Q ( x ,  y ,  :) is obtained, the vvhole jlow$eld is knoctw 
This demonstrates the importance of Q. 

Note that Eq. (8.17) combined with (8.18) is a nonlinear partial differential 
equation. It applies to any irrotational, isentropic flow: subsonic, transonic. super- 
sonic. or hypersonic. It also applies to incompressible flow, where a + oo, hence 
yielding the familiar Laplace's equation, 

Moreover, the combined Eqs. (8.17) and (8.18) is an exact equation within the frame- 
work of isentropic, irrotational flow. No mathematical assumptions (such as small 
perturbations) have been applied at this stage of our presentation. There is no general 
closed-form solution to the velocity potential equation, and hence its solution is usu- 
ally approached in one of these ways: 

Exact numerical solutions. This approach makes it difficult to formulate 
general trends and rules-the results are raw numbers which have to be 
analyzed, just like experimental data obtained in the laboratory. However, the 
techniques of modern computational fluid dynamics are rendering numerical 
solutions as everyday occurrences in compressible flow, allowing solutions to 
complicated applications where there would ordinarily be no solution at all. We 
will study aspects of computational fluid dynamics in Chaps. 1 1, 12, and 17. 
emphasizing methods of characteristic and finite-difference solutions. 

Tran.q%rmation of variables in order to make the velocity potential equation 
linear, but still exact. Examples of this approach are scarce. One such 
method is the hodograph solution for subsonic flow, as described by Shapiro 
(see Ref. 16). Due to its limited usefulness, this technique will not be 
considered here. 
Linearized solutions. Here, we find linear equations that are approxirnation.s to 
the exact nonlinear equations, but which lend themselves to closed-form 
analytic solution. A large number of real engineering problems lend themselves 
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to reasonable approximations which linearize the velocity potential equation. 
Aerodynamic theory historically abounds in linearized theories. This will be 
the subject of Chap. 9. 

8.4 1 HISTORICAL NOTE: ORIGIN OF THE 
CONCEPTS OF FLUID ROTATION AND 
VELOCITY POTENTIAL 

The French mathematician Augustin Cauchy, famous for his contributions to partial 
differential equations and complex variables, was also active in the theory of fluid 
flow. In a paper presented to the Paris Academy of Sciences in 1815, he introduced 
the average rotation at a point in the flow. The extension of this idea to the concept 
of instantaneous rotation of a fluid element was made by the Englishman George 
Stokes at Cambridge in 1847. (See Fig. 8.4.) In a paper dealing with the viscous flow 
of fluids. Stokes was the first person to visualize the motion of a fluid element as 
the resolution of three components: pure translation, pure rotation, and pure strain. 
The concept of rotation of a fluid element was then applied to inviscid flows about 
15 years later by Hermann von Helmholtz. 

Figure 8.4 1 Sir George Stokes ( 18 19-1 903) 
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Figure 8.5 1 He~mann \on 
Hel~nhol~/ ( I X2 1 1894) 

Helmholtz (see Fig. 8.5) is gcncrally k n o w n  to fluid dynunicists as a towering 
giant during the nineteenth century, with his accomplishments equivalent in stature 
to those of Euler and d'Alembert. However. it is interesting to note that Helmholtz is 
mainly recogni~ed  by the rest ofcivi l i~at ion for his work in medicine. acoustics, op- 
tics, and electromagnetic theory. Born in Potsdam. Germany, on August 3 1 ,  1821, 
Helmholtz studied medicine in Herlin, and h e c a m  a noted physiologist, holding pro- 
fessional positions in n~edicine at Kiinigsberg. Bonn. and Heidelberg between 1855 
to 187 1. After that, he became a professor of' physics at the University of Berlin until 
his death in 1894. 

Helmholtz made substantial contributions to the theory of incompressible invis- 
cid flow during the nineteenth centul-y. We note here only one such contribution. rel- 
evant to this chapter. In I858 he published a paper entitled "On the Integrals of the 
Hydrodynamical Equations Corresponding to Vortex Motions." in which he ob- 
served that the velocity components along all three axe\ in a flow could be expressed 
as a derivative of a single funcrion. He called this I'unction potentit11 of \~loc,ity, 
which is identical to ct, in Eq. (8.8).  This was the tirst practical use of a velocity po- 
tential in fluid mechanics. although l-ouis de Lagrange ( 1736-1 8 13). in his book 
Mrchuniqur Anu!\tic p~hl i shed  in 1788, had tirst introduced the basic concept of this 
potential. Moreover, Helmholtz concluded "that in the cases in which a potential of 
the velocity exists the smallest fluid particles d o  not possess rotatory motions, 
whereas when no such potential exists. at least a portion of these particles is found in 
rotary motion." 

Therefore, the general concepts in thi\ chapter dealing with irrotational and ro- 
tational flows, as well as the definition of the velocity potential. werc established 
more than a century ago. 





C H A P T E R  

Linearized Flow 

Geometry which should only obey physics, when united to the latter, sorrzetinzes 
cotnnzunds it. l f i t  hapr~ens that a question which we wish to examine is too 
complicated to permit all its elements to enter into the annlytical relation which we 
wish to set up, we separate the more inconvenient elements, we substitute for them 
other elements less troublesome, but ulso less real, and then we are surprised to 
arrive, notwithstanding our painful labor; at a result contradicted by nature; us (f 
ufter having disguised it, cut it short, or mutilated it, a purely rnechanictrl 
combination would give it back to us. 

Jean le Rond d'Alembert, 1752 
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potential equation to a linear partial differential 
equation, and then derive this linear equation in detail. 
Then we define the pressure coefficient, and proceed to 
obtam an approximate linear expression for the pressure 
coefficient that is consistent with the degree of accuracy 
represented by the linearized velocity potential equa- 
tion. These tools are shown as the center column in 
our roadmap in Fig. 9.1. The tools apply equally well to 

subsonic and supersonic flows. Hence, we next move to 
the left column in Fig. 9.1, and study high-speed, com- 
pressible, subson~c flow. Then we move to the box at the 
right and study supersonic flow. Finally, we venture 
back to the left column and define the critical Mach 
number, discuss how it can be calculated, and examine 
its physical implications. It is here where we explain the 
aerodynamic functioning of swept wings. 

9.1 1 INTRODUCTION 
Transport yourself back in time to the year 1940, and imagine that you are an 
aerodynamicist responsible for calculating the lift on the wing of a high-performance 
fighter plane. You recognize that the airspeed is high enough so that the well- 
established incompressible flow techniques of the day will give inaccurate results. 
Compressibility must be taken into account. However. you also recognize that the 
governing equations for compressible flow are nonlinear, and that no general 
solution exists for these equations. Numerical solutions are out of the question- 
high-speed digital computers are still 15 years in the future. So, what do you do? The 
only practical recourse is to seek assumptions regarding the physics of the flow, 
which will allow the governing equations to become linear, but which at the same 
time do not totally compromise the accuracy of the real problem. In turn. these linear 
equations can be attacked by conventional mathematical techniques. 

In this context, it is easy to appreciate why linear solutions to flow problems 
dominated the history of aerodynamics and gasdynamics up to the middle 1950s. In 
modern compressible flow, with the advent of the high-speed computer, the impor- 
tance of linearized flow has been relaxed. Linearized solutions now take their proper 
role as closed-form analytic solutions useful for explicitly identifying trends and 
governing parameters, for highlighting some important physical aspects of the flow, 
and for providing practical formulas for the rapid estimation of aerodynamic forces 
and pressure distributions. In modern practice, whenever accuracy is desired the full 
nonlinear equations are solved numerically on a computer, as described in aubse- 
quent chapters. 

This chapter deals exclusively with linearized flow, but not to the extent that 
most earlier classical texts do. The reader is strongly urged to consult the classic texts 
listed as Refs. 3 through 17, especially those by Ferri, Hilton, Shapiro, and Liepmann 
and Roshko, for a more in-depth presentation. Our purpose here is to put linearized 
flow into proper perspective with modern techniques and to glean important physical 
trends from the linearized results. 

Finally, there are a number of practical aerodynamic problems where, on a phys- 
ical basis, a uniform flow is changed, or perturbed, only slightly. One such example 
is the flow over a thin airfoil illustrated in Fig. 9.2. The flow is characterized by only 
a small deviation of the flow from its original uniform state. The analyses of such 
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Uniform flow Perturbed flow 

Figure 9.2 1 Comparison between uniform and perturbed flows. 

flows are usually called small-perturbation theories. Small-perturbation theory is 
frequently (but not always) linear theory, an example is the acoustic theory discussed 
in Sec. 7.5, where the assumption of small perturbations allowed a linearized solu- 
tion. Linearized solutions in compressible flow always contain the assumption of 
small perturbations, but small perturbations do not always guarantee that the govern- 
ing equations can be linearized, as we shall soon see. 

9.2 1 LINEARIZED VELOCITY 
POTENTIAL EQUATION 

Consider a slender body immersed in a uniform flow, as sketched in Fig. 9.2. In the 
uniform flow, the velocity is V,  and is oriented in the x direction. In the perturbed 
flow, the local velocity is V, where V = V,i + V,j + V,k, and where Vx,  V,, and V, 
are now used to denote the x, y,  and z components of velocity, respectively. In this 
chapter, u', v', and w' denote perturbations from the uniform flow, such that 

Here, u', v', and w' are the perturbation velocities in the x, y, and z directions, re- 
spectively. Also in the perturbed flow, the pressure, density, and temperature arep, p,  
and T, respectively. In the uniform stream, Vx = V,, V,  = 0,  and V, = 0. Also in 
the uniform stream, the pressure, density, and temperature are p,, p,, and T,, 
respectively. 

In terms of the velocity potential, 

V@ = V = (V,  + ul) i  + v'j + w'k 

where Q, is now denoted as the "total velocity potential" (introduced in Chap. 8). Let 
us now define a new velocity potential, the perturbation velocity potential 4 ,  such 
that 

a4 - = U f  3 4  - = v f  a4 1 - = w  
ax a y  a z 

Then, 
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where 

Also, 

Consider again the velocity potential equation, Eq. (8.17). Multiplying this equation 
by a2 and substituting = V,x + 4.  we have 

Equation (9.1 ) is called the perturbation-velocitjl potential eyucrtion. To obtain better 
physical insight, we recast Eq. (9.1) in terms of velocities: 

Since the total enthalpy is constant throughout the flow, 

1 

V& a2 (V ,  + ~ 1 ' ) ~  + ~ ' 2  + a"+-- + 
y - l  2 y - l  2 
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Substituting Eq. (9.3) into (9.2), and algebraically rearranging, 

u'w' (aul 'I)] + -+-  
v, 

Equation (9.4) is still an exact equation for irrotational, isentropic flow. It is sim- 
ply an expanded form of the perturbation-velocity potential equation. Note that the 
left-hand side of Eq. (9.4) is linear, but the right-hand side is not. Also recall that we 
have not said anything about the size of the perturbation velocities u', v', and w'. 
They could be large or small. Equation (9.4) holds for both cases. 

We now specialize to the case of small perturbations, i.e., we assume the u', v', 
and w' are small compared to V,: 

u' v' w ' 2 
- -  , and - << 1 
vm ' v, v, v, v, vm 

(K )  , (L) , and (* ) <<< 1 

With this in mind, compare like terms (coefficients of like derivatives) on the left- 
and right-hand sides of Eq. (9.4): 

1. For 0 5 M, 5 0.8 and for M, 2 1.2, the magnitude of 

is small in comparison to the magnitude of 

Thus, ignore the former term. 

2. For M ,  5 5 (approximately), 
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is small in comparison to av1/ay ,  

is small in comparison to awl/a; ,  and 

Thus, ignore these terms in comparison to those on the left-hand side of Eq. (9.4). 

With these order-of-magnitude comparisons, Eq. (9.4) reduces to 

or, in terms of the perturbation velocity potential, 

Note that Eqs. (9.5) and (9.6) are approximate equations: they no longer represent the 
exact physics of the flow. However, look what has happened. The original nonlinear 
equations, Eqs. (9.1) through (9.4), have been reduced to linear equations, namely, 
Eqs. (9.5) and (9.6). Inasmuch as Eq. (9.1) is called the perturbation-velocity potential 
equation, Eq. (9.6) is called the linearized perturbation-velocity potential equation. 
However, a price has been paid for this linearization. The approximate equation (9.6) 
is much more restrictive than the exact equation (9. l), for these reasons: 

1. The perturbations must be small. 

2. From item I in the list above, we see that transonic,jow (0.8 5 M ,  5 1.2) 
is excluded. 

3. From item 2 in that same list we see that hypersonic.flow (M, 2 5 )  is 
excluded. 

Thus, Eq. (9.6) is valid for sub.ronic und suprrsonicjow. only-an important point to 
remember. However, Eq. (9.6) has the striking advantage that it is linear. 

In summary, we have demonstrated that subsonic and supersonic flows lend 
themselves to approximate, linearized theory for the case of irrotational, isentropic 
flow with small perturbations. In contrast, transonic and hypersonic flows cannot be 
linearized, even with small perturbations. This is another example of the consistency 
of nature. Note some of the physical problems associated with transonic flow (mixed 
subsonic-supersonic regions with possible shocks, and extreme sensitivity to geom- 
etry changes at sonic conditions) and with hypersonic flow (strong shock waves 
close to the geometric boundaries, i.e., thin shock layers, as well as high enthalpy, 
and hence high-temperature conditions in the flow). Just on an intuitive basis, we 
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would expect such physically complicated flows to be inherently nonlinear. For the 
remainder of this chapter, we will consider linear flows only; thus, we will deal with 
subsonic and supersonic flows. 

9.3 1 LINEARIZED PRESSURE COEFFICIENT 
The pressure coefficient C, is defined as 

where p is the local pressure, and p,, p,, and V, are the pressure, density, and ve- 
locity, respectively, in the uniform free stream. The pressure coefficient is simply a 
nondimensional pressure difference; it is extremely useful in fluid dynamics. 

An alternative form of the pressure coefficient, convenient for compressible 
flow, can be obtained as follows: 

Hence, Eq. (9.7) becomes 

Hence, 

Equation (9.10) is an alternative form of Eq. (9.7), expressed in terms of y and M ,  
rather than p, and V,. It is still an exact representation of the definition of C,. 

We now proceed to obtain an approximate expression for C, that is consistent 
with linearized theory. Since the total enthalpy is constant, 

For a calorically perfect gas, this becomes 
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Since 

V' = (V, + u')' + v" + u," 

Eq. (9.11) becomes 

Since the flow is isentropic, pip, = (TI TX)~I(Yp'), and Eq. (9.12) gives 

Equation (9.13) is still an exact expression. However, considering small perturba- 
tions: d/V, << I: U'~/V,, d2/v&, and W"/V; <<< 1 .  Hence, Eq. (9.13) is of the 
form 

where F is sn~all. Hence, from the binomial expansion, neglecting higher-order terms, 

-. P - I - -  - c +  . . .  (0.14) 
P x  Y - 1  

Thus, Eq. (9.13) can be expressed in the form of Eq. (9.14) as seen next, neglecting 
higher-order terms: 

Substitute Eq. (9.15) into Eq. (9.10): 

Since d2/v$, d2/v&, and w'~/v$ <<< 1 ,  Eq. (9.16) become\ 

Equation (9.17) gives the linearized pressure coeflcierzt, valid for smcill perfurha- 
tions. Note its particularly simple form; the linearized pressure coefficient depends 
only on the x component of the perturbation velocity. 
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9.4 1 LINEARIZED SUBSONIC FLOW 
As mentioned in Sec. 9.1, historically a major impetus for the development of lin- 
earized theory for subsonic compressible flow grew out of the need to predict aero- 
dynamic forces and moments on airfoils. Throughout the 1930s, this question 
became increasingly compelling: How can we take incompressible results (theory 
or experiment), and modify them to take compressibility into account? In this sec- 
tion we will develop an answer by utilizing the linearized equations developed in 
Secs. 9.2 and 9.3. The development will deal explicitly with the two-dimensional 
flow over an airfoil; however, it applies for any two-dimensional shape which satisfies 
the assumptions of small perturbations, e.g., the flow over a bumpy or wavy wall. 

Consider the compressible subsonic flow over a thin airfoil at small angle of 
attack (hence small perturbations), as sketched in Fig. 9.3. The usual inviscid flow 
boundary condition must hold at the surface, i.e., the flow velocity must be tangent 
to the surface. Referring to Fig. 9.3, at the surface this boundary condition is 

d f  v' - = tan 8 
dx V, + u' 

For small perturbations, u' << V,, and tan 0 8 ;  hence, Eq. (9.18) becomes 

Since v' = a@/ay,  Eq. (9.19) is written as 

Equation (9.20) represents the appropriate boundary condition at the surface, consis- 
tent with linearized theory. 

/ 
Shape of airfoil, y = f ( x )  

Figure 9.3 1 Airfoil in physical space. 
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Figure 9.4 1 Airfoil in transformed space. 

The subsonic compressible flow over the airfoil in Fig. 9.3 is governed by the 
linearized perturbation-velocity potential equation (9.6). For two-dimensional flow, 
this becomes 

82#,r + #,,. = 0 (9.2 1 ) 

where p - d m .  Equatlon (9.21) can be transformed to a tamll~ar Incompre5s- 
ible form by considering a transformed coordinate yystem (<, q ) ,  such thdt 

In this transformed space, sketched in Fig. 9.4, a transformed perturbation velocity 
potential $(<, 17) is defined such that 

To couch Eq. (9.21) in terms of the transformed variables, note that 

Therefore, the derivatives of & In (x, y )  space are related to the derivatives of 4 in 
(6, T I )  space, according to 
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Substituting Eqs. (9.26) and (9.28) into Eq. (9.21), 

Equation (9.29) is Laplace's equation, which governs incompressible flow. Hence, 6 
represents an incompressible flow in (6, r ] )  space, which is related to a compressible 
flow 4 in ( x ,  y )  space. 

The shape of the airfoil is given by y = f ( x )  and r]  = q ( 6 )  in ( x ,  y) and (6 ,  r ] )  

space, respectively. From Eq. (9.20) in ( x ,  y )  space, we have 

Applying Eq. (9.20) in (6 ,  r ] )  space, 

The right-hand sides of Eqs. (9.30) and (9.31) are equal; hence, equating the left- 
hand sides, 

Equation (9.32) is an important result; it demonstrates that the shape of the airfoil in 
( x ,  y )  and (6 ,  r ] )  space is the same. Hence, the above transformation relates the com- 
pressible flow over an airfoil in ( x ,  y )  space to the incompressible flow in (6 ,  r ] )  

space over the same airfoil. 
The practicality of the above development is in the pressure coefficient. For the 

compressible flow in Fig. 9.3, the pressure coefficient is, from Eq. (9.17), 

Denoting the incompressible perturbation velocity in the 6 direction by ii, where 
u = 84 /86 ,  Eq. (9.33) becomes 

Since (6 ,  r ] )  space corresponds to incompressible flow, Eq. (9.17) yields 

where C,, is the incompressible pressure coefficient. Combining Eqs. (9.34) and (9.35), 
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Equation (9.36) is called the Pvundtl-Glaurrt rule; i t  is a similarity rule which 
relates iracomp-essible flow over a given two-dimensional profile to suhsotzic c . 0 1 1 1 -  

pressible flow over the some profile. Moreover, consider the aerodynamic lift L and 
moment M on this airfoil. We define the lift and moment coefficients. Cr and C,w, 
respectively, as 

where S is a reference area (for a wing, usually the platform area of the u ing). and I 
is a reference length (for an airfoil, usually the chord length). In Sec. 1.5, the l i f t  was 
defined as the component of aerodynamic force perpendicular to the free-stream ve- 
locity. As explained in Sec. 1.5, the sources of all aerodynamic forces and momenta 
on a body are the pressure and shear stress distributions over the surface. Since we 
are dealing with an inviscid flow, the shear stress is zero. Moreover. Eq. ( 1.36) gives 
an equation for the lift in terms of the integral of the pressure distribution. Since both 
L and M are due to the pressure acting on the surface. and surface pressure for 
subsonic compressible flow is related to surface pressure for incompressible tlow 
through Eq. (9.36), it can readily be shown that (see. for example, Ref. 1 ) 

Equations 9 . 3 7 ~  and 9.37b are also called the Prmdtl-Glrruor-t rule. They are excep- 
tionally practical aerodynamic formulas for the approximate compressibility corrcc- 
tion to low-speed lift and moments on slender two-dimensional aerodynamic shapes. 
Note that the effect of compressibility is to increase the magnitudes of C,, and Cnr .  

Equations (9.36) through (9.37) are results from linearized theory. They indicate 
that the aerodynamic forces go to infinity as M, goes to unity-an impossible result. 
This quandary is resolved, of course, by recalling that linearized theory breaks down 
in the transonic regime (near M ,  = 1). Indeed, the Prandtl-Glauert rule is reason- 
ably valid only up to a Mach number of approximately 0.7. More accurate com- 
pressibility corrections will be discussed in Sec. 9.5. 

An important effect of compressibility on subsonic flowfields can be seen by 
noting that 

Comparing the extreme left- and right-hand sides of Eq. (9.38) at a given location 
in the flow, as M, increases, the perturbation velocity 11' increases. Compressibility 
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strengthens the disturbance to the flow introduced by a solid body. From another per- 
spective, in comparison to incompressible flow, a perturbation of given strength 
reaches further away from the surface in compressible flow. The spatial extent of the 
disturbed flow region is increased by compressibility. Also, the disturbance reaches 
out in all directions, both upstream and downstream. 

In classical inviscid incompressible flow theory, a two-dimensional closed body 
experiences no aerodynamic drag. This is the well-known d' Alembert's paradox, and 
is due to the fact that, without the effects of friction and its associated separated flow, 
the pressure distributions over the forward and rearward portions of the body exactly 
cancel in the flow direction. Does the same result occur for inviscid subsonic com- 
pressible flow? The answer can be partly deduced from Eq. (9.36). The compressible 
pressure coefficient C p  differs from the incompressible value Cpo by only a constant 
scale factor. Hence, if the distribution of Cpo results in zero drag, the distribution of 
C p  will also cancel in the flow direction and result in zero drag. Similar results are 
obtained from nonlinear subsonic calculations (thick bodies at large angle of attack). 
Hence, d'Alembert's paradox can be generalized to include subsonic compressible 
flow as well as incompressible flow. 

Consider a subsonic flow with an upstream Mach number of M,. This flow moves over a 
wavy wall with a contour given by y, = h cos(2nx/l), where y ,  is the ordinate of the wall, h 
is the amplitude, and 1 is the wavelength. Assume that h is small. Using the small perturbation 
theory of this chapter, derive an equation for the velocity potential and the surface pressure 
coefficient. 

Solution 
The wall shape is sketched in Fig. 9.5. Assume that h/l is small. Therefore, the flowfield above 
the wall is characterized by small perturbations from the uniform flow conditions. Hence, the 
perturbation-velocity potential equation, Eq. (9.6), applies. In two dimensions, this becomes 

Figure 9.5 1 Geometry of a wavy wall. 
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Rccall that Eq. (E. 1) is linear, and a standard approach to the solution of linear partial dif- 
ferential equations is separation of variables. Assume that q5, which is a function of .I- and y. can 

be expressed as a product of functions x only and y only, i.e., 

Substitute Eq. (E.2) into Eq. (E. 1 ) :  

Equation (E.3) must hold for any arbitrary values of x and y. In particular, if x is held 
constant but y is varied, ( 1/F)(d2 ~ / d x ' )  is constant. However, Eq. (E.3) dictates that 

[1/(1 - M t ) G l ( d 2 G / d y 2 )  must also be constant; indeed, it must be equal to the nepative 
value of the former constant in order for the two terms in Eq. (E.3) to always add to zero. Let 
this constant be denoted by k2.  Hence, Eq. (E.3) yields 

and 

From Eq. (E.4). 

Equation (E.6) is a second-order linear ordinary differential equation with con\tant coeffi- 
cients; its solution is (see any standard text on differential equations) 

From Eq. (E.5). 

The standard solution of Eq. (E.8) is 

F ( x )  = B ,  sin kx + B2 cos kx (E.9) 

In Eqs. (E.7) and (E.9). the constants of integration, A l ,  A, .  B , ,  and B2 ,  and the parame- 
ter k are determined from the physical boundary conditions of the problem as 

1. As ?: + m. Vand hence V 4  must remainfinite (i.e., they cannot increase to an infinite 
value, because nature abhors infinities). 

2. The flow at the wall must be tangent to the wall. Hence, 
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In Eq. (E. lo), small perturbations dictate that u:, << V, ; hence, Eq. (E. 10) becomes 

Combining Eqs. (E. 11) and the wall equation, we have 

( ) = - V, h (7) sin (7) 

(E. 11) 

(E. 12) 

Consistent with our assumption of small perturbations, y,  is small. Hence, Eq. (E. 12), which 
strictly speaking is applied at the wall surface, can be evaluated at y = 0 without compromis- 
ing the first-order accuracy of the solution. That is, 

In turn, Eq. (E. 12) becomes 

(3=o = -v,h (T) sin ( y) (E. 13) 

Returning to Eq. (E.7), for the first boundary condition listed above to hold, A2 = 0. This 
ensures that V remains finite at y + oo. Also, combining Eqs. (E.2) and (E.7) and (E.9), with 
AZ = 0, we have 

@(x, y) = (B1 sinkx + B ~ C O S ~ X ) A I ~ ~ ~ ~ \  (E. 14) 

Hence, 

- = (BI sin kx + B2 cos kx)AI (-k),/l-~$e"' 
?Y 

Evaluating Eq. (E.15) at the wall (y = 0 as already described): 

(E. 16) 

Combining Eq. (E. 16) with the second boundary condition, Eq. (E. 13), we have 

-A I k J ~ ( B ~  sin kx + B2 cos kx) = - v h ( sin ( )  (E. 17) 

By inspection, we see that Eq. (E. 17) is satisfied if 
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Hence, Eq. (E. 14) becomes 

Equation (E.18) is the solution to the problem. From it all other physical properties can be 
Sound. For example, 

Also, from Eq. (9.17), combined with (E. 19). 

I I 

Since y = 0 approximately corresponds to the wall, then the pressure coefficient at the wall 
C,l,,, can be obtained from Eq. (E.20) as 

Let us interpret the results as embodied in Eqs. (E.18) through (E.21). To begin with, a 
comparison of Eq. (E.21) with the wall equation shows that the pressure coefficient at the wall 
has the same cosine variation as the shape of the wall, but it is 180" out of phase [due to the 
negative sign in Eq. (E.21)]. This comparison is illustrated in Fig. 9.6 which shows a 
schematic of the C,,,,, variation positioned above the wall shape. Clearly, the pressure variation 
is symmetrical with the wall shape. The pressure distribution is illustrated by the arrows nor- 
mal to the surface. Due to the symmetry of this distribution, there is no pre.ssurefi)ri,n.e in the .r 
direction on the wall. That is, there is no drag. This is an example of a general result, namely: 
For two-dimmsionul, inviscid, adiabatic, suhsonic compressible pow, a b0d.v experiencr,~ no 

orrodynumic drag. This is a generalization of the well-known d'Alembert's paradox which 
predicts zero drag for a two-dimensional body immersed in an incompressible potential flow. 

Figure 9.6 1 Schematic of pressure variation on a wavy 
wall over which a subsonic flow is moving. 
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Figure 9.7 1 Linearized subsonic flow over a wavy wall; 
effects of compressibility on streamline shapes. 

With regard to the Mach number effects on  both the flowfield and C,,,,, first consider 
Eq. (E.18), which shows that 

Thus, for any fixed subsonic value of M,, @ + 0 as y + m. That is, the disturbances intro- 
duced by the presence of the wall virtually disappear at large distances from the wall-they 
attenuate with distance. However, the distance to which a disturbance of a given magnitude 
reaches out, away from the wall, increases with increasing M, , as can be seen from the above 
proportionality. Thus, in a subsonic flow, as M, increases, the disturbances reach out further 
from the wall. This is shown schematically in Fig. 9.7, which compares streamlines between 
low and high subsonic Mach numbers. 

The most important effect of Mach number in a subsonic flow is, by far, its influence on 
surface pressure coefficient, as demonstrated by Eq. (E.21): 

Let M,, and M,, be two different free-stream Mach numbers. Then, from Eq. (E.21), 

Furthermore, if M,, x 0, which corresponds to incompressible flow, then Eq. (E.22) yields 

which is the Prandtl-Glauert rule derived earlier. 
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At the end of Example 9.1, the statement was made that M ,  % 0 corresponds 
to incompressible flow. This provides a good opportunity to examine a physical 
(or should we say "metaphysical") implication of incompressible flow. Precisely 
speaking, for a purely incompressible flow, the Mach number is precisely zero, 
M = 0. At first thought, how can this be? Incompressible flows have a finite veloc- 
ity, or else there would be no "flow." But a finite velocity does not necessarily mean 
a finite Mach number. An incompressible flow is a constant density flow, hence, from 
Eq. (1.5), where dp = 0, the compressibility t = 0. In turn, from Eq. (3.18), the 
speed of sound is infinite in an incompressible flow. Since M = V/a,  the Mach num- 
ber in a purely incompressible flow is always zero, even though Vis finite. This result 
is consistent with the definitions of an incompressible flow. From time to time you 
will see results in the literature for flows labeled as M = 0. Just recognize that this is 
a label for incompressible flow results. In retrospect, the paradox discussed here is a 
consequence of the fact that purely incompressible flow is a myth-it does not exist 
in nature. It is simply an intellectual construct made by human beings to model a 
class of real flows in nature that closely resemble a defined incompressible flow. 

9.5 1 IMPROVED COMPRESSIBILITY 
CORRECTIONS 

Linearized solutions are influenced predominantly by free-stream conditions; they 
do not fully recognize changes in local regions of the flow. Such local changes are 
basically nonlinear phenomena. For example, as shown in Sec. 7.5, the wave veloc- 
ity of each portion of a linearized acoustic wave propagates at the free-stream speed 
of sound a,. Later in Chap. 7 we saw the true case where each element of a tinite 
wave propagates at the local value of u ZIZ a,  and therefore the wave shape distorts in 
the process-a nonlinear phenomena. Another example is contained in Sec. 9.4. Lin- 
earized subsonic flow is governed by M,, not the local Mach number M. Witness 
Eqs. (9.36) through (9.37), where M, is the dominant parameter. 

In an effort to obtain an improved compressibility correction, Laitone (see 
Ref. 23) applied Eq. (9.36) locally in the flow, i.e., 

where M is the local Mach number. In turn, M can be related to M, and the pressure 
coefficient through the isentropic flow relations. The resulting compressibility cor- 
rection is 

Note that, as C,],, becomes small, Eq. (9.39) approaches the Prandtl-Glauert rule. 
Another compressibility correction that has been adopted widely is that due to 

von Karman and Tsien (see Refs. 24 and 25). Utilizing a hodograph solution of the 
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nonlinear equations of motion along with a simplified "tangent gas" equation of 
state, this result was obtained: 

Equation (9.40) is called the Karman-Tsien rule. 
Figure 9.8 contains experimental measurements of the C, variation with M ,  at 

the 0.3 chord location on an NACA 4412 airfoil; these measurements are compared 

Figure 9.8 1 Comparison of several compressibility corrections 
with experiment for an NACA 44 12 airfoil at an angle of attack 
a = 1°53'. The experimental data are chosen for their historical 
significance; they are from John Stack, W. F. Lindsey, and 
Robert E. Littell. "The compressibility Burble and the Effect of 
Compressibility on Pressures and Forces Acting on an Airfoil." 
NACA Report No. 646,1938. This was the first major NACA 
publication to address the compressibility problem in a 
systematic fashion; it covered work performed in the 24-in-high 
speed tunnel at Langley Aeronautical Laboratory and was 
carried out during 1935-1936. 
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with the Prandtl-Glauert, Laitone, and Karman-Tsien rules. Note that the Prandtl- 
Glauert rule, although the simplest to apply, underpredicts the experimental values, 
whereas the improved compressibility corrections are clearly more accurate. This is 
because both the Laitone and Karman-Tsien rules bring in the nonlinear aspects of 
the flow. 

9.6 1 LINEARIZED SUPERSONIC FLOW 

From Eq. (9.6) the linearized perturbation-velocity potential equatlon for two- 
dimen4ional f l o ~  take\ the form of 

for wbconic How, where B = J1 - M L ,  and the form of 

A%,, -4 , i  = 0 

for supersonic flow, where h = d m .  The difference between Eqs. (9.41) 
and (9.42) is fundamental, for they are elliptic and hyperbolic partial differential 
equations, respectively. A discussion of the distinction between elliptic and hyper- 
bolic equations is deferred until Chap. 11; suffice it to say here that the equations 
reflect fundamental physical differences between subsonic and supersonic flows- 
differences which will be highlighted in this and subsequent sections. 

Consider the supersonic flow over a body or surface which introduces small 
changes in the flowfield, i.e., flow over a thin airfoil, over a mildly wavy wall, or over 
a small hump in a surface. The latter is sketched in Fig. 9.9. Equation (9.42), which 

Left-running 
Mach waves 

Right-running 
Mach waves 

Figure 9.9 1 Lineari~ed supersonic flow over a bump. 
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governs this flow, is of the form of the classical wave equation first discussed in 
Sec. 7.5 in conjunction with acoustic theory. Its general solution is 

4 = f (x - hy) + g(x + hy) (9.43) 

which can be verified by direct substitution into Eq. (9.42). Examining the particular 
solution where g = 0, and hence 4 = f (x - hy), we see that lines of constant 4 cor- 
respond to x - ky = const, or 

Recalling that the Mach angle p = arcsin(l/ M,) = arctan( 1 / d m ) .  Eq. (9.44) 
states that lines of constant 4 are the family of left-running Mach lines, as sketched in 
the upper half of Fig. 9.9. In turn, i f f  = 0 in Eq. (9.43), then lines of constant 4 are 
the family of right-running Mach lines shown in the lower half of Fig. 9.9. 

Hence, Fig. 9.9 illustrates a basic physical difference between subsonic and su- 
personic flow. When M ,  < 1, it was shown in Sec. 9.4 that disturbances propagate 
everywhere in the flowfield, including upstream as well as downstream. In contrast, 
for M, > 1. Fig. 9.9 illustrates that weak disturbances propagate along Mach lines, 
and hence the flowfield upstream of a disturbance does not feel the presence of the 
disturbance. In steady supersonic flows, disturbances do not propagate upstream; 
they are limited to a region downstream of the source of disturbance. 

Returning to Eq. (9.43), letting g = 0, we have 

Hence, 

and 

where f '  represents the derivative with respect to the argument, (x - hy). Combin- 
ing Eqs. (9.45) and (9.46), 

Equation (9.18) gives the boundary condition on the surface as 

For small perturbations, u' << V ,  and tan 6' x 6'. Hence, Eq. (9.48) becomes 

Substituting Eq. (9.49) into (9.47), 
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Therefore, from Eqs. (9.17) and (9.50), the pressure coefficient on the surface is 

Equation (9.51) is an important result. It is the linearized supersonic surface 
pressure coefficient, and it rtates that C,, is directly proportional to the local surface 
inclination with respect to the free stream. It holds for any slender two-dimensional 
shape. For example, consider the biconvex airfoil shown in Fig. 9.10. At two arbi- 
trary points A and B on the top surface, 

~ Q A  and C,,B = 2 0 8  

respectively. Note in Fig. 9.10 that QA is positive and QB is negative, and hence C, 
varies from positive on the forward surface to negative on the rearward surface. This 
is consistent with our earlier discussions in Chap. 4: We know from inspection of 

Biconvex airfoil 

Figure 9.10 I Schematic of the lineari~ed pressure coefficient over a biconvex airfoil. 
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Fig. 9.10 that the front and rear surfaces are compression and expansion surfaces, 
respectively. 

Equation (9.51) was derived by setting g = 0 in Eq. (9.43). Thus it holds for a 
surface generating a family of left-running waves, i.e., the top surfaces in Figs. 9.9 
and 9.10. If we set f = 0 in Eq. (9.43), the surface pressure coefficient becomes 

which holds for a surface generating right-running waves, i.e., the bottom surfaces in 
Figs. 9.9 and 9.10. In both Eqs. (9.51) and (9.52), 0 is measured positive above the 
local flow direction and negative below the local flow direction. Hence, on the bot- 
tom surface of the biconvex airfoil in Fig. 9.10, Oc is negative and OD is positive. In 
conjunction with Eq. (9.52), this still yields a positive C, on the forward compres- 
sion surface and a negative C, on the rearward expansion surface. 

There is no real need to worry about the formal sign conventions mentioned 
above. For any practical application, this author suggests the use of Eq. (9.51) along 
with common sense to single out the compression and expansion surfaces on a body. 
If the surface is a compression surface, C, from Eq. (9.51) must be positive, no mat- 
ter whether the surface is on the top or bottom of the body. Similarly, if the surface is 
an expansion surface, C, from Eq. (9.5 1) must be negative. 

This leads to another basic difference between subsonic and supersonic inviscid 
flows. Recall that, for M ,  < 1, a two-dimensional body experiences no drag. For 
M ,  > 1, however, as denoted by the + and - signs in Figs. 9.9 and 9.10, C, is pos- 
itive on the front surfaces and negative on the rear surface. Consequently, there is a 
net pressure imbalance which creates a drag force on the body. This force is the wave 
drag, first introduced in Sec. 4.15. Although shock waves do not appear explicitly 
within the framework of linearized theory, their consequence in terms of wave drag 
are reflected in the linearized results. Hence, d'Alembert's paradox does not apply to 
supersonic flows. 

Further contrast between subsonic and supersonic flows is seen by comparing 
Eqs. (9.36) and (9.51). In subsonic flow, Eq. (9.36) shows that C, increases when 
M ,  increases. However, for supersonic flow, Eq. (9.51) shows that C, decreases 
when M,  increases. These important trends are illustrated in Fig. 9.11. 

Finally, to examine the accuracy of Eq. (9.51), Fig. 9.12 compares linearized 
theory with exact results for C, on the surface of a wedge of semiangle 8 .  The exact 
results are obtained from oblique shock theory as described in Chap. 4. Note that the 
agreement between exact and linear theories is good at small 0, but deteriorates 
rapidly as 8 increases. For M ,  = 2 as shown in Fig. 9.1 1, linearized theory yields 
reasonably accurate results for C, when 0 < 4". 

Although the linearized pressure distribution from Eq. (9.5 1) becomes inaccu- 
rate beyond a deflection angle of approximately 4", when it is integrated over the 
surface of an airfoil, these inaccuracies tend to compensate over the top and bottom 
surfaces. As a result the linearized values for CL and CD are more accurate at larger 
angles of attack than one would initially expect. Some of these trends are illustrated 
in the problems at the end of this chapter. 
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Figure 9.11 1 Variation of the linearized preswre 
coefficient with Mach number. 

8 (degrees) 

Figure 9.12 1 Comparison between linearired theory 
and exact shock results for the pressure on a wedge 
in supersonic flow. 

Consider a supersonic flow with an upstream Mach number of M, . This flow nioves over the 
same wavy wall as first shown in Fig. 9.5, and as given in Example 9.1. For small h, use lin- 

ear theory to derive an eq~~at ion for the velocity potential and surface pressure coefficient. 
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Solution 
From Eq. (9.42), 

Keeping in mind that ( M &  - 1) > 0 for supersonic flow, compare Eq. (G. l )  with Eq. (7.42), 
which was identified as the classical wave equation. We see that Eq. (G. 1)  is also of the form 
of the simple wave equation. Hence, a solution to Eq. (G. l )  can be expressed as 

Let g = 0. Then Eq. (G.2) becomes 

and 

where f' denotes the derivative off with respect to its argument, (x - J-y). Recall 
the boundary conditions at the wall discussed in Sec. 9.4: 

Thus 

,,fl(x) = ~ , h  (:) sin (7) 
where Eq. (G.5) holds at the wall. Thus, from Eq. (GS), 

Integrating Eq. (G.6) with respect to its argument [note that the argument is (x - , / m y ) ,  
but with y = 01, we have 

f ( x )  = - Vm (7) + const JV COS 

Since f (x )  is defined throughout the flow, not just at the wall, and because it has the form of 
Eq. (G.7), where x represents the argument off, then Eq. (G.3) can be written as 
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Therefore, from Eqa. (9.17) and ((3.8) 

At the wall, Eq. ((3.9) becomes 

Equations ((3.8) through (G. 10) represent the solution for the linearized supersonic flow over 
a wavy wall. 

Let us examine these results closely. First, in contrast to the previous results for subwnic 

flow, no exponential attenuation factor occurs. For supersonic flow, the perturbations do not 
disappear at y + oo. Moreover, the mugrlitudr of a disturbance (magnitude of 4 or C,,, for 

example) is constant for (x - m - y )  = const. That is, the effect of the wall is propa- 

gated to infinity with constant strength along the lines x - JmV = const. Hence, these 
lines have a slope 

and are therefore identical to Much lines, with the angle p to the free-stream direction. 

= sin (k) 
These lines are sketched in Fig. 9.13 where they are also identified as charucreristic 1ine.c.. 
The proof that Mach lines are indeed the same as characteristic lines in the sense defined in 
Chap. 7 will be made in Chap. I I .  We simply note the fact here. Also note, in contrast to 

Figure 9.13 1 Linearized supersonic flow over a wavy wall 
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subsonic flow, that Eq. ((3.8) yields streamlines that are unsymmetrical about a vertical line 
through a crest or trough of the wall. Instead, the streamlines remain geometrically similar be- 
tween two inclined Mach waves, as sketched in Fig. 9.13. 

Two additional physical results of great importance can be interpreted from Eq. (G.lO). 
First, note that unlike subsonic flow, the surface pressure distribution is no longer symmetrical 
about the wall [Eq. (G.lO) is a sine variation, whereas the wall is a cosine shape]. Hence, for 
supersonic flow, the surface pressure distributions do not cancel in the x direction; instead, 
there is a net force in the x direction, in the same direction as the free stream. This force is 
called wave drag. 

Second, Eq. (G.lO) for the pressure coefficient can be couched in a simpler form by not- 
ing that the equation of the wall is 

y,,, = h cos (7) 
Hence, 

(G. 11) 

However, letting 0 denote the angle of the wall as sketched in the Fig. 9.13, at any point on the 
surface, 

dyw tan 0 = - (G. 13) 
d x  

Compatible with linearized theory, which assumes small perturbations, i.e., slender bodies, 0 
is assumed small. Hence, from Eq. ((3.13) 

Thus, combining Eqs. (G. 12) and (G. 14), 

(G. 14) 

(G. 15) 

Ecluation (G.15) is the same as Eq. (9.51) derived earlier. 

9.7 1 CRITICAL MACH NUMBER 
Consider an airfoil a t  low subsonic speed with a free-stream Mach number 
M ,  = 0.3, as shown in Fig. 9 . 14~ .  The flow expands around the top surface of the 
airfoil, dropping to a minimum pressure at point A. At  this point, the local Mach 
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Local 1Ll4 = 1 0 

:bit, = 0.6 i 
_____) F - 1  

Figure 9.14 I Definition of critical Mach number. Point A is the 
location of minimum pressure on the top surface of the airfoil. 

number on the surface will be a maxinium, in this case M,$ = 0.435. Now assume 
that we increase M, to 0.5. The local Mach number at the minimum pressure point 
will correspondingly increase to 0.772, as shown in Fig. 9.146. Now let us increase 
M, to just the right value such that M,, = 1.0 at the minimum-pressure point. This 
value is M, = 0.6 1 ,  as shown in Fig. 9 . 1 4 ~ .  When this occurs. M, is called the cr.it- 
ictrl Much numbel; M,,. By definition, the critical Mach number is that ,fi-er-.str.errrn 
Mach number at which sonic flow is first encountered on the airfoil. 

The critical Mach number can be calculated as follows. Assuming isentropic 
flow throughout the flowfield, Eq. (3.30) gives 

Combining Eqs. (9.10) and (9.53). the pressure coefficient at point A is 

From Eq. (9.54), for a given M ,  the values of local pressure coefficient and local 
Mach number are uniquely related at any given point A .  Now assume as before that 
point A is the minimum-pressure (hence maximum-velocity) point on the airfoil. 
Furthermore, assume MA = 1. Then, by definition, M ,  = M,,. Also, for this case 
the value of the pressure coefficient is defined as the critical pressure coefficient C,,L,. 
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Figure 9.15 1 Calculation of critical Mach 
number. 

Setting MA = 1, Moo = Mcr, and Cp = Cp,, in Eq. (9.541, we obtain 

Note that Cpcr is a unique function of M,,; this variation is plotted as curve C in 
Fig. 9.15. 

Equation (9.55), along with one of the compressibility rules such as Eqs. (9.36), 
(9.39), or (9.40), provides enough tools to calculate the critical Mach number for a 
given airfoil: 

1. Obtain as given data a measured or calculated value of the incompressible 
pressure coefficient at the minimum pressure point, Cpo. 

2. Using one of the compressibility corrections, plot C p  as a function of M,, 
shown as curve B in Fig. 9.15. 

3. Using Eq. (9.55) plot Cpm as a function of M,,, shown as curve C in Fig. 9.15. 
4. The intersection of curves B and C defines the critical Mach number for the 

given airfoil. 

Note in Fig. 9.15 that curve C [from Eq. (9.55)] is a result of the fundamental gasdy- 
namics of the flow; it is unique, and does not depend on the size or shape of the air- 
foil. In contrast, curve B is different for different airfoils. For example, consider two 
airfoils, one thin and one thick. For the thin airfoil, the flow experiences only a mild 
expansion over the top surface, and hence ICpo I is small. Combined with the chosen 
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compressibility correction, curve B in Fig. 9.15 is low on the graph, resulting in a 
high value of M,,. For the thick airfoil, IC,,,JI is naturally larger because the flow 
experiences a stronger expansion over the top surface. Curve B is higher on the 
graph, resulting in a lower value of M,,. Hence, an airfoil designed for a high critical 
Mach number must have a thin profile. 

When the free-stream Mach number exceeds M,,, a finite region of supersonic 
flow exists on the top surface of the airfoil. At a high enough subsonic Mach num- 
ber, this embedded supersonic region will be terminated by a weak shock wave. 
The total pressure loss associated with the shock will be small; however, the ad- 
verse pressure gradient induced by the shock tends to separate the boundary layer 
on the top surface, causing a large pressure drag. The net result is a dramatic in- 
crease in drag. The free-stream Mach number at which the large drag rise begins is 
defined as the drag-divergence Mach number; it is always slightly larger than Mi,. 
The massive increase in drag encountered at the drag-divergence Mach number is 
the technical base of the "sound barrier" which was viewed with much trepidation 
before 1947. 

The relationship between the critical Mach number, the drag-divergence Mach 
number, and Mach one is sketched in Fig. 9.16, which shows the qualitative variation 
of the drag coefficient for a given shaped body (such as an airfoil, wing, or whole air- 
plane) as a function of free-stream Mach number. At low subsonic speeds, the drag 
coefficient is relatively constant as M ,  increases. Point a denotes the critical Mach 
number. As M ,  is increased slightly above M,,, C D  remains constant. Then, at some 
value of M ,  slightly larger than MCr,  the value of C D  skyrockets. The free-stream 
Mach number at which this large drag increase occurs is the drag-divergence Mach 
number, denoted by point b in Fig. 9.16. 

Figure 9.16 1 Generic sketch of the variation of 
drag coefficient with freestream Mach number, 
showing the relative locations of the critical Mach 
number and the drag-divergence Mach number. 
both of which are less than Mach one. 
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0.6 0.8 I .0 1.2 1.4 

Mach number M 

Figure 9.17 1 Variation of minimum wing drag 
coefficient versus Mach number with airfoil thickness 
ratio as a parameter. The wing is swept, with a sweep 
angle of 47 degrees. (From Loftin, Questfor 
Pe$ormance, NASA S P  468, 1985.) 

For purposes of discussion, consider the wing of an airplane. In most cases, if 
something is done during the design of the wing to increase M,,, then usually the 
value of Md,,,di,,,,,,, also increases. This is a good thing, because the wing can fly 
closer to Mach one before the large drag rise is encountered. In airplane design, there 
have been two classic features employed to increase M,,, hence, Mdrag.divergence. 
The first simply is to make the wing thinner. As already discussed, a thinner airfoil 
will have a higher M,, than a thicker airfoil, everything else being equal. This is re- 
inforced by the wind tunnel data shown in Fig. 9.17, where the drag coefficient is 
plotted versus free-stream Mach number for three wings with three different thick- 
nesses. Note the particularly large drag rise encountered by the wing with 9 percent 
thickness-to-chord ratio, and that it occurs at a value of M ,,,,,,,,,,,,,, of about 0.88. 
By reducing the wing thickness to 6 and 4 percent, the magnitude of the drag rise is 
progressively reduced, and the value of M ,  ,,,-,,,, , ,,,,, is progressively increased, 
moving closer to Mach one. 

The other classic design feature used to increase M,, is to sweep the wing. To 
see how wing sweep increases the critical Mach number of the wing, first consider 
a straight wing, a portion of which is sketched in Fig. 9 . 1 8 ~ .  We define a straight 
wing as one for which the midchord line is perpendicular to the free stream; this is 
certainly the case for the rectangular planform shown in Fig. 9 . 1 8 ~ .  Assume the 
straight wing has an airfoil section with a thickness-to-chord ratio of 0.15, as shown 
at the left of Fig. 9 . 1 8 ~ .  Streamline AB flowing over this wing sees the airfoil with 
tl /el = 0.15. Now consider the same wing swept back through the angle A = 45", 
as shown in Fig. 9.18b. Streamline CD, which flows over this wing (ignoring any 
three-dimensional curvature effects), sees an effective airfoil shape with the same 
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Figure 9.18 1 By sweeping the wing, a streamline effectively sees a thinner airfoil, hence increasing the critical 
Mach number of the wing. 

thickness as before (t2 = t i ) ,  but the effective chord length c.2 is longer by a factor 
of 1.41 (i.e., c2 = 1 . 4 1 ~ ~  ). This makes the effective thickness-to-chord ratio seen 
by streamline CD equal to t2/c2 = 0.106-thinner by almost one-third compared to 
the straight-wing case. Hence, by sweeping the wing. the flow behaves as if the 
airfoil section is thinner, with a consequent increase in the critical Mach number of 
the wing. Everything else being equal, a swept wing has a larger critical Mach 
number, hence a large drag-divergence Mach number than a straight wing. For this 
reason, most high-speed airplanes designed since the middle 1940s have swept 
wings. (The only reason why the Bell X-I, shown in Fig. 1.9, had straight wings 
is because its design commenced in 1944 before any knowledge or data about 
swept wings was available in the United States. Later, when such swept-wing data 
flooded into the United States from Germany in mid-1945, the Bell designers were 
conservative, and stuck with the straight wing.) A wonderful example of an early 
swept-wing fighter is the North American F-86 of Korean War vintage, shown in 
Fig. 9.19. 
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Figure 9.19 1 A typical example of a swept-wing aircraft. The North American F-86 Sabre of Korean War fame. 

9.8 1 SUMMARY 
This chapter has presented some of the technical aspects of subsonic and supersonic 
linearized flow for two-dimensional bodies and wall geometries. Closed-form 
analytical results have been obtained which illustrate important physical trends, and 
which dramatically contrast some fundamental differences between subsonic and 
supersonic flow. Although modern numerical techniques now exist for the accurate 
solution of flows with complex geometry (to be discussed in subsequent chapters), 
linearized solutions still play an important role in the whole spectrum of modern 
compressible flow. 

Finally, it should be noted that linearized theory has also been applied to three- 
dimensional flows, yielding results for slender bodies of revolution at small angles of 
attack, and for finite wings. Although space will not be devoted in this book to such 
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three-dimensional linearized flows, the reader is strongly encouraged to study this 
aspect in the classical literature. (See, for example, Ref\. 5 ,  6, and 9.) 

9.9 1 HISTORICAL NOTE: THE 1935 VOLTA 
CONFERENCE-THRESHOLD TO MODERN 
COMPRESSIBLE FLOW; WITH ASSOCIATED 
EVENTS BEFORE AND AFTER 

Some of the threads of the early history of compressible flow have already been es- 
tablished in previous chapters. We have seen in Sec. 3.10 how normal shock wave 
theory was well established by Rankine and Hugoniot in the latter half of the nine- 
teenth century, and capped off by Rayleigh and Taylor in 1910. This work was ex- 
tended to two dimensions by Prandtl and Meyer during the period from 1905 to 1908, 
when they developed and presented the fundamentals of both oblique shock and ex- 
pansion wave theories for supersonic flow (see Sec. 4.16). Moreover, the basic prop- 
erties of quasi-one-dimensional flow through supersonic nozzles were examined by 
de Lava1 in the 1880s and 1890s, and by Stodola and Prandtl in the first decade of the 
twentieth century. (See Secs. 4.1 6,5.8, and 5.9.) However, at this time the only prac- 
tical application of such work was in the design and analysis of steam turbines- 
supersonic wind tunnels, rocket engines, and high-speed aircraft were still far in the 
future. 

The next major contribution to the advancement of compressible flow theory oc- 
curred in the 1920s. Although the flight speeds of all airplanes at that time were com- 
fortably within the realm of incompressible flow (less than 100 d s ) ,  the tip speeds 
of propellers regularly approached the speed of sound. This promoted an early inter- 
est in the effect of compressibility on propeller airfoils. As early as 1922, Prandtl is 
quoted as stating that the lift coefficient increased according to ( 1  - M&)-"';  he 
mentioned this conclusion in his lectures at Gottingen, but without written proof. 
This result was mentioned again 6 years later by Jacob Ackeret, a colleague of 
Prandtl, in the famous German series Handbuch der Physik, again without proof. 
Subsequently, the concept was formally established by H. Glauert in 1928. Using 
only six pages in the Proceedings ( f the Royal SocieQ. Glauert presented a deriva- 
tion based on linearized small-perturbation theory (similar to that described in 
Sec. 9.4), which confirmed the (1 - M L ) ~ ' / *  variation. In this paper, entitled "The 
Effect of Compressibility on the Lift of an Airfoil," vol. 1 18, p. 1 13. Glauert derived 
the famous Prandtl-Glauert compressibility correction given here as Eqs. (9.36) and 
(9.37). This result was to stand alone, unaltered, for the next 10 years. 

The next major advance in compressible flow theory involved the calculation of 
properties on a sharp right-circular cone in supersonic flow. (This will be the subject 
of Chap. 10.) In 1928, Adolf Busemann, a colleague of Prandtl's at Gottingen, ar- 
rived at a graphical solution for supersonic conical flows. However, in 1933 a more 
practical analytical formulation leading to the numerical solution of an ordinary dif- 
ferential equation for conical flow was given by G. I. Taylor and J. W. Maccoll in a 
paper entitled "The Air Pressure on a Cone Moving at High Speeds" which appeared 
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in the Proceedings of the Royal Society, vol. 139A, 1933, pp. 278-31 1. We will de- 
velop and study this Taylor-Maccoll equation in Chap. 10 in a form that is virtually 
unchanged from the original formulation in 1933. 

In addition, the 1920s also saw the development of linearized theory for two- 
dimensional supersonic flow by Jacob Ackeret. In 1925, Ackeret presented a paper 
entitled "Luftkrafte auf Flugel, die mit groserer als Schallgeschwingigkeit bewegt 
werden" ("Air Forces on Wings Moving at Supersonic Speeds") which appeared in 
Zeitschrift fur Flugtechnik und Il.lotorluftschzffahrt, vol. 16, 1925, p. 72. In this 
paper, Ackeret derived the ( M ;  - I ) - ' / ~  variation for a linearized pressure coeffi- 
cient given above by Eq. (9.5 1) in Sec. 9.6. Ackeret's paper showed for the first time 
the now familiar decrease in pressure coefficient as the supersonic Mach number in- 
creases, as sketched in Fig. 9.11. Shortly thereafter, in 1929, Prandtl and Busemann 
developed for the first time in history exact nonlinear solutions for two-dimensional 
supersonic flow by means of the method of characteristics (a story to be told in 
Chap. 11). Busemann went on to apply this method of characteristics to the design of 
a supersonic nozzle, leading to the first practical supersonic wind tunnel in the mid- 
1930s. (See Sec. 11.17.) 

In these paragraphs, a rather unexpected picture develops. Today we have a ten- 
dency to think of compressible flow as a very modern engineering science. This is 
because such material did not enter the majority of university engineering curricula 
until the 1950s, nor did industry require a substantial expertise in this field until about 
the same period. However, it is clear from the above sketch that the fundamentals of 
compressible flow were well established before 1935. This status is underscored by 
an article that appeared in 1934 in the monumental series Aerodynamic Theory, 
edited by W. F. Durand (see Ref. 22). Sponsored by the Guggenheim Fund for the 
Promotion of Aeronautics, Aerodynamic Theory is a six-volume compendium of the 
aerodynamic state of the art of that day (and still remains an important contemporary 
cornerstone for the study of aerodynamics). In Volume 111 of this series, G. I. Taylor and 
J. W. Maccoll authored a section entitled "The Mechanics of Compressible Fluids." 
This article takes only 41 pages out of a total of 2158 in the complete series, reflecting 
the relative practical unimportance of high-speed flow at that time. However, the ma- 
terial in those 41 pages could be used as a text for the standard compressible flow 
course of today. Taylor and Maccoll range from a discussion on acoustic theory and 
finite waves as we have presented in Chap. 7, to shock wave theory as given in 
Chaps. 3 and 4, to nozzle flows and the design of high-speed wind tunnels as we have 
discussed in Chap. 5, to potential theory and the Prandtl-Glauert relation as presented 
in this chapter, to conical flow as will be described in Chap. 10, and even to a brief 
introduction to the essence of characteristic theory (to be developed in Chap. 11). It 
is therefore remarkable that, as the world entered the year 1935 on a collision course 
with war and with airplanes still flying at Mach 0.3 or less, the foundation of theoret- 
ical compressible flow was securely laid. This foundation would finally see extensive 
use, beginning about 15 years later. 

In light of the above, it is not surprising that 1935 was a fertile time for an inter- 
national meeting of those few fluid mechanicians dealing with compressible flow. 
The time was right, and in Italy the circumstances were right. Since 1931 the Royal 
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Academy of Science in Rome had been conducting a series of important scientific 
conferences sponsored by the Alessandro Volta Foundation. (Alesandro Volta was an 
Italian physicist who invented the electric battery in 1800. The unit of electromotive 
force, the volt, is named in his honor.) The first conference dealt with nuclear 
physics, and then rotated between the sciences and the humanities on alternate years. 
The second Volta conference had the title "Europe," and in 1933 the third conference 
was the subject of immunology. This was followed by the subject "The Dramatic 
Theater" in 1934. During this period, the influence of Italian aeronautics was gaining 
momentum, led by General Arturo Crocco. an aeronautical engineer who had be- 
come interested in flight in 1903. He was also the father of Luigi Crocco. who 
distinguished himself as a leading aeronautical scientist in the midtwentieth century. 
[Luigi is responsible for Crocco's theorem embodied in Eq. (6.59).] General Crocco 
had become interested in ramjet engines in 193 1, and therefore was well aware of the 
potential impact of compressible flow theory and experiment on future aviation. This 
led t o  the choice of the topic of the fifth Volta conference-"High Velocities in 
Aviation." Participation was by invitation only, and due to the prestige of the confer- 
ence and the excitement of the subject matter, the participants paid special attention 
to the preparation of their papers. As a result, between September 30 and October 6, 
1935, the major figures in the development of compressible flow gathered in Rorne- 
Theodore von Karman and Eastman Jacobs from the United States, Prandtl and 
Busemann from Germany, Ackeret from Switzerland, G. 1. Taylor from England, 
Crocco and Enrico Pistolesi from Italy, and many more. The fifth Volta conference 
was to become a major threshold, opening the established theory of compre\sible 
flow to practical applications in the decades to come. 

The technical content of that Volta conference ranged from subsonic to super- 
sonic flow, and from experimental to theoretical considerations. For example, 
Prandtl gave a general introduction and survey paper on compressible flow, showing 
many schlieren pictures (such as Figs. 4.41 and 4.42) for illustration. G. 1. Taylor dis- 
cussed supersonic conical flow theory, and von Karman presented research on mini- 
mum wave-drag shapes for axisymmetric bodies. The linearized Prandtl-Glauert re- 
lation was once again derived and presented by Enrico Pistolesi, along with several 
higher-order calculations for compressibility corrections. Eastman Jacobs presented 
new test results for compressibility effects on subsonic airfoils, obtained in several 
high-speed wind tunnels at the NACA Langley Aeronautical Laboratory in Virginia. 
Jakob Ackeret gave a paper on many different subsonic and supersonic wind tunnel 
designs. There were also presentations on propulsion techniques for high-speed 
flight. including rockets and ramjets. The meeting also included a field trip to the new 
Italian aerodynamic research center at Guidonia near Rome. Guidonia was equipped 
with several high-speed wind tunnels, subsonic and supersonic, all designed after the 
work of Ackeret and constructed under his consultation. This laboratory was to pro- 
duce a large bulk of supersonic experimental data before and during World War 11, 
and was to produce from its ranks a leading supersonic aerodynamicist, Antonio 
Ferri. (Much of the work performed at Guidonia is reflected in Ferri's book, Ref. 5.) 

However, probably one of the most farsighted and important papers given at the 
tifth Volta conference was presented by Adolf Busemann (see Fig. 9.20). Entitled 
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Figure 9.20 1 Adolf Busemann. 

"Aerodynamischer Auftrieb bei Uberschallgeschwindigkeit" ("Aerodynamic Forces 
at Supersonic Speeds"), this paper introduced for the first time in history the concept 
of the swept wing as a mechanism for reducing the large drag increase encountered 
beyond the critical Mach number (see Sec. 9.7). Busemann reasoned that the flow 
over a wing is governed mainly by the component of velocity perpendicular to the 
leading edge. If the wing is swept this component will decrease, as illustrated in 
Fig. 9.21, which is taken directly from Busemann's original paper. Consequently, the 
free-stream Mach number at which the large rise in drag is encountered is increased. 
Therefore, airplanes with swept wings could fly faster before encountering the drag- 
divergence phenomena discussed in Sec. 9.7. This swept-wing concept of Buse- 
mann's is now reflected in the vast majority of high-speed aircraft in operation today. 

It is interesting to note that the fifth Volta conference was given special signifi- 
cance by the Italian government. Its prestige was reflected in its location-it was 
held in an impressive Renaissance building that served as the city hall during the 
Holy Roman Empire. Moreover, the Italian dictator Benito Mussolini chose the con- 
ference to make his announcement that Italy had invaded Ethiopia. It is curious that 
such a political statement was saved for a technical meeting on high-speed flow. 

The conference served to spread excitement about the future of high-speed flight, 
and provided the first major international exchange of information on compressible 
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Abb 4 Schrag angeblasener Tragflugel 

Figure 9.21 1 The swept-wing concept 
as it appeared in Busemann's original 
paper in 1935. 

flow. However, in many respects, it had a delayed impact. For example, Busemann's 
work on swept wings appeared to drop from sight. This was because the German 
Luftwaffe recognized its military significance, and classified the concept in 1936- 
one year after the conference. The Germans went on to produce a large bulk of swept- 
wing research during World War 11, resulting in the design of the first operational jet 
airplane-the Me 262-which had a moderate degree of sweep. After the war, tech- 
nical teams from the three allied nations. England, Russia, and the United States, 
swooped into the German research laboratories at Penemunde and Braunschweig, 
and gathered all the swept-wing data they could find. (The United States also gath- 
ered Adolf Busemann himself, who was moved to the NACA Langley Aeronautical 
Laboratory. Later, Busemann became a professor at the University of Colorado, and 
he now lives an active retired life in Boulder, Colorado.) Virtually all the modern 
high-speed airplanes of today can trace their lineage back to the original data 
obtained from Germany, and ultimately to Busemann's paper at the fifth Volta 
conference. 

Strangely enough, the significance of Busemann's idea was lost on most atten- 
dees at the conference. Von Karman and Jacobs did not spread it upon their return 
to the United States. Indeed, 10 years later, when World War I1 was reaching its 
conclusion and jet airplanes were beginning to revolutionize aviation. the idea of 
swept wings was developed independently by R. T. Jones, an ingenious aerody- 
namicist at the NACA Langley Laboratory. When Jones made such a proposal to 
Jacobs and von Karman in 1945, neither man remembered Busemann's idea from 
the Volta conference. (See Ref. 134 for more historical details on the invention of 
the swept wing.) 

On the positive side, however, the Volta conference did serve to spur highspeed 
research in the United States. Renewed efforts were made by the NACA to obtain 
data on compressibility effects on high-speed subsonic airfoils-this time prompted 
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not only by high tip speeds of propellers, but also by the foresight that airplane wings 
would soon encounter such phenomena. Figure 9.8 gives some experimental data 
published by NACA in 1938. Shortly thereafter, von Karman and Tsien published a 
compressibility correction that improved upon the older Prandtl-Glauert relation 
(see Sec. 9.5). 

Nevertheless, in general the United States reacted slowly to the stimulus pro- 
vided by the Volta conference. Upon his return from Italy in late 1935, von Karman 
urged both the Army and the NACA to develop high-speed wind tunnels, including 
supersonic facilities. He encountered deaf ears. Finally, as the clouds of war en- 
veloped the United States in 1941, such urging encountered more receptive attitudes. 
Von Karman established at Cal Tech the first major university curriculum in com- 
pressible flow in 1942; this course of study was highly populated by military officers. 
Finally, in 1944, the first operational supersonic wind tunnel in the United States was 
built at the Army Ballistics Research Laboratory in Aberdeen, Maryland. This tunnel 
was designed by von Karman and his colleagues at Cal Tech, and was operated by 
Cal Tech personnel at Aberdeen under contract from the Army. Twelve years after 
Busemann began to collect data in his supersonic tunnel in Germany, and 9 years 
after the fifth Volta conference and the construction of supersonic tunnels at Guido- 
nia in Italy, the United States was finally seriously in the business of supersonic 
research. 

9.10 1 HISTORICAL NOTE: PRANDTL- 
A BIOGRAPHICAL SKETCH 

The name of Ludwig Prandtl (see Fig. 9.22) pervades virtually all of twentieth cen- 
tury fluid mechanics, ranging from inviscid incompressible flow over airfoils and fi- 
nite wings, to the ingenious idea of the boundary layer for viscous flows, and ex- 
tending through the early development of high-speed subsonic and supersonic flows. 
We have already mentioned his impact on the advancement of compressible flow in 
Secs. 4.16 and 9.9. Who was this man who gathers so much respect, even bordering 
on reverence, from fluid mechanicians? Let us take a closer look. 

Ludwig Prandtl was born on February 4, 1875, in Freising, Bavaria. His father 
was Alexander Prandtl, a professor of surveying and engineering at the agricultural 
college at Weihenstephan, near Freising. Although three children were born into the 
Prandtl family, two died at birth and Ludwig grew up as an only child. At an early 
age, Prandtl became interested in his father's books on physics, machinery, and in- 
struments. Much of Prandtl's remarkable ability to intuitively go to the heart of a 
physical problem can be traced to his environment at home as a child, where his 
father, a great lover of nature, induced Ludwig to observe natural phenomena and to 
reflect upon them. 

In 1894, Prandtl began his formal scientific studies at the Technische 
Hochschule in Munich, where his principal teacher was A. Foppl. Six years later, he 
graduated from the University of Munich with a Doctor's degree. However, by this 
time he was alone, his father having died in 1896 and his mother in 1898. 

By 1900, Prandtl had not done any work nor shown any interest in fluid me- 
chanics. Indeed, his doctor's thesis at Munich was in solid mechanics, dealing with 
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Figure 9.22 1 Ludwig Prandtl ( 1 8 7 5 1  953). 

unstable elastic equilibrium in which bending and distortion acted together. (It is not 
generally recognized by people in fluid dynamics that Prandtl continued his interest 
and research in solid mechanics through most of his life-this work is eclipsed, how- 
ever, by his major contributions to the study of fluid flow.) However, soon after grad- 
uation from Munich, Prandtl had his tirst major encounter with fluid mechanics. 

'Ineer. Joining the Nuremburg works of the Maschinenfabrick Augsburg as an en&' 
Prandtl worked in an office designing mechanical equipment for the new factory. He 
was made responsible for redesigning an apparatus for removing machine shavings 
by suction. Finding no reliable information in the scientitic literature about the fluid 
mechanics of suction. Prandtl arranged his own experiments to answer a few funda- 
mental questions about the flow. The result of this work was his new design for shav- 
ings cleaners. The apparatus was modified with pipes of improved shape and size, 
and carried out satisfactory operation at one-third its original power consumption. 
Prandtl's contributions in fluid mechanics had begun. 

One year later, in I90 I ,  he became Professor of Mechanics in the Mathematical 
Engineering Department at the Technische Hochschule in Hanover. (Please note that 
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in Germany a "technical highschool" is equivalent to a technical university in the 
United States.) It was at Hanover that Prandtl enhanced and continued his new-found 
interest in fluid mechanics. It was here, and not at Gottingen, that Prandtl first devel- 
oped his famous boundary layer theory. It was also here that he first became inter- 
ested in the steam flow through Laval nozzles, in parallel with the pioneering work 
by Stodola (see Sec. 5.9). 

In 1904, Prandtl delivered his famous paper on the concept of the boundary 
layer to the Third Congress of Mathematicians at Heidelberg. From this time on, the 
star of Prandtl was to rise meteorically. Later that year he moved to Gottingen to 
become Director of the Institute for Technical Physics, later to be renamed Applied 
Mechanics. 

It should be noted that, at the turn of the century, no engineering curriculum ex- 
isted in any pure university in Germany; such training was provided by the tech- 
nische hochschules. However, at this time Felix Klein, a powerful mathematician, 
was director at the University of Gottingen. He recognized that, since the University 
provided no formal instruction in engineering, it consequently had little connection 
with industry and the rapidly increasing influence of technology on society. Attempt- 
ing to rectify this situation, Klein established a series of professional chairs and in- 
stitutes dedicated to the applied sciences. One of these was the Institute for Techni- 
cal Physics, for which Prandtl was chosen as Director (at the age of 30) in 1904. This 
institute gave instruction in mechanics, thermodynamics, strength of materials, and 
hydraulics. Other institutes were in applied mathematics and applied electricity. Of 
course, in the meantime, Gottingen was maintaining and fostering its already excel- 
lent reputation in pure mathematics and physics (see Sec. 4.16). So it is no wonder 
that Prandtl flourished in this environment. 

In the fall of 1909, Prandtl married Gertrude Foppl, a daughter of August Foppl, 
Prandtl's old professor from the Technische Hochschule in Munich. The marriage 
subsequently produced two daughters. 

As described in Sec. 4.16, Prandtl made substantial contributions to the under- 
standing of compressible flow during the period 1905 to 1910-this work on flow 
through Laval nozzles, and especially on oblique shock and expansion waves, was of 
particular note. During the period 1910 to 1920, his primary output shifted to low- 
speed airfoil and finite-wing theory, leading to the famous Prandtl lifting line and lift- 
ing surface theories for calculating lift and induced drag. About this time, after a long 
hiatus, researchers in England and the United States began to grasp the significance 
of Prandtl's boundary layer theory, and his work on wing theory quickly spread via 
various English language translations of his papers. By 1925, Prandtl had firmly es- 
tablished a worldwide reputation as the leader in aerodynamics. Students and col- 
leagues flocked to Gottingen, and then fanned out to various international locations 
to establish centers of aerodynamic research. These included Jakob Ackeret in 
Zurich, Switzerland, Adolf Busemann in Germany, and Theodore von Karman at 
Cal Tech in the United States. 

During the 1920s and 1930s, Prandtl's responsibilities at Gottingen expanded. In 
addition to the Institute for Applied Mechanics, he now was in charge of the newly 
established Kaiser Wilhelm Institute for Fluid Dynamics. (After World War 11, the 
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name was changed to the Max Planck Institute.) In these years, Prandtl continued his 
interest in high-speed flow, leading in part to the development of the Prandtl-Glauert 
compressibility correction (see Secs. 9.4 and 9.9). Moreover, a major aerodynamic 
laboratory-the Aerodynamische Versuchsanstalt-was established at Gottingen. 
containing a number of low- and high-speed wind tunnels and other expensive 
research equipment. 

Shortly after the Nazis came to power in Germany in 1933, Giittingen experi- 
enced a major exodus of Jewish professors, causing the university to lose substantial 
expertise and prestige, especially in the area of pure mathematics and physics. How- 
ever, Prandtl was not directly affected, and in fact the Air Ministry of the new 
German government began to provide major support to his aerodynamic research. 
Prandtl continued to work under these conditions until 1945, when the Americans 
passed through Gottingen during the last days of World War 11. By all accounts, 
Prandtl was concerned about the fate of his Jewish colleagues. but he was a scientist 
without a major sense of political awareness. As a matter of dedication to his coun- 
try, Prandtl subjugated personal misgivings to what he felt was obligation. Some in- 
sight into Prandtl's character and thinking during this period is given by von Karman 
in his autobiography entitled The W i d  and Beyond (Little. Brown and Co., 1967). 
Von Karman's comments on Prandtl, his former teacher, are not particularly conipli- 
mentary, and have been the source of some rebuttal from other colleagues of Prandtl. 
Nevertheless, von Karman's viewpoint is worth reading. and in fact the entire book 
is an excellent portrait of the growth of twentieth century fluid mechanics. with many 
interesting observations on the cast of characters by someone who himself played a 
large part in its development. 

Prandtl's personal technical contributions during the last years of his lil'e were 
not as potent as in his early days. However, his interests remained in fluid dynamics, 
although he published a few papers in his original field of solid mechanics. dis- 
cussing nonelastic phenomena in more conventional terms. He also became inter- 
ested in meteorological fluid dynamics, and was actively working in this area until 
the end of his life. 

Prandtl died in 1953. He was clearly the father of modern aeroclynamics-a 
monumental figure in fluid dynamics. Each day, around the world, his name will con- 
tinue to be spoken for as long as we maintain and extend our technical wcietj. 

9.11 1 HISTORICAL NOTE: GLAUERT- 
A BIOGRAPHICAL SKETCH 

Equations (9.36) and (9.37) give the famous Prandtl-Glauert conlpressibility correc- 
tion. Every student of fluid dynamics has some knowledge of Prandtl. But who was 
Glauert? Let us take a look. 

Hermann Glauert was born in Sheffield, England, on October 4, 1892. He was 
well-educated, first at the King Edward VII School at Sheffield, and then later at 
Trinity College, Cambridge, where he received many honors for his high leadership 
in the classroom. For example, he was awarded the Ryson Medal for astronomy in 
19 13, an Isaac Newton Scholarship in 19 14, and the Rayleigh Prize in 19 15. 
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In 1916, as the second year of World War 1 waxed on, Glauert joined the staff of 
the Royal Aircraft Establishment in Farnborough. There, he quickly grasped the fun- 
damentals of aerodynamics, and wrote numerous reports and memoranda dealing 
with airfoil and propeller theory, the performance, stability, and control of airplanes, 
and the theory of the autogyro. In 1926, he published a book entitled The Elements 
of Aerofoil and Airscrew Theory; this book was the single most important instru- 
ment for spreading Prandtl's airfoil and wing theory around the English-speaking 
world, and to this day is still used as a reference in courses dealing with incompress- 
ible flow. 

Glauert did not collaborate with Prandtl on the development of the Prandtl- 
Glauert rule. As related in Sec. 9.9, Glauert worked independently and was the first 
person to derive the rule from established aerodynamic theory, publishing his results 
in 1928 in the Proceedings of the Royal Society (see Sec. 9.9). 

By the early 1930s, Glauert was probably the leading theoretical aerodynamicist 
in England. He had also become the Principal Scientific Officer of the RAE, as well 
as Head of its Aerodynamics Department. However, on August 4 ,  1934, Glauert was 
strolling through a small park called Fleet Common at Farnborough. It was a pleas- 
ant day, and he stopped to watch some Royal Engineers who were blowing up tree 
stumps. Suddenly, from 8 yards away, a blast tore a stump to pieces, hurling frag- 
ments of wood in all directions. One hit Glauert squarely on the forehead; he died a 
few hours later. England, and the world, were suddenly and prematurely deprived of 
one of its best aerodynamicists. 

9.12 1 SUMMARY 
In addition to the intermediate summary comments made in Sec. 9.8, we give a more 
specific summary of the basic results from linearized theory here. 

For an irrotational, inviscid, compressible flow, the continuity, momentum, and 
energy equations reduce to one equation with one dependent variable, namely, the 
velocity potential @, defined as V = V@. The full velocity potential equation is 

This is an exact equation for irrotational flow; it holds for the flow over arbitrary bod- 
ies, thin or thick, at arbitrary angles of attack, small or large. However, defining a 
perturbation velocity potential 4 as @(x, y ,  z )  = V,x + @ ( x ,  y ,  z )  and assuming 
small perturbations, Eq. (8.17) reduces to a simpler form, applicable to subsonic and 
supersonic flow, but not applicable to transonic or hypersonic flow: 

This is the linearized small-perturbation velocity potential equation. Since Eq. (9.6) 
is linear, it is much more amenable to analytic solution than the full velocity potential 
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equation given by Eq. (8.17). However, to obtain this advantage with Eq. (9.6). we 
trade accuracy; Eq. (9.6) is an approximate relation that holds only for slnall 
perturbations (thin bodies at small angles of attack) and only for subsonic or super- 
sonic flow. 

For the linearized solution of both subsonic and supersonic compressible flows, 
Eq. (9.6) represents one important tool. Two additional necessary tools are the form 
of the pressure coefficient consistent with small perturbations, 

and the boundary condition 

For subsonic compressible flow, these tools lead to the Prundtl-Glauert rule, 

where C,,,, is the pressure coefficient at low speeds (incompressible flow). Also. 

and 

where CL and CM are the lift and moment coefficients. 
For supersonic flow, the preceding tools lead to an expression for the pressure 

coefficient given by 

As derived in the homework problems, Eq. (9.5 1 )  when applied to a flat plate at an 
angle of attack a yields 

where C L ,  C I ) ,  and C M c  , are the lift, drag, and moment coefficients, respectively. 
Here, CM,,, is taken about the quarter-chord point (a point 0.25 of the chord length 
from the leading edge). 
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PROBLEMS 
9.1 Show that this nonlinear equation is valid for transonic flow with small 

perturbations: 

9.2 The low-speed lift coefficient for an NACA 2412 airfoil at an angle of attack 
of 4" is 0.65. Using the Prandtl-Glauert rule, calculate the lift coefficient for 
M, = 0.7. 

9.3 In low-speed flow, the pressure coefficient at a point on an airfoil is -0.9. 
Calculate the value of C, at the same point for M, = 0.6 by means of 
a. The Prandtl-Glauert rule 
b. Laitone's correction 
c. The Karman-Tsien rule 

9.4 Consider a flat plate with chord length c at an angle of attack a to a 
supersonic free stream of Mach number M,. Let L and D be the lift and drag 
per unit span, and S be the planform area of the plate per unit span, S = c(1). 
Using linearized theory, derive the following expressions for the lift and drag 
coefficients (where CL = ~ / t p ,  V ~ S  and CD E D / ~ ~ , V , S ) :  

4a 

9.5 For the flat plate in Problem 9.4, the quarter-chord point is located, by 
definition, at a distance equal to c / 4  from the leading edge. Using linearized 
theory, derive the following expression for the moment coefficient about the 
quarter-chord point for supersonic flow 

where CMCl4 -- M , / ~ / $ ~ ~ V & S ~ ,  and as usual in aeronautical practice, a 
positive moment by convention is in the direction of increasing angle 
of attack. 

9.6 Consider a flat plate at an angle of attack of 4". 
a. Calculate CL and CICI,,4 for M, = 0.03 (essentially incompressible flow). 

(Hint: Consult a book, such as Reference 104, for the aerodynamic 
properties of a flat plate using incompressible flow thin airfoil theory.) 

b. Apply the Prandtl-Glauert rule to the results of part ( a ) ,  and calculate CL 
and CMC,, for M, = 0.6. 
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9.7 Consider a diamond-shaped airfoil such as that sketched in Fig. 4.35. The 
half-angle is E ,  thickness is t ,  and chord is c. For supersonic flow. use 
linearized theory to derive the following expression for CIl at cr = 0: 

9.8 Supersonic linearized theory predicts that, for a thin airfoil of arbitrary shape 
and thickness at angle of attack a, CL = 4cr1 d m ,  independent of the 
shape and thickness. Prove this result. 

9.9 Repeat Prob. 4.17, except using linearized theory. Plot the linearized results 
on top of the same graphs produced for Prob. 4.17 in order to assess the 
differences between linear theory (which is approximate) and shock- 
expansion theory (which is exact). From this comparison, over what angle-of- 
attack range would you feel comfortable in applying linear theory'? 

9.10 Linear supersonic theory predicts that the curve of wave drag versus Mach 
number has a minimum point at a certain value of M ,  > 1 .  

a. Calculate this value of M,. 

b. Does it make physical sense for the wave drag to have a minimum value 
at some supersonic value of M ,  above l? Explain. What does this say 
about the validity of linear theory for certain Mach number ranges? 

9.11 At cr = O", the minimum pressure coefficient for an NACA 0009 airfoil in 
low-speed flow is -0.25. Calculate the critical Mach number for this airfoil 
using 

a. The Prandtl-Glauert rule 

b. The (more accurate) Karman-Tsien rule 
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10.1 1 INTRODUCTION 
In contrast to the linearized two-dimensional flows considered in Chap. 9, this 
chapter deals with the exact nonlinear solution for a special degenerate case of 
three-dimensional flow-the axisymmetric supersonic flow over a sharp cone at 
zero angle of attack to the free stream. Consider a body of revolution (a body gen- 
erated by rotating a given planar curve about a fixed axis) at zero angle of attack as 
shown in Fig. 10.1. A cylindrical coordinate system (r, 4 ,  z )  is drawn, with the z 
axis as the axis of symmetry aligned in the direction of V,. By inspection of 
Fig. 10.1, the flowfield must be symmetric about the z axis, i.e., all properties are 

A plane defined by @ = constant Perspective 

Figure 10.1 1 Cylindrical coordinate system for an axisymmetric body. 



Figure 10.2 1 Supersonic flow over a cone. 

independent of 4: 

The flowfield depends only on r and z .  Such a flow is defined as uxisymnietric~,fio~.. 
It is a How that takes place in three-dimensional space; however, because there are 
only two independent variables, r and z ,  axisymmetric flow is sometimes called 
"quasi-two-dimensional" flow. 

In this chapter, we will further specialize to the case of a sharp right-circular 
cone in a supersonic flow, as sketched in Fig. 10.2. This case is important for three 
reasons: 

1. The equations of motion can be solved exactly for this case. 

2. The supersonic flow over a cone is of great practical importance in applied 
aerodynamics; the nose cones of many high-speed missiles and projectiles are 
approximately conical, as are the nose regions of the fuselages of most 
supersonic airplanes. 

3. The first solution for the supersonic flow over a cone was obtained by 
A. Busemann in 1929, long before supersonic flow became fashionable 
(see Ref. 26). This solution was essentially graphical, and illustrated some of 
the important physical phenomena. A few years later, in 1933, G. I. Taylor and 
J. W. Maccoll (see Ref. 27) represented a numerical solution that is a hallmark 
in the evolution of compressible flow. Therefore, the study of conical flow is of 
historical significance. 
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Again, emphasis is made that the present chapter deals with cones at zero angle 
of attack. The case of cones at angle of attack introduces additional geometric com- 
plexity; this case is treated in more detail in Chap. 13. 

10.2 1 PHYSICAL ASPECTS OF CONICAL FLOW 
Consider a sharp cone of semivertex angle 8,, sketched in Fig. 10.2. Assume this 
cone extends to infinity in the downstream direction (a semi-infinite cone). The cone 
is in a supersonic flow, and hence an oblique shock wave is attached at the vertex. 
The shape of this shock wave is also conical. A streamline from the supersonic free 
stream discontinuously deflects as it traverses the shock, and then curves continu- 
ously downstream of the shock, becoming parallel to the cone surface asymptotically 
at infinity. Contrast this flow with that over a two-dimensional wedge (Chap. 4) 
where all streamlines behind the shock are immediately parallel to the wedge 
surface. 

Because the cone extends to infinity, distance along the cone becomes meaning- 
less: If the pressure were different at the 1- and 10-m stations along the surface of the 
cone, then what would it become at infinity? This presents a dilemma that can be rec- 
onciled only by assuming that the pressure is constant along the surface of the cone, 
as well as that all other flow properties are also constant. Since the cone surface is 
simply a ray from the vertex, consider other such rays between the cone surface and 
the shock wave, as illustrated by the dashed line in Fig. 10.2. It only makes sense to 
assume that the flow properties are constant along these rays as well. Indeed, the de- 
finition of conical jlow is where all $ow properties are constant along rays from a 
given vertex. The properties vary from one ray to the next. This aspect of conical flow 
has been experimentally proven. Theoretically, it results from the lack of a meaning- 
ful scale length for a semi-infinite cone. 

10.3 1 QUANTITATIVE FORMULATION 
(AFTER TAYLOR AND MACCOLL) 

Consider the superimposed cartesian and spherical coordinate systems sketched in 
Fig. 1 0 . 3 ~ .  The z axis is the axis of symmetry for the right-circular cone, and V ,  is 
oriented in the z direction. The flow is axisymmetric; properties are independent of 
4. Therefore, the picture can be reoriented as shown in Fig. 10.3b, where r and 8 are 
the two independent variables and V, is now horizontal. At any point e in the flow- 
field, the radial and normal components of velocity are V, and Ve, respectively. Our 
objective is to solve for the flowfield between the body and the shock wave. Recall 
that for axisymmetric conical flow 

a 
- - 0 (axisymmetric flow) 
a4 
a 
- - 0 (flow properties are constant along a ray from the vertex) a r 
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Figure 10.3 1 Spherical coordinate system for a cone 

The continuity equation for steady flow is Eq. (6 .5) ,  

v ( p V )  = 0 

In terms of spherical coordinates. Eq. (6.5) becomes 

1 i )  , I if 
V . p ( V )  = ,T(f.-pV, ) + ----- 1 ;l(pV,, 

( p  V,, sin 0 )  + - --- = O 
r -  tfr r sm H aQ r \ i n @  
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Evaluating the derivatives, and applying the above conditions for axisymmetric con- 
ical flow, Eq. (10.1) becomes 

Equation (10.2) is the continuity equation for axisymmetric conical flow. 
Return to the conical flowfield sketched in Figs. 10.2 and 10.3. The shock wave 

is straight, and hence the increase in entropy across the shock is the same for all 
streamlines. Consequently, throughout the conical flowfield, Vs  = 0. Moreover, the 
flow is adiabatic and steady, and hence Eq. (6.45) dictates that Ah, = 0. Therefore, 
from Crocco's equation, Eq. (6.60), we find that V x V = 0, i.e., the conical flow- 
field is irrotational. Since Croco's theorem is a combination of the momentum and 
energy equations (see Sec. 6.6), then V x V = 0 can be used in place of either one. 
In spherical coordinates, 

I e, re8 (r sin 8)e4 I 

where e,, e ~ ,  and e4 are unit vectors in the r, 0, and 4) directions, respectively. Ex- 
panded, Eq. (1 0.3) becomes 

Applying the axisymmetric conical flow conditions, Eq. (10.4) dramatically simpli- 
fies to 

Equation (10.5) is the irrotationality condition for axisymmetric conical flow. 
Since the flow is irrotational, we can apply Euler's equation in any direction in 

the form of Eq. (8.7): 
d p  = -pV dV 

where v2 = v,? + V; 
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Hence. Eq. (8.7) becomes 

Recall that, for isentropic flow, 

Thus, Eq. (10 .6) becomes 

From Eq. (6.45), and defining a new reference velocity V,,, as the maximum theo- 
retical velocity obtainable from a fixed reservoir condition (when V = V,,,,, the flow 
has expanded theoretically to zero temperature, hence h = O), we have 

Note that V,,, is a constant for the flow and is equal to a. For a calorically per- 
fect gas, the above becomes 

Substitute Eq. (10.8) into (10.7): 

Equation (10.9) is essentially Euler's equation in a form useful for studying conical 
flow. 

Equations (1 0.2), (10.5), and (10.9) are three equations with three dependent vari- 
ables: p ,  V, ,  and VH. Due to the axisymmetric conical flow conditions, there is only 
one independent variable, namely 8. Hence, the partial derivatives in Eqs. (10.2) and 
( 10.5) are more properly written as ordinary derivatives. From Eq. (10.2). 

From Eq. (10.9), 



Substitute Eq. (10.11) into Eq. (10.10): 

Recall from Eq. (10.5) that 

dVe - d2vr 
Hence, - - - 

d0 do2 

Substituting this result into Eq. (10.12), we have 

Equation (10.13) is the Taylor-Maccoll equation for the solution of conical flows. 
Note that it is an ordinary differential equation, with only one dependent variable, V,.. 
Its solution gives Vr = f (0); Ve follows from Eq. (10.5), namely, 

There is no closed-form solution to Eq. (10.13); it must be solved numerically. To 
expedite the numerical solution, define the nondimensional velocity V' as 

Then, Eq. (10.13) becomes 

dV,! d2 V,! '[ 1-v,. - ( ~ ' ) 2 ] [ 2 v ; + p c o t 0 + -  - 

2 d0 do2 1 



10.4 Numerical Procedure 

The nondimensional velocity V' is a function of Mach number only. To see this more 
clearly recall that 

Clearly, from Eq. (10.16), V' = ,f ( M  ); given M, we can always fine V ' ,  or vice versa. 

10.4 1 NUMERICAL PROCEDURE 
For the numerical solution of the supersonic flow over a right-circular cone, we will 
employ an inverse approach. By this, we mean that a given shock wave will be as- 
sumed, and the particular cone that supports the given shock will be calculated. This 
is in contrast to the direct approach, where the cone is given and the flowfield and 
shock wave are calculated. The numerical procedure is as follows: 

Assume a shock wave angle 0, and a free-stream Mach number M,, as 
sketched in Fig. 10.4. From this, the Mach number and flow deflection angle, 
M2 and 6, respectively, immediately behind the shock can be found from the 
oblique shock relations (see the discussion of three-dimensional shocks in 
Sec. 4.13). Note that, contrary to our previous practice, the flow deflection 
angle is here denoted by 6 so as not to confuse it with the polar coordinate H .  
From M2 and 8 ,  the radial and normal components of flow velocity, V,! and V,;, 
respectively, directly behind the shock can be found from the geometry of 
Fig. 10.4. Note that V' is obtained by inserting M2 into Eq. (10.16). 

Using the above value of V,' directly behind the shock as a boundary value, 
solve Eq. (10.15) for V: numerically in steps of 8, marching away from the 
shock. Here, the flowfield is divided into incremental angles AQ,  as sketched 
in Fig. 10.4. The ordinary differential equation (10.15) can be solved at each 
AH using any standard numerical solution technique, such as the Runge-Kutta 
method. 

At each increment in 0, the value of V,' is calculated from Eq. (10.14). At some 
value of 8, namely 6' = 8, ,  we will find V,' = 0. The normal component of 
velocity at an impermeable surface is zero. Hence, when V,' = 0 at 8 = 8, , then 
t), must represent the surface of the particular cone which supports the shock 
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Figure 10.4 1 Geometry for the numerical solution of flow over a cone. 

wave of given wave angle 0 ,  at the given Mach number M ,  as assumed in step 1 
on the previous page. That is, the cone angle compatible with M ,  and 0, is 6,. The 
value of V: at 0, gives the Mach number along the cone surface via Eq. (10.16). 

5. In the process of steps 1 through 4 here, the complete velocity flowfield 
between the shock and the body has been obtained. Note that, at each point 
(or ray), V' = J(v,!)~ + (Vi)2 and M follows from Eq. (10.16). The pressure, 
density, and temperature along each ray can then be obtained from the 
isentropic relations, Eqs. (3.28), (3.30), and (3.31). 

If a different value of M ,  and/or 8 ,  is assumed in step 1, a different flowfield 
and cone angle 6, will be obtained from steps 1 through 5. By a repeated series of 
these calculations, tables or graphs of supersonic cone properties can be generated. 
Such tables exist in the literature, the most common being those by Kopal (Ref. 28) 
and Sims (Ref. 29). 

10.5 1 PHYSICAL ASPECTS OF SUPERSONIC 
FLOW OVER CONES 

Some typical numerical results obtained from the solution in Sec. 10.4 are illustrated in 
Fig. 10.5, which gives the shock wave angle 8, as a function of cone angle O,, with M ,  
as a parameter. Figure 10.5 for cones is analogous to Fig. 4.8 for two-dimensional 
wedges; the two figures are qualitatively similar, but the numbers are different. 

Examine Fig. 10.5 closely. Note that, for a given cone angle 6, and given M,, 
there are two possible oblique shock waves-the strong- and weak-shock solutions. 
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I I I I I I 
10 20 30 40 50 60 

Bc , degrees 

Figure 10.5 1 H, -0, -M diagram for cones in supersonic flow. (The top 
portion of the curves curl back for the strong shoch solution, which 
is not shown here.) 

This is directly analogous to the two-dimensional case discussed in Chap. 4. The 
weak solution is almost always observed in practice on real finite cones: however, it 
is possible to force the strong-shock solution by independently increasing the back- 
pressure near the base of the cone. 

Also note from Fig. 10.5 that, for a given M,. there is a maximum cone angle 
H,;,,,,x, beyond which the shock becomes detached. This is illustrated in Fig. 10.6. 
When 0,. > H,,,,,,r, there exists no Taylor-Maccoll solution as given here: instead. the 
flowfield with a detached shock must be solved by techniques such as those dis- 
cussed in Chap. 12. 

In comparison to the two-dimensional flow over a wedge. the three-dimensional 
flow over a cone has an extra dimension in which to expand. This "three-dimensional 
relieving effect" was discussed in Sec. 4.4, which should now be reviewed by the 
reader. In particular, recall from Fig. 4.1 1 that the shock wave on a cone of given angle 
is weaker than the shock wave on a wedge of the same angle. It therefore follows that 
the cone experiences a lower surface pressure, temperature, density, and entropy than 
the wedge. It also follows that, for a given M,, the maximum allowable cone angle 



CHAPTER 10 ConicalFlow 

Figure 10.6 1 Attached and detached shock waves on cones. 

I I I I I 
10 20 30 40 50 

8, degrees 

Figure 10.7 1 Comparison of shock wave angles for 
wedges and cones at Mach 2. 

for an attached shock solution is greater than the maximum wedge angle. This is 
clearly demonstrated in Fig. 10.7. 

Finally, the numerical results show that any given streamline between the shock 
wave and cone surface is curved, as sketched in Fig. 10.8, and asymptotically be- 
comes parallel to the cone surface at infinity. Also, for most cases, the complete 
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Figure 10.8 1 Some conical tlowtields are characterized by an isentropic 
compression t o  \ubsonic velocities near the cone surt'xc. 

flowfield between the shock anti the cone is supersonic. However, if the cone angle 
is large enough, but still less than 0, ,,,,,\, there are some cases  here the flow becomes 
subsonic near the surface. This case is illustrated in Fig. 10.8. where one of the rays 
in the flowtield becomes a sonic line. In this case, we  see one of the f e u  instances in 
nature where a supersonic flowtield is actually isc~r~~ro~~ic~rrll~ compressed from 
supermnic to subsonic velocities. A transition from supersonic to subsonic flow is 
almost invariably accompanied by shock waves. as discussed in Chap. 5 .  H o n m w ,  
flow over a cone is an exception to this observation. 

PROBLEMS 
(For  these problem\. use m y  of the exljttng tables and chart5 lor c o n u l  flow ) 

10.1 Consider a 15 half-angle cone at 0 angle of attack in a free stream at 
standard sea level conditions with M, = 2.0. Obtain: 

a. The shock h a v e  angle 

b. 1'. 7'. p,  and M immediately behind the shock waxe 

c. 1 1 .  T. p, and M on the cone surface 

10.2 For the cone in Prob. 10. I .  below what value of M, will the shock mu\  e be 
detached'? Compare this with the analogous value for a wedge. 

10.3 The drag coefficient for a cone can be detined as C,) = 13/q,Ai,. whew A,, 
is the area of the base of the cone. For a 15 half-angle cone, plol the 
variation of C I l  with M, over the range 1.5 M, 7.0. Assume the base 
pressure p,, is equal to free-stream pressure. (Note: You will not find C,,  in 
the tables. Instead, derive a formula for C,, in terms of the surface preswre 
p,., and use the tables to find p,..) 





Numerical Techniques for 
Steady Supersonic Flow 

It might be remarked that mathematics is undergoing a renaissance similclr to that 
caused in physics by the discovery ofthe electron. This has been brought about b~ 
the advent of electronic computers ($such fantastic speed and memory con?par.c.d 
to their human c~ounterparts that nonintegrable equations can be solved by 

' LIT- numerical integration in a reasonably short space of time. This is huvin<< f 
reaching effects in aemdynamics, where most problems are non-linear in natuw, 
and cJxact analytical solutions are the exception rather than the rule. 

William F. Hilton, 1951 
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in Fig. 11.2 and present some of the 
the finite-difference technique. We will 
concept of downstream marching for 

acCormack's techn~que 
Stab~l~ty considerations 
Shock capturing and 
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11.1 1 AN INTRODUCTION TO COMPUTATIONAL 
FLUID DYNAMICS 

As we have seen from the previous chapters, the cornerstone of theoretical fluid 
dynamics is a set of conservation equations that describe the physics of fluid motion; 
these equations speak words, such as: (1) mass is conserved; (2) F = ma (Newton's 
second law); and (3) energy is conserved. These equations also describe the varia- 
tions of fluid pressure, temperature, density, velocity, etc., throughout space and 
time. In their most general form, they are integral equations (see Chap. 2) or partial 
differential equations (see Chap. 6), and consequently are difficult to solve. Indeed, 
no general analytical solution to these equations has been found, nor is it likely to be 
found in the foreseeable future. For the two centuries since Bernoulli and Euler first 
formulated some of these equations in St. Petersburg, Russia, in the 1730s, fluid 
dynamicists have been laboring to obtain analytical solutions for certain restricted 
and/or simplified problems. The preceding chapters of this book have dealt primarily 
with such (relatively speaking) simplified problems. 

In contrast, the modern engineer of today is operating in a new third dimension 
in fluid dynamics-computational jluid dynamics, which readily complements the 
previous dimensions of pure experiment and pure theory. Computational fluid dy- 
namics, in principle, allows the practical solution of the exact governing equations 
for a myriad of applied engineering problems, and it is this aspect that is introduced 
in this chapter and carried through all the remaining chapters of this book. 

What is computational fluid dynamics? It is the art of replacing the individual 
terms in the governing conservation equations with discretized algebraic forms, 
which in turn are solved to obtain numbers for the flowfield variables at discrete 
points in time andlor space. The end product of CFD is indeed a collection of num- 
bers, in contrast to a closed-form analytical solution. However, in the long run, the 
objective of most engineering analyses, closed form or otherwise, is a quantitative 
description of the problem, i.e., numbers. If the governing conservation equations are 
given in integral form, the integral terms themselves are replaced with discrete alge- 
braic expressions involving the flowfield variables at discrete grid points distributed 
throughout the flow. This is called thefinite-volume technique. If the equations are 



11 1 An Introduction to Computational Fluid Dynamics 

given in partial differential equation form, the partial derivative terms are replaced 
with discrete algebraic difference quotients involving the flowtield variables at dis- 
crete grid points. This is called thefinite-dzfference technique. In this book, our uti- 
lization of CFD will involve the finite-difference technique. 

Perhaps the first major example of computational fluid dynamics applied to a 
practical engineering problem was the work of Kopal (Ref. 28). who in 1947 com- 
piled massive tables of the supersonic flow over sharp cones by numerically solving 
the governing Taylor-Maccoll differential equation [see Chap. 10, and specifically 
Eqs. (10.13) and (10. IS)]. The solutions were carried out on a primitive digital com- 
puter at the Massachusetts Institute of Technology. However, the first major genera- 
tion of computational fluid-dynamic solutions appeared during the 1950s and early 
1960s, spurred by the simultaneous advent of efficient, high-speed computers and the 
need to solve the high-velocity. high-temperature reentry body problem. High 
temperatures necessitated the inclusion of molecular vibrational energies and chem- 
ical reactions in flow problems, sometimes in equilibrium and at other times in non- 
equilibrium. As we shall see in Chaps. 16 and 17, such high-temperature physical 
phenomena generally cannot be solved analytically, even for the simplest flow geon- 
etry. Therefore, numerical solutions of the governing equations on a high-speed com- 
puter were an absolute necessity. Even though it was not fashionable at the time to 
describe such high-temperature gasdynamic calculations as "computational fluid dy- 
namics," they nevertheless represented the first generation of the discipline. 

The second generation of computational fluid-dynamic solutions, those that 
today are generally descriptive of the discipline, involve the application of the gen- 
eral equations of motion to applied fluid-dynamic problems that are in themselves so 
complicated (without the presence of chemical reactions, etc.) that a computer 
must be utilized. Examples of such inherently difficult problems are mixed subsonic- 
supersonic flows such as the supersonic blunt body problem (to be discussed 
in Chap. 12), and viscous flows which are not amenable to the boundary layer ap- 
proximation. such as separated and recirculating flows. In the latter case. the full 
Navier-Stokes equations are required for an exact solution. Such viscous flows are 
outside the scope of this book; here we will deal with inviscid flows only. 

Two major numerical techniques for the solution of completely supersonic, 
steady inviscid flows are introduced in this chapter-the method of characteristics 
and finite-difference methods. The method of characteristics is older and more tievel- 
oped, and is limited to inviscid flows, whereas finite-difference techniques (along 
with finite-volume techniques) are still evolving as computational fluid dynamics 
grows and matures, and have much more general application to inviscid and viscous 
flows. In this chapter, only some flavor and general guidance on finite-difference so- 
lutions can be given. Computational fluid dynamics is an extensive subject on its own, 
and its detailed study is beyond the scope of this book. Some early surveys of CFD 
can be found in Refs. 30 through 33. Some excellent modem textbooks on CFD at the 
graduate level are now available; see for examples Refs. 102 and 137 through 142. 
For a text written specifically for an elementary introduction to CFD, intended to be 
read before studying some of the more advanced texts, see Ref. 18. The reader is 
strongly encouraged to examine this literature in order to develop a more substantial 
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understanding of CFD. In addition to the introduction given in the present chapter, all 
the remaining chapters of this book deal to a greater or lesser extent with computa- 
tional techniques. However, in all cases our discussions will be self-contained; you 
are not expected to be familiar with the details of CFD. Indeed, the main thmst of this 
book is to emphasize the physical fundamentals of compressible flow, not to consti- 
tute a study of detailed mathematical or computational methods. But if this material 
wets your appetite to look further into CFD, you now know where to look. 

Finally, the numerical techniques discussed in the remainder of this chapter have 
three aspects in common: 

1. They involve the calculation of flowfield properties at discrete points in the 
flow. For example, consider an xy coordinate space that is divided into a 
rectangular grid, as sketched in Fig. 11.3. The solid circles denote grid points 
at which the flow properties are either known or to be calculated. The points 
are indexed by the letters i in the x direction and j in the y direction. For 
example, the point directly in the middle of the grid is denoted by (i, j), the 
point immediately to its right is (i + 1, j ) ,  and so forth. It is not necessary to 
always deal with a rectangular grid as shown in Fig. 11.3, although such grids 
are preferable for finite-difference solutions. For the method of characteristics 
solutions, we will deal with a nonrectangular grid. 

2. They are predicated on the ability to expand the flowfield properties in terms 
of a Taylor's series. For example, if u;, denotes the x component of velocity 
known at point ( i ,  j), then the velocity ui+,, j at point (i + 1, j )  can be 
obtained from 

Equation ( I  1.1) will be useful in the subsequent sections. 

X 

Figure 11.3 1 Rectangular finite-difference grid. 
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Figure 11.4 1 Schematic of the effect of grid zize o n  
numerical error. 

3. In the theoretical limit of an infinite number of grid points (i.e., AA- and 
A! + 0 in Fig. 1 1.3), the solutions are exact. Since all practical calculations 
obviously utilize a finite number of grid points, such numerical solutions 
are subject to truncwtion errov, due to neglect of the higher-order terms in  
Eq. (1 1. I ) .  Moreover, because all digital computers round off each number to 
a certain significant figure, the flowfield calculations are also subject to rotrrzcl- 
oferror .  By reducing the value of Ax  in Eq. ( 1  1.1 ), the truncation error is 
reduced: however, the number of steps required to calculate a certain distance 
in x is correspondingly increased, therefore increasing the round-off error. This 
trend is illustrated in Fig. 11.4, which shows the total numerical error as a 
function of step size, A s .  Note that there is an optimum value  AX),,^, at which 
maximum accuracy is obtained; it does not correspond to Ax -+ 0. Although 
all computations are subject to these numerical errors. this author feels that, as 
long as the full nonlinear equations of motion are being solved along with the 
exact boundary conditions, such solutions are properly designated as exc1c.t 

solutions. Therefore, an important advantage of computational fluid dynamics 
is its inherent ability to provide exact solutions to difficult, nonlinear problenls. 

11.2 1 PHILOSOPHY OF THE METHOD 
OF CHARACTERISTICS 

Let u\ begin to obtain a feeling for the method of characteristic5 by considermg again 
Fig. 11.3 and Eq. ( 1  1.1). Neglect the second-order term in Eq. (1 1. I), and write 
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The value of the derivative aulax can be obtained from the general conservation equa- 
tions. For example, consider a two-dimensional irrotational flow, so that Eq. (8.17) 
yields, in terms of velocities, 

Solve Eq. (11.3) for au/ax: 

Now assume the velocity V, and hence u and v ,  is known at each point along a ver- 
tical line, x = x,, as sketched in Fig. 11.5. Specifically, the values of u and v are 
known at point (i, j ) ,  as well as above and below, at points (i, j + 1) and (i ,  j - I). 
Hence, the y derivatives, aulay and avlay ,  are known at point (i, j ) .  (They can be 
calculated from finite-difference quotients, to be discussed later.) Consequently, the 
right-hand side of Eq. (11.4) yields a number for ( a ~ / a x ) ~ ,  j ,  which can be substi- 
tuted into Eq. (11.2) to calculate ui+l,j. However, there is one notable exception: If 
the denominator of Eq. (1 1.4) is zero, then au/ax is at least indeterminate, and may 
even be discontinuous. The denominator is zero when u = a,  i.e., when the compo- 
nent of flow velocity perpendicular to x = x, is sonic, as shown in Fig. 11.5. More- 
over, from the geometry of Fig. 11.5, the angle p is defined by sin p = u l  V = 
a / V  = 1 / M ,  i.e., p is the Mach angle. The orientation of the x and y axes with re- 
spect to V in Fig. 11.5 is arbitrary; the germane aspect of this discussion is that a line 
that makes a Mach angle with respect to the streamline direction at a point is also a 

Figure 11.5 1 Illustration of the characteristic 
direction. 
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line along which the derivative of u is indeterminate, and across which it may be dis- 
continuous. We have just demonstrated that such lines exist, and that they are Mach 
lines. The choice of u was arbitrary in the above discussion. The derivatives of the 
other flow variables, p, p ,  T, v ,  etc., are also indeterminate along these lines. Such 
lines are defined as characteristic lines. 

With this in mind, we can now outline the general philosophy of the method 
of characteristics. Consider a region of steady, supersonic flow in xy space. (For 
simplicity, we will initially deal with two-dimensional flow; extensions to three- 
dimensional flows will be discussed later.) This flowfield can be solved in three steps, 
as follows: 

Step 1. Find some particular lines (directions) in the x y  space wherejoct. variubles 
( p ,  p. T ,  u ,  2 ) .  etc.) are continuous, but along which the derivatives (ap / i ) x ,  i)u/i)?, 

etc.) are indeterminate, and in fact across which the derivatives may even sometimes 
be discontinuous. As already defined, such lines in the .xy space are called churuc- 
teristic lines. 

Step 2. Combine the partial differential conservation equations in such a fashion 
that ordinary differential equations are obtained that hold only along the characteris- 
tic lines. Such ordinary differential equations are called the compatibility equations. 

Step 3. Solve the compatibility equations step by step along the characteristic 
lines, starting from the given initial conditions at some point or region in the flow. In 
this manner, the complete flowfield can be mapped out along the characteristics. In 
general, the characteristic lines (sometimes referred to as the "characteristics net") 
depend on the flowfield, and the compatibility equations are a function of geometric 
location along the characteristic lines; hence, the characteristics and the compatibil- 
ity equations must be constructed and solved simultaneously, step by step. An ex- 
ception to this is two-dimensional irrotational flow, for which the compatibility equa- 
tions become algebraic equations explicitly independent of geometric location. This 
will be made clear in subsequent sections. 

As an analog to this discussion, the above philosophy is clearly exemplified in 
the unsteady, one-dimensional flow discussed in Chap. 7. Consider a centered ex- 
pansion wave traveling to the left, as sketched in Fig. 11.6. In Chap. 7, the governing 
partial differential equations were reduced to ordinary differential equations (com- 
patibility equations) which held only along certain lines in the x t  plane that had 
slopes of dxlrit = u * a .  The compatibility equations are Eqs. (7.65) and (7.66). and 
the lines were defined as characteristic lines in Sec. 7.6. These characteristics are 
sketched in Fig. 1 1 . 6~ .  However, in Chap. 7, we did not explicitly identify such char- 
acteristic lines with indeterminate or discontinuous derivatives. Nevertheless, this 
identification can be made by examining Eq. (7.89), which gives u = u ( x ,  t ) .  Con- 
sider a given time t = t l ,  which is illustrated by the dashed horizontal line in 
Fig. 1 I .6a. At time t l ,  the head of the wave is located at xh, and the tail at x,. Equa- 
tion (7.89) for the mass motion u is evaluated at time t1, as sketched in Fig. 11.6b. 
Note that at xh the velocity is continuous, but aulax is discontinuous across the lead- 
ing characteristic. Similarly, at x,, u is continuous but au/ax is discontinuous across 
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\ / 
V 

Expansion wave at t = tl 

While u is continuous, dU is discontinuous ax 
across the trailing characteristic. 

\ 

-- 
ax - O  

Both u and dU are continuous across the 
ax 

inner characteristics. 

I While u is continuous, $is discontinuous 

across the leading characteristic. 

Figure 11.6 1 Relationship of characteristics in unsteady one-dimensional flow. 

the trailing characteristic. Hence, by examining Fig. 1 1 . 6 ~  and b, we see that the 
characteristic lines identified in Chap. 7 are indeed consistent with the definition of 
characteristics given in the present chapter. 

11.3 1 DETERMINATION OF THE 
CHARACTERISTIC LINES: TWO- 
DIMENSIONAL IRROTATIONAL FLOW 

At the beginning of Sec. 11.2, Mach lines in the flow were identified as characteris- 
tic lines in a somewhat heuristic fashion. Are there other characteristic lines in the 
flow? Is there a more deterministic approach to identifying characteristic lines? 
Those questions are addressed in this section. 



11.3 Determination of the Characteristic Lines: Two-Dimensional Irrotatio~?al Flow 

To begin with, consider steady, adiabatic, two-dimensional, irrotational super- 
sonic flow. Other types of flow will be considered in subsequent sections. The gov- 
erning nonlinear equations are Eqs. (8.17) and (8.18). For two-dimensional f ow, 
Eq. (8.17) becomes 

Note that @ is the full-velocity potential, not the perturbation potential. I n  fact, in all 
of our work in this chapter, we are not using perturbations in any way. Hence. 

Recall that Q,, = f ( x ,  J ) ;  hence, 

Recopying these equations, 

From Eq. (1 1.6) 

From E q .  ( 1  1.7) 

These equations can be treated as a system of simultaneous, linear, algebraic equa- 
tions in the variables @,,, @,,, and @.,,.. For example, using Cramer's rule, the 
solution for @,, is 

@,, = - 
I 

Now consider point A and its surrounding neighborhood in an arbitrary f ow- 
field, as sketched in Fig. 11.7. The derivative of the velocity potential. @,, , has a 
specific value at point A. Equation (1  1.8) gives the solution for @,?, at point A for an 
arbitrary choice of dx and dy, i.e., for an arbitrary direction away from point A de- 
fined by the choice of d x  and d y .  For the chosen d x  and d y ,  there are corresponding 
values of the change in velocity d u  and dv. No matter what values are chosen for d x  
and d y ,  the corresponding values of d u  and d v  will always yield the same number 
fhr Q,, , from Eq. ( 1  1 .8) ,  with one. exception. I f  d x  and d y  are chosen such that D = 0 
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Figure 11.7 1 Streamline geometry. 

in Eq. (11.8), then @,, is not defined in that particular direction dictated by d x  and 
d y .  However, we know that @,, has a specific finite value at point A,  even though it 
is not uniquely determined when the direction through point A is defined by this par- 
ticular choice of d x  and d y ,  which yields D = 0  in Eq. (11.8). Clearly, an infinite 
value of a,, is physically inconsistent. For example, return to Fig. 11.6b. At points b 
and e ,  aulax is not uniquely determined, but we have to say that its value should be 
somewhere between zero and the constant value given by the slope between points b 
and e.  As a consequence, if the direction from A ( d x  and d y )  is chosen so that D = 0 
in Eq. (11.8), then to keep @,, finite, N  = 0 in Eq. (11.8) also: 

N O  
Qxy = - = - 

D 0 

That is, @,, = au/ay = av/ax is indeterminate. We have previously defined the 
directions in the flowfield along which the derivatives of the flow properties are 
indeterminate and across which they may be discontinuous as characteristic direc- 
tions. Therefore, the lines in x y  space for which D = 0 (and hence N  = 0 )  are 
characteristic lines. 

This now provides a means to calculate the equations of the characteristic lines. 
In Eq. ( 1  1.8) set D = 0 .  This yields 

In Eq. (11.9), ( d y l d ~ ) , ~ ,  is the slope of the characteristic lines. Using the quadratic 
formula, Eq. (1  1.9) yields 

Equation ( 1  1.10) defines the characteristic curves in the physical xy  space. 
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Examine Eq. ( 1  1.10) more closely. The term inside the square root is 

Hence, we can state 

1. If M > I ,  there are two real characteristics through each point of the flowfield. 
Moreover, for this situation. Eq. ( 1  1.5) is defined as a hyperbolic partial 
differential equation. 

2. If M = 1 ,  there is one real characteristic through each point of the flow. By 
definition, Eq. (1  1.5) is a parabolic partial differential equation. 

3. If M < I ,  the characteristics are imaginary, and Eq. (1 1.5) is an elliptic partial 
differential equation. 

Therefore, we see that steady, inviscid supersonic flow is governed by hyperbolic 
equations, sonic flow by parabolic equations, and subsonic flow by elliptic equations. 
Moreover, because two real characteristics exist through each point in a flow where 
M > 1, the method of characteristics becomes a practical technique for solving 
supersonic flows. In contrast, because the characteristics are imaginary for M < 1 ,  
the method of characteristics is not used for subsonic solutions. (An exception is 
transonic flow, involving mixed subsonic-supersonic regions, where solutions have 
been obtained in the complex plane using imaginary characteristics.) Also. i t  is 
worthwhile mentioning that the unsteady one-dimensional flow in Chap. 7 is hyper- 
bolic, and hence two real characteristics exist through each point in the xt plane, 
as we have already seen. Indeed, unsteady inviscid flow is hyperbolic for two and 
three spatial dimensions, and for any speed regime-subsonic, transonic, supersonic, 
or hypersonic. This feature of unsteady flow underlies the strength of the time- 
dependent numerical technique to be described in Chap. 12. 

Concentrating on steady, two-dimensional supersonic flow, let us examine the 
real characteristic lines given by Eq. ( 1  1.10). Consider a streamline as sketched in 
Fig. 1 1.7. At point A ,  L( = V cos H and v = V sin@. Hence, Eq. ( 1  1.10) becomes 

Recall that the Mach angle p is given by p = sin-' ( I  / M ) ,  or sin ,Y = 1 / M .  Thus, 
v2/a2 = M' = 1/ sin2p, and Eq. (1 1.1 I) becomes 

- cos H sin H /cos2 H + sin2 H . 
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From trigonometry, 

cos2 6 + sin2 6 1 

tan p 

Thus, Eq. (1 1.12) becomes 

- cos 8 sin @/ sin2 p k l/tan p 

(%)char = 
(11.13) 

1 - (cos2 8/ sin2 p )  

After more algebraic and trigonometric manipulation, Eq. (1 1.13) reduces to 

(11.14) 

A graphical interpretation of Eq. (1 1.14) is given in Fig. 11.8, which is an elaboration 
of Fig. 11.7. At point A in Fig. 11.8, the streamline makes an angle 0 with the x axis. 
Equation (1 1.14) stipulates that there are two characteristics passing through point A ,  
one at the angle p above the streamline, and the other at the angle p below the 
streamline. Hence, the characteristic lines are Mach lines. This fact was deduced 
in Sec. 11.2; however, the derivation given here is more rigorous. Also, the charac- 
teristic given by the angle 8 + p is called a C+ characteristic; it is a left-running 

Figure 11.8 1 Illustration of left- and right-running 
characteristic lines. 



11.4 Determ~nat~on of the Compat~b~lity Equations 

characteristic analogous to the C+ characteristics used in Chap. 7. The characteristic 
in Fig. 11.8 given by the angle H - p is called a C characteristic: i t  is a right- 
running characteristic analogous to the C characteristic5 used in Chap. 7. Note that 
the characteristics are curved in general, because the flow properties (hence d and E L )  

change from point to point in the flow. 

11.4 1 DETERMINATION OF THE 
COMPATIBILITY EQUATIONS 

I n  essence, Eq. (1 1.8) represents a combination of the continuity. momentum. and en- 
ergy equations for two-dimensional, steady, adiabatic, irrotational flow. In Sec. 1 1.3, 
we derived the characteristic lines by setting D = 0 in Eq. ( I I .X). In this section. we 
will derive the compatibility equations by setting N = O in Eq. ( 1  1.8). 

When N = 0, the numerator determinant yields 

Keep in mind that N is set to zero only when D = O in order to keep the flowtielti de- 
rivatives finite, albeit of the indeterminate form 0/0. When I) = 0, we are restricted 
to considering directions only along the characteristic lines, as explained in Sec. 1 1.3. 
Hence, when N = 0, we are held to the same restriction. Therefore. Ey. (11.15) 1rolrl.s 
only along the chrcictrrut ic lines. Therefore, in Eq. ( 1 1 .15). 

Substituting Eq. ( 11.10) into ( 1  1 .  IS), we have 

which simplifies to 

Recall that 11 = V cos H and v = V sin 0 .  Then, Eq. ( 1  1.16) becomes 

r l (  V sin H )  M' cos B sin H 
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which, after some algebraic manipulations, reduces to 
I I 

I I 

Equation (1 1.17) is the compatibility equation, i.e., the equation that describes the 
variation of flow properties along the characteristic lines. From a comparison with 
Eq. (1 1.14), we note that 

dB = - J M ~ I ~  (applies along the C- characteristic) (1 1.18) 

dB = ~ ~ 2 - 1 $  (applies along the C+ characteristic) (1 1.19) 

Compare Eq. (1 1.17) with Eq. (4.35) for Prandtl-Meyer flow. They are identical. 
Hence, Eq. (11.17) can be integrated to give the Prandtl-Meyer function v(M) as 
displayed in Eq. (4.44). Therefore, Eqs. (1 1.18) and (1 1.19) are replaced by the alge- 
braic compatibility equations: 

1 i3 + v ( M )  = const = K (along the C characteristic) 1 (11.20) 

1 Q - v(M) = const = K+ (along the C+ characteristic) 1 (11.21) 

In Equations (1 1.20) and (1 1.21), K- and K+ are constants along their respective 
characteristics, and are analogous to the Riemann invariants J- and J+ for unsteady 
flow as defined in Chap. 7. 

The compatibility equations (1 1.20) and (1 1.21) relate velocity magnitude and 
direction along the characteristic lines. For this reason, they are sometimes identified 
in the literature as "hodograph characteristics." Plots of the hodograph characteris- 
tics are useful for graphical solutions or hand calculations using the method of char- 
acteristics. The reader is encouraged to read the classic texts by Ferri (Ref. 5) and 
Shapiro (Ref. 16) for further discussions of the hodograph approach. We shall not 
take a graphical approach here. Rather, Eqs. (1 1.20) and (11.21) are in a sufficient 
form for direct numerical calculations; they are the most useful form for modern 
computer calculations. 

It is important to note that the compatibility equations (1 1.20) and (1 1.21) have 
no terms involving the spatial coordinates x and y. Hence, they can be solved with- 
out requiring knowledge of the geometric location of the characteristic lines. This 
geometrical independence of the compatibility equations is peculiar only to the pre- 
sent case of two-dimensional irrotational flow. For all other cases, the compatibility 
equations are dependent upon the spatial location, as will be discussed later. 

11.5 1 UNIT PROCESSES 
In Sec. 11.2, the philosophy of the method of characteristics was given as a three-step 
process. Step 1-the determination of the characteristic lines-was carried out in 
Sec. 11.3. Step 2-the determination of the compatibility equations which hold along 



11.5 Unit Processes 

the characteristics-was carried out in Sec. 11.4. Step 3-the solution of the com- 
patibility equations point by point along the characteristics-is discussed in this sec- 
tion. The machinery for upplying the method of characteristics is a series of specific 
computations called "unit processes," which vary depending on whether the points at 
which calculations are being made are internal to the flowfield, on a solid or free 
boundary, or on a shock wave. 

1 1.5.1 Internal Flow 

IF we know the flowfield conditions at two points in the flow, then we can find the 
conditions at a third point, as sketched in Fig. 11.9. Here, the values of vl and H I  are 
known at point I ,  and vz and 02 are known at point 2. Point 3 is located by the inter- 
section of the C characteristic through point 1 and the C+ characteristic through 
point 2. Along the C- characteristic through point 1, Eq. ( 1 1.20) holds: 

81 + vl = ( K - )  I (known value along C ) 

Also along the C+ characteristic through point 2, Eq. ( 1  1.21) holds: 

Q2 - ~2 = (K+)2 (known value along C,) 

Hence, at point 3, from Eq. (1 1.20), 

6'3 t v i  = (K- ) i  = ( K - ) I  

and from Eq. ( 1 1.21), 

Figure 11.9 1 Unit processes for the steady-flow, two-dimensional. 
irrotational method of characteristics. 
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Solving Eqs. (1 1.22) and (1 1.23), we obtain 63 and u3 in terms of the known values 
of K+ and K-:  

Thus, the flow conditions at point 3 are now determined from the known values at 
points 1 and 2. Recall that v3 determines M3 through Eq. (4.44), and that M3 deter- 
mines the pressure, temperature, and density through the isentropic flow relations, 
Eqs. (3.28), (3.30), and (3.3 1 ). 

The location of point 3 in space is determined by the intersection of the C- char- 
acteristic through point 1 and the C+ characteristic through point 2, as shown in 
Fig. 1 1.9. However, the C and C+ characteristics are generally curved lines, and all 
we know are their directions at points 1 and 2. How can we then locate point 3? An 
approximate but usually sufficiently accurate procedure is to assume the characteris- 
tics are straight-line segments between the grid points, with slopes that are average 
values. For example, consider Fig. 1 1.10. Here, the C- characteristic through point 1 
is drawn as a straight line with an average slope angle given by 

The C+ characteristic through point 2 is drawn as a straight line with an average 
slope angle given by [;(& + Q3) f i ( p 2  + ,u3)1. Their intersection locates point 3. 

11 S.2 Wall Point 

If we know conditions at a point in the flow near a solid wall, we can find the flow 
variables at the wall as follows. Consider point 4 in Fig. 11.9, at which the flow is 
known. Hence, along the C- characteristic through point 4, the value K- is known: 

(K-)4 = 64 + vq (known) 

The C characteristic intersects the wall at point 5. Hence, at point 5 ,  

lines 

Figure 11.10 1 Approximation of characteristics 
by straight lines. 
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However, the shape of the wall is known, and since the flow must be tangent at the 
wall, Hs is known. Thus, in Eq. ( 1  1.26), us is the only unknown. and can be written 
as 

11  S . 3  Shock Point 

If we know conditions at a point in the flow near a shock wave, we can find the How 
variables immediately behind the shock as well as the local shock angle as follows. 
Consider point 6 in Fig. 11.9, at which the flow is known. Hence, along the C+ char- 
acteristic through point 6, the value K+ is known: 

(K+)6 = Hh - vh (known) 

The C+ characteristic intersects the shock at point 7. Hence, at point 7. 

For a given free-stream Mach number M,, find the value of the local shock angle B7 
which yields the value of Q7 - v7 immediately behind the shock that agrees w ~ t h  the 
number obtained in Eq. (1 1.27). This i\ a trial-and-error process u5ing the oblique 
shock relations developed in Chap. 4. Then, given P7 and M,, all other flow prop- 
erties at point 7 are known from the oblique shock relations. 

1 1 5 . 4  Initial Data Line 

The unit processes discussed in this section must start somewhere. In order to im- 
plement the method of characteristics. we must have a line in the locally supersonic 
flow along which the flowfield properties are known. Then the method of charac- 
teristics can be carried out as described here, marching downstream from the initial 
data line. Such a downstream-marching method is mathematically a property of 
hyperbolic and parabolic partial differential equations. For the calculation of an 
internal flow, such as a nozzle flow, the initial data line is taken at or downstream 
of the limiting characteristic, which is slightly downstream of the sonic line. (The 
concept of limiting characteristics is described in Sec. 12.3.) The properties along 
this initial data line must be obtained from an independent calculation, such as the 
time-marching method discussed in Chap. 12. An alternative for starting a nozzle 
calculation is simply to assume that the sonic line in the nozzle throat is straight, 
and to assume a centered expansion emanating from the wall of the nozzle in the 
throat region (see Example 11.1 in Sec. 11.7). For the calculation of an external 
flow, such as the flow over a sharp-nosed airfoil shape, the initial data line can be 
established by assuming wedge flow at the sharp leading edge, and using wedge- 
flow properties along a line across the flow between the body and the shock wave 
just a small distance downstream of the leading edge. In any event, we repeat that 
the method of characteristics solution for a steady supersonic flow must start from 
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a given initial data line, and then the calculation can be marched downstream from 
the line. 

11.6 1 REGIONS OF INFLUENCE AND 
DOMAINS OF DEPENDENCE 

Our discussion on characteristic lines leads to the conclusion that in a steady super- 
sonic flow disturbances are felt only in limited regions. This is in contrast to a sub- 
sonic flow where disturbances are felt everywhere throughout the flowfield. (This 
distinction was clearly made in the contrast between subsonic and supersonic lin- 
earized flow discussed in Chap. 9.) To better understand the propagation of distur- 
bances in a steady supersonic flow, consider point A in a uniform supersonic stream, 
as sketched in Fig. 11.11~. Assume that two needlelike probes are introduced up- 
stream of point A .  The probes are so thin that their shock waves are essentially 
Mach waves. In the sketch shown, the tips of the probes at points B and C are lo- 
cated such that point A is outside the Mach waves. Hence, even though the probes 
are upstream of point A ,  their presence is not felt at point A .  The disturbances in- 
troduced by the probes are confined within the Mach waves. On the other hand, if 
another probe is introduced at point D upstream of point A such that point A falls 
inside the Mach wave (see Fig. 11.11 b), then obviously the presence of the probe is 
felt at point A.  

Figure 11.11 1 Weak disturbances in a supersonic flow. 
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Figure 11.12 1 Domain of dependence and region of influence. 

The above simple picture leads to the definition of two zones associated with 
point A ,  as illustrated in Fig. 1 I .  12. Consider the left- and right-running characteristics 
through point A.  The area between the two upstream characteristics is defined as the 
domain cfdependence for point A .  Properties at point A "depend" on any distur- 
bances or information in the flow within this upstream region. The area between 
the two downstream characteristics is defined as the region ofinjuence of point A .  
This region is "influenced" by any action that is going on at point A .  Clearly, distur- 
bances that are generated at point A do not propagate upstream. This is a general and 
important behavior of steady supersonic flow-disturbances do not propagate 
upstream. (However, keep in mind from Chap. 7 that, in an unsteady supersonic flow, 
compression waves can propagate upstream.) 

11.7 1 SUPERSONIC NOZZLE DESIGN 
In order to expand an internal steady flow through a duct from subsonic to supersonic 
speed, we established in Chap. 5 that the duct has to be convergent-divergent in 
shape, as sketched in Fig. 1 1 . 1 3 ~ .  Moreover, we developed relations for the local 
Mach number, and hence the pressure, density, and temperature, as functions of local 
area ratio AIA*.  However, these relations assumed quasi-one-dimensional flow, 
whereas, strictly speaking, the flow in Fig. 1 1 . 1 3 ~  is two-dimensional. Moreover, the 
quasi-one-dimensional theory tells us nothing about the proper contour of the duct, 
i.e., what is the proper variation of area with respect to the flow direction A = A ( x ) .  
If the nozzle contour is not proper, shock waves may occur inside the duct. 

The method of characteristics provides a technique for properly designing the 
contour of a supersonic nozzle for shockfree, isentropic flow, taking into account the 
n~ultidimensional flow inside the duct. The purpose of this section is to illustrate such 
an application. 

The subsonic flow in the convergent portion of the duct in Fig. 1 1 . 1 3 ~  is acceler- 
ated to sonic speed in the throat region. In general, because of the multidimensional- 
ity of the converging subsonic flow, the sonic line is gently curved. However, for most 
applications, we can assume the sonic line to be straight, as illustrated by the straight 
dashed line from a to b in Fig. 11 .13~.  Downstream of the sonic line, the duct 
diverges. Let 8,) represent the angle of the duct wall with respect to the .u direction. 
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Sonic line (generally c u r v e d ) 4  
I 1  c-- 

Figure 11.13 1 Schematic of supersonic nozzle design by the method of characteristics. 

The section of the nozzle where 6, is increasing is called the expansion section; 
here, expansion waves are generated and propagate across the flow downstream, 
reflecting from the opposite wall. Point c is an inflection point of the contour, where 
6, = Qwmax. Downstream of point c,  6, decreases until the wall becomes parallel to 
the x direction at points d and f .  The section from c to d is a "straightening" section 
specifically designed to cancel all the expansion waves generated by the expansion 
section. For example, as shown by the dashed line in Fig. 11.13a, the expansion wave 
generated at g and reflected at h is canceled at i .  Also shown in Fig. 1 1 . 1 3 ~  are the 
characteristic lines going through points d and f at the nozzle exit. These character- 
istics represent infinitesimal expansion waves in the nozzle, i.e., Mach waves. Trac- 
ing these two characteristics upstream, we observe multiple reflections up to the 
throat region. The area acejb is the expansion region of the nozzle, covered with both 
left- and right-running characteristics. Such a region with waves of both families is 
defined as a nonsimple region (analogous to the nonsimple waves described for 
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unsteady one-dimensional flow in Sec. 7.7). In this region, the characteristics are 
curved lines. In contrast. the regions cde and j ~ f ' a r e  covered by waves of only one 
family because the other family is cancelled at the wall. Hence, these are simple rr- 
gions,  where the characteristic lines are straight. Downstream of dgf; the flow is uni- 
form and parallel, at the desired Mach number. Finally, due to the symmetry of the 
nozzle How, the waves (characteristics) generated from the top wall act as if they are 
"reflected from the centerline. This geometric ploy due to symmetry allows us 
to consider i n  our calculations only the flow above the centerline, as sketched in 
Fig. 11.13h. 

Supersonic nozzles with gently curved expansion sections as sketched in 
Fig. 11.13a and b are characteristic of wind tunnel nozzles where high-quality, 
imiforrn flow is desired in the test section (downstream of dqf). Hence, wind tunnel 
nozzles are long, with a relatively slow expansion. By comparison, rocket nozzles 
are short in order to minimize weight. Also, in cases where rapid expansions are 
desirable, such as the nonequilibrium flow in modern gasdynamic lasers (see 
Ref. 2 1 ), the nozzle length is as short as possible. In such minimum-length noz:lr.s, 
the expansion section in Fig. 11.13~1 is shrunk to a point, and the expansion takes 
place through a centered Prandtl--Meyer wave emanating from a sharpcorner throat 
with an angle H,,,n,,x, M ~ ,  as sketched in Fig. 11 .14~.  The length of the supersonic 
nozzle, denoted as L in Fig. 1 1 . 1 4 ~  is the minimum value consistent with shockfree, 
isentropic flow. If the contour is made shorter than L. shocks will develop inside 
the nozzle. 

Assume that the nozzles sketched in Figs. 1 1 . 1 3 ~  and 1 1 . 1 4 ~  are designed for 
the same exit Mach numbers. For the nozzle in Fig. 1 1 . 1 3 ~  with an arbitrary expan- 
sion contour uc, multiple reflections of the characteristics (expansion waves) occur 
from the wall along ac.  A fluid element moving along a streamline is constantly ac- 
celerated while passing through these multiple reflected waves. In contrast, for the 
minimum-length nozzle shown in Fig. 1 1.14a, the expansion contour is replaced by 
a sharp corner at point a .  There are no multiple reflections and a fluid element 
encounters only two systems of waves-the right-running waves emanating from 
point LI and the left-running waves emanating from point d. As a result, H,,',x, M, in 
Fig. 1 1.140 must be larger than 8 in Fig. 1 1.13~2, although the exit Mach numbers 
are the same. 

Let u~ be the Prandtl-Meyer function associated with the design exit Mach num- 
ber. Hence, along the C+ characteristic cb in Fig. 11.14~. v = v~ = v, = v,,. Now 
consider the C '  characteristic through points a and c. At point c, from Eq. ( 1  1.20). 

However, 8, = 0 and u, = I J M .  Hence, from Eq. (11.28), 

At point a ,  along the same C characteristic ac ,  from Eq. (1 1.20), 



(b)  

Figure 11.14 1 (a) Schematic of minimum-length nozzle. (b) Graphical construction for Example 11.1. 
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Since the expansion at point a is a Prandtl-Meyer expansion from initially sonic con- 
ditions, we know from Sec. 4.14 that v,, = Q,, M ~ .  Hence. Eq. (1  1.30) becomes 

However, along the same C- characteristic, (K-),, = (K-),  ; hence, Eq. ( 1  1.31) 
becomes 

I 
o t ~ ~ , , , , , v .  MI = 2 (K-)< ( 1 1.32) 

Combining Eqs. (1 1.29) and (I 1.32), we have 

Equation (11.33) demonstrates that, for a minimum-length nozzle the expamion 
angle cf the wall downstream of the throat is equal to one-half the Prmdtl-Meyer 
function for the design exit Mach numbrr. For other nozzles such as that sketched in 
Fig. I 1.1 l a ,  the maximum expansion angle is less than v M / 2 .  

The shape of the finite-length expansion section in Fig. I 1 . 1 3 ~  can be somewhat 
arbitrary (within reason). It is frequently taken to be a circular arc with a diameter 
larger than the nozzle throat height. However, once the shape of the expansion 
section is chosen, then its length and 8,,n,,,x are determined by the design exit Mach 
number. These properties can be easily found by noting that the characteristic line 
from the end of the expansion section intersects the centerline at point e ,  where the 
local Mach number is the same as the design exit Mach number. Hence, to find the 
expansion section length and @,,,,n4y, simply keep track of the centerline Mach number 
(at points 1 ,  2, 3, etc.) as you construct your characteristics solution starting from the 
throat region. When the centerline Mach number equals the design exit Mach num- 
ber, this is point e. Then the expansion section is terminated at point c. which fixes 
both its length and the value of H,,,,,, ~ , x .  

Compute and graph the contow of a two-dimensional minimum-length nozzle for the expan- 
sion of air to a design exit Mach number of 2.4. 

Solution 
The results of this problem are given in Fig. 11.14b. To begin with, the sonic line at the throat, 
ab, is assumed to be straight. The first characteristic (a - 1) emanating from the sharp throat 
is chosen as inclined only slightly from the normal sonic line. (AH = 0.375 ; hence 
0 + u = 0.75' and dyldx- = 8 - p = -73.725' .) The remainder of the expansion fan is di- 

vided into six increments with A0 = 3'. The total corner angle g,,.,,,,,< = u / 2  = 36.75 /2  = 
18.375 . The values of K + .  K . 0 ,  and 11 are tabulated in Table 1 1 . 1  for all grid points. The 



402 CHAPTER I I Numerical Techniques for Steady Supersonic Flow 

Table 11.1 

K- =a K+ = B =  v =  
Point no. B + v 6 - v $(K-  + K+) f (K-  - K+)  M CL Comments 

Same as point 7 

Same as point 14 

Same as point 20 

Same as point 25 

Same as point 29 

Same as point 32 

Same as ooint 34 -36.75' 

' ~ n o w n  quantities at beginning of each step. 

nozzle contour is drawn by starting at the throat corner (where 0, = B,,,, = 18.375"), draw- 
ing a straight line with an average slope, ; (8, + &), and defining point 8 on the contour as the 
intersection of this straight line with the left-running characteristic 7-8. Point 15 is located by 
the intersection of a straight line through point 8 having a slope of ;(O8 + OI5) with the left- 
running characteristic 14-15. This process is repeated to generate the remainder of the con- 
tour, points 2 1,26, etc. 

For this example, the computed area ratio A,/A* = 2.33. This is within 3 percent of the 
value A,/A* = 2.403 from TableA.l. This small error is induced by the graphical construction 



11.8 Method of Characteristics for Axisymmetric lrrotational Flow 

of Fig. 11.14h. and by the fact that only seven increments are chosen for the corner expansion 
fan. For a more accurate calculation, finer increments should be used, resulting in a more 
closely spaced characteristic net throughout the nozzle. 

Note that a small inconsistency is involved with the properties at point 1 in 
Fig. 1 I .14, as listed in the first line of Table I I .  1. The entry in Table 1 I. I for 6' at point 1 
is a nonzero (but small) number, namely 0.375". This is inconsistent with the physical 
picture in Fig. 11.14, which shows point 1 on the nozzle centerline where H = 0. 
This inconsistency is due to the necessity of starting the calculations with the 
straight characteristic line, a-I, along which the value of 0 is constant and equal to 
0.375 . In reality, the characteristic a-1 is curved because of the nonuniform flow 
inside the region a-b-l in Fig. 11.14, but we have no way of knowing what that 
nonuniform Row is for this problem. In Sec. 12.7, we will show that a finite-difference 
calculation in the throat region can provide such information. However, within the 
framework o f  the method of characteristics in the present section, we must live with 
this inconsistency. As long as the first characteristic line a-1 is taken as close as pos- 
sible to the assumed straight sonic line, this inconsistency will be minimized. 

11.8 1 METHOD OF CHARACTERISTICS FOR 
AXISYMMETRIC IRROTATIONAL FLOW 

For axisymmetric irrotational flow, the philosophy of the method of characteristics 
is the same as discussed earlier; however, some of the details are different, princi- 
pally the compatibility equations. The purpose of this section is to illustrate those 
differences. 

Consider a cylindrical coordinate system, as sketched in Fig. 11.15. The cylin- 
drical coordinates are r., 4, and x, with corresponding velocity components 11, w ,  

Figure 11.15 1 Superposition of rectangular and cylindrical 
coordinate systems for axisymmetric flow. 
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and u ,  respectively. In these cylindrical coordinates, the continuity equation 

0. (pV) = 0 

becomes 

Recalling from Sec. 10.1 that axisymmetric flow implies 8/84 = 0, Eq. (11.34) 
becomes 

From Euler's equation for irrotational flow, Eq. (8.7), 

However, the speed of sound a2 = (aplap), = dp/dp. Hence, along with w = 0 for 
axisymmetric flow, Eq. (1 1.36) becomes 

from which follows 

Substituting Eqs. (1 1.38) and (1 1.39) into Eq. (1 1.39, we obtain, after factoring, 

The condition of irrotationality is 

which in cylindrical coordinates can be written as 
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For axisymmetric flow, Eq. (1  1.41) yields 

Substituting Eq. ( 1  1.42) into ( 1  l.40), we have 

Keeping in mind that u = u(x, r )  and u = ~ ( x ,  r ) ,  we can also write 

and 

Equations (1 l.43), (1 1.44), and ( 11.45) are three equations which can be solved for 
the three derivatives aulax, aulax. and avlar. 

The reader should by now suspect that we are on the same track as in our 
previous development of the characteristic equations. Equations (1 1.43) through 
( 1 1.45) for axisymmetric flow are analogous to Eqs. ( 1  1.5) through (1 1.7) for two- 
dimensional flow. To determine the characteristic lines and compatibility equations, 
solve Eqs. (1 1.43) through (1 1.45) for aulax as follows: 

The characteristic directions are found by setting D = 0. This yields 

Equation ( 1  1.47) is identical to Eq. ( 1 1.10). The discussion following Eq. (1 1.10), 
leading to Eq. (1  1.14), also holds here. Consequently, 

I I 

and we see thatfor axisymmetric irrotationuljow, the characteristic lines are Much 
lines. The C+ and C- characteristics are the same as those sketched in Fig. 11.6. 
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The compatibility equations that hold along these characteristic lines are found 
by setting N = O in Eq. (11.46). The result is 

In Eq. (11.49), the term drldx is the characteristic direction given by Eq. (11.47). 
Hence, substituting Eq. (1 1.47) into (1 1.49), we have 

du a~ I y a2 
- - - - r du 
du 

(1 1 SO) 
(1-;) ( I -$ )  

Note that Eq. (11.50) for axisymmetric flow differs from Eq. (11.16) for two- 
dimensional flow by the additional term involving drlr. Refemng again to Fig. 11.6, 
we make the substitution u = V cos 8 and u = V sin 8 into Eq. (1 1.50), which after 
algebraic manipulation becomes 

The first term on the right-hand side of Eq. (11.51) is the differential of the 
Prandtl-Meyer function, du (see Sec. 4.14). Hence, the final form of the compatibil- 
ity equation is 

1 d r  
d(0 + u) = - (along a C- characteristic) 

d M 2 - 1 - c o t e  r 

Equations (1 1.52) and (1 1.53) are the compatibility equations for axisymmetric 
irrotational flow. Compare them with the analogous results for two-dimensional irro- 
tational flow given by Eqs. (1 1.20) and (1 1.21). For axisymmetric flow, we note the 

(1 1 S2) 

1 d r  
d(8 - v) = - - (along a C+ characteristic) 

JM2-1+co t8  r 
(1 1 S3) 
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following: 

1. The compatibility equations are d@erentiaI equations, not algebraic equations 
as before. 

2. The quantity 0 + v is no longer constant along a C . characteristic. Instead. its 
value depends on the spatial location in the flowfield as dictated by the dr-jr 
term in Eq. (1 1 S2) .  The same qualification is made for H - v along a C, 
characteristic. 

For the actual numerical computation of an axisymmetric flowfield by the 
method of characteristics, the differentials in Eqs. (1 1.52) and (1 1.53) are replaced by 
finite differences (which are to be discussed later). The flow properties and their lo- 
cation are found by a step-by-step solution of Eqs. ( 1  1.52) and ( 1  1.53) coupled with 
the construction of the characteristics net using Eq. (1 1.48). 

11.9 1 METHOD OF CHARACTERISTICS 
FOR ROTATIONAL (NONISENTROPIC 
AND NONADIABATIC) FLOW 

The assumption of irrotationality in the previous sections allows a great simplifica- 
tion. For example, Eq. ( 1  1.5) for two-dimensional irrotational flow contains only 
three velocity derivatives, namely @,,, = au/ax ,  a,.! = av/a.v, and @,! = au/a.v = 
i ) v / a x .  The irrotationality condition allows the use of the velocity potential and. in 
particular, eliminates one of the possible velocity derivatives as an unknown via 
a u / a y  = a v l a x .  Along with Eqs. (1 1.6) and (1 1.7), we have a system of equations 
with three unknown velocity derivatives, which can be solved by means of three- 
by-three determinants, Eq. ( 1  1.8). Similarly, for axisymmetric irrotational flow. the 
irrotationality condition, Eq. (1 1.42), allows the derivation of a governing equation, 
Eq. (1 1.43), which contains only three unknown velocity derivatives. This again 
leads to a system of three-by-three determinants, namely, Eq. ( 1  1.46). 

In contrast, rotational flow is more complex, although the philosophy of the 
method of characteristics remains the same. Only a brief outline of the rotational 
method of characteristics will be given here; the reader is referred to Shapiro 
(Ref. 16) for additional details. 

Crocco's theorem. Eq. (6.60), repeated here, 

tells us that rotational flow occurs when nonisentropic and/or nonadiabatic condi- 
tions are present. An example of the former is the flow behind a curved shock wave 
(see Fig. 4.29), where the entropy increase across the shock is different for different 
streamlines. An example of the latter is a shock layer within which the static temper- 
ature is high enough for the gas to lose a substantial amount of energy due to thermal 
radiation. 

Without the simplitication afforded by the irrotationality condition, it is not possi- 
ble to obtain a system of three independent equations with three unknown derivatives 
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for the flow variables. Instead, for a rotational flow, the conservation equations as well 
as auxiliary relations [such as Eqs. (1 1.44) and (1 1.491 lead to a minimum of eight 
equations with eight unknown derivatives. The characteristic lines and corresponding 
compatibility equations are then found by evaluating eight-by-eight determinants. Ob- 
viously, we will not take the space to go through such an evaluation. The results for 
two-dimensional and axisymmetric rotational flows show that there are three sets of 
characteristics-the left- and right-running Mach lines, and the streamlines of the flow. 
The compatibility equations along the Mach lines are of the form 

and along the streamlines, from Eqs. (6.43) and (6.49), 

d h ,  = q (1 1.55) 

1 
T d s  = d e f  p d -  (1 1 .56) 

P 

In Eq. (11.54), d s  and d h ,  denote changes in entropy and total enthalpy along the 
Mach lines; in Eqs. (11.55) and (1 1.56) the respective changes d s  and d h ,  are along 
the streamlines. 

Equations (1 1.54) through (1 1.56), along with the characteristics net of Mach 
lines and streamlines, must be solved in a step-by-step coupled fashion. A typical unit 
process is illustrated in Fig. 11.16. Here, all properties are known at points 1 and 2. 
Point 3 is located by the intersection of the C- characteristic through point 1 and the 
C+ characteristic through point 2. The streamline direction 83 at point 3 is first esti- 
mated by assuming an average of 8, and H2. This streamline is traced upstream until 
it intersects at point 4 the known data plane through points 1 and 2. The values of s4 
and hO4 are interpolated from the known values at points 1 and 2. Then the values 
of $3 and hO3 are obtained from the compatibility equations along the streamline, 
Eqs. (1 1.55) and (1 1.56). Once s3 and hO3 are found as above, the compatibility equa- 
tion along the Mach lines, Eq. (1 1 .54), yields values of V3 and 03. The whole unit 
process is then repeated in an iterative sense until the desired accuracy is obtained at 
point 3. 

Figure 11.16 1 Characteristic 
directions for a nonisentropic flow. 
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The reader is cautioned that the above discussion is purely illustrative; the de- 
tails o f  a given problem obviously depend on the specitic physical phenomena being 
treated (the thermodynamics of the gas. the form of energy loss, etc.). However, the 
major purpose of this section is to underscore that, for a general two-dimensional or 
axisymmetric flow, the streamlines are characteristics, and the derivation of the ap- 
propriate compatibility equations is more complex than for the irrotational case dis- 
cussed in Secs. 11.3 through 1 1.8. 

11.10 1 THREE-DIMENSIONAL METHOD 
OF CHARACTERISTICS 

The general conservation equations for three-dimensional inviscid flow were derived 
in Chap. 6. These equations can be used, for example, to solve the three-dimensional 
flow over a body at angle of attack, as sketched in Fig. 1 1.17. For supersonic three- 
dimensional flow, these equations are hyperbolic. Hence. the method of characteristics 
can be employed, albeit in a much more complex form than for the two-dimensional 
or axisymmetric cases treated earlier. Again, only the general results will be given 
here; the reader is urged to consult Refs. 34 through 38 for example5 of detailed 
solutions. 

Consider point b in a general supersonic three-dimensional flow, as sketched in 
Fig. 11.17. Through this point, the characteristic directions generate two sets of 
three-dimensional surfi~ces-a Mach cone with its vertex at point b and with a half- 
angle equal to the local Mach angle p,  and a stream surface through point h. The in- 
tersections of these surfaces establish a complex three-dimensional network o f  grid 
points. Moreover, as if this were not complicated enough, the compatibility equa- 
tions along arbitrary rays of the Mach cone contain cross derivatives that have to be 

-1 
Figure 11.17 1 Illustration of  the Mach cone in three-dimensional flow. 
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evaluated in directions not along the characteristics. Nevertheless, such solutions can 
be obtained (see Refs. 34 through 38). 

Rakich (Refs. 37 and 38) has utilized a modification of the above philosophy, 
which somewhat simplifies the calculations. In this approach, which is sometimes la- 
beled "semicharacteristics" or the "reference plane method," the three-dimensional 
flowfield is divided into an arbitrary number of planes containing the centerline of 
the body. This is sketched in Fig. 11.18, which is a front view of the body and shock. 
One of these planes, say 4 = 42, is projected on Fig. 11.19. In this particular refer- 
ence plane, a series of grid points are established along arbitrarily spaced straight 
lines locally perpendicular to the body surface. Assume that the flowfield properties 

Reference planes 

Figure 11.18 1 Grid network in a cross-sectional 
plane for an axisymmetric body at angle of attack; 
three-dimensional method of characteristics. 

Figure 11.19 1 Grid network in the meridional plane for an 
axisymmetric body at angle of attack; three-dimensional 
method of characteristics. 
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known at the grid points denoted by solid circles along the straight line ah. Fur- 
thermore, arbitrarily choose point I on the next downstream line, cd.  Let C+, C- ,  
and S denote the projection in the reference plane of the Mach cone and streamline 
through point 1. Extend these characteristics upstream until they intersect the data 
line ub at the cross marks. Data at these intersections are obtained by interpolating 
between the known data at the solid circles. Then, the flowfield properties at point 1 
are obtained by solving these compatibility equations along the characteristics: 

B d p  -- 
dB 

- cos I/- = ( f i  - B f i )  sin p 
pV2 dC- dC- 

where I/ = the cross-flow angle defined by sin @ = w/V 

cos I/ sin 0 
f l  = - 

r 

sin2 @ cos 0 
f2 = - 

r 

sin $I sin 0 
" f 3  = - 

r 

It is beyond the scope of this book to describe the details of such an analy- 
sis. Again, the reader is referred to Refs. 37 and 38 for further elaboration. The 
major point made here is that the method of characteristics can be used for three- 
dimensional supersonic flows, and several modern techniques have been devised 
for its implementation. 

11.11 1 INTRODUCTION TO FINITE DIFFERENCES 
The method of characteristics, discussed in the previous sections, is a numerical so- 
lution of the governing conservation equations wherein the grid points and compu- 
tations are made along the characteristic lines. Following the characteristic lines is 
sometimes a numerical inconvenience, and at high Mach numbers the characteristics 
net can become particularly elongated and distorted, causing inordinate numerical 
error in the calculations. In contrast, the finite-difference approach discussed in this 
and subsequent sections is inherently more straightforward than the method of char- 
acteristics, and has the advantage that essentially arbitrary computational grids 
can be employed. Indeed, it is quite common to use simple rectangular grids for 
finite-difference methods, as shown in Fig. 11.3. It is for reasons such as these that 
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finite-difference solutions of the governing conservation equations have become 
popular in modern compressible flow, supplanting characteristics solutions in many 
cases. Moreover, finite-difference methods have a much wider range of applicability; 
they are useful for subsonic and mixed subsonic-supersonic (transonic) flows where 
the method of characteristics is at best impractical. Finite-difference solutions for 
purely supersonic steady flows will be discussed in the remainder of this chapter. 
This will be followed in Chap. 12 with a presentation of the powerful time-marching 
finite-difference technique that has provided a major breakthrough in the analysis of 
mixed subsonic-supersonic flows. 

The philosophy of finite-difference solutions is to replace the partial derivatives 
appearing in the conservation equations (see Chap. 6) with algebraic difference quo- 
tients, yielding algebraic equations for the flowfield variables at the specified grid 
points. The type of finite difference that is used to replace the partial derivatives can 
be selected from a number of different forms, depending on the desired accuracy of 
the solution, convergence behavior, stability, and convenience. However, the most 
common forms in current use are forward, rearward, and central differences, all of 
which stem from the Taylor's series given by Eq. (1 1.1). For example, assume that 
we write the conservation equations in cartesian coordinates, and we wish to replace 
the derivative aulax in these equations with a finite difference at the grid point ( i ,  j). 
In its present form, Eq. (1 1.1) is of "second-order accuracy" because terms involving 
  AX)^,   AX)^, etc., have been assumed small and can be neglected. If we are inter- 
ested in only first-order accuracy, then Eq. (1 1.1) can be written as 

From Eq. (1 1.57), we can form a forward difference for the derivative a u / a x ,  

which is of first-order accuracy. Similarly, if Eq. (1 1.1) is written for a minus value 
of A x ,  we have 

which, for first-order accuracy, can be written as 

From Eq. (1 1.60), we can form a rearward difference for the derivative a u l a x ,  
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which is of first-order accuracy. Finally, we can obtain a second-order-accurate finite 
difference for au lax  by subtracting Eq. (1 1.59) from Eq. ( 1  1. I ) ,  both of which con- 
tain (Ax)' and hence are of second-order accuracy. After subtraction, we have 

Solving Eq. ( 11.62) for (aulax );, ; , we obtain the central difference 

which is of second-order accuracy. 
In summary, Eqs. (1 1.58) and (1 1.63) define forward, rearward, and central dif- 

ferences, respectively, for the derivative aulax.  Analogous expressions exist for de- 
rivatives in the y direction. For example, returning to Fig. 1 1.3, we can write 

U I , ~ + I  - U I  1 (forward difference) 
A Y 

u .  . - 11. . 
I . . /  ~ . J - I  (rearward difference) 

A Y 

Ui,.j+l - U i , j - l  
(central difference) 

2 AY 

Finite-difference expressions for higher-order derivatives, such as iI2u/ax2, can 
also be constructed from Eq. (1 1.1). However, note from Chap. 6 that the concerva- 
tion equations for inviscid compressible flow contain only first-order derivatives of 
the flowfield properties. Hence, in this book we need only be concerned with finite 
differences for first-order derivatives. This would not be true if we were dealing with 
viscous flows, where second-order derivatives are present in the momentum and 
energy equations. 

Equations (1 I.%), (11.61), and ( 1  1.63) are finite-difference representations of 
the first partial derivative. When these difference quotients are used to replace the 
partial differentials in an equation, then a difference equation results. For example, 
consider the continuity equation given by Eq. (6.5), repeated here. 

For steady, two-dimensional flow, Eq. (6.5) becomes 

Defining F = pu and G = pv,  Eq. (11.64) is written as 



CHAPTER 11 Numerical Techniques for Steady Supersonic Flow 

Replacing the x derivative in Eq. (1 1.65) with a forward difference [Eq. (1 1.58)], and 
the y derivative with a central difference [the y equivalent of Eq. (11.63)], we have 

Equation (1 1.66), or Eq. (1 1.67), is the difference equation that replaces the original 
partial differential equation, namely Eq. (1 1.65). Equation (1 1.66) is an approxima- 
tion for Eq. (1 1.65); Eq. (1 1.66) contains a truncation error which is a combination of 
the truncation errors from the difference quotients in Eq. (1 1 S8) and the y equivalent 
of Eq. (1 1.63). 

A distinction between various finite-difference solutions is that of explicit ver- 
sus implicit approaches. Let us make the distinction by way of an example. Assume 
we have a two-dimensional flowfield over which we place a rectangular grid, as 
sketched in Fig. 11.3. Assume the general direction of the flow is from left to right. 
Furthermore, assume that the flowfield properties are known at all the grid points 
along the vertical line through point (i, j ) .  We wish to calculate the value of F at 
all the downstream grid points along the vertical line through point (i + 1, j ) .  Equa- 
tion (1 l .67) allows us to calculate F at point (i + l ,  j) explicitly from the known 
values along the vertical line through point (i, j). By repeated application of 
Eq. (11.67) at all points on the upstream vertical line, (i, j + l ) ,  (i, j - I), etc., the 
values of F at all points along the downstream vertical line can be calculated one at 
a time. This type of approach, wherein the flowfield at a given downstream point is 
evaluated strictly in terms of the known upstream values, is defined as an explicit 
finite-difference solution. In contrast, let us construct an approach that assumes the y 
derivative in Eq. (1 1.65) is the average between the two vertical lines through points 
(i, j) and (i + 1, j) in Fig. 11.3, i.e., let us form a difference equation for Eq. (1 1.65) 
as follows. 

In order to calculate Fi+1, from Eq. (11.68), knowing the flowfield at the upstream 
vertical line is not enough. The right-hand side of Eq. (1 1.68) also contains the 
unknown quantities Gi+l,j+l and Gi+l,j-l  along the downstream vertical line. If 
Eq. (11.68) is applied at all points along the upstream vertical line, a system of 
simultaneous equations for Gi+1, j, Fj+l, j ,  Gi+1, etc., along the downstream 
vertical line is obtained. These unknowns must be solved simultaneously. Moreover, 
additional equations (momentum, etc.) are required because there are more un- 
knowns than equations provided by Eq. (11.68). This type of approach, wherein the 
flowfield at a given downstream point is evaluated in terms of both known upstream 
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values and unknown downstream values, is detined as an implicit tinite-difference 
solution. 

The advantage of explicit methods is that they are relatively simple to set up and 
program. The disadvantage is that the spatial increments A.4- and A y  are limited due 
to stability constraints associated with explicit methods. For a given A Y .  A x  is con- 
strained to be less than a certain value dictated by numerical stability considerations. 
(Such stability analyses are discussed at length in Refs. 18 and 102.) In turn, if A.r is 
constrained to be too small, the computer time required to calculate the flow over a 
prescribed downstream distance can be large. 

The advantage of implicit methods is that stability can be maintained over much 
larger values of A x ,  hence using considerably fewer steps to make calculations over 
a prescribed downstream distance. A disadvantage of implicit methods is that they 
are more complicated to set up and program in comparison to explicit methods. 
Moreover, massive matrix manipulations are usually required at each spatial step to 
solve the simultaneous algebraic equations, hence the computer time per step is 
larger for the implicit approach. However, on the whole, implicit methods frequently 
result in smaller total computer times for a given flowfield calculation. Whether this 
continues to be the case is a matter of current research; for example, explicit methods 
are readily vectorizable for use on a vector-type supercomputer, and frequently can 
take much better advantage of the computer architecture than implicit methods. 

Today, both implicit and explicit methods are in wide use. However, for the sake 
of simplicity, we will deal only with explicit methods in the remainder of this chap- 
ter. For details on both methods, see Refs. 18, 102, and 137-142. 

A favorite form of the governing flow equations in use by many computational 
fluid dynamicists today is the conservation form; both conservation and nonconser- 
vation forms were derived in Secs. 6.2 and 6.4, respectively. Writing the conserva- 
tion form of the governing equations for steady, three-dimensional flow, we have 
from Eqs. (6.5), (6.1 I )  through (6.13), and (6.17), 

Conritzuity: 

a ( p v i l )  a a ( p u  U ) )  
v momentum: + - ( o r  + p )  + --- ax a: = o f ,  a? 

Energy: & [ P  (e + q) u + p u ]  + $ [P ( e +  :) + p"] 
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These equations can be expressed in a single, generic form as 

where F, G, H, and J are column vectors given by 

Here, J is called the source term. The governing equations in the form of Eq. (1 1.69) 
are called the strong conservation form, in contrast to Eqs. (6.5), (6.11) through 
(6.13), and (6.17) which are classified as the weak conservation form. In various ap- 
plications of computational fluid mechanics, the form used for the governing equa- 
tions can make a difference in the numerical solution; this distinction is particularly 
important for problems that involve shock waves, and has to do with the choice of the 
shock-capturing or shock-fitting approaches-to be discussed in Sec. 11.15. 

It seems clear from this discussion that the finite-difference philosophy is inher- 
ently straightforward; just replace the partial derivatives in the governing equations 
with algebraic difference quotients, and grind away to obtain solutions of these alge- 
braic equations at each grid point. However, this impression is misleading. For any 
given application, there is no guarantee that such calculations will be accurate, or 
even stable. Moreover, the boundary conditions for a given problem dictate the 
solution, and therefore the proper treatment of boundary conditions within the frame- 
work of a particular finite-difference technique is vitally important. For these rea- 
sons, general finite-difference solutions are by no means routine. Indeed, much of 
computational fluid dynamics today is still more of an art than a science; each differ- 
ent problem usually requires special thought and originality in its solution. The 
reader is strongly urged to study Refs. 39 through 45 in order to gain more apprecia- 
tion for this state of affairs. These references, written early in the development of 
CFD, only scratch the surface of the finite-difference literature, but they represent a 
reasonable introduction to some of the problems. These, along with Refs. 18, 102, 
and 137-142, and the flavor given in this and subsequent sections, should provide the 
reader with an understanding of the power and usefulness of finite-difference solu- 
tions to compressible flow problems. It is beyond the scope of this book to provide 
the minute details of any given finite-difference solution; however, the purpose of 
this and subsequent chapters is to provide a roadmap from which the reader can make 
excursions into the literature as desired. 



11.12 1 MACCORMACK'S TECHNIQUE 
Although a myriad of finite-difference schemes have been utilized for nunlcrous 
problems, one specific algorithm gained wide use and acceptance in the 1070s and 
1980s. This is a technique developed by Robert MacCormack at the NASA Ames 
Research Center, first published in 1969 in the context of a time-marching solution to 
the unsteady equations of motion (see Ref. 39). A discussion of such time-marching 
techniques will be deferred until Chap. 12. However. MacCorinack's technique has 
also been applied to steady supersonic flows (see Refs. 40 through 44). MacCormxk's 
technique has been supplanted by more modern algorithms in recent years. However. 
it is straightforward, very "student friendly," and works well for a number of applica- 
tions. Therefore, it is highlighted in this section. 

Let us consider the solution of a steady. two-dimensional, supersonic. in\ iscid 
flowfield in (s, J.) space. The flow is assumed to be known along an initial data line. 
and the finite-difference calculation will march downstream from thia initial data 
line, in the same fashion as described for the method of characteristics in  Sec. 11.5. 
Once again, we note that this downstream-marching approach is consistent with 
the properties of hyperbolic or paraholic equations. For supersonic flow. Eq. ( 1 1.69) 
is hyperbolic. Let us rewrite Eq. ( 1  1.69) for two-dimensional How with no source 
terms as 

Consider again the grid illustrated in Fig. 11.3. MacCormack's solution of Eq. ( 1 1.70) 
on the grid of Fig. 11.3 takes the form of a predictor-corrector technique. using 
forward differences on the predictor step and rearward differences on the corrector 
step. By using this two-step process, although the differences are of tirsl-order accu- 
racy in each step, the overall result is of second-order accuracy. Specifically. refer- 
ring to Fig. 11.3, the flowfield is known at all points along the vertical lines thl-ough 
( i  - 1 )  and (i). Hence, Fi'i,l,, can be calculated from a Taylor's series expansion i n  
terms of x: 

In Eq. (1  1.7 I ) ,  I < , i  is known, and (8 Fl i ) .~ ) , , , ,  is an average of the .r derivati\,e of F 
between points ( i ,  j) and ( i  + 1, j ) .  A numerical value of thia average cieri\ati\.e is 
obtained in two steps as we see next. 

Predictor Step. First, predict the value of Fj + ,,, by using a Taylor's m i e s  \I here 
il F l a x  is evaluated at point ( i ,  j ) .  Denote this predicted value as F, , I ,: 

In Eq. (1 1.7?), (a is obtained from Eq. ( 1 1.70) using a forward difference 
for the y derivative: 
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In Eq. (1 1.73), G;,j+l and Gi,j  are known; hence, the calculated value of (a 
from Eq. ( 1  1.73) is substituted into Eq. (1 1.72) to yield the predicted value, E+l , , .  
This process is repeated to obtain f i + l , j  at all values of j ,  i.e., at all grid points along 
the vertical line through i + 1, j in Fig. 11.3. 

Corrector Step. The value of obtained from the predictor step really 
represents individual numbers for the Jlux variables (p i ) i+ l ,  j ,  ( p i 2  + j) i+l  ,, , 
(p17i);+~,;, and [p(F + v 2 / 2 ) i  + p i ] i+ l , , ,  as displayed in Eq. (11.69). In turn, 
these numbers can be solved for the primitive variables, pi+l,,, ii+l,j, fii+l,,, and 
2i+l,j. - These predicted primitive variables are then used to calculate numbers for 
Gi+,, j .  These predicted values of G are then used to calculate a predicted value of 
the derivative ( D / ~ X ) ~ + ~ ,  by using a rearward difference in Eq. (1 1 .7O): 

In turn, the results from Eqs. (1 1.73) and (1 1.74) allow the calculation of the average 
derivative 

Finally, the average derivative calculated by Eq. (1 1.75) allows the calculation 
of the corrected value & + I ,  from Eq. (1 1.71). By simply marching downstream in 
steps of x, our algorithm allows the calculation of the complete flowfield down- 
stream of a given initial data line. This is made possible because the equations for 
steady inviscid supersonic flow are hyperbolic. The above technique cannot be em- 
ployed in subsonic regions; indeed, if an embedded subsonic region is encountered 
while marching downstream, the calculations will generally become unstable. How- 
ever, such mixed subsonic and supersonic flows can be treated by the time-marching 
technique described in Chap. 12. 

Finally, note that MacCormack's scheme is an explicit finite-difference tech- 
nique. As mentioned earlier, it is of second-order accuracy. A generalization of 
MacCormack's scheme to third-order accuracy is described in Ref. 42. 

11.13 1 BOUNDARY CONDITIONS 
Consider the flow in the vicinity of a solid wall, as sketched in Fig. 11.20. The algo- 
rithm described in Sec. 11.12 applies to grid points internally in the flowfield, such as 
point 1. Here it is possible to form both the required forward and rearward differ- 
ences in the y direction. However, on the wall at point 2, it is not possible to form a 
rearward difference, since there are no points inside the wall. Various methods have 
been developed to calculate the flow at a wall boundary point, all with mixed degrees 
of success. Some methods work better than others, depending on the character of the 
specific flow problem and the slope of the boundary. An authoritative review of such 
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Figure 11.20 1 Shock and wall boundary conditions for 
supersonic steady-flow tinite-difference solutions. 

boundary conditions is given in Ref. 46. We emphasize that the proper treatment of 
boundary conditions can make or break a flowfield calculation. 

A generally accepted method for accurately dealing with a solid-wall boundary 
condition for inviscid steady supersonic flow is that due to Abbett (see Ref. 46). 
Abbett's method is in wide use; moreover, it is simple and accurate. Refer again to 
Fig. I 1.20. First calculate values of the flowfield variables at point 2 using the inter- 
nal flow algorithm described in Sec. 1 1.12, but incorporating forward derivatives in 
both the predictor and corrector steps. This will yield a calculated velocity V,,I at 
point 2, as well as calculated values of pressure, temperature, etc. In general the di- 
rection of V,,I will not be tangent to the wall due to inaccuracies in the calculational 
procedure. Figure 11.20 shows VCaI above the wall by the angle H .  However, the nec- 
essary boundary conditions at the wall for an inviscid flow dictate that the flow ve- 
locity be tangent to the wall. Therefore, Abbett suggests that the calculated velocity 
direction at point 2 be rotated by means of a Prandtl-Meyer expansion through the 
known angle t). This yields the actual velocity at point 2, Vd,,, which is tangent to the 
wall. The Mach number (hence ultimately the velocity magnitude) at point 2 is ob- 
tained from the actual Prandtl-Meyer function, v,,,, where 

Analogously, the actual pressure and temperature at point 2 are obtained from the 
originally calculated values, modified by an isentropic expansion from v,,, to v,,,. 
Figure 11.20 shows the case when VCaI is pointed away from the wall; when VcaI is 
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toward the wall, the technique is the same except that the Prandtl-Meyer turn is a 
compression rather than an expansion. 

Another common boundary condition in supersonic flow is that immediately be- 
hind a shock wave, such as point 4 in Fig. 11.20. Again, the flow properties at the in- 
terior point 3 can be obtained from the method discussed in Sec. 11.12. The flow 
properties at point 4 can be calculated by using one-sided differences (all forward or 
all rearward) in the same interior algorithm. The strength (hence angle) of the shock 
wave at point 4 then follows from the oblique shock relations described in Chap. 4. 
In Ref. 46, Abbett gives several alternative approaches to the shock boundary condi- 
tion, including some using a local characteristics technique projected from the inter- 
nal points and matched with the oblique shock relations. Such an approach will be 
detailed in Chap. 12. 

11.14 1 STABILITY CRITERION: 
THE CFL CRITERION 

The rectangular grid shown in Fig. 11.3 does not always involve purely arbitrary 
spacing for A x  and Ay .  Indeed, the ratio A x l A y  must be less than a certain value in 
order for the explicit finite-difference procedure described in Sec. 11.12 to be com- 
putationally stable. On the other hand, for implicit methods A x l A y  can be much 
larger-some implicit methods are unconditionally stable for any value of A x l A y  no 
matter how large. In these cases, however, the accuracy of the solution can become 
poor at large A x l A y  simply because the truncation errors, which depend on A x  and 
A y ,  become large. 

In this book, we are dealing primarily with explicit methods for simplicity. 
Moreover, MacCormack's method described in Sec. 11.12 is an explicit method; this 
method has been widely adopted, and because of its simplicity, MacCormack's 
method, in this author's experience, is very "student friendly." Therefore, in the pre- 
sent section, let us examine more closely the stability criterion associated with such 
an explicit method. 

It is difficult to obtain from mathematical analysis a precise condition for 
A x l A y  that holds exactly for a governing system of nonlinear equations, such as the 
flow equations that we use in gasdynamics. However, we can use as guidance the sta- 
bility criterion for a model equation that is linear, and that has many of the same 
mathematical properties as the nonlinear system. For the steady, supersonic, inviscid 
flows discussed in this chapter, the governing nonlinear equations are hyperbolic, as 
discussed in Sec. 11.3. A linear, hyperbolic equation can be used as a model for this 
system in terms of stability considerations. One example of a standard stability 
analysis of hyperbolic linear equations is the Von Neumann stability method, dis- 
cussed at length in Refs. 18, 102, 128, and 137-142. The result of this analysis is the 
following stability criterion: 
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Figure 11.21 1 Illustration of the stability criterion 
for steady two-dimensional supersonic flow. 

Equation ( 11.76) is called the Courant-Friedrichs-Lewy criterion, the so-called CFL 
criterion. The interpretation of this criterion is shown in Fig. 1 1.2 1. Here, a vertical 
column of grid points (i. j - l ) ,  (i, j ) ,  ( i ,  j + I ) ,  etc., is considered, with A! the 
spacing between adjacent points. Characteristic lines with angles Q + EL  and t) - p 

are drawn through points ( i ,  j - 1) and (i, j + I), respectively. The value of A s  al- 
lowed by Eq. (1 1.76) falls within the domain defined by these characteristic lines. If 
Ax is larger than stipulated by Eq. (1 1.76), then grid point ( i  + 1, j) falls outside the 
domain of these characteristics, and the numerical computation will be unstable. 

Note that, from Eq. ( 1  1.76), there can be a different value of Ax associated with 
each vertically arrayed grid point, i.e., a different Ax reaching downstream from 
each of points ( i ,  j - I ) ,  (i, j), (i, j + I), etc. However, the value actually used for 
Ax should be the same for each of these points so that we have a uniformly spaced 
grid in the x direction for the next column of grid points, i.e., the spacing between 
points (i, j - I )  and (i + 1. j - 1) should be the same as between (i. j )  and 
( i  + 1 ,  j ) ,  and so forth. Hence, in Eq. ( 1  I .76), the particular constant value of Ax to 
be used for all the vertically arrayed grid points is that associated with the maximum 
value of Itan(H =t b)l in Eq. (11.76); this is the reason for the subscript max in 
Eq. ( 1  1.76). 
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11.15 1 SHOCK CAPTURING VERSUS SHOCK 
FITTING; CONSERVATION VERSUS 
NONCONSERVATION FORMS 
OF THE EQUATIONS 

Consider the supersonic flow over a sharp-nosed body, as sketched in Fig. 11.22. The 
downstream-marching, explicit finite-difference method discussed in the previous 
sections can readily be used to calculate the supersonic flowfield between the body 
and the shock wave, starting from a line of initial data near the nose. These initial 
data are usually obtained by assuming the nose of the body to be a sharp wedge, and 
using the results of Chap. 4 for starting conditions. If the body is three-dimensional, 
the nose can usually be assumed to be a cone, and the results of Chap. 10 can be used 
for the initial data. In Fig. 11.22, the body represents one set of boundary conditions, 
and the shock wave constitutes a second set. The methods discussed in Sec. 11.13 can 
be used for these boundaries. Because the shock wave in Fig. 11.22 is assumed to be 
a discontinuity, it is used as one of the boundaries of the flowfield and is determined 
by matching the oblique shock relations with the interior flowfield. This approach is 
defined as shock jilting, in contrast with an alternative approach, sketched in 
Fig. 11.23. Here, the finite-difference grid is extended far ahead of and above the 
body, and free-stream conditions are assumed along the outer boundaries. Again ap- 
plying the algorithm in Sec. 11.12, the flowfield over the finite-difference grid can be 
calculated. The shock wave will automatically appear within the grid as a region of 
large gradients smeared over several grid points (the grid is in reality much finer than 
sketched in Fig. 11.23). Consequently, shock waves do not have to be explicitly as- 
sumed; they will appear at those locations in the flowfield where they belong. Such 
an approach is called shock capturing. An obvious advantage of shock-capturing 
techniques is that no a priori knowledge about the number or location of shock 
waves is needed. A disadvantage is that the shock is numerically smeared rather than 

Shock fitting u 

Figure 11.22 1 Mesh for the shock-fitting finite-difference approach. 
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Figure 11.23 1 Mesh for the shock-capturing finitedifference approach 

discontinuous; also, the grid points in the free stream are essentially wasted insofar 
as useful flowtield information is concerned. 

Connected with the above considerations is the form of the governing equations. 
In Chap. 6, both conservation and nonconservation forms of the partial differential 
equations were obtained. It is generally acknowledged that the equations must be 
used in conservation form for the shock-capturing approach; this is to ensure conser- 
vation of the flux of mass, momentum, and energy across the shock waves within the 
grid. However, for the shock-fitting approach, either the conservation or nonconser- 
vation form of the equations can be used-MacCormack's technique discussed in 
Sec. 1 1.12 applies to both systems. The nonconservation form has a numerical ad- 
vantage: The primitive variables p. u .  v .  p, T,  etc., are calculated directly from the 
equations. In contrast, when the conservation form is used, the fluxes pu, ptl,  pu',  

etc., are calculated directly from the equations, and the primi~ive variables must be 
backed out; this causes extra computation and computer time. However, beyond 
these considerations, there is no reason to favor one form over the other: the choice 
is up to the user. 

11.16 1 COMPARISON OF CHARACTERISTICS AND 
FINITE-DIFFERENCE SOLUTIONS WITH 
APPLICATION TO THE SPACE SHUTTLE 

It is suitable to conclude the technical portion of this chapter with a direct conipari- 
son of the method of characteristics with the finite-difference approach. The calcula- 
tion of the flowfield around a three-dimensional body closely approximating NASA's 
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Figure 11.24 1 Shock waves on a space shuttle configuration; comparison between 
method of characteristics and finite-different calculations (after Rakich and Kutler). 
M ,  = 7.4, a = 15.3". 

Space Shuttle is used as an example. The results given here are obtained from the 
work of Rakich and Kutler, which is described in detail in Ref. 45. 

The body is illustrated in Fig. 11.24. The calculations are made for an angle 
of attack of 15.3". In the immediate vicinity of the blunt nose, the flow is a mixed 
subsonic-supersonic region which is calculated by a blunt body method such as will 
be described in Chap. 12. Downstream of this region the flow is completely super- 
sonic. Here, two sets of calculations are made: (1) a three-dimensional semicharac- 
teristics calculation (MOC) as described in Sec. 1 1.10, and (2) a third-order-accurate 
shock-capturing finite-difference version of MacCormack's technique (SCT) based 
on the philosophy presented in Secs. 11.12 through 11.15. In Fig. 11.24, the shock 
waves emanating from the nose and canopy regions are shown for both sets of cal- 
culations; in addition, experimental data obtained at the NASA Ames Research Cen- 
ter are also shown. Even though the shape of the wind tunnel model in the canopy re- 
gion varied slightly from the shape fed into the computer calculations, in general the 
agreement is quite good. A front view of the body and the corresponding shock 
waves is given in Fig. 11.25. Again, reasonable agreement is obtained. The slight dis- 
crepancy that occurs further downstream is due to numerical problems with the 
method of characteristics on the leaward (upper) side of the body-slight inaccura- 
cies caused by the interpolation for data on the C+ characteristic. The surface pres- 
sure distributions along the top (@ = 180") and bottom (@ = 0") of the vehicle are 
shown in Fig. 11.26. Again, good agreement is obtained between the two sets of cal- 
culations and experiment. 

With regard to computer time for the two sets of calculations, Rakich and Kutler 
report that, on a single point basis, the time required for the elaborate three-dimensional 
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Figure 11.25 1 Circumferential shock shape on a space shuttle configuration 
(after Rakich and Kutler). M, = 7.4, u = 15.3 . 

- MOC 
-+-- SCT (3d order) 

Experirncnt (NASA-ASIES) 

Figure 11.26 1 Longitudinal surface pressure distribution on a space shuttle 
configuration (after Rakich and Kutler). M ,  = 7.4. a = 15.3 . 
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method of characteristics is about four times longer than the more straightforward 
finite-difference technique. However, in order to accurately capture the shock waves, 
the finite-difference technique required almost six times more grid points than did the 
method of characteristics. Therefore, for the solution of the complete flowfield, the 
method of characteristics solution was slightly faster. However, in their final evalua- 
tion, Rakich and Kutler conclude that, "when considering its versatility and computa- 
tional efficiency, the shock-capturing (finite-difference) technique seems to have the 
edge on the present method of characteristics program." This is not a general conclu- 
sion to be applied to all cases; however, it is clear that the method of characteristics and 
finite-difference techniques are on reasonably equal footing for the numerical solution 
of steady, inviscid, supersonic flows. 

11.17 1 HISTORICAL NOTE: THE FIRST PRACTICAL 
APPLICATION OF THE METHOD OF 
CHARACTERISTICS TO SUPERSONIC FLOW 

Ludwig Prandtl and Adolf Busemann-two names that occur with regularity 
throughout the history of compressible flow (see Secs. 4.16 and 9.9)-are responsi- 
ble for the first successful implementation of the method of characteristics to super- 
sonic flow problems. The theory of characteristics was developed by mathematicians 
to solve general systems of partial differential equations of the first order. Primarily 
responsible for this mathematical development were the French mathematician 
Jacques Salomon Hadamard in 1903 and the Italian mathematician Tullio Levi- 
Civita in 1932. However, in 1929, Prandtl and Busemann coauthored a classical 
paper in which the method of characteristics was applied for the first time to the 
calculation of two-dimensional supersonic flow. Entitled "Nahemngsverfahren zur 
Zeichnerischen Ermittlung von Ebenen Stromungen mit Uberschallgeschwindigkeit" 
("Procedure for the Graphical Determination of Plane Supersonic Flows") and 
published in Stodola Festschrigt, p. 499 (1929), this work provided graphs of the 
characteristics in the hodograph plane for two-dimensional flow with y = 1.4. Fur- 
thermore, they showed that the physical characteristics (Mach lines) are perpendicu- 
lar to the hodograph characteristics and can be obtained from the latter with the aid 
of a right triangle. This graphical construction was then used by Prandtl and Buse- 
mann to construct a contoured nozzle, as illustrated in Fig. 11.27. The approach 
given by Prandtl and Busemann was a major contribution to the development of 
compressible flow, and the graphical technique laid out in their paper is still taught 
today in standard university classes on compressible flow. (In our discussion of the 
method of characteristics in this chapter, however, we have chosen a numerical rather 
than a graphical approach for the convenience of computer implementation.) 

The experience gained from this work was utilized a few years later by 
Busemann to design a contoured supersonic nozzle for the first practical supersonic 
wind tunnel in history, shown in Fig. 1 1.28. Designed during the early 1930s, this tun- 
nel represented the epitome of the compressible flow research that revolved around 
Prandtl and his colleagues at Gottingen during the first half of the twentieth century. 
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Figure 11.27 1 Nonle  contour designed by means of the method of characteristics, aftel 
Prandtl and Busemann, 197-9. 

Figure 11.28 1 Busemann's supersonic wind tunnel from the early 1930s. This was the first practical 
supersonic wind tunnel in history. The nozzle was designed by the method of characteristics as 
developed by Prandtl and Busemann in 1929. 
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11.18 1 SUMMARY 
Computational fluid dynamics is an important aspect of modern compressible flow; 
indeed, since about 1970, computational fluid dynamics has opened a new, third di- 
mension in the solution and understanding of fluid dynamic phenomena. The two 
other dimensions are those of pure experiment and pure theory. The experimental tra- 
dition in physical science was solidly established in the early seventeenth century by 
the work of Galileo and his contemporaries. The methods and use of pure theory had 
their fundamental beginnings with Newton's Principia in 1687, with major advance- 
ments in fluid dynamics by Bernoulli and Euler in the early and mid-eighteenth 
century. Virtually all advancements in physical science and engineering since then 
were products of the two dimensions of pure theory and pure experiment working 
together. Today, computational fluid dynamics constitutes a new, third dimension, 
which directly complements the two previous dimensions of pure experiment and 
pure theory. The purpose of this chapter has been to introduce the basic philosophy 
and a small amount of the methodology of this new third dimension. 

The method of characteristics, which had its origins somewhat earlier and inde- 
pendent from that of modern computational fluid dynamics, takes this tact: 

1. Find those directions in space along which the flowfield derivatives are 
indeterminate and across which they may be discontinuous. These are called 
the characteristic curves (or surfaces, in three dimensions). 

2. Find the equations, obtained from a proper treatment of the continuity, 
momentum, and energy equations, which hold along the characteristic lines 
(or surfaces). These are called the compatibility equations. These equations 
have the advantage of being in one less space dimension than the actual flow 
problem. That is, for three-dimensional flows, the compatibility equations 
are partial differential equations in two independent variables; for a two- 
dimensional flow, the compatibility equations are ordinary differential 
equations (in one independent variable). Furthermore, if the flow is two 
dimensional and irrotational, the compatibility equations reduce one step 
further, namely, to algebraic equations. 

To be more precise, we have discussed these four cases: 

1. Two-dimensional, irrotationalflow. Here, there are two characteristic lines 
through any given point, the right- and left-running Mach lines (the C- and C+ 
characteristics, respectively). The compatibility equations are the algebraic 
relations: 

Q + v = K -  (along the C- characteristic) 

8 - v = K+ (along the C+ characteristic) 

2. Asixymmetric, irrotationalflow. Here, there are two characteristic lines, again 
the right- and left-running Mach lines. The compatibility equations are 
ordinary differential equations given by Eqs. (1 1.52) and (1 1 S3). 



Problems 

3. Twwdimensionul rotationul$floct: Here, there are three characteristic lines 
through any given point, namely, the right- and left-running Mach waves and 
the streamline. The compatibility equations are ordinary differential equations 
represented by Eqs. ( 1  1 S4)-( 1 1.56). 

4. Three-dimensional flow. Here, the characteristics are three-dimensional 
surfaces. At any given point, they are the Mach cones emanating from that 
point and a stream surface through the point. The compatibility equations 
are partial differential equations. However, using the method of 
"semicharacteristics" introduced by Rakich, the problem can be solved by 
means of the solution of ordinary differential equations (see Sec. 1 I. 10). 

In finite-difference methods, the partial derivatives in the governing continuity, 
momentum, and energy equations are replaced by algebraic difference quotients 
written in terms of the flowfield variables at distinct grid points in the flow. The prob- 
lem then reduces to the solution of vast numbers of algebraic equations where the un- 
knowns are the flowfield variables at the grid points. All finite-difference methods 
have as their source a Taylor series expansion. One particular method that has been 
widely used is MacCormack's method, described in Sec. 11.12. There are many dif- 
ferent variations of finite-difference solutions in use; some are explicit and others are 
implicit; some use shock capturing and others use shock fitting. These concepts are 
discussed in Secs. 1 1.1 1 and 1 1.15. 

The tield of computational fluid dynamics is rapidly evolving at this time of 
writing. New advances are being made that improve on both the accuracy of solution 
and the speed of computation. Finite-volume and finite-element methods are becom- 
ing widespread, in some cases supplanting the older finite-difference methods. Im- 
provements in smoothing the numerical results are being made with such schemes as 
the total variution dinzini.slzing (TVD) approach. Shock waves are being made 
sharper and better defined by means of upwind dzerencing. We have not discussed 
these matters here; they are the purview of more advanced books and papers. The 
reader is encouraged to consult the current literature for more details. 

Finally, we note that the problems treated in this chapter are steady flows where 
the Mach number is supersonic at every point in the flow. For this type of flow, both 
the method of characteristics and the finite difference methods are downstrt~anz 
marching. That is, for the solution of a given problem whether it be an internal flow 
through a duct or an external flow over a supersonic body, the solution begins at an 
initial data line along which the flow properties are known and the unknown steady 
flowfield variables are calculated by moving in progressive increments in the down- 
stream direction. 

PROBLEMS 
11.1 Using the method of characteristics, compute and graph the contour of a 

two-dimensional minimum-length nozzle for the expansion of air to a design 
exit Mach number of 2. 
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11.2 Repeat Prob. 1 1 . 1 ,  except consider a nozzle with a finite expansion section 
which is a circular arc with a diameter equal to three throat heights. 
Compare this nozzle contour and total length with the minimum-length 
nozzle of Prob. 11.1. 

11.3 Consider the external supersonic flow over the pointed body sketched in 
Fig. 11.22. Outline in detail how you would set up a method-of- 
characteristics solution for this flow. 



The Time-Marching Technique: 
With Application to Supersonic 
Blunt Bodies and Nozzles 

Bodiex in going tlzrough crjuid comrn~~nicute their motion to the urnbient,fiuirl hy 
little urld little, uizd by that c~ommuilicution lose their own motion and bj  losing it 
ore retrrrded. 

Roger Coats, 1713, in the preface to the Second Edition of Newton's 
Principia 
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The Lockheed F-104, shown in the 
Fig. 12.1, was the first fighter designed for sustained sideration. Aerodynamic heating is dramatically less for 
flight at Mach 2. This airplane embodies excellent blunt bodies compared to that for slender bodies, and 
supersonic aerodynanlics-slender body, pointed nose, that is why all hypersonic vehicles designed to date 
thin wings with a sharp leading edge, low-aspcct-ratio have blunt noses, blunt leading edges, etc. A qualitative 
wings-all designed to minimize the strength of the discussion as to why blunt bodies minimize aerody- 
shock waves on the airplane and hence to reduce wave namic heating, and the history of the origin of this 
drag at supersonic speeds. Extrapolating this philosophy revolutionary design concept, is given in Chap. 1 of 
to the design of much faster, hypersonic aircraft Ref. 104. Quantitative theoretical proof that aerody- 
designed to fly at, say, Mach 20, you might think that namic heating varies inversely as the square root of the 
such aircraft would be extreme examples of very slender nose radius is given in Ref. 11 9. In short, blunt-nosed 
bodies, with very thin wings, supersharp leading edges, bodies have become important configurations for very 
etc. However, examine Fig. 12.2, which shows the high speed vehicles. 
Space Shuttle, one of today's most common hypersonic The qualitative aspects of the flow over a super- 
vehicles. Notice the blunt nose, thick body, and thick sonic blunt body are discussed in Sec. 4.12. When 
wings with blunt leading edges. Clearly, thc design the blunt body concept was first introduced for hyper- 
philosophy used for the Space Shuttle is almost the sonic vehicles in the early 1950s. there existed no theo- 
antithesis of that for the F-104. The difference is caused retical solutions to such a flow field. At that time, the 
by aerodynamic heating, which becomes severe at hy- "supersonic blunt body problem" became a subject of 
personic speeds. The design of hypersonic vehicles is intense research, and for the next 15 years platoons of 
dominated by the need to reduce aerodynamic heating to researchers and many millions of dollars were devoted 
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Figure 12.2 1 The Space Shuttle. 
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to the theoretical solution of the flowfield over a blunt 
body moving at supersonic or hypersonic speeds- 
without any reasonable success. The problem was 
related to the mixed subsonic-supersonic nature of the 
flow behind the curved, detached shock wave over the 
body, as shown in Fig. 4.29. Whatever technique that 
would work in the subsonic region would fall apart in 
the supersonic region, and whatever method was good 
for the supersonic region (such as the methods of char- 
acteristics) did not apply to the subsonic region. 

Then, in the mid-19605, a breakthrough was 
achieved. The supersonic blunt body problem was 
solved by means of a time-marchmg numerical solution. 
The time-marching aspect makes all the difference. It 
allows for the straightforward calculation of both the 
subsonic and supersonic regions by a smgle uniform 
technique. This breakthrough was so dramatic that the 
calculation of the flow over a blunt body movmg at 
supersonic or hypersonic speeds is routine today. The 
time-marching solution of the blunt body flow is now 
the industry standard. 

The present chapter introduces the concept of time- 
marching solutions, and then discusses in detail the 
time-marching solution of the blunt body problem. This 
material is particularly important because modern com- 
putational fluid dynamics uses time-marching to solve 
many types of problems, not just the blunt body prob- 
lem. Indeed, time-marching is one of the dominant fea- 
tures of modern CFD. 

The roadmap for this chapter is given in Fig. 12.3. 
We first introduce the philosophy of time-marching so- 
lutions by way of application to a familiar problem, 
namely, the quasi-one-dimensional nozzle flow dis- 
cussed in Chap. 5. This is follswed by a discussion of 
the stability criterion for time-marching solutions. Then, 
in preparation for the blunt body problem, we define the 
limiting characteristic curves in the blunt body flow, and 
take a side excursion to consider Newtonian theory for 
the prediction of pressure coefficient on the surface of a 
body in a flow. Finally. we deal with the main aspect of 
this chapter-the application of the time-marching 
method to the supersonic blunt body problem. 

(continued on rlext puge) 
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12.1 1 INTRODUCTION TO THE PHILOSOPHY 
OF TIME-MARCHING SOLUTIONS 
FOR STEADY FLOWS 

We have seen from Chap. 11 that steady supersonic flowfields are governed by hyper- 
bolic differential equations, whereas steady subsonic flowfields are described by ellip- 
tic differential equations. There are many applications where flowfields contain both 
subsonic and supersonic regions, such as the flow over a blunt body moving at super- 
sonic velocity as sketched in Fig. 1 2 . 4 ~  and the expansion to supersonic speeds through 
a convergent-divergent nozzle, as sketched in Fig. 12.4b. Both of these examples are 
mixed subsonic-supersonic flows, where the sonic line divides the two regions. The 
fact that the nature of the governing equations changes from elliptic to hyperbolic 
across the sonic line causes severe mathematical and numerical difficulties-so much 
so that steady-flow solutions of the subsonic and supersonic regions are usually treated 
separately and differently, and then somehow patched in the transonic region near the 
sonic line. So far, no practical steady-flow technique exists that can uniformly treat 
both the subsonic and supersonic regions of a general flowfield of arbitrary extent. 
Compounding this problem was the discovery in the early 1950s that high-speed mis- 
siles should have blunt noses to reduce aerodynamic heating. Almost overnight the 
supersonic blunt body problem, with its mixed subsonic-supersonic flowfield, became 
a central focus in theoretical and experimental aerodynamics. During the period 
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Figure 12.4 1 illustrations of mixed subsonic-supersonic flowtields, with curved sonic lines. 

between 1955 and 1965, numerous blunt body solutions were advanced, all with sev- 
eral greater or lesser disadvantages or defects. (During this period it was common to 

~lences- have complete sessions during meetings of the Institute of Aeronautical S-' 
now the AIAA-just to discuss the blunt body problem.) Then, in the mid-1960s, a 
breakthrough occurred. The time-marching technique for the solution of steady flows 
was developed, and in 1966, Moretti and Abbett published the first truly practical solu- 
tion for the supersonic blunt body problem (see Ref. 47). Since then, time-marching 
(sometimes called "time-dependent") solutions have become an important segment of 
computational fluid dynamics. The purpose of this chapter is to introduce the philoso- 
phy, approach, and some results of this very powerful technique. 

The philosophy and approach of the time-marching technique is best described 
in the context of a simple example. Consider the quasi-one-dimensional flow of a 
calorically perfect gas through a given convergent-divergent nozzle, as studied in 
Chap. 5. The reservoir conditions p,,, p,,, T,, are given and held constant with time. 
Split the nozzle into a number of grid points in the flow direction, as sketched in 
Fig. 12.5. Arbitrarily assume values for all the flow variables, p ,  p,  u ,  etc., at all the 
grid points except the first, which is associated with the fixed reservoir conditions. 
These are by no means the correct solutions (unless you are a magician at making the 
correct guess). Consider these guessed values as initial conditions throughout the 
flow. Then advance the flowfield variables at each grid point in steps of tirne by 
means of the Taylor's series 
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Figure 12.5 1 Coordinate system and grid points for the time-marching solution of 
quasi-one-dimensional flow through a nozzle. 

where g denotes p, p,  T, or u, and At is a small increment in time chosen to satisfy 
certain stability criteria to be discussed in Sec. 12.2. For example, if at a given grid 
point we know u at time t ,  then we can calculate u at time t + At at the same grid 
point from Eq. (12.1) if we can find a value for the time derivative (aulat),,,. Let us 
pause for a moment and consider in the next paragraph where this time derivative 
comes from. 

Obviously, Eq. (12.1) is just mathematics; the physics of the problem enters in 
the calculation of the time derivatives, which are obtained from the unsteady conser- 
vation equations. For the quasi-one-dimensional problem considered here, the gov- 
erning unsteady equations can be obtained by applying the fundamental integral 
equations of continuity, momentum, and energy, Eqs. (2.2), (2.11), and (2.20), 
respectively, to an infinitesimally small control volume of variable area, as sketched 
in Fig. 5.7. For example, Eq. (2.2), 

when applied to the control volume in Fig. 5.7 yields (noting that d 7 = A dx)  

Ignoring products of differentials in Eq. (12.2), the result is 

Equation (12.3) can be more formally written as 
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Furthermore, since A = A (x) does not depend on time. Eq. ( 12.4) becomes 

Equation (12.4) or (I 2.5) represents the continuity equation for unsteady quasi-one- 
dimensional flow in partial differential equation form. By similar applications of 
Eqs. (2.11) and (2.20) to Fig. 5.7, and with some manipulation, we find (you should 
demonstrate this to yourself) 

Equations (12.6) and (12.7) are the momentum and energy equations, respectively, 
for unsteady quasi-one-dimensional flow. Along with the perfect gas relations 

these equations are sufficient for calculating the flow we are considering. 
Now return to the line of thought embodied in Eq. ( 12.1 ). The time derivative in 

Eq. ( 12.1) can now be obtained from Eqs. ( 12.5) through (1 2.7). Note that, in these 
equations, the time derivatives on the left-hand sides are given in terms of the spatial 
derivatives on the right-hand sides. These spatial derivatives are known-they can be 
expressed as finite differences from the known flowfield values at time t .  Hence, 
Eqs. (12.5) through (12.7), along with (12.8) and (12.9), allow the calculation of 
( d g l i l t ) ,  evaluated at time t .  If we desired first-order accuracy, then this value of 
(ag/i)t), in Eq. (12.1) would be enough to calculate g(t  + At).  However, for 
second-order accuracy, (aglat),, ,  in Eq. (12.1) must be an average between t and 
f + At. This average derivative can be calculated by means of MacCormack's 
technique, first introduced in Sec. 11.12. For the present time-marching technique, 
MacCormack's predictor-corrector scheme is as follows. 

Predictor Step. Calculate (agla t ) ,  from Eqs. (12.5) through (12.9), u\ing forward 
spatial differences on the right-hand sides from the known flowfield at time t .  Use 
this value to obtain a predicted value of g at time t + At from 

Corrector Step. Using rearward spatial differences, insert the above values of g 
into Eqs. (12.5) through (12.9) to calculate a predicted value of i3glar. Then form the 
average derivative as 
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Finally, insert the average derivative from Eq. (12.10) into Eq. (12.1) to obtain the 
corrected value, g(t + A t ) .  This is the desired second-order-accurate value of g at 
time t + At .  

Now we come to the crux of the time-marching technique. Using Eq. (12.1), 
with (aglat),, ,  calculated as outlined above, values of g at each grid point in 
Fig. 12.5 can be calculated in steps of time, starting from the guessed, arbitrary ini- 
tial conditions. The values of the flowfield variables (represented by g) will change 
for each step in time. However, after a number of time steps, these changes will be- 
come smaller and smaller, finally asymptotically approaching a steady value. It is 
this steady JEowJield we are interested in as our solution-the time-marching 
technique is simply a means to achieve this end. For example, Fig. 12.6 gives 
the temperature distribution for a nozzle with an area variation given by 
AIA* = 1 + 2.2(x - 1 . 5 ) ~ .  Here, the nozzle throat is at x = 1.5; x < 1.5 is the sub- 
sonic section and x > 1.5 is the supersonic section. The dashed line in Fig. 12.6 rep- 
resents the guessed initial temperature distribution at time t = 0. It is arbitrarily 
taken as a linear variation. The solid curves in Fig. 12.6 give the transient distribu- 
tions after 8, 16, 32, 120, and 744 time steps, using the time-marching procedure 
described above. By the 744th time step, the distribution has become sufficiently in- 
variant with time for this to be taken as the final steady state. This final steady state 
agrees with the classical results obtained from Chap. 5. This behavior is further 
illustrated in Fig. 12.7, which shows the variation of mass flow puA through the 

r = 744At (steady state) 

0 t, I I I I 1 I I I 
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.0 

Distance along nozzle, x 

Figure 12.6 1 Transient and final steady state temperature distributions for a calorically 
perfect gas obtained from the time-marching technique. 
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Figure 12.7 1 Transient and final steady state mass-flow distributions for a calorically perfect 
gas obtained from the time-marching technique. 

nozzle at different times. Again, the dashed line is the initial distribution due to the 
assumed flowfield values at time zero. The solid curves show the intermediate distri- 
butions after 16, 32, 120, and 744, time steps. Note that, at t = 744At,  the mass flow 
distribution has become a straight, horizontal line-puA has become a constant 
throughout the nozzle, as it should be for steady flow as discussed in Chap. 5 .  Fur- 
thermore, it is the correct value as shown by comparison with the classical results 
from Chap. 5 .  

Please note that the above time-marching solution for the quasi-one-dimensional 
flow of a calorically perfect gas was chosen simply to illustrate the time-dependent 
technique. The closed-form algebraic solutions for nozzle flows given in Chap. 5 are 
considerably simpler than this finite-difference solution. However, for quasi-one- 
dimensional nozzle flows of nonequilibrium gases, such as may occur in high- 
temperature chemically reacting flows, the time-dependent technique present here 
has definite advantages; the classical results of Chap. 5 are no longer valid for such 
high-temperature flows. This situation will be addressed in Chap. 17. For further 
background and details on the application of the time-marching technique to quasi- 
one-dimensional nozzle flows, see Refs. 48 through 50. 

Let us recapitulate. The essence of the time-marching technique to solve steady 
flows is as follows. For a given flow problem with prescribed steady boundary con- 
ditions, set down some arbitrary initial values of the flowfield at each grid point. 
Then advance these flow properties in steps of time using Eq. (12.1). where the time 
derivatives are obtained from the unsteady equations of motion. MacCormack's 
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predictor-corrector technique is recommended for the finite-difference calculation of 
these time derivatives, as given above. After a number of time steps, the flow prop- 
erties at each grid point will approach a steady state. This steady state is the desired 
result; the time-marching approach is just a means to this end. 

At first thought, the introduction of time as an extra independent variable would 
appear to be an unnecessary complication for a steady-flow problem. However, on 
the contrary, for some problems it becomes a striking simplification. Consider again 
the blunt body and two-dimensional nozzle flows sketched in Fig. 12.4. As men- 
tioned before, there is virtually no satisfactory, uniformly valid, steady state tech- 
nique for the solution of these mixed flows-the mixed nature of the elliptic subsonic 
region and the hyperbolic supersonic region essentially rules out such a solution. On 
the other hand, the unsteady equations of motion [such as Eqs. (12.5) through (12.7)] 
are hyperbolic with respect to time, regardless of whether the flow is locally subsonic 
or supersonic. Hence, the complete flowfields shown in Fig. 12.4 lend themselves 
to a well-posed initial value problem with respect to time. Therefore, the time- 
marching technique becomes a very powerful tool for the solution of such mixed 
flows, being uniformly valid throughout the flowfield. (Note that the unsteady wave 
motion discussed in Chap. 7 is another example of a system which is hyperbolic in 
time, a fact which we took advantage of with our characteristics solutions for one- 
dimensional finite wave motion. However, in Chap. 7 we were concerned with the 
time variations themselves, whereas in the present chapter we are concerned with the 
final steady state as an asymptotic convergence of the transient flow.) 

12.2 1 STABILITY CRITERION 
The time-marching technique with the use of MacCormack's approach as outlined 
here is explicit. For such an explicit solution, the value of At in Eq. (1 2.1) cannot be 
any arbitrary value; indeed, it must be less than or equal to some maximum value. 
This maximum value is usually estimated from a stability analysis performed on a set 
of approximate, linear equations after Courant, Friedrichs, and Lewy (Ref. 5 ])-the 
so-called CFL criterion. Without going into the mathematics, the physical signifi- 
cance of the CFL criterion is that At must be less than or at most equal to the time re- 
quired for a sound wave to propagate between two adjacent grid points. Consider a 
two-dimensional rectangular grid such as shown in Fig. 11.3, where at any grid point 
the flowfield velocity is V,  with x and y components u and v ,  respectively. The ve- 
locity of propagation of a sound wave in the x direction is u + a ,  and the time of 
propagation is 

Ax 
At, = - 

u t a  

Similarly, in the y direction, 

AY At, = - 
v + a  
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The CFL criterion can then be e x p r e s d  as 

At 5 rn~n(A!, . At, ) (11.13)  

12.3 1 THE BLUNT BODY PROBLEM- 
QUALITATIVE ASPECTS AND 
LIMITING CHARACTERISTICS 

where the number chosen on the right-hand side is the smaller of the values obrained 
from Eqs. (11. 1 1 )  and (12.12). Experience has shown that the choice ol' the equals 
sign in Eq. ( 12.13) usually yields a A t  too large for stability of the nonlinear s> stem 
associated with the flow problems of interest. Hence. in practice. Ar is chown w c h  
that 

Some of the physical aspects concerning the flowtield over a supersonic blunt body 
were introduced in Sec. 4.12, which should be reviewed by the reader before pro- 
gressing further. 

It is again e m p h a s i ~ e d  that the steady flowtield over the blunt body in Fig. 12.4 
is a mixed subsonic-supersonic flow described by elliptic equations in the subsonic 
region and hyperbolic equations in the supersonic region. The sonic line divide\ these 
two regions. Moreover. we have emphasized in Chap. 1 1  that disturbances cannot 
propagate upstream in a steady supersonic flow. Hence, by examining Fig. 12.4rr. we 
might assume that the subsonic region and the shape of the sonic line are governed by 
only that portion of the body shape between the two sonic lines. However. this is not 
conlpletely valid. Consider the low supersonic flow (say M, < 2) over a sphere as 
sketched in Fig. 12.8~1. Point rr is the intersection of the sonic line and the boclq. O n  

At = K [ m i n ( A t , .  A t , ) ]  ( 12.11) 

where K is less than unity, typically on the order of 0.5 to 0.8. A particular value of 
K suited to a particular application is usually determined by trial and error. 

Note from Eqs. (1 2. I I )  through ( 12.14) that At  is proportional to the grid spac- 
ing A.\- or A y .  For coarse grids, At  can be large, and the ensuing c o n i p ~ ~ t e r  tirnt. cor- 
respondingly short. However, if the number of grid points is essentially quacirupled 
by halving both Ax- and Ay in Fig. I 1  3. the number of calculations at each time step 
will increase by a factor of 4. Moreover, the value of A /  will be halved. and twice as 
many time steps will be necessary to compute to a given value of time 1 .  Hence. be- 
cause of the coupling between At  and the grid size as given in Eqs. ( 1 1 . 1 1  ) t l m ~ ~ g h  
( 12. Id),  reducing the grid spacing by a factor of 2 results in a factor of X increase in 
computer execution time for a given time-marching solution. Therefore. thih stabil- 
ity criterion can be very stringent. 

Finally, contemporary work on inzplicit time-marching finite-diffhence tech- 
niques indicates that the stability criterion presented here can be relaxed conaider- 
ably. It is beyond the scope of this hook to review such current research: instead. the 
reader is encouraged to consult and follow the recent literature. 
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Limiting characteristic 
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Figure 12.8 1 Illustration of limiting characteristics. 

the body downstream of point a the flow is supersonic. Consider the left-running 
characteristic lines that emanate from the body downstream of point a.  The particu- 
lar characteristic that emanates from the body at point b ,  and just exactly intersects 
the shock wave at the point where the sonic line also intersects the shock (point c) ,  is 
defined as the limiting characteristic. Any characteristic line emanating from the 
body between points a and b will intersect the sonic line; any characteristic emanat- 
ing downstream of point b will not. Hence, any disturbance originating within the 
shaded supersonic region between the sonic line and limiting characteristic in 
Fig. 1 2 . 8 ~  will propagate along a left-running characteristic, will intersect the sonic 
line, and hence will be felt throughout the subsonic region. In particular, the shape of 
the body between points a and b will influence the shape of the sonic line and the 
subsonic flow even though the local flow between a and b is supersonic. Therefore, 
if the method of characteristics (see Chap. 1 1 )  is to be employed for calculating the 
supersonic region over a blunt body, the initial data line can be chosen no further up- 
stream than the limiting characteristic; to use the sonic line as initial data improperly 
ignores the influence of the shaded regions. At higher Mach numbers, such as those 
sketched in Fig. 12.8b, the shock wave moves closer to the body and the sonic point 
behind the shock moves considerably downward, whereas the sonic point on the 
body moves downward only slightly. Hence, the shape of the sonic line is quite dif- 
ferent at higher Mach numbers. Here, the right-running characteristic through point 
c on the shock intersects the sonic line at point a on the body. This characteristic is 
the limiting characteristic for such a case. Any disturbance in the supersonic shaded 
region in Fig. 12.8b will propagate along a right-running characteristic, will intersect 
the sonic line, and will influence the subsonic regions. 
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Again, it is emphasized that any theoretical or numerical solution of the blunt 
body flowfield must be valid not only in the subsonic region, but must carry down- 
stream to at least the limiting characteristic. Then, the methods described in Chap. 1 1 
can be used downstream of the limiting characteristic. 

For an elaborate and detailed description of the blunt body flowfield and various 
early approaches to its solution, see the authoritative book by Hayes and Probstein 
(Ref. 52). In this chapter, we will emphasize the time-marching solution of blunt 
body flows. 

12.4 1 NEWTONIAN THEORY 
As noted on our roadmap in Fig. 12.3, this section is a slight diversion from our main 
emphasis in this chapter on time-marching solutions. Here, we will obtain a simple 
expression for the pressure distribution over the surface of a blunt body. which will 
be useful in subsequent discussions. 

In Propositions 34 and 35 of his Principia, Isaac Newton considered that the 
force of impact between a uniform stream of particles and a surface is obtained from 
the loss of momentum of the particles normal to the surface. For example, consider a 
stream of particles with velocity V, incident on a flat surface inclined at the angle 8 
with respect to the velocity, as shown in Fig. 12 .9~ .  Upon impact with the surface, 
Newton assumed that the normal momentum of the particles is transferred to the sur- 
face, whereas the tangential momentum is preserved. Hence, after collision with the 
surface, the particles move along the surface, as sketched in Fig. 1 2 . 9 ~ .  The change 
in normal velocity is simply V, sinH. Now consider Fig. 12.9b. The mass flux of 
particles incident on a surface of area A is pVmA sin@. Hence, the time rate of 
change of momentum of this mass flux, from Newton's reasoning, is 

Mass flux x velocity change 

And in turn, from Newton's second law, this time rate of change of momentum is 
equal to the force F on the surface: 

F = , o ~ & ~ s i n ' 0  (12.15) 

Figure 12.9 1 Schematic for newtonian impact theory. 
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In turn, the pressure is force per unit area, which from Eq. (12.15) is 

Newton assumed the stream of particles in Fig. 12.9b to be linear, i.e., he assumed 
that the individual particles do not interact with each other, and have no random 
motion. Since modern science recognizes that static pressure is due to the random 
motion of the particles, and since Eq. (12.16) considers only the linear, directed rno- 
tion of the particles, the value of F/A in Eq. (12.16) must be interpreted as the pres- 
sure difference above static pressure, namely, F/A = p - p,. Therefore, from 
Eq. (12.16), and recalling from Chap. 9 the definition of the pressure coefficient, 
C, = ( p  - p , ) / : p ~ k ,  we have 

Equation (12.17) is the newtonian "sine-squared" law for the pressure distribu- 
tion on a surface inclined at an angle 6 with respect to the free stream. Of course, the 
physical picture used to derive Eq. (12.17) in no way describes a realistic flow- 
subsonic or supersonic. Newton did not have the advantage of our knowledge in the 
twentieth century; he did not know about shock waves, nor did he have the proper 
image of fluid mechanics. However, at high supersonic and hypersonic Mach num- 
bers, the shock wave moves closer to the body, and the flowfield begins to resemble 
some of the characteristics sketched in Fig. 12.9a, namely, a uniform flow ahead of 
the shock wave, and a flow reasonably parallel to the body in the shock layer between 
the body and the shock. Therefore, particularly at hypersonic Mach numbers, the 
newtonian theory provides reasonable results for the pressure dis~ibution over an in- 
clined surface, with increasing accuracy as M ,  and 8 increase. Also, it is interesting 
to note that the exact shock wave relations (see Chap. 4) approached the newtonian 
result as y approaches unity. Therefore, Eq. (12.17) is more accurate for dissociating 
and ionizing flow (where the "effective" y is low) than for monatomic gases such as 
helium (where y = 1.67). A discussion of such chemically reacting flows and the 
consequent effect on y is given in Chaps. 16 and 17. 

In 1955, Lester Lees, a professor at the California Institute of Technology, pro- 
posed a "modified newtonian" pressure law. Consider a blunt body at zero angle of 
attack, as sketched in Fig. 12 .4~ .  The streamline that passes through the normal por- 
tion of the bow shock is also the stagnation streamline. At the stagnation point of the 
body, V = 0 by definition. Between the shock and the body, the stagnation stream- 
line experiences an isentropic compression to zero velocity. Therefore, the pressure 
at the stagnation point is simply equal to the total pressure behind a normal shock 
wave at M,-a quantity easily calculated from the results of Chap. 3. Moreover, this 
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is the maximum pressure on the body; away from the stagnation point, the pressure 
decreases as indicated by Eq. (12.17). Therefore, the surface pres5ure coefficient 
attains its maximum value at the stagnation point, namely, Cp,n,,x = ( p ,  - p,)/ 
Ap,v:. Lees suggested that Eq. (12.17) be modified by replacing the coefficient 2 
with C Hence, 

This modified newtonian pressure law is now in wide use for estimating pressure 
distributions over blunt surfaces at high Mach numbers. It is more accurate than 
Eq. (12.17). 

Further elaboration on the use of newtonian theory for hypersonic flows is given 
in Sec. 15.4. 

12.5 1 TIME-MARCHING SOLUTION 
OF THE BLUNT BODY PROBLEM 

Let us now consider the detailed time-marching solution of the blunt body flowfield. 
Assume that we are given the free-stream Mach number M,, and the body shape, as 
sketched in Fig. 12.10. This approach, where the body shape is specified, and the 
shock wave shape and flowfield are to be calculated. is called the direct problem. 
This is in contrast with the inverse problem, where the shock shape is specitied and 
the body shape that supports the given shock is to be calculated. Numerous steady- 
flow solutions in the past have taken the inverse approach. However, the direct prob- 
lem is usually the one encountered in practice, and the time-marching approach 
described here is the only technique available at present that allows the exact solu- 
tion of the direct problem. (Note that the inverse approach can be iterated until a de- 
sired body shape is converged upon; in this sense the direct problem can be solved by 
an iterative repetition of the inverse approach.) 

M, > 1 (given) 

Initially assumed shock shape 

I 

Body shape (given) 

Center line 

Figure 12.10 I Finite-difference grid in physical space for the blunt body problem. 



CHAPTER 12 The Time-Marching Technique 

In the time-marching approach, the initial shock wave shape is assumed at time 
t = 0. The abscissa of the shock and body are denoted by s and b, respectively. The 
flowfield between the assumed shock wave and the specified body is divided into a 
number of grid points, as shown in Fig. 12.10. Here, a two-dimensional coordinate 
system is illustrated; the case for axisymmetric flow is similar. At each grid point, 
values of all the flowfield variables are arbitrarily set. Then, starting from these 
guessed values and using time-marching machinery analogous to that developed in 
Sec. 12.1, new values of the flowfield variables, shock detachment distance, and 
shock shape are calculated in steps of time. After a number of time steps, the flow- 
field converges to the proper steady state value; this steady state is the desired result, 
and the time-marching approach is just a means to that end. Some details of this 
solution are discussed next. 

The governing equations for two-dimensional or axisymmetric isentropic flow 
are, from Chap. 6: 

Continuity: 

x momentum: 

y momentum: 

Energy: 

a u a u au  ap 
p- at + P U -  a x  + pv-- = -- 

ay a x  

av a v av ap 
p- + pu- + pv- = -- 

at ax ay ay 

where K = 0 for two-dimensional flow, and K = 1 for axisymmetric flow. Here, the 
energy equation is stated in the form of the isentropic assumption. Moreover, for 
isentropic conditions, p/pY = const for a calorically perfect gas. Hence, Eq. (12.22) 
can be written alternatively as 

Expanding the derivative in Eq. (12.23), and defining = In p - y In p ,  we obtain 
the energy equation in the form 

The system of equations to be solved are Eqs. (12.19) through (12.21), and (12.24), 
four equations for the four unknowns p, p, u ,  and v. 

The grid network shown in Fig. 12.10 is not rectangular; hence, it is inconvenient 
for the formation of finite differences. To transform the shock layer into a rectangular 
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Figure 12.11 1 F~n~te-d~ftercnce gr~d In trmstormed \pace tor 
the blunt body problem 

grid, define a new indcpendent variable < such that 

where 6 = s - h,  i.e., 6 is the local shock detachment distance. In this fashion. al- 
ways varies between 0 (at the body) and l (at the shock), and the grid now appears as 
sketched in Fig. 12.1 1. In addition, let W = dsldt be the x component of the shock 
wave velocity (note that the shock wave will be in motion until the final steady state 
is reached), and let H represent the angle between the tangent to the shock and the 
x axis. In addition. these variables are defined: 

where, in terms of the earlier material. 

Finally, nondimensionalize all the variables as follows: Divide p and p by their 
free-stream values; divide the velocities by (I?,/p,)'/'; divide the lengths by a 
characteristic length L ;  and obtain a nondimensional time by dividing the dimen- 
sional time by L/(p,/p,)'fl. The resulting equations, where now the symbols 
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represent the nondimensional values, are 

Continuity: 

x momentum: 

y momentum: 

Energy: 8 + - = -  B-+v-  
at  [ ad: ad;] 

The form of these equations is useful because the nondimensional variables are usu- 
ally of the order of magnitude of unity-a convenient ploy used by some people in 
helping to examine and interpret the results from the computer. 

To advance the flowfield in steps of time, the grid points in Fig. 12.11 are treated 
as four distinct sets: interior points (all grids points except on the shock, body, and 
downstream boundary); the shock points (5'  = 1); the body points (5' = 0); and the 
downstream boundary points. The flowfield at the interior points is advanced in time 
by means of MacCormack's predictor-corrector method discussed in Sec. 12.1. Note 
that Eqs. (12.25) through (12.28) are written with the known spatial derivatives on 
the right-hand side; these derivatives are replaced with forward differences on the 
predictor step and rearward differences on the corrector step. This allows the calcu- 
lation of the time derivatives that appear on the left-hand side of Eqs. (12.25) through 
(12.28). In turn, these time derivatives ultimately lead to the advancement of the 
flowfield in steps of time via Eq. (12.1). 

For the shock points, the values of the flow variables behind the shock at time 
t + At can be obtained from the Rankine-Hugoniot relations for a moving shock 
wave (see Chap. 7). However, this implies that a value of the shock wave velocity, 
W (t + At), must first be assumed, since it is not known at the beginning of each time 
step in the computations. Therefore, an iterative process must be established wherein 
the values of the flowfield variables at the shock grid points must be obtained from 
some independent calculation, and then compared with those obtained from the shock 
relations for the assumed W. In the analysis of Moretti and Abbett (Ref. 47), this in- 
dependent calculation is made via a characteristic technique utilizing information 
from the interior points. Specifically, the characteristic equations are obtained from 
the two-dimensional unsteady governing equations written for a (4, q ,  t )  coordinate 
frame, where 6 and q are cartesian coordinates locally normal and tangential, respec- 
tively, to the shock wave. This is illustrated in Fig. 12.12. The assumption is made in 
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Figure 12.12 1 Shock-oriented coordinates for the characteristic treatment of the 
shock boundary conditions. 

Figure 12.13 1 Construction of the one-dimensional 
unsteady characteristic at the shock wave. 

obtaining the compatibility equations that the governing equations can be written as 
quasi-one-dimensional in the ( direction, modified by "forcing terms" containing de- 
rivatives in the tangential direction. That is, the characteristic directions are drawn in 
the (6, t )  plane only, as shown in Fig. 12.13. This characteristic line, along with the 
con~patibility equations, allows the flowfield to be calculated at < = 0 (the shock 
point) at time t + At, i.e., point Q in Fig. 12.13, from the known flowfield at point A 
at time t .  Since the location of point A in Figs. 12.12 and 12.13 generally will not cor- 
respond to one of the interior grid points in Fig. 12.11, the information at A must be 
obtained by spatial interpolation. Finally, the information at point Q obtained from 
this characteristics approach is compared with the information calculated from the 
shock relations for the assumed W, and if agreement is not obtained, new values of W 
are assumed until the iteration converges. For more details, including the form of the 
characteristic equations, see Ref. 47. 
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A similar characteristics calculation is performed for the body points. Here, the 
analysis is simpler because the body is stationary, and also because the entropy is 
known at the body. (Note that DslDt = 0, i.e., the entropy of a given fluid element 
is constant, even when the flow is unsteady. The entropy at the stagnation point must 
be chosen equal to its proper steady state value for a normal shock obtained from 
Chap. 3, because this entropy wets the entire body surface and is constant throughout 
the time-marching calculation.) 

Finally, the flowfield values at the downstream boundary shown in Figs. 12.10 
and 12.11 are obtained by simple linear extrapolation from the upstream grid points. 
They can also be obtained alternatively from MacCormack's technique using only 
one-sided differences in both the predictor and corrector steps. In either event, as 
long as the downstream boundary points are in a locally supersonic flow, the rest of 
the flowfield is not strongly influenced by slight inaccuracies at the downstream 
boundary. However, it is important to make certain that the downstream boundary 
points are in a supersonic region; experience has shown that the calculations will be- 
come unstable if the above extrapolation or one-sided differencing is performed in a 
subsonic region. 

For more details concerning this solution, the reader is urged to consult Refs. 47 
and 53. 

12.6 1 RESULTS FOR THE BLUNT 
BODY FLOWFIELD 

Let us now examine some typical results obtained with the time-marching blunt body 
solution described in the previous sections; these results are presented in more detail 
in Ref. 53. The purpose of this section is twofold: ( I )  to further illustrate the nature 
and behavior of time-marching solutions of steady state flowfields, and (2) to de- 
scribe some fluid dynamic aspects of the supersonic blunt body flowfield. 

First, consider the two-dimensional flow over a parabolic cylinder as shown in 
Fig. 12.14. The free-stream Mach number is M ,  = 4. The assumed shock shape is 
labeled 0 At. All flow properties between this assumed shock and the prescribed body 
are also given arbitrary values. Starting from these assumed initial conditions, the 
flowfield is calculated in steps of time. Note that after 100 time steps, the shock wave 
has moved considerably forward of its initially assumed position, and has changed 
shape. However, also note that its movement has slowed, and that after 300 time 
steps, its location has become essentially stationary. Moreover, the flowfield proper- 
ties between the shock and the body do not materially change after 300 time steps- 
the steady state has been obtained. This time-varying behavior is further illustrated in 
Fig. 12.15, which gives the time variation of the stagnation point pressure. The as- 
sumed initial value (at t = 0) is the proper steady-state value known in advance (we 
know the steady-state shock velocity should be zero, and the stagnation point pres- 
sure should be that behind a stationary normal shock wave with M ,  = 4). Note from 
Figs. 12.14 and 12.15 that (1) the most extreme transients occur at early times where 
the "driving potential" toward the steady state is the strongest, and (2) the steady 
state is, for all practical purposes, achieved at large values of time. The reader is 



12.6 Results for the Blunt Body Flowfield 

200At 

Figure 12.14 1 Time-marching shock wave motion, parabolic cylinder, M, = 4 

Noridimensional time 

Figure 12.15 1 Time-variation of stagnation point pressure, parabolic cylinder, 
M, = 4. 

again reminded that this steady state is the desired result of the calculations; the tran- 
sient behavior shown in Figs. 12.14 and 12.15 is simply a means to that end. 

For the remainder of this section, we will concentrate on the final steady-state 
flowfields. For example, Fig. 12.16 gives the steady-state surface pressure distribution, 
normalized with respect to stagnation point pressure, around the parabolic cylinder. 
The pressure distributions are calculated for two Mach numbers, M ,  = 4 and 8. The 
solid lines are exact results from the time-marching solution; these are compared with 
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\ Modified newtonian 

Figure 12.16 1 Surface pressure distributions, parabolic cylinder. 

results from the modified newtonian formula given by Eq. (12.18). Note that the mod- 
ified newtonian distribution underestimates the actual pressure distribution, and that 
better agreement is obtained at M ,  = 8 rather than M ,  = 4. This is consistent with 
our discussion in Sec. 12.4, where it was argued that the assumptions underlying new- 
tonian theory are more closely approached at hypersonic Mach numbers than at low 
Mach numbers. The relative lack of agreement with modified newtonian results, as 
given in Fig. 12.16, is typical of two-dimensional blunt bodies; in practice, pressure 
distributions over axisymmetric bodies agree more closely with modified newtonian 
results than do two-dimensional pressure distributions, as will be shown later. 

The steady-state shock shapes and sonic lines are shown in Fig. 12.17 for the 
parabolic cylinder at M, = 4 and 8. Note that, as the Mach number increases, the 
shock detachment distance decreases and the sonic line shifts downward. The sonic 
point on the shock moves farther than the sonic point on the body, as mentioned in 
Sec. 12.3. 

Now consider an axisymmetric paraboloid with the same meridian cross section 
as the parabolic cylinder in Fig. 12.14. The steady-state surface pressure distribution 
for the paraboloid is given in Fig. 12.18 for M ,  = 4. The solid line gives the 
exact results from the time-marching solution. The open squares are results from 
Eq. (12.18); note that, in contrast to the earlier two-dimensional comparison, the 
agreement with newtonian theory is excellent for the axisymmetric case, even for 
a long distance along the body. In Fig. 12.18, a comparison is also made with an 
inverse steady-state method developed by Lomax and Inouye (see Ref. 54). Again, 
reasonable agreement is obtained. However, like all steady-state techniques for the 
blunt body problem, Lomax and Inouye's results are valid only up to the sonic region 
and limiting characteristic; steady-state techniques usually become unstable down- 
stream of this region. In contrast, the time-marching technique is uniformly valid in 
both the subsonic and supersonic regions, and can given results for any desired dis- 
tance downstream, as clearly shown in Fig. 12.18. 
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Figure 12.17 1 Shock shapes and sonic lines, parabolic cylinder 

0 Modified newtonian 
0.8 

o Lomax and Inouye 

Figure 12.18 1 Surface pressure distribution, paraboloid. M ,  = 3 

12.7 1 TIME-MARCHING SOLUTION OF 
TWO-DIMENSIONAL NOZZLE FLOWS 

Return to Fig. 12.4, which illustrates the similarities between the flow over a su- 
personic blunt body and the flow through a two-dimensional (or axisymmetric) 
convergent-divergent supersonic nozzle. Both cases are mixed subsonic-supersonic 
flows, with curved sonic lines. Indeed, the flow around the blunt body in Fig. 1 2 . 4 ~  
can be visualized as a series of streamtubes with the general features of Fig. 124h. 
Therefore, the difficulties in developing a uniformly valid steady-state technique 
for the solution of blunt body flows also occur with the two-dimensional noule  
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case when the convergent subsonic and divergent supersonic sections are treated 
together. Indeed, the proper calculation of the transonic flow in the throat region of 
a convergent-divergent nozzle has been an active area of modem aerodynamic 
research. However, as in the case of the blunt body, the successful development of 
the time-marching technique now provides a uniformly valid calculation of the 
complete subsonic-supersonic flowfield in a two-dimensional nozzle. The philoso- 
phy, equations, boundary conditions, stability criteria, and numerical machinery are 
essentially the same as for the blunt body problem; hence no further elaboration 
will be made here. For an example of a time-marching solution of two-dimensional 
nozzle flows, the reader is encouraged to examine Ref. 55. 

Note that the method of characteristics discussed in Chap. 11 is a standard ap- 
proach to the calculation of the supersonic region of a convergent-divergent nozzle; 
however, it cannot be used for the subsonic or transonic regions. Moreover, the 
method of characteristics requires prior knowledge of the sonic line, or, more pre- 
cisely, the limiting characteristics for the nozzle throat region. For our applications in 
Chap. 11, the sonic line was assumed to be a straight line-a common assumption for 
many practical characteristics solutions. However, in general, the sonic line in the 
throat region of a convergent-divergent nozzle is curved, and its curvature becomes 
more pronounced as the convergence of the subsonic section is made more rapid. 
Therefore, for short, rapid-expansion nozzles, it is preferable to start a characteristics 
solution from the limiting characteristics associated with the more accurate curved 
sonic line rather than assuming a straight sonic line. The curved sonic line can be 
computed from a time-marching technique as illustrated in Ref. 55. 

Some steady-state results for Mach number contours in the throat region of a 
convergent-divergent nozzle are given in Fig. 12.19. The solid lines are results from 
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Figure 12.19 1 Constant Mach number lines in a 45" to 15' conical 
nozzle; results from the time-marching calculations of Serra (Ref. 55). 
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the time-marching technique described in Ref. 55. The open symbols are experirnen- 
tal measurements from the Jet Propulsion Laboratory. Agreement between theory 
and experiment is quite satisfactory. Note especially that the sonic line ( M  = 1 con- 
tour) is highly curved due to the rapid convergence of the 45- subsonic section. 

12.8 1 OTHER ASPECTS OF THE TIME-MARCHING 
TECHNIQUE; ARTIFICIAL VISCOSITY 

A virtue of the time-marching technique is its relative simplicity, in spite of the com- 
plexity of the steady-state flow that is being solved. Moreover, the time-marching 
technique is straightforward to program on a digital computer, thus minimizing the 
labor invested to set up the solution. However, the reader is cautioned that the tech- 
nique is not yet (and may never be) routine. Like all computational fluid dynamic ap- 
plications, solutions are frequently more of an art than a science. For example, 
throughout this chapter we have stated that time-marching calculations begin with 
"arbitrary" initial conditions for the flowfield. For a physical problem that has a 
unique solution, this is conceptually true. However, in practice, the initial conditions 
usually cannot be completely arbitrary, rather, they must be prescribed within a cer- 
tain latitude. A case in point is the blunt body solution described in Secs. 12.5 and 
12.6. Here, the initial shock wave must not be assumed too close or too far away 
from the body. If the shock detachment distance is initially too large or too small. the 
shock wave tends to accelerate too rapidly, thus producing strong gradients of the 
flowfield variables behind the wave. Consequently, the finite-difference scheme 
using a fixed grid becomes inaccurate, ultimately causing some aspect of the calcu- 
lations to collapse. Other applications are frequently plagued by analogous situa- 
tions. Therefore, it is wise to choose initial conditions intelligently, using any exist- 
ing n priori knowledge about the flow to guide your choice. Also keep in mind that 
the closer the initial conditions are to the final steady state, the faster the program will 
converge to this steady state, hence conserving computer time. 

Another problem of time-marching solutions is that small inaccuracies intro- 
duced at the boundaries can propagate as short-wavelength disturbances throughout 
the flowfield, sometimes focusing on a certain region of the flow and causing the cal- 
culation to become unstable. This is why the proper treatment of boundary condi- 
tions is so important. If the flow is physically viscous, these unwanted disturbances 
tend to dissipate, and frequently do not cause problems. On the other hand, for invis- 
cid flows, there are applications and techniques where the calculations must be arti- 
ficially damped by the addition of a mathematical quantity called art$cirrl vi.scosit\'. 
The concept of artificial viscosity can be introduced as follows. 

First, consider a quantity G which is a function of bothx and t .  Afinite-difference 
expression for the second partial derivative with respect to x can be obtained from the 
Taylor's series expansion: 
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where i + 1 and i are two neighboring grid points in the x direction. In Eq. (1 2.29), 
replace the term (aG/ax); with a central difference, 

thus yielding for Eq. (12.29) 

Solving Eq. (12.30) for the second partial derivative, we obtain 

I I 

Equation (12.31) is a central second difference of second-order accuracy. 
Now consider another quantity F, which is also a function of x and t and which 

is related to G through the simple partial differential equation 

Let us finite-difference this equation by using a central difference for F, 

In Eq. (12.33), the superscript k has been added to denote evaluation at the kth time 
step. Also, let us represent aG/at in Eq. (12.32) by a finite-difference expression in- 
troduced by Lax (see Ref. 56). Lax's technique has been used in several computa- 
tional fluid dynamic applications, particularly during the mid-1960s. According to 
Lax, the time derivative is based on an average value of G 
and (i - I), i.e., 

Substitute Eqs. (12.33) and (12.34) into Eq. (12.32): 

between points (i + 1) 

(12.34) 

Subtract G: from both sides of Eq. (12.35), and divide by A t :  

Multiply the numerator and denominator of the first term on the right-hand side of 
Eq. (12.36) by  AX)^: 
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Look closely at Eq. (12.37). Recalling the central second difference from Eq. ( 1  3.3 1 ), 
taking the limit of Eq. ( 1  2.37) as A x  and A t  go to lero, and utilizing the mathemati- 
cal definition of a derivative. Eq. ( 1  2.37) becomes 

Note that Eq. ( 12.38) is rljfer~wt than Eq. (12.32). with which we first started. Wt. ap- 
plied Lax's tinite-difference procedure to Eq. ( 12.32). obtained a difference equation 
(12.35), and then found that, by applying the definition of the derivative to the dif- 
ference equation, we recovered a partial differential equation ( 12.38) that is different 
than the one we started with. In particular, Eq. (12.38)  now contains a term involving 
a second derivative d '~ / i )x '  multiplied by a coefficient v = ( A . x ) ' / ~  At. This is 
analogous to the viscous terms in the Navier-Stokes equations for flow with friction, 
where second-order derivatives are multiplied by the physical viscosity. However, in 
Eq. ( 12.38), the second-order derivative is simply a mathematical consequence of the 
differencing procedure. and its coefficient 11 = ( A X ) ' / ?  A t  is called the cwrifkitrl 
vi.sco.siry. 

In Lax's technique. the artificial viscosity is implicit in the finite-differencc al- 
gorithm. However, in other numerical techniques, terms such as v ( a ' ~ / i l . ~ ' )  are ex- 
plicitly added to the inviscid equations of motion hcfbre the finite-differencing pro- 
cedure is implemented. This idea for damping the calculations by explicitly adding 
dissipative terrns to the equations of motion is due to Von Neumann and Richtmyer 
(see Ref. 57). who were the first to employ a time-dependent technique on a practi- 
cal problem. They were concerned with the calculation of properties across a shock 
wave; the main motivation of artificial viscosity was to provide some mathematical 
dissipation analogous to the real viscous effects inside a \hock wave. In this fashion, 
the inviscid equations could be used to calculate the jump conditions across a shock 
wave. The shock structure was spread over several grid points, analogous to the 
shock-capturing approach described in Sec. 11.15. However, the shock thickness 
produced by the artificial viscosity bears no relation to the actual shock thickness 
produced by the physical viscosity, although Von Neumann and Richtmyer did ob- 
tain the correct jump conditions for properties across the shock wave. 

Virtually all computational fluid dynamic techniques contain artificial viscosity 
to some degree, either implicitly or explicitly. MacCormack's predictor-corrector 
technique highlighted here and in Chap. 1 1  has some slight implicit artificial viscos- 
ity. As long as the amount is small, the accuracy of the numerical results is not 
compromised. However, if a large amount of damping is necessary for ensuring 
numerical stability, the artificial viscosity will materially increase the entropy of' thc 
flowfield and will cause inaccuracies. Moreover. heavy numerical damping may ob- 
scure other inconsistencies in the technique, producing results that may be stable but 
not valid. It is wise to avoid explicitly using artificial viscosity as much as possible. 

Finally, note that the time-marching technique described in this chapter is a valid 
solution of the utlsten& equations of motion. The transient approach to the steady 
state flow is physically meaningful-it follows nature, i f  nature were starting from 
the assumed initial conditions. Therefore, even though the main thrust of this chapter 
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has been the solution of steady state flows by means of the time-marching technique, 
the technique itself can be readily applied to study transient flows in their own right. 
One such example is the time-varying flowfield inside a reciprocating internal com- 
bustion engine (see Ref. 58). 

12.9 1 HISTORICAL NOTE: NEWTON'S 
SINE-SQUARED LAW-SOME 
FURTHER COMMENTS 

Sections 6.7 and 12.4 relate Isaac Newton's interest in fluid mechanics. This interest 
was focused on the calculation of the force on a body moving through a fluid, culmi- 
nating in the famous sine-squared law we derived in Sec. 12.4. In Newton's day, there 
was a high interest in such force calculations, spurred by the development of naval 
architecture and its attendant practical need to calculate the flow resistance of ship 
hulls. However, it is interesting to note that Newton's fluid mechanics work was also 
driven by a more philosophical reason. Many scholars of that day still held the belief 
of Aristotle that the planets and stars moved through space which was occupied by a 
continuous medium, i.e., they assumed that space was not a vacuum. However, con- 
temporary astronomical data of that day, including his own, convinced Newton that 
such was not the case. If space were occupied by a continuous medium, the heavenly 
bodies would encounter a resistance that would affect their motion. Observations of 
celestial motion did not show any such effects. Therefore, Newton was motivated to 
establish the laws of resistance of a body in a fluid medium in order to show that, 
indeed, such a resistance existed, and that it invalidated the Aristotelian philosophy. 
His conclusions were that the force of resistance was finite, that it depended on the 
fluid density, velocity, and shape of the body, and that it varied as sin2 0 ,  where 0 is 
the angle of incidence between the surface and the velocity direction. 

It is also interesting to note that, like the complete scientist he was, Newton car- 
ried out experiments to check his theory. Using pendulums, and falling bodies in both 
air and water, Newton was able to establish that "all agree with the theory." 

However, it was later recognized by others that all did not agree with the theory. 
For example, a series of experiments were carried out by d' Alembert in 1777 under the 
support of the French government in order to measure the resistance of ships in canals. 
The results showed that "the rule that for oblique planes resistance varies with the sine 
square of the angle of incidence holds good only for angles between 50" and 90" and 
must be abandoned for lesser angles." Also, in 178 1, Euler pointed out the physical in- 
consistency of Newton's model consisting of a linear, rectilinear stream impacting 
without warning on a surface. In contrast to this model, Euler noted that the fluid mov- 
ing toward a body "before reaching the latter, bends its direction and its velocity so 
that when it reaches the body it flows past it along the surface, and exercises no other 
force on the body except the pressure corresponding to the single points of contact." 
Euler went on to present a formula for resistance that attempted to take into account 
the shear stress distribution along the surface as well as the pressure distribution. This 
expression for large incidence angles became proportional to sin2 9, whereas at small 
incidence angles it was proportional to sin 9. Euler noted that such a variation was in 
reasonable agreement with the experiments by d'Alembert and others. 
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None of this early work produced expressions for aerodynamic forces with the 
accuracy and fundamental integrity that we are accustomed to today. In particular, 
Newton's sine-squared law produced such inconsistencies and inaccuracies that 
some aspects of fluid mechanics were actually set back by its use. For example, the 
lift on a surface at very small incidence angles-a few degrees-was grossly under- 
predicted by Newton's law. In 1799, Sir George Cayley in England first proposed the 
fundamental concept of the modern airplane, with a fixed wing at small incidence 
angle to provide lift. However, some responsible scientists of the nineteenth century 
used the sine-squared law to show that the wing area would have to be so large to 
support the airplane's weight as to be totally impractical. For this reason, some his- 
torians f ~ e l  that Newton actually hindered the advancement toward powered flight in 
the nineteenth century. 

However, Newton's sine-squared law came into its own in the last half of the 
twentieth century. Shortly after World War I1 and the development of the atomic 
bomb, the major world powers scrambled to develop an unmanned vehicle that could 
deliver the bomb over large distances. This led to the advent of the intercontinental 
ballistic missile in the 1950s. These missiles were to be launched over thousands of 
miles, with the trajectory of the warhead carrying it far beyond the outer limits of the 
atmosphere, and then entering the atmosphere at Mach numbers above 20. At such 
hypersonic speeds, the bow shock wave on these entry vehicles closely approaches 
the surface of the body, leaving only a very thin shock layer between the body and the 
shock. Consequently, as sketched in Fig. 12.20, the physical picture of hypersonic 

Figure 12.20 1 Schematic of the thin shock layer on a 
hypersonic body. This picture approximates fairly 
reasonably the model considered by Isaac Newton. 
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flow over blunt bodies actually closely approximates the model used by Newton-a 
uniform stream impacting the surface, and then flowing along the surface. Indeed, 
such newtonian impact theory yields good results for pressure distributions and 
forces at these speeds, as discussed in previous sections of this chapter. Therefore, 
250 years after its inception, Newton's sine-squared law finally found an application 
for which it was reasonably suited. 

12.10 1 SUMMARY 
Flowfields encompassing mixed regions of subsonic and supersonic flow are best 
solved by the time-marching philosophy as described in this chapter. A particularly 
important example is the solution of the supersonic blunt body problem. In this 
case, an initial guess is made for the flowfield, which is treated as the initial condi- 
tion at time zero. Then, the unsteady flow equations are solved numerically in steps 
of time. One method for this solution (but by no means the only method) is the 
predictor-corrector explicit method of MacCormack. The flowfield properties change 
from one time step to another; however, after a large enough number of time steps, 
the flowfield changes become negligibly small, i.e., a steady state is approached. 
This steady state is the desired flowfield and the time marching is just the means to 
that end. 

Certain physical characteristics of the steady flow over a blunt body moving at 
supersonic speeds are: 

1. As the free-stream Mach number increases, the bow shock wave becomes 
more curved and the shock detachment distance becomes smaller. 

2. As the free-stream Mach number increases, the sonic line becomes more 
curved and moves closer to the centerline. The sonic point on the shock moves 
down faster than the sonic point on the body, i.e., the sonic line rotates toward 
the body as M ,  is increased. 

3. Modified newtonian theory provides a simple means of predicting the surface 
pressure distribution over the blunt nose, obtained from 

Modified newtonian results are reasonably accurate for blunt bodies 
at hypersonic free-stream Mach numbers; the accuracy seems better 
for axisymmetric and three-dimensional bodies than for two-dimensional 
shapes. 

The time-marching philosophy is a powerful technique in computational fluid 
dynamics, allowing the numerical solution of flowfields that previously were not 
solvable by any other means. Although beyond the scope of the present book, we 
note that modern solutions of the complete Navier-Stokes equations for viscious 
flows, including complicated separated flows, are made tractable by the time- 
marching approach. The reader is encouraged to consult the current literature for 
such matters. 
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PROBLEMS 
Consider a convergent-divergent nozzle of length L with an area-ratio 
variation given by AIA* = 1 + IOlxlLI, where -0.5 5 x/L 5 0.5. Assume 
quasi-one-dimensional flow and a calorically perfect gas with y = 1.4. 
a. Write a computer program to calculate the variation of pip,, TIT,,, plp,,, 

u/u,,, and M as a function of KIL by means of the time-dependent finite- 
difference technique. Plot some results at intermediate times, as well as 
the final steady state results. Use Fig. 12.6 as a model for your plots. 

b. On the same plots, compare your steady state numerical results with the 
answers obtained from Table A. 1. 

Consider the two-dimensional, subsonic-supersonic flow in a convergent- 
divergent nozzle. 

a. If the sonic line is straight, sketch the limiting characteristics. 
b. If the sonic line is curved, sketch the limiting characteristics. 
Consider a 15" half-angle right-circular cone. Using newtonian theory, 
calculate the drag coefficient for 1.5 5 M ,  5 7, assuming the base pressure 
is equal to p,. Plot these results on the same graph as you prepared for 
Prob. 10.3. From the comparison, what can you conclude about the use of 
newtonian theory for small- and moderate-angle cones? 
Consider a blunt axisymmctric body at an angle of attack a in a supersonic 
stream. Assume a calorically perfect gas. Outline in detail how you would 
carry out a time-dependent, finite-difference solution of this flowfield. Point 
out the differences between this problem and the solution for a = 0 
discussed in Sec. 12.5. 

Consider a hemisphere with a flat base in a hypersonic flow at 0- angle of 
attack (the hemispherical portion faces into the flow). Assuming that the 
base pressure is equal to free-stream static pressure, use modified newtonian 
theory to derive an expression for the drag coefficient C D  = D/~,TC R' as a 
function of C 

This problem, as well as Probs. 12.7 and 12.8, are related to the discussion 
on computational fluid dynamics contained in Appendix B. In that 
discussion, the time-dependent (time-marching) solution of isentropic 
subsonic-supersonic quasi-one-dimensional flow is given, albeit under rather 
controlled conditions, such as the use of qualitatively proper initial 
conditions. Using the computer program you wrote for Prob. 12.1, and the 
same nozzle shape. explore the effect of different initial conditions on the 
behavior of the time-marching process. Specifically for one exploration, feed 
in constant property initial conditions, i.e., assume density, velocity, and 
temperature are constant through the nozzle at time zero, equal to their 
reservoir values. Compare the time-marching behavior with that from 
Prob. 12.1. Do not be surprised if you cannot get a solution (i.e., if the 
attempted solution "blows up" on the computer). What can you say about the 
importance of the selection of initial conditions? 
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Using the computer program and nozzle shape from Prob. 12.1, calculate the 
purely subsonic isentropic flow through the nozzle for the case when the 
ratio of exit static pressure to reservoir pressure is held fixed at 0.996. (Do 
not be surprised if you have difficulty. For help, consult the discussion on 
this type of CFD solution in the author's book Computational Fluid 
Dynamics: The Basics with Applications, McGraw-Hill, 1995. Read why the 
use of the governing equations completely in conservation form might be 
helpful.) 
Using your computer program from Prob. 12.1, solve the flow described in 
Prob. 5.11 involving a normal shock wave inside the nozzle. (Again, do not 
be surprised if you have difficulty, because the conservation form of the 
equations with artificial viscosity is usually employed for this type of flow. 
See Computational Fluid Dynamics: The Basics with Applications, for a 
detailed discussion of the CFD solution of this type of flow.) 



Three-Dimensional Flow 

There is no roycil road to geometry 
Proclus (410-485 A.D.) an Athenian philospher, commenting on the works 
of Euclid 
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13.1 1 INTRODUCTION 
For a moment, return to Fig. 1.9. Here you see the Bell XS-1, the first aircraft to fly 
faster than the speed of sound in level flight. What you see is a geometrically three- 
dimensional object at an angle of attack; hence, the flowfield over the XS-1 is three- 
dimensional. Indeed, the flowfields associated with all practical flight vehicles are 
three-dimensional. In contrast, the vast majority of flow problems treated in this 
book are either one- or two-dimensional. Why? The answer is straightforward-for 
simplicity. We have used these simpler problems to great advantage in the study of 
the fundamentals of compressible flow, which can be readily demonstrated by a 
myriad of different one- and two-dimensional applications. Moreover, these simpler 
flows have practical applications on their own. The one-dimensional and quasi-one- 
dimensional flows discussed in Chaps. 3, 5, and 7 have direct application to flows in 
ducts and streamtubes, and such one-dimensional analyses are used extensively in 
fluids engineering, propulsion, and aerodynamics. The two-dimensional flows dis- 
cussed in Chaps. 4 and 9 are applied locally to those parts of a body where the flow 
is essentially two-dimensional, such as straight wings, control surfaces (such as 
ailerons on a wing), and for any object that has a long span in one direction perpen- 
dicular to the flow. Also, in Sec. 4.13, we demonstrated that the flow properties 
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behind any point on a three-dimensional shock wave surface are determined by 
the conventional two-dimensional oblique shock relations applied locally at that 
point. Even the flow over a sharp, right-circular cone at zero angle of attack is "one- 
dimensional" in the sense that the conical flowfield depends only on one independent 
variable, namely the polar angle 61 as described in Chap. 10. In short, the one- and 
two-dimensional flows treated thus far have served us well in our study of com- 
pressible flow. 

On the other hand, the vast majority of practical problems in compressible 
flow. especially those involving external flows over aerodynamic bodies, are three- 
dimensional. We may be concerned with the calculation of the flow over a complete 
airplane configuration, such as the Bell XS-I shown in Fig. 1.9. Or, we may be 
interested in the flowfield around a simple missile-like body, but with the body at 
angle of attack-another example of a three-dimensional flowfield. We have already 
briefly touched on the analysis of three-dimensional flows, such as in Sec. 11.10 on 
the three-dimensional method of characteristics, and in Sec. 11.16 where an example 
of the three-dimensional flow over a space-shuttle configuration was calculated by 
both the method of characteristics and the finite-difference method. However, for 
the most part, we have not dealt squarely with the calculation of three-dimensional 
flows. Because of the importance of such flows, it is now appropriate for us to devote 
a chapter to such matters. 

In general, the addition of a "third dimension" in aerodynamic analyses causes 
at least an order-of-magnitude increase in the amount of work and thought necessary 
to obtain a solution. In fact, in terms of pure analysis, there are very few analytical, 
three-dimensional flowfield solutions in existence. Indeed, before the late 19605, the 
calculation of three-dimensional flows was a major state-of-the-art research area- 
very few solutions existed. Since the early 1970s, the solution of three-dimensional 
flows over very complex shapes has become more attainable through the methods of 
computational fluid dynamics (CFD). However, even today, modern numerical cal- 
culations of three-dimensional flows require a great deal more time to program and 
execute than their two-dimensional counterparts. And of course, the large amount 
of numerical data produced in the course of a three-dimensional CFD solution is 
sometimes overwhelming, and can be made tractable only by the intelligent use of 
sophisticated computer graphics. 

In light of this, the present chapter will be long on philosophy and methodology, 
but short on details. The subject of three-dimensional flows deserves a book all its 
own. To paraphrase Proclus' quotation at the beginning of the chapter, there is no 
royal road to three-dimensional flow methods. Our purpose in the present chapter is to 
introduce some of the physical aspects that distinguish three-dimensional flows from 
their one- and two-dimensional counterparts, and to discuss some of the methods, 
both old and new, for the calculation of such flows. Finally, we hope to provide the 
reader with some intuitive understanding of three-dimensional compressible flows 
in general. Because of the dominant role played by three-dimensional flow problems 
in modern aerodynamics, along with the advanced numerical methods presently 
used for calculating such flows, the material in this chapter is essential to the study of 
rnoderrz compressible flow. 
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13.2 1 CONES AT ANGLE OF ATTACK: 
QUALITATIVE ASPECTS 

Chapter 10 was devoted to the study of supersonic flow over a right-circular cone at 
zero angle of attack. Referring to Fig. 10.3, we saw that the flow was conical (inde- 
pendent of distance along a conical ray r from the vertex of the cone) and axisym- 
metric (independent of the azimuthal angle 4).  Hence, the flow properties are 
functions only of the polar angle 0.  In this sense, the problem, which involves a 
three-dimensional geometric body (the cone), is, from the point of view of the gov- 
erning flow equations, a special type of "one-dimensional" flow in that the dependent 
variables are functions of only one independent variable. Mathematically, this 
means that the flow is described by an ordinary differential equation, namely, the 
Taylor-Maccoll equation, Eq. (10.13). In our later discussions, it will be useful to 
describe the conical flowfield as projected on a spherical surface generated by rays 
from the cone vertex of constant length r. For the case of the cone at zero angle of 
attack, this is sketched in Fig. 13.1. The flow in any azimuthal plane (4 = const) is 
shown in Fig. 13. l a .  Consider streamline ah between the shock and the body, and the 
two conical rays that go through points a and h, respectively, on the streamline. 

\ 
constant r 

Figure 13.1 1 (a) Right-circular cone at zero angle of attack; (b) Projection of the body, shock wave, 
and streamlines on a spherical surface. 
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Points rr and 11 are projected along their respective rays. and appear as points cr' and 1 7 ' .  

respectively, on  the spherical surface generated by a constant length along all thc con- 
ical rays. A front view of this spherical surface is shown in Fig. 13. I b. Here, both the 
cone surface and shock surface project as concentric circles. Moreover, the streamline 
rrh projects as a straight line, as shown by the line a'h' in Fig. 13. I h. Indeed, for each 
meridian plane defined by q5 = const, the streamlines project as straight lines o n  the 
spherical surface. and therefore the conical flow in Fig. 13. l a  is seen on the spherical 
surface in the manner shown in Fig. 13. I h. Also, the streamlines on the surface o f  the 
cone are straight lines emanating from the cone vertex, as shown in Fig. 13.1 cr. 

Now, consider a right-circular cone at angle of attack a. as sketched in Fig. 13.2. 
The same spherical coordinate system is used here as was shown earlier in 
Fig. 10.3a, with the z axis along the centerline of the cone. The free-stream velocity 
vector V, lies in the yz  plane at an angle cr to the z axis. Relative to the .ry: carte- 
sian axes, we draw spherical coordinates, r ,  H ,  and d,  where H is measured from the 
: axis and 4 is the azimuthal angle in the xy plane. The flow velocity componcnts in 
the spherical coordinates are shown as V,., V H .  and V$. corresponding to the direc- 
tions of increasing r, 8, and 4, respectively. The flowtield as it would appear in the 
yz plane is sketched in Fig. 13.3. Here, 0, is the shock angle measured from the cone 
centerline. Just as in the zero angle-of-attack case, this flowtield is conical. i.e., flow 
properties are constant along rays from the cone vertex-the presence of an angle of 
attack does rzot destroy the conical nature of the flow. However, this is the only 
similarity with the zero angle-of-attack case. In all other respects, the flowfield in 
Fig. 13.3 is markedly different from the zero-a case. For example: 

1. The flowfield shown in Fig. 13.3 is a function of two independent variables. 6' 
and 4, in contrast to the zero-cu case where H is the only independent variable. 

Figure 13.2 1 Coordinate \ystem for a cone at angle of attack. 
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Figure 13.3 1 Surface streamlines on a cone at angle of attack. 

The shock wave angle 8, is different for each meridional plane, i.e., 8, is a 
function of 4.  
The streamlines along the cone surface are now curved streamlines which curl 
around the body from the bottom of the cone (called the windward surface) to 
the top of the cone (called the leeward surface). However, each of the curved 
streamlines along the surface emanates from the vertex of the cone. Only two 
surface streamlines are straight-those along the very top and bottom rays. 

The streamlines in the flow between the shock wave and the body are no 
longer planar; they are curved in the three-dimensional space between the 
shock and the body. 
Because the flow is adiabatic and inviscid, the entropy is constant along a 
given streamline between the shock and the body. However, streamlines that 
pass through different points on the shock wave experience different increases 
in entropy across the shock, because the shock wave angle 8 ,  is different. 
Hence, the flow between the shock and body has finite gradients in entropy 
perpendicular to the streamlines. An important consequence of these entropy 
gradients is that the flow is rotational, as seen from Crocco's theorem, given 
by Eq. (6.60). In this sense, the supersonic flow over a cone at angle of attack 
is analogous to the flow over a supersonic blunt body discussed in Secs. 12.3 
through 12.6. 

With the above aspects in mind, we can consider the zero angle-of-attack case as 
almost a "singularity" in the whole spectrum of conical flows. It has singular behav- 
ior because, as cr decreases toward zero, the flow does not uniformly approach 
the zero angle-of-attack case in all respects. For example, as the limit of a! + 0 is 
reached, the flow changes discontinuously from rotational to irrotational. Also, the 
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Figure 13.4 1 Illustration of the generation of the vortical singularity on a cone 
at angle of attack. 

number of independent variables drops from two to one. This means the system of 
equations necessary for the flow analysis changes when a! + 0. Also, the qualitative 
flow picture changes. For example, the curved streamlines along the surface shown 
in Fig. 13.3 become straight at zero angle of attack. 

There is another important aspect of the angle of attack case which does not exist 
at a! = 0, namely, the existence of a vortical singularity on the leeward surface of the 
cone at angle of attack. The nature of this vortical singularity can be seen in Fig. 13.4, 
which shows a cone at angle of attack a ,  along with a cross section of the cone body 
that identifies the most windward streamline with 4 = 0 and the most leeward 
streamline with 4 = 180". At the cone vertex, the streamline at 4 = 0, identified as 
streamline 1, crosses the shock wave, and acquires entropy sl. In turn, the flow 
through this point wets the entire body surface, and hence all the curved streamlines 
shown along the body also have entropy sl. In contrast, the streamline at the vertex 
at q5 = 18O0, identified as streamline 2, crosses a weaker portion of the shock wave, 
and acquires a smaller entropy s*. In the sketch shown in Fig. 13.4, where a! is less 
than 0, , streamline 2 flows downstream along the top of the cone, where 4 = 180". 
However, all of the streamlines along the surface that are curving upward from the 
windward side of the cone are also converging along the ray q5 = 180". Therefore, 
the ray along the cone surface at q5 = 180' has a multivalued entropy-sz and s l  , as 
well as other values as we will soon see. This line is a vortical s i n g u l a r i ~  and was 
first defined by Ferri in 1950 (see Refs. 81 and 82). 

It is useful to examine the angle-of-attack flows projected on a spherical surface, 
such as shown for the zero angle-of-attack case in Fig. 13. I h. When a < O,., the flow 
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Flowfield 
streamline. 

Figure 13.5 1 Location of the vortical singularity when the angle of attack is less than the cone half-angle. 

Figure 13.6 1 Location of the vortical singularity when the angle of attack is greater than 
the cone half-angle. 

is such as illustrated in Fig. 13.5. The vortical singularity lies along the top of the 
cone as shown in Fig. 13.5a, and projects into the spherical surface as point A in 
Fig. 13.5b. The curved streamlines in the flowfield project onto the spherical surface 
also as curves, and they all converge at the vortical singularity A. Hence, the vortical 
singularity is truly multivalued, with values of entropy ranging from the lowest to 
the highest within the flowfield. When a > O,,  the flow is different, as sketched in 
Fig. 13.6. Here, the vortical singularity lifts off the surface, and is located at point A 
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away from the surface as shown in Fig. 13.6h. It is also observed in both Figs. 13.50 
and 13.6b that the streamlines with different values of entropy arc closely squcered 
together near the cone surface. Hence, an entropy lnyer exists adjacent to the surface 

of a cone at angle of attack, which is characterized by large gradients in  entropy nor- 
mal to the streamlines. 

In describing three-dimensional f ows, the type of pictures shown in Figs. 13.50 
and 13.6b are called cross,pows. To be more specific, the .xy plane shown in Fig. 13.2 
is called the cross-flow plane, and the velocity given by the vector addition of V , I  and 
V4 is called the cross-flow velocity at a given point in the cross-flow plane. Any 
point where V: + V: = 0 is called a stagnation point in the cross-flow plane: such 
stagnation points are labeled by S in Figs. 1 3 3  and 13.6b. The vortical singularity 
A is also a cross-flow stagnation point. Note that S and A are not truc stagnation 
points, because the radial velocity V,. is finite at these points. Indeed, there are no 
points in the inviscid conical flowfield where V = 0, i.e., there are no true stagna- 
tion points in this flowfield. For more details on cross-flow stagnation points and vor- 
tical singularities, see the work by Melnik (Ref. 83). 

As the angle of attack increases, the cross-flow velocity also increases. When it 
becomes supersonic, i.e., when v,' + V; > a', then embedded shock waves can 
occur in the leeward portion of the flow, as sketched in Fig. 13.7. These shocks are 
usually relatively weak and appear in most cases when the angle of attack is larger 
than the cone half-angle, i.e., when c-u > O,.. Modem computational fluid dynamic so- 
lutions of the inviscid flow over cones at angle of attack have shown weak embedded 
shocks in the results. as will be discussed in the next section. 

Embedded 

Figure 13.7 1 Schematic of embedded shocks on the leeward wrface 
of a cone at angle of attack. 



CHAPTER 13 Three-Dimensional Flow 

Shock 

Figure 13.8 1 Flowfield around an elliptic cone 
at a = 0, as projected onto a spherical surface 
defined by r = const. 

It should be noted that flows over cones that do not have circular cross sections 
are also conical flows (constant properties along r). For many high-speed applica- 
tions, cones with elliptical cross sections are attractive. The flow over such elliptic 
cones at angle of attack exhibits many of the same features as for the right-circular 
cone, with the flow variables depending on both 0 and 4. However, unlike the right- 
circular cone, the flow over an eliptic cone at zero angle of attack still depends on 
both 0 and 4, and has cross-flow stagnation points and vortical singularities even at 
a = 0. The flow over an elliptic cone at zero angle of attack is shown in Fig. 13.8, 
where points A and A' are vortical singularities and B and B' are cross-flow stagna- 
tion points. 

Finally, we emphasize that all of the qualitative features of the flows over cones 
at angle of attack discussed herein are for inviscid flows. Experimental measure- 
ments of real flows over cones at angle of attack show that the windward region is ac- 
curately described by inviscid analysis, but that the leeward region is characterized 
by flow separation. The surface pressure gradient in the circumferential direction (the 
direction of increasing 4) is favorable on the windward side. However, for angles of 
attack greater than 0,, the pressure gradient on the leeward side becomes unfavor- 
able; the circumferential pressure distribution attains a local minimum somewhere 
on the leeward side, and the boundary layer separates from the cone surface along a 
constant ray just downstream of this pressure minimum. Associated with this sepa- 
rated flow are primary and secondary separation vortices, and if the cross-flow ve- 
locity is supersonic, embedded shocks will occur due to the abrupt change in flow 
direction in the separated regions. A thorough experimental study of such flows has 
been made by Feldhuhn et al. (Ref. 84). For the sake of completeness, the major fea- 
tures of the viscous flow over a cone at angle of attack are shown in Fig. 13.9, taken 
from Feldhuhn et al. In Fig. 13.9, where the flow is again projected on a spherical 
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" Vortical 
singularity 
like" stagnation 

Figure 13.9 1 A model of the flowfield around a cone at 
large angle of attack based on the experimental data 
of Feldhuhn et al. (Ref. 84). 

surface, we see the flow separation points, separation vortices, and the embedded 
shocks. In spite of the viscous effects, some of the flowfield on the leeward side ex- 
hibits familiar inviscid properties, such as the vortical singularity at point A. Since 
this book deals with inviscid flows, we will not pursue these viscous properties any 
further. The interested reader is referred to Ref. 84 for more details. However, we 
note in passing an aspect of separated flows that is a current state-of-the-art research 
topic in aerodynamics. Modern computational fluid dynamic calculations of inviscid 
rotational flowfields are yielding results that simulate flow separation without any di- 
rect accounting of the local viscous effects. As a result, there is a growing number of 
researchers who feel that separated flows are dominated by inviscid phenomena, and 
that the actual viscosity plays only a secondary role. Because of the present contro- 
versial nature of this theory, we will not elaborate here; instead, we will wait for a 
resolution at some future date. In the spirit of the present section, we note the recent 
work by Marconi (Ref. 85) on the calculation of separated flows over cones and 
cone-cylinders at angle of attack, where the calculation involved the solution of the 
Euler equations, i.e., dealing with an inviscid flow only. Results were obtained which 
included a separated flow such as sketched in Fig. 13.10, which shows a vortex sheet 
leaving the body surface along the separation line. A typical surface streamline 
pattern from Marconi's calculations is shown in Fig. 13.1 1 for a cone-cylinder at 
36" angle of attack in a Mach 2.3 free stream. The distinction between the attached 
flow on the windward side and the separated region on the leeward side is striking. 
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Separating 
vortex sheet 

\ 

line 

Figure 13.10 1 A model of the separated flowfield over an 
axisymmetric body at angle of attack based on the assumption 
of inviscid flow. (After Marconi, Ref. 85.) 

Figure 13.11 1 Surface streamlines on a cone-cylinder at angle of attack, 
from the inviscid flow solutions of Marconi (Ref. 85). M ,  = 2.3 and 
a = 36". Flow separation on the leeward side is modeled as part of 
the inviscid solution. 

13.3 1 CONES AT ANGLE OF ATTACK: 
QUANTITATIVE ASPECTS 

Early work on the calculation of flows over cones at angle of attack expressed the 
flow variables in terms of series expansions in a, around the zero angle-of-attack 
case. (See, for example, the work of Kopal in Ref. 86, and that of Sims in Ref. 87, 
which complement the zero angle-of-attack tables in Refs. 28 and 29 by those same 
authors, respectively.) These analyses are approximate, and are limited to small angle 
of attack. They will not be discussed here because they have essentially been super- 
seded by the techniques of modern computational fluid dynamics that allow the exact 
inviscid solution to be obtained. 

Before discussing the exact numerical solution, let us examine an aspect of the 
governing equations for conical flow that mathematically allows the existence of a 
vortical singularity, as described qualitatively in Sec. 13.2. Because the flow is isen- 
tropic along a given streamline, Eq. (6.5 1) holds: 
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For a steady flow, this is 

v V s = 0  

In terms of the spherical coordinates shown in Fig. 13.2, we have 

as I a s  1 8.5 
VS = -e, + - - e ~  + ----- 

d r r i ) ~  r sir. o 8 4  e' 

and V = V,e, + V,re,~ + Vgeg ( 13.3) 

where e,, ecr, and e, are the unit vectors in the r ,  8 ,  and d directions, respectively. 
Comhining Eqs. (1 3. I ) through (1 3.3), we have 

For conical flow, a s p r  = 0, and Eq. (13.4) becomes 

Keep in mind that Eq. (13.6) holds along a streamline in the flow; more appropri- 
ately, it holds along the projection of a streamline in the spherical surface defined by 
r = const, as discussed in Sec. 13.2. The .shape of this streamline in  the spherical sur- 
face can be found by noting that the entropy is a function of 0 and 4 in (he spherical 
surface. Thus, 

Along a streamline, ds = 0, and Eq. ( 1  3.7) gives 

Substituting Eq. (13.6) into (13.8), we have 

Equation (13.9) gives the shape of the streamlines as projected on the spherical sur- 
face in terms of the velocity field. This equation, in conjunction with Eq. ( 1  3.6). con- 
ceptually allows the solution of the entropy distribution over the spherical surface 
defined by r = const. There is one exception, however, namely, at any point where 
both VH and V4 are zero, i.e., at a cross-flow stagnation point. At such a point, 
Eqs. (13.6) and (13.9) are indeterminant forms, which allow the possibility of a mul- 
tivalued entropy at that point-namely, a vortical singularity. Hence, the governing 
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flow equations predict that such vortical singularities may exist. In Sec. 13.2 we have 
already shown on the basis of physical reasoning that not all cross-flow stagnation 
points are vortical singularities, but that all vortical singularities are cross-flow stag- 
nation points. Equations (13.6) and (13.9) simply show that the existence of vortical 
singularities are compatible with the mathematics. 

Modern solutions to the flowfield over cones at angle of attack usually involve a 
finite-difference solution to the governing partial differential equations of three- 
dimensional, inviscid, adiabatic compressible flow. These equations have been 
derived and discussed at length in Chap. 6. For example, repeating Eqs. (6.5), (6.29), 
and (6.44), we have 

Continuity: 
8 P 
- + v *  ( pV )  = o  
at 

(6.5) 

Momentum: 

Energy: 

Written in terms of spherical coordinates, and specialized to a steady flow with no 
body forces, these equations become: 

Continuity: 

1 a 
( p  Vg sin 0) + - - 

r sin0 a@ 

Momentum in r direction: 

Momentum in 0 direction: 

Momentum in d direction: 

v: 1 
Energy: h,  =h,+- 2 = h + - ( ~ , ? + v g 2 + ~ , )  2 
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In addition to these flow equations, we also have the perfect gas equation of state: 

and the state relation for a calorically perfect gas: 

h = c,, T (13.16) 

Equations (13.10) through (13.16) are seven equations for the seven unknowns, 
p ,  V,., Vo,  V4, p ,  T, and h. They are the equations, written in spherical coordinates, 
for a steady, adiabatic, inviscid, compressible flow, and therefore are applicable for 
the solution of the flow over a cone at angle of attack in a supersonic stream. 

Note that Eqs. (13.10) through (13.13) have been written such that the r deriva- 
tives are on the left-hand side, and the 0 and 4 derivatives are on the right-hand side. 
This hints strongly of a finite-difference solution that marches in the r direction, di- 
rectly analogous to the time-marching solutions discussed in Chap. 13. Indeed, a 
novel approach to the solution of the cone problem using the principle of marching 
in the r direction was first set forth by Moretti in Ref. 88. The general philosophy of 
Moretti's approach is illustrated in Fig. 13.12. We are interested in calculating the 
flowfield over a cone with half-angle 8, at an angle of attack a in a free stream at 
M,. Start with an nssurned flowfield on the spherical surface given by r = r, , ,  where 

Figure 13.12 1 Schematic of the solution of the flowfield over a cone at angle of attack. 
starting with an initially a\sumed nonconical flowfield, and marching downstream 
until convergence is obtained. 
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the spherical surface is bounded between the body and the shock. This will be a non- 
conical flow, and of course is not the correct flow solution for the cone. The assumed 
flow on r  = r, can be somewhat arbitrary, but must have at each point the local total 
enthalpy equal to the free-stream value, and the integrated mass flow through r  = r, 
must equal the free-stream mass flow intercepted by the spherical surface. Since 
the flowfield properties are now specified on r  = r,, the 8 and 4 derivatives that 
appear on the right-hand side of Eqs. (13.10) through (i3.13) can be expressed 
in terms of known finite differences. This immediately allows the calculation of 
aplar, aVr/ar,  aVe/ar,  and aV@/ar from Eqs. (13.10) through (13.13). In turn, the 
r  derivatives are used to calculate the flow over the next downstream spherical sur- 
face located at r, + A r .  For this purpose, MacCormack's technique, as discussed in 
Sec. 11.12, can be used. For example, if the flow is known over the spherical surface 
located at r ,  then the density at r  + Ar can be obtained from 

In Eq. (13.17), the average value of ap/ar is obtained from the predictor-corrector 
approach directly analogous to that described in Sec. 11.12. That is, a predicted value 
aplar is obtained from Eq. (13.10) using forward differences in 8 and 4. Then a cor- 
rected value is obtained from Eq. (13.10) using rearward differences in 8 
and 4 with predicted values p ,  V r ,  Vo ,  and V4. Then the average r  derivative is 
formed as 

Finally, the value of p at r  + Ar is obtained from Eq. (13.17). Of course, to allow the 
proper formulation of the finite differences, the flowfield shown in Fig. 13.12 should 
be transformed such that it is a rectangular shape in the transformed plane. Along 
with this, the governing equations (13.10) through (13.13) should also be trans- 
formed to the computational space. Since our purpose here is to present the general 
philosophy of the method, we will not clutter our discussion with details. 

As the finite-difference solution marches downstream to subsequent spherical 
surfaces, the flowfield changes from one value of r  to another. In the process, the 
shock wave shape and location change as we march downstream. For details on the 
calculation of the shock shape, as well as the numerical formulation of the boundary 
conditions behind the shock and along the body, see Ref. 88. However, as we 
progress far enough downstream, the flowfield properties begin to approach a con- 
verged value, i.e., appr  becomes smaller and smaller, until we reach some spherical 
surface, denoted by r  = r l  in Fig. 13.12, where there is virtually no change in the 
flowfield in the r  direction. That is, at r  = r l ,  ( a / & - )  = 0 for all the flow variables, 
and therefore the flow variables over the next downstream surface rz are virtually un- 
changed from rl . Clearly, when this convergence is achieved, then, by definition, the 
flowfield has become conical, and the flowfield solution over the spherical surface 
r  = r l  is indeed the solution of the flow over the given cone at the given angle of 
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attack. The nonconical flow computed between r,, and rl was just a means to obtain 
the tinal conical flow solution. In this vein, the present technique is directly analo- 
gous to the time-marching method for the solution of the flow over a blunt body dis- 
cussed in Chap. 12, where the calculated transient flowfield is just a means to an end, 
namely, obtaining the tinal steady flow over the body at large times. Here. we have 
replaced the time marching of Chap. 12 with spatial marching in the r direction. lead- 
ing to a converged conical flow at large values of r .  

Some typical results obtained by Moretti are shown in Figs. 13.13 and 13.13. for 
a free-stream Mach number of 7.95, and a 10' half-angle cone at 8 ' angle of attack. 
These ti gures illustrate the mechanics of the downstream-marching philosophy. Fig- 
ure 13.13 illustrates the rate of change of the average calculated shock coordinate 
with distance r .  lf 8, represents the average polar coordinate of the shock at a given r 
[note that 0, = , f ( @ )  for a given 1.1. then a@,/ar is an indicator of convergence. 
When at?\/av becomes small, the correct conical flow is approached. This variation 
is given in Fig. 13.13, which is a plot of i)&/i)r as a function of radial location refer- 
enced to the initial value r = r,,. This shows that a downstream-marching distance 
of more than IOOr,, was necessary before the converged conical flow was obtained. 

Figure 13.13 1 Rate of convergence, as indicated by the 
spatial rate of change of the mean shock angle with 

downstream distance r .  (From Moretti, Ref. 88.) 
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I 
Assumed shock 

S ='0.38 

Assumed entropy 
distribution 
r / ro = 1 .O 

(a) 

Computed entropy 
distribution 
r/r ,  = 1073.2 

Figure 13.14 1 Comparison between the assumed entropy 
distribution at r = r, ( a )  and the converged entropy 
distribution at r = 1073.2r0 (b). (From Moretti, Ref. 88.) 

In Fig. 13.14, the initially assumed entropy distribution at r = r, (Fig. 13 .14~)  is 
compared with the final converged result at r = 1073.2r0 (Fig. 13.14b). Starting with 
the assumed nonconical flow in Fig. 13.14a, the converged conical flow shown in 
Fig. 13.14b is obtained. The answer to the problem is Fig. 13.14b. Concentrating on 
Fig. 13.14b, we see a projection of the computed lines of constant nondimensional 
entropy on the spherical surface. Note that these lines all converge at the top of the 
cylinder, showing that the numerical solution is predicting the expected vortical sin- 
gularity. Also, since the entropy is constant along a given streamline, then the curves 
shown in Fig. 13.14b are also traces of the streamline shapes. The computed shock 
wave shape is also shown, and is compared with experimental data for the shock 
shape obtained from Tracy (Ref. 89) denoted by the open circles. The expected good 
agreement between calculation and experiment is seen on the windward side, but the 
measured shock is slightly higher than the calculated shock on the leeward side-an 
effect due to the real viscous flow, as described earlier. 

In terms of the language of computational fluid dynamics (as described in Chaps. 
11 and 12), Moretti's cone solution is a shock-Jitting method. Moreover, the govern- 
ing equations given by Eqs. (13.10) through (13.13) are in the nonconsewation 
form, which is appropriate in conjunction with a shock-fitting method. However, 
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this leads to a restriction on the range of problems that can be solved by the specific 
method described above. The nonconservation form of the equations is not appropri- 
ate for capturing shock waves; hence, any embedded shocks that might be present in 
the leeward flowfield will not be properly calculated. This limited the cone solutions 
carried out by Moretti in Ref. 88 to cases where a < 0,. However, this in no way 
compromises the overall philosophy presented by Moretti, namely, that the proper 
conical flow solution can be obtained by marching downstream from an assumed 
initial nonconical flow. 

Using Moretti's downstream-marching philosophy, Kutler and Lomax (Refs. 40 
and 90) removed the restrictions mentioned above by computing the flow with a 
shock-capturing method using the conservation form of the governing equations. In 
this approach, the finite-difference grid reaches beyond the conical shock wave, 
which in turn is captured internally within the grid in the same vein as discussed in 
Sec. 1 1.15 and pictured in Fig. 11.23. Embedded shock waves on the leeward side, if 
present, are also captured within the grid. Kutler and Lomax, with an eye toward ap- 
plications to nonconical bodies, did not use a spherical coordinate system; rather, 
they employed a body-oriented system, with x measured along the surface. y per- 
pendicular to the surface, and q5 as the meridional angle. This coordinate system and 
grid is shown in Fig. 13.15, obtained from Ref. 40. The governing steady-flow equa- 
tions in conservation form are written in the body-oriented coordinates, and the 
solution is marched downstream in the x direction using MacCormack's technique 

Figure 13.15 1 Coordinate system and finite-difference mesh for the calculations of Ref. 90. 
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until a converged, conical flow is obtained. For more details on the computational 
method, see Ref. 40. 

The circumferential pressure distributions around a 10" half-angle cone at 
Mach 5 are shown in Fig. 13.16 for angles of attack ranging from 0" to 15", as cal- 
culated by Kutler and Lomax. Note that for a < lo0, the pressure distributions mo- 
notonically decrease from the windward to the leeward side. However, for a > lo0,  

l4 a, degrees 

Meridional angle, 4, degrees 

Figure 13.16 1 Circumferential pressure distributions around 
a 10" cone at various angles of attack. (From Kutler and 
Lomax, Ref. 90.) 
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the pressure first decreases, reaches a local minimum value partway around the Iee- 
ward side, and then increases to the top of the cone. Kutler and Lomax found weak 
embedded shock waves on the leeward side corresponding to the region of adverse 
pressure gradients. In a separate analysis of flows over cones at angle of atcack, 
Fletcher (Ref. 9 I )  also observed embedded shocks. Fletcher's approach utili~ed the 
same downstrearn-marching philosophy as described earlier, along with shock fitting 
of the primary shock wave. The flowtield calculations were carried out using a hybrid 
numerical and analytical method; see Ref. 91 for details. His results for a Mach 7.95 
flow over a 10 ' cone at ~u = 16" are shown in Fig. 13.17. Here, we see, projected on 
a spherical surface, the calculated shock wave shape, the vortical singularity (de- 
noted by VS), the calculated embedded shocks (labeled NN), and the sonic lines in 
the windward and leeward regions. Also shown are some experimental data from 
Tracy (Ref. 89). Note that the outer primary shock shape agrees well with experi- 
ment, but that the experimentally measured embedded shocks EE lie outside of the 
numerically computed shocks. 

With this, we end our discussion of the flow over a cone at angle of attach in a 
supersonic flow. This problem, which prior to 1965 was very different to solve for 
large angles of attack, has been made almost routine by the modern methods of 
computational fluid dynamics. Our purpose has been twofold: ( I )  to achieve home 

a = 16" 
VS-vortical Leeward 
singularity " = loo sonic line 

Internal 
shock 
NN-Numerical 

Windward 
sonic line 

bxpt .. Trac) 
(Ref. 89) 

Figure 13.17 1 Comparison between experiment and numerical 

calculations for flow over a cone at angle of attack. (Froni 
Fletcher. Ref. 9 1 . )  
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overall understanding of the various computational techniques for the solution of this 
problem, and (2) to study the physical aspects of such flows as an example of a clas- 
sic three-dimensional flowfield. 

13.4 1 BLUNT-NOSED BODIES AT ANGLE 
OF ATTACK 

Recall that the flow over a cone at zero angle of attack-a three-dimensional geo- 
metric object-is "one-dimensional" in the sense that the conical flowfield depends 
only on one independent variable, namely the polar angle 0 as described in Chap. 10. 
Similarly, the flow over a cone at angle of attack is "two-dimensional" in the sense 
that the flowfield, which is still conical, depends only on two independent variables, 
namely, Q and 4 ,  as discussed in Secs. 13.2 and 13.3. 

In this section, and for the remainder of this chapter, we discuss flowfields that 
are truly three-dimensional in the sense that they depend on three spatial independent 
variables. An important example of such a flow is the supersonic blunt body at angle 
of attack. The supersonic blunt body at zero angle of attack was studied in Sec. 12.5, 
where a time-marching method was used to obtain the steady flow in the limit of 
large time. The first practical zero angle-of-attack blunt body solution-indeed, 
made practical by the time-marching philosophy-was carried out by Moretti and 
Abbett in Ref. 47. This work was quickly extended to the angle-of-attack case by 
Moretti in Ref. 92. Since we followed Moretti's approach in Sec. 12.5, let us do the 
same here for the angle-of-attack case. 

Consider a blunt body at angle of attack as shown in Fig. 13.18. A cylindrical 
coordinate system, r, 4 ,  z ,  is drawn with the z axis along the centerline of the body. 

Figure 13.18 1 Cylindrical coordinate system in physical 
space for the angle-of-attack blunt body problem. 
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The governing three-dimensional flowtield equations, analogous to the two- 
dimensional equations given by Eqs. ( 12.19) through ( 12.22\, are. in cylindrical co- 
ordinates, 

ap I a 1 a(pv4) a ( p v r )  
Continuity: - + - ~ ( p r V , )  + -? + 7 = 0 

a t  r- dr  r (Id (1 7 

Momtwtum in r direction: 

Momentum in z directiorl: 

Recall that Eq. (13.23) is really the entropy equation, and it states that the entropy of 
a given fluid element is constant during its motion in the shock layer between the 
shock wave and the body-a ramification of the flow being inviscid and adiabatic. 
Following Moretti and Rleich, Eqs. (13.19) through ( 1  3.23) are nondimensionalized 
and transformed as follows. For simplicity, assume the body is axisymmetric (this is 
rzot a necessary aspect of the method). Hence. the body shape is given by 

The shock wave shape i \  given by 

Let S = S - h. Then a new set of independent variables is defined as 

With the relations given in Eq. (13.24), the three-dimensional flowtield between the 
shock and body transforms to the right parallelepiped in the t - X - Y  space as shown 
in Fig. 13.19. In turn, this is used as the computational space in which finite-differ- 
ence quotients are formed. The dependent variables were transformed in Ref. 92 as 
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Figure 13.19 1 Transformed coordinate system in 
computational space for the angle-of-attack 
blunt body problem. 

With the relations defined in Eqs. (13.24) and (13.25), the governing flow equations 
given by Eqs. (13.19) through (13.23) become 

Continuity: 

a R a~ a~ a~ av,. av,. 
- = - [ v ~ ~ + A + B - + - + E - + ( ~ + V , . ) / Y  at ax a< ar a< 

Momentum in r direction: 

av,. av, av,. 
at 

Vr-+A-+B--AV, .+G a Y ax a< (13.27) 

Momentum in 4 direction: 

a v, av, av, av, -=-[vr-+A-+B-+AV,+G at a Y ax a< 

Momentum in z direction: 

Energy (entropy): 
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where 

Note that Eqs. (13.26) through (13.30) are written with the time derivatives on the 
left-hand side and the spatial derivatives on the right-hand side. Assuming that the 
flowfield is known at time t ,  these spatial derivatives can be replaced with tinite- 
difference expressions evaluated in the ( - X - Y  computational space shown in 
Fig. 13.19. This allows the calculation of the time derivatives of R ,  V,-, V#.  Vr and I+!J 
from Eqs. (13.26) through (13.30), from which new values of the flowfield variables 
are obtained at time ( r  + At). The actual time-marching method can be carried out 
using MacCormack's technique as given in Sec. 12.5 for the two-dimensional blunt 
body problem, i.e., by using a predictor-corrector approach where the <. X. and Y 
derivatives are replaced by forward differences on the predictor step, and by rearward 
differences on the corrector step. The boundary conditions along the shock and 
body can be treated numerically by using a locally one-dimensional method of char- 
acteristics analysis matched to the calculation of the interior flowfield, exactly as 
described in Sec. 12.5 for the two-dimensional blunt body problem. See Ref. 92 for 
more details. 

Typical results obtained by Moretti and Bleich are shown in Figs. 13.20 through 
13.23. In Fig. 13.20, the time-dependent motion of the bow shock wave is shown for 
the flow over a blunt body consisting of an ellipsoidal nose with a major-to-minor 
axis ratio of 1.5, blending into a 14" half-angle cone downstream; the body is at a 
30" angle of attack, and M ,  = 8. The assumed initial shock shape at t = 0 is 
shown; for simplicity, it is initially chosen as an axisymmetric shape. During the 
course of the time-marching solution, the shock wave changes shape and location, 
and of course all the flow variables between the shock and the body are changing 
with time. Results for the transient shock wave are shown after 100, 200, 300, and 
400 time steps. The 400th step is essentially the converged steady state result-the 
desired answer-yielding a nonaxisymmetric shock. Figure 13.21 gives the calcu- 
lated steady-state Mach number distribution around the surface of the body for the 
symmetry plane 4 = 0, plotted as a function of r .  (The r-body coordinates on the 
windward and leeward side of the body are illustrated in Fig. 13.20.) At the left side 
of Fig. 13.2 1, the Mach number plot is started at a value of r at a downstream loca- 
tion on the windward side. As we move from left to right along the horizontal axis in 
Fig. 13.21, we are moving along the windward body surface toward the nose. The 
value r = 0 corresponds to the nose tip. Then, we continue to move over the top of 
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Figure 13.20 1 Shock wave shapes at various 
times during time marching toward the steady 
state. (From Moretti and Bleich, Ref. 92.) 

Sonic I 
points 

1 

Stagnation 
point 

2 r t  1 0 1 - + r 2  

Figure 13.21 1 Steady-state Mach 
number distribution along the 
surface of the body shown in 
Fig. 13.20 (Ref. 92). 
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Figure 13.22 1 Steady-state shock wave, 
sonic lines, and stagnation point in the 
symmetry plane for the flow problem 
in Fig. 13.20 (Ref. 92). 

Figure 13.23 1 Steady-state shock wave shapes in different 
meridional planes, M ,  = 8.0 and a = 30 (Ref. 92). 

the body away from the nose over the leeward side. Note that the Mach number M 
at the left of Fig. 13.21 is essentially sonic, determining the sonic point on the lower 
section of the body. As we move closer to the nose, M decreases to zero, thus 
locating the stagnation point, which occurs on the leeward side. Then, moving away 
from the stagnation point, M increases toward the nose tip, continues to increase 
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over the leeward side to a local maximum of about 2.6, and then slightly decreases 
downstream of this point. This local peak in M is due to a local "overexpansion" of 
the flow in the region just downstream of where the ellipsoid nose mates with the 
cone. This overexpansion is characteristic of the hypersonic inviscid flow (note that 
M ,  = 8) over axisymmetric and other three-dimensional bodies that have a discon- 
tinuous change in the derivative of the body shape, i.e., a discontinuity in d2b/dr2, 
such as the case shown here, even though the slopes themselves (db/dr for the ellip- 
soid and db/dr for the cone) are matched at the juncture of the two geometric shapes. 
In Fig. 13.22, the steady-state shock wave shape is shown along with the upper and 
lower sonic lines, and the stagnation point location. These are all typical of a blunt 
body at angle of attack. Finally, the steady-state shock shape in different meridional 
planes defined by different values of q5 is given in Fig. 13.23, starting with q5 = 0 at 
the top of the body, and ending with 4 = 180' at the bottom of the body. The fact 
that the shock is highly three-dimensional (highly nonaxisymmetric) is clearly evi- 
dent here. 

The work of Moretti and Bleich in Ref. 92 has been greatly extended in re- 
cent years. An example of a more recent application is described by Weilmuenser 
(Ref. 93), who calculated the inviscid flow over a space-shuttle-like vehicle at high 
angle of attack. The body shape and finite-difference grid is shown in Fig. 13.24. A 
spherical coordinate system is used in the nose region, patched to a cylindrical coor- 
dinate system downstream of the nose. The governing unsteady flow equations in 
spherical coordinates are given by Eqs. (13.10) through (13.13) for continuity and 
momentum; the unsteady energy equation (entropy equation) in spherical coordi- 
nates is given by 

The unsteady flow equations in cylindrical coordinates are given by Eqs. (13.19) 
through (1 3.23). These are the governing equations for the time-marching solution of 
the inviscid flowfield over the body shown in Fig. 13.24. The approach used by 
Weilmuenser follows the shock-fitting philosophy pioneered by Moretti and the 
explicit time-marching predictor-corrector technique of MacCormack. Both of these 
concepts have already been discussed elsewhere in this book, and hence no fur- 
ther elaboration is given here. Typical results from Ref. 93 are shown in Fig. 13.25. 
Here the steady-state three-dimensional shock wave shape over the shuttle-like 
body is given for the case of M ,  = 16.25 and a = 39.8". Of course, the entire 
steady flowfield between the shock and the body is also calculated. Figure 13.25 
illustrates an advanced capability for the calculation of three-dimensional flow- 
fields. Such calculations do not come cheap, however. For the solution shown in 
Fig. 13.25, nearly 100,000 grid points are used, and a supercomputer is necessary for 
the calculations. 

The shuttle vehicle at high angle of attack, such as shown in Fig. 13.25, has a 
large region of subsonic flow over the lower compression surface. This is why a 
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- 
Spherical 
system 

Figure 13.24 1 (a)  Physical grid in the symmetry plane for the calculation of the How over a shuttle-like 
vehicle (Ref. 93). ( h )  Physical grid in the cross-flow plane. 

time-marching method is used to calculate the entire flowfield. However, there are 
numerous applications involving blunt-nosed bodies at small enough angles of at- 
tack where a large region of locally supersonic flow exists downstream of the blunt 
nose. One such example has already been discussed in Sec. 11.16, where the invis- 
cid flowfield over the space shuttle is calculated by Rakich and Kutler (Ref. 45), 
comparing results obtained from a downstream-marching finite-difference solution 
and a three-dimensional method of characteristics solution. Both of these solutions 
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Figure 13.25 1 Steady state, three-dimensional shock wave shape over a 
shuttle-like vehicle. M ,  = 16.25 and a! = 39.8". (From Weilmuenser, 
Ref. 93.) 

are started from an initial data plane generated from a time-marching blunt body 
solution in the nose region. (It is instructional to reread Sec. 11.16 before progress- 
ing further.) A modern example of a three-dimensional flowfield calculation using 
the downstream-marching method is given by the work of Newberry et al. in Ref. 94, 
where the inviscid flow over the hypersonic entry research vehicle configuration 
shown in Fig. 13.26 is calculated. Here, a highly efficient downstream-marching 
method by Chakravarthy et al. (Refs. 95 through 97) is used, again starting from an 
initial data surface obtained from a time-marching blunt body calculation. Typical 
results for the Mach number distribution throughout the flowfield are shown by the 
computer graphics representations in Fig. 13.27. Here, the Mach number contours 
(lines of constant Mach number) are shown in six different cross-sectional planes 
corresponding to six streamwise locations along the body. The free-stream Mach 
number is 16, and the angle of attack is 8". 
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Figure 13.26 1 The generic hypersonic research vehicle used for the calculations 
of Newberry et al. (From Ref. 94). 

Figure 13.27 1 Mach numbers contours at different streamwise stations for the flowfield over 
the generic hypersonic research vehicle shown in Fig. 13.26. The location of each station is 
identified by the arrows in the diagram (from Newberry et a]., Ref. 94). 
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13.5 1 STAGNATION AND MAXIMUM 
ENTROPY STREAMLINES 

An interesting physical aspect of the three-dimensional flow over a blunt body at an 
angle of attack to a supersonic free stream is that the streamline going through the 
stagnation point is not the maximum entropy streamline. For a symmetric body at 
zero angle of attack, the stagnation streamline and the stagnation point are along the 
centerline, as sketched in Fig. 13.28~. This streamline crosses the bow shock wave at 
precisely the point where the wave angle is 90°, that is, it crosses a normal shock, and 
hence the entropy of the stagnation streamline between the shock and the body is the 
maximum value. In contrast, consider the asymmetric cases shown in Figs. 13.28b 
and c;  an asymmetric flow can be produced by a nonsymmetric body, an angle of 
attack, or both. In these cases, the shape and location of the stagnation streamline, 

Stagnation and 
maximum entropy 

streamline 

---------- 

Maximum -- - 
entropy 

streamline 

Stagnation 
streamline 

(b) (c)  

Figure 13.28 1 Stagnation and maximum entropy streamlines. 
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and hence of the stagnation point, are not known in advance: they must be obtained 
as part of the numerical solution. Moreover, the stagnation streamline does not pass 
through the normal portion of the bow shock wave, and hence it is not the maximum 
entropy streamline. The relative locations of the stagnation streamline and the maxi- 
mum entropy streamline for two nose shapes is shown in Figs. 13.2% and c. Note 
that the stagnation streamline is always attracted to that portion of the body with 
maximum curvature, whereas the maximum entropy streamline will turn in the di- 
rection of decreasing body curvature. More details on this matter can be found in 
Ref. 52. 

13.6 1 COMMENTS AND SUMMARY 
The calculations shown in Figs. 13.24 through 13.27, in their time, represented the 
state of the art for inviscid three-dimensional flowfields over supersonic and hyper- 
sonic bodies. They were among the first of their kind, and therefore are classic in the 
field of CFD. This is why we discuss them here. Today such calculations are made 
with more modern numerical techniques utilizing much more sophisticated grids 
and algorithn~s. Because this chapter has emphasized the physical aspects of three- 
dimensional flow, and these aspects are nicely illustrated by the classical CFD calcu- 
lations, we have chosen not to highlight more recent calculations from the current 
generation of CFD. 

The purpose of this chapter has been to give the reader a basic familiarity with 
some of the features of three-dimensional flows over supersonic bodies. Emphasis 
has been placed on the physical aspects of such flows, along with a general under- 
standing of several computational methods for calculating these flows. In particular, 
we have studied these cases. 

1 .  Flows over elliptic cones and cones at angle of attack. These are three- 
dimensional geometries that, by virtue of the conical nature of the flow, 
generate flowfields that are "two-dimensional," i.e., that depend on only two 
independent variables, such as H and @, in a spherical coordinate system 
centered at the vertex of the cone. These flows exhibit vortical singularities. 
i.e., points where the entropy is multivalued. Also, embedded shocks may 
appear in the leeward region when the cross-flow velocity becomes supersonic. 
which usually occurs approximately when the angle of attack is greater than 
the cone half-angle. The calculational method for obtaining the "two- 
dimensional" conical flows uses a downstream-marching philosophy. starting 
with an initial nonconical flow and approaching the correct conical flow in the 
limit of large distances downstream. 

2. Flows over blunt bodies at angle of attack. These are truly three-dimensional 
flows, involving three independent spatial variables. such as r. 0 ,  and z ,  in a 
cylindrical coordinate system. Moreover, the numerical solution of such flows 
involves a time-marching philosophy; hence, t becomes a fourth independent 
variable, which is made necessary by virtue of the calculational method itself. 
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The desired steady three-dimensional flowfield solution is approached in the 
limit of large times. 

3. Flows over slender blunt-nosed bodies at angle of attack, such as the vehicle 
shown in Fig. 13.26. Here, the flow in the blunt-nosed region is calculated by 
means of a time-marching method. When the steady state is achieved in this 
region, a plane of data located in the supersonic region just downstream of the 
limiting characteristic surface is chosen as the initial data plane, from which a 
three-dimensional steady downstream-marching procedure is used to calculate 
the remainder of the supersonic flowfield. This downstream marching can be 
carried out using the three-dimensional method of characteristics, or which is 
more usually the case today, a finite-difference or finite-volume solution of the 
steady-flow equations. However, if and when a pocket of locally subsonic flow 
is encountered during this downstream marching, we must revert back to a 
time-marching solution for this locally subsonic region. (See, for example, 
Ref. 95.) 

In summary, the types of flowfields encountered in the vast majority of practical 
aerodynamic applications are three-dimensional. Unfortunately, the analysis of such 
three-dimensional flows has been extremely difficult in the past; indeed, exact 
solutions of such flows were only dreams in the minds of aerodynamicists during 
most of this century. It has been a state-of-the-art research problem since the begin- 
ning of rational fluid dynamics with Leonhard Euler in the eighteenth century. How- 
ever, since the late 1960s, the advent of computational fluid dynamics has changed 
this situation; as we have seen in this chapter, numerical techniques now exist for the 
computation of general three-dimensional flowfields, and many such computations 
have successfully been completed. The solution of three-dimensional flows is still a 
state-of-the-art problem today, but only from the point of view as to improvements in 
the numerical accuracy, the efficiency of solution (the quest to reduce the computer 
time necessary to obtain solutions), and the proper methods for presenting, studying 
and interpreting the large amount of numerical data, generated by such solutions 
(a problem in computer graphics). 
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Transonic Flow 

We call the speed range just below and jzist above the sonic speed-Mach number 
nearly equal t o  I-the transonic range. Dryden (Hugh Dpden, well-knownjuid 
dynunzicist and past administrator of the National Advisory Committee f i r  
Aeronautics, now NASA) and I invented the word "transonic." We hadfi)u,und that 
rr word was needed to denote the critical speed range of which we were talking. 
We could not agree whether it should be written with one s or two. Dryden was 
logical and wanted two s k. I thought it wasn't necessary always to be logical in 
creronuutics, so I wrote it with one s. I introduced the term in this form in a report to 
the Air Force. 1 am not sure whether the general who read it knew what it meant, 
hut his answer contained the word, so it seemed to be oficially accepted. . . I rvell 
remember this period (about 1941) when designers were rather frantic because of 
the unexpected dificulties of transonicjlight. They thought the troubles indicated a 
failure in aerodynamic theory. 

Theodore von Karman, in a lecture given at Cornell University, 1953 
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0.83. However, the quest 
crease the drag-divergence 

in dltrina acxx4m&0n or deceleration through Mach 1. Mach number closer to 1, has been active for decades. - - 
This is because of the drag-divergence phenomena, the Doing this requires a fundamental understanding of 
rapid shift of center of pressure, and the unsteady and transonic flow. 
somewhat unpredictable effect of shock waves on At the time of this writing. a graphic example of 
control surfaces, all of which are undesirable aspects of pushing the envelope is the Boeing Aircraft Company's 
transonic flight. Current jet transports nudge this regime new concept for a transonic jet transport, to cruise at 
by cruising near or slightly above the critical Mach Mach 0.95. An artist's sketch of a possible configuration 
number, but never beyond the drag-divergence Mach is shown in Fig. 14.1. Compare this configuration with 
number. Typical cruise Mach numbers of jet transports that for the Boeing 777 shown in Fig. 1.4. You scc in 

Figure 14.1 l A transonic airplane concept from Boeing. 
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I TRANSONICFLOW 

Some physical aspects 

I Transonic similarity I 

Design features 
small-perturbation 

Supercr~ttcal airfoil 

Solutions of the full 
velocity potential equation 

equations 

Figure 14.2 1 Roadmap for Chapter 14. 

Fig. 1.4 the standard configurat~on used by designers of 
most current jet transports since Boeing mtroduced the 
pioneering 707 in the late 1950s-character~zed by a 
relatively hlgh aspect ratlo swept wmg wlth engines 
mounted in pods located underneath the wing, or in 
some cases on the rear portion of the fuselage The con- 
figuration for Boeing's "sonic crulser" In Fig. 14.1 1s 
a radical departure from this standard configuration. 
Whether this or some other configurat~on 1s finally de- 
veloped by Boeing is not germane here. What IS impor- 
tant 1s that some serious effort is being made to design 
an a q l a n e  to cruise in the transonic flight regime. More 
than ever this requires a fundamental understandmg of 
the physical properties of the gasdynamics in the tran- 
sonic regime, and the ability to accurately calculate such 
flows. Thls is the subject of the present chapter 

Transonic flow has always been important. It is 
now more so than ever. The material in this chapter will 
give you a fundamental understanding of some of the 
problems to be faced in the design of a transonic trans- 
port such that sketched in Fig. 14.1. Thls 1s important 
material, and the future applications are excltlng. 

L Transonic area rule 

The roadmap for this chapter is given in Fig. 14.2. 
We begin with a discussion of the physical aspects 
of transonic flow. We follow with the theoretical as- 
pects of transonic similarity, identifying the transonic 
similarity principle and the transonic similarity parame- 
ters. This is classic transonic theory. The remainder of 
the chapter is devoted mostly to the numerical calcula- 
tion of inviscid transonic flow. Such calculations have 
historically evolved in three steps, involving chrono- 
logically the numerical solution of (1) the small- 
perturbation velocity potential equation, (2) the full 
velocity potential equation, and finally (3) the Euler 
equations. As you might expect, the complexity of the 
solutions increase with each of these three steps. 
We end the chapter with a discussion of two important 
design features for transonic aircraft, the supercritical 
airfoil and the transonic area rule. This discussion is 
integrated within an extensive historical note on tran- 
sonic flight. 

A quick glance at the overall roadmap for the book 
in Fig. 1.7 shows that we are now at box 15, almost at 
the end of the center column. 
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14.1 1 INTRODUCTION 
The "failure in aerodynamic theory" mentioned in the chapter-opening quote 
from von Karman reflected a frustration on the part of aircraft designers in the early 
1940s caused by the virtually total lack of aerodynamic data4xperimental or 
theoretical-in the flow regime near Mach 1. The reason for this lack of data is 
strongly hinted by some results already derived and discussed in this book. Witness 
the quasi-one-dimensional flows described in Chap. 5; note for example Fig. 5.13, 
which shows a very rapid change in Mach number at the sonic throat, i.e., for a very 
slight deviation of A/A* away from its sonic value of unity, the corresponding 
change in M is dramatically large. The accompanying changes in all the other flow 
variables, such as pressure and density, are also large. Witness also the subsonic and 
supersonic linearized results for the flow over slender bodies discussed in Chap. 9. 
Examining such results in Eq. (9.36) for subsonic flow 

and Eq. (9.5 1) for supersonic flow 

we observe that the denominators go to zero at Mach 1, yielding infinitely large pres- 
sure coefficients-an obvious physical impossibility. These examples from our previ- 
ous discussion wave a red flag about flow near or at Mach 1. Certainly such transonic 
flow is extremely sensitive to slight changes, hence presenting experimental difficulties 
in obtaining good transonic data in wind tunnels. Also, in Chap. 9 we saw that sub- 
sonic and supersonic flows involving small perturbations can be described by linear 
theory, providing such useful results as Eqs. (9.36) and (9.51) listed here. We also 
saw that flow in the transonic regime is described by nonlinear theory-a much more 
difficult situation, and hence presenting theoretical difficulties in obtaining good 
transonic information. In short, transonic flow historically has been an exceptionally 
challenging problem in aerodynamics, yielding its secrets only slowly and grudg- 
ingly over the years. Today, the use of slotted-throat wind tunnels (test sections with 
holes or longitudinal slots in the walls to relieve the sensitivity of transonic flows to 
slight changes, and to attenuate waves from the test model which propagate outward 
at nearly right angles to the flow and impinge on the tunnel walls) has created a rev- 
olution in the accurate experimental measurement of transonic flows. Also, the 
power of computational fluid dynamics has created a similar revolution in the ability 
to calculate and predict the nature of transonic flows. However, in spite of these 
"revolutions," transonic flow today still stands as a challenging state-of-the-art prob- 
lem in modern compressible flow, and this is one of the two reasons why we are de- 
voting a chapter to it here. The other reason is because of the importance of transonic 
flow for engineering applications. For example, almost all the existing commercial 
jet transports today cruise at free-stream Mach numbers around 0.8-penetrating 
the lower side of the transonic regime. Also, almost all air combat among modern 
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supersonic tighter planes takes place at or near Mach 1-no matter what the top 
speed of the aircraft. Of course, all supersonic and hypersonic aircraft-including 
the space shuttle-must pass through the transonic regime on their way up and 
down. Hence, in the world of modern compressible flow, it is important to have some 
feeling for the nature of transonic flow, and some understanding of the analysis of 
such flows. 

The purpose of this chapter is to provide such a "feeling," and nothing more. 
Transonic flow is a subject that dictates a book almost by itself, such as given by 
Ref. 98. In this chapter we will only examine the major aspects of the subject; in this 
fashion, as in Chap. 13, the present chapter will be intentionally long on philosophy 
and methodology, but short on details. 

14.2 1 SOME PHYSICAL ASPECTS 
OF TRANSONIC FLOWS 

A general physical picture of transonic flows is discussed in Sec. 1.3, and sketched in 
Figs. 1. lob and c; this material should be reviewed at this stage before progressing 
further. Also, the concept of the critical Mach number M,, is discussed in Sec. 9.7. 
The critical Mach number is that free-stream Mach number at which sonic flow is 
first obtained on a body; in this sense, the transonic regime begins when the critical 
Mach number is reached. The material in Sec. 9.7 should also be reviewed before 
progressing further. 

As discussed in Sec. 1.3, transonic flow is characterized by mixed regions of 
locally subsonic and supersonic flow that occur over a body moving at Mach num- 
bers near unity. Also, the general three-dimensional flow in the throat region of su- 
personic nozzles is transonic. The physical characteristics of transonic flow are 
nicely illustrated by the series of schlieren photographs shown in Fig. 14.3, obtained 
from Ref. 99. Here, we see the flow over three different airfoils for different values 
of the free-stream Mach number. Moving from bottom to top, you can see the influ- 
ence of increasing free-stream Mach number from M, = 0.79 to M, = 1 .O. Going 
from left to right, you can observe the effect of increasing airfoil thickness, ranging 
from the NACA 64A006 airfoil of 6 percent thickness to the NACA 64A012 airfoil 
of 12 percent thickness. The schlieren photographs show the various shock wave pat- 
terns as well as regions of the flow separation. Superimposed on each photograph are 
the measured pressure coefficient distributions over the top (solid curve) and bottom 
(dashed curve) surfaces of the airfoil. The scale for the magnitude of the pressure co- 
efficient is shown at the left of each row: as is usual in aeronautical practice, negative 
values of C, are given above the horizontal axis, and positive values below. Also, the 
short horizontal dashed line at the left of each row gives the value of the critical pres- 
sure coefficient CPcr corresponding to the specific value of M, listed at the right of 
each row. (See Sec. 9.7 for the definition and significance of C,,cc.) Starting with the 
lower left-hand photograph for the NACA 64A006 airfoil at M, = 0.79. we observe 
a pocket of supersonic flow extending from just downstream of the leading edge to 
about 35 percent of the chord length, where it is terminated by a nearly normal shock 
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NACA 64A006 NACA 64A009 NACA MA01 2 

Figure 14.3 1 Aseries of schlieren photographs illustrating the effects of increasing 
free-stream Mach number (from bottom to top in the figure) and increasing airfoil thickness 
(from left to right in the figure) on the transonic flow over airfoils. (From Ref. 99.) 

wave. This supersonic pocket is identified by the nearly white region in the photo- 
graph; the supersonic flow has weak expansion waves propagating from the airfoil 
surface, and terminating at the sonic line above the airfoil or at the shock wave itself. 
(The optical nature of the schlieren method applied here causes regions of decreas- 
ing density such as expansion waves to appear light and regions of increasing density 
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such as shock waves to appear dark.) This picture illustrates the type of flow charac- 
teristics sketched earlier in Fig. 1. lob. Note that the magnitude of the measured pres- 
sure coefficient along the top surface substantially exceeds CAr for a distance of 
about 35 percent of the chord length downstream of the leading edge. further con- 
firming the existence of locally supersonic flow in that region. Note that the mea- 
sured C,, almost discontinuously drops to a value below C,,Lr behind the shock, 
heralding the region of locally subsonic flow downstream of the shock. Note also that 
C, along the bottom surface does not exceed C,,Lr; hence, the flow over the bottom 
surface is completely subsonic. Now move to the next photograph directly above. 
Here, for the same NACA 64A006 airfoil, the free-stream Mach number has been in- 
creased to M ,  = 0.87. For this case we observe a greatly enlarged region of super- 
sonic flow over the top surface, and the shock wave has moved downstream, closer 
to the trailing edge of the airfoil. The shock is now stronger, and this causes the vis- 
cous boundary layer to separate from the surface in the region where the shock 
impinges on the surface. The separated boundary layer can be seen as a region of in- 
tense vorticity trailing downstream of the shock impingement point. The flow is still 
subsonic along the lower surface. Moving to the next photograph directly above (for 
M, = 0.94), we see virtually the entire upper surface immersed in a locally super- 
sonic flow, and the shock wave has almost reached the trailing edge. There is now a 
small pocket of supersonic flow under the bottom surface as well, as indicated by the 
weak waves shown in the schlieren photograph: this is also indicated by the values of 
C,, on the lower surface that slightly exceed C,,Lr over a small portion of the bottom 
surface. When M ,  is increased to 1 .O. as shown in the top photograph, the flow is su- 
personic over the entire top surface, and is supersonic over a substantial portion of 
the bottom surface. The shock waves have moved to the trailing edge itself, and the 
mechanism for forming the leading-edge bow shock wave is beginning to appear. In 
this sense, this photograph shows the beginning of the type of flowfield sketched in 
Fig. 1 .10~ .  Now, as we move from left to right in Fig. 14.3, we see the effect of in- 
creasing the airfoil thickness. Note that the increased thickness causes a larger per- 
turbation of the flow; the flow will expand to a greater degree over a thicker airfoil, 
and hence the transonic effects are stronger for thicker airfoils. The local Mach num- 
bers inside the supersonic regions become larger, which in turn causes the terminat- 
ing shock waves to be stronger. Note that the regions of separated flow induced by 
the impingement of these shock waves on the viscous boundary layer also become 
more extensive. Scanning along the top photographs in Fig. 14.3, namely those of 
M, = 1 .O, we note that both the upper and lower shocks are now at the trailing edge, 
and for this case the region of separated flow is greatly diminished. 

The separated flow associated with the shock wavefboundary layer interaction 
shown in Fig. 14.3 is caused by the following mechanism. The pressure increases 
almost discontinuously across the shock wave. This represents an extremely large 
adverse pressure gradient. (An adverse pressure gradient is one where the pressure 
increases in the flow direction.) It is well-known that boundary layers readily sepa- 
rate from the surface in regions of adverse pressure gradients. When the shock wave 
impinges on the surface, the boundary layer encounters an extremely large adverse 
pressure gradient, and it will almost always separate. This shock wavelboundary 
layer interaction is one of the most important aspects of transonic flow. Along with 
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the total pressure losses (entropy increases) caused by the shock waves themselves, 
the shock-induced separated flows create a large rise in drag on the airfoil-the drag- 
divergence phenomenon that is always associated with flight in the transonic regime. 
(See Ref. 1 for a basic description of the drag-divergence behavior of airfoils.) This 
drag-divergence phenomenon is illustrated in Fig. 14.4, taken from Ref. 100. This is 
a plot of drag coefficient versus M ,  for an NACA 23 15 airfoil; the different curves 
correspond to different angles of attack. Note the extremely rapid rise in drag coeffi- 
cient as the Mach number approaches 1. This is perhaps the most significant conse- 
quence of the transonic regime. 

In the present chapter, we deal with inviscid flows only; hence, the shock wave1 
boundary layer interaction will not be discussed further. As we will see, modern 

a0 
(degrees) 

5 
4 
3 
2 
1 

Mach number, M 

Figure 14.4 1 Variation of the drag coefficient with Mach 
number for an NACA 23 15 airfoil, illustrating the drag- 
divergence phenomenon as Mach 1 is approached. 
Experimental results are given for angles of attack ranging 
from -lo to 5" .  (From Loftin, Ref. 100.) 
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computational solutions of inviscid transonic flows can predict many aspects of tran- 
sonic flows, including the strength and location of the shock waves. From these solu- 
tions, the drag-rise phenomenon shown in Fig. 14.4 can be modeled to some extent. 
However, for the most accurate analysis, a viscous flow solution is necessary. Such 
solutions for viscous transonic flows are now focusing on numerical solutions of the 
complete Navier-Stokes equations-a state-of-the-art problem that is far beyond the 
scope of this book. 

14.3 1 SOME THEORETICAL ASPECTS 
OF TRANSONIC FLOWS; 
TRANSONIC SIMILARITY 

Inviscid transonic flows are governed by the partial differential equations derived in 
Chap. 6, namely the Euler equations, repeated here: 

Continuity: 

DV 
Momentum: PK = -VP ( 14.2) 

In these equations, we are assuming an inviscid, adiabatic flow with no body forces. 
For numerical solutions of inviscid transonic flows, the Euler equations are concep- 
tually the most accurate equations. Entropy gradients are present in transonic flows 
due to the presence of the shock waves seen in Fig. 14.3; in turn, these flows are ro- 
tational as demonstrated by Crocco's theorem (see Sec. 6.6). The Euler equations 
given by Eqs. (14.1) through (14.3) are applicable whether or not the flow is 
rotational. 

We have stated that the transonic flows shown in Fig. 14.3 are rotational-but 
to what degree? Are the shock waves that appear in such flows weak enough to allow 
us to neglect the rotationality of the flow in some cases'? Let us address this question 
further. Return to Eq. (3.60) for the entropy change across a normal shock wave, 
repeated below: 

Recall that c,, = y R / ( y  - I ) .  Then Eq. (3.60) becomes 
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For convenience, let m = M; - 1. Then the first term in square brackets in 
Eq. (14.4) becomes 

and the second term in square brackets becomes 

Substituting Eqs. (14.5) and (14.6) into Eq. (14.4), we have 

For transonic flows, M I  1, hence m << 1. Thus, each logarithmic term in 
Eq. (14.7) is of the form (1 + E ) ,  where E << 1. Recall the series expansion: 

In(1 + E )  = E - ~ ~ / 2  + ~ ~ 1 3  + . . . 
With this, Eq. (14.7) is given by 



Note that the t e r m  inbolv~ng 111 and III' In t q .  ( 14.8) c,~ncel.  q ~ e l d ~ n g  

The result in Eq. ( 13.9) states that the entropy increase acsoss a weak shock is of 
third ordpu in terms ol' M ;  - 1 ); when (Mf -- I )  << 1 as for transonic flows. then 
the entropy increase acres\ thc \hock is \YI:\.  small. [Note i'rom Eq. (3.57)  that the 
.strength of a shock as indicated by the ratio ( 1 7 2  - 111 )Ill1 is proportional to Mf - 1 ; 
hence. Eq. (14.9) states that the entropy increase i~cross the shock is of third ostler in 
the shock strength.] 'Therefore, for the transonic flows \how11 in Fig. 11.1. hle can 
LI.Y.SLLIIZ~ that the flow i h  essentially i.sc,rlt~q,ic.. the x t u a l  increaw in entropy being of 
third order in shock strength and hence negligible t'or the case of transonic tlow. In 
turn, we can o.s.slul~e that the flow is essentially irrottrrio~itrl. This answers the clues- 
tion asked at the beginning ol'the paragraph. (Keep in ~iiintl that this is an approxi- 
mation only: Ihr the high end of the transonic range. say for M I  = 1 .?. the entropy 
changes may be too large to ignore. llic ha \c  already explored this matter in Exam- 
ple 3.9, which you sho~~lif  review before proceeding fill-lher.) 

If we make the assumption that the transonic flow is irrotational o n  the basis of 
very small entropy changes as cliscussetl above, then a velocity potential @ can be 
detined such that V = VcD, and the go\wning Eulet- equations. Eqs. ( 14. I )  through 
( 14.3), cascade to a single equation in ternis of Q. as d e x i h e d  in Chap. 8. This cqua- 
tion was derived as ELI. (8.17). repeated here: 

'I'he advantages of Eq. (8.17)  l iv  a floulielcl analysis. a \  long as the How is irrota- 
tional, were described in Chap. 8: i t  is strongly reconr~l~ended that you review the 
material in Chap. 8 before proceeding further, especiull) c o ~ ~ c e r n i n g  the derivation of 
Eq. (8.17) and the theoretical advantages obtaincd by using Eq. ( 8 .  17). 1;or an irrota- 
tional. isentropic flow. Eq. (8.17) is ;In exact relation. Its use lor the analysis of the 
transonic flo\vs hhown in t:ig. 14.3 is only approxiimatc. hut as argued here. the ap- 
proximation appears to he reasonable. 

Equation (8.  17) holds tbr any body shape, tl~ick 01- thin. at any angle of attack. If 
we are conce~mecl with the tnuisonic Hov, over a slender Ixdq at sniall angle of attack, 
then we can make the assumption of small perturbations. as  described in Chap. 9. This 
leads to the definition of ;t~)c~rtlrrhcrtiorr velocity potential 4. defined as @ = V,.v + 4, 
and Eq. (8.17) is written in ternis of 4. yielding the pertin-hation-velocity potential 
equation given by Eq. (9. I ) .  This equation is \till exacr for an irrotational. isentropic 
flow. It can be reduced to a simpler li)rni i f  the ussimption ol' .s~~ltrll /~c~i-trrrb~/tio~z.s is 
made, as explained in Sec. 9.1. 'I'he result of this reduction leads to Eq. (9.6). which 
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Figure 14.5 1 Definition of slenderness ratio t. 

holds for subsonic and supersonic flow. However, as noted in Sec. 9.2, for transonic 
flow an extra term appears in the reduced, small-perturbation equation, yielding 

Equation (14.10) is the transonic small-perturbation equation. Make certain to re- 
view Sec. 9.2 to understand how this equation is obtained. 

Equation (14.10) is a dimensional equation; a particularly interesting result can 
be obtained by nondimensionalizing this equation, as follows. Let t be the slender- 
ness ratio of the body; t = b/c ,  where b and c are the maximum thickness and length 
of the body, respectively, as sketched in Fig. 14.5. Note that, for flow with small per- 
turbations, r must be small. Also observe from Fig. 14.3 that the disturbances in a 
transonic flow reach far above and below the airfoil, i.e., the lateral extent of the dis- 
turbances is large compared to the streamwise extent. Hence, in Eq. (14.10) the phys- 
ical domain where nonzero values of the perturbation potential @ are concentrated 
extends to large values of y and z, but are limited to the streamwise region of x x c. 
This motivates a transformation of (x, y ,  z) into (i, j, Z), where 2 ,  j ,  and Z are all of 
the same order of magnitude. This can be achieved by defining the following nondi- 
mensional independent variables: 

At the same time, consider a nondimensional perturbation velocity potential defined by 

To nondimensionalize Eq. (14.10) according to the definitions just presented, we first 
write it as 
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Combining terms, we obtain 

Let us define the transonic similarity parameter K as 

Then Eq. (14. I I )  is written as 

[ K  - ~ k ( y  + I)$,] 4,i + (jii + 4:: = O (14.13) 

Finally, assuming that the Mach numbers are near unity for transonic How, replace 
M, in Eq. ( 14.13) by unity, obtaining 

Equation (14.14) is the trunsonic similarity equation; it is essentially another form 
of the transonic small-perturbation equation given by Eq. (14.10). However, 
Eq. (14.14) contains a special message. Consider two flows at different values of M, 
(but both transonic) over two bodies with different values of 7, but with M ,  and s 

for both flows such that the transonic similarity parameter K is the same for both 
flows. Then Eq. (14.14) states that the solution for both flows in terms of the nondi- 
mensional quantities $(i, j .  2 )  will be the same. This is the essence of the tt-un.ronic 
similurity principle. In turn, the pressure coefficients for the two flows are related 
such that c,,/tV3 is the same between the two flows, i.e., 

L" = -24, = f ( K ,  x. 7.5) 
t 2 / l  

(14.15) 

The proof of Eq. (14.15) is left as a homework problem. Keep in mind that transonic 
similarity is an approximate theory, good only for flows over slender bodies at small 
angles of attack, and where the transonic shock waves are weak enough to assume an 
isentropic, irrotational flow. 

In summary, there are three echelons of transonic inviscid flow theory. 

Solutions of the Euler equations, given by Eqs. (14.1) through (14.3). Thcse 
are the exact solutions, since the Euler equations contain no special 
assumptions in regard to the inviscid flow. 

Solutions of the potential equation, given by Eq. (8.17). These solutions are 
approximate, because they assume the shock wave present in the transonic 
flowfield is weak enough to justify treating the flow as isentropic and 
irrotational. This is frequently a good assumption, because the entropy change 
across a shock wave at transonic speeds is only of third order in the shock 
strength. 

Solutions of the small-perturbation potential equation, in the form of 
Eq. (14.10) or Eq. (14.14). These solutions are a further approximation, good 
only for the flows over slender bodies at small angles of attack. It is within this 
framework that the transonic similarity principle holds, as derived here. 
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It is important to note that all three levels of equations for the analysis of transonic 
flow-the Euler equations, the full potential equation, and the perturbation potential 
equation-are nonlineur equations. Any type of transonic theory is nonlinear theory. 
This important aspect of transonic flow was first noted in Sec. 9.2, and is plainly ev- 
ident in the equations discussed in the present section. The nonlinearity of transonic 
flows has made such flows very difficult to solve in the past; this is essentially 
responsible for the "failure in aerodynamic theory" expressed in von Karman's quote 
at the beginning of this chapter. However, the advent of computational fluid dynam- 
ics has changed this situation in recent years. Successful numerical solutions to all 
three echelons of equations itemized above have been obtained for a variety of 
applications. These numerical solutions are the subject of the rest of this chapter. 

14.4 1 SOLUTIONS OF THE SMALL-PERTURBATION 
VELOCITY POTENTIAL EQUATION: 
THE MURMAN AND COLE METHOD 

In the present section, we will address the solution of Eq. (14.1 O), or equivalently, 
Eq. (14.14). This class of transonic flowfield solutions is best exemplified by the 
work of Murman and Cole (Ref. IOI), which has become a classic in the field. We 
will outline their approach in this section. 

To illustrate the method, we will consider the airfoil in physical space shown 
at the left of Fig. 14.6. For simplicity, the angle of attack is zero and the airfoil is 

Computational 
module 

Body 

Physical space Computational (transformed) space 

Figure 14.6 1 Physical and computational spaces. 
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symmetric, hence a ~ero-lift case is considered. (However, this is not necessary; 
small-perturbation solutions can be obtained for thin nonsymmetric airfoils at small 
angle of attack.) We wish to obtain the two-dimensional, inviscid, transonic flowfield 
over this airfoil as governed by Eq. (14.10) written in (s, y) space. The numerical so- 
lution itself is carried out in the transformed (i, y)  space shown at the right of 
Fig. 13.6, using the transformed equivalent of Eq. (14.10). namely Eq. (14.14). In 
particular, Eq. ( 14.14) is replaced by a finite-difference equation evaluated over the 
rectangular grid in (i. \.) space. A computational module [a segment of the grid, 
showing the grid points used for the finite-difference representations at the grid point 
( i ,  , ; ) I  is drawn above the grid. The airfoil is represented by the line from 0 t o  1.0 
along the j = 0: axis; the surface tangency boundary condition along the body is 
evaluated at \. = 0, consistent with the small-perturbation assumption. This bound- 
ary condition is given by Eq. (9.19). where the shape of the body is expressed as 
y = , f ' (s ) .  That is, 

However, from the transformation defined in Sec. 14.3, we have 

Combining Ekp. ( 14.16) and ( 14.17). the surface boundary condition becomes 

1 df' & ( n , ~ )  = -- 
t tln 

where dflr1.i is a known function of x, hence i .  Equation (14.18) represents the 
boundary condition for 0 5 .? 2: 1 along the ?; = 0 axis, as shown by the heavy line 
in the grid drawn in Fig. 14.6. For all other values of ,? along the line j = 0, the flow 

- 

symmetry condition, 4 ,  = 0, is used. An appropriate, second-order one-sided tiiffer- 
ence I'or &i at the surface is (see Ref. 18) 

where grid point (i,  I )  is along the j = 0 axis, and points (i. 2)  and (i ,  3) are directly 
above it, a\ <hewn i n  Fig. 14.6. Hence, a tinite-difference expression for the surface 
boundary condition is.  from Eqj. (14.18) and (14.19), 

For the boundary conditions along ab, bc, and cd which form the left, upper, and 
right boundaries of the grid in Fig. 14.6, it is tempting to apply free-stream condi- 
tions. However. keep in mind that, in a subsonic flow (albeit near Mach I), distur- 
bances reach out to infinity in all directions away from the body. Therefore, we 
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should apply the free-stream conditions only if the outer boundaries of the grid were 
an infinite distance away, which is certainly not the practical case shown in Fig. 14.6. 
Instead, a more appropriate "far-field" boundary condition-not the free-stream con- 
ditions-should be applied along ab,  be,  and ed.  This "far-field" boundary condition 
is expressed in terms of the far field associated with a doublet singularity. It takes the 
form of 

where 9 is the effective doublet strength, obtained as part of the solution, and i and 
j are the coordinates along ab, bc, and cd. The arguments surrounding the develop- 
ment of Eq. (14.21) as well as the calculation of CZ are too lengthy to relate here; the 
reader is encouraged to study Ref. 101 for the details. Equation (14.21) is given here 
only for the sake of illustration in our discussion of the boundary conditions. 

For the remainder of the flowfield over the grid in Fig. 14.6, Eq. (14.14) is used. 
The proper finite-difference form of the 2 derivatives in Eq. (14.14) depends on 
whether the flow is locally subsonic or supersonic, and it is this aspect where 
Murman and Cole in Ref. 101 make a fundamental contribution to the state of the art 
of transonic flowfield calculations. If the flow is locally subsonic, then information at 
point ( i ,  j )  can come from both upstream and downstream, and an appropriate finite- 
difference representation is the standard second-order central difference formula: 

and 

However, if the flowfield is locally supersonic, then information at point ( i ,  j) can 
only come from upstream. This motivates the use of upwind differences, namely, 

and 

In both the locally subsonic and supersonic cases, the j derivative is replaced by cen- 
tral differences. as follows: 

The grid points which are used in Eqs. (14.22) through (14.26) are shown in the com- 
putational module in Fig. 14.6. Using the above finite-difference quotients, let us 
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obtain the difference equation which results from Eq. (14.14). First, consider locally 
subsonic flow, where the derivatives are expressed by Eqs. (14.22), (14.23), and 
(14.26). By direct substitution into Eq. (14.14), we have 

In the case of locally supersonic flow, where the der~vatives are expressed by 
Eqs. ( 14.24) through ( 1  4.26). the difference form of Eq. (14.14) is 

Equations (14.27) and (14.28) can be solved by the rather standard relaxation 
technique, also called the iterative technique, which is described at length in most nu- 
merical analysis texts; in particular, see Ref. 102 for details. The relaxation technique 
is carried out as follows. Examining the computational grid shown in Fig. 14.6. first 
assunw values for 4 at all grid points. Now concentrate on the grid point (i, Q ) .  Test 
to see if the flow is locally subsonic or supersonic at (i, j); if it is subsonic, use 
Eq. (14.27), and if it is supersonic, use Eq. (14.28). In either Eq. (14.27) or (14.28), 
as the case may be, treat &,,, as the unknown variable, and use the assumed (speci- 
fied) values fhr the 4 's  at other grid points. In this manner. Eq. ( 14.27) is expressed as 

where A and B are known numbers, and Eq. (14.28) is expressed as 

where C ,  D, and E are known numbers. Solve either Eq. (14.29) or (14.30), as the 
case may be, at each internal grid point throughout the computational grid in 
Fig. 14.6. Now, use the new set of 4 's  just obtained above to calculate new values 
for A ,  B, C, D, and E ,  and again solve Eq. (14.29) or (14.30) at each grid point. 
Continue this process until the values of $;,, relax to the same values from one com- 
putational step to another, i.e., until the solution converges. 

The simple relaxation procedure discussed above can be somewhat lengthy in 
terms of the computer time required for obtaining convergence. The convergence can 
be accelerated by using successive line relaxation (see Ref. 102). In this modification 
of the simple relaxation method, the values of 4 along a vertical line of grid points in 
Fig. 14.6 are singled out to be treated as the unknowns in Eq. (14.27) or (14.28). That 
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is, - in these equations, $;,j+l, ?;, j ,  and $;,j-l are treated as unknowns; all the other 
4's that appear in these equations are given the known value obtained from the pre- 
vious relaxation step (or the previous line relaxation). When Eq. (14.27) or (14.28) is 
applied at each grid point in the vertical line (i, I) ,  (i, 2), . . . , (i, j ) ,  . . ., a system of 
simultaneous algebraic equations is obtained; these equations must be solved to- 
gether. In each of these equations there are three unknowns. For example, at grid 
point (i, 3), the unknowns are $I;,*, $ i ,3 ,  and &,4. At grid point (i, j ) ,  the unknowns 
are d;i,j-l, $;,j, and $ i , j + l .  And so forth. When expressed in terms of matrix repre- 
sentation, these equations for the single vertical line of grid points result in a tridiag- 
onal matrix, which can be easily treated by standard techniques. After all the 
unknowns are solved along the vertical row of grid points as described above, we 
move to the right in Fig. 14.6, and now treat the next vertical row of points 
(i + 1, I), (i + 1, 2), (i + 1, 3), . . . , (i + 1, j ) ,  . . . , in the same manner. In this fash- 
ion, all the 4's for one relaxation step are calculated by solving the unknowns along 
each vertical line, sweeping from left to right in the grid shown in Fig. 14.6. When 
this sweep is finished, return to the vertical line of grid points at the extreme left, and 
start the next relaxation step. 

This description is intended to provide only a "feeling" for the numerical tech- 
nique used to solve Eq. (14.14). For more details on the numerical approach, consult 
Ref. 102, and for details on the complete solution of the transonic small-disturbance 
solutions, see Murman and Cole (Ref. 101). 

Typical results obtained by Murman and Cole are shown in Fig. 14.7. Here, the 
surface pressure coefficient distributions are given for a symmetric circular arc air- 
foil at zero angle of attack for two different values of the transonic similarity para- 
meter K .  The solid line represents the calculations from Murman and Cole, and the 
open circles are experimental data obtained from Knechtel (Ref. 103). In Fig. 14.7a, 
K,  is a modified transonic similarity parameter, defined as 

The value of K,  = 3 pertains to a free-stream Mach number below M,,; hence, the 
flow is completely subsonic. Note the smooth, symmetric pressure distribution for 
this case. In Fig. 14.7b, the value K,  = 1.3 pertains to a free-stream Mach number 
above M,,; hence, the flow is mixed subsonic-supersonic. That portion of the flow 
where IC, I > lCpcr I is locally supersonic. Note the unsymmetrical pressure distribu- 
tion as well as the rapid increase in pressure at about 2 % 0.8. This rapid pressure 
change is indicative of a shock wave at that location; the drop from supersonic to 
subsonic flow at about i % 0.8 is another indication of the presence of the shock 
wave. Note that the pressure jump across the shock wave is relatively sharp in the 
calculations, but that it is somewhat diffused in the experimental data. This is most 
likely due to the effect of shock wavelboundary layer interaction in the experimental 
results, creating a locally separated flow at the surface. Such viscous effects are, of 
course, not included in the inviscid calculations. 

The value of small-perturbation solutions of transonic flows is demonstrated 
by the results in Fig. 14.7. For the subcritical case (Fig. 14.7a), excellent agreement 
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- Cornputatmils iMurman md Cole, Ref 101) 

0 Rec = 2 x 10" Experiment\ Knechtel (Ref 103) 

A Rt< = 2 x 10' (LE roughne\\) 

Figure 14.7 1 Pres\ure coefficient distribution\ for a circular arc airfoil: 
comparimn between experiment and calculation. (From Murman and Cole. 
Ref. 101 . )  ( ( 1 )  Free-slream Mach number below M,, (subcritical case). 
( h )  Free-stream Mach number abme M,, (supercritical case). 

between computation and experiment is obtained. For the supercritical case 
(Fig. 14.7b), excellent agreement is also obtained, except in the vicinity of the shock 
wave. Hence, small-perturbation solutions of transonic flows-the simplest of the 
hierarchy of techniques described in Sec. 14.3-can give useful results. 

Returning again to Fig. 14.7b, we repeat that the numerical calculations give re- 
sults that are indicative of a shock wave in the flow (as we would expect, on the basis 
of our physical considerations discussed in Sec. 14.2). However, this leads to the fol- 
lowing question: Since the transonic small-perturbation equation assumes an isen- 
tropic flow, how can a shock wave be predicted by such an equation? The answer 
rests in the artificial viscosity which is present in the numerical solution. As dis- 
cussed in Sec. 12.8, the truncation error in a numerical solution can give rise to an in- 
herent artificial viscosity in the numerics, and this "numerical dissipation" acts math- 
ematically to create a shock wave in the same sense as friction and thermal 
conduction act to create the internal structure of a real shock front. Hence, even 
though a governing equation is being used that assumes isentropic flow [Eq. (14.14)], 



CHAPTER 14 Transonic Flow 

the presence of artificial viscosity allows the numerical solution to capture a shock 
wave in exactly the same sense as described in Sec. 11.15. This is a fortunate 
circumstance for all inviscid transonic flow calculations, where for many practical 
applications the presence of a shock wave is an important physical characteristic of 
such flows. 

14.5 1 SOLUTIONS OF THE FULL VELOCITY 
POTENTIAL EQUATION 

The small-perturbation solutions described in Sec. 14.4 have certain limitations. As 
always, they are limited to thin bodies at small angle of attack. This is done to en- 
sure that the perturbation velocities in the flow are indeed small. However, even for 
these cases there are regions where the perturbations are not small. For example, no 
matter how thin the airfoil, the flow velocity at the stagnation point near the leading 
edge will go to zero--hardly a "small" perturbation. The same can be said about the 
sharp, acute-angle trailing edge, where in subsonic flow the Kutta condition stipu- 
lates V = 0. (See Ref. 104 for a discussion of the Kutta condition in aerodynamics.) 
In spite of this, the small-perturbation solutions give good results in both the 
leading- and trailing-edge regions, as already seen in Fig. 14.7. This agreement is 
most likely fortuitous; as theorized by Caughey (Ref. 105), and supported by the 
work of Keyfitz et al. (Ref. 106), in the leading- and trailing-edge regions the 
error associated with the small-perturbation assumption is compensated by the trun- 
cation error in the numerical solution due to the finite grid size. Finally, examining 
Fig. 14.7, the changes in flow properties across the shock wave are not small, and 
there might be some inaccuracy in the shock location and shock properties when the 
small-perturbation equation is used. 

The concerns raised in the previous paragraph are obviated by solving the 
full potential equation for transonic flows, namely Eq. (8.17). As stated in Chap. 8, 
and repeated in Sec. 14.3, Eq. (8.17) deals with the full velocity potential Q, and 
hence allows for large changes in the flowfield variables. In particular, Eq. (8.17) 
can be applied to any size body at any angle of attack. However, the use of 
Eq. (8.17) still assumes the flow to be irrotational and isentropic. Solutions of 
Eq. (8.17) represent the next step in our discussion of the hierarchy of transonic 
flow analysis, the first step being the small-perturbation solutions discussed in 
Sec. 14.4. 

The numerical solution of Eq. (8.17) can be carried out by means of the relax- 
ation technique discussed in Sec. 14.4. However, exemplifying the adage that "you 
cannot get something for nothing," the increased accuracy associated with the use of 
the full potential equation is accompanied by increased complexity of the numerical 
solution. This increased complexity is associated with the body surface boundary 
condition. In the small-perturbation solution, the body boundary condition, namely 
Eq. (14.18), was applied along the .? axis, i.e., at j = 0. In contrast, for the full po- 
tential solution, the body boundary condition should be applied on the body surface 
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itself, i.e., 

a @  
- = 0 on .Y = f (x) 
an 

where f (x) is the shape of the body in the (x, y)  plane, and n is the direction locally 
normal to the surface. If a rectangular tinite-difference grid is used in the physical 
plane, it becomes difficult to numerically apply the boundary condition at the surface 
of the body, Eq. (14.31). First, very few (if any) of the regularly spaced rectangu- 
lar grid points would fall on the body surface, and therefore a complex system of 
interpolation has to be used to place oddly spaced grid points on the body surface. 
Such a rectangular grid, along with its complexity for the surface boundary condi- 
tion, was used and described by Magnus and Yoshihara in Ref. 107. This grid in- 
volves a fine grid embedded in a coarse grid, which finally switches to a polar coor- 
dinate grid in the far tield, as shown in Fig. 14.8a. A detail of the grid at the body 
surface is shown in Fig. 14.8b, along with the points required to apply the boundary 

Figure 14 .8~  I The patching of six different grids for the numerical 
calculation of the transonic flow over an airfoil; an approach circa 
1970 before the advent of curvilinear grid generation. (From Magnus 
and Yoshihara, Ref. 107.) 
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Figure 14.8b I Detail of the grid shown in (a) in the vicinity of the leading 
edge (Ref. 107). 

condition, namely the derivative of @ normal to the surface. One glance at Fig. 14.8 
quickly impresses upon us the complexity associated with a rectangular grid. In spite 
of this, Magnus and Yoshihara successfully used such a grid for the solution of the 
Euler equations for a transonic flow; these solutions will be discussed in the next 
section. 

The grid problem was made much more tractable in 1974 when Thompson et al. 
(Ref. 108) developed an ingenious method for constructing a boundary-fitted coordi- 
nate system around a body of arbitrary shape. In this method, the body surface 
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becomes a coordinate line in physical space, and other coordinate lines away from 
the body are generated by means of the solution of two elliptic partial differential 
equations. To be more specific, a transformation is constructed to map the curvilinear, 
boundary-fitted grid in physical space to a rectangular grid in the computational 
space. That is. the physical (x, y )  space is transformed into (<, 17) space via a set of 
elliptic partial differential equations such as 

and 

Figure 14.9 illustrates this transformation. The physical (x, y) space is shown in 
Fig. 14.9a, along with the boundary-fitted coordinate system for an airfoil. Note in 
the physical plane that the airfoil surface is a coordinate line, namely r/ = const = CI. 
All the grid points along q = cl fall on the airfoil surface. In Fig. 14.9a, cl is set to 
zero; hence q = 0 is the coordinate of the airfoil surface. The next coordinate curve 
away from the airfoil surface is q = const = ~ 2 .  The furthest curve away from the 
body is q = const = c,, . Fanning out from the body are a second series of coordinate 
lines, t: = const. The ([. q) grid in the transformed space, Fig. 14.96, is a rectangu- 
lar grid. The relationship of this rectangular grid to the analogous curvilinear grid in 
the physical space, Fig. 14.9a, is set by the transformation in Eqs. (14.32) and 
(14.33). That is, Eqs. (14.32) and (14.33) are solved to give the (x, y) coordinates in 
physical space which correspond to the (6, q) coordinates in the transformed space. 
Note in Eqs. (14.32) and (14.33) that x and v are the dependent variables, and that a 
solution of Eqs. (14.32) and (14.33) gives 

From this solution, any grid point in the rectangular grid in ([, q) space in Fig. 14.9 
can be located in the curvilinear grid in ( x ,  y )  space in Fig. 1 4 . 9 ~ .  Equations (14.32) 
and (14.33) are elliptic partial differential equations which can be solved numerically 
by a relaxation method. These equations, and their solution, are associated with 
the generation of the curvilinear, boundary-fitted coordinate system in Fig. 14.90; 
they have absolutely nothing to do with the physics of the flowfield itself. Equa- 
tions (14.32) and (14.33) are simply the definition of a grid transformation, and noth- 
ing else. Because the transformation is defined by a set of elliptic partial differential 
equations, it is called an elliptic grid transformation. See Ref. 108 for a detailed dis- 
cussion of elliptic grid generation. Also, an extensive but elementary treatment is 
contained in Ref. 18. An actual example of a boundary-fitted curvilinear grid for an 
airfoil is shown in Fig. 14.10; this is an elliptically generated grid from Ref. 1 10, ob- 
tained using the technique of Ref. 108. In this grid, the points near the body surface 
are so close together that the graphics show them essentially as a continuous black 
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b  

( a )  Physical plane 

+ 
5 

( b )  Computational plane 

Figure 14.9 1 (a )  Schematic of a boundary-fitted curvilinear grid in the physical (x, y)  space. 
(b) Schematic of a rectangular grid in the computational (<, q )  space, obtained from the 
grid in (a)  by means of a suitable transformation. (From Ref. 18.) 

area. Fig. 14. lob shows that portion of the grid near the airfoil; in reality, the full grid 
reaches much further away from the body such as shown in Fig. 14.10~.  This grid 
was constructed for a viscous flow solution; hence, it requires a number of finely 
spaced points near the body. For the inviscid flow discussed here, the actual grid may 
not have to be so finely spaced. 
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Figure 14.10 1 ( a )  Actual boundary-fitted curvilinear grid around an airfoil, obtained by an 
elliptical grid generation technique patterned after Thompson et al. (Ref. 108), and carried 
out by Kothari and Anderson in Ref. 110. The airfoil is the small speck in the center of the 
grid. (b)  Detail of the boundary-fitted grid in the vicinity of the airfoil. (From Ref. 110.) 

For a given problem, the curvilinear grid is constructed first, independent of the 
flowfield solution itself. After this grid is formed, then the flowfield is solved using 
the full potential equation, namely Eq. (8.17). This equation is solved in the rectan- 
gular grid in ( e ,  q )  space shown in Fig. 14.9b. To this end, Eq. (8.17) must be trans- 
formed into ((, v )  space. The details of this transformation are straight-forward. but 
lengthy; see Refs. 102 and 109 for a complete description of the general transfor- 
mation. Finally, the transformed version of Eq. (8.17) in terms of a 2 @ / a q 2 ,  a @ / a q ,  
i12@/ac ,  a @ / a { ,  etc., is solved. [The derivation of the transformed version of 
Eq. (8.17) is left as a homework problem.] These derivatives are replaced by the 
finite-difference expressions shown in Eqs. (14.22) through (14.25), except now in 
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terms of 6 and q. The solution for Q, is then carried out by a relaxation method 
using the transformed version of Eq. (8.17). After the @ and the corresponding flow 
variables are calculated in the transformed grid (Fig. 14.9b), these same variables 
are carried directly to the corresponding grid points in the physical plane; in this 
manner, the complete flowfield is obtained as a function of x and y in the physical 
plane. 

The differences between results obtained with the full potential equation and 
those obtained with the small-perturbation potential equation are graphically illus- 
trated in Fig. 14.1 1, which shows data calculated by Keyfitz et al. (Ref. 106). Here, the 
pressure coefficient distributions over the top and bottom surfaces of a Joukowski air- 
foil are shown; only the leading-edge region is shown, where 0 5 x l c  5 0.1. (Note 
that, in contrast to the usual aerodynamic convention in Fig. 14.11 positive values of 

Thin Joukowski airfoil 
M, = 0.8, a = l o ,  b / c  = 0.1 

P 
- Analytical series solution 

, x 
Numerical TSD solution 

i xx 

x Numerical FPE solution 

X 
- \ 

Figure 14.11 1 Analytical and numerical solutions 
for the pressure coefficient distributions near 
the leading edge of a thin Joukowski airfoil. 
(By Keyfitz et al., Ref. 106.) 
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C',, are plotted in the upper quadrant.) As described earlier. it is this leading-edge 
region of the airfoil where the assumption of small perturbations is least accurate. 
In  Fig. 14.1 1, TSD stands for transonic small disturbance (solution of the small- 
perturbation potential equation as discussed in Sec. 14.4). and FPE stands for full 
potential equation (solution of the full velocity potential equation as discussed in the 
present section). Also, the solid line in Fig. 14.1 1 represents an analytical solution to 
the small-perturbation potential equation in the leading-edge region, as reported in 
Ref. 106; this analytical solution agrees well with the TSD numerical solution. How- 
ever, the primary message conveyed by Fig. 14.1 l is that the more accurate FPE 
solution is quite different from the TSD solution in the leading-edge region; note that, 
for the most part, the TSD solution underpredicts the pressure, and shows a 
more rapid rise in pressure as the leading edge is approached. It should be noted that 
Keytitr et al. examined the effect of mesh size on the results, and found that the 
TSD results in the nose region were very sensitive to the tineness of the grid in that 
region. The results shown in Fig. 14.1 1 were obtained with a mesh fine enough such 
that the results are relatively grid-independent. 

Numerical solutions to both the small-perturbation and full potential equations 
in transonic flows have been extensively developed since the early 1970\, including 
the calculation of three-dimensional flows. Such a three-dimensional calculation is 
illustrated in Fig. 14.12. Here, the inviscid, transonic flow over a three-dimensional 
finite wing is illustrated. The free-stream Mach number is 0.9, and the wing is at an 

(7 Is a angle of attack such that the lift coefficient is 0.5. The airfoil section of the win, ' 

modern supercritical airfoil shape. Cordwise pressure coefficient distributions at 
three different spanwise stations are shown in Fig. 14.12. Two sets of calculations are 
displayed: ( I )  The dashed lines are numerical solutions of the small-perturbation 
potential equation using the computer code developed by Bailey and Ballhaus 
(Ref. I I I ) ,  and (2) The solid curves are numerical solutions of the full potential equa- 
tion using what has now become a relatively standard computer code called FLO-22 
developed by Jameson and Caughey as reported in Ref. 112. The circles are experi- 
mental data points obtained by Hinson and Burdges (Ref. 11  3). Indeed, the compar- 
isons shown in Fig. 14.12 were tirst made in Ref. 113, and then commented upon by 
Caughey in Ref. 105. Examining Fig. 14.12, we make these observations. 

1. There i \  a substantial difference between the small-perturbation and full 
potential result\, including a difference in the shock location. 

2. On the whole. the full potential results agree better with the experimental data 
than the small-perturbation results. 

3. The full potential results more accurately predict the shock wave location 
(the shock wave is evidenced by the rapid change in C,,, which occurs 
toward the back of the airfoil section). However, the effect of the artificial 
viscosity seems to spread the calculated shock jump over a wider region than 
shown by experiment. It is interesting that, although the small-perturbation 
results do not accurately predict the shock location, they do provide a 
qualitatively sharper shock jump than the full potential results. 
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In summary, the full potential solutions are more accurate than the small- 
perturbation results-no surprise, because the full potential equation itself [Eq. (8.17)] 
is more accurate than the small-perturbation potential equation [Eq. (14.14)]. On the 
other hand, the full potential solutions require more work and effort, principally due 
to the treatment of the boundary condition. In modem transonic flow calculations, 
the proper application of the surface boundary condition is carried out in concert with 
the generation of a curvilinear, boundary-fitted coordinate system, thus requiring the 
solution of the velocity potential equation in the transformed (6, q )  space, which is 
rectangular. The advantage obtained with the full potential solutions is frequently 
worth this extra effort. 

14.6 1 SOLUTIONS OF THE EULER 
EQUATIONS 

The use of the small-perturbation velocity potential equation (Sec. 14.4) and the full 
velocity potential equation (Sec. 14.5) both assume irrotational flow. The results ob- 
tained seem to justify this assumption; however, note that all the results given in 
Secs. 14.4 and 14.5 apply to the low end of the transonic regime, i.e., for subsonic 
free-stream Mach numbers, for which the shock wave at the end of the pocket of su- 
personic flow is relatively weak. For transonic applications that involve stronger 
shock waves, especially those situations where the free-stream Mach number is 
above unity, the assumption of irrotational flow becomes much less accurate. Con- 
sequently, attention to transonic flow analyses in recent times has shifted to the so- 
lution of the Euler equations, given by Eqs. (14.1) through (14.3). These equations 
hold for both rotational and irrotational flows; as discussed in Chap. 6, the only as- 
sumptions contained in Eqs. (14.1) through (14.3) are inviscid, adiabatic flow with 
no body forces. This also implies isentropic flow along a streamline. However, as 
discussed in Sec. 11.15, numerical solutions of the Euler equations also allow the 
capturing of shock waves in the flow, with the proper jump conditions across the 
shock wave including a discontinuous increase in entropy across the shock. This is 
the role of artificial viscosity in the numerical solution since some degree of nu- 
merical dissipation is necessary to generate the shock. Of course, the flow along a 
streamline is isentropic in front of the shock with one constant value of entropy, and 
it is isentropic behind the shock with another, but higher, constant value of entropy. 
The entropy change at the shock wave can be different from one streamline to an- 
other; thus, numerical solutions of the Euler equations allow for entropy gradients 
normal to the streamlines. Indeed, this is precisely the same physical mechanism ac- 
tually occurring in transonic flows with shocks; hence, within the assumption of an 
inviscid flow, a solution of the Euler equations represents essentially an "exact" ap- 
proach to the analysis of transonic flow. Hence, Euler solutions are the third and 
final echelon of the solution of transonic flows as discussed in Sec. 14.3. Such Euler 
solutions are the subject of this section. 

Transonic flows are mixed regions of locally subsonic and supersonic 
flows; hence, the mathematical nature of such flows in the steady state is a mixed 
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elliptic-hyperbolic problem. This is exactly the sarne problem associated with the 
steady flow over a supersonic blunt body as described in Chap. 12. As discussed 
in Chap. 12, this mixed-flow problem is circumvented by carrying out a time- 
marching solution, approaching the proper steady state in the limit of large times. 
In the same vein, solutions of the Euler equations for transonic flow problems are 
also time-marching solutions, beginning at some initially assumed starting point, 
and advancing the flowfield in steps of time using a numerical solution of the 
Euler equations for unsteady flow [i.e., using Eqs. (14.1) through (14.3) with the 
time derivatives included] until a steady-state result is obtained in the limit of 
large time. The time-marching philosophy and approach is discussed at length in 
Chap. 12, hence no further elaboration is given here. 

The first time-marching solution of the Euler equations for transonic flow was 
carried out by Magnus and Yoshihara (Ref. 107). Using the rectangular grid shown 
previously in Fig. 14.8, they set up an algorithm vaguely similar, but different in de- 
tail, to the MacCormack method discussed in Chap. 12. See Ref. 107 for such details. 
The application treated in Ref. 107 was the flow over an NACA 64A410 airfoil at 
a 4" angle of attack in a Mach 0.72 free stream. The calculated pressure coefficient 
distributions over the top and bottom surfaces of the airfoil are compared with 
experimental measurements by Stivers (Ref. 114) in Fig. 14.13. Good agreement 
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Figure 14.13 1 An early finite-difference solution of the complete Euler equations 
for transonic flow, circa 1970 by Magnus and Yoshihara (Ref. 107). Pressure 
coefficient distribution for an NACA 64A410 airfoil. 
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Figure 14.14 1 Calculated Mach number contour\ for an NACA 64A310 ado11 
M ,  = 0.72, cu = 4 (Ref. 107) 

between the time-marching solution and the experimental data is obtained over the 
bottom surface of the airfoil and for a substantial portion of the upper surface. How- 
ever, the region in the vicinity of the shock wave is not predicted well; Magnus and 
Yoshihara explain this difference as due to the shock wavehoundary layer interac- 
tion which is obviously not included in the Euler solution. Mach number contours are 
shown in Fig. 14.14. The sonic line is highlighted by the dashed curve. Note the large 
region of supersonic flow over the top surface, reaching far above the airfoil. Also 
note the value of the maximum Mach number in this region, about M = 1.45. even 
though the free-stream Mach number is only 0.72. This relatively large maximum 
Mach number is due to the angle of attack, causing the flow to expand rapidly over 
the top surface. 

By today's standards, the technique developed in Ref. 107 is somewhat out- 
dated, both in regard to the grid employed as well as the details of the algorithm. 
However, this work was pioneering because it was the first solution of the complete 
Euler equations for a transonic flow, and it introduced the time-marching approach 
for such flows. 
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Since the work of Magnus and Yoshihara in 1970, great strides have been made 
in Euler solutions to transonic flows. First, the elliptically generated, boundary-fitted 
coordinate system was developed in 1974 by Thompson et al. (Ref. 108), as dis- 
cussed in Sec. 14.5; this type of grid generation greatly increased the ease and accu- 
racy of implementing the boundary condition on the body surface simply by placing 
a number of grid points on the body surface as an integral and consistent part of the 
entire grid. Second, major improvements in the time-marching approach have been 
made which greatly shorten the computer time required to obtain the final steady 
state. In particular, finite-volume techniques rather than finite-difference approaches 
have certain advantages, along with a fine gridkoarse grid coupling technique called 
"multigrid." Such aspects are far beyond the scope of this chapter. A major developer 
of improved Euler solutions to transonic flow has been Tony Jameson of Princeton 
University; for further details of such modern solutions, see the extensive surveys by 
Jameson in Refs. 115 and 116. 

To complete this section, we will present a few results which are examples 
of modern Euler solutions to transonic flow. To begin with, let us consider the 
flow over a circular cylinder; this is a classic configuration in aerodynamic theory. 
The solution for the inviscid incompressible flow over a circular cylinder can be 
obtained from exact potential theory for incompressible flow, and is constructed 
by superimposing the flows associated with a doublet and a uniform free stream; 
see Ref. 104 for details on this solution. Such an incompressible flow solution 
theoretically corresponds to M ,  = 0, and leads to the exact formula for the pres- 
sure coefficient: 

where 9 is the polar angle measured along the surface from the front stagnation point. 
This incompressible flow result, labeled as M ,  = 0, is given in Fig. 14.15. For the 
compressible flow over a cylinder, because the circular shape is a "blunt" body, the 
flow very rapidly expands over the top and bottom surfaces. For this reason, the crit- 
ical Mach number for a circular cylinder is quite low. Indeed, it is interesting to note 
the critical Mach number for both a circular cylinder and a sphere, obtained from 
Ref. 16, as 

Circular cylinder: 

Sphere: 

The higher critical Mach number for the sphere is yet another example of the three- 
dimensional relieving effect discussed in previous chapters. Note that the transonic 
flow occurs over cylinders and spheres even though the free-stream Mach number is 
quite low. Euler solutions for the transonic flow over a circular cylinder were ob- 
tained by Jameson in Ref. 115. These results are labeled as M ,  = 0.35 and 
M ,  = 0.45 in Fig. 14.15-free-stream Mach numbers just below and just above 
M,,, respectively. For M ,  = 0.35, the flow is completely subsonic, and a smooth, 
symmetrical Cp distribution is obtained. Note that the peak (negative) Cp at the top 
of the cylinder is about -3.4, larger in magnitude than the incompressible result 



14.6 Solutions of the Euler Equations 

- Euler solutions by Jameson (Ref. 115) 

--- Incompressible flow; C, = 1 - 4 sin2 0 

Figure 14.15 1 Transonic flow over a circular cylinder; finite-volume 
solutions of the Euler equations by Jameson (Ref. 115). M ,  = 0.35 is a 
subcritical case. and M ,  = 0.45 is a supercritical case. Comparison with 
classical incompressible results ( M ,  = 0). 

of -3.0. This is consistent with the effect of compressibility on C,, as discussed in 
Secs. 9.4 and 9.5 [Applying the simple Prandtl-Glauert correction from Eq. (9.36), 
we obtain C, = -3.2, it is no surprise that Eq. (9.36) underpredicts C, because the 
Prandtl-Glauert theory is based on small-perturbation theory, and hence is applica- 
ble to slender bodies only.] For M ,  = 0.45, the flow over the cylinder is partly su- 
personic. Note the dramatic qualitative and quantitative changes in C,; the pressure 
distribution is no longer symmetrical, and a shock wave occurs slightly downstream 
of  the H = 90" location. 
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Another classic body shape in aerodynamics is the symmetric NACA 0012 air- 
foil. Recent Euler solutions for the transonic flow over this airfoil were obtained by 
Reddy and Jacobs (Ref. 117). An elliptically generated, boundary-fitted grid such as 
discussed in the previous section was used for these calculations, and is shown in 
Fig. 14.16. Figure 14.17a contains results for the variation of C, over the top and 
bottom surfaces of this airfoil at a = 1.25' and M ,  = 0.8. Figure 14.17b and c 
illustrates contours of Mach number and total pressure, respectively. The nearly nor- 
mal shock wave at about 65 percent of the chord is clearly evident in all these 
figures. In contrast to this case for a subsonic M,, Fig. 14.18a, b, and c gives the 

Figure 14.16 1 Boundary-fitted curvilinear grid for the Euler solutions by Reddy 
and Jacobs (Ref. 1 17). 



14.6 Solutions of the Euler Equations 

Figure 14.17 1 Transonic flow over an NACA0012 airfoil with a subsonic 
free-stream Mach number of 0.8 and an angle of attack of 1 . 2 5 ,  from the 
calculations of Reddy and Jacobs (Ref. 117). ( a )  Pressure coefficient 
distributions. (h)  Mach number contours. (c )  Stagnation pressure contours. 

same information for the case of a supersonic M,; in particular, for Fig. 14.18, 
M ,  = 1.2 and a = 7.0". Comparing Figs. 14.17 and 14.18, note the dramatic dif- 
ferences between subsonic and supersonic values of M,. For the supersonic case, 
Fig. 1 4 . 1 8 ~  shows a constantly decreasing pressure along both the top and bottom 
surfaces from the leading to the trailing edge. The Mach number contours in 
Fig. 14.18b fan out in an almost "Mach wave" pattern away from the body, in com- 
parison to the closed loops seen in Fig. 14.17b. The total pressure contours in 
Fig. 1 4 . 1 8 ~  clearly show an oblique shock wave at the trailing edge; the nearly nor- 
mal bow shock upstream of the nose occurs far ahead of the nose, and is off to the 
left side of the graph. 
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I Upper surface I 

Figure 14.18 1 Transonic flow over an NACA 0012 airfoil with a supersonic 
free-stream Mach number of 1.2 and an angle of attack of 7 . 0 ,  from the 
calculations of Reddy and Jacobs (Ref. 117). (a) Pressure coefficient distributions. 
(b) Mach number contours. (c )  Stagnation pressure contours. 

14.7 1 HISTORICAL NOTE: TRANSONIC FLIGHT- 
ITS EVOLUTION, CHALLENGES, FAILURES, 
AND SUCCESSES 

Return to Fig. 1.9 for a moment and examine the picture of the Bell XS-1 in flight, 
circa late 1947. This is a photograph of aeronautical engineering poetry in motion- 
an aircraft that stretched the contemporary aerodynamic state of the art to the limit 
and whose design represented a voyage into previously uncharted regions of tran- 
sonic flow. When Chuck Yeager nudged the XS-1 to a Mach number of 1.06 on 
October 14, 1947, the Bell XS-1 became the first manned aircraft to fly faster than 
sound in level flight. As noted in Sec. 1.1, this flight was one of the high-water marks 
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in the engineering application of compressible flow. The success of the XS-I was 
the culmination of a number of aerodynamic projects over the preceding 30 years- 
projects undertaken to lay bare the secrets of flows at or very near Mach 1, i.e., tran- 
sonic flows. Let us reach back over these years (and in some cases, much earlier) and 
examine the pioneering work that was ultimately highlighted by the XS- I in Fig. 1.9. 

The major obstacle to transonic and supersonic flight is the large drag rise that 
occurs when the free-stream Mach number exceeds the drag-divergence Mach num- 
ber (recall the trend shown so dramatically in Fig. 14.4). The variation of drag with 
flow velocity has always been of great interest as far back as the fifteenth century, 
when Leonardo da Vinci guessed incorrectly that flow resistance was proportional to 
the tirst power of velocity. This same tenant was held by Galileo a century later. 
However, two experimentalists, Edme Mariotte and Christiaan Huygens. both mem- 
bers of the Paris Academy of Sciences, within the space of 20 years of each other de- 
termined the ~~elociry-squured law, which today we take almost for granted. Speciti- 
cally, in 1673. Mariotte gave a paper at the Academy, where he described a series of 
tests involving water impinging on one end of a beam supported at the middle. By 
adjusting weights on the other end of the beam. Mariotte found that the force was 
proportional to v 2 .  In 1690, Huygens published a paper that made the same claim, 
hut based on an entirely different set of experiments involving falling bodies through 
air and other media. Of course. today we know that the drag coefficient CL) is rela- 
tively constant with velocity (Mach number) for a body moving at subsonic speeds 
and hence the drag D varies as v2 through the familiar relation D = ip, V; S C ~ .  
However, in the late seventeenth century, the independent results of ~ a r i o t t e ,  and 
then of Huygens, represented a tremendous advancement in aerodynamics. On the 
other hand, neither of these gentlemen had the remotest idea of what happens when 
the speed of sound is approached. Indeed, we might be inclined to think that knowl- 
edge of the transonic drag rise is a twentieth century event-but not so! The tran- 
sonic drag rise was first noted in the early eighteenth century by the well-known 
English mathematician and ballistician, Benjamin Robins. Robins invented the bal- 
listic pendulum, and by tiring high-speed projectiles into the pendulum, he noted that 
the drag of a projectile was a function of V' for most cases. However, at high speeds 
the drag exhibited a stronger velocity variation, more nearly proportional to V 3 .  
Moreover, in his paper entitled "Resistance of the Air and Experiments Relating to 
Air Resistance" in the Philosophim1 Trun.suction.s, London, dated 1746, he states 

that the velocity at which the moving body shifts resistance is nearly the same with which 
sound is propagated through the air 

Clearly, Benjamin Robins was the first person to appreciate the existence of the tran- 
sonic drag rise near Mach 1, and this was 30 years before the Declaration of Inde- 
pendence by the colonies in America. Gun-fired projectiles were routinely reaching 
the speed of sound and faster, by that time. Hence, as early as 1746, investigators in 
the field of ballistics knew that an unusually large increase in drag occurred near the 
speed of sound; they simply did not understand why. The first quantitative graph 
showing the actual variation of drag coefficient versus velocity for a projectile, with 
velocities ranging from 300 to 1000 m/s at sea level, appeared in Germany in 1910. 
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In the journal Artillerische Monatshefte, Hauptman Bensberg and C. Cranz pub- 
lished a graph that clearly showed a constant CD below 300 mls, a large increase in 
C D  in the region between 300 and 400 d s ,  and then a gradual decrease in C D  as the 
velocity increases above 400 mls. Since the speed of sound at standard sea level is 
341 mls, we know the large peak in C D  observed by Bensberg and Cranz in the ve- 
locity range 300 to 400 m/s is the now familiar transonic drag rise. This graph by 
Bensberg and Cranz is the first of its kind in history, the first to quantib the drag rise 
near Mach 1, and the first to show that CD actually decreases with increasing speed 
above Mach 1. In short, long before aerodynamicists were probing the transonic re- 
gion, ballisticians knew what was happening. This provides some poetic justice to 
the fact that the fuselage of the Bell XS-1 (see again Fig. 1.9) is exactly the shape of 
a 50-caliber machine gun bullet. 

Transonic aerodynamics in the twentieth century evolved through three distinct 
phases: (1) the knowledge that something different was happening at or near Mach 1, 
(2) a physical understanding of why these differences occurred, and (3) the ability 
to measure and compute these differences. Let us examine these phases in more 
detail. 

14.7.1 Something Different 

We have already seen that, for 150 years before the twentieth century, ballisticians 
knew that the drag on a projectile rapidly increased when its velocity approaches the 
speed of sound. However, in the world of airplane aerodynamics, this was of little 
concern in the early days of flight. When the Wright brothers successfully flew for 
the first time in 1903, their flight speed was only 35 mph; the compressibility prob- 
lems associated with flight near Mach 1 never entered their minds. However, by the 
end of World War I, in 1918, compressibility problems forced themselves onto the 
aerodynamic community in a somewhat unexpected manner. By then, the forward 
speed of high performance fighters, such as the Spad and Nieuport, had increased 
sufficiently (to about 12@ mph) that, in combination with the relative velocity due to 
the rotation of the propeller, the propeller tip speeds were approaching, and even 
slightly exceeding, Mach 1. By 1919, British researchers had already observed 
the loss in thrust and large increase in blade drag for a propeller with tip speeds up 
to 1180 ft/-slightly above the speed of sound. To examine this effect further, 
F. W. Caldwell and E. N. Fales, both engineers at the U.S. Army Engineering Divi- 
sion at McCook Field near Dayton, Ohio (the forerunner of the massive Air Force re- 
search and development facilities at Wright-Patterson Air Force Base today), con- 
ducted a series of high-speed airfoil tests. They designed and built the first 
high-speed wind tunnel in the United States-a facility with a 14-in.-diameter test 
section capable of velocities up to 675 ft/s. In 1918, they conducted the first wind- 
tunnel test involving the high-speed flow over a stationary airfoil. Their results 
showed large decreases in lift coefficient and major increases in drag coefficient for 
the thicker airfoils at angle of attack. These were the first measured "compressibility 
effects" on an airfoil in history. Caldwell and Fales noted that such changes occurred 
at a certain air velocity, which they denoted as the critical speed-a term that was to 
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evolve into the critical Mach number at a later date. Because of the importance of 
these adverse effects o n  the overall propeller performance, additional investigations 
were carried out at the National Bureau of Standards (NBS)  in the early and mid- 
1920s by Lyman J.  Briggs and Hugh Dryden. After designing and building a high- 
speed wind tunnel with a 12-in. diameter test section. capable of producing Mach 
0.95 at the nozzle exit. these researchers observed the same phenomena as Caldwell 
and Fales. I n  fact, in their report on these experiments, entitled "Aerodynamic Char- 
acteristics o f  Airfoils at High Speeds" (NACA Report No.  207: published in 1 925), 
Briggs and Dryden observed: 

We may \uppose that the speed of sound represents an upper limit beyond which an ad- 
ditional loss 01' energy lakes place. I S  at any p o i ~ ~ t  ulor~g 111e uing the velocity ot ' \ouncl i \  

reached the drag will increase. From our knowledge of the flow around airfoil\ at ordi- 
nary speeds we know that the velocity near the surface is much higher than the ycneral 
stream Lelocity . . . the increa\e being greater for the larger angles and thicker sections. 
This corresponds very well with the earlier flow breakdown for the thicker wings md all 
ol' the wings at high angle\ of attack. 

Hence, by 1925 there was plenty of evidence that an airfoil section encounters some 
marked deleterious phenomena near Mach 1. Moreover, from the preceding quote 
by Briggs and Dryden, it was well recognized that thicker airfoils encountered such 
phenomena at lower free-stream Mach numbers. Even as early as 1922. Sylvanus 
A. Reed of the NACA published results showing that a propeller with a thin airfoil 
section at the tip did not encounter the same loss in performance as an equivalent 
propeller with a thick section at the top. Clearly, by 1925, the superiority of thin 
airfoil sections at near sonic speeds was appreciated: the only aspect that was 
lacking was the total understanding as to ,thy. Indeed, as reflected in Briggs and 
Dryden's report, there was no physical understanding of the true mechanism pre- 
vailing in the high speed flow over an airfoil. To state as they did that "an additional 
loss of energy takes place" when the local flow velocity becomes sonic is simply 
begging the point. 

14.7.2 A Physical  Unders tand ing  

The work of Briggs and Dryden, although carried out by the National Bureau of 
Standards, was actually sponsored by a grant from the National Advisory Committee 
for Aeronautics (NACA).  In the 1920s, the NACA mounted a program to explain the 
"why" of transonic flow over airfoils. An initial part of this program was the contin- 
ued contractual support of Briggs and Dryden. who proceeded to build a new. small 
high-speed wind tunnel with a 2-in. diameter jet. Located at Edgewood Arsenal in 
Maryland, just north of Baltimore, this tunnel had a mildly converging-diverging 
nozzle, which produced Mach 1.08 at the exit. Using the same airfoils as in their ear- 
lier work, Briggs and Dryden examined the detailed pressure distributions over the 
airfoil surface. These tests were the first experiments in a supersonic flow carried out 
in the United States. Moreover, in NACA Report No. 255. published in 1927. Briggs 
and Dryden give the first inklings of' the physical understanding of transonic airfoil 
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flows. For example, they: 

1. Deduced that the flow separated from the upper surface. However, they 
did not realize (as we do today) that the flow separation is induced by 
the presence of a shock wave interacting with the boundary layer on the 
upper surface. 

2. Noted that the drag coefficient for the airfoil followed the same type of drag- 
divergence phenomena encountered by projectiles between about Mach 0.95 
and 1.08. 

3. Observed for the first time in history that the flow at Mach 1.08 involved 
a bow shock wave standing in front of the leading edge. 

As the speeds of airplanes continued to increase through the 1920s, the loss of 
propeller performance when the tip speeds exceeded the speed of sound became a 
more serious problem. Spurred by this situation, the NACA initiated an in-house 
program to explore the "why" of transonic flow-a program that was to continue un- 
interrupted for 25 years, and which was to become one of the NACA's crowning ac- 
complishments. A series of high-speed wind tunnels was constructed at the NACA 
Langley Memorial Laboratory, beginning with a rudimentary facility with a 12-in. 
diameter nozzle exit. With Eastman Jacobs as the tunnel director and John Stack 
(newly arrived after just graduating from MIT) as the chief researcher, a series of 
tests were run on various standard airfoil shapes. Frustrated by their continual lack of 
understanding about the flowfield, they turned to optical techniques, i.e., they as- 
sembled a crude schlieren system. Their first tests using the schlieren system dealt 
with flow over a cylinder. Recall from our earlier discussion that the critical Mach 
number for a cylinder is about 0.4. Hence, their results were spectacular. Shock 
waves were seen, along with the resulting flow separation. Visitors flocked to the 
wind tunnel to observe the results, including Theodore Theodorsen, one of the rank- 
ing NACA theoretical aerodynamicists of that period. An indicator of the psychology 
at that time is given by Theodorsen's comment that since the freestream flow was 
subsonic, what appeared as shock waves in the schlieren pictures must be an "optical 
illusion." However, Eastman Jacobs and John Stack knew differently. They pro- 
ceeded with a major series of airfoil testing, using standard NACA sections. Their 
schlieren pictures, along with detailed pressure measurements, revealed the secrets 
of flow over the airfoils at Mach numbers above the critical Mach number. Quickly, 
a second high-speed tunnel was built at Langley, this one with a 24-in. diameter noz- 
zle exit. The transonic airfoil work continued at a rapid pace. In 1935, Jacobs trav- 
eled to Italy, where he presented results of the NACA high-speed airfoil research at 
the fifth Volta Conference (see Sec. 9.9). This is the first time in history that pho- 
tographs of the transonic flow field over standard-shaped airfoils were presented in a 
large public forum. One of these original photographs is shown and discussed in 
Ref. 134, which should be consulted for more details. These photographs were much 
like those shown in Fig. 14.3 (which are more recent in origin, dating from 1949). 

During the course of such work in the 1930s, the incentive for high-speed aero- 
dynamic research shifted from propeller applications to concern about the airframe 
of the airplane itself. By the mid-1930s, the possibility of the 550 milh airplane 
was more than a dream-reciprocating engines were becoming powerful enough to 
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consider such a speed regime for propeller-driven aircraft. In turn, the entire airplane 
itself (wings, cowling, tail, etc.) would encounter compressibility effects. This led to 
the construction of a large 8-ft high-speed tunnel at Langley, capable of test section 
velocities above 500 milh. This tunnel, along with the two earlier tunnels, established 
the NACA's dominance in high-speed subsonic research in the late 1930s. In the 
process, by 1940, the high-speed flow over airfoils was relatively well understood, 
certainly on a firm qualitative basis, and for free-stream Mach numbers on the sub- 
sonic side of transonics, say for M ,  less than about 0.95, on a firm quantitative basis 
as obtained experimentally in the Langley wind tunnels. Although experimental tran- 
sonic airfoil research continues today, not only with NASA (the successor of the 
NACA) but also at many locations throughout the world, the basic physical under- 
standing of such flows was essentially in hand by the early 1940s due to the pioneer- 
ing work of Eastman Jacobs, John Stack, and their colleagues at the NACA Langley 
Memorial Laboratory. For more historical details, see Ref. 134. 

14.7.3 Measuring and Computing 

The measurement of transonic flows below M ,  = 0.95 and above M ,  = I. I was 
carried out with reasonable accuracy in the early NACA high-speed wind tunnels. 
However, the data obtained between Mach 0.95 and 1.1 were of questionable accu- 
racy; for these Mach numbers very near unity, the flow was quite sensitive and if a 
model of any reasonable cross-sectional area were placed in the tunnel, the flow be- 
came choked. This choking phenomenon was one of the most difficult aspects of 
high-speed tunnel research. Small models had to be used; for example, Fig. 14.19 

Figure 14.19 1 Wind tunnel model of the Bell XS- l in the Langley 8-ft 
tunnel,  circa 1947. (From Ref. 99.) 
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shows a small model of the Bell XS-I mounted in the Langley 8-ft high-speed tun- 
nel in 1947-one year before Yeager's history-making flight. The wing span was 
slightly over I ft whereas the test-section diameter was much larger, namely, 8 ft. In 
spite of this small model size, valid data could not be obtained at free-stream Mach 
numbers above 0.92 due to choking of the tunnel at higher Mach numbers. 

The Mach number gap between 0.95 and 1.1, in which valid data could not be 
obtained in the existing high-speed wind tunnels in the late 1940s, contributed much 
to the aerodynamic uncertainties that dominated the Bell XS-I program, up to its first 
supersonic flight on October 14, 1947. Moreover, the advancement of basic aerody- 
namics in the transonic range was greatly hindered by this situation. Throughout the 
late 1930s and 1940s, NACA engineers attempted to rectify this choking problem in 
their high-speed tunnels. Various test section designs were tried-closed test sec- 
tions, totally open test sections, a bump on the test section wall to tailor the flow con- 
strictions, as well as various methods of supporting models in the test section to min- 
imize blockage. None of these ideas solved the problem. Thus, the stage was set for 
a technical breakthrough, which came in the late 1940s-the slotted-throat transonic 
tunnel, as described below. 

In 1946, Ray H. Wright, a theoretician at NACA Langley, carried out an analy- 
sis that indicated that if the test section contained a series of long, thin rectangular 
slots parallel to the flow direction that resulted in about 12 percent of the test section 
periphery being open, then the blockage problem might be greatly alleviated. This 
idea met with some skepticism, but it was almost immediately accepted by John 
Stack, who by that time was a highly placed administrator at Langley. A decision was 
made to slot the test section of the small 12-in. high-speed tunnel, which resulted in 
greatly improved performance in early 1947. However, this was simply an experi- 
ment, and much skepticism still prevailed. On the surface the NACA made no plans 
to implement this development. On the other hand, Stack confided privately to his 
colleagues that he favored slotting the large 16-ft high-speed tunnel. Without fanfare, 
this work began in the spring of 1948, buried in a larger project to increase the horse- 
power of the tunnel. Almost simultaneously, Stack made the decision to slot the 8-ft 
tunnel as well. The work on the 8-ft tunnel proceeded faster than on its larger coun- 
terpart, and on October 6, 1950, it became operational for research. By December of 
that same year, the modified 16-ft tunnel also became operational. Subsequent oper- 
ation of these facilities proved that the slotted-throat concept allowed the smooth 
transition of the tunnel flow through Mach 1 simply by the increase of the tunnel 
power-the problem of blockage was basically solved. In this respect, these tunnels 
became the first truly transonic wind tunnels, and for this accomplishment, John 
Stack and his colleagues at NACA Langley were awarded the prestigious Collier 
Trophy in 195 1. The measurement of transonic flows in the laboratory was now well 
in hand. 

The same could not be said at that time for the computation of transonic flows. 
As emphasized earlier in this chapter, transonic flow is nonlinear flow, and the analy- 
sis of such flows was, therefore, exceptionally difficult in the period before the de- 
velopment of the high-speed digital computer. In 1951, as Stack and the Langley 
engineers were being awarded the Collier Trophy, there was virtually no useful 
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aerodynamic method for the calculation of transonic flows. Transonic similarity was 
known and understood (see Sec. 14.3) at that time, but similarity concepts are useful 
only for relating one solution or set of measurements to another situation; it is not a 
solution of the flow per se. Also known at that time was the approximate means ol'es- 
timating the critical Mach number of an airfoil using the Prandtl-Glauert rule, or any 
other compressibility correction, as was described in Sec. 9.7. Indeed, the method de- 
scribed in Sec. 9.7 was first developed by Eastman Jacobs and John Stack in the late 
1930s. Clearly, in 1950 the practical analysis of transonic flow fields themselves was 
lagging greatly behind the experimental progress. This situation prevailed until the 
advent of modern computational fluid dynamics and, in particular, the pioneering 
method advanced by Murman and Cole (see Sec. 14.4). In this sense, the work de- 
scribed in Sec. 14.4 and the subsequent sections speaks for itself as an historical 
chronology of modern transonic flow analysis. Today, with a few exceptions. we 
can finally make a statement analogous to that given above about the experimental 
status in 1950, namely, that by the 1980s, the calculation of transonic flow is now 
well in hand. 

14.7.4 The Transonic Area Rule and the Supercritical Airfoil 

We would be remiss in this discussion of the historical aspects of transonic flight if 
we did not mention two major configuration breakthroughs that have made transonic 
Right practical-the area rule and the supercritical airfoil. Both of these advance- 
ments were a product of the transonic wind tunnels at Langley and both were driven 
by the same person-Richard Whitcomb. Let us examine these two matters Inore 
closely. 

First, on a technical basis, the area rule and the supercritical airfoil both have the 
same objective, namely, to reduce drag in the transonic regime. However, this drag 
reduction is accomplished in different ways. Consider the qualitative sketch of drag 
coefticient versus Mach number given in Fig. 14.20 for a transonic body. The varia- 
tion for a standard body shape without area rule and without a supercritical airfoil is 
given by the solid curve. Now, let us consider the area rule by itself. First, the area 
rule is a simple statement that the cross-sectional area of the body should have a 
smooth variation with longitudinal distance along the body; there should be no 
rapid or discontinuous changes in the cross-sectional area distribution. For example, 
a conventional wing-body combination will have a sudden cross-sectional area 
increase in the region where the wing cross section is added to the body cross section. 
The area rule says that to compensate. the body cross section should be decreased 
in the vicinity of the wing, producing a wasp-like or coke-bottle shape for the body. 
The aerodynamic advantage of the area rule is shown in Fig. 14.20, where the drag 
variation of the area-ruled body is given by the dashed curve. Simply stated, the area 
rule reduces the peak transonic drag by a considerable amount. The supercritical 
airfoil, on the other hand, acts in a different fashion. A supercritical airfoil is shaped 
somewhat flat on the top surface in order to reduce the local Mach number inside 
the supersonic region below what it would be for a conventional airfoil under the 
same flight conditions. As a result, the shock wave strength is lower, the boundary 
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Figure 14.20 1 Illustration of the separate effects of the area rule and the 
supercritical airfoil. 

layer separation is less severe, and hence the free-stream Mach number can be higher 
before the drag-divergence phenomenon sets in. The drag variation for a supercriti- 
cal airfoil is sketched in Fig. 14.20, shown by the broken curve. Here, the role of a 
supercritical airfoil is clearly shown; although the supercritical airfoil and an equiv- 
alent standard airfoil may have the same critical Mach number, the drag-divergence 
Mach number for the supercritical airfoil is much larger. That is, the supercritical air- 
foil can tolerate a much larger increase in the free-stream Mach number above the 
critical value before drag divergence is encountered. In this fashion, such airfoils are 
designed to operate far above the critical Mach number-hence the label "supercrit- 
ical" airfoils. 

The area rule was introduced in a most spectacular fashion in the early 1950s. 
Although there had been some analysis that obliquely hinted about the area rule, and 
although workers in the field of ballistics had known for years that projectiles with 
sudden changes in cross-sectional area exhibited high drag at high speeds, the im- 
portance of the area rule was not fully appreciated until a series of wind tunnel tests 
on various transonic bodies were conducted in the slotted-throat 8-ft wind tunnel at 
Langley by Richard Whitcomb. These data, and an appreciation of the area rule, 
came just in time to save a new airplane program at Convair. In 1951, Convair was 
designing one of the new "century series" fighters intended to fly at supersonic 
speeds. Designated the YF-102, this aircraft had a delta-wing and was powered by 
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Figure 14.21 1 (a)  The Convair YF- 102, no area ruling. (h )  The Convair YF-IO?A, 
with area ruling. Note the wasp-like shape of the fuselage in comparison with the 
YF- 102 shown in ( a ) .  

the Pratt and Whitney 5-57 turbojet-the most powerful engine in the United States 
at that time. A photograph of the YF-102 is given in Fig. 14 .21~ .  Aeronautical engi- 
neers at Convair expected the YF-102 to easily fly supersonically. On October 24, 
1953, flight tests of the YF-102 began at Muroc Air Force Base (now Edwards), 
while a production line was forming at the San Diego plant of Convair. However, as 
the flight tests progressed, it became painfully clear that the YF-102 could not fly 
faster than sound-the transonic drag rise was simply too large, even for the power- 
ful 5-57 engine to overcome. After consultation with the NACA aerodynamicists and 
inspection of the area rule results that had been obtained in the Langley 8-ft tunnel, 
the Convair engineers designed a modified airplane-the YF-102A-with an area- 
ruled fuselage. A photograph of the YF- 102A, with its coke bottle-shaped fuselage is 
given in Fig. 14.21 h. Wind tunnel data for the YF-102A looked promising. Fig- 
ure 14.22 was obtained from that data; it shows the variation of drag coefficient with 
free-stream Mach number for both the YF-102 and YF-102A. In the upper left of 
Fig. 14.22, the cross-sectional area distribution of the YF-I02 is shown, including 
how i t  is built up from the different body components. Note the irregular and bumpy 
nature of the total cross-sectional area distribution. At the bottom right, given by 
the dashed line, is the cross-sectional area distribution for the YF-102A-a 
much smoother variation than that for the YF-102. The data shown in Fig. 14.22 are 
obtained from Reference 100. The comparison between the drag coefficients for the 
conventional YF-102 (solid curve) and the area-ruled YF-102A (dashed curve) 
dran~atically illustrates the tremendous transonic drag reduction to be obtained with 
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Figure 14.22 1 The effect of the area rule modifications made on the original non-area-ruled 
Convair YF- 102 (labeled prototype) and the resulting area-ruled YF- 102A (labeled revised 
and improved nose). (From Ref. 100.) 

the use of the area rule. (Recall from Fig. 14.20 that the function of the area rule is to 
decrease the peak transonic drag; Fig. 14.22 quantifies this function.) Encouraged by 
these wind tunnel results, the Convair engineers began a flight test program for 
the YF-102A. On December 20, 1954, the prototype YF-102A left the ground 
at Lindbergh field, San Diego-it broke the speed of sound while still climbing. 
The use of the area rule had increased the top speed of the airplane by 25 percent. The 
production line rolled, and 870 F-102As were built for the Air Force. The area rule 
had been ushered in with dramatic style. 

The supercritical airfoil, also pioneered by Richard Whitcomb, based on data 
obtained in the 8-ft wind tunnel, was a development of the 1960s. Recall from 
Fig. 14.20 that the function of the supercritical airfoil is to increase the increment be- 
tween the critical Mach number and the drag-divergence Mach number. The data in 
the Langley tunnel indicated a possible 10 percent increase in cruise Mach number 
due to a supercritical wing. NASA introduced the technical community to the super- 
critical airfoil data in a special conference in 1972. Since that time, the supercritical 
airfoil concept has been employed on virtually all new commercial aircraft and some 
military airplanes. Physical data for a supercritical airfoil and for the standard NACA 
64-A215 airfoil are compared in Figs. 14.23 and 14.24, along with a comparison 
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Figure 14.23 1 Standard NACA 64-series airfoil compxed with a s~~pcrcritical 
airfoil at cruise lift conditions. (From R. T. Whitcomb and L. R.  Clark, 

"An Ailfoil Shape Ihr Efficient Flight At Supercritical Mach Numbers." 
NASA TMX-I 109. July  1965.) 
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of their shapes. The performances advantage of the supercritical airfoil is clcarly 
evident. 

With this, we end this rather lengthy historical note on transonic flight. Our pur- 
pose has been to provide just the flavor of what constitutes one of the most exciting 
chapters from the annals of aerodynamics and aeronautical engineering. We have 
seen how the secrets of transonic flow were slow to be revealed, how a concerted, in- 
telligent attack on this problem eventually led to useful wind tunnel data as well as 
modern methods of computation for transonic flows, and finally how this transonic 
data ultimately resulted in two of the major aerodynamic breakthroughs in the latter 
half of the twentieth century-the area rule and the supercritical airfoil. 

/ shock / \ 
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Figure 14.24 1 The drag-divergence properties of a standard NACA 64-series airfoil 
and a supercritical airfoil. (From NASATMX-1109, as in Fig. 14.23.) 

14.8 1 SUMMARY AND COMMENTS 
In this chapter, we have covered some of the essential physical and theoretical as- 
pects of transonic flow. If this chapter had been written 30 years ago, it would have 
been completely different. First, it would have been much shorter, and it would have 
emphasized only a few specialized theories. One such theory is called the hodograph 
method, and uses the transonic small-perturbation equation in the hodograph plane, 
for which some shock-free exact solutions can be obtained. Such solutions are 
discussed, for example, in Shapiro (see Ref. 16). In the more modern treatment of 
transonic flows given here, we have intentionally not covered such hodograph 
techniques. Instead, we have concentrated on the main echelons of transonic flow 
numerical solutions, namely, 

1. Small-perturbation solutions 
2. Full potential solutions 
3. Euler solutions 

These solutions are listed in order of increasing accuracy, and as life would have it, 
also of increasing difficulty and effort. The small-perturbation solutions assume irro- 
tational flow, and slender bodies at small angles of attack. The full potential solutions 
also assume irrotational flow, but pertain to any body of arbitrary thickness and angle 
of attack. In both cases, the assumption of irrotational flow is motivated by the 
change in entropy across a weak shock, which is of third order in shock strength and 
hence is small. The Euler solutions make no such assumptions, and hence represent 
"exact" solutions of inviscid transonic flow. 

Modern, state-of-the-art research in transonic flow is now concentrating on 
numerical solutions of the complete Navier-Stokes equations in order to properly 
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include the viscous effects, particularly those effects associated with the shock 
wavelboundary layer interaction region. Since the present book deals with inviscid 
flow only, such matters are beyond our scope. However, these viscous effects can 
play a strong role in transonic flows, and the interested reader is encouraged to read 
the modern literature on such transonic viscous flows. The AIAA Journal, the Jour- 
nu1 ofAircruft, Computers and Fluids, and the Journal of' Cornputarional  physic,.^ are 
good sources of such literature. 
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HYPERSONIC FLOW C,1 
I Basic physical description 1 

Hypersonic 
shock wave relations independence ,mail-disturbance 

equations 

Hypersonic similarity r--l 
Figure 15.2 1 Roadmap for Chapter 15. 

a discussion of the simplification of the shock wave 
relations afforded by the assumption of high Mach num- 
bers. We then discus Newtonian theory, a special 
approach to quickly estimate pressure distributions on hy- 
personic shapes. This is followed by a demonstration that 
pressure coefficients, 11ft and drag coefic~ents, and shock 
wave shapes in hypersonic flow do not change very much 
with increasmg Mach number-a phenomenon called 
Mach number independence. Finally we develop the hy- 
personic small-disturbance equahons, which in turn lead 
to the principle of hypersonic similarity. Although not 

explicitly shown in Fig. 15.2, we briefly address the 
matter of CFD solutions to hypersonic flows at the end 
of the chapter. All aspects treated in this chapter assume 
a calorically perfect gas (constant specific heats). High- 
temperature effects that are so important to hypersonic 
flow, and that dramatically change the thermodynamics, 
are discussed as an integral part of Chaps. 16 and 17, deal- 
ing with high-temperature gas dynamics. 

Finally, refer to the roadmap for the book given in 
Fig. 1.7. With the present chapter we reach the end of the 
center column of the roadmap. 

15.1 1 INTRODUCTION 
When the space shuttle enters the earth's atmosphere from near-earth orbit, it is fly- 
ing at Mach 25. When the Apollo spacecraft returned from the moon. it entered the 
atmosphere at Mach 36. These very high Mach numbers are associated with the ex- 
treme, high-Mach-number portion of the f ight  spectrum which is labeled as hyper- 
sonic flight. The hypersonic flow regime was briefly described in Sec. 1.3; this short 
discussion should be reviewed before progressing further. 

There are two reasons for singling out hypersonic flow for a separate chapter in 
this book, as follows. 

1. Hypersonic flight is of extreme interest today because of new vehicle concepts 
designed to fly at very high Mach numbers. Hypersonic aerodynamics is an 
important part of the entire flight spectrum, and therefore it is an integral part 
of any study of modern compressible flow. 
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2. At very high Mach numbers, a flowfield is dominated by certain physical 
phenomena that are not so important at lower, supersonic speeds. These special 
aspects of hypersonic flow are distinct enough from our previous discussions 
of compressible flow that a separate chapter on hypersonic flow is necessary. 

As in the case of the subjects covered by the two previous chapters, the topic of 
hypersonic flow considered in this chapter justifies an entire book by itself. Such 
books exist; an introductory book in hypersonic flow is given by Ref. 119, and the 
reader interested in this subject is encouraged to study Ref. I1 9 closely. Our scope in 
this chapter will be much like that of Chaps. 13 and 14-long on philosophy and con- 
cepts, and short on details. 

Finally, we note that hypersonic flow is nonlinear. This was first brought out in 
Sec. 9.2, where it was shown that small-perturbation considerations lead to linear 
theories for both subsonic and supersonic flows, but not for transonic or hypersonic 
flow. Make certain to review Sec. 9.2 before progressing further, paying special at- 
tention to the effect of hypersonic Mach numbers. 

15.2 1 HYPERSONIC FLOW-WHAT IS IT? 
There is a conventional rule of thumb that defines hypersonic aerodynamics as those 
flows where the Mach number is greater than 5. However, this is no more than just a 
rule of thumb; when a flow is accelerated from M = 4.99 to M = 5.01, there is no 
"clash of thunder" and the flow does not "instantly turn from green to red." Rather, 
hypersonic flow is best defined as that regime where certain physical flow phenorn- 
ena become progressively more important as the Mach number is increased to higher 
values. In some cases, one or more of these phenomena may become important 
above Mach 3, whereas in other cases they may not be compelling until Mach 7 or 
higher. The purpose of this section is to describe briefly these physical phenomena; 
in some sense this entire section will constitute a "definition" of hypersonic flow. 

15.2.1 Thin Shock Layers 

Recall from oblique shock theory (see Chap. 4) that, for a given flow deflection 
angle, the density increase across the shock wave becomes progressively larger as 
the Mach number is increased. At higher density, the mass flow behind the shock can 
more easily "squeeze through" smaller areas. For flow over a hypersonic body, 
this means that the distance between the body and the shock wave can be small. 
The flowfield between the shock wave and the body is defined as the shock layer, and 
for hypersonic speeds this shock layer can be quite thin. For example, consider 
the Mach 36 flow of a calorically perfect gas with a ratio of specific heats, 
y = c,/c, = 1.4, over a wedge of 15" half-angle. From standard oblique shock the- 
ory the shock wave angle will be only 18" as shown in Fig. 15.3. If high-temperature, 
chemically reacting effects are included, the shock wave angle will be even smaller. 
Clearly, this shock layer is thin. It is a basic characteristic of hypersonic flows that 
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Figure 15.3 1 Illustration of a thin shock layer at hypersonic 
Mach numbers. 

Figure 15.4 1 Illustration of the entropy layer ot'a blunt-nosed 
slender body at hypersonic speeds. 

shock waves lie close to the body, and that the shock layer is thin. In turn, this can 
create some physical complications, such as the merging of the shock wave itself 
with a thick. viscous boundary layer growing from the body surface-a problem 
which becomes important at low Reynolds numbers. However, at high Reynolds 
numbers, where the shock layer is essentially inviscid, its thinness can be used to the- 
oretical advantage, leading to a general analytical approach called "thin shock layer 
theory" (see Ref. 119). In the extreme, a thin shock layer approaches the fluid 
dynamic model postulated by Isaac Newton in 1687; such "newtonian theory" is 
simple and straightforward, and is frequently used in hypersonic aerodynamics for 
approximate calculations (to be discussed in Sec. 15.4). 

15.2.2 Entropy Layer 

Consider the wedge shown in Fig. 15.3, except now with a blunt nose, as sketched in 
Fig. 15.4. At hypersonic Mach numbers, the shock layer over the blunt nose i <  also 
very thin, with a small shock detachment distance d. In the nose region, the shock 
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wave is highly curved. Recall that the entropy of the flow increases across a shock 
wave, and the stronger the shock, the larger the entropy increase. A streamline pass- 
ing through the strong, nearly normal portion of the curved shock near the center- 
line of the flow will experience a larger entropy increase than a neighboring stream- 
line which passes through a weaker portion of the shock further away from the 
centerline. Hence, there are strong entropy gradients generated in the nose region; 
this "entropy layer" flows downstream, and essentially wets the body for large 
distances from the nose, as shown in Fig. 15.4. The boundary layer along the surface 
grows inside this entropy layer, and is affected by it. Since the entropy layer is also a 
region of strong vorticity, as related through Crocco's theorem (see Sec. 6.6), this 
interaction is sometimes called a "vorticity interaction." The entropy layer causes an- 
alytical problems when we wish to perform a standard boundary layer calculation on 
the surface, because there is a question as to what the proper conditions should be at 
the outer edge of the boundary layer. 

15.2.3 Viscous Interaction 

Consider a boundary layer on a flat plate in a hypersonic flow, as sketched in 
Fig. 15.5. A high-velocity, hypersonic flow contains a large amount of kinetic energy; 
when this flow is slowed by viscous effects within the boundary layer, the lost kinetic 
energy is transformed (in part) into internal energy of the gas-this is called viscous 
dissipation. In turn, the temperature increases within the boundary layer; a typical 
temperature profile within the boundary layer is also sketched in Fig. 15.5. The char- 
acteristics of hypersonic boundary layers are dominated by such temperature in- 
creases. For example, the viscosity coefficient increases with temperature, and this 
by itself will make the boundary layer thicker. In addition, because the pressure p is 
constant in the normal direction through a boundary layer, the increase in tempera- 
ture T results in a decrease in density p through the equation of state p = p/RT. In 
order to pass the required mass flow through the boundary layer at reduced density, 
the boundary layer thickness must be larger. Both of these phenomena combine to 

Boundary layer edge 
Y  __---- 

I-- ,.//--& T =  T ( Y )  

Figure 15.5 1 Schematic of a temperature profile in a 
hypersonic boundary layer. 
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make hypersonic boundary layers grow more rapidly than at slower speeds. Indeed, 
the flat plate compressible laminar boundary layer thickness S grows essentially as 

where M ,  is the free-stream Mach number, and Re, is the local Reynolds number. 
(See Ref. 119 for a derivation of this relation.) Clearly, since S varies as the square of 
M,, it can become inordinately large at hypersonic speeds. 

The thick boundary layer in hypersonic flow can exert a major displacement ef- 
fect on the inviscid flow outside the boundary layer, causing a given body shape to 
appear much thicker than it really is. Due to the extreme thickness of the boundary 
layer flow, the outer inviscid flow is greatly changed; the changes in the inviscid flow 
in turn feed back to affect the growth of the boundary layer. This major interaction 
between the boundary layer and the outer inviscid flow is called viscous interaction. 
Viscous interactions can have important effects on the surface pressure distribution. 
hence lift, drag, and stability on hypersonic vehicles. Moreover, skin friction and 
heat transfer are increased by viscous interaction. For example, Fig. 15.6 illustrates 
the viscous interaction on a sharp, right-circular cone at zero angle of attack. Here. the 
pressure distribution on the cone surface p is given as a function of distance from 
the tip. These are experimental results obtained from Ref. 120. If there were no 
viscous interaction, as discussed in Chap. 10, the inviscid surface pressure would be 
constant, equal to p,. (indicated by the horizontal dashed line in Fig. 15.6). However. 
due to the viscous interaction, the pressure near the nose is considerably greater: the 
surface pressure distribution decays further downstream, ultimately approaching 
the inviscid value far downstream. 

1 .~1 
Viscous interaction effect 

I I 
0 0.5 1.0 1.5 2.0 

x, inches 

Figure 15.6 1 Viscous interaction effect. 
Induced pressure on a sharp cone at 
M ,  = 1 1  andRe= 1.88 x los perfoot. 
(From Ref. 120.) 
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15.2.4 High-Temperature Flows 

As discussed previously, the kinetic energy of a high-speed, hypersonic flow is dissi- 
pated by the influence of friction within a boundary layer. The extreme viscous 
dissipation that occurs within hypersonic boundary layers can create very high 
temperatures-high enough to excite vibrational energy internally within molecules, 
and to cause dissociation and even ionization within the gas. If the surface of a hy- 
personic vehicle is protected by an ablative heat shield, the products of ablation are 
also present in the boundary layer, giving rise to complex hydrocarbon chemical 
reactions. On both accounts, we see that the surface of a hypersonic vehicle can be 
wetted by a chemically reacting boundary layer. 

The boundary layer is not the only region of high-temperature flow over a hyper- 
sonic vehicle. Consider the nose region of a blunt body, as sketched in Fig. 15.7. The 
bow shock wave is normal, or nearly normal, in the nose region, and the gas temper- 
ature behind this strong shock wave can be enormous at hypersonic speeds. The 
magnitudes of these temperatures, as well as the physical consequences of such 
temperatures, are discussed at length in Sec. 16.1. 

High-temperature chemically reacting flows can have an influence on lift, drag, 
and moments on a hypersonic vehicle. For example, such effects have been found to 
be important for estimating the amount of body-flap deflection necessary to trim the 
space shuttle during high-speed reentry. However, by far the most dominant aspect 
of high temperatures in hypersonics is the resultant high heat-transfer rates to the 
surface. Aerodynamic heating dominates the design of all hypersonic machinery, 
whether it be a flight vehicle, a ramjet engine to power such a vehicle, or a wind tun- 
nel to test the vehicle. This aerodynamic heating takes the form of heat transfer from 
the hot boundary layer to the cooler surface-called convective heating, and denoted 

High-temperature shock layer 1 
Partially 
ionized 
plasma 

Radiating 
fluid 
element 

Figure 15.7 1 Illustration of a high-temperature shock layer on a blunt 
body moving at hypersonic speeds. 
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by (1, in Fig. 15.7. Moreover, if the shock layer temperature is high enough, the ther- 
mal radiation emitted by the gas itself can become important, giving rise to a sadia- 
tive flux to the surface-called radiative heating, and denoted by q, in Fig. 15.7. 
(In the winter, when you warm yourselfbeside a roaring tire in the fireplace. the warmth 
you feel is not hot air blowing out of the fireplace, but rather radiation from the flame 
itself. Imagine how "warm" you would feel standing next to the gas behind a strong 
shock wave at Mach 36. where the temperature is 11,000 K-about twice the surface 
temperature of the sun.) For example, for Apollo reentry, radiative heat transfer was 
more than 30 percent of the total heating. For a space probe entering the atmosphere of 
Jupiter, the radiative heating will be more than 95 percent of the total heating. 

Another consequence of high-temperature flow over hypersonic vehicle\ i b  the 
"communications blackout" experienced at certain altitudes and velocities during ut- 
tnospheric entry. where it is impossible to transmit radio waves either to or from the 
vehicle. This is caused by ioni~at ion in the chemically reacting flow, producing free 
electrons that absorb radio-frequency radiation. Therefore. the accurate prediction of 
electron density within the llowfield is important. 

Clearly, high-temperature effects can be a dominant aspect of hyperwnic 
aerodynamics. Bccause of this importance to hypersonic applications, as well as to 
many other problems dealing with compressible flow, the chemistry and physics of 
high-temperature gases, and their application to gasdynamic flows. are discussed in 
Chaps. 16 and 17. 

In summary, hypersonic flow is best defined as that regime where all or some of 
the above physical phenomena become important as the Mach number is increased 
to high values. Note that viscous effects, such as viscous interactions and aerody- 
namic heating. are particularly important aspects of hypersonic flow; since we tbcus 
on inviscid flow\ in this book, such matters will not be addressed here. The high- 
temperature aspects of hypersonic flow are also very important. Chapters 16 and 17 
cover the gasdynamics of high-temperature flows-a vital part of modern compress- 
ible flow in general, and of hypersonic flow in particular. Therefore. in the present 
chapter we will deal with inviscid hypersonic flow of a calorically perfect gas. The 
question we  address here is simply: What happens to our conventional compressible 
flow already discussed in this book when the Mach number becomes very large? For 
a discussion of the full range of hypersonic flow problems-inviscid. v i s c o ~ ~ s .  and 
high temperature-see the book by Anderson (Ref. 119). 

15.3 1 HYPERSONIC SHOCK WAVE RELATIONS 
The basic oblique shock relations are derived and discussed in Chap. 4. These are 
cl.xuc.t shock relations, and hold for all Mach numbers greater than unity. supersonic 
or hypersonic (assuming a calorically perfect gas). However, some interesting ap- 
proximate and simplified forms of these shock relations are obtained in the limit of 
high Mach number. These limiting forms are called the hypersonic shock relations: 
they are obtained below. 

Consider the flow through a straight oblique shock wave, as sketched in 
Fig. 15.8. Upstream and downstream conditions are denoted by subscripts 1 and 2, 
respectively. For a calorically perfect gas, the classical results for changes across the 
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In the hypersonic limit 
and for small 0:  

Figure 15.8 1 Oblique shock wave geometry. 

shock are given in Chap. 4. To begin with, the exact oblique shock relation for pres- 
sure ratio across the wave is given by Eq. (4.9), repeated here: 

Exact: 

where B is the wave angle shown in Fig. 15.8. In the limit as M I  goes to infinity, the 
term M: sin2 p >> 1, and hence Eq. (4.9) becomes 

In a similar vein, the density and temperature ratios are given by Eqs. (4.8) and 
(4.11), respectively: 

Exact: 

- - - T2 - (P2'p1) (from the equation of state: p = p R T )  
TI ( ~ 2 1 ~ 1 )  

as M I  + oo: 
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Returning to Fig. 15.8, note that u' and v2 are the components of the flow veloc~ty 
behind the shock wave parallel and perpendicular to the upstream flow (not parallel 
and perpendicular to the \hock wave itself, as is frequently done, and as was done in 
Chap. 4). With this in mind, it can be shown that 

Exact: 
2 2 (M: sin' - 1) - = I -  

VI (Y + 1 ) ~ :  

Exact: 

For large M I ,  Eq. (15.6) can be approximated by 

Since 2 sin B cos j3 = sin 28.  then, from Eq. (15.7), 

In this equation, the choice of velocity components parallel and perpendicular to the 
upstream flow direction rather than to the shock wave is intentional. Equations ( 15.5) 
and (15.8) are useful in studying various aspects of the velocity field over a slender 
hypersonic body, as will be discussed later. 

Note from Eqs. (15.1) and (15.3) that both p2/pI and T2/TI become infinitely 
large as MI + m. In contrast, from Eqs. (15.2), (15.5), and (15.8), p2/p1, I ( ? /  V i .  and 
vz/V1 approach limiting finite values as MI + oo. 

In aerodynamics, pressure distributions are usually quoted in terms ol'the nondi- 
mensional pressure coefficient C,,, rather than the pressure itself. The pressure coef- 
ficient is defined as 

where pl and y 1 are the upstream (free-stream) static pressure and dynamic pressure. 
respectively. Recall from Sec. 9.3 that Eq. (15.9) can also be written as Eq. (9. lo), 
repeated below: 

Combining Eqs. (9.10) and (15.1). we obtain an exact relation for C,, behind an 
oblique shock wave as follows: 

Exact. 



CHAPTER 15 HypersonicFlow 

In the hypersonic limit, 

as MI  -+ oo: 

The relationship between Mach number M I ,  shock angle B, and deflection angle 6' is 
expressed by the so-called 8-B-M relation given by Eq. (4.17), repeated below: 

Exact: 
M: sin2 B - 1 

tan 8 = 2 cot B 
[M:(y + cos2B) + 2 1 

This relation is plotted in Fig. 4.8, which is a standard plot of wave angle versus de- 
flection angle, with Mach number as a parameter. Returning to Fig. 4.8, we note that, 
in the hypersonic limit, where 8 is small, p is also small. Hence, in this limit, we can 
insert the usual small-angle approximations into Eq. (15.12): 

sinj3 x 

resulting in 

Applying the high Mach number limit to Eq. (15.13), we have 

In Eq. (15.14) M I  cancels, and we finally obtain in both the small-angle and hyper- 
sonic limits: 

as MI  -t oo and 8 hence B is small: 

Note that for y = 1.4, 

It is interesting to observe that, in the hypersonic limit for a slender wedge, the wave 
angle is only 20 percent larger than the wedge angle-a graphic demonstration of a 
thin shock layer in hypersonic flow. (Check Fig. 15.3, drawn from exact oblique 
shock results, and note that the 18" shock angle is 20 percent larger than the 
15" wedge angle at Mach 36-truly an example of the hypersonic limit.) 

For your convenience, the limiting hypersonic shock relations obtained in this 
section are summarized in Fig. 15.8. These limiting relations, which are clearly simpler 
than the corresponding exact oblique shock relations, will be important for the devel- 
opment of some of our hypersonic aerodynamic techniques in subsequent sections. 
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15.4 1 A LOCAL SURFACE INCLINATION METHOD: 
NEWTONIAN THEORY 

Lineari~ed supersonic theory leads to a simple relation for the surface pressure coef- 
ficient, namely Eq. (9.5 1 ), repeated here: 

Note from Eq. (9.5 1 )  that C, depends only on 8, the local surface inclination angle 
defined by the angle between a line tangent to the surface and the free-stream direc- 
tion. In this sense, Eq. (9.5 1) is an example of a "local surface inclination method" 
for linearized supersonic flow. Question: Do any local surface inclination methods 
exist for hypersonic flow? The answer is yes, and this constitutes the subject of the 
present section. 

The oldest and most widely used of the hypersonic local surface inclination 
methods is newtonian theory. This theory has already been developed and discussed 
in Sec. 12.4, leading to the famous newtonian "sine-squared" law in Eq. (12.17): 

Additional insight into the physical meaning of Eq. (12.17) can be obtained from an 
examination of the hypersonic oblique shock relations, as described below. 

Temporarily discard any thoughts of newtonian theory, and simply recall the 
exact oblique shock relation for C, as given by Eq. (15. lo), repeated here (with free- 
stream conditions now denoted by a subscript co rather than a subscript 1. as used in 
Chap. 2): 

[sin' B - Mk C -- 
i ' - Y + l  ' I  

Equation (15.1 I)  gave the limiting value of C, as M ,  + m, repeated here: 

Now take the additional limit of y -+ 1.0. From Eq. (15.1 I), in both limits as 
M ,  + oo and y + 1 .O, we have 

Equation (15.17) is a result from exact oblique shock theory; it has nothing to do with 
newtonian theory (as yet). Keep in mind that B in Eq. (1 5.17) is the wave angle, not 
the deflection angle. 

Let us go further. Consider the exact oblique shock relation for pip,, given by 
Eq. ( 4 .Q  repeated here (again with a subscript m replacing the subscript 1): 
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Equation (15.2) was obtained as the limit where M ,  + co, namely, 

as M ,  + co: 

In the additional limit as y -+ 1, we find - 
i.e., the density behind the shock is infinitely large. In turn, mass flow considerations 
then dictate that the shock wave is coincident with the body surface. This is further 
substantiated by Eq. (1 5. IS), which is good for M ,  + co and small deflection angles 

In the additional limit as y + 1, we have: 

as y + 1 and M, + co and 0 and f l  small: 

/ ~ = @ l  
i.e., the shock wave lies on the body. In light of this result, Eq. (15.17) is written as 

C, = 2 sin2 8 m (15.19) 
Examine Eq. (15.19). It is a result from exact oblique shock theory, taken in the com- 
bined limit of M ,  + co and y + 1. However, it is also precisely the newtonian re- 
sults given by Eq. (12.17). Therefore, we make the following conclusion. The closer 
the actual hypersonic flow problem is to the limits M ,  + cc and y + I ,  the closer 
it should be physically described by newtonian flow. In this regard, we gain a better 
appreciation of the true significance of newtonian theory. We can also state that the 
application of newtonian theory to practical hypersonic flow problems, where y is 
always greater than unity (for air flows where the local static temperature is less than 
800 K, y = 1.4) is theoretically not proper, and the agreement that is frequently 
obtained with experimental data has to be viewed as somewhat fortuitous. Neverthe- 
less, the simplicity of newtonian theory along with its (sometimes) reasonable 
results (no matter how fortuitous) has made it a widely used and popular engineering 
method for the estimation of surface pressure distributions, hence lift and wave drag 
coefficients, for hypersonic bodies. 

In the newtonian model of fluid flow, the particles in the free stream impact only 
on the frontal area of the body; they cannot curl around the body and impact on the 
back surface. Hence, for that portion of a body which is in the "shadow" of the inci- 
dent flow, such as the shaded region sketched in Fig. 15.9, no impact pressure is felt. 
Hence, over this shadow region it is consistent to assume that p  = p,, and therefore 
C, = 0, as indicated in Fig. 15.9. 

It is instructive to examine newtonian theory applied to a flat plate, as sketched 
in Fig. 15.10. Here, a two-dimensional flat plate with chord length c is at an angle of 
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Figure 15.9 I Shadow region on the leeward side of a body, from 
newtonian theory. 

Figure 15.10 1 Flat plate at angle of attack. Illustration 
of aerodynamic forces. 

attack a to the free stream. Since we are not including friction, and because surface 
pressure always acts normal to the surface, the resultant aerodynamic force is per- 
pendicular to the plate, i.e., in this case the normal force N is the resultant aerody- 
namic force. (For an infinitely thin flat plate, this is a general result which is not lim- 
ited to newtonian theory, or even to hypersonic flow.) In turn, N is resolved into lift 
and drag, denoted by L and D, respectively, as shown in Fig. 15.10. According to 
newtonian theory, the pressure coefficient on the lower surface is 

C,, = 2 sin2 a (15.20) 

and that on the upper surface, which is in the shadow region, is 

C,,,, = 0 (15.21) 
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Defining the normal force coefficient as c, = N/q,S, where S = (c)(l), we can 
readily calculate c, by integrating the pressure coefficients over the lower and upper 
surfaces (see, for example, the derivation given in Ref. 104): 

where x is the distance along the chord from the leading edge. Substituting 
Eqs. (15.20) and (15.21) into (15.22), we obtain 

From the geometry of Fig. 15.10, we see that the lift and drag coefficients, defined as 
cl = L/qwS and c d  = D/q,S, respectively, where S = (c)(l), are given by 

cl = C, cos a (15.24) 

and cd = C, sin a (15.25) 

Substituting Eq. (15.23) into Eqs. (15.24) and (15.25), we obtain 

and 

2 cl = 2 sin a cos a! 

3 
c d  = 2 sin a 

Finally, from the geometry of Fig. 15.10, the lift-to-drag ratio is given by 

[Note that Eq. (15.28) is a general result for inviscid supersonic or hypersonic flow 
over a flat plate. For such flows, the resultant aerodynamic force is the normal force N. 
From the geometry shown in Fig. 15.10, the resultant aerodynamic force makes 
the angle a with respect to lift, and clearly, from the right triangle between L, D, and N ,  
we have LID = cot a. Hence, Eq. (15.28) is not limited to newtonian theory.] 

The results obtained here for the application of newtonian theory to an infinitely 
thin flat plate are plotted in Fig. 15.11. Here LID, cr, and cd are plotted versus angle 
of attack a.  From this figure, note these aspects: 

1. The value of LID increases monotonically as a is decreased. Indeed, 
LID -+ oo as a -+ 0. However, this is misleading; when skin friction is added 
to this picture, D becomes finite at a! = 0, and then LID + 0 as a -t 0. 

2. The lift curve peaks at about a % 55". (To be exact, it can be shown from 
newtonian theory that maximum cl occurs at a = 54.7"; the proof of this is left 
as a homework problem.) It is interesting to note that a % 55" for maximum 
lift is fairly realistic; the maximum lift coefficient for many practical 
hypersonic vehicles occurs at angles of attack in this neighborhood. 

3. Examine the lift curve at low angle of attack, say in the range of a from 0 to 
15". Note that the variation of cl with a is very nonlinear. This is in direct 
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0 15 30 45 60 75 90 

Angle of attack a, degrees 

Figure 15.11 1 Newtonian results for a flat plate 

contrast to the familiar results for subsonic and supersonic flow, where for 
thin bodies at small a ,  the lift curve is a linear function of a. (Recall, for 
example, that the theoretical lift slope from incompressible thin airfoil theory 
is 2x per radian.) Hence, the nonlinear lift curve shown in Fig. 15.1 1 is a 
graphic demonstration of the nonlinear nature of hypersonic flow. 

Consider two other basic aerodynamic bodies; the circular cylinder of infinite 
span, and the sphere. Newtonian theory can be applied to estimate the hypersonic 
drag coefficients for these shapes; the results are 

1. Circular cylinder of infinite span: 

S = 2 R  (where R = radius of cylinder) 

4 
C,/ = - 

3 
(from newtonian theory) 
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2. Sphere 

S = n R' (where R = radius of sphere) 

C D  = 1 (from newtonian theory) 

The derivations of these drag coefficient values are left for homework problems. 
It is interesting to note that these results from newtonian theory do not explicitly 

depend on Mach number. Of course, they implicitly assume that M, is high enough 
for hypersonic flow to prevail; outside of that, the precise value of M ,  does not enter 
the calculations. This is compatible with the Mach number independence principle, 
to be discussed in the next section. In short, this principle states that certain aerody- 
namic quantities become relatively independent of Mach number if M ,  is made suf- 
ficiently large. Newtonian results are the epitome of this principle. 

As a final note on our discussion of newtonian theory, consider Fig. 15.12. Here, 
the pressure coefficients for a 15" half-angle wedge and a 15" half-angle cone are 
plotted versus free-stream Mach number for y = 1.4. The exact wedge results are 
obtained from Eq. (15.10), and the exact cone results are obtained from the solution 
of the classical Taylor-Maccoll equation (see Chap. 10). Both sets of results are 

L Wedge 

Figure 15.12 1 Comparison between newtonian and exact results for 
the pressure coefficient on a sharp wedge and a sharp cone. 
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compared with newtonian theory, C,, = 2sin28,  shown as the dashed line in 
Fig. 15.12. This comparison demonstrates two general aspects of newtonian results: 

1. The accuracy of newtonian results improves as M ,  increases. This is to be 
expected from our previous discussion. Note from Fig. 15.12 that below 
M, = 5, the newtonian results are not even close, but the comparison 
becomes much closer as M ,  increases above 5. 

2. Newtonian theory is usually more accurate for three-dimensional bodies 
(e.g., the cone) than for two-dimensional bodies (e.g., the wedge). This is 
clearly evident in Fig. 15.12 where the newtonian result is much closer to the 
cone results than to the wedge results. 

This ends our discussion of the application of newtonian theory to hypersonic 
bodies. For more details, including the treatment of centrifugal force corrections to 
newtonian theory, see Ref. 119. 

In addition to newtonian theory, there are three other local surface inclination 
methods that are frequently used for the estimation of pressure distributions over hy- 
personic bodies. These are the tangent wedge, tangent cone, and shock-expansion 
methods. There is not space in the present chapter to describe these methods; they are 
covered in detail in Ref. 1 19. 

15.5 1 MACH NUMBER INDEPENDENCE 
Return again to Fig. 15.12, where values of C,, for both a 15' half-angle wedge and 
cone are plotted versus Mach number. Note that at low supersonic Mach numbers, 
C,, decreased rapidly as M ,  was increased. However, at hypersonic speeds, the rate 
of decrease diminishes considerably, and C, appears to reach a plateau as M, be- 
comes large, i.e., C, becomes relatively independent of M ,  at high Mach numbers. 
This is the essence of the Mach number independence principle; at high Mach num- 
bers, certain aerodynamic quantities such as pressure coefticient, lift and wave-drag 
coefticients, and flowfield structure (such as shock wave shapes and Mach wave pat- 
terns) become essentially independent of Mach number. Indeed, newtonian theory 
(discussed in Sec. 15.4), gives results that are totally independent of Mach number, 
as clearly demonstrated by Eq. (15.19). The hypersonic Mach number independence 
principle is more than just an observed phenomenon; it has a mathematical founda- 
tion, which is the subject of this section. We will examine the roots of this Mach 
number independence more closely. 

The governing partial differential equations for inviscid compressible flow are 
derived in Chap. 6; as before, we will refer to these equations as the Euler equations. 
Ignoring body forces, they can be expressed as Eqs. (6.5), (6.26) through (6.28), and 
(6.5 I ) ,  repeated here and renumbered for convenience: 

Continuity: 

au au a au ap 
x momentum: p - f p u - f p v - f p w - = - -  

at ax ay az ij,r 
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av av av 
y momentum: 

av ap 
P - + ~ u - + ~ v - + ~ w -  at ax  =-- 

a~ a~ a y  
aw aw aw aw ap 

zmomentum: p-+pu-+pv-+pw-=--  (15.32) 
at ax a y  az  az 

Energy: 

In reality, Eq. (15.33) is the "entropy equation"; for an inviscid, adiabatic flow, 
Eq. (15.33) can serve as the energy equation-indeed, it is fundamentally an energy 
equation as described in Sec. 6.5. Equation (15.33) simply states that the entropy of 
a fluid element is constant. For an isentropic process in a calorically perfec~ gas, 
p/pY = const. Hence, if the entropy of a moving fluid element is constant as stated 
by Eq.(15.33), then the quantity p/pY is also constant for the moving fluid element, 
and for a calorically perfect gas Eq. (15.33) can be replaced by 

A at (P) PY +Ma ax (P) p +.a ay (P) PY + wa a z  (P) p~ 
(15.34) 

Let us nondimensionalize Eqs. (15.29) through (15.32) and (15.34) as follows. 
Define the nondimensional variables (the barred quantities) as 

- X - Y - Z 
x = -  y = -  z = -  

1 1 1 

where 1 denotes a characteristic length of the flow, and p, and V, are the free- 
stream density and velocity, respectively. Assuming steady flow (slat = O), we ob- 
tain from Eqs. (15.29) through (15.32) and (15.34) 

--au a i  au a p  
pu- + p v y  +pw_ = -- ax a Y a~ ax 
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Any particular solution of these equations is governed by the boundary conditions, 
which are discussed next. 

The boundary condition for steady inviscid flow at a surface is simply the date- 
ment that the flow must be tangent to the surface. Let n be a unit normal vector at 
some point on the surface, and let V be the velocity vector at the same point. Then. 
for the flow to be tangent to the body, 

Let n, ,  n , ,  and n; be the components of n in the x ,  y ,  and : directions, respect~vely 
Then, Eq. (15.40) can be written as 

Recalling the definition of direction cosines from analytic geometry, note. in 
Eq. ( 1  5.41) that n, ,  n ,  , and n; are also the direction cosines of n with respect to the 
.u, y ,  and z axes, respectively. With this interpretation, n , ,  n ,  . and n; may be consid- 
ered dimensionless quantities, and the nondimensional boundary condition at the 
surface is readily obtained from Eq. ( 15.41) as 

Assume that we are considering the external flow over a hypersonic body, where 
the flowfield of interest is bounded on one side by the body surface, and on the other 
side by the bow shock wave. Equation (15.42) gives the boundary condition on the 
body surface. The boundary conditions right behind the shock wave are given by the 
oblique shock properties expressed by Eqs. (4.9), (4.81, (15.4). and (15.6), repeated 
here for convenience (replacing the subscript 1 with the subscript oo for free-stream 
properties): 

2 ( M ;  sin' - 1)  
- = I - -  
Vx ( y  + 1)M& 

In terms of the nondimensional variables, and noting that for a calorically perfect gas 
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Eqs. (4.9), (4.8), (15.4), and (15.6) become 

1 2 
P2 = - +- sin /3 - - 
- yM& y + l (  M& 

In the limit of high M,, as M, -+ oo, Eqs. (15.43) through (15.46) go to 

Now consider a hypersonic flow over a given body. This flow is governed by 
Eqs. (15.35) through (15.39), with boundary conditions given by Eqs. (15.42) 
through (15.46). 

Question: Where does M, explicitly appear in these equations? 
Answer: Only in the shock boundary conditions, Eqs. (15.43) through (15.46). 

Now consider the hypersonic flow over a given body in the limit of large M,. The 
flow is again governed by Eqs. (15.35) through (15.39), but with boundary condi- 
tions given by Eqs. (15.42) and (15.47) through (15.50). 

Question: Where does M, explicitly appear in these equations? 

Answer: No place! 
Conclusion: At high M,, the solution is independent of Mach number. 

Clearly, from this last consideration, we can see that the Mach number independence 
principle follows directly from the governing equations of motion with the appropri- 
ate boundary conditions written in the limit of high Mach number. Therefore, when 
the free-stream Mach number is sufficiently high, the nondimensional dependent 
variables in Eqs. (15.35) through (15.39) become essentially independent of Mach 
number; this trend applies also to any quantities derived from these nondimensional 
variables. For example, C, can be easily obtained as a function of p only; in turn, 
the lift and wave-drag coefficients for the body, CL and Cow, respectively, can be 
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Figure 15.13 1 Drag coefficient for a sphere and a cone-cylinder from 
ballistic range measurements; an illustration of Mach number 
independence. (From Ref. 124.) 

exprecsed in terms of C, integrated over the body surface (see, for example, 
Ref. 104). Therefore, C,, CL, and CD,, also become independent of Mach number at 
high M,. This is demonstrated by the data shown in Fig. 15.13 obtained from 
Ref$. 121 through 123 as gathered in Ref. 124. In Fig. 15.13, the measured drag 
coefticients for spheres and for a large-angle cone-cylinder are plotted versus Mach 
number, cutting across the subsonic, supersonic, and hypersonic regimes. Note the 
large drag rise in the subsonic regime associated with the drag-divergence phenome- 
non near Mach 1, and the decrease in C D  in the supersonic regime beyond Mach 1. 
Both of these variations are expected and well understood. (See, for example, 
Secs. 14.2 and 9.6, respectively.) For our purposes in the present section, note in 
particular the variation of C1, in the hypersonic regime; for both the sphere and cone- 
cylinder, Cn approaches a plateau, and becomes relatively independent of Mach 
number as M, becomes large. Note also that the sphere data appear to achieve 
"Mach number independence" at lower Mach numbers than the cone-cylinder. This 
is to be expected, as follows. In Eqs. (15.43) through (15.46), the Mach number fre- 
quently appears in the combined form M& sin2 p ;  for a given Mach number, this 
quantity is larger for blunt bodies ( p  large) than for slender bodies ( p  small). Hence 
blunt body flows will tend to approach Mach number independence at lower M ,  
than will slender bodies. 

Finally, keep in mind from the above analysis that it is the nondimensional vari- 
ables that become Mach number independent. Some of the dimensional variables, 
such asp ,  are not Mach number independent; indeed, p -+ cc as M ,  + GO. 
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15.6 1 THE HYPERSONIC SMALL-DISTURBANCE 
EQUATIONS 

In Chap. 9, the concept of perturbation velocities was introduced. For irrotational 
flow, the Euler equations cascade to a single equation in terms of the perturbation ve- 
locities, u', v',  and w', namely Eq. (9.4). In turn, then Eq. (9.4) reduces to the linear 
Eq. (9.5) which holds for subsonic and supersonic flows. On the other hand, we saw 
in Sec. 9.2 that Eq. (9.5) does not hold for transonic flow; this was reinforced 
in Chap. 14 where transonic flow was described as a basically nonlinear flow regime, 
even for small perturbations. The same is true for hypersonic flow, as noted 
in Sec. 9.2. At hypersonic Mach numbers, Eq. (9.5) does not hold. This raises the 
question: What equations do hold for hypersonic flow when the assumption of small 
perturbations is made? The answer to this question is the subject of this section. In 
particular, making the assumption that u', v', and w' are small, we will derive the 
hypersonic small-disturbance equations. In the following section, we will put these 
equations to work in order to obtain the principle of hypersonic similarity. 

From the definition of the perturbation velocities as given in Chap. 9, we have 

In terms of these perturbation velocities, Eqs. (15.29) through (15.32) and (15.34) are 
written as 

We wish to nondimensionalize Eqs. (15.51) through (15.55). Moreover, we wish 
to have nondimensional variables with an order of magnitude of unity, for reasons to 
be made clear later. To obtain a hint about reasonable nondimensionalizing quanti- 
ties, consider the oblique shock relations in the limit as M, -+ oo, obtained in 
Sec. 15.3. Also note that for a slender body at hypersonic speeds, both the shock 
wave angle B and the deflection angle 0 are small; hence, 
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where v = j ' ( x )  is the body shape, and s  is the slenderness ratio defined in Sec. 14.3. 
Thus, from Eq. ( 15.1 ), repeated below for convenience: 

we have the order-of-magnitude relationship: 

This in turn implies that the pressure throughout the shock layer over the body will 
be on the order of ~ ; t ' ~ , ,  and hence a reasonable definition for a nondimens~onal 
pressure which would be on the order of magnitude of unity is 9 = p / y ~ $ r ' p , .  
(The reason for the y w ~ l l  become clear later.) In regard to density, congider 
Eq. (15.2), repeated here: 

For y  = 1.4. p2/p, + 6, which for our purposes is on the order of magnitude near 
unity. Hence, a reasonable nondimensional density is simply f i  = pip,. In regard to 
velocities, first consider Eq. (15.5), repeated here: 

Define the change in the x component of velocity across the oblique shock as 
Au = V, - u,. From Eq. (15.5), we have 

This implies that the nondimensional perturbation velocity i' (which is also a change 
in velocity in the x direction) should be defined as 6' = u'/v,r2 in order to be of an 
order of magnitude of unity. Finally, consider Eq. (15.8), repeated here: 

From Eq. (15.8), we have 

This implies that the nondimensional perturbation velocity S' should be 5' = v'/V, t ,  
which is on the order of magnitude of 1. 

[We pause to observe an interesting physical fact evidenced by Eqs. (15.57) and 
(15.58). Since we are dealing with slender bodies, r is a small number, much less 
than unity. Hence, by comparing Eqs. (15.57) and (15.58), we see that Au,  which 
varies as r 2 ,  is much smaller than Av, which varies as r .  Therefore, we conclude in 
the case of hypersonic flow over a slender body that the change in u dominates the 
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flow, i.e., the changes in u and v are both small compared to V,, but that the change 
in v is large compared to the change in u.] 

Based on these arguments, we define the following nondimensional quantities, 
all of which are on the order of magnitude of unity. Note that we add a third dimen- 
sion in the z direction, and that y and z in the thin shock layer are much smaller than x: 

(Note: The barred quantities here are different than the barred quantities used in 
Sec. 15.5, but since the present section is self-contained, there should be no confu- 
sion.) In terms of the nondimensional quantities defined here, Eqs. (15.51) through 
(15.55) can be written as shown next. From Eq. (15.51) 

From Eq. (15.52) 

or, noting that 

YPCC 2 vk 2 
P ,  VL = - P ,  V ,  = y p ,  - = yp ,  M ,  

YPCC a& 

we have 

From Eq. (15.53) 
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From Eq. (15.54), we similarly have 

From Eq. (15.55) 

Examine Eqs. (15.59) through (15.63) closely. Because of our choice of nondimen- 
sionalized variables, each term in these equations is of order of magnitude unity ex- 
cept for those multiplied by r2, which is very small. Therefore, the terms involving 
r2  can be ignored in comparison to the remaining terms, and Eqs. (15.59) through 
(15.63) can be written as 

Equations ( 1  5.64) through (15.68) are the hvpersonic small-disturbarzc equations. 
They closely approximate the hypersonic flow over slender bodies. They are limited 
to flow over slender bodies because we have neglected terms of order r'. They are 
also limited to hypersonic flow because some of the nondimensionalized terms are of 
order of magnitude unity only for high Mach numbers; we made certain of this in the 
argument that preceded the definition of the nondimensional quantities. Hence, the 
fact that each term in Eqs. (15.64) through (15.68) is of the order of magnitude unity 
[which is essential for dropping the r2  terms in Eqs. (15.59) through (15.63)] holds 
only for hypersonic flow. 

Equations (15.64) through (15.68) exhibit an interesting property. Look for i' 
in these equations; you can find it only in Eq. (15.65). Therefore, in the hypersonic 
small-disturbance equations, ii' is decoupled from the system. In principle, Eqs. (1 5.64) 
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and (15.66) through (15.68) constitute four equations for the four unknowns, 5, j, it, 
and G'. After this system is solved, then 13' follows directly from Eq. (15.65). This 
decoupling of i' from the rest of the system is another ramification of the fact already 
mentioned earlier, namely that the change in velocity in the flow direction over a 
hypersonic slender body is much smaller than the change in velocity perpendicular to 
the flow direction. 

The hypersonic small-disturbance equations are used to obtain practical infor- 
mation about hypersonic flows over slender bodies. An example is given in the next 
section, dealing with hypersonic similarity. 

(Note the importance of obtaining the limiting hypersonic shock relations in 
Sec. 15.3. We have already used these relations several times for important develop- 
ments. For example, they were used to demonstrate Mach number independence in 
Sec. 15.5, and they were instrumental in helping to define the proper nondimensional 
variables in the hypersonic small-disturbance equations obtained in this section. So 
the work done in Sec. 15.3 was more than just an academic exercise; the specialized 
forms of the oblique shock relations in the hypersonic limit are indeed quite useful.) 

The hypersonic small-disturbance equations, Eqs. (15.64) through (15.68), are 
the analog to Eq. (9.5) for subsonic and supersonic flow. However, unlike Eq. (9.5) 
which is linear, Eqs. (15.65) through (15.68) are nonlinear. Therefore, we have 
clearly demonstrated that, for hypersonic flow, the assumption of small perturbations 
does not lead to a linear theory; this is indeed just another ramification of the inher- 
ent nonlinearity of hypersonic flow. 

15.7 1 HYPERSONIC SIMILARITY 
The concept of flow similarity is well entrenched in fluid mechanics. In general, two 
or more different flows are defined to be dynamically similar when: (1) the stream- 
line shapes of the flows are geometrically similar, and (2) the variation of the flow- 
field properties is the same for the different flows when plotted in a nondimensional 
geometric space. Such dynamic similarity is ensured when: (1) the body shapes are 
geometrically similar, and (2) certain nondimensional parameters involving free- 
stream properties and lengths, called similarity parameters, are the same between the 
different flows. See Ref. 104 for a more detailed discussion of flow similarity. 

In the present section, we discuss a special aspect of flow similarity which ap- 
plies to hypersonic flow over slender bodies. In the process, we will identify what is 
meant by hypersonic similarity, and will define a useful quantity called the hyper- 
sonic similarity parameter. 

Consider a slender body at hypersonic speeds. The governing equations are 
Eqs. (15.64) through (15.68). To these equations must be added the boundary condi- 
tions at the body surface and behind the shock wave. At the body surface, the flow 
tangency condition is given by Eq. (15.41), repeated below: 

In terms of the perturbation velocities defined in Sec. 15.6, Eq. (15.41) becomes 
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In terms of the nondimensional perturbation velocities defined in Sec. 15.6, 
Eq. ( 15.69) becomes 

In Eq. ( 1  5.7O), the direction cosines n,  , n,. , and 11; are in the (x, y. z )  space: these 
values are somewhat changed in the transformed space (.k, j. i) defined in Sec. 15.6. 
Letting ii,. ?i ,., and ii, denote the direction cosines in the transformed space, we have 
(within the slender body assumption) 

(See Ref. 119 for a more detailed discussion of the transformed direction cosines.) 
With the relations given in Eqs. ( 1 . 7 1 )  the boundary condition given by 
Eqs. ( 15.70) becomes 

( 1  + ~ ' u ' ) ~ i i ,  + vltii, + Grsn.  = 0 
7 -, - 

( 1  + r -u  ) n ,  + i ' i i ,  + G'H, = 0 ( 15.72) 

Consistent with the derivation of the hypersonic small-disturbance equations in 
Sec. 15.6, we neglect the term of order r' in Eq. (15.72). yielding the final result for 
the surface boundary condition: 

The shock boundary conditions, consistent with the transformed coordinate sys- 

tem, can be obtained as follows. Consider Eq. (4.8), repeated here: 

For hypersonic flow over a slender body, /3 is small. Hence, 

d?, 
s i n  ( = ) r 

< 

where (d.T/d.?) is the slope of the shock wave in the transformed space. Thus, 
Eq. (I 5.74) becomes 
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Repeating Eq. (4.9), 

and recalling that j5 = ply M & T ~ ~ , ,  Eq. (4.9) becomes 

Repeating Eq. (15.4), 

and recalling that u2 = V,  + uk = Ui/V,t2, Eq. (15.4) becomes 

Repeating Eq. (15.6), 
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and recalling that v l  = v; and i: = C:/V,r, Eq. (1 5.6) becomes 

Equations ( 1  5.75) through (15.78) represent boundary conditions immediately be- 
hind the shock wave in terms of the transformed variables. Note that these eq~~ations 
were obtained from the exact oblique shock relations, making only the one assump- 
tion of small wave angle; nothing was said about very high Mach numbers: hence, 
Eqs. (15.75) through (15.78) should apply to moderate as well as large hypersonic 
Mach numbers. 

Examine carefully the complete system of equations for hypersonic flow over 
a slender body-the governing flow equations [Eq. (15.64) through (15.68)], the 
surface boundary condition [Eq. (15.73)], and the shock boundary conditions 
[Eqs. (15.75) through (15.78)]. For this complete system. the free-stream Mach 
number M ,  and the body slenderness ratio t appear only as the product M,r, and 
this appears only in the shock boundary conditions. The product M,r is identitied as 
the hypersonic similarity parameter, which we will denote by K .  

Hypersonic ,irnilurityl)ururnrter: K - M,t 

Itnpor-tant: The meaning of the hypersonic similarity parameter becomes clear from 
an examination of the complete system of equations. Since M,r and y are the only 
parameters that appear in these nondimensional equations, then solutions for two 
different flows over two different but affinely related bodies (bodies which have 
essentially the same mathematical shape, but which differ by a scale factor on one di- 
rection, such as different values of thickness) will be the same (in terms of the 
nondiniensional variables, i'. i7, etc.) if y and M,t are the same between thc two 
flows. This is the principle of 11ypvpc.r.sonic~ sirnilavih. 

For affinitely related bodies at a small angle of attack a .  the principle of hyper- 
sonic similarity holds as long as, in addition to y and M,r, a / r  is also the same. For 
this case, the only modification to the above derivation occurs in the surhce bound- 
ary condition, which is slightly changed; for small a ,  Eq. (15.73) is replaced by 

The derivation of Eq. ( 1  5.79) as well as an analysi5 of the complete system of equa- 
tions for the case of small a .  is left to the reader as a homework problem. In sum- 
mary, including the effect of angle of attack, the solution of the governing equations 
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along with the boundary conditions takes the functional form 

etc. 

Therefore, hypersonic similarity means that, if y  , M ,  r , and a / t  are the same for two 
or more different flows over affinely related bodies, then the variation of the nondi- 
mensional dependent variables over the nondimensional space p = p ( i ,  j, j), etc., 
is clearly the same between the different flows. 

Consider the pressure coefficient, defined as 

This can be written in terms of j as 

Since p = j ( i ,  j, 2 ,  y ,  M,t, a l t ) ,  then Eq. (15.80) becomes the following func- 
tional relation: 

From Eq. (15.81), we see another aspect of hypersonic similarity, namely, that flows 
over related bodies with the same values of y ,  M,t, and a / t  will have the same 
value of ~ , / t  2. 

Since the lift and wave drag coefficients are obtained by integrating C,  over the 
body surface (see Ref. 104), then it is relatively straightforward to show that (see 
Ref. 119): 

1. For a two-dimensional shape, referenced to planform area per unit span 
I I 

2. For a three-dimensional shape, referenced to base area, 

CI 
- r2  = f 2 ( y ,  M ~ T ,  :) 

= h ( y ,  M,r. :) 
t 3 

Referenced to planform area 

C' t = F l ( y ,  M,r, 4) 
CD 
t2 

Referenced to base area 
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Examine the results summarized in the two boxes aboie, namely the results tor  c.1 

and c,/ for a two-dimensional low, and C,. and C,, fhr a three-dimensional flow. 
From these results, the principle of hypersonic similarity states that affinely related 
bodies with the same values of y. M,r, and a/r will have: ( I )  the sarnc \dues  
of q / r '  and c,,~/r"or two-dimensional flows, when referenced to planfonu area: and 
( 2 )  the same values of CL/r and C,,/r' for three-dimensional flows when referenced 
to base area. 

The validity of the hypersonic similarity principle is verified by the results 
shown in Fig. 15.14, obtained from the work of Neice and Ehret (Ref. 17-5). Consider 
first Fig. 15.140, which shows the variation of c,,/t2 as a function of distance down- 
stream of the nose of a slender ogive-cylinder (as a function of x = x l l ,  expressed in 
percent of nose length). Two sets of data are presented, each for a different M, and 
r .  but such that the product K = M,r is the same value, namely 0.5. The data are 
exact calculations made by the method of characteristics. Hypersonic similarity 
states that the two sets of data should be identical, which is clearly the case shown in 
Fig. 15.140. 

A similar comparison is made i n  Fig. 15.1417, except for a higher value of the hy- 
personic similarity parameter, namely ti = 2.0. The conclusion is the same; the data 
for two different values of M, and s, but with the same K ,  are identical. An inter- 
esting sideline is also shown in Fig. 15.14h. Two different methods of characteristics 
calculations are made-one assuming irrotational flow (the solid line), and the other 
treating rotational flow (the dashed line). There are substantial differences in itnple- 
menting the method of characteristics for these two cases, as explained in Chap. I I. 
In reality, the flow over the ogive-cylinder is rotational because of the slightly curved 
shock wave over the nose. The effect of rotationality is to increase the value of' C,,, 
as shown in Fig. 15.14h. However, Neice and Ehret state that no signiticant differ- 
ences between the rotational-irrotational calculations resulted for the low value of 
ti = 0.5 in Fig. 15.14tr, which is why only one curve is shown. One can conclude 
from this comparison the almost intuitive fact that the effects of rotationality become 
more important as M,, s, or both are progressively increased. However, the main 
reason for bringing up the matter of rotationality is to ask the question: W o ~ ~ l d  we ex- 
pect hypersonic similarity to hold for rotational flows? The question is rhetorical. be- 
cause the answer is obvious. Examining the governing flow eq~~ations upon which 
hypersonic similarity is based. namely Eqs. (15.64) through (15.68), we note that 
they contain no assumption of irrotational flow-they apply to both cases. Hence, the 
principle of hypersonic similarity hoids for both irrotational and rotational Rows. 
This is clearly demonstrated in Fig. 15.14h, where the data calculated for irrotational 
flow for two different values of M, and r (but the same ti) on the same curve. 
and the data calculated for rotational flow for the two different values of M, and r 
(but the same K j also fall on the same curve (but a different curve than the irrota- 
tional results). 

Question: Over what range of values of K = M,r does hypersonic similarity 
hold? The answer cannot be made precise. However, many results show that for very 
slender bodies (such as a 5 half-angle cone), hypersonic similarity hold5 for values 
of K ranging from less than 0.5 to infinitely large. On the other hand, for less slender 
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Percent nose length 

Percent nose length 

Figure 15.14 1 Pressure distributions over ogive-cylinders; 
illustration of hypersonic similarity. (a )  K = 0.5; (b) K = 2.0. 
(From Ref. 125.) 
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bodies (say, a 20" half-angle cone), the data do not correlate well until K > 1.5. 
However, always keep in mind that hypersonic similarity is based on the hypersonic 
small-disturbance equations, and we would expect the results to become more tenu- 
ous as the thickness of the body is increased. 

An important historical note is in order here. The concept of hypersonic similar- 
ity was first developed by Tsien in 1946, and published in Ref. 126. In this paper, 
Tsien treated a two-dimensional potential (hence irrotational) flow. This work was 
further extended by Hayes (Ref. 127) who showed that Tsien's results applied to ro- 
tational flows as well. (As noted earlier, the development of hypersonic similarity in 
the present chapter started right from the beginning with the governing equations for 
rotational flow. There is no need to limit ourselves to the special case treated by 
Tsien.) However, of equal (or more) historical significance, Tsien's 1946 paper seems 
to be the source which coined the word hypersonic. After an extensive search of the 
literature, the present author could find no reference to the word "hypersonic" before 
1946. Then, in his 1946 paper-indeed in the title of the paper-Tsien makes liberal 
use of the word "hypersonic," without specifically stating that he is coining a new 
word. In this sense, the word "hypersonic" seems to have entered our vocabulary 
with little or no fanfare. 

15.8 1 COMPUTATIONAL FLUID DYNAMICS 
APPLIED TO HYPERSONIC FLOW; 
SOME COMMENTS 

The modern hypersonic aerodynamics of today is paced by computational fluid 
dynamics (CFD). Indeed, the impact of CFD on hypersonics has been the greatest 
of all the flight regimes discussed earlier in this book. This is due mainly to the lack 
of hypersonic ground test facilities for experimental studies, especially at the 
extreme ends of the spectrum where M > 20 and the stagnation temperatures are 
high enough to cause substantial chemical dissociation of the gas. In lieu of such 
high-performance facilities, the design of hypersonic vehicles must rely heavily on 
the results of computational fluid dynamics. 

In this sense, the present section is essentially a summary section, because ex- 
amples of computational fluid dynamics applied to flows with hypersonic Mach 
numbers can be found throughout this book. For example, in Sec. 1 1.16, there are 
examples of both the method of characteristics and an explicit finite-difference tech- 
nique (essentially MacCormack's explicit technique) applied to a space-shuttle con- 
figuration at Mach 7.4. Blunt body solutions at Mach 8 are discussed in Sec. 12.6. 
Chapter 13 contains many results for three-dimensional flowfields at hypersonic 
speeds. These results, taken together, serve as our examples of the application of 
computational fluid dynamics to hypersonic flows. Only one additional example will 
be discussed here. 

In Ref. 129, hypersonic flow over blunt-nosed cones at angle of attack is 
calculated. A blunt body solution (see Sec. 13.4) is used to obtain the initial data 
surface from which the three-dimensional method of characteristics (see Sec. I 1.10) 
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Blunt cone 

- Three-dimensional method of characteristics 

0 Experiment 

a, degrees 

Figure 15.15 1 Circumferential surface-pressure distribution at x/R,  = 8; comparison 
between theory and experiment in helium. 8, = 15", a = 2 0 ,  M ,  = 14.9, y = 1.667, 
Re = 0.86 x 1 06. (From Ref. 129.) 

is used to calculate the rest of the flowfield. Typical results are shown in Figs. 15.15 
and 15.16. In Fig. 15.15, the circumferential pressure distribution around the conical 
surface at an axial location equal to eight nose radii downstream of the nose is 
shown. The most leeward location is @ = 0, and the most windward location is 
@ = 180". The free-stream Mach number is 14.9. The circles are experimental data 
obtained in a hypersonic wind tunnel using helium as the test gas (for helium, 
y = 1.667). The solid curve represents the calculation, also for y = 1.667. Excellent 
agreement is obtained-a beautiful testimonial to the power of computational tech- 
niques applied to a rather complex hypersonic flow. In Fig. 15.16, the axial distribu- 
tions of pressure coefficient are given for three different values of Q, (three different 
azimuthal locations). Again, Q, = 180" is the extreme windward location. Here, the 
circles represent experimental data obtained in air at Mach 10 (hence y = 1.4). The 
solid curves are the computed results. Again, excellent agreement is obtained. Note 
that the results for Q = 180" show a local overexpansion downstream of the nose, 
with a local recompression further downstream. This type of pressure variation is typ- 
ical of the flow over blunt-nosed cones at hypersonic speeds. It appears that, in flow- 
ing over the blunt-nosed shape, the flow expands too far; after it reaches the conical 
part of the body, this overexpansion is then compensated by a local recompression. 
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- Three-dimensional method of characteristics 

0 Experiment 

= 180" 

Pointed cone 

Figure 15.16 1 Pressure distributions over a blunt-nosed cone; comparison 
between theory and experiment in air. cu = 10 . Re = 0.6 x 10". M, = 10. 
y = 1.4. (From Ref. 129.) 

Also note in Fig. 15.16 that the pressures far downstream approach the \ h a p n o s e d  
cone results, given by the single dash at the end of each curve. Howevcr, the $harp 
cone results cannot be exactly achieved because of the presence of the entropy layer 
emanating from the blunt nose. This is in addition to the entropy layer that is always 
present on a cone-even a sharp-nosed cone-at angle of attach, as was clisc~lssocl in 
Chap. 13. 

Modern CFII applications to hypersonic flow abound in the literature. S L K ~  
journals as the AlAA Journal and the .Jourr~cd of' Pro,vrll.siort t r r d  P o c t ~ r  are good 
sourceh of such literature. 

15.9 1 SUMMARY AND FINAL COMMENTS 
In this chapter we have discussed some of the basic aspects of "classical" hypersonic 
aerodynamics, i.c., the hypersonic shock wave relations, newtonian flow, tangent- 
wedge and tangent-cone methods, Mach number independence, and hypersonic 
small-perturbation theory leading to the demonstration of hypersonic similarity. We 
have seen that hypersonic theory is rzonlineal; even for small perturbations. The 
"modern" hypersonic aerodynamics is characterized by applications of computa- 
tional fluid dynamics, as discussed in various sections throughout this book. 
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One of the most important aspects of hypersonic flow is the large temperature in- 
creases associated with such flows, and the resulting chemically reacting flowfields 
that are so prevalent in many hypersonic applications. Such matters are not discussed 
in this chapter. However, the remaining two chapters of this book are devoted to de- 
veloping the basic thermodynamics and gasdynamics of high-temperature, chemi- 
cally reacting flow. Such high-temperature flows are an essential part of modern 
compressible flow. The material in Chaps. 16 and 17 is applicable to many problems 
in addition to hypersonics. However, it is particularly applicable to hypersonic flow, 
and in that sense the following two chapters, although self-contained, can be visual- 
ized as a natural extension of the present chapter. 



Properties of 
High-Temperature Gases 

Science is eternal. It was started thousands cfyears ago and its progress i s  
continuous. Principles that are d ~ e p l y  rooted are not likely to pcm  suddenl~ 
,from the scene. 

Theodore von Karman. 1963 
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Explosions, combustion, the searing temperatures asso- and nonequilibrium as represented on the right. These 
ciated with the very high speed flow of a gas-these are two distinctly different situations; some high- 
are some examples of compressible flow where high- temperature flows can be analyzed by assuming local 
temperature effects must be taken into account. For equilibrium, but many others are dominated by nonequi- 
these and other situations the assumption of a calorically Iibrium processes. So both sides of the roadmap in 
perfect gas with constant specific heats, which has per- Fig. 16.1 are equally important. We will start on the left, 
meated all of the previous chapters, is simply not good and introduce some fundamental aspects of statistical 
enough. We have to take into account chemical reactions thermodynamics (box I), which in turn leads to the equi- 
occurring in the flow, and other physical phenomena that librium thermodynamic properties of a single-species 
cause the specific heats to be variable. This changes the gas (box 2). Then we show how the equilibrium chemi- 
complexion of our analyses and calculations completely. cal composition of a chemically reacting gas can be 
We have to deal with a combination of physical chem- calculated (box 3). This tells us how much of each 
istry with gas dynamics-a combination that is exciting, chemical species is present in the gas. Boxes 2 and 3 
important, and particularly interesting to study. In the are then combined to obtain the equilibrium thermody- 
present chapter we introduce some basic aspects of namic properties of a chemically reacting gas. Finally, 
physical chemistry, which will then be combined with we move to the right-hand side of the roadmap, and deal 
gas dynamics in the next chapter to study some funda- with nonequilibrium processes, We emphasize two 
mental high-temperature flows. such processes: molecular vibrational nonequilibrium 

Return to the overall roadmap for the book given in (box 51, and chemical nonequilibrium (box 6). 
Fig. 1.7. We now move to the extreme right, box 17, to In short, view this chapter as a crash course in 
study high-temperature flow. This will round out our physical chemistry. We discuss only those aspects that 
overall study of modern compressible flow as repre- are necessary for applications to compressible flows. We 
sented by the entire map in Fig. 1.7. assume no prior knowledge of this material on your part; 

The roadmap for the present chapter is given in the concepts and equations are developed from first 
Fig. 16.1. Here we will deal with two different states of principles. View this chapter as an interesting and 
gases, equilibrium as represented on the left of Fig. 16.1, awarding adventure. 

PROPERTIES OF HIGH-TEMPERATURE GASES 

I 
I I 

Equilibrium gases 

1. Some statistical 
thermodynamics 

2. Thermodynamic properties - 
of a single-species gas 4. Thermodynamic properties - of an equilibrium chemically 

3. Chemical composition reacting gas 

of an equilibrium gas 

Figure 16.1 1 Roadmap for Chapter 16. 



16.1 Introduction 

16.1 1 INTRODUCTION 
Consider the atmospheric entry of the Apollo command vehicle upon return from the 
moon. At an altitude of approximately 53 km, the velocity of the vehicle is I I klnls. 
As sketched in Fig. 12.20, a strong bow shock wave is wrapped around the blunt 
nose, and the shock layer between the shock and the body is relatively thin. This is a 
blunt body flowtield, as discussed in Chap. 12. Moreover, at a standard altitude of 
53 km. the air temperature is 283 K and the resulting speed of sound is 338 m/s; 
hence the Mach number of the Apollo vehicle is 32.5-an extremely large hyper- 
sonic value. lJsing the theory developed in Chap. 3 for :I calorically perfect gas, let 
us estimate the temperature in this shock layer. From Table A.2, for M = 32.5, 
T , / 7 ,  = 206, where 7; is the static temperature behind the normal portion of the 
bow shock wave. Hence, T, = (206)(283) = 58,300 K .  This is an extremely high 
temperature; i t  is also completely itzcorrect. Long before this temperature is reached, 
the air molecules will dissociate and ionize. Indeed, the shock layer becomes a par- 
tially ionized plasma, where the specitic heat of the gas is a strong function of both 
pressure and temperature. The assumption of a calorically perfect gas made above is 
completely inaccurate: when this chemically reacting gas is properly calculated, the 
shock layer temperature is on the order of 11,600 K-still a high value, but a factor 
of 5 less than the temperature predicted on the basis of a calorically perfect gas. 
Figure 16.2 compares the variation of shock layer temperature as a function of flight 
velocity for both the caws of a calorically perfect gas and an equilibrium chemically 
reacting gas. Also noted are typical reentry velocities for various space vehicles such 
as an intermediate range ballistic missile (IRBM), intercontinental ballistic missile 
(ICBM), earth orbital vehicles (e.g., Mercury and Gemini), lunar return vehicles 
(e.g., Apollo) and Mars return vehicles. Clearly, for all such cases, the assumption of 
a calorically perfect gas is not appropriate; the effects of chemical reactions m~lst be 
taken into account. 

The remainder of this book will deal with the compressible flow of high- 
temperature gases. The importance of such a flow was illustrated above. In modern 
engineering applications, there are many other such examples: the flow through 
rocket engines, arc-driven hypersonic wind tunnels, high-performance shock tubes, 
high-energy gasdynamic and chemical lasers, and internal combustion engines. to 
name just a few. Therefore, as stated in Sec. 1.6, a study of modern compressible How 
must include some discussion of high-temperature effects. To this end, the present 
chapter deals with the thermodynamics of high-temperature chemically reacting 
gases, providing the necessary foundation for the analyses of high-temperature flows 
to be given in Chap. 17. The objective of these remaining chapters is to give the 
reader some appreciation for the limitations of the calorically perfect gas results 
developed in previous chapters, as well as an ability to make modern compressible 
How computations which properly include high-temperature effects. 

There are two major physical characteristics which cause a high-temperature gas 
to deviate from calorically perfect gas behavior: 

1. As the temperature of a diatomic or polyatomic gas is increased above standard 
conditions, the vibrational motion of the molecules will become important. 
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Eauilibrium 
chemically 

Reentry velocity (km/s) 

Figure 16.2 1 Temperature behind a normal shock versus velocity for 
air at a standard altitude of 52 km. Comparison between calorically 
perfect and equilibrium gas results. 

absorbing some of the energy which otherwise would go into the translational 
and rotational molecular motion. As we shall soon see, the excitation of 
vibrational energy causes the specific heat to become a function of temperature, 
i.e., the gas gradually shifts from calorically perfect to thermally perfect (see 
Sec. 1.4). 

As the gas temperature is further increased, the molecules will begin to 
dissociate (the atoms constituting the various molecules will break away from 
the molecular structure) and even ionize (electrons will break away from the 
atoms). Under these conditions, the gas becomes chemically reacting, and the 
specific heat becomes a function of both temperature and pressure. If we 
consider air at 1 atm, the approximate temperatures at which various reactions 
will become important are illustrated in Fig. 16.3. If the gas is at lower 
pressure, these temperatures shift downward; later in this chapter we will 
learn why. 

These physical effects-vibrational excitation and chemical reactions-will be 
highlighted in the remainder of this book. The purpose of the present chapter is to 
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O+0' t e- 

9000 K Nz almost completely dissociated; 
ionization begins 

4000 K N2 begins to dissociate; O2 is 
02 + 20 almost completely dissociated 

X O O K  --f- O 2  begins to dissociate 

I No reactions 

Figure 16.3 1 Ranges of dissociation and ionization for air at 
approximately I -atm pressure. 

establish the thermodynamic behavior of such gases, much as Sec. 1.4 laid the basis 
for our previous flowfield analyses dealing principally with a calorically perfect gas. 
However, unlike Sec. 1.4, which was a review, the assumption is made here that the 
reader has not had a previous background in high-temperature thermodynamics. 
Therefore, some effort will be made to provide a background sufficiently thorough 
that the reader will feel comfortable with the results, to be used in Chap. 17. 

To elaborate, an essential ingredient of any high-temperature flowfield analysis 
is the knowledge of the thermodynamic properties of the gas. For example, consider 
again the flowfield shown in Fig. 12.20. Assume that the gas is in local thermody- 
namic and chemical equilibrium (concepts to be defined later). The unknown flow- 
field variables, and how they can be obtained, are itemized as follows: 

Obtained from a simultaneous solution 
of the continuity, momentum, and 
energy equations 

T = T ( p ,  h )  I Obtained from the equilibrium thermodynamic 

P = P ( P ,  h )  properties of high-temperature air 

Here, we conceptually see that two thermodynamic variables p and h are obtained 
from the flowfield conservation equations, and that the remaining thermodynamic 
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variables T, p, e ,  s ,  etc., can be obtained from a knowledge of p and h.  In general, for 
a gas in equilibrium, any two thermodynamic state variables uniquely define the com- 
plete thermodynamic state of the gas. The question posed here is that, given two ther- 
modynamic state variables in an equilibrium high-temperature gas, how do we obtain 
values of the remaining state variables? There are two answers. One is to measure 
these properties from experiment. However, it is very difficult to carry out accurate ex- 
periments on gases at temperatures above a few thousand degrees; such temperatures 
are usually achieved in the laboratory for only short periods of time in devices such as 
shock tubes, or by pulsed laser radiation absorption. The other answer is to calculate 
these properties. Fortunately, the powerful discipline of statistical mechanics devel- 
oped over the last century, along with the advent of quantum mechanics in the early 
twentieth century, gives us a relatively quick and extremely accurate method of calcu- 
lating equilibrium thermodynamic properties of high-temperature gases. These 
concepts form the basis of statistical thermodynamics, the elements of which will be 
developed and used in the following sections. 

16.2 1 MICROSCOPIC DESCRIPTION OF GASES 
A molecule is a collection of atoms bound together by a rather complex intramolec- 
ular force. A simple concept of a diatomic molecule (two atoms) is the "dumbbell" 
model sketched in Fig. 1 6 . 4 ~ .  This molecule has several modes (forms) of energy: 

It is moving through space, and hence it has translational energy E:,,,,, as 
sketched in Fig. 16.4b. The source of this energy is the translational kinetic 
energy of the center of mass of the molecule. Since the molecular translational 
velocity can be resolved into three components (such as V,, V,, and V, in the 
xyz cartesian space shown in Fig. 16.4b), the molecule is said to have three 
"geometric degrees of freedom" in translation. Since motion along each 
coordinate direction contributes to the total kinetic energy, the molecule is also 
said to have three "thermal degrees of freedom." 

It is rotating about the three orthogonal axes in space, and hence it has 
rotational energy E:,,, as sketched in Fig. 16.4~.  The source of this energy is 
the rotational kinetic energy associated with the molecule's rotational velocity 
and its moment of inertia. However, for the diatomic molecule shown in 
Fig. 16.4c, the moment of inertia about the internuclear axis (the z axis) is very 
small, and therefore the rotational kinetic energy about the z axis is negligible 
in comparison to rotation about the x and y axis. Therefore, the diatomic 
molecule is said to have only two "g~ometric" as well as two "thermal" 
degrees of freedom. The same is true for a linear polyatomic molecule such as 
C 0 2  shown in Fig. 16.4d. However, for nonlinear molecules, such as H 2 0  also 
shown in Fig. 16.4d, the number of geometric (and thermal) degrees of 
freedom in rotation are three. 

The atoms of the molecule are vibrating with respect to an equilibrium location 
within the molecule. For a diatomic molecule, this vibration is modeled by a 
spring connecting the two atoms, as illustrated in Fig. 16.4e. Hence the 
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(a)  Diatomic molecule 

Source 

Translational kinetic energy of 
the center of mass (thermal 
degrees of freedom-3) 

(b) Transiational energy E;,,,, 

vx 

"2 

(c) Rotational energy eiot Rotational kinetlc energy; (thermal 
degrees of freedom-:: for diatomic; 
2 for linear polyatomic; and 3 for 
nonlinear polyatomic) 

Rotational energy about the 
internuclear axis for a diatomic 
molecule is negligibly small. 

8-2 CO2; linear polyatomic molecule 

( e )  Vibrational energy e:ib w 1 .  kinetic energy 
2. potential energy 

cl - 
(thermal degrees of freedom-2) 

( f )  Electronic energy EL, I .  Kinetic energy of electrons 
in orbit 

2. Potential energy of electrons 
in orbit 

Figure 16.4 1 Modes of molecular energy. 

molecule has vibrational energy &Lib.  There are two sources of this vibrational 
energy: the kinetic energy of the linear motion of the atoms as they vibrate 
back and forth, and the potential energy associated with the intramolecular 
force (symbolized by the spring). Hence, although the diatomic molecule has 
only one geometric degree of freedom (it vibrates only along one direction, 
namely, that of the internuclear axis), it has mo thermal degrees of freedom 
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due to the contribution of both kinetic and potential energy. For polyatomic 
molecules, the vibrational motion is more complex, and numerous fundamental 
vibrational modes can occur, with a consequent large number of degrees of 
freedom. 

4. The electrons are in motion about the nucleus of each atom constituting the 
molecule, as sketched in Fig. 16.4f. Hence, the molecule has electronic energy 
EL,. There are two sources of electronic energy associated with each electron: 
kinetic energy due to its translational motion throughout its orbit about the 
nucleus, and potential energy due to its location in the electromagnetic force 
field established principally by the nucleus. Since the overall electron motion is 
rather complex, the concepts of geometric and thermal degrees of freedom are 
usually not useful for describing electronic energy. 

Therefore, we see that the total energy of a molecule, E', is the sum of its trans- 
lational, rotational, vibrational, and electronic energies: 

I I 
6 = + E:,~ + &Lib + EL, (for molecules) 

For a single atom, only the translational and electronic energies exist: 

I I 
E = + EL, (for atoms) 

The results of quantum mechanics have shown that each of these energies is 
quantized, i.e., they can exist only at certain discrete values, as schematically shown 
in Fig. 16.5. This is a dramatic result. Intuition, based on our personal observations 
of nature, would tell us that at least the translational and rotational energies could 
be any value chosen from a continuous range of values (i.e., the complete real num- 
ber system). However, our daily experience deals with the macroscopic, not the 
microscopic world, and we should not always trust our intuition when extrapolated to 
the microscopic scale of molecules. Amajor benefit of quantum mechanics is that it cor- 
rectly describes microscopic properties, some of which are contrary to intuition. In 
the case of molecular energy, all modes are quantized, even the translational mode. 
These quantized energy levels are symbolized by the ladder-type diagram shown in 
Fig. 16.5, with the vertical height of each level as a measure of its energy. Taking the 
vibrational mode for example, the lowest possible vibrational energy is symbolized 
by &LvCh. The next allowed quantized value is E { ~ , ~ ,  then .sivLb, . . . , E:\,~,  . . . . The energy 
of the ith vibrational energy level is E(~, , ,  and so forth. Note that, as illustrated in 
Fig. 16.5, the spacing between the translational energy levels is very small, and if we 
were to look at this translational energy level diagram from across the room, it would 
look almost continuous. The spacings between rotational energy levels are much 
larger than between the translational energies; moreover, the spacing between two 
adjacent rotational levels increases as the energy increases (as we go up the ladder in 
Fig. 16.5). The spacings between vibrational levels are much larger than between 
rotational levels; also, contrary to rotation, adjacent vibrational energy levels become 
more closely spaced as the energy increases. Finally, the spacings between electronic 
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Modes of energy c 
Translation Rotation Vibmhon Electronic 

Figure 16.5 1 Schematic oE energy levels for the different molecular energy modes. 

levels are considerably larger than between vibrational levels, and the difference 
between adjacent electronic levels decreases at higher electronic energies. The quan- 
titative calculation of all these energies will be given in Sec. 16.7. 

Again examining Fig. 16.5, note that the lowest allowable energies are denoted 
by F: ,,r,,,,,, F A  r, , , ,  E:,,,,, and E: ,~ , .  These levels are defined as the ground state for the tnol- 
ecule. They correspond to the energy that the molecule would have if the gas were 
theoretically at a temperature of absolute zero; hence the values are also called 
the zero-point energies for the translational, rotational, vibrational, and electronic 
modes, respectively. It will be shown in Sec. 16.7 that the rotational zero-point en- 
ergy is precisely zero, whereas the zero-point energies for translation, vibration. and 
electronic motion are not. This says that, if the gas were theoretically at absolute 
zero, the molecules would still have some finite translational motion (albeit very 
small) as well as some finite vibrational motion. Moreover, it only makes common 
sense that some electronic motion should theoretically exist at absolute zero. or 
otherwise the electrons would fall into the nucleus and the atom would collapse. 
Therefore, the total zero-point energy for a molecule is denoted by &A, where 

I / 

E ,  = E& >t,. + + &be, 
recalling that E: ,~~ ,  = 0. 

It is common to consider the energy of a molecule as measured above its Lero- 
point energy. That is, we can define the translational, rotational, vibrational, and elec- 
tronic energies all measured above the zero-point energy as E ;  ,c,3,,, , EL r,,,, and '5 
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Emel = &kc, - 
(Note that the unprimed values denote energy measured above the zero-point value.) 
In light of this, we can write the total energy of a molecule as E ; ,  where 

E: = EjUa,,? + ~k, ,  + EI,,~ + &me, + 4 . i 

All are measured above the zero-point This represents zeropoint energy, 
energy, thus all are equal to zero at a fixed quantity for a given molecular 
T =  OK. species that is equal to the energy 

of the molecule at absolute zero. 

For an atom, the total energy can be written as 

If we examine a single molecule at some given instant in time, we would see that 
it simultaneously has a zero-point energy E: (a fixed value for a given molecular 
species), a quantized electronic energy measured above the zero-point, E,, , a quan- 
tized vibrational energy measured above the zero point, E I " , ~ ,  and so forth for rotation 
and translation. The total energy of the molecule at this given instant is E ( .  Since E( is 
the sum of individually quantized energy levels, then E;  itself is quantized. Hence, 
the allowable total energies can be given on a single energy level diagram, where 
E L ,  E ; ,  E; ,  . . . , E : ,  . . . are the quantized values of the total energy of the molecule. 

In the above paragraphs, we have gone to some length to define and explain 
the significance of molecular energy levels. In addition to the concept of an energy 
level, we now introduce the idea of an energy state. For example, quantum mechan- 
ics identifies molecules not only with regard to their energies, but also with regard to 
angular momentum. Angular momentum is a vector quantity, and therefore has an 
associated direction. For example, consider the rotating molecule shown in Fig. 16.6. 
Three different orientations of the angular momentum vector are shown; in each ori- 
entation, assume the energy of the molecule is the same. Quantum mechanics shows 

state a state @ state@ 
\ / v 

Same energy level 

Figure 16.6 1 Illustration of different energy states for the same energy level. 
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Figure 16.7 1 Illustration of statistical weights 

that molecular orientation is also quantized, i.e., it can point only in certain direc- 
tions. In all three cases shown in Fig. 16.6, the rotational energy is the same, but the 
rotational momentum has different directions. Quantum mechanics sees these cases 
as different and distinguishable statrs. Different states associated with the same 
energy level can also be defined for electron angular momentum, electron and nu- 
clear spin, and the rather arbitrary lumping together of a number of closely spaced 
translational levels into one approximate "level" with many "states." 

In summary, we see that, for any given energy level E : ,  there can be a number of 
different states that all have the same energy. This number of states is called the de- 
generacy or statistical weight of the given level E ( ,  and is denoted by g;.  This concept 
is exemplified in Fig. 16.7, which shows energy levels in the vertical direction, with 
the corresponding states as individual horizontal lines arrayed to the right at the 
proper energy value. For example, the second energy level is shown with five states, 
all with an energy value equal to E ; ;  hence, g2 = 5. The values of g, for a given mol- 
ecule are obtained from quantum theory and/or spectroscopic measurements. 

Now consider a system consisting of a fixed number of molecules, N.  Let N, be 
the number of molecules in a given energy level E(,. This value Nj is defined as the 
population of the energy level. Obviously, 

where the summation is taken over all energy levels. The different values of N j  as- 
sociated with the different energy levels EJ form a set of numbers which is defined as 
the population distribution. If we look at our system of molecules at one instant in 
time, we will see a given set of Nj's, i.e., a certain population distribution over the 
energy levels. Another term for this set of  numbers, synonomous with population dis- 
tribution, is mucrostutr. Due to molecular collisions, some molecules will change 
from one energy level to another. Hence, when we look at our system at some later 
instant in time, there may be a different set of N;'s, and hence a different population 
distribution, or macrostate. Finally, let us denote the total energy of the system as E, 
where 

I I 
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Energy levels: 4 4 4 . . .  ej . . .  

Statistical weights: go g~ g2 " ' 5  " '  

Populations at N ,  = 2 N ,  = 3 N - 5 . . . N .  = 3 . . . 
one instant: 2 - 

One macrostate 
Populations at the No = = , - . . . N.  = 6 . . . 
next instant: 2 - 

Another macrostate 

Figure 16.8 1 Illustration of macrostates. 

The schematic in Fig. 16.8 reinforces the above definitions. For a system of 
N  molecules and energy E, we have a series of quantized energy levels E:,, 

s', , . . . , E; ,  . . . , with corresponding statistical weights go, g l ,  . . . , gj, . . . . At some 
given instant, the molecules are distributed over the energy levels in a distinct way, 
No, N 1 ,  . . . , N j ,  . . . , constituting a distinct macrostate. In the next instant, due to 
molecular collisions, the populations of some levels may change, creating a different 
set of Nj 's, and hence a different macrostate. 

Over a period of time, one particular macrostate, i.e., one specific set of Nj's, 
will occur much more frequently than any other. This particular macrostate is called 
the most probable macrostate (or most probable distribution). It is the macrostate 
which occurs when the system is in thermodynamic equilibrium. In fact, this is the 
dejinition of thermodynamic equilibrium within the framework of statistical me- 
chanics. The central problem of statistical thermodynamics, and the one to which we 
will now address ourselves, is as follows: 

Given a system with a fixed number of identical particles, 
N  = E N j ,  andafixedenergy E = E !  , N . ,  find the most 

j i 
probable macrostate. 

In order to solve the above problem, we need one additional definition, namely, 
that of a microstate. Consider the schematic shown in Fig. 16.9, which illustrates a 
given macrostate (for purposes of illustration, we choose No = 2, N1 = 5 ,  
N2 = 3 ,  etc.). Here, we display each statistical weight for each energy level as a ver- 
tical array of boxes. For example, under E', we have gl = 6, and hence six boxes, one 
for each different energy state with the same energy E', . In the energy level E ; ,  we have 
five molecules ( N 1  = 5). At some instant in time, these five molecules individually 
occupy the top three and lower two boxes under gl , with the fourth box left vacant 
(i.e., no molecules at that instant have the energy state represented by the fourth box). 
The way that the molecules are distributed over the available boxes defines a 
microstate of the system, say microstate I as shown in Fig. 16.9. At some later 
instant, the N1 = 5 molecules may be distributed differently over the gl = 6 states, 
say leaving the second box vacant. This represents another, different microstate, 
labeled microstate I1 in Fig. 16.9. Shifts over the other vertical arrays of boxes 
between microstates I and I1 are also shown in Fig. 16.9. However, in both cases, No 
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[El 

\ [El 

Microstate 

Figure 16.9 1 Illustration of microstates. 

still equals 2, N I  still equals 5 ,  etc.-i.e., the macrostate is still the same. Thus, any 
one macrostate can have a number of different microstates, depending on which of the 
degenerate states (the boxes in Fig. 16.9) are occupied by the molecules. In any given 
system of molecules, the microstates are constantly changing due to molecular colli- 
sions. Indeed, it is a central assumption of statistical thermodynamics that each 
microstate of a system occurs with equal probability. Therefore, it is easy to reason 
that rhe most probable macrostate is that macrostate which has the maximum number 
of microstates. If each microstate appears in the system with equal probability, and 
there is one particular macrostate that has considerably more microstates than any 
other, then that is the macrostate we will see in the system most of the time. This is in- 
deed the situation in most real thermodynamic systems. Figure 16.10 is a schematic 
which plots the number of microstates in different macrostates. Note there is one par- 
ticular macrostate, namely, macrostate D, that stands out as having by far the largest 
number of microstates. This is the most probable macrostate: this is the macrostate 
that is usually seen, and constitutes the situation of thermodynamic equilibrium in the 
system. Therefore, if we can count the number of microstates in any given macrostate, 
we can easily identify the most probable macrostate. This counting of microstates is 
the subject of Sec. 16.3. In turn, after the most probable macrostate is identified, the 
equilibrium thermodynamic properties of the system can be computed. Such thermo- 
dynamic computations will be discussed in subsequent sections. 
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t Macrostate 

Figure 16.10 1 Illustration of most probable 
macrostate as that macrostate that has the 
maximum number of microstates. 

16.3 1 COUNTING THE NUMBER OF MICROSTATES 
FOR A GIVEN MACROSTATE 

Molecules and atoms are constituted from elementary particles-electrons, protons, 
and neutrons. Quantum mechanics makes a distinction between two different 
classes of molecules and atoms, depending on their number of elementary particles, 
as follows: 

1. Molecules and atoms with an even number of elementary particles obey a 
certain statistical distribution called Bose-Einstein statistics. Let us call such 
molecules or atoms Bosons. 

2. Molecules and atoms with an odd number of elementary particles obey a 
different statistical distribution called Fermi-Dirac statistics. Let us call such 
molecules or atoms Fermions. 

There is an important distinction between the above two classes, as follows: 

1. For Bosons, the number of molecules that can be in any one degenerate state 
(in any one of the boxes in Fig. 16.9) is unlimited (except, of course, that it 
must be less than or equal to Nj) .  

2. For Fermions, only one molecule may be in any given degenerate state at any 
instant. 

This distinction has a major impact on the counting of microstates in a gas. 
First, let us consider Bose-Einstein statistics. For the time being, consider one 

energy level by itself, say E;. This energy level has gj degenerate states and Nj 
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molecules. Consider the g; states as the gj containers diagrammed below. 

Distribute the N, molecules among the containers, such as three molecules in the first 
container, two molecules in the second, etc., where the molecules are denoted by x in 
the above diagram. The vertical bars are partitions which separate one container from 
another. The distribution of molecules over these containers represents a distinct 
microstate. If a molecule is moved from container 1 to container 2, a different mi- 
crostate is formed. To count the total number of different microstates possible, first 
note that the number of permutations between the symbols x and I is 

This is the number of distinct ways that the N, molecules and the g, - 1 partitions 
can be arranged. However, the partitions are indistinguishable; we have counted 
them too many times. The g; - 1 partitions can be permuted (g, - I ) !  different 
ways. The molecules are also indistinguishable. They can be permuted Nj! different 
ways without changing the picture drawn above. Therefore, there are (g, - I ) !  N, ! 
different permutations which yield the identical picture drawn above. that is, the 
same microstate. Thus, the number of different ways N, indistinguishable molecules 
can be distributed over gj  states is 

(Nj + g j  - I)! 
(g, - l )!Nj! 

This expression applies to one energy level E;  with population N,, and gives the 
number of different microstates just due to the different arrangements within F ; .  

Consider now the whole set of N,'s distributed over the complete set of energy 
levels. (Keep in mind that the given set of N,'s defines a particular macrostate.) 
Letting W denote the total number of microstates for a given macrostate, the last 
expression, multiplied over all the energy levels, yields 

Note that W is a function of all the N, values, W = W ( N I ,  N 2 . .  . . , N,, . . .). The 
quantity W is called the thermodynamicprobability, and is a measure of the "disorder" 
of the system (as will be discussed later). In summary, Eq. (1 6.3) is the way to count 
the number of microstates in a given macrostate as long as the molecules are Bosons. 

Next, let us consider Ferm-Dirac statistics. Recall that, for Fermions, only one 
molecule may be in any given degenerate state at any instant, i.e., there can be no 
more than one molecule per container. This implicitly requires that g, :, Nj. Con- 
sider the g; containers. Take one of the molecules and put it in one of the containers. 
There will be g, choices, or ways of doing this. Take the next particle, and put it in 
one of the remaining containers. However, there are now only g ,  - 1 choices, be- 
cause one of the containers is already occupied. Finally, placing the remaining mol- 
ecules over the remaining containers, we find that the number of ways NJ particles 
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can be distributed over g, containers, with only one particle (or less) per container, is 

However, the N, molecules are indistinguishable; they can be permutted Nj ! differ- 
ent ways without changing the above picture. Therefore, the number of different 
microstates just due to the different arrangements with E; is 

R; ! 
(gj - Nj)!Nj! 

Considering all energy levels, the total number of microstates for a given macrostate 
for Fermions is 

In summary, if we are given a specific population distribution over the energy 
levels of a gas, i.e., a specific set of Nj's, i.e., a specific macrostate, Eqs. (16.3) 
or (16.4) allow us to calculate the number of microstates for that given macrostate for 
Bosons or Fermions, respectively. It is again emphasized that W is a function of the 
Nj7s, and hence is a different number for different macrostates. Moreover, as sketched 
in Fig. 16.10, there will in general be a certain macrostate, i.e., a certain distribution of 
Njls, for which W will be considerably larger than for any other macrostate. This, by 
definition, will be the most probable macrostate. The precise solution for these Njls 
associated with the most probable macrostate is the subject of Sec. 16.4. 

16.4 1 THE MOST PROBABLE MACROSTATE 
The most probable macrostate is defined as that macrostate which contains the max- 
imum number of microstates, i.e., which has W,,,. Let us solve for the most proba- 
ble macrostate, i.e., let us find the specific set of Nj 's, which allows the maximum W. 

First consider the case for Bosons. From Eq. (16.3) we can write 

Recall that we are dealing with the combined translational, rotational, vibrational 
and electronic energies of a molecule, and that the closely spaced translational 
levels can be grouped into a number of degenerate states with essentially the same 
energy. Therefore, in Eq. (16.5), we can assume that Nj >> 1 and gj >> 1, and hence 
that Nj + gj - 1 x Nj + gj and gj - 1 x gj. Moreover, we can employ Sterling's 
formula 

h a !  = u l n a - a  (16.6) 

for the factorial terms in Eq. (16.5). Consequently, Eq. (16.5) becomes 
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Combining terms, this becomes 

Recall that In W = f ( Njls) = f (No, N1, N2, . . . , N, , . . .) . Also, to find the maxi- 
mum value of W, 

d(ln W) = 0 ( 16.8) 

From the chain rule of differentiation, 

Combining Eqs. (16.8) and (16.9), 

From Eq. (16.7), 

Substituting Eq. (16.1 I )  into Eq. (16. lo), 

In Eq. (16.12), the variation of Nj is not totally independent; dN, is subject to two 
physical constraints, namely, 

1. N = x, N, = const, and hence. 

2. E = C, EJ Nj  = const, and hence, 

Letting cr and /3 be two Lagrange multipliers (two constants to be determined later), 
Eqs. (16.13) and (16.14) can be written as 



CHAPTER 16 Properties of High-Temperature Gases 

Adding Eqs. (16.12), (16.15), and (16.16), we have 

From the standard method of Lagrange multipliers, a and B are defined such that 
each term in brackets in Eq. (16.17) is zero, i.e., 

The asterisk has been added to emphasize that Nj* corresponds to the maximum 
value of W via Eq. (16.8), i.e., Nj* corresponds to the most probable distribution 
of particles over the energy levels EI.. Equation (16.18) gives the most probable 
macrostate for Bosons. That is, the set of values obtained from Eq. (16.18) for all 
energy levels 

is the most probable macrostate. 
An analogous derivation for Fermions, starting from Eq. (16.4), yields for the 

most probable distribution 

which differs from the result for Bosons [Eq. (16.18)] only by the sign in the de- 
nominator. The details of that derivation are left to the reader. 

16.5 1 THE LIMITING CASE: BOLTZMANN 
DISTRIBUTION 

At very low temperature, say less than 5 K, the molecules of the system are jammed 
together at or near the ground energy levels, and therefore the degenerate states of 
these low-lying levels are highly populated. As a result, the differences between 
Bose-Einstein statistics [Eq. (1 6.18)] and Fermi-Dirac statistics [Eq. (16.19)] are 
important. In contrast, at higher temperatures, the molecules are distributed over 
many energy levels, and therefore the states are generally sparsely populated, i.e., 
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Ni << g i .  For this casz, the denominators of Eqs. (16.18) and (16.19) must be very 
large, 

and e"eBF: + 1 >> 1 

Hence, in the high-temperature limit, the unity term in these denominators can be 
neglected, and both Eqs. ( 1  6.18) and (1 6.19) reduce to 

This limiting case is called the Boltzmann limit, and Eq. (16.20) is termed the 
Boltzmann distribution. Since all gasdynamic problems generally deal with tem- 
peratures far above 5 K, the Boltzmann distribution is appropriate for all our future 
considerations. That is, in our future discussions, we will deal with Eq. (1 6.20) rather 
than Eqs. (16.18) or (16.19). 

We still have two items of unfinished business with regard to the Boltzmann dis- 
tribution, namely, a and p in Eq. (16.20). The link between classical and statistical 
thermodynamics is p.  It can readily be shown (for example, see p. 434 of Ref. 119) 
that 

where k is the Boltzmann constant [see Eq. (1.15)] and T is the temperature of the 
system. Hence, Eq. (16.20) can be written as 

To obtain an expression for a ,  recall that N = xj N;. Hence, from Eq. ( 16.2 1 ), 

Hence 

j 

Substituting Eq. (16.22) into ( 1  6.2 1 ), we obtain 

The Boltzmann distribution, given by Eq. (16.23), is important. It is the most proba- 
ble distribution of the molecules over all the energy levels E; of the system. Also, 
recall from Sec. 16.2 that EJ is the total energy, including the zero-point energy. 
However, Eq. (16.23) can also be written in terms of E, ,  the energy measured above 
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the zero point, as follows. Since E; = cj + E,, then 

Hence, Eq. (16.23) becomes 
I I 

where the energies are measured above the zero point. Finally, the partition function Q 
(or sometimes called the "state sum") is defined as 

and the Boltzmann distribution, from Eq. (16.24), can be written as 
I I 

I I 

The partition function is a very useful quantity in statistical thermodynamics, as we 
will soon appreciate. Moreover, it is a function of the volume as well as the temper- 
ature of the system, as will be demonstrated later: 

In summary, the Boltzmann distribution, given, for example, by Eq. (16.25), is 
extremely important. Equation (16.25) should be interpreted as follows. For mole- 
cules or atoms of a given species, quantum mechanics says that a set of well-dejined 
energy levels ~j exists, over which the molecules or atoms can be distributed at any 
given instant, and that each energy level has a certain number of degenerate states, 
g,. For a system of N molecules or atoms at a given T and Eq. (1 6.25) tells us how 
many such molecules or atoms, N;, are in each energy level ~j when the system is in 
thermodynamic equilibrium. 

16.6 1 EVALUATION OF THERMODYNAMIC 
PROPERTIES IN TERMS OF THE 
PARTITION FUNCTION 

The preceding formalism will now be cast in a form to yield practical thermody- 
namic properties for a high-temperature gas. In this section, properties such as inter- 
nal energy will be expressed in terms of the partition function. In turn, in Sec. 16.7, 
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the partition function will be developed in terms of T and V .  Finally, in Sec. 16.8, 
the results will he combined to give practical expressions for the thermodynamic 
properties. 

First consider the internal energy E ,  which is one of the most fundamental and 
important thermodynamic variables. From the microscopic viewpoint, for a system 
in equilibrium, 

Note that in Eq. (16.26) E I S  measured above the zero-point energy. Comb~ning 
Eq. (16.26) with the Boltzmann diwibut~on given by Eq. (16.25). we have 

Recall from the previous section that 

Hence 

Substituting Eq. (16.28) into (16.27), 

This is the internal energy for a system of N molecules or atoms. 
If we have I mol of atoms or molecules, then N = N A ,  Avogadro's number. 

Also, NAk = ./4. the universal gas constant (see Sec. 1.4). Consequently, for  the 
internal energy per mole, Eq. ( 16.29) becomes 

In gasdynamics, a unit mass is a more fundamental quantity than a unit mole. Let 
M be the mass of the system of N molecules, and m be the mass of an individual 
molecule. Then M = N m .  From Eq. (16.29), the internal energy per unit ma.ss, e ,  is 
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However, klm = R, the specific gas constant (again, see Sec. 1.4), and therefore 
Eq. (16.31) becomes 

The specific enthalpy is defined as 

Hence, from Eq. (16.32), 

Note that Eqs. (16.32) and (16.33) are "hybrid" equations, i.e., they contain a 
mixture of thermodynamic variables such as e ,  h,  and T, and a statistical variable Q. 
Similar expressions for other thermodynamic properties can be obtained, as itemized 
next. For a system of N molecules or atoms, the entropy S is 

and the pressure p is 

In all of these equations, Q is the key factor. If Q can be evaluated as a function 
of V and T, the thermodynamic state variables can then be calculated. This is the 
subject of Sec. 16.7. 

16.7 1 EVALUATION OF THE PARTITION FUNCTION 
IN TERMS OF T AND V 

Since the partition function is defined as 

we need expressions for the energy levels E, in order to further evaluate Q. The quan- 
tized levels for translational, rotational, vibrational, and electronic energies are given 
by quantum mechanics. We state these results without proof here; see the classic 
books by Herzberg (Refs. 60 and 61) for details. 

Recall that the total energy of a molecule is 
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In this equation, from quantum mechanics, 

I h2 ( n i  n i )  
'tram = - -+-;;+f 8m a: a? a, 

where r z I ,  n2. ns are quantum numbers that can take the integral values 1, 2, 3 ,  etc., 
and a t ,  a2, and a3 are linear dimensions which describe the size of the system. The 
values of a1 , ( 1 2 ,  and a3 can be thought of as the lengths of three sides of a rectangu- 
lar box. (Also note here that h denotes Planck's constant, not enthalpy as before. 
In order to preserve standard nomenclature in both gasdynamics and quantum me- 
chanics, we will live with this duplication. It will be clear which quantity is being 
used in our future expressions.) Also, 

, h2 
'rot = 8 1 ~ ~ 1  

J ( J  + I )  

where J is the rotational quantum number, J = 0, 1 ,  2, etc., and I is the moment of 
inertia of the molecule. For vibration, 

where n is the vibrational quantum number, n = 0, 1, 2, etc., and v is the fundamen- 
tal vibrational frequency of the molecule. For the electronic energy, no simple 
expression can be written, and hence it will continue to be expressed simply as EL[. 

In these expressions, I and v for a given molecule are usually obtained from 
spectroscopic measurements; values for numerous different molecules are tabulated 
in Ref. 61, among other sources. Also note that E&, depends on the sizr of the sys- 
tem through a1 , a2, and a3, whereas E:,,, &tib, and do not. Because of this spatial 
dependence of E&, Q depends on V as well as T. Finally, note that the lowest 
quantum number defines the zero-point energy for each mode, and from the above 
expressions, the zero-point energy for rotation is precisely zero, whereas it is a tinite 
value for the other modes. For example, 

In these equations, F{,,,,,, is very small, but it is finite. In contrast, E:,~,, is a larger 
finite value and EL,,,, although we do not have an expression for it, is larger yet. 

Let us now consider the energy measured above the zero point: 
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(Here, we are neglecting the small but finite value of stranso .) 

Therefore, the total energy is 

Now, let us consider the total energy measured above the zero point, E ,  where 

Sensible energy, All measured above the zero-point 
i.e., energy energy. Thus, all are equal to zero at 
measured above T = O K .  
zero-point energy. 

Recall from Eqs. (16.24) and (16.25) that Q is defined in terms of the sensible en- 
ergy, i.e., the energy measured above the zero point: 

where 

Hence, 

Note that the sums in each of the parentheses in Eq. (16.36) are partition functions 
for each mode of energy. Thus, Eq. (16.36) can be written as 

Q = Qtrans Qrot Qvib Qel (16.37) 

The evaluation of Q now becomes a matter of evaluating individually QtranS, Qrot, 

Qvib, and Q ~ I .  
First, consider Qtrans: 
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In the above, the summation is over all energy levels, each with g, states. Therefore, 
the sum can just as well be taken over all energy states, and written as 

If each of the terms in each summation above were plotted versus r r ,  an almost 
continuous curve would be obtained because of the close spacings between the 
translational energies. As a result, each summation can be replaced by an irltc,grul, 
resulting in 

where V = a1 ala3 = volume of the system. 
To evaluate the rotational partition function, we use the quantum mechanical 

result that g 1 = 2 J + 1. Therefore, 

Again, if the summation is replaced by an integral, 

To evaluate the vibrational partition function, results from quantum mechanics 
give g,, = I for all energy levels of a diatomic molecule. Hence, 

This is a simple geometric series, with a closed-form expression for the sum: 
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To evaluate the electronic partition function, no closed-form expression analo- 
gous to the above results is possible. Rather, the definition is used, namely, 

where spectroscopic data for the electronic energy levels E I ,  ~ 2 ,  etc., are inserted 
directly in the above terms. Usually, e l  for the higher electronic energy levels is so 
large that terms beyond the first three shown in Eq. (16.41) can be neglected for 
T 5 15,000 K. 

Many results have been packed into this section, and the reader without previous 
exposure to quantum mechanics may feel somewhat uncomfortable. However, the 
purpose of this section has been to establish results for the partition function in terms 
of T and V;  Eqs. (16.38) through (16.41) are those results. The discussion surround- 
ing these equations removes, we hope, some of the mystery about their origin. 

16.8 1 PRACTICAL EVALUATION 
OF THERMODYNAMIC 
PROPERTIES FOR A SINGLE SPECIES 

We now arrive at the focus of all the preceding discussion in this chapter, namely, the 
evaluation of the high-temperature thermodynamic properties of a single-species 
gas. We will emphasize the specific internal energy e ;  other properties are obtained 
in an analogous manner. 

First, consider the translational energy. From Eq. (16.38), 

Therefore, 

Substituting Eq. (16.42) into (16.32), we have 

Considering the rotational energy, we have from Eq. (16.39) 

Thus, 
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Substituting Eq. (16.44) into (16.32), we obtain 

( 16.45) 

Considering the vibrational energy, we have from Eq. ( 1  6.40) 

Substituting Eq. (16.46) into (16.32), we obtain 

Let us examine these results in light of a classical theorem from kinetic theory, 
the "theorem of equipartition of energy." Established before the turn of the century, 
this theorem states that each thermal degree of freedom of the molecule contributes 
; k ~  to the energy of each molecule, or R T  to the energy per unit mass of gas. For 
example, in Sec. 16.2, we demonstrated that the translational motion of a molecule 
or atom contributes three thermal degrees of freedom; hence, due to equipartition of 
energy, the translational energy per unit mass should be ~ ( ; R T )  = R T .  This is pre- 
cisely the result obtained in Eq. (16.43) from the modern principles of statistical ther- 
modynamics. Similarly, for a diatomic molecule, the rotational motion contributes 
two thermal degrees of freedom: therefore, classically, er,, = 2(; R T )  = R T ,  which 
is in precise agreement with Eq. (16.45). 

At this stage, you might be wondering why we have gone to all the trouble of the 
preceding sections if the principal of equipartition of energy will give us the results 
so simply. Indeed, extending this idea to the vibrational motion of a diatomic mole- 
cule, we recognize that the two vibrational thermal degrees of freedom should result 
in evih = 2(; RT) = R T .  However, this is not confirmed by Eq. (1 6.47). Indeed, the 
factor ( h v / k ~ ) / ( e ~ " l ~ ~  - 1 )  is less than unity except when T -+ co, when it ap- 
proaches unity; thus, in general, e,ib < R T ,  in conflict with classical theory. This 
conflict was recognized by scientists at the turn of the century, but it required the de-- 
velopment of quantum mechanics in the 1920s to resolve the problem. Classical 
results are based on our macroscopic observations of the physical world, and they do 
not necessarily describe phenomena in the microscopic world of molecules. This is a 
major distinction between classical and quantum mechanics. As a result, the equipar- 
tition of energy principal is misleading. Instead, Eq. (16.47), obtained from quantum 
considerations, is the proper expression for vibrational energy. 

In summary, we have for atoms: 

e = ~ R T  + GI - -- 
Internal energy per ~ ~ ~ ~ ~ l ~ ~ i ~ ~ ~ l  Electronic energy. 
unit mash measured energy obtatned d~rectly 
above zerc-point fro111 spectroscopic 
energy (sensible energy) meawrernent\ 
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and for molecules: 
I I 

7 
lational Rotational ~ l e c t k n i c  I 

energy 
i 

Vibrational energy 
P"PT0" 

In addition, recalling the specific heat at constant volume, c, - (ae/aT) , ,  
Eq. (16.48) yields for atoms 

and Eq. (16.49) yields for molecules 

In light of the above results, we are led to the following important conclusions: 

1. From Eqs. (16.48) through (16.51), we note that both e and c, are functions of 
T only. This is the case for a thermally perjfect, nonreacting gas, as defined in 
Sec. 1.4, i.e., 

e = fi  (T) and c, = f2(T). 

This result, obtained from statistical thermodynamics, is a consequence of our 
assumption that the molecules are independent (no intermolecular forces) 
during the counting of microstates, and that each microstate occurs with equal 
probability. If we included intermolecular forces, such would not be the case. 

2. For a gas with only translational and rotational energy, we have 
3 c, = R (for atoms) 
5 c,  = R (for diatomic molecules) 

That is, c, is constant. This is the case of a calorically perjfect gas, as also 
defined in Sec. 1.4. For air at or around room temperature, c, = R ,  c, = 

7 c, + R = R, and hence y = c,/c, = = 1.4 = const. So we see that air 
under normal conditions has translational and rotational energy, but no 
significant vibrational energy, and that the results of statistical thermodynamics 
predict y = 1.4 = const-which we have assumed in all the preceding 
chapters. However, when the air temperature reaches 600 K or higher, 
vibrational energy is no longer negligible. Under these conditions, we say that 
"vibration is excited; consequently c,  = f (T) from Eq. (16.51), and y is no 
longer constant. For air at such temperatures, the "constant y" results from the 
previous chapters are no longer strictly valid. Instead, we have to redevelop 
our gas dynamics using results for a thermally perfect gas such as Eq. (1 6.5 1). 
This will be the subject of Chap. 17. 
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3. In the theoretical limit of T + co, Eq. (16.51) predicts c,, + < R. and again 
we would expect c, to be a constant. However, long before this would occur, 
the gas would dissociate and ionize due to the high temperature, and c ,  would 
vary due to chemical reactions. This case will be addressed in subsequent 
sections. 

4. Note that Eqs. (16.48) and (16.49) give the internal energy measured above the 
zero point. Indeed, statistical thermodynamics can only calculate the sensible 
energy or enthalpy; an absolute calculation of the total energy is not possible 
because we cannot in general calculate values for the zero-point energy. 
The zero-point energy remains a useful theoretical concept especially for 
chemically reacting gases, but not one for which we can obtain an ab~olute 
numerical value. This will also be elaborated upon in subsequent sections. 

5. The theoretical variation of c,, for air as a function of temperature is sketched in 
Fig. 16.1 1 .  This sketch is qualitative only, and is intended to show that, at very 
low temperatures (below 1 K), only translation is fully excited, and hence 
c,, = R. (We are assuming here that the gas does not liquefy at low 
temperatures.) Between 1 K and 3 K, rotation comes into play, and above 3 K 
rotation and translation are fully excited, where c, = R. Then, above 600 K, 
vibration comes into play, and c,, is a variable until approximately 2000 K. 
Above that temperature, chemical reactions begin to occur, and c,, experiences 
large variations, as will be discussed later. The shaded region in Fig. 16.1 1 
illustrates the regime where all our previous gasdynamic results assuming a 
calorically perfect gas are valid. The purpose of this chapter, as well as Chap. 
is to explore the high-temperature regime where y is no longer constant, and 
where vibrational and chemical reaction effects become important. 

Vib, rot, and 
trans. fully - 
exc~ted  

Rot and trans 
fully excited -- 

Trans fully - 
exclted 

trans trans + rot - trans + rot + vib - 4 

Figure 16.11 1 Schematic o f  the temperature variation of the specific heat for a diatomic gas. 
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16.9 1 THE EQUILIBRIUM CONSTANT 
The theory and results obtained in the previous sections apply to a single chemical 
species. However, most high-temperature gases of interest are mixtures of several 
species. Let us now consider the statistical thermodynamics of a mixture of gases; the 
results obtained in this section represent an important ingredient for our subsequent 
discussions on equilibrium chemically reacting gases. 

First, consider a gas mixture composed of three arbitrary chemical species A, B, 
and AB. The chemical equation governing a reaction between these species is 

Assume that the mixture is confined in a given volume at a given constantpressure and 
temperature. (We will soon appreciate that p and T are important variables in dealing 
with chemically reacting mixtures.) We assume that the system has existed long 
enough for the composition to become fixed, i.e., the above reaction is taking place an 
equal number of times to both the right and left (the forward and reverse reactions are 
balanced). This is the case of chemical equilibrium. Therefore, let N A B ,  N A ,  and N B  
be the number ofAB, A, and B particles, respectively, in the mixture at chemical equi- 
librium. Moreover, the A, B, and AB particles each have their own set of energy levels, 
populations, and degeneracies: 

A schematic of the energy levels is given in Fig. 16.12. Recall that, in most cases, we 
do not know the absolute values of the zero-point energies, but in general we know 
that siA # &iB # E : ~ ' .  Therefore, the three energy-level ladders shown in Fig. 16.12 
are at different heights. However, it is possible to find the change in zero-point 
energy for the reaction 

AB + A + B  
+ + 

Reactant Products 

Change in zero-] 

[ 
Zero-point energy Zero-point energy 

point energy of products ] - [of reactants 1 
This relationship is illustrated in Fig. 16.13. 
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Figure 16.12 1 Schematic of energy levels for three different 
chemical species. 

Figure 16.13 1 Illustration of the 
meaning of change in zero-point 
energy. 

The equilibrium mixture of A, B, and AB particles has two constraints: 

1. The total energy E is constant: 

E" = C N ~ E ; "  = x N;(E;~ + E:) 

i I 
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2. Total number of A particles, N A ,  both free and combined (such as in AB), must 
be constant. This is essentially the same as saying that the total number of A 
nuclei stays the same, whether it is in the form of pure A or combined in AB. 
We are not considering nuclear reactions here--only chemical reactions which 
rearrange the electron structure. Similarly, the total number of B particles, N B ,  
both free and combined must also be constant: 

To obtain the properties of the system in chemical equilibrium, we must find the 
most probable macrostate of the system, much the same way as we proceeded in 
Secs. 16.3 and 16.4 for a single species. The theme is the same; only the details are 
different. Consult Refs. 59 and 62 for those details. From this statistical thermody- 
namic treatment of the mixture, we find 

and 

Recall that N A ,  N ~ ,  and N A B  are the actual number of A, B, and AB particles pre- 
sent in the mixture; do not confuse these with N A  and N B ,  which were defined as the 
number of A and B nuclei. 

Equations ( 1 6 . 5 4 ~ )  through (16 .54~)  demonstrate that a Boltzmann distribution 
exists independently for each one of the three chemical species. More important, 
however, Eq. (16.55) gives some information on the relative amounts of A, B, and 
AB in the mixture. Equation (16.55) is called the law of mass action, and it relates the 
amounts of different species to the change in zero-point energy, As,, and to the ratio 
of partition functions for each species. 

For gasdynamic calculations, there is a more useful form of Eq. (16.55), as 
follows. From Sec. 1.4, we can write the perfect gas equation of state for the 
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mixture as 

pV = N k T  

For each species i ,  the partial pressure pi, can be written as 

piV = N , k T  ( 16.57) 

The partial pressure is defined by Eq. (16.57); it is the pressure that would exist if 
N, particles of species i were the only matter filling the volume V.  Letting N,  equal 
N A ,  N B ,  and N * ~ ,  respectively, and defining the corresponding partial pressures 
PA, P B ,  and ~ A B ,  Eq. (16.57) yields 

Combining Eqs. (16.58) and (1 6.55), we have 

Recall from Eqs. (16.37) and (16.38) that Q is proportional to the volume V. There- 
fore, in Eq. (16.59) the V's cancel, and we obtain 

This function of temperature is defined as the equilibrium constant for the reaction 
AB 7 A + B, K , ( T ) :  

From Eq. (16.60), the equilibrium constant for the reaction AB 2 A + B can be 
defined as the ratio of the partial pressures of the products of reaction to the partial 
pressures of the reactants. 

Generalizing this idea, consider the general chemical equation 

where v; is the stoichiometric mole number for species i and Ai is the chemical sym- 
bol for species i .  In Eq. (16.61) v; is positive for products and negative for reactants. 
Then the equilibrium constant is defined as 



CHAPTER 16 Properties of High-Temperature Gases 

Equation (16.62) is another form of the law of mass action, and it is extremely use- 
ful in the calculation of the composition of an equilibrium chemically reacting 
mixture. Some typical reactions, with their associated equilibrium constants are 

In summary, we have made three important accomplishments in this section: 

1. We have defined the equilibrium constant, Eqs. (16.60) or (16.62). 
2. We have shown it to be a function of temperature only, Eq. (16.60). 

3. We have demonstrated a formula from which it may be calculated based on a 
knowledge of the partition functions, Eq. (16.59). Indeed, tables of equilibrium 
constants for many basic chemical reactions have been calculated, and are 
given in Refs. 63 and 64. 

In perspective, the first part of this chapter has developed the high-temperature 
properties of a single species. Now, in order to focus on the properties of a chemi- 
cally reacting mixture (such as high-temperature air), we must know what chemical 
species are present in the mixture, and in what quantity. After these questions are 
answered, we can sum over all the species and find the thermodynamic properties of 
the mixture. These matters are the subjects of the next few sections. 

16.10 1 CHEMICAL EQUILIBRIUM- 
QUALITATIVE DISCUSSION 

Consider air at normal room temperature and pressure. The chemical composition 
under these conditions is approximately 79% N2, 20% 02, and 1 percent trace species 
such as Ar, He, C02, H20, etc., by volume. Ignoring these trace species, we can con- 
sider that normal air consists of two species, N2 and 0 2 .  However, if we heat this air 
to a high temperature, where 2500 K < T < 9000 K, chemical reactions will occur 
among the nitrogen and oxygen. Some of the important reactions in this temperature 
range are 

0 2  2 2 0  (16.63~) 

That is, at high temperatures, we have present in the air mixture not only 0 2  and N2, 
but 0, N, NO, NO' and e-  as well. Moreover, if the air is brought to a given T and 
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p ,  and then left for a period of time until the above reactions are occurring an equal 
amount in both the forward and reverse directions, we approach the condition of 
clzenzir~d equilibrium. For air in chemical equilibrium at a given p and T. the species 
0 2 ,  0, N2, N, NO, NO'. and r are present in specific, fixed amounts. which are 
unique functions of p and T. Indeed, for any equilibrium chemically reacting gas, 
the chemical composition (the types and amounts of each species) is determined 
uniquely by p and T, as we will learn in Sec. 16.1 1. 

16.11 1 PRACTICAL CALCULATION OF THE 
EQUILIBRIUM COMPOSITION 

The method discussed in this section is applicable to any equilibrium chemically 
reacting mixture. However, because a large number of high-speed, compressible 
flow problems deal with air, we will illustrate the method by treating the case of high- 
temperature air. 

To begin with, there are several different ways of specifying the composition of 
a gas mixture. For example, the quantity of different gases in a mixture can be speci- 
tied by means of 

1. The partiol pressures p i .  For air, we have PO? ,  P O ,  p ~ ? .  p ~ .  P N O .  p ~ o .  , 
and p, . 

2. The cwzctwtmtions, i.e., the number of moles of species i per unit volume of 
the mixture, denoted by [ X , ] .  For air, we have [02] ,  [0], [Nz], etc. 

3. The mole-mass ratios (see Sec. 1.4). i.e., the number of moles of i per unit 
mass of mixture, denoted by rli  . For air, we have qo:. qo.  IN^. etc. 

4. The mole,frcrction.s, i.e.. the number of moles of species i per unit mole of 
mixture, denoted by X i .  For air, we have X o 2 ,  X o .  X N z ,  etc. 

5. The mussfructioiz, i.e., the mass of species i per unit mass of mixture, denoted 
by c ; .  For air, we have co , ,  c o .  C N , ,  etc. 

Each of these is equally definitive for specifying the composition of a chemically 
reacting mixture-if we know the composition in terms of p , ,  for example, then we 
can immediately convert to X i ,  c i ,  etc. (Try deriving the conversion formulas your- 
self.) However, for gasdynamic problems, the use of partial pressures is particularly 
convenient; therefore, the following development will deal with p i .  

Consider again a system of high-temperature air at a given T and p ,  and assume 
that the above seven species are present. We want to solve for p o , .  PO. p k , ,  

p ~ .  / ? N ( ) ,  p ~ ( ] ' ,  and pr at the given mixture temperature and pressure. We have 
seven unknowns, hence we need seven independent equations. The first equation is 
Dalton's law of partial pressures, which states that the total pressure of the mixture is 
the sum of the partial pressures (Dalton's law holds only for perfect gases, i.e.. gases 
wherein intermolecular forces are negligible): 
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In addition, using Eq. (16.62) we can define the equilibrium constants for the chem- 
ical reactions ( 1 6 . 6 3 ~ )  through (16.63d) as 

IV. 

In Eqs. (16.65) through (16.68), the equilibrium constants K p  are known values, 
calculated from statistical mechanics as previously described, or obtained from ther- 
modynamic measurements. They can be found in established tables, such as the 
JANAF Tables (Ref. 63). However, Eqs. (16.64) through (16.68) constitute only five 
equations-we still need two more. The other equations come from the indestruc- 
tibility of matter, as follows. 

Fact. The number of 0 nuclei, both in the free and combined state, must remain 
constant. Let No denote the number of oxygen nuclei per unit mass of mixture. 

Fact. The number of N nuclei, both in the free and combined state, must remain 
constant. Let NN denote the number of nitrogen nuclei per unit mass of mixture. 

Then, from the definition of Avogadro's number NA,  and the mole-mass ratios qi, 

NA @Vo2 + Vo + V N O  + V N O + )  = No (16.69) 

NA ( 2 ~ ~ 2  + V N  + V N O  + V N O + )  = NN (16.70) 

However, from Eq. (1.12), 

piu = qr &T 

U 
Hence % = PI - (16.71) 

;/RT 

Dividing Eqs. (16.69) and (16.70), and substituting Eq. (16.71) into the result, we 
have 

VI. 

Equation (16.72) is called the mass-balance equation. Here, the ratio NOINN is 
known from the original mixture at low temperature. For example, assuming at nor- 
mal conditions that air consists of 80% N2 and 20% 0 2 ,  



16,12 Equ~librlurn Gas M~xture Thermodynamic Properties 

Finally, to obtain our last remaining equation, we state the fact that electric charge 
must be conserved, and hence 

Substituting Eq. (1 6.7 1 ) into (16.73), we have 

VII. [>NO- = p? ( 16.74) 

In .summary, Eqs .  (16.64) through ( 1  6.68), ( 16.72), and ( 16.74) are srvrrl nonlir~ec~r; 
.simultaneous, algebraic equations that can he .rolved,for the severt unkrlown p ~ r t i d  
pressures. Furthermore, Eq. (16.64) requires the pressure p as input, and Eqs. ( 1  6.65) 
through (16.68) require the temperature T in order to evaluate the equilibrium 
constants. Hence, these equations clearly demonstrate that, for a given chemically 
reacting mixture. the equilibrium composition is a function of T and p. 

This procedure, carried out for high-temperature air. is an example of a general 
procedure that applies to any chen~ically reacting mixture in chemical equilibrium. 
In general, if the mixture has x species and 4 elements. then we need x - q5 inde- 
pendent chemical equations [such as Eqs. ( 1  6 . 6 3 ~ )  through ( 1  6.63d)I with the ap- 
propriate equilibrium constants. The remaining equations are obtained from the 
mass-balance equations and Dalton's law of partial pressures. In our earlier example 
for air, x = 7 and q5 = 3 (the elements are 0, N, and e - ) .  Therefore. we needed 

- 4 = 4 independent chemical equations with four different equilibrium con- 
stants. These four equations were Eqs. ( 16 .63~)  through (16.63~2). 

The calculation of a chemical equilibrium composition is conceptually straight- 
forward, as indicated in this section. However, the solution of a system of many non- 
linear. simultaneous algebraic equations is not a trivial undertaking by hand. and 
today such calculations are almost always performed on a high-speed digital com- 
puter using customdesigned algorithms. 

Also, the reader should note that the specific chemical species to be solved are 
chosen at the beginning of the problem. This choice is important; if a major species 
is not considered (for example, if N had been left out of our above calculations), the 
tinal results for chemical equilibrium will not be accurate. The proper choice of the 
type of species in the mixture is a matter of experience and common sense. If there is 
any doubt, it is always safe to assume all possible combinations of the atoms and 
molecules as potential species; then, if many of the choices turn out to be trace 
species, the results of the calculation will state so. At least in this manner, the possi- 
bility o f  overlooking a major species is minimized. 

16.12 1 EQUILIBRIUM GAS MIXTURE 
THERMODYNAMIC PROPERTIES 

In perspective, to this point in our discussion of the properties of high-temperature 
gases we have accomplished two major goals: 

1. From Secs. 16.1 through 16.8, we have obtained formulas for calculating the 
thermodynamic properties of a given single species. 
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2. From Secs. 16.9 through 16.1 1, we have seen how to calculate the amount of 
each species in an equilibrium chemically reacting mixture. 

In this section, we now combine the above knowledge to obtain the thermodynamic 
properties of an equilibrium chemically reacting mixture. Because of its importance 
to gas dynamics, we will concentrate on the enthalpy of the mixture. 

From Eq. (1.10), 

and (16.76) 

where 3' is the volume of the system, .A( is the number of moles of species i,  and 
. C '  is the total number of moles of the mixture. Dividing Eq. (16.75) by (16.76): 

I I 

where X i  is the mole fraction defined in Sec. 16.11. Let Hi be the enthalpy of species 
i per mole of species i ,  and H be the enthalpy of the mixture per mole of mixture. 
Then 

where the summation is taken over all species in the mixture. 
In gasdynamics, we are more concerned with unit masses than with moles. Let 

h = enthalpy per unit mass of mixture 
.,& = molecular weight (more properly called the molecular mass) of the mix- 

ture; it is the mass of mixture per mole of mixture 

,Hi = molecular weight of species i; it is the mass of i per mole of i. 

Hence, from the definitions, we have 

and therefore, 

Equation (16.80) provides an equation for obtaining the enthalpy per unit mass of 
mixture from molar quantities. There are two alternative expressions for h. Recalling 
the definition of the mole-mass ratio qi , from Secs. 1.4 and 16.1 1, we have 

I I 
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Also, denoting the enthalpy of species i per unit mass of i by h i ,  where h ,  = Hi,! //;, 
- ~ 

and recalling the definition of mass fraction c.; from Sec. 16.11, we have 

Note from the definitions that 

I 

Let us now examine the meaning of HI more closely: 

H,  = ( H  - E,);  f E,,, ( 16.84) 
i 
Ah~oluteenthalpy Senslble enthalpy of Zero-point energ> 
of spew\  i per speclesi per mOk of i of \pecies i per 
moleof I mole ol I 

The sensible enthalpy is obtained from statistical mechanics, as we have already seen: 

' , - e " ' l k ' - ]  
7T + .HT + electronic energy 

Note that (H - E(,)i is a function of T only. Also, E, ,  is the zero-point energy of 
species i ,  that is, the energy of the species at T = 0 K; it is a constant for a given 
chemical species. The relationship is schematically shown in Fig. 16.14. As dis- 
cussed in Secs. 16.2 and 16.7, the absolute value of E,, usually cannot be calculated 
or measured: nevertheless it is an important theoretical quantity. For example, in a 
complex chemically reacting mixture, we should establish some reference level from 

Y 

((J - Eo )i Sensible enthalpy, obtained 
, from statistical mechanics 

I Zero-point energy which 
Eq cannot generally be 

calculated or measured I directly. 

Figure 16.14 1 Schematic showing the contrast between 
sensible enthalpy and zero-point energy. 
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which all the energies of the given species can be measured. Many times there is 
some difficulty and confusion in establishing what this level should be. However, by 
carrying through our concept of the absolute zero-point energy E , ,  the choice of a 
proper reference level will soon become apparent. 

Since the absolute value of E ,  generally cannot be obtained, how can we calcu- 
late a number for h from Eq. (16.80), (16.81), or (16.82)? The answer lies in the fact 
that we never need an absolute number for h. In all thermodynamic and gasdynamic 
problems, we deal with changes in enthalpy and internal energy. For example, in 
Chap. 3 dealing with shock waves, we were always interested in the change h2 - hl 
across the shock. In the general conservation equations from Chap. 6, we dealt with 
the derivatives ahlax, ahlay, ahlaz, ahlat, which are changes in enthalpy. Letting 
points 1 and 2 denote two different locations in a flowfield, we have from Eq. (16.8 1) 

where h,,,,, and e,, are the sensible enthalpy and zero-point energy, respectively, per 
unit mass of mixture at point 1. Similarly, at point 2, 

Subtracting Eq. (16.86) from (16.87), we have 

h2 - = (Asens2 - hsensl) + (eo2 - eel) --- 
Change in Change in sensible enthalpy Change in zero- 
enthalpy point energy 

It is important to note that in Eq. (16.88) we have circumvented the need to know the 
absolute value of the zero-point energy; rather, what we need now is a value for the 
change in zero-point energy, Ae,. The value can be obtained from measurement, as 
discussed below. 

The change in zero-point energy is related to the concept of the heat of forma- 
tion for a given species. When a chemical reaction represents the formation of a 
single chemical species from its "elements" at standard conditions, the heat of reac- 
tion is called the standard heat of formation. The standard conditions are those of 
the stable "elements" at the standard temperature, T, = 298.16 K. (The quotation 
marks around the word "elements" above reflects that some "elements" at the stan- 
dard conditions are really diatomic molecules, not atoms. For example, nitrogen and 
oxygen are always found at standard conditions in the form N2 and 02, not N 
and 0.) To illustrate, consider the formation of H20 from its "elements" at standard 
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conditions: 

Then, by definition, 

Standard hcat Enthalpy of the product mlnw 
of formation the enthalpy of the reactant\. 
ot Hz(] all at T,  

In an analogous fashion, let us define the heat cf formation at absolute cero. Here, 
both the product and reactants are assumed to be at absolute zero. For example. 

Letting ( A H ,  )i,o denote the heat of formation of H 2 0  at absolute zero, we have 

However, the enthalpy of any species at absolute zero is, by definition, its zero-point 
energy. Hence, Eq. (16.89) becomes 

Note that these expressions are couched in terms of energy per mole. However, the 
heat of formation of species i per unit muss, ( A h f ) i ,  is easily obtained as 

Also, the heats of formation for many species have been measured, and are tabulated 
in such references as NBS Circular 500, the JANAF Tables, and NASA SP-300 I (see 
Refs. 65, 63, and 64, respectively). 

We now state this theorem: 

Theorem 
In a chemical reaction, the change in zero-point energy (zero-point energy of the products 
minus the zero-point energy of the reactants) is equal to the difference between the heats 
of fornution of the products at T = 0 K and the heats of formation of the reactants at 
T = O K .  

Proof of this theorem is obtained by induction from examples. For example, consider 
the water-gas reaction: 

By definition of the change in zero-point energy, 
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By definition of the heat of formation at absolute zero, we have 

Adding Eqs. (16.92) and (16.93), and subtracting (16.94) and (16.95), we have 

Thus, for the water-gas reaction, we have just shown that 

This is precisely the statement of the theorem! 
Compare Eqs. (16.91) and (16.96). It appears that the terms (Eo)H20, (Eo)cO,  

(Eo)co2,  and (Eo)H2  can be replaced in a one-to-one correspondence by (AHf )k2 , ,  
( A  Hf )go ,  ( A  Hf)&2,  and ( A  H f ) & .  Therefore, let us reorient our thinking about the 
enthalpy of a gas mixture. We have been writing 

Sensibleenthalpy Zero-point 
of the mixture energy of the 

mixture 
Let us replace this with 

v v 
Sensible enthalpy, "Effective" zero-point 
obtained for example energy, obtained from tables 
from statistical 
mechanics 

Equations (16.97) and (16.98) yield different absolute numbers for h;  however, from 
the above theorem the values for changes in enthalpy, Ah, will be the same whether 
Eq. (16.97) or (16.98) is used. Therefore, we are led to an important change in our 
interpretation of enthalpy; namely, from now on we will think of enthalpy as given 
by Eq. (16.98) with the term involving the heat of formation at absolute zero as an 
"efSective" zero-point energy. In terms of enthalpy per unit mass, we write 

where 

Thus 
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[Note that in Eqs. (16.98) and ( 1  6.99), the effective zero-point energy C, q, ( A  Hi 1:' = 

C,  c, ( A h f ) :  is sometimes called the "chemical enthalpy" in the literature.] 
With the above, we end our diwussions on the thermodynamic properties of an 

equilibrium chemically reacting mixture. In summary, we have shown that 

1. The sensible enthalpy of a mixture can be obtained from this: 
a. The sensible enthalpy for each species as given by the formulas for 

statistical mechanics, for example, Eqs. ( 1  6.48), ( l6.49), and ( 16.85). 

h. Knowledge of the equilibrium conlposition described in terms of 
Pi, X I ,  'I,, or c , .  

2. The zero-point energy can be treated as an "effective" value by using the heats 
of formation at absolute zero in its place. Therefore. Eq. ( 1  6.98) or (16.99) 

can be construed as the enthalpy of a gas mixture. 

Also, as a final note, a chemically reacting mixture that is commonly encountered in 
many high-speed compressible flow problems is high-temperature air. The equilib- 
rium thermodynamic properties of high-temperature air have been calculated in 
detail, and are available from many sources, such as the reports by Hansen (Ref. 66) 
and Hilsenrath and Klein (Ref. 67). These calculations use essentially the same 
techniques as described in the previous sections. Also, high-temperature air proper- 
ties are available on large Mollier diagrams (a plot of enthalpy versus entropy) avail- 
able from the government and some commercial firms. An example of an abbrevi- 
ated Mollier diagram for high-temperature air is given in Fig. 16.15ri. Also, the 
variation of the equilibrium composition of air at 1 atm as a function of T is given in 
Fig. 16.15b. 

- Constant temperature 
- - -  - Constant densi ty 

- Constant temperature 
- - -  - Constant densl ty 

SIR 

Figure 16.15~ I Mollier diagram for high-temperature equilibrium air. 
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Figure 16.156 1 Composition of equilibrium air versus temperature 
at 1 atm. 

16.13 1 INTRODUCTION TO NONEQUILIBRIUM 
SYSTEMS 

All vibrational and chemical processes take place by molecular collisions and/or ra- 
diative interactions. Considering just molecular collisions, visualize for example an 
0 2  molecule colliding with other molecules in the system. If the 0 2  vibrational en- 
ergy is in the ground level before collision, it may or may not be vibrationally excited 
after the collision. Indeed, in general the O2 molecule must experience a large num- 
ber of collisions, typically on the order of 20,000, before it will become vibrationally 
excited. The actual number of collisions required depends on the type of molecule 
and the relative kinetic energy between the two colliding particles-the higher the ki- 
netic energy (hence the higher the gas temperature), the fewer collisions are required 
for vibrational energy exchange. Moreover, as the temperature of the gas is in- 
creased, and hence the molecular collisions become more violent, it is probable that 
the O2 molecule will be torn apart (dissociated) by collisions with other particles. 



16.14 Vibrational Rate Eauation 

However, this requires a large number of collisions, on the order of 200,000. The 
important point to note here is that vibrational and chemical changes take place 
due to collisions. In turn, collisions take time to occur. Hence, vibrational and chem- 
ical changes in a gas take time to occur. The precise amount of time depends on the 
molecular collision frequency Z, which is the number of collisions a single particle 
makes with its neighboring particles per second. The results of kinetic theory show 
that Z cc p / n ;  hence the collision frequency is low for low pressures and very 
high temperatures. 

The equilibrium systems considered in the previous sections assumed that the 
gas has had enough time for the necessary collisions to occur, and that the properties 
of the system at a fixed p and T are constant, independent of time. However, there are 
many problems in high-speed gasdynamics where the gas is not given the luxury of 
the necessary time to come to equilibrium. A typical example is the flow across a 
shock wave, where the pressure and temperature are rapidly increased within the 
shock front. Consider a fluid element passing through this shock front. When its p 
and T are suddenly increased, its equilibrium vibrational and chemical properties will 
change. The fluid element will start to seek these new equilibrium properties, but this 
requires molecular collisions, and hence time. By the time enough collisions have oc- 
curred and equilibrium properties have been approached, the fluid element has 
moved a certain distance downstream of the shock front. Hence, there will be a cer- 
tain region immediately behind the shock wave where equilibrium conditions do not 
prevail-there will be a norzequilihriurn region. To study the nonequilibrium region, 
additional techniques must be developed that take into account the time required for 
molecular collisions. Such techniques are the subject of the remaining sections of this 
chapter. The detailed study of both equilibrium and nonequilibrium flows through 
shock waves, as well as mnny other types of flows, will be made in Chap. 17. 

16.14 1 VIBRATIONAL RATE EQUATION 
In this section we will derive an equation for the time rate of change of vibrational 
energy of a gas due to molecular collisions-the vibrational rate equation. In turn, 
this equation will be coupled with the continuity, momentum, and energy equations 
in Chap. 17 for the study of certain types of nonequilibrium flows. 

Consider a diatomic molecule with a vibrational energy level diagram as illus- 
trated in Fig. 16.16. Focus on the ith level. The population of this level, N i .  is 
increased by particles jumping up from the i - 1 level [transition ( u )  shown in 
Fig. 16.161 and by particles dropping down from the i + 1 level [transition ( 6 ) ) .  The 
population Ni is decreased by particles jumping up to the i + 1 level [transition ( I . ) ]  

and dropping down to the i - 1 level [transition (d )] .  For the time being, consider 
just transition (c) .  Let P,,i+, be the prohubility that a molecule in the ith level, upon 
collision with another molecule, will jump up to the i + 1 level, P,,;+, is called the 
transition probability, and can be interpreted on a dimensional basis as the "number 
of transitions per collision per particle" (of course keeping in mind that a single 
transition requires many collisions). The value of Pi,,+, is always less than unity. 
Also, let Z be the collision frequency as discussed above, where Z is the number 
of collisions per particle per second. Hence, the product Pi,;+, Z is physically the 

Figure 16.16 1 Single 
quantum transitions 
for vibrational energy 
exchange. 
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number of transitions per particle per second. If there are N; particles in level i, then 
Pi,i+l ZNi  is the total number of transitions per second for the gas from the ith to the 
i + 1 energy level. Similar definitions can be made for transitions (a) ,  (b) ,  and (6) in 
Fig. 16.16. Therefore, on purely physical grounds, using the above definitions, we 
can write the net rate of change of the population of the ith level as 

dNi  

d t  
- = Pi+l,;ZN;+l + Pi-l,iZNi-l - Pi,i+lZN; - PiXi-lZNi 

i L i 

Rate of increase of N, Rate of decreaseof N, 

To simplify the above equation, define a vibrational rate constant ki+l,i such that 
Pi+l,iZ E k;+l,i; similarly for the other transitions. Then the above equation 
becomes 

Equation ( 1  6.100) is called the master equation for vibrational relaxation. 
For a moment, consider that the gas is in equilibrium. Hence, from the 

Boltzmann distribution, Eq. (16.25), and the quantum mechanical expression for 
vibrational energy, hv(n + i), given in Sec. 16.7, 

Moreover, in equilibrium, each transition in a given direction is exactly balanced by 
its counterpart in the opposite direction-this is called the principle of detailed 
balancing. That is, the number of transitions (a) per second must exactly equal the 
number of transitions (d) per second: 

Combining Eqs. (16.101) and (16.102), we have 

Equation (16.103) is simply a relation between reciprocal rate constants; hence it 
holds for nonequilibrium as well as equilibrium conditions. Taking a result from 
quantum mechanics, it can also be shown that all the rate constants for higher-lying 
energy levels can be expressed in terms of the rate constant for transition ( e )  in 
Fig. 16.16, i.e., the transition from i = 1 to i = 0: 

From Eq. (1 6.104), we can also write 
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Combining Eqs. ( 16.103) and ( l6.104), we have 

and from Eq\. ( 1  6.103). ( 16.104). and ( 1  6. IOS), we have 

Substituting Eqs. (16.104) through (16.107) into (16.100), we have 

In  many gasdynamic problems, we are more interested in  energies than popula- 
tions. Let us convert Eq. (16.108) into a rate equation for r , ih .  Assume that we are 
dealing with a unit mass of gas. From Secs. 16.2 and 16.7, 

Hence 

Substitute Eq. (16.108) into (16.109): 

Considering the first two terms in Eq. ( I  6.1 1 O), and letting s = i + 1, 

Also, a similar reduction for the last two terms in Eq. (16.1 10) leads to 
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Thus, Eq. (1 6.1 10) becomes 

However, 

and 

Therefore, 

Thus, Eq. (16.11 1) can be written as 

However, recalling that we are dealing with a unit mass, and hence N  is the number 
of particles per unit mass, we have from Sec. 1.4 that N k  = R, the specific gas con- 
stant. Then, considering one of the expressions in Eq. (16.112), 

The right-hand side of Eq. (16.1 13) is simply the equilibrium vibrational energy from 
Eq. (16.47); we denote it by ez:b. Hence, from Eq. (16.113) 

Substituting Eq. (16.114) into Eq. (16.112), 

In Eq. (16.115), the factor kl,o(l - e-h"/kT)  has units of s-'. Therefore, we define a 
vibrational relaxation time t as 
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Thus, Eq. (1 6.1 15) becomes 

Equation (1 6.116) is called the vibrational rate equation, and it is the main result of 
this section. Equation (16.116) is a simple differential equation which relates the 
time rate of change of e,ib to the difference between the equilibrium value it is seek- 
ing and its local instantaneous nonequilibrium value. 

The physical implications of Eq. (16.1 16) can be seen as follows. Consider a 
unit mass of gas in equilibrium at a given temperature T. Hence, 

Now let us instantaneously excite the vibrational mode above its equilibrium value 
(say, by the absorption of radiation of the proper wavelength, e.g., we "zap" the gas 
with a laser). Let e,,b(j denote the instantaneous value of e v i b  immediately after exci- 
tation, at time t = 0. This is illustrated in Fig. 16.17. Note that evib,, > e:yb. Due to 
molecular collisions, the excited particles will exchange this "excess" vibrational en- 
ergy with the translational and rotational energy of the gas, and after a period of time 
e v i b  will decrease and approach its equilibrium value. This is illustrated by the solid 
curve in Fig. 16.17. However, note that, as the vibrational energy drains away, it 
reappears in part as an increase in translational energy. Since the temperature of the 
gas is proportional to the translational energy [see Eq. ( 1  6.43)], T increases. In turn, 
the equilibrium value of vibrational energy, from Eq. (16.1 17), will also increase. 
This is shown by the dashed line in Fig. 16.17. At large times, ev ih  and e:: will 
asymptotically approach the same value. 

The relaxation time r in Eq. (16.116) is a function of both local pressure and 
temperature. This is easily recognized because t is a combination of the transition 

Time 

Instant of irradiation 

Figure 16.17 1 Vibrational relaxation toward equilibrium. 
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probability P and the collision frequency Z, both defined earlier. In turn, P depends 
on T (on the relative kinetic energy between colliding particles), and Z cc p/1/7;. 
For most diatomic gases, the variation o f t  is given by the form 

l n t p  = l n c ~  + (3"' 
In summary, the nonequilibrium variation of vibrational energy is given by the 

vibrational rate equation expressed as Eq. (16.11 6). Note that in Eq. (16.116) both t 
and ezyb are variables, with t = (p ,  T) from Eq. (16.118) and e;:b = e(T) from 
Eq. (16.1 17). However, a word of caution is given. Equation (16.116) has certain lim- 
itations that have not been stressed during this derivation, namely, it holds only for 
diatomic molecules that are harmonic oscillators. The use of ~ , i b  = hvn, obtained 
from Sec. 16.7, is valid only if the molecule is a harmonic oscillator. Moreover, from 
Fig. 16.16, we have considered only single quantum jumps between energy levels, 
i.e., we did not consider transitions say from the ith directly to the i + 2 level. Such 
multiple quantum jumps can occur for anharmonic molecules, but their transition 
probabilities are very small. In spite of these restrictions, experience has proven that 
Eq. (16.116) is reasonably valid for real problems dealing with diatomic gases, and it 
is employed in almost all nonequilibrium analyses of such gases. 

Recent developments in the study of vibrational nonequilibrium flows have high- 
lighted a further limitation of Eq. (16.11 6), as follows. The energy level transitions in- 
cluded in the master equation, Eq. (16.100), are so-called "translation-vibration" (T- 
V) transfers. Here, a molecule upon collision with another will gain or lose vibrational 
energy, which then reappears as a decrease or increase in translational kinetic energy 
of the molecules. For example, a T-V transfer in CO can be given as 

where a CO molecule in the nth vibrational level drops to the (n - 1) level after 
collision, with the consequent release of kinetic energy, KE. However, "vibration- 
vibration" (V-V) transfers also occur, where the vibrational quantum lost by one 
molecule is gained by its collision partner. For example, a V-V transfer in CO can be 
given as 

CO(n) + CO(n) it CO(n + 1) + CO(n - 1) 

The above equation assumes a harmonic oscillator, where the spacings between all 
energy levels are the same. However, all molecules are in reality anharmonic oscilla- 
tors, which results in unequal spacings between vibrational energy levels. Thus, in a 
V-V transfer involving anharmonic molecules, there is a small amount of transla- 
tional energy exchanged in the process, as follows. 

During an expansion process (decreasing temperature), the V-V transfers among an- 
harmonic molecules result in an overpopulation of some of the higher energy levels 
than would be the case of a harmonic oscillator. This is called anharmonic pumping, 
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and is particularly important in several types of gasdynamic and chemical lasers. 
The reverse effect occurs in a compression process (increasing temperature). In 
cases where anharmonic pumping is important, Eq. (16.116) is not valid, and the 
analysis must start from a master rate equation [such as Eq. (16.100)1 expanded to 
include V-V transfers. For a fundamental discussion of the anharmonic pumping 
effect at an introductory level, see pages 1 12-1 20 of Ref. 2 1. 

16.15 1 CHEMICAL RATE EQUATIONS 
Consider a system of oxygen in chemical equilibrium at y = I atm and T = 3000 K. 
Although Fig. 16.15b is for air, it clearly demonstrates that the oxygen under these 
conditions should be partially dissociated. Thus, in our system, both O2 and 0 will 
be present in their proper equilibrium amounts. Now. assume that somehow T is 
instantaneously increased to, say, 4000 K. Equilibrium conditions at this higher 
temperature demend that the amount of 0 2  decrease and the amount of 0 increase. 
However, as explained in Sec. 16.13, this change in composition takes place via mol- 
ecular collisions, and hence it takes time to adjust to the new equilibrium conditions. 
During this nonequilibrium adjustment period, chemical reactions are taking place at 
a definite net rate. The purpose of this section is to establish relations for the tinite 
time rate of change of each chemical species present in the mixture-the chemical 
rate equations. 

Continuing with our example of a system of oxygen, the only chemical reaction 
taking place is 

O 2 + M + 2 0 + M  (16.119) 

where M is a collision partner; it can be either 0 2  or 0 .  Using the bracket notation 
for concentration given in Sec. 16.1 1 ,  we denote the number of moles of O1 and 0 
per unit volume of the mixture by [02]  and [O], respectively. Empirical results have 
shown that the time rate of formation of 0 atoms via Eq. ( 16.1 19) is given by 

where d[O]/dt is the reaction r~lte, k is the reaction rate constant, and Eq. (16.120) 
is called a reaction rate equation. The reaction rate constant k is a function of T only. 
Equation (16.120) gives the rate at which the reaction given in Eq. (16.1 19) goes 
from left to right; this is called the,furward mte, and k is really the forward rate 

constcrnt kf : 
o : + M - % ~ o + M  

Hence, Eq. ( 16.120) is more precisely written as 

Forwrrrd rate: = 2ki[O2][M] (16.121) 
dt 

The reaction in Eq. (1 6.1 19) that would proceed from right to left is called the twJerse 
reaction, or backward reaction, 

O : + M + 2 0 + M  
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with an associated reverse or backward rate constant kb, and a reverse or backward 
rate given by 

Reverse rate: = -2kb[012[M] 
dt 

(16.122) 

Note that in both Eqs. (16.121) and (16.122), the right-hand side is the product of the 
concentrations of those particular colliding molecules that produce the chemical 
change, raised to the power equal to their stoichiometric mole number in the chemi- 
cal equation. Equation (16.121) gives the time rate of increase of 0 atoms due to the 
forward rate, and Eq. (16.122) gives the time rate of decrease of 0 atoms due to the 
reverse rate. However, what we would actually observe in the laboratory is the net 
time rate of change of 0 atoms due to the combined forward and reverse reactions, 

and this net reaction rate is given by 

Net rate: 

Now consider our system to again be in chemical equilibrium; hence the com- 
position is fixed with time. Then d[O]/dt - 0, [Oz] = [02]*, and [O] - [O*] where 
the asterisk denotes equilibrium conditions. In this case, Eq. (16.123) becomes 

Examining the chemical equation given above, and recalling the substance of 
Sec. 16.9, we can define the ratio [0]*~/[0~]* in Eq. (16.124) as an equilibrium con- 
stant based on concentrations, Kc. This is related to the equilibrium constant based 
on partial pressures, K,,  defined in Sec. 16.9. From Eq. (1.13), it directly follows for 
this oxygen reaction that 

Hence, Eq. (16.124) can be written as 

Equation (16.125), although derived by assuming equilibrium, is simply a relation 
between the forward and reverse rate constants, and therefore it holds in general for 
nonequilibrium conditions. Therefore, the net rate, Eq. (16.123), can be expressed as 
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In practice, values for kl are found from experiment, and then kb can be directly ob- 
tained from Eq. (16.125). Keep in mind that k t ,  kb ,  K, .  and K,,  for a given reaction 
are all functions of temperature only. Also, k f  in Eq. ( 1  6.126) is generally different 
depending on whether the collision partner M is chosen to be O2 or 0. 

This example has been a special application of the more general case of a react- 
ing mixture of n different species. Consider the general chemical reaction (but it must 
be an elementary reaction, as defined later) 

where v: and v:' represent the stoichiometric mole numbers of the reactants and prod- 
ucts, respectively. (Note that in our above example for oxygen where the chemical 
reaction ~ a s O ~ + M i t 2 0 t M , u ; , ~  = l . v & = O , u ; ,  = O . v L  = I , L $ , , =  1 .  and 
v g  = 2.) For the above general reaction, Eq. (16.127), we can write 

Equation (16.130) is a generalized net rate equation; it is a general form of the law of 
mass action tirst introduced in Sec. 16.9. In addition, the relation between kt  and kh 

given by Eq. ( 16.125) hold5 for the general reaction given in Eq. ( 16.127). 
The chemical rate constants are generally measured experimentally. Although 

methods from kinetic theory exist for their theoretical estimation, wch results are 
sometimes uncertain by orders of magnitude. The empirical results for many reac- 
tions can be correlated in the form 

where E, is defined as the activation rnrrgy and C is a constant. Equation ( 1  6.13 1 ) is 
called the Arrhrnius equation. An improved formula includes a "preexponential" 
temperature factor 

where cl, a ,  and E,, are all found from experimental data. 
Returning to the special case of a dissociation reaction such as for diatomic 

nitrogen, 

N ~ + M % ~ N + M  
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the dissociation energy ~ d  is defined as the difference between the zero-point energies, 

For this reaction, the rate constant is expressed as 

where the activation energy E, = ~ d .  Physically, the dissociation energy is the energy 
required to dissociate the molecule at T = 0 K. It is obviously a finite number: It takes 
energy-sometimes a considerable amount of energy-to tear a molecule apart. 
In contrast, consider the recombination reaction, 

Here, no relative kinetic energy between the two colliding N atoms is necessary to 
bring about a change; indeed, the role of the third body M is to carry away some of 
the energy that must be given up by the two colliding N atoms before they can re- 
combine. Hence, for recombination, there is no activation energy; E, = 0. Thus, the 
recombination rate constant is written as 

with no exponential factor. 
Finally, it is important to note that all of the above formalism applies only to 

elementary reactions. An elementary chemical reaction is one that takes place in a 
single step. For example, a dissociation reaction such as 

is an elementary reaction because it literally takes place by a collision of an 0 2  mol- 
ecule with another collision partner, yielding directly two oxygen atoms. On the 
other hand. the reaction 

is not an elementary reaction. Two hydrogen molecules do not come together with 
one oxygen molecule to directly yield two water molecules, even though if we mixed 
the hydrogen and oxygen together in the laboratory, our naked eye would observe 
what would appear to be the direct formation of water. Reaction (16.135) does not 
take place in a single step. Instead, Eq. (16.135) is a statement of an overall reaction 
that actually takes place through a series of elementary steps: 
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Equations (1 6.136a) through (1  6 .136~)  constitute the reaction rnecharzisrn for the 
overall reaction (16.135). Each of Eqs. ( 16.136~) through ( 1  6.136e) is an elementary 
reaction. 

We again emphasize that Eqs. ( 16.120) through ( 16.134) apply only for elemen- 
tary reactions. In particular, the law of mass action given by Eq. ( 1  6.130) is valid for 
elementary reactions only. We cannot write Eq. (1 6.130) for reaction ( 16.135 ), but 
we can apply Eq. (16.130) to each one of the elementary reactions that constitute the 
reaction mechanism ( 16.136~) through (1 6.136e). 

16.16 1 CHEMICAL NONEQUILIBRIUM IN 
HIGH-TEMPERATURE AIR 

We again highlight the importance of air in high-speed compressible flow problems. 
For the analysis of chemical nonequilibrium effects in high-temperature air, the fol- 
lowing reaction mechanism occurs, valid below 9000 K:  

hi,: 

k 1 

N O + M & N + O + M  hi,, 

O ~ + N & N O + O  I , ~  

Equations ( 16.137) through (16.139) are dissociation reactions. Equations ( 16.140) 
and (1 6.14 1 ) are bimolecular exchange reactions (sometimes called the "shuffle" 
reactions); they are the two most important reaction\ for the formation of nitric 
oxide, NO, in air. Equation ( 1  6.143) is called a dissociati~)e-recornbinution reaction 
because the recombination of the NO' ion with an electron produces not NO but 
rather a dissociated product N + 0. Note that the above reactions are not all inde- 
pendent; for example, Eq. (1 6.142) can be obtained by adding Eqs. ( 16.140) and 
(16.141). However, in contrast to the calculation of an equilibrium composition as 
discussed in Sec. 16.1 I ,  for a nonequilibrium reaction mechanism the chemical equa- 
tions do not have to be independent. 
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From this reaction mechanism, let us construct the rate equation for NO. 
Reactions (16.139) through (16.142) involve the production and extinction of NO. 
Moreover, in reaction (16.139), the collision partner M can be any of the different 
species, each requiring a different rate constant. That is, Eq. (16.139) is really these 
equations: 

Thus, the chemical rate equation for NO is 



16.1 8 Chapter Summary 

There are rate equations similar to Eq. (16.144) for 02, N2. 0, N, NO', and r p .  
Clearly, you can see that a major aspect of such a nonequilibrium analysis is simply 
bookkeeping, making certain to keep track of all the terms in the equations. 

Values of the rate constants for high-temperature air are readily available in the 
literature. See, for example, Ref. 68. Again, keep in mind that there is always some 
uncertainty in the published rate constants; they are difficult to measure experimen- 
tally, and very difficult to calculate accurately. Hence, any nonequilibrium analysis is 
a slave to the existing rate data. 

16.17 1 SUMMARY OF CHEMICAL 
NONEQUILIBRIUM 

To analyze and compute the finite-rate chemical kinetic processes in any gas mixture, 
it is necessary to 

1. Define the reaction mechanism [such as reactions ( 16.137) through ( 16.143) 
above]. 

2. Obtain the rate constants from the literature, usually in the form of 
Eq. (16.132). 

3. Write all the appropriate rate equations, such as Eq. (16.144). 

4. Solve the rate equations simultaneously to obtain the time variation of the 
species concentrations. i t . ,  LO2] = f l  ( t ) .  101 = , f i ( t ) .  etc. This is a job for a 
high-speed digital computer. Indeed, most modern analyses of chemical 
nonequilibrium systems would not be practicably possible without computers. 

Finally, we will see how these considerations are used in the analysis of high- 
temperature flowfields in Chap. 17. 

16.18 1 CHAPTER SUMMARY 
High-temperature effects are an important aspect of modern compressible flow. This 
chapter presents the basic fundamentals of chemical thermodynamics and statistical 
thermodynamics necessary for the understanding of such effects. 

For high-temperature gases, the internal energy is given by the sum of the trans- 
Dles are lational, rotational, vibrational, and electronic energy modes. If these ener,' 

measured above the zero-point energy, then the internal energy of a given chemical 
species i is given by 

The zero-point energy r , ,  is a property of the given chemical species and for pur- 
poses of analysis can be replaced by the heat of formation of species i at absolute 
Lero ( A h f ) : :  
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Because only a few molecular collisions are needed to transfer translational and ro- 
tational energy among molecules, e,,,,, and e,,, are almost always in equilibrium, and 
hence are given by 

for a diatomic molecule, or a linear 
erot = RT 

polyatomic molecule 

3 erOt = RT (for a nonlinear polyatomic molecule) 

If the vibrational energy is in equilibrium, it is given by 

for a diatomic molecule. For a polyatomic molecule, there can be a number of dif- 
ferent fundamental vibrational frequencies and the vibrational energy is given by a 
sum of terms, one each of the form of Eq. (16.47) for each of the fundamental 
frequencies, with each term multiplied by the degeneracy of each fundamental vi- 
brational mode. If the vibrational energy is not in equilibrium, it is given by the mas- 
ter equation for vibrational relaxation, Eq. (16.100), which can be approximated by 

The electronic energy, when in equilibrium, can be obtained from the sum eel = xj (.cj Nj*)el with Nj given by the Boltzmann distribution 

and where ci denotes the energy of the jth electronic energy level measured above 
the zero The Boltzmann distribution describes how particles are distributed 
over their energy levels in equilibrium at the temperature T .  For electronic nonequi- 
librium, rate equations beyond the scope of this chapter must be employed to obtain 
eel. For many applications in high temperature gas dynamics, eel is small and can be 
neglected. 

The internal energy for the chemically reacting mixture can then be obtained 
from 

where ci is the mass fraction of species i. If the gas is in chemical equilibrium, then 
ci is obtained from an equilibrium analysis using the equilibrium constants as de- 
scribed in Sec. 16.11. If the gas is not in chemical equilibrium, the ci, must be ob- 
tained as a function of time from the chemical rate equations described in Sec. 16.15. 



Problems 

PROBLEMS 
Starting with Eq. ( 16.4), derive the most probable population distribution for 
Fermions, namely, Eq. (16.19). 

Derive Eqs. (16.34) and (16.35). (Note: You will have to search some 
references on statistical thermodynamics to set up these derivations.) 

Starting with Eq. (16.35), derive the perfect gas equation of state, p = p RT.  
(This demonstrates that the perfect gas equation of state, which historically 
was first obtained empirically, falls out directly from the fundamentals of 
statistical thermodynamics.) 

Starting with the quantum mechanical expression for the quantized 
translational energy levels as a function of the quantum numbers n 1 ,  n? ,  
and n3,  derive in detail the translational partition function given by 
Eq. (1  6.38). 

In a similar vein as Prob. 16.4, derive in detail the rotational partition 
function given by Eq. (16.39). 

Consider 1 kg of pure diatomic N2 in thermodynamic equilibrium. The 
fundamental vibrational frequency of N2 is v = 7.06 x 10"/s, the 
molecular weight . N N r  = 28, Planck's constant h = 6.625 x 10 '' J . a.  and 
the Boltzmann constant is k = 1.38 x 1 o - ~ ~  JIK. 
a. Calculate and plot on graph paper the number of N2 molecules in each 

of the first three vibrational energy levels, E,,. E , ,  and F? as a function of 
temperature from T = 300 to 3500 K, using 400 K increments. 

b. Calculate and plot on graph paper the sensible enthalpy (including 
translation, rotation, and vibration) in joules per kilogram as a function 
of temperature from T = 300 to 3500 K. 

c. Calculate and plot on graph paper the specific heat at constant pressure 
as a function of temperature from T = 300 to 3500 K. 

Frequently in the literature, a characteristic temperature for vibration is 
defined as Q,,b = h vlk . Express r and c,, for a diatomic molecule 
[Eqs. (16.49) and (1 6.5 I)] in terms of &,. 
Consider an equilibrium chemically reacting mixture of three general species 
denoted by A, B, and AB. In detail, derive Eqs. (16.54) and (16.55) for such 
a mixture. 

Consider an equilibrium chemically reacting mixture of oxygen at p = 
1 atm and T = 3200 K. The only species present are O2 and 0. K,,,02 = 
0.04575 atm. Calculate the partial pressures, mole fractions, mole-mass 
ratios, and mass fractions for this mixture. 

16.10 For the conditions of the Prob. 16.9, calculate the internal energy of the 
mixture in joules per kilogram, including the translational, rotational, 
vibrational, and electronic energies. Note the following physical data: For 
02, AH' - 0, v = 4.73 x 101 ' /~ .  ~ , l , /k  = 11,390 K. gel, = 3, gel, = 2 "'.- 
(ignore h~gher electronic level\); for 0, A H ~ )  = 2.47 x 10' J/(kg . mol). 
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cel,/k = 228 K, &,12/k = 326 K, gelc, = 5 ,  gel, = 3, gelz = 1 (ignore higher 
electronic levels). 

16.11 Consider air at p = 0.5 atm and T = 4500 K. Assume the chemical species 
present are 02,  0 ,  N2, and N. (Ignore NO.) Calculate the enthalpy in joules 
per kilogram. In addition to that already given in Prob. 16.10, note these 
physical data: Kp,02 = 12.19 atm, Kp,N2 = 0.7899 x lop4 atm; for 
N2, AH! = 0, v = 7.06 x 1013/s (ignore electronic levels of N2 because 
the first excited level is very high, &,l,/k = 100,000 K, and hence its 
population is very low); for N, AH: = 4.714 x lo8 J/(kg. mol) (again, 
ignore electronic levels of N because the first excited level is high, 
~ , ~ , / k  = 23,000 K). 

16.12 Consider a unit mass of N2 in equilibrium at p = 1 atm and T = 300 K. For 
these conditions, the vibrational relaxation time is 190 s. Assume that, by 
some mechanism, the vibrational energy is instantaneously increased by a 
factor of 100, with all other properties remaining unchanged. At the end of 
1 min after excitation, what is the value of the vibrational energy relative to 
the equilibrium value? Assume that p and T remain constant at 1 atm and 
300 K, respectively. 



High-Temperature Flows: 
Basic Examples 

With the advent ($jet prop~~lsion it became necessary to broaden the field qf' 
aerodynamics to include problems whitrh hqfi~re were treated mostly by p l ~ y s i c ~ i l  
c.hernists. 

Theodore von Karman, 1958 
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High-temperature effects can be dramatic. Witness the Fig. 17.lb take into account equilibrium chemically 
two separate results for the inviscid flow of air over a reacting flow. What a dramatic difference! For the chem- 
blunt body at Mach 20 at an altitude of 20 km shown in ically reacting case in Fig. 17.16, the shock is much 
Fig. 17.1; we see here the bow shock wave shape as closer to the body, and the temperature levels in the shock 
well as the temperature contours in the flow between layer are much lower than those predicted by the calori- 
the shock and the body. The results shown in Fig. 17.la cally perfect gas case. The amount of nitrogen dissocia- 
are for a perfect gas with constant y = 1.4; those in tion in the shock layer is shown in Fig. 17.2a, and the 

Figure 17.1 1 Normalized temperature contours for blunt-body flow. (a) 
Calorically perfect gas; (b)  equilibrium chemically reacting air. M ,  = 20, 
altitude = 20 km. (From Palmer, Ref. 143.) 

Figure 17.2 1 Species mole fraction contours for blunt-body flow; equilibrium 
chemically reacting air. M ,  = 20, altitude = 20 km. (a) XN;  (b) XNO . 
(From Palmer, Ref. 143.) 
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HIGH-TEMPERATURE FLOWS G 
Normal shock waves Normal shock waves 
Nozzle flows Nozzle flows 
Speed of sound 

Figure 17.3 1 Roadmap for Chapter 17 

amount of nitric oxide is shown in Fig. 17.2b. Clearly, the 
effect of chemical reactions is not trivial here; indeed, all 
aspects of the flow are dominated by high-temperature 
effects. 

The purpose of this (and final) chapter is to illustrate 
some of the fundamental differences brought about by 
high-temperature effects in a flow. Rather than deal with 
more complex flows such as the blunt body shown 
in Figs. 17.1 and 17.2, we choose to examine high- 
temperature effects on relatively simple flows-normal 
shock waves and quasi-one-dimensional nozzle flows. 

These flows are relatively uncomplicated, and the effects 
of high temperatures are easily demonstrated. 

The roadmap for this chapter is given in Fig. 17.3. 
Our discussion of high-temperature flows is divided into 
equilibrium flow and nonequilibrium flow, listed on the 
left and right sides respectively in Fig. 17.3. We will dis- 
cuss normal shock waves and nozzle flows for both 
cases. In addition, under equilibrium flow we will exam- 
ine the speed of sound in a chemically reacting gas, a 
fundamental property that is changed considerably by 
high-temperature effects. 

17.1 1 INTRODUCTION TO LOCAL 
THERMODYNAMIC AND 
CHEMICAL EQUILIBRIUM 

It is common in classical thermodynamics to define a system in co~npletp tlzer.rrroc!\'- 
numic equilibrium as one with these characteristics: 

1. No gradients of pressure, temperature, velocity, o r  concentration exist 
anywhere in the system. 

2. If the system is a mixture of'gases, there is no tendency to undergo a 
spontaneous change in chemical composition, no matter how slowly. This 
characteristic is called chemical equilibrium, and is necessary for the overall 
concept of complete thermodynamic equilibrium. 

In terms of our discussion in Chap. 16, these characteristics can be stated as: 

1. If there are no pressure, temperature. velocity, o r  concentration gradients 
present in the system, the particles of the system are distributed over their 
allowed energy levels according to the Boltznzarzn distribution at the 
temperature T of the system. 
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2. If there is no tendency to undergo a spontaneous change in chemical 
composition, the composition itself is, of course, fixed, and the values for the 
equilibrium partial pressures pi (or Xi,  qi , or ci ) are determined by the 
equilibrium constants. 

Therefore, thermodynamic equilibrium implies a Boltzmann distribution at the tem- 
perature T of the system, chemical equilibrium implies that the composition is fixed 
for a given T and p and is calculated from the equilibrium constants, and complete 
thermodynamic equilibrium implies both of the above. 

This discussion considers a stationary system, such as gas in a box left for a long 
period of time so that no gradients exist inside the box. However, what happens for 
the case of aJEowing gas, say for flow through a nozzle or over a missile or reentry 
vehicle? Clearly, gradients in p and T exist in such flows. Therefore, any flowing gas 
in which properties are changing with location andlor time is not in complete ther- 
modynamic equilibrium as defined above. In turn, can the equilibrium relations ob- 
tained in Chap. 16 be applied to such a flowing gas? The answer is, strictly speaking, 
no; however, in many practical cases, the answer is a qualified yes. The qualification 
is that if the gradients in the flow are small enough, we can shrink our "system" (our 
box) to an infinitesimal size around a given point in the flow and see a relatively con- 
stant property region in the immediate neighborhood of the point. Let us assume that 
the equilibrium thermodynamic relations apply locally at the local values of T and p 
at a point in the flow, and hence a local Boltzmann distribution applies at the local 
temperature. This is defined as the case of local thermodynamic equilibrium. Simi- 
larly, let us assume that the local chemical composition at a point in the flow is the 
same as that determined by equilibrium calculations (using the equilibrium constant) 
at the local T and p. This is defined as the case of local chemical equilibrium. 

There are many practical situations where the flow gradients are moderate 
enough and the molecular collision frequencies (hence, the vibrational and chemical 
rates, for example) are large enough that both local thermodynamic and chemical 
equilibrium conditions hold at each point in the flow. In other situations, local ther- 
modynamic equilibrium will hold, but the chemical composition may not be in equi- 
librium (chemical changes require more molecular collisions than vibrational or 
electronic energy changes). There are yet other cases where flows are neither in local 
thermodynamic nor chemical equilibrium. In this chapter, we will examine some 
basic high-temperature flow problems, such as normal shock waves and nozzle 
flows. In the first part, we will develop solutions assuming local thermodynamic and 
chemical equilibrium. This follows the left-hand column of our roadmap in Fig. 17.3. 
In the second half, we will emphasize techniques for solving nonequilibrium flows, 
which follows the right-hand column in Fig. 17.3. 

17.2 1 EQUILIBRIUM NORMAL SHOCK 
WAVE FLOWS 

Consider a stationary normal shock wave as sketched in Fig. 3.4. Assume that the 
shock is strong enough, hence T2 is high enough, such that vibrational excitation 
and chemical reactions occur behind the shock front. Moreover, assume that local 
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thermodynamic and chemical equilibrium hold behind the shock. All conditions 
ahead of the shock wave (region 1) are known. Our objective is to calculate proper- 
ties behind the shock. 

The governing flow equations for steady one-dimensional flow were derived in 
Sec. 3.2, and were specialized to the case of a normal shock wave in Sec. 3.6. This 
resulted in Eqs. (3.38) through (3.40), which were general and hence apply to 
our present high-temperature case. They are repeated and renumbered here for 
convenience: 

Continuity: PI U I  = p2u2 (17.1) 

u 
Energy: h l + l - = h 2 + -  4 ( 17.3) 

2 2 

In addition, the equilibrium thermodynamic properties for the high-temperature gas 
are assumed known from the techniques discussed in Chap. 16. These may take the 
form of tables or graphs, or may be calculated directly from the equations developed 
in Chap. 16. In any event, we can consider these properties in terms of these func- 
tional relations ("equations of state," if you will): 

Recall from Chap. 3 that for a calorically perfect gas, these equations yield a se- 
ries of closed-form algebraic relations for p2 /p1 ,  T2/Tl ,  M 2 ,  etc., as functions of M I  
[see, for example, Eqs. (3.51), (3.53), (3.57), and (3.59)]. Unfortunately, no simple 
formulas can be obtained when the gas is vibrationally excited and/or chemically re- 
acting. For such high-temperature cases, Eqs. ( 17.1) through (1 7.5) must be solved 
numerically. To set up a numerical solution, let us first rearrange Eqs. (17.1) through 
(17.3). From Eq. (17.1), 

Substitute Eq. (17.6) into (17.2): 

Solving Eq. (17.7 ) for pz, we have 

In addition, substituting Eq. (17.6) into (17.3), we have 
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Solving Eq. (17.9) for h2, 

Since all the upstream conditions pl, u l ,  pl ,  h l ,  etc., are known, Eqs. (17.8) and 
(17.10) express p2 and h2,  respectively, in terms of only one unknown, namely, 
pl /p2 .  This establishes the basis for an iterative numerical solution: 

Assume a value for p1/p2. (A value of 0.1 is usually good for a starter.) 

Calculate p2 from Eq. (17.8) and h2 from Eq. (17.10). 

With the values of p2 and h2 just obtained, calculate p2 from Eq. (17.4). 
Form a new value of p1/p2 using the value of p2 obtained from Step 3. 

Use this new value of pl/p2 in Eqs. (17.8) and (17.10) to obtain new values 
of p2 and h2,  respectively. Then repeat steps 3 through 5 until convergence is 
obtained, i.e., until there is only a negligible change in pI/p2 from one iteration 
to the next. (This convergence is usually very fast, typically requiring less than 
five iterations.) 

At this stage, we now have the correct values of p2, h2 ,  and p2. Obtain the 
correct value of T2 from Eq. (17.5). 

Obtain the correct value of u2 from Eq. (17.6). 

By means of steps 1 through 7 above, we can obtain all properties behind the shock 
wave for given properties in front of the wave. 

There is a basic practical difference between the shock results for a calorically 
perfect gas and those for a chemically reacting gas. For a calorically perfect gas, we 
demonstrated in Sec. 3.6 that 

Note that in this case only MI is required to obtain the ratios of properties across a nor- 
mal shock wave; such properties are tabulated in Table A.2 at the back of this book. In 
contrast, for an equilibrium chemically reacting gas, we have already seen that 
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Note that in this c a e  11r1w free-stream parameters are neceszary to obtain the ratios 
of properties across a normal shock wave. This makes plentq of sense-the equilib- 
rium composition behind the shock depends on 171 and T2. which in turn arc go\,- 
erned in part by / > I  and 7'[. Hence. in addition to the up\tream velocity ~r thc nor- 
mal shock properties must depend also on and T I .  By this same reasoning, i f  n o  
chemical reactions take place, but the vibrational and electronic energies are excited 
(a thcrrnally perfect gas). then the downstream normal \hock propertie5 depend o n  
two upstream conditions. narncly. 11 I a n d  T I .  

Also note that, in contrast to a calorically perfect gas. the Mach numbcr no longer 
plays a pivotal role in thc results for normal shock waves in a high-temperature ga\.  In 

fact, for most high-temperature flows in general. the Mach number is not a particularly 
useful cluantit),. The flow ol 'a chemically reacting gas is mainly governed hy thc p r i m  
itive variables of velocity. telnperature, and pressure. For an equilibrium gas. the Mach 
number is still uniquely detined a\ Vlrr. and it can be used along with other detcrmin- 
ing variables--it just does not hold a dominant position as in  the case of a calorically 
perfect gas considered in Chaps. I t h ~ . o ~ ~ g I i  12. For ;I nonecluilibri~~rn ga\. ho\b~-\cr.  
there i.; some anibiguit) ckcn in the definition of Mach number (to be di \c~~\\ccl  in 
Sec. 17.1 1 ), and hence the Mach number further loses significance t iv  S L K ~  case\ 

For high-ten~perature air. a comparison between calorically perfect ga\ iwd 
equilibrium chemically reacting gas results was shown in Fig. 16.3. Here. the 1 ~ 1 1 1 -  

peratuse behirid a normal shock wabe i \  plotted versus upstream velocit! thr condi- 
tions at a standard altitude of 5.2 km. The equilibrium result\ are plotted dir~,ctly 
from nornml shock table\ prepared by the Cornell Aeronautical Laborator) (now 
CALSPAN Corporation). and puhlishcd in Refs. 69 and 70. These reports should he 
consulted for equilibriuni normal shock properties associated m ith air in the standard 
atmosphere. From Fig. 16.2. the calorically perfect results considerably o\wprcdict 
the te~nperaturc, and for obvious reasons. For a calorically perfect gas. the directed 
hinctic energy of the t l o ~ ,  ahead of the shock is mostly converted to tran\latiolial a d  
rotational molecular encrgy behind the shock. On the other hand, for a themall! per- 
fect andlor chemically reacting gas. the directed kinetic energy of the flow. \\ lien 
converted across the shoch wave, is shared across all molecular mode\ of enL*rgy, 
andlor goes into xero-point energy of the products of chemical reaction. Hence. the 
temperature (which is ;I measure of tran\lational energy only)  is less for such a i.aw. 

For further comp:u-iwn, consider a reentry vehiclc at 170.000-ft \taridarcl alti- 
tude with a ~ e l o c i t y  of 36.000 I'tls. Thc properties across a normal \hoch \ u \ e  
for this case are tabulated in Table 17.1. Note from that tabulation that chcn~ical 

For equilibrium chemically 
For catorically perfect reacting air (CAL Report 
air, r = 1.4 (see Table A.2) AG-1729-A-2) 
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reactions have the strongest effect on temperature, for the reasons given earlier. This 
is generally true for all types of chemically reacting flows-the temperature is by far 
the most sensitive variable. In contrast, the pressure ratio is affected only by a small 
amount. Pressure is a "mechanically" oriented variable; it is governed mainly by the 
fluid mechanics of the flow, and not so much by the thermodynamics. This is sub- 
stantiated by examining the momentum equation, namely, Eq. (17.2). For high-speed 
flow, u2 << u , ,  and p2 >> p l .  Hence, from Eq. (17.2), 

P2 25 PP:  

This is a common hypersonic approximation; note that p;? is mainly governed by the 
free-stream velocity, and that thermodynamic effects are secondary. 

In an equilibrium dissociating and ionizing gas, increasing the pressure at con- 
stant temperature tends to decrease the atom and ion mass fractions, i.e., increasing 
the pressure tends to inhibit dissociation and ionization. The consequences of this 
effect on equilibrium normal shock properties are shown in Fig. 17.4, where the 

Figure 17.4 1 Influence of pressure on the normal shock 
temperature in equilibrium air. 
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temperature ratio across the shock is plotted versus upstream velocity for three dif- 
ferent values of upstream pressure. Note that T2/ TI is higher at higher pressures; the 
gas is less dissociated and ionized at higher pressure, and hence more energy goes 
into translational molecular motion behind the shock rather than into the zero-point 
energy of the products of dissociation. 

17.3 1 EQUILIBRIUM QUASI-ONE-DIMENSIONAL 
NOZZLE FLOWS 

Consider the inviscid, adiabatic high-temperature flow through a convergent- 
divergent Lava1 nozzle, as sketched at the top of Fig. 17.5. As usual, the reservoir 
pressure and temperature are denoted by p, and T,, respectively. The th~oat  condi- 
tions are denoted by an asterisk. and exit conditions by a subscript e. This nozzle 
could be a high-temperature wind tunnel, where air is heated in the reservoir, for ex- 
ample, by an electric arc (an "arc tunnel"), or by shock waves (a "shock tunnel"). In 
a shock tunnel, the nozzle is placed at the end of a shock tube, and the reservoir is 

-stagnation conditions 

Nozzle throat 

Figure 17.5 1 Illustration of the solution of an equilibrium nozzle 
flow on a Mollier diagram. 



CHAPTER 17 High-Temperature Flows: Basic Examples 

essentially the hot, high-pressure gas behind a reflected shock wave (see Sec. 7.3). 
The nozzle in Fig. 17.5 could also be a rocket engine, where the reservoir conditions 
are determined by the burning of fuel and oxidizer in the combustion chamber. In 
either case-the high-temperature wind tunnel or the rocket engine-the flow 
through the nozzle is chemically reacting. Assuming local chemical equilibrium 
throughout the flow, let us examine the properties of the nozzle expansion. 

First, let us pose the question: Is the chemically reacting flow isentropic? On a 
physical basis, the flow is both inviscid and adiabatic. However, this does not guar- 
antee, in general, that the chemically reacting flow is irreversible. If we deal with an 
equilibrium chemically reacting flow, we can write the combined first and second 
laws of thermodynamics in the form of Eq. (1.32), repeated here: 

In Sec. 5.2, the governing equations for quasi-one-dimensional flow were derived in 
both algebraic and differential form. Moreover, in Sec. 5.2 no assumption was made 
about the type of gas; hence all the equations in that section hold in general. In par- 
ticular, a form of the energy equation was obtained as Eq. (5.10): 

In addition, Eq. (5.9) gave the momentum equation in the form 

This can be rearranged as 

Combining Eqs. (17.11) and Eq. (5. lo), we have 

Substituting Eq. (17.12) into Eq. (1.32), we have 

Hence, the equilibrium chemically reacting nozzle flow is isentropic. Moreover, 
since Eq. (17.13) was obtained by combining the energy and momentum equations, 
the assumption of isentropic flow can be used in place of either the momentum or en- 
ergy equations in the analysis of the flow. 

It is a general result that equilibrium chemical reactions do not introduce irre- 
versibilities into the system; if an equilibrium reacting system starts at some condi- 
tions pl and T I ,  deviates from these conditions for some reason, but then returns to 
the original pl and T I ,  the chemical composition at the end returns to what it was at 
the beginning. Equilibrium chemical reactions are reversible. Hence, any shockless, 
inviscid, adiabatic, equilibrium chemically reacting flow is isentropic. This is not 
true if the flow is nonequilibrium, as will be discussed in Sec. 17.11. 

Let us pose another question: For an equilibrium chemically reacting nozzle 
flow, does sonic flow exist at the throat? We have already established that the flow is 
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isentropic. This was the only necessary condition for the derivation of the area- 
velocity relation, Eq. (5.15). Hence, the equation 

holds for a general gas. In turn, when M = 1 ,  d A / A  = 0, and therefore sonic flow 
does exist at the throat of an equilibrium chemically reacting nozzle flow. The same 
is not true for a nonequilibrium flow, as will be discussed in Sec. 17.1 1.  

We are now in a position to solve the equilibrium chemically reacting nozzle 
flow. A graphical solution is the easiest to visualize. Consider that we have the equi- 
librium gas properties on a Mollier diagram, as sketched in Fig. 17.5. Recall from 
Fig. 1 6 . 1 5 ~  that a Mollier diagram is a plot of h versus s, and lines of constant p and 
constant T can be traced on the diagram. Hence, referring to Fig. 17.5, a given point 
on the Mollier diagram gives not only h and s, but p and T at that point as well (and 
any other equilibrium thermodynamic property, since the state of an equilibrium sys- 
tem is completely specified by any two-state variables). Let point 1 in Fig. 17.5 de- 
note the known reservoir conditions in the nozzle. Since the flow is isentropic, con- 
ditions at all other locations throughout the nozzle must fall somewhere on the 
vertical line through point I in Fig. 17.5. In particular, choose a value of u  = u2 f 0. 
The point in Fig. 17.5 which corresponds to this velocity (point 2) can be found from 
Eqs. (5.5) and (5.6) as 

u; 
Hence, Ah = h,, - h? = - 

2 (17.15) 

Thus, for a given velocity ~ 2 ,  Eq. (17.15) locates the appropriate point on the Mollier 
diagram. In turn, the constant-pressure and -temperature lines that run through 
point 2 detine the pressure p~ and temperature T? associated with the chosen veloc- 
ity LQ. In this fashion, the variation of the thermodynamic properties through the 
n o z ~ l e  expansion can be calculated as a function of velocity u  for given reservoir 
conditions. 

For an equilibrium gas, the speed of sound, a - (apldp),, , is also a unique func- 
tion of the thermodynamic state. This will be discussed in more detail in Sec. 17.5. 
For example, 

Thus, at each point on the Mollier diagram in Fig. 17.5, there exists a definite value 
of a .  Moreover, at some point along the vertical line through point 1 ,  the speed of 
sound cz will equal the velocity u  at that point. Such a point is marked by an asterisk 
in Fig. 17.5. At this point, u  = a = u* = a*.  Since we demonstrated earlier that 
sonic flow corresponds to the throat in an equilibrium nozzle flow, then this point in 
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Fig. 17.5 must correspond to the throat. The pressure, temperature, and density at 
this point are p*, T*, and p*, respectively. Thus, from the continuity equation (5.1), 
we have 

Therefore, Eq. (17.18) allows the calculation of the nozzle area ratio as a function of 
velocity through the nozzle. 

In summary, using the Mollier diagram in Fig. 17.5, we can compute the appro- 
priate values of u ,  p, T, and AIA* through an equilibrium nozzle flow for given 
reservoir conditions. An alternative to this graphical approach is a straight-forward 
numerical integration of Eqs. (5.7), (5.9), and (5.10) along with tabulated values of 
the equilibrium thermodynamic properties. The integration starts from known condi- 
tions in the reservoir and marches downstream. Such a numerical integration solu- 
tion is left for the reader to construct. 

In either case, numerical or graphical, it is clear that closed-form algebraic rela- 
tions such as those obtained in Sec. 5.4 for a calorically perfect gas are not obtainable 
for chemically reacting nozzle flows. This is analogous to the case of chemically re- 
acting flow through a shock wave discussed in Sec. 17.2. In fact, by now the reader 
should suspect, and correctly so, that closed-form algebraic relations cannot be ob- 
tained for any high-temperature chemically reacting flow of interest. Numerical or 
graphical solutions are necessary for such cases. 

Recall from Chap. 5 that, for a calorically perfect gas, the nozzle flow charac- 
teristics were governed by the local Mach number only. For example, from 
Eqs. (5.20), (3.28), and (3.30), for a calorically perfect gas, 

In contrast, for an equilibrium chemically reacting gas, 
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Note, as in the case of a normal shock, that the nozzle flow properties depend on 
three parameters. Also, once again we see that Mach number is not the pivotal para- 
meter for a chemically reacting flow. 

Some results for the equilibrium supersonic expansion of high-temperature 
air are shown in Fig. 17.6. Here the mole-mass ratios for N?, 02, N, 0, and 
NO are given as a function of area ratio for T,, = 8000 K and p ,  = 100 atm. At 

these conditions, the air is highly dissociated in the reservoir. However, as the gas 
expands through the nozzle, the temperature decreases. and as a result the oxygen 

A * 

/ 

/ 
Flow - 

1 0 - 5 5  
1 oO l o 1  lo2 lo3 

AIA* 

Figure 17.6 1 Chemical composition for the equilibrium supersonic 
nozzle expansion of high-temperature air. (After Eschenroeder et al.. 
"Shock Tunnel Studies of High Enthalpy Ionized Airflows," Cornell 
Aeronautical Lab. Report No. AF-1500 A1, 1962.) 
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AIA* 

Figure 17.7 1 Comparison between equilibrium and calorically perfect 
results for the flow through a rocket engine. 

and nitrogen recombine. This is reflected in Fig. 17.6, which shows 40 and r l ~  
decreasing and qo, and r l ~ ~  increasing as the gas expands supersonically from 
A/A* = 1 to 1000. 

A typical result from equilibrium chemically reacting flow through a rocket noz- 
zle is shown in Fig. 17.7. Here, the equilibrium temperature distribution is compared 
with that for a calorically perfect gas as a function of area ratio. The reservoir condi- 
tions are produced by the equilibrium combustion of an oxidizer (N202) with a fuel 
(half N2H4 and half unsymmetrical dimethyl hydrazine) at an oxidizer-to-fuel ratio 
of 2.25 and a chamber pressure of 4 atm. The calorically perfect gas is assumed to 
have a constant y = 1.20. It is important to note from Fig. 17.7 that the equilibrium 
temperature is higher than that for the calorically perfect gas. This is because, as the 
gas expands and becomes cooler, the chemical composition changes from a high 
percentage of atomic species ( 0  and H) in the reservoir with an attendant high zero- 
point energy to a high percentage of molecular products (H20, CO, etc.) in the noz- 
zle expansion with an attendant lower zero-point energy. That is, the gas recombines, 
giving up chemical energy which serves to increase the translational energy of the 
molecules, hence resulting in a higher static temperature than would exist in the non- 
reacting case. Note that the trend shown in Fig. 17.7 for nozzle flow is exactly the 
opposite of that shown in Fig. 16.2 for shock waves. For nozzle flow, the equilibrium 
temperature is always higher than that for a calorically perfect gas; for flow behind a 
shock wave, the equilibrium temperature is always lower than that for a calorically 
perfect gas. In the former case, the reactions are exothermic, and energy is dumped 
into the translational molecular motion; in the latter, the reactions are endothermic 
and energy is taken from the translational mode. 
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17.4 1 FROZEN AND EQUILIBRIUM FLOWS: 
SPECIFIC HEATS 

In Secs. 17.1 through 17.3 we have discussed flows that are in local chemical equi- 
librium, i.e., flows where the local chen~ical composition at each point is dictated by 
the local temperature and pressure via equilibrium relations employing the equilib- 
rium constants (see Sec. 16.1 I ). However. we discussed in Secs. 16.13 through 16.16 
that in reality all chemical reactions and vibrational energy exchanges take a finite 
time to occur. Therefore. in the case of a flow in local chemical and/or thermody- 
namic equilibrium, where the equilibrium properties of a moving fluid element de- 
mand instantaneous adjustments to the local T and p as the element moves through 
the field, the reaction rates have to be infinitely large. Therefore, equilibrium flow 
implies infinite chemical and vibrational rates. 

The opposite of this situation is a flow where the reaction rates are precisely 
zero-so-called,frozen ,flow. As a result, the chemical composition of a frozen flow 
remains constant throughout space and time. (This is true for an inviscid flow; for a 
viscous flow the composition of a given fluid element may change via diffusion. even 
though the flow is chemically frozen.) 

The qualitative difference between chemical equilibrium and frozen nozzle 
flows is sketched in Fig. 17.8 for a case of fully dissociated oxygen in the reservoir. 
Examining Fig. 17 .8~ .  the flow starts out with oxygen atoms in the reservoir (co = 1 ,  
coZ = 0). If we have equilibriun~ flow, as the temperature decreases throughout the 
expansion, the oxygen atoms will recombine; hence co decreases and co, increases 
as a function of distance through the nozzle. If the expansion (area ratio) is large 
enough such that the exit temperature is near room temperature, equilibrium condi- 
tions demand that virtually all the oxygen atoms recombine, and for all practical pur- 
poses co2 = I and co = 0 at the exit. These equilibrium distributions are shown by 
the solid curves in Fig. 17.8. In contrast, if the flow is chemically f ro~en ,  then by 
definition the mass fractions are constant as a function of distance through the nozzle 
(the dashed lines in Fig. 17 .8~) .  Recombination is an exothermic reaction: hence the 
equilibrium expansion results in the chemical zero-point energy of the atomic 
species being transferred into the translational, rotational, and vibrational modes of 
molecular energy. (The zero-point energy of two 0 atoms is much higher than the 
zero-point energy of one 0 2  molecule. When two 0 atoms recombine into one 0 2  

molecule, the decrease in zero-point energy results in an increase in the internal mol- 
ecular energy modes.) As a result, temperature distribution for equilibrium flow is 
higher than that for frozen flow, as sketched in Fig. 17.8b. 

For vihrutionally frozen flow, the vibrational energy remains constant through- 
out the flow. Consider a nonreacting vibrationally excited nozzle expansion as 
sketched in Fig. 17.9. Assume that we have diatomic oxygen in the reservoir at a 
temperature high enough to excite the vibrational energy, but low enough such that 
dissociation does not occur. If the flow is in local thermodynamic equilibrium, the 
translational, rotational, and vibrational energies are given by Eqs. ( 16.33), ( 16.45), 
and ( 1  6.47), respectively. The energies decrease through the nozzle, as shown by the 
solid curves in Fig. 1 7 . 9 ~ .  However. if the flow is vibrationally frozen, then ~ , , i b  is 
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a ]  To = 5000 K Flow - 
p = 1 atm oxygen 
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Figure 17.8 1 A schematic comparing equilibrium and frozen chemically 
reacting flows through a nozzle. 

constant throughout the nozzle, and is equal to its reservoir value. This is shown by 
the horizontal dashed line in Fig. 17.9~. In turn, because energy is permanently 
sealed in the frozen vibrational mode, less energy is available for the translational 
and rotational modes. Thus, because T is proportional to the translational energy, the 
frozen flow temperature distribution is less than that for equilibrium flow, as shown 
in Fig. 17.9b. In turn, the distributions of e,,,,, and emt will be lower for vibrationally 
frozen flow, as shown in Fig. 17.9~. 

It is left as an exercise for the reader to compare the equilibrium and frozen 
flows across a normal shock wave. 

Note that a flow which is both chemically and vibrationally frozen has constant 
specific heats. This is nothing more than the flow of a calorically perjiect gas as we 
have treated the topic in Chaps. 1 through 12. Let us examine the specific heat in 
more detail. 
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Flow - 

Distance 

Distance 

Figure 17.9 1 A schematic comparing equilibrium and frozen vibrationally 
relaxing flows through a nozzle. 

The enthalpy of a chemically reacting mixture can be obtained from Eq. ( 16.82), 
repeated here: 

h = x c , h ;  
I 

By definition, the specific heat at constant pressure, c,,, is 
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Thus, for a chemically reacting mixture, Eqs. (16.82) and (17.19) give 

In Eq. (17.20) (ahi/aT), is the specific heat per unit mass for the pure species i ,  c ,  . 
Hence, Eq. (17.20) becomes 

Equation (17.21) is an expression for the specific heat of a chemically reacting mix- 
ture. If the flow is frozen, by definition there are no chemical reactions, and therefore 
in Eq. (17.21) the term ( a ~ ; / a T ) ~  = 0. Thus, for a frozen flow, the specific heat be- 
comes, from Eq. (17.21), 

In turn, the frozen flow specific heat, denoted in Eq. (17.22) by cp,, can be inserted 
into Eq. (17.21), yielding for a chemically reacting gas 

constant pressure for heat Contributiondue to 
the reacting mixture chemical reaction I 

Considering the internal energy of the chemically reacting gas given by 

and using the definition of specific heat at constant volume, 

we obtain in a similar fashion 

where 

Equations (17.23) and (17.24) are conceptually important. Throughout our 
calorically perfect gas discussions in Chaps. 1 through 12, we were employing c, 
and c, as expressed by Eqs. (17.22) and (17.25). Now, for the case of a chemically 
reacting gas, we see from Eqs. (17.23) and (17.24) that an extra contribution, 
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namely, 

is made to the specific heats purely because of the reactions themselves. The magni- 
tude of this extra contribution can be very large, and usually dominates the value of 
c,, and c,. 

For practical cases, it is not possible to find analytic expressions for (i;)c;/iIT), 
or (i)c, /aT), , .  For an equilibrium mixture, they can be evaluated numerically by 
differentiating the data from an equilibrium calculation, such as was described in 
Sec. 16.11. Such evaluations have been made, for example, by Frederick Hansen in 
NASA TR-50 (see Ref. 66). Figure 17.10 is taken directly from Hansen.~ work, and 
shows the variation of c ,  for air with temperature at several different pressures. The 

humps in each curve reflect the reaction term in Eq. (1 7.24). 

and are due consecutively to dissociation of oxygen, dissociation of nitrogen, and 
then at very high temperatures the ionization of both 0 and N. (Note that the ordinate 
of Fig. 17.10 is a nondimensionalized specific heat, where ../: is the universal gas 

0.000 1 atrn 

atm 

Figure 17.10 1 Specific heat of equilibrium air at constant density as a 
function of temperature. (After Hansen, Ref. 66.) 
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constant, . k0 is the initial molecular weight of undissociated air, A'is molecular 
weight at the given T and p and C ,  is the molar specific heat.) 

Because c, and c, for a chemically reacting mixture are functions of both T and 
p (or T and v), and because they exhibit such wild variations as seen in Fig. 17.10, 
they are not usually employed directly in calculations of high-temperature flows. 
Note that, in our previous discussions on shock waves (Sec. 17.2) and nozzle flows 
(Sec. 17.3), h or e were used for a solution rather than c, or c,. However, it is im- 
portant for an overall understanding of high-temperature flows to know how and why 
the specific heats vary. This has been the purpose of this discussion. 

17.5 1 EQUILIBRIUM SPEED OF SOUND 
In both Secs. 3.3 and 7.5 we showed conclusively that the speed of sound in a gas is 

This is a physical fact, and is not changed by the presence of chemical reactions. Fur- 
thermore, in Sec. 3.3 we found for a calorically perfect gas that a = m. But 
what is the value of speed of sound in an equilibrium reacting mixture? How do we 
calculate it? Is it equal to m? The purpose of this section is to address these 
questions. 

Consider an equilibrium chemically reacting mixture at a fixed p and T. There- 
fore, the chemical composition is uniquely fixed by p and T. Imagine a sound wave 
passing through this equilibrium mixture. Inside the wave, p and T will change 
slightly. If the gas remains in local chemical equilibrium through the internal struc- 
ture of the sound wave, the gas composition is changed locally within the wave ac- 
cording to the local variations of p and T. For this situation, the speed of the sound 
wave is called the equilibrium speed of sound, denoted by a,. In turn, if the gas is in 
motion at the velocity V ,  then V/a, is defined as the equilibrium Mach number Me. 

To obtain a quantitative relation for the equilibrium speed of sound, consider the 
combined first and second laws of thermodynamics from Eqs. (1.30) and (1.32), re- 
peated here: 

The process through a sound wave is isentropic; hence Eqs. (1.30) and (1.32) become 

and d h - v d p = O  (17.27) 

For an equilibrium chemically reacting gas, 
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Thus, the total differential is 

Similarly, 

Note that, in Eqs. (17.28) and (17.29), c, and cp are given by Eqs. (17.24) and 
(17.21), respectively. Substituting Eq. (17.28) into (17.26), 

Substituting Eq. (17.29) into (17.27), 

Dividing Eq. (17.31) by (17.30), 

However, v = lip; hence dv = -dplP2. Thus, Eq. (1 7.32) becomes 

Since we are dealing with isentropic conditions within the sound wave, any changes d p  
and dp within the wave must take place isentropically. Thus, dpldp = (ap /ap) ,  - a:. 
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Hence, Eq. (17.33) becomes 

As usual, let y - cp/c,. Also, note from the equation of state that plp = RT. Thus, 
Eq. (17.34) becomes 

Equation (17.35) gives the equilibrium speed of sound in a chemically reacting 
mixture. 

Equation (17.35) gives an immediate answer to one of the questions asked at the 
beginning of this section. The speed of sound in an equilibrium reacting mixture is 
not equal to the simple result obtained in Sec. 3.3 for a calorically perfect 
gas. However, if the gas is calorically perfect, then h = cpT and e = c,T (see 
Sec. 1.4). In turn,  ahl lap)^ = 0 and ( a e l a v ) ~  = 0, and Eq. (17.35) reduces to the 
familiar result 

The symbol af is used here to denote thefrozen speed of sound, because a calorically 
perfect gas assumes no reactions. Equation (17.36) is the speed at which a sound 
wave will propagate when no chemical reactions take place internally within the 
wave, i.e., when the flow inside the wave is frozen. 

For a thermally perfect gas, h = h(T) and e(T). Hence, again Eq. (17.35) re- 
duces to Eq. (17.36). 

Clearly, the full Eq. (17.35) must be used whenever ( a e l a v ) ~  and   ah la^)^ are 
finite. This occurs for two cases: 

1. When the gas is chemically reacting 
2. When intermolecular forces are important, i.e., when we are dealing with a 

real gas (see Sec. 1.4) 

In both of these cases, h = h(T, p) and e = e(T, v) and hence Eq. (17.35) must be 
used. 

Note from Eq. (17.35) that the equilibrium speed of sound is a function of both 
T and p, unlike the case for a calorically or thermally perfect gas where it depends 
on T only. This is emphasized in Fig. 17.11, which gives the equilibrium speed of 
sound for high-temperature air as a function of both T and p.  In addition, note in 
Fig. 17.1 1 that the frozen speed of sound is given by a constant horizontal line at 
a2p/p = 1.4, and that the difference between the frozen equilibrium speed of sound 
in air can be as large as 20 percent under practical conditions. In turn, this once again 
underscores the ambiguity in the definition of Mach number for high-temperature 
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flows. The frozen Mach number M f  = V/af  and the equilibrium Mach number 
Me = V/a, can differ by a substantial amount. Hence, Mach number is not particu- 
larly useful in this context. 

Finally, note that the derivatives of e and h in Eq. (17.35) must be obtained nu- 
merically from the high-temperature equilibrium properties of the mixture. Although 
Eq. (17.35) is in a useful form to illustrate the physical aspects of the equilibrium 
speed of sound, it does not constitute a closed-form formula from which, given the 
local p and T ,  a value of a, can be immediately obtained. Rather, the derivatives 
must be evaluated numerically, as has been carried out by Hansen (Ref. 66) and oth- 
ers and as is reported in Fig. 17.11. 

17.6 1 ON THE USE OF y = cJc, 

As a corollary to Sec. 17.5, we emphasize that y r c,/c, is a function of T and p for 
a chemically reacting gas. Hence, y ,  which is so useful for the analysis of a calori- 
cally perfect gas as described in Chaps. 1 through 12, is virtually useless for the 
analysis of a high-temperature flow. 

In spite of this, the temptation to use simple closed-form results such as 
Eqs. (3.28) through (3.31) has resulted in many approximate analyses of chemically 
reacting flows employing a constant "effective y ." This is particularly prevalent in 
the preliminary analysis and design of rocket engines. For example, consider the 
chemically reacting flow through a rocket nozzle, where T, and T, are the combus- 
tion chamber and exit temperatures, respectively. These temperatures can be used in 
Eq. (3.28) to define an effective value of y ,   ye^, such that 

In Eq. (17.37), To, T,, and Me are all known quantities for the reacting flow, and y,ff 
is solved from this equation. Of course, in turn yeff depends on p,, T,, and the gas 
composition. Moreover, this value of ye@ holds only for Eq. (17.37), which is its de- 
finition. If the same value of yeff were used in Eqs. (3.30) and (3.31) for the pressure 
and density, respectively, the results would not be exact. Nevertheless, experience 
has shown that effective values of y inserted into the closed-form results for a calor- 
ically perfect gas can be used in approximate analyses of chemically reacting flows. 
Choosing the appropriate value of yeff for a given problem is a matter of experience; 
in general, an answer to the problem, either from exact numerical calculations or ex- 
perimental measurement, is usually necessary in order to estimate a reasonable value 
of  ye^, say from Eq. (17.37). Note that, in terms of our discussion in Sec. 17.4, the ef- 
fective y approach is nothing more than assuming frozen flow with a proper value of 
yeff to give reasonably close results. 

The reader is cautioned to approach such effective y analyses with strong reser- 
vations. It is simply a "back-of-the-envelope" technique for estimating high- 
temperature flow results. The proper techniques, using numerical solutions of the 
proper governing equations, as described for example in Secs. 17.2 through 17.5, 
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should be invoked whenever exact analyses of equilibrium high-temperature flows 
are desired. 

17.7 1 NONEQUILIBRIUM FLOWS: SPECIES 
CONTINUITY EQUATION 

In the remainder of this chapter, we consider the flow of a high-temperature gas 
where the chemical and/or vibrational rates are finite, i.e., we consider nonequilib- 
rium flows. This is in contrast to equilibrium (infinite-rate) or frozen (zero-rate) 
flows (see Scc. 17.4). In this capacity, we will need to incorporate into our flow 
analyses the finite-rate processes discussed in Secs. 16.13 through 16.16. In regard to 
our roadmap in Fig. 17.3, we now move to the right-hand column. 

The analysis of nonequilibrium flows is inherently different from equilibri~m or 
frozen flows in these fundamental ways: 

1. The tinite rates force the use of differential relationships for the governing 
equations. In contrast, note from our preceding discussions that equilibrium 
or frozen flows through nozzles or across shock waves can be treated with 
strictly algebraic relations. For nonequilibrium flow, the differential form of 
the governing equations (see Chap. 6) must be used. 

2. For a nonequilibrium chemically reacting flow, the composition is no longer a 
unique function of the local p and T,  but rather depends on the speed at which 
the finite-rate reactions are taking place, the speed of the fluid elements 
themselves, and the actual geometric scale of the flow problem. This will 
become clearer as our discussions progress. Similarly, the vibrational energy 
for a nonequilibrium vibrationally excited flow is no longer a function of the 
local T. Hence, for the analysis of such nonequilibrium flows, the unknown 
chemical composition and/or vibrational energies introduce the requirement 
for additional governing equations. The derivation of such equations for 
chemically reacting flows is given in the present section; analogous equations 
for vibrationally excited flows will be treated in See. 17.8. 

In Sec. 2.3, we derived the integral form of the continuity equation, which states 
that mass can be neither created nor destroyed. This is a universal principle in classi- 
cal physics, and therefore holds for a nonequilibrium chemically reacting gas. In the 
analysis of such flows, Eq. (2.2), as well as its differential counterparts, Eqs. (6.5) 
and (6.22), is called the global continuity equation. It deals with the overall conser- 
vation of mass for the reacting mixture. However, for a nonequilibrium chemically 
reacting flow, we must also utilize a continuity equation for each species separately. 
Such an equation is called the species continuity equation, and is derived as follows. 

Consider a fixed, finite control volume in the nonequilibrium, inviscid flow of a 
chemically reacting gas; such a control volume is sketched in Fig. 2.4. Let p, be the 
mass of species i per unit volume of mixture. Hence 
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Examining Fig. 2.4, the mass flow of species i through the elemental surface area dS 
is piV dS,  where V is the local flow velocity. Hence, the net mass flow of species i 
out of the control volume is 

The mass of species i inside the control volume is 

Let w; be the local rate of change of pi due to chemical reactions inside the control 
volume. Therefore, the net time rate of change of the mass of species i inside the con- 
trol volume is due to 

1. The net flux of species i through the surface 
2. The creation or extinction of species i inside the control volume due to 

chemical reactions 

Writing this physical principle in terms of integrals over the control volume, we have 

Equation (17.38) is the integral form of the species continuity equation; you will note 
that its derivation is quite similar to the global continuity equation given in Sec. 2.3. 
In turn, similar to the development given in Sec. 6.2, the differential form of the 
species continuity equation is obtained directly from Eq. (17.38) as 

[Recall that we are dealing with an inviscid flow. If the flow were viscous, 
Eqs. (17.38) and (17.39) would each have an additional term for the transport of 
species i by mass diffusion, and the velocity would be the mass motion of species i ,  
which is not necessarily the same as the mass motion of the mixture, V.] 

In Eqs. (17.38) and (17.39) an expression for w; comes from the chemical rate 
equation (16.130), couched in suitable dimensions. For example, assume that we are 
dealing with chemically reacting air, and we write Eqs. (17.38) and (17.39) for NO, 
i.e., pi = PNO. The rate equation for NO is given by Eq. (16.144) in terms of 

The dimensions of this equation are moles per unit volume per unit time. However, 
the dimensions of wNo in Eqs. (17.38) and (17.39) are the mass of NO per unit 
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volume per unit time. Recalling that molecular weight is defined as the mass of 
species i per mole of i ,  we can write 

where . !/NO is the molecular weight of NO. Therefore, Eq. (17.39) written for NO is 

where d[NOl/d t  is obtained from Eq. ( 16.144). 
For a nonequilibrium chemically reacting mixture with n different specie\, we 

need n - 1 species continuity equations of the form of Eq. ( 17.39). These, along with 
the additional result that 

provide n equations for the solution of the instantaneous composition of a nonequi- 
librium mixture of n chemical species. 

An alternative form of the species continuity equation can be obtained as 
follows. The mass fraction of species i ,  c , ,  is defined as c, = p , / p .  Substituting this 
relation into Eq. (17.39), 

Expanding Eq. ( 17.40), we have 

The first two terms of Eq. (17.41) constitute the substantial derivative of c, (see 
Sec. 6.3). The second two terms (in brackets) result in zero from the global continu- 
ity equation (6.5). Hence, Eq. (17.41) can be written as 

In terms of the mole-mass ratio, q, = c,/. /I,, Eq. (17.42) becomes 
I 

Equations (17.42) and (17.43) are alternative forms of the species continuity equa- 
tion, couched in terms of the substantial derivative. 

Recall from Sec. 6.3 that the substantial derivative of a quantity is physically the 
time rate of change of that quantity as we follow a fluid element molting wifh the 
,pow. Therefore, from Eqs. (17.42) and (17.43) as we follow a fluid element of fixed 
mass moving through the flowfield, we see that changes of c, or q, of the fluid 
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element are due only to the finite-rate chemical kinetic changes taking place within 
the element. This makes common sense, and in hindsight, therefore, Eqs. (17.42) and 
(17.43) could have been written directly by inspection. We emphasize that in 
Eqs. (17.42) and (17.43) the flow variable inside the substantial derivative, ci or vi, 
is written per unit mass. As long as the nonequilibrium variable inside the substantial 
derivative is per unit mass of mixture, then the right-hand side of the conservation 
equation is simply due to finite-rate kinetics, such as shown in Eqs. (17.42) and 
(17.43). In contrast, Eq. (17.39) can also be written as 

The derivation of Eq. (17.44) is left to the reader. In it, the nonequilibrium variable 
inside the substantial derivative, pi, is per unit volume. Because it is not per unit 
mass, an extra term in addition to the finite-rate kinetics appears on the right-hand 
side to take into account the dilation effect of the changing specific volume of the 
flow. (Recall from basic fluid mechanics that V V is physically the volume efflux of 
fluid from a point.) The distinction made here will be important in Sec. 17.8. 

17.8 1 RATE EQUATION FOR VIBRATIONALLY 
NONEQUILIBRIUM FLOW 

Consider the nonequilibrium inviscid flow of a vibrationally excited diatomic gas. 
The finite-rate kinetics for vibrational energy exchange were discussed in Sec. 16.14, 
leading to Eq. (16.116) as the vibrational rate equation. Based on the discussion at 
the end of Sec. 17.7, if we follow a moving fluid element of fixed mass, the rate of 
change of evib for this element is equal to the rate of molecular energy exchange 
inside the element. Therefore, we can write the vibrational rate equation for a mov- 
ing fluid element as 

Note in Eq. (17.45) that evib is the local nonequilibrium value of vibrational energy 
per unit mass of gas. 

Flow with vibrational nonequilibrium is of particular practical interest in the 
analysis of modern gasdynamic and chemical lasers, and has been an important 
aspect of hypersonic wind tunnels since the mid-1950s. 

17.9 1 SUMMARY OF GOVERNING EQUATIONS 
FOR NONEQUILIBRIUM FLOWS 

In a nonequilibrium flowfield, we wish to solve for p ,  p,  T, V ,  h ,  evib, and ci as func- 
tions of space and time. For an inviscid, adiabatic nonequilibrium flow, the govern- 
ing equations are summarized below. With the addition of the equations derived in 
Secs. 17.7 and 17.8, the governing equations are the same as developed in Chap. 6 
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(recall that in Chap. 6 we made no special assumption5 regarding the type of gas): 

Global continuity: 
a,o 
- + v .  (pV)  = O  a r 

Species continuity: 
 PI - + v .  (piv) = w, 
a t  

(Note that for a mixture of n species, we need n - 1 species continuity equation% the 
nth equation IS given by El p, = p ,  or El c, = I ,  or xi q, = 17.) 

Momentum: 

or for steady flow 
v' 

/ I , ,  = h + - = const along a streamline 
2 

or any of Eqs. (6.17), (6.31). (6.36), (6.40), (6.43), (6.44), or (6.48). [Note that in the 
forms of the energy equation obtained in Chap. 6, a heat-addition term 4 was carried 
along. However, in the present chapter we are dealing with adiabatic flows: hence. 
q = 0. The term does not have anything to do with chemical reactions: it is simply 
an effect due to energy addition across the boundaries ot'the flow. such as absorption 
of radiant energy. The energy release or absorption due to chemical reactions is not 
included in (I: rather, these chemical energy changes are already naturally accounted 
for by the heats of formation appearing in the enthalpy terms, e.g., Eq. ( 16.99). 1 

Equation qf .state: p = pRT 

, %' 
where R = -  . // 
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17.10 1 NONEQUILIBRIUM NORMAL SHOCK 
WAVE FLOWS 

Consider a strong normal shock wave in a gas. Moreover, assume the temperature 
within the shock wave is high enough to cause chemical reactions within the gas. In 
this situation, we need to reexamine the qualitative aspects of a shock wave, as 
sketched in Fig. 17.12. The thin region where large gradients in temperature, pres- 
sure, and velocity occur, and where the transport phenomena of viscosity and thermal 
conduction are important, is called the shock front. For all of our previous consider- 
ations of a calorically perfect gas, or equilibrium flow of a chemically reacting or 
vibrationally excited gas, this thin region is the shock wave. For these previous situ- 
ations, the flow in front of and behind the shock front was uniform, and the only gra- 
dients in flow properties took place almost discontinuously within a thin region of no 
more than a few mean-free-paths thickness. However, in a nonequilibrium flow, all 
chemical reactions andlor vibrational excitations take place at a finite rate. Since the 
shock front is only a few mean-free-paths thick, the molecules in a fluid element can 
experience only a few collisions as the fluid element traverses the front. Conse- 
quently, the flow through the shock front itself is essentially frozen. In turn, the flow 

-------- I frozen 

Figure 17.12 1 Schematic of chemically reacting 
nonequilibrium flow behind a normal shock wave. 
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properties immediately behind the shock front are frozen flow properties, as dis- 
cussed in Sec. 17.4 and as sketched in Fig. 17.12. Then, as the fluid element moves 
downstream, the finite-rate reactions take place, and the flow properties relax toward 
their equilibrium values, as also sketched in Fig. 17.12. With this picture in mind. the 
shock wave now encompasses both the shock front and the nonequilibrium region 
behind the front where the flow properties are changing due to the finite-rate reac- 
tions. For purposes of illustration, assume that the gas is pure diatomic nitrogen in 
front of the shock wave, i.e., (CN), = 0 in Fig. 17.12. The properties immediately 
behind the shock front are obtained from frozen flow results, i.e., the constant 
y = 1.4 results from Sec. 3.6. Hence, the values of Tf, ,,,, and pf ,,,,,, shown in 
Fig. 17.12 can be obtained directly from Table A.2 at the back of this book. In addi- 
tion, C.N immediately behind the shock front is still zero, since the flow is frozen. 
Downstream of the shock front, the nonequilibrium flow must be analyzed using the 
equations summarized in Sec. 17.9. In this region, the nitrogen becomes either 
partially or totally dissociated (depending on the strength of the shock wave), and CN 

increases as sketched in Fig. 17.12. In turn, because this reaction is endothermic, 
the static temperature behind the shock front decreases, and the density increases. 
Finally, the downstream flow properties will approach their equilibrium values, as 
calculated from the technique described in Sec. 17.2. 

A numerical calculation of the nonequilibrium region behind the shock front can 
be established as follows. Since the flow is one-dimensional and steady, the equa- 
tions of Sec. 17.9 become 

Glohul continuity: p d u + u d p = O  (17.46) 

Momentum: d p  = -pu d ~ r  ( 17.47) 

Species contirzuity: w, 
u dc, = - d.x (17.49) 

P 

In Eq. (17.49) the x distance is measured from the shock front, extending down- 
stream as shown in Fig. 17.13. Note that Eq. (17.49) explicitly involves the finite-rate 
chemical reaction term UJ, ,  and that a distance dx nlultiplies this term. Hence, 
Eq. (17.49) introduces a scale effect into the solution of the flowfield-a scale effect 
that is present solely because of the nonequilibrium phenomena. In turn, all flowfield 
properties become a function of distance behind the shock front, as sketched in 
Fig. 17.12. Continuing with the above equations, if Eq. (17.46) is multiplied by L I ,  

and Eq. (17.47) substituted into (17.50). we have 
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Shock front 

Figure 17.13 1 Schematic of grid points for the 
numerical solution of nonequilibrium normal 
shock flows. 

From the equation of state, p = pRT where R  is a variable, since R  = .4/. 67 and 
.A varies due to chemical reactions. Hence, 

Substituting Eq. (17.51) into (17.52), we have 

u 2 d p =  R T & + ~ T ~ R + ~ R ~ T  

Solving Eq. (17.53) for dp,  we obtain 

The mixture enthalpy is given by 

where 

Hence, 
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where c,, is the frozen specific heat introduced in Sec. 17.4. Substituting Eq. ( 17.55) 
into Eq. (1  7.48), we have 

d p  c,, d T  + C h, dc, - - = 0 
I P 

Substituting Eq. (17.51) into Eq. (17.56), we have 

Substituting Eq. (17.54) into Eq. (17.57), we obtain 

c,,, d T  + h, dc, - u2 [':;',","'I = 0 
I 

Since R = . y?/ .  // and 

then 

and 

Also, from Eq. (17.49), 

Substituting Eqs. (17.59) and (17.60) into Eq. (17.58), and solving for ( IT ,  we have 

Equations (17.51), (17.54), (17.60), and (17.61) give the infinitesimal changes 
in p ,  p ,  c; ,  and T ,  respectively, corresponding to the infinitesimal distance dx 
behind the shock front. These equations are in a convenient form for numerical 
solution. Consider the one-dimensional flowfield behind the shock front to be di- 
vided into a large number of grid points separated by an equal distance Ax,  as 
sketched in Fig. 17.13. Because the flow is frozen across the shock front, all condi- 
tions at point 1 immediately behind the shock front are known. For purposes of 
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illustration, let us use one-sided forward differences (see Sec. 11.11) in Eqs. (17.5 I), 
(17.54), (17.60), and (17.61). Hence, Eq. (17.60) is replaced by 

To be calculated Known - 
Known 

From Eq. (17.62), all the species mass fractions can be calculated at point 2. From 
Eq. (17.61 ) we have 

In Eq. (17.63) all terms on the right-hand side are known; hence, T2 can be calculated 
directly. In turn, from Eq. (17.54) 

In Eq. (17.64), all terms on the right-hand side are known; hence p2 can be calculated 
directly. [Note that R2 = ;/R C, (c,,  /dl) .] In turn, from Eq. (17.5 l), 

(17.65) 

Everything is known on the right-hand side of Eq. (17.65), thus directly yielding p2. 

Finally, from Eq. (17.47), 

and we can calculate u2. Consequently, from Eqs. (17.62) through (17.66), all the 
flowfield variables at point 2 behind the shock front can be computed. Repeating 
these equations, we can march on to points 3 ,4 ,  5, etc. In this fashion, the complete 
nonequilibrium flowfield can be obtained. 

For simplicity in this illustration, we have used a simple first-order-accurate 
finite-difference for the derivatives. For such a method, however, the distance Ax 
must be made so small to maintain reasonable accuracy as to be totally impractical. 
In practice, Eqs. (17.51), (17.54), (17.60), and (17.61) would be solved by a higher- 
order method, such as the standard Runge-Kutta technique for ordinary differential 
equations. To complicate matters, if one or more of the finite-rate chemical reactions 
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are very fast [if w, in Eq. (17.60) is very large], then A.r must still be chosen very 
small even when a higher-order numerical method is used. The species continuity 
equations for such very fast reactions are called "stiff" equations, and readily lead to 
instabilities in the solution. Special methods for treating the solution of stiff ordinary 
differential equations have been reviewed by Hall and Treanor (see Ref. 7 1). 

Typical results for the nonequilibrium flowfield behind a normal shock wave in 
air are given in Figs. 17.14 and 17.15, taken from the work of Marrone (Ref. 72). The 
Mach number ahead of the shock wave is 12.28, strong enough to produce major dis- 
sociation of 02, but only slight dissociation of N2. The variation of chemical compo- 
sition with distance behind the shock front is given in Fig. 17.14. Note the expected 
increase in the concentration of 0 and N, rising from their frozen values (essentially 
zero) immediately behind the shock front, and monotonically approaching their equi- 
librium values about 10 cm downstream of the shock front. For the most part, the 
nonequilibrium flow variables will range between the two extremes of frozen and 
equilibrium values. However, in some cases, due to the complexities of the chemical 
kinetic mechanism, a species may exceed these two extremes. A case in point is the 
variation of NO concentration shown in Fig. 17.14. Note that it first increases from 
essentially zero behind the shock front, and overshoots its equilibrium value at about 
0.1 cm. Further downstream, the NO concentration approaches its equilibrium value 
from above. This is a common behavior of NO when it is formed behind a shock front 
in air; it is not just a peculiarity of the given upstream conditions in Fig. 17.14. The 

- "  
0 --- concentration 

I I I 
0.1 10 100 

Distance behind shock, cm 

Figure 17.14 1 Distributions of the chemical species for the nonequilibrium flow 

through a normal shock wave in air. MI = 12.28, TI = 300 K,  p l  = 1.0 mmHg. 
(After Marrone, Ref. 72.) 
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I I I I 
0.01 0.1 1 10 100 

Distance behind shock, cm 

Figure 17.15 1 Distributions of the temperature and density 
for the nonequilibrium flow through a normal shock 
wave in air. M I  = 12.28, TI = 300K, p ,  = 1.0 mmHg. 
(After Marrone, Ref. 72.) 

variations in temperature and density behind the shock front are shown in Fig. 17.15. 
As noted earlier, the chemical reactions in air behind a shock front are predominantly 
dissociation reactions, which are endothermic. Hence, T decreases and p increases 
with distance behind the front-both by almost a factor of 2. 

17.11 1 NONEQUILIBRIUM QUASI-ONE- 
DIMENSIONAL NOZZLE FLOWS 

Because of the practical importance of high-temperature flows through rocket nozzles 
and high-enthalpy aerodynamic testing facilities, intensive efforts were made after 
1950 to obtain relatively exact numerical solutions for the expansion of a high- 
temperature gas through a nozzle when vibrational and/or chemical nonequilibrium 
conditions prevail within the gas. In a rocket nozzle, nonequilibrium effects decrease 
the thrust and specific impulse. In a high-temperature wind tunnel, the nonequilibrium 
effects make the flow conditions in the test section somewhat uncertain. Both of these 
are adverse effects, and hence rocket nozzles and wind tunnels are usually designed to 
minimize the nonequilibrium effects; indeed, engineers strive to obtain equilibrium 
conditions in such situations. In contrast, the gasdynamic laser (see Ref. 21) creates a 
laser medium by intentionally fostering vibrational nonequilibrium in a supersonic ex- 
pansion; here, engineers strive to obtain the highest degree of nonequilibrium possible. 
In any event, the study of nonequilibrium nozzle flows is clearly important. 

Until 1969, all solutions of nonequilibrium nozzle flows involved steady state 
analyses. Such techniques were developed to a high degree, and are nicely reviewed 
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by Hall and Treanor (see Ref. 71). However, such steady state analyses were not 
straightforward. Complicated by the presence of stiff chemical rate equations (see 
Sec. 17.10), such solutions encountered a saddle-point singularity in the vicinity of 
the nozzle throat, and this made it very difficult to integrate from the subsonic to the 
supersonic sections of the nozzle. Moreover, for nonequilibrium nozzle flows the 
throat conditions and hence the mass flow are not known a priori; the nozzle mass 
flow must be obtained as part of the solution of the problem. Therefore, in 1969 a 
new technique for solving nonequilibrium nozzle flows was advanced by Anderson 
(see Refs. 73 and 74) using the time-marching finite-difference method discussed in 
Chap. 12. This time-marching approach circumvents the above problems encoun- 
tered with steady-state analyses, and also has the virtue of being relatively easy and 
straightforward to program on the computer. Since its first introduction in 1969. the 
time-marching solution of nonequilibrium nozzle flows has gained wide acceptance. 

Such a solution for a calorically perfect gas has already been introduced in 
Sec. 12.1. For this reason, the present section will highlight the time-marching solu- 
tion of nonequilibrium nozzle flows. In this sense, our discussion here will be an ex- 
tension of the ideas first presented in Sec. 12.1. Therefore, the reader is encouraged 
to review that section before proceeding further. Also, the reader is urged to study 
AGARD-ograph 124 by Hall and Treanor (see Ref. 7 1) for a broad outline of steady- 
state solutions for nonequilibrium nozzle flows. 

Consider again the nozzle and grid-point distribution sketched in Fig. 12.5. The 
time-marching solution of nonequilibrium nozzle flows closely follows the technique 
described in Sec. 12.1, with the consideration of vibrational energy and chemical 
species concentrations as additional dependent variables. In this context, at the first 
grid point in Fig. 12.5, which represents the reservoir conditions, equilibrium condi- 
tions for e,ib and ci at the given p,, and T, are calculated, and held fixed. invariant 
with time. Guessed values of e,,b and ci are then arbitrarily specified at all other 
grid points (along with guessed values of all other flow variables); these guessed val- 
ues represent initial conditions for the time-marching solution. For the initial values 
of e,ib and ci, it is recommended that equilibrium values be assumed from the reser- 
voir to the throat, and then frozen values be prescribed downstream of the throat. 
Such an initial distribution of nonequilibrium variables is qualitatively similar to 
typical results obtained for nonequilibrium nozzle flows, as we will soon see. 

The governing continuity, momentum, and energy equations for unsteady quasi- 
one-dimensional flow have been given as Eqs. (12.5), (12.6), and (12.7) respectively. 
In addition to these equations, for a nonequilibrium flow the appropriate vibrational 
rate and species continuity equations are 

and 

These equations are solved step by step in time using the finite-difference predictor- 
corrector approach described in Sec. 12.1, and of course are fully coupled with the 
other governing equations [Eqs. (12.5) through (12.7)] at each time step. Along with 
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the other flow variables, evib and c; at each grid point will vary with time; but after 
many time steps all flow variables will approach a steady state. As emphasized in 
Sec. 12.1, it is this steady flowfield we are interested in as our solution-the time- 
marching technique is simply a means to achieve this end. 

The nonequilibrium phenomena introduce an important new stability criterion for 
At in addition to the CFL criterion discussed in Sec. 12.2. The value chosen for At 
must be geared to the speed of the nonequilibriumrelaxation process, and must not ex- 
ceed the characteristic time for the fastest finite rate taking place in the system. That is, 

where l- = t for vibrational nonequilibrium, l- = p(awi/aci)-' for chemical non- 
equilibrium, and B is a dimensionless proportionality constant found by experience 
to be less than unity, and sometimes as low as 0.1. The value chosen for At in a non- 
equilibrium flow must satisfy both Eqs. (17.69) and (12.14). Which of the two sta- 
bility criteria is the smaller, and hence governs the time step, depends on the nature 
of the case being calculated. If the local pressure and temperature are low enough 
everywhere in the flow, the rates will be slow, and Eq. (12.14) generally dictates the 
value of At.  On the other hand, if some of the rates have particularly high transition 
probabilities andlor the local p and T are very high, then Eq. (17.69) generally dic- 
tates At.  This is almost always encountered in rocket nozzle flows of hydrocarbon 
gases, where some of the chemical reactions involving hydrogen are very fast and 
combustion chamber pressures and temperatures are reasonably high. 

The nature of the time-marching solution of a vibrational nonequilibrium 
expansion of pure N2 is shown in Fig. 17.16. Here, the transient evib profiles at 

- 
L = 0.0254111 t = 0 (initial distribution) 
p, = 10 atm 
To = 4000 K 
A / A *  and 7, SAME AS FIG. 17.17 

0 

Distance along nozzle, X / L  

Figure 17.16 1 Transient and final steady state e,,b distributions for the nonequilibrium 
expansion of N2 obtained from the time-marching analysis. (After Anderson, Ref. 73.) 
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- Time-dependent analysis 
0 Steadystate analysis of W~lson et al. (Ref. 75) 

Po = 10 atm 

L  = 0.0254 m 

Y = X / L  + 0.15 
A I A *  = 20 (0.15 - 0.33768675Y113 + 0.10129268Y112 

+ 0.26794919Y) for Y > 0 0178699 
A / A *  = 20 (0.09791353 - Y )  for Y < 0.0178699 

, 7P = ( , - b T L 1 3 .  , a  = 14.7, b = 0.753 

Distance along nozzle, XIL 

Figure 17.17 1 Steady state Tblh distributions for the nonequilibrium 
expansion of N2: comparison of the time-marching analysis with the 
steady-flow analysis of Wilson et al. (After Anderson. Ref. 73.) 

various time steps are shown; the dashed curve represents the guessed initial distri- 
bution. Note that during the first 250 time steps, the proper steady state distribution 
is rapidly approached, and is reasonably attained after 800 time steps. Beyond this 
time, the time-marching solution produces virtually no change in the results from 
one time step to the next. This steady-state distribution agrees with the results of a 
steady-flow analysis after Wilson (see Ref. 7 3 ,  as shown in Fig. 17.17. Here, a local 
"vibrational temperature" is defined from the local nonequilibrium value of e,ib 

using the relation 

patterned after the equilibrium expression given by Eq. (1  6.47). Note that Eq. (17.70) 
is not a valid physical relationship for nonequilibrium flow; it is simply an equation 
that dejines the vibrational temperature Tvlb and that allows the calculation of a value 
of Tvlh from the known value of ~, ,b .  Hence, TVlh is simply an index for the local 
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nonequilibrium value of e,ib. In Fig. 17.17, both the time-marching calculations as 
well as the steady-flow analysis of Wilson assume nonequilibrium flow at all points 
downstream of the reservoir, including the subsonic section. Very good agreement 
between the two techniques is obtained. 

Many analyses of nonequilibrium nozzle flows in the literature assume local 
equilibrium to the throat and then start their nonequilibrium calculations down- 
stream of the throat. In this fashion, the problems with the saddlepoint singularity 
and the unknown mass flow, described earlier, are sidestepped. Examples of such 
analyses are given by Harris and Albacete (Ref. 76), and by Erickson (see Ref. 77). 
However, for many practical nozzle flows, nonequilibrium effects become important 
in the subsonic section of the nozzle, and hence a fully nonequilibrium solution 
throughout the complete nozzle is required. 

Figures 17.16 and 17.17 illustrate an important qualitative aspect of nonequilib- 
rium nozzle flows. Note that, as the expansion proceeds and the static temperature 
(trans) decreases through the nozzle, the vibrational temperature and energy also 
decrease to begin with. However, in the throat region, evib and Tvib tend to "freeze," 
and are reasonably constant downstream of the throat. This is a qualitative comment 
only; the actual distributions depend on pressure, temperature, and nozzle length. It 
is generally true that equilibrium flow is reasonably obtained throughout large noz- 
zles at high pressures. Reducing both the size of the nozzle and the reservoir pressure 
tends to encourage nonequilibrium flow. 

Results for a chemical nonequilibrium nozzle flow are given in Fig. 17.18, 
where the transient mechanism of the time-marching technique is illustrated. Here, 

" O  r 
t = 0 (initial distribution) 

t = 2800At (steady state) 
- 

4 

t = 100At 

- 
kR, = 5 X 1 014 cm6 /mo12 . sec 

AA* = 1 + 3 6 ( x ~ ) ~  

- po = 9.4 atm 

To = 5900 K ----- 
L = 0.0228 rn 

H a l l  and Russo, Steady-state analysis - 
(Ref.78) 

Distance along nozzle, X / L  

Figure 17.18 1 Transient and final steady-state atom mass-fraction distributions for the 
nonequilibrium expansion of dissociated oxygen; comparison of the time-marching method 
with the steady-state approach of Hall and Russo. (After Anderson, Ref. 73.) 
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the nonequilibrium expansion of partially dissociated oxygen is calculated where the 
only chemical reaction is 

In Fig. 17.18, the dashed line gives the initially assumed distribution for the 
atomic oxygen mass fraction, co. Note the rapid approach toward the steady state 
distribution during the tirst 400 time steps. The final steady-state distribution is 
obtained after 2800 time steps. This steady-state distribution compares favorably 
with the results of Hall and Russo (solid circles), who performed a steady-flow 
analysis of the complete nonequilibrium nozzle flow (see Ref. 78). Again, note the 
tendency of the oxygen mass fraction to freeze downstream of the throat. 

A more complex chemically reacting nonequilibrium nozzle flow is illustrated 
by the expansion of a hydrocarbon mixture through a rocket engine. The configura- 
tion of a rocket nozzle is given in Fig. 17.19. Here, for the time-marching numerical 
solution two grids are used along the nozzle axis: a fine grid of closely spaced points 
through the subsonic section and slightly downstream of the throat, and a coarse grid 
of widely spaced points further downstream. Since most of the nonequilibrium 
behavior and the fastest reactions are occurring in the throat region, a fine grid is cho- 
sen here to maintain accuracy. In contrast, far downstream in the cooler supersonic 
region, the reactions are slower, the chemical composition is tending to freeze, and 
the grid spacing can be larger. (Parenthetically, we note that, for any of the finite- 
difference solutions discussed in this book, the grid spacings do not have to be con- 
stant. Indeed, the concept of adaptive grids, i.e., putting grid points only where you 
want them as dictated by the gradients in the flow, is a current state-of-the-art re- 
search problem of computational fluid dynamics.) 

In Fig. 17.19, the reservoir conditions are formed by the equilibrium combustion 
of N2O4, N2H4, and unsymmetrical dimethyl hydrazine, with an oxydizer-to-fuel 
ratio of 2.25 and a chamber pressure of 4 atm. Results for the subsequent nonequi- 
librium expansion are shown in Figs. 17.20 through 17.23. In Fig. 17.20, the tran- 
sient variation of the hydrogen atom mass fraction through the nozzle is shown. For 

Figure 17.19 1 Schematic representation of the rocket engine no~zle 
and grid-point system used by Vamos and Anderson, Ref. 80. 
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Figure 17.20 1 Transient and final steady-state distributions of the hydrogen 
atom mole fraction through a rocket nozzle; nonequilibrium flow. (After 
Vamos and Anderson, Ref. 80.) 

0 

convenience, the initial distribution is assumed to be completely frozen from the 
reservoir (the dashed horizontal line). Several intermediate distributions obtained 
during the time-marching calculations are shown, with the final steady state being 
achieved at a dimensionless time of 1.741. Note that, if the flow were in local chem- 
ical equilibrium, XH would decrease continuously as T decreases, as shown in 
Fig. 17.20. In contrast, however, due to the complexities of the H-C-0-N chemical 
kinetic mechanism, XH actually increases with distance along the nozzle. Here is an- 
other example (the first was given in Sec. 17.10) where a nonequilibrium variable 
falls outside the bounds of equilibrium and frozen flows. The variation of static tem- 
perature is given in Fig. 17.21 ; note that for nonequilibrium flow the temperature dis- 
tribution is lower than the equilibrium value. This is because the nonequilibrium flow 
tends to freeze some of the dissociated products, hence locking up some of the chem- 
ical zero-point energy which would otherwise be converted to random molecular 
translational energy. The steady-state temperature distribution in Fig. 17.21 (at t' = 
1.741) compares favorably with the steady-flow analysis of Sarli et al. (see Ref. 79). 
In Fig. 17.22, the steady-state nonequilibrium distributions of various chemical 
species are given, and are compared with their equilibrium values. (Note that incon- 
sistent units are used for the concentrations.) Clearly, a substantial degree of nonequi- 
librium exists in the nozzle expansion. A practical consequence of this nonequilibrium 

1 I I I 1 I 

5 4 3 2 1 2 3 4 

Area ratio, AIA* 
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6000 
-Time-dependent analysis 

Sarli, Burwell, Zupnik 
Lz: . . Steady-state kinetic 
0 *** .  . , . analysis (Ref. 79) 

I' = 0 6833 
t '=  1.741 

Area ratio, AIA* 

Figure 17.21 1 Temperature distributions for the nonequilibrium flow 
through a rocket nozzle. (After Vamos and Anderson. Ref. 80.) 

I I 
1 0  20 

Area ratio (AIA *) 
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1: I 
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- 1 '  = 1.741 Time- 
dependent analysis 

Sarli, Hurwell, Zupnik 
Steady-state kinetic 
analysis (Ref. 79) 

Figure 17.22 1 Molecular and atomic species concentration profiles for the nonequilibrium flow through a rocket 
nozzle. (After Vamos and Anderson, Ref. 80.) 
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. Sarli, Bunvell, Zupnik 
steady-state kinetic analysis (Ref. 79) 

- Timedependent analysis 

. . . . . . . Equilibrium 

Area ratio (AJA*)  

Figure 17.23 1 Spatial variation of the vacuum specific impulse; 
comparison of equilibrium and nonequilibrium results. 
(After Vamos and Anderson, Ref. 80.) 

flow is reflected in Fig. 17.23, which gives the variation of local specific impulse 
through the nozzle. The specific impulse (pounds of thrust per pound per second of 
mass flow) of the actual engine is given by the local value at the nozzle exit. Clearly, 
nonequilibrium flow throughout the nozzle expansion reduces the thrust and effi- 
ciency in comparison to equilibrium flow. See Ref. 80 for more details. 

As a final point concerning nonequilibrium nozzle flows, note that any finite-rate 
phenomena are irreversible. Hence, an adiabatic, inviscid nonequilibrium nozzle 
flow is nonisentropic. Because the entropy of a fluid element increases as it moves 
through the nozzle, a simple analysis shows that the local velocity at the nozzle throat 
is not sonic. Indeed, in a nonequilibrium flow, the speed of sound itself is not unique, 
and depends on the frequency of the sound wave. However, if either the frozen 
or equilibrium speeds of sound (see Sec. 17.5) are used to define the frozen or equi- 
librium Mach numbers at the nozzle throat, both Mach numbers will be less than 
unity. Sonic flow in a nonequilibrium nozzle expansion occurs slightly downstream 
of the throat. 

17.12 1 SUMMARY 
The analysis of high-temperature flows is an important part of the modem applica- 
tion of compressible flow. This is why the principles behind the high-temperature 
thermodynamic properties of a gas were discussed at length in Chap. 16, and were 
applied for the analysis of some basic flows in the present chapter. Shock waves and 
nozzle flows are classic problems in the study of compressible flow; moreover, 
they occur so frequently in practice that such studies are of immense practical use. 



Problems 

Consequently, these basic flows were chosen in this chapter to illustrate the high- 
temperature effects of vibrational excitation and chemical reactions. However, the 
trends and physical results discussed here are characteristic of most high-temperature 
flows of interest. Therefore, a careful study of this chapter will prepare the reader for 
virtually any foray into more complex flows where high-temperature phenomena are 
of importance. 

PROBLEMS 
Note: Universal gas constant .f l = 8314 J/(kg . mol . K),  V N ?  = 7.06 x 101'/5, k = 
1.38 x lop2' JIK, h = 6.625 x lop'" s,  , /iN, = 28. 1 atm = 1.01 x 105NlmL. 

17.1 Consider a normal shock wave in pure N2. The upstream pressure. 
temperature, and velocity are 0. I atm, 300 K, and 3500 mls, respectively. 
Calculate T2, p2, and u2 behind the shock assuming local thermodynamic 
equilibrium but no chemical reactions. Ignore the electronic energy. 

17.2 The total temperature T, is defined in Chap. 3 as that temperature that would 
exist at a point in the flow if the fluid elements were brought to rest 
adiabatically at that point. For each of these chemically reacting flows, is T,, 
constant or variable throughout the flow? Explain your answer. 

a. Equilibrium flow across a shock wave 

b. Nonequilibrium flow across a shock wave 

c. Inviscid, adiabatic, equilibrium flow through nozzles 

d. Inviscid, adiabatic nonequilibrium flow through nozzles 
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Table A. l  I Continued 



Appendix A 

Table A.l  I Continued 
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Table A.l I Continued 
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Table A.l  I Cot~tinued 
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Table A.2 I Normal shock properties 
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Table A.2 I Continued 
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Table A.2 I Continued 



Table A.2 I Corztin~lerl 
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Table A.3 I One-dimensional flow with heat addition 



Table A.3 I Continued 
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Table A.3 I Continued 



Table A.3 I Corltirzurtl 
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Table A.3 I Continued 
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Table A.4 I One-dimensional flow with friction 
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Table A.4 I Continued 
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Table A.4 I Cor~tirzued 
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Table A.4 I Continued 
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Table A.4 I Continued 
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Table A S  I Prandtl-Meyer function and Mach angle 
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A P P E N D I X  

An Illustration 
Computational 

and Exercise of 
Fluid Dynamics 

The purpose of this appendix is to give the interested reader an opportunity for a 
hands-on experience in computational fluid dynamics (CFD). In various chapters of 
this book, computational fluid dynamics is discussed in the context of modern com- 
pressible flow. It is not our purpose, however, to present CFD in any detail; rather, 
this book emphasizes the physical aspects of compressible flow. Indeed, computation 
fluid dynamics is a subject by itself, and the reader is encouraged to examine the 
number of texts devoted exclusively to CFD. 

On the other hand, this appendix offers the opportunity to sample the essence of 
CFD through an example using MacCormack's time-marching explicit finite- 
difference technique-by far the most "student-friendly" CFD technique that can be 
found. The application is the subsonic-supersonic quasi-one-dimensional isentropic 
flow through a convergent-divergent nozzle-the CFD application discussed in 
Sec. 12.1. In this appendix we go into the details that produced the results given 
in Sec. 12.1. This example is the simplest possible exercise that reflects the essence 
of CFD, yet you will find its explanation requires a rather lengthy discussion. Any 
other example of CFD goes well beyond the scope of this book. 

Finally, for a very basic introduction to CFD, you are encouraged to examine 
the author's book Computational Fluid Dynamics: The Basics with Applications, 
McGraw-Hill, 1995, which contains a number of worked examples in elementary 
CFD, including the one described in this appendix. What follows is excerpted from 
Chap. 7 of that book. This is the author's best attempt to provide you with a hands-on 
experience in CFD. The appendix ends with a FORTRAN code listing that the author 
wrote for this particular application. 

THE EQUATIONS 
Return to Sec. 12.1 and review the basic governing equations for unsteady quasi-one- 
dimensional flow, namely, Eqs. (12.5), (12.6), and (12.7)-the continuity, momentum, 



The Eauat~ons 

and energy equations, respectively. Assuming a calorically perfect gas, let us replace 
the internal energy in Eq. ( 1  2.7) with temperature. For a calorically perfect gas 

e =c,T 

Hence, Eq. ( 1  2.7) becomes 

As an interim summary, our continuity, momentum, and energy equations for 
unsteady, quasi-one-dimensional flow are given by Eqs. (12.5), (12.6), and (B. 1 ), re- 
spectively. Take the time to look at these equations; you see three equations with four 
unknown variables p, u ,  p,  and T .  The pressure can be eliminated from these equa- 
tions by using the equation of state 

along with its derivative 

With this, we expand Eq. (12.5) and rewrite Eqs. (12.6) and (B.l) ,  respectively. as 

Continuity: 

At this stage, we could readily proceed to set up our numerical solution of 
Eqs. (B.4) to (B.6). Note that these are written in terms of dimensional variables. 
This is fine, and many CFD solutions are carried out directly in terms of such di- 
mensional variables. Indeed, this has an added engineering advantage because it 
gives you a feeling for the magnitudes of the real physical quantities as the solution 
progresses. However, for nozzle flows, the flowfield variables are frequently ex- 
pressed in terms of nondimensional variables, where the flow variables are refer- 
enced to their reservoir values. The nondimensional variables p/p,, p/p,,, and TIT,, 
vary between 0 and 1, which is an "aesthetic" advantage when presenting the results. 
Because fluid dynamicists dealing with nozzle flows so frequently use these nondi- 
mensional terms, we will follow suit here. (A number of CFD practitioners prefer to 
always deal with nondimensional variables, whereas others prefer dimensional vari- 
ables; as far as the numerics are concerned, there should be no real difference, and 
the choice is really a matter of your personal preference.) Therefore, we define the 
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nondimensional temperature and density, respectively, as 

where (for the time being) the prime denotes a dimensionless variable. Moreover, let- 
ting L denote the length of the nozzle, we define a dimensionless length as 

Denoting the speed of sound in the reservoir as a,, where 

we define a dimensionless velocity as 

Also, the quantity L/a, has the dimension of time, and we define a dimensionless 
time as 

Finally, we ratio the local area A to the sonic throat area A* and define a dimension- 
less area as 

Returning to Eq. (B.4) and introducing the nondimensional variables, we have 

Note that A' is a function of x' only; it is not a function of time (the nozzle geometry 
is fixed, invariant with time). Hence, in Eq. (B.7) the time derivative can be written 

With this, Eq. (B.7) becomes 

a v' , a(ln A') apl 
Continuity: -,,I7 - pfv  - - V' - 

a . ~  axf ax1 



The Equations 

Returning to Eq. (B.5) and introducing the nondimensional variables, we have 

In Eq. (B.9), note that 

KT, - yRT0 a: 1 
-- - - - 
4 Y 4  Y 4  Y 

Hence, Eq. (B.9) becomes 

(B. 10) 

Returning to Eq. (B.6) and introducing the nondimensional variables, we have 

In Eq. (B. 1 I ) ,  the factor Rlc,. is given by 

R 
- - - 

R 
= y - l  

c,, R A Y - 1 )  
Hence, Eq. (B. I I )  becomes 

That is it! After what may seem like an interminable manipulation of the gov- 
erning equations, we have finally set up that particular form of the equations that will 
be most appropriate as well as convenient for the time-marching solution of quasi-one- 
dimensional nozzle flow, namely, Eqs. (B.8), (B. lo), and (B. 12). 

The  Finite-Difference Equations 

We now proceed to the setting up of the finite-difference expressions using 
MacCormack's explicit technique for the numerical solution of Eqs. (B.8). (B.10), 
and (B.12). To implement a finite-difference solution, we divide the x axis along the 
nozzle into a number of discrete grid points, as shown in Fig. B. 1. (Recall that in our 
quasi-one-dimensional nozzle assumption, the flow variables across the nozzle cross 
section at any particular grid point, say point i ,  are uniform.) In Fig. B. I .  the first grid 
point, labeled point I ,  is assumed to be in the reservoir. The points are evenly dis- 
tributed along the x axis, with Ax denoting the spacing between grid points. The 
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Figure B.l I Grid point distribution along the nozzle. 

last point, namely, that at the nozzle exit, is denoted by N; we have a total number 
of N grid points distributed along the axis. Point i is simply an arbitrary grid point, 
with points i - 1 and i + 1 as the adjacent points. Recall from Sec. 12.1 that 
MacCormack's technique is a predictor-corrector method. In the time-marching ap- 
proach, remember that we know the flowfield variables at time t ,  and we use the 
difference equations to solve explicitly for the variables at time t + At.  

First, consider the predictor step. Following the discussion in Sec. 12.1, we set 
up the spatial derivatives as forward differences. Also, to reduce the complexity of 
the notation, we will drop the use of the prime to denote a dimensionless variable. In 
what follows, all variables are the nondimensional variables, denoted earlier by the 
prime notation. From Eq. (B.8) we have 

From Eq. (B. lo), we have 

From Eq. (B. 12), we have 

(B. 
We obtain predicted values of p ,  V, and T, denoted by barred quantities, from 
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In Eqs. (B. 16) to (B. 181, p:, V:, and q' are known values at time t .  Numbers for the 
time derivatives in Eqs. (B. 16) to (B. 18) are supplied directly by Eqs. (B. 13) to 

(B. 15) 
Moving to the corrector step, we return to Eqs. (B.8), (B. lo), and (B. 12) and re- 

place the spatial derivatives with rearward differences. using the predicted (barred) 
quantities. We have from Eq. (B.8) 

- /+At  - - / + A /  
- ,,,+A, h Pi- I 

Ax 

From Eq. (B. lo), we have 

From Eq. (B. 12), we have 

The average time derivatives are given by 

From From 
Eq. (8.13)  Eq. (B 19) 

From From 
Eq. (8.14) Eq. ( B  201 

(B. 19) 

(B.20) 

(B.21) 

From From 
bq. (B.15) Eq. (8 .21)  
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Finally, we have for the corrected values of the flowfield variables at time t + At 

Keep in mind that all the variables in Eqs. (B.13) to (B.27) are the nondimensional 
values. Also, Eqs. (B.13) to (B.27) constitute the finite-difference expressions of the 
governing equations in a form that pertains to MacCormack's technique. 

Calculation of Time Step 

We now proceed to the setting up of other details necessary for the numerical solu- 
tion of the quasi-one-dimensional nozzle flow problem. First, we ask the question: 
What about the magnitude of At? The governing system of equations, Eqs. (B.4) to 
(B.6), is hyperbolic with respect to time. A stability constraint exists on this system, 
namely, 

where C is the Courant number; the simple stability analysis of a linear hyperbolic 
equation gives the result that C 5 1 for an explicit numerical solution to be stable. 
The present application to subsonic-supersonic isentropic nozzle flow is governed by 
nonlinear partial differential equations, namely, Eqs. (B.8), (B.10), and (B.12). In 
this case, the exact stability criterion for a linear equation, namely, that C 5 1, can 
only be viewed as general guidance for our present nonlinear problem. However, it 
turns out to be quite good guidance, as we shall see. Equation (B.28) is the Courant- 
Friedrichs-Lowry (CFL) criterion for a one-dimensional flow, where V is the local 
flow velocity at a point in the flow and a is the local speed of sound. Equation (B.28), 
along with C 5 1, simply states that At must be less than, or at best equal to, the time 
it takes a sound wave to move from one grid point to the next. Note that t ,  x, a ,  and 
V are nondimensionalized. The nondimensional form of Eq. (B.28) is exactly the 
same form as the dimensional case. (Prove this to yourself.) Hence, we will hereafter 
treat the variables in Eq. (B.28) as our nondimensional variables defined earlier. That 
is, in Eq. (B.28), At is the increment in nondimensional time and Ax is the increment 
in nondimensional space; At and Ax in Eq. (B.28) are precisely the same as appear 
in the nondimensional equations (B.13) to (B.27). Examining Eq. (B.28) more care- 
fully, we note that, although Ax is the same throughout the flow, both V and a are 
variables. Hence, at a given grid point at a given time step, Eq. (B.28) is written as 



At an adjacent grid point, we have from Eq. (B.28) 

The Equat~ons 

Clearly, (At): and (At):+l obtained tiom Eqs. (B.29) and (B.30), respectively are, in 
general, different values. Hence, in the implementation of the time-marching solu- 
tion, we have two choices: 

1. In utilizing Eqs. (B.16) to (B.18) and (B.25) to (B.27), we can, at each grid 
point i ,  employ the loccrl values of (At): determined from Eq. (B.29). In this 
fashion, the flowtield variables at each grid point in Fig. B. 1 will be advanced 
in time according to their own, local time step. Hence, the resulting flowfield 
at time r + At will be in a type of artificiul "time bvarp, " with the flowfield 
variables at a given grid point corresponding to some nonphysical time 
different from that of the variables at an adjacent grid point. Clearly, such a 
local time-stepping approach does not realistically follow the actual, physical 
transients in the flow and hence cannot be used for an accurate solution of the 
unsteady flow. However, if the final steady-state flowfield in the limit of large 
time is the only desired result, then the intermediate variation of the flowfield 
variables with time is irrelevant. Indeed, if such is the case, the locd  
time-stepping will frequently lead tofaster convergence to the steady state. 
This is why some practitioners use the local time-stepping approach. However, 
there is always a philosophical question that arises here, namely, does the local 
time-stepping method always lead to the correct steady state? Although the 
answer is usually yes, there is still some reason for a small feeling of 
discomfort in this regard. 

2. The other choice is to calculate (At): at all the grid points, i = 1 to i = N ,  
and then choose the minimum value for use in Eqs. (B. 16) to (B. 18) and 
(B.12) to (B.27). That is, 

At = m i n i m u m ( ~ t { ,  At:. . . . . At:, . . . , AIL) (B.31) 

The resulting At obtained from Eq. (B.3 1 )  is then used in Eqs. (B. 16) to (B.  18) 
and (B.25) to (B.27). In this fashion, the flowfield variables at all the grid 
points at time t + At all correspond to the same physical time. Hence, the 
time-marching solution is following the actual unsteady flow variations that 
would exist in nature; i.e., the solution gives a time-accurate solution of the 
actual transient flowtield, consistent with the unsteady continuity, momentum, 
and energy equations. This consistent time-marching is the approach we will 
use in the present example. Although it may require more time steps to 
approach the steady state in comparison to the "local" time stepping described 
earlier, we can feel comfortable that the consistent time-marching approach is 
giving us the physically meaningful transient variations-which frequently are 
of intrinsic value by themselves. Thus, in our subsequent calculations, we will 
use Eq. (B.31) to determine the value of At. 
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Boundary Conditions 

Another aspect of the numerical solution is that of boundary conditions-an all- 
important aspect, because without the physically proper implementation of boundary 
conditions and their numerically proper representation, we have no hope whatsoever 
in obtaining a proper numerical solution to our flow problem. Returning to Fig. B. 1, 
we note that grid points 1 and N represent the two boundary points on the x axis. 
Point 1 is essentially in the reservoir; it represents an in$ow boundary, with flow 
coming from the reservoir and entering the nozzle. In contrast, point N is an outJEow 
boundary, with flow leaving the nozzle at the nozzle exit. Moreover, the flow veloc- 
ity at point 1 is a very low, subsonic value. (The flow velocity at point 1, which cor- 
responds to a finite area ratio AI/A*, cannot be precisely zero; if it were, there would 
be no mass flow entering the nozzle. Hence, point 1 does not correspond exactly to 
the reservoir, where by definition the flow velocity is zero. That is, the area for the 
reservoir is theoretically infinite, and we are clearly starting our own calculation at 
point 1 where the cross-sectional area is finite.) Hence, not only is point 1 an injow 
boundary, it is a subsonic inflow boundary. Question: Which flow quantities should 
be specified at this subsonic inflow boundary and which should be calculated as part 
of the solution (i.e., allowed to "float" as a function of time)? A formal answer can be 
obtained by using the method of characteristics for an unsteady, one-dimensional 
flow, as introduced in Chap. 7. We did not develop the method of characteristics in 
Chap. 7 to the extent necessary to precisely study this question about the boundary 
conditions; indeed, such a matter is beyond the scope of this book. However, we will 
mention the result of such a study, which you will find to be physically acceptable. 
Unsteady, inviscid flow is governed by hyperbolic equations, and therefore for one- 
dimensional unsteady flow there exist two real characteristic lines through any point 
in the xt  plane. Physically, these two characteristics represent infinitely weak Mach 
waves that are propagating upstream and downstream, respectively. Both Mach 
waves are traveling at the speed of sound a .  Now turn to Fig. B.2, which shows 
our convergent-divergent nozzle (Fig. B.2a) with an xt  diagram sketched below it 
(Fig. B.2b). Concentrate on grid point 1 in the xt plane in Fig. B.2b. At point 1, the 
local flow velocity is subsonic, Vl < a , .  Hence, the left-running characteristic at 
point 1 travels upstream, to the left in Fig. B.2; i.e., the left-running Mach wave, 
which is traveling toward the left (relative to a moving fluid element) at the speed of 
sound easily works its way upstream against the low-velocity subsonic flow, which 
is slowly moving from left to right. Hence, in Fig. B.2b, we show the left-running 
characteristic running to the left with a combined speed a, - Vl (relative to the fixed 
nozzle in Fig. B.2a). Since the domain for the flowfield to be calculated is contained 
between grid points 1 and N ,  then at point 1 we see that the left-running characteris- 
tic is propagating out of the domain; it is propagating to the left, away from the do- 
main. In contrast, the right-running characteristic, which is a Mach wave propagat- 
ing to the right at the speed of sound relative to a fluid element, is clearly moving 
toward the right in Fig. B.2b. This is for two reasons: (1) the fluid element at point 1 
is already moving toward the right, and (2) the right-running Mach wave (character- 
istic) is moving toward the right at the speed of sound relative to the fluid element. 
Hence, the right-running characteristic is propagating to the right (relative to the 
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Subsonic 't rz-l Supersonic 
outflow 

boundary 

Figure B.2 I Study of boundary conditions: subsonic inflow and supersonic outflow. 

nozzle) at a combined velocity of VI + a , .  What we see here is that the right-running 
characteristic is propagating from point 1 into the domain of the calculation. 

What does all this have to do with boundary conditions? The method of charac- 
teristics tells us that at a boundary where one characteristic propagates into the do- 
main, then the value of one dependent flowfield variable must be specjfied at that 
boundary, and if one characteristic line propagates out of the domain, then the value 
of another dependent flowfield variable must be allowed topoar at the boundary; i.e., 
it must be calculated in steps of time as a function of the timewise solution of the 
flowfield. Also, note that at point 1 a streamline flows into the domain, across the in- 
flow boundary. In terms of denoting what should and should not be specified at the 
boundary, the streamline direction plays the same role as the characteristic direc- 
tions; i.e., the streamline moving into the domain at point 1 stipulates that the value 
of a second flowfield variable must be specijied at the inflow boundary. Conclusion: 
At the subsonic inflow b o u n d a ~ ,  we must .stipulate the values of rrvo dependent 
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flowfield variables, whereas the value of one other variable must be allowed tojoat.  
(Please note that this discussion has been intentionally hand-waving and somewhat 
intuitive; a rigorous mathematical development is deferred for your future studies, 
beyond the scope of this book.) 

Let us apply these ideas to the outflow boundary, located at grid point N in 
Fig. B.2. As before, the left-running characteristic at point N propagates to the left at 
the speed of sound a relative to afluid element. However, because the speed of the 
fluid element itself is supersonic, the left-running characteristic is carried down- 
stream at the speed (relative to the nozzle) of VN - a ~ .  The right-running character- 
istic at point N propagates to the right at the speed of sound a relative to the fluid 
element, and thus it is swept downstream at the speed (relative to the nozzle) of 
VN + a ~ .  Hence, at the supersonic outflow boundary, we have both characteristics 
propagating out of the domain; so does the streamline at point N. Therefore, there are 
no flowfield variables that require their values to be stipulated at the supersonic out- 
flow boundary; all variables must be allowed tofloat at this boundary. 

This discussion details how the inflow and outflow boundary conditions are to 
be handled on an analytical basis. The numerical implementation of this discussion 
is carried out as follows. 

Subsonic Inflow Boundary (Point 1). Here, we must allow one variable to float; 
we choose the velocity Vl, because on a physical basis we know the mass flow 
through the nozzle must be allowed to adjust to the proper steady state, and allowing 
Vl to float makes the most sense as part of this adjustment. The value of Vl changes 
with time and is calculated from information provided by the flowfield solution over 
the internal points. (The internal points are those not on a boundary, i.e., points 2 
through N - 1 in Fig. B.l). We use linear extrapolation from points 2 and 3 to cal- 
culate V l .  This is illustrated in Fig. B.3. Here, the slope of the linear extrapolation 
line is determined from points 2 and 3 as 

v3 - v2 
Slope = - 

Ax 

Figure B.3 I Sketch for linear extrapolation. 



The Equations 

Using this slope to find V1 by linear extrapolation, we have 

All other flowfield variables are specified. Since point 1 is viewed as essentially the 
reservoir, we stipulate the density and temperature at point 1 to be their respective 
stagnation values, p, and T,,, respectively. These are heldfxed, independent of time. 
Hence. in terms of the nondiinensiond variables, we have 

Supersonic Outflow Boundary (Point N). Here, we must allow all flowfield vari- 
ables to float. We again choose to use linear extrapolation based on the flowfield val- 
ues at the internal points. Specifically, we have, for the nondimensiond variables, 

Nozzle Shape and Initial Conditions 

The nozzle shape, A  = A(x ) ,  is specified and held fixed, independent of time. For 
the case illustrated in this appendix, we choose a parabolic area distribution given by 

Note that x = 1.5 is the throat of the nozzle, that the convergent section occurs for 
.x < 1.5, and that the divergent section occurs for x > 1.5. This nozzle shape is 
drawn to scale in Fig. B.4. 

To start the time-marching calculations, we must stipulate initial conditions for 
p, T, and V as a function of x;  that is, we must set up values of p, T, and V at time 
t = 0. In theory, these initial conditions can be purely arbitrary. In practice, there are 
two reasons why you want to choose the initial conditions intelligently: 

1. The closer the initial conditions are to the final steady-state answer, the faster 
the time-marching procedure will converge, and hence the shorter will be the 
computer execution time. 

2. If the initial conditions are too far away from reality, the initial timewise 
gradients at early time steps can become huge; i.e., the rime derivatives 
themselves are initially very large. For a given time step At  and a glven 
spatial resolution Ax ,  it has been the author's experience that inord~nately 
large gradients during the early part of the time-stepping procedure can cauae 
the program to go unstable. In a sense, you can visualize the behavior of a 
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I I I I I I I I I I 
I I 

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 
Nondimensional distance along nozzle 

Figure B.4 I Shape of the nozzle used for the present 
calculations. This geometric picture is not unique; for 
a calorically perfect gas, what is germane is the area 
ratio distribution along the nozzle. Hence, assuming a 
two-dimensional nozzle, the ordinates of the shape 
shown here can be ratioed by any constant factor, 
and the nozzle solution would be the same. 

time-marching solution as a stretched rubber band. At early times, the rubber 
band is highly stretched, thus providing a strong potential to push the flowfield 
rapidly toward the steady-state solution. As time progresses, the flowfield gets 
closer to the steady-state solution, and the rubber band progressively relaxes, 
hence slowing down the rate of approach [i.e., at larger times, the values of the 
time derivatives calculated from Eqs. (B.22) to (B.24) become progressively 
smaller]. At the beginning of the calculation, it is wise not to pick initial 
conditions which are so far off that the rubber band is "stretched too far," and 
may even break. 

Therefore, in your choice of initial conditions, you are encouraged to use any 
knowledge you may have about a given problem in order to intelligently pick some 
initial conditions. For example, in the present problem, we know that p and T de- 
crease and V increases as the flow expands through the nozzle. Hence, we choose 
initial conditions that qualitatively behave in the same fashion. For simplicity, let us 
assume linear variations of the flowfield variables, as a function of x. For the present 
case, we assume these values at time t = 0. 

p = 1 - 0.3146~ (B.36~) 

T = 1 - 0.2314~ initial conditions at t = 0 (B.36b) 

V = ( 0 . 1 + 1 . 0 9 x ) ~ " ~  (B.36~) 
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INTERMEDIATE NUMERICAL RESULTS: 
THE FIRST FEW STEPS 

In this section, we give a few numerical results that reflect the first stages of the cal- 
culation. This is to give you a more solid impression of what is going on and to pro- 
vide some intermediate results for you to compare with when you write and run your 
own computer solution to this problem. 

The first step is to feed the nozzle shape and the initial conditions into the pro- 
gram. These are given by Eqs. (B.35) and (B.36); the resulting numbers are tabulated 
in Table B. 1. The values of p ,  V, and 7' given in this table are for t = 0. 

The next step is to put these initial conditions into Eqs. (B. 13) to (B. 15) to initi- 
ate calculations pertaining to the predictor step. For purposes of illustration, let us 
return to the sketch shown in Fig. B.1 and focus on the calculations associated with 

Table B.l I Nozzle shape and initial conditions 
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grid point i .  We will choose i = 16, which is the grid point at the throat of the nozzle 
drawn in Fig. B.4. From the initial data given in Table B. 1, we have 

Substitute these values into Eq. (B.13). 

= p G q  
Substitute these values into Eq. (B.14). 

Substitute these values into Eq. (B.15). 

Please note: The numbers shown in the boxes here are the precise numbers, rounded 
to three significant figures, that came out of the author's Macintosh computer. If you 
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choose to run through these calculations with your hand calculator using all these 
entries, there will be slight differences because the numbers you feed into the 
calculator are already rounded to three significant figures, and hence the subsequent 
arithmetic operations on your calculator will lead to slight errors compared to the 
computer results. That is, your hand-calculator results may not always give you 
precisely the numbers you will find in the boxes, but they will certainly be close 
enough to check the results. 

The next step is to calculate the predicted values (the "barred" quantities) from 
Eqs. (B.16) to (B.18). To do this, we first note that At is calculated from Eq. (H.3 l ) ,  
which picks the minimum value of At; from all those calculated from Eq. (B.29) 
evaluated for all internal points i = 2, 3 ,  . . . , 30. We do not have the space to show 
all these calculations here. As a sample calculation, let us calculate ( ~ t ) : , "  from 
Eq. (B.29). At present, we will assume a Courant number equal to 0.5; that is, 
C = 0.5. Also, in nondimensional terms, the speed of sound is given by 

where in Eq. (B.37) both u and T are the nondimensiorlal values ( a  denotes the local 
speed of sound divided by uO) .  Derive Eq. (B.37) for yourself. Thus, from Eq. (B.29), 
we have 

This type of calculation is made at all the interior grid points. and the minimum value 
is chosen. The resulting minimum value is 

With this, we can calculate j, V ,  and ?'. From Eq. (B. 16), noting that t = 0 + A t  = 

At,  

From Eq. (B. 17), 

From Eq. (B. 18), 
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At this stage, we note that these calculations are carried out over all the internal 
grid points i = 2 to 30. The calculations are too repetitive to include here. Simply 
note that when the predictor step is completed, we have p ,  V ,  and T at all the inter- 
nal grid points i = 2 to 30. This includes, of course, ,5iyA', v:rAf, and yFAt. 
Focusing again on grid point 16, we now insert these barred quantities at grid points 
15 and 16 into Eqs. (B. 19) to (B.21). This is the beginning of the corrector step. From 
Eq. (B. 19) we have 

From Eq. (B.20) we have 

From Eq. (B.21) we have 

With these values, we form the average time derivatives using Eqs. (B.22) to (B.24). 
From Eq. (B.22), we have at grid point i = 16, 

From Eq. (B.23), we have at grid point i = 16, 

From Eq. (B.24), we have at grid point i = 16, 

We now complete the corrector step by using Eqs. (B.25) to (B.27). From Eq. (B.25), 
we have at i = 16, 

From Eq. (B.26), we have at i = 16, 
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From Eq. (B.27), we have at i = 16, 

T;;"' = 0.653 + 0 I76(0.02Ol) = 

Defining a nondimensional pressure as the local static pressure divided by the reser- 
voir pressure p , ,  the equation of state is given by 

where p, p ,  and T are nondimensional values. Thus, at grid point i = 16, we have 

p{nAi = pi,Ar~,','Ai = 0.531 (0.656) = 

This now completes thr corrector step for grid point i = 16. When the above 
corrector-step calculations are carried out for all grid points from i = 2 to 30, then 
we have completed the corrector step for all the internal grid points. 

It remains to calculate the flowfield variables at the boundary points. At the sub- 
sonic inflow boundary (i = l), V I  is calculated by linear extrapolation from grid 
points 2 and 3. At the end of the corrector step, from a calculation identical to that 
given above, the values of V2 and V3 at time t = At  are V2 = 0.212 and V3 = 0.312. 
Thus, from Eq. (B.32), we have 

At the supersonic outflow boundary (i = 3 1) all the flowfield variables are calculated 
by linear extrapolation from Eqs. (B .34~)  to (B.34~).  At the end of the corrector 
step, from a calculation identical to that given above, Vz9 = 1.884, Via = 1.890, 
p29 = 0.125, p30 = 0.095, T29 = 0.354, and T30 = 0.332. When these values are in- 
serted into Eqs. ( B . 3 4 ~ )  to (B.34c), we have 

With this, we have completed the calculation of all the flowfield variables at all 
the grid points after the first time step, i.e., at time t = At.  A tabulation of these vari- 
ables is given in Table B.2. Note that the Mach number is included in this tabulation. 
In terms of the nondimensional velocity and temperature, the Mach number (which 
is already a dimensionless parameter defined as the local velocity divided by the 
local speed of sound) is given by 

Examine Table B.2 closely. By reading across the line labeled I = 16, you will find 
the familiar numbers that we have generated for grid point i = 16 in this discussion. 
Take the time to make this comparison. The entries for all other internal grid points 
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Table B.2 I Flowfield variables after the first time step 

are calculated in a like manner. Also note the values at the boundary points, labeled 
I = 1 and I = 3 1 in Table B.2. You will find the numbers to be the same as discussed 
here. 

FINAL NUMERICAL RESULTS: 
THE STEADY-STATE SOLUTION 
Compare the flowfield results obtained after one time step (Table B.2) with the same 
quantities at the previous time (in this case the initial conditions given in Table B. 1). 
Comparing these two tables, we see that the flowfield variables have changed. For 
example, the nondimensional density at the throat (where A = 1) has changed from 
0.528 to 0.531, a 0.57 percent change over one time step. This is the natural behav- 
ior of a time-marching solution-the flowfield variables change from one time step 
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to the next. However, in the approach toward the steady-state solution, at larger val- 
ues of time (after a large number of time steps), the changes in the flowfield variables 
from one time step to the next become smaller and approach zero in the limit of large 
time. At this stage, the steady state (for all practical purposes) has been achieved, and 
the calculation can be stopped. This termination of the calculation can be done auto- 
matically by the computer program itself by having a test in the program to sense 
when the changes in the flowfield variables become smaller than some prescribed 
value (prescribed by you, depending o n  your desired accuracy of the final "steady- 
state" solution). Another option, and that preferred by the present author, is to simply 
stop the calculation after a prescribed number of time steps, look at the results. and 
see if they have approached the stage where the flowfield variables are not materially 
changing any more. If such is not the case, simply resume the calculations, and carry 
them out for the requisite number of time steps until you do see that the steady-state 
results have been reached. 

What patterns do the timewise variations of the flowfield variables take? Some 
feeling for the answer is provided by Fig. B.5, which shows the variation of p, 7'. p, 
and M at the nozzle throat plotted versus the number of time steps. The abscissa 
starts at zero, which represents the initial conditions, and ends at time step 1000. 
Hence, the abscissa is essentially a time axis, with time increasing to the right. Note 
that the largest changes take place at early times, after which the final, steady-state 
value is approached almost asymptotically. Here is the "rubber band effect" men- 
tioned previously; at early times the rubber band is "stretched" tightly, and therefore 
the flowfield variables are driven by a stronger potential and hence change rapidly. At 
later times. as the steady state is approached, the rubber band is less stretched; it be- 
comes more "relaxed," and the changes become much smaller with time. The dashed 
lines to the right of the curves shown in Fig. B.5 represent the exact, analytical val- 
ues as obtained from the equations discussed in Chap. 5 .  Note that the numerical 
time-marching procedure converges to the proper theoretical steady-state answer. We 
also note that no artificial viscosity has been explicitly added for these calculations; 
it is not needed. 

It is interesting to examine the variation of the time derivatives as a function of 
time itself, or equivalently as a function of the number of time steps. Once again fo- 
cusing on the nozzle throat (at grid point i = 16), Fig. B.6 gives the variation of the 
time derivatives of nondimensional density and velocity as a function of the number 
of time steps. These are the avemge time derivatives calculated from Eqs. (B.22) 
and (B.23), respectively. The absolute value of these time derivatives is shown in 
Fig. B.6. From these results, note two important aspects: 

1. At early times, the time derivatives are large, and they oscillate in value. These 
oscillations are associated with various unsteady compression and expansion 
waves that propagate through the nozzle during the transient process. (See 
Chap. 7.) 

2. At later times, the time derivatives rapidly grow small, changing by six orders 
of magnitude over a span of 1000 time steps. This is, of course, what we want 
to see happen. In the theoretical limit of the steady state (which is achieved at 
infinite time), the time derivatives should go to zero. However, numerically 
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Exact --- 

I I I 
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Number of time steps 

Figure B.5 I Timewise variations of the density, temperature, pressure, and 
Mach number at the nozzle throat (at grid point i = 15, where A = 1) .  
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Figure B.6 I Timewise variations of the absolute values of the time 
derivatives of nondimensional density and velocity at the nozzle throat 
(at grid point i = 16). 

this will never happen over a finite number of time steps. In fact, the results 
shown in Fig. B.6 indicate that the values of the time derivatives plateau after 
1200 time steps. This seems to be a characteristic of MacCormack's technique. 
However, the values of the time derivatives at these plateaus are so small that, 
for all practical purposes, the numerical solution has arrived at the steady-state 
solution. Indeed, in terms of the values of the flowfield variables themselves. 
the results of Fig. B.5 indicate that the steady state is realistically achieved 
after 500 time steps, during which the time derivatives in Fig. B.6 have 
decreased only by two orders of magnitude. 

Return to Eqs. (B.8) and (B.lO) for a moment; we might visualize that what is being 
plotted in Fig. B.6 are the numerical values of the right-hand side of these equations. 
As time progresses and as the steady state is approached. the right-hand side of these 
equations should approach zero. Since the numerical values of the right-hand side 
are not precisely zero, they are called rt?siduals. This is why the ordinate in Fig. B.6 
is labeled as the residual. When CFD experts are comparing the relative merits of two 
or more different algorithms for a time-marching solution to the steady state, the 
magnitude of the residuals and their rate of decay are often used as figures of merit. 
That algorithm that gives the fastest decay of the residuals to the smallest value is 
usual1 y looked upon most favorably. 
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Steady-flow 
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Nondimensional distance through nozzle ( x )  

Figure B.7 I Instantaneous distributions of the nondimensional mass flow 
as a function of distance through the nozzle at six different times during 
the time-marching approach to the steady state. 

Another insight to the mechanics of the timewise variation of the flow and 
its approach to the steady state is provided by the mass flow variations shown in 
Fig. B.7. Here, the nondimensional mass flow pVA (where p, V ,  and A are the 
nondimensional values) is plotted as a function of nondimensional distance through 
the nozzle. Six different curves are shown, each for a different time during the course 
of the time-marching procedure. The dashed curve is the variation of pVA, which 
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pertains to the initial conditions, and hence it is labeled OAr. The strange-looking, dis- 
torted sinelike variation of this dashed curve is simply the product of the assumed ini- 
tial values for p and V combined with the specified parabolic variation of the nozzle 
area ratio A .  After 50 time steps, the mass flow distribution through the nozzle has 
changed considerably; this is given by the curve labeled 50Ar. After 100 time steps 
(IOOAt), the mass flow distribution has changed radically: the mass flow variation is 
simply flopping around inside the nozzle due to the transient variation of the flowfield 
variables. However, after 200 time steps (200At), the mass flow distribution is bepin- 
ning to settle down, and after 700 time steps (700At), the mass flow distribution is a 
straight, horizontal line across the graph. This says that the mass flow has converged 
to a constant, steady-state value throughout the nozzle. This agrees with our basic 
knowledge of steady-state nozzle flows. namely, that 

p VA = constant 

Moreover, it has converged to essentially the correct valrw of the steady mass flow, 
which in terms of the nondimensiond variables evaluated at the nozzle throat is 
given by 

p VA = p*JT* (at throat) (B.39) 

where p" and 7'" are the nondimensional density and temperature at the throat, and 
where M = 1 .  [Derive Eq. (B.39) yourself-it is easy.] From the analytical equa- 
tions discussed in Chap. 5, when M = 1 and y = 1.4, we have p* = 0.634 and 
T *  = 0.833. With these numbers, Eq. (B.39) yields 

pVA = constant = 0.579 

This value is given by the dark square in Fig. B.7; the mass flow result for 700Ar 
agrees reasonably well with the dark square. 

Finally, let us examine the steady-state results. From our discussion and from 
examining Fig. B.5, the steady state is, for all practical purposes, reached after about 
500 time steps. However, being very conservative, we will examine the results ob- 
tained after 1400 time steps; between 700 and 1400 time steps, there is no change in 
the results, at least to the three-decimal-place accuracy given in the tables herein. 

A feeling for the graphical accuracy of the numerically obtained steady state is 
given by Fig. B.8. Here, the steady-state nondimensional density and Mach number 
distributions through the nozzle are plotted as a function of nondimensional distance 
along the noz~le .  The numerical results, obtained after 1400 time steps, are given by 
the solid curves, and the exact analytical results are given by the circles. The analyt- 
ical results are obtained from the equations discussed in Chap. 5; they can readily be 
obtained from the tables in App. A. They can also be obtained by writing your own 
short computer program to calculate numbers from the theoretically derived equa- 
tions in Chap. 5.  In any event, the comparison shown in Fig. B.8 clearly demonstrates 
that the numerical results agree very well with the exact analytical values, certainly 
to within graphical accuracy. 

The detailed numerical results, to three decimal places, are tabulated in Table B.3. 
These are the results obtained after 1400 time steps. They are given here for you to 
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Figure B.8 I Steady-state distributions of nondimensional density 
and Mach number as a function of nondimensional distance 
through the nozzle. Comparison between the exact analytical 
values (circles) and the numerical results (solid curves). 

compare numbers from your own computer program. It is interesting to note that 
the elapsed nondimensional time, starting at zero with the initial conditions, is, 
after 1400 time steps, a value of 28.952. Since time is nondimensionalized by the 
quantity Lla,, let us assume a case where the length of the nozzle is 1 m and the 
reservoir temperature is the standard sea level value, T = 288 K. For this case, 
L/a, = (I m)/(340.2 mls) = 2.94 x s . Hence, the total real time that has 
elapsed over the 1400 time steps is (2.94 x 10-"(28.952) = 0.0851 s. That is, the 
nozzle flow, starting from the assumed initial conditions, takes only 85.1 ms to reach 
steady-state conditions; in reality, since convergence is obtained for all practical pur- 
poses after about 500 time steps, the practical convergence time is more on the order 
of 30 ms. 

A comparison between some of the numerical results and the corresponding 
exact analytical values is given in Table B.4; this provides you with a more detailed 
comparison than is given in Fig. B.8. Compared are the numerical and analytical re- 
sults for the density ratio and Mach number. Note that the numerical results, to three 
decimal places, are not in precise agreement with the analytical values; there is a small 
percentage disagreement between the two sets of results, ranging from 0.3 to 3.29 per- 
cent. This amount of error is not discernable on the graphical display in Fig. B.8. 
At first thought, there might be three reasons for these small numerical inaccuracies: 
(1) a small inflow boundary condition error, (2) truncation errors associated with the 
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Table B.3 I Flowfield variables after 1400 time steps (nonconservation form of the 
governing equations) 

finite value of Ax,  and (3) possible effects of the Courant number being substantially 
less than unity (recall that in the calculations discussed so far, the Courant number is 
chosen to be 0.5). Let us examine each of these reasons in turn. 

Inflow Boundary Condition Error 

There is a "built-in" error at the inflow boundary. At the first grid point. at x = 0, we 
assume that the density, pressure, and temperature are the reservoir properties p,,, p,, 
and To, respectively. This is strictly true only if M = 0 at this point. In reality. there 
is a finite area ratio at .x = 0, namely, A/A* = 5.95, and hence a finite Mach number 
must exist at x = 0, both numerically and analytically (to allow a finite value of mass 
flow through the nozzle). Hence, in Table B.4, the numerical value of p/p, at x = 0 is 
equal to 1 .O-this is our prescribed boundary condition. On the other hand, the exact 
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Table B.4 I Density ratio and Mach number distributions through the nozzle 

analytical value of p/p, at x = 0 is 0.995, giving a 0.5 percent error. This built-in 
error is not viewed as serious, and we will not be concerned with it here. 

Truncation Error: The Matter of Grid Independence 

The matter of grid independence is a serious consideration in CFD, and this stage of 
our data analysis is a perfect time to introduce the concept. In general, when you 
solve a problem using CFD, you are employing a finite number of grid points (or a 
finite mesh) distributed over the flow field. Assume that you are using N grid points. 
If everything goes well during your solution, you will get some numbers out for the 
flowfield variables at these N grid points, and these numbers may look qualitatively 
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good to you. However, assume that you rerun your solution, this time using twice as 
many grid points, 2 N ,  distributed over the same domain; i.e., you have decreased 
the value of the increment A.r (and also A? in general, if you are dealing with a two- 
dimensional solution). You may find that the values of your flowfield variables are 
quite different for this second calculation. If this is the case, then your solution is a 
function of the number of grid points you are using-an untenable situation. You 
must, if at all practical, continue to increase the number of grid points until you reach 
a solution which is no longer sensitive to the number of points. When you reach this 
situation, then you have achieved grid intlependencr. 

Qu~stion: Do we have grid independence for the present calculation? Recall 
that we have used 3 1 grid points distributed evenly through the nozzle. To address 
this question, let us double the number of grid points; i.e., let us halve the valuc of 
A x  by using 61 grid points. Table B.5 compares the steady-state results tor density. 
temperature, and pressure ratios, as well as for Mach numbers, at the throat for both 
the cases using 3 1 and 6 1 grid points. Also tabulated in Table B.5 are the exact ana- 
lytical results. Note that although doubling the number of grid points did improve the 
numerical solution, it did so only marginally. The same is true for all locations within 
the nozzle. In other words, the two steady-state numerical solutions are essentially 
the same, and therefore we can conclude that our original calculations using 3 1 grid 
points is essentially gr-id-indejxndent. This grid-independent solution does not agree 
e,tnctly with the analytical results, but it is certainly close enough for our purposes. 
The degree of grid independence that you need to achieve in a given problem de- 
pends on what you want out of the solution. Do you need extreme accuracy'? If so, 
you need to press the matter of grid independence in a very detailed fashion. Can you 
tolerate answers that can be a little less precise numerically (such as the I or 2 per- 
cent accuracy shown in the present calculations)'! If so, you can slightly relax the cri- 
terion for extreme grid independence and use fewer grid points, thus saving com- 
puter time (which frequently means saving money). The proper decision depends on 
the circumstances. However, you should always be conscious of the question of grid 
independence and resolve the matter to your satisfaction for any CFD problem you 
solve. For example, in the present problem, do you think you can drive the nurneri- 
cal results shown in Table B.5 to agree exactly with the analytical results by using 
more and more grid points? If so, how many grid points will you need? You might 
want to experiment with this question by running your own program and seeing what 
happens. 

Table B.5 I Demonstration of grid independence - 

Conditions at the nozzle throat 

P" - T* - p" M 
Po T@ Po 

Case I : 3 l points 0.639 0.836 0.534 0.999 
Case 2: 61 points 0.638 0.835 0.533 1 .OOO 
Exact analytical solution 0.634 0.833 0.528 1 .000 
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Courant Number Effects 

There is the possibility that if the Courant number is too small, there might be prob- 
lems in regard to the accuracy of the solution, albeit the solution will be very stable. 
Do we have such a problem with the present calculations? We have employed 
C = 0.5 for the present calculations. Is this too small, considering that the stability 
criterion for linear hyperbolic equations is C 5 1.0? To examine this question, we 
can simply repeat the previous calculations but with progressively higher values of 
the Courant number. The resulting steady-state flowfield values at the nozzle throat 
are tabulated in Table B.6; the tabulations are given for six different values of C ,  
starting at C = 0.5 and ranging to 1.2. For values ranging to as high as C = 1.1, the 
results were only marginally different, as seen in Table B.6. By increasing C to as 
high as 1.1, the numerical results do not agree any better with the exact analytical re- 
sults (as shown in Table B.6) than the results at lower values of C. Hence, all our pre- 
vious results obtained by using C = 0.5 are not tainted by any noticeable error due 
to the smaller-than-necessary value of C. Indeed, if anything, the numerical results 
for C = 0.5 in Table B.6 are marginally closer to the exact analytical solution than 
the results for higher Courant numbers. For the steady-state numerical results tabu- 
lated in Table B.6, the number of time steps was adjusted each time C was changed 
so that the nondimensional time at the end of each run was essentially the same. This 
adjustment is necessary because the value of At calculated from Eqs. (B.28) and 
(B.31) will obviously be different for different values of C .  For example, when 
C = 0.5 as in our previous results, we carried out the time-marching procedure to 
1400 time steps, which corresponded to a nondimensional time of 28.952. When C 
is increased to 0.7, the number of time steps carried out was 1400($) = 1000. This 
corresponded to a nondimensional time of 28.961--essentially the same as for the 
previous run. In the same manner, all the numerical data compared in Table B.6 per- 
tain to the same nondimensional time. 

It is interesting to note that for the present application, the CFL criterion, 
namely, that C i 1, does not hold exactly. In Table B.6, we show results where 
C = 1. I ; a stable solution is obtained in spite of the fact that the CFL criterion is vi- 
olated. However, as noted in Table B.6, when the Courant number is increased to 1.2, 
instabilities do occur, and the program blows up. Therefore, for the flow problem we 

Table B.6 I Courant number effects 

1.2 Program went unstable and blew up 
Exact analytical solution 0.634 0.833 0.528 1.000 
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have been discussing in this appendix, which is governed by nonlinear hyperbolic 
partial differential equations, the CFL criterion (which is based on linear equations) 
does not hold exactly. However, from the results, we can see that the CFL criterion is 
certainly a good estimate for the value of A t ;  it is the most reliable estimate for At 
that we can use, even though the governing equations are nonlinear. 

SUMMARY 
This appendix contains enough details for you to write your own computer program 
for the CFD solution of isentropic subsonic-supersonic quasi-one-dimensional flow. 
However, if you wish you can use the following FORTRAN program written by the 
author, who makes no claim of writing particularly efficient programs. 

We note that this example has used the conservation form of the continuity equa- 
tion, and the nonconservation form of the momentum and energy equations. These 
forms work fine for the application discussed here. For most modern applications in 
CFD, however, the conservation form of the equations is usually used, for reasons 
discussed in the author's book Computational Fluid Dynamics: The Basics wsitlz 
Applications. Also discussed in that hook is the matter of artificial viscosity (numer- 
ical damping), which is important to many applications in CFD. These matters are 
beyond the scope of the present book, but you should be aware that most applications 
of CFD require considerations additional to those we have considered here. That is 
why CFD is a subject all by itself. 

ISENTROPIC NOZZLE FLOW-SUBSONIC1 
SUPERSONIC (NONCONSERVATION FORM) 
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C FEE3 IN NOZZLE AXEA RATIO AND INITIAL ~ ' 0 P J I ) I T l O N S  

D X !  .il/FLO.c.? ( N l  

X=O .O 

DO 1 I 1,Nl 

A i r )  .0+2.2*!X-1.5)**% 

RHO(l!=l.O- 0.1,4b*X 

T(il=l.O-0.%3?4*X 

U(I~=~O.~+~.OY*X)*SQR'I!T!I) j 

XME'LOW(I)=RFlO(i)*IJiI) *h(;) 



APPENDIX B An Illustration and Exercise of Computational Fluid Dynamics 

XR(I)=X 

X=X+DX 

1 CONTINUE 

C CALCULATION OF TIME STEP 

DELTY = 1 .0 

DO 2 I=2,N 

DELTX=DX/ (U(I)+SQRT(T(I) ) )  

DELTIM=MIN(DELTX,DELTY) 

DELTY=DELTIM 

DELTIM=COUR*DELTIM 

2 CONTINUE 

TIME=DEL'rIM 

C SOME ADDITIONAL VALUES TO BE INITIALIZED 

PRHO(1) =RHO(l) 

PT(lI=T(l) 

P(1)=1.0 

XMACH(l)=U(l)/SQRT(T(l) ) 

WRITE(6,lOO) 

WRITE ( * ,  100) 

WRITE(6,lOl) (A(I),RHO(I),U(I),T(I),XMFLOW(I),I=1,N1) 

WRITE(*,101) (A(1) ,RHO(I) ,U(I) ,T(I) ,XMFLOW(I) ,I=l,N1) 

JMOD=3500 

JEND=3500 

DO 10 J=l,JEND 

C PREDICTED VALUES FOR INTERNAL POINTS 

DO 3 1=2 ,N 

DXLA=(ALOG(A(I+l) )-ALOG(A(1))) /DX 

DXU= (U(I+l)-U (I) )/DX 

DXRHO=(RHO(I+I)-RHO(I) ) /DX 

DXT=(T(I+l) -T(I) )/DX 

DRHO (I) =-RHO (I ) *U (I) *DXLA-RHO ( I) *DXU-U (I) *DXRHO 

DU(I)=-U(I)*DXU-(l.O/GAMMA)*(DXT+T(I)/RHO(I)*DXRHO) 

DT(I)=-U~I)*DXT-(GAMMA-~.O)*(T(I)*DXU+T(I)*U(I)*DXLA) 

PRHO (I) =RHO (I) +DELTIMkDRH0 (I) 

PU (I) =U (I) +DELTIM*DU (I ) 

PT ( I) =T (I ) +DELTIM*DT (I) 

3 CONTINUE 

C LINEAR EXTRAPOLATION FOR PU(1) 

PU(l)=2.0*PU(2)-PU(3) 

C CORRECTED VALUES FOR INTERNAL POINTS 

DO 4 I=2,N 

DXLA= (ALOG(A(1) )-ALOG(A(1-1) ) ) /DX 

DXRHO= (PRHO(1)-PRHO(1-1) ) /DX 

DXU= (PU(1)-PU(1-1) ) /DX 

DXT= (PT(1)-PT(1-1) ) /DX 



lsentropic Nozzle Flow-Subson~c/Superson~c (Nonconservation Form) 

WRIT?! 6, 

WRI'II: I * , 

WRi'i'E ( 6, 

WRITE I * ,  
WRI lE 

i 



APPENDIX B An Illustration and Exercise of Computational Fluid Dynamics 

WRITE(6,107) (I,ADRHO(I) ,ADu(I) ,ADT(I) ,I=2,N) 

WRITE(*,107) (I,ADRHO(I),ADU(I),ADT(I),I=2,N) 

10 CONTINUE 

FORMAT(3X,'INITIAL CONDITIONS'//12X,'A',8X,'RH0',8X,'U',8X,'Tf 

8X,'MFLOW') 

FORMAT(5X,SFlO.3) 

FORMAT(SX,'J=',I5,10X,'TIME=',F7.3//) 

FORMAT(4X,'I',6X,'XD',6X,'Af,3X,'RHO',6X,'U',6X,'T',6X,'P', 

G X ,  'M' , GX, 'MFLOW' ) 

FORMAT(2X,I3,8F7.3) 

FORMAT(5X,'J=',I5,10X,'DELT'LM=',E10.3) 

FORMAT(5X,'I',7X,'ADRH0',14X,'ADU',14X,'ADT') 

FORMAT(2X,13,3E15.3) 

FORMAT(SX,'COURANT NUMBER =',F7.3) 

END 
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