As this is a maximization problem, we need an upper bound of ¢*, and there is an easy
one:
- <m

where m = |E|.
The algorithm is: coloring every node independently with one of the three colors, each
with probability é
Let random variable
Y _ { 1 edge e is satisfied
¢ 0 otherwise

Then for any given edge e, there are 9 ways to color its two ends, each of which appears
with the same probability, and 3 of them are not satisfying.
: : 6 2
Exp|X.| = Prle is satisfied| = 9=3
Let Y be the random variable denoting the number of satisfied edges, then by linearity
of expectations,

2 2
=Y Exp[X] = 3m 2 gC*

eck

ExplY] = FExp [Z Xe
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Number the voters 1,2,...,100,000, where voters 1 through 20000 are the Republican
voters. Let X; be the random variable equal to 0 if © votes for R, and 1 if 2 votes for D. So
X =20 X,

Now, for i < 20000, FX; = .99-04.01-1 = .01. Forz > 20000, £X; = .01-0+.99-1 = .99.
By linearity of expectation,

100000
EX = Z EX,; = 20000 - .01 + 80000 - .99 = 79400.

i=1
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(a) Assume that using the described protocol, we get a set S that is not conflict free.
Then there must be 2 processes F; and F; in the set S that both picked the value 1 and are
going to want to share the same resource. But this contradicts the way our protocol was
implemented, since we selected processes that picked the value 1 and whose set of conflicting
processes all picked the value 0. Thus if P; and P; both picked the value 1, neither of
them would be selected and so the resulting set S is conflict free. For each process P;, the
probability that it is selected depends on the fact that P; picks the value 1 and all its d
conflicting processes pick the value 0. Thus P|P;selected| = % * (%)d. And since there are n
processes that pick values independently, the expected size of the set S is n * (%)‘7lel

(b) Now a process F; picks the value 1 with probability p and 0 with probability 1 — p.
So the probability that P; is selected (i.e. P; picks the value 1 and its d conflicting processes
pick the value 0) is p * (1 — p)?. Now we want to maximize the probability that a process
is selected. Using calculus, we take the derivative of p(1 — p)¢ and set it equal to 0 to solve
for the value of p that gives the objective it’s maximum value. The derivative of p(1 — p)?is

(1 —p)? — dp(1 — p)?='. Solving for p, we get p = . Thus the probability that a process

a1
is selected is # and the expected size of the set S is n * #. Note that this is %
times (1 — #)‘”1 and this later term is % in the limit and so by changing the probability,

we got a fraction of % nodes. Note that with p = 0.5, we got an exponentially small subset
in terms of d.

3,,./)& B, ROFE-IRAREERPHEBOERL AR XEES—F
B XA PR B — L R B R RES A B T RS AL

BE—A n NHEBYRG. BB Z B A hZE . S ERV R — AR
EREMBEE, IR REH - P RKWHRFE S ET —HANABRER ——@FEHE
XL FHE S PIEMAFH S HBREA R RNHXENTESBRAS .

AT LU G=(V,E) A R B, — N 2R R — A M, — SR i 3 — X o 58 ) 38
B.ASRIEABRES SREEM RN YHNYEHMRG PH—MRIE XEHRENHEE
IR G RBKB T rhRES S ¥R A (B A — A i 2 37 48 i B 7T 9 29 35X AN 5 1D
BRI, BT EBRRBIEE AL HEESHE R MARMNTEERESE
EHERMREINEXNTENNHETE. 8- T HBRARES OEHMHBEFEHREE
RENZRTHEE S.

XX AR ATBOREE G h B — NS AR FALd A BEWE G- HBREFS d
A T A B4 38 R B 8.

(a) BT R 7 80 B L.

A PRI — AL 2, 2, AR /2% F 1, 08%1/2%F
0.RE,ERZHANELSSLEAMEER 1 FELETHRGMARALARR O,

BAEA PATX BT B B M S S REMER. 3 B4 H A nGEBREO M d(F—14
HERMREEO RRE S MBE KN AR,

(b) FE LAV EEEME 1/2 REAMSEEN . HFERAWBTET - FLAHREY
RYEMEE. HhXE—-ROMER 051 ZHEHSH p AR /2, BEBENTF.

B A#APRIR— ALz, o AR p FF 1, 08% 1—p FF
0.RE, CARRHALESL SHEAREETR1FELLTH R HMHAHARRO,

S p MEMBTBRMNES S B R/NRTENK, B GHERER. BHY p
BUXASBARAE I S 1931 3K/ ik =

lex131.386.529



Q %MLB‘J%?M%%%M&&N%%EH. XERGERE R ESREIMEY
S R B A 190 45, T SR 3 AT 405 A 0k PR R AL 4B AU A I M X B E L AR R E L
f ) 3 T BE 5 BRI A B T R 48 A 6 T X P02 B IS P T L S MR IR %5, 5 4 B R 46 4
B B FE 32T 0 P IR 446 7 52 e 3t A8 g LA 5 7 28 A A AR A

of 2 50 £ i A5 37 9 2 3 ) B0 30 58 24 At A3 O B A BRAE 0 HO R A XA R 5.
XA 188 K ek A X A 0 446 A TE AT 35 A B BE . IRGE A S 2 BRI T —Fh T S hih 4 6 I
205 180 R ARY 3l R K R AT A 08 S e Y A UL 2% A B S 4 IR 4% b X A 1 R B9 Tk O

TR XA ARG F. RN A v TR RSB A — 45 4.
WA S AR, ERFIG AT RE RS A EE, XM ERNRENE
A S S R, TR B RACZEEE S vive B A v BN
AL E LR 0, v 00 o 10— AN 34 B X A 45 4

BERMNEFTEIMTEREEBI - MLEEE vov. 0BRGN IE, b EHR 6B
Pl B = — AN R R XA R v Z AR — S SR — AR B
— Wi, — AR B R AR — R, PGS v, (05 A BE T B A
it o, Vi) RGO IS AL E IR o P EMABE B2 T TREEEE TR AN
AR, N TARFE R G000 AR Y 8 7 BT A 045 5 KB RI3 B o A B8, (B XK
KATRE & A L B R 7 A ik R o A B 48 S HL B i A B 45 S5 T BB A T 2 O A B 1.
AR P i Ak R R 1 4

(a) 45 b EH#AR M BIHLE R 7ERT S B0 M b B4 4 o M A BB ENEL
o B R RFORRAR A OCHICEHEIRE KRR RERD
Fmx A it

(b) A (DR F I RIE T EMLE P RBWEESHEO AN R HESRNEE. 55—
o ik AL 33 Fob A 25 19 0 R R B AR X A B L R 0B A7 b RN BURHE 245 SRR A
i A BE .

0 th e R IR B LR A1 4 o LA A O 45 1 0 0 RO 24 K.



(a) For every node v, that comes later than v;, i.e. k> j, it has probability ﬁ to link
to v;, since vy chooses from the & — 1 existing nodes with equal probabilities. For all the
nodes coming before v;, such probability is obviously zero.

So the expected number of incoming links to node v; is

1 7—1

.

N
|

Z_:

M

we K k=1 k=1
Hn—-1)—-H(k-1)
= O(nn)—6(nk)
- @(m%)

(b) Consider a node v;, every node vx with k > j has probability 1 — 2 not to link to
vj. So if we have random variable X; s.t.

Xj:

1 node v; has no in-coming links
0 otherwise

then

FEzxp|X;] = Pr[no nodes links to v,]

- 1 (-5

it k—1
=1 § 41 n-2
i G+l j+2 -1
j—1
n—1

Therefore, by linearity of expectations, we get the expected number of nodes without
in-coming links
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Solution.

The Shapley value mechanism is equivalent to Proposal C. Under Proposal C, town T;
pays
: k
jz;l n—j+1

since there are n — j + 1 towns downstream of edge ¢;, and so the contribution of T;
to edge e; (for 1 <5 <1i)is k/(n—j+1).

Now, let X; be the random variable in the question. We decompose X, into a random
variable corresponding to each of the edges: let Y; be the random variable equal to

the amount town 7, pays for edge ¢; (1 < 3 < ). Note that X, = ¥

=1 Y5, and so by
linearity of expectation, F'X; = Z;z  EY;.

What is £Y;? With probability 1/(n — 7 + 1), town T; is the first among the towns
downstream of ¢; to arrive, and it incurs a cost of k. Otherwise, when town T, arrives,
some other town downstream of e; has already arrived, and so it incurs a cost of (.

Thus,

1 1 k
EY,;=0(1—- ——— k = .
! n—j3+1 - n—j+1 n—j+1
Hence
! k
EX,=) ———,
;n—]%-l'

which is the same as the contribution of T, under Proposal C.



We interpret the constraint (p;, it5, ftx) to mean that we require one of the subsequences

s fis ey s ey [y oo O o My oo oy [y - - [, - . . tO OCcur in the ordering of the markers.

(One could also interpret it to mean that just the first of these subsequences occurs; this will
affect the analysis below by a factor of 2.)

Suppose that we choose an order for the n markers uniformly at random. Let X, denote
the random variable whose value is 1 if the ¢ constraint (s, 15, ) is satisfied, and 0
otherwise. The six possible subsequences of {y;, 15, pix} occur with equal probability, and
two of them satisfy the constraint; thus FX; = % Hence if X = 3, X; gives the total
number of constraints satisfied, we have KX = ék

So if our random ordering satisfies a number of constraints that is at least the expectation,
we have satisfied at least % of all constraints, and hence at least % of the maximum number
of constraints that can be simultaneously satisfied.

We can extend this to construct an algorithm that only produces solutions within a factor
of é of optimal: We simply repeatedly generate random orderings until ék of the constraints
are satisfied. To bound the expected running time of this algorithm, we must give a lower
bound on the probability p* that a single random ordering will satisfy at least the expected
number of constraints; the expected running time will then be at most 1/pt times the cost
of a single iteration.

First note that & is at most n?, and define &' = +k. Let & denote the greatest integer
strictly less than k’. Let p; denote the probability that we satisfy j of the constraints. Thus
pt =Yk pj; we define p~ =3, p; = 1 —pt. Then we have

o= > jp
J
= > i+ > v

j<K j2K
1 3
< D Kbt X0ty
j<K J>K

= K'(1—p") +n'p"

from which it follows that

—

(K 4Pt 2 K =k = o

Since k" < n?, we have pt > 671%, and so we are done.
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(a) Consider a clause C; with n variables. The probability that the clause is not satisfied
is 2%” and so the probability that it is satisfied is 1 less this quantity. The worst case is when
C; has just one variable, i.e. n = 1, in which case the probability of the clause being satisfied
is % Since there are k clauses, the expected number of clauses being satisfied is at least g
Consider the two clauses z; and Zy. Clearly only one of these can be satisfied.

(b) For variables that occur in single variable clauses, let the probability of setting the
variable so as to satisfy the clause be p > % For all other variables, let the probabilities be

% as before. Now for a clause C; with n variables, n > 2, the probability of satisfying it is

at worst (1 — 2%) > (1 — p?) since p > % Now to solve for p, we want to satisfy all clauses,

so solve p = 1 — p? to get p ~ 0.62. And hence the expected number of satisfied clauses is
0.62n.

(c) Let the total number of clauses be k. For each pair of single variable conflicting
clauses, i.e. x; and T;, remove one of them from the set of clauses. Assume we have removed
m clauses. Then the maximum number of clauses we could satisfy is £ — m. Now apply the
algorithm described in the previous part of the problem to the k£ — 2m clauses that had no
conflict to begin with. The expected number of clauses we satisfy this way is 0.62 % (k —2m).
In addition to this we can also satisfy m of the 2m conflicting clauses and so we satisfy
0.62 % (k — 2m) +m > 0.62 = (k — m) clauses which is our desired target. Note that this
algorithm is polynomial in the number of variables and clauses since we look at each clause
once.
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First we give an algorithm that produces a subgraph whose expected number of edges
has the desired value. For this, we simply choose £ nodes uniformly at random from G.
Now, for i < j, let X;; be a random variable equal to 1 if there is an edge between our i*
and ;" node choices, and equal to 0 otherwise.

Of the n(n — 1) choices for 7 and j, there are 2m that yield an edge (since an edge (u, v)
can be chosen either by picking v in position ¢ and v in position j, or by picking v in position
i and u in position j). Thus B [Xj] = ;7.

The expected number of edges we get in total is

Y E[Xyl = (g) : n(2m = mh(k 1).

i< n—1) n(n—1)

We now want to turn this into an algorithm with expected polynomial running time,
which always produces a subgraph with at least this many edges. The analogous issue came
up with MAX 3-SAT, and we use the same idea here: For this we use the same idea as in the
analogous MAX 3-SAT: we run the above randomized algorithm repeatedly until it produces
a subgraph with at least the desired number of edges.

Let pt be the probability that one iteration of this succeeds; our overall running time
will be the (polynomial) time for one iteration, times 1/p*. First note that the maximum
number of edges we can find is e = k<k2_1), and we're seeking ¢/ = e- moyy Let ¢ denote the
greatest integer strictly less than e’. Let p; denote the probability that we find a subgraph
with exactly j edges. Thus p" = ;5. p;; we define p~ =3 ;..,p; = 1 —pt. Then we have

e = ijj
J
= > g+ ip

2m

j<e’ j>e
1
< D e'pi+ ) ep;
j<e’ j>e’

_ 6”(1 _p+) T <];>p+

from which it follows that

k 1
" 4+ > / _ " > )
(e +(2>)p =e7c “n(n—1)
Since e’ < (5), we have pt > m, and so we are done.
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The strategy is as follows. The seller watches the first n/2 bids without accepting any of
them. Let b* be the highest bid among these. Then, in the final n/2 bids, the seller accepts
any bid that is larger than b*. (If there is no such bid, the seller simply accepts the final
bid.)

Let b; denote the highest bid, and b; denote the second highest bid. Let S denote the
underlying sample space, consisting of all permutations of the bids (since they can arrive in
any order.) So |S| =nl. Let E denote the event that b; occurs among the first n/2 bids,
and b; occurs among the final n/2 bids.

What is |E|? We can place b; anywhere among the first n/2 bids (n/2 choices); then we
can place b; anywhere among the final n/2 bids (n/2 choices); and then we can order the
remaining bids arbitrarily ((n — 2)! choices). Thus |E| = in*(n — 2)!, and so

n%(n — 2)! n 1
PlEl= (4n! - 4(n—1) = 4

Finally, if event F happens, then the strategy will accept the highest bid; so the highest
bid is accepted with probability at least 1/4.
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Let X be a random variable equal to the number of times that b* is updated. We write
X =X, +Xy+ -+ X, where X; = 1 if the ™ bid in order causes b* to be updated, and
X,; = 0 otherwise.

So X; = 1 if and only if, focusing just on the sequence of the first ¢ bids, the largest
one comes at the end. But the largest value among the first ¢ bids is equally likely to be
anywhere, and hence FX; = 1/i.

Alternately, the number of permutations in which the number at position 7 is larger
than any of the numbers before it can be computed as follows. We can choose the first ¢
numbers in (?) ways, put the largest in position 7, order the remainder in (i — 1)! ways, and
order the subsequent (n — 7) numbers in (n —i)! ways. Multiplying this together, we have
(7) = D)'(n —i)! = nl/i. Dividing by n!, we get EX; = 1/i.

Now, by linearity of expectation, we have EX =37 | EX;, =37, 1/i = H, = O(logn).
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(a) Let’s look at a given machine p. In order for it to have no job, every job must
be assigned to a different machine. As the jobs are assigned randomly and uniformly, the
probability that a given job j is not assigned to p is (1 — %) and therefore the probability
that p doesn’t get any job is (1 — %)k Therefore the expected number of machines with no
jobs is N(k) = k(1 — )*.

Finally N(k)/k = (1 — £)*, which goes to 1/e as k goes to infinity. Also notice that in
the limit the number of machines with no jobs is k/e.

(b)  There is a very simple solution to this problem. We notice that the number of
rejected jobs (denote it by N,;) is the number of total jobs k minus the number of accepted
jobs Nyee (Nyej = k — Ngee). The number of jobs accepted is the k£ minus the number of
machines with no jobs Nyeje (since the rest of the people do exactly 1 job). Therefore
Nyej =k — Noee = k — (K — Npojob) = Nnojor- Therefore the answer to part (b) is the same
as the answer to part (a).

(c)  This part will involve slight calculations. We know that the number of machines
with no jobs is k/e (from the first part). We first calculate the number of machines with
exactly one job. Again look at a machine p. The probability that only 1 job is assigned to
that machine is k(1 — £)*~*. (The chance of a given job j being assigned to p is 1/k and
the probability that the remaining jobs will not be assigned to p is (1 — £)¥~'. Finally there
are k choices of the “given” job j which puts the coefficient k in the beginning). Notice that
this also in the limit 1/e therefore the number of machines with exactly 1 jobs is also k/e.

Finally the remaining machines regardless of how many jobs they were assigned will
perform exactly two jobs. There are k — % of these.

The final tally is k/e machines with one job and £k — % people with two jobs. Sub-
tracting this from k (the total number of jobs) we get that @ jobs are rejected, which is
approximately 11%.
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Consider a graph G with nodes s and ¢, and n — 2 other nodes vy, ..., v,_2. There are
two parallel edges from s to each v;, and one edge from v; to t. The minimum s-¢ cut is to
separate t by itself.

If we run the version of the contraction algorithm described in the problem, it will
independently contract each of the length-2 paths from s to ¢ in some order. In order for
it to find the minimum s-¢ cut, it must contract each v; into s, not into ¢. There is a 2/3
chance of this happening for each 4, so the probability that the minimum s-¢ cut is found is
(2/3)"=2, an exponentially small quantity.

(Note that this example poses no problem for the global minimum cut, which consists of
any of the nodes v; on its own.)
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The mean for X is n, so in order to have X; — Xy > ¢y/n, we need X, < I [Xp]—54/n =

(1—-0)E[X3] for 6 = 5.5 Plugging this into the Chernoff lower bound, the probability this

happens is
- —02/4
6—%52E[X2] — € .

This can be made smaller than a constant € by choosing the undetermined constant ¢ large
enough.
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(a) Let n be odd, k = n?, and represent the set of basic processes as the disjoint union
of n sets Xy, ..., X, of cardinality n each. The set of processes P; associated with job J; will
be equal to X; U X;,, addition taken modulo n.

We claim there is no perfectly balanced assignment of processes to machines. For suppose
there were, and let A; denote the number of processes in X; assigned to machine Ay minus
the number of processes in X; assigned to machine M,. By the perfect balance property, we
have A, ;1 = —A,; for each i; applying these equalities transitively, we obtain A; = —A;, and
hence A; = 0, for each 7. But this is not possible since n is odd.

(b) Consider independently assigning each process i a label L; equal to either 0 or 1,
chosen uniformly at random. Thus we may view the label I; as a 0-1 random variable. Now
for any job J;, we assign each process in P; to machine M; if its label is 0, and machine M,
if its label is 1.

Consider the event F;, that more than %n of the processes associated with J; end up on
the same machine. The assignment will be nearly balanced if none of the F; happen. F; is
precisely the event that 37, ;. L; either exceeds % times its mean (equal to n), or that it falls
below % times its mean. Thus, we may upper-bound the probability of E; as follows.

2 4
Pr(E;] < Pr[d L <=Zn]+Pr]> L > -n]
ted; 3 ted; 3

S (o A

< 2..96".

Thus, by the union bound, the probability that any of the events E; happens is at most
2n - .96™, which is at most .06 for n > 200.

Thus, our randomized algorithm is as follows. We perform a random allocation of each
process to a machine as above, check if the resulting assignment is perfectly balanced, and
repeat this process if it isn’t. Each iteration takes polynomial time, and the expected number
of iterations is simply the expected waiting time for an event of probability 1 — .06 = .94,
which is 1/.94 < 2. Thus the expected running time is polynomial.

This analysis also proves the ezistence of a nearly balanced allocation for any set of jobs.

(Note that the algorithm can run forever, with probability 0. This doesn’t cause a problem
for the expectation, but we can deterministically guarantee termination without hurting the
running time very much as follows. We first run £ iterations of the randomized algorithm;
if it still hasn’t halted, we now find the nearly balanced assignment that is guaranteed to
exist by trying all 2% possible allocations of processes to machines, in time O(n?-2*). Since
this brute-force step occurs with probability at most .06%, it adds at most O(n? - .12%) =
O(n?-.12") = o(1) to the expected running time.)
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We imagine dividing the set S into 20 quantiles Qq, ..., 2, where (); consists of all
elements that have at least .05(¢ — 1)n elements less than them, and at least .05(20 — i)n
elements greater than them. Choosing the sample S’ is like throwing a set of numbers at
random into bins labeled with @1, ..., Q2.

Suppose we choose |S’| = 40,000 and sample with replacement. Consider the event &
that |S" N Q| is between 1800 and 2200 for each . If £ occurs, then the first nine quantiles
contain at most 19,800 elements of S’, and the last nine quantiles do as well. Hence the
median of S” will belong to Q10 U Q11, and thus will be a (.05)-approximate median of S.

The probability that a given (); contains more than 2200 elements can be computed using
the Chernoff bound (4.1), with g = 2000 and § = .1; it is less than

6'05 10000
1 < .0001.

[(1.05)@05)

The probability that a given @); contains fewer than 1800 elements can be computed using
the Chernoff bound (4.2), with g = 2000 and § = .1; it is less than

e—(B(D(D2000 (501

Applying the Union Bound over the 20 choices of i, the probability that £ does not occur is
at most (40)(.0001) = .004 < .01.
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One algorithm is the following.

For 1 =1,2,...,n .
Receiver j computes [;; = f(47 -G l,am).
37 is set to the majority value of [3;;, for j=1,...,k.
End for

Qutput F*

We’ll make sure to choose an odd value of £ to prevent ties.

Let X;; = 1if a ) was corrupted, and 0 otherwise. If a majority of the bits in {a 1] =
1,2,...,k} are corrupted, then X; = >, X;; > k/2. Now, since each bit is corrupted with
probability 1, i = 3, EX;; = k/4. Thus, by the Chernoff bound, we have

Pr[X; > k/2] = Pr[X; > 24
o\ K/4
(3)
< (91"
Now, if
Inn—1In.1
> 111 T CEw
bz Whn > e
then

Pr[X; > k/2] < .1/n.

(So it is enough to choose k to be the smallest odd mteger greater than 111nn.) Thus, by

the union bound, the probability that any of the sets {a :7=1,2,...,k} have a majority
of corruptions is at most .1.

Assuming that a majority of the bits in each of these sets are not corrupted, which
happens with probability at least .9, one can prove by induction on ¢ that all the bits in the
reconstructed message 5* will be correct.
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Let Y denote the number of steps in which your net profit is positive. Then Y =
Yi+ Y+ -+ Y, where Y, = 1 if your net profit is positive at step £, and 0 otherwise.

Now, consider a particular step k. Y, = 1 if and only if you have had more than k/2
steps in which your profit increased. Since the expected number of steps in which your profit
increased is k/3, we can apply the Chernoff bound (4.1) with p = k/3 and 1 4+ ¢ = 3/2 to
conclude that EY} is bounded by

o1/2 (k/3) .
[7(3/2)(3/2)1 < (.L9N)".

Thus,

EY =Y BV <> ()< ———
= Pt 1L —(.97)

which is a constant independent of n.
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(a) False. A bad example can consist of a single edge e = (u,v). Assume the cost of
w is 1 while the cost of v is more than 2¢. The minimum cost of a vertex cover is 1, while
the algorithm selects node v with probability 1/2, and hence has expected cost more than c.
Alternately we could have u at most 0 and v at most 1. Now the algorithm’s expected cost
is 1/2, while the optimum is 0.

(b) This is true. Let p. be the probability that edge e is selected by the algorithm. Note
that the algorithm, as given by the problem set, does not specify the selection rule of edges.
You may select uncovered edges at random, or by smallest index, etc. The probability p. will
of course depend on what selection rule was used. But any selection rule gives rise to such
probabilities. Now we need to notice two facts. First that > .. pe is exactly, the expected
number of nodes selected by the algorithm. This is true, as every time we select an edge e
we add one node to the vertex cover.

Next we consider the sum of the probabilities p,. for edges adjacent to a vertex v. Let 6 (v)
denote the set of edges adjacent to vertex v, and consider 3 .cs(,) pe- Note that this is exactly
the expected number of edges selected that are adjacent to node v. Let S(v) be the random
variable indicating the selected edges adjacent to v. We have that Exp(|S(v)|) = Xeesew) Pe-
We claim that this expectation is at most 2. This is true as each time an edge in 6(v) is
selected, with 1/2 probability, we use node v cover edge e, and then all edges in d(v) are
covered, and no more edges in this set will be selected selected. To make this argument
precise, let F; denote the event that at least i edges are selected adjacent to ©. Now we have
the following inequality for the expected number of edges selected.

Exp(|S(v) Z@Prob Ei—Fi) ZPTOZ)(EZ') <1+ ZT‘I <2,
i i>1
where the inequality Prob(E;) < 2! follows for I > 1 as after each edge selected adjacent
to v we add v to the vertex cover with probability 1/2.

Now we are ready to bound the expected size of the vertex cover compared to the opti-
mum. Let S* be an optimum vertex cover.

Z;pe_ Y>> pe< D 2=2]57,

VES* e€d(v) vES*

where the first inequality follows as S* is a vertex cover, and so the second sum must cover
each edge e.
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