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CHAPTER 2

Overview of Supervised Learning

Exercise 2.1. Suppose that each of K-classes has an associated target tk, which is a vector of all

zeroes, except a one in the k-th position. Show that classifying the largest element of ŷ amounts to

choosing the closest target, mink ‖tk − ŷ‖ if the elements of ŷ sum to one.

Proof. The assertion is equivalent to showing that

arg max
i

ŷi = arg min
k

‖tk − ŷ‖ = arg min
k

‖ŷ − tk‖2

by monotonicity of x 7→ x2 and symmetry of the norm.

WLOG, let ‖ · ‖ be the Euclidean norm ‖ · ‖2. Let k = arg maxi ŷi, with ŷk = max yi. Note

that then ŷk ≥ 1
K , since

∑
ŷi = 1.

Then for any k′ 6= k (note that yk′ ≤ yk), we have

‖y − tk′‖22 − ‖y − tk‖22 = y2k + (yk′ − 1)
2 −

(
y2k′ + (yk − 1)

2
)

= 2 (yk − yk′)

≥ 0

since yk′ ≤ yk by assumption.

Thus we must have

arg min
k

‖tk − ŷ‖ = arg max
i

ŷi

as required. �

Exercise 2.2. Show how to compute the Bayes decision boundary for the simulation example in

Figure 2.5.

Proof. The Bayes classifier is

Ĝ(X) = arg max
g∈G

P (g|X = x).

In our two-class example orange and blue, the decision boundary is the set where

P (g = blue|X = x) = P (g = orange|X = x) =
1

2
.
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2. OVERVIEW OF SUPERVISED LEARNING 5

By the Bayes rule, this is equivalent to the set of points where

P (X = x|g = blue)P (g = blue) = P (X = x|g = orange)P (g = orange)

And since we know P (g) and P (X = x|g), the decision boundary can be calculated. �

Exercise 2.3. Derive equation (2.24)

Proof. TODO �

Exercise 2.4. Consider N data points uniformly distributed in a p-dimensional unit ball centered

at the origin. Show the the median distance from the origin to the closest data point is given by

d(p,N) =

(
1−

(
1

2

)1/N
)1/p

Proof. Let r be the median distance from the origin to the closest data point. Then

P (All N points are further than r from the origin) =
1

2

by definition of the median.

Since the points xi are independently distributed, this implies that

1

2
=

N∏
i=1

P (‖xi‖ > r)

and as the points xi are uniformly distributed in the unit ball, we have that

P (‖xi‖ > r) = 1− P (‖xi‖ ≤ r)

= 1− Krp

K

= 1− rp

Putting these together, we obtain that

1

2
= (1− rp)N

and solving for r, we have

r =

(
1−

(
1

2

)1/N
)1/p

�

Exercise 2.5. Consider inputs drawn from a spherical multivariate-normal distribution X ∼
N(0,1p). The squared distance from any sample point to the origin has a χ2

p distribution with

mean p. Consider a prediction point x0 drawn from this distribution, and let a = x0

‖x0‖ be an asso-

ciated unit vector. Let zi = aTxi be the projection of each of the training points on this direction.
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Show that the zi are distributed N(0, 1) with expected squared distance from the origin 1, while the

target point has expected squared distance p from the origin. Hence for p = 10, a randomly drawn

test point is about 3.1 standard deviations from the origin, while all the training points are on av-

erage one standard deviation along direction a. So most prediction points see themselves as lying

on the edge of the training set.

Proof. Let zi = aTxi =
xT
0

‖x0‖xi. Then zi is a linear combination of N(0, 1) random variables,

and hence normal, with expectation zero and variance

Var(zi) = ‖aT ‖2Var(xi) = Var(xi) = 1

as the vector a has unit length and xi ∼ N(0, 1).

For each target point xi, the squared distance from the origin is a χ2
p distribution with mean

p, as required. �

Exercise 2.6. (a) Derive equation (2.27) in the notes.

(b) Derive equation (2.28) in the notes.

Proof. (i) We have

EPE(x0) = Ey0|x0
ET (y0 − ŷ0)2

= Var(y0|x0) + ET [ŷ0 − ET ŷ0]2 + [ET − xT0 β]2

= Var(y0|x0) + VarT (ŷ0) + Bias2(ŷ0).

We now treat each term individually. Since the estimator is unbiased, we have that the

third term is zero. Since y0 = xT0 β + ε with ε an N(0, σ2) random variable, we must have

Var(y0|x0) = σ2.

The middle term is more difficult. First, note that we have

VarT (ŷ0) = VarT (xT0 β̂)

= xT0 VarT (β̂)x0

= ET x
T
0 σ

2(XTX)−1x0

by conditioning (3.8) on T .

(ii) TODO

�

Exercise 2.7. Consider a regression problem with inputs xi and outputs yi, and a parameterized

model fθ(x) to be fit with least squares. Show that if there are observations with tied or identical

values of x, then the fit can be obtained from a reduced weighted least squares problem.
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Proof. This is relatively simple. WLOG, assume that x1 = x2, and all other observations are

unique. Then our RSS function in the general least-squares estimation is

RSS(θ) =

N∑
i=1

(yi − fθ(xi))2 =

N∑
i=2

wi (yi − fθ(xi))2

where

wi =

2 i = 2

1 otherwise

Thus we have converted our least squares estimation into a reduced weighted least squares estima-

tion. This minimal example can be easily generalised. �

Exercise 2.8. Suppose that we have a sample of N pairs xi, yi, drawn IID from the distribution

such that

xi ∼ h(x),

yi = f(xi) + εi,

E(εi) = 0,

Var(εi) = σ2.

We construct an estimator for f linear in the yi,

f̂(x0) =

N∑
i=1

`i(x0;X )yi

where the weights `i(x0;X) do not depend on the yi, but do depend on the training sequence xi

denoted by X .

(a) Show that the linear regression and k-nearest-neighbour regression are members of this class of

estimators. Describe explicitly the weights `i(x0;X ) in each of these cases.

(b) Decompose the conditional mean-squared error

EY|X

(
f(x0)− f̂(x0)

)2
into a conditional squared bias and a conditional variance component. Y represents the entire

training sequence of yi.

(c) Decompose the (unconditional) MSE

EY,X

(
f(x0)− f̂(x0)

)2
into a squared bias and a variance component.

(d) Establish a relationship between the square biases and variances in the above two cases.
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Proof. (a) Recall that the estimator for f in the linear regression case is given by

f̂(x0) = xT0 β

where β = (XTX)−1XT y. Then we can simply write

f̂(x0) =

N∑
i=1

(
xT0 (XTX)−1XT

)
i
yi.

Hence

`i(x0;X ) =
(
xT0 (XTX)−1XT

)
i
.

In the k-nearest-neighbour representation, we have

f̂(x0) =

N∑
i=1

yi
k
1xi∈Nk(x0)

where Nk(x0) represents the set of k-nearest-neighbours of x0. Clearly,

`i(x0;X ) =
1

k
1xi∈Nk(x0)

(b) TODO

(c) TODO

(d) TODO

�

Exercise 2.9. Compare the classification performance of linear regression and k-nearest neighbour

classification on the zipcode data. In particular, consider on the 2’s and 3’s, and k = 1, 3, 5, 7, 15.

Show both the training and test error for each choice.

Proof. Our implementation in R and graphs are attached.
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library(’ProjectTemplate ’)

load.project ()

## Linear Regression

mod <- lm(Y ~ ., data = zip.train.filtered)

# Round predictions

category_f <- function(x) { if (x > 2.5) 3 else 2 }

predictions.lm.test <- as.character(sapply(predict(mod , zip.test.filtered),

category_f))

predictions.lm.train <- as.character(sapply(predict(mod , zip.train.filtered),

category_f))

## KNN

knn.train <- zip.train.filtered[, 2:257]

knn.test <- zip.test.filtered[, 2:257]

knn.train.Y <- as.factor(zip.train.filtered$Y)

knn.test.Y <- as.factor(zip.test.filtered$Y)

# KNN Predictions

predictions.knn.test <- sapply (1:15, function(k) {

knn(train = knn.train ,

test = knn.test ,

cl = knn.train.Y,

k = k)

})

predictions.knn.train <- sapply (1:15 , function(k) {

knn(train = knn.train ,

test = knn.train ,

cl = knn.train.Y,

k = k)

})

# Compute error rates

errors.xs <- 1:15

errors.knn.test <- apply(predictions.knn.test , 2, function(prediction) {

classError(prediction , as.factor(zip.test.filtered$Y))$errorRate

})

errors.knn.train <- apply(predictions.knn.train , 2, function(prediction) {

classError(prediction , as.factor(zip.train.filtered$Y))$errorRate

})

errors.lm.test <- sapply(errors.xs, function(k) {

classError(predictions.lm.test , as.factor(zip.test.filtered$Y))$errorRate

})

errors.lm.train <- sapply(errors.xs, function(k) {

classError(predictions.lm.train , as.factor(zip.train.filtered$Y))$errorRate

})

errors <- data.frame("K"=errors.xs,

"KNN.Train"=errors.knn.train ,

"KNN.Test"=errors.knn.test ,

"LR.Train"=errors.lm.train ,
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"LR.Test"=errors.lm.test)

# Create Plot

plot.data <- melt(errors , id="K")

ggplot(data=plot.data ,

aes(x=K, y=value , colour=variable)) +

geom_line () +

xlab("k") +

ylab("Classification Error") +

opts(title="Classification Errors for different methods on zipcode data")

scale_colour_hue(name="Classification Method",

labels=c("k-NN (Train)",

"k-NN (Test)",

"Linear Regression (Train)",

"Linear Regression (Test)")

)

ggsave(file.path(’graphs ’, ’exercise_2_8.pdf’))

ggsave(file.path(’graphs ’, ’exercise_2_8.png’))
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Exercise 2.10. Consider a linear regression model with p parameters, fitted by OLS to a set of

trainig data (xi, yi)1≤i≤N drawn at random from a population. Let β̂ be the least squares estimate.

Suppose we have some test data (x̃i, ỹi)1≤i≤M drawn at random from the same population as the

training data.

If Rtr(β) = 1
N

∑N
i=1

(
yiβ

Txi
)2

and Rte(β) = 1
M

∑M
i=1

(
ỹi − βT x̃i

)2
, prove that

E(Rtr(β̂)) ≤ E(Rte(β̂))

where the expectation is over all that is random in each expression.



CHAPTER 3

Linear Methods for Regression

Exercise 3.1. Show that the F statistic for dropping a single coefficient from a model is equal to

the square of the corresponding z-score.

Proof. Recall that the F statistic is defined by the following expression

(RSS0 −RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)
.

where RSS0, RSS1 and p0 + 1, p1 + 1 refer to the residual sum of squares and the number of free

parameters in the smaller and bigger models, respectively. Recall also that the F statistic has a

Fp1−p0,N−p1−1 distribution under the null hypothesis that the smaller model is correct.

Next, recall that the z-score of a coefficient is

zj =
β̂j

σ̂
√
vj

and under the null hypothesis that βj is zero, zj is distributed according to a t-distribution with

N − p− 1 degrees of freedom.

Hence, by dropping a single coefficient from a model, our F statistic has a F1,N−p−1 where

p + 1 are the number of parameters in the original model. Similarly, the corresponding z-score is

distributed according to a tN−p−1 distribution, and thus the square of the z-score is distributed

according to an F1,N−p−1 distribution, as required.

Thus both the z-score and the F statistic test identical hypotheses under identical distributions.

Thus they must have the same value in this case. �

Exercise 3.2. Given data on two variables X and Y , consider fitting a cubic polynomial regression

model f(X) =
∑3
j=0 βjX

j. In addition to plotting the fitted curve, you would like a 95% confidence

band about the curve. Consider the following two approaches:

(1) At each point x0, form a 95% confidence interval for the linear function aTβ =
∑3
j=0 βjx

j
0.

(2) Form a 95% confidence set for β as in (3.15), which in tun generates confidence intervals

for f(x0).

How do these approaches differ? Which band is likely to be wider? Conduct a small simulation

experiment to compare the two methods.

12
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Proof. The key distinction is that in the first case, we form the set of points such that we are

95% confident that f̂(x0) is within this set, whereas in the second method, we are 95% confident

that an arbitrary point is within our confidence interval. This is the distinction between a pointwise

approach and a global confidence estimate.

In the pointwise approach, we seek to estimate the variance of an individual prediction - that

is, to calculate Var(f̂(x0)|x0). Here, we have

σ2
0 = Var(f̂(x0)|x0) = Var(xT0 β̂|x0)

= xT0 Var(β̂)x0

= σ̂2xT0 (XTX)−1x0.

where σ̂2 is the estimated variance of the innovations εi.

R code and graphs of the simulation are attached.
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library(’ProjectTemplate ’)

load.project ()

# Raw data

simulation.xs <- c(1959 , 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969)

simulation.ys <- c(4835 , 4970, 5085, 5160, 5310, 5260, 5235, 5255, 5235, 5210, 5175)

simulation.df <- data.frame(pop = simulation.ys, year = simulation.xs)

# Rescale years

simulation.df$year = simulation.df$year - 1964

# Generate regression , construct confidence intervals

fit <- lm(pop ~ year + I(year ^2) + I(year ^3), data=simulation.df)

xs = seq(-5, 5, 0.1)

fit.confidence = predict(fit , data.frame(year=xs), interval="confidence", level =0.95)

# Create data frame containing variables of interest

df = as.data.frame(fit.confidence)

df$year <- xs

df = melt(df , id.vars="year")

p <- ggplot () + geom_line(aes(x=year , y=value , colour=variable), df) +

geom_point(aes(x=year , y=pop), simulation.df)

p <- p + scale_x_continuous(’Year’) + scale_y_continuous(’Population ’)

p <- p + opts(title="Cubic regression with confidence intervals")

p <- p + scale_color_brewer(name="Legend",

labels=c("Fit",

"95% Lower Bound",

"95% Upper Bound"),

palette="Set1")

ggsave(file.path(’graphs ’, ’exercise_3_2.pdf’))

ggsave(file.path(’graphs ’, ’exercise_3_2.png’))
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TODO: Part 2. �

Exercise 3.3 (The Gauss-Markov Theorem). (1) Prove the Gauss-Markov theorem: the least

squares estimate of a parameter aTβ has a variance no bigger than that of any other linear

unbiased estimate of aTβ.

(2) Secondly, show that if V̂ is the variance-covariance matrix of the least squares estimate

of β and Ṽ is the variance covariance matrix of any other linear unbiased estimate, then

V̂ ≤ Ṽ , where B ≤ A if A−B is positive semidefinite.

Proof. Let θ̂ = aT β̂ = aT (XTX)−1XT y be the least squares estimate of aTβ. Let θ̃ = cT y

be any other unbiased linear estimator of aTβ. Now, let dT = cT − aT (X−1X)−1XT . Then as cT y

is unbiased, we must have

E(cT y) = E
(
aT (XTX)−1XT + dT

)
y

= aTβ + dTXβ

= aTβ

as cT y is unbiased, which implies that dTX = 0.
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Now we calculate the variance of our estimator. We have

Var(cT y) = cTVar(y)c

= σ2cT c

= σ2
(
aT (XTX)−1XT + dT

) (
aT (XTX)−1XT + dT

)T
= σ2

(
aT (XTX)−1XT + dT

) (
X(XTX)−1a+ d

)
= σ2

aT (XTX)−1XTX(XTX)−1a+ aT (XTX)−1XT d︸︷︷︸
=0

+ dTX︸︷︷︸
=0

(XTX)−1a+ dT d



= σ2

aT (XTX)−1a︸ ︷︷ ︸
Var(θ̂)

+ dtd︸︷︷︸
≥0


Thus Var(θ̂) ≤ Var(θ̃) for all other unbiased linear estimators θ̃.

The proof of the matrix version is almost identical, except we replace our vector d with a matrix

D. It is then possible to show that Ṽ = V̂ + DTD, and as DTD is a positive semidefinite matrix

for any D, we have V̂ ≤ Ṽ . �

Exercise 3.4. Show how the vector of least square coefficients can be obtained from a single pass

of the Gram-Schmidt procedure. Represent your solution in terms of the QR decomposition of X.

Proof. Recall that by a single pass of the Gram-Schmidt procedure, we can write our matrix

X as

X = ZΓ,

where Z contains the orthogonal columns zj , and Γ is an upper-diagonal matrix with ones on the

diagonal, and γij =
〈zi,xj〉
‖zi‖2 . This is a reflection of the fact that by definition,

xj = zj +

j−1∑
k=0

γkjzk.

Now, by the QR decomposition, we can write X = QR, where Q is an orthogonal matrix and

R is an upper triangular matrix. We have Q = ZD−1 and R = DΓ, where D is a diagonal matrix

with Djj = ‖zj‖.
Now, by definition of β̂, we have

(XTX)β̂ = XT y.
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Now, using the QR decomposition, we have

(RTQT )(QR)β̂ = RTQT y

Rβ̂ = QT y

As R is upper triangular, we can write

Rppβ̂p = 〈qp, y〉

‖zp‖β̂p = ‖zp‖−1〈zp, y〉

β̂p =
〈zp, y〉
‖zp‖2

in accordance with our previous results. Now, by back substitution, we can obtain the sequence of

regression coefficients β̂j . As an example, to calculate β̂p−1, we have

Rp−1,p−1β̂p−1 +Rp−1,pβ̂p = 〈qp−1, y〉

‖zp−1‖β̂p−1 + ‖zp−1‖γp−1,pβ̂p = ‖zp−1‖−1〈zp−1, y〉

and then solving for β̂p−1. This process can be repeated for all βj , thus obtaining the regression

coefficients in one pass of the Gram-Schmidt procedure. �

Exercise 3.5. Consider the ridge regression problem (3.41). Show that this problem is equivalent

to the problem

β̂c = arg min
βc

 N∑
i=1

yi − βc0 − p∑
j=1

(xij − x̂j)βcj

2

+ λ

p∑
j=1

βcj
2


2

.

Proof. Consider rewriting our objective function above as

L(βc) =

N∑
i=1

yi −
βc0 − p∑

j=1

x̄jβ
c
j

− p∑
j=1

xijβ
c
j

2

+ λ

p∑
j=1

β2
j
2

Note that making the substitutions

β0 7→ βc0 −
p∑
j=1

x̂jβj

βj 7→ βcj , j = 1, 2, . . . , p

that β̂ is a minimiser of the original ridge regression equation if β̂c is a minimiser of our modified

ridge regression.

The modified solution merely has a shifted intercept term, and all other coefficients remain the

same. �
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Exercise 3.6. Show that the ridge regression estimate is the mean (and mode) of the posterior

distribution, under a Gaussian prior β ∼ N(0, τI), and Gaussian sampling model y ∼ N(Xβ, σ2I).

Find the relationship between the regularization parameter λ in the ridge formula, and the variances

τ and σ2.

Exercise 3.7. Assume

yi ∼ N(β0 + xTi β, σ
2), i = 1, 2, . . . , N

and the parameters βj are are each distributed as N(0, τ2), independently of one another. Assume

σ2 and τ2 are known, show that the minus log-posterior density of β is proportional to

N∑
i=1

yi − β0 − p∑
j=1

xijβj

2

+ λ

p∑
j=1

β2
j

where λ = σ2

τ2 .

Exercise 3.8. Consider the QR decomposition of the uncentred N × (p+ 1) matrix X, whose first

column is all ones, and the SVD of the N×p centred matrix X̃. Show that Q2 and U share the same

subspace, where Q2 is the submatrix of Q with the first column removed. Under what circumstances

will they be the same, up to sign flips?

Proof. Denote the columns of X by x0, . . . , xp, the columns of Q by z0, . . . , zp, the columns

of X̃ by x̃1, . . . , xn, and the columns of U by u1, . . . , up. Without loss of generality, we can assume

that for all i, ‖xi‖ = 1 and that X is non-singular (this cleans up the proof somewhat).

First, note that by the QR decomposition, we have that span(x0, . . . , xj) = span(z0, . . . , zj) for

any 0 ≤ j ≤ p.
By our assumption, we have that x̃i = xi − x̄i1 for i = 1, . . . , p. Thus we can write x̃i =∑

j≤i αjzj , and as the zj are orthogonal, we must be able to write x̃i in terms of zj for j = 1, 2, . . . , i.

Thus span(x̃1, . . . , x̃i) = span(z1, . . . , zi).

Finally, we calculate span(u1, . . . , up). We have that U is a unitary N × p matrix, and thus the

columns of U span the column space of X̃, and thus the span of Q2 is equal to the span of U .

TODO: When is Q2 equal to U up to parity? Is it where columns of �

Exercise 3.9 (Forward stepwise regression). Suppose that we have the QR decomposition for the

N × q matrix X1 in a multiple regression problem with response y, and we have an additional p− q
predictors in matrix X2. Denote the current residual by r. We wish to establish which one of these

additional variables will reduce the residual-sum-of-squares the most when included with those in

X1. Describe an efficient procedure for doing this.
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Proof. Select the vector xj′ where

xj′ = arg min
j=q+1,...,p

∣∣∣∣〈 xq
‖xq‖

, r

〉∣∣∣∣
This selects the vector that explains the maximal amount of variance in r given X1, and thus

reduces the residual sum of squares the most. It is then possible to repeat this procedure by

updating X2 as in Algorithm 3.1. �

Exercise 3.10 (Backward stepwise regression). Suppose that we have the multiple regression fit

of y on X, along with standard errors and z-scores. We wish to establish which variable, when

dropped, will increase the RSS the least. How would you do this?

Proof. By Exercise 3.1, we can show that the F-statistic for dropping a single coefficient from

a model is equal to the square of the corresponding z-score. Thus, we drop the variable that has

the lowest squared z-score from the model. �

Exercise 3.11. Show that the solution to the multivariate linear regression problem (3.40) is given

by (3.39). What happens if the covariance matrices Σi are different for each observation?

Exercise 3.12. Show that the ridge regression estimates can be obtained by OLS on an augmented

data set. We augment the centred matrix X with p additional rows
√
λI, and augment y with p

zeroes.

Proof. For our augmented matrix X1, equal to appending
√
λI to the original observation

matrix X, we have that the RSS expression for OLS regression becomes

RSS =

N+p∑
i=1

yi − p∑
j=1

xijβj

2

=

N∑
i=1

yi − p∑
j=1

xijβj

2

+

N+p∑
i=N+1

 p∑
j=1

xijβj

2

=

N∑
i=1

yi − p∑
j=1

xijβj

2

+

p∑
j=1

λβ2
j

which is the objective function for the ridge regression estimate. �

Exercise 3.13. Derive expression (3.62), and show that β̂pcr(p) = β̂ls.

Exercise 3.14. Show that in the orthogonal case, PLS stops after m = 1 steps, because subsequent

φ̂mj in step 2 in Algorithm 3.3 are zero.

Exercise 3.15. Verity expression (3.64), and hence show that the PLS directions are a compromise

between the OLS coefficients and the principal component directions.
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Exercise 3.16. Derive the entries in Table 3.4, the explicit forms for estimators in the orthogonal

case.

Exercise 3.17. Repeat the analysis of Table 3.3 on the spam data discussed in Chapter 1.

Proof. R code implementing this method is attached. We require the MASS, lars, and pls

packages.
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library("ProjectTemplate")

load.project ()

library("lars") # For least -angle and lasso

library("MASS") # For ridge

library("pls") # For PLS and PCR

mod.ls <- lm(Y ~ . - 1, spam.train)

mod.ridge <- lm.ridge(Y ~ ., spam.train)

mod.pcr <- pcr(formula=Y ~ ., data=spam.train , validation="CV")

mod.plsr <- plsr(formula=Y ~ ., data=spam.train , validation="CV")

mod.lars <- lars(as.matrix(spam.train [,1:ncol(spam.train) - 1]),

spam.train[,ncol(spam.train)],

type="lar")

mod.lasso <- lars(as.matrix(spam.train[,1:ncol(spam.train) - 1]),

spam.train[,ncol(spam.train)],

type="lasso")

mods.coeffs <- data.frame(ls=mod.ls$coef ,

ridge=mod.ridge$coef ,

lasso=mod.lasso$beta [10,],

pcr=mod.pcr$coef [,,10],

plsr=mod.plsr$coef [,,10]

)

mods.coeffs$xs = row.names(mods.coeffs)

plot.data <- melt(mods.coeffs , id="xs")

ggplot(data=plot.data ,

aes(x=factor(xs),

y=value ,

group=variable ,

colour=variable)) +

geom_line () +

geom_point () +

xlab("Factor") +

ylab("Regression Coefficient") +

opts(title = "Estimated coefficients for regression methods on spam data",

axis.ticks = theme_blank (),

axis.text.x = theme_blank ()) +

scale_colour_hue(name="Regression Method",

labels=c("OLS",

"Ridge",

"Lasso",

"PCR",

"PLS")

)

ggsave(file.path(’graphs ’, ’exercise_3_17.pdf’))

ggsave(file.path(’graphs ’, ’exercise_3_17.png’))

�
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CHAPTER 4

Linear Methods for Classification

Exercise 4.1. Show how to solve the generalised eigenvalue problem max aTBa subject to aTWa =

1 by transforming it to a standard eigenvalue problem.

Proof. By Lagrange multipliers, we have that the function L(a) = aTBa− λ(aTWa− 1) has

a critical point where
dL
da

= 2aTBT − 2λaTWT = 0,

that is, where Ba = λWa. If we let W = DTD (Cholesky decomposition), C = D−1BD−1, and

y = Da, we obtain that our solution becomes

Cy = λy,

and so we can convert our problem into an eigenvalue problem. It is clear that if ym and λm are the

maximal eigenvector and eigenvalue of the reduced problem, then D−1ym and λm are the maximal

eigenvector and eigenvalue of the generalized problem, as required. �

Exercise 4.2. Suppose that we have features x ∈ Rp, a two-class response, with class sizes N1, N2,

and the target coded as −N/N1, N/N2.

(1) Show that the LDA rule classifies to class 2 if

xT Σ̂−1(µ̂2 − µ̂1) >
1

2
µ̂T2 Σ̂−1µ̂2 −

1

2
µ̂T1 Σ̂−1µ̂1 + log

N1

N
− log

N2

N

(2) Consider minimization of the least squares criterion

N∑
i=1

(
yi − β0 − βTxi

)2
Show that the solution β̂ satisfies(

(N − 2)Σ̂ +
N1N2

N
Σ̂B

)
β = N(µ̂2 − µ̂1)

where Σ̂B = (µ̂2 − µ̂1)(µ̂2 − µ̂1)T .

(3) Hence show that Σ̂Bβ is in the direction (µ̂2 − µ̂1), and thus

β̂ ∝ Σ̂−1(µ̂2 − µ̂1)

23
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and therefore the least squares regression coefficient is identical to the LDA coefficient, up

to a scalar multiple.

(4) Show that this holds for any (distinct) coding of the two classes.

(5) Find the solution β̂0, and hence the predicted values β̂0 + β̂Tx. Consider the following

rule: classify to class 2 if ŷi > 0 and class 1 otherwise. Show that this is not the same as

the LDA rule unless the classes have equal numbers of observations.

Proof. We use the notation of Chapter 4.

(1) Since in the two class case, we classify to class 2 if δ1(x) < δ2(x). Substituting this into

our equation for the Linear discriminant functions, we have

δ1(x) < δ2(x)

xT Σ̂−1(µ̂2 − µ̂1) >
1

2
µ̂T2 Σ̂−1µ̂2 −

1

2
µ̂T1 Σ̂−1µ̂1 + log

N1

N
− log

N2

N

as required.

(2) Let Ui be the n element vector with j-th element 1 if the j-th observation is class i, and

zero otherwise. Then we can write our target vector Y as t1U1 + t2U2, where ti are our

target labels, and we have 1 = U1 + U2. Note that we can write our estimates µ̂1, µ̂2 as

XTUi = Niµ̂i, and that XTY = t1N1µ̂1 + t2N2µ̂2.

By the least squares criterion, we can write

RSS =

N∑
i=1

(yi − β0 − βTX)2 = (Y − β01−Xβ)T (Y − β01−Xβ)

Minimizing this with respect to β and β0, we obtain

2XTXβ − 2XTY + 2β0X
T1 = 0

2Nβ0 − 21T (Y −Xβ) = 0.

These equations can be solved for β0 and β by substitution as

β̂0 =
1

N
1T (Y −Xβ)(

XTX − 1

N
XT11TX

)
β̂ = XTY − 1

N
XT11TY

The RHS can be written as

XTY − 1

N
XT11TY = t1N1µ̂1 + t2N2µ̂2 −

1

N
(N1µ̂1 +N2µ̂2)(t1N1 + t2N2)

=
N1N2

N
(t1 − t2)(µ̂1 − µ̂2)

where we use our relations for XTUi and the fact that 1 = U1 + U2.
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Similarly, the bracketed term on the LHS of our expression for β can be rewritten as

XTX = (N − 2)Σ̂ +N1µ̂1µ̂
T
1 +N2µ̂2µ̂

T
2 ,

and by substituting in the above and the definition of Σ̂B , we can write

XTX − 1

N
XT11TX = (N − 2)Σ̂ +

N1N2

N
Σ̂B

as required.

Putting this together, we obtain our required result,(
(N − 2)Σ̂ +

N1N2

N
Σ̂B

)
β̂ =

N1N2

N
(t1 − t2)(µ̂1 − µ̂2),

and then substituting t1 = −N/N1, t2 = N/N2, we obtain our required result,(
(N − 2)Σ̂ +

N1N2

N
Σ̂B

)
β̂ = N(µ̂2 − µ̂1)

(3) All that is required is to show that Σ̂Bβ is in the direction of (µ̂2− µ̂1). This is clear from

the fact that

Σ̂Bβ̂ = (µ̂2 − µ̂1)(µ̂2 − µ̂1)T β̂ = λ(µ̂2 − µ̂1)

for some λ ∈ R. Since Σ̂β̂ is a linear combination of terms in the direction of (µ̂2 − µ̂1),

we can write

β̂ ∝ Σ̂−1(µ̂2 − µ̂1)

as required.

(4) Since our t1, t2 were arbitrary and distinct, the result follows.

(5) From above, we can write

β̂0 =
1

N
1T (Y −Xβ̂)

=
1

N
(t1N1 + t2N2)− 1

N
1TXβ̂

= − 1

N
(N1µ̂

T
1 +N2µ̂

T
2 )β̂.

We can then write our predicted value f̂(x) = β̂0 + β̂Tx as

f̂(x) =
1

N

(
NxT −N1µ̂

T
1 −N2µ̂

T
2

)
β̂

=
1

N

(
NxT −N1µ̂

T
1 −N2µ̂

T
2

)
λΣ̂−1(µ̂2 − µ̂1)
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for some λ ∈ R, and so our classification rule is f̂(x) > 0, or equivalently,

NxTλΣ̂−1(µ̂2 − µ̂1) > (N1µ̂
T
1 +N2µ̂

T
2 )λΣ̂−1(µ̂2 − µ̂1)

xT Σ̂−1(µ̂2 − µ̂1) >
1

N

(
N1µ̂

T
1 +N2µ̂

T
2

)
Σ̂−1(µ̂2 − µ̂1)

which is different to the LDA decision rule unless N1 = N2.

�

Exercise 4.3. Suppose that we transform the original predictors X to Ŷ by taking the predicted

values under linear regression. Show that LDA using Ŷ is identical to using LDA in the original

space.

Exercise 4.4. Consier the multilogit model with K classes. Let β be the (p + 1)(K − 1)-vector

consisting of all the coefficients. Define a suitable enlarged version of the input vector x to accom-

modate this vectorized coefficient matrix. Derive the Newton-Raphson algorithm for maximizing the

multinomial log-likelihood, and describe how you would implement the algorithm.

Exercise 4.5. Consider a two-class regression problem with x ∈ R. Characterise the MLE of the

slope and intercept parameter if the sample xi for the two classes are separated by a point x0 ∈ R.

Generalise this result to x ∈ Rp and more than two classes.

Exercise 4.6. Suppose that we have N points xi ∈ Rp in general position, with class labels yi ∈
{−1, 1}. Prove that the perceptron learning algorithm converges to a separating hyperplane in a

finite number of steps.

(1) Denote a hyperplane by f(x) = βTx? = 0. Let zi =
x?
i

‖x?
i ‖

. Show that separability implies

the existence of a βsep such that yiβ
T
sepzi ≥ 1 for all i.

(2) Given a current βold, the perceptron algorithm identifies a pint zi that is misclassified, and

produces the update βnew ← βold + yizi. Show that

‖βnew − βsep‖2 ≤ ‖βold − βsep‖2 − 1

and hence that the algorithm converges to a separating hyperplane in no more than ‖βstart−
βsep‖2 steps.

Proof. Recall that the definition of separability implies the existence of a separating hyper-

plane - that is, a vector βsep such that sgn
(
βTsepx

?
i

)
= yi.

(1) By assumption, there exists ε > 0 and βsep such that

yiβ
T
sepz

?
i ≥ ε

for all i. Then the hyperplane 1
εβsep is a separating hyperplane that by linearity satisfies

the constraint

yiβ
T
sepz

?
i ≥ 1.
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(2) We have

‖βnew − βsep‖2 = ‖βnew‖2 + ‖βsep‖2 − 2βTsepβnew

= ‖βold + yizi‖2 + ‖βsep‖2 − 2βTsep (βold + yizi)

= ‖βold‖2 + ‖yizi‖2 + 2yiβ
T
oldzi + ‖βsep‖2 − 2βTsepβ0 − 2yiβ

T
sepzi

≤ ‖βold‖2 + ‖βsep‖2 − 2βTsepβold + 1− 2

= ‖βold − βsep‖2 − 1.

Let βk, k = 0, 1, 2, . . . be the sequence of iterates formed by this procedure, with β0 =

βstart. Let k? =
⌈
‖βstart − βsep‖2

⌉
. Then by the above result, we must have ‖βk?−βsep‖2 =

0, and by properties of the norm we have that βk? = βsep, and so we have reached a

separating hyperplane in no more than k? steps.

�



CHAPTER 5

Basis Expansions and Regularization

Exercise 5.1. Show that the truncated power basis functions in (5.3) represent a basis for a cubic

spline with the two knots as indicated.

Exercise 5.2. Suppose that Bi,M (x) is an order-M B-spline.

(1) Show by induction that Bi,M (x) = 0 for x /∈ [τi, τi+M . This shows, for example, that the

support of cubic B-splines is at most 5 knots.

(2) Show by induction that Bi,M (x) > 0 for x ∈ (τi, τi+M . The B-splines are positive in the

interior of their support.

(3) Show by induction that
∑K+M
i=1 Bi,M (x) = 1 for all x ∈ [ξ0, ξK+1].

(4) Show that

Exercise 5.3.

28



CHAPTER 13

Support Vector Machines and Flexible Discriminants
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