Elements of Statistical Learning

Andrew Tulloch

Contents

Chapter 2. Overview of Supervised Learning 4
Chapter 3. Linear Methods for Regression 12
Chapter 4. Linear Methods for Classification 23
Chapter 5. Basis Expansions and Regularization 28
Chapter 13. Support Vector Machines and Flexible Discriminants 29

CHAPTER 2

Overview of Supervised Learning

Exercise 2.1. Suppose that each of K-classes has an associated target t_{k}, which is a vector of all zeroes, except a one in the k-th position. Show that classifying the largest element of \hat{y} amounts to choosing the closest target, $\min _{k}\left\|t_{k}-\hat{y}\right\|$ if the elements of \hat{y} sum to one.

Proof. The assertion is equivalent to showing that

$$
\underset{i}{\arg \max } \hat{y}_{i}=\underset{k}{\arg \min }\left\|t_{k}-\hat{y}\right\|=\underset{k}{\arg \min }\left\|\hat{y}-t_{k}\right\|^{2}
$$

by monotonicity of $x \mapsto x^{2}$ and symmetry of the norm.
WLOG, let $\|\cdot\|$ be the Euclidean norm $\|\cdot\|_{2}$. Let $k=\arg \max _{i} \hat{y}_{i}$, with $\hat{y}_{k}=\max y_{i}$. Note that then $\hat{y}_{k} \geq \frac{1}{K}$, since $\sum \hat{y}_{i}=1$.

Then for any $k^{\prime} \neq k$ (note that $y_{k^{\prime}} \leq y_{k}$), we have

$$
\begin{aligned}
\left\|y-t_{k^{\prime}}\right\|_{2}^{2}-\left\|y-t_{k}\right\|_{2}^{2} & =y_{k}^{2}+\left(y_{k^{\prime}}-1\right)^{2}-\left(y_{k^{\prime}}^{2}+\left(y_{k}-1\right)^{2}\right) \\
& =2\left(y_{k}-y_{k^{\prime}}\right) \\
& \geq 0
\end{aligned}
$$

since $y_{k^{\prime}} \leq y_{k}$ by assumption.
Thus we must have

$$
\underset{k}{\arg \min }\left\|t_{k}-\hat{y}\right\|=\underset{i}{\arg \max } \hat{y}_{i}
$$

as required.

Exercise 2.2. Show how to compute the Bayes decision boundary for the simulation example in Figure 2.5.

Proof. The Bayes classifier is

$$
\hat{G}(X)=\underset{g \in \mathcal{G}}{\arg \max } P(g \mid X=x)
$$

In our two-class example orange and blue, the decision boundary is the set where

$$
P(g=\operatorname{BLUE} \mid X=x)=P(g=\text { ORANGE } \mid X=x)=\frac{1}{2}
$$

By the Bayes rule, this is equivalent to the set of points where

$$
P(X=x \mid g=\text { BLUE }) P(g=\text { BLUE })=P(X=x \mid g=\text { ORANGE }) P(g=\text { ORANGE })
$$

And since we know $P(g)$ and $P(X=x \mid g)$, the decision boundary can be calculated.
Exercise 2.3. Derive equation (2.24)
Proof. TODO
Exercise 2.4. Consider N data points uniformly distributed in a p-dimensional unit ball centered at the origin. Show the the median distance from the origin to the closest data point is given by

$$
d(p, N)=\left(1-\left(\frac{1}{2}\right)^{1 / N}\right)^{1 / p}
$$

Proof. Let r be the median distance from the origin to the closest data point. Then

$$
P(\text { All } N \text { points are further than } r \text { from the origin })=\frac{1}{2}
$$

by definition of the median.
Since the points x_{i} are independently distributed, this implies that

$$
\frac{1}{2}=\prod_{i=1}^{N} P\left(\left\|x_{i}\right\|>r\right)
$$

and as the points x_{i} are uniformly distributed in the unit ball, we have that

$$
\begin{aligned}
P\left(\left\|x_{i}\right\|>r\right) & =1-P\left(\left\|x_{i}\right\| \leq r\right) \\
& =1-\frac{K r^{p}}{K} \\
& =1-r^{p}
\end{aligned}
$$

Putting these together, we obtain that

$$
\frac{1}{2}=\left(1-r^{p}\right)^{N}
$$

and solving for r, we have

$$
r=\left(1-\left(\frac{1}{2}\right)^{1 / N}\right)^{1 / p}
$$

Exercise 2.5. Consider inputs drawn from a spherical multivariate-normal distribution $X \sim$ $N\left(0, \mathbf{1}_{p}\right)$. The squared distance from any sample point to the origin has a χ_{p}^{2} distribution with mean p. Consider a prediction point x_{0} drawn from this distribution, and let $a=\frac{x_{0}}{\left\|x_{0}\right\|}$ be an associated unit vector. Let $z_{i}=a^{T} x_{i}$ be the projection of each of the training points on this direction.

Show that the z_{i} are distributed $N(0,1)$ with expected squared distance from the origin 1 , while the target point has expected squared distance p from the origin. Hence for $p=10$, a randomly drawn test point is about 3.1 standard deviations from the origin, while all the training points are on average one standard deviation along direction a. So most prediction points see themselves as lying on the edge of the training set.

Proof. Let $z_{i}=a^{T} x_{i}=\frac{x_{0}^{T}}{\left\|x_{0}\right\|} x_{i}$. Then z_{i} is a linear combination of $N(0,1)$ random variables, and hence normal, with expectation zero and variance

$$
\operatorname{Var}\left(z_{i}\right)=\left\|a^{T}\right\|^{2} \operatorname{Var}\left(x_{i}\right)=\operatorname{Var}\left(x_{i}\right)=1
$$

as the vector a has unit length and $x_{i} \sim N(0,1)$.
For each target point x_{i}, the squared distance from the origin is a χ_{p}^{2} distribution with mean p, as required.

Exercise 2.6. (a) Derive equation (2.27) in the notes.
(b) Derive equation (2.28) in the notes.

Proof. (i) We have

$$
\begin{aligned}
E P E\left(x_{0}\right) & =E_{y_{0} \mid x_{0}} E_{\mathcal{T}}\left(y_{0}-\hat{y}_{0}\right)^{2} \\
& =\operatorname{Var}\left(y_{0} \mid x_{0}\right)+E_{\mathcal{T}}\left[\hat{y}_{0}-E_{\mathcal{T}} \hat{y}_{0}\right]^{2}+\left[E_{\mathcal{T}}-x_{0}^{T} \beta\right]^{2} \\
& =\operatorname{Var}\left(y_{0} \mid x_{0}\right)+\operatorname{Var}_{\mathcal{T}}\left(\hat{y}_{0}\right)+\operatorname{Bias}^{2}\left(\hat{y}_{0}\right) .
\end{aligned}
$$

We now treat each term individually. Since the estimator is unbiased, we have that the third term is zero. Since $y_{0}=x_{0}^{T} \beta+\epsilon$ with ϵ an $N\left(0, \sigma^{2}\right)$ random variable, we must have $\operatorname{Var}\left(y_{0} \mid x_{0}\right)=\sigma^{2}$.

The middle term is more difficult. First, note that we have

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{T}}\left(\hat{y}_{0}\right) & =\operatorname{Var}_{\mathcal{T}}\left(x_{0}^{T} \hat{\beta}\right) \\
& =x_{0}^{T} \operatorname{Var}_{\mathcal{T}}(\hat{\beta}) x_{0} \\
& =E_{\mathcal{T}} x_{0}^{T} \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} x_{0}
\end{aligned}
$$

by conditioning (3.8) on \mathcal{T}.
(ii) TODO

Exercise 2.7. Consider a regression problem with inputs x_{i} and outputs y_{i}, and a parameterized model $f_{\theta}(x)$ to be fit with least squares. Show that if there are observations with tied or identical values of x, then the fit can be obtained from a reduced weighted least squares problem.

Proof. This is relatively simple. WLOG, assume that $x_{1}=x_{2}$, and all other observations are unique. Then our RSS function in the general least-squares estimation is

$$
R S S(\theta)=\sum_{i=1}^{N}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}=\sum_{i=2}^{N} w_{i}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}
$$

where

$$
w_{i}= \begin{cases}2 & i=2 \\ 1 & \text { otherwise }\end{cases}
$$

Thus we have converted our least squares estimation into a reduced weighted least squares estimation. This minimal example can be easily generalised.

Exercise 2.8. Suppose that we have a sample of N pairs x_{i}, y_{i}, drawn IID from the distribution such that

$$
\begin{array}{r}
x_{i} \sim h(x), \\
y_{i}=f\left(x_{i}\right)+\epsilon_{i} \\
E\left(\epsilon_{i}\right)=0, \\
\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2} .
\end{array}
$$

We construct an estimator for f linear in the y_{i},

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} \ell_{i}\left(x_{0} ; \mathcal{X}\right) y_{i}
$$

where the weights $\ell_{i}\left(x_{0} ; X\right)$ do not depend on the y_{i}, but do depend on the training sequence x_{i} denoted by \mathcal{X}.
(a) Show that the linear regression and k-nearest-neighbour regression are members of this class of estimators. Describe explicitly the weights $\ell_{i}\left(x_{0} ; \mathcal{X}\right)$ in each of these cases.
(b) Decompose the conditional mean-squared error

$$
E_{\mathcal{Y} \mid \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

into a conditional squared bias and a conditional variance component. \mathcal{Y} represents the entire training sequence of y_{i}.
(c) Decompose the (unconditional) MSE

$$
E_{\mathcal{Y}, \mathcal{X}}\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right)^{2}
$$

into a squared bias and a variance component.
(d) Establish a relationship between the square biases and variances in the above two cases.

Proof. (a) Recall that the estimator for f in the linear regression case is given by

$$
\hat{f}\left(x_{0}\right)=x_{0}^{T} \beta
$$

where $\beta=\left(X^{T} X\right)^{-1} X^{T} y$. Then we can simply write

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N}\left(x_{0}^{T}\left(X^{T} X\right)^{-1} X^{T}\right)_{i} y_{i}
$$

Hence

$$
\ell_{i}\left(x_{0} ; \mathcal{X}\right)=\left(x_{0}^{T}\left(X^{T} X\right)^{-1} X^{T}\right)_{i}
$$

In the k-nearest-neighbour representation, we have

$$
\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} \frac{y_{i}}{k} \mathbf{1}_{x_{i} \in N_{k}\left(x_{0}\right)}
$$

where $N_{k}\left(x_{0}\right)$ represents the set of k-nearest-neighbours of x_{0}. Clearly,

$$
\ell_{i}\left(x_{0} ; \mathcal{X}\right)=\frac{1}{k} \mathbf{1}_{x_{i} \in N_{k}\left(x_{0}\right)}
$$

(b) TODO
(c) TODO
(d) TODO

Exercise 2.9. Compare the classification performance of linear regression and k-nearest neighbour classification on the zipcode data. In particular, consider on the 2 's and 3's, and $k=1,3,5,7,15$. Show both the training and test error for each choice.

Proof. Our implementation in R and graphs are attached.

```
library('ProjectTemplate')
load.project()
## Linear Regression
mod <- lm(Y ~ ., data = zip.train.filtered)
# Round predictions
category_f <- function(x) { if (x > 2.5) 3 else 2 }
predictions.lm.test <- as.character(sapply(predict(mod, zip.test.filtered),
                category_f))
predictions.lm.train <- as.character(sapply(predict(mod, zip.train.filtered),
                category_f))
## KNN
knn.train <- zip.train.filtered[, 2:257]
knn.test <- zip.test.filtered[, 2:257]
knn.train.Y <- as.factor(zip.train.filtered$Y)
knn.test.Y <- as.factor(zip.test.filtered$Y)
# KNN Predictions
predictions.knn.test <- sapply(1:15, function(k) {
    knn(train = knn.train,
        test = knn.test,
        cl = knn.train.Y,
        k = k)
    })
predictions.knn.train <- sapply(1:15, function(k) {
    knn(train = knn.train,
        test = knn.train,
        cl = knn.train.Y,
        k = k)
})
# Compute error rates
errors.xs <- 1:15
errors.knn.test <- apply(predictions.knn.test, 2, function(prediction) {
        classError(prediction, as.factor(zip.test.filtered$Y))$errorRate
    })
errors.knn.train <- apply(predictions.knn.train, 2, function(prediction) {
    classError(prediction, as.factor(zip.train.filtered$Y))$errorRate
})
errors.lm.test <- sapply(errors.xs, function(k) {
        classError(predictions.lm.test, as.factor(zip.test.filtered$Y))$errorRate
    })
errors.lm.train <- sapply(errors.xs, function(k) {
    classError(predictions.lm.train, as.factor(zip.train.filtered$Y))$errorRate
})
errors <- data.frame("K"=errors.xs,
    "KNN.Train"=errors.knn.train,
    "KNN.Test"=errors.knn.test,
    "LR.Train"=errors.lm.train,
```

\# Create Plot
plot.data <- melt(errors, id="K")
ggplot (data=plot.data,
aes (x=K, y=value, colour=variable)) +
geom_line() +
xlab("k") +
ylab("Classification Error") +
opts(title="Classification Errors for different methods on zipcode data")
scale_colour_hue (name="Classification Method",
labels=c ("k-NN (Train)",
"k-NN (Test)",
"Linear Regression (Train)",
"Linear Regression (Test)")
ggsave(file.path('graphs', 'exercise_2_8.pdf'))
ggsave(file.path('graphs', 'exercise_2_8.png'))

Exercise 2.10. Consider a linear regression model with p parameters, fitted by OLS to a set of trainig data $\left(x_{i}, y_{i}\right)_{1 \leq i \leq N}$ drawn at random from a population. Let $\hat{\beta}$ be the least squares estimate. Suppose we have some test data $\left(\tilde{x}_{i}, \tilde{y}_{i}\right)_{1 \leq i \leq M}$ drawn at random from the same population as the training data.

If $R_{t r}(\beta)=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \beta^{T} x_{i}\right)^{2}$ and $R_{t e}(\beta)=\frac{1}{M} \sum_{i=1}^{M}\left(\tilde{y}_{i}-\beta^{T} \tilde{x}_{i}\right)^{2}$, prove that

$$
E\left(R_{t r}(\hat{\beta})\right) \leq E\left(R_{t e}(\hat{\beta})\right)
$$

where the expectation is over all that is random in each expression.

CHAPTER 3

Linear Methods for Regression

Exercise 3.1. Show that the F statistic for dropping a single coefficient from a model is equal to the square of the corresponding z-score.

Proof. Recall that the F statistic is defined by the following expression

$$
\frac{\left(R S S_{0}-R S S_{1}\right) /\left(p_{1}-p_{0}\right)}{R S S_{1} /\left(N-p_{1}-1\right)}
$$

where $R S S_{0}, R S S_{1}$ and $p_{0}+1, p_{1}+1$ refer to the residual sum of squares and the number of free parameters in the smaller and bigger models, respectively. Recall also that the F statistic has a $F_{p_{1}-p_{0}, N-p_{1}-1}$ distribution under the null hypothesis that the smaller model is correct.

Next, recall that the z-score of a coefficient is

$$
z_{j}=\frac{\hat{\beta}_{j}}{\hat{\sigma} \sqrt{v_{j}}}
$$

and under the null hypothesis that β_{j} is zero, z_{j} is distributed according to a t-distribution with $N-p-1$ degrees of freedom.

Hence, by dropping a single coefficient from a model, our F statistic has a $F_{1, N-p-1}$ where $p+1$ are the number of parameters in the original model. Similarly, the corresponding z-score is distributed according to a t_{N-p-1} distribution, and thus the square of the z-score is distributed according to an $F_{1, N-p-1}$ distribution, as required.

Thus both the z-score and the F statistic test identical hypotheses under identical distributions. Thus they must have the same value in this case.

Exercise 3.2. Given data on two variables X and Y, consider fitting a cubic polynomial regression model $f(X)=\sum_{j=0}^{3} \beta_{j} X^{j}$. In addition to plotting the fitted curve, you would like a 95% confidence band about the curve. Consider the following two approaches:
(1) At each point x_{0}, form a 95% confidence interval for the linear function $a^{T} \beta=\sum_{j=0}^{3} \beta_{j} x_{0}^{j}$.
(2) Form a 95% confidence set for β as in (3.15), which in tun generates confidence intervals for $f\left(x_{0}\right)$.

How do these approaches differ? Which band is likely to be wider? Conduct a small simulation experiment to compare the two methods.

Proof. The key distinction is that in the first case, we form the set of points such that we are 95% confident that $\hat{f}\left(x_{0}\right)$ is within this set, whereas in the second method, we are 95% confident that an arbitrary point is within our confidence interval. This is the distinction between a pointwise approach and a global confidence estimate.

In the pointwise approach, we seek to estimate the variance of an individual prediction - that is, to calculate $\operatorname{Var}\left(\hat{f}\left(x_{0}\right) \mid x_{0}\right)$. Here, we have

$$
\begin{aligned}
\sigma_{0}^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right) \mid x_{0}\right) & =\operatorname{Var}\left(x_{0}^{T} \hat{\beta} \mid x_{0}\right) \\
& =x_{0}^{T} \operatorname{Var}(\hat{\beta}) x_{0} \\
& =\hat{\sigma}^{2} x_{0}^{T}\left(X^{T} X\right)^{-1} x_{0}
\end{aligned}
$$

where $\hat{\sigma}^{2}$ is the estimated variance of the innovations ϵ_{i}.
R code and graphs of the simulation are attached.

```
library('ProjectTemplate')
load.project()
# Raw data
simulation.xs <- c(1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969)
simulation.ys <- c(4835, 4970, 5085, 5160, 5310, 5260, 5235, 5255, 5235, 5210, 5175)
simulation.df <- data.frame(pop = simulation.ys, year = simulation.xs)
# Rescale years
simulation.df$year = simulation.df$year - 1964
# Generate regression, construct confidence intervals
fit<- lm(pop ~ year + I(year^2) + I(year^3), data=simulation.df)
xs = seq(-5, 5, 0.1)
fit.confidence = predict(fit, data.frame(year=xs), interval="confidence", level=0.95)
# Create data frame containing variables of interest
df = as.data.frame(fit.confidence)
df$year <- xs
df = melt(df, id.vars="year")
p <- ggplot() + geom_line(aes(x=year, y=value, colour=variable), df) +
    geom_point(aes(x=year, y=pop), simulation.df)
p <- p + scale_x_continuous('Year') + scale_y_continuous('Population')
p <- p + opts(title="Cubic regression with confidence intervals")
p <- p + scale_color_brewer(name="Legend",
    labels=c("Fit",
                            "95% Lower Bound",
                            "95% Upper Bound"),
    palette="Set1")
ggsave(file.path('graphs', 'exercise_3_2.pdf'))
ggsave(file.path('graphs', 'exercise_3_2.png'))
```


TODO: Part 2.

Exercise 3.3 (The Gauss-Markov Theorem). (1) Prove the Gauss-Markov theorem: the least squares estimate of a parameter $a^{T} \beta$ has a variance no bigger than that of any other linear unbiased estimate of $a^{T} \beta$.
(2) Secondly, show that if \hat{V} is the variance-covariance matrix of the least squares estimate of β and \tilde{V} is the variance covariance matrix of any other linear unbiased estimate, then $\hat{V} \leq \tilde{V}$, where $B \leq A$ if $A-B$ is positive semidefinite.

Proof. Let $\hat{\theta}=a^{T} \hat{\beta}=a^{T}\left(X^{T} X\right)^{-1} X^{T} y$ be the least squares estimate of $a^{T} \beta$. Let $\tilde{\theta}=c^{T} y$ be any other unbiased linear estimator of $a^{T} \beta$. Now, let $d^{T}=c^{T}-a^{T}\left(X^{-1} X\right)^{-1} X^{T}$. Then as $c^{T} y$ is unbiased, we must have

$$
\begin{aligned}
E\left(c^{T} y\right) & =E\left(a^{T}\left(X^{T} X\right)^{-1} X^{T}+d^{T}\right) y \\
& =a^{T} \beta+d^{T} X \beta \\
& =a^{T} \beta
\end{aligned}
$$

as $c^{T} y$ is unbiased, which implies that $d^{T} X=0$.

Now we calculate the variance of our estimator. We have

$$
\begin{aligned}
\operatorname{Var}\left(c^{T} y\right) & =c^{T} \operatorname{Var}(y) c \\
& =\sigma^{2} c^{T} c \\
& =\sigma^{2}\left(a^{T}\left(X^{T} X\right)^{-1} X^{T}+d^{T}\right)\left(a^{T}\left(X^{T} X\right)^{-1} X^{T}+d^{T}\right)^{T} \\
& =\sigma^{2}\left(a^{T}\left(X^{T} X\right)^{-1} X^{T}+d^{T}\right)\left(X\left(X^{T} X\right)^{-1} a+d\right) \\
& =\sigma^{2}(a^{T}\left(X^{T} X\right)^{-1} X^{T} X\left(X^{T} X\right)^{-1} a+a^{T}\left(X^{T} X\right)^{-1} \underbrace{X^{T} d}_{=0}+\underbrace{d^{T} X}_{=0}\left(X^{T} X\right)^{-1} a+d^{T} d) \\
& =\sigma^{2}(\underbrace{a^{T}\left(X^{T} X\right)^{-1} a}_{\operatorname{Var}(\hat{\theta})}+\underbrace{d^{t} d}_{\geq 0})
\end{aligned}
$$

Thus $\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta})$ for all other unbiased linear estimators $\tilde{\theta}$.
The proof of the matrix version is almost identical, except we replace our vector d with a matrix D. It is then possible to show that $\tilde{V}=\hat{V}+D^{T} D$, and as $D^{T} D$ is a positive semidefinite matrix for any D, we have $\hat{V} \leq \tilde{V}$.

Exercise 3.4. Show how the vector of least square coefficients can be obtained from a single pass of the Gram-Schmidt procedure. Represent your solution in terms of the $Q R$ decomposition of X.

Proof. Recall that by a single pass of the Gram-Schmidt procedure, we can write our matrix X as

$$
X=Z \Gamma
$$

where Z contains the orthogonal columns z_{j}, and Γ is an upper-diagonal matrix with ones on the diagonal, and $\gamma_{i j}=\frac{\left\langle z_{i}, x_{j}\right\rangle}{\left\|z_{i}\right\|^{2}}$. This is a reflection of the fact that by definition,

$$
x_{j}=z_{j}+\sum_{k=0}^{j-1} \gamma_{k j} z_{k}
$$

Now, by the $Q R$ decomposition, we can write $X=Q R$, where Q is an orthogonal matrix and R is an upper triangular matrix. We have $Q=Z D^{-1}$ and $R=D \Gamma$, where D is a diagonal matrix with $D_{j j}=\left\|z_{j}\right\|$.

Now, by definition of $\hat{\beta}$, we have

$$
\left(X^{T} X\right) \hat{\beta}=X^{T} y
$$

Now, using the $Q R$ decomposition, we have

$$
\begin{aligned}
\left(R^{T} Q^{T}\right)(Q R) \hat{\beta} & =R^{T} Q^{T} y \\
R \hat{\beta} & =Q^{T} y
\end{aligned}
$$

As R is upper triangular, we can write

$$
\begin{aligned}
R_{p p} \hat{\beta}_{p} & =\left\langle q_{p}, y\right\rangle \\
\left\|z_{p}\right\| \hat{\beta}_{p} & =\left\|z_{p}\right\|^{-1}\left\langle z_{p}, y\right\rangle \\
\hat{\beta}_{p} & =\frac{\left\langle z_{p}, y\right\rangle}{\left\|z_{p}\right\|^{2}}
\end{aligned}
$$

in accordance with our previous results. Now, by back substitution, we can obtain the sequence of regression coefficients $\hat{\beta}_{j}$. As an example, to calculate $\hat{\beta}_{p-1}$, we have

$$
\begin{aligned}
R_{p-1, p-1} \hat{\beta}_{p-1}+R_{p-1, p} \hat{\beta}_{p} & =\left\langle q_{p-1}, y\right\rangle \\
\left\|z_{p-1}\right\| \hat{\beta}_{p-1}+\left\|z_{p-1}\right\| \gamma_{p-1, p} \hat{\beta}_{p} & =\left\|z_{p-1}\right\|^{-1}\left\langle z_{p-1}, y\right\rangle
\end{aligned}
$$

and then solving for $\hat{\beta}_{p-1}$. This process can be repeated for all β_{j}, thus obtaining the regression coefficients in one pass of the Gram-Schmidt procedure.

Exercise 3.5. Consider the ridge regression problem (3.41). Show that this problem is equivalent to the problem

$$
\hat{\beta}^{c}=\underset{\beta^{c}}{\arg \min }\left(\sum_{i=1}^{N}\left(y_{i}-\beta_{0}^{c}-\sum_{j=1}^{p}\left(x_{i j}-\hat{x}_{j}\right) \beta_{j}^{c}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{c 2}\right)^{2}
$$

Proof. Consider rewriting our objective function above as

$$
L\left(\beta^{c}\right)=\sum_{i=1}^{N}\left(y_{i}-\left(\beta_{0}^{c}-\sum_{j=1}^{p} \bar{x}_{j} \beta_{j}^{c}\right)-\sum_{j=1}^{p} x_{i j} \beta_{j}^{c}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2^{2}}
$$

Note that making the substitutions

$$
\begin{aligned}
& \beta_{0} \mapsto \beta_{0}^{c}-\sum_{j=1}^{p} \hat{x}_{j} \beta_{j} \\
& \beta_{j} \mapsto \beta_{j}^{c}, j=1,2, \ldots, p
\end{aligned}
$$

that $\hat{\beta}$ is a minimiser of the original ridge regression equation if $\hat{\beta}^{c}$ is a minimiser of our modified ridge regression.

The modified solution merely has a shifted intercept term, and all other coefficients remain the same.

Exercise 3.6. Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior $\beta \sim N(0, \tau \mathbf{I})$, and Gaussian sampling model $y \sim N\left(X \beta, \sigma^{2} \mathbf{I}\right)$. Find the relationship between the regularization parameter λ in the ridge formula, and the variances τ and σ^{2}.

Exercise 3.7. Assume

$$
y_{i} \sim N\left(\beta_{0}+x_{i}^{T} \beta, \sigma^{2}\right), i=1,2, \ldots, N
$$

and the parameters β_{j} are are each distributed as $N\left(0, \tau^{2}\right)$, independently of one another. Assume σ^{2} and τ^{2} are known, show that the minus log-posterior density of β is proportional to

$$
\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

where $\lambda=\frac{\sigma^{2}}{\tau^{2}}$.

Exercise 3.8. Consider the $Q R$ decomposition of the uncentred $N \times(p+1)$ matrix X, whose first column is all ones, and the $S V D$ of the $N \times p$ centred matrix \tilde{X}. Show that Q_{2} and U share the same subspace, where Q_{2} is the submatrix of Q with the first column removed. Under what circumstances will they be the same, up to sign flips?

Proof. Denote the columns of X by x_{0}, \ldots, x_{p}, the columns of Q by z_{0}, \ldots, z_{p}, the columns of \tilde{X} by $\tilde{x}_{1}, \ldots, x_{n}$, and the columns of U by u_{1}, \ldots, u_{p}. Without loss of generality, we can assume that for all $i,\left\|x_{i}\right\|=1$ and that X is non-singular (this cleans up the proof somewhat).

First, note that by the QR decomposition, we have that $\operatorname{span}\left(x_{0}, \ldots, x_{j}\right)=\operatorname{span}\left(z_{0}, \ldots, z_{j}\right)$ for any $0 \leq j \leq p$.

By our assumption, we have that $\tilde{x}_{i}=x_{i}-\bar{x}_{i} \mathbf{1}$ for $i=1, \ldots, p$. Thus we can write $\tilde{x}_{i}=$ $\sum_{j \leq i} \alpha_{j} z_{j}$, and as the z_{j} are orthogonal, we must be able to write \tilde{x}_{i} in terms of z_{j} for $j=1,2, \ldots, i$. Thus $\operatorname{span}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{i}\right)=\operatorname{span}\left(z_{1}, \ldots, z_{i}\right)$.

Finally, we calculate $\operatorname{span}\left(u_{1}, \ldots, u_{p}\right)$. We have that U is a unitary $N \times p$ matrix, and thus the columns of U span the column space of \tilde{X}, and thus the span of Q_{2} is equal to the span of U.

TODO: When is Q_{2} equal to U up to parity? Is it where columns of

Exercise 3.9 (Forward stepwise regression). Suppose that we have the $Q R$ decomposition for the $N \times q$ matrix X_{1} in a multiple regression problem with response y, and we have an additional $p-q$ predictors in matrix X_{2}. Denote the current residual by r. We wish to establish which one of these additional variables will reduce the residual-sum-of-squares the most when included with those in X_{1}. Describe an efficient procedure for doing this.

Proof. Select the vector $x_{j^{\prime}}$ where

$$
x_{j^{\prime}}=\underset{j=q+1, \ldots, p}{\arg \min }\left|\left\langle\frac{x_{q}}{\left\|x_{q}\right\|}, r\right\rangle\right|
$$

This selects the vector that explains the maximal amount of variance in r given X_{1}, and thus reduces the residual sum of squares the most. It is then possible to repeat this procedure by updating X_{2} as in Algorithm 3.1.

Exercise 3.10 (Backward stepwise regression). Suppose that we have the multiple regression fit of y on X, along with standard errors and z-scores. We wish to establish which variable, when dropped, will increase the RSS the least. How would you do this?

Proof. By Exercise 3.1, we can show that the F-statistic for dropping a single coefficient from a model is equal to the square of the corresponding z-score. Thus, we drop the variable that has the lowest squared z-score from the model.

Exercise 3.11. Show that the solution to the multivariate linear regression problem (3.40) is given by (3.39). What happens if the covariance matrices Σ_{i} are different for each observation?

Exercise 3.12. Show that the ridge regression estimates can be obtained by OLS on an augmented data set. We augment the centred matrix X with p additional rows $\sqrt{\lambda} \mathbf{I}$, and augment y with p zeroes.

Proof. For our augmented matrix X_{1}, equal to appending $\sqrt{\lambda I}$ to the original observation matrix X, we have that the $R S S$ expression for OLS regression becomes

$$
\begin{aligned}
R S S & =\sum_{i=1}^{N+p}\left(y_{i}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \\
& =\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\sum_{i=N+1}^{N+p}\left(\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \\
& =\sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\sum_{j=1}^{p} \lambda \beta_{j}^{2}
\end{aligned}
$$

which is the objective function for the ridge regression estimate.
Exercise 3.13. Derive expression (3.62), and show that $\hat{\beta}^{p c r}(p)=\hat{\beta}^{l s}$.
Exercise 3.14. Show that in the orthogonal case, PLS stops after $m=1$ steps, because subsequent $\hat{\phi}_{m j}$ in step 2 in Algorithm 3.3 are zero.

Exercise 3.15. Verity expression (3.64), and hence show that the PLS directions are a compromise between the OLS coefficients and the principal component directions.

Exercise 3.16. Derive the entries in Table 3.4, the explicit forms for estimators in the orthogonal case.

Exercise 3.17. Repeat the analysis of Table 3.3 on the spam data discussed in Chapter 1.
Proof. R code implementing this method is attached. We require the MASS, lars, and pls packages.

```
library("ProjectTemplate")
load.project()
library("lars") # For least-angle and lasso
library("MASS") # For ridge
library("pls") # For PLS and PCR
mod.ls <- lm(Y ~ . - 1, spam.train)
mod.ridge <- lm.ridge(Y ~ ., spam.train)
mod.pcr <- pcr(formula=Y ~ ., data=spam.train, validation="CV")
mod.plsr <- plsr(formula=Y ~ ., data=spam.train, validation="CV")
mod.lars <- lars(as.matrix(spam.train[,1:ncol(spam.train) - 1]),
    spam.train[,ncol(spam.train)],
    type="lar")
mod.lasso <- lars(as.matrix(spam.train[,1:ncol(spam.train) - 1]),
    spam.train[,ncol(spam.train)],
    type="lasso")
mods.coeffs <- data.frame(ls=mod.ls$coef,
    ridge=mod.ridge$coef,
    lasso=mod.lasso$beta[10,],
    pcr=mod.pcr$coef[,,10],
    plsr=mod.plsr$coef[,,10]
    )
mods.coeffs$xs = row.names(mods.coeffs)
plot.data <- melt(mods.coeffs, id="xs")
ggplot(data=plot.data,
        aes(x=factor(xs),
            y=value,
            group=variable,
            colour=variable)) +
    geom_line() +
    geom_point() +
    xlab("Factor") +
    ylab("Regression Coefficient") +
    opts(title = "Estimated coefficients for regression methods on spam data",
        axis.ticks = theme_blank(),
        axis.text.x = theme_blank()) +
    scale_colour_hue(name="Regression Method",
                labels=c("0LS",
                    "Ridge",
                    "Lasso",
                    "PCR",
                    "PLS")
                    )
ggsave(file.path('graphs', 'exercise_3_17.pdf'))
ggsave(file.path('graphs', 'exercise_3_17.png'))
```


CHAPTER 4

Linear Methods for Classification

Exercise 4.1. Show how to solve the generalised eigenvalue problem $\max a^{T} B a$ subject to $a^{T} W a=$ 1 by transforming it to a standard eigenvalue problem.

Proof. By Lagrange multipliers, we have that the function $\mathcal{L}(a)=a^{T} B a-\lambda\left(a^{T} W a-1\right)$ has a critical point where

$$
\frac{d \mathcal{L}}{d a}=2 a^{T} B^{T}-2 \lambda a^{T} W^{T}=0
$$

that is, where $B a=\lambda W a$. If we let $W=D^{T} D$ (Cholesky decomposition), $C=D^{-1} B D^{-1}$, and $y=D a$, we obtain that our solution becomes

$$
C y=\lambda y
$$

and so we can convert our problem into an eigenvalue problem. It is clear that if y_{m} and λ_{m} are the maximal eigenvector and eigenvalue of the reduced problem, then $D^{-1} y_{m}$ and λ_{m} are the maximal eigenvector and eigenvalue of the generalized problem, as required.

Exercise 4.2. Suppose that we have features $x \in \mathbb{R}^{p}$, a two-class response, with class sizes N_{1}, N_{2}, and the target coded as $-N / N_{1}, N / N_{2}$.
(1) Show that the LDA rule classifies to class 2 if

$$
x^{T} \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)>\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{2}-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{1}+\log \frac{N_{1}}{N}-\log \frac{N_{2}}{N}
$$

(2) Consider minimization of the least squares criterion

$$
\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta^{T} x_{i}\right)^{2}
$$

Show that the solution $\hat{\beta}$ satisfies

$$
\left((N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}\right) \beta=N\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

where $\hat{\Sigma}_{B}=\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)^{T}$.
(3) Hence show that $\hat{\Sigma}_{B} \beta$ is in the direction $\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$, and thus

$$
\hat{\beta} \propto \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

and therefore the least squares regression coefficient is identical to the LDA coefficient, up to a scalar multiple.
(4) Show that this holds for any (distinct) coding of the two classes.
(5) Find the solution $\hat{\beta}_{0}$, and hence the predicted values $\hat{\beta}_{0}+\hat{\beta}^{T} x$. Consider the following rule: classify to class 2 if $\hat{y}_{i}>0$ and class 1 otherwise. Show that this is not the same as the LDA rule unless the classes have equal numbers of observations.

Proof. We use the notation of Chapter 4.
(1) Since in the two class case, we classify to class 2 if $\delta_{1}(x)<\delta_{2}(x)$. Substituting this into our equation for the Linear discriminant functions, we have

$$
\begin{aligned}
\delta_{1}(x) & <\delta_{2}(x) \\
x^{T} \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right) & >\frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{2}-\frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{1}+\log \frac{N_{1}}{N}-\log \frac{N_{2}}{N}
\end{aligned}
$$

as required.
(2) Let U_{i} be the n element vector with j-th element 1 if the j-th observation is class i, and zero otherwise. Then we can write our target vector Y as $t_{1} U_{1}+t_{2} U_{2}$, where t_{i} are our target labels, and we have $\mathbf{1}=U_{1}+U_{2}$. Note that we can write our estimates $\hat{\mu}_{1}, \hat{\mu}_{2}$ as $X^{T} U_{i}=N_{i} \hat{\mu}_{i}$, and that $X^{T} Y=t_{1} N_{1} \hat{\mu}_{1}+t_{2} N_{2} \hat{\mu}_{2}$.

By the least squares criterion, we can write

$$
R S S=\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta^{T} X\right)^{2}=\left(Y-\beta_{0} \mathbf{1}-X \beta\right)^{T}\left(Y-\beta_{0} \mathbf{1}-X \beta\right)
$$

Minimizing this with respect to β and β_{0}, we obtain

$$
\begin{aligned}
2 X^{T} X \beta-2 X^{T} Y+2 \beta_{0} X^{T} \mathbf{1} & =0 \\
2 N \beta_{0}-2 \mathbf{1}^{T}(Y-X \beta) & =0
\end{aligned}
$$

These equations can be solved for β_{0} and β by substitution as

$$
\begin{aligned}
\hat{\beta}_{0} & =\frac{1}{N} \mathbf{1}^{T}(Y-X \beta) \\
\left(X^{T} X-\frac{1}{N} X^{T} \mathbf{1 1}^{T} X\right) \hat{\beta} & =X^{T} Y-\frac{1}{N} X^{T} \mathbf{1 1}^{T} Y
\end{aligned}
$$

The RHS can be written as

$$
\begin{aligned}
X^{T} Y-\frac{1}{N} X^{T} \mathbf{1 1}^{T} Y & =t_{1} N_{1} \hat{\mu}_{1}+t_{2} N_{2} \hat{\mu}_{2}-\frac{1}{N}\left(N_{1} \hat{\mu}_{1}+N_{2} \hat{\mu}_{2}\right)\left(t_{1} N_{1}+t_{2} N_{2}\right) \\
& =\frac{N_{1} N_{2}}{N}\left(t_{1}-t_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
\end{aligned}
$$

where we use our relations for $X^{T} U_{i}$ and the fact that $\mathbf{1}=U_{1}+U_{2}$.

Similarly, the bracketed term on the LHS of our expression for β can be rewritten as

$$
X^{T} X=(N-2) \hat{\Sigma}+N_{1} \hat{\mu}_{1} \hat{\mu}_{1}^{T}+N_{2} \hat{\mu}_{2} \hat{\mu}_{2}^{T}
$$

and by substituting in the above and the definition of $\hat{\Sigma}_{B}$, we can write

$$
X^{T} X-\frac{1}{N} X^{T} \mathbf{1 1}^{T} X=(N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}
$$

as required.
Putting this together, we obtain our required result,

$$
\left((N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}\right) \hat{\beta}=\frac{N_{1} N_{2}}{N}\left(t_{1}-t_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

and then substituting $t_{1}=-N / N_{1}, t_{2}=N / N_{2}$, we obtain our required result,

$$
\left((N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}\right) \hat{\beta}=N\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

(3) All that is required is to show that $\hat{\Sigma}_{B} \beta$ is in the direction of $\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$. This is clear from the fact that

$$
\hat{\Sigma}_{B} \hat{\beta}=\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)^{T} \hat{\beta}=\lambda\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

for some $\lambda \in \mathbb{R}$. Since $\hat{\Sigma} \hat{\beta}$ is a linear combination of terms in the direction of $\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$, we can write

$$
\hat{\beta} \propto \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

as required.
(4) Since our t_{1}, t_{2} were arbitrary and distinct, the result follows.
(5) From above, we can write

$$
\begin{aligned}
\hat{\beta}_{0} & =\frac{1}{N} \mathbf{1}^{T}(Y-X \hat{\beta}) \\
& =\frac{1}{N}\left(t_{1} N_{1}+t_{2} N_{2}\right)-\frac{1}{N} \mathbf{1}^{T} X \hat{\beta} \\
& =-\frac{1}{N}\left(N_{1} \hat{\mu}_{1}^{T}+N_{2} \hat{\mu}_{2}^{T}\right) \hat{\beta}
\end{aligned}
$$

We can then write our predicted value $\hat{f}(x)=\hat{\beta}_{0}+\hat{\beta}^{T} x$ as

$$
\begin{aligned}
\hat{f}(x) & =\frac{1}{N}\left(N x^{T}-N_{1} \hat{\mu}_{1}^{T}-N_{2} \hat{\mu}_{2}^{T}\right) \hat{\beta} \\
& =\frac{1}{N}\left(N x^{T}-N_{1} \hat{\mu}_{1}^{T}-N_{2} \hat{\mu}_{2}^{T}\right) \lambda \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
\end{aligned}
$$

for some $\lambda \in \mathbb{R}$, and so our classification rule is $\hat{f}(x)>0$, or equivalently,

$$
\begin{array}{r}
N x^{T} \lambda \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)>\left(N_{1} \hat{\mu}_{1}^{T}+N_{2} \hat{\mu}_{2}^{T}\right) \lambda \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right) \\
x^{T} \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)>\frac{1}{N}\left(N_{1} \hat{\mu}_{1}^{T}+N_{2} \hat{\mu}_{2}^{T}\right) \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
\end{array}
$$

which is different to the LDA decision rule unless $N_{1}=N_{2}$.

Exercise 4.3. Suppose that we transform the original predictors X to \hat{Y} by taking the predicted values under linear regression. Show that LDA using \hat{Y} is identical to using LDA in the original space.

Exercise 4.4. Consier the multilogit model with K classes. Let β be the $(p+1)(K-1)$-vector consisting of all the coefficients. Define a suitable enlarged version of the input vector x to accommodate this vectorized coefficient matrix. Derive the Newton-Raphson algorithm for maximizing the multinomial log-likelihood, and describe how you would implement the algorithm.

Exercise 4.5. Consider a two-class regression problem with $x \in \mathbb{R}$. Characterise the MLE of the slope and intercept parameter if the sample x_{i} for the two classes are separated by a point $x_{0} \in \mathbb{R}$. Generalise this result to $x \in \mathbb{R}^{p}$ and more than two classes.

Exercise 4.6. Suppose that we have N points $x_{i} \in \mathbb{R}^{p}$ in general position, with class labels $y_{i} \in$ $\{-1,1\}$. Prove that the perceptron learning algorithm converges to a separating hyperplane in a finite number of steps.
(1) Denote a hyperplane by $f(x)=\beta^{T} x^{\star}=0$. Let $z_{i}=\frac{x_{i}^{\star}}{\left\|x_{i}^{\star}\right\|}$. Show that separability implies the existence of a $\beta_{\text {sep }}$ such that $y_{i} \beta_{\text {sep }}^{T} z_{i} \geq 1$ for all i.
(2) Given a current $\beta_{\text {old }}$, the perceptron algorithm identifies a pint z_{i} that is misclassified, and produces the update $\beta_{\text {new }} \leftarrow \beta_{\text {old }}+y_{i} z_{i}$. Show that

$$
\left\|\beta_{\text {new }}-\beta_{\text {sep }}\right\|^{2} \leq\left\|\beta_{\text {old }}-\beta_{\text {sep }}\right\|^{2}-1
$$

and hence that the algorithm converges to a separating hyperplane in no more than $\| \beta_{\text {start }}{ }^{-}$ $\beta_{\text {sep }} \|^{2}$ steps.

Proof. Recall that the definition of separability implies the existence of a separating hyperplane - that is, a vector $\beta_{\text {sep }}$ such that $\operatorname{sgn}\left(\beta_{\mathrm{sep}}^{T} x_{i}^{\star}\right)=y_{i}$.
(1) By assumption, there exists $\epsilon>0$ and $\beta_{\text {sep }}$ such that

$$
y_{i} \beta_{\mathrm{sep}}^{T} z_{i}^{\star} \geq \epsilon
$$

for all i. Then the hyperplane $\frac{1}{\epsilon} \beta_{\text {sep }}$ is a separating hyperplane that by linearity satisfies the constraint

$$
y_{i} \beta_{\mathrm{sep}}^{T} z_{i}^{\star} \geq 1
$$

(2) We have

$$
\begin{aligned}
\left\|\beta_{\text {new }}-\beta_{\text {sep }}\right\|^{2} & =\left\|\beta_{\text {new }}\right\|^{2}+\left\|\beta_{\text {sep }}\right\|^{2}-2 \beta_{\mathrm{sep}}^{T} \beta_{\text {new }} \\
& =\left\|\beta_{\text {old }}+y_{i} z_{i}\right\|^{2}+\left\|\beta_{\text {sep }}\right\|^{2}-2 \beta_{\mathrm{sep}}^{T}\left(\beta_{\text {old }}+y_{i} z_{i}\right) \\
& =\left\|\beta_{\text {old }}\right\|^{2}+\left\|y_{i} z_{i}\right\|^{2}+2 y_{i} \beta_{\mathrm{old}}^{T} z_{i}+\left\|\beta_{\text {sep }}\right\|^{2}-2 \beta_{\mathrm{sep}}^{T} \beta_{0}-2 y_{i} \beta_{\mathrm{sep}}^{T} z_{i} \\
& \leq\left\|\beta_{\text {old }}\right\|^{2}+\left\|\beta_{\text {sep }}\right\|^{2}-2 \beta_{\mathrm{sep}}^{T} \beta_{\text {old }}+1-2 \\
& =\left\|\beta_{\text {old }}-\beta_{\text {sep }}\right\|^{2}-1
\end{aligned}
$$

Let $\beta_{k}, k=0,1,2, \ldots$ be the sequence of iterates formed by this procedure, with $\beta_{0}=$ $\beta_{\text {start }}$. Let $k^{\star}=\left\lceil\left\|\beta_{\text {start }}-\beta_{\text {sep }}\right\|^{2}\right\rceil$. Then by the above result, we must have $\left\|\beta_{k^{\star}}-\beta_{\text {sep }}\right\|^{2}=$ 0 , and by properties of the norm we have that $\beta_{k^{\star}}=\beta_{\text {sep }}$, and so we have reached a separating hyperplane in no more than k^{\star} steps.

CHAPTER 5

Basis Expansions and Regularization

Exercise 5.1. Show that the truncated power basis functions in (5.3) represent a basis for a cubic spline with the two knots as indicated.

Exercise 5.2. Suppose that $B_{i, M}(x)$ is an order- $M B$-spline.
(1) Show by induction that $B_{i, M}(x)=0$ for $x \notin\left[\tau_{i}, \tau_{i+M}\right.$. This shows, for example, that the support of cubic B-splines is at most 5 knots.
(2) Show by induction that $B_{i, M}(x)>0$ for $x \in\left(\tau_{i}, \tau_{i+M}\right.$. The B-splines are positive in the interior of their support.
(3) Show by induction that $\sum_{i=1}^{K+M} B_{i, M}(x)=1$ for all $x \in\left[\xi_{0}, \xi_{K+1}\right]$.
(4) Show that

Exercise 5.3.

Support Vector Machines and Flexible Discriminants

