
introduction to
computing systems

The McGraw-Hill Companies

Mc
Graw
Hill

INTRODUCTION TO COMPUTING SYSTEMS: FROM BITS AND GATES TO C AND BEYOND
SECOND EDITION
International Edition 2005

Exclusive rights by McGraw-Hill Education (Asia), for manufacture and export. This book cannot be
re-exported from the country to which it is sold by McGraw-Hill. The International Edition is not
available in North America.

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2004, 2001 by The McGraw-Hill Companies, Inc. All
rights reserved. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of The McGraw-
Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.
Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

10 09 08 07 06 05 04 03 02 01
20 09 08 07 06 05 04
CTF SEP

Cover images: ©Photodisc, AA048376 Green Abstract, AA003317 Circuit Board Detail

Library of Congress Control Number: 2003051002

When ordering this title, use ISBN 007-124501-4

Printed in Singapore

> > second edition

introduction to
computing systems

f r o m b i t s and g a t e s to C and b e y o n d

Yale N. Patt
The University of Texas at Austin

Sanjay J. Patel
University of Il l inois at Urbana-Champaign

Mc
Graw
Hill Higher Education

Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

To the memory of my parents,
Abraham Walter Patt A"H and Sarah Clara Patt A"H,
who taught me to value " learning"
even before they taught me to ride a bicycle.

To Mira and her grandparents,
Sharda Patel and Jeram Patel.

c o n t e n t s

Preface xi
Preface to the First Edition

1 Welcome Aboard 1

XVII

2.4.1 Binary to Decimal Conversion 27
2.4.2 Decimal to Binary Conversion 28

1 .1
1.2
1.3

1.4
1.5
1 .6

1.7

What We Wi l l Try to Do 1
How We W i l l Get There 2
Two Recurring Themes 3
1.3.1 The Notion of Abstraction 3
1.3.2 Hardware versus Software 5
A Computer System 7
Two Very Impor tan t Ideas 9
Computers as Universal Computat ional
Devices 9
How Do We Get the Electrons to Do the
Work?
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8

Exercises 17

12
The Statement of the Problem 13
The Algori thm 13
The Program 14
The ISA 14
The Microarchitecture 15
The Logic Circuit 16
The Devices 16
Putting I t Together 16

2 Bits, Data Types, and
Operations 21
2 . 1

2.2

2.3
2.4

Bits and Data Types 2 1
2.1.1 The Bit as the Unit of

Information 21
2.1.2 Data Types 22
Integer Data Types 23
2.2.1 Unsigned Integers 23
2.2.2 Signed Integers 23
2's Complement Integers 25
Binary-Decimal ..Conversion 27

2.5 Operations on Bi ts—Part I : Ar i thmet ic
2.5.1 Addition and Subtraction 29
2.5.2 Sign-Extension 30
2.5.3 Overflow 31

2.6 Operations on Bi ts—Part I I : Logical
Operations 33
2.6.1 v The AND Function 33
2.6.2 The OR Function 34
2.6.3 The NOT Function 35
2.6.4 The Exclusive-OR Function 35

2.7 Other Representations 36
2.7.1 The Bit Vector 36
2.7.2 Floating Point Data Type 37
2.7.3 ASCI I Codes 40
2.7.4 Hexadecimal Notation 41

Exercises 43

3 Digital Logic Structures 51
3 .1 The Transistor 5 1
3.2 Logic Gates 53

3.2.1 The NOT Gate (Inverter) 53
3.2.2 OR and NOR Gates 54
3.2.3 AND and NAND Gates 56
3.2.4 DeMorgan's Law 58
3.2.5 Larger Gates 58

3.3 Combinat ional Logic Circuits 59
3.3.1 Decoder 59
3.3.2 Mux 60
3.3.3 Full Adder 61
3.3.4 The Programmable Logic Array

(PLA) 63
3.3.5 Logical Completeness 64
Basic Storage Elements 64
3.4.1 The R-S Latch 64
3.4.2 The Gated D Latch 66
3.4.3 A Register 66

29

3 .4

vi Contents

3.5 The Concept of Memory 67
3.5.1 Address Space 68
3.5.2 Addressability 68
3.5.3 A 22 -by-3-Bi t Memory 68

3.6 Sequential Logic Circuits 70
3.6.1 A Simple Example: The Combination

Lock 71
3.6.2 The Concept of State 72
3.6.3 Finite State Machines 74
3.6.4 An Example: The Complete

Implementation of a
Finite State Machine 77

3.7 The Data Path of the LC-3 80
Exercises 82

5.4 Control Instruct ions 130
5.4.1 Conditional Branches 131
5.4.2 An Example 132
5.4.3 Two Methods for Loop Control 135
5.4.4 Example: Adding a Column of

Numbers Using a Sentinel 135
5.4.5 The J M P Instruction 136
5.4.6 The TRAP Instruction 137

5.5 Another Example: Counting Occurrences of
a Character 138

5 .6 The Data Path Revisited 1 4 1
5.6.1 Basic Components of the Data

Path 141
5.6.2 The Instruction Cycle 144

Exercises 145

4 The von Neumann Model 97
4 . 1 Basic Components 97

4.1.1 Memory 98
4.1.2 Processing Unit 99
4.1.3 Input and Output 100
4.1.4 Control Unit 100

4.2 The LC-3: An Example von Neumann
Machine 1 0 1

4.3 Inst ruct ion Processing 103
4.3.1 The Instruction 103
4.3.2 The Instruction Cycle 104

4 .4 Changing the Sequence of Execution 107
4.4.1 Control of the Instruction

Cycle 108
4.5 Stopping the Computer 110
Exercises 1 1 1

6 Programming 155
6 . 1 Problem Solving 155

6.1.1 Systematic Decomposition 155
6.1.2 The Three Constructs: Sequential;

Conditional, Iterative 156
6.1.3 LC-3 Control Instructions to

Implement the Three
Constructs 157

6.1.4 The Character Count Example f rom
Chapter 5, Revisited 158

6.2 Debugging 162
6.2.1 Debugging Operations 163
6.2.2 Examples: Use of the Interactive

Debugger 164
Exercises 172

5 The LC-3 115
5 . 1 The I S A : Overview 115

5.1.1 Memory Organization 116
5.1.2 Registers 116
5.1.3 The Instruction Set 117
5.1.4 Opcodes 117
5.1.5 Data Types 118
5.1.6 Addressing Modes 118
5.1.7 Condition Codes 120

5.2 Operate Instruct ions 120
5.3 Data Movement Instruct ions 123

5.3.1 PC-Relative Mode 124
5.3.2 Indirect Mode 125
5.3.3 Base+offset Mode 127
5.3.4 Immediate Mode 128
5.3.5 An Example 129

7 Assembly Language 177
7 .1 Assembly Language Programming —

Moving Up a Level 177
7.2 An Assembly Language Program 178

7.2.1 Instructions 179
7.2.2 Pseudo-ops (Assembler

Directives) 182
7.2.3 Example: The Character Count

Example of Section 5.5,
Revisited 183

7.3 The Assembly Process 185
7.3.1 Introduction 185
7.3.2 A Two-Pass Process 185
7.3.3 The First Pass: Creating the Symbol

Table 186
7.3.4 The Second Pass: Generating the

Machine Language Program 187

Contents vii

7.4 Beyond the Assembly of a Single Assembly
Language Program 188
7.4.1 The Executable Image 189
7.4.2 More than One Object File 189

Exercises 190

8 I/O 199
8 . 1 I/O Basics 199

8.1.1 Device Registers 199
8.1.2 Memory-Mapped I/O versus Special

Input/Output Instructions 200
8.1.3 Asynchronous versus

Synchronous 200
8.1.4 Interrupt-Driven versus Polling 202

8.2 Input f r om the Keyboard 202
8.2.1 Basic Input Registers (the KBDR and

the KBSR) 202
8.2.2 The Basic Input Service

Routine 202
8.2.3 Implementation of Memory-Mapped

Input 203
8.3 Output to the Mon i to r 204

8.3.1 Basic Output Registers (the DDR and
the DSR) 204

8.3.2 The Basic Output Service
Routine 205

8.3.3 Implementation of Memory-Mapped
Output 206

8.3.4 Example: Keyboard Echo 207
8.4 A More Sophisticated Input Routine 207
8.5 In ter rupt -Dr iven I/O 209

8.5.1 What Is Interrupt-Driven I/O? 209
8.5.2 Why Have Interrupt-Driven

I/O? 210
8.5.3 Generation of the Interrupt

Signal 211
8.6 Implementat ion of Memory-Mapped 1/0/

Revisited 214
Exercises 215

9.1.5 TRAP Routines for Handling
I/O 225

9.1.6 TRAP Routine for Halting the
Computer 225

9.1.7 Saving and Restoring
Registers 229

9.2 Subroutines 230
9.2.1 The Call/Return Mechanism 230
9.2.2 The JSR(R) Instruction 232
9.2.3 The TRAP Routine for Character

Input, Revisited 233
9.2.4 PUTS: Wr i t ing a Character String to

the Monitor 235
9.2.5 Library Routines 235

Exercises 240

10 And, Finally . . . The Stack 251
10 .1 The Stack: I ts Basic Structure 2 5 1

10.1.1 The S t a c k - A n Abstract Data
Type 251

10.1.2 Two Example Implementations 252
10.1.3 Implementation in Memory 253
10.1.4 The Complete Picture 257

10.2 In ter rupt -Dr iven I/O (Par t 2) 258
10.2.1 Init iate and Service the

Interrupt 259
10.2.2 Return f rom the Interrupt 261
10.2.3 An Example 262

10.3 Ar i thmet ic Using a Stack 264
10.3.1 The Stack as Temporary

Storage 264
10.3.2 An Example 265
10.3.3 OpAdd, Op Mult, and OpNeg 265

10.4 Data Type Conversion 272
10.4.1 Example: The Bogus Program:

2 + 3 = e 272
10.4.2 ASCII to Binary 273
10.4.3 Binary to ASCI I 276

10.5 Our Final Example: The Calculator 278
Exercises 283

9 TRAP Routines and
Subroutines 219
9 . 1 LC-3 T R A P Routines 219

9.1.1 Introduction 219
9.1.2 The TRAP Mechanism 220
9.1.3 The TRAP Instruction 221
9.1.4 The Complete Mechanism 222

11 Introduction to Programming
inC 289
11 .1 Our Objective 289
11.2 Br idging the Gap 290
11.3 Translat ing High-Level Language

Programs 292

viii Contents

11 .3 .1 Interpretat ion 292
11.3.2 Compilat ion 293
11.3.3 Pros and Cons 293

11 .4 The C P r o g r a m m i n g Language 2 9 3
11.4.1 The C Compiler 295

11 .5 A Simple Example 297
11.5.1 The Function main 297
11.5.2 Formatt ing, Comments, and

Style 299

11.5.3 The C Preprocessor 300
11.5.4 Input and Output 3 0 1

11 .6 Summary 3 0 4
Exercises 3 0 5

12 Variables and Operators 307
1 2 . 1 I n t roduc t i on 3 0 7
12 .2 Var iab les 3 0 8

12.2 .1 Three Basic Data Types: int, char,
d o u b l e 308

12.2.2 Choosing Identif iers 310

12.2.3 Scope: Local versus Global 3 1 1
12.2.4 More Examples 313

12.3 Operators 3 1 4
12.3.1 Expressions and Statements 315
12.3.2 The Assignment Operator 316
12.3.3 Ar i thmet ic Operators 317
12.3.4 Order of Evaluation 318
12.3.5 Bitwise Operators 319
12.3.6 Relational Operators 320
12.3.7 Logical Operators 322

12.3.8 Increment/Decrement
Operators 322

12.3.9 Expressions wi th Mul t ip le
Operators 324

12 .4 Prob lem Solv ing Using Operators 3 2 4

12.5 Ty ing i t A l l Together 3 2 6
12.5 .1 Symbol Table 326
12.5.2 Al locat ing Space for Variables 328

12.5.3 A Comprehensive Example 3 3 1
12 .6 Add i t i ona l Topics 3 3 2

12.6.1 Variat ions of the Three Basic
Types 332

12.6.2 Literals, Constants, and Symbolic
Values 334

12.6.3 Storage Class 335
12.6.4 Addi t ional C Operators 336

12.7 Summary 3 3 7
Exercises 3 3 8

13 Control Structures 343
1 3 . 1 In t roduc t i on 3 4 3
13 .2 Condi t iona l Constructs 3 4 4

13.2 .1 The if Statement 344
13.2.2 The if-else Statement 347

13 .3 I t e ra t i on Constructs 3 5 0
13.3 .1 The while Statement 350
13.3.2 The for Statement 353
13.3.3 The do-while Statement 358

13 .4 Prob lem Solv ing Using Cont ro l
St ructures 3 5 9
13.4.1 Problem 1: Approx imat ing the Value

of 7i 360
13.4.2 Problem 2: Finding Prime Numbers

Less than 100 362

13.4.3 Problem 3: Analyzing an E-mai l
Address 366

13 .5 Add i t i ona l C Cont ro l St ructures 3 6 8
13.5.1 The switch Statement 368
13.5.2 The break and continue

Statements 370

13.5.3 An Example: Simple
Calculator 370

13 .6 Summary 3 7 2
Exercises 3 7 2

14 Functions 379
1 4 . 1 In t roduc t i on 3 7 9
14 .2 Funct ions in C 3 8 0

14.2.1 A Function wi th a Parameter 380
14.2.2 Example: Area of a Ring 384

14 .3 Imp lemen t ing Funct ions in C 3 8 5
14.3.1 Run-Time Stack 385
14.3.2 Getting I t A l l to Work 388
14.3.3 Tying I t A l l Together 393

14 .4 Prob lem Solv ing Using Funct ions 3 9 4
14.4 .1 Problem 1: Case Conversion 395
14.4.2 Problem 2: Pythagorean

Triples 397
14.5 Summary 3 9 8
Exercises 3 9 9

15 Testing and Debugging 407
1 5 . 1 In t roduc t i on 4 0 7
15 .2 Types of Er ro rs 4 0 8

15.2.1 Syntactic Errors 409

Contents ix

15.2.2 Semantic Errors 409
15.2.3 Algorithmic Errors 411

15.3 Testing 412
15.3.1 Black-Box Testing 412
15.3.2 White-Box Testing 413

15.4 Debugging 414
15.4.1 Ad Hoc Techniques 414
15.4.2 Source-Level Debuggers 415

15.5 Programming for Correctness 417
15.5.1 Nailing Down the

Specification 417
15.5.2 Modular Design 418
15.5.3 Defensive Programming 418

15.6 Summary 4 1 9
Exercises 4 2 1

16 Pointers and Arrays 427
16 .1 In t roduct ion 427
16.2 Pointers 428

16.2.1 Declaring Pointer Variables 429
16.2.2 Pointer Operators 430
16.2.3 Passing a Reference Using

Pointers 432
16.2.4 Null Pointers 433
16.2.5 Demystifying the Syntax 434
16.2.6 An Example Problem Involving

Pointers 434
16.3 Arrays 4 3 6

16.3.1 Declaring and Using
Arrays 436

16.3.2 Examples Using Arrays 438
16.3.3 Arrays as Parameters 440
16.3.4 Strings in C 441
16.3.5 The Relationship Between Arrays and

Pointers in C 446
16.3.6 Problem Solving: Insertion

Sort 446
16.3.7 Common Pitfalls wi th Arrays

in C 449
16.4 Summary 4 5 1
Exercises 4 5 1

17 Recursion 457
17 .1 In t roduct ion 457
17.2 What Is Recursion? 458
17.3 Recursion versus I terat ion 4 5 9
17.4 Towers of Hanoi 4 6 0

17.5 Fibonacci Numbers 464
17.6 Binary Search 4 6 8
17.7 Integer to A S C I I 4 7 1
17.8 Summary 473
Exercises 4 7 3

18 I/O in C 481
18 .1 In t roduct ion 4 8 1
18.2 The C Standard L ibrary 4 8 1
18.3 I/O, One Character at a Time 482

18.3.1 I/O Streams 482
18.3.2 p u t c h a r 483
18.3.3 g e t c h a r 483
18.3.4 Buffered I/O 483

18.4 Formatted I/O 485
18.4.1 p r i n t f 485
18.4.2 s c a n f 487
18.4.3 Variable Argument

Lists 489
18.5 I/O f r om Files 4 9 1
18.6 Summary 493
Exercises 4 9 4

19 Data Structures 497
19 .1 In t roduct ion 497
19.2 Structures 4 9 8

19.2.1 typedef 500
19.2.2 Implementing Structures

in C 501
19.3 Arrays of Structures 502
19.4 Dynamic Memory A l locat ion 504

19.4.1 Dynamically Sized Arrays 506
19.5 Linked Lists 5 0 8

19.5.1 An Example 510
19.6 Summary 516
Exercises 517

A The LC-3 ISA 521
A . l Overview 5 2 1
A.2 Notat ion 523
A.3 The Instruct ion Set 523
A.4 In ter rupt and Exception Processing 543

A.4.1 Interrupts 543
A.4.2 Exceptions 544

X Contents

B From LC-3 to x86 547
B . l LC-3 Features and Corresponding x86

Features 548
B . l . l Instruction Set 548
B . l . 2 Memory 553
B . l . 3 Internal State 553

B.2 The Format and Specif ication of x86
Instruct ions 557
B.2.1 Prefix 558
B.2.2 Opcode 559
B.2.3 ModR/M Byte 559
B.2.4 SIB Byte 560
B.2.5 Displacement 560

B.2.6 Immediate 560
B.3 An Example 562

C The Microarchitecture of the
LC-3 565
C . l Overview 565
C.2 The State Machine 567
C.3 The Data Path 569
C.4 The Control Structure 569
C.5 Memory-Mapped I/O 575
C.6 In ter rupt and Exception Control 576

C.6.1 Init iat ing an Interrupt 579
C.6.2 Returning f rom an Interrupt,

RTI 581
C.6.3 The Illegal Opcode Exception 582

C.7 Control Store 583

D The C Programming
Language 585
D . l Overview 585
D.2 C Conventions 585

D.2.1 Source Files 585
D.2.2 Header Files 585
D.2.3 Comments 586
D.2.4 Literals 586
D.2.5 Formatting 588
D.2.6 Keywords 588

D.3 Types 589
D.3.1 Basic Data Types 589
D.3.2 Type Qualifiers 590
D.3.3 Storage Class 591
D.3.4 Derived Types 592
D.3.5 typedef 594

D.4 Declarations 595
D.4.1 Variable Declarations 595
D.4.2 Function Declarations 596

D.5 Operators 596
D.5.1 Assignment Operators 597

Arithmetic Operators 597
Bit-wise Operators 598
Logical Operators 598
Relational Operators 599
I ncrement/Decrement
Operators 599
Conditional Expression 600
Pointer, Array, and Structure
Operators 600
sizeof 601
Order of Evaluation 602
Type Conversions 602

Expressions and Statements 603
D.6.1 Expressions 603

Statements 604

604
I f 604
If-else 605
Switch 605
While 606
For 607
Do-while 607
Break 608
continue 608
return 609

D.8 The C Preprocessor 609

D.8.1 Macro substitution 609
D.8.2 File inclusion 610

D.9 Some Standard L ibrary Functions 610
D.9.1 I/O Functions 6 1 1
D.9.2 String Functions 612
D.9.3 Math Functions 613
D.9.4 Uti l i ty Functions 613

D.6

D.7

D.5.2
D.5.3
D.5.4
D.5.5
D.5.6

D.5.7
D.5.8

D.5.9
D.5.10
D.5.11

D.6.2
Control
D.7.1
D.7.2
D.7.3
D.7.4
D.7.5
D.7.6
D.7.7
D.7.8
D.7.9

E Useful Tables 615
E . l Commonly Used Numerical Prefixes
E.2 Standard A S C I I codes 616
E.3 Powers of 2 617

F Solutions to Selected
Exercises 619

615

p r e f a c e

It is a pleasure to be writing a preface to the second edition of this book. Three
years have passed since the first edition came out. We have received an enormous
number of comments from students who have studied the material in the book
and from instructors who have taught from it. Almost all have been very positive.
It is gratifying to know that a lot of people agree with our approach, and that
this agreement is based on real firsthand experience learning from it (in the case
of students) or watching students learn from it (in the case of instructors). The
excitement displayed in their e-mail continues to be a high for us.

However, as we said in the preface to the first edition, this book will always
be a "work in progress." Along with the accolades, we have received some good
advice on how to make it better. We thank you for that. We have also each taught the
course two more times since the first edition came out, and that, too, has improved
our insights into what we think we did right and what needed improvement. The
result has been a lot of changes in the second edition, while hopefully maintaining
the essence of what we had before. How well we have succeeded we hope to soon
learn from you.

Major Changes to [lie First Edition
The LC-3
One of the more obvious changes in the second edition is the replacement of the
LC-2 with the LC-3. We insisted on keeping the basic concept of the LC-2: a
rich ISA that can be described in a few pages, and hopefully mastered in a short
time. We kept the 16-bit instruction and 4-bit opcode. One of our students pointed
out that the subroutine return instruction (RET) was just a special case of LC-2's
JMPR instruction, so we eliminated RET as a separate opcode. The LC-3 specifies
only 15 opcodes—and leaves one for future use (perhaps, the third edition!).

We received a lot of push-back on the PC-concatenate addressing mode,
particularly for branches. The addressing mode had its roots in the old PDP-8 of
the mid-1960s. A major problem with it comes up when an instruction on one page
wants to dereference the next (or previous) page. This has been a major hassle,
particularly for forward branches close to a page boundary. A lot of people have
asked us to use the more modern PC+offset, and we agreed. We have replaced all
uses of PC'offset with PC+SEXT(offset).

We incorporated other changes in the LC-3. Stacks now grow toward 0,
in keeping with current conventional practice. The offset in LDR/STR is now

xii preface

a signed value, so addresses can be computed plus or minus a base address.
The opcode 1101 is not specified. The JSR/JMP opcodes have been reorganized
slightly. Finally, we expanded the condition codes to a 16-bit processor status
register (PSR) that includes a privilege mode and a priority level. As in the first
edition, Appendix A specifies the LC-3 completely.

Additional Material
Although no chapter in the book has remained untouched, some chapters have
been changed more than others. We added discussions to Chapter 1 on the nature
and importance of abstraction and the interplay of hardware and software because
it became clear that these points needed to be made explicit. We added a full
section to Chapter 3 on finite state control and its implementation as a sequential
switching circuit because we believe the concept of state and finite state control
are among the most important concepts a computer science or engineering student
encounters. We feel it is also useful to the understanding of the von Neumann
model of execution discussed in Chapter 4. We added a section to Chapter 4 giving
a glimpse of the underlying microarchitecture of the LC-3, which is spelled out in
all its detail in the overhauled Appendix C. We were told by more than one reader
that Chapter 5 was too terse. We added little new material, but lots of figures and
explanations that hopefully make the concepts clearer. We also added major new
sections on interrupt-driven I/O to Chapters 8 and 10.

Just as in the first edition, Chapters 11 through 14 introduce the C program-
ming language. Unlike the first edition, these chapters are more focused on the
essential aspects of the language useful to a beginning programmer. Special-
ized features, for example the C switch construct, are relegated to the ends of
the chapters (or to Appendix D), out of the main line of the text. All of these
chapters include more examples than the first edition. The second edition also
places a heavier emphasis on "how to program" via problem-solving examples
that demonstrate how newly introduced C constructs can be used in C program-
ming. In Chapter 14, students are exposed to a new LC-3 calling convention that
more closely reflects the calling convention used by real systems. Chapter 15
contains a deeper treatment of testing and debugging. Based on our experiences
teaching the introductory course, we have decided to swap the order of the chapter
on recursion with the chapter on pointers and arrays. Moving recursion later (now
Chapter 17) in the order of treatment allows students to gain more experience with
basic programming concepts before they start programming recursive functions.

The Simulator
Brian Hartman has updated the simulator that runs on Windows to incorporate
the changes to the LC-3. Ashley Wise has written an LC-3 simulator that runs on
UNIX. Both have incorporated interrupt-driven I/O into the simulator's function-
ality. We believe strongly that there is no substitute for hands-on practice testing
one's knowledge. With the addition of interrupt-driven I/O to the simulator, the
student can now interrupt an executing program by typing a key on the keyboard
and invoke an interrupt service routine.

preface xiii

Alternate Uses of the Booh
We wrote the book as a textbook for a freshman introduction to computing. We
strongly believe, as stated more completely in the preface to our first edition,
that our motivated bottom-up approach is the best way for students to learn the
fundamentals of computing. We have seen lots of evidence that suggests that in
general, students who understand the fundamentals of how the computer works
are better able to grasp the stuff that they encounter later, including the high-level
programming languages that they must work in, and that they can learn the rules
of these programming languages with far less memorizing because everything
makes sense. For us, the best use of the book is a one-semester freshman course
for particularly motivated students, or a two-semester sequence where the pace
is tempered. If you choose to go the route of a one-semester course heavy on
high-level language programming, you probably want to leave Out the material
on sequential machines and interrupt-driven I/O. If you choose to go the one-
semester route heavy on the first half of the book, you probably want to leave out
much of Chapters 15, 17, 18, and 19.

We have also seen the book used effectively in each of the following
environments:

Two Quarters, Freshman Course
In some sense this is the best use of the book. In the first quarter, Chapters 1

through 10 are covered; in the second quarter, Chapters 11 through 19. The pace
is brisk, but the entire book can be covered in two academic quarters.

One-Semester Second Course
The book has been used successfully as a second course in computing, after

the student has spent the first course with a high-level programming language.
The rationale is that after exposure to high-level language programming in the
first course, the second course should treat at an introductory level digital logic,
basic computer organization, and assembly language programming. Most of the
semester is spent on Chapters 1 through 10, with the last few weeks spent on a few
topics from Chapters 11 through 19, showing how some of the magic from the
students' first course can actually be implemented. Functions, activation records,
recursion, pointer variables, and some elementary data structures are typically the
topics that get covered.

A Sophomore-Level Computer Organization Course
The book has been used to delve deeply into computer implementation in

the sophomore year. The semester is spent in Chapters 1 through 10, sometimes
culminating in a thorough study of Appendix C, which provides the complete
microarchitecture of a microprogrammed LC-3. We note, however, that some
very important ideas in computer architecture are not covered here, most notably
cache memory, pipelining, and virtual memory. We agree that these topics are
very important to the education of a computer scientist or computer engineer, but
we feel these topics are better suited to a senior course in computer architecture
and design. This book is not intended for that purpose.

xhr preface

Acknowledgments
Our book continues to benefit greatly from important contributions of many, many
people. We particularly want to acknowledge Brian Hartman and Matt Starolis.

Brian Hartman continues to be a very important part of this work, both for
the great positive energy he brings to the table and for his technical expertise.
He is now out of school more than three years and remains committed to the
concept. He took the course the first year it was offered at Michigan (Winter
term, 1996), TAed it several times as an undergraduate student, and wrote the
first LC-2 simulator for Windows while he was working on his master's degree.
He recently upgraded the Windows simulator to incorporate the new LC-3.

Matt Starolis took the freshman course at UT two years ago and TAed it as
a junior last fall. He, too, has been very important to us getting out this second
edition. He has been both critic of our writing and helpful designer of many of the
figures. He also updated the tutorials for the simulators, which was necessary in
order to incorporate the new characteristics of the LC-3. When something needed
to be done, Matt volunteered to do it. His enthusiasm for the course and the book
has been a pleasure.

With more than 100 adopters now, we regularly get enthusiastic e-mail with
suggestions from professors from all over the world. Although we realize we
have undoubtedly forgotten some, we would at least like to thank Professors
Vijay Pai, Rice; Richard Johnson, Western New Mexico; Tore Larsen, Tromso;
Greg Byrd, NC State; Walid Najjar, UC Riverside; Sean Joyce, Heidelberg Col-
lege; James Boettler, South Carolina State; Steven Zeltmann, Arkansas; Mike
McGregor, Alberta; David Lilja, Minnesota; Eric Thompson, Colorado, Denver;
and Brad Hutchings, Brigham Young.

Between the two of us, we have taught the course four more times since the
first edition came out, and that has produced a new enthusiastic group of believ-
ers, both TAs and students. Kathy Buckheit, Mustafa Erwa, Joseph Grzywacz,
Chandresh Jain, Kevin Major, Onur Mutlu, Moinuddin Qureshi, Kapil Sachdeva,
Russell Schreiber, Paroma Sen, Santhosh Srinath, Kameswar Subramaniam,
David Thompson, Francis Tseng, Brian Ward, and Kevin Woley have all served
as TAs and have demonstrated a commitment to helping students learn that can
only be described as wonderful. Linda Bigelow, Matt Starolis, and Lester Guillory
all took the course as freshmen, and two years later they were among the most
enthusiastic TAs the course has known.

Ashley Wise developed the Linux version of the LC-3 simulator. Ajay
Ladsaria ported the LCC compiler to generate LC-3 code. Gregory Muthler and
Francesco Spadini enthusiastically provided critical feedback on drafts of the
chapters in the second half. Brian Fahs provided solutions to the exercises.

Kathy Buckheit wrote introductory tutorials to help students use the LC-2
simulator because she felt it was necessary.

Several other faculty members at The University of Texas have used the book
and shared their insights with us: Tony Ambler, Craig Chase, Mario Gonzalez,
and Earl Swartzlander in ECE, and Doug Burger, Chris Edmundson, and Steve
Keckler in CS. We thank them.

preface xv

We continue to celebrate the commitment displayed by our editors, Betsy
Jones and Michelle Flomenhoft.

As was the case with the first edition, our book has benefited from exten-
sive reviews provided by faculty members from many universities. We thank
Robert Crisp, Arkansas; Allen Tannenbaum, Georgia Tech; Nickolas Jovanovic,
Arkansas-Little Rock; Dean Brock, North Carolina-Asheville; Amar Raheja, Cal
State-Pomona; Dayton Clark, Brooklyn College; William Yurcik, Illinois State;
Jose Delgado-Frias, Washington State; Peter Drexel, Plymouth State; Mahmoud
Manzoul, Jackson State; Dan Connors, Colorado; Massoud Ghyam, Southern
Cal; John Gray, UMass-Dartmouth; John Hamilton, Auburn; Alan Rosenthal,
Toronto; and Ron Taylor, Wright State.

Finally, there are those who have contributed in many different and often
unique ways. Without listing their individual contributions, we simply list them
and say thank you. Amanda, Bryan, and Carissa Hwu, Mateo Valero, Rich
Belgard, Janak Patel, Matthew Frank, Milena Milenkovic, Lila Rhoades, Bruce
Shriver, Steve Lumetta, and Brian Evans. Sanjay would like to thank Ann Yeung
for all her love and support.

f) Final Word
It is worth repeating our final words from the preface to the first edition: We are
mindful that the current version of this book will always be a work in progress,
and we welcome your comments on any aspect of it. You can reach us by e-mail
at patt@ece.utexas.edu and sjp@crhc.uiuc.edu. We hope you will.

Yale N. Patt
Sanjay J. Patel

May, 2003

mailto:patt@ece.utexas.edu
mailto:sjp@crhc.uiuc.edu

p r e f a c e to t h e f i r s t e d i t i o n

This textbook has evolved from EECS 100, the first computing course for com-
puter science, computer engineering, and electrical engineering majors at the
University of Michigan, that Kevin Compton and the first author introduced for
the first time in the fall term, 1995.

EECS 100 happened because Computer Science and Engineering faculty
had been dissatisfied for many years with the lack of student comprehension of
some very basic concepts. For example, students had a lot of trouble with pointer
variables. Recursion seemed to be "magic," beyond understanding.

We decided in 1993 that the conventional wisdom of starting with a high-
level programming language, which was the way we (and most universities) were
doing it, had its shortcomings. We decided that the reason students were not
getting it was that they were forced to memorize technical details when they did
not understand the basic underpinnings.

The result is the bottom-up approach taken in this book. We treat (in order)
MOS transistors (very briefly, long enough for students to grasp their global
switch-level behavior), logic gates, latches, logic structures (MUX, Decoder,
Adder, gated latches), finally culminating in an implementation of memory. From
there, we move on to the Von Neumann model of execution, then a simple com-
puter (the LC-2), machine language programming of the LC-2, assembly language
programming of the LC-2, the high level language C, recursion, pointers, arrays,
and finally some elementary data structures.

We do not endorse today's popular information hiding approach when it
comes to learning. Information hiding is a useful productivity enhancement tech-
nique after one understands what is going on. But until one gets to that point, we
insist that information hiding gets in the way of understanding. Thus, we contin-
ually build on what has gone before, so that nothing is magic, and everything can
be tied to the foundation that has already been laid.

We should point out that we do not disagree with the notion of top-down
design. On the contrary, we believe strongly that top-down design is correct
design. But there is a clear difference between how one approaches a design
problem (after one understands the underlying building blocks), and what it takes
to get to the point where one does understand the building blocks. In short, we
believe in top-down design, but bottom-up learning for understanding.

Htiaf Is in the Booh
The book breaks down into two major segments, a) the underlying structure of a
computer, as manifested in the LC-2; and b) programming in a high level language,
in our case C.

The LC-2
We start with the underpinnings that are needed to understand the workings of a
real computer. Chapter 2 introduces the bit and arithmetic and logical operations
on bits, Then we begin to build the structure needed to understand the LC-2.
Chapter 3 takes the student from a MOS transistor, step by step, to a real memory.
Our real memory consists of 4 words of 3 bits each, rather than 64 megabytes. The
picture fits on a single page (Figure 3.20), making it easy for a student to grasp.
By the time the students get there, they have been exposed to all the elements that
make memory work. Chapter 4 introduces the Von Neumann execution model,
as a lead-in to Chapter 5, the LC-2.

The LC-2 is a 16-bit architecture that includes physical I/O via keyboard and
monitor; TRAPs to the operating system for handling service calls; conditional
branches on N, Z, and P condition codes; a subroutine call/return mechanism; a
minimal set of operate instructions (ADD, AND, and NOT); and various address-
ing modes for loads and stores (direct, indirect, Base+offset, and an immediate
mode for loading effective addresses).

Chapter 6 is devoted to programming methodology (stepwise refinement) and
debugging, and Chapter 7 is an introduction to assembly language programming.
We have developed a simulator and an assembler for the LC-2. Actually, we have
developed two simulators, one that runs on Windows platforms and one that runs
on UNIX. The Windows simulator is available on the website and on the CD-
ROM. Students who would rather use the UNIX version can download and install
the software from the web at no charge.

Students use the simulator to test and debug programs written in LC-2
machine language and in LC-2 assembly language. The simulator allows online
debugging (deposit, examine, single-step, set breakpoint, and so on). The sim-
ulator can be used for simple LC-2 machine language and assembly language
programming assignments, which are essential for students to master the concepts
presented throughout the first 10 chapters.

Assembly language is taught, but not to train expert assembly language pro-
grammers. Indeed, if the purpose was to train assembly language programmers,
the material would be presented in an upper-level course, not in an introductory
course for freshmen. Rather, the material is presented in Chapter 7 because it
is consistent with the paradigm of the book. In our bottom-up approach, by the
time the student reaches Chapter 7, he/she can handle the process of transform-
ing assembly language programs to sequences of 0s and Is. We go through the
process of assembly step-by-step for a very simple LC-2 Assembler. By hand
assembling, the student (at a very small additional cost in time) reinforces the
important fundamental concept of translation.

It is also the case that assembly language provides a user-friendly notation
to describe machine instructions, something that is particularly useful for the

xxii preface to the first edition

second half of the book. Starting in Chapter 11, when we teach the semantics of
C statements, it is far easier for the reader to deal with ADD Rl, R2, R3 than with
0001001010000011.

Chapter 8 deals with physical input (from a keyboard) and output (to a mon-
itor). Chapter 9 deals with TRAPs to the operating system, and subroutine calls
and returns. Students study the operating system routines (written in LC-2 code)
for carrying out physical I/O invoked by the TRAP instruction.

The first half of the book concludes with Chapter 10, a treatment of stacks
and data conversion at the LC-2 level, and a comprehensive example that makes
use of both. The example is the simulation of a calculator, which is implemented
by a main program and 11 subroutines.

The Language C
From there, we move on to C. The C programming language occupies the second
half of the book. By the time the student gets to C, he/she has an understanding
of the layers below.

The C programming language fits very nicely with our bottom-up approach.
Its low-level nature allows students to see clearly the connection between software
and the underlying hardware. In this book we focus on basic concepts such as
control structures, functions, and arrays. Once basic programming concepts are
mastered, it is a short step for students to learn more advanced concepts such as
objects and abstraction.

Each time a new construct in C is introduced, the student is shown the LC-2
code that a compiler would produce. We cover the basic constructs of C (vari-
ables, operators, control, and functions), pointers, recursion, arrays, structures,
I/O, complex data structures, and dynamic allocation.

Chapter 11 is a gentle introduction to high-level programming languages. At
this point, students have dealt heavily with assembly language and can understand
the motivation behind what high-level programming languages provide. Chapter
11 also contains a simple C program, which we use to kick-start the process of
learning C.

Chapter 12 deals with values, variables, constants, and operators. Chapter 13
introduces C control structures. We provide many complete program examples
to give students a sample of how each of these concepts is used in practice. LC-2
code is used to demonstrate how each C construct affects the machine at the lower
levels.

In Chapter 14, students are exposed to techniques for debugging high-level
source code. Chapter 15 introduces functions in C. Students are not merely
exposed to the syntax of functions. Rather they learn how functions are actually
executed using a run-time stack. A number of examples are provided.

Chapter 16 teaches recursion, using the student's newly gained knowledge of
functions, activation records, and the run-time stack. Chapter 17 teaches pointers
and arrays, relying heavily on the student's understanding of how memory is
organized. Chapter 18 introduces the details of I/O functions in C, in particular,

xxii preface to the first edition

streams, variable length argument lists, and how C I/O is affected by the various
format specifications. This chapter relies on the student's earlier exposure to
physical I/O in Chapter 8. Chapter 19 concludes the coverage of C with structures,
dynamic memory allocation, and linked lists.

Along the way, we have tried to emphasize good programming style and
coding methodology by means of examples. Novice programmers probably learn
at least as much from the programming examples they read as from the rules they
are forced to study. Insights that accompany these examples are highlighted by
means of lightbulb icons that are included in the margins.

We have found that the concept of pointer variables (Chapter 17) is not at all
a problem. By the time students encounter it, they have a good understanding of
what memory is all about, since they have analyzed the logic design of a small
memory (Chapter 3). They know the difference, for example, between a memory
location's address and the data stored there.

Recursion ceases to be magic since, by the time a student gets to that point
(Chapter 16), he/she has already encountered all the underpinnings. Students
understand how stacks work at the machine level (Chapter 10), and they under-
stand the call/return mechanism from their LC-2 machine language programming
experience, and the need for linkages between a called program and the return to
the caller (Chapter 9). From this foundation, it is not a large step to explain func-
tions by introducing run-time activation records (Chapter 15), with a lot of the
mystery about argument passing, dynamic declarations, and so on, going away.
Since a function can call a function, it is one additional small step (certainly no
magic involved) for a function to call itself.

Horn to Use This Booh
We have discovered over the past two years that there are many ways the material
in this book can be presented in class effectively. We suggest six presentations
below:

1. The Michigan model. First course, no formal prerequisites. Very intensive,
this course covers the entire book. We have found that with talented, very
highly motivated students, this works best.

2. Normal usage. First course, no prerequisites. This course is also intensive,
although less so. It covers most of the book, leaving out Sections 10.3 and
10.4 of Chapter 10, Chapters 16 (recursion), 18 (the details of C I/O), and
19 (data structures).

3. Second course. Several schools have successfully used the book in their
second course, after the students have been exposed to programming with
an object-oriented programming language in a milder first course. In this
second course, the entire book is covered, spending the first two-thirds of
the semester on the first 10 chapters, and the last one-third of the semester
on the second half of the book. The second half of the book can move
more quickly, given that it follows both Chapters 1-10 and the

preface to the first edition xxi

introductory programming course, which the student has already taken.
Since students have experience with programming, lengthier
programming projects can be assigned. This model allows students who
were introduced to programming via an object-oriented language to pick
up C, which they will certainly need if they plan to go on to advanced
software courses such as operating systems.

4. Two quarters. An excellent use of the book. No prerequisites, the entire
book can be covered easily in two quarters, the first quarter for Chapters
1-10, the second quarter fcr Chapters 11-19.

5. Two semesters. Perhaps the optimal use of the book. A two-semester
sequence for freshmen. No formal prerequisites. First semester, Chapters
1-10, with supplemental material from Appendix C, the Microarchitecture
of the LC-2. Second semester, Chapters 11-19 with additional substantial
programming projects so that the students can solidify the concepts they
learn in lectures.

6. A sophomore course in computer hardware. Some universities have found
the book useful for a sophomore level breadth-first survey of computer
hardware. They wish to introduce students in one semester to number
systems, digital logic, computer organization, machine language and
assembly language programming, finishing up with the material on stacks,
activation records, recursion, and linked lists. The idea is to tie the
hardware knowledge the students have acquired in the first part of the
course to some of the harder to understand concepts that they struggled
with in their freshman programming course. We strongly believe the better
paradigm is to study the material in this book before tackling an
object-oriented language. Nonetheless, we have seen this approach used
successfully, where the sophomore student gets to understand the concepts
in this course, after struggling with them during the freshman year.

Some Observations
Understanding, Not Memorizing
Since the course builds from the bottom up, we have found that less memorization
of seemingly arbitary rules is required than in traditional programming courses.
Students understand that the rules make sense since by the time a topic is taught,
they have an awareness of how that topic is implemented at the levels below it. This
approach is good preparation for later courses in design, where understanding of
and insights gained from fundamental underpinnings are essential to making the
required design tradeoffs.

The Student Debugs the Student's Program
We hear complaints from industry all the time about CS graduates not being able
to program. Part of the problem is the helpful teaching assistant, who contributes
far too much of the intellectual component of the student's program, so the student

xxii preface to the first edition

never has to really master the art. Our approach is to push the student to do the
job without the teaching assistant (TA). Part of this comes from the bottom-
up approach where memorizing is minimized and the student builds on what
he/she already knows. Part of this is the simulator, which the student uses from
day one. The student is taught debugging from the beginning and is required to
use the debugging tools of the simulator to get his/her programs to work from
the very beginning. The combination of the simulator and the order in which
the subject material is taught results in students actually debugging their own
programs instead of taking their programs to the TA for help . . . and the common
result that the TAs end up writing the programs for the students.

Preparation for the Future: Cutting Through Protective Layers
In today's real world, professionals who use computers in systems but remain
ignorant of what is going on underneath are likely to discover the hard way
that the effectiveness of their solutions is impacted adversely by things other
than the actual programs they write. This is true for the sophisticated computer
programmer as well as the sophisticated engineer.

Serious programmers will write more efficient code if they understand what
is going on beyond the statements in their high-level language. Engineers, and not
just computer engineers, are having to interact with their computer systems today
more and more at the device or pin level. In systems where the computer is being
used to sample data from some metering device such as a weather meter or feed-
back control system, the engineer needs to know more than just how to program
in FORTRAN. This is true of mechanical, chemical, and aeronautical engineers
today, not just electrical engineers. Consequently, the high-level programming
language course, where the compiler protects the student from everything "ugly"
underneath, does not serve most engineering students well, and certainly does not
prepare them for the future.

Rippling Effects Through the Curriculum
The material of this text clearly has a rippling effect on what can be taught in
subsequent courses. Subsequent programming courses can not only assume the
students know the syntax of C but also understand how it relates to the under-
lying architecture. Consequently, the focus can be on problem solving and more
sophisticated data structures. On the hardware side, a similar effect is seen in
courses in digital logic design and in computer organization. Students start the
logic design course with an appreciation of what the logic circuits they master are
good for. In the computer organization course, the starting point is much further
along than when students are seeing the term Program Counter for the first time.
Feedback from Michigan faculty members in the follow-on courses have noticed
substantial improvement in students' comprehension, compared to what they saw
before students took EECS 100.

preface to the first edition

dchfloiiiledgments
This book has benefited greatly from important contributions of many, many
people. At the risk of leaving out some, we would at least like to acknowledge
the following.

First, Professor Kevin Compton. Kevin believed in the concept of the book
since it was first introduced at a curriculum committee meeting that he chaired
at Michigan in 1993. The book grew out of a course (EECS 100) that he and
the first author developed together, and co-taught the first three semesters it was
offered at Michigan in fall 1995, winter 1996, and fall 1996. Kevin's insights into
programming methodology (independent of the syntax of the particular language)
provided a sound foundation for the beginning student The course at Michigan
and this book would be a lot less were it not for Kevin's influence.

Several other students and faculty at Michigan were involved in the early years
of EECS 100 and the early stages of the book. We are particularly grateful for the
help of Professor David Kieras, Brian Hartman, David Armstrong, Matt Postiff,
Dan Friendly, Rob Chappell, David Cybulski, Sangwook Kim, Don Winsor, and
Ann Ford.

We also benefited enormously from TAs who were committed to helping
students learn. The focus was always on how to explain the concept so the student
gets it. We acknowledge, in particular, Fadi Aloul, David Armstrong, David Baker,
Rob Chappell, David Cybulski, Amolika Gurujee, Brian Hartman, Sangwook
Kim, Steve Maciejewski, Paul Racunas, David Telehowski, Francis Tseng, Aaron
Wagner, and Paul Watkins.

We were delighted with the response from the publishing world to our
manuscript. We ultimately decided on McGraw-Hill in large part because of the
editor, Betsy Jones. Once she checked us out, she became a strong believer in
what we are trying to accomplish. Throughout the process, her commitment and
energy level have been greatly appreciated. We also appreciate what Michelle
Flomenhoft has brought to the project. It has been a pleasure to work with her.

Our book has benefited from extensive reviews provided by faculty members
at many universities. We gratefully acknowledge reviews provided by Carl D.
Crane III, Florida, Nat Davis, Virginia Tech, Renee Elio, University of Alberta,
Kelly Flangan, BYU, George Friedman, UIUC, Franco Fummi, Universita di
Verona, Dale Grit, Colorado State, Thor Guisrud, Stavanger College, Brad Hutch-
ings, BYU, Dave Kaeli, Northeastern, Rasool Kenarangui, UT at Arlington, Joel
Kraft, Case Western Reserve, Wei-Ming Lin, UT at San Antonio, Roderick Loss,
Montgomery College, Ron Meleshko, Grant MacEwan Community College,
Andreas Moshovos, Northwestern, Tom Murphy, The Citadel, Murali Narayanan,
Kansas State, Carla Purdy, Cincinnati, T. N. Rajashekhara, Camden County Col-
lege, Nello Scarabottolo, Universita degli Studi di Milano, Robert Schaefer,
Daniel Webster College, Tage Stabell-Kuloe, University of Tromsoe, Jean-Pierre
Steger, Burgdorf School of Engineering, Bill Sverdlik, Eastern Michigan, John
Trono, St. Michael's College, Murali Varansi, University of South Florida,
Montanez Wade, Tennessee State, and Carl Wick, US Naval Academy.

xxiv preface to the first edition

In addition to all these people, there were others who contributed in many
different and sometimes unique ways. Space dictates that we simply list them and
say thank you. Susan Kornfield, Ed DeFranco, Evan Gsell, Rich Belgard, Tom
Conte, Dave Nagle, Bruce Shriver, Bill Sayle, Steve Lumetta, Dharma Agarwal,
David Lilja, and Michelle Chapman.

Finally, if you will indulge the first author a bit: This book is about developing
a strong foundation in the fundamentals with the fervent belief that once that is
accomplished, students can go as far as their talent and energy can take them.
This objective was instilled in me by the professor who taught me how to be a
professor, Professor William K. Linvill. It has been more than 35 years since I
was in his classroom, but I still treasure the example he set.

A Final Word
We hope you will enjoy the approach taken in this book. Nonetheless, we are
mindful that the current version will always be a work in progress, and both of
us welcome your comments on any aspect of it. You can reach us by email at
patt@ece.utexas.edu and sjp@crhc.uiuc.edu. We hope you will.

Yale N. Patt
Sanjay J. Patel

March 2000

mailto:patt@ece.utexas.edu
mailto:sjp@crhc.uiuc.edu

c h a p t e r

i

W e l c o m e Aboard

1.1 What He Hill Try to Do
Welcome to From Bits and Gates to C and Beyond. Our intent is to introduce
you over the next 632 pages to come, to the world of computing. As we do so,
we have one objective above all others: to show you very clearly that there is no
magic to computing. The computer is a deterministic system—every time we hit
it over the head in the same way and in the same place (provided, of course, it was
in the same starting condition), we get the same response. The computer is not
an electronic genius; on the contrary, if anything, it is an electronic idiot, doing
exactly what we tell it to do. It has no mind of its own.

What appears to be a very complex organism is really just a huge, system-
atically interconnected collection of very simple parts. Our job throughout this
book is to introduce you to those very simple parts, and, step-by-step, build the
interconnected structure that you know by the name computer. Like a house, we
will start at the bottom, construct the foundation first, and then go on to add layers
and layers, as we get closer and closer to what most people know as a full-blown
computer. Each time we add a layer, we will explain what we are doing, tying the
new ideas to the underlying fabric. Our goal is that when we are done, you will be
able to write programs in a computer language such as C, using the sophisticated
features of that language, and understand what is going on underneath, inside the
computer.

25 chapter 1 Welcome Aboard

1.2 How We Will Gel" There
We will start (in Chapter 2) by noting that the computer is a piece of electronic
equipment and, as such, consists of electronic parts interconnected by wires.
Every wire in the computer, at every moment in time, is either at a high voltage or
a low voltage. We do not differentiate exactly how high. For example, we do not
distinguish voltages of 115 volts from voltages of 118 volts. We only care whether
there is or is not a large voltage relative to 0 volts. That absence or presence of a
large voltage relative to 0 volts is represented as 0 or 1.

We will encode all information as sequences of Os and Is. For example, one
encoding of the letter a that is commonly used is the sequence 01100001. One
encoding of the decimal number 35 is the sequence 00100011. We will see how
to perform operations on such encoded information.

Once we are comfortable with information represented as codes made up
of 0s and Is and operations (addition, for example) being performed on these
representations, we will begin the process of showing how a computer works.
In Chapter 3, we will see how the transistors that make up today's microproces-
sors work. We will further see how those transistors are combined into larger
structures that perform operations, such as addition, and into structures that allow
us to save information for later use. In Chapter 4, we will combine these larger
structures into the Von Neumann machine, a basic model that describes how a
computer works. In Chapter 5, we will begin to study a simple computer, the
LC-3. LC-3 stands for Little Computer 3; we started with LC-1 but needed
two more shots at it before we got it right! The LC-3 has all the important
characteristics of the microprocessors that you may have already heard of, for
example, the Intel 8088, which was used in the first IBM PCs back in 1981. Or
the Motorola 68000, which was used in the Macintosh, vintage 1984. Or the Pen-
tium IV, one of the high-performance microprocessors of choice in the PC of the
year 2003. That is, the LC-3 has all the important characteristics of these "real"
microprocessors, without being so complicated that it gets in the way of your
understanding.

Once we understand how the LC-3 works, the next step is to program it, first
in its own language (Chapter 6), then in a language called assembly language
that is a little bit easier for humans to work with (Chapter 7). Chapter 8 deals
with the problem of getting information into (input) and out of (output) the LC-3.
Chapter 9 covers two sophisticated LC-3 mechanisms, TRAPs and subroutines.

We conclude our introduction to programming the LC-3 in Chapter 10 by
first introducing two important concepts (stacks and data conversion), and then
by showing a sophisticated example: an LC-3 program that carries out the work
of a handheld calculator.

In the second half of the book (Chapters 11-19), we turn our attention to
a high-level programming language, C. We include many aspects of C that are
usually not dealt with in an introductory textbook. In almost all cases, we try to tie
high-level C constructs to the underlying LC-3, so that you will understand what
you demand of the computer when you use a particular construct in a C program.

Our treatment of C starts with basic topics such as variables and operators
(Chapter 12), control structures (Chapter 13), and functions (Chapter 14). We then

1.3 Two Recurring Themes 3

move on to the more advanced topics of debugging C programs (Chapter 15),
recursion (Chapter 16), and pointers and arrays (Chapter 17).

We conclude our introduction to C by examining two very common high-level
constructs, input/output in C (Chapter 18) and the linked list (Chapter 19).

1.3 T U J O Recurring Themes
Two themes permeate this book that we have previously taken for granted,
assuming that everyone recognized their value and regularly emphasized them
to students of engineering and computer science. Lately, it has become clear to
us that from the git-go, we need to make these points explicit. So, we state them
here up front. The two themes are (a) the notion of abstraction and (b) the impor-
tance of not separating in your mind the notions of hardware and software. Their
value to your development as an effective engineer or computer scientist goes
well beyond your understanding of how a computer works and how to program it.

The notion of abstraction is central to all that you will learn and expect to
use in practicing your craft, whether it be in mathematics, physics, any aspect of
engineering, or business. It is hard to think of any body of knowledge where the
notion of abstraction is not central. The misguided hardware/software separation
is directly related to your continuing study of computers and your work with
them. We will discuss each in turn.

1.3.1 The Notion of Abstraction
The use of abstraction is all around us. When we get in a taxi and tell the driver,
"Take me to the airport," we are using abstraction. If we had to, we could probably
direct the driver each step of the way: "Go down this street ten blocks, and make
a left turn." And, when he got there, "Now take this street five blocks and make a
right turn." And on and on. You know the details, but it is a lot quicker to just tell
the driver to take you to the airport.

Even the statement "Go down this street ten blocks.. ." can be broken down
further with instructions on using the accelerator, the steering wheel, watching
out for other vehicles, pedestrians, etc.

Our ability to abstract is very much a productivity enhancer. It allows us to
deal with a situation at a higher level, focusing on the essential aspects, while
keeping the component ideas in the background. It allows us to be more efficient
in our use of time and brain activity. It allows us to not get bogged down in the
detail when everything about the detail is working just fine.

There is an underlying assumption to this, however: "when everything about
the detail is just fine." What if everything about the detail is not just fine? Then,
to be successful, our ability to abstract must be combined with our ability to
wn-abstract. Some people use the word deconstruct—the ability to go from the
abstraction back to its component parts.

Two stories come to mind.
The first involves a trip through Arizona the first author made a long time ago

in the hottest part of the summer. At the time I was living in Palo Alto, California,
where the temperature tends to be mild almost always. I knew enough to take

4 chapter 1 Welcome Aboard

the car to a mechanic before making the trip, and I told him to check the cooling
system. That was the abstraction: cooling system. What I had not mastered was
that the capability of a cooling system for Palo Alto, California is not the same as
the capability of a cooling system for the summer deserts of Arizona. The result:
two days in Deer Lodge, Arizona (population 3), waiting for a head gasket to be
shipped in.

The second story (perhaps apocryphal) is supposed to have happened during
the infancy of electric power generation. General Electric Co. was having trouble
with one of its huge electric power generators and did not know what to do.
On the front of the generator were lots of dials containing lots of information,
and lots of screws that could be rotated clockwise or counterclockwise as the
operator wished. Something on the other side of the wall of dials and screws was
malfunctioning and no one knew what to do. So, as the story goes, they called in
one of the early giants in the electric power industry. He looked at the dials and
listened to the noises for a minute, then took a small pocket screwdriver out of
his geek pack and rotated one screw 35 degrees counterclockwise. The problem
immediately went away. He submitted a bill for $1,000 (a lot of money in those
days) without any elaboration. The controller found the bill for two minutes' work
a little unsettling, and asked for further clarification. Back came the new bill:

Turning a screw 35 degrees counterclockwise: $ 0.75
Knowing which screw to turn and by how much: 999.25

In both stories the message is the same. It is more efficient to think of entities
as abstractions. One does not want to get bogged down in details unnecessarily.
And as long as nothing untoward happens, we are OK. If I had never tried to make
the trip to Arizona, the abstraction "cooling system" would have been sufficient.
If the electric power generator never malfunctioned, there would have been no
need for the power engineering guru's deeper understanding.

When one designs a logic circuit out of gates, it is much more efficient to
not have to think about the internals of each gate. To do so would slow down
the process of designing the logic circuit. One wants to think of the gate as a
component. But if there is a problem with getting the logic circuit to work, it
is often helpful to look at the internal structure of the gate and see if something
about its functioning is causing the problem.

When one designs a sophisticated computer application program, whether it
be a new spreadsheet program, word processing system, or computer game, one
wants to think of each of the components one is using as an abstraction. If one
spent time thinking about the details of a component when it is not necessary, the
distraction could easily prevent the total job from ever getting finished. But when
there is a problem putting the components together, it is often useful to examine
carefully the details of each component in order to uncover the problem.

The ability to abstract is a most important skill. In our view, one should try to
keep the level of abstraction as high as possible, consistent with getting everything
to work effectively. Our approach in this book is to continually raise the level of
abstraction. We describe logic gates in terms of transistors. Once we understand
the abstraction of gates, we no longer think in terms of transistors. Then we build

1.3 Two Recurring Themes 5

larger structures out of gates. Once we understand these larger abstractions, we
no longer think in terms of gates.

The Bottom Line
Abstractions allow us to be much more efficient in dealing with all kinds of
situations. It is also true that one can be effective without understanding what is
below the abstraction as long as everything behaves nicely. So, one should not
pooh-pooh the notion of abstraction. On the contrary, one should celebrate it since
it allows us to be more efficient.

In fact, if we never have to combine a component with anything else into a
larger system, and if nothing can go wrong with the component, then it is perfectly
fine to understand this component only at the level of its abstraction.

But if we have to combine multiple components into a larger system, we
should be careful not to allow their abstractions to be the deepest level of
our understanding. If we don't know the components below the level of their
abstractions, then we are at the mercy of them working together without our
intervention. If they don't work together, and we are unable to go below the level
of abstraction, we are stuck. And that is the state we should take care not to find
ourselves in.

1.3.2 Hardware versus Software
Many computer scientists and engineers refer to themselves as hardware people
or software people. By hardware, they generally mean the physical computer and
all the specifications associated with it. By software, they generally mean the
pro-ams, whether operating s> stems like UNIX or Windows, or database sys-
tems like Oracle or DB-terrific, or application programs like Excel or Word. The
implication is that the person knows a whole lot about one of these two things and
precious little about the other. Usually, there is the further implication that it is OK
to be an expert at one of these (hardware OR software) and clueless about the other.
It is as if there were a big wall between the hardware (the computer and how it actu-
ally works) and the software (the programs that direct the computer's bidding),
and that one should be content to remain on one side of that wall or the other.

As you approach your study and practice of computing, we urge you to take
the opposite approach—that hardware and software are names for components
of two parts of a computing system that work best when they are designed by
someone who took into account the capabilities and limitations of both.

Microprocessor designers who understand the needs of the programs that
will execute on that microprocessor they are designing can design much more
effective microprocessors than those who don't. For example, Intel, Motorola,
and other major producers of microprocessors recognized a few years ago that
a large fraction of future programs would contain video clips as part of e-mail,
video games, and full-length movies. They recognized that it would be important
for such programs to execute efficiently. The result: most microprocessors today
contain special hardware capability to process these video clips. Intel defined addi-
tional instructions, collectively called their MMX instruction set, and developed

6 chapter 1 Welcome Aboard

special hardware for it. Motorola, IBM, and Apple did essentially the same thing,
resulting in the AltaVec instruction set and special hardware to support it.

A similar story can be told about software designers. The designer of a large
computer program who understands the capabilities and limitations of the hard-
ware that will carry out the tasks of that program can design the program more
efficiently than the designer who does not understand the nature of the hardware.
One important task that almost all large software systems have to carry out is
called sorting, where a number of items have to be arranged in some order. The
words in a dictionary are arranged in alphabetical order. Students in a class are
often arranged in numeric order, according to their scores on the final exam. There
are a huge number of fundamentally different programs one can write to arrange
a collection of items in order. Donald Knuth devoted 391 pages to the task in The
Art of Computer Programming, vol. 3. Which sorting program works best is often
very dependent on how much the software designer is aware of the characteristics
of the hardware.

The Bottom Line
We believe that whether your inclinations are in the direction of a computer
hardware career or a computer software career, you will be much more capable if
you master both. This book is about getting you started on the path to mastering
both hardware and software. Although we sometimes ignore making the point
explicitly when we are in the trenches of working through a concept, it really is
the case that each sheds light on the other.

When you study data types, a software concept (in C, Chapter 12), you will
understand how the finite word length of the computer, a hardware concept, affects
our notion of data types.

When you study functions (in C, Chapter 14), you will be able to tie the rules
of calling a function with the hardware implementation that makes those rules
necessary.

When you study recursion (a powerful algorithmic device, in Chapter 16),
you will be able to tie it to the hardware. If you take the time to do that, you will
better understand when the additional time to execute a procedure recursively is
worth it.

When you study pointer variables (in C, in Chapter 17), your knowledge of
computer memory will provide a deeper understanding of what pointers provide,
when they should be used, and when they should be avoided.

When you study data structures (in C, in Chapter 19), your knowledge of com-
puter memory will help you better understand what must be done to manipulate
the actual structures in memory efficiently.

We understand that most of the terms in the preceding five short paragraphs
are not familiar to you yet. That is OK; you can reread this page at the end of the
semester. What is important to know right now is that there are important topics
in the software that are very deeply interwoven with topics in the hardware. Our
contention is that mastering either is easier if you pay attention to both.

Most importantly, most computing problems yield better solutions when the
problem solver has the capability of both at his or her disposal.

1.4 A Computer System 7

1.4 (1 Computer System
We have used the word computer many times in the preceding paragraphs, and
although we did not say so explicitly, we used it to mean a mechanism that does
two things: It directs the processing of information and it performs the actual
processing of information. It does both of these things in response to a com-
puter program. When we say "directing the processing of information," we mean
figuring out which task should get carried out next. When we say "performing
the actual processing," we mean doing the actual additions, multiplications, and
so forth that are necessary to get the job done. A more precise term for this mech-
anism is a central processing unit (CPU), or simply a processor. This textbook is
primarily about the processor and the programs that are executed by the processor.

Twenty years ago, the processor was constructed out of ten or more 18-inch
electronic boards, each containing 50 or more electronic parts known as inte-
grated circuit packages (see Figure 1.1). Today, a processor usually consists
of a single microprocessor chip, built on a piece of silicon material, measur-
ing less than an inch square, and containing many millions of transistors (see
Figure 1.2).

However, when most people use the word computer, they usually mean more
than the processor. They usually mean the collection of parts that in combination

Figure 1.1 A processor board, vintage 1980s (Courtesy of Emil io Salgueiro, Unisys
Corporation.)

Figure 1.2 A microprocessor, vintage 1998 (Courtesy of Intel Corporation.)

form their computer system (see Figure 1.3). A computer system usually includes,
in addition to the processor, a keyboard for typing commands, a mouse for clicking
on menu entries, a monitor for displaying information that the computer system
has produced, a printer for obtaining paper copies of that information, memory for
temporarily storing information, disks and CD-ROMs of one sort or another for
storing information for a very long time, even after the computer has been turned
off, and the collection of programs (the software) that the user wishes to execute.

1.5 Two Very Important Ideas

These additional items are useful in helping the computer user do his or her
job. Without a printer, for example, the user would have to copy by hand what
is displayed on the monitor. Without a mouse, the user would have to type each
command, rather than simply clicking on the mouse button.

So, as we begin our journey, which focuses on how we get less than 1 square
inch of silicon to do our bidding, we note that the computer systems we use
contain a lot of other components to make our life more comfortable.

1.5 Two Verij Important Ideas
Before we leave this first chapter, there are two very important ideas that we
would like you to understand, ideas that are at the core of what computing is all
about.

Idea 1: All computers (the biggest and the smallest, the fastest and the
slowest, the most expensive and the cheapest) are capable of computing
exactly the same things if they are given enough time and enough memory.
That is, anything a fast computer can do, a slow computer can do also.
The slow computer just does it more slowly. A more expensive computer
cannot figure out something that a cheaper computer is unable to figure
out as long as the cheap computer can access enough memory. (You may
have to go to the store to buy disks whenever it runs out of memory in
order to keep increasing memory.) All computers can do exactly the same
things. Some computers can do things faster, but none can do more than any
other.

Idea 2: We describe our problems in English or some other language spo-
ken by people. Yet the problems are solved by electrons running around
inside the computer. I t is necessary to transform our problem from the lan-
guage of humans to the voltages that influence the flow of electrons. This
transformation is really a sequence of systematic transformations, developed
and improved over the last 50 years, which combine to give the computer
the ability to carry out what appears to be some very complicated tasks. In
reality, these tasks are simple and straightforward.

The rest of this chapter is devoted to discussing these two ideas.

1.6 Computers as Universal Computational Devices
It may seem strange that an introductory textbook begins by describing how com-
puters work. After all, mechanical engineering students begin by studying physics,
not how car engines work. Chemical engineering students begin by studying
chemistry, not oil refineries. Why should computing students begin by studying
computers?

The answer is that computers are different. To learn the fundamental prin-
ciples of computing, you must study computers or machines that can do what

33 chapter 1 Welcome Aboard

computers can do. The reason for this has to do with the notion that computers
are universal computational devices. Let's see what that means.

Before modern computers, there were many kinds of calculating machines.
Some were analog machines—machines that produced an answer by measuring
some physical quantity such as distance or voltage. For example, a slide rule is
an analog machine that multiplies numbers by sliding one logarithmically graded
ruler next to another. The user can read a logarithmic "distance" on the second
ruler. Some early analog adding machines worked by dropping weights on a scale.
The difficulty with analog machines is that it is very hard to increase their accuracy.

This is why digital machines—machines that perform computations by
manipulating a fixed finite set of digits or letters—came to dominate comput-
ing. You are familiar with the distinction between analog and digital watches. An
analog watch has hour and minute hands, and perhaps a second hand. It gives
the time by the positions of its hands, which are really angular measures. Digital
watches give the time in digits. You can increase accuracy just by adding more
digits. For example, if it is important for you to measure time in hundredths of
a second, you can buy a watch that gives a reading like 10:35.16 rather than just
10:35. How would you get an analog watch that would give you an accurate read-
ing to one one-hundredth of a second? You could do it, but it would take a mighty
long second hand! When we talk about computers in this book, we will always
mean digital machines.

Before modern digital computers, the most common digital machines in the
West were adding machines. In other parts of the world another digital machine,
the abacus, was common. Digital adding machines were mechanical or elec-
tromechanical devices that could perform a specific kind of computation: adding
integers. There were also digital machines that could multiply integers. There
were digital machines that could put a stack of cards with punched names in
alphabetical order. The main limitation of all of these machines is that they could
do only one specific kind of computation. If you owned only an adding machine
and wanted to multiply two integers, you had some pencil and paper work to do.

This is why computers are different. You can tell a computer how to add
numbers. You can tell it how to multiply. You can tell it how to alphabetize a list or
perform any computation you like. When you think of a new kind of computation,
you do not have to buy or design a new computer. You just give the old computer a
new set of instructions (or program) to carry out the computation. This is why we
say the computer is a universal computational device. Computer scientists believe
that anything that can be computed, can be computed by a computer provided it
has enough time and enough memory. When we study computers, we study the
fundamentals of all computing. We learn what computation is and what can be
computed.

The idea of a universal computational device is due to Alan Turing. Tur-
ing proposed in 1937 that all computations could be carried out by a particular
kind of machine, which is now called a Turing machine. He gave a mathemat-
ical description of this kind of machine, but did not actually build one. Digital
computers were not operating until 1946. Turing was more interested in solving
a philosophical problem: defining computation. He began by looking at the kinds
of actions that people perform when they compute; these include making marks

1.6 Computers as Universal Computational Devices

ADD
a.b

(Turing machine
that adds)

a + b a, b
MUL

(Turing machine
that multiplies)

a x b

Figure 1 . 4 Black box models of Turing machines

on paper, writing symbols according to certain rules when other symbols are
present, and so on. He abstracted these actions and specified a mechanism that
could carry them out. He gave some examples of the kinds of things that these
machines could do. One Turing machine could add two integers; another could
multiply two integers.

Figure 1.4 provides what we call "black box" models of Turing machines
that add and multiply. In each case, the operation to be performed is described
in the box. The data on which to operate is shown as input to the box. The result
of the operation is shown as output from the box. A black box model provides no
information as to exactly how the operation is performed, and indeed, there are
many ways to add or multiply two numbers.

Turing proposed that every computation can be performed by some Turing
machine. We call this Turing's thesis. Although Turing's thesis has never been
proved, there does exist a lot of evidence to suggest it is true. We know, for
example, that various enhancements one can make to Turing machines do not
result in machines that can compute more.

Perhaps the best argument to support Turing's thesis was provided by Turing
himself in his original paper. He said that one way to try to construct a machine
more powerful than any particular Turing machine was to make a machine U
that could simulate all Turing machines. You would simply describe to U the
particular Turing machine you wanted it to simulate, say a machine to add two
integers, give U the input data, and U would compute the appropriate output, in
this case the sum of the inputs. Turing then showed that there was, in fact, a Turing
machine that could do this, so even this attempt to find something that could not
be computed by Turing machines failed.

Figure 1.5 further illustrates the point. Suppose you wanted to compute
g - + /) • You would simply provide to U descriptions of the Turing machines
to add and to multiply, and the three inputs, e, / , and g. U would do the rest.

In specifying U, Turing had provided us with a deep insight: He had given us
the first description of what computers do. In fact, both a computer (with as much

ÂDD> 7*MUL

e, f, g

U

(Universal
Turing machine)

gx(e+f)

Figure 1.5 Black box model of a universal Turing machine

35 chapter 1 Welcome Aboard

memory as it wants) and a universal Turing machine can compute exactly the same
things. In both cases you give the machine a description of a computation and the
data it needs, and the machine computes the appropriate answer. Computers and
universal Turing machines can compute anything that can be computed because
they are programmable.

This is the reason that a big or expensive computer cannot do more than a
small, cheap computer. More money may buy you a faster computer, a monitor
with higher resolution, or a nice sound system. But if you have a small, cheap
computer, you already have a universal computational device.

1.7 How Do We Get the Electrons to Do [lie WorH?
Figure 1.6 shows the process we must go through to get the electrons (which
actually do the work) to do our bidding. We call the steps of this process the

Problems

Algorithms

Language

Machine (ISA) Architecture

Microarchitecture

Circuits

Figure 1.6

Devices
Levels of transformation

1.7 How Do We Get the Electrons to Do the Work?

"Levels of Transformation." As we will see, at each level we have choices. If we
ignore any of the levels, our ability to make the best use of our computing system
can be very adversely affected.

1.7.1 The Statement of the Problem
We describe the problems we wish to solve with a computer in a "natural
language." Natural languages are languages that people speak, like English,
French, Japanese, Italian, and so on. They have evolved over centuries in accor-
dance with their usage. They are fraught with a lot of things unacceptable for
providing instructions to a computer. Most important of these unacceptable
attributes is ambiguity. Natural language is filled with ambiguity. To infer the
meaning of a sentence, a listener is often helped by the tone of voice of the
speaker, or at the very least, the context of the sentence.

An example of ambiguity in English is the sentence, "Time flies like an arrow."
At least three interpretations are possible, depending on whether (1) one is noticing
how fast time passes, (2) one is at a track meet for insects, or (3) one is writing a
letter to the Dear Abby of Insectville. In the first case, a simile, one is comparing
the speed of time passing to the speed of an arrow that has been released. In the
second case, one is telling the timekeeper to do his/her job much like an arrow
would. In the third case, one is relating that a particular group of flies (time flies,
as opposed to fruit flies) are all in love with the same arrow.

Such ambiguity would be unacceptable in instructions provided to a com-
puter. The computer, electronic idiot that it is, can only do as it is told. To tell it to
do something where there are multiple interpretations would cause the computer
to not know which interpretation to follow.

1.7.2 The Algorithm
The first step in the sequence of transformations is to transform the natural lan-
guage description of the problem to an algorithm, and in so doing, get rid of
the objectionable characteristics. An algorithm is a step-by-step procedure that is
guaranteed to terminate, such that each step is precisely stated and can be carried
out by the computer. There are terms to describe each of these properties.

We use the term definiteness to describe the notion that each step is precisely
stated. A recipe for excellent pancakes that instructs the preparer to "stir until
lumpy" lacks definiteness, since the notion of lumpiness is not precise.

We use the term effective computability to describe the notion that each step
can be carried out by a computer. A procedure that instructs the computer to "take
the largest prime number" lacks effective computability, since there is no largest
prime number.

We use the termftniteness to describe the notion that the procedure terminates.
For every problem there are usually many different algorithms for solving

that problem. One algorithm may require the fewest number of steps. Another
algorithm may allow some steps to be performed concurrently. A computer that
allows more than one thing to be done at a time can often solve the problem in

37 chapter 1 Welcome Aboard

less time, even though it is likely that the total number of steps to be performed
has increased.

1.7.3 The Program
The next step is to transform the algorithm into a computer program, in one of the
programming languages that are available. Programming languages are "mechan-
ical languages." That is, unlike natural languages, mechanical languages did not
evolve through human discourse. Rather, they were invented for use in specifying
a sequence of instructions to a computer. Therefore, mechanical languages do not
suffer from failings such as ambiguity that would make them unacceptable for
specifying a computer program.

There are more than 1,000 programming languages. Some have been designed
for use with particular applications, such as Fortran for solving scientific calcula-
tions and COBOL for solving business data-processing problems. In the second
half of this book, we will use C, a language that was designed for manipulating
low-level hardware structures.

Other languages are useful for still other purposes. Prolog is the language of
choice for many applications that require the design of an expert system. LISP
was for years the language of choice of a substantial number of people working
on problems dealing with artificial intelligence. Pascal is a language invented as
a vehicle for teaching beginning students how to program.

There are two kinds of programming languages, high-level languages and
low-level languages. High-level languages are at a distance (a high level) from the
underlying computer. At their best, they are independent of the computer on which
the programs will execute. We say the language is "machine independent." All the
languages mentioned thus far are high-level languages. Low-level languages are
tied to the computer on which the programs will execute. There is generally one
such low-level language for each computer. That language is called the assembly
language for that computer.

1.7.4 The ISA
The next step is to translate the program into the instruction set of the particular
computer that will be used to carry out the work of the program. The instruction set
architecture (ISA) is the complete specification of the interface between programs
that have been written and the underlying computer hardware that must carry out
the work of those programs.

The ISA specifies the set of instructions the computer can carry out, that
is, what operations the computer can perform and what data is needed by each
operation. The term operand is used to describe individual data values. The ISA
specifies the acceptable representations for operands. They are called data types.
A data type is a legitimate representation for an operand such that the computer
can perform operations on that representation. The ISA specifies the mechanisms
that the computer can use to figure out where the operands are located. These
mechanisms are called addressing modes.

1.7 How Do We Get the Electrons to Do the Work?

The number of operations, data types, and addressing modes specified by
an ISA vary among the different ISAs. Some ISAs have as few as a half dozen
operations, whereas others have as many as several hundred. Some ISAs have
only one data type, while others have more than a dozen. Some ISAs have one or
two addressing modes, whereas others have more than 20. The x86, the ISA used
in the PC, has more than 100 operations, more than a dozen data types, and more
than two dozen addressing modes.

The ISA also specifies the number of unique locations that comprise the
computer's memory and the number of individual 0s and Is that are contained in
each location.

Many ISAs are in use today. The most common example is the x86, introduced
by Intel Corporation in 1979 and currently also manufactured by AMD and other
companies. Other ISAs are the Power PC (IBM and Motorola), PA-RISC (Hewlett
Packard), and SPARC (Sun Microsystems).

The translation from a high-level language (such as C) to the ISA of the
computer on which the program will execute (such as x86) is usually done by a
translating program called a compiler. To translate from a program written in C
to the x86 ISA, one would need an x86 C compiler. For each high-level language
and each desired target computer, one must provide a corresponding compiler.

The translation from the unique assembly language of a computer to its ISA
is done by an assembler.

1.7.5 The Microarchitecture
The next step is to transform the ISA into an implementation. The detailed organ-
ization of an implementation is called its microarchitecture. So, for example, the
x86 has been implemented by several different microprocessors over the years,
each having its own unique microarchitecture. The original implementation was
the 8086 in 1979. More recently, in 2001, Intel introduced the Pentium IV micro-
processor. Motorola and IBM have implemented the Power PC ISA with more
than a dozen different microprocessors, each having its own microarchitecture.
Two of the more recent implementations are the Motorola MPC 7455 and the
IBM Power PC 750FX.

Each implementation is an opportunity for computer designers to make dif-
ferent trade-offs between the cost of the microprocessor and the performance that
microprocessor will provide. Computer design is always an exercise in trade-offs,
as the designer opts for higher (or lower) performance at greater (or lesser) cost.

The automobile provides a good analogy of the relationship between an ISA
and a microarchitecture that implements that ISA. The ISA describes what the
driver sees as he/she sits inside the automobile. All automobiles provide the same
interface (an ISA different from the ISA for boats and the ISA for airplanes).
Of the three pedals on the floor, the middle one is always the brake. The one on
the right is the accelerator, and when it is depressed, the car will move faster. The
ISA is about basic functionality. All cars can get from point A to point B, can
move forward and backward, and can turn to the right and to the left.

39 chapter 1 Welcome Aboard

The implementation of the ISA is about what goes on under the hood. Here
all automobile makes and models are different, depending on what cost/perfor-
mance trade-offs the automobile designer made before the car was manufactured.
So, some automobiles come with disc brakes, others (in the past, at least) with
drums. Some automobiles have eight cylinders, others run on six cylinders,
and still others have four. Some are turbocharged, some are not. In each case,
the "microarchitecture" of the specific automobile is a result of the automobile
designers' decisions regarding cost and performance.

1.7.6 The Logic Circuit
The next step is to implement each element of the microarchitecture out of simple
logic circuits. Here, also, there are choices, as the logic designer decides how to
best make the trade-offs between cost and performance. So, for example, even
for the simple operation of addition, there are several choices of logic circuits to
perform this operation at differing speeds and corresponding costs.

1.7.7 The Devices
Finally, each basic logic circuit is implemented in accordance with the require-
ments of the particular device technology used. So, CMOS circuits are different
from NMOS circuits, which are different, in turn, from gallium arsenide
circuits.

1.7.8 Putting It Together
In summary, from the natural language description of a problem to the electrons
running around that actually solve the problem, many transformations need to be
performed. If we could speak electron, or the electrons could understand English,
perhaps we could just walk up to the computer and get the electrons to do our
bidding. Since we can't speak electron and they can't speak English, the best we
can do is this systematic sequence of transformations. At each level of transfor-
mation, there are choices as to how to proceed. Our handling of those choices
determines the resulting cost and performance of our computer.

In this book, we describe each of these transformations. We show how tran-
sistors combine to form logic circuits, how logic circuits combine to form the
microarchitecture, and how the microarchitecture implements a particular ISA,
in our case, the LC-3. We complete the process by going from the English-
language description of a problem to a C program that solves the problem,
and we show how that C program is translated (i.e., compiled) to the ISA of
the LC-3.

We hope you enjoy the ride.

Exercises 17

1.1 Explain the first of the two important ideas stated in Section 1.5.
1.2 Can a higher-level programming language instruct a computer to

compute more than a lower-level programming language?
1.3 What difficulty with analog computers encourages computer designers to

use digital designs?
1.4 Name one characteristic of natural languages that prevents them from

being used as programming languages.
1.5 Say we had a "black box," which takes two numbers as input and outputs

their sum. See Figure 1.7a. Say we had another box capable of
multiplying two numbers together. See Figure 1.7b. We can connect these
boxes together to calculate p x (m + n). See Figure 1.7c. Assume we
have an unlimited number of these boxes. Show how to connect them
together to calculate:

a. ax + b
b. The average of the four input numbers w, x, y, and z
c. a2 + lab + b2 (Can you do it with one add box and one multiply box?)

1.6 Write a statement in a natural language and offer two different
interpretations of that statement.

1.7 The discussion of abstraction in Section 1.3.1 noted that one does not
need to understand the makeup of the components as long as "everything
about the detail is just fine." The case was made that when everything is
not fine, one must be able to deconstruct the components, or be at the
mercy of the abstractions. In the taxi example, suppose you did not
understand the component, that is, you had no clue how to get to the
airport. Using the notion of abstraction, you simply tell the driver,

(a) (b) (c)
m n m n m n p

px(m+ n)

Figure 1.7 "Black boxes" capable of (a) addition, Cb) mult ipl ication, and (c) a
combination of addition and multipl ication

18 chapter 1 Welcome Aboard

'Take me to the airport." Explain when this is a productivity enhancer,
and when it could result in very negative consequences.

1.8 John said, "I saw the man in the park with a telescope." What did he
mean? How many reasonable interpretations can you provide for this
statement? List them. What property does this sentence demonstrate that
makes it unacceptable as a statement in a program.

1-9 Are natural languages capable of expressing algorithms?
1.10 Name three characteristics of algorithms. Briefly explain each of these

three characteristics.
1.11 For each characteristic of an algorithm, give an example of a procedure

that does not have the characteristic, and is therefore not an algorithm.
1.12 Are items a through e in the following list algorithms? If not, what

qualities required of algorithms do they lack?
a. Add the first row of the following matrix to another row whose first

column contains a nonzero entry. (Reminder: Columns run vertically;
rows run horizontally.)

- 1 2 0 4"
0 3 2 4
2 3 10 22
12 4 3 4

b. In order to show that there are as many prime numbers as there are
natural numbers, match each prime number with a natural number in
the following manner. Create pairs of prime and natural numbers by
matching the first prime number with 1 (which is the first natural
number) and the second prime number with 2, the third with 3, and so
forth. If, in the end, it turns out that each prime number can be paired
with each natural number, then it is shown that there are as many
prime numbers as natural numbers.

c. Suppose you're given two vectors each with 20 elements and asked to
perform the following operation. Take the first element of the first
vector and multiply it by the first element of the second vector. Do the
same to the second elements, and so forth. Add all the individual
products together to derive the dot product.

d. Lynne and Calvin are trying to decided who will take the dog for a
walk. Lynne suggests that they flip a coin and pulls a quarter out of
her pocket. Calvin does not trust Lynne and suspects that the quarter
may be weighted (meaning that it might favor a particular outcome
when tossed) and suggests the following procedure to fairly determine
who will walk the dog.
1. Flip the quarter twice.
2. If the outcome is heads on the first flip and tails on the second,

then I will walk the dog.
3. If the outcome is tails on the first flip, and heads on the second,

then you will walk the dog.

Exercises 19

4. If both outcomes are tails or both outcomes are heads, then we flip
twice again.

Is Calvin's technique an algorithm?
e. Given a number, perform the following steps in order:

1. Multiply it by four
2. Add four
3. Divide by two
4. Subtract two
5. Divide by two
6. Subtract one
7. At this point, add one to a counter to keep track of the fact that you

performed steps 1 through 6. Then test the result you got when you
subtracted one. If 0, write down the number of times you
performed steps 1 through 6 and stop. If not 0, starting with the
result of subtracting 1, perform the above 7 steps again.

1.13 Two computers, A and B, are identical except for the fact that A has a
subtract instruction and B does not. Both have add instructions. Both
have instructions that can take a value and produce the negative of that
value. Which computer is able to solve more problems, A or B? Prove
your result.

1.14 Suppose we wish to put a set of names in alphabetical order. We call the
act of doing so sorting. One algorithm that can accomplish that is called
the bubble sort. We could then program our bubble sort algorithm in C,
and compile the C program to execute on an x86 ISA. The x86 ISA can
be implemented with an Intel Pentium IV microarchitecture. Let us call
the sequence "Bubble Sort, C program, x86 ISA, Pentium IV
microarchitecture" one transformation process.

Assume we have available four sorting algorithms and can
program in C, C++, Pascal, Fortran, and COBOL. We have available
compilers that can translate from each of these to either x86 or SPARC,
and we have available three different microarchitectures for x86 and
three different microarchitectures for SPARC.
a. How many transformation processes are possible?
b. Write three examples of transformation processes.
c. How many transformation processes are possible if instead of three

different microarchitectures for x86 and three different
microarchitectures for SPARC, there were two for x86 and four for
SPARC?

1.15 Identify one advantage of programming in a higher-level language
compared to a lower-level language. Identify one disadvantage.

1.16 Name at least three things specified by an ISA.

1.17 Briefly describe the difference between an ISA and a microarchitecture.

chapter 1 Welcome Aboard

1-18 How many ISAs are normally implemented by a single
microarchitecture? Conversely, how many microarchitectures could exist
for a single ISA?

1.19 List the levels of transformation and name an example for each level.
1.20 The levels of transformation in Figure 1.6 are often referred to as levels

of abstraction. Is that a reasonable characterization? If yes, give an
example. If no, why not?

1.21 Say you go to the store and buy some word processing software. What
form is the software actually in? Is it in a high-level programming
language? Is it in assembly language? Is it in the ISA of the computer on
which you'll run it? Justify your answer.

1.22 Suppose you were given a task at one of the transformation levels shown
in Figure 1.6, and required to tranform it to the level just below. At which
level would it be most difficult to perform the transformation to the next
lower level? Why?

1.23 Why is an ISA unlikely to change between successive generations of
microarchitectures that implement it? For example, why would Intel want
to make certain that the ISA implemented by the Pentium III is the same
as the one implemented by the Pentium II? Hint: When you upgrade your
computer (or buy one with a newer CPU), do you need to throw out all
your old software?

c h a p \ e r

2

Bi ts . Dafa T y p e s , and O p e r a t i o n s

2.1 Bits and Data T p s
2.1.1 The Bit as the Unit of Information
We noted in Chapter 1 that the computer was organized as a system with several
levels of transformation. A problem stated in a natural language such as English
is actually solved by the electrons moving around inside the electronics of the
computer.

Inside the computer, millions of very tiny, very fast devices control the move-
ment of those electrons. These devices react to the presence or absence of voltages
in electronic circuits. They could react to the actual voltages, rather than simply
to the presence or absence of voltages. However, this would make the control and
detection circuits more complex than they need to be. It is much easier simply to
detect whether or not a voltage exists between a pair of points in a circuit than it
is to measure exactly what that voltage is.

To understand this, consider any wall outlet in your home. You could measure
the exact voltage it is carrying, whether 120 volts or 115 volts, or 118.6 volts,
for example. However, the detection circuitry to determine only whether there
is a voltage (any of the above three will do) or whether there is no voltage is
much simpler. Your finger casually inserted into the wall socket, for example,
will suffice.

We symbolically represent the presence of a voltage as "1" and the absence
of a voltage as "0." We refer to each 0 and each 1 as a "bit," which is a shortened
form of binary digit. Recall the digits you have been using since you were a

45 chapter 2 Bits, Data Types, and Operations

child—0, 1, 2, 3 , . . . , 9. There are 10 of them, and they are referred to as decimal
digits. In the case of binary digits, there are two of them, 0 and 1.

To be perfectly precise, it is not really the case that the computer differentiates
the absolute absence of a voltage (that is, 0) from the absolute presence of a voltage
(that is, 1). Actually, the electronic circuits in the computer differentiate voltages
close to 0 from voltages far from 0. So, for example, if the computer expects
a voltage of 2.9 volts or a voltage of 0 volts (2.9 volts signifying 1 and 0 volts
signifying 0), then a voltage of 2.6 volts will be taken as a 1 and 0.2 volts will be
taken as a 0.

To get useful work done by the computer, it is necessary to be able to identify
uniquely a large number of distinct values. The voltage on one wire can represent
uniquely one of only two things. One thing can be represented by 0, the other thing
can be represented by 1. Thus, to identify uniquely many things, it is necessary
to combine multiple bits. For example, if we use eight bits (corresponding to
the voltage present on eight wires), we can represent one particular value as
01001110, and another value as 11100111. In fact, if we are limited to eight bits,
we can differentiate at most only 256 (that is, 28) different values. In general,
with k bits, we can distinguish at most 2k distinct items. Each pattern of these k
bits is a code; that is, it corresponds to a particular value.

2.1.2 Data Types
There are many ways to represent the same value. For example, the number five
can be written as a 5. This is the standard decimal notation that you are used to. The
value five can also be represented by someone holding up one hand, with all fingers
and thumb extended. The person is saying, "The number I wish to communicate
can be determined by counting the number of fingers I am showing." A written
version of that scheme would be the value 11111. This notation has a name
also—unary. The Romans had yet another notation for five—the character V. We
will see momentarily that a fourth notation for five is the binary representation
00000101.

It is not enough simply to represent values; we must be able to operate on those
values. We say a particular representation is a data type if there are operations in
the computer that can operate on information that is encoded in that representation.
Each ISA has its own set of data types and its own set of instructions that can
operate on those data types. In this book, we will mainly use two data types:
2's complement integers for representing positive and negative integers that we
wish to perform arithmetic on, and ASCII codes for representing characters on
the keyboard that we wish to input to a computer or display on the computer's
monitor. Both data types will be explained shortly.

There are other representations of information that could be used, and indeed
that are present in most computers. Recall the "scientific notation" from high
school chemistry where you were admonished to represent the decimal num-
ber 621 as 6.21102. There are computers that represent numbers in that form,
and they provide operations that can operate on numbers so represented. That
data type is usually called floating point. We will show you its representation in
Section 2.6.

2.2 Integer Data Types

2.2 Integer Data Types
2.2.1 Unsigned Integers
The first representation of information, or data type, that we shall look at is the
unsigned integer. Unsigned integers have many uses in a computer. If we wish
to perform a task some specific number of times, unsigned integers enable us to
keep track of this number easily by simply counting how many times we have
performed the task "so far." Unsigned integers also provide a means for identifying
different memory locations in the computer, in the same way that house numbers
differentiate 129 Main Street from 131 Main Street.

We can represent unsigned integers as strings of binary digits. To do this, we
use a positional notation much like the decimal system that you have been using
since you were three years old.

You are familiar with the decimal number 329, which also uses positional
notation. The 3 is worth much more than the 9, even though the absolute value of
3 standing alone is only worth 1/3 the value of 9 standing alone. This is because,
as you know, the 3 stands for 300 (3 * 102) due to its position in the decimal string
329, while the 9 stands for 9 • 10°.

The 2's complement representation works the same way, except that the digits
used are the binary digits 0 and 1, and the base is 2, rather than 10. So, for example,
if we have five bits available to represent our values, the number 6 is represented
as 00110, corresponding to

0 • 24 + 0 • 23 + 1 • 22 + 1 • 21 + 0 • 2°

With k bits, we can represent in this positional notation exactly 2k integers, ranging
from 0 to 2k — 1. In our five-bit example, we can represent the integers from 0 to 31.

2.2.2 Signed Integers
However, to do useful arithmetic, it is often (although not always) necessary to
be able to deal with negative quantities as well as positive. We could take our 2k

distinct patterns of k bits and separate them in half, half for positive numbers, and
half for negative numbers. In this way, with five-bit codes, instead of representing
integers from 0 to +31, we could choose to represent positive integers from +1
to +15 and negative integers from —1 to —15. There are 30 such integers. Since
25 is 32, we still have two 5-bit codes unassigned. One of them, 00000, we would
presumably assign to the value 0, giving us the full range of integer values from
— 15 to +15. That leaves one more five-bit code to assign, and there are different
ways to do this, as we will see momentarily.

We are still left with the problem of determining what codes to assign to what
values. That is, we have 32 codes, but which value should go with which code?

Positive integers are represented in the straightforward positional scheme.
Since there are k bits, and we wish to use exactly half of the 2k codes to represent
the integers from 0 to 2k~l — 1, all positive integers will have a leading 0 in their
representation. In our example (with k = 5), the largest positive integer +15 is
represented as 01111.

47 chapter 2 Bits, Data Types, and Operations

Representation Value Represented

Signed Magnitude l's Complement 2's Complement

00000 0 0 0
00001 1 1 1
00010 2 2 2
00011 3 3 3
00100 4 4 4
00101 5 5 5
00110 6 6 6
00111 7 7 7
01000 8 8 8
01001 9 9 9
01010 10 10 10
01011 11 11 11
01100 12 12 12
01101 13 13 13
01110 14 14 14
01111 15 15 15
10000 - 0 - 1 5 - 1 6
10001 - 1 - 1 4 - 1 5
10010 - 2 - 1 3 - 1 4
10011 - 3 - 1 2 - 1 3
10100 - 4 - 1 1 - 1 2
10101 - 5 - 1 0 - 1 1
10110 - 6 - 9 - 1 0
10111 - 7 - 8 - 9
11000 - 8 - 7 - 8
11001 - 9 - 6 - 7
11010 - 1 0 - 5 - 6
11011 - 1 1 - 4 - 5
11100 - 1 2 - 3 - 4
11101 - 1 3 - 2 - 3
11110 - 1 4 - 1 - 2
11111 - 1 5 - 0 - 1

Figure 2.1 Three representations of signed integers

Note that in all three data types shown in Figure 2.1, the representation for 0
and all the positive integers start with a leading 0. What about the representations
for the negative numbers (in our five-bit example, —1 to -15)? The first thought
that usually comes to mind is: If a leading 0 signifies a positive integer, how about
letting a leading 1 signify a negative integer? The result is the signed-magnitude
data type shown in Figure 2.1. A second idea (which was actually used on some
early computers such as the Control Data Corporation 6600) was the following:
Let a negative number be represented by taking the representation of the positive
number having the same magnitude, and "flipping" all the bits. So, for example,

2.3 2's Complement Integers

since +5 is represented as 00101, we designate —5 as 11010. This data type is
referred to in the computer engineering community as 1's complement, and is
also shown in Figure 2.1.

At this point, you might think that a computer designer could assign any bit
pattern to represent any integer he or she wants. And you would be right! Unfor-
tunately, that could complicate matters when we try to build a logic circuit to add
two integers. In fact, the signed-magnitude and l 's complement data types both
require unnecessarily cumbersome hardware to do addition. Because computer
designers knew what it would take to design a logic circuit to add two integers,
they chose representations that simplified that logic circuit. The result is the 2's
complement data type, also shown in Figure 2.1. It is used on just about every
computer manufactured today.

2.3 2's Complement Integers
We see in Figure 2.1 the representations of the integers from —16 to +15 for the
2's complement data type. Why were the representations chosen that way?

The positive integers, we saw, are represented in the straightforward posi-
tional scheme. With five bits, we use exactly half of the 25 codes to represent 0
and the positive integers from 1 to 24 — 1.

The choice of representations for the negative integers was based, as we said
previously, on the wish to keep the logic circuits as simple as possible. Almost all
computers use the same basic mechanism to do addition. It is called an arithmetic
and logic unit, usually known by its acronym ALU. We will get into the actual
structure of the ALU in Chapters 3 and 4. What is relevant right now is that an
ALU has two inputs and one output. It performs addition by adding the binary bit
patterns at its inputs, producing a bit pattern at its output that is the sum of the
two input bit patterns.

For example, if the ALU processed five-bit input patterns, and the two inputs
were 00110 and 00101, the result (output of the ALU) would be 01011. The
addition is as follows:

00110
00101
01011

The addition of two binary strings is performed in the same way addition
of two decimal strings is performed, from right to left, column by column. If
the addition in a column generates a carry, the carry is added to the column
immediately to its left.

What is particularly relevant is that the binary ALU does not know (and does
not care) what the two patterns it is adding represent. It simply adds the two binary
patterns. Since the binary ALU only ADDs and does not CARE, it would be a
nice benefit of our assignment of codes to the integers if it resulted in the ALU
doing the right thing.

26 chapter 2 Bits, Data Types, and Operations

For starters, it would be nice if, when the ALU adds the representation for an
arbitrary integer to the integer of the same magnitude and opposite sign, the sum
is 0. That is, if the inputs to the ALU are the representations of non-zero integers
A and -A, the output of the ALU should be 00000.

To accomplish that, the 2's complement data type specifies the representation
for each negative integer so that when the ALU adds it to the representation of
the positive integer of the same magnitude, the result will be the representation
for 0. For example, since 00101 is the representation of +5, 11011 is chosen as
the representation for —5.

Moreover, and more importantly, as we sequence from representations of
— 15 to +15, the ALU is adding 00001 to each successive representation.

We can express this mathematically as:

REPRESENTATION(value + 1) =
REPRESENTATION(value) + REPRESENTATION 1).

Example 2.1

This is sufficient to guarantee (as long as we do not get a result larger than
+15 or smaller than — 16) that the binary ALU will perform addition correctly.

Note in particular the representations for — 1 and 0, that is, 11111 and 00000.
When we add 00001 to the representation for —1, we do get 00000, but we also
generate a carry. That carry does not influence the result. That is, the correct
result of adding 00001 to the representation for —1 is 0, not 100000. Therefore,
the carry is ignored. In fact, because the carry obtained by adding 00001 to 11111
is ignored, the carry can always be ignored when dealing with 2's complement
arithmetic.

Note: A shortcut for figuring out the representation for ~A(A ^ 0), if we
know the representation for A, is as follows: Flip all the bits of A (the term for
"flip" is complement), and add 1 to the complement of A. The sum of A and the
complement of A is 11111. If we then add 00001 to 11111, the final result is
00000. Thus, the representation for —A can be easily obtained by adding 1 to the
complement of A.

What is ilie 2's complement representation for - 137

1. Lei A be \ 13. Then the representation for A is 01101.

2. The complement of A is 10010.

3. Adding 1 to 10010 gives us 10011, the 2's complement representation for - 1 3 .

We can verify our result by adding the representations for A and - A,

00000

You may have noticed that the addition of 01101 and 10011, in addition to
producing 00000, also produces a carry out of the five-bit ALU. That is, the binary

2.4 Binary-Decimal Conversion

addition of 01101 and 10011 is really 100000. However, as we saw previously,
this carry out can be ignored in the case of the 2's complement data type.

At this point, we have identified in our five-bit scheme 15 positive integers. We
have constructed 15 negative integers. We also have a representation for 0. With
k = 5, we can uniquely identify 32 distinct quantities, and we have accounted for
only 31 (15 + 15 + 1). The remaining representation is 10000. What value shall
we assign to it?

We note that—1 is 11111, —2is 11110, —3 is 11101, and so on. If we continue
this, we note that —15 is 10001. Note that, as in the case of the positive represen-
tations, as we sequence backwards from representations of —1 to —15, the ALU
is subtracting 00001 from each successive representation. Thus, it is convenient
to assign to 10000 the value —16; that is the value one gets by subtracting 00001
from 10001 (the representation for —15).

In Chapter 5 we will specify a computer that we affectionately have named
the LC-3 (for Little Computer 3). The LC-3 operates on 16-bit values. Therefore,
the 2's complement integers that can be represented in the LC-3 are the integers
from -32,768 to +32,767.

2.4 Binary-Decimal Conversion
It is often useful to convert integers between the 2's complement data type and
the decimal representation that you have used all your life.

2.4.1 Binary to Decimal Conversion
We convert from 2's complement to a decimal representation as follows: For
purposes of illustration, we will assume 2's complement representations of eight
bits, corresponding to decimal integer values from —128 to +127.

Recall that an eight-bit 2's complement number takes the form

aj as a4 <23 a\ ao

where each of the bits a,- is either 0 or 1.

1. Examine the leading bit aj. If it is a 0, the integer is positive, and we can
begin evaluating its magnitude. If it is a 1, the integer is negative. In that
case, we need to first obtain the 2's complement representation of the
positive number having the same magnitude.

2. The magnitude is simply

a6 • 26 + as • 25 + a4 • 24 + a 3 • 23 + a2 • 22 + a\ • 21 + a 0 • 2°

which we obtain by simply adding the powers of 2 that have coefficients
of 1.

3. Finally, if the original number is negative, we affix a minus sign in front.
Done!

28 chapter 2 Bits, Data Types, and Operations

Example 2.2 Convert ihe 2's complement integer IIU00111 U) a decimal integer value.

1. Sincc ihc leading binary digit is a 1, the number is negative. We must first find the
2's complement representation of the positive number of the same magnitude.
This is 00111001.

2. The magnitude can be represented as

0 • 26 + I • 2s + I • 24 + 1 • 2* + 0 • 2~ \ 0 • 21 \ 1 • 2°

3 2 + 16 \ K + 1.

3. The decimal integer value corresponding to 11000111 is 57.

2.4.2 Decimal to Binary Conversion
Converting from decimal to 2's complement is a little more complicated. The
crux of the method is to note that a positive binary number is odd if the rightmost
digit is 1 and even if the rightmost digit is 0.

Consider again our generic eight-bit representation:

a7 • 27 + a6 • 26 + a 5 • 25 + a4 • 24 + a 3 • 23 + a2 • 22 + a\ • 21 + a 0 • 2°

We can illustrate the conversion best by first working through an example.
Suppose we wish to convert the value +105 to a 2's complement binary

code. We note that +105 is positive. We first find values for a*, representing the
magnitude 105. Since the value is positive, we will then obtain the 2's complement
result by simply appending a-], which we know is 0.

Our first step is to find values for a,- that satisfy the following:

105 = a6 • 26 + a5 • 25 + a4 • 24 + a3 • 23 + a2 * 22 + a\ • 21 + a0 • 2°

Since 105 is odd, we know that ao is 1. We subtract 1 from both sides of the
equation, yielding

104 = * 26 + a5 • 25 + 04 • 24 + a3 • 23 + a2 • 22 + ax - 21

We next divide both sides of the equation by 2, yielding

52 = a6 • 25 + a 5 • 24 + a 4 • 23 +a3 • 22 + a 2 • 21 + a\ • 2°

We note that 52 is even, so a\9 the only coefficient not multiplied by a power of
2, must be equal to 0.

We now iterate the process, each time subtracting the rightmost digit from
both sides of the equation, then dividing both sides by 2, and finally noting whether
the new decimal number on the left side is odd or even. Starting where we left
off, with

52 = a6 • 25 + a5 • 24 + a4 • 23 + a3 • 22 + a2 • 21
r

the process produces, in turn:

26 = a 6 - 24 + a5 • 23 + aA • 22 + a3 - 21 + a2 • 2°

2.5 Operations on Bits—Part I: Arithmetic

Therefore, a i — 0.

13 = a6 • 23 + a5 • 22 + a4 • 21 + a3 - 2°

Therefore, a3 = 1.

6 = a6 • 22 + a5 • 21 + a4 • 2°

Therefore, <34 = 0.

3 = a6 • 21 + a 5 • 2°

Therefore, = 1.

1 = a6 - 2°

Therefore, = 1, and we are done. The binary representation is 01101001.
Let's summarize the process. If we are given a decimal integer value N, we

construct the 2's complement representation as follows:

1. We first obtain the binary representation of the magnitude of N by forming
the equation

N = a6 • 26 + a5 • 25 + <z4 • 24 + a3 • 23 + a 2 • 22 + ax * 21 + • 2°

and repeating the following, until the left side of the equation is 0:
a. If N is odd, the rightmost bit is 1. If N is even, the rightmost bit is 0.
b. Subtract 1 or 0 (according to whether N is odd or even) from N,

remove the least significant term from the right side, and divide both
sides of the equation by 2.

Each iteration produces the value of one coefficient a,-.
2. If the original decimal number is positive, append a leading 0 sign bit, and

you are done.
3. If the original decimal number is negative, append a leading 0 and then

form the negative of this 2's complement representation, and then you
are done.

2.5 Operations on B i t s — P a r t I: Arithmetic
2.5.1 Addition and Subtraction
Arithmetic on 2's complement numbers is very much like the arithmetic on
decimal numbers that you have been doing for a long time.

Addition still proceeds from right to left, one digit at a time. At each point,
we generate a sum digit and a carry. Instead of generating a carry after 9 (since
9 is the largest decimal digit), we generate a carry after 1 (since 1 is the largest
binary digit).

53 chapter 2 Bits, Data Types, and Operations

Using our five-bit notation, what is 11 + 3?

The decimal value 11 is represented as 01011
The decimal value 3 is represented 00011
The sum, which is the value 14, is OHIO

Subtrac t ion is s imply addi t ion, p receded b y de te rmin ing the negat ive of the
n u m b e r to b e subtracted. Tha t is, A — B is s imply A + (—B).

The decimal value 14 is represented as 01110
The decimal value 9 is represented as 01001

First we form the negative, that is, -9: 10111

Adding 14 to -9, we get . 01110

which results in the value 5. 00101

Note again that the carry out is ignored.

What happens when wo add a number to itself (e.g., jr + jr)?
Let's assume for this example eight-bit codes, which would allow us to represent

integers from - 1 2 8 to 127. Consider a value for A, the integer 59, represented as
00111011. If we add 59 to itself, we get the code 01110110. Note that the bits have all
shifted to the left by one position. Is that a curiosity, or will thul happen all tiie time
long as the sum a +• a is not too large to represent with the a\;iilahle miinher of hiK.'

Using our positional notation, the number 59 is

0 - 26 + I • 2 s -I I • 2'1 + I • 23 -M) • 2* t I • 21 H • 2°

The sum 59 f 59 is 2 • 59, which, in our representation, is

2 • (0 • 2° I I • 2 s + 1 • 24 + I • 2* M> • 22 f I • 21 +• I • 2°)

But that is nothing more than

0 • 27 + 1 • 26 I 1 - 2 * + 1 - 2 4 + 0 - 2 3 + 1 -2 2 + I • 21

which shifts each digit one position to the left. Thus, adding a number to itself (provided
there are enough bits to represent the result) is equivalent to shifting the repri'scnUiiun
one bit position to the left.

2.5.2 Sign-Extension
It is o f t en u s e f u l to represent a smal l n u m b e r wi th f e w e r bi ts . For example , ra ther
than represent the va lue 5 as 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 , there are t imes w h e n it is u s e f u l

2.5 Operations on Bits—Part I : Arithmetic

to allocate only six bits to represent the value 5:000101. There is little confusion,
since we are all used to adding leading zeros without affecting the value of a
number. A check for $456.78 and a check for $0000456.78 are checks having the
same value.

What about negative representations ? We obtained the negative representation
from its positive counterpart by complementing the positive representation and
adding 1. Thus, the representation for —5, given that 5 is represented as 000101,
is 111011. If 5 is represented as 0000000000000101, then the representation for
—5 is 1111111111111011. In the same way that leading 0s do not affect the value
of a positive number, leading Is do not affect the value of a negative number.

In order to add representations of different lengths, it is first necessary to
represent them with the same number of bits. For example, suppose we wish to
add the number 13 to - 5 , where 13 is represented as 0000000000001101 and
—5 is represented as 111011. If we do not represent the two values with the same
number of bits, we have

0000000000001X01
+ 111011

When we attempt to perform the addition, what shall we do with the missing bits
in the representation for —5? If we take the absence of a bit to be a 0, then we are
no longer adding —5 to 13. On the contrary, if we take the absence of bits to be
0s, we have changed the —5 to the number represented as 0000000000111011,
that is +59. Not surprisingly, then, our result turns out to be the representation
for 72.

However, if we understand that a six-bit —5 and a 16-bit —5 differ only in
the number of meaningless leading Is, then we first extend the value of —5 to 16
bits before we perform the addition. Thus, we have

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
+ 1111111111111011

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

and the result is +8, as we should expect.
The value of a positive number does not change if we extend the sign bit

0 as many bit positions to the left as desired. Similarly, the value of a negative
number does not change by extending the sign bit 1 as many bit positions to the
left as desired. Since in both cases, it is the sign bit that is extended, we refer
to the operation as Sign-EXTension, often abbreviated SEXT. Sign-extension is
performed in order to be able to operate on bit patterns of different lengths. It
does not affect the values of the numbers being represented.

2.5.3 Overflow
Up to now, we have always insisted that the sum of two integers be small enough
to be represented by the available bits. What happens if such is not the case?

You are undoubtedly familiar with the odometer on the front dashboard of
your automobile. It keeps track of how many miles your car has been driven—but
only up to a point. In the old days, when the odometer registered 99992 and you

55 chapter 2 Bits, Data Types, and Operations

drove it 100 miles, its new reading became 00092. A brand new car! The problem,
as you know, is that the largest value the odometer could store was 99999, so the
value 100092 showed up as 00092. The canyout of the ten-thousands digit was
lost. (Of course, if you grew up in Boston, the carryout was not lost at all—it was
in full display in the rusted chrome all over the car.)

We say the odometer overflowed. Representing 100092 as 00092 is unac-
ceptable. As more and more cars lasted more than 100,000 miles, car makers felt
the pressure to add a digit to the odometer. Today, practically all cars overflow at
1,000,000 miles, rather than 100,000 miles.

The odometer provides an example of unsigned arithmetic. The miles you
add are always positive miles. The odometer reads 000129 and you drive 50 miles.
The odometer now reads 000179. Overflow is a carry out of the leading digit.

In the case of signed arithmetic, or more particularly, 2's complement
arithmetic, overflow is a little more subtle.

Let's return to our five-bit 2's complement data type, which allowed us to
represent integers from —16 to +15. Suppose we wish to add +9 and +11. Our
arithmetic takes the following form:

01001
01011
10100

Note that the sum is larger than +15, and therefore too large to represent with
our 2's complement scheme. The fact that the number is too large means that the
number is larger than 01111, the largest positive number we can represent with
a five-bit 2's complement data type. Note that because our positive result was
larger than +15, it generated a carry into the leading bit position. But this bit
position is used to indicate the sign of a value. Thus detecting that the result is
too large is an easy matter. Since we are adding two positive numbers, the result
must be positive. Since the ALU has produced a negative result, something must
be wrong. The thing that is wrong is that the sum of the two positive numbers
is too large to be represented with the available bits. We say that the result has
overflowed the capacity of the representation.

Suppose instead, we had started with negative numbers, for example, —12
and —6. In this case our arithmetic takes the following form:

10100
11010
OHIO

Here, too, the result has overflowed the capacity of the machine, since -12-1—6
equals —18, which is "more negative" than —16, the negative number with the
largest allowable magnitude. The ALU obliges by producing a positive result.
Again, this is easy to detect since the sum of two negative numbers cannot be
positive.

2.6 Operations on Bits—Part I I : Logical Operations 56

Note that the sum of a negative number and a positive number never presents
a problem. Why is that? See Exercise 2.25.

S.G Operations on B i t s — P a r i II: Logical Operations
We have seen that it is possible to perform arithmetic (e.g., add, subtract) on
values represented as binary patterns. Another class of operations that it is useful
to perform on binary patterns is the set of logical operations.

Logical operations operate on logical variables. A logical variable can have
one of two values, 0 or 1. The name logical is a historical one; it comes from the
fact that the two values 0 and 1 can represent the two logical values false and true,
but the use of logical operations has traveled far from this original meaning.

There are several basic logic functions, and most ALUs perform all of them.

2.6.1 The AND Function
AND is a binary logical function. This means it requires two pieces of input data.
Said another way, AND requires two source operands. Each source is a logical
variable, taking the value 0 or 1. The output of AND is 1 only if both sources have
the value 1. Otherwise, the output is 0. We can think of the AND operation as the
ALL operation; that is, the output is 1 only if ALL two inputs are 1. Otherwise,
the output is 0.

A convenient mechanism for representing the behavior of a logical operation
is the truth table. A truth table consists of n + 1 columns and 2n rows. The first
n columns correspond to the n source operands. Since each source operand is a
logical variable and can have one of two values, there are 2n unique values that
these source operands can have. Each such set of values (sometimes called an
input combination) is represented as one row of the truth table. The final column
in the truth table shows the output for each input combination.

In the case of a two-input AND function, the truth table has two columns for
source operands, and four (22) rows for unique input combinations.

A B AND
0 0 0
0 1 0
1 0 0
1 1 1

We can apply the logical operation AND to two bit patterns of m bits each. This
involves applying the operation individually to each pair of bits in the two source
operands. For example, if a and b in Example 2.6 are 16-bit patterns, then c is
the AND of a and b. This operation is often called a bit-wise AND.

34 chapter 2 Bits, Data Types, and Operations

E-.i-rnl- 2.6 IfristJicANDoftfandA.whcrctf - (X)l 1 IdtOOl 101(H)] aml/i . ulul UM>ICKJ1 tJtHN11

Wc form the AND o f « and b by hit-wise ANDing the two values.
Thai means individually ANDing each pairufbits rii and/?/ to form r-i. For example,

since«0 = I and hn 1.,-Uisihi' - \NDol Mand hi). which is I.
Since = 1 and b6 0, c is the AND of and b6, which is 0.
The complete solution for c is

a: 0011101001101001
b: 0101100100100001
c: booiioooboiooooi

Suppose wc hate an cight-hii p;iilern. lei's call it A, in which the rightmost two bits have
particular significance. The computer could be asked to do one of four tasks depending
on the value stored in the two rightmost bits of A. Can we isolate those two bits?

Yes, we can, using a bit mask. A bit mask is a binary patten that enables the hits
of A Lo be separated into two parts generally the part you care about and the pail uui
wish it* it'iiiMV. hi ihi\ I'lhi*. ihe hil mask (XXHKH)I1 ANDed with .-A producc^ II in hii
positions 7 through 2. and the original values of bits 1 and 0 of A in hit positions 1
and 0. The bit mask is said to mask our the values in bit positions 7 through 2.

If A is 01010110. the AND of A and the bit mask (XXXXX)I1 is (XXXXX)IO. If 4 is
11111100, the AND of A and the bit mask (XXXXX)l I is (XXXXXXX).

That is. the result of ANDing any eight-bit pattern with the mask (XXXKXJl I is
one of the four patterns (XXXXXXX), 00000001. 0(XXXX)10, or (XXXXXH1. The result of
ANDing with the mask is to hiuhlipht the t\w> hits thai arc1 rde\ant.

2.6.2 The OR Function
OR is also a binary logical function. It requires two source operands, both of
which are logical variables. The output of OR is 1 if any source has the value 1.
Only if both sources are 0 is the output 0. We can think of the OR operation as
the ANY operation; that is, the output is 1 if ANY of the two inputs are 1.

The truth table for a two-input OR function is

B

0 0

0 1

1 0

1 1

OR

In the same way that we applied the logical operation AND to two m-bit patterns,
we can apply the OR operation bit-wise to two m-bit patterns.

2.6 Operations on Bits—Part I I : Logical Operations 35

I1Y is the OR of « and b. where a = 0011101001101001 and b = 0101100100100001.
as before, what is c?

We form the OR of a and h by bit-wise ORing the two values. That means
individually ORing each pair of hits ai and hi to form ci. For example. Mike i/t» I
and bO = 1, rO is ihe OR of aO and W), which is 1. Since u6 = I and b(t = 0, c is the
OR of Aft and /j6. which is also 1.

The complete solution lor c is

a: 001110X00X101001
b: 0X01100100100001
C : 0111101101101001

Sometimes this OR operation is referred to as the inclusive-OR in order to distinguish
it from the exelusive-OR function, which we will discuss momentarily.

Example 2.8

2.6.3 The NOT Function
NOT is a unary logical function. This means it operates on only one source
operand. It is also known as the complement operation. The output is formed by
complementing the input. We sometimes say the output is formed by inverting
the input. A 1 input results in a 0 output. A 0 input results in a 1 output.

The truth table for the NOT function is

A NOT
0 1
1 0

In the same way that we applied the logical operation AND and OR to two ra-bit
patterns, we can apply the NOT operation bit-wise to one m-bit pattern. If a is as
before, then c is the NOT of a.

a: 0011101001101001
c: 1100010110010110

2.6.4 The Exclusive-OR Function
Exclusive-OR, often abbreviated XOR, is a binary logical function. It, too,
requires two source operands, both of which are logical variables. The output
of XOR is 1 if the two sources are different. The output is 0 if the two sources are
the same.

36

Example 2.9

chapter 2 Bits, Data Types, and Operations

The truth table for the XOR function is

B

0 0

0 1

1 0

XOR

In the same way that we applied the logical operation AND to two m-bit patterns,
we can apply the XOR operation bit-wise to two m-bit patterns.

If*/ and b are 16-bit patterns as before, then c (shown here) is the XOR of a and b.

a: 00X1101001101001
b: 0101100100100001
C: 0110001101001000

Note the distinction between the truth table for XOR shown here and the truth table lor
OR shown earlier. In the ease of cxclusive-OK, if both source operands are 1, the output
is 0. That is. the output is I if the first operand is 1 but the second operand is not I or if
the second operand is I but the first operand is not I. The term exclusive is used because
the output is I if only one of the two sources is 1. The OR function, on the other hand,
produces an output I if only one of the two sources is I, or if both sources are 1. Ergo,
the name inclusive-OR.

Example 2.10 Suppose we wish to know if two patterns arc identical. Since the XOR function produces
a 0 only if the corresponding pair of bits is identical, two patterns are identical if the
output of the XOR is all zeros.

2.7 Other Representations
Four other representations of information that we will find useful in our work
are the bit vector, the floating point data type, ASCII codes, and hexadecimal
notation.

2.7.1 The Bit Vector
It is often useful to describe a complex system made up of several units, each
of which is individually and independently busy or available. This system could
be a manufacturing plant where each unit is a particular machine. Or the system
could be a taxicab network where each unit is a particular taxicab. In both cases,
it is important to identify which units are busy and which are available, so that
work can be assigned as needed.

Say we have n such units. We can keep track of these n units with an n-bit
binary pattern we call a bit vector, where a bit is 1 if the unit is free and 0 if the
unit is busy.

2.7 Other Representations 37

Suppose we have eight machines that we want to monitor with respect to their avail-
ability. We can keep track of them with an eight-bit BUSYNESS bit vector, where a
bit is 1 if the unit is free and 0 if the unit is busy. The bits are labeled, from right to
left, from 0 to 7.

The BUSYNESS bit vector 11000010 corresponds to the situation where only
units 7, 6, and 1 are free, and therefore available for work assignment.

Suppose work is assigned to unit 7. We update our BUSYNESS bit vector by
performing the logical AND, where our two sources are the current bit vector 11000010
and the bit mask 01111111. The purpose of the bit mask is to clear bit 7 of the
BUSYNESS bit vector. The result is the bit vector 01000010.

Recall that we encountered the concept of bit mask in Example 2.7. Recall that a
bit mask enables one to interact some bits of a binary pattern while ignoring the rest.
In this case, the bit mask clears bit 7 and leaves unchanged (ignores) bits 6 through 0.

Suppose unit 5 finishes its task and becomes idle. We can update the BUSYNESS
bit vector by performing the logical OR of it with the bit mask 00100000. The result
is 01100010.

2.7.2 Floating Point Data Type
Most of the arithmetic we will do in this book uses integer values. For example,
the LC-3 uses the 16-bit, 2's complement data type, which provides, in addition
to one bit to identify positive or negative, 15 bits to represent the magnitude of the
value. With 16 bits used in this way, we can express values between —32,768 and
+32,767, that is, between —215 and +21 5 — 1. We say the precision of our value is
15 bits, and the range is 215. As you learned in high school chemistry or physics,
sometimes we need to express much larger numbers, but we do not require so
many digits of precision. In fact, recall the value 6.023-1023, which you may have
been required to memorize back then. The range required to express this value
is far greater than the 215 available with 16-bit 2's complement integers. On the
other hand, the 15 bits of precision available with 16-bit 2's complement integers
is overkill. We need only enough bits to express four significant decimal digits
(6023).

So we have a problem. We have more bits than we need for precision. But
we don't have enough bits to represent the range.

The floating point data type is the solution to the problem. Instead of using
all the bits (except the sign bit) to represent the precision of a value, the floating
point data type allocates some of the bits to the range of values (i.e., how big or
small) that can be expressed. The rest of the bits (except for the sign bit) are used
for precision.

Most IS As today specify more than one floating point data type. One of them,
usually called float, consists of 32 bits, allocated as follows:

1 bit for the sign (positive or negative)
8 bits for the range (the exponent field)

23 bits for precision (the fraction field)

E x a m p l e 2 . 1 1

chapter 2 Bits, Data Types, and Operations

1 ^ 8 - 23

exponent fraction

s exponent -127
N = (-1) x 1 .fraction x2 ,1 $ exponent <r 254

Figure 2 . 2 The floating point data type

In most computers manufactured today, these bits represent numbers according to
the formula in Figure 2.2. This formula is part of the IEEE Standard for Floating
Point Arithmetic.

Recall that we said that the floating point data type was very much like the sci-
entific notation you learned in high school, and we gave the example 6.023 • 1023.
This representation has three parts: the sign, which is positive, the significant dig-
its 6.023, and the exponent 23. We call the significant digits the fraction. Note
that the fraction is normalized, that is, exactly one nonzero decimal digit appears
to the left of the decimal point.

The data type and formula of Figure 2.2 also consist of these three parts.
Instead of a fraction (i.e., significant digits) of four decimal digits, we have 23
binary digits. Note that the fraction is normalized, that is, exactly one nonzero
binary digit appears to the left of the binary point. Since the nonzero binary digit
has to be a 1 (1 is the only nonzero binary digit) there is no need to represent that
bit explicitly. Thus, the formula of Figure 2.2 shows 24 bits of precision, the 23
bits from the data type and the leading one bit to the left of the binary point that
is unnecessary to represent explicitly.

Instead of an exponent of two decimal digits as in 6.023 • 1023, we have in
Figure 2.2 eight binary digits. Instead of a radix of 10, we have a radix of 2. With
eight bits to represent the exponent, we can represent 256 exponents. Note that
the formula only gives meaning to 254 of them. If the exponent field contains
00000000 (that is, 0) or 11111111 (that is, 255), the formula does not tell you
how to interpret the bits. We will look at those two special cases momentarily.

For the remaining 254 values in the exponent field of the floating point data
type, the explanation is as follows: The actual exponent being represented is the
unsigned number in the data type minus 127. For example, if the actual exponent
is +8, the exponent field contains 10000111, which is the unsigned number 135.
Note that 135 — 127 = 8. If the actual exponent is —125, the exponent field
contains 00000010, which is the unsigned number 2. Note that 2 - 127 = -125.

The third part is the sign bit: 0 for positive numbers, 1 for negative numbers.
The formula contains the factor — I s , which evaluates to +1 if s — 0, and —1
i f s = 1.

2.7 Other Representations 39

How is the number — 6$ represented in the floating point data type.'
hirst, we express —6| as a binary number: —110.101.

• (I • 22 + 1 • 21 0 • 2° 1 • 2~1 + 0 - 2 2 + I - 2"'',)

Then we normalize the value, yielding —1.10101 • 22.
The sign bit is 1, reflecting the fact that - 6 § is a negative number. The exponent

field contains 10(XXXX)l, the unsigned number 129, reflecting the fact that the real
exponent is + 2 (129 - 127 = \-2). 'ITie fraction is the 23 bits of precision, after
removing the leading 1. That is, the fraction is 101010000000CXXXXXXXXXX). The
result is the number - expressed as a floating point number:

1 L0000001 10101000000000000000000

What does the floating point data type

0 0 1 1 1 1 0 1 1 0

represent?
The leading bit is a 0. This signifies a positive number. The next eight bits

represent the unsigned number 123. If we subtract 127, we get the actual expo-
nent - 4 . The last 23 bits are all 0. Therefore the number being represented is
+ 1.0(XXXXXXXXXXXXXX)0(XXXKXX) • 2 4 , which is

We noted that the interpretation of the 32 bits required that the exponent lield
contain neither (XXXXXX)O nor] 1111111. The IEEE Standard for Floating Point Arith-
metic also specifies how to interpret the 32 bits if the exponent field contains (XXXXXXX)
or 111 111 I I.

li the exponent lield contains (XXXJ0000. the exponent is 126, and the significant
digits are obtained by starting with a leading 0, followed by a binary point, followed
by the 23 bits of the fraction field, as follows:

P • 0. fraction • 2"126

E x a m p l e 2 . 1 2

Example 2.13

For example, the floating point data representation

0 00000000 00001000000000000000000

can be evaluated as follows: The leading 0 means the number is positive. The next eight
bits, a zero exponent, means the exponent is - 1 2 6 . The last 23 bits form the number
0.00001 (XXX)000(X)00000(XXM), which equals 2 s . Thus, the number represented is
2 w h i c h is 2

This allows very tiny numbers to be represented.

40 chapter 2 Bits, Data Types, and Operations

The following four examples provide further illustrations of the interpretation of the
32-hit floating poini dala type according to the rules of the IliHLi standard.

0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 is 1.00101 • 24 == 18.5

The exponent tield contains the unsigned number 131. Since 131 - 127 is 4. the exponent
is j 4. Combining a I to the left of the binary point with the fraction held lo the right of
the binary point yields 1.00101. If we move the binary point four positions to the right,
we get 10010.1, which is 1 X.5.

110000 010 00101000000000000000000 is - 1 • 1.00101 '2* = -9.25

The sign bit is I. signifying a negative number. The exponent is 130. signifying an
exponent of 130 - 127. or +3. Combining a I to the left of the binary point with the
fraction field to the right of the binary point yields 1.00101. Moving the binary point
three positions to the right, we get 1001.01. which is —9.25.

011111 110 11111111111111111111111 is -2 1 2 8

The sign is K The exponent is 254 - 127, or f 127. Combining a 1 lo the left of the
binary point with the fraction lieldlo the right of the binary point yields 1.11111111 . . . I.
which is approximately 2. Therefore, the result is approximately 2 , 2 X .

1 0 1 is - 2 ~ 1 4 9

The sign is - . The exponent field contains all 0s. signifying an exponent of -12(i .
Combining a 0 to the left of the binary point with the fraction field to the right of
the binarv point yields 2 for the fraction. Therefore, the number represented is

2" • 2 which e q u a l s - 2

A detailed understanding of IEEE Floating Point Arithmetic is well beyond
what should be expected in this first course. Indeed, we have not even considered
how to interpret the 32 bits if the exponent field contains 11111111. Our purpose
in including this section in the textbook is to at least let you know that there is, in
addition to 2's complement integers, another very important data type available
in almost all IS As. This data type is called floating point, it allows very large
and very tiny numbers to be expressed at the expense of reducing the number of
binary digits of precision.

2.7.3 ASCII Codes
Another representation of information is the standard code that almost all com-
puter equipment manufacturers have agreed to use for transferring character codes
between the main computer processing unit and the input and output devices. That
code is an eight-bit code referred to as ASCII. ASCII stands for American Stan-
dard Code for Information Interchange. It (ASCII) greatly simplifies the interface
between a keyboard manufactured by one company, a computer made by another
company, and a monitor made by a third company.

2.7 Other Representations 64

Each key on the keyboard is identified by its unique ASCII code. So, for
example, the digit 3 expanded to 8 bits with a leading 0 is 00110011, the digit 2
is 00110010, the lowercase e is 01100101, and the carriage return is 00001101.
The entire set of eight-bit ASCII codes is listed in Figure E.3 of Appendix E.
When you type a key on the keyboard, the corresponding eight-bit code is stored
and made available to the computer. Where it is stored and how it gets into the
computer is discussed in Chapter 8.

Most keys are associated with more than one code. For example, the ASCII
code for the letter E is 01000101, and the ASCII code for the letter e is 01100101.
Both are associated with the same key, although in one case the Shift key is also
depressed while in the other case, it is not.

In order to display a particular character on the monitor, the computer must
transfer the ASCII code for that character to the electronics associated with the
monitor. That, too, is discussed in Chapter 8.

2.7.4 Hexadecimal Notation
We have seen that information can be represented as 2's complement integers,
as bit vectors, in floating point format, or as an ASCII code. There are other
representations also, but we will leave them for another book. However, before
we leave this topic, we would like to introduce you to a representation that is used
more as a convenience for humans than as a data type to support operations being
performed by the computer. This is the hexadecimal notation. As we will see, it
evolves nicely from the positional binary notation and is useful for dealing with
long strings of binary digits without making errors.

It will be particularly useful in dealing with the LC-3 where 16-bit binary
strings will be encountered often.

An example of such a binary string is

0011110101101110

Let's try an experiment. Cover the preceding 16-bit binary string of 0s and Is
with one hand, and try to write it down from memory. How did you do? Hexadec-
imal notation is about being able to do this without making mistakes. We shall
see how.

In general, a 16-bit binary string takes the form

a\5 a\4 ai3 a\2 a\\ a\$ ag a% a-] as a4 <23 ai a\ ao

where each of the bits a; is either 0 or 1.
If we think of this binary string as an unsigned integer, its value can be

computed as

a\$ • 215 + flu • 214 + an • 213 + a12 • 212 + an • 211 + aw • 210

+ a9 • 29 + • 28 + an • 27 + a6 - 26 + a5 • 25 + a4 - 24 + a3 • 23

+ a 2 - 2 2 + a i -21 + a o * 2 °

65 chapter 2 Bits, Data Types, and Operations

We can factor 212 from the first four terms, 28 from the second four terms, 24

from the third set of four terms, and 2° from the last four terms, yielding

2n[ax5 • 23 + ai4 • 22 + a13 . 21 + al2 • 2°]

+ 2 8[f l l l • 23 + aio • 22 + a9 • 21 + «8 • 2°]

+ 24[a7 • 23 + a6 • 22 + a5 * 21 + a4 • 2°]

+ 2°[a3 • 23 + • 22 + ai • 21 + a0 • 2°]

Note that the largest value inside a set of square brackets is 15, which would be
the case if each of the four bits is 1. If we replace what is inside each square
bracket by a symbol representing its value (from 0 to 15), and we replace 212 by
its equivalent 163, 28 by 162, 24 by 161, and 2° by 16°, we have

h3 • 163 + h2 • 162 + hi • 161 + h0 • 16°

where h3, for example, is a symbol representing

a\s • 23 + fli4 • 22 + a n • 21 + 012 • 2°

Since the symbols must represent values from 0 to 15, we assign symbols to
these values as follows: 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. That is, we
represent 0000 with the symbol 0,0001 with the symbol 1 , . . . 1001 with 9,1010
with A, 1011 with B, . . . 1111 with F. The resulting notation is hexadecimal, or
base 16.

So, for example, if the hex digits E92F represent a 16-bit 2's complement
integer, is the value of that integer positive or negative? How do you know?

Now, then, what is this hexadecimal representation good for, anyway? It
seems like just another way to represent a number without adding any benefit.
Let's return to the exercise where you tried to write from memory the string

0011110101101110

If we had first broken the string at four-bit boundaries

0011 1101 0110 1110

and then converted each four-bit string to its equivalent hex digit

3 D 6 E
it would have been no problem to jot down (with the string covered) 3D6E.

In summary, hexadecimal notation is mainly used as a convenience for
humans. It can be used to represent binary strings that are integers or floating
point numbers or sequences of ASCII codes, or bit vectors. It simply reduces the
number of digits by a factor of 4, where each digit is in hex (0,1, 2 , . . . F) instead
of binary (0, 1). The usual result is far fewer copying errors due to too many 0s
and Is.

Exercises 43

2.1 Given n bits, how many distinct combinations of the n bits exist?
2.2 There are 26 characters in the alphabet we use for writing English. What

is the least number of bits needed to give each character a unique bit
pattern? How many bits would we need to distinguish between upper-
and lowercase versions of all 26 characters?

2.3 a. Assume that there are about 400 students in your class. If every
student is to be assigned a unique bit pattern, what is the minimum
number of bits required to do this?

b. How many more students can be admitted to the class without
requiring additional bits for each student's unique bit pattern?

2.4 Given n bits, how many unsigned integers can be represented with the n
bits? What is the range of these integers?

2.5 Using 5 bits to represent each number, write the representations of 7 and
—7 in l 's complement, signed magnitude, and 2's complement integers.

2.6 Write the 6-bit 2's complement representation of —32.
2.7 Create a table showing the decimal values of all 4-bit 2's complement

numbers.
2.8 a. What is the largest positive number one can represent in an 8-bit 2's

complement code? Write your result in binary and decimal.
b. What is the greatest magnitude negative number one can represent in

an 8-bit 2's complement code? Write your result in binary and
decimal.

c. What is the largest positive number one can represent in n-bit 2's
complement code?

d. What is the greatest magnitude negative number one can represent in
n-bit 2's complement code?

2.9 How many bits are needed to represent Avogadro's number (6.02 • 1023)
in 2's complement binary representation?

2.10 Convert the following 2's complement binary numbers to decimal.
a. 1010
b. 01011010
c. 11111110
d. 0011100111010011

2.11 Convert these decimal numbers to 8-bit 2's complement binary numbers.
a. 102
b. 64
c. 33
d. - 1 2 8

127

67 chapter 2 Bits, Data Types, and Operations

2.12 If the last digit of a 2's complement binary number is 0, then the number
is even. If the last two digits of a 2's complement binary number are 00
(e.g., the binary number 01100), what does that tell you about the
number?

2.13 Without changing their values, convert the following 2's complement
binary numbers into 8-bit 2's complement numbers.
a. 1010 c. 1111111000
h 011001 d. 01

2.14 Add the following bit patterns. Leave your results in binary form.
a. 1011 + 0001
b. 0000 + 1010
c. 1100 + 0011
d. 0101 + 0110
e. 1111 + 0001

2.15 It was demonstrated in Example 2.5 that shifting a binary number one bit
to the left is equivalent to multiplying the number by 2. What operation is
performed when a binary number is shifted one bit to the right?

2.16 Write the results of the following additions as both 8-bit binary and
decimal numbers. For each part, use standard binary addition as
described in Section 2.5.1.
a. Add the 1 's complement representation of 7 to the 1 's complement

representation of —7.
b. Add the signed magnitude representation of 7 to the signed magnitude

representation of —7.
c. Add the 2's complement representation of 7 to the 2's complement

representation of —7.

2.17 Add the following 2's complement binary numbers. Also express the
answer in decimal.

a. 01 + 1011
b. 11 + 01010101
c. 0 1 0 1 + 110
d. 01 + 10

2.18 Add the following unsigned binary numbers. Also, express the answer in
decimal.

a. 01 + 1011
b. 11 + 01010101
c. 0101 + 110
d. 01 + 10

2.19 Express the negative value —27 as a 2's complement integer, using eight
bits. Repeat, using 16 bits. Repeat, using 32 bits. What does this illustrate
with respect to the properties of sign extension as they pertain to 2's
complement representation?

Exercises 68

2.20 The following binary numbers are 4-bit 2's complement binary numbers.
Which of the following operations generate overflow? Justify your
answer by translating the operands and results into decimal.
a. 1100 + 0011 d. 1000 - 0001
b. 1100 + 0100 e. 0111 + 1001
c. 0111 + 0001

2.21 Describe what conditions indicate overflow has occurred when two 2's
complement numbers are added.

2.22 Create two 16-bit 2's complement integers such that their sum causes an
overflow.

2.23 Describe what conditions indicate overflow has occurred when two
unsigned numbers are added.

2.24 Create two 16-bit unsigned integers such that their sum causes an
overflow.

2.25 Why does the sum of a negative 2's complement number and a positive
2's complement number never generate an overflow?

2.26 You wish to express - 6 4 as a 2's complement number.
a. How many bits do you need (the minimum number)?
b. With this number of bits, what is the largest positive number you can

represent? (Please give answer in both decimal and binary).
c. With this number of bits, what is the largest unsigned number you can

represent? (Please give answer in both decimal and binary).
2.27 The LC-3, a 16-bit machine adds the two 2's complement numbers

0101010101010101 and 0011100111001111, producing
1000111100100100. Is there a problem here? If yes, what is the
problem? If no, why not?

2.28 When is the output of an AND operation equal to 1?
2.29 Fill in the following truth table for a one-bit AND operation.

X Y X A N D Y

0 0
0 1
1 0
1 1

2.30 Compute the following. Write your results in binary.
a. 0 1 0 1 0 1 1 1 AND 1 1 0 1 0 1 1 1
b. 1 0 1 AND 1 1 0
C. 1 1 1 0 0 0 0 0 AND 1 0 1 1 0 1 0 0
d. 0 0 0 1 1 1 1 1 AND 1 0 1 1 0 1 0 0
e. (0 0 1 1 AND 0 1 1 0) AND 1 1 0 1
f . 0 0 1 1 AND (0 1 1 0 AND 1 1 0 1)

69 chapter 2 Bits, Data Types, and Operations

2.31 When is the output of an OR operation equal to 1?
2.32 Fill in the following truth table for a one-bit OR operation.

X Y X OR Y
0 0
0 1
1 0
1 1

2.33 Compute the following:
a. 0 1 0 1 0 1 1 1 OR 1 1 0 1 0 1 1 1
b. 1 0 1 OR 1 1 0
c. 1 1 1 0 0 0 0 0 OR 1 0 1 1 0 1 0 0
d. 0 0 0 1 1 1 1 1 OR 1 0 1 1 0 1 0 0
e. (0 1 0 1 OR 1 1 0 0) OR 1 1 0 1
f . 0 1 0 1 OR (1 1 0 0 OR 1 1 0 1)

2.34 Compute the following:
a. NOT (1 0 1 1) OR N O T (l l O O)
b. NOT (1 0 0 0 AND (1 1 0 0 OR 0 1 0 1))
C. NOT (NOT (1 1 0 1))
d. (0 1 1 0 OR 0 0 0 0) AND 1 1 1 1

2.35 In Example 2.11, what are the masks used for?
2.36 Refer to Example 2.11 for the following questions.

a. What mask value and what operation would one use to indicate that
machine 2 is busy?

b. What mask value and what operation would one use to indicate that
machines 2 and 6 are no longer busy? (Note: This can be done with
only one operation.)

c. What mask value and what operation would one use to indicate that
all machines are busy?

d. What mask value and what operation would one use to indicate that
all machines are idle?

e. Develop a procedure to isolate the status bit of machine 2 as the sign
bit. For example, if the BUSYNESS pattern is 01011100, then the
output of this procedure is 10000000. If the BUSYNESS pattern is
01110011, then the output is 00000000. In general, if the BUSYNESS
pattern is:

b7 b6 b5 b4 b3 b2 bl bO

the output is:

b2 0 0 0 0 0 0 0 •

Hint: What happens when you ADD a bit pattern to itself?

Exercises 47

2.37 If n and m are both 4-bit 2's complement numbers, and s is the 4-bit
result of adding them together, how can we determine, using only the
logical operations described in Section 2.6, if an overflow occurred
during the addition? Develop a "procedure" for doing so. The inputs
to the procedure are n, m, and s, and the output will be a bit pattern
of all zeros (0000) if no overflow occurred and 1000 if an overflow
did occur.

2.38 If n and m are both 4-bit unsigned numbers, and s is the 4-bit result of
adding them together, how can we determine, using only the logical
operations described in Section 2.6, if an overflow occurred during the
addition? Develop a "procedure" for doing so. The inputs to the
procedure are n, m, and s, and the output will be a bit pattern of
all zeros (0000) if no overflow occurred and 1000 if an overflow
did occur.

2.39 Write IEEE floating point representation of the following
decimal numbers.
a. 3.75
b - 5 5 §
c. 3.1415927
d. 64,000

2.40 Write the decimal equivalents for these IEEE floating point
numbers.
a. 0 10000000 00000000000000000000000
b. 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c. 0 11111111 00000000000000000000000
d. 1 10000000 10010000000000000000000

2.41 a. What is the largest exponent the IEEE standard allows for a 32-bit
floating point number?

h What is the smallest exponent the IEEE standard allows for a 32-bit
floating point number?

2.42 A computer programmer wrote a program that adds two numbers. The
programmer ran the program and observed that when 5 is added to 8,
the result is the character m. Explain why this program is behaving
erroneously.

2.43 Translate the following ASCII codes into strings of characters by
interpreting each group of eight bits as an ASCII character.
a. x48656c6c6f21
b. x68454c4c4f21
c. x436f6d70757465727321
d. x4c432d32

71 chapter 2 Bits, Data Types, and Operations

2.44 What operation(s) can be used to convert the binary representation for 3
(i.e., 0000 0011) into the ASCII representation for 3 (i.e., 0011 0011)?
What about the binary 4 into the ASCII 4? What about any digit?

2.45 Convert the following unsigned binary numbers to hexadecimal.
a. 1101 0001 1010 1111
b. 001 1111
c. 1
d. 1110 1101 1011 0010

2.46 Convert the following hexadecimal numbers to binary.
a. xlO
b. x801
c. xF731
d. X0F1E2D
e. xBCAD

2.47 Convert the following hexadecimal representations of 2's complement
binary numbers to decimal numbers.
a. xFO
fc x7FF
c. xl6
d. x8000

2.48 Convert the following decimal numbers to hexadecimal representations
of 2's, complement numbers.
a. 256
b. I l l
c. 123,456,789
d. - 4 4

2.49 Perform the following additions. The corresponding 16-bit binary
numbers are in 2's complement notation. Provide your answers in
hexadecimal.
a. x025B + x26DE
k x7D96 + xFOAO
c. xA397 + xA35D
d. x7D96 + x7412
e. What else can you say about the answers to parts c and dl

2.50 Perform the following logical operations. Express your answers in
hexadecimal notation.
a. x5478 AND xFDEA
b. xABCD OR xl234
c. NOT((NOT(xDEFA)) AND (NOT(xFFFF)))
d. xOOFF XOR x325C

Exercises 72

2.51 What is the hexadecimal representation of the following numbers?
a. 25,675
b. 675.625 (that is, 675|), in the IEEE 754 floating point standard
c. The ASCII string: Hello

2.52 Consider two hexadecimal numbers: x434F4D50 and x55544552. What
values do they represent for each of the five data types shown?

X434F4D50 X55544552
Unsigned binary
1 's complement
2's complement
IEEE 754 floating point
ASCII string

2.53 Fill in the truth table for the equations given. The first line is done as an
example.

Qi = NOT(A AND B)

Q2 = NOT(NOT(A) AND NOT(B))

A B

0 0
Qi Qi_
i o

i

Express Q2 another way.
2.54 Fill in the truth table for the equations given. The first line is done as an

example.

Q i = NOT(NOT(X) OR (X AND Y AND Z))

Q2 = NOT((Y OR Z) AND (X AND Y AND Z))

X Y Z Q\ Qi
0 0 0 0

73 chapter 2 Bits, Data Types, and Operations

2.55 We have represented numbers in base-2 (binary) and in base-16 (hex).
We are now ready for unsigned base-4, which we will call quad numbers.
A quad digit can be 0, 1, 2, or 3.
a. What is the maximum unsigned decimal value that one can represent

with 3 quad digits?
b. What is the maximum unsigned decimal value that one can represent

with n quad digits (Hint: your answer should be a function of n)l
c. Add the two unsigned quad numbers: 023 and 221.
d. What is the quad representation of the decimal number 42?
e. What is the binary representation of the unsigned quad number 123.3?
f . Express the unsigned quad number 123.3 in IEEE floating point

format.
g. Given a black box which takes m quad digits as input and produces

one quad digit for output, what is the maximum number of unique
functions this black box can implement?

2.56 Define a new 8-bit floating point format with 1 sign bit, 4 bits of
exponent, using an excess-7 code (that is, the bias is 7), and 3 bits of
fraction. If xE5 is the bit pattern for a number in this 8-bit floating point
format, what value does it have? (Express as a decimal number.)

c h a p t e r

3

Digital Logic

In Chapter 1, we stated that computers were built from very large numbers of very
simple structures. For example, Intel's Pentium IV microprocessor, first offered
for sale in 2000, was made up of more than 42 million MOS transistors. The
IBM Power PC 750 FX, released in 2002, consists of more than 38 million MOS
transistors. In this chapter, we will explain how the MOS transistor works (as a
logic element), show how these transistors are connected to form logic gates, and
then show how logic gates are interconnected to form larger units that are needed
to construct a computer. In Chapter 4, we will connect those larger units into a
computer.

But first, the transistor.

3.1 The Transistor
Most computers today, or rather most microprocessors (which form the core of the
computer) are constructed out of MOS transistors. MOS stands for metal-oxide
semiconductor. The electrical properties of metal-oxide semiconductors are well
beyond the scope of what we want to understand in this course. They are below
our lowest level of abstraction, which means that if somehow transistors start
misbehaving, we are at their mercy. It is unlikely that we will have any problems
from the transistors.

However, it is useful to know that there are two types of MOS transistors:
p-type and n-type. They both operate "logically," very similar to the way wall
switches work.

Structures

75 chapter 3 Digital Logic Structures

Wall switch

/

120-volt
power supply

Figure 3 .1 A simple electric circuit showing the use of a wall switch

(a)

Drain

Gate —

Source

Figure 3 .2 Then-type MOS

Figure 3.1 shows the most basic of electrical circuits: a power supply (in this
case, the 120 volts that come into your house), a wall switch, and a lamp (plugged
into an outlet in the wall). In order for the lamp to glow, electrons must flow; in
order for electrons to flow, there must be a closed circuit from the power supply
to the lamp and back to the power supply. The lamp can be turned on and off by
simply manipulating the wall switch to make or break the closed circuit.

Instead of the wall switch, we could use an n-type or a p-type MOS transistor
to make or break the closed circuit. Figure 3.2 shows a schematic rendering of
an n-type transistor (a) by itself, and (b) in a circuit. Note (Figure 3.2a) that the
transistor has three terminals. They are called the gate, the source, and the drain.
The reasons for the names source and drain are not of interest to us in this course.
What is of interest is the fact that if the gate of the n-type transistor is supplied with
2.9 volts, the connection from source to drain acts like a piece of wire. We say (in
the language of electricity) that we have a closed circuit between the source and
drain. If the gate of the n-type transistor is supplied with 0 volts, the connection
between the source and drain is broken. We say that between the source and drain
we have an open circuit.

Figure 3.2b shows the n-type transistor in a circuit with a battery and a bulb.
When the gate is supplied with 2.9 volts, the transistor acts like a piece of wire,

(c)

Gate -

transistor

Source

3.2 Logic Gates

Gate

Drain

Figure 3 .3 A p-type MOS transistor

completing the circuit and causing the bulb to glow. When the gate is supplied
with 0 volts, the transistor acts like an open circuit, breaking the circuit, and
causing the bulb not to glow.

Figure 3.2c is a shorthand notation for describing the circuit of Figure 3.2b.
Rather than always showing the power supply and the complete circuit, electrical
engineers usually show only the terminals of the power supply. The fact that
the power supply itself provides the completion of the completed circuit is well
understood, and so is not usually shown.

The p-type transistor works in exactly the opposite fashion from the n-type
transistor. Figure 3.3 shows the schematic representation of a p-type transistor.
When the gate is supplied with 0 volts, the p-type transistor acts (more or less)
like a piece of wire, closing the circuit. When the gate is supplied with 2.9 volts,
the p-type transistor acts like an open circuit. Because the p-type and n-type
transistors act in this complementary way, we refer to circuits that contain both
p-type and n-type transistors as CMOS circuits, for complementary metal-oxide
semiconductor.

3 . 2 Logic Gates
One step up from the transistor is the logic gate. That is, we construct basic logic
structures out of individual MOS transistors. In Chapter 2, we studied the behavior
of the AND, the OR, and the NOT functions. In this chapter we construct transistor
circuits that implement each of these functions. The corresponding circuits are
called AND, OR, and NOT gates.

3.2.1 The NOT Gate (Inverter)
Figure 3.4 shows the simplest logic structure that exists in a computer. It is con-
structed from two MOS transistors, one p-type and one n-type. Figure 3.4a is
the schematic representation of that circuit. Figure 3.4b shows the behavior of
the circuit if the input is supplied with 0 volts. Note that the p-type transistor
conducts and the n-type transistor does not conduct. The output is, therefore,
connected to 2.9 volts. On the other hand, if the input is supplied with 2.9 volts,
the p-type transistor does not conduct, but the n-type transistor does conduct. The
output in this case is connected to ground (i.e., 0 volts). The complete behavior

77 chapter 3 Digital Logic Structures

(a)

— i — 2.9 volts

(b)

5 p-type

In Out In = 0 Out = 1

» n-type

\ 7 0 volts V
(c)

Figure 3 .4 A CMOS inverter

(d)

In Out In Out
0 volts 2.9 volts 0 1

2.9 volts 0 volts 1 0

of the circuit can be described by means of a table, as shown in Figure 3.4c. If
we replace 0 volts by the symbol 0 and 2.9 volts by the symbol 1, we have the
truth table (Figure 3.4d) for the complement or NOT function, which we studied
in Chapter 2.

In other words, we have just shown how to construct an electronic circuit that
implements the NOT logic function discussed in Chapter 2. We call this circuit
a NOT gate, or an inverter.

3.2.2 OR and NOR Gates
Figure 3.5 illustrates a NOR gate. Figure 3.5a is a schematic of a circuit that
implements a NOR gate. It contains two p-type and two n-type transistors.

Figure 3.5b shows the behavior of the circuit if A is supplied with 0 volts and
B is supplied with 2.9 volts. In this case, the lower of the two p-type transistors
produces an open circuit, and the output C is disconnected from the 2.9-volt
power supply. However, the leftmost n-type transistor acts like a piece of wire,
connecting the output C to 0 volts.

Note that if both A and B are supplied with 0 volts, the two p-type transistors
conduct, and the output C is connected to 2.9 volts. Note further that there is
no ambiguity here, since both n-type transistors act as open circuits, and so C is
disconnected from ground.

If either A or B is supplied with 2.9 volts, the corresponding p-type transistor
results in an open circuit. That is sufficient to break the connection from C to

(a)

3.2 Logic Gates

(b)

B-

4 = 0

B = 1

} p-type

V V

c = o

i n-type

(c) (d)

A B C A B C
0 volts 0 volts 2.9 volts 0 0 1
0 volts 2.9 volts 0 volts 0 1 0

2.9 volts 0 volts 0 volts 1 0 0
2.9 volts 2.9 volts 0 volts 1 1 0

Figure 3.5 The NOR gate

the 2.9-volt source. However, 2.9 volts supplied to the gate of one of the n-type
transistors is sufficient to cause that transistor to conduct, resulting in C being
connected to ground (i.e., 0 volts).

Figure 3.5c summarizes the complete behavior of the circuit of Figure 3.5a.
It shows the behavior of the circuit for each of the four pairs of voltages that can
be supplied to A and B. That is,

A = 0 volts, B = 0 volts
A = 0 volts, B = 2.9 volts
A = 2.9 volts, B = 0 volts
A = 2.9 volts, B = 2.9 volts

If we replace the voltages with their logical equivalents, we have the truth
table of Figure 3.5d. Note that the output C is exactly the opposite of the logical
OR function that we studied in Chapter 2. In fact, it is the NOT-OR function,
more typically abbreviated as NOR. We refer to the circuit that implements the
NOR function as a NOR gate.

If we augment the circuit of Figure 3.5a by adding an inverter at the output, as
shown in Figure 3.6a, we have at the output D the logical function OR. Figure 3.6a
is the circuit for an OR gate. Figure 3.6b describes the behavior of this circuit if
the input variable A is set to 0 and the input variable B is set to 1. Figure 3.6c
shows the circuit's truth table.

56

B

chapter 3 Digital Logic Structures

(a)

>4 = 0-

B= 1

D

V V
V

(b)

p-type

p-type
•J i

'' C= 0

n-type , . .

\ p-type

•D = 1

n-type

V V

n-type

V

(c)

A B c D
0 0 1 0
0 1 0 1
1 0 0 1
1 1 0 1

Figure 3.6 The OR gate

3.2.3 AND and NAND Gates
Figure 3.7 shows an AND gate. Note that if either A or B is supplied with 0 volts,
there is a direct connection from C to the 2.9-volt power supply. The fact that C
is at 2.9 volts means the n-type transistor whose gate is connected to C provides
a path from D to ground. Therefore, if either A or B is supplied with 0 volts, the
output D of the circuit of Figure 3.7 is 0 volts.

Again, we note that there is no ambiguity. The fact that at least one of the two
inputs A or B is supplied with 0 volts means that at least one of the two n-type
transistors whose gates are connected to A or B is open, and that consequently,
C is disconnected from ground. Furthermore, the fact that C is at 2.9 volts means
the p-type transistor whose gate is connected to C is open-circuited. Therefore,
D is not connected to 2.9 volts.

On the other hand, if both A and B are supplied with 2.9 volts, then both
of their corresponding p-type transistors are open. However, their corresponding
n-type transistors act like pieces of wire, providing a direct connection from C to
ground. Because C is at ground, the rightmost p-type transistor acts like a closed
circuit, forcing D to 2.9 volts.

(a)

NAND V

Figure 3.7 The AND gate

3.2 Logic Gates

(b)

57

A B C D
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 3.7b summarizes in truth table form the behavior of the circuit of
Figure 3.7a. Note that the circuit is an AND gate. The circuit shown within the
dashed lines (i.e., having output C) is a NOT-AND gate, which we generally
abbreviate as NAND.

The gates just discussed are very common in digital logic circuits and in
digital computers. There are millions of inverters (NOT gates) in the Pentium IV
microprocessor. As a convenience, we can represent each of these gates by stan-
dard symbols, as shown in Figure 3.8. The bubble shown in the inverter, NAND,
and NOR gates signifies the complement (i.e., NOT) function.

From now on, we will not draw circuits showing the individual transistors.
Instead, we will raise our level of abstraction and use the symbols shown in
Figure 3.8.

(a) Inverter (b) AND gate (c) OR gate

(d) NAND gate (e) NOR gate

Figure 3.8 Basic logic gates

chapter 3 Digital Logic Structures

(a) (b)

(c)

A B A B AND C
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

Figure 3 .9 DeMorgan's law

3.2.4 DeMorgan's Law
Note (see Figure 3.9a) that one can complement an input before applying it to a
gate. Consider the effect on the two-input AND gate if we apply the complements
of A and B as inputs to the gate, and also complement the output of the AND
gate. The "bubbles" at the inputs to the AND gate designate that the inputs A and
B are complemented before they are used as inputs to the AND gate.

Figure 3.9b shows the behavior of this structure for the input combination
A = 0, B = 1. For ease of representation, we have moved the bubbles away from
the inputs and the output of the AND gate. That way, we can more easily see what
happens to each value as it passes through a bubble.

Figure 3.9c summarizes by means of a truth table the behavior of the logic
circuit of Figure 3.9a for all four combinations of input values. Note that the NOT
of A is represented as A.

We can describe the behavior of this circuit algebraically:

A AND 1$ = A OR B

We can also state this behavior in English:

"It is not the case that both A and B are false" is equivalent to saying "At
least one of A and B is true."

This equivalence is known as DeMorgan's law. Is there a similar result if one
inverts both inputs to an OR gate, and then inverts the output?

3.2.5 Larger Gates
Before we leave the topic of logic gates, we should note that the notion of AND,
OR, NAND, and NOR gates extends to larger numbers of inputs. One could build
a three-input AND gate or a four-input OR gate, for example. An n-input AND
gate has an output value of 1 only if ALL n input variables have values of 1. If
any of the n inputs has a value of 0, the output of the n-input AND gate is 0. An
n-input OR gate has an output value of 1 if ANY of the n input variables has a
value of 1. That is, an n-input OR gate has an output value of 0 only if ALL n
input variables have values of 0.

3.3 Combinational Logic Circuits

(a) (b)

A B c OUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

OUT

Figure 3 .10 A three-input AND gate

Figure 3.10 illustrates a three-input AND gate. Figure 3.10a shows its truth
table. Figure 3.10b shows the symbol for a three-input AND gate.

Can you draw a transistor-level circuit for a three-input AND gate? How
about a four-input AND gate? How about a four-input OR gate?

3.3 Combinational Logic Circuits
Now that we understand the workings of the basic logic gates, the next step
is to build some of the logic structures that are important components of the
microarchitecture of a computer.

There are fundamentally two kinds of logic structures, those that include
the storage of information and those that do not. In Sections 3.4, 3.5, and 3.6,
we will deal with structures that store information. In this section, we will deal
with those that do not. These structures are sometimes referred to as decision
elements. Usually, they are referred to as combinational logic structures, because
their outputs are strictly dependent on the combination of input values that are
being applied to the structure right now. Their outputs are not at all dependent on
any past history of information that is stored internally, since no information can
be stored internally in a combinational logic circuit.

We will next examine a decoder, a mux, and a full adder.

3.3.1 Decoder
Figure 3.11 shows a logic gate description of a two-input decoder. A decoder
has the property that exactly one of its outputs is 1 and all the rest are 0s. The
one output that is logically 1 is the output corresponding to the input pattern
that it is expected to detect. In general, decoders have n inputs and 2n out-
puts. We say the output line that detects the input pattern is asserted. That is,
that output line has the value 1, rather than 0 as is the case for all the other
output lines. In Figure 3.11, note that for each of the four possible combina-
tions of inputs A and /?, exactly one output has the value 1 at any one time. In
Figure 3.1 lb, the input to the decoder is 10, resulting in the third output line being
asserted.

The decoder is useful in determining how to interpret a bit pattern. We will
see in Chapter 5 that the work to be carried out by each instruction in the LC-3 is

83 chapter 3 Digital Logic Structures

(a) (b)

1, if A, B is 00

1, if A, B is 01

1, if A, B is 10

1, if A, B is 11

>4=1
8 = 0

Figure 3 . 1 1 A two-input decoder

determined by a four-bit pattern, called an opcode, that is part of the instruction.
A 4-to-16 decoder is a simple combinational logic structure for identifying what
work is to be performed by each instruction.

3.3.2 Mux
Figure 3.12a shows a gate-level description of a two-input multiplexer, more
commonly referred to as a mux. The function of a mux is to select one of the
inputs and connect it to the output. The select signal (S in Figure 3.12) determines
which input is connected to the output. The mux of Figure 3.12 works as follows:
Suppose S = 0, as shown in Figure 3.12b. Since the output of an AND gate is
0 unless all inputs are 1, the output of the rightmost AND gate is 0. Also, the
output of the leftmost AND gate is whatever the input A is. That is, if A = 0,
then the output of the leftmost AND gate is 0, and if A = 1, then the output is 1.
Since the output of the rightmost AND gate is 0, it has no effect on the OR gate.
Consequently, the output at C is exactly the same as the output of the leftmost
AND gate. The net result of all this is that if S = 0, the output C is identical to
the input A.

On the other hand, if S = 1, it is B that is ANDed with 1, resulting in the
output of the OR gate having the value of B.

In summary, the output C is always connected to either the input A or the
input B—which one depends on the value of the select line S. We say S selects
the source of the mux (either A or B) to be routed through to the output C.
Figure 3.12c shows the standard representation for a mux.

In general, a mux consists of 2n inputs and n select lines. Figure 3.13a shows a
gate-level description of a four-input mux. It requires two select lines. Figure 3.13b
shows the standard representation for a four-input mux.

Can you construct the gate-level representation for an eight-input mux? How
many select lines must you have?

3.3 Combinational Logic Circuits

(a) (b) (c)

A B A B
A B

S = 0

Figure 3.12 A 2- to- l mux

(a) (b)

A B C D A B CD

l l
S[1:0]

Y Y 2
^ — S T

OUT

OUT

Figure 3.13 A four-input mux

3.3.3 Full Adder
In Chapter 2, we discussed binary addition. Recall that a simple algorithm for
binary addition is to proceed as you have always done in the case of decimal
addition, from right to left, one column at a time, adding the two digits from the
two values plus the carry in, and generating a sum digit and a carry to the next
column. The only difference is you get a carry after 1, rather than after 9.

Figure 3.14 is a truth table that describes the result of binary addition on one
column of bits within two n-bit operands. At each column, there are three values
that must be added: one bit from each of the two operands and the carry from the
previous column. We designate these three bits as a\, and carryi. There are
two results, the sum bit 0;) and the carryover to the next column, carryi+\. Note
that if only one of the three bits equals 1, we get a sum of 1, and no carry (i.e.,
carryi+\ = 0). If two of the three bits equal 1, we get a sum of 0, and a carry

85 chapter 3 Digital Logic Structures

3/ bi carryj carry Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 3.14 A truth table for a binary adder

of 1. If all three bits equal 1, the sum is 3, which in binary addition corresponds
to a sum of 1 and a carry of 1.

Figure 3.15 is the gate-level description of the truth table of Figure 3.14. Note
that each AND gate in Figure 3.15 produces an output 1 for exactly one of the
eight input combinations of a,, bt, and carryt. The output of the OR gate for Q+\
must be 1 in exactly those cases where the corresponding input combinations in
Figure 3.14 produce an output 1. Therefore the inputs to the OR gate that generates
Cj+i are the outputs of the AND gates corresponding to those input combinations.
Similarly, the inputs to the OR gate that generates Si are the outputs of the AND
gates corresponding to the input combinations that require an output 1 for St in
the truth table of Figure 3.14.

3.3 Combinational Logic Circuits 63

Figure 3 .16 A circuit for adding two 4-bit binary numbers

Note that since the input combination 000 does not result in an output 1 for
either C,-+1 or its corresponding AND gate is not an input to either of the two
OR gates.

We call the logic circuit of Figure 3.15 that provides three inputs (a,-, b(, and
carry{) and two outputs (the sum bit st and the carryover to the next column
carryi+\) a full adder.

Figure 3.16 illustrates a circuit for adding two 4-bit binary numbers, using
four of the full adder circuits of Figure 3.15. Note that the carry out of column i
is an input to the addition performed in column i + 1.

3.3.4 The Programmable Logic Array (PLA)
Figure 3.17 illustrates a very common building block for implementing any collec-
tion of logic functions one wishes to. The building block is called a programmable
logic array (PLA). It consists of an array of AND gates (called an AND array)
followed by an array of OR gates (called an OR array). The number of AND gates
corresponds to the number of input combinations (rows) in the truth table. For n
input logic functions, we need a PLA with 2" n-input AND gates. In Figure 3.17,
we have 23 3-input AND gates. The number of OR gates corresponds to the
number of output columns in the truth table. The implementation algorithm is
simply to connect the output of an AND gate to the input of an OR gate if the
corresponding row of the truth table produces an output 1 for that output column.
Hence the notion of programmable. That is, we say we program the connec-
tions from AND gate outputs to OR gate inputs to implement our desired logic
functions.

Figure 3.15 showed eight AND gates connected to two OR gates since our
requirement was to implement two functions (sum and carry) of three input vari-
ables. Figure 3.17 shows a PLA that can implement any four functions of three
variables one wishes to, by appropriately connecting AND gate outputs to OR
gate inputs.

87 chapter 3 Digital Logic Structures

3.3.5 Logical Completeness
Before we leave the topic of combinational logic circuits, it is worth noting an
important property of building blocks for logic circuits: logical completeness. We
showed in Section 3.3.4 that any logic function we wished to implement could be
accomplished with a PLA. We saw that the PLA consists of only AND gates, OR
gates, and inverters. That means that any logic function we wish to implement can
be accomplished, provided that enough AND, OR, and NOT gates are available.
We say that the set of gates {AND, OR, NOT} is logically complete because we
can build a circuit to carry out the specification of any truth table we wish without
using any other kind of gate. That is, the set of gates {AND, OR, and NOT}
is logically complete because a barrel of AND gates, a barrel of OR gates, and
a barrel of NOT gates are sufficient to build a logic circuit that carries out the
specification of any desired truth table. The barrels may have to be big ones, but
the point is, we do not need any other kind of gate to do the job.

3.4 Basic Storage Elements
Recall our statement at the beginning of Section 3.3 that there are two kinds of
logic structures, those that involve the storage of information and those that do
not. We have discussed three examples of those that do not: the decoder, the mux,
and the full adder. Now we are ready to discuss logic structures that do include
the storage of information.

3.4.1 The R-S Latch
A simple example of a storage element is the R-S latch. It can store one bit of
information. The R-S latch can be implemented in many ways, the simplest being

3.4 Basic Storage Elements

the one shown in Figure 3.18. Two 2-input NAND gates are connected such that
the output of each is connected to one of the inputs of the other. The remaining
inputs S and R are normally held at a logic level 1.

The R-S latch works as follows: We start with what we call the quiescent (or
quiet) state, where inputs S and R both have logic value 1. We consider first the
case where the output a is 1. Since that means the input A equals 1 (and we know
the input R equals 1 since we are in the quiescent state), the output b must be 0.
That, in turn, means the input B must be 0, which results in the output a equal to
1. As long as the inputs S and R remain 1, the state of the circuit will not change.
We say the R-S latch stores the value 1 (the value of the output a).

If, on the other hand, we assume the output a is 0, then the input A must
be 0, and the output b must be 1. This, in turn, results in the input B equal to 1,
and combined with the input S equal to 1 (again due to quiescence) results in the
output a equal to 0. Again, as long as the inputs S and R remain 1, the state of
the circuit will not change. In this case, we say the R-S latch stores the value 0.

The latch can be set to 1 by momentarily setting S to 0, provided we keep
the value of R at 1. Similarly, the latch can be set to 0 by momentarily setting R
to 0, provided we keep the value of 5 at 1. We use the term set to denote setting a
variable to 0 or 1, as in "set to 0" or "set to 1." In addition, we often use the term
clear to denote the act of setting a variable to 0.

If we clear S, then a equals 1, which in turn causes A to equal 1. Since R is
also 1, the output at b must be 0. This causes B to be 0, which in turn makes a
equal to 1. If we now return S to 1, it does not affect a, since B is also 0, and only
one input to a NAND gate must be 0 in order to guarantee that the output of the
NAND gate is 1. Thus, the latch continues to store a 1 long after S returns to 1.

In the same way, we can clear the latch (set the latch to 0) by momentarily
setting R to 0.

We should also note that in order for the R-S latch to work properly, one must
take care that it is never the case that both S and R are allowed to be set to 0 at
the same time. If that does happen, the outputs a and b are both 1, and the final
state of the latch depends on the electrical properties of the transistors making up
the gates and not on the logic being performed. How the electrical properties of
the transistors will determine the final state in this case is a subject we will have
to leave for a later semester.

Figure 3.18 An R-S latch

89 chapter 3 Digital Logic Structures

3.4.2 The Gated D Latch
To be useful, it is necessary to control when a latch is set and when it is cleared.
A simple way to accomplish this is with the gated latch.

Figure 3.19 shows a logic circuit that implements a gated D latch. It consists
of the R-S latch of Figure 3.18, plus two additional gates that allow the latch to be
set to the value of D, but only when WE is asserted. WE stands for write enable.
When WE is not asserted (i.e., when WE equals 0), the outputs S and R are both
equal to 1. Since S and R are also inputs to the R-S latch, if they are kept at 1, the
value stored in the latch remains unchanged, as we explained in Section 3.4.1.
When WE is momentarily asserted (i.e., set to 1), exactly one of the outputs S or
R is set to 0, depending on the value of D. If D equals 1, then S is set to 0. If D
equals 0, then both inputs to the lower NAND gate are 1, resulting in R being set
to 0. As we saw earlier, if S is set to 0, the R-S latch is set to 1. If R is set to 0,
the R-S latch is set to 0. Thus, the R-S latch is set to 1 or 0 according to whether
D is 1 or 0. When WE returns to 0, S and R return to 1, and the value stored in
the R-S latch persists.

3.4.3 A Register
We have already seen in Chapter 2 that it is useful to deal with values consisting
of more than one bit. In Chapter 5, we will introduce the LC-3 computer, where
most values are represented by 16 bits. It is useful to be able to store these larger
numbers of bits as self-contained units. The register is a structure that stores a
number of bits, taken together as a unit. That number can be as large as is useful
or as small as 1. In the LC-3, we will need many 16-bit registers, and also a few
one-bit registers. We will see in Figure 3.33, which describes the internal structure
of the LC-3, that PC, IR, and MAR are all 16-bit registers, and that N, Z, and P
are all one-bit registers.

Figure 3.20 shows a four-bit register made up of four gated D latches. The
four-bit value stored in the register is Qi, Qi, Qo- The value D3, D2, Du
Do can be written into the register when WE is asserted.

Note: A common shorthand notation to describe a sequence of bits that are
numbered as just described is Q[3:0]. That is, each bit is assigned its own bit
number. The rightmost bit is bit [0], and the numbering continues from right to

D

WE

Figure 3 .19 A gated D latch

3.5 The Concept of Memory

Figure 3 .20 A four-bit register

left. If there are n bits, the leftmost bit is bit [n — 1]. For example, in the following
16-bit pattern,

0011101100011110

bit [15] is 0, bit [14] is 0, bit [13] is 1, bit [12] is 1, and so on.
We can designate a subunit of this pattern with the notation Q[l:r], where I

is the leftmost bit in the subunit and r is the rightmost bit in the subunit. We call
such a subunit a field.

In this 16-bit pattern, if A[15:0] is the entire 16-bit pattern, then, for example:

A [15 : 12] is 0011
A [13 : 7] is 1110110
A [2 : 0] is 110
A [1:1] is 1

We should also point out that the numbering scheme from right to left is purely
arbitrary. We could just as easily have designated the leftmost bit as bit [0] and
numbered them from left to right. Indeed, many people do. So, it is not important
whether the numbering scheme is left to right or right to left. But it is important
that the bit numbering be consistent in a given setting, that is, that it is always
done the same way. In our work, we will always number bits from right to left.

3.5 The Concept of Memorii
We now have all the tools we need to describe one of the most important structures
in the electronic digital computer, its memory. We will see in Chapter 4 how
memory fits into the basic scheme of computer processing, and you will see
throughout the rest of the book and indeed the rest of your work with computers
how important the concept of memory is to computing.

Memory is made up of a (usually large) number of locations, each uniquely
identifiable and each having the ability to store a value. We refer to the unique

91 chapter 3 Digital Logic Structures

identifier associated with each memory location as its address. We refer to the
number of bits of information stored in each location as its addressability.

For example, an advertisement for a personal computer might say, "This
computer comes with 16 megabytes of memory." Actually, most ads generally use
the abbreviation 16 MB. This statement means, as we will explain momentarily,
that the computer system includes 16 million memory locations, each containing
1 byte of information.

3.5.1 Address Space
We refer to the total number of uniquely identifiable locations as the memory's
address space. A 16 MB memory, for example, refers to a memory that consists
of 16 million uniquely identifiable memory locations.

Actually, the number 16 million is only an approximation, due to the way we
identify memory locations. Since everything else in the computer is represented by
sequences of Os and 1 s, it should not be surprising that memory locations are iden-
tified by binary addresses as well. With n bits of address, we can uniquely identify
2n locations. Ten bits provide 1,024 locations, which is approximately 1,000. If
we have 20 bits to represent each address, we have 220 uniquely identifiable loca-
tions, which is approximately 1 million. Thus 16 mega really corresponds to the
number of uniquely identifiable locations that can be specified with 24 address
bits. We say the address space is 224, which is exactly 16,777,216 locations, rather
than 16,000,000, although we colloquially refer to it as 16 million.

3.5.2 Addressability
The number of bits stored in each memory location is the memory's address-
ability. A 16 megabyte memory is a memory consisting of 16,777,216 memory
locations, each containing 1 byte (i.e., 8 bits) of storage. Most memories are byte-
addressable. The reason is historical; most computers got their start processing
data, and one character stroke on the keyboard corresponds to one 8-bit ASCII
character, as we learned in Chapter 2. If the memory is byte-addressable, then each
ASCII code occupies one location in memory. Uniquely identifying each byte of
memory allowed individual bytes of stored information to be changed easily.

Many computers that have been designed specifically to perform large scien-
tific calculations are 64-bit addressable. This is due to the fact that numbers used
in scientific calculations are often represented as 64-bit floating point quantities.
Recall that we discussed the floating point data type in Chapter 2. Since scientific
calculations are likely to use numbers that require 64 bits to represent them, it is
reasonable to design a memory for such a computer that stores one such number
in each uniquely identifiable memory location.

3.5.3 A 22-by-3-Bit Memory
Figure 3.21 illustrates a memory of size 22 by 3 bits. That is, the memory has an
address space of four locations, and an addressability of 3 bits. A memory of size
22 requires 2 bits to specify the address. A memory of addressability 3 stores 3 bits

3.5 The Concept of Memory

A[1:0] D,[2] Dy[1] D,[0]

D[2] D11] D[0]

Figure 3 .21 A 22-by-3-bit memory

of information in each memory location. Accesses of memory require decoding
the address bits. Note that the address decoder takes as input A[1:0] and asserts
exactly one of its four outputs, corresponding to the word line being addressed. In
Figure 3.21, each row of the memory corresponds to a unique three-bit word; thus
the term word line. Memory can be read by applying the address A[1:0], which
asserts the word line to be read. Note that each bit of the memory is ANDed
with its word line and then ORed with the corresponding bits of the other words.
Since only one word line can be asserted at a time, this is effectively a mux with
the output of the decoder providing the select function to each bit line. Thus, the
appropriate word is read.

Figure 3.22 shows the process of reading location 3. The code for 3 is 11.
The address A[1:0] = 11 is decoded, and the bottom word line is asserted. Note
that the three other decoder outputs are not asserted. That is, they have the value
0. The value stored in location 3 is 101. These three bits are each ANDed with
their word line producing the bits 101, which are supplied to the three output
OR gates. Note that all other inputs to the OR gates are 0, since they have been
produced by ANDing with unasserted word lines. The result is that D[2:0] = 101.
That is, the value stored in location 3 is output by the OR gates. Memory can
be written in a similar fashion. The address specified by A[1:0] is presented to

chapter 3 Digital Logic Structures

A[1:0] D,[2]
11

DA 1] D,[0]

0
D[1] D[2] D[1] D[0]

Figure 3 .22 Reading location 3 in our 22-by-3-bit memory

the address decoder, resulting in the correct word line being asserted. With WE
asserted as well, the three bits A [2:0] can be written into the three gated latches
corresponding to that word line.

3.G Sequential Logic Circuits
In Section 3.3, we discussed digital logic structures that process information
(decision structures, we call them) wherein the outputs depend solely on the
values that are present on the inputs now. Examples are muxes, decoders, and full
adders. We call these structures combinational logic circuits. In these circuits there
is no sense of the past. Indeed, there is no capability for storing any information
of anything that happened before the present time. In Sections 3.4 and 3.5, we
described structures that do store information—in Section 3.4, some basic storage
elements, and in Section 3.5, a simple 22-by-3-bit memory.

In this section, we discuss digital logic structures that can both process infor-
mation (i.e., make decisions) and store information. That is, these structures base
their decisions not only on the input values now present, but also (and this is

3.6 Sequential Logic Circuits 94

Figure 3 .23 Sequential logic circuit block diagram

very important) on what has happened before. These structures are usually called
sequential logic circuits: They are distinguishable from combinational logic cir-
cuits because, unlike combinational logic circuits, they contain storage elements
that allow them to keep track of prior history information. Figure 3.23 shows a
block diagram of a sequential logic circuit. Note the storage elements. Note, also,
that the output can be dependent on both the inputs now and the values stored in
the storage elements. The values stored in the storage elements reflect the history
of what has happened before.

Sequential logic circuits are used to implement a very important class of
mechanisms called finite state machines. We use finite state machines in essen-
tially all branches of engineering. For example, they are used as controllers of
electrical systems, mechanical systems, aeronautical systems, and so forth. A traf-
fic light controller that sets the traffic light to red, yellow, or green depends on the
light that is currently on (history information) and input information from sensors
such as trip wires on the road and optical devices that are monitoring traffic.

We will see in Chapter 4 when we introduce the von Neumann model of a
computer that a finite state controller is at the heart of the computer. It controls
the processing of information by the computer.

3.6.1 A Simple Example: The Combination Lock
A simple example shows the difference between combinational logic structures
and sequential logic structures. Suppose one wishes to secure a bicycle with a
lock, but does not want to carry a key. A common solution is the combination
lock. The person memorizes a "combination" and uses this to open the lock. Two
common types of locks are shown in Figure 3.24.

In Figure 3.24a, the lock consists of a dial, with the numbers from 0 to 30
equally spaced around its circumference. To open the lock, one needs to know the
"combination." One such combination could be: R13-L22-R3. If this were the
case, one would open the lock by turning the dial two complete turns to the right,
and then continuing until the dial points to 13, followed by one complete turn to
the left, and then continuing until the dial points to 22, followed by turning the
dial again to the right until it points to 3. At that point, the lock opens. What is
important here is the sequence of the turns. The lock will not open, for example
if one performed two turns to the right, and then stopped on 20, followed by one

95 chapter 3 Digital Logic Structures

Figure 3 .24 Combination locks

complete turn to the left, ending on 22, followed by one turn to the right, ending
on 3. That is, even though the final position of the dial is 3, the lock would not
open. Why? Because the lock stores the previous rotations and makes its decision
(open or don't open) on the basis of the current input value (R3) and the history of
the past operations. This mechanism is a simple example of a sequential structure.

Another type of lock is shown in Figure 3.24b. The mechanism consists of
(usually) four wheels, each containing the digits 0 through 9. When the digits
are lined up properly, the lock will open. In this case, the combination is the set
of four digits. Whether or not this lock opens is totally independent of the past
rotations of the four wheels. The lock does not care at all about past rotations.
The only thing important is the current value of each of the four wheels. This is
a simple example of a combinational structure.

It is curious that in our everyday speech, both mechanisms are referred to as
"combination locks." In fact, only the lock of Figure 3.24b is a combinational
lock. The lock of Figure 3.24a would be better called a sequential lock!

3.6.2 The Concept of State
For the mechanism of Figure 3.24a to work properly, it has to keep track of the
sequence of rotations leading up to the opening of the lock. In particular, it has
to differentiate the correct sequence R13-L22-R3 from all other sequences. For
example, R13-L29-R3 must not be allowed to open the lock. Likewise, R10-L22-
R3 must also not be allowed to open the lock. The problem is that, at any one
time, the only external input to the lock is the current rotation.

For the lock of Figure 3.24a to work, it must identify several relevant
situations, as follows:
A. The lock is not open, and NO relevant operations have been

performed.
B. The lock is not open, but the user has just completed the

R13 operation.
C. The lock is not open, but the user has just completed R13,

followed by L22.
D. The lock is open.

We have labeled these four situations A, B, C, and D. We refer to each of these
situations as the state of the lock.

3.6 Sequential Logic Circuits 96

The notion of state is a very important concept in computer engineering, and
actually, in just about all branches of engineering. The state of a mechanism—
more generally, the state of a system—is a snapshot of that system in which all
relevant items are explicitly expressed.

That is: The state of a system is a snapshot of all the relevant elements of the
system at the moment the snapshot is taken.

In the case of the lock of Figure 3.24a, there are four states A, B, C, and D.
Either the lock is open (State D), or if it is not open, we have already performed
either zero (State A), one (State B), or two (State C) correct operations. This is the
sum total of all possible states that can exist. Exercise: Why is that the case? That
is, what would be the snapshot of a fifth state that describes a possible situation
for the combination lock?

There are many common examples of systems that can be easily described
by means of states.

The state of a game of basketball can be described by the scoreboard in the
basketball arena. Figure 3.25 shows the state of the basketball game as Texas 73,
Oklahoma 68, 7 minutes and 38 seconds left in the second half, 14 seconds left
on the shot clock, Texas with the ball, and Texas and Oklahoma each with four
team fouls. This is a snapshot of the basketball game. It describes the state of
the basketball game right now. If, 12 seconds later, a Texas player were to score
a two-point shot, the new state would be described by the updated scoreboard.
That is, the score would then be Texas 75, Oklahoma 68, the time remaining in
the game would be 7 minutes and 26 seconds, the shot clock would be back to 25
seconds, and Oklahoma would have the ball.

The game of tic-tac-toe can also be described in accordance with the notion
of state. Recall that the game is played by two people (or, in our case, a person
and the computer). The state is a snapshot of the game in progress each time the
computer asks the person to make a move. The game is played as follows: There

TEXAS O OKLAHOMA

FOULS : 4

1 3 1 2
HALF O •

FOULS : 4

E B

I H
SHOT CLOCK

Figure 3.25 An example of a state

97 chapter 3 Digital Logic Structures

X X 0 X

0 o

(a) (b) (c)

Figure 3 .26 Three states in a tic-tac-toe machine

are nine locations on the diagram. The person and then the computer take turns
placing an X (the person) and an O (the computer) in an empty location. The
person goes first. The winner is the first to place three symbols (three Xs for the
person, three Os for the computer) in a straight line, either vertically, horizontally,
or diagonally.

The initial state, before either the person or computer has had a turn, is shown
in Figure 3.26a. Figure 3.26b shows a possible state of the game when the person
is prompted for a second move, if he/she put an X in the upper left corner as the
first move. In the state shown, the computer put an O in the middle square as its
first move. Figure 3.26c shows a possible state of the game when the person is
being prompted for a third move if he/she put an X in the upper right corner on
the second move (after putting the first X in the upper left corner). In the state
shown, the computer put its second O in the upper middle location.

3.6.3 Finite State Machines
We have seen that a state is a snapshot of all relevant parts of a system at a
particular point in time. At other times, that system can be in other states. The
behavior of a system can often be best understood by describing it as a finite state
machine.

A finite state machine consists of five elements:

1. a finite number of states
2. a finite number of external inputs
3. a finite number of external outputs
4. an explicit specification of all state transitions
5. an explicit specification of what determines each external

output value.

The set of states represents all possible situations (or snapshots) that the
system can be in. Each state transition describes what it takes to get from one
state to another.

The State Diagram
A finite state machine can be conveniently represented by means of a state dia-
gram. Figure 3.27 is an example of a state diagram. A state diagram is drawn as a
set of circles, where each circle corresponds to one state, and a set of connections

3.6 Sequential Logic Circuits 98

Figure 3 .27 A state diagram

between some of the states, where each connection is drawn as an arrow. The more
sophisticated term for "connection" is arc. Each arc identifies the transition from
one state to another. The arrowhead on each arc specifies which state the system
is coming from, and which state it is going to. We refer to the state the system is
coming from as the current state, and the state it is going to as the next state. The
finite state machine represented by the state diagram of Figure 3.27 consists of
three states, with six state transitions. Note that there is no state transition from
state Y to state X.

It is often the case that from a current state there are multiple transitions to
next states. The state transition that occurs depends on the values of the external
inputs. In Figure 3.27, if the current state is state X and the external input has
value 0, the next state is state Y. If the current state is state X and the external
input has the value 1, the next state is state Z. In short, the next state is determined
by the combination of the current state and the current external input.

The output values of a system can be determined just by the current state of
the system, or they can be determined by the combination of the current state and
the values of the current external inputs. In all the cases we will study, the output
values are specified by the current state of the system. In Figure 3.27, the output is
101 when the system is in state X, the output is 110 when the system is in state Y,
and 001 when the system is in state Z.

Figure 3.28 is a state diagram of the combination lock of Figure 3.24a, for
which the correct combination is R13, L22, R3. Note the four states, labeled A,
B, C, D, identifying whether the lock is open, or, in the cases where it is not open,
the number of correct rotations performed up to now. The external inputs are the
possible rotation operations. The output is the condition "open" or "do not open."
The output is explicitly associated with each state. That is, in states A, B, and C,
the output is "do not open." In state D, the output is "open." Note further that the
"arcs" out of each state comprise all possible operations that one could perform
when the mechanism is in that state. For example, when in state B, all possible
rotations can be described as (1) L22 and (2) everything except L22. Note that
there are two arrows emanating from state B in Figure 3.28, corresponding to
these two cases.

We could similarly draw a state diagram for the basketball game we described
earlier, where each state would be one possible configuration of the scoreboard. A
transition would occur if either the referee blew a whistle or the other team got the

76 chapter 3 Digital Logic Structures

ball. We showed earlier the transition that would be caused by Texas scoring a two-
point shot. Clearly, the number of states in the finite state machine describing a
basketball game would be huge. Also clearly, the number of legitimate transitions
from one state to another is small, compared to the number of arcs one could
draw connecting arbitrary pairs of states. The input is the activity that occurred
on the basketball court since the last transition. Some input values are: Texas
scored two points, Oklahoma scored three points, Texas stole the ball, Oklahoma
successfully rebounded a Texas shot, and so forth. The output is the final result
of the game. The output has three values: Game still in progress, Texas wins,
Oklahoma wins.

Can one have an arc from a state where the score is Texas 30, Oklahoma 28
to a state where the score is tied, Texas 30, Oklahoma 30? See Exercise 3.38.

Is it possible to have two states, one where Texas is ahead 30-28 and the other
where the score is tied 30-30, but no arc between the two? See Exercise 3.39.

The Clock
There is still one important property of the behavior of finite state machines that
we have not discussed—the mechanism that triggers the transition from one state
to the next. In the case of the "sequential" combination lock, the mechanism is
the completion of rotating the dial in one direction, and the start of rotating the
dial in the opposite direction. In the case of the basketball game, the mechanism
is triggered by the referee blowing a whistle, or someone scoring or the other
team otherwise getting the ball.

Frequently, the mechanism that triggers the transition from one state to the
next is a clock circuit. A clock circuit, or, more commonly, a clock, is a signal
whose value alternates between 0 volts and some specified fixed voltage. In digital
logic terms, a clock is a signal whose value alternates between 0 and 1. Figure 3.29

3.6 Sequential Logic Circuits

1 - -

ONE
CLOCK
CYCLE

ONE
CLOCK
CYCLE

ONE
CLOCK
CYCLE

Figure 3 .29 A clock signal

Figure 3 .30 A traffic danger sign

illustrates the value of the clock signal as a function of time. A clock cycle is one
interval of the repeated sequence of intervals shown in Figure 3.29.

In electronic circuit implementations of a finite state machine, the transition
from one state to another occurs at the start of each clock cycle.

3.6.4 An Example: The Complete Implementation
of a Finite State Machine

We conclude this section with the logic specification of a sequential logic circuit
that implements a finite state machine. Our example is a controller for a traffic
danger sign, as shown in Figure 3.30. Note the sign says, "Danger, Move Right."
The sign also contains five lights (labeled 1 through 5 in the figure).

Like many sequential logic circuits, the purpose of our controller is to direct
the behavior of a system. In our case, the system is the set of lights on the traffic
danger sign. The controller's job is to have the five lights flash on and off as
follows: During one cycle, all lights will be off. The next cycle, lights 1 and 2
will be on. The next cycle, lights 1, 2, 3, and 4 will be on. The next cycle, all five
lights will be on. Then the sequence repeats: next cycle, no lights on, followed

101 chapter 3 Digital Logic Structures

by 1 and 2 on, followed by 1, 2, 3, and 4 on, and so forth. Each cycle is to last
\ second.

Figure 3.31 is a finite state machine that describes the behavior of the traffic
danger sign. Note that there are four states, one for each of the four relevant
situations. Note the transitions from each state to the next state. If the switch is
on (input = 1), the lights flash in the sequence described. If the switch is turned
off, the state always transfers immediately to the "all off" state.

Figure 3.32 shows the implementation of a sequential logic circuit that imple-
ments the finite state machine of Figure 3.31. Figure 3.32a is a block diagram,
similar to Figure 3.23. Note that there is one external input, a switch that deter-
mines whether or not the lights should flash. There are three external outputs, one
to control when lights 1 and 2 are on, one to control when lights 3 and 4 are on,
and one to control when light 5 is on. Note that there are two internal storage
elements that are needed to keep track of which state the controller is in, which
is determined by the past behavior of the traffic danger sign. Note finally that
there is a clock signal that must have a cycle time of \ second in order for the
state transitions to occur every \ second.

The only relevant history that must be retained is the state that we are transi-
tioning from. Since there are only four states, we can uniquely identify them with
two bits. Therefore, only two storage elements are needed. Figure 3.31 shows the
two-bit code used to identify each of the four states.

Combinational Logic
Figure 3.32b shows the combinational logic circuit required to complete the imple-
mentation of the controller for the traffic danger sign. Two sets of outputs of the
combinational logic circuit are required for the controller to work properly: a set
of external outputs for the lights and a set of internal outputs to determine the
inputs to the two storage elements that keep track of the state.

First, let us look at the outputs that control the lights. As we have said, there
are only three outputs necessary to control the lights. Light 5 is controlled by the
output of the AND gate labeled X, since the only time light 5 is on is if the switch

3.6 Sequential Logic Circuits 79

Clock

Switch

From
Element 1

From
Element 2

(a) Block diagram

1 , 2
3,4
5

(b) The combinational logic circuit

To
combinational
logic circuit

(c) A storage element (a master-slave flip-flop)

Figure 3 .32 Sequential logic circuit implementation of Figure 3.30

From
combinational
logic circuit

103 chapter 3 Digital Logic Structures

is on, and the controller is in state 11. Lights 3 and 4 are controlled by the output
of the OR gate labeled Y, since there are two states in which those lights are on,
those labeled 10 and 11. Why are lights 1 and 2 controlled by the output of the
OR gate labeled Z? See Exercise 3.42.

Next, let us look at the internal outputs that control the storage elements.
Storage element 1 should be set to 1 for the next clock cycle if the next state is to
be 10 or 11. This is true only if the switch is on and the current state is either 01 or
10. Therefore the output signal that will make storage element 1 be 1 in the next
clock cycle is the output of the OR gate labeled W. Why is the next state of storage
element 2 controlled by the output of the OR gate labeled U? See Exercise 3.42.

Storage Elements
The last piece of logic needed for the traffic danger sign controller is the logic
circuit for the two storage elements shown in Figure 3.32a. Why can't we use the
the gated D latch discussed in Section 3.4, one might ask? The reason is as follows:
During the current clock cycle the output of the storage element is an internal input
to the combinational logic circuit, and the output of the combinational logic circuit
is an input to the storage element that must not take effect until the start of the next
clock cycle. If we used a gated D latch, the input would take effect immediately
and overwrite the value in the storage element, instead of waiting for the start of
the next cycle.

To prevent that from happening, a simple logic circuit for implementing
the storage element is the master-slave flip-flop. A master-slave flip-flop can be
constructed out of two gated D latches, as shown in Figure 3.32c. During the first
half of the clock cycle, it is not possible to change the value stored in latch A.
Thus, whatever is in latch A is passed to latch B, which is an internal input to the
combinational logic circuit. During the second half of the clock cycle, it is not
possible to change the value stored in latch B, so the value present during the first
half of the clock cycle remains in latch B as the input to the combinational logic
circuit for the entire cycle. However, during the second half of the clock cycle, it
is possible to change the value stored in latch A. Thus the master-slave flip-flop
allows the current state to remain intact for the entire cycle, while the next state
is produced by the combinational logic to change latch A during the second half
of the cycle so as to be ready to change latch B at the start of the next cycle.

3.7 The Dofo Path of me LC-3
In Chapter 5, we will specify a computer, which we call the LC-3, and you will
have the opportunity to write computer programs to execute on it. We close out
this chapter with Figure 3.33, which shows a block diagram of what we call the
data path of the LC-3 and the finite state machine that controls all the LC-3
actions. The data path consists of all the logic structures that combine to process
information in the core of the computer. Right now, Figure 3.33 is undoubtedly
more than a little intimidating, and you should not be concerned by that. You are
not ready to analyze it yet. That will come in Chapter 5. We have included it here,

3.7 The Data Path of the LC-3 81

Figure 3 .33 The data path of the LC-3 computer

105 chapter 3 Digital Logic Structures

however, only to show you that you are already familiar with many of the basic
structures that make up a computer. That is, you already know how most of the
elements in the data path work, and furthermore, you know how those elements
are constructed from gates. For example, PC, IR, MAR, and MDR are registers
and store 16 bits of information each. Each wire that is labeled with a cross-hatch
16 represents 16 wires, each carrying one bit of information. N, Z, and P are
one-bit registers. They could be implemented as master-slave flip-flops. There
are five muxes, one supplying a 16-bit value to the PC register, one supplying an
address to the MAR, one selecting one of two sources to the B input of the ALU,
and two selecting inputs to a 16-bit adder. In Chapter 5, we will see why these
elements must be connected as shown in order to execute the programs written
for the LC-3 computer. For now, just enjoy the fact that the components look
familiar. In Chapters 4 and 5, we will raise the level of abstraction again and put
these components together into a working computer.

Exercises

3.1 In the following table, write whether each type of transistor will act as an
open circuit or a closed circuit.

n-type p-type
Gate
Gate

3.2 Replace the missing parts in the circuit below with either a wire or no
wire to give the output OUT a logical value of 0 when the input IN is a
logical 1.

IN = 1 — OUT = 0

3.3 A two-input AND and a two-input OR are both examples of two-input
logic functions. How many different two-input logic functions are
possible?

Exercises 83

3-4 Replace the missing parts in the circuit below with either a wire or no
wire to give the output C a logical value of 1. Describe a set of inputs that
give the output C a logical value of 0. Replace the missing parts with
wires or no wires corresponding to that set of inputs.

X
;, p-type

B) p-type

J:——IL
» n-type

n-type X
3.5 Complete a truth table for the transistor-level circuit in Figure 3.34.

H L > B

H
OUT

B-

Figure 3.34 Diagram for Exercise 3.5

— C

107 chapter 3 Digital Logic Structures

3.6 For the transistor-level circuit in Figure 3.35, fill in the truth table. What
is Z in terms of A and B?

A B C D Z

H
T

- 4

Figure 3.35 Diagram for Exercise 3.6

h c

1?
T

D

i

A

k 1,

3.7 The circuit below has a major flaw. Can you identify it? Hint: Evaluate
the circuit for all sets of inputs.

H E > B

OUT

B

Exercises 85

3.8 The transistor-level circuit below implements the logic equation given
below. Label the inputs to all the transistors.

Y = NOT (A AND (B OR C))

3.9 Fill in the truth table for the logical expression NOT(NOT(A) OR
NOT(B)). What single logic gate has the same truth table?

A B NOT(NOT(A) OR NOT(B))
0 0
0 1
1 0
1 1

3.10 Fill in the truth table for a two-input NOR gate.

A B A N O R B
0 0
0 1
1 0
1 1

109 chapter 3 Digital Logic Structures

3.11 a. Draw a transistor-level diagram for a three-input AND gate and
a three-input OR gate. Do this by extending the designs from
Figures 3.6a and 3.7a.

b. Replace the transistors in your diagrams from part a with either a wire
or no wire to reflect the circuit's operation when the following inputs
are applied.
(1) A = l, B = 0,C = 0
(2) A = 0, B = 0 , C = 0
(3) A = 1,J? = 1,C = 1

3.12 Following the example of Figure 3.1 la, draw the gate-level schematic
of a three-input decoder. For each output of this decoder, write the input
conditions under which that output will be 1.

3.13 How many output lines will a five-input decoder have?
3.14 How many output lines will a 16-input multiplexer have? How many

select lines will this multiplexer have?
3.15 If A and B are four-bit unsigned binary numbers, 0111 and 1011,

complete the table obtained when using a two-bit full adder from
Figure 3.15 to calculate each bit of the sum, S, of A and B. Check your
answer by adding the decimal value of A and B and comparing the sum
with 5. Are the answers the same? Why or why not?

A
B
S
Cout

3.16 Given the following truth table, generate the gate-level logic circuit,
using the implementation algorithm referred to in Section 3.3.4.

A B c z

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Exercises 87

3.17 a. Given four inputs, A, B, C, and D and one output, Z, create a truth
table for a circuit with at least seven input combinations generating
Is at the output. (How many rows will this truth table have?)

b. Now that you have a truth table, generate the gate-level logic circuit
that implements this truth table. Use the implementation algorithm
referred to in Section 3.3.4.

3-18 Implement the following functions using AND, OR, and NOT logic
gates. The inputs are A, B, and the output is F .
a. F has the value 1 only if A has the value 0 and B has the value 1.
b. F has the value 1 only if A has the value 1 and B has the value 0.
c. Use your answers from (a) and (b) to implement a 1-bit adder.

The truth table for the 1-bit adder is given below.

d. Is it possible to create a 4-bit adder (a circuit that will correctly add
two 4-bit quantities) using only four copies of the logic diagram
from (c)? If not, what information is missing? Hint: When A = 1
and B = 1, a sum of 0 is produced. What information is not
dropped?

3-19 Logic circuit 1 in Figure 3.36 has inputs A, B, C. Logic circuit 2 in
Figure 3.37 has inputs A and B. Both logic circuits have an output D.
There is a fundamental difference between the behavioral characteristics
of these two circuits. What is it? Hint: What happens when the voltage
at input A goes from 0 to 1 in both circuits?

A B Sum

0 0
0 1
1 0
1 1

1
0

0

c

B

D

A

Figure 3 .36 Logic circuit 1 for
Exercise 3 .19

B

Figure 3 .37 Logic circuit 2 for
Exercise 3 .19

111 chapter 3 Digital Logic Structures

3.20 Generate the gate-level logic that implements the following truth table.
From the gate-level structure, generate a transistor diagram that
implements the logic structure. Verify that the transistor
diagram implements the truth table.

in0 in\ /(/«0, in\)
0 0 1
0 1 0
1 0 1
1 1 1

3.21 You know a byte is 8 bits. We call a 4-bit quantity a nibble. If a
byte-addressable memory has a 14-bit address, how many nibbles of
storage are in this memory?

3.22 Implement a 4-to-l mux using only 2-to-l muxes making sure to properly
connect all of the terminals. Remember that you will have 4 inputs, 2
control signals, and 1 output. Write out the truth table for this circuit.

3.23 Given the logic circuit in Figure 3.38, fill in the truth table for the output
value Z.

A B c z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Figure 3 .38 Diagram for Exercise 3.23

Exercises 112

A3 B3 C3 A2 B2 C2 A\ B1 C 1 AO BO CO

+ +
Carry-in

+
Carry-in

+
Carry-in

+
Carry-in

S 3 S2

Figure 3 .39 Diagram for Exercise 3 .24

S1 SO

3.24 a. Figure 3.39 shows a logic circuit that appears in many of today's
processors. Each of the boxes is a full-adder circuit. What does the
value on the wire X do? That is, what is the difference in the output
of this circuit if X = 0 versus if X = 1?

b. Construct a logic diagram that implements an adder/subtracter. That
is, the logic circuit will compute A + B or A — B depending on
the value of X. Hint: Use the logic diagram of Figure 3.39 as a
building block.

3.25 Say the speed of a logic structure depends on the largest number of logic
gates through which any of the inputs must propagate to reach an output.
Assume that a NOT, an AND, and an OR gate all count as one gate
delay. For example, the propagation delay for a two-input decoder
shown in Figure 3.11 is 2 because some inputs propagate through
two gates.

a. What is the propagation delay for the two-input mux shown in
Figure 3.12?

b. What is the propagation delay for the 1-bit full adder in
Figure 3.15?

c. What is the propagation delay for the 4-bit adder shown in
Figure 3.16?

d. What if the 4-bit adder were extended to 32 bits?

113 chapter 3 Digital Logic Structures

3-26 Recall that the adder was built with individual "slices" that produced a
sum bit and carryout bit based on the two operand bits A and B and the
carryin bit. We called such an element a full adder. Suppose we have a
3-to-8 decoder and two six-input OR gates, as shown below. Can we
connect them so that we have a full adder? If so, please do. (Hint: If an
input to an OR gate is not needed, we can simply put an input 0 on it and
it will have no effect on anything. For example, see the figure below.)

3.27 For this question, refer to the figure below.

a. Describe the output of this logic circuit when the select line S is a
logical 0. That is, what is the output Z for each value of A?

b. If the select line S is switched from a logical 0 to 1, what will the
output be?

c. Is this logic circuit a storage element?

Exercises 114

3.28 Having designed a binary adder, you are now ready to design a 2-bit by
2-bit unsigned binary multiplier. The multiplier takes two 2-bit inputs
A[1:0] and B[1:0] and produces an output Y which is the product of
A[1:0] and B[1:0]. The standard notation for this is:

Y =A[1:0]-B[1:0]

a. What is the maximum value that can be represented in 2 bits for
A(A[1:0])?

b. What is the maximum value that can be represented in 2 bits for
5(B[1:0])?

c. What is the maximum possible value of F?
d. What is the number of required bits to represent the maximum value

of y?
e. Write a truth table for the multiplier described above. You will have a

four-input truth table with the inputs being A[l], A[0], B[l], and
B[0].

f . Implement the third bit of output, Y[2] from the truth table using only
AND, OR, and NOT gates.

3.29 A 16-bit register contains a value. The value x75A2 is written into it. Can
the original value be recovered?

115 chapter 3 Digital Logic Structures

3.30 A comparator circuit has two 1-bit inputs A and B and three 1-bit outputs
G (greater), E (Equal), and L (less than). Refer to Figures 3.40 and 3.41
for this problem.

G is 1 if A > B E is 1 if A = B Lis 1 if A < B
0 otherwise 0 otherwise 0 otherwise

G

E

L

G

E

L

G

E

L

G

E

L

G

E

L

G

E

L

Figure 3 .40 Diagram for Exercise 3 .30

Figure 3 . 4 1 Diagram for Exercise 3 .30

a. Draw the truth table for a 1-bit comparator.

A B G E L
0 0
0 1
1 0
1 1

b. Implement G, E, and L using AND, OR, and NOT gates.
c. Using the 1-bit comparator as a basic building block, construct a

four-bit equality checker, such that output EQUAL is 1 if
A[3:0] = B[3:0], 0 otherwise.

Exercises 93

3-31 If a computer has eight-byte addressability and needs three bits to access
a location in memory, what is the total size of memory in bytes?

3.32 Distinguish between a memory address and the memory's addressability.
3.33 Using Figure 3.21, the diagram of the 4-entry, 22-by-3-bit memory.

a. To read from the fourth memory location, what must the values of
A[1:0] and WE be?

b. To change the number of entries in the memory from 4 to 60, how
many address lines would be needed? What would the addressability
of the memory be after this change was made?

c. Suppose the minimum width (in bits) of the program counter (the
program counter is a special register within a CPU, and we will
discuss it in detail in, the next chapter) is the minimum number of bits
needed to address all 60 locations in our memory from part (b). How
many additional memory locations could be added to this memory
without having to alter the width of the program counter?

94 chapter 3 Digital Logic Structures

3.34 For the memory shown in Figure 3.42:
a. What is the address space?
b. What is the addressability?
c. What is the data at address 2?

WE

Di[3]

Di[2]

Di[1]

A[1]

A[0]
U P

o

Di[0]

r
o

r^ I - - p - l l

r
0 J T 0

T U — T U —

1 1 0

0 1 0

w J 1 ^
1

J
1

J 1 ^
1

€ > ~ D[2]

€ > - D[1]

O D[0]

Figure 3 .42 Diagram for Exercise 3.34

Exercises 95

3-35 Given a memory that is addressed by 22 bits and is 3-bit addressable,
how many bits of storage does the memory contain?

3.36 A combinational logic circuit has two inputs. The values of those two
inputs during the past ten cycles were 01, 10, 11,01, 10, 11,01, 10, 11,
and 01. The values of these two inputs during the current cycle are 10.
Explain the effect on the current output due to the values of the inputs
during the previous ten cycles.

3.37 In the case of the lock of Figure 3.24a, there are four states A, B, C, and
D, as described in Section 3.6.2. Either the lock is open (State D), or if it
is not open, we have already performed either zero (State A), one
(State B), or two (State C) correct operations. This is the sum total of all
possible states that can exist. Exercise: Why is that the case? That is,
what would be the snapshot of a fifth state that describes a possible
situation for the combination lock?

3.38 Recall Section 3.6.2. Can one have an arc from a state where the score is
Texas 30, Oklahoma 28 to a state where the score is tied, Texas 30,
Oklahoma 30? Draw an example of the scoreboards (like the one in
Figure 3.25) for the two states.

3.39 Recall again Section 3.6.2. Is it possible to have two states, one where
Texas is ahead 30-28 and the other where the score is tied 30-30, but no
arc between the two? Draw an example of two scoreboards, one where
the score is 30-28 and the other where the score is 30-30, but there can be
no arc between the two. For each of the three output values, game in
progress, Texas wins, Oklahoma wins, draw an example of a scoreboard
that corresponds to a state that would produce that output.

3.40 Refer to Section 3.6.2. Draw a partial finite state machine for the game of
tic-tac-toe.

3-41 The IEEE campus society office sells sodas for 35 cents. Suppose they
install a soda controller that only takes the following three inputs: nickel,
dime, and quarter. After you put in each poin, you push a pushbutton to
register the coin. If at least 35 cents has been put in the controller, it will
output a soda and proper change (if applicable). Draw a finite state
machine that describes the behavior of the soda controller. Each state will
represent how much money has been put in (Hint'. There will be seven of
these states). Once enough money has been put in, the controller will go
to a final state where the person will receive a soda and proper change
(Hint: There are five such final states). From the final state, the next coin
that is put in will start the process again.

3.42 Refer to Figure 3.32b. Why are lights 1 and 2 controlled by the output of
the OR gate labeled Z? Why is the next state of storage element 2
controlled by the output of the OR gate labeled Ul

119 chapter 3 Digital Logic Structures

3.43 Shown in Figure 3.43 is an implementation of a finite state machine with
an input X and output Z.

a. Complete the rest of the following table.
SI, SO specifies the present state.
DI, DO specifies the next state.

Clock

Figure 3 .43 Diagram for Exercise 3.43

SI so X D I DO Z

0 0 0

0 0 1

0 1 0

0 1 1 1 0 1

1 0 0

1 0 1

1 1 0

1 1 1

b. Draw the state diagram for the truth table from part a.
3.44 Prove that the NAND gate, by itself, is logically complete (see

Section 3.3.5) by constructing a logic circuit that performs the AND
function, a logic circuit that performs the NOT function, and a logic
circuit that performs the OR function. Use only NAND gates in these
three logic circuits.

c h a p t e r

4

The von Neumann Model

We are now ready to raise our level of abstraction another notch. We will build
on the logic structures that we studied in Chapter 3, both decision elements and
storage elements, to construct the basic computer model first proposed by John
von Neumann in 1946.

4.1 Basic Components
To get a task done by a computer, we need two things: a computer program that
specifies what the computer must to do to complete the task, and the computer
itself that is to carry out the task.

A computer program consists of a set of instructions, each specifying a well-
defined piece of work for the computer to carry out. The instruction is the smallest
piece of work specified in a computer program. That is, the computer either carries
out the work specified by an instruction or it does not. The computer does not
have the luxury of carrying out a piece of an instruction.

John von Neumann proposed a fundamental model of a computer for process-
ing computer programs in 1946. Figure 4.1 shows its basic components. We have
taken a little poetic license and added a few of our own minor embellishments
to von Neumann's original diagram. The von Neumann model consists of five
parts: memory; a processing unit, input, output, and a control unit. The computer
program is contained in the computer's memory. The control of the order in which
the instructions are carried out is performed by the control unit.

We will describe each of the five parts of the von Neumann model.

121 chapter 4 The von Neumann Model

MEMORY

INPUT

MAR MDR

OUTPUT

* Keyboard
* Mouse
* Scanner
* Card reader
* Disk

PROCESSING UNIT

ALU TEMP

* Monitor
* Printer
* LED
* Disk

CONTROL UNIT

a
PC

IR

Figure 4 . 1 The von Neumann model, overall block diagram

4.1.1 Memory
Recall that in Chapter 3 we examined a simple 22-by-3-bit memory that was con-
structed out of gates and latches. A more realistic memory for one of today's
computer systems is 228 by 8 bits. That is, a typical memory in today's world
of computers consists of 228 distinct memory locations, each of which is capa-
ble of storing 8 bits of information. We say that such a memory has an address
space of 228 uniquely identifiable locations, and an addressability of 8 bits. We
refer to such a memory as a 256-megabyte memory (abbreviated, 256MB). The
"256 mega" refers to the 228 locations, and the "byte" refers to the 8 bits stored
in each location. The term byte is, by definition, the word used to describe 8 bits,
much the way gallon describes four quarts.

We note (as we will note again and again) that with k bits, we can represent
uniquely 2k items. Thus, to uniquely identify 228 memory locations, each loca-
tion must have its own 28-bit address. In Chapter 5, we will begin the complete
definition of the instruction set architecture (ISA) of the LC-3 computer. We will
see that the memory address space of the LC-3 is 216, and the addressability is
16 bits.

Recall from Chapter 3 that we access memory by providing the address from
which we wish to read, or to which we wish to write. To read the contents of a mem-
ory location, we first place the address of that location in the memory's address
register (M A R) , and then interrogate the computer's memory. The information

4.1 Basic Components

000

001

010

011
100
101

110

111

Figure 4.2 Location 6 contains the value 4; location 4 contains the value 6

stored in the location having that address will be placed in the memory's data
register (MDR). To write (or store) a value in a memory location, we first write
the address of the memory location in the MAR, and the value to be stored in the
MDR. We then interrogate the computer's memory with the Write Enable signal
asserted. The information contained in the MDR will be written into the memory
location whose address is in the MAR.

Before we leave the notion of memory for the moment, let us again emphasize
the two characteristics of a memory location: its address and what is stored there.
Figure 4.2 shows a representation of a memory consisting of eight locations. Its
addresses are shown at the left, numbered in binary from 0 to 7. Each location
contains 8 bits of information. Note that the value 6 is stored in the memory
location whose address is 4, and the value 4 is stored in the memory location
whose address is 6. These represent two very different situations.

Finally, an analogy comes to mind: the post office boxes in your local post
office. The box number is like the memory location's address. Each box number is
unique. The information stored in the memory location is like the letters contained
in the post office box. As time goes by, what is contained in the post office box at
any particular moment can change. But the box number remains the same. So, too,
with each memory location. The value stored in that location can be changed, but
the location's memory address remains unchanged.

4.1.2 Processing Unit
The actual processing of information in the computer is carried out by the
processing unit. The processing unit in a modern computer can consist of many
sophisticated complex functional units, each performing one particular operation
(divide, square root, etc.). The simplest processing unit, and the one normally
thought of when discussing the basic von Neumann model, is the ALU. ALU is
the abbreviation for Arithmetic and Logic Unit, so called because it is usually
capable of performing basic arithmetic functions (like ADD and SUBTRACT)
and basic logic operations (like bit-wise AND, OR, and NOT that we have already
studied in Chapter 2). As we will see in Chapter 5, the LC-3 has an ALU, which
can perform ADD, AND, and NOT operations.

The size of the quantities normally processed by the ALU is often referred to
as the word length of the computer, and each element is referred to as a word. In

00000110

00000100

100 chapter 4 The von Neumann Model

the LC-3, the ALU processes 16-bit quantities. We say the LC-3 has a word length
of 16 bits. Each ISA has its own word length, depending on the intended use of the
computer. Most microprocessors today that are used in PCs or workstations have
a word length of either 32 bits (as is the case with Intel's Pentium IV) or 64 bits (as
is the case with Sun's SPARC-V9 processors and Intel's Itanium processor). For
some applications, like the microprocessors used in pagers, VCRs, and cellular
telephones, 8 bits are usually enough. Such microprocessors, we say, have a word
length of 8 bits.

It is almost always the case that a computer provides some small amount of
storage very close to the ALU to allow results to be temporarily stored if they
will be needed to produce additional results in the near future. For example, if a
computer is to calculate (A + B) • C, it could store the result of A + B in memory,
and then subsequently read it in order to multiply that result by C. However, the
time it takes to access memory is long compared to the time it takes to perform the
ADD or MULTIPLY. Almost all computers, therefore, have temporary storage for
storing the result of A + B in order to avoid the unnecessarily longer access time
that would be necessary when it came time to multiply. The most common form of
temporary storage is a set of registers, like the register described in Section 3.4.3.
Typically, the size of each register is identical to the size of values processed
by the ALU, that is, they each contain one word. The LC-3 has eight registers
(R0, Rl, . . . R7), each containing 16 bits. The SPARC-V9 ISA has 32 registers
(R0, R l , . . . R31), each containing 64 bits.

4.1.3 Input and Output
In order for a computer to process information, the information must get into
the computer. In order to use the results of that processing, those results must
be displayed in some fashion outside the computer. Many devices exist for the
purposes of input and output. They are generically referred to in computer jar-
gon as peripherals because they are in some sense accessories to the processing
function. Nonetheless, they are no less important.

In the LC-3 we will have the two most basic of input and output devices. For
input, we will use the keyboard; for output, we will use the monitor.

There are, of course, many other input and output devices in computer systems
today. For input we have among other things the mouse, digital scanners, and
floppy disks. For output we have among other things printers, LED displays, and
disks. In the old days, much input and output was carried out by punched cards.
Fortunately, for those who would have to lug boxes of cards around, the use of
punched cards has largely disappeared.

4.1.4 Control Unit
The control unit is like the conductor of an orchestra; it is in charge of making all
the other parts play together. As we will see when we describe the step-by-step
process of executing a computer program, it is the control unit that keeps track
of both where we are within the process of executing the program and where we
are in the process of executing each instruction.

4.2 The LC-3: An Example von Neumann Machine 101

To keep track of which instruction is being executed, the control unit has an
instruction register to contain that instruction. To keep track of which instruction
is to be processed next, the control unit has a register that contains the next
instruction's address. For historical reasons, that register is called the program
counter (abbreviated PC), although a better name for it would be the instruction
pointer, since the contents of this register are, in some sense, "pointing" to the
next instruction to be processed. Curiously, Intel does in fact call that register the
instruction pointer, but the simple elegance of that name has not caught on.

4.2 The LC-3: On Example von Neumann Machine
In Chapter 5, we will introduce in detail the LC-3, a simple computer that we
will study extensively. We have already shown you its data path in Chapter 3
(Figure 3.33) and identified several of its structures in Section 4.1. In this sec-
tion, we will pull together all the parts of the LC-3 we need to describe it as
a von Neumann computer (see Figure 4.3). We constructed Figure 4.3 by start-
ing with the LC-3's full data path (Figure 3.33) and removing all elements that
are not essential to pointing out the five basic components of the von Neumann
model.

Note that there are two kinds of arrowheads in Figure 4.3: filled-in and
not-filled-in. Filled-in arrowheads denote data elements that flow along the cor-
responding paths. Not-filled-in arrowheads denote control signals that control the
processing of the data elements. For example, the box labeled ALU in the pro-
cessing unit processes two 16-bit values and produces a 16-bit result. The two
sources and the result are all data, and are designated by filled-in arrowheads.
The operation performed on those two 16-bit data elements (it is labeled ALUK)
is part of the control—therefore, a not-filled-in arrowhead.

MEMORY consists of the storage elements, along with the MAR for
addressing individual locations and the MDR for holding the contents of a
memory location on its way to/from the storage. Note that the MAR
contains 16 bits, reflecting the fact that the memory address space of the
LC-3 is 216 memory locations. The MDR contains 16 bits, reflecting the
fact that each memory location contains 16 bits—that is, that the LC-3 is
16-bit addressable.

INPUT/OUTPUT consists of a keyboard and a monitor. The simplest
keyboard requires two registers, a data register (KBDR) for holding the
ASCII codes of keys struck, and a status register (KBSR) for maintaining
status information about the keys struck. The simplest monitor also requires
two registers, one (DDR) for holding the ASCII code of something to be
displayed on the screen, and one (DSR) for maintaining associated status
information. These input and output registers will be discussed in more
detail in Chapter 8.

T H E P R O C E S S I N G U N I T consists of a functional unit that can perform
arithmetic and logic operations (ALU) and eight registers (R0, . . . R7) for
storing temporary values that will be needed in the near future as operands

1 0 2 chapter 4 The von Neumann Model

PROCESSOR BUS I GatePC

i GateMDR

16/|

LD.MDR —

16

LD.PC —*> PC

H PCMUX \
+1

16

CLK

IR

/ 16

R —l

LD.IR

FINITE
STATE

MACHINE

CONTROL UNIT

16

MDR
MEM.EN, R.W 4 MAR LD.MAR

16

LD.REG-

SR2

R E G
F I L E

SR2 SR1
O U T O U T

/
/ 16

£ ALUK
NT

ALU

PROCESSING
UNIT

GateALU

T
4

KBDR

KBSR

DDR

DSR

MEMORY INPUT OUTPUT

Figure 4.3 T h e L C - 3 as a n e x a m p l e o f t h e v o n N e u m a n n m o d e l

for subsequent instructions. The LC-3 ALU can perform one arithmetic
operation (addition) and two logical operations (bitwise AND and bitwise
complement).

THE CONTROL UNIT consists of all the structures needed to manage
the processing that is carried out by the computer. Its most important
structure is the finite state machine, which directs all the activity. Recall the
finite state machines in Section 3.6. Processing is carried out step by step,
or rather, clock cycle by clock cycle. Note the CLK input to the finite state
machine in Figure 4.3. It specifies how long each clock cycle lasts. The

4.3 Instruction Processing 103

instruction register (IR) is also an input to the finite state machine since
what LC-3 instruction is being processed determines what activities must be
carried out. The program counter (PC) is also a part of the control unit; it
keeps track of the next instruction to be executed after the current
instruction finishes.

Note that all the external outputs of the finite state machine in Figure 4.3 have
arrowheads that are not filled in. These outputs control the processing throughout
the computer. For example, one of these outputs (two bits) is ALUK, which
controls the operation performed in the ALU (add, and, or not) during the current
clock cycle. Another output is GateALU, which determines whether or not the
output of the ALU is provided to the processor bus during the current clock cycle.

The complete description of the data path, control, and finite state machine
for one implementation of the LC-3 is the subject of Appendix C.

4.3 Instruction Processing
The central idea in the von Neumann model of computer processing is that the
program and data are both stored as sequences of bits in the computer's memory,
and the program is executed one instruction at a time under the direction of the
control unit.

4.3.1 The Instruction
The most basic unit of computer processing is the instruction. It is made up of
two parts, the opcode (what the instruction does) and the operands (who it is to
do it to). In Chapter 5, we will see that each LC-3 instruction consists of 16 bits
(one word), numbered from left to right, bit [15] to bit [0]. Bits [15:12] contain
the opcode. This means there are at most 24 distinct opcodes. Bits [11:0] are used
to figure out where the operands are.

The ADD Instruction The ADD instruction requires three operands: two source
operands (the data that is to he added) and one destination operand (the sum that is to
be stored after the addition is performed). We said that the processing unit of the LC-3
contained eight registers for purposes of storing data that may be needed later. In fact,
the ADD instruction requires that at least one of the two source operands (and often
both) is contained in one of these registers, and that the result of the ADD is put into
one of these eight registers. Since there are eight registers, three hits are necessary to
identify each register. Thus the 16-bit LC-3 ADD instruction has the following form
(we say format):

Examp le 4 . 1

15 14 13 I

0 0
ADD

11 10 <)

R6

6
0 I 0

R2

1 0
0 0 | 1 I 0 |

R6

104 chapter 4 The von Neumann Model

The 4-hii opcode lor ADD. contained in hits 115:121. is 0001. Hits 1 1 i d e n t i f y the
location Lo he used for storing ihe result, in this case register 6 (R6). Bits |K:ft| and hits
12:0| identify the regislers lo he used lo obtain Ihe source operands, in this case R2 and
Rft. Mils 15:31 have a purpose that it is not necessary lo understand in the context of this
example. We will save Ihe explanation of hils [5:31 for Section 5.2.

Thus, the instruction we have just encoded is interpreted, "Add the contents of
register 2 (R2) to the contents of register 6 (Rft) and store the result back into register
0(K6i;

The LDR Instruction The LDR instruction requires two operands. LD stands for
load, which is computerese for "go to a particular memory location, read the value that is
contained there, and store it in one of the registers." The two operands that are required
are the value to be read from memory and the destination register, which will contain
that value after the instruction is processed. The R in LDR identifies the mechanism that
will be used to calculate the address of the memoiy location to be read. That mechanism
is called the addressing mode, and the particular addressing mode identified by the use
of the letter R is called Base+offset. Thus, the 16-bit LC-3 LDR instruction has the
following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0
LDR R2 R3 6

The four-bit opcode for LDR is 0110. Bits [11:9) identify the register that will contain
the value read from memory after the instruction is executed. Bits [8:0] are used to
calculate the address of the location to be read. In particular, since the addressing
mode is BASE+offset, this address is computed by adding the 2's complement integer
contained in bits [5:0| of the instruction to the contents of the register specified by bits
18:6]. Thus, the instruction we have just encoded is interpreted: "Add the contents of
R3 to the value 6 to form the address of a memory location. Load the contents stored
in that memory location into R2."

4.3.2 The Instruction Cycle
Instructions are processed under the direction of the control unit in a very system-
atic, step-by-step manner. The sequence of steps is called the instruction cycle,
and each step is referred to as a phase. There are fundamentally six phases to the
instruction cycle, although many computers have been designed such that not all
instructions require all six phases. We will discuss this momentarily.

But first, w e will examine the six phases of the instruction cycle:

FETCH
DECODE
EVALUATE ADDRESS
FETCH OPERANDS

4.3 Instruction Processing 105

EXECUTE
STORE RESULT

The process is as follows (again refer to Figure 4.3, our simplified version of the
LC-3 data path):

FETCH

The FETCH phase obtains the next instruction from memory and loads it into
the instruction register (IR) of the control unit. Recall that a computer program
consists of a collection of instructions, that each instruction is represented by a
sequence of bits, and that the entire program (in the von Neumann model) is stored
in the computer's memory. In order to carry out the work of the next instruction,
we must first identify where it is. The program counter (PC) contains the address
of the next instruction. Thus, the FETCH phase takes multiple steps:

First the MAR is loaded with the contents of the PC.
Next, the memory is interrogated, which results
in the next instruction being placed by the memory
into the MDR.
Finally, the IR is loaded with the contents
of the MDR.

We are now ready for the next phase, decoding the instruction. However, when
the instruction cycle is complete, and we wish to fetch the next instruction, we
would like the PC to contain the address of the next instruction. Therefore, one
more step the FETCH phase must perform is to increment the PC. In that way, at
the completion of the execution of this instruction, the FETCH phase of the next
instruction will load into IR the contents of the next memory location, provided
the execution of the current instruction does not involve changing the value in
the PC.

The complete description of the FETCH phase is as follows:

Step 1: Load the MAR with the contents of the PC, and
simultaneously increment the PC.

Step 2: Interrogate memory, resulting in the instruction
being placed in the MDR.

Step 3: Load the IR with the contents of the MDR.

Each of these steps is under the direction of the control unit, much like, as we said
previously, the instruments in an orchestra are under the control of a conductor's
baton. Each stroke of the conductor's baton corresponds to one machine cycle. We
will see in Section 4.4.1 that the amount of time taken by each machine cycle is
one clock cycle. In fact, we often use the two terms interchangeably. Step 1 takes
one machine cycle. Step 2 could take one machine cycle, or many machine cycles,
depending on how long it takes to access the computer's memory. Step 3 takes one
machine cycle. In a modern digital computer, a machine cycle takes a very small
fraction of a second. Indeed, a 3.3-GHz Intel Pentium IV completes 3.3. billion

106 chapter 4 The von Neumann Model

machine cycles (or clock cycles) in one second. Said another way, one machine
cycle (or clock cycle) takes 0.303 billionths of a second (0.303 nanoseconds).
Recall that the light bulb that is helping you read this text is switching on and
off at the rate of 60 times a second. Thus, in the time it takes a light bulb to
switch on and off once, today's computers can complete 55 million machine
cycles!

DECODE

The DECODE phase examines the instruction in order to figure out what the
microarchitecture is being asked to do. Recall the decoders we studied in Chap-
ter 3. In the LC-3, a 4-to-16 decoder identifies which of the 16 opcodes is to be
processed. Input is the four-bit opcode IR[15:12]. The output line asserted is the
one corresponding to the opcode at the input. Depending on which output of the
decoder is asserted, the remaining 12 bits identify what else is needed to process
that instruction.

EVALUATE ADDRESS
This phase computes the address of the memory location that is needed to process
the instruction. Recall the example of the LDR instruction: The LDR instruction
causes a value stored in memory to be loaded into a register. In that example, the
address was obtained by adding the value 6 to the contents of R3. This calculation
was performed during the EVALUATE ADDRESS phase.

FETCH OPERANDS

This phase obtains the source operands needed to process the instruction. In the
LDR example, this phase took two steps: loading MAR with the address calculated
in the EVALUATE ADDRESS phase, and reading memory, which resulted in the
source operand being placed in MDR.

In the ADD example, this phase consisted of obtaining the source operands
from R2 and R6. (In most current microprocessors, this phase [for the ADD
instruction] can be done at the same time the instruction is being decoded. Exactly
how we can speed up the processing of an instruction in this way is a fascinating
subject, but one we are forced to leave for later in your education.)

EXECUTE

This phase carries out the execution of the instruction. In the ADD example, this
phase consisted of the single step of performing the addition in the ALU.

STORE RESULT

The final phase of an instruction's execution. The result is written to its designated
destination.

Once the sixth phase (STORE RESULT) has been completed, the control unit
begins anew the instruction cycle, starting from the top with the FETCH phase.

4.4 Changing the Sequence of Execution 107

Since the PC was updated during the previous instruction cycle, it contains at this
point the address of the instruction stored in the next sequential memory location.
Thus the next sequential instruction is fetched next. Processing continues in this
way until something breaks this sequential flow.

ADD leax I, edx This is an example of an Intel x86 instruction that requires all six
phases of the instruction cycle. All instructions require the first two phases, FETCH and
DECODE. This instruction uses the eax register to calculate the address of a memory
location (EVALUATE ADDRESS). The contents of that memory location are then
read (FETCH OPERAND), added to the contents of the edx register (EXECUTE),
and the result written into the memory location that origiuallx contained the lirst source
.i|»cr;md (STORE RESULT).

The I.C-3 ADD and LDR instructions do not require all six phases. In particular,
the ADD instruction does not require an EVALUATE ADDRESS phase. The LDR
instruction does not require an EXECUTE phase.

4.4 Changing The Sequence of Execufion
Everything we have said thus far suggests that a computer program is executed
in sequence. That is, the first instruction is executed, then the second instruction
is executed, followed by the third instruction, and so on.

We have identified two types of instructions, the ADD, which is an exam-
ple of an operate instruction in that it processes data, and the LDR, which is an
example of a data movement instruction in that it moves data from one place to
another. There are other examples of both operate instructions and data move-
ment instructions, as we will discover in Chapter 5 when we study the LC-3 in
detail.

There is a third type of instruction, the control instruction, whose purpose
is to change the sequence of instruction execution. For example, there are times,
as we shall see, when it is desirable to first execute the first instruction, then the
second, then the third, then the first again, the second again, then the third again,
then the first for the third time, the second for the third time, and so on. As we
know, each instruction cycle starts with loading the MAR with the PC. Thus, if
we wish to change the sequence of instructions executed, we must change the PC
between the time it is incremented (during the FETCH phase of one instruction)
and the start of the FETCH phase of the next.

Control instructions perform that function by loading the PC during the
EXECUTE phase, which wipes out the incremented PC that was loaded dur-
ing the FETCH phase. The result is that, at the start of the next instruction cycle,
when the computer accesses the PC to obtain the address of an instruction to
fetch, it will get the address loaded during the previous EXECUTE phase, rather
than the next sequential instruction in the computer's program.

108 chapter 4 The von Neumann Model

Examp le 4 .5 The J M P Instruction Considerthe LC-3 instruction JMP, whose formal follows.
Assume lliis instruction is stored in memory location x36A2.

d
14 3 12 11 10 9 8

0 0 0 0 0 0
JMP

7_
r

R~3
0 0

0
Z]

The 4-bit opcode for JMP is I KM). Hits |8:ft| specify the register which contains the
address of the next instruction to be processed. Thus, the instruction encoded here is
interpreted, "I ,oad the PC (during the HXliCUTL phase) with the contents of R3 so that
the next instruction processed will be the one at the address obtained from R3."

Processing will go on as follows. I,efs start at the beginning of the instruction
cycle, with PC = X.16A2. The FETCH phase results in the IK being loaded with the
JMP instruction and the PC updated to contain the address x36A3. Suppose the content
of R3 at the start of this instruction is x5446. During the KXIiCUTK phase, the PC is
loaded with x544f>. Therefore, in the next instruction cycle, the instruction processed
will be the one at address x5446. rather than the one at address x.*f>A3.

4.4.1 Control of the Instruction Cycle
We have described the instruction cycle as consisting of six phases, each of which
has some number of steps. We also noted that one of the six phases, FETCH,
required the three sequential steps of loading the MAR with the contents of the
PC, reading memory, and loading the IR with the contents of the MDR. Each step
of the FETCH phase, and indeed, each step of every operation in the computer is
controlled by the finite state machine in the control unit.

Figure 4.4 shows a very abbreviated part of the state diagram corresponding
to the finite state machine that directs all phases of the instruction cycle. As is the
case with the finite state machines studied in Section 3.6, each state corresponds
to one clock cycle of activity. The processing controlled by each state is described
within the node representing that state. The arcs show the next state transitions.

Processing starts with state 1. The FETCH phase takes three clock cycles.
In the first clock cycle, the MAR is loaded with the contents of the PC, and
the PC is incremented. In order for the contents of the PC to be loaded into the
MAR (see Figure 4.3), the finite state machine must assert GatePC and LD.MAR.
GatePC connects the PC to the processor bus. LD.MAR, the write enable signal
of the MAR register, latches the contents of the bus into the MAR at the end of
the current clock cycle. (Latches are loaded at the end of the clock cycle if the
corresponding control signal is asserted.)

In order for the PC to be incremented (again, see Figure 4.3), the finite state
machine must assert the PCMUX select lines to choose the output of the box
labeled +1 and must also assert the LD.PC signal to latch the output of the
PCMUX at the end of the current cycle.

The finite state machine then goes to state 2. Here, the MDR is loaded with
the instruction, which is read from memory.

In state 3, the data is transferred from MDR to the instruction register (IR).
This requires the finite state machine to assert GateMDR and LD.IR, which causes

4.4 Changing the Sequence of Execution 132

To state 1 To state 1 To state 1

Figure 4 . 4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
instruction, as in state 63 of Figure 4.4, for example.

110 chapter 4 The von Neumann Model

Appendix C contains a full description of the implementation of the LC-3,
including its full state diagram and data path. We will not go into that level of
detail in this chapter. Our objective here is to show you that there is nothing magic
about the processing of the instruction cycle, and that a properly completed state
diagram would be able to control, clock cycle by clock cycle, all the steps required
to execute all the phases of every instruction cycle. Since each instruction cycle
ends by returning to state 1, the finite state machine can process, cycle by cycle,
a complete computet program.

4.5 Stopping [tie Computer
From everything we have said, it appears that the computer will continue
processing instructions, carrying out the instruction cycle again and again,
ad nauseum. Since the computer does not have the capacity to be bored, must this
continue until someone pulls the plug and disconnects power to the computer?

Usually, user programs execute under the control of an operating system.
UNIX, DOS, MacOS, and Windows NT are all examples of operating systems.
Operating systems are just computer programs themselves. So as far as the com-
puter is concerned, the instruction cycle continues whether a user program is being
processed or the operating system is being processed. This is fine as far as user
programs are concerned since each user program terminates with a control instruc-
tion that changes the PC to again start processing the operating system—often to
initiate the execution of another user program.

But what if we actually want to stop this potentially infinite sequence of
instruction cycles? Recall our analogy to the conductor's baton, beating at the rate
of millions of machine cycles per second. Stopping the instruction sequencing
requires stopping the conductor's baton. We have pointed out many times that
there is, inside the computer, a component that corresponds very closely to the
conductor's baton. It is called the clock, and it defines the machine cycle. It
enables the finite state machine to continue on to the next machine cycle, whether
that machine cycle is the next step of the current phase or the first step of the next
phase of the instruction cycle. Stopping the instruction cycle requires stopping
the clock.

Figure 4.5a shows a block diagram of the clock circuit, consisting primarily
of a clock generator and a RUN latch. The clock generator is a crystal oscillator,
a piezoelectric device that you may have studied in your physics or chemistry class.
For our purposes, the crystal oscillator is a black box (recall our definition of black

Clock
2.9 volts

0 volts

Run

One
machine

cycle

Figure 4 . 5 The clock circuit and its control

Exercises 134

box in Section 1.4) that produces the oscillating voltage shown in Figure 4.5b.
Note the resemblance of that voltage to the conductor's baton. Every machine
cycle, the voltage rises to 2.9 volts and then drops back to 0 volts.

If the RUN latch is in the 1 state (i.e., Q — 1), the output of the clock circuit
is the same as the output of the clock generator. If the RUN latch is in the 0 state
(i.e., Q = 0), the output of the clock circuit is 0.

Thus, stopping the instruction cycle requires only clearing the RUN latch.
Every computer has some mechanism for doing that. In some older machines, it
is done by executing a HALT instruction. In the LC-3, as in many other machines,
it is done under control of the operating system, as we will see in Chapter 9.

Question: If a HALT instruction can clear the RUN latch, thereby stopping
the instruction cycle, what instruction is needed to set the RUN latch, thereby
reinitiating the instruction cycle?

Exercises

4.1 Name the five components of the von Neumann model. For each
component, state its purpose.

4.2 Briefly describe the interface between the memory and the processing
unit. That is, describe the method by which the memory and the
processing unit communicate.

4.3 What is misleading about the name program counter? Why is the name
instruction pointer more insightful?

4.4 What is the word length of a computer? How does the word length of a
computer affect what the computer is able to compute? That is, is it a
valid argument, in light of what you learned in Chapter 1, to say that a
computer with a larger word size can process more information and
therefore is capable of computing more than a computer with a smaller
word size?

4.5 The following table represents a small memory. Refer to this table for the
following questions.

Address Data
0000 0001 11100100 0011
0001 1111 0000 0010 0101
0010 0110 11110000 0001
0011 0000 0000 0000 0000
0100 0000 0000 0110 0101
0101 0000 0000 0000 0110
0110 1111 1110 1101 0011

0111 0000 0110 1101 1001

112 chapter 4 The von Neumann Model

a. What binary value does location 3 contain? Location 6?
b The binary value within each location can be interpreted in many

ways. We have seen that binary values can represent unsigned
numbers, 2's complement signed numbers, floating point numbers,
and so forth.
(1) Interpret location 0 and location 1 as 2's complement integers.
(2) Interpret location 4 as an ASCII value.
(3) Interpret locations 6 and 7 as an IEEE floating point number.

Location 6 contains number [15:0]. Location 7 contains number
[31:16].

(4) Interpret location 0 and location 1 as unsigned integers.
c. In the von Neumann model, the contents of a memory location can

also be an instruction. If the binary pattern in location 0 were
interpreted as an instruction, what instruction would it represent?

d. A binary value can also be interpreted as a memory address. Say the
value stored in location 5 is a memory address. To which location
does it refer? What binary value does that location contain?

4.6 What are the two components of an instruction? What information
do these two components contain?

4.7 Suppose a 32-bit instruction takes the following format:

OPCODE SR DR IMM

If there are 60 opcodes and 32 registers, what is the range of values that
can be represented by the immediate (IMM)? Assume IMM is a 2's
complement value.

4.8 Suppose a 32-bit instruction takes the following format:

OPCODE DR SRI SR2 UNUSED

If there are 225 opcodes and 120 registers,
a. What is the minimum number of bits required to represent the

OPCODE?
b. What is the minimum number of bits required to represent the

Destination Register (DR)?
c. What is maximum number of UNUSED bits in the instruction

encoding?
4.9 The FETCH phase of the instruction cycle does two important things.

One is that it loads the instruction to be processed next into the IR. What
is the other important thing?

4.10 Examples 4.1, 4.2, and 4.5 illustrate the processing of the ADD, LDR,
and JMP instructions. The PC, IR, MAR, and MDR are written in various
phases of the instruction cycle, depending on the opcode of the particular
instruction. In each location in the table below, enter the opcodes which

Exercises 113

write to the corresponding register (row) during the corresponding phase
(column) of the instruction cycle.

Fetch
Instruction Decode

Evaluate
Address

Fetch
Data Execute

Store
Result

PC

IR

MAR

MDR

4.11 State the phases of the instruction cycle and briefly describe what
operations occur in each phase.

4.12 For the instructions ADD, LDR, and JMP, write the operations that occur
in each phase of the instruction cycle.

4.13 Say it takes 100 cycles to read from or write to memory and only one
cycle to read from or write to a register. Calculate the number of cycles
it takes for each phase of the instruction cycle for both the IA-32
instruction "ADD [eax], edx" (refer to Example 4.3) and the LC-3
instruction "ADD R6, R2, R6." Assume each phase (if required) takes
one cycle, unless a memory access is required.

4.14 Describe the execution of the JMP instruction if R3 contains x369C
(refer to Example 4.5).

4.15 If a HALT instruction can clear the RUN latch, thereby stopping the
instruction cycle, what instruction is needed to set the RUN latch, thereby
reinitiating the instruction cycle?

4.16 a. If a machine cycle is 2 nanoseconds (i.e., 2 - 10 - 9 seconds), how
many machine cycles occur each second?

b. If the computer requires on the average eight cycles to process each
instruction, and the computer processes instructions one at a time
from beginning to end, how many instructions can the computer
process in 1 second?

c. Preview of future courses: In today's microprocessors, many features
are added to increase the number of instructions processed each
second. One such feature is the computer's equivalent of an assembly
line. Each phase of the instruction cycle is implemented as one or
more separate pieces of logic. Each step in the processing of an
instruction picks up where the previous step left off in the previous
machine cycle. Using this feature, an instruction can be fetched
from memory every machine cycle and handed off at the end of the
machine cycle to the decoder, which performs the decoding function
during the next machine cycle while the next instruction is being
fetched. Ergo, the assembly line. Assuming instructions are located at

114 chapter 4 The von Neumann Model

sequential addresses in memory, and nothing breaks the sequential
flow, how many instructions can the microprocessor execute each
second if the assembly line is present? (The assembly line is called a
pipeline, which you will encounter in your advanced courses. There
are many reasons why the assembly line cannot operate at its
maximum rate, a topic you will consider at length in some of
these courses.)

c h a p t e r

5

The L C - 3

In Chapter 4, we discussed the basic components of a computer—its memory, its
processing unit, including the associated temporary storage (usually a set of reg-
isters), input and output devices, and the control unit that directs the activity of all
the units (including itself!). We also studied the six phases of the instruction
cycle—FETCH, DECODE, ADDRESS EVALUATION, OPERAND FETCH,
EXECUTE, and STORE RESULT. We are now ready to introduce a "real" com-
puter, the LC-3. To be more nearly exact, we are ready to introduce the instruction
set architecture (ISA) of the LC-3. We have already teased you with a few facts
about the LC-3 and a few of its instructions. Now we will examine the ISA of the
LC-3 in a more comprehensive way.

Recall from Chapter 1 that the ISA is the interface between what the software
commands and what the hardware actually carries out. In this chapter and in
Chapters 8 and 9, we will point out the important features of the ISA of the LC-3.
You will need these features to write programs in the LC-3's own language, that
is, in the LC-3's machine language.

A complete description of the ISA of the LC-3 is contained in Appendix A.

5.1 The ISR: Overvieui
The ISA specifies all the information about the computer that the software has to
be aware of. In other words, the ISA specifies everything in the computer that is
available to a programmer when he/she writes programs in the computer's own
machine language. Thus, the ISA also specifies everything in the computer that

116 chapter 5 The LC-3

is available to someone who wishes to translate programs written in a high-level
language like C or Pascal or Fortran or COBOL into the machine language of the
computer.

The ISA specifies the memory organization, register set, and instruction set,
including opcodes, data types, and addressing modes.

5.1.1 Memory Organization
The LC-3 memory has an address space of 216 (i.e., 65,536) locations, and an
addressability of 16 bits. Not all 65,536 addresses are actually used for memory
locations, but we will leave that discussion for Chapter 8. Since the normal unit
of data that is processed in the LC-3 is 16 bits, we refer to 16 bits as one word,
and we say the LC-3 is word-addressable.

5.1.2 Registers
Since it usually takes far more than one machine cycle to obtain data from mem-
ory, the LC-3 provides (like almost all computers) additional temporary storage
locations that can be accessed in a single machine cycle.

The most common type of temporary storage locations and the one used in
the LC-3 is the general purpose register set. Each register in the set is called a
general purpose register (GPR). Registers have the same property as memory
locations in that they are used to store information that can be retrieved later. The
number of bits stored in each register is usually one word. In the LC-3, this means
16 bits.

Registers must be uniquely identifiable. The LC-3 specifies eight GPRs, each
identified by a 3-bit register number. They are referred to as RO, Rl , . . . R7.
Figure 5.1 shows a snapshot of the LC-3's register set, sometimes called a register
file, with the eight values 1, 3, 5, 7, - 2 , - 4 , - 6 , and - 8 stored in RO, . . . R7,
respectively.

Register 0 (RO) 0000000000000001

Register 1 (R1) 0000000000000011

Register 2 (R2) 0000000000000101

Register 3 (R3) 0000000000000111

Register 4 (R4) 1111111111111110

Register 5 (R5) 1111111111111100

Register 6 (R6) 1111111111111010

Register 7 (R7) 1111111111111000

Figure 5 . 1 The register file before the ADD instruction

5.1 The ISA: Overview

Register 0 (RO)

Register 1 (Rl)

Register 2 (R2)

Register 3 (R3)

Register 4 (R4)

Register 5 (R5)

Register 6 (R6)

Register 7 (R7)

Figure 5.2 The register file after the ADD instruction

Recall that the instruction to ADD the contents of RO to Rl and store the
result in R2 is specified as

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1

ADD R2 RO Rl

where the two sources of the ADD instruction are specified in bits [8:6] and bits
[2:0]. The destination of the ADD result is specified in bits [11:9]. Figure 5.2
shows the contents of the register file of Figure 5.1 AFTER the instruction ADD
R2, Rl , RO is executed.

0000000000000001

0000000000000011

0000000000000100

0000000000000111

1111111111111110

1111111111111100

1111111111111010

1111111111111000

5.1.3 The Instruction Set
An instruction is made up of two things, its opcode (what the instruction is asking
the computer to do) and its operands (who the computer is expected to do it
to). The instruction set of an ISA is defined by its set of opcodes, data types,
and addressing modes. The addressing modes determine where the operands are
located.

You have just seen an example of one opcode ADD and one addressing mode
register mode. The operation the instruction is asking the computer to perform is
2's complement integer addition, and the locations where the computer is expected
to find the operands are the general purpose registers.

5.1.4 Opcodes
Some IS As have a very large set of opcodes, one for each of a large number of tasks
that a program may wish to carry out. Other IS As have a very small set of opcodes.
Some ISAs have specific opcodes to help with processing scientific calculations.
For example, the Hewlett Packard Precision Architecture has an instruction that
performs a multiply, followed by an add (A * B) + C on three source operands.
Other ISAs have instructions that process video images obtained from the World
Wide Web. The Intel x86 ISA added a number of instructions Intel calls MMX

141 chapter 5 The LC-3

instructions because they eXtend the ISA to assist with MultiMedia applications
that use the Web. Still other IS As have specific opcodes to help with handling the
tasks of the operating system. For example, the VAX architecture, popular in the
1980s, had an opcode to save all the information associated with one program
that was running prior to switching to another program. Almost all computers
prefer to use a long sequence of instructions to ask the computer to carry out the
task of saving all that information. Although that sounds counterintuitive, there
is a rationale for it. Unfortunately, the topic will have to wait for a later semester.
The decision as to which instructions to include or leave out of an ISA is usually
a hotly debated topic in a company when a new ISA is being specified.

The LC-3 ISA has 15 instructions, each identified by its unique opcode. The
opcode is specified by bits [15:12] of the instruction. Since four bits are used
to specify the opcode, 16 distinct opcodes are possible. However, the LC-3 ISA
specifies only 15 opcodes. The code 1101 has been left unspecified, reserved for
some future need that we are not able to anticipate today.

There are three different types of instructions, which means three different
types of opcodes: operates, data movement, and control. Operate instructions
process information. Data movement instructions move information between
memory and the registers and between registers/memory and input/output devices.
Control instructions change the sequence of instructions that will be executed.
That is, they enable the execution of an instruction other than the one that is stored
in the next sequential location in memory.

Figure 5.3 lists all the instructions of the LC-3, the bit encoding [15:12] for
each opcode, and the format of each instruction. The use of these formats will be
further explained in Sections 5.2, 5.3, and 5.4.

5.1.5 Data Types
A data type is a representation of information such that the ISA has opcodes
that operate on that representation. There are many ways to represent the same
information in a computer. That should not surprise us. In our daily lives, we
regularly represent the same information in many different ways. For example,
a child, when asked how old he is, might hold up three fingers, signifying he is
3 years old. If the child is particularly precocious, he might write the decimal digit
3 to indicate his age. Or, if he is a CS or CE major at the university, he might write
0000000000000011, the 16-bit binary representation for 3. If he is a chemistry
major, he might write 3.0 • 10°. All four represent the same entity: 3.

If the ISA has an opcode that operates on information represented by a data
type, then we say the ISA supports that data type. In Chapter 2, we introduced
the only data type supported by the ISA of the LC-3: 2's complement integers.

5.1.6 Addressing Modes
An addressing mode is a mechanism for specifying where the operand is located.
An operand can generally be found in one of three places: in memory, in a register,
or as a part of the instruction. If the operand is a part of the instruction, we refer
to it as a literal or as an immediate operand. The term literal comes from the

5.1 The ISA: Overview

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD +

ADD +

AND +

AND +

BR

JMP

JSR

JSRR

LD+

LDI+

LDR +

LEA+

NOT +

RET

RTI

ST

STI

STR

TRAP

reserved

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: + indicates instructions that
modify condition codes

I I I
0001 I I I

1 1
DR

1 1

1 1
SR1
i i

0
i

00
1

i i
SR2 i >

I I I
0001

I I I

1 1
DR

1 i

i i
SR1
i i

1
1 1 1 1

imm5
i i i i

I I I
0101 I I I

1 I
DR

i i

i i
SR1
i i

0
i

00
1

i i
SR2
i i I I I

0101 I I I

i i
DR

i i

i i
SR1
i i

1
1 1 1 1

imm5
i i i i

I I I
0000 t I 1

n z P
i i i i i i i i

PCoffset9
i i i i i i i i

1 1 1
1100

I I I

i i
000
1 1

i i
BaseR
i i

i i i i i
000000

I I I
0100

1 t 1
1

i i i i i i i i i i
PCoffsetH

i i i
1 1 1

0100 1 1 1 0
i

00
1

i i
BaseR
i i

1 1 1 1 1
000000

1 1 1
0010 I I I

I I
DR

i i

i i i i i i i i
PCoffset9

i i i i i i i i
I I I

1010
I I I

i i
DR

" "

i i i i i i i r
i PCoffset9

I I I
0110 I I 1

i i
DR

i "

i i
BaseR
i i

1 1 1 1 1 •
offset6

i i i i i
[1 1

1110
I I I

i i
DR

i i

i i i i i \ i - 1—
PCoffset9

I I I
1001

I I I

i i
DR

i i

i i
SR

i i

i i i i i
111111

I I I
1100 I I I

i i
000
« 1

i i
111
i i

i i i i i
000000

I I I I 1
I I I

1000 1 1 1

1 I 1 1 1 1 1 1 1 i 1
000000000000

1 1 1
0011 I I I

1 1
SR

1 1

• i i i i i i i
PCoffset9

I I I
1011 I I I SR

i i

i i i i i i i i -
PCoffset9

I I I
0111

I I I SR
• i

i i
BaseR
i i

1 1 1 I P
offset6

1 1 1
1111

I I I

i i i i i i i i i i
0000 trapvect8 I I I i i i i i i i

I I I
1101 I 1 1

i i i i i i i i i i i

• i i i i

120 chapter 5 The LC-3

fact that the bits of the instruction literally form the operand. The term immediate
comes from the fact that we have the operand immediately, that is, we don't have
to look elsewhere for it.

The LC-3 supports five addressing modes: immediate (or literal), register,
and three memory addressing modes: PC-relative, indirect, and Base+offset. We
will see in Section 5.2 that operate instructions use two addressing modes: register
and immediate. We will see in Section 5.3 that data movement instructions use
all five modes.

5.1.7 Condition Codes
One final item will complete our overview of the ISA of the LC-3: condition
codes. Almost all ISAs allow the instruction sequencing to change on the basis of
a previously generated result. The LC-3 has three single-bit registers that are set
(set to 1) or cleared (set to 0) each time one of the eight general purpose registers
is written. The three single-bit registers are called N9 Z, and P, corresponding to
their meaning: negative, zero, and positive. Each time a GPR is written, the N, Z,
and P registers are individually set to 0 or 1, corresponding to whether the result
written to the GPR is negative, zero, or positive. That is, if the result is negative,
the N register is set, and Z and P are cleared. If the result is zero, Z is set and
N and P are cleared. Finally, if the result is positive, P is set and N and Z are
cleared.

Each of the three single-bit registers is referred to as a condition code
because the condition of that bit can be used by one of the control instructions
to change the execution sequence. The x86 and SPARC are two examples of
ISAs that use condition codes to do this. We show how the LC-3 does it in
Section 5.4.

5.2 Operate Instructions
Operate instructions process data. Arithmetic operations (like ADD, SUB, MUL,
and DIV) and logical operations (like AND, OR, NOT, XOR) are common
examples. The LC-3 has three operate instructions: ADD, AND, and NOT.

The NOT (opcode = 1001) instruction is the only operate instruction that
performs a unary operation, that is, the operation requires one source operand.
The NOT instruction bit-wise complements a 16-bit source operand and stores the
result of this operation in a destination. NOT uses the register addressing mode
for both its source and destination. Bits [8:6] specify the source register and bits
[11:9] specify the destination register. Bits [5:0] must contain all Is.

If R5 initially contains 0101000011110000, after executing the following
instruction:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1

NOT R3 R5

R3 will contain 1010111100001111.

5.2 Operate Instructions 121

RO

R1

R2

R3

R4

R5

R6

R7

0101000011110000

1010111100001111

/
/ 1 6 ' 1 6

NOT

Figure 5.4 Data path relevant to the execution of NOT R3, R5

Figure 5.4 shows the key parts of the data path that are used to perform the
NOT instruction shown here. Since NOT is a unary operation, only the A input
of the ALU is relevant. It is sourced from R5. The control signal to the ALU
directs the ALU to perform the bit-wise complement operation. The output of the
ALU (the result of the operation) is stored into R3.

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both
perform binary operations; they require two 16-bit source operands. The ADD
instruction performs a 2's complement addition of its two source operands. The
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit
operands. Like the NOT, the ADD and AND use the register addressing mode for
one of the source operands and for the destination operand. Bits [8:6] specify the
source register and bits [1L;9] specify the destination register (where the result
will be written).

The second source operand for both ADD and AND instructions can be speci-
fied by either register mode or as an immediate operand. Bit [5] determines which
is used. If bit [5] is 0, then the second source operand uses a register, and bits
[2:0] specify which register. In that case, bits [4:3] are set to 0 to complete the
specification of the instruction.

145 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value - 1 8 , then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD Rl R4 R5

Rl will contain the value —12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD Rl, R4, # - 2 .

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2's complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

IR

Figure 5.5 Data path relevant to the execution of ADD R l , R4, # -2

5.3 Data Movement Instructions 123

What docs the following instruction do?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 0 1 f) 0 0 0 0

ANSWER: Register 2 is cleared (i.e., set to all ()s).

Whai dues the following instruction do?

0 0 0 1 1 1 0 1 0
1

0 0 0 0 1
llllillilll

ANSWER: Register ft is incremented (i.e., R6 R6 + 1) .
Note that a register can he used as a source and .dsn as a destination in ihe

instruction. This is true for all the instructions in the I.C-3.

Examp le 5 . 1

Examp le 5 .2

Recall that the 2's complement of a number can be obtained by complementing the
number and adding 1. Therefore, assuming the value*. A and B are m RO and RI. what
sequence of three instructions perforins "A minus B" and writes the result into R2?

Examp le 5 .3

ANSWER:

15 14 13 12 II 10 l> 7 ft 5 4 3 2 I 0

1 0 0 0 0 0 0 1 1 R l NOT(B)
NOT Rl Rl 111 jjjlf jit̂ t?

• -i
0 0 0 1 0 1 0 0 0 J 0 0 0 0 1

ADD R2 Rl

0 0 0 1 CJ 1 0 0 0 0 0 0 0 0 0 1 R 2 A + (- : ; >
ADD R2 RO

Question: What distasteful result is
be avoided?

5.3 Data Movement Instructions
Data movement instructions move information between the general purpose reg-
isters and memory, and between the registers and the input/output devices. We will
ignore for now the business of moving information from input devices to registers
and from registers to output devices. This will be the major topic of Chapter 8 and
an important part of Chapter 9 as well. In this chapter, we will confine ourselves
to moving information between memory and the general purpose registers.

124 chapter 5 The LC-3

The process of moving information from memory to a register is called a
load, and the process of moving information from a register to memory is called a
store. In both cases, the information in the location containing the source operand
remains unchanged. In both cases, the location of the destination operand is
overwritten with the source operand, destroying the prior value in the destination
location in the process.

The LC-3 contains seven instructions that move information: LD, LDR, LDI,
LEA, ST, STR, and STI.

The format of the load and store instructions is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opcode | DR or SR | Addr Gen bits ~|

Data movement instructions require two operands, a source and a destination. The
source is the data to be moved; the destination is the location where it is moved
to. One of these locations is a register, the second is a memory location or an
input/output device. As we said earlier, in this chapter the second operand will be
assumed to be in memory. We will save for Chapter 8 the cases where the second
operand specifies an input or output device.

Bits [11:9] specify one of these operands, the register. If the instruction is
a load, DR refers to the destination register that will contain the value after it is
read from memory (at the completion of the instruction cycle). If the instruction
is a store, SR refers to the register that contains the value that will be written to
memory.

Bits [8:0] contain the address generation bits. That is, bits [8:0] encode infor-
mation that is used to compute the 16-bit address of the second operand. In the
case of the LC-3's data movement instructions, there are four ways to interpret
bits [8:0]. They are collectively called addressing modes. The opcode specifies
how to interpret bits [8:0]. That is, the LC-3's opcode specifies which addressing
mode should be used to obtain the operand from bits [8:0] of the instruction.

5.3.1 PC-Relative Mode
LD (opcode = 0010) and ST (opcode = 0011) specify the PC-relative addressing
mode. This addressing mode is so named because bits [8:0] of the instruction
specify an offset relative to the PC. The memory address is computed by sign-
extending bits [8:0] to 16 bits, and adding the result to the incremented PC.
The incremented PC is the contents of the program counter after the FETCH
phase; that is, after the PC has been incremented. If a load, the memory location
corresponding to the computed memory address is read, and the result loaded into
the register specified by bits [11:9] of the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

LD R2 xlAF

is located at x4018, it will cause the contents of x3FC8 to be loaded into R2.

5.3 Data Movement Instructions 125

15 0

IR 0010 010 110101111

LD R2 x1AF

PC 0100 0000 0001 1001

RO

R1

R2

' IR[8:0] R 3

R4
SEXT

16

1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1

' 16

" V
ADD

/ ' 16

©
MAR |

R5

R6

R7

0000000000000101

16

MDR

Figure 5 . 6 Data path relevant to execution of LD R2, x l A F

Figure 5.6 shows the relevant parts of the data path required to execute this
instruction. The three steps of the LD instruction are identified. In step 1, the
incremented PC (x4019) is added to the sign-extended value contained in IR[8:0]
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is
read and the contents of x3FC8 are loaded into the MDR. Suppose the value stored
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction
cycle.

Note that the address of the memory operand is limited to a small range of the
total memory. That is, the address can only be within +256 or —255 locations of
the LD or ST instruction since the PC is incremented before the offset is added.
This is the range provided by the sign-extended value contained in bits [8:0] of
the instruction.

5.3.2 Indirect Mode
LD I (opcode — 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST.
However, instead of this address being the address of the operand to be loaded or
stored, it contains the address of the operand to be loaded or stored. Hence the

149 chapter 5 The LC-3

name indirect. Note that the address of the operand can be anywhere in the com-
puter's memory, not just within the range provided by bits [8:0] of the instruction
as is the case for LD and ST. The destination register for the LDI and the source
register for STI, like all the other loads and stores, are specified in bits [11:9] of
the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 xlCC

is in X4A1B, and the contents of x49E8 is x2110, execution of this instruction
results in the contents of x2110 being loaded into R3.

Figure 5.7 shows the relevant parts of the data path required to execute this
instruction. As is the case with the LD and ST instructions, the first step consists
of adding the incremented PC (x4AlC) to the sign-extended value contained in
IR[8:0] (xFFCC), and the result (x49E8) loaded into the MAR. In step 2, memory
is read and the contents of x49E8 (x2110) is loaded into the MDR. In step 3, since
x2110 is not the operand, but the address of the operand, it is loaded into the MAR.
In step 4, memory is again read, and the MDR again loaded. This time the MDR
is loaded with the contents of x2110. Suppose the value —1 is stored in memory
location x2110. In step 5, the contents of the MDR (i.e., — 1) are loaded into R3,
completing the instruction cycle.

15
IR

PC

1010 011 111001100

LDI R3 x1CC

0100 1010 0001 1100

RO

R1

R2

' IR[8:0] R 3

R4
SEXT

16

xFFCC

16

ADD

R5

R6

R7

1111111111111111

t '16

0

I MAR |

x2110

(D(D

16

MDR

Figure 5.5 Data path relevant to the execution of ADD R l , R4, #-2

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode
LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2's complement integer
between —32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x lD

loads R1 with the contents of x2362.
Figure 5.8 shows the relevant parts of the data path required to execute this

instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (xOOlD), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is xOFOF. Third, and finally,
the contents of the MDR (in this case, xOFOF) are loaded into Rl .

15 0

IR 1010 011 011 011101

LDR R1 R2 x1D

' IR[5:0]

SEXT

/ 1 6

X 0 0 1 D

ADD

/ '16

©
MAR |

R0

R1

R2

R3

R4

R5

R6

R7

0000111100001111

0010001101000101

' 1 6

MDR

®

Figure 5.8 Data path relevant to the execution of LDR R l , R2, x l D

128 chapter 5 The LC-3

Note that the Base+offset addressing mode also allows the address of the
operand to be anywhere in the computer's memory.

5.3.4 Immediate Mode
The fourth and last addressing mode used by the data movement instructions is
the immediate (or, literal) addressing mode. It is used only with the load effective
address (LEA) instruction. LEA (opcode =1110) loads the register specified by
bits [11:9] of the instruction with the value formed by adding the incremented
program counter to the sign-extended bits [8:0] of the instruction. The immediate
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of
memory.

The LEA instruction is useful to initialize a register with an address that
is very close to the address of the instruction doing the initializing. If memory
location x4018 contains the instruction LEA R5, # - 3 , and the PC contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 - 3

R5 will contain x4016 after the instruction at x4018 is executed.
Figure 5.9 shows the relevant parts of the data path required to execute the

LEA instruction. Note that no access to memory is required to obtain the value
to be loaded.

15

IR

PC

1110 101 111111101

LEA R5 x1 FD

0100 0000 0001 1001

IR[8:0]

SEXT

16

1111111111111101

16

R0

R1

R2

R3

R4

R5

R6

R7

0100000000010110

Figure 5.5 Data path relevant to the execution of ADD R l , R4, #-2

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not access memory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example
We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, Rl contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into Rl , and the sign-extended immediate
value is xOOOE, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. Rl still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressing mode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address
x30F6
x30F7
x30F8
x30F9
x30FA
x30FB
x30FC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0
0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0
1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1

R l < - PC-3
R2<- Rl+14
M [x 3 0 F 4] < - R2
R2<- 0
R2<- R2+5
M [R l + 1 4] < - R2
R3<- M[M[x3F04]]

Figure 5 . 1 0 Addressing mode example

130 chapter 5 The LC-3

execution of the ST instruction, memory location x30F4 contains x3102, and the
PC contains x30F9.

At x30F9, we find the opcode 0101, which represents the AND instruction.
After execution, R2 contains the value 0, and the PC contains x30FA.

At x30FA, we find the opcode 0001, signifying the ADD instruction. After
execution, R2 contains the value 5, and the PC contains x30FB.

At x30FB, we find the opcode 0111, signifying the STR instruction. The
STR instruction (like the LDR instruction) uses the Base+offset addressing mode.
The memory address is obtained by adding the contents of the register specified
by bits [8:61 (the BASE register) to the sign-extended offset contained in bits
[5:0]. In this case, bits [8:6] specify Rl . The contents of R1 are still x30F4.
The 16-bit sign-extended offset is xOOOE. Since x30F4 + xOOOE is x3102, the
memory address is x3102. The STR instruction stores into x3102 the contents of
the register specified by bits [11:9], that is, R2. Recall that the previous instruc-
tion (at x30FA) stored the value 5 into R2. Therefore, at the end of execution
of this instruction, location x3102 contains the value 5, and the PC contains
x30FC.

At x30FC, we find the opcode 1010, signifying the LDI instruction. The
LDI instruction (like the STI instruction) uses the indirect addressing mode. The
memory address is obtained by first forming an address as is done in the PC-
relative addressing mode. In this case, the 16-bit value obtained by sign-extending
bits [8:0] of the instruction is xFFF7. The incremented PC is x30FD. Their sum
is x30F4, which is the address of the operand address. Memory location x30F4
contains x3102. Therefore, x3102 is the operand address. The LDI instruction
loads the value found at this address (in this case 5) into the register identified
by bits [11:9] of the instruction (in this case R3). At the end of execution of this
instruction, R3 contains the value 5 and the PC contains x30FD.

5.4 Control Instructions
Control instructions change the sequence of the instructions that are executed. If
there were no control instructions, the next instruction fetched after the current
instruction finishes would be the instruction located in the next sequential memory
location. As you know, this is because the PC is incremented in the FETCH phase
of each instruction. We will see momentarily that it is often useful to be able to
break that sequence.

The LC-3 has five opcodes that enable this sequential flow to be broken: con-
ditional branch, unconditional jump, subroutine (sometimes called function) call,
TRAP, and return from interrupt. In this section, we will deal almost exclusively
with the most common control instruction, the conditional branch. We will also
introduce the unconditional jump and the TRAP instruction. The TRAP instruc-
tion is particularly useful because, among other things, it allows a programmer
to get information into and out of the computer without fully understanding the
intricacies of the input and output devices. However, most of the discussion of the
TRAP instruction and all of the discussion of the subroutine call and the return
from interrupt we will leave for Chapters 9 and 10.

5.4 Control Instructions 154

5.4.1 Conditional Branches
The format of the conditional branch instruction (opcode = 0000) is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 N z p PCoffset

Bits [11], [10], and [9] correspond to the three condition codes discussed in
Section 5.1.7. Recall that in the LC-3, all instructions that write values into the
general purpose registers set the three condition codes (i.e., the single-bit registers
N, Z, P) in accordance with whether the value written is negative, zero, or positive.
These instructions are ADD, AND, NOT, LD, LDI, LDR, and LEA.

The condition codes are used by the conditional branch instruction to deter-
mine whether to change the instruction flow; that is, whether to depart from the
usual sequential execution of instructions that we get as a result of incrementing
PC during the FETCH phase of each instruction.

The instruction cycle is as follows: FETCH and DECODE are the same for all
instructions. The PC is incremented during FETCH. The EVALUATE ADDRESS
phase is the same as that for LD and ST: the address is computed by adding the
incremented PC to the 16-bit value formed by sign-extending bits [8:0] of the
instruction.

During the EXECUTE phase, the processor examines the condition codes
whose corresponding bits in the instruction are 1. That is, if bit [11] is 1, condition
code N is examined. If bit [10] is 1, condition code Z is examined. If bit [9]
is 1, condition code P is examined. If any of bits [11:9] are 0, the corresponding
condition codes are not examined. If any of the condition codes that are examined
are in state 1, then the PC is loaded with the address obtained in the EVALUATE
ADDRESS phase. If none of the condition codes that are examined are in state 1,
the PC is left unchanged. In that case, in the next instruction cycle, the next
sequential instruction will be fetched.

For example, if the last value loaded into a general purpose register was 0,
then the current instruction (located at x4027) shown here

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1

BR n z p xOD9

would load the PC with x4101, and the next instruction executed would be the
one at x4101, rather than the instruction at x4028.

Figure 5.11 shows the data path elements that are required to execute this
instruction. Note the logic required to determine whether the sequential instruction
flow should be broken. In this case the answer is yes, and the PC is loaded with
x4101, replacing x4028, which had been loaded during the FETCH phase of the
conditional branch instruction.

If all three bits [11:9] are 1, then all three condition codes are examined. In
this case, since the last result stored into a register had to be either negative, zero,
or positive (there are no other choices), one of the three condition codes must be
in state 1. Since all three are examined, the PC is loaded with the address obtained
in the EVALUATE ADDRESS phase. We call this an wrcconditional branch since

155 chapter 5 The LC-3

Yes!

Figure 5 . 1 1 Data path relevant to the execution of BRz xOD9

the instruction flow is changed unconditionally, that is, independent of the data
that is being processed.

For example, if the following instruction,

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n xl85

located at x507B, is executed, the PC is loaded with x5001.
What happens if all three bits [11:9] in the BR instruction are 0?

5.4.2 An Example
We are ready to show by means of a simple example the value of having control
instructions in the instruction set.

Suppose we know that the 12 locations x3100 to x310B contain integers, and
we wish to compute the sum of these 12 integers.

5.4 Control Instructions 133

Figure 5 . 1 2 An algor i thm for adding 12 integers

A flowchart for an algorithm to solve the problem is shown in Figure 5.12.
First, as in all algorithms, we must initialize our variables. That is, we must

set up the initial values of the variables that the computer will use in executing the
program that solves the problem. There are three such variables: the address of
the next integer to be added (assigned to Rl), the running sum (assigned to R3),
and the number of integers left to be added (assigned to R2). The three variables
are initialized as follows: The address of the first integer to be added is put in Rl .
R3, which will keep track of the running sum, is initialized to 0. R2, which will
keep track of the number of integers left to be added, is initialized to 12. Then the
process of adding begins.

The program repeats the process of loading into R4 one of the 12 integers,
and adding it to R3. Each time we perform the ADD, we increment Rl so it will
point to (i.e., contain the address of) the next number to be added and decrement
R2 so we will know how many numbers still need to be added. When R2 becomes
zero, the Z condition code is set, and we can detect that we are done.

The 10-instruction program shown in Figure 5.13 accomplishes the task.
The details of the program execution are as follows: The program starts with

PC = x3000. The first instruction (at location x3000) loads Rl with the address
x3100. (The incremented PC is x3001; the sign-extended PCoffset is xOOFF.)

The instruction at x3001 clears R3. R3 will keep track of the running sum, so
it must start off with the value 0. As we said previously, this is called initializing
the SUM to zero.

The instructions at x3002 and x3003 set the value of R2 to 12, the number of
integers to be added. R2 will keep track of how many numbers have already been
added. This will be done (by the instruction contained in x3008) by decrementing
R2 after each addition takes place.

The instruction at x3004 is a conditional branch instruction. Note that bit [10]
is a 1. That means that the Z condition code will be examined. If it is set, we know

134 chapter 5 The LC-3

Address
x3000
x3001
x3002
x3003
x3004
x3005
x3006
x3007
x3008
x3009

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0

Rl<- 3100
R3 <- 0
R2 < - 0
R2 <- 12
BRz x300A
R4 <- M [Rl]
R3 <- R3+R4
Rl <- Rl+1
R2 <- R2-1
BRnzp x3004

Figure 5 . 1 3 A program that implements the a lgor i thm of Figure 5.12

R2 must have just been decremented to 0. That means there are no more numbers
to be added and we are done. If it is clear, we know we still have work to do and
we continue.

The instruction at x3005 loads the contents of x3100 (i.e., the first integer)
into R4, and the instruction at x3006 adds it to R3.

The instructions at x3007 and x3008 perform the necessary bookkeeping.
The instruction at x3007 increments Rl, so Rl will point to the next location in
memory containing an integer to be added (in this case, x3101). The instruction
at x3008 decrements R2, which is keeping track of the number of integers still to
be added, as we have already explained, and sets the N, Z, and P condition codes.

The instruction at x3009 is an unconditional branch, since bits [11:9] are all 1.
It loads the PC with x3004. It also does not affect the condition codes, so the next
instruction to be executed (the conditional branch at x3004) will be based on the
instruction executed at x3008.

This is worth saying again. The conditional branch instruction at x3004 fol-
lows the instruction at x3009, which does not affect condition codes, which in
turn follows the instruction at x3008. Thus, the conditional branch instruction at
x3004 will be based on the condition codes set by the instruction at x3008. The
instruction at x3008 sets the condition codes depending on the value produced
by decrementing R2. As long as there are still integers to be added, the ADD
instruction at x3008 will produce a value greater than zero and therefore clear
the Z condition code. The conditional branch instruction at x3004 examines the
Z condition code. As long as Z is clear, the PC will not be affected, and the next
instruction cycle will start with an instruction fetch from x3005.

The conditional branch instruction causes the execution sequence to follow:
x3000, x3001, x3002, x3003, x3004, x3005, x3006, x3007, x3008, x3009, x3004,
x3005, x3006, x3007, x3008, x3009, x3004, x3005, and so on until the value in R2
becomes 0. The next time the conditional branch instruction at x3004 is executed,
the PC is loaded with x300A, and the program continues at x300A with its next
activity.

Finally, it is worth noting that we could have written a program to add these
12 integers without any control instructions. We still would have needed the LEA

5.4 Control Instructions 158

instruction in x3000 to initialize Rl . We would not have needed the instruction
at x3001 to initialize the running sum, nor the instructions at x3002, and x3003
to initialize the number of integers left to be added. We could have loaded the
contents of x3100 directly into R3, and then repeatedly (by incrementing Rl ,
loading the next integer into R4, and adding R4 to the running sum in R3) added
the remaining 11 integers. After the addition of the twelfth integer, we would go
on to the next task, as does the example of Figure 5.13 with the branch instruction
in x3004.

Unfortunately, instead of a 10-instruction program, we would have had a 35-
instruction program. Moreover, if we had wished to add 100 integers without any
control instructions instead of 12, we would have had a 299-instruction program
instead of 10. The control instructions in the example of Figure 5.13 permit the
reuse of sequences of code by breaking the sequential instruction execution flow.

5.4.3 Two Methods for Loop Control
We use the term loop to describe a sequence of instructions that get executed
again and again under some controlling mechanism. The example of adding 12
integers contains a loop. Each time the body of the loop executes, one more integer
is added to the running total, and the counter is decremented so we can detect
whether there are any more integers left to add. Each time the loop body executes
is called one iteration of the loop.

There are two common methods for controlling the number of iterations of a
loop. One method we just examined: the use of a counter. If we know we wish to
execute a loop n times, we simply set a counter to n, then after each execution of
the loop, we decrement the counter and check to see if it is zero. If it is not zero,
we set the PC to the start of the loop and continue with another iteration.

A second method for controlling the number of executions of a loop is to use
a sentinel. This method is particularly effective if we do not know ahead of time
how many iterations we will want to perform. Each iteration is usually based on
processing a value. We append to our sequence of values to be processed a value
that we know ahead of time can never occur (i.e., the sentinel). For example,
if we are adding a sequence of numbers, a sentinel could be a # or a *, that is,
something that is not a number. Our loop test is simply a test for the occurrence
of the sentinel. When we find it, we know we are done.

5.4.4 Example: Adding a Column of Numbers Using a Sentinel
Suppose in our example of Section 5.4.2, we know the values stored in locations
x3100 to x310B are all positive. Then we could use any negative number as
a sentinel. Let's say the sentinel stored at memory address x310C is —1. The
resulting flowchart for the program is shown in Figure 5.14 and the resulting
program is shown in Figure 5.15.

As before, the instruction at x3000 loads Rl with the address of the first value
to be added, and the instruction at x3001 initializes R3 (which keeps track of the
sum) to 0.

136 chapter 5 The LC-3

1
R1 < - x3100

R3 < - 0
R4 < - M[R1]

R3 < - R3 + R4
Increment R1
R4 < - M[R1]

Figure 5 .14 An algorithm showing the use of a sentinel for loop control

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0
x3002 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
x3004 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0
x3005 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
x3006 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1

Rl<- x3100
R3 < - 0
R4 <- M[Rl]
BRn x3008
R3 <- R3+R4
Rl <- Rl+1
R4 <- MtRl]
BRnzp x3003

Figure 5 .15 A program that implements the algorithm of Figure 5.14

At x3002, we load the contents of the next memory location into R4. If the
sentinel is loaded, the N condition code is set.

The conditional branch at x3003 examines the N condition code, and if it is
set, sets PC to x3008 and onto the next task to be done. If the N condition code
is clear, R4 must contain a valid number to be added. In this case, the number
is added to R3 (x3004), Rl is incremented to point to the next memory location
(x3005), R4 is loaded with the contents of the next memory location (x3006), and
the PC is loaded with x3003 to begin the next iteration (x3007).

5.4.5 The J MP Instruction
The conditional branch instruction, for all its capability, does have one unfortunate
limitation. The next instruction executed must be within the range of addresses
that can be computed by adding the incremented PC to the sign-extended offset

5.4 Control Instructions 137

obtained from bits [8:0] of the instruction. Since bits [8:0] specify a 2's comple-
ment integer, the next instruction executed after the conditional branch can be
at most +256 or —255 locations from the branch instruction itself. What if we
would like to execute next an instruction that is 1,000 locations from the current
instruction. We cannot fit the value 1,000 into the 9-bit field; ergo, the conditional
branch instruction does not work.

The LC-3 ISA does provide an instruction JMP (opcode = 1100) that can
do the job. An example follows: .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

JMP R2

The JMP instruction loads the PC with the contents of the register specified by
bits [8:6] of the instruction. If this JMP instruction is located at address x4000,
R2 contains the value x6600, and the PC contains x4000, then the instruction at
x4000 (the JMP instruction) will be executed, followed by the instruction located
at x6600. Since registers contain 16 bits, the full address space of memory, the
JMP instruction has no limitation on where the next instruction to be executed
must reside.

5.4.6 The TRAP Instruction
Finally, because it will be useful long before Chapter 9 to get data into and out
of the computer, we introduce the TRAP instruction now. The TRAP (opcode =
1111) instruction changes the PC to a memory address that is part of the operating
system so that the operating system will perform some task in behalf of the
program that is executing. In the language of operating system jargon, we say
the TRAP instruction invokes an operating system SERVICE CALL. Bits [7:0]
of the TRAP instruction form the trapvector, which identifies the service call
that the program wishes the operating system to perform. Table A.2 contains the
trapvectors for all the service calls that we will use with the LC-3 in this book.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 trapvector

Once the operating system is finished performing the service call, the program
counter is set to the address of the instruction following the TRAP instruction,
and the program continues. In this way, a program can, during its execution,
request services from the operating system and continue processing after each
such service is performed. The services we will require for now are

* Input a character from the keyboard (trapvector = x23).
* Output a character to the monitor (trapvector = x21).
* Halt the program (trapvector = x25).

Exactly how the LC-3 carries out the interaction between operating system
and executing programs is an important topic for Chapter 9.

138 chapter 5 The LC-3

5.5 Another Example: Counting Occurrences of a Character
We will finish our introduction to the ISA of the LC-3 with another example
program. We would like to be able to input a character from the keyboard and
then count the number of occurrences of that character in a file. Finally, we would
like to display that count on the monitor. We will simplify the problem by assuming
that the number of occurrences of any character that we would be interested in is
small. That is, there will be at most nine occurrences. This simplification allows us
to not have to worry about complex conversion routines between the binary count
and the ASCII display on the monitor—a subject we will get into in Chapter 10,
but not today.

Figure 5.16 is a flowchart of the algorithm that solves this problem. Note that
each step is expressed both in English and also (in parentheses) in terms of an
LC-3 implementation.

The first step is (as always) to initialize all the variables. This means providing
starting values (called initial values) for R0, Rl , R2, and R3, the four registers
the computer will use to execute the program that will solve the problem. R2 will
keep track of the number of occurrences; in Figure 5.16, it is referred to as count.
It is initialized to zero. R3 will point to the next character in the file that is being
examined. We refer to it as pointer since it contains the address of the location
where the next character of the file that we wish to examine resides. The pointer
is initialized with the address of the first character in the file. R0 will hold the
character that is being counted; we will input that character from the keyboard
and put it in R0. Rl will hold, in turn, each character that we get from the file
being examined.

We should also note that there is no requirement that the file we are examining
be close to or far away from the program we are developing. For example, it is
perfectly reasonable for the program we are developing to start at x3000, and the
file we are examining to start at x9000. If that were the case, in the initialization
process, R3 would be initialized to x9000.

The next step is to count the number of occurrences of the input character.
This is done by processing, in turn, each character in the file being examined,
until the file is exhausted. Processing each character requires one iteration of a
loop. Recall from Section 5.4.3 that there are two common methods for keeping
track of iterations of a loop. We will use the sentinel method, using the ASCII
code for EOT (End of Text) (00000100) as the sentinel. A table of ASCII codes
is in Appendix E.

In each iteration of the loop, the contents of Rl are first compared to the
ASCII code for EOT. If they are equal, the loop is exited, and the program moves
on to the final step, displaying on the screen the number of occurrences. If not,
there is work to do. Rl (the current character under examination) is compared to
R0 (the character input from the keyboard). If they match, R2 is incremented. In
either case, we get the next character, that is, R3 is incremented, the next character
is loaded into Rl , and the program returns to the test that checks for the sentinel
at the end of the file.

When the end of the file is reached, all the characters have been examined,
and the count is contained as a binary number in R2. In order to display the

5.5 Another Example: Counting Occurrences of a Character 139

Figure 5 . 1 6 An algorithm to count occurrences of a character

140 chapter 5 The LC-3

Address
x3000
x3001
x3002
x3003
x3004
x3005
x3006
x3007
x3008
x3009
x300A
x300B
x300C
x300D
x300E
x300F
x3010
x3011
x3012
x3013

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1

Starting address of file
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

R2 < - 0
R3 <- M[x3012]
TRAP x23
Rl <- M[R3]
R4 <- R l - 4
BRz x300E
Rl <- NOT Rl
Rl <- Rl + 1
Rl <- Rl + R0
BRnp x300B
R2 < - R2 + 1
R3 <- R3 + 1
Rl <- M[R3]
BRnzp x3004
R0 <- M[x3013]
R0 < - R0 + R2
TRAP x 2 1
TRAP x25

ASCII TEMPLATE

Figure 5 . 1 7 A machine language program that implements the a lgor i thm of Figure 5.16

count on the monitor, it is necessary to first convert it to an ASCII code. Since
we have assumed the count is less than 10, we can do this by putting a leading
0011 in front of the 4-bit binary representation of the count. Note in Figure E.2
the relationship between the binary value of each decimal digit between 0 and 9
and its corresponding ASCII code. Finally, the count is output to the monitor, and
the program terminates.

Figure 5.17 is a machine language program that implements the flowchart of
Figure 5.16.

First the initialization steps. The instruction at x3000 clears R2 by ANDing it
with xOOOO; the instruction at x3001 loads the value stored in x3012 into R3. This
is the address of the first character in the file that is to be examined for occurrences
of our character. Again, we note that this file can be anywhere in memory. Prior to
starting execution at x3000, some sequence of instructions must have stored the
first address of this file in x3012. Location x3002 contains the TRAP instruction,
which requests the operating system to perform a service call on behalf of this
program. The function requested, as identified by the 8-bit trapvector 00100011
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2
lists trapvectors for all operating system service calls that can be performed on
behalf of a user program. Note (from Table A.2) that x23 directs the operating
system to perform the service call that reads the next character struck and loads
it into R0. The instruction at x3003 loads the character pointed to by R3 into Rl.

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from Rl , and storing it in R4. If the result

5.6 The Data Path Revisited 141

is zero, the end of the file has been reached, and it is time to output the count.
The instruction at x3005 conditionally branches to x300E, where the process of
outputting the count begins.

If R4 is not equal to zero, the character in Rl is legitimate and must be
examined. The sequence of instructions at locations x3006, x3007, and x3008
determine if the contents of Rl and RO are identical. The sequence of instructions
perform the following operation:

RO + (NOT (Rl) + 1)

This produces all zeros only if the bit patterns of Rl and RO are identical. If the
bit patterns are not identical, the conditional branch at x3009 branches to x300B,
that is, it skips the instruction x300A, which increments R2, the counter.

The instruction at x300B increments R3, so it will point to the next character
in the file being examined, the instruction at x300C loads that character into
Rl , and the instruction at x300D unconditionally takes us back to x3004 to start
processing that character.

When the sentinel (EOT) is finally detected, the process of outputting the
count begins (at x300E). The instruction at x300E loads 00110000 into R0, and
the instruction at x300F adds the count to R0. This converts the binary represen-
tation of the count (in R2) to the ASCII representation of the count (in R0). The
instruction at x3010 invokes a TRAP to the operating system to output the con-
tents of R0 on the monitor. When that is done and the program resumes execution,
the instruction at x3011 invokes a TRAP instruction to terminate the program.

5.6 The Data Path Revisited
Before we leave Chapter 5, let us revisit the data path diagram that we first
encountered in Chapter 3 (Figure 3.33). Now we are ready to examine all the
structures that are needed to implement the LC-3 ISA. Many of them we have seen
earlier in this chapter in Figures 5.4,5.5,5.6,5.7,5.8,5.9, and 5.11. We reproduce
this diagram as Figure 5.18. Note at the outset that there are two kinds of arrows
in the data path, those with arrowheads filled in, and those with arrowheads not
filled in. Filled-in arrowheads designate information that is processed. Unfilled-
in arrowheads designate control signals. Control signals emanate from the block
labeled "Control." The connections from Control to most control signals have
been left off Figure 5.18 to reduce unnecessary clutter in the diagram.

5.6.1 Basic Components of the Data Path
The Global Bus
You undoubtedly first notice the heavy black structure with arrowheads at both
ends. This represents the data path's global bus. The LC-3 global bus consists
of 16 wires and associated electronics. It allows one structure to transfer up to
16 bits of information to another structure by making the necessary electronic
connections on the bus. Exactly one value can be transferred on the bus at one
time. Note that each structure that supplies values to the bus has a triangle just

142 chapter 5 The LC-3

GateMARMUX 5

MARMUX

16 /

ZEXT

/

GatePC

LD.PC-

f6

PC

+1

PCMUX

T V ' 1
J /16 .

[7:0] +
A

ADDR2MUX

4
ADDR1MUX

[10:0]
/

/

[8:0]

SEXT

k k k A
/ it A

SEXT

<6 / / 16 /

[5:0]
/ SEXT

/
16 /

V

DR-y^o

LD.REG—>

SR2-

REG
FILE

SR2 SRI
OUT OUT O-T^-SRI

f 6 16

16

LD.IR-

/

[4:0]
SEXT

16.

R

IR

16

N Z P
i k

LOGIC

-LD.CC

FINITE
STATE

MACHINE

CONTROL

1 ' w

ALUK

/
/ 16

Al6
\7 GateALU

G a t e M D R - ^
16 / ' 16 16

LD.MDR- MDR

16
MEMORY

MAR <—LD.MAR

INPUT

MEM.EN, R.W

Figure 5.18 The data path of the LC-3

5.6 The Data Path Revisited 143

behind its input arrow to the bus. This triangle (called a tri-state device) allows the
computer's control logic to enable exactly one supplier to provide information to
the bus at any one time. The structure wishing to obtain the value being supplied
can do so by asserting its LD.x (load enable) signal (recall our discussion of gated
latches in Section 3.4.2). Not all computers have a single global bus. The pros
and cons of a single global bus is yet another one of those topics that will have to
wait for later in your education.

Memory

One of the most important parts of any computer is the memory that contains
both instructions and data. Memory is accessed by loading the memory address
register (MAR) with the address of the location to be accessed. If a load is being
performed, control signals then read the memory, and the result of that read is
delivered by the memory to the memory data register (MDR). On the other hand,
if a store is being performed, the data to be stored is first loaded into the MDR.
Then the control signals specify that WE is asserted in order to store into that
memory location.

The ALU and the Register File

The ALU is the processing element. It has two inputs, source 1 from a register and
source 2 from either a register or the sign-extended immediate value provided by
the instruction. The registers (RO through R7) can provide two values, source 1,
which is controlled by the 3-bit register number SRI, and source 2, which is
controlled by the 3-bit register number SR2. SRI and SR2 are fields in the LC-3
operate instruction. The selection of a second register operand or a sign-extended
immediate operand is determined by bit [5] of the LC-3 instruction. Note the mux
that provides source 2 to the ALU. The select line of that mux, coming from the
control logic, is bit [5] of the LC-3 operate instruction.

The result of an ALU operation is a result that is stored in one of the registers,
and the three single-bit condition codes. Note that the ALU can supply 16 bits to
the bus, and that value can then be written into the register specified by the 3-bit
register number DR. Also, note that the 16 bits supplied to the bus are also input
to logic that determines whether that 16-bit quantity is negative, zero, or positive,
and sets the three registers N, Z, and P accordingly.

The PC and the PCMUX

The PC supplies via the global bus to the MAR the address of the instruction to
be fetched at the start of the instruction cycle. The PC, in turn, is supplied via the
three-to-one PCMUX, depending on the instruction being executed. During the
FETCH phase of the instruction cycle, the PC is incremented and written into
the PC. That is shown as the rightmost input to the PCMUX.

If the current instruction is a control instruction, then the relevant source of
the PCMUX depends on which control instruction is currently being processed.
If the current instruction is a conditional branch and the branch is taken, then the
PC is loaded with the incremented PC + PCoffset (the 16-bit value obtained by

144 chapter 5 The LC-3

sign-extending IR[8:0]). Note that this addition takes place in the special adder
and not in the ALU. The output of the adder is the middle input to PCMUX. The
third input to PCMUX is obtained from the global bus. Its use will become clear
after we discuss the other control instructions in Chapters 9 and 10.

The MARMUX

As you know, memory is accessed by supplying the address to the MAR. The
MARMUX controls which of two sources will supply the MAR with the appro-
priate address during the execution of a load, a store, or a TRAP instruction. The
right input to the MARMUX is obtained by adding either the incremented PC or
a base register to a literal value or zero supplied by the IR. Whether the PC or a
base register and what literal value depends on which opcode is being processed.
The control signal ADDR1MUX specifies the PC or base register. The control
signal ADDR2MUX specifies which of four values to be added. The left input
to MARMUX provides the zero-extended trapvector, which is needed to invoke
service calls, as will be discussed in further detail in Chapter 9.

5.6.2 The Instruction Cycle
We complete our tour of the LC-3 data path by following the flow through an
instruction cycle. Suppose the content of the PC is x3456 and the content of
location x3456 is 0110011010000100. And suppose the LC-3 has just completed
processing the instruction at x3455, which happened to be an ADD instruction.

FETCH

As you know, the instruction cycle starts with the FETCH phase. That is, the
instruction is obtained by accessing memory with the address contained in the PC.
In the first cycle, the contents of the PC are loaded via the global bus into the
MAR, and the PC is incremented and loaded into the PC. At the end of this cycle,
the PC contains x3457. In the next cycle (if memory can provide information in
one cycle), the memory is read, and the instruction 0110011010000100 is loaded
into the MDR. In the next cycle, the contents of the MDR are loaded into the
instruction register (IR), completing the FETCH phase.

DECODE
In the next cycle, the contents of the IR are decoded, resulting in the control
logic providing the correct control signals (unfilled arrowheads) to control the
processing of the rest of this instruction. The opcode is 0110, identifying the
LDR instruction. This means that the Base+offset addressing mode is to be used
to determine the address of data to be loaded into the destination register R3.

EVALUATE ADDRESS
In the next cycle, the contents of R2 (the base register) and the sign-extended bits
[5:0] of the IR are added and supplied via the MARMUX to the MAR. The SRI
field specifies 010, the register to be read to obtain the base address. ADDR1 MUX
selects SRI OUT, and ADDR2MUX selects the second from the right source.

Exercises 145

OPERAND FETCH

In the next cycle (or more than one, if memory access takes more than one cycle),
the data at that address is loaded into the MDR.

EXECUTE

The LDR instruction does not require an EXECUTE phase, so this phase takes
zero cycles.

STORE RESULT

In the last cycle, the contents of the MDR are loaded into R3. The DR control
field specifies Oil, the register to be loaded.

Exercises

5.1 Given instructions ADD, JMP, LEA, and NOT, identify whether the
instructions are operate instructions, data movement instructions, or
control instructions. For each instruction, list the addressing modes that
can be used with the instruction.

5.2 A memory's addressibility is 64 bits. What does that tell you about the
size of the MAR and MDR?

5.3 There are two common ways to terminate a loop. One way uses a counter
to keep track of the number of iterations. The other way uses an element
called a . What is the distinguishing characteristic of this element?

5.4 Say we have a memory consisting of 256 locations, and each location
contains 16 bits.
a. How many bits are required for the address?
b. If we use the PC-relative addressing mode, and want to allow control

transfer between instructions 20 locations away, how many bits of a
branch instruction are needed to specify the PC-relative offset?

c. If a control instruction is in location 3, what is the PC-relative offset
of address 10. Assume that the control transfer instructions work the
same way as in the LC-3.

5.5 a. What is an addressing mode?
b. Name three places an instruction's operands might be located.
c. List the five addressing modes of the LC-3, and for each one state

where the operand is located (from part b).
d. What addressing mode is used by the ADD instruction shown in

Section 5.1.2?

169 chapter 5 The LC-3

5.6 Recall the machine busy example from Section 2.7.1. Assuming the
BUSYNESS bit vector is stored in R2, we can use the LC-3 instruction
0101 011 010 1 00001 (AND R3, R2, #1) to determine whether machine
0 is busy or not. If the result of this instruction is 0, then machine 0 is
busy.
a. Write an LC-3 instruction that determines whether machine 2

is busy.
b. Write an LC-3 instruction that determines whether both machines 2

and 3 are busy.
c. Write an LC-3 instruction that indicates none of the machines are

busy.
d. Can you write an LC-3 instruction that determines whether machine 6

is busy? Is there a problem here?
5.7 What is the largest positive number we can represent literally (i.e., as an

immediate value) within an LC-3 ADD instruction?

5.8 We want to increase the number of registers that we can specify in the
LC-3 ADD instruction to 32. Do you see any problem with that?
Explain.

5.9 We would like to have an instruction that does nothing. Many ISAs
actually have an opcode devoted to doing nothing. It is usually called
NOP, for NO OPERATION. The instruction is fetched, decoded, and
executed. The execution phase is to do nothing! Which of the following
three instructions could be used for NOP and have the program still work
correctly?

a. 0001 001 001 1 00000
b. 0000 111000000001
c. 0000 000 000000000

What does the ADD instruction do that the others do not do?

5.10 What is the difference between the following LC-3 instructions A and B?
How are they similar? How are they different?

A: 0000111101010101
B: 0100111101010101

5.11 We wish to execute a single LC-3 instruction that will subtract the
decimal number 20 from register 1 and put the result into register 2. Can
we do it? If yes, do it. If not, explain why not.

5.12 After executing the following LC-3 instruction: ADD R2, R0, Rl, we
notice that R0[15] equals Rl[15], but is different from R2[15]. We are
told that R0 and Rl contain UNSIGNED integers (that is, nonnegative
integers between 0 and 65,535). Under what conditions can we trust the
result in R2?

Exercises 147

5.13 a. How might one use a single LC-3 instruction to move the value in R2
into R3?

b. The LC-3 has no subtract instruction. How could one perform the
following operation using only three LC-3 instructions:

Rl <r- R2- R3

c. Using only one LC-3 instruction and without changing the contents of
any register, how might one set the condition codes based on the value
that resides in Rl?

d. Is there a sequence of LC-3 instructions that will cause the condition
codes at the end of the sequence to be N = 1, Z = 1, and P = 0?
Explain.

e. Write an LC-3 instruction that clears the contents of R2.
5.14 The LC-3 does not have an opcode for the logical function OR. That is,

there is no instruction in the LC-3 ISA that performs the OR operation.
However, we can write a sequence of instructions to implement the OR
operation. The four instruction sequence below performs the OR of the
contents of register 1 and register 2 and puts the result in register 3. Fill
in the two missing instructions so that the four instruction sequence will
do the job.

(1): 1001 100 001 111111
(2) :

(3): 0101 110 100 000 101
(4) :

5.15 State the contents of Rl, R2, R3, and R4 after the program starting at
location x3100 halts.

Address Data

0011 0001 0000 0000 1110 001 000100000

0011 0001 0000 0001 0010 010 000100000

0011 0001 0000 0010 1010 011 000100000

0011 0001 0000 0011 0110 100 010 000001

0011 0001 0000 0100 1111 0000 0010 0101

0011 0001 0010 0010 0100 0101 0110 0110
0011 0001 00100011 01000101 01100111

01000101 01100111 1010 1011 1100 1101
01000101 0110 1000 1111 1110 1101 0011

148 chapter 5 The LC-3

5.16 Which LC-3 addressing mode makes the most sense to use under the
following conditions. (There may be more than one correct answer to
each of these; therefore, justify your answers with some explanation.)
a. You want to load one value from an address which is less than ±2 8

locations away.
b. You want to load one value from an address which is more than 28

locations away.
c. You want to load an array of sequential addresses.

5.17 How many times does the LC-3 make a read or write request to memory
during the processing of the LD instruction? How many times during
the processing of the LDI instruction? How many times during the
processing of the LEA instruction? Processing includes all phases of the
instruction cycle.

5.18 The program counter contains the address of an LDR instruction. In order
for the LC-3 to process that instruction, how many memory accesses
must be made? Repeat this task for S H and TRAP.

5.19 The LC-3 Instruction Register (IR) is made up of 16 bits, of which the
least significant nine bits [8:0] represent the PC-relative offset for the LD
instruction. If we change the ISA so that bits [6:0] represent the
PC-relative offset, what is the new range of addresses we can load data
from using the LD instruction?

5.20 If we made the LC-3 ISA such that we allow the LD instruction to load
data only ±32 locations away from the incremented PC value, how many
bits would be required for the PC-relative offset in the LD instruction?

5.21 What is the maximum number of TRAP service routines that the LC-3
ISA can support? Explain.

5.22 The PC contains x3010. The following memory locations contain values
as shown:

x3 050: X70A4
X70A2: X70A3
X70A3 : xFFFF
X70A4: X123B

The following three LC-3 instructions are then executed, causing a value
to be loaded into R6. What is that value?

X3010 1110 0110 0011 1111
X3011 0110 1000 1100 0000
X3012 0110 1101 0000 0000

We could replace the three-instruction sequence with a single instruction.
What is it?

Exercises 149

5.23 Suppose the following LC-3 program is loaded into memory starting at
location x30FF:

x3 OFF 1110 0010 0000 0001
x310 0 0110 0100 0100 0010
x3101 1111 0000 0010 0101
x3102 0001 0100 0100 0001
x3103 0001 0100 1000 0010

If the program is executed, what is the value in R2 at the end of
execution?

5.24 An LDR instruction, located at x3200, uses R4 as its base register. The
value currently in R4 is x4011. What is the largest address that this
instruction can load from? Suppose we redefine the LDR offset to be
zero-extended, rather than sign-extended. Then what would be the largest
address that this instruction could load from? With the new definition,
what would be the smallest address that this instruction could
load from?

5.25 Write an LC-3 program that compares two numbers in R2 and R3 and
puts the larger number in Rl. If the numbers are equal, then Rl is set
equal to 0.

5.26 Your task is to consider the successor to the LC-3. We will add 16
additional instructions to the ISA and expand the register set from 8 to
16. We would like our machine to have an addressability of 1 byte and a
total memory size of 64K bytes. We will keep the size of an instruction at
16 bits. Also, we will encode all new instructions with the same five
fields as the original 16 instructions, although it may be necessary to
change the size of some of those fields.

a. How many bits do we need in the PC to be able to address all of
memory?

b. What is the largest immediate value that can be represented in an
arithmetic instruction?

c. If we want 128 different operating system routines to be able to be
accessed with a trap instruction and we form the address of each of
these routines by shifting the trap vector to the left by 5 bits, what is
the minimum amount of memory required by the trap service
routines?

d. If, in the new version of the LC-3, we reduced the number of registers
from eight to four and kept the number of opcodes at 16, what is the
largest immediate value we could represent in an ADD instruction on
this new machine?

5.27 Before the seven instructions are executed in the example of Section
5.3.5, R2 contains the value xAAAA. How many different values are
contained in R2 during the execution of the seven instructions? What
are they?

150 chapter 5 The LC-3

5.28 It is the case that we REALLY don't need to have load indirect (1010)
and store indirect (1011) instructions. We can accomplish the same
results using other instruction sequences instead of using these
instructions. Replace the store indirect (1011) instruction in the code
below with whatever instructions are necessary to perform the same
function.

X3000 0010 0000 0000 0010
x3001 1011 0000 0000 0010
x3 002 1111 0000 0010 0101
X3003 0000 0000 0100 1000
x3 004 1111 0011 1111 1111

5.29 The LC-3 ISA contains the instruction LDR DR, BaseR, offset. After
the instruction is decoded, the following operations (called
microinstructions) are carried out to complete the processing of the
LDR instruction:

MAR BaseR + SEXT(Offset6) ; set up the memory address
MDR Memory [MAR] ; read mem at BaseR + offset
DR MDR ; load DR

Suppose that the architect of the LC-3 wanted to include an instruction
MOVE DR, SR that would copy the memory location with address given
by SR and store it into the memory location whose address is in DR.
a. The MOVE instruction is not really necessary since it can be

accomplished with a sequence of existing LC-3 instructions. What
sequence of existing LC-3 instructions implements (also called
"emulates") MOVE R0,R1?

b. If the MOVE instruction were added to the LC-3 ISA, what sequence
of microinstructions, following the decode operation, would emulate
MOVE DR,SR?

5.30 The following table shows a part of the LC-3's memory:

Address Data

0011 0001 0000 0000 1001 001 001 111111

0011 0001 0000 0001 0001 010 000 000 001

0011 0001 0000 0010 1001 010010 111111

0011 0001 0000 0011 0000 010 111111100

State what is known about Rl and R0 if the conditional branch redirects
control to location x3100.

Exercises 174

5-31 The figure at the top of the next page shows a snapshot of the 8 registers
of the LC-3 before and after the instruction at location xlOOO is executed.
Fill in the bits of the instruction at location xlOOO.

BEFORE AFTER

R0 xOOOO R0 xOOOO

Rl x l l l l Rl x l l l l

R2 x2222 R2 x2222

R3 x3333 R3 x3333

R4 x4444 R4 x4444

R5 x5555 R5 xFFF8

R6 x66£6 R6 x6666

R7 xllll R7 xllll

0 0 0 1

5.32 If the condition codes have values N = 0, Z = 0, P = 1 at the beginning
of the execution of the following sequence of LC-3 instructions?

x3050 0000 0010 0000 0010
x3051 0101 0000 0010 0000
x3052 0000 1110 0000 0010
x3053 0101 0000 0010 0000
x3054 0001 0000 0011 1111

5.33 If the value stored in R0 is 5 at the end of the execution of the following
instructions, what can be inferred about R5?

x3 000 0101 1111 1110 0000
X3001 0001 1101 1110 0001
x3 002 0101 1001 0100 0110
x3 003 0000 0100 0000 0001
x3 004 0001 0000 0010 0001
x3 005 0001 1101 1000 0110
x3 0 06 0001 1111 1110 0001
x3 007 0001 0011 1111 1000
x3 008 0000 1001 1111 1001
x3 009 0101 1111 1110 0000

5.34 Using the overall data path in Figure 5.18, identify the elements that
implement the NOT instruction of Figure 5.4.

175 chapter 5 The LC-3

5.35 Using the overall data path in Figure 5.18, identify the elements that
implement the ADD instruction of Figure 5.5.

5.36 Using the overall data path in Figure 5.18, identify the elements that
implement the LD instruction of Figure 5.6.

5.37 Using the overall data path in Figure 5.18, identify the elements that
implement the LDI instruction of Figure 5.7.

5.38 Using the overall data path in Figure 5.18, identify the elements that
implement the LDR instruction of Figure 5.8.

5.39 Using the overall data path in Figure 5.18, identify the elements that
implement the LEA instruction of Figure 5.9.

5.40 The logic diagram below shows part of the control structure of the LC-3
machine. What is the purpose of the signal labeled A?

5.41 A part of the implementation of the LC-3 architecture is shown on the top
of the next page.

a. What information does Y provide?
b. The signal X is the control signal that gates the gated D latch. Is there

an error in the logic that produces X?

Exercises

15

.42 The LC-3 macho-company had decided to use opcode 1101 to implement
a new instruction. They need you help to pick the most useful one from
the following:
a. MOVE Ri, Rj; The contents of Rj are copied into Ri.
b. NAND Ri, Rj, Rk; Ri is the bit-wise NAND of Rj, Rk
c. SHFL Ri, Rj, #2; The contents of Rj are shifted left 2 bits and stored

into Ri.
d. MUL Ri, Rj, Rk; Ri is the product of 2's complement integers

in Rj, Rk.
Justify your answer.

c h a p t e r

6
P r o g r a m m i n g

We are now ready to start developing programs to solve problems with the com-
puter. In this chapter we attempt to do two things: first, we develop a methodology
for constructing programs; and second, we develop a methodology for fixing those
programs under the likely condition that we did not get it right the first time. There
is a long tradition that the errors present in programs are referred to as bugs, and
the process of removing those errors debugging. The opportunities for introduc-
ing bugs into a complicated program are so great that it usually takes much more
time to get the program to work (debugging) than it does to create it in the first
place.

6.1 Problem Solving
6.1.1 Systematic Decomposition
Recall from Chapter 1 that in order for electrons to solve a problem, we need
to go through several levels of transformation to get from a natural language
description of the problem (in our case English, although some of you might
prefer Italian, Mandarin, Hindi, or something else) to something electrons can
deal with. Once we have a natural language description of the problem, the
next step is to transform the problem statement into an algorithm. That is,
the next step is to transform the problem statement into a step-by-step proce-
dure that has the properties of finiteness (it terminates), definiteness (each step is
precisely stated), and effective computability (each step can be carried out by a
computer).

156 chapter 6 Programming

In the late 1960s, the concept of structured programming emerged as a way
to improve the ability of average programmers to take a complex description of
a problem and systematically decompose it into sufficiently smaller, manageable
units that they could ultimately write as a program that executed correctly. The
mechanism has also been called systematic decomposition because the larger tasks
are systematically broken down into smaller ones.

We will find the systematic decomposition model a useful technique for
designing computer programs to carry out complex tasks.

6.1.2 The Three Constructs: Sequential, Conditional, Iterative
Systematic decomposition is the process of taking a task, that is, a unit of work
(see Figure 6.1a), and breaking it down into smaller units of work such that the
collection of smaller units carries out the same task as the one larger unit. The
idea is that if one starts with a large, complex task and applies this process again
and again, one will end up with very small units of work, and consequently, be
able to easily write a program to carry out each of these small units of work. The
process is also referred to as stepwise refinement, because the process is applied
one step at a time, and each step refines one of the tasks that is still too complex
into a collection of simpler subtasks.

The idea is to replace each larger unit of work with a construct that correctly
decomposes it. There are basically three constructs for doing this: sequential,
conditional, and iterative.

(a)

y
The task

to be
decomposed

v

(b) (c) (d)
Sequential Conditional Iterative

Figure 6.1 The basic constructs of structured programming

6.1 Problem Solving 157

The sequential construct (Figure 6.1b) is the one to use if the designated
task can be broken down into two subtasks, one following the other. That is, the
computer is to carry out the first subtask completely, then go on and carry out the
second subtask completely—never going back to the first subtask after starting
the second subtask.

The conditional construct (Figure 6.1c) is the one to use if the task consists
of doing one of two subtasks but not both, depending on some condition. If the
condition is true, the computer is to carry out one subtask. If the condition is
not true, the computer is to carry out a different subtask. Either subtask may
be vacuous, that is, it may "do nothing." Regardless, after the correct subtask is
completed, the program moves onward. The program never goes back and retests
the condition.

The iterative construct (Figure 6. Id) is the one to use if the task consists of
doing a subtask a number of times, but only as long as some condition is true. If
the condition is true, do the subtask. After the subtask is finished, go back and
test the condition again. As long as the result of the condition tested is true, the
program continues to carry out the same subtask. The first time the test is not true,
the program proceeds onward.

Note in Figure 6.1 that whatever the task of Figure 6.1a, work starts with the
arrow into the top of the "box" representing the task and finishes with the arrow
out of the bottom of the box. There is no mention of what goes on inside the box.
In each of the three possible decompositions of Figure 6.1a (i.e., Figures 6.1b, lc,
and Id), there is exactly one entrance into the construct and one exit out of the
construct. Thus, it is easy to replace any task of the form of Figure 6.1a with
whichever of its three decompositions apply. We will see how in the following
example.

6.1.3 LC-3 Control Instructions to Implement
the Three Constructs

Before we move on to an example, we illustrate in Figure 6.2 the use of LC-3
control instructions to direct the program counter to carry out each of the
three decomposition constructs. That is, Figures 6.2b, 6.2c, and 6.2d correspond
respectively to the three constructs shown in Figures 6.1b, 6.1c, and 6. Id.

We use the letters A, B, C, and D to represent addresses in memory containing
LC-3 instructions. A, for example, is used in all three cases to represent the address
of the first LC-3 instruction to be executed.

Figure 6.2b illustrates the control flow of the sequential decomposition. Note
that no control instructions are needed since the PC is incremented from Address
Bi to Address Bi + 1. The program continues to execute instructions through
address Di. It does not return to the first subtask.

Figure 6.2c illustrates the control flow of the conditional decomposition.
First, a condition is generated, resulting in the setting of one of the condition
codes. This condition is tested by the conditional branch instruction at Address
B2. If the condition is true, the PC is set to Address C2+I, and subtask 1 is
executed. (Note: x corresponds to the number of instructions in subtask 2.) If
the condition is false, the PC (which had been incremented during the FETCH

158 chapter 6 Programming

(a)

The task
to be

decomposed

Bi
Bi+1

D1

(b)

First
subtask

Second
subtask

Be

0,

(c)

Generate
condition

0000

Subtask
2

0000 111

Subtask
1

D'

(d)

Generate
condition

0000

Subtask

0000 111 w

Figure 6 . 2 Use of LC-3 control instructions to implement structured programming

phase of the branch instruction) fetches the instruction at Address B2-bl, and
subtask 2 is executed. Subtask 2 terminates in a branch instruction that at Address
C2 unconditionally branches to D 2 + l . (Note: j corresponds to the number of
instructions in subtask 1.)

Figure 6.2d illustrates the control flow of the iterative decomposition. As in
the case of the conditional construct, first a condition is generated, a condition
code is set, and a conditional branch is executed. In this case, the condition bits of
the instruction at address B3 are set to cause a conditional branch if the condition
generated is false. If the condition is false, the PC is set to address D 3 + l . (Note:
z corresponds to the number of instructions in the subtask in Figure 6.2d.) On the
other hand, as long as the condition is true, the PC will be incremented to B3+I,
and the subtask will be executed. The subtask terminates in an unconditional
branch instruction at address D3, which sets the PC to A to again generate and
test the condition. (Note: w corresponds to the total number of instructions in the
decomposition shown as Figure 6.2d.)

Now, we are ready to move on to an example.

6.1.4 The Character Count Example from Chapter 5, Revisited
Recall the example of Section 5.5. The statement of the problem is as follows:
"We wish to count the number of occurrences of a character in a file. The character

6.1 Problem Solving 181

(a) (b)

Start

!

Input a character. Then scan
a file, counting occurrences
of that character. Finally,
display on the monitor the
number of occurrences of
that character (up to 9).

!

Stop

Initialize: Put initial values
into all locations that will be
needed to carry out this task.

* Input a character.

* Set up the pointer to the
first location in the file that
will be scanned.

* Get the first character from
the file.

* Zero the register that holds
the count.

\(

Scan the file, location by
location, incrementing the
counter if the character
matches.

\ f

Display the count on the
monitor.

V

Stop

F i g u r e 6 . 3 Stepwise refinement of the character count program

in question is to be input from the keyboard; the result is to be displayed on the
monitor."

The systematic decomposition of this English language statement of the prob-
lem to the final LC-3 implementation is shown in Figure 6.3. Figure 6.3a is a brief
statement of the problem.

In order to solve the problem, it is always a good idea first to examine exactly
what is being asked for, and what is available to help solve the problem. In this
case, the statement of the problem says that we will get the character of interest
from the keyboard, and that we must examine all the characters in a file and
determine how many are identical to the character obtained from the keyboard.
Finally, we must output the result.

160 chapter 6 Programming

(c) (d)

Figure 6 . 3 Stepwise refinement of the character count program (continued)

To do this, we will need a mechanism for scanning all the characters in a file,
and we will need a counter so that when we find a match, we can increment that
counter.

We will need places to hold all these pieces of information:

1. The character input from the keyboard.
2. Where we are (a pointer) in our scan of the file.
3. The character in the file that is currently being examined.
4. The count of the number of occurrences.

We will also need some mechanism for knowing when the file terminates.
The problem decomposes naturally (using the sequential construct) into three

parts as shown in Figure 6.3b: (A) initialization, which includes keyboard input
of the character to be "counted," (B) the actual process of determining how many

6.1 Problem Solving 161

(e)

Start

R2 < - 0 (count)
I

RO < - input

R3 < - starting address
J

Display output

i
Stop

Figure 6.3 Stepwise refinement of the character count program (continued)

occurrences of the character are present in the file, and (C) displaying the count
on the monitor.

We have seen the importance of proper initialization in several examples
already. Before a computer program can get to the crux of the problem, it must
have the correct initial values. These initial values do not just show up in the GPRs

184 chapter 6 Programming

by magic. They get there as a result of the first set of steps in every algorithm: the
initialization of its variables.

In this particular algorithm, initialization (as we said in Chapter 5) consists
of starting the counter at 0, setting the pointer to the address of the first character
in the file to be examined, getting an input character from the keyboard, and
getting the first character from the file. Collectively, these four steps comprise the
initialization of the algorithm shown in Figure 6.3b as A.

Figure 6.3c decomposes B into an iteration construct, such that as long as
there are characters in the file to examine, the loop iterates. B1 shows what gets
accomplished in each iteration. The character is tested and the count incremented
if there is a match. Then the next character is prepared for examination. Recall
from Chapter 5 that there are two basic techniques for controlling the number of
iterations of a loop: the sentinel method and the use of a counter. This program
uses the sentinel method by terminating the file we are examining with an EOT
(end of text) character. The test to see if there are more legitimate characters in
the file is a test for the ASCII code for EOT.

Figure 6.3c also shows the initialization step in greater detail. Four LC-3
registers (R0, Rl, R2, and R3) have been specified to handle the four requirements
of the algorithm: the input character from the keyboard, the current character being
tested, the counter, and the pointer to the next character to be tested.

Figure 6.3d decomposes both B1 and C using the sequential construct. In the
case of Bl , first the current character is tested (B2), and the counter incremented
if we have a match, and then the next character is fetched (B3). In the case of
C, first the count is prepared for display by converting it from a 2's complement
integer to ASCII (CI), and then the actual character output is performed (C2).

Finally, Figure 6.3e completes the decomposition, replacing B2 with the
elements of the condition construct and B3 with the sequential construct (first the
pointer is incremented, and then the next character to be scanned is loaded).

The last step (and the easy part, actually) is to write the LC-3 code corre-
sponding to each box in Figure 6.3e. Note that Figure 6.3e is essentially identical
to Figure 5.7 of Chapter 5 (except now you know where it all came from!).

Before leaving this topic, it is worth pointing out that it is not always possible
to understand everything at the outset. When you find that to be the case, it is not
a signal simply to throw up your hands and quit. In such cases (which realistically
are most cases), you should see if you can make sense of a piece of the problem,
and expand from there. Problems are like puzzles; initially they can be opaque,
but the more you work at it, the more they yield under your attack. Once you do
understand what is given, what is being asked for, and how to proceed, you are
ready to return to square one (Figure 6.3a) and restart the process of systematically
decomposing the problem.

6.2 Debugging
Debugging a program is pretty much applied common sense. A simple example
comes to mind: You are driving to a place you have never visited, and somewhere
along the way you made a wrong turn. What do you do now? One common

6.2 Debugging 163

"driving debugging" technique is to wander aimlessly, hoping to find your way
back. When that does not work, and you are finally willing to listen to the person
sitting next to you, you turn around and return to some "known" position on the
route. Then, using a map (very difficult for some people), you follow the directions
provided, periodically comparing where you are (from landmarks you see out the
window) with where the map says you should be, until you reach your desired
destination.

Debugging is somewhat like that. A logical error in a program can make you
take a wrong turn. The simplest way to keep track of where you are as compared
to where you want to be is to trace the program. This consists of keeping track
of the sequence of instructions that have been executed and the results produced
by each instruction executed. When you examine the sequence of instructions
executed, you can detect errors in the control flow of the program. When you
compare what each instruction has done to what it is supposed to do, you can
detect logical errors in the program. In short, when the behavior of the program
as it is executing is different from what it should be doing, you know there is a bug.

A useful technique is to partition the program into parts, often referred to as
modules, and examine the results that have been computed at the end of execu-
tion of each module. In fact, the structured programming approach discussed in
Section 6.1 can help you determine where in the program's execution you should
examine results. This allows you to systematically get to the point where you
are focusing your attention on the instruction or instructions that are causing the
problem.

6.2.1 Debugging Operations
Many sophisticated debugging tools are offered in the marketplace, and undoubt-
edly you will use many of them in the years ahead. In Chapter 15, we will examine
some debugging techniques available through dbx, the source-level debugger for
the programming language C. Right now, however, we wish to stay at the level of
the machine architecture, and so we will see what we can accomplish with a few
very elementary interactive debugging operations. When debugging interactively,
the user sits in front of the keyboard and monitor and issues commands to the
computer. In our case, this means operating an LC-3 simulator, using the menu
available with the simulator.

It is important to be able to

1. Deposit values in memory and in registers.
2. Execute instruction sequences in a program.
3. Stop execution when desired.
4. Examine what is in memory and registers at any point in the program.

These few simple operations will go a long way toward debugging programs.

Set Values

It is useful to deposit values in memory and in registers in order to test the
execution of a part of a program in isolation, without having to worry about parts

164 chapter 6 Programming

of the program that come before it. For example, suppose one module in your
program supplies input from a keyboard, and a subsequent module operates on
that input. Suppose you want to test the second module before you have finished
debugging the first module. If you know that the keyboard input module ends up
with an ASCII code in RO, you can test the module that operates on that input by
first placing an ASCII code in RO.

Execute Sequences

It is important to be able to execute a sequence of instructions and then stop execu-
tion in order to examine the values that the program has computed. Three simple
mechanisms are usually available for doing this: run, step, and set breakpoints.

The Run command causes the program to execute until something makes it
stop. This can be either a HALT instruction or a breakpoint.

The Step command causes the program to execute a fixed number of instruc-
tions and then stop. The interactive user enters the number of instructions he/she
wishes the simulator to execute before it stops. When that number is 1, the com-
puter executes one instruction, then stops. Executing one instruction and then
stopping is called single-stepping. It allows the person debugging the program to
examine the individual results of every instruction executed.

The Set Breakpoint command causes the program to stop execution at a
specific instruction in a program. Executing the debugging command Set Break-
point consists of adding an address to a list maintained by the simulator. During
the FETCH phase of each instruction, the simulator compares the PC with the
addresses in that list. If there is a match, execution stops. Thus, the effect of setting
a breakpoint is to allow execution to proceed until the PC contains the address of
the breakpoint. This is useful if one wishes to know what has been computed up
to a particular point in the program. One sets a breakpoint at that address in the
program and executes the Run command. The program executes until that point,
thereby allowing the user to examine what has been computed up to that point.
(When one no longer wishes to have the program stop execution at that point, one
can remove the breakpoint by executing the Clear Breakpoint command.)

Display Values

Finally, it is useful to examine the results of execution when the simulator has
stopped execution. The Display command allows the user to examine the contents
of any memory location or any register.

6.2.2 Examples: Use of the Interactive Debugger
We conclude this chapter with four examples, showing how the use of the interac-
tive debugging operations can help us find errors in a program. We have chosen the
following four errors: (1) incorrectly setting the loop control so that the loop exe-
cutes an incorrect number of times, (2) confusing the load instruction 0010, which
loads a register with the contents of a memory location, with the load effective
address instruction 1110, which loads a register with the address of a memory
location, (3) forgetting which instructions set the condition codes, resulting in

6.2 Debugging 187

a branch instruction testing the wrong condition, and (4) not covering all possible
cases of input values.

Example 1: Multiplying Without a Multiply Instruction

Consider the program of Figure 6.4a. The goal of the program is to multiply the
two positive numbers contained in R4 and R5. A program is necessary since the
LC-3 does not have a multiply instruction.

If we go through the program instruction by instruction, we note that the
program first clears R2 (that is, initializes R2 to 0) and then attempts to perform
the multiplication by adding R4 to itself a number of times equal to the initial
value in R5. Each time an add is performed, R5 is decremented. When R5 = 0,
the program terminates.

It sounds like the program should work! Upon execution, however, we find
that if R4 is initially 10 and R5 is initially 3, the program produces the value 40.
What went wrong?

Our first thought is to trace the program. Before we do that, we note that the
program assumes positive integers in R4 and R5. Using the Set Values command,
we put the value 10 in R4 and the value 3 in R5.

It is also useful to annotate each instruction with some algorithmic description
of exactly what each instruction is doing. While this can be very tedious and not

(a)

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3200 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <-
x3201 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 R2 <-
x3202 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 R5 <-
x3203 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 BRzp
x3204 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

(b)

PC R2 R4 R5
x3201 0 10 3
x3202 10 10 3
x3203 10 10 2
x3201 10 10 2
x3202 20 10 2
x3203 20 10 1
x3201 20 10 1
x3202 30 10 1
x3203 30 10 0
x3201 30 10 0
x3202 40 10 0
x3203 40 10 - 1
x3204 40 10 - 1

40 10 - 1

(c)

PC R2 R4 R5
x3203 10 10 2
x3203 20 10 1
x3203 30 10 0
x3203 40 10 - 1

Figure 6.4 The use of interactive debugging to find the error in Example 1. (a) An LC-3 program to multiply
(without a Mult iply instruction), (b) A trace of the Mult iply program, (c) Tracing with breakpoints.

188 chapter 6 Programming

very helpful in a 10,000 instruction program, it often can be very helpful after one
has isolated a bug to within a few instructions. There is a big difference between
quickly eyeballing a sequence of instructions and stating precisely what each
instruction is doing. We have included in Figure 6.4a, next to each instruction,
such an annotation.

Figure 6.4b shows a trace of the program, which we can obtain by single-
stepping. The column labeled PC shows the contents of the PC at the start of each
instruction. R2, R4, and R5 show the values in those three registers at the start
of each instruction. If we examine the contents of the registers, we see that the
branch condition codes were set wrong; that is, the conditional branch should be
taken as long as R5 is positive, not as long as R5 is nonnegative, as is the case in
x3203. That causes an extra iteration of the loop, resulting in 10 being added to
itself four times, rather than three.

The program can be corrected by simply replacing the instruction at x3203
with

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

BR n z p - 3

We should also note that we could have saved some of the work of tracing the
program by using a breakpoint. That is, instead of examining the results of each
instruction, setting a breakpoint at x3203 allows us to examine the results of
each iteration of the loop. Figure 6.4c shows the results of tracing the program,
where each step is one iteration of the loop. We see that the loop executed four
times rather than three, as it should have.

One last comment before we leave this example. Before we started tracing
the program, we initialized R4 and R5 with values 10 and 3. When testing a
program, it is important to judiciously choose the initial values for the test. Here,
the program stated that the program had to work only for positive integers. So, 10
and 3 are probably OK. What if a (different) multiply program had been written
to work for all integers? Then, we could have tried initial values of —6 and 3, 4
and —12, and perhaps —5 and —7. The problem with this set of tests is that we
have left out one of the most important initial values of all: 0. For the program
to work for "all" integers, it has to work for 0 as well. The point is that, for a
program to work, it must work for all values, and a good test of such a program
is to initialize its variables to the unusual values, the ones the programmer may
have failed to consider. These values are often referred to colloquially as corner
cases.

Example 2: Adding a Column of Numbers

The program of Figure 6.5 is supposed to add the numbers stored in the 10
locations starting with x3100, and leave the result in Rl. The contents of the 20
memory locations starting at location x3100 are shown in Figure 6.6.

The program should work as follows. The instructions in x3000 to x3003
initialize the variables. In x3000, the sum (Rl) is initialized to 0. In x3001 and
x3002, the loop control (R4), which counts the number of values added to Rl, is

6.2 Debugging 167
(a)

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 Rl < - 0
x3001 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 R4 < - 0
x3002 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 R4 < - R4 + 10
x3003 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 R2 < - M [x 3 1 0 0]
x3004 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 R3 < - M[R2]
x3005 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 < - R2 + 1
x3006 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 Rl < - R l + R3
x3007 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 R4 < - R4 - 1
x3008 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 BRp X3004
x3009 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

(b)

PC Rl R2 R4
x3001 0 X X

x3002 0 X 0
x3003 0 X #10
x3004 0 x3107 #10

Figure 6.5 The use of interactive debugging to find the error in Example 2. (a) An LC-3 program to add 10 integers,
(b) A trace of the first four instructions of the Add program

Address Contents
x3100 x3107
x3101 x2819
x3102 xOllO
x3103 x0310
x3104 xOllO
x3105 x l l l O
x3106 x l l B l
x3107 x0019
x3108 x0007
x3109 x0004
x310A xOOOO
x310B xOOOO
x310C xOOOO
x310D xOOOO
x310E xOOOO
x310F xOOOO
x3110 xOOOO
x3111 xOOOO
x3112 xOOOO
x3113 xOOOO

Figure 6.6 Contents of memory locations x3100 to x3113 for Example 2

168 chapter 6 Programming

initialized to #10. The program subtracts 1 each time through the loop and repeats
until R4 contains 0. In x3003, the base register (R2) is initialized to the starting
location of the values to be added: x3100.

From there, each time through the loop, one value is loaded into R3 (in x3004),
the base register is incremented to get ready for the next iteration (x3005), the
value in R3 is added to Rl, which contains the running sum (x3006), the counter
is decremented (x3007), the P bit is tested, and if true, the PC is set to x3004 to
begin the loop again (x3008). After 10 times through the loop, R4 contains 0, the
P bit is 0, the branch is not taken, and the program terminates (x3009).

It looks like the program should work. However, when we execute the pro-
gram and then check the value in Rl, we find the number x0024, which is not
x8135, the sum of the numbers stored in locations x3100 to x3109. What went
wrong?

We turn to the debugger and trace the program. Figure 6.5b shows a trace of
the first four instructions executed. Note that after the instruction at x3003 has
executed, R2 contains x3107, not x3100, as we had expected. The problem is that
the opcode 0010 loaded the contents of x3100 into R2, not the address x3100.
Our mistake: We should have used the opcode 1110, which would have loaded
the address of x3100 into R2. We correct the bug by replacing the opcode 0010
with 1110, and the program runs correctly.

Example 3: Determining Whether a Sequence
of Memory Locations Contains a 5

The program of Figure 6.7 has been written to examine the contents of the 10
memory locations starting at address x3100 and to store a 1 in R0 if any of them
contains a 5 and a 0 in R0 if none of them contains a 5.

The program is supposed to work as follows: The first six instructions (at
x3000 to x3005) initialize R0 to 1, Rl to - 5 , and R3 to 10. In each case, the
register is first cleared by ANDing it with 0, and then ADDing the corresponding
immediate value. For example, in x3003, —5 is added to Rl, and the result is
stored in R1.

The instruction at x3006 initializes R4 to the starting address (x3100) of the
values to be tested, and x3007 loads the contents of x3100 into R2.

x3008 and x3009 determine if R2 contains the value 5 by adding —5 to it
and branching to x300F if the result is 0. Since R0 is initialized to 1, the program
terminates with R0 reporting the presence of a 5 among the locations tested.

x300A increments R4, preparing to load the next value. x300B decrements
R3, indicating the number of values remaining to be tested. x300C loads the next
value into R2. x300D branches back to x3008 to repeat the process if R3 still
indicates more values to be tested. If R3 = 0, we have exhausted our tests, so R0
is set to 0 (x300E), and the program terminates (x300F).

When we run the program for some sample data that contains a 5 in location
x3108, the program terminates with R0 = 0, indicating there were no 5s in
locations x3100 to x310A.

What went wrong? We examine a trace of the program, with a breakpoint set
at x300D. The results are shown in Figure 6.7b.

6.2 Debugging 169

(a)
Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 RO < - 0
x3001 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 RO < - RO + 1
x3002 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R l < - 0
x3003 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 R l < - R l - 5
x3004 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 < - 0
x3005 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 R3 < - R3 + 10
x3006 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 R4 < - M [x 3 0 1 0]
x3007 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 < - M[R4]
x3008 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 R2 < - R2 + Rl
x3009 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz X300F
x300A 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 R4 < - R4 + 1
x300B 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 R3 < - R3 - 1
x300C 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 < - M[R4]
x300D 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 BRp x 3 0 0 8
x300E 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 RO < - 0
x300F 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
x3010 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 X3100

(b)
PC Rl R2 R3 R4

x300D - 5 7 9 3101
x300D - 5 32 8 3102
x300D - 5 0 7 3013

Figure 6 .7 The use of interactive debugging to find the error in Example 3. (a) An LC-3 program to detect the
presence of a 5. (b) Tracing Example 3 with a breakpoint at x300D.

The first time the PC is at x300D, we have already tested the value stored in
x3100, we have loaded 7 (the contents of x3101) into R2, and R3 indicates there
are still nine values to be tested. R4 contains the address from which we most
recently loaded R2.

The second time the PC is at x300D, we have loaded 32 (the contents of
x3102) into R2, and R3 indicates there are eight values still to be tested. The third
time the PC is at x300D, we have loaded 0 (the contents of x3103) into R2, and
R3 indicates seven values still to be tested.

However, the value 0 stored in x3103 causes the load instruction at x300C
to clear the P condition code. This, in turn, causes the branch at x300D not to be
taken, RO is set to 0 (x300E), and the program terminates (x300F).

The error in the program was putting a load instruction at x300C between
x300B, which kept track of how many values still needed to be tested, and x300D,
the branch instruction that returned to x3008 to perform the next test. The load
instruction sets condition codes. Therefore, the branch at x300D was based on
the value loaded into R2, rather than on the count of how many values remained
to be tested. If we remove the instruction at x300C and change the target of the
branch in x300D to x3007, the program executes correctly.

170 chapter 6 Programming

Example 4: Finding the First 1 in a Word
Our last example contains an error that is usually one of the hardest to find,
as we will see presently. The program of Figure 6.8 has been written to exam-
ine the contents of a memory location, find the first bit (reading left to right)
that is set, and store the bit position of that bit into Rl. If no bit is set, the
program is to store - 1 in Rl . For example, if the location examined contained
0010000000000000, the program would terminate with Rl = 13. If the location
contained 0000000000000100, the program would terminate with Rl = 2.

(a)
Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R l < - 0
x3001 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 R l < - R l + 15
x3002 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 R2 < - M[M[x3009]J
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 BRn x 3 0 0 8
x3004 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R l < - R l - 1
x3005 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 R2 < - R2 + R2
x3006 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 BRn x 3 0 0 8
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 BRnzp x 3 0 0 4
x3008 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
x3009 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 x 3 1 0 0

(b)

PC Rl
x3007 14
x3007 13
x3007 12
x3007 11
x3007 10
x3007 9
x3007 8
x3007 7
x3007 6
x3007 5
x3007 4
x3007 3
x3007 2
x3007 1
x3007 0
x3007 - 1
x3007 - 2
x3007 - 3
x3007 - 4

Figure 6 .8 The use of interactive debugging to find the error in Example 4. (a) An LC-3 program to find the first 1 in a
word, (b) Tracing Example 4 with a breakpoint at x3007.

6.2 Debugging 171

The program is supposed to work as follows (and it usually does): x3000 and
x3001 initialize Rl in the same way as we have done in the previous examples.
In this case, Rl is initialized to 15.

x3002 loads R2 with the contents of x3100, the value to be examined. It does
this by the load indirect instruction, which finds the location of the value to be
loaded in x3009.

x3003 tests the high bit of that value, and if it is a 1, it branches to x3008,
where the program terminates with Rl = 15. If the high bit is a 0, the branch is
not taken and Rl is decremented (x3004), indicating the next bit to be tested is
bit [14].

In x3005, the value in R2 is added to itself, and the result is stored back
in R2. That is, the value in R2 is multiplied by 2. This is the same as shift-
ing the contents of R2 one bit to the left. This causes the value in bit [14]
to move into the bit [15] position, where it can be tested by a branch on
negative instruction. x3006 performs the test of bit [14] (now in the bit [15]
position), and if the bit is 1, the branch is taken, and the program terminates with
Rl = 14.

If the bit is 0, x3007 takes an unconditional branch to x3004, where the
process repeats. That is, Rl is decremented (x3004), indicating the next lower bit
number, R2, is shifted one bit to the left (x3005), and the new occupant of bit [15]
is tested (x3006).

The process continues until the first 1 is found. The program works almost
all the time. However, when we ran the program on our data, the program failed
to terminate. What went wrong?

A trace of the program, with a breakpoint set at x3007, is illuminating. Each
time the PC contained the address x3007, Rl contained a value smaller by 1
than the previous time. The reason is as follows: After Rl was decremented and
the value in R2 shifted left, the bit tested was a 0, and so the program did not
terminate. This continued for values in Rl equal to 14, 13, 12, 11, 10, 9, 8, 7, 6,
5, 4, 3, 2, 1, 0, - 1 , - 2 , - 3 , - 4 , and so forth.

The problem was that the initial value in x3100 was xOOOO; that is, there
were no Is present. The program worked fine as long as there was at least one 1
present. For the case where x3100 contained all zeros, the conditional branch at
x3006 was never taken, and so the program continued with execution of x3007,
then x3004, x3005, x3006, x3007, and then back again to x3004. There was no
way to break out of the sequence x3004, x3005, x3006, x3007, and back again
to x3004. We call the sequence x3004 to x3007 a loop. Because there is no
way for the program execution to break out of this loop, we call it an infinite
loop. Thus, the program never terminates, and so we can never get the correct
answer.

Again, we emphasize that this is often the hardest error to detect. It is also
often the most important one. That is, it is not enough for a program to execute
correctly most of the time; it must execute correctly all the time, independent of
the data that the program is asked to process. We will see more examples of this
kind of error later in the book.

172 chapter 6 Programming

6.1 Can a procedure that is not an algorithm be constructed from the three
basic constructs of structured programming? If so, demonstrate through
an example.

6.2 The LC-3 has no Subtract instruction. If a programmer needed to
subtract two numbers he/she would have to write a routine to handle it.
Show the systematic decomposition of the process of subtracting two
integers.

6.3 Recall the machine busy example from previous chapters. Suppose
memory location x4000 contains an integer between 0 and 15 identifying
a particular machine that has just become busy. Suppose further that the
value in memory location x4001 tells which machines are busy and
which machines are idle. Write an LC-3 machine language program
that sets the appropriate bit in x4001 indicating that the machine in
x4000 is busy.

For example, if x4000 contains x0005 and x4001 contains x3101 at
the start of execution, x4001 should contain x3121 after your program
terminates.

6.4 Write a short LC-3 program that compares the two numbers in Rl and
R2 and puts the value 0 in RO if Rl = R2, 1 if Rl > R2 and - 1 if
Rl < R2.

6.5 Which of the two algorithms for multiplying two numbers is preferable
and why? 88 • 3 = 88 + 88 + 88 OR 3 + 3 + 3 + 3 + . . . + 3?

6.6 Use your answers from Exercises 6.3 and 6.4 to develop a program that
efficiently multiplies two integers and places the result in R3. Show the
complete systematic decomposition, from the problem statement to the
final program.

Exercises 173

6.7 What does the following LC-3 program do?

x3 001 1110 0000 0000 1100
x3 0 02 1110 0010 0001 0000
x3 0 03 0101 0100 1010 0000
x3 0 04 0010 0100 0001 0011
x3 005 0110 0110 0000 0000
x3 006 0110 1000 0100 0000
x3 0 07 0001 0110 1100 0100
x3 0 08 0111 0110 0000 0000
x3 0 09 0001 0000 0010 0001
x3 00A 0001 0010 0110 0001
x3 00B 0001 0100 1011 1111
x300C 0000 0011 1111 1000
X3 0 0D 1111 0000 0010 0101
x3 00E 0000 0000 0000 0101
x3 OOF 0000 0000 0000 0100
X3010 0000 0000 0000 0011
x3 011 0000 0000 0000 0110
x3 012 0000 0000 0000 0010
x3 013 0000 0000 0000 0100
x3 014 0000 0000 0000 0111
x3 015 0000 0000 0000 0110
x3 016 0000 0000 0000 1000
x3 017 0000 0000 0000 0111
x3 018 0000 0000 0000 0101

6.8 Why is it necessary to initialize R2 in the character counting example
in Section 6.1.4? In other words, in what manner might the program
behave incorrectly if the R2 0 step were removed from the
routine?

6.9 Using the iteration construct, write an LC-3 machine language routine
that displays exactly 100 Zs on the screen.

6.10 Using the conditional construct, write an LC-3 machine language routine
that determines if a number stored in R2 is odd.

6.11 Write an LC-3 machine language routine to increment each of the
numbers stored in memory location A through memory location B.
Assume these locations have already been initialized with meaningful
numbers. The addresses A and B can be found in memory locations
x3100 and x3101.

6.12 a. Write an LC-3 machine language routine that echoes the last character
typed at the keyboard. If the user types an R, the program then
immediately outputs an R on the screen.

b. Expand the routine from part a such that it echoes a line at a time. For
example, if the user types:
The quick brown fox jumps over the lazy dog.
then the program waits for the user to press the Enter key (the ASCII
code for which is xOA) and then outputs the same line.

174 chapter 6 Programming

6.13 Notice that we can shift a number to the left by one bit position by adding
it to itself. For example, when the binary number 0011 is added to itself,
the result is 0110. Shifting a number one bit pattern to the right is not as
easy. Devise a routine in LC-3 machine code to shift the contents of
memory location x3100 to the right by one bit.

6.14 Consider the following machine language program:

X3000 0101 0100 1010 0000
x3 0 01 0001 0010 0111 1111
x3 002 0001 0010 0111 1111
x3 003 0001 0010 0111 1111
X3004 0000 1000 0000 0010
x3 005 0001 0100 1010 0001
X3006 0000 1111 1111 1010
X3007 1111 0000 0010 0101

What are the possible initial values of Rl that cause the final value in
R2 to be 3?

6.15 Shown below are the contents of memory and registers before and after
the LC-3 instruction at location x3010 is executed. Your job: Identify the
instruction stored in x3010. Note: There is enough information below to
uniquely specify the instruction at x3010.

Before After

R0: x3208 x3208
Rl x2d7c x2d7c
R2 xe373 xe373
R3 x2053 x2053
R4 x33ff x33ff
R5 x3flf x3f l f
R6 xf4a2 xf4a2
R7 x5220 x5220

X 3 4 0 0 x3001 x3001
x3401 x7a00 x7a00
x3402 x7a2b x7a2b
x3403 xa700 xa700
x3404 xfOll xfOll
x3405 x2003 x2003
x3406 x31ba xe373
x3407 xclOO xclOO
x3408 xefef xefef

Exercises 175

6.16 An LC-3 program is located in memory locations x3000 to x3006. It
starts executing at x3000. If we keep track of all values loaded into the
MAR as the program executes, we will get a sequence that starts as
follows. Such a sequence of values is referred to as a trace.

MAR Trace
x3000
x3005
x3001
x3002
x3006
x4001
x3003
x0021

We have shown below some of the bits stored in locations x3000 to
x3006. Your job is to fill in each blank space with a 0 or a 1, as
appropriate.

x3000 0 0 1 0 0 0 0
x3001 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
x3002 1 0 1 1 0 0 0
x3003

x3004 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1
x3005 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
x3006

6.17 Shown below are the contents of registers before and after the LC-3
instruction at location x3210 is executed. Your job: Identify the
instruction stored in x3210. Note: There is enough information below
to uniquely specify the instruction at x3210.

Before After

RO xFFID xFFID
Rl x301C x301C
R2 x2Fl l x 2 F l l
R3 x5321 x5321
R4 x331F x331F
R5 x lF22 x lF22
R6 xOlFF xOlFF
R7 x341F x3211
PC x3210 x3220
N: 0 0
Z: 1 1
P: 0 0

176 chapter 6 Programming

6.18 The LC-3 has no Divide instruction. A programmer needing to divide two
numbers would have to write a routine to handle it. Show the systematic
decomposition of the process of dividing two positive integers. Write an
LC-3 machine language program starting at location x3000 which divides
the number in memory location x4000 by the number in memory location
x4001 and stores the quotient at x5000 and the remainder at x5001.

6.19 It is often necessary to encrypt messages to keep them away from prying
eyes. A message can be represented as a string of ASCII characters, one
per memory location, in consecutive memory locations. Bits [15:8] of
each location contains 0, and the location immediately following the
string contains xOOOO.

A student who has not taken this course has written the following
LC-3 machine language program to encrypt the message starting at
location x4000 by adding 4 to each character and storing the resulting
message at x5000. For example, if the message at x4000 is "Matt," then
the encrypted message at x5000 is "Qeyy." However, there are four bugs
in his code. Find and correct these errors so that the program works
correctly.

x3 00 0 1110 0000 0000 1010
x3 001 0010 0010 0000 1010
x3 002 0110 0100 0000 0000
x3 0 03 0000 0100 0000 0101
x3 0 04 0001 0100 1010 0101
x3 005 0111 0100 0100 0000
x3 006 0001 0000 0010 0001
x3 007 0001 0010 0110 0001
x3 0 08 0000 1001 1111 1001
x3 00 9 0110 0100 0100 0000
x3 Q0A 1111 0000 0010 0101
x3 00B 0100 0000 0000 0000
X300C 0101 0000 0000 0000

6.20 Redo Exercise 6.18 for all integers, not just positive integers.

c h a p t e r

7
Assembly Language

By now, you are probably a little tired of Is and Os and keeping track of 0001
meaning ADD and 1001 meaning NOT. Also, wouldn'titbe nice if we could refer
to a memory location by some meaningful symbolic name instead of memorizing
its 16-bit address? And wouldn't it be nice if we could represent each instruction in
some more easily comprehensible way, instead of having to keep track of which
bit of the instruction conveys which individual piece of information about the
instruction. It turns out that help is on the way.

In this chapter, we introduce assembly language, a mechanism that does all
that, and more.

7.1 Assembly Language Programming—Moving Up o Level
Recall the levels of transformation identified in Figure 1.6 of Chapter 1. Algo-
rithms are transformed into programs described in some mechanical language.
This mechanical language can be, as it is in Chapter 5, the machine language of a
particular computer. Recall that a program is in a computer's machine language
if every instruction in the program is from the ISA of that computer.

On the other hand, the mechanical language can be more user-friendly. We
generally partition mechanical languages into two classes, high-level and low-
level. Of the two, high-level languages are much more user-friendly. Examples
are C, C++, Java, Fortran, COBOL, Pascal, plus more than a thousand others.
Instructions in a high-level language almost (but not quite) resemble statements
in a natural language such as English. High-level languages tend to be ISA inde-
pendent. That is, once you learn how to program in C (or Fortran or Pascal)

178 chapter 7 Assembly Language

for one ISA, it is a small step to write programs in C (or Fortran or Pascal) for
another ISA.

Before a program written in a high-level language can be executed, it must be
translated into a program in the ISA of the computer on which it is expected to exe-
cute. It is usually the case that each statement in the high-level language specifies
several instructions in the ISA of the computer. In Chapter 11, we will introduce
the high-level language C, and in Chapters 12 through 19, we will show the rela-
tionship between various statements in C and their corresponding translations in
LC-3 code. In this chapter, however, we will only move up a small notch from
the ISA we dealt with in Chapter 5.

A small step up from the ISA of a machine is that ISA's assembly language.
Assembly language is a low-level language. There is no confusing an instruction
in a low-level language with a statement in English. Each assembly language
instruction usually specifies a single instruction in the ISA. Unlike high-level
languages, which are usually ISA independent, low-level languages are very much
ISA dependent. In fact, it is usually the case that each ISA has only one assembly
language.

The purpose of assembly language is to make the programming process more
user-friendly than programming in machine language (i.e., the ISA of the com-
puter with which we are dealing), while still providing the programmer with
detailed control over the instructions that the computer can execute. So, for exam-
ple, while still retaining control over the detailed instructions the computer is to
carry out, we are freed from having to remember what opcode is 0001 and what
opcode is 1001, or what is being stored in memory location 0011111100001010
and what is being stored in location 0011111100000101. Assembly languages let
us use mnemonic devices for opcodes, such as ADD and NOT, and they let us give
meaningful symbolic names to memory locations, such as SUM or PRODUCT,
rather than use their 16-bit addresses. This makes it easier to differentiate which
memory location is keeping track of a SUM and which memory location is keeping
track of a PRODUCT. We call these names symbolic addresses.

We will see, starting in Chapter 11, that when we take the larger step of moving
up to a higher-level language (such as C), programming will be even more user-
friendly, but we will relinquish control of exactly which detailed instructions are
to be carried out in behalf of a high-level language statement.

7.2 fln Assembly Language Program
We will begin our study of the LC-3 assembly language by means of an example.
The program in Figure 7.1 multiplies the integer intially stored in NUMBER by 6
by adding the integer to itself six times. For example, if the integer is 123, the
program computes the product by adding 123 + 123 + 123 + 123+ 123 + 123.

The program consists of 21 lines of code. We have added a line number to
each line of the program in order to be able to refer to individual lines easily.
This is a common practice. These line numbers are not part of the program. Ten
lines start with a semicolon, designating that they are strictly for the benefit of
the human reader. More on this momentarily. Seven lines (06, 07, 08, 0C, 0D,

7.2 An Assembly Language Program 179

01
02 ; Program to multiply an integer by the constant 6.
03 ; Before execution, an integer must be stored in NUMBER
04
05 .ORIG x3 050
06 LD Rl,SIX
07 LD R2,NUMBER
08 AND R3,R3,#0 Clear R3. It will
09 / contain the product.
OA ; The inner loop
0B f
o c AGAIN ADD R3,R3, R2
0D ADD Rl,Rl,#-1 Rl keeps track of
0E BRp AGAIN the iterations
OF /

10 HALT
11 !

12 NUMBER .BLKW 1
13 SIX .FILL X0006
14 /

15 .END
Figure 7 . 1 An assembly language program

OE, and 10) specify assembly language instructions to be translated into machine
language instructions of the LC-3, which will actually be carried out when the
program runs. The remaining four lines (05, 12, 13, and 15) contain pseudo-ops,
which are messages from the programmer to the translation program to help in
the translation process. The translation program is called an assembler (in this
case the LC-3 assembler), and the translation process is called assembly.

7.2.1 Instructions
Instead of an instruction being 16 0s and Is, as is the case in the LC-3 ISA, an
instruction in assembly language consists of four parts, as follows:

LABEL OPCODE OPERANDS ; COMMENTS
Two of the parts (LABEL and COMMENTS) are optional. More on that
momentarily.

Opcodes and Operands
Two of the parts (OPCODE and OPERANDS) are mandatory. An instruction
must have an OPCODE (the thing the instruction is to do), and the appropriate
number of OPERANDS (the things it is supposed to do it to). Not surprisingly, this
was exactly what we encountered in Chapter 5 when we studied the LC-3 ISA.

The OPCODE is a symbolic name for the opcode of the corresponding LC-3
instruction. The idea is that it is easier to remember an operation by the symbolic

180 chapter 7 Assembly Language

name ADD, AND, or LDR than by the 4-bit quantity 0001, 0101, or 0110.
Figure 5.3 (also Figure A.2) lists the OPCODES of the 15 LC-3 instructions.
Pages 526 through 541 show the assembly language representations for the 15
LC-3 instructions.

The number of operands depends on the operation being performed. For
example, the ADD instruction (line 0C) requires three operands (two sources to
obtain the numbers to be added, and one destination to designate where the result
is to be placed). All three operands must be explicitly identified in the instruction.

AGAIN ADD R3 , R3 , R2
The operands to be added are obtained from register 2 and from register 3. The
result is to be placed in register 3. We represent each of the registers 0 through 7
as R 0 , R 1 , R 2 , . . . ,R7.

The LD instruction (line 07) requires two operands (the memory location
from which the value is to be read and the destination register that is to contain
the value after the instruction completes its execution). We will see momentarily
that memory locations will be given symbolic addresses called labels. In this case,
the location from which the value is to be read is given the label NUMBER. The
destination into which the value is to be loaded is register 2.

LD R2, NUMBER
As we discussed in Section 5.1.6, operands can be obtained from registers, from
memory, or they may be literal (i.e., immediate) values in the instruction. In the
case of register operands, the registers are explicitly represented (such as R2 and
R3 in line 0C). In the case of memory operands, the symbolic name of the memory
location is explicitly represented (such as NUMBER in line 07 and SIX in line
06). In the case of immediate operands, the actual value is explicitly represented
(such as the value 0 in line 08).

AND R3, R3, #0 ; Clear R3. It will contain the product.
A literal value must contain a symbol identifying the representation base of the
number. We use # for decimal, x for hexadecimal, and b for binary. Sometimes
there is no ambiguity, such as in the case 3F0A, which is a hex number. Nonethe-
less, we write it as x3F0A. Sometimes there is ambiguity, such as in the case
1000. xlOOO represents the decimal number 4096, blOOO represents the decimal
number 8, and #1000 represents the decimal number 1000.

Labels
Labels are symbolic names that are used to identify memory locations that are
referred to explicitly in the program. In LC-3 assembly language, a label consists
of from one to 20 alphanumeric characters (i.e., a capital or lowercase letter of the
alphabet, or a decimal digit), starting with a letter of the alphabet. NOW, Under21,
R2D2, and C3PO are all examples of possible LC-3 assembly language labels.

There are two reasons for explicitly referring to a memory location.

1. The location contains the target of a branch instruction (for example,
AGAIN in line 0C).

7.2 An Assembly Language Program 203

2. The location contains a value that is loaded or stored (for example,
NUMBER, line 12, and SIX, line 13).

The location AGAIN is specifically referenced by the branch instruction in
line OE.
BRp AGAIN
If the result of ADD R1 ,R 1 ,#-1 is positive (as evidenced by the P condition code
being set), then the program branches to the location explicitly referenced as
AGAIN to perform another iteration.

The location NUMBER is specifically referenced by the load instruction
in line 07. The value stored in the memory location explicitly referenced as
NUMBER is loaded into R2.

If a location in the program is not explicitly referenced, then there is no need
to give it a label.

Comments

Comments are messages intended only for human consumption. They have no
effect on the translation process and indeed are not acted on by the LC-3 assembler.
They are identified in the program by semicolons. A semicolon signifies that
the rest of the line is a comment and is to be ignored by the assembler. If the
semicolon is the first nonblank character on the line, the entire line is ignored. If
the semicolon follows the operands of an instruction, then only the comment is
ignored by the assembler.

The purpose of comments is to make the program more comprehensible to
the human reader. They help explain a nonintuitive aspect of an instruction or a
set of instructions. In lines 08 and 09, the comment "Clear R3; it will contain
the product" lets the reader know that the instruction on line 08 is initializing
R3 prior to accumulating the product of the two numbers. While the purpose of
line 08 may be obvious to the programmer today, it may not be the case two years
from now, after the programmer has written an additional 30,000 lines of code
and cannot remember why he/she wrote AND R3,R3,#0. It may also be the case
that two years from now, the programmer no longer works for the company and
the company needs to modify the program in response to a product update. If the
task is assigned to someone who has never seen the code before, comments go a
long way toward improving comprehension.

It is important to make comments that provide additional insight and not just
restate the obvious. There are two reasons for this. First, comments that restate
the obvious are a waste of everyone's time. Second, they tend to obscure the
comments that say something important because they add clutter to the program.
For example, in line 0D, the comment "Decrement R l" would be a bad idea. It
would provide no additional insight to the instruction, and it would add clutter to
the page.

Another purpose of comments, and also the judicious use of extra blank spaces
to a line, is to make the visual presentation of a program easier to understand. So,
for example, comments are used to separate pieces of the program from each other
to make the program more readable. That is, lines of code that work together to

182 chapter 7 Assembly Language

compute a single result are placed on successive lines, while pieces of a program
that produce separate results are separated from each other. For example, note
that lines OC through OE are separated from the rest of the code by lines OB and
OF. There is nothing on lines OB and OF other than the semicolons.

Extra spaces that are ignored by the assembler provide an opportunity to align
elements of a program for easier readability. For example, all the opcodes start in
the same column on the page.

7.2.2 Pseudo-ops (Assembler Directives)
The LC-3 assembler is a program that takes as input a string of characters repre-
senting a computer program written in LC-3 assembly language and translates it
into a program in the ISA of the LC-3. Pseudo-ops are helpful to the assembler
in performing that task.

Actually, a more formal name for a pseudo-op is assembler directive. They are
called pseudo-ops because they do not refer to operations that will be performed
by the program during execution. Rather, the pseudo-op is strictly a message to
the assembler to help the assembler in the assembly process. Once the assembler
handles the message, the pseudo-op is discarded. The LC-3 assembler contains
five pseudo-ops: .ORIG, .FILL, .BLKW, .STRINGZ, and .END. All are easily
recognizable by the dot as their first character.

.ORIG

.ORIG tells the assembler where in memory to place the LC-3 program. In
line 05, .ORIG x3050 says, start with location x3050. As a result, the LD R1,SIX
instruction will be put in location x3050.

.FILL

.FILL tells the assembler to set aside the next location in the program and initialize
it with the value of the operand. In line 13, the ninth location in the resultant LC-3
program is initialized to the value x0006.

.BLKW

.BLKW tells the assembler to set aside some number of sequential memory loca-
tions (i.e., a BLocK of Words) in the program. The actual number is the operand
of the .BLKW pseudo-op. In line 12, the pseudo-op instructs the assembler to set
aside one location in memory (and also to label it NUMBER, incidentally).

The pseudo-op .BLKW is particularly useful when the actual value of the
operand is not yet known. For example, one might want to set aside a location
in memory for storing a character input from a keyboard. It will not be until the
program is run that we will know the identity of that keystroke.

.STRINGZ

.STRINGZ tells the assembler to initialize a sequence of n + 1 memory locations.
The argument is a sequence of n characters, inside double quotation marks. The

7.2 An Assembly Language Program 183

first n words of memory are initialized with the zero-extended ASCII codes of the
corresponding characters in the string. The final word of memory is initialized
to 0. The last character, xOOOO, provides a convenient sentinel for processing the
string of ASCII codes.

For example, the code fragment

.ORIG X3010
HELLO .STRINGZ "Hello, World!"

would result in the assembler initializing locations x3010 through x301D to the
following values:

x3 010: x0 048
x3 Oil: x0065
x3 012: x0 06C
x3 013: X006C
x3 014: X006F
x3 015: X002C
x3016 : X0020
x3 017: x0057
x3 018: X006F
x3 019: x0072
X301A: X006C
X301B: x0064
x3 01C: x0 021
X301D: xOOOO

.END

.END tells the assembler where the program ends. Any characters that come after

.END will not be used by the assembler. Note: .END does not stop the program
during execution. In fact, .END does not even exist at the time of execution. It is
simply a delimiter—it marks the end of the source program.

7.2.3 Example: The Character Count Example of Section 5.5,
Revisited

Now we are ready for a complete example. Let's consider again the problem of
Section 5.5. We wish to write a program that will take a character that is input
from the keyboard and a file and count the number of occurrences of that char-
acter in that file. As before, we first develop the algorithm by constructing the
flowchart. Recall that in Section 6.1, we showed how to decompose the problem
systematically so as to generate the flowchart of Figure 5.16. In fact, the final step
of that process in Chapter 6 is the flowchart of Figure 6.3e, which is essentially
identical to Figure 5.16. Next, we use the flowchart to write the actual program.
This time, however, we enjoy the luxury of not worrying about 0s and Is and
instead write the program in LC-3 assembly language. The program is shown in
Figure 7.2.

206 chapter 7 Assembly Language

Program to count occurrences of a character in a file.
Character to be input from the keyboard.
Result to be displayed on the monitor.
Program works only if no more than 9 occurrences are found.

Initialization

.ORIG
AND
LD
TRAP
LDR

x3 000
R2,R2,#0
R3,PTR
x23
Rl,R3,#0

R2 is counter, initialize to 0
R3 is pointer to characters
R0 gets character input
Rl gets the next character

Test character for end of file

TEST ADD R4,Rl,#-4 ; Test for EOT
BRz OUTPUT ; If done, prepare the output

Test character for match. If a match, increment count.

NOT
ADD
NOT
BRnp
ADD

Rl, Rl
Rl,R1,R0
Rl, Rl
GETCHAR
R2,R2,#1

If match, Rl = xFFFF
If match, Rl = xOOOO
If no match, do not increment

Get next character from the file

GETCHAR ADD
LDR
BRnzp

R3,R3,#1
Rl,R3,#0
TEST

Output the count.

OUTPUT LD
ADD
TRAP
TRAP

R0,ASCII
R0,R0,R2
x21
x2 5

Increment the pointer
Rl gets the next character to test

Load the ASCII template
Convert binary to ASCII
ASCII code in R0 is displayed
Halt machine

Storage for pointer and ASCII template

ASCII .FILL x003 0
PTR .FILL X4000

. END

Figure 7.2 The assembly language program to count occurrences of a character

A few notes regarding this program:
Three times during this program, assistance in the form of a service call is

required of the operating system. In each case, a TRAP instruction is used. TRAP
x23 causes a character to be input from the keyboard and placed in R0 (line 0D).
TRAP x21 causes the ASCII code in R0 to be displayed on the monitor (line 28).
TRAP x25 causes the machine to be halted (line 29). As we said before, we will
leave the details of how the TRAP instruction is carried out until Chapter 9.

7.3 The Assembly Process 207

The ASCII codes for the decimal digits 0 to 9 (0000 to 1001) are x30 to x39.
The conversion from binary to ASCII is done simply by adding x30 to the binary
value of the decimal digit. Line 2D shows the label ASCII used to identify the
memory location containing x0030.

The file that is to be examined starts at address x4000 (see line 2E). Usually,
this starting address would not be known to the programmer who is writing this
program since we would want the program to work on files that will become
available in the future. That situation will be discussed in Section 7.4.

7.3 The Rssemblq Process
7.3.1 Introduction
Before an LC-3 assembly language program can be executed, it must first be
translated into a machine language program, that is, one in which each instruction
is in the LC-3 ISA. It is the job of the LC-3 assembler to perform that translation.

If you have available an LC-3 assembler, you can cause it to translate your
assembly language program into a machine language program by executing an
appropriate command. In the LC-3 assembler that is generally available via the
Web, that command is assemble and requires as an argument the filename of your
assembly language program. For example, if the filename is solution 1.asm, then

assemble solutionl.asm outfile
produces the file outfile, which is in the ISA of the LC-3. It is necessary to check
with your instructor for the correct command line to cause the LC-3 assembler to
produce a file of 0s and Is in the ISA of the LC-3.

7.3.2 A Two-Pass Process
In this section, we will see how the assembler goes through the process of trans-
lating an assembly language program into a machine language program. We will
use as our input to the process the assembly language program of Figure 7.2.

You remember that there is in general a one-to-one correspondence between
instructions in an assembly language program and instructions in the final machine
language program. We could try to perform this translation in one pass through
the assembly language program. Starting from the top of Figure 7.2, the assembler
discards lines 01 to 09, since they contain only comments. Comments are strictly
for human consumption; they have no bearing on the translation process. The
assembler then moves on to line OA. Line OA is a pseudo-op; it tells the assembler
that the machine language program is to start at location x3000. The assembler
then moves on to line 0B, which it can easily translate into LC-3 machine code.
At this point, we have

x3 000: 0101010010100000

The LC-3 assembler moves on to translate the next instruction (line 0C). Unfor-
tunately, it is unable to do so since it does not know the meaning of the symbolic
address PTR. At this point the assembler is stuck, and the assembly process fails.

186 chapter 7 Assembly Language

To prevent this from occurring, the assembly process is done in two complete
passes (from beginning to .END) through the entire assembly language program.
The objective of the first pass is to identify the actual binary addresses correspond-
ing to the symbolic names (or labels). This set of correspondences is known as
the symbol table. In pass 1, we construct the symbol table. In pass 2, we translate
the individual assembly language instructions into their corresponding machine
language instructions.

Thus, when the assembler examines line OC for the purpose of translating

LD R3,PTR

during the second pass, it already knows the correspondence between PTR and
x3013 (from the first pass). Thus it can easily translate line OC to

X3 001: 0010011000010001

The problem of not knowing the 16-bit address corresponding to PTR no longer
exists.

7.3.3 The First Pass: Creating the Symbol Table
For our purposes, the symbol table is simply a correspondence of symbolic names
with their 16-bit memory addresses. We obtain these correspondences by passing
through the assembly language program once, noting which instruction is assigned
to which address, and identifying each label with the address of its assigned entry.

Recall that we provide labels in those cases where we have to refer to a loca-
tion, either because it is the target of a branch instruction or because it contains
data that must be loaded or stored. Consequently, if we have not made any pro-
gramming mistakes, and if we identify all the labels, we will have identified all
the symbolic addresses used in the program.

The preceding paragraph assumes that our entire program exists between our
.ORIG and .END pseudo-ops. This is true for the assembly language program of
Figure 7.2. In Section 7.4, we will consider programs that consist of multiple parts,
each with its own .ORIG and .END, wherein each part is assembled separately.

The first pass starts, after discarding the comments on lines 01 to 09, by noting
(line OA) that the first instruction will be assigned to address x3000. We keep track
of the location assigned to each instruction by means of a location counter (LC).
The LC is initialized to the address specified in .ORIG, that is, x3000.

The assembler examines each instruction in sequence and increments the LC
once for each assembly language instruction. If the instruction examined contains
a label, a symbol table entry is made for that label, specifying the current contents
of LC as its address. The first pass terminates when the .END instruction is
encountered.

The first instruction that has a label is at line 13. Since it is the fifth instruction
in the program and since the LC at that point contains x3004, a symbol table entry
is constructed thus:

Symbol Address
TEST x3 004

7.3 The Assembly Process 187

The second instruction that has a label is at line 20. At this point, the LC has been
incremented to x300B. Thus a symbol table entry is constructed, as follows:

Symbol Address
GETCHAR x3 0 0B

At the conclusion of the first pass, the symbol table has the following entries:

Symbol Address
TEST x3 0 04
GETCHAR x3 00B
OUTPUT x3 00E
ASCII x3 012
PTR x3 013

7.3.4 The Second Pass: Generating the
Machine Language Program

The second pass consists of going through the assembly language program a
second time, line by line, this time with the help of the symbol table. At each line,
the assembly language instruction is translated into an LC-3 machine language
instruction.

Starting again at the top, the assembler again discards lines 01 through 09
because they contain only comments. Line OA is the .ORIG pseudo-op, which
the assembler uses to initialize LC to x3000. The assembler moves on to line
OB and produces the machine language instruction 0101010010100000. Then the
assembler moves on to line 0C.

This time, when the assembler gets to line 0C, it can completely assemble
the instruction since it knows that PTR corresponds to x3013. The instruction is
LD, which has an opcode encoding of 0010. The destination register (DR) is R3,
that is, 011.

PCoffset is computed as follows: We know that PTR is the label for address
x3013, and that the incremented PC is LC+1, in this case x3002. Since PTR
(x3013) must be the sum of the incremented PC (x3002) and the sign-extended
PCoffset, PCoffset must be xOOll. Putting this all together, x3001 is set to
0010011000010001, and the LC is incremented to x3002.

Note: In order to use the LD instruction, it is necessary that the source of the
load, in this case the address whose label is PTR, is not more than +256 or —255
memory locations from the LD instruction itself. If the address of PTR had been
greater than LC+1 +255 or less than LC+1 —256, then the offset would not fit in
bits [8:0] of the instruction. In such a case, an assembly error would have occurred,
preventing the assembly process from finishing successfully. Fortunately, PTR is
close enough to the LD instruction, so the instruction assembled correctly.

The second pass continues. At each step, the LC is incremented and the
location specified by LC is assigned the translated LC-3 instruction or, in the
case of .FILL, the value specified. When the second pass encounters the .END
instruction, assembly terminates.

The resulting translated program is shown in Figure 7.3.

188 chapter 7 Assembly Language

Address Binary

0011000000000000
x3000 0101010010100000
x3001 0010011000010001
x3002 1111000000100011
x3003 0110001011000000
x3004 0001100001111100
x3005 0000010000001000
x3006 1001001001111111
x3007 0001001001000000
x3008 1001001001111111
x3009 0000101000000001
x300A 0001010010100001
x300B 0001011011100001
x300C 0110001011000000
x300D 0000111111110110
x300E 0010000000000011
x300F 0001000000000010
x3010 1111000000100001
x3011 1111000000100101
x3012 0000000000110000
x3013 0100000000000000

Figure 7 .3 The machine language program for the assembly language program of
Figure 7.2

That process was, on a good day, merely tedious. Fortunately, you do not have
to do it for a living—the LC-3 assembler does that. And, since you now know
LC-3 assembly language, there is no need to program in machine language. Now
we can write our programs symbolically in LC-3 assembly language and invoke
the LC-3 assembler to create the machine language versions that can execute on
an LC-3 computer.

7.4 Beyond the Assembly of a Single Hssemblq Language Program
Our purpose in this chapter has been to take you up one more notch from the
ISA of the computer and introduce assembly language. Although it is still quite
a large step from C or C++, assembly language does, in fact, save us a good
deal of pain. We have also shown how a rudimentary two-pass assembler actually
works to translate an assembly language program into the machine language of
the LC-3 ISA.

There are many more aspects to sophisticated assembly language program-
ming that go well beyond an introductory course. However, our reason for teaching
assembly language is not to deal with its sophistication, but rather to show its
innate simplicity. Before we leave this chapter, however, there are a few additional
highlights we should explore.

7.4 Beyond the Assembly of a Single Assembly Language Program 189

7.4.1 The Executable Image
When a computer begins execution of a program, the entity being executed is
called an executable image. The executable image is created from modules often
created independently by several different programmers. Each module is trans-
lated separately into an object file. We have just gone through the process of
performing that translation ourselves by mimicking the LC-3 assembler. Other
modules, some written in C perhaps, are translated by the C compiler. Some mod-
ules are written by users, and some modules are supplied as library routines by
the operating system. Each object file consists of instructions in the ISA of the
computer being used, along with its associated data. The final step is to link all
the object modules together into one executable image. During execution of the
program, the FETCH, DECODE, . . . instruction cycle is applied to instructions
in the executable image.

7.4.2 More than One Object File
It is very common to form an executable image from more than one object file.
In fact, in the real world, where most programs invoke libraries provided by the
operating system as well as modules generated by other programmers, it is much
more common to have multiple object files than a single one.

A case in point is our example character count program. The program counts
the number of occurrences of a character in a file. A typical application could
easily have the program as one module and the input data file as another. If this
were the case, then the starting address of the file, shown as x4000 in line 2E of
Figure 7.2, would not be known when the program was written. If we replace line
2E with

PTR .FILL STARTofFILE

then the program of Figure 7.2 will not assemble because there will be no symbol
table entry for STARTofFILE. What can we do?

If the LC-3 assembly language, on the other hand, contained the pseudo-op
.EXTERNAL, we could identify STARTofFILE as the symbolic name of an
address that is not known at the time the program of Figure 7.2 is assembled.
This would be done by the following line

.EXTERNAL STARTofFILE,
which would send a message to the LC-3 assembler that the absence of label
STARTofFILE is not an error in the program. Rather, STARTofFILE is a label in
some other module that will be translated independently. In fact, in our case, it
will be the label of the location of the first character in the file to be examined by
our character count program.

If the LC-3 assembly language had the pseudo-op .EXTERNAL, and if we
had designated STARTofFILE as .EXTERNAL, the LC-3 would be able to create
a symbol table entry for STARTofFILE, and instead of assigning it an address, it
would mark the symbol as belonging to another module. At link time, when all
the modules are combined, the linker (the program that manages the "combining"

190 chapter 7 Assembly Language

process) would use the symbol table entry for STARTofFILE in another module
to complete the translation of our revised line 2E.

In this way, the .EXTERNAL pseudo-op allows references by one module to
symbolic locations in another module without a problem. The proper translations
are resolved by the linker.

7.1 An assembly language program contains the following two instructions.
The assembler puts the translated version of the LDI instruction that
follows into location x3025 of the object module. After assembly is
complete, what is in location x3025?

PLACE .FILL X45A7
LDI R3, PLACE

7.2 An LC-3 assembly language program contains the instruction:

ASCII LD Rl, ASCII

The symbol table entry for ASCII is x4F08. If this instruction is executed
during the running of the program, what will be contained in Rl
immediately after the instruction is executed?

7.3 What is the problem with using the string AND as a label?
7.4 Create the symbol table entries generated by the assembler when

translating the following routine into machine code:

.ORIG X301C
ST R3, SAVE3
ST R2, SAVE2
AND R2, R2, #0

TEST IN
BRz TEST
ADD Rl, RO, #-
BRn FINISH
ADD Rl/ RO, #-
NOT Rl, Rl
BRn FINISH
HALT

FINISH ADD R2, R2, #1
HALT

SAVE 3 .FILL XOOOO
SAVE 2 .FILL XOOOO

.END

Exercises 191

7.5 a. What does the following program do?

.ORIG x3000
LD R2, ZERO
LD R0, M0
LD Rl, Ml

LOOP BRz DONE
ADD R2, R2, R0
ADD Rl, Rl, -1
BR LOOP

DONE ST R2, RESULT
HALT

RESULT .FILL X0000
ZERO -FILL xOOOO
M0 .FILL X0004
Ml .FILL x08 03

.END

b. What value will be contained in RESULT after the program runs to
completion?

7.6 Our assembler has crashed and we need your help! Create a symbol table
and assemble the instructions at labels D, E, and F for the program below.
You may assume another module deposits a positive value into A before
this module executes.

.ORIG X3000
AND R0, R0, #0

D LD Rl, A
AND R2 , Rl, #1
BRp B

E ADD Rl, Rl, #-1
B ADD R0, R0, Rl

ADD Rl, Rl, #-2
F BRp B

ST R0, C
TRAP x2 5

A . BLKW 1
C . BLKW

.END
1

In no more than 15 words, what does the above program do?
7.7 Write an LC-3 assembly language program that counts the number of Is

in the value stored in RO and stores the result into Rl . For example, if RO
contains 0001001101110000, then after the program executes, the result
stored in Rl would be 0000 0000 0000 0110.

192 chapter 7 Assembly Language

7.8 An engineer is in the process of debugging a program she has written.
She is looking at the following segment of the program, and decides to
place a breakpoint in memory at location 0xA404. Starting with the
PC = 0xA400, she initializes all the registers to zero and runs the
program until the breakpoint is encountered.

Code Segment

0xA4 00
0xA4 01
0xA4 02
0xA4 03
0xA4 04

THIS1
THIS2
THIS3
THIS4
THIS 5

LEA
LD
LDI
LDR
.FILL

R0
Rl
R2
R3

THIS1
THIS2
THIS5
R0, #2

xA4 00

Show the contents of the register file (in hexadecimal) when the
breakpoint is encountered.

7.9 What is the purpose of the . END pseudo-op? How does it differ from the
HALT instruction?

7.10 The following program fragment has an error in it. Identify the error and
explain how to fix it.

ADD R3, R3, #3 0
ST R3, A
HALT

A .FILL #0

Will this error be detected when this code is assembled or when this code
is run on the LC-3?

7.11 The LC-3 assembler must be able to convert constants represented in
ASCII into their appropriate binary values. For instance, x2A translates
into 00101010 and #12 translates into 00001100. Write an LC-3
assembly language program that reads a decimal or hexadecimal constant
from the keyboard (i.e., it is preceded by a # character signifying it is a
decimal, or x signifying it is hex) and prints out the binary representation.
Assume the constants can be expressed with no more than two decimal or
hex digits.

Exercises 193

7-12 What does the following LC-3 program do?

. O R I G X3000
AND R5, R5, #0
AND R 3 , R3 , #0
ADD R 3 , R 3 , #8
LDI R l , A
ADD R2 , Rl, #0

AG ADD R 2 , R2 , R2
ADD R3 , R 3 , #-1
BRnp AG
LD R4, B
AND Rl, Rl, R4
NOT Rl / Rl
ADD R l , R l , #1
ADD R 2 , R2, Rl
BRnp NO
ADD R5, R 5 , #1

NO HALT
B .FILL xFFOO
A . FILL x4 0 00

.END

7.13 The following program adds the values stored in memory locations A, B,
and C, and stores the result into memory. There are two errors in the
code. For each, describe the error and indicate whether it will be detected
at assembly time or at run time.

Line No.
1 -ORIG x3 000
2 ONE LD R0 , A
3 ADD Rl , Rl, R0
4 TWO LD R0 , B
5 ADD Rl , Rl, R0
6 THREE LD R0 , c
7 ADD Rl , Rl, R0
8 ST Rl , SUM
9 TRAP x2 5
10 A .FILL xOOOl
11 B .FILL X0002
12 C .FILL x0003
13 D .FILL xO 004
14 .END

194 chapter 7 Assembly Language

7.14 a. Assemble the following program:

LABEL

.ORIG
STI
OUT
HALT
.STRINGZ
.END

X3000
RO, LABEL

b. The programmer intended the program to output a % to the monitor,
and then halt. Unfortunately, the programmer got confused about the
semantics of each of the opcodes (that is, exactly what function is
carried out by the LC-3 in response to each opcode). Replace exactly
one opcode in this program with the correct opcode to make the
program work as intended.

c. The original program from part a was executed. However, execution
exhibited some very strange behavior. The strange behavior was in
part due to the programming error, and in part due to the fact that the
value in RO when the program started executing was x3000. Explain
what the strange behavior was and why the program behaved that way.

7.15 The following is an LC-3 program that performs a function. Assume a
sequence of integers is stored in consecutive memory locations, one
integer per memory location, starting at the location x4000. The sequence
terminates with the value xOOOO. What does the following program do?

.ORIG x3 000
LD RO, NUMBERS
LD R2, MASK

LOOP LDR Rl, RO, #0
BRz DONE
AND R5, Rl, R2
BRz LI
BRnzp NEXT

LI ADD Rl, Rl, Rl
STR Rl, RO, #0

NEXT ADD RO, RO, #1
BRnzp LOOP

DONE HALT
NUMBERS .FILL X4000
MASK .FILL xSOOO
.END

Exercises 195

7.16

7.17

7.18

Assume a sequence of nonnegative integers is stored in consecutive
memory locations, one integer per memory location, starting at location
x4000. Each integer has a value between 0 and 30,000 (decimal). The
sequence terminates with the value —1 (i.e., xFFFF).

What does the following program do?
.ORIG x3 000
AND R4, R4, #0
AND R3, R3, #0
LD R0, NUMBERS

LOOP LDR Rl, R0, #0
NOT R2, Rl
BRz DONE
AND R2, Rl, #1
BRz LI
ADD R4 , R4 , #1
BRnzp NEXT

LI ADD R3, R3, #1
NEXT ADD R0, R0, #1

BRnzp LOOP
DONE TRAP x2 5
NUMBERS .FILL x4 000

.END

Suppose you write two separate assembly language modules that you
expect to be combined by the linker. Each module uses the label AGAIN,
and neither module contains the pseudo-op . EXTERNAL AGAIN. Is
there a problem using the label AGAIN in both modules? Why or why not?
The following LC-3 program compares two character strings of the same
length. The source strings are in the . S T R I N G Z form. The first string starts
at memory location x4000, and the second string starts at memory location
x4100. If the strings are the same, the program terminates with the value 0
in R5. Insert instructions at (a), (b), and (c) that will complete the program.

.ORIG X3000
LD Rl, FIRST
LD R2, SECOND
AND R0, R0, #0

LOOP (a) LOOP (a)
LDR R4, R2 , #0
BRz NEXT
ADD Rl, Rl, #1
ADD R2, R2, #1

(b) (b)
(c) (c)

ADD R3, R3, R4
BRz LOOP
AND R5, R5, #0
BRnzp DONE

NEXT AND R5, R5, #0
ADD R5, R5, #1

DONE TRAP x2 5
FIRST .FILL x40 00
SECOND .FILL

.END
X4100

218 chapter 7 Assembly Language

7.19 When the following LC-3 program is executed, how many
times will the instruction at the memory address labeled LOOP execute?

.ORIG X3005
LEA R2, DATA
LDR R4, R2, #0

LOOP ADD R4, R4, #-3
BRzp LOOPk

DATA .FILL xOOOB
.END

TRAP x2 5

7.20 LC-3 assembly language modules (a) and (b) have been
written by different programmers to store x0015 into memory location
x4000. What is fundamentally different about their approaches?

a. .ORIG X5000
AND R0, R0, #0
ADD R 0 , R 0 , #15
ADD R 0 , R0, #6
STI R0, PTR
HALT

PTR .FILL x4 0 00
.END

b. .ORIG x4 000
.FILL X0015
.END

7.21 Assemble the following LC-3 assembly language program.

.ORIG x3 000
AND R0, R0, #0
ADD R2, R0, #10
LD Rl, MASK
LD R3, PTR1

LOOP LDR R4, R3, #0
AND R4, R4, Rl
BRz NEXT
ADD R0, R0, #1

NEXT ADD R3, R3, #1
ADD R2, R2, #-1
B RP LOOP
STI R0, PTR2

HALT
MASK .FILL x8 00 0
PTR1 .FILL x4 000
PTR2 . FILL x50 00

.END
What does the program do (in no more than 20 words)?

7.22 The LC-3 assembler must be
able to map an instruction's mnemonic opcode into its binary opcode. For
instance, given an ADD, it must generate the binary pattern 0001. Write
an LC-3 assembly language program that prompts the user to type in

Exercises 197

an LC-3 assembly language opcode and then displays its binary opcode.
If the assembly language opcode is invalid, it displays an error message.

7.23 The following LC-3 program determines whether a character
string is a palindrome or not. A palindrome is a string that reads the same
backwards as forwards. For example, the string "racecar" is a palindrome.
Suppose a string starts at memory location x4000, and is in the
. STRINGZ format. If the string is a palindrome, the program terminates
with the value 1 in R5. If not, the program terminates with the value
0 in R5. Insert instructions at (a)-(e) that will complete the program.

.ORIG x3 0 00
LD RO, PTR
ADD Rl, RO, #0

AGAIN LDR R2 , Rl, #0
BRz CONT
ADD Rl, Rl, #1
BRnzp AGAIN

CONT (a) CONT (a)
LOOP LDR R3, RO , #0

(b) (b)
NOT R4, R4
ADD R4, R4, #1
ADD R3, R3, R4
BRnp NO

(c) (c)
(d) (d)

NOT R2 , RO
ADD R2 , R2 , #1
ADD R2 , Rl, R2
BRnz YES

(e) (e)
YES AND R5, R5, #0

ADD R5, R5, #1
BRnzp DONE

NO AND R5, R5, #0
DONE HALT
PTR .FILL X4000

.END

7.24 We want the following program fragment to shift R3 to the left by four
bits, but it has an error in it. Identify the error and explain how to fix it.

.ORIG x3 000
AND R2, R2, #0
ADD R2 , R2 , #4
BRz DONE
ADD R2, R2, #-1
ADD R3, R3, R3
BR LOOP
HALT
.END

7.25 What does the pseudo-op . FILL XFFOO4 do? Why?

c h a p t e r

8

Up to now, we have paid little attention to input/output (I/O). We did note (in
Chapter 4) that input/output is an important component of the von Neumann
model. There must be a way to get information into the computer in order to
process it, and there must be a way to get the result of that processing out of the
computer so humans can use it. Figure 4.1 depicts a number of different input
and output devices.

We suggested (in Chapter 5) that input and output can be accomplished by
executing the TRAP instruction, which asks the operating system to do it for us.
Figure 5.17 illustrates this for input (at address x3002) and for output (at address
x3010).

In this chapter, we are ready to do I/O by ourselves. We have chosen to study
the keyboard as our input device and the monitor display as our output device. Not
only are they the simplest I/O devices and the ones most familiar to us, but they
have characteristics that allow us to study important concepts about I/O without
getting bogged down in unnecessary detail.

8.1 I/O Basics
8.1.1 Device Registers
Although we often think of an I/O device as a single entity, interaction with a
single I/O device usually means interacting with more than one device register.
The simplest I/O devices usually have at least two device registers: one to hold the
data being transferred between the device and the computer, and one to indicate

200 chapter 9 TRAP Routines and Subroutines

status information about the device. An example of status information is whether
the device is available or is still busy processing the most recent I/O task.

8.1.2 Memory-Mapped I/O versus Special
Input/Output Instructions

An instruction that interacts with an input or output device register must identify
the particular input or output device register with which it is interacting. Two
schemes have been used in the past. Some computers use special input and output
instructions. Most computers prefer to use the same data movement instructions
that are used to move data in and out of memory.

The very old PDP-8 (from Digital Equipment Corporation, light years ago—
1965) is an example of a computer that used special input and output instructions.
The 12-bit PDP-8 instruction contained a 3-bit opcode. If the opcode was 110, an
I/O instruction was indicated. The remaining nine bits of the PDP-8 instruction
identified which I/O device register and what operation was to be performed.

Most computer designers prefer not to specify an additional set of instructions
for dealing with input and output. They use the same data movement instructions
that are used for loading and storing data between memory and the general purpose
registers. For example, a load instruction, in which the source address is that of an
input device register, is an input instruction. Similarly, a store instruction in which
the destination address is that of an output device register is an output instruction.

Since programmers use the same data movement instructions that are used
for memory, every input device register and every output device register must be
uniquely identified in the same way that memory locations are uniquely identified.
Therefore, each device register is assigned an address from the memory address
space of the ISA. That is, the I/O device registers are mapped to a set of addresses
that are allocated to I/O device registers rather than to memory locations. Hence
the name memory-mapped I/O.

The original PDP-11 ISA had a 16-bit address space. All addresses wherein
bits [15:13] = 111 were allocated to I/O device registers. That is, of the 216

addresses, only 57,344 corresponded to memory locations. The remaining 213

were memory-mapped I/O addresses.
The LC-3 uses memory-mapped I/O. Addresses xOOOO to xFDFF are allocated

to memory locations. Addresses xFEOO to xFFFF are reserved for input/output
device registers. Table A.3 lists the memory-mapped addresses of the LC-3 device
registers that have been assigned so far. Future uses and sales of LC-3 micropro-
cessors may require the expansion of device register address assignments as new
and exciting applications emerge!

8.1.3 Asynchronous versus Synchronous
Most I/O is carried out at speeds very much slower than the speed of the processor.
A typist, typing on a keyboard, loads an input device register with one ASCII code
every time he/she types a character. A computer can read the contents of that device
register every time it executes a load instruction, where the operand address is the
memory-mapped address of that input device register.

8.1 I/O Basics

Many of today's microprocessors execute instructions under the control of
a clock that operates well in excess of 300 MHz. Even for a microprocessor
operating at only 300 MHz, a clock cycle lasts only 3.3 nanoseconds. Suppose a
processor executed one instruction at a time, and it took the processor 10 clock
cycles to execute the instruction that reads the input device register and stores its
contents. At that rate, the processor could read the contents of the input device
register once every 33 nanoseconds. Unfortunately, people do not type fast enough
to keep this processor busy full-time reading characters. Question: How fast
would a person have to type to supply input characters to the processor at the
maximum rate the processor can receive them? Assume the average word length
is six characters. See Exercise 8.3.

We could mitigate this speed disparity by designing hardware that would
accept typed characters at some slower fixed rate. For example, we could design
a piece of hardware that accepts one character every 30 million cycles. This
would require a typing speed of 100 words/minute, which is certainly doable.
Unfortunately, it would also require that the typist work in lockstep with the
computer's clock. That is not acceptable since the typing speed (even of the same
typist) varies from moment to moment.

What's the point? The point is that I/O devices usually operate at speeds
very different from that of a microprocessor, and not in lockstep. This latter
characteristic we call asynchronous. Most interaction between a processor and
I/O is asynchronous. To control processing in an asynchronous world requires
some protocol or handshaking mechanism. So it is with our keyboard and monitor
display. In the case of the keyboard, we will need a 1-bit status register, called
a flag, to indicate if someone has or has not typed a character. In the case of the
monitor, we will need a 1-bit status register to indicate whether or not the most
recent character sent to the monitor has been displayed.

These flags are the simplest form of synchronization. A single flag, called the
Ready bit, is enough to synchronize the output of the typist who can type characters
at the rate of 100 words/minute with the input to a processor that can accept these
characters at the rate of 300 million characters/second. Each time the typist types
a character, the Ready bit is set. Each time the computer reads a character, it
clears the Ready bit. By examining the Ready bit before reading a character, the
computer can tell whether it has already read the last character typed. If the Ready
bit is clear, no characters have been typed since the last time the computer read a
character, and so no additional read would take place. When the computer detects
that the Ready bit is set, it could only have been caused by a new character being
typed, so the computer would know to again read a character.

The single Ready bit provides enough handshaking to ensure that the asyn-
chronous transfer of information between the typist and the microprocessor can
be carried out accurately.

If the typist could type at a constant speed, and we did have a piece of
hardware that would accept typed characters at precise intervals (for example,
one character every 30 million cycles), then we would not need the Ready bit.
The computer would simply know, after 30 million cycles of doing other stuff,
that the typist had typed exactly one more character, and the computer would
read that character. In this hypothetical situation, the typist would be typing in

202 chapter 9 TRAP Routines and Subroutines

lockstep with the processor, and no additional synchronization would be needed.
We would say the computer and typist were operating synchronously, or the input
activity was synchronous.

8.1.4 Interrupt-Driven versus Polling
The processor, which is computing, and the typist, who is typing, are two separate
entities. Each is doing its own thing. Still, they need to interact, that is, the data that
is typed has to get into the computer. The issue of interrupt-driven versus polling is
the issue of who controls the interaction. Does the processor do its own thing until
being interrupted by an announcement from the keyboard, "Hey, a key has been
struck. The ASCII code is in the input device register. You need to read it." This
is called interrupt-driven I/O, where the keyboard controls the interaction. Or,
does the processor control the interaction, specifically by interrogating (usually,
again and again) the Ready bit until it (the processor) detects that the Ready bit is
set. At that point, the processor knows it is time to read the device register. This
second type of interaction is called pollingy since the Ready bit is polled by the
processor, asking if any key has been struck.

Section 8.2.2 describes how the polling method works. Section 8.5 explains
interrupt-driven I/O.

8.2 Input from [he Keyboard
8.2.1 Basic Input Registers (the KBDR and the KBSR)
We have already noted that in order to handle character input from the keyboard,
we need two things: a data register that contains the character to be input, and
a synchronization mechanism to let the processor know that input has occurred.
The synchronization mechanism is contained in the status register associated with
the keyboard.

These two registers are called the keyboard data register (KBDR) and the
keyboard status register (KBSR). They are assigned addresses from the memory
address space. As shown in Table A.3, KBDR is assigned to xFE02; KBSR is
assigned to xFEOO.

Even though a character needs only eight bits and the synchronization mech-
anism needs only one bit, it is easier to assign 16 bits (like all memory addresses
in the LC-3) to each. In the case of KBDR, bits [7:0] are used for the data, and
bits [15:8] contain xOO. In the case of KBSR, bit [15] contains the synchroniza-
tion mechanism, that is, the Ready bit. Figure 8.1 shows the two device registers
needed by the keyboard.

8.2.2 The Basic Input Service Routine
KBSR[15] controls the synchronization of the slow keyboard and the fast pro-
cessor. When a key on the keyboard is struck, the ASCII code for that key is
loaded into KBDR[7:0] and the electronic circuits associated with the keyboard

8.2 Input from the Keyboard 203

KBDR

KBSR

Figure 8 .1 Keyboard device registers

automatically set KBSR[15] to 1. When the LC-3 reads KBDR, the electronic
circuits associated with the keyboard automatically clear KBSR[15], allowing
another key to be struck. IfKBSR[15] = 1, the ASCII code corresponding to the
last key struck has not yet been read, and so the keyboard is disabled.

If input/output is controlled by the processor (i.e., via polling), then a program
can repeatedly test KBSR[15] until it notes that the bit is set. At that point, the
processor can load the ASCII code contained in KBDR into one of the LC-3
registers. Since the processor only loads the ASCII code if KBSR[15] is 1, there
is no danger of reading a single typed character multiple times. Furthermore, since
the keyboard is disabled until the previous code is read, there is no danger of the
processor missing characters that were typed. In this way, KBSR[15] provides
the mechanism to guarantee that each key typed will be loaded exactly once.

The following input routine loads RO with the ASCII code that has been
entered through the keyboard and then moves on to the NEXT_TASK in the
program.

01 START LDI
02 BRzp
03 LDI
04 BRnzp
05 A .FILL
06 B .FILL

Rl, A
START
R0, B
NEXTJTASK
xFEOO
XFE02

Test for
character input

Go to the next task
Address of KBSR
Address of KBDR

As long as KBSR[15] is 0, no key has been struck since the last time the processor
read the data register. Lines 01 and 02 comprise a loop that tests bit [15] of KBSR.
Note the use of the LDI instruction, which loads Rl with the contents of xFEOO,
the memory-mapped address of KBSR. If the Ready bit, bit [15], is clear, BRzp
will branch to START and another iteration of the loop. When someone strikes a
key, KBDR will be loaded with the ASCII code of that key and the Ready bit of
KBSR will be set. This will cause the branch to fall through and the instruction at
line 03 to be executed. Again, note the use of the LDI instruction, which this time
loads R0 with the contents of xFE02, the memory-mapped address of KBDR.
The input routine is now done, so the program branches unconditionally to its
NEXT TASK.

8.2.3 Implementation of Memory-Mapped Input
Figure 8.2 shows the additional data path required to implement memory-mapped
input. You are already familiar, from Chapter 5, with the data path required to

chapter 8 I/O

Figure 8 .2 Memory-mapped input

carry out the EXECUTE phase of the load instructions. Essentially three steps
are required:

1. The MAR is loaded with the address of the memory location to be read.
2. Memory is read, resulting in MDR being loaded with the contents at the

specified memory location.
3. The destination register (DR) is loaded with the contents of MDR.

In the case of memory-mapped input, the same set of steps are carried out,
except instead of MAR being loaded with the address of a memory location, MAR
is loaded with the address of a device register. Instead of the address control logic
enabling memory to read, the address control logic selects the corresponding
device register to provide input to the MDR.

8 .3 Oul-pur to rhe Moni tor
8.3.1 Basic Output Registers (the DDR and the DSR)
Output works in a way very similar to input, with DDR and DSR replacing the
roles of KBDR and KBSR, respectively. DDR stands for Display Data Register,
which drives the monitor display. DSR stands for Display Status Register. In the
LC-3, DDR is assigned address xFE06. DSR is assigned address xFE04.

As is the case with input, even though an output character needs only eight
bits and the synchronization mechanism needs only one bit, it is easier to assign
16 bits (like all memory addresses in the LC-3) to each output device register. In
the case of DDR, bits [7:0] are used for data, and bits [15:8] contain xOO. In the

8.3 Output to the Monitor

15 8 7

15 14

DDR

DSR

Figure 8 .3 Monitor device registers

case of DSR, bit [15] contains the synchronization mechanism, that is, the Ready
bit. Figure 8.3 shows the two device registers needed by the monitor.

8.3.2 The Basic Output Service Routine
DSR[15] controls the synchronization of the fast processor and the slow monitor
display. When the LC-3 transfers an ASCII code to DDR[7:0] for outputting, the
electronics of the monitor automatically clear DSR[15] as the processing of the
contents of DDR[7:0] begins. When the monitor finishes processing the character
on the screen, it (the monitor) automatically sets DSR[15]. This is a signal to
the processor that it (the processor) can transfer another ASCII code to DDR
for outputting. As long as DSR[15] is clear, the monitor is still processing the
previous character, so the monitor is disabled as far as additional output from the
processor is concerned.

If input/output is controlled by the processor (i.e., via polling), then a program
can repeatedly test DSR[15] until it notes that the bit is set, indicating that it is OK
to write a character to the screen. At that point, the processor can store the ASCII
code for the character it wishes to write into DDR[7:0], setting up the transfer of
that character to the monitor's display.

The following routine causes the ASCII code contained in RO to be displayed
on the monitor:

01
02
03
04
05
06

START LDI Rl, A
BRzp START
STI R0, B
BRnzp NEXT_TASK
.FILL XFE04
. FILL xFE06

Test to see if
output register is ready

Address of DSR
Address of DDR

Like the routine for KBDR and KBSR in Section 8.2.2, lines 01 and 02 repeat-
edly poll DSR[15] to see if the monitor electronics is finished yet with the last
character shipped by the processor. Note the use of LDI and the indirect access
to xFE04, the memory-mapped address of DSR. As long as DSR[15] is clear,
the monitor electronics is still processing this character, and BRzp branches to
START for another iteration of the loop. When the monitor electronics finishes
with the last character shipped by the processor, it automatically sets DSR[15]
to 1, which causes the branch to fall through and the instruction at line 03 to be
executed. Note the use of the STI instruction, which stores R0 into xFE06, the

206 chapter 9 TRAP Routines and Subroutines

memory-mapped address of DDR. The write to DDR also clears DSR[15], dis-
abling for the moment DDR from further output. The monitor electronics takes
over and writes the character to the screen. Since the output routine is now done,
the program unconditionally branches (line 04) to its NEXTJTASK.

8.3.3 Implementation of Memory-Mapped Output
Figure 8.4 shows the additional data path required to implement memory-mapped
output. As we discussed previously with respect to memory-mapped input,
the mechanisms for handling the device registers provide very little additional
complexity to what already exists for handling memory accesses.

In Chapter 5, you became familiar with the process of carrying out the
EXECUTE phase of the store instructions.

1. The MAR is loaded with the address of the memory location to be written.
2. The MDR is loaded with the data to be written to memory.
3. Memory is written, resulting in the contents of MDR being stored in the

specified memory location.

In the case of memory-mapped output, the same steps are carried out, except
instead of MAR being loaded with the address of a memory location, MAR is
loaded with the address of a device register. Instead of the address control logic
enabling memory to write, the address control logic asserts the load enable signal
of DDR.

Membry-mapped output also requires the ability to read output device reg-
isters. You saw in Section 8.3.2 that before the DDR could be loaded, the Ready

A— GateMDR
' 1 6

MDR -LD.MDR

'16
R.W / WRITE

ADDR
CONTROL

LOGIC

OUTPUT

MEMORY

'16
2

MEM.EN, WRITE

o DDR

DSR

LD.DDR

INMUX X

Figure 8.4 Memory-mapped output

8.4 A More Sophisticated Input Routine 207

bit had to be in state 1, indicating that the previous character had already been
written to the screen. The LDI and BRzp instructions on lines 01 and 02 perform
that test. To do this the LDI reads the output device register DSR, and BRzp tests
bit [15]. If the MAR is loaded with xFE04 (the memory-mapped address of the
DSR), the address control logic selects DSR as the input to the MDR, where it is
subsequently loaded into Rl and the condition codes are set.

. 8.3.4 Example: Keyboard Echo
When we type at the keyboard, it is helpful to know exactly what characters we
have typed. We can get this echo capability easily (without any sophisticated
electronics) by simply combining the two routines we have discussed. The key
typed at the keyboard is displayed on the monitor.

01 START LDI Rl, KBSR ; Test for character input
02 BRzp START
03 LDI R0, KBDR
04 ECHO LDI Rl, DSR ; Test output register ready
05 BRzp ECHO
06 STI R0, DDR
07 BRnzp NEXT_TASK
08 KBSR .FILL xFEOO ; Address of KBSR
09 KBDR .FILL XFE02 ; Address of KBDR
OA DSR .FILL XFE04 ; Address of DSR
0B DDR .FILL xFE06 ; Address of DDR

8.4 II More Sophisticated Input Routine
In the example of Section 8.2.2, the input routine would be a part of a program
being executed by the computer. Presumably, the program requires character
input from the keyboard. But how does the person sitting at the keyboard know
when to type a character? Sitting there, the person may wonder whether or
not the program is actually running, or if perhaps the computer is busy doing
something else.

To let the person sitting at the keyboard know that the program is waiting for
input from the keyboard, the computer typically prints a message on the monitor.
Such a message is often referred to as a prompt. The symbol that is displayed by
your operating system (for example, % or C:) or by your editor (for example,:)
are examples of prompts.

The program fragment shown in Figure 8.5 obtains keyboard input via polling
as we have shown in Section 8.2.2 already. It also includes a prompt to let the
person sitting at the keyboard know when it is time to type a key. Let's examine
this program fragment in parts.

You are already familiar with lines 13 through 19 and lines 25 through 28,
which correspond to the code in Section 8.3.4 for inputting a character via the

chapter 8 I/O

START

LI

Loop

L2

01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20
21
22
23
24
25
26
27
2 8
29
2A
Figure 8.5

Input

L3

L4

ST
ST
ST

LD
LDI
BRzp
STI

LEA
LDR
BRz
LDI
BRzp
STI
ADD
BRnzp

LDI
BRzp
LDI
LDI
BRzp
STI

LDI
BRzp
STI
LD
LD
LD
BRnzp

Rl,SaveRl
R2,SaveR2
R3,SaveR3

R2/Newline
R3,DSR
LI
R2,DDR

Rl,Prompt
R0,R1,#0
Input
R3,DSR
L2
R0,DDR
R1,R1,#1
Loop

R3,KBSR
Input
R0,KBDR
R3,DSR
L3
R0,DDR

R3,DSR
L4
R2,DDR
Rl,SaveRl
R2,SaveR2
R3,SaveR3
NEXT TASK

Save registers needed
by this routine

SaveRl
SaveR2
SaveR3
DSR
DDR
KBSR
KBDR
Newline .FILL
Prompt .STRINGZ

.BKLW 1

.BKLW 1

.BKLW 1

.FILL XFE04

.FILL XFE06

.FILL xFEOO

.FILL XFE02
xOOOA

1 * Input a
The input routine for the LC-3 keyboard

Loop until monitor is ready
Move cursor to new clean line

Starting address of prompt string
Write the input prompt
End of prompt string

Loop until monitor is ready
Write next prompt character
Increment prompt pointer
Get next prompt character

Poll until a character is typed
Load input character into R0

Loop until monitor is ready-
Echo input character

Loop until monitor is ready
Move cursor to new clean line
Restore registers
to original values

Do the program's next task

Memory for registers saved

; ASCII code for newline
characters '

keyboard and echoing it on the monitor. Lines 01 through 03, lines ID through
IF, and lines 22 through 24 recognize that this input routine needs to use general
purpose registers R l , R2, and R3. Unfortunately, they most likely contain values
that will still be needed after this routine has finished. To prevent the loss of those
values, the ST instructions in lines 01 through 03 save them in memory locations
SaveRl, SaveR2, and SaveR3, before the input routine starts its business. These

8.5 Interrupt-Driven I/O 209

three memory locations have been allocated by the .BLKW pseudo-ops in lines 22
through 24. After the input routine is finished and before the program branches
unconditionally to its NEXT_TASK (line 20), the LD instructions in lines ID
through IF restore the original values saved to their rightful locations in Rl , R2,
and R3.

This leaves lines 05 through 08, OA through 11, 1A through 1C, 29 and 2A.
These lines serve to alert the person sitting at the keyboard that it is time to type
a character.

Lines 05 through 08 write the ASCII code xOA to the monitor. This is the
ASCII code for a new line. Most ASCII codes correspond to characters that are
visible on the screen. A few, like xOA, are control characters. They cause an action
to occur. Specifically, the ASCII code xOA causes the cursor to move to the far
left of the next line on the screen. Thus the name Newline. Before attempting to
write xOA, however, as is always the case, DSR[15] is tested (line 6) to see if
DDR can accept a character. If DSR[15] is clear, the monitor is busy, and the loop
(lines 06 and 07) is repeated. When DSR[15] is 1, the conditional branch (line 7)
is not taken, and xOA is written to DDR for outputting (line 8).

Lines OA through 11 cause the prompt input a character> to be written
to the screen. The prompt is specified by the .STRINGZ pseudo-op on line 2A and
is stored in 19 memory locations—18 ASCII codes, one per memory location,
corresponding to the 18 characters in the prompt, and the terminating sentinel
xOOOO.

Line 0C iteratively tests to see if the end of the string has been reached (by
detecting xOOOO), and if not, once DDR is free, line OF writes the next character
in the input prompt into DDR. When xOOOO is detected, the program knows that
the entire input prompt has been written to the screen and branches to the code
that handles the actual keyboard input (starting at line 13).

After the person at the keyboard has typed a character and it has been echoed
(lines 13 to 19), the program writes one more new line (lines 1A through 1C)
before branching to its NEXT_TASK.

8.5 Interrupt-Driven I/O
In Section 8.1.4, we noted that interaction between the processor and an I/O device
can be controlled by the processor (i.e., polling) or it can be controlled by the
I/O device (i.e., interrupt driven). In Sections 8.2, 8.3, and 8.4, we have studied
several examples of polling. In each case, the processor tested the Ready bit of the
status register, again and again, and when it was finally 1, the processor branched
to the instruction that did the input or output operation.

We are now ready to study the case where the interaction is controlled by the
I/O device.

8.5.1 What Is Interrupt-Driven 1/0?
The essence of interrupt-driven I/O is the notion that an I/O device that may or
may not have anything to do with the program that is running can (1) force that

210 chapter 9 TRAP Routines and Subroutines

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2

1: Interrupt signal is detected
1: Program A is put into suspended animation
2: The needs of the I/O device start being carried out
2: The needs of the I/O device are being carried out
2: The needs of the I/O device are being carried out
2: The needs of the I/O device are being carried out
2: The needs of the I/O device have been carried out
3: Program A is brought back to life

Program A is executing instruction n+3
Program A is executing instruction n+4

Figure 8 .6 Instruction execution flow for interrupt-driven I/O

program to stop, (2) have the processor carry out the needs of the I/O device, and
then (3) have the stopped program resume execution as if nothing had happened.
These three stages of the instruction execution flow are shown in Figure 8.6.

As far as Program A is concerned, the work carried out and the results com-
puted are no different from what would have been the case if the interrupt had
never happened; that is, as if the instruction execution flow had been the following:

Program A is executing instruction n
Program A is executing instruction n+1
Program A is executing instruction n+2
Program A is executing instruction n+3
Program A is executing instruction n+4

8.5.2 Why Have Interrupt-Driven I/O?
As is undoubtedly clear, polling requires the processor to waste a lot of time
spinning its wheels, re-executing again and again the LDI and BR instructions
until the Ready bit is set. With interrupt-driven I/O, none of that testing and
branching has to go on. Interrupt-driven I/O allows the processor to spend its time
doing what is hopefully useful work, executing some other program perhaps, until
it is notified that some I/O device needs attention.

8.5 Interrupt-Driven I/O 211

Suppose we are asked lo wrile a program thai lakes a sequence of 100 characters
typed on a keyboard and processes the information contained in those 100 characters.
Assume llic characters are typed at the rale of 80 words/minute, which corresponds
to one character every 0.125 seconds. Assume ihc processing of Ihe 100-characler
sequence lakes 12.49999 seconds, and that our program is lo perform Ihis process on
1.000 consecutive sequences. I low long will it take our program lo complete the task?
(Why did we pick 12.499997 To make the numbers come out nice!)

We could obtain each character input by polling, as in Section 8.2. If we did. we
would waste a lot of time waiting tor the "next" character lo be typed. It would take
100 • 0.125 or 12.5 seconds to get a 100-characler sequence.

On the other hand, if we use inlerrupl-driven I/O, ihe processor docs not waste
any time re-executing the LDI and BR instructions while waiting for a character to
be typed. Rather, the processor can be busy working on the previous I (X)-characler
sequence that was typed, except for those very small fractions of time when it is
interrupted by the I/O device lo read the next character typed. Let's say that to read
die next character typed requires executing a 10-inslruelion program thai takes on
the average (MXMMXKN)! seconds to execute each instruction. That means 0.0000001
seconds for each character typed, or 0.00001 seconds for the entire 100-characler
sequence. That is, with interrupt-driven I/O. since the processor is only needed when
charactcrs are actually being read, the lime required for each 100-character sequence
is 0.00001 seconds, instead of 12.50000 seconds. The remaining 12.49999 of every
12.50(X)0 seconds, the processor is available to do useful work. For example, il can
process ihe previous 100-character sequence.

The hottom line: With polling, the lime lo complete the entire task for each
sequence is 24.9999 seconds. 12.5 seconds to obtain the 100 characters + 12.49999
seconds to process them. With interrupt-driven I/O, the time to complete the entire task
for each sequence after the lirsl is 12.5 seconds. 0.00001 seconds to obtain the char-
acters + 12.49999 seconds to process them. l ;or 1,1)00 sequences that is the difference
between 7 hours and 3 \ hours.

8.5.3 Generation of the Interrupt Signal
There are two parts to interrupt-driven I/O, (1) the enabling mechanism that allows
an I/O device to interrupt the processor when it has input to deliver or is ready to
accept output, and (2) the mechanism that manages the transfer of the I/O data.
The two parts can be briefly described as:

1. generating the interrupt signal, which stops the currently executing process,
and

2. handling the request demanded by this signal.

The first part we will study momentarily. We will examine the various things
that must come together to force the processor to stop what it is doing and pay
attention to the interrupt request.

212 chapter 8 i/o

The second part, unfortunately, we will have to put off until Section 10.2.
To handle interrupt requests, the LC-3 uses a stack, and we will not get to stacks
until Chapter 10.

Now, then, part 1. Several things must be true for an I/O device to actually
interrupt the processor:

1. The I/O device must want service.
2. The device must have the right to request the service.
3. The device request must be more urgent than what the processor is currently

If all three elements are present, the processor stops executing the program
and takes care of the interrupt.

The Interrupt Signal from the Device

For an I/O device to generate an interrupt request, the first two elements in the
previous list must be true: The device must want service, and it must have the
right to request that service.

The first element we have discussed at length in the study of polling. It is the
Ready bit of the KBSR or the DSR. That is, if the I/O device is the keyboard, it
wants service if someone has typed a character. If the I/O device is the monitor, it
wants service (i.e., the next character to output) if the associated electronic circuits
have successfully completed the display of the last character. In both cases, the
I/O device wants service when the corresponding Ready bit is set.

The second element is an interrupt enable bit, which can be set or cleared by
the processor, depending on whether or not the processor wants to give the I/O
device the right to request service. In most I/O devices, this interrupt enable (IE)
bit is part of the device status register. In the KBSR and DSR shown in Figure 8.7,
the IE bit is bit [14]. The interrupt request from the I/O device is the logical
AND of the IE bit and the Ready bit, as is also shown in Figure 8.7.

If the interrupt enable bit (bit [14]) is clear, it does not matter whether the
Ready bit is set; the I/O device will not be able to interrupt the processor. In that
case, the program will have to poll the I/O device to determine if it is ready.

If bit [14] is set, then interrupt-driven I/O is enabled. In that case, as soon
as someone types a key (or as soon as the monitor has finished processing the

doing.

151413 0
KBSR

to the processor

151413 0
DSR

—Interrupt signal to the processor

F i g u r e 8 . 7 In terrupt enable bits and their use

8.5 Interrupt-Driven I/O 213

last character), bit [15] is set. This, in turn, asserts the output of the AND gate,
causing an interrupt request to be generated from the I/O device.

The Importance of Priority

The third element in the list of things that must be true for an I/O device to
actually interrupt the processor is whether the request is sufficiently urgent. Every
instruction that the processor executes, it does with a stated level of urgency. The
term we give for the urgency of execution is priority.

We say that a program is being executed at a specified priority level. Almost
all computers have a set of priority levels that programs can run at. The LC-3
has eight priority levels, PLO,.. PL7. The higher the number, the more urgent the
program. The PL of a program is usually the same as the PL (i.e., urgency) of the
request to run that program. If a program is running at one PL, and a higher-level
PL request seeks access to the computer, the lower-priority program suspends
processing until the higher-PL program executes and satisfies that more urgent
request. For example, a computer's payroll program may run overnight, and at
PLO. It has all night to finish—not terribly urgent. A program that corrects for
a nuclear plant current surge may run at PL6. We are perfectly happy to let the
payroll wait while the nuclear power correction keeps us from being blown to bits.

For our I/O device to successfully stop the processor and start an interrupt-
driven I/O request, the priority of the request must be higher than the priority
of the program it wishes to interrupt. For example, we would not normally want
to allow a keyboard interrupt from a professor checking e-mail to interrupt the
nuclear power correction program.

We will see momentarily that the processor will stop executing its current
program and service an interrupt request if the INT signal is asserted. Figure 8.8
shows what is required to assert the INT signal and where the notion of priority
level comes into play. Figure 8.8 shows the status registers of several devices
operating at various priority levels. Any device that has bits [14] and [15] both
set asserts its interrupt request signal. The interrupt request signals are input to a
priority encoder, a combinational logic structure that selects the highest priority
request from all those asserted. If the PL of that request is higher than the PL
of the currently executing program, the INT signal is asserted and the executing
program is stopped.

The Test for INT

The final step in the first part of interrupt-driven I/O is the test to see if the processor
should stop and handle an interrupt. Recall from Chapter 4 that the instruc-
tion cycle sequences through the six phases of FETCH, DECODE, EVALUATE
ADDRESS, FETCH OPERAND, EXECUTE, and STORE RESULT. Recall fur-
ther that after the sixth phase, the control unit returns to the first phase, that is,
the FETCH of the next instruction.

The additional logic to test for the interrupt signal is to replace that last sequen-
tial step of always going from STORE RESULT back to FETCH, as follows: The
STORE RESULT phase is instead accompanied by a test for the interrupt signal
INT. If INT is not asserted, then it is business as usual, with the control unit

214 chapter 8 I/O

PLO device PL1 device PL7 device

15 14 15 14 15 14

INT

F i g u r e 8 .8 Generation of the INT signal

returning to the FETCH phase to start processing the next instruction. If INT
is asserted, then the control unit does two things before returning to the FETCH
phase. First it saves enough state information to be able to return to the interrupted
program where it left off. Second it loads the PC with the starting address of the
program that is to carry out the requirements of the I/O device. How it does that
is the topic of Section 10.2, which we will study after we learn how stacks work.

8.G Implementation of Memory-Napped I/O, Revisited
We showed in Figures 8.2 and 8.4 partial implementations of the data path to
handle (separately) memory-mapped input and memory-mapped output. We have
also learned that in order to support interrupt-driven I/O, the two status registers
must be writeable as well as readable.

Figure 8.9 (reproduced from Figure C.3 of Appendix C) shows the data path
necessary to support the full range of features we have discussed for the I/O
device registers. The Address Control Logic block controls the input or output
operation. Note that there are three inputs to this block. MIO.EN indicates whether
a data movement from/to memory or I/O is to take place this clock cycle. MAR
contains the address of the memory location or the memory-mapped address of
an I/O device register. R.W indicates whether a load or a store is to take place.
Depending on the values of these three inputs, the Address Control Logic does
nothing (MIO.EN = 0), or provides the control signals to direct the transfer of
data between the MDR and the memory or I/O registers.

Exercises 236

MAR <J— LD.MAR

R.W MIO.EN

a a

MEMORY

MEM.EN

i
ADDR.CTL.

LOGIC

1NMUX

INPUT
KBDR

i
i

ri-DH DDR

OUTPUT

C> KBSR

F i g u r e 8 . 9 Part ial data path implementation of memory-mapped I/O

DSR

If R.W indicates a load, the transfer is from memory or I/O device to the
MDR. The Address Control Logic block provides the select lines to INMUX to
source the appropriate I/O device register or memory (depending on MAR) and
also enables the memory if MAR contains the address of a memory location.

If R.W indicates a store, the contents of the MDR are written either to memory
or to one of the device registers. The Address Control Logic either enables a write
to memory or it asserts the load enable line of the device register specified by the
contents of the MAR.

E x e r c i s e s

8.1 a. What is a device register?
b. What is a device data register?
c. What is a device status register?

8.2 Why is a Ready bit not needed if synchronous I/O is used?
8.3 In Section 8.1.3, the statement is made that a typist would have trouble

supplying keyboard input to a 300-MHz processor at the maximum rate
(one character every 33 nanoseconds) that the processor can accept it.
Assume an average word (including spaces between words) consists of
six characters. How many words/minute would the typist have to type in
order to exceed the processor's ability to handle the input?

8.4 Are the following interactions usually synchronous or asynchronous?
a. Between a remote control and a television set
b. Between the mailcarrier and you, via a mailbox
c. Between a mouse and your PC

Under what conditions would each of them be synchronous? Under
what conditions would each of them be asynchronous?

chapter 8 I/O

8.5 What is the purpose of bit [15] in the KBSR?
8.6 What problem could occur if a program does not check the Ready bit of

the KBSR before reading the KBDR?

8.7 Which of the following combinations describe the system described in
Section 8.2.2?

a. Memory mapped and interrupt driven
b. Memory mapped and polling
c. Special opcode for I/O and interrupt driven
d. Special opcode for I/O and polling

8.8 Write a program that checks the initial value in memory location x4000
to see if it is a valid ASCII code and if it is a valid ASCII code, prints the
character. If the value in x4000 is not a valid ASCII code, the program
prints nothing.

8.9 What problem is likely to occur if the keyboard hardware does not check
the KBSR before writing to the KBDR?

8.10 What problem could occur if the display hardware does not check the
DSR before writing to the DDR?

8.11 Which is more efficient, interrupt-driven I/O or polling? Explain.
8.12 Adam H. decided to design a variant of the LC-3 that did not need a

keyboard status register. Instead, he created a readable/writable keyboard
data and status register (KBDSR), which contains the same data as the
KBDR. With the KBDSR, a program requiring keyboard input would
wait until a nonzero value appeared in the KBDSR. The nonzero value
would be the ASCII value of the last key press. Then the program would
write a zero into the KBDSR indicating that it had read the key press.
Modify the basic input service of Section 8.2.2 to implement Adam's
scheme.

8.13 Some computer engineering students decided to revise the LC-3 for their
senior project. In designing the LC-4, they decided to conserve on device
registers by combining the KBSR and the DSR into one status register:
the IOSR (the input/output status register). IOSR[15] is the keyboard
device Ready bit and IOSR[14] is the display device Ready bit. What are
the implications for programs wishing to do I/O? Is this a poor design
decision?

8.14 An LC-3 Load instruction specifies the address xFE02. How do we
know whether to load from the KBDR or from memory location
xFE02?

Exercises 217

8.15 Interrupt-driven I/O:
a. What does the following LC-3 program do?

.ORIG
LD

x3 000
R3 , A

AGAIN
STI
LD

R3, KBSR
RO, B
x21

A
B
KBSR

TRAP
BRnzp
.FILL
.FILL
.FILL
.END

AGAIN
x4 000
X0032
xFEOO

b. If someone strikes a key, the program will be interrupted and the
keyboard interrupt service routine will be executed as shown below.
What does the keyboard interrupt service routine do?

NOTE: RTI will be studied in chapter 10.

c. Finally, suppose the program of part a started executing, and someone
sitting at the keyboard struck a key. What would you see on the
screen?

8.16 What does the following LC-3 program do?

.ORIG
LDI
TRAP
TRAP
RTI

xlOOO
R0, KBDR
x21
x21

KBDR .FILL
.END

XFE02

.ORIG X3000
LD R0 , ASCI I
LD Rl,NEG

AGAIN LDI R2,DSR
BRzp AGAIN
STI R0,DDR
ADD R0,R0,#1
ADD R2 , R0 , Rl
BRnp AGAIN
HALT

ASCII .FILL XG041
NEG .FILL XFFB6 ; -X004A
DSR .FILL XFE04
DDR .FILL XFE06

.END

c h a p t e r

9
TRAP

9.1 LC-3 TRAP Routines
9.1.1 Introduction
Recall Figure 8.5 of the previous chapter. In order to have the program successfully
obtain input from the keyboard, it was necessary for the programmer (in Chapter
8) to know several things:

1. The hardware data registers for both the keyboard and the monitor: the
monitor so a prompt could be displayed, and the keyboard so the program
would know where to look for the input character.

2. The hardware status registers for both the keyboard and the monitor: the
monitor so the program would know when it was OK to display the next
character in the input prompt, and the keyboard so the program would know
when someone had struck a key.

3. The asynchronous nature of keyboard input relative to the executing
program.

This is beyond the knowledge of most application programmers. In fact, in
the real world, if application programmers (or user programmers, as they are
sometimes called) had to understand I/O at this level, there would be much less
I/O and far fewer programmers in the business.

There is another problem with allowing user programs to perform I/O activity
by directly accessing KBDR and KBSR. I/O activity involves the use of device
registers that are shared by many programs. This means that if a user programmer

Routines and Subrout ines

220 chapter 9 TRAP Routines and Subroutines

User Program

were allowed to access the hardware registers, and he/she messed up, it could
create havoc for other user programs. Thus, it is ill-advised to give user program-
mers access to these registers. We say the hardware registers are privileged and
accessible only to programs that have the proper degree of privilege.

The notion of privilege introduces a pretty big can of worms. Unfortunately,
we cannot do much more than mention it here and leave serious treatment for
later. For now, we simply note that there are resources that are not accessible to
the user program, and access to those resources is controlled by endowing some
programs with sufficient privilege and other programs without. Having said that,
we move on to our problem at hand, a "better" solution for user programs that
require input and/or output.

The simpler solution as well as the safer solution to the problem of user
programs requiring I/O involves the TRAP instruction and the operating system.
The operating system does have the proper degree of privilege.

We were introduced to the TRAP instruction in Chapter 5. We saw that for
certain tasks, a user program could get the operating system to do the job for
it by invoking the TRAP instruction. That way, the user programmer does not
have to know the gory details previously mentioned, and other user programs are
protected from the consequences of inept user programmers.

Figure 9.1 shows a user program that, upon reaching location x4000, needs an
I/O task performed. The user program requests the operating system to perform
the task on behalf of the user program. The operating system takes control of the
computer, handles the request specified by the TRAP instruction, and then returns
control to the user program, at location x4001. We often refer to the request made
by the user program as a service call or a system call.

9.1.2 The TRAP Mechanism
The TRAP mechanism involves several elements, as follows:

1. A set of service routines executed on behalf of user programs by the
operating system. These are part of the operating system and start at

9.1 LC-3 TRAP Routines 221

•
•
•
•

•
•
•
•

X0020 X0400

X0021 X0430

X0022 X0450

X0023 X04A0

X0024 X04E0

X0025 xFD70
•
•
•
•

•
•
•
•

Figure 9 . 2 The Trap Vector Table

arbitrary addresses in memory. The LC-3 was designed so that up to 256
service routines can be specified. Table A.2 in Appendix A contains the
LC-3's current complete list of operating system service routines.

2. A table of the starting addresses of these 256 service routines. This table
is stored in memory locations xOOOO to xOOFF. The table is referred to by
various names by various companies. One company calls this table the
System Control Block. Another company calls it the Trap Vector Table.
Figure 9.2 provides a snapshot of the Trap Vector Table of the LC-3, with
specific starting addresses highlighted. Among the starting addresses are the
one for the character output service routine (location x0430), which is
contained in location x0021, the one for the keyboard input service routine
(location x04A0), contained in location x0023, and the one for the machine
halt service routine (location xFD70), contained in location x0025.

3. The TRAP instruction. When a user program wishes to have the operating
system execute a specific service routine on behalf of the user program, and
then return control to the user program, the user program uses the TRAP
instruction.

4. A linkage back to the user program. The service routine must have a
mechanism for returning control to the user program.

9.1.3 The TRAP Instruction
The TRAP instruction causes the service routine to execute by doing two things:

• It changes the PC to the starting address of the relevant service routine on the
basis of its trap vector.

• It provides a way to get back to the program that initiated the TRAP
instruction. The "way back" is referred to as a linkage.

The TRAP instruction is specified as follows. The TRAP instruction is made
up of two parts: the TRAP opcode 1111 and the trap vector (bits [7:0]). Bits [11:8]

222 chapter 9 TRAP Routines and Subroutines

must be zero. The trap vector identifies the service routine the user program wants
the operating system to perform. In the following example, the trap vector is x23.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1

TRAP trap vector

The EXECUTE phase of the TRAP instruction's instruction cycle does four
things:

1. The 8-bit trap vector is zero-extended to 16 bits to form an address, which is
loaded into the MAR. For the trap vector x23, that address is x0023, which
is the address of an entry in the Trap Vector Table.

2. The Trap Vector Table is in memory locations xOOOO to xOOFF. The entry at
x0023 is read and its contents, in this case x04A0 (see Figure 9.2), are
loaded into the MDR.

3. The general purpose register R7 is loaded with the current contents of the
PC. This will provide a way back to the user program, as will become clear
momentarily.

4. The contents of the MDR are loaded into the PC, completing the instruction
cycle.

Since the PC now contains x04A0, processing continues at memory address
x04A0.

Location x04A0 is the starting address of the operating system service routine
to input a character from the keyboard. We say the trap vector "points" to the
starting address of the TRAP routine. Thus, TRAP x23 causes the operating
system to start executing the keyboard input service routine.

In order to return to the instruction following the TRAP instruction in the user
program (after the service routine has ended), there must be some mechanism for
saving the address of the user program's next instruction. Step 3 of the EXECUTE
phase listed above provides this linkage. By storing the PC in R7 before loading
the PC with the starting address of the service routine, the TRAP instruction
provides the service routine with all the information it needs to return control to
the user program at the proper location. You know that the PC was already updated
(in the FETCH phase of the TRAP instruction) to point to the next instruction.
Thus, at the start of execution of the trap service routine, R7 contains the address
of the instruction in the user program that follows the TRAP instruction.

9.1.4 The Complete Mechanism
We have shown in detail how the TRAP instruction invokes the service routine
to do the user program's bidding. We have also shown how the TRAP instruc-
tion provides the information that the service routine needs to return control to
the correct place in the user program. The only thing left is to show the actual
instruction in the service routine that returns control to the correct place in the
user program. Recall the JMP instruction from Chapter 5. Assume that during
the execution of the trap service routine, the contents of R7 was not changed. If

9.1 LC-3 TRAP Routines 243

User program T r a p V e c t o r Table

F i g u r e 9 . 3 Flow of control f rom a user program to an OS service routine and back

that is the case, control can return to the correct location in the user program by
executing JMP R7 as the last instruction in the trap service routine.

Figure 9.3 shows the LC-3 using the TRAP instruction and the JMP instruc-
tion to implement the example of Figure 9.1. The flow of control goes from (A)
within a user program that needs a character input from the keyboard, to (B) the
operating system service routine that performs that task on behalf of the user
program, back to the user program (C) that presumably uses the information
contained in the input character.

Recall that the computer continually executes its instruction cycle (FETCH,
DECODE, etc.). As you know, the way to change the flow of control is to change
the contents of the PC during the EXECUTE phase of the current instruction. In
that way, the next FETCH will be at a redirected address.

Thus, to request the character input service routine, we use the TRAP instruc-
tion with trap vector x23 in our user program. Execution of that instruction causes
the contents of memory location x0023 (which, in this case, contains x04A0) to
be loaded into the PC and the address of the instruction following the TRAP
instruction to be loaded into R7. The dashed lines on Figure 9.3 show the use of
the trap vector to obtain the starting address of the trap service routine from the
Trap Vector Table.

The next instruction cycle starts with the FETCH of the contents of x04A0,
which is the first instruction of the operating system service routine that requests
(and accepts) keyboard input. That service routine, as we will see momentarily, is
patterned after the keyboard input routine we studied in Section 8.4. Recall that

chapter 9 TRAP Routines and Subroutines

upon completion of that input routine (see Figure 8.5), RO contains the ASCII
code of the key that was typed.

The trap service routine executes to completion, ending with the JMP R7
instruction. Execution of JMP R7 loads the PC with the contents of R7. If R7 was
not changed during execution of the service routine, it still contains the address
of the instruction following the TRAP instruction in the initiating user program.
Thus, the user program resumes execution, with RO containing the ASCII code
of the keyboard character that was typed.

The JMP R7 instruction is so convenient for providing a return to the user
program that the LC-3 assembly language provides the mnemonic RET for this
instruction, as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

RET

The following program is provided to illustrate the use of the TRAP instruction.
It can also be used to amuse the average four-year-old!

Write a game program to do the following: A person is sitting at a keyboard, i-uch time
the person types a capital letter, the program outputs the lowercase version of that letter.
If the person types a 7. the program terminates.

The following I.C-3 assembly language program will do the job.

01 . .ORIG X30Q0
02 LD R2, TERM. ; Load -7
03 ^ s R3,ASCII Load ASCII difference
04 AGAIN TRAP x2 3 ; Request ke yboard
0 c ADD R1,R2,R0 ; Test for t erminating
06 BRz EXIT ; character
07 ADD R0,R0,R3 ; Change to lowercase
08 TRAP x21 ; Output to the monitor
0 9 BRnzp AGAIN ; ... and do it again!
OA TERM .FILL xFFC9 ; FFC9 is ne gative of AS.
0B 7\ O /I T T PITT T AbL.L L . b ILL x002 0
A UL. EXIT - TRAP x25 ; Halt
on .END
The program executes as follows: The program first loads constants xFFCy and

x0020 into R2 and R3. The constant xH ;C9, which is the negative of the ASCIJ code
for 7. is used to lest the character typed at the keyboard to see if the four-year-old wants
to continue playing. The constant x(X)20 is the zero-extended difference between the
ASCII code for a capital letter and the ASCII code for that same letter's lowercase
representation. For example, the ASCII code for A is x41; the ASCII code for a is xfi I.
The ASCII codes for Z and / arc x5A and x7A. respectively.

9.1 LC-3 TRAP Routines 245

Then TRAP \23 is executed, which invokes the keyboard input service routine.
When ihe service routine is finished, control returns lo the application program (at
line 05), and RO contains the ASCII code of the character typed. The ADD and BR/
instructions test for the terminating character 7. If the character typed is not a 7, the
ASCII uppercase/lowercase difference (x0020) is added to the input ASCII code, storing
the result in RO. Then a TRAP to the monitor output service routine is called. This causes
the lowercase representation of the same letter lo be displayed on the monitor. When
control returns to the application program (this time at line 09), an unconditional BR lo
AGAIN is executed, and another request for keyboard input appears.

The correct operation of the program in this example assumes that the person
sitting at the keyboard only types capital letters and the value 7. What if the
person types a $? A better solution to Example 9.1 would be a program that tests
the character typed to be sure it really is a capital letter from among the 26 capital
letters in the alphabet, and if it is not, takes corrective action.

Question: Augment this program to add the test for bad data. That is, write a
program that will type the lowercase representation of any capital letter typed and
will terminate if anything other than a capital letter is typed. See Exercise 9.6.

9.1.5 TRAP Routines for Handling I/O
With the constructs just provided, the input routine described in Figure 8.5 can
be slightly modified to be the input service routine shown in Figure 9.4. Two
changes are needed: (1) We add the appropriate .ORIG and .END pseudo-ops.
.ORIG specifies the starting address of the input service routine—the address
found at location x0023 in the Trap Vector Table. And (2) we terminate the input
service routine with the JMP R7 instruction (mnemonically, RET) rather than the
BR NEXT_TASK, as is done on line 20 in Figure 8.5. We use JMP R7 because
the service routine is invoked by TRAP x23. It is not part of the user program, as
was the case in Figure 8.5.

The output routine of Section 8.3.2 can be modified in a similar way, as shown
in Figure 9.5. The results are input (Figure 9.4) and output (Figure 9.5) service
routines that can be invoked simply and safely by the TRAP instruction with the
appropriate trap vector. In the case of input, upon completion of TRAP x23, RO
contains the ASCII code of the keyboard character typed. In the case of output,
the initiating program must load RO with the ASCII code of the character it wishes
displayed on the monitor and then invoke TRAP x21.

9.1.6 TRAP Routine for Halting the Computer
Recall from Section 4.5 that the RUN latch is ANDed with the crystal oscillator
to produce the clock that controls the operation of the computer. We noted that
if that 1-bit latch was cleared, the output of the AND gate would be 0, stopping
the clock.

Years ago, most ISAs had a HALT instruction for stopping the clock. Given
how infrequently that instruction is executed, it seems wasteful to devote an
opcode to it. In many modern computers, the RUN latch is cleared by a TRAP

226 chapter 9 TRAP Routines and Subroutines

01 ; Service Routine for Keyboard Input
02 /

03 .ORIG X04A0
04 START ST Rl,SaveRl ; Save the values in the registers
05 ST R2,SaveR2 ; that are used so that they
06 ST R3,SaveR3 ; can be restored before RET
07 /

08 LD R2,Newline
09 LI LDI R3,DSR ; Check DDR -- is it free?
OA BRzp LI
OB STI R2,DDR ; Move cursor to new clean line
OC /

OD LEA Rl,Prompt ; Prompt is starting address
OE ; of prompt string
IF Loop LDR R0,R1,#0 ; Get next prompt character
10 BRz Input ; Check for end of prompt string
11 L2 LDI R3,DSR
12 BRzp L2
13 STI R0,DDR ; Write next character of
14 ; prompt string
15 ADD R1,R1,#1 ; Increment prompt pointer
16 BRnzp Loop
17 /

18 Input LDI R3,KBSR ; Has a character been typed?
19 BRzp Input

; Has a character been typed?
1A LDI R0,KBDR ; Load it into R0
IB L3 LDI R3,DSR
1C BRzp L3
ID STI R0,DDR ; Echo input character
IE ; to the monitor
IF /

20 L4 LDI R3,DSR
21 BRzp L4
22 STI R2,DDR ; Move cursor to new clean line
23 LD Rl,SaveRl ; Service routine done, restore
24 LD R2,SaveR2 ; original values in registers.
25 LD R3,SaveR3
26
27

RET Return from trap (i.e., JMP R7)
28

/

SaveRl . BLKW 1
29 SaveR2 . BLKW 1
2A SaveR3 .BLKW 1
2B DSR .FILL XFE04
2C DDR .FILL XFE06
2D KBSR .FILL xFEOO
2E KBDR .FILL XFE02
2F Newline .FILL xOOOA ; ASCII code for newline
30 Prompt .STRINGZ "Input a characters
31 .END
F i g u r e 9 . 4 Character input service routine

9.1 LC-3 TRAP Routines 227

01 .ORIG x043 0 /

02 ST Rl, SaveRl /

03 /

04 ; Write the character
05 TryWrite LDI Rl, DSR /

06 BRzp TryWrite
07 Writelt STI R0, DDR i
08
09 ; return from trap
OA Return LD Rl, SaveRl
0B RET
0C DSR .FILL XFE04
0D DDR .FILL XFE06
0E SaveRl .BLKW 1
OF .END

System call starting address
Rl will be used to poll the DSR
hardware

Get status
Bit 15 on says display is ready
Write character

Restore registers
Return from trap (JMP R7, actually)
Address of display status register
Address of display data register

F i g u r e 9 . 5 Character output service routine

routine. In the LC-3, the RUN latch is bit [15] of the Machine Control Register,
which is memory-mapped to location xFFFE. Figure 9.6 shows the trap service
routine for halting the processor, that is, for stopping the clock.

First (lines 02, 03, and 04), registers R7, Rl , and R0 are saved. Rl and RO
are saved because they are needed by the service routine. R7 is saved because its
contents will be overwritten after TRAP x21 executes (line 09). Then (lines 08
through 0D), the banner Halting the machine is displayed on the monitor. Finally
(lines 11 through 14), the RUN latch (MCR[15]) is cleared by ANDing the MCR
with 0111111111111111. That is, MCR[14:0] remains unchanged, but MCR[15]
is cleared. Question: What instruction (or trap service routine) can be used to start
the clock?

01 .ORIG xFD70 ; Where this routine resides
02 ST R7, SaveR7
03 ST Rl, SaveRl ; Rl: a temp for MC register
04 ST R0, SaveRO ; R0 is used as working space
05
06 ; print message that machine is halting
07
08 LD R0, ASCIINewLine
0 9 TRAP x21
OA LEA R0, Message
0B TRAP x22
0C LD R0, ASCIINewLine
0D TRAP x21
0E ;
OF ; clear bit 15 at xFFFE to stop the machine
10 ;
11 LDI Rl, MCR ; Load MC register into Rl
12 LD R0, MASK ; R0 = X7FFF
13 AND R0, Rl, R0 ; Mask to clear the top bit
14 STI R0, MCR ; Store R0 into MC register
15 ;
F i g u r e 9 . 6 HALT service routine for the LC-3

228 chapter 9 TRAP Routines and Subroutines

16 ; return from HALT routine.
17 ; (how can this routine return if the machine is halted above?
18
19 LD Rl, SaveRl ; Restore registers
1A LD R0, SaveRO
IB LD R7, SaveR7
1C RET ; JMP R7, actually
ID
IE ; Some constants
IF
20 ASCIINewLine .FILL xOOOA
21 SaveRO .BLKW 1
22 SaveRl .BLKW 1
23 SaveR7 .BLKW 1
24 Message .STRINGZ "Halting the machine."
25 MCR .FILL xFFFE ; Address of MCR
26 MASK .FILL X7FFF ; Mask to clear the top bit
27 .END
F i g u r e 9 . 6 HALT service routine for the LC-3 (continued)

9.1.7 Saving and Restoring Registers
One item we have mentioned in passing that we should emphasize more explicitly
is the need to save the value in a register

• if the value will be destroyed by some subsequent action, and

• if we will need to use it after that subsequent action.

Suppose we want to input from the keyboard 10 decimal digits, convert their
ASCII codes into their binary representations, and store the binary values in
10 successive memory locations, starting at the address Binary. The following
program fragment does the job.

01 LEA R3,Binary Initialize to first location
02 LD R6,ASCII Template for line 05
03 LD R7,COUNT Initialize to 10
04 AGAIN TRAP x23 Get keyboard input
05 ADD R0,R0,R6 Strip ASCII template
06 STR R0,R3,#0 Store binary digit
07 ADD R3,R3,#1 Increment pointer
08 ADD R7,R7,#-1 Decrement COUNT.
09 BRp AGAIN More characters?
OA BRnzp NEXT_TASK
0B ASCII .FILL xFFDO Negative of x0030.
0C COUNT . FILL #10
0D Binary -BLKW #10

9.1 LC-3 TRAP Routines 229

The first step in the program fragment is initialization. We load R3 with the
starting address of the memory space set aside to store the 10 decimal digits. We
load R6 with the negative of the ASCII template. This is used to subtract x0030
from each ASCII code. We load R7 with 10, the initial value of the count. Then
we execute the loop 10 times, each time getting a character from the keyboard,
stripping away the ASCII template, storing the binary result, and testing to see
if we are done. But the program does not work! Why? Answer: The TRAP
instruction in line 04 replaces the value 10 that was loaded into R7 in line 03
with the address of the ADD R0,R0,R6 instruction. Therefore, the instructions in
lines 08 and 09 do not perform the loop control function they were programmed
to do.

The message is this: If a value in a register will be needed after something
else is stored in that register, we must save it before the something else hap-
pens and restore it before we can subsequently use it. We save a register value
by storing it in memory; we restore it by loading it back into the register. In
Figure 9.6, line 03 contains the ST instruction that saves Rl , line 11 contains the
LDI instruction that loads Rl with a value to do the work of the trap service rou-
tine, line 19 contains the LD instruction that restores R1 to its original value before
the service routine was called, and line 22 sets aside a location in memory for
storing Rl .

The save/restore problem can be handled either by the initiating program
before the TRAP occurs or by the called program (for example, the service rou-
tine) after the TRAP instruction executes. We will see in Section 9.2 that the
same problem exists for another class of calling/called programs, the subroutine
mechanism.

We use the term caller-save if the calling program handles the problem.
We use the term callee-save if the called program handles the problem. The
appropriate one to handle the problem is the one that knows which registers will
be destroyed by subsequent actions.

The callee knows which registers it needs to do the job of the called program.
Therefore, before it starts, it saves those registers with a sequence of stores. After
it finishes, it restores those registers with a sequence of loads. And it sets aside
memory locations to save those register values. In Figure 9.6, the HALT routine
needs R0 and R l . So it saves their values with ST instructions in lines 03 and
04, restores their values with LD instructions in lines 19 and 1A, and sets aside
memory locations for these values in lines 21 and 22.

The caller knows what damage will be done by instructions under its control.
Again, in Figure 9.6, the caller knows that each instance of the TRAP instruction
will destroy what is in R7. So, before the first TRAP instruction in the HALT
service routine is executed, R7 is saved. After the last TRAP instruction in the
HALT service routine is executed, R7 is restored.

230 chapter 9 TRAP Routines and Subroutines

9.2 Subroutines
We have just seen how programmers' productivity can be enhanced if they do not
have to learn details of the I/O hardware, but can rely instead on the operating
system to supply the program fragments needed to perform those tasks. We also
mentioned in passing that it is kind of nice to have the operating system access
these device registers so we do not have to be at the mercy of some other user
programmer.

We have seen that a request for a service routine is invoked in the user program
by the TRAP instruction and handled by the operating system. Return to the
initiating program is obtained via the JMP R7 instruction.

In a similar vein, it is often useful to be able to invoke a program fragment
multiple times within the same program without having to specify its details all
over again in the source program each time it is needed. In addition, it is sometimes
the case that one person writes a program that requires such fragments and another
person writes the fragments.

Also, one might require a fragment that has been supplied by the manufac-
turer or by some independent software supplier. It is almost always the case that
collections of such fragments are available to user programmers to free them from
having to write their own. These collections are referred to as libraries. An exam-
ple is the Math Library, which consists of fragments that execute such functions
as square root, sine, and arctangent.

For all of these reasons, it is good to have a way to use program fragments
efficiently. Such program fragments are called subroutines, or alternatively, pro-
cedures, or in C terminology, functions. The mechanism for using them is referred
to as a Call/Return mechanism.

9.2.1 The Call/Return Mechanism
Figure 9.4 provides a simple illustration of a fragment that must be executed
multiple times within the same program. Note the three instructions starting at
symbolic address LI. Note also the three instructions starting at addresses L2,
L3, and L4. Each of these four 3-instruction sequences do the following:

LABEL LDI R3,DSR
BRzp LABEL
STI Reg,DDR

Two of the four program fragments store the contents of RO and the other two
store the contents of R2, but that is easy to take care of, as we will see. The main
point is that, aside from the small nuisance of which register is being used for the
source for the STI instruction, the four program fragments do exactly the same
thing. The Call/Return mechanism allows us to execute this one 3-instruction
sequence multiple times while requiring us to include it as a subroutine in our
program only once.

9.2 Subroutines

W

(a) Without subroutines (b) With subroutines

Figure 9 .7 Instruction execution flow with/without subroutines

The call mechanism computes the starting address of the subroutine, loads it
into the PC, and saves the return address for getting back to the next instruction in
the calling program. The return mechanism loads the PC with the return address.
Figure 9.7 shows the instruction execution flow for a program with and without
subroutines.

The Call/Return mechanism acts very much like the TRAP instruction in that
it redirects control to a program fragment while saving the linkage back to the
calling program. In both cases, the PC is loaded with the starting address of the
program fragment, while R7 is loaded with the address that is needed to get back
to the calling program. The last instruction in the program fragment, whether the
fragment is a trap service routine or a subroutine, is the JMP R7 instruction, which
loads the PC with the contents of R7, thereby returning control to the instruction
following the calling instruction.

There is an important difference between subroutines and the service routines
that are called by the TRAP instruction. Although it is somewhat beyond the scope
of this course, we will mention it briefly. It has to do with the nature of the work
that the program fragment is being asked to do. In the case of the TRAP instruction
(as we saw), the service routines involve operating system resources, and they
generally require privileged access to the underlying hardware of the computer.
They are written by systems programmers charged with managing the resources
of the computer. In the case of subroutines, they are either written by the same
programmer who wrote the program containing the calling instruction, or they
are written by a colleague, or they are provided as part of a library. In all cases,
they involve resources that cannot mess up other people's programs, and so we
are not concerned that they are part of a user program.

252 chapter 9 TRAP Routines and Subroutines

9.2.2 The JSR(R) Instruction
The LC-3 specifies one opcode for calling subroutines, 0100. The instruction uses
one of two addressing modes for computing the starting address of the subroutine,
PC-relative addressing or Base addressing. The LC-3 assembly language provides
two different mnemonic names for the opcode, JSR and JSRR, depending on
which addressing mode is used.

The instruction does two things. It saves the return address in R7 and it
computes the starting address of the subroutine and loads it into the PC. The
return address is the incremented PC, which points to the instruction following
the JSR or JSRR instruction in the calling program.

The JSR(R) instruction consists of three parts.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode A Address evaluation bits

Bits [15:12] contain the opcode, 0100. Bit [11] specifies the addressing mode,
the value 1 if the addressing mode is PC-relative, and the value 0 if the addressing
mode is Base addressing. Bits [10:0] contain information that is used to evaluate
the starting address of the subroutine. The only difference between JSR and JSRR
is the addressing mode that is used for evaluating the starting address of the
subroutine.

JSR
The JSR instruction computes the target address of the subroutine by sign-
extending the 11-bit offset (bits [10:0]) of the instruction to 16 bits and adding that
to the incremented PC. This addressing mode is almost identical to the addressing
mode of the LD and ST instructions, except 11 bits of PCoffset are used, rather
than nine bits as is the case for LD and ST.

If the following JSR instruction is stored in location x4200, its execution will
cause the PC to be loaded with x3E05 and R7 to be loaded with x4201.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0

JSR A PCoffset 11

JSRR
The JSRR instruction is exactly like the JSR instruction except for the addressing
mode. JSRR obtains the starting address of the subroutine in exactly the same
way the JMP instruction does, that is, it uses the contents of the register specified
by bits [8:6] of the instruction.

If the following JSRR instruction is stored in location x420A, and if R5
contains x3002, the execution of the JSRR will cause R7 to be loaded with x420B,
and the PC to be loaded with x3002.

Question: What important feature does the JSRR instruction provide that the
JSR instruction does not provide?

9.2 Subroutines 233

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

JSRR A BaseR

9.2.3 The TRAP Routine for Character Input, Revisited
Let's look again at the keyboard input service routine of Figure 9.4. In particular,
let's look at the three-line sequence that occurs at symbolic addresses LI, L2, L3,
and L4:

LABEL LDI R3,DSR
BRzp LABEL
STI Reg,DDR

Can the JSR/RET mechanism enable us to replace these four occurrences of the
same sequence with a single subroutine? Answer: Yes, almost.

Figure 9.8, our "improved" keyboard input service routine, contains
JSR WriteChar

at lines 05, 0B, 11, and 14, and the four-instruction subroutine
WriteChar LDI R3,DSR

BRzp WriteChar
STI R2,DDR
RET

at lines ID through 20. Note the RET instruction (actually, JMP R7) that is needed
to terminate the subroutine.

Note the hedging: almost. In the original sequences starting at L2 and L3,
the STI instruction forwards the contents of RO (not R2) to the DDR. We can fix
that easily enough, as follows: In line 09 of Figure 9.8, we use

LDR R2,Rl,#0

instead of
LDR R0,Rl,#0

This causes each character in the prompt to be loaded into R2. The subroutine
Writechar forwards each character from R2 to the DDR.

In line 10 of Figure 9.8, we insert the instruction
ADD R2,R0,#0

in order to move the keyboard input (which is in R0) into R2. The subroutine
Writechar forwards it from R2 to the DDR. Note that R0 still contains the keyboard
input. Furthermore, since no subsequent instruction in the service routine loads
R0, R0 still contains the keyboard input after control returns to the user program.

In line 13 of Figure 9.8, we insert the instruction
LD R2,Newline

in order to move the "newline" character into R2. The subroutine Writechar
forwards it from R2 to the DDR.

Finally, we note that unlike Figure 9.4, this trap service routine contains
several instances of the JSR instruction. Thus any linkage back to the calling

01 .ORIG X04A0
02 START ST R7,SaveR7
03 JSR SaveReg
04 LD R2,Newline
05 JSR WriteChar
06 LEA Rl,PROMPT
07 !

08 1

09 Loop LDR R2,Rl,#0
OA BRz Input
0B JSR WriteChar
OC ADD Rl,Rl,#1
0D BRnzp Loop
0E /

OF Input JSR ReadChar
10 ADD R2,R0,#0
11 JSR WriteChar
12 /

13 LD R2, Newline
14 JSR WriteChar
15 JSR RestoreReg
16 LD R7,SaveR7
17 RET
18 /

19 SaveR7 -FILL xOOOO
1A Newline .FILL xOOOA
IB Prompt .STRINGZ "Input a •
1C /

ID WriteChar LDI R3,DSR
IE BRzp WriteChar
IF STI R2,DDR
20 RET
21 DSR .FILL XFE04
22 DDR .FILL XFE06
23 t

24 ReadChar LDI R3 , KBSR
25 BRzp ReadChar
26 LDI R0,KBDR
27 RET
28 KBSR .FILL xFEOO
29 KBDR .FILL XFE02
2A /

2B SaveReg ST Rl,SaveRl
2C ST R2,SaveR2
2D ST R3,SaveR3
2E ST R4,SaveR4
2F ST R5,SaveR5
30 ST R6,SaveR6
31 RET
32 /

33 RestoreReg LD Rl,SaveRl
34 LD R2,SaveR2
35 LD R3,SaveR3
36 LD R4,SaveR4
37 LD R5,SaveR5
38 LD R6,SaveR6
39 RET
3A SaveRl .FILL X0000
3B SaveR2 .FILL xOOOO
3C SaveR3 .FILL xOOOO
3D SaveR4 .FILL X0000
3E SaveR5 -FILL xOOOO
3F SaveR6 .FILL X000 0
40 .END

; Get next prompt char

Move char to R2 for writing
Echo to monitor

JMP R7 terminates
the TRAP routine

character>"

; JMP R7 terminates subroutine

Figure 9 .8 The LC-3 trap service routine for character input

9.2 Subroutines 235

program that was contained in R7 when the service routine started execution was
long ago overwritten (by the first JSR instruction, actually, in line 03). Therefore,
we save R7 in line 02 before we execute our first JSR instruction, and we restore
R7 in line 16 after we execute our last JSR instruction.

Figure 9.8 is the actual LC-3 trap service routine provided for keyboard input.

9.2.4 PUTS: Writing a Character String to the Monitor
Before we leave the example of Figure 9.8, note the code on lines 09 through 0D.
This fragment of the service routine is used to write the sequence of characters
Input a character to the monitor. A sequence of characters is often referred to
as a string of characters or a character string. This fragment is also present in
Figure 9.6, with the result that Halting the machine is written to the monitor.
In fact, it is so often the case that a user program needs to write a string of
characters to the monitor that this function is given its own trap vector in the LC-3
operating system. Thus, if a user program requires a character string to be written
to the monitor, it need only provide (in RO) the starting address of the character
string, and then invoke TRAP x22. In LC-3 assembly language this TRAP is
called PITTS.

Thus, PUTS (or TRAP x22) causes control to be passed to the operating
system, and the procedure shown in Figure 9.9 is executed. Note that PUTS is
the code of lines 09 through 0D of Figure 9.8, with a few minor adjustments.

9.2.5 Library Routines
We noted early in this section that there are many uses for the Call/Return mech-
anism, among them the ability of a user program to call library subroutines that
are usually delivered as part of the computer system. Libraries are provided as
a convenience to the user programmer. They are legitimately advertised as "pro-
ductivity enhancers" since they allow the user programmer to use them without
having to know or learn much of their inner details. For example, a user program-
mer knows what a square root is (we abbreviate SQRT), and may need to use
sqrt(x) for some value x but does not have a clue as to how to write a program to
do it, and probably would rather not have to learn how.

A simple example illustrates the point. We have lost our key and need to get
into our apartment. We can lean a ladder up against the wall so that the ladder
touches the bottom of our open window, 24 feet above the ground. There is a
10-foot flower bed on the ground along the edge of the wall, so we need to keep
the base of the ladder outside the flower bed. How big a ladder do we need so
that we can lean it against the wall and climb through the window? Or, stated less
colorfully: If the sides of a right triangle are 24 feet and 10 feet, how big is the
hypotenuse (see Figure 9.10)?

We remember from high school that Pythagoras answered that one for us:

2 2 , i2 c — a + b

236 chapter 9 TRAP Routines and Subroutines

01 This service routine writes a NULL-terminated string to the console
02 It services the PUTS service call (TRAP x22).
03 Inputs R0 is a pointer to the string to print.
04
05 .ORIG X0450 Where this ISR resides
06 ST R7, SaveR7 Save R7 for later return
07 ST R0(SaveRO Save other registers that
08 ST Rl, SaveRl are needed by this routine
09 ST R3, SaveR3
OA
OB Loop through each character in the array
OC
OD Loop LDR Rl, R0, #0 Retrieve the character(s)
OE BRz Return If it is 0, done
OF L2 LDI R3,DSR
10 BRzp L2
11 STI Rl, DDR Write the character
12 ADD R0, R0, #1 Increment pointer
13 BRnzp Loop Do it all over again
14
15 Return from the request for service call
16 Return LD R3, SaveR3
17 LD Rl, SaveRl
18 LD R0, SaveRO
19 LD R7, SaveR7
1A RET
IB /

1C . Register locations
ID DSR .FILL XFE04
IE DDR .FILL XFE06
IF SaveRO .FILL xOOOO
20 SaveRl .FILL xOOOO
21 SaveR3 .FILL xOOOO
22 SaveR7 .FILL xOOOO
23 .END
Figure 9 .9 The LC-3 PUTS service routine

10 feet

Figure 9 . 1 0 Solving for the length of the hypotenuse

9.2 Subroutines 237

Knowing a and b, we can easily solve for c by taking the square root of the sum
of a2 and b2. Taking the sum is not hard—the LC-3 ADD instruction will do the
job. The square is also not hard; we can multiply two numbers by a sequence of
additions. But how does one get the square root? The structure of our solution is
shown in Figure 9.11.

The subroutine SQRT has yet to be written. If it were not for the Math
Library, the programmer would have to pick up a math book (or get someone
to do it for him/her), check out the Newton-Raphson method, and produce the
missing subroutine.

However, with the Math Library, the problem pretty much goes away. Since
the Math Library supplies a number of subroutines (including SQRT), the user
programmer can continue to be ignorant of the likes of Newton-Raphson. The
user still needs to know the label of the target address of the library routine that
performs the square root function, where to put the argument x, and where to
expect the result SQRT(x). But these are easy conventions that can be obtained
from the documentation associated with the Math Library.

01
02
03 LD RO,SIDE1
04 BRz SI
05 JSR SQUARE
06 SI ADD Rl,R0,#0
07 LD R0,SIDE2
08 BRz S2
09 JSR SQUARE
OA S2 ADD R0,R0,Rl
0B JSR SQRT
0C ST R0,HYPOT
0D BRnzp NEXT_TASK
0E SQUARE ADD R2,R0,#0
OF ADD R3,R0,#0
10 AGAIN ADD R2,R2,#-1
11 BRz DONE
12 ADD R0,R0,R3
13 BRnzp AGAIN
14 DONE RET
15 SQRT ... ; R0 <-- SQRT(R0)
16
17 ... ; How do we write this subroutine?
18
19
1A RET
IB SIDE1 .BLKW 1
1C SIDE2 .BLKW 1
ID HYPOT .BLKW 1
IE
IF
Figure 9 . 1 1 A program fragment to compute the hypotenuse of a right triangle

258 chapter 9 TRAP Routines and Subroutines

If the library routine starts at address SQRT, and the argument is provided to
the library routine at RO, and the result is obtained from the library routine at RO,
Figure 9.11 reduces to Figure 9.12.

Two things are worth noting:

• Thing 1—The programmer no longer has to worry about how to compute the
square root function. The library routine does that for us.

• Thing 2—The pseudo-op .EXTERNAL. We already saw in Section 7.4.2 that
this pseudo-op tells the assembler that the label (SQRT), which is needed
to assemble the .FILL pseudo-op in line 19, will be supplied by some other
program fragment (i.e., module) and will be combined with this program
fragment (i.e., module) when the executable image is produced. The exe-
cutable image is the binary module that actually executes. The executable
image is produced at link time.

This notion of combining multiple modules at link time to produce an exe-
cutable image is the normal case. Figure 9.13 illustrates the process. You will see
concrete examples of this when we work with the programming language C in
the second half of this course.

01
02
03
04
05
06
07
08
09
OA
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE

SQUARE ADD
ADD

AGAIN ADD

DONE RET
BASE .FILL
SIDE1 .BLKW
SIDE2 .BLKW
HYPOT .BLKW

2 $

1$

BRz
ADD
BRnzp

LD
BRz
JSR
ADD
LD
BRz
JSR
ADD
LD
JSRR
ST
BRnzp

EXTERNAL SQRT

R0,R0,R3
AGAIN

R0,HYPOT
NEXT_TASK
R2,R0,#0
R3,R0,#0
R2,R2,#-1
DONE

SQRT

R0,SIDE1
1$

SQUARE
R0,R0,Rl ; R0 contains argument x

Rl,R0,#0
R0,SIDE2
2 $

R4,BASE
R4

SQUARE

1
1
1

Figure 9 .12 The program fragment of Figure 9.10, using a library routine

Source module A Object module for A

.EXTERNAL SQRT

JSRR

.END

Assemble

Symbol table for A

Object module for
math library

Symbol table
for math library

Some other separately
assembled module

Symbol table

Figure 9 .13 An executable image constructed from multiple files

260 chapter 9 TRAP Routines and Subroutines

Most application software requires library routines from various libraries. It
would be very inefficient for the typical programmer to produce all of them—
assuming the typical programmer could produce such routines in the first place.
We have mentioned routines from the Math Library. There are also a number of
preprocessing routines for producing "pretty" graphic images. There are other
routines for a number of other tasks where it would make no sense at all to
have the programmer write them from scratch. It is much easier to require only
(1) appropriate documentation so that the interface between the library routine and
the program that calls that routine is clear, and (2) the use of the proper pseudo-
ops such as .EXTERNAL in the source program. The linker can then produce an
executable image at link time from the separately assembled modules.

9.1 Name some of the advantages of doing I/O through a TRAP routine
instead of writing the routine yourself each time you would like your
program to perform I/O.

9.2 a. How many trap service routines can be implemented in the LC-3?
Why?

b. Why must a RET instruction be used to return from a TRAP
routine? Why won't a BR (Unconditional Branch) instruction work
instead?

c. How many accesses to memory are made during the processing of a
TRAP instruction? Assume the TRAP is already in the IR.

9.3 Refer to Figure 9.6, the HALT service routine.

a. What starts the clock after the machine is HALTed? Hint: How can
the HALT service routine return after bit [15] of the machine control
register is cleared?

b. Which instruction actually halts the machine?
c. What is the first instruction executed when the machine is started

again?
d. Where will the RET of the HALT routine return to?

Exercises 241

9.4 Consider the following LC-3 assembly language program:
.ORIG X3000

LI LEA Rl, LI
AND R2, R2, xO
ADD R2, R2, x2
LD R3, PI

L2 LDR RO, Rl, xC
OUT
ADD R3, R3, #-1
BRz GLUE
ADD Rlr Rl, R2
BR L2

GLUE
PI

HALT
.FILL xB
.STRINGZ "HBoeoakteSmtHaotren!s"
. END

a. After this program is assembled and loaded, what binary pattern is
stored in memory location x3005?

b. Which instruction (provide a memory address) is executed after
instruction x3005 is executed?

c. Which instruction (provide a memory address) is executed prior to
instruction x3006?

d. What is the output of this program?

9.5 The following LC-3 program is assembled and then executed. There are
no assemble time or run-time errors. What is the output of this program?
Assume all registers are initialized to 0 before the program executes.

9.6 The correct operation of the program in Example 9.1 assumes that the
person sitting at the keyboard only types capital letters and the value 7.
What if the person types a $? A better program would be one that tests
the character typed to be sure it really is a capital letter from among the
26 capital letters in the alphabet, and if it is not, takes corrective action.
Your job: Augment the program of Example 9.1 to add a test for bad data.
That is, write a program that will type the lowercase representation of
any capital letter typed and will terminate if anything other than a capital
letter is typed.

9.7 Two students wrote interrupt service routines for an assignment. Both
service routines did exactly the same work, but the first student
accidentally used RET at the end of his routine, while the second student
correctly used RTI. There are three errors that arose in the first student's
program due to his mistake. Describe any two of them.

.ORIG
ST
LEA
TRAP

X3000
RO, x3 007
RO, LABEL
X22

TRAP x25
LABEL .STRINGZ "FUNKY"
LABEL2 .STRINGZ "HELLO WORLD"

.END

242 chapter 9 TRAP Routines and Subroutines

9.8 Assume that an integer greater than 2 and less than 32,768 is deposited in
memory location A by another module before the program below is
executed.

.ORIG X3000
AND R4, R4, #0
LD RO, A
NOT R5, RO
ADD R5, R5, #2
ADD Rl, R4, #2

REMOD
/

JSR MOD
BRz STORE0
/

ADD R7, Rl, R5
BRz STORE1
ADD Rl, Rl, #1
BR REMOD

STORE1
/

ADD R4, R4, #1
STORE0 ST R4, RESULT

TRAP x25

MOD
>

ADD R2 , RO, #0
NOT R3, Rl
ADD R3, R3, #1

DEC ADD R2 , R2 , R3
BRp DEC
RET

A
r

.BLKW 1
RESULT .BLKW 1

.END

In 20 words or fewer, what does the above program do?

9.9 Recall the machine busy example. Suppose the bit pattern indicating
which machines are busy and which are free is stored in memory location
x4001. Write subroutines that do the following.

a. Check if no machines are busy, and return 1 if none are busy.
b. Check if all machines are busy, and return 1 if all are busy.
c. Check how many machines are busy, and return the number of busy

machines.
d. Check how many machines are free, and return the number of free

machines.
e. Check if a certain machine number, passed as an argument in R5, is

busy, and return 1 if that machine is busy.
f . Return the number of a machine that is not busy.

9.10 The starting address of the trap routine is stored at the address specified
in the TRAP instruction. Why isn't the first instruction of the trap routine
stored at that address instead? Assume each trap service routine requires
at most 16 instructions. Modify the semantics of the LC-3 TRAP
instruction so that the trap vector provides the starting address of the
service routine.

Exercises 243

9.11 Following is part of a program that was fed to the LC-3 assembler. The
program is supposed to read a series of input lines from the console into a
buffer, search for a particular character, and output the number of times
that character occurs in the text. The input text is terminated by an EOT
and is guaranteed to be no more than 1,000 characters in length. After the
text has been input, the program reads the character to count.

The subroutine labeled COUNT that actually does the counting was
written by another person and is located at address x3500. When called,
the subroutine expects the address of the buffer to be in R5 and the
address of the character to count to be in R6. The buffer should
have a NULL to mark the end of the text. It returns the count in
R6.

The OUTPUT subroutine that converts the binary count to ASCII
digits and displays them was also written by another person and is at
address x3600. It expects the number to print to be in R6.

Here is the code that reads the input and calls COUNT:

.ORIG x3 000
LEA Rl, BUFFER

G TEXT TRAP x2 0 Get input text
ADD R2, R0, x-4
BRz G_CHAR
STR R0, Rl, #0
ADD Rl, Rl, #1
BRz G TEXT

G_CHAR STR R2, Rl, #0 xOOOO terminates buffer
Get character to count TRAP x20

ST R0, S_CHAR
LEA R5, BUFFER
LEA R6, S_CHAR
LD R4, CADDR
JSRR R4
LD R4 . OADDR
JSRR R4
TRAP x25

Convert R6 and display

Count character

CADDR .FILL x3500
OADDR .FILL x3600
BUFFER .BLKW 1001
S__CHAR .FILL xOOOO

.END

Address of COUNT
Address of OUTPUT

There is a problem with this code. What is it, and how might it be fixed?
(The problem is not that the code for COUNT and OUTPUT is missing.)

244 chapter 9 TRAP Routines and Subroutines

9.12 Consider the following LC-3 assembly language program:
.ORIG X3000
LEA RO,DATA
AND R1,R1,#0
ADD R1,R1,#9

LOOPl ADD R2,R0,#0
ADD R3,Rl,#0

LOOP2 JSR SUB1
ADD R4,R4,#0
BRzp LABEL
JSR SUB 2

LABEL ADD R2,R2,#1
ADD R3,R3,#~1
BRP LOOP2
ADD R l , R l , 1
BRp LOOPl
HALT

DATA .BLKW 10 xOOOO
SUB1 LDR R5,R2,#0

NOT R5,R5
ADD R5,R5,#1
LDR R6,R2,#1
ADD R4,R5,R6
RET

SUB 2 LDR R4,R2,#0
LDR R5,R2,#1
STR R4,R2,#1
STR R5,R2,#0
RET
.END

Assuming that the memory locations at DATA get filled in before the
program executes, what is the relationship between the final values at
DATA and the initial values at DATA?

9.13 The following program is supposed to print the number 5 on the screen. It
does not work. Why? Answer in no more than ten words, please.

.ORIG x3 0 00
JSR A
OUT
BRnzp DONE

A AND R0,R0,#0
ADD R0,R0,#5
JSR B
RET

DONE HALT
ASCII .FILL x003 0
B LD Rl,ASCII

ADD R0,R0,R1
RET
.END

Exercises 245

9.14 Figure 9.6 shows a service routine to stop the computer by clearing the
RUN latch, bit [15] of the Machine Control Register. The latch is cleared
by the instruction in line 14, and the computer stops. What purpose is
served by the instructions on lines 19 through 1C?

9.15 Suppose we define a new service routine starting at memory location
x4000. This routine reads in a character and echoes it to the screen.
Suppose memory location x0072 contains the value x4000. The service
routine is shown below.

.ORIG x4000
ST R7, SaveR7
GETC
OUT
LD R7, SaveR7
RET

SaveR7 .FILL xOOOO

a. Identify the instruction that will invoke this routine.
b. Will this service routine work? Explain.

9.16 The two code sequences a and b are assembled separately. There is one
error that will be caught at assemble time or at link time. Identify and
describe why the bug will cause an error, and whether it will be detected
at assemble time or link time.
a. .ORIG x3200

SQRT ADD RO, RO, #0
; code to perform square
; root function and
; return the result in R0
RET
.END

VALUE
DEST

.EXTERNAL SQRT

.ORIG X3000
LD
JSR
ST
HALT
. FILL
. FILL
.END

R0,VALUE
SQRT
R0,DEST

x3 000 0
x0025

246 chapter 9 TRAP Routines and Subroutines

9.17 Shown below is a partially constructed program. The program asks the
user his/her name and stores the sentence "Hello, name" as a string
starting from the memory location indicated by the symbol HELLO. The
program then outputs that sentence to the screen. The program assumes
that the user has finished entering his/her name when he/she presses the
Enter key, whose ASCII code is xOA. The name is restricted to be not
more than 25 characters.

Assuming that the user enters Onur followed by a carriage return
when prompted to enter his/her name, the output of the program looks
exactly like:
Please enter your name: Onur
Hello, Onur

Insert instructions at (a)-(d) that will complete the program.
.ORIG x3000
LEA Rl,HELLO

AGAIN LDR R2,Rl,#0
BRz NEXT
ADD Rl,Rl,#1
BR AGAIN

NEXT LEA RO,PROMPT
TRAP x22 ; PUTS

(a)
AGAIN2 TRAP x2 0 ; GETC

TRAP x21 ; OUT
ADD R2,RO,R3
BRz CONT

(b)
Cc)

CONT
BR
AND

NEGENTER
PROMPT
HELLO

LEA
TRAP
TRAP
.FILL

AGAIN2
R2,R2,#0

(d)
RO, HELLO
x22
x25
XFFF6

.STRINGZ "Please

.STRINGZ "Hello,

.BLKW #2 5

.END

PUTS
HALT
-xOA

enter your name:

Exercises 247

9-18 The program below, when complete, should print the following to the
monitor:

ABCFGH

Insert instructions at (a)-(d) that will complete the program.
.ORIG x3 000
LEA Rl, TESTOUT

BACK_ 1 LDR RO, Rl, #0
BRz NEXT_1
TRAP x21

(a)
BRnzp BACK_1

NEXT_ 1
j
LEA Rl, TESTOUT

BACK_ 2 .. LDR RO, Rl, #0
BRz NEXT_2
JSR SUB_1
ADD Rl, Rl, #1
BRnzp BACK_2

NEXT_ 2
/

(b)

SUB_1
/

(c)

K LDI R2, DSR
(d)

STI RO, DDR
RET

DSR .FILL xFE04
DDR .FILL XFE06
TESTOUT .STRINGZ "ABC"

.END

248 chapter 9 TRAP Routines and Subroutines

9.19 A local company has decided to build a real LC-3 computer. In order
to make the computer work in a network, four interrupt-driven I/O
devices are connected. To request service, a device asserts its interrupt
request signal (IRQ). This causes a bit to get set in a special LC-3
memory-mapped interrupt control register called INTCTL which is
mapped to address xFFOO. The INTCTL register is shown below. When a
device requests service, the INT signal in the LC-3 data path is asserted.
The LC-3 interrupt service routine determines which device has
requested service and calls the appropriate subroutine for that device. If
more than one device asserts its IRQ signal at the same time, only the
subroutine for the highest priority device is executed. During execution
of the subroutine, the corresponding bit in INTCTL is cleared.

INT

The following labels are used to identify the first instruction of each
device subroutine:

HARDDISK ETHERNET PRINTER CDROM

For example, if the highest priority device requesting service is the
printer, the interrupt service routine will call the printer subroutine with
the following instruction:

JSR PRINTER

Exercises 249

Finish the code in the LC-3 interrupt service routine for the
following priority scheme by filling in the spaces labeled (a)-(k). The
lower the number, the higher the priority of the device.

1. Hard disk
2. Ethernet card
3. Printer
4. CD-ROM

DEVO

DEVI

DEV2

DEV3
/

END

LDI Rl, INTCTL
LD R 2 , (a)
AND R2, R2, Rl
BRnz DEVI
JSR (b)

(c)

LD R 2 , (d)
AND R2, R2, Rl
BRnz DEV2
JSR (e)

(f)

LD R2, (g)
AND R2, R 2 , Rl
BRnz DEV3
JSR (h)

(i)

JSR (j)

(k)

INTCTL
MASK8
MASK4
MASK2
MASK1

.FILL

.FILL

.FILL

.FILL

. FILL

xFFOO
X0008
xOO 04
X0002
xOOOl

c h a p t e r

10

And. Fin a l l i | . . . The S l a c k

We have finished our treatment of the LC-3 ISA. Before moving up another
level of abstraction in Chapter 11 to programming in C, there is a particularly
important fundamental topic that we should spend some time on: the stack. First
we will explain in detail its basic structure. Then, we will describe three uses of
the stack: (1) interrupt-driven I/O—the rest of the mechanism that we promised
in Section 8.5, (2) a mechanism for performing arithmetic where the temporary
storage for intermediate results is a stack instead of general purpose registers,
and (3) algorithms for converting integers between 2's complement binary and
ASCII character strings. These three examples are just the tip of the iceberg. You
will find that the stack has enormous use in much of what you do in computer
science and engineering. We suspect you will be discovering new uses for stacks
long after this book is just a pleasant memory.

We will close our introduction to the ISA level with the design of a calculator,
a comprehensive application that makes use of many of the topics studied in this
chapter.

10.1 The Stock: Its Basic Structure
10.1.1 The Stack-An Abstract Data Type
Throughout your future usage (or design) of computers, you will encounter the
storage mechanism known as a stack. Stacks can be implemented in many different
ways, and we will get to that momentarily. But first, it is important to know that
the concept of a stack has nothing to do with how it is implemented. The concept
of a stack is the specification of how it is to be accessed. That is, the defining

271 chapter 10 And, Finally . . . The Stack t

1996 Quarter

1998 Quarter

1982 Quarter

1995 Quarter

1982 Quarter

1995 Quarter

(a) Initial state (b) After one push (c) After three pushes (d) After two pops
(Empty)

Figure 1 0 . 1 A coin holder in an auto armrest—example of a stack

ingredient of a stack is that the last thing you stored in it is the first thing you
remove from it. That is what makes a stack different from everything else in the
world. Simply put: Last In, First Out, or LIFO.

In the terminology of computer programming languages, we say the stack is
an example of an abstract data type. That is, an abstract data type is a storage
mechanism that is defined by the operations performed on it and not at all by the
specific manner in which it is implemented. In Chapter 19, we will write programs
in C that use linked lists, another example of an abstract data type.

10.1.2 Two Example Implementations
A coin holder in the armrest of an automobile is an example of a stack. The first
quarter you take to pay the highway toll is the last quarter you added to the stack
of quarters. As you add quarters, you push the earlier quarters down into the coin
holder.

Figure 10.1 shows the behavior of a coin holder. Initially, as shown in
Figure 10.1a, the coin holder is empty. The first highway toll is 75 cents, and
you give the toll collector a dollar. She gives you 25 cents change, a 1995 quar-
ter, which you insert into the coin holder. The coin holder appears as shown in
Figure 10.1b.

There are special terms for the insertion and removal of elements from a
stack. We say we push an element onto the stack when we insert it. We say we
pop an element from the stack when we remove it.

The second highway toll is $4.25, and you give the toll collector $5.00. She
gives you 75 cents change, which you insert into the coin holder: first a 1982
quarter, then a 1998 quarter, and finally, a 1996 quarter. Now the coin holder is
as shown in Figure 10.1c. The third toll is 50 cents, and you remove (pop) the
top two quarters from the coin holder: the 1996 quarter first and then the 1998
quarter. The coin holder is then as shown in Figure 10. Id.

The coin holder is an example of a stack, precisely because it obeys the LIFO
requirement. Each time you insert a quarter, you do so at the top. Each time you
remove a quarter, you do so from the top. The last coin you inserted is the first
coin you remove; therefore, it is a stack.

Another implementation of a stack, sometimes referred to as a hardware stack,
is shown in Figure 10.2. Its behavior resembles that of the coin holder we just

10.1 The Stack: Its Basic Structure 253

Empty: Yes Empty: No Empty: | No Empty: No

mm nnu mill mm
mm mm 18 mill
mill mill 31 mill
mm mill 5 18

mill TOP 18 TOP 12 TOP 31 TOP

(a) Initial state (b) After one push (c) After three pushes (d) After two pops

Figure 10 .2 A stack, implemented in hardware—data entries move

described. It consists of some number of registers, each of which can store an
element. The example of Figure 10.2 contains five registers. As each element is
added to the stack or removed from the stack, the elements already on the stack
move.

In Figure 10.2a, the stack is initially shown as empty. Access is always via
the first element, which is labeled TOP. If the value 18 is pushed on to the stack,
we have Figure 10.2b. If the three values, 31,5, and 12, are pushed (in that order),
the result is Figure 10.2c. Finally, if two elements are popped from the stack, we
have Figure 10.2d. The distinguishing feature of the stack of Figure 10.2 is that,
like the quarters in the coin holder, as each value is added or removed, all the
values already on the stack move.

10.1.3 Implementation in Memory
By far the most common implementation of a stack in a computer is as shown in
Figure 10.3. The stack consists of a sequence of memory locations along with a
mechanism, called the stack pointer, that keeps track of the top of the stack, that
is, the location containing the most recent element pushed. Each value pushed is
stored in one of the memory locations. In this case, the data already stored on the
stack does not physically move.

X3FFB

X3FFC

X3FFD

X3FFE

X3FFF

/ / / / / /

/ / / / / /

nnu
nnu
mill

X4000

X3FFB

X3FFC

X3FFD

X3FFE

X3FFF
TOP

R6

mill
mill
mill
mill

18

X3FFF

TOP

R6

X3FFB

X3FFC

X3FFD

X3FFE

X3FFF

mill
12

31

18

X3FFC

X3FFB

X3FFC

X3FFD

X3FFE

X3FFF

R6

mill
12

31

18

X3FFE

TOP

R6

(a) Initial state (b) After one push (c) After three pushes

Figure 10 .3 A stack, implemented in memory—data entries do not move

(d) After two pops

273 chapter 10 And, Finally . . . The Stack t

In the example shown in Figure 10.3, the stack consists of five locations,
x3FFF through x3FFB. R6 is the stack pointer.

Figure 10.3a shows an initially empty stack. Figure 10.3b shows the stack
after pushing the value 18. Figure 10.3c shows the stack after pushing the values
31,5, and 12, in that order. Figure 10.3d shows the stack after popping the top
two elements off the stack. Note that those top two elements (the values 5 and 12)
are still present in memory locations x3FFD and x3FFC. However, as we will see
momentarily, those values 5 and 12 cannot be accessed from memory, as long as
the access to memory is controlled by the stack mechanism.

Push
In Figure 10.3a, R6 contains x4000, the address just ahead of the first (BASE)
location in the stack. This indicates that the stack is initially empty. The BASE
address of the stack of Figure 10.3 is x3FFF.

We first push the value 18 onto the stack, resulting in Figure 10.3b. The stack
pointer provides the address of the last value pushed, in this case, x3FFF, where 18
is stored. Note that the contents of locations x3FFE, x3FFD, x3FFC, and x3FFB
are not shown. As will be seen momentarily, the contents of these locations are
irrelevant since they can never be accessed provided that locations x3FFF through
x3FFB are accessed only as a stack.

When we push a value onto the stack, the stack pointer is decremented and
the value stored. The two-instruction sequence

PUSH ADD R6 , R6 , # -1
STR R0,R6,#0

pushes the value contained in R0 onto the stack. Thus, for the stack to be as shown
in Figure 10.3b, R0 must have contained the value 18 before the two-instruction
sequence was executed.

The three values 31, 5, and 12 are pushed onto the stack by loading each in
turn into R0, and then executing the two-instruction sequence. In Figure 10.3c,
R6 (the stack pointer) contains x3FFC, indicating that 12 was the last element
pushed.

Pop
To pop a value from the stack, the value is read and the stack pointer is incremented.
The following two-instruction sequence

POP LDR R0,R6,#0
ADD R6,R6,#1

pops the value contained in the top of the stack and loads it into R0.
If the stack were as shown in Figure 10.3c and we executed the sequence

twice, we would pop two values from the stack. In this case, we would first
remove the 12, and then the 5. Assuming the purpose of popping two values is to
use those two values, we would, of course, have to move the 12 from R0 to some
other location before calling POP a second time.

10.1 The Stack: Its Basic Structure 255

Figure 10.3d shows the stack after that sequence of operations. R6 contains
x3FFE, indicating that 31 is now at the top of the stack. Note that the values
12 and 5 are still stored in memory locations x3FFD and x3FFC, respectively.
However, since the stack requires that we push by executing the PUSH sequence
and pop by executing the POP sequence, we cannot access these two values if we
obey the rules. The fancy name for "the rules" is the stack protocol.

Underflow
What happens if we now attempt to pop three values from the stack? Since only
two values remain on the stack, we would have a problem. Attempting to pop
items that have not been previously pushed results in an underflow situation. In
our example, we can test for underflow by comparing the stack pointer with x4000,
which would be the contents of R6 if there were nothing left on the stack to pop.
If UNDERFLOW is the label of a routine that handles the underflow condition,
our resulting POP sequence would be

POP LD Rl,EMPTY
ADD R2,R6,Rl ; Compare stack
BRz UNDERFLOW ; pointer with x4000
LDR RO,R6,#0
ADD R6,R6,#1
RET
.FILL xCOOO ; EMPTY <-- -x4000 EMPTY

Rather than have the POP routine immediately jump to the UNDERFLOW
routine if the POP is unsuccessful, it is often useful to have the POP routine return
to the calling program, with the underflow information contained in a register.

A common convention for doing this is to use a register to provide success/
failure information. Figure 10.4 is a flowchart showing how the POP routine could
be augmented, using R5 to report this success/failure information.

Figure 10.4 POP routine, including test for underflow

275 chapter 10 And, Finally . . . The Stack t

Upon return from the POP routine, the calling program would examine
R5 to determine whether the POP completed successfully (R5 = 0), or not
(R5 = 1).

Note that since the POP routine reports success or failure in R5, whatever
was stored in R5 before the POP routine was called is lost. Thus, it is the job
of the calling program to save the contents of R5 before the JSR instruction
is executed. Recall from Section 9.1.7 that this is an example of a caller-save
situation.

The resulting POP routine is shown in the following instruction sequence.
Note that since the instruction immediately preceding the RET instruction set-
s/clears the condition codes, the calling program can simply test Z to determine
whether the POP was completed successfully.

POP

EMPTY

LD Rl,EMPTY
ADD R2/R6,R1
BRz Failure
LDR RO,R6,#0
ADD R6,R6,#1
AND R5,R5,#0
RET
AND R5,R5,#0
ADD R5,R5,#1
RET
.FILL xCOOO EMPTY < -X4000

Overflow
What happens when we run out of available space and we try to push a value
onto the stack? Since we cannot store values where there is no room, we have
an overflow situation. We can test for overflow by comparing the stack pointer
with (in the example of Figure 10.3) x3FFB. If they are equal, we have no
room to push another value onto the stack. If OVERFLOW is the label of
a routine that handles the overflow condition, our resulting PUSH sequence
would be

PUSH

MAX

LD Rl,MAX
ADD R2,R6,R1
BRz OVERFLOW
ADD R6,R6,#-1
STR R0,R6,#0
RET
.FILL xC005 ; MAX <-- -X3FFB

In the same way that it is useful to have the POP routine return to the
calling program with success/failure information, rather than immediately jump-
ing to the UNDERFLOW routine, it is useful to have the PUSH routine act
similarly.

10.1 The Stack: Its Basic Structure 257

We augment the PUSH routine with instructions to store 0 (success) or
1 (failure) in R5, depending on whether or not the push completed success-
fully. Upon return from the PUSH routine, the calling program would examine
R5 to determine whether the PUSH completed successfully (R5 = 0) or not
(R5 - 1).

Note again that since the PUSH routine reports success or failure in R5,
we have another example of a caller-save situation. That is, since whatever
was stored in R5 before the PUSH routine was called is lost, it is the job of
the calling program to save the contents of R5 before the JSR instruction is
executed.

Also, note again that since the instruction immediately preceding the RET
instruction sets/clears the condition codes, the calling program can simply test
Z or P to determine whether the POP completed successfully (see the following
PUSH routine).

PUSH LD
ADD
BRz
ADD
STR
AND
RET

Failure AND
•ADD
RET

MAX .FILL

10.1.4 The Complete Picture
The POP and PUSH routines allow us to use memory locations x3FFF through
x3FFB as a five-entry stack. If we wish to push a value onto the stack, we simply
load that value into RO and execute JSR PUSH. To pop a value from the stack
into RO, we simply execute JSR POP. If we wish to change the location or the
size of the stack, we adjust BASE and MAX accordingly.

Before leaving this topic, we should be careful to clean up one detail. The
subroutines PUSH and POP make use of Rl , R2, and R5. If we wish to use the
values stored in those registers after returning from the PUSH or POP routine, we
had best save them before using them. In the case of R l and R2, it is easiest to
save them in the PUSH and POP routines before using them and then to restore
them before returning to the calling program. That way, the calling program does
not even have to know that these registers are used in the PUSH and POP routines.
This is an example of the callee-save situation described in Section 9.1.7. In the
case of R5, the situation is different since the calling program does have to know
the success or failure that is reported in R5. Thus, it is the job of the calling
program to save the contents of R5 before the JSR instruction is executed if the
calling program wishes to use the value stored there again. This is an example of
the caller-save situation.

The final code for our PUSH and POP operations is shown in Figure 10.5.

Rl,MAX
R2,R6,Rl
Failure
R6,R6,#-1
RO,R6,#0
R5,R5,#0

R5,R5,#0
R5,R5,#1

XC005 ; MAX <-- ~x3FFB

258 chapter 10 And, Finally . . . The Stack t

01
02
03
04
05

Subroutines for carrying out the PUSH and POP functions. This
program works with a stack consisting of memory locations x3FFF
(BASE) through x3FFB (MAX). R6 is the stack pointer.

06 POP ST R2,Save2 ; are needed by POP.
07 ST Rl,Savel
08 LD Rl,BASE BASE contains -X3FFF.
09 ADD R1,R1,#-1 Rl contains -x4000.
OA ADD R2,R6,R1 Compare stack pointer to
0B BRz fail exit Branch if stack is empty
OC LDR R0,R6,#0 The actual "pop11
0D ADD R6,R6,#1 Adjust stack pointer.
0E BRnzp success_exit
OF PUSH ST R2,Save2 Save registers that
10 ST Rl,Savel are needed by PUSH.
11 LD Rl,MAX MAX contains -x3FFB
12 ADD R2,R6, Rl Compare stack pointer to
13 BRz fail exit Branch if stack is full.
14 ADD R6,R6, # -1 Adjust stack pointer.
15 STR R0,R6,#0 The actual "push"
16 success exit LD Rl,Savel Restore original
17 LD R2,Save2 register values.
18 AND R5,R5,#0 R5 <-- success.
19 RET
1A fail exit LD Rl,Savel Restore original
IB LD R2,Save2 register values.
1C AND R5,R5,#0
ID ADD R5,R5,#1 R5 <-- failure.
IE RET
IF BASE .FILL XC0 01 ; BASE contains -x3FFF.
20 MAX .FILL XC005
21 Savel .FILL xOOOO
22 Save 2 .FILL xOOOO
Figure 10.5 The stack protocol

10.2 Inrerrupr-Driven I/O [Part
Recall our discussion in Section 8.1.4 about interrupt-driven I/O as an alternative
to polling. As you know, in polling, the processor wastes its time spinning its
wheels, re-executing again and again the LDI and BR instructions until the Ready
bit is set. With interrupt-driven I/O, none of that testing and branching has to go
on. Instead, the processor spends its time doing what is hopefully useful work,
executing some program, until it is notified that some I/O device needs attention.

You remember that there are two parts to interrupt-driven I/O:

1. the enabling mechanism that allows an I/O device to interrupt the processor
when it has input to deliver or is ready to accept output, and

2. the process that manages the transfer of the I/O data.

10.2 Interrupt-Driven I/O (Part 2) 259

In Section 8.5, we showed the enabling mechanism for interrupting the pro-
cessor, that is, asserting the INT signal. We showed how the Ready bit, combined
with the Interrupt Enable bit, provided an interrupt request signal. We showed that
if the interrupt request signal is at a higher priority level (PL) than the PL of the
currently executing process, the INT signal is asserted. We saw (Figure 8.8) that
with this mechanism, the processor did not have to waste a lot of time polling. In
Section 8.5, we could not study the process that manages the transfer of the I/O
data because it involves the use of a stack, and you were not yet familiar with the
stack. Now you know about stacks, so we can finish the explanation.

The actual management of the I/O data transfer goes through three stages, as
shown in Figure 8.6:

1. Initiate the interrupt.
2. Service the interrupt.
3. Return from the interrupt.

We will discuss these in turn.

10.2.1 Initiate and Service the Interrupt
Recall from Section 8.5 (and Figure 8.8) that an interrupt is initiated because an
I/O device with higher priority than the currently running program has caused
the INT signal to be asserted. The processor, for its part, tests for the presence of
INT each time it completes an instruction cycle. If the test is negative, business
continues as usual and the next instruction of the currently running program is
fetched. If the test is positive, that next instruction is not fetched.

Instead, preparation is made to interrupt the program that is running and
execute the interrupt service routine that deals with the needs of the I/O device
that has requested this higher priority service. Two steps must be carried out:
(1) Enough of the state of the program that is running must be saved so we can
later continue where we left off, and (2) enough of the state of the interrupt service
routine must be loaded so we can begin to service the interrupt request.

The State of a Program
The state of a program is a snapshot of the contents of all the resources that the
program affects. It includes the contents of the memory locations that are part of
the program and the contents of all the general purpose registers. It also includes
two very important registers, the PC and the PSR. The PC you are very familiar
with; it contains the address of the next instruction to be executed. The PSR,
shown here, is the Processor Status Register. It contains several important pieces
of information about the status of the running program.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pr PL N Z P
Priv Priority cond codes

PSR[15] indicates whether the program is running in privileged (supervi-
sor) or unprivileged (user) mode. In privileged mode, the program has access to

260 chapter 10 And, Finally . . . The Stack t

important resources not available to user programs. We will see momentarily why
that is important in dealing with interrupts. PSR[10:8] specifies the priority level
(PL) or sense of urgency of the execution of the program. As has been mentioned
previously, there are eight priority levels, PLO (lowest) to PL7 (highest). Finally,
PSR[2:0] is used to store the condition codes. PSR[2] is the N bit, PSR[1] is the
Z bit, and PSR[0] is the P bit.

Saving the State of the Interrupted Program

The first step in initiating the interrupt is to save enough of the state of the program
that is running so it can continue where it left off after the I/O device request has
been satisfied. That means, in the case of the LC-3, saving the PC and the PSR.
The PC must be saved since it knows which instruction should be executed next
when the interrupted program resumes execution. The condition codes (the N, Z,
and P flags) must be saved since they may be needed by a subsequent conditional
branch instruction after the program resumes execution. The priority level of
the interrupted program must be saved because it specifies the urgency of the
interrupted program with respect to all other programs. When the interrupted
program resumes execution, it is important to know what priority level programs
can interrupt it again and which ones can not. Finally, the privilege level of
the program must be saved since it contains information about what processor
resources the interrupted program can and can not access.

It is not necessary to save the contents of the general purpose registers since
we assume that the service routine will save the contents of any general pur-
pose register it needs before using it, and will restore it before returning to the
interrupted program.

The LC-3 saves this state information on a special stack, called the Supervisor
Stack, that is used only by programs that execute in privileged mode. A section of
memory is dedicated for this purpose. This stack is separate from the User Stack,
which is accessed by user programs. Programs access both stacks using R6 as
the stack pointer. When accessing the Supervisor Stack, R6 is the Supervisor
Stack Pointer. When accessing the User Stack, R6 is the User Stack Pointer. Two
internal registers, Saved.SSP and Saved.USP, are used to save the stack pointer
not in use. When the privilege mode changes from user to supervisor, the contents
of R6 are saved in Saved.USP, and R6 is loaded with the contents of Saved.SSP
before processing begins.

That is, before die interrupt service routine starts, R6 is loaded with the
contents of the Supervisor Stack Pointer. Then PC and PSR of the interrupted
program are pushed onto the Supervisor Stack, where they remain unmolested
while the service routine executes.

Loading the State of the Interrupt Service Routine
Once the state of the interrupted program has been safely saved on the Supervisor
Stack, the second step is to load the PC and PSR of the interrupt service routine.
Interrupt service routines are similar to the trap service routines discussed in
Chapter 9. They are program fragments stored in some prearranged set of locations
in memory. They service interrupt requests.

10.2 Interrupt-Driven I/O (Part 2) 261

Most processors use the mechanism of vectored interrupts. You are famil-
iar with this notion from your study of the trap vector contained in the TRAP
instruction. In the case of interrupts, the 8-bit vector is provided by the device
that is requesting the processor be interrupted. That is, the I/O device transmits
to the processor an 8-bit interrupt vector along with its interrupt request signal
and its priority level. The interrupt vector corresponding to the highest priority
interrupt request is the one supplied to the processor. It is designated INTV. If
the interrupt is taken, the processor expands the 8-bit interrupt vector (INTV) to
form a 16-bit address, which is an entry into the Interrupt Vector Table. Recall
from Chapter 9 that the Trap Vector Table consists of memory locations xOOOO to
xOOFF, each containing the starting address of a trap service routine. The Interrupt
Vector Table consists of memory locations xOlOO to xOlFF, each containing the
starting address of an interrupt service routine. The processor loads the PC with
the contents of the address formed by expanding the interrupt vector INTV.

The PSR is loaded as follows: Since no instructions in the service routine
have yet executed, PSR[2:0] is initially loaded with zeros. Since the interrupt
service routine runs in privileged mode, PSR[15] is set to 0. PSR[10:8] is set to
the priority level associated with the interrupt request.

This completes the initiation phase and the interrupt service routine is ready
to go.

Service the Interrupt
Since the PC contains the starting address of the interrupt service routine, the
service routine will execute, and the requirements of the I/O device will be
serviced.

For example, the LC-3 keyboard could interrupt the processor every time a
key is pressed by someone sitting at the keyboard. The keyboard interrupt vector
would indicate the handler to invoke. The handler would then copy the contents
of the data register into some preestablished location in memory.

10.2.2 Return from the Interrupt
The last instruction in every interrupt service routine is RTI, return from interrupt.
When the processor finally accesses the RTI instruction, all the requirements of
the I/O device have been taken care of.

Execution of the RTI instruction (opcode = 1000) consists simply of pop-
ping the PSR and the PC from the Supervisor Stack (where they have been resting
peacefully) and restoring them to their rightful places in the processor. The condi-
tion codes are now restored to what they were when the program was interrupted,
in case they are needed by a subsequent BR instruction in the program. PSR[15]
and PSR[10:8] now reflect the privilege level and priority level of the about-to-be-
resumed program. Similarly, the PC is restored to the address of the instruction
that would have been executed next if the program had not been interrupted.

With all these things as they were before the interrupt occurred, the program
can resume as if nothing had happened.

262 chapter 10 And, Finally . . . The Stack t

Program A

10.2.3 An Example
We complete the discussion of interrupt-driven I/O with an example.

Suppose program A is executing when I/O device B, having a PL higher than
that of A, requests service. During the execution of the service routine for I/O
device B, a still more urgent device C requests service.

Figure 10.6 shows the execution flow that must take place.
Program A consists of instructions in locations x3000 to x3010 and was in

the middle of executing the ADD instruction at x3006, when device B sent its
interrupt request signal and accompanying interrupt vector xFl , causing INT to
be asserted.

Note that the interrupt service routine for device B is stored in locations x6200
to x6210; x6210 contains the RTI instruction. Note that the service routine for
B was in the middle of executing the AND instruction at x6202, when device C
sent its interrupt request signal and accompanying interrupt vector xF2. Since the
request associated with device C is of a higher priority than that of device B, INT
is again asserted.

Note that the interrupt service routine for device C is stored in locations x6300
to x6315; x6315 contains the RTI instruction.

Let us examine the order of execution by the processor. Figure 10.7 shows
several snapshots of the contents of the Supervisor Stack and the PC dining the
execution of this example.

The processor executes as follows: Figure 10.7a shows the Supervisor Stack
and the PC before program A fetches the instruction at x3006. Note that the stack
pointer is shown as Saved.SSP, not R6. Since the interrupt has not yet occurred,
R6 is pointing to the current contents of the User Stack. The INT signal (caused
by an interrupt from device B) is detected at the end of execution of the instruction

10.2 Interrupt-Driven I/O (Part 2) 263

\ Saved.
SSP

PSR of program A

x 3 0 0 7

\

R6

PSR for device B

X6203

PSR of program A

X3007

\

R6

P C x 3 0 0 6 P C x 6 2 0 0 PC X6300

(a) (b) (c)

PSR for device B

X6203

PSR of program A

X 3 0 0 7

R6

PSR for device B

X 6 2 0 3

PSR of program A

X 3 0 0 7

Saved. SSP

PC X 6 2 0 3 PC X3007

(d) (e)

Figure 10 .7 Snapshots of the contents of the Supervisor Stack and the PC during
interrupt-driven I/O

in x3006. Since the state of program A must be saved on the Supervisor Stack, the
first step is to start using the Supervisor Stack. This is done by saving R6 in the
Saved.USP register, and loading R6 with the contents of the Saved.SSP register.
The address x3007, the PC for the next instruction to be executed in program A, is
pushed onto the stack. The PSR of program A, which includes the condition codes
produced by the ADD instruction, is pushed onto the stack. The interrupt vector
associated with device B is expanded to 16 bits xOlFl, and the contents of xOlFl
(x6200) are loaded into the PC. Figure 10.7b shows the stack and PC at this point.

The service routine for device B executes until a higher priority interrupt is
detected at the end of execution of the instruction at x6202. The address x6203
is pushed onto the stack, along with the PSR of the service routine for B, which
includes the condition codes produced by the AND instruction. The interrupt
vector associated with device C is expanded to 16 bits (x01F2), and the contents
of x01F2 (x6300) are loaded into the PC. Figure 10.7c shows the Supervisor Stack
and PC at this point.

264 chapter 10 And, Finally . . . The Stack t

The interrupt service routine for device C executes to completion, finishing
with the RTI instruction in x6315. The Supervisor Stack is popped twice, restoring
the PSR of the service routine for device B, including the condition codes produced
by the AND instruction in x6202, and restoring the PC to x6203. Figure 10.7d
shows the stack and PC at this point.

The interrupt service routine for device B resumes execution at x6203 and runs
to completion, finishing with the RTI instruction in x6210. The Supervisor Stack
is popped twice, restoring the PSR of program A, including the condition codes
produced by the ADD instruction in x3006, and restoring the PC to x3007. Finally,
since program A is in User Mode, the contents of R6 are stored in Saved.SSP and
R6 is loaded with the contents of Saved.USP. Figure 10.7e shows the Supervisor
Stack and PC at this point.

Program A resumes execution with the instruction at x3007.

10.3 H i i m e t i c Using o Stock
10.3.1 The Stack as Temporary Storage
There are computers that use a stack instead of general purpose registers to store
temporary values during a computation. Recall that our ADD instruction

ADD RO,Rl,R2

takes source operands from Rl and R2 and writes the result of the addition into
RO. We call the LC-3 a three-address machine because all three locations (the
two sources and the destination) are explicitly identified. Some computers use a
stack for source and destination operands and explicitly identify none of them.
The instruction would simply be

ADD
We call such a computer a stack machine, or a zero-address machine. The hardware
would know that the source operands are the top two elements on the stack, which
would be popped and then supplied to the ALU, and that the result of the addition
would be pushed onto the stack.

To perform an ADD on a stack machine, the hardware would execute two
pops, an add, and a push. The two pops would remove the two source operands
from the stack, the add would compute their sum, and the push would place the
result back on the stack. Note that the pop, push, and add are not part of the ISA
of that computer, and therefore not available to the programmer. They are control
signals that the hardware uses to make the actual pop, push, and add occur. The
control signals are part of the microarchitecture, similar to the load enable signals
and mux select signals we discussed in Chapters 4 and 5. As is the case with
LC-3 instructions LD and ST, and control signals PCMUX and LD.MDR, the
programmer simply instructs the computer to ADD, and the microarchitecture
does the rest.

Sometimes (as we will see in our final example of this chapter), it is useful
to process arithmetic using a stack. Intermediate values are maintained on the

10.3 Arithmetic Using a Stack 265

stack rather than in general purpose registers, such as the LC-3's RO through R7.
Most general purpose microprocessors, including the LC-3, use general purpose
registers. Most calculators use a stack.

10.3.2 An Example
For example, suppose we wanted to evaluate (A + B) • (C + D), where A contains
25, B contains 17, C contains 3, and D contains 2, and store the result in E. If
the LC-3 had a multiply instruction (we would probably call it MUL), we could
use the following program:

LD R0, A
LD Rl, B
ADD R0,RO,Rl
LD R2 , C
LD R3,D
ADD R2,R2, R3
MUL R0,R0,R2
ST R0, E

With a calculator, we could execute the following eight operations:

(1) push 25
(2) push 17
(3) add
(4) push 3
(5) push 2
(6) add
(7) multiply
(8) pop E

with the final result popped being the result of the computation, that is, 210.
Figure 10.8 shows a snapshot of the stack after each of the eight operations.

In Section 10.5, we write a program to cause the LC-3 (with keyboard and
monitor) to act like such a calculator. We say the LC-3 simulates the calculator
when it executes that program.

But first, let's examine the subroutines we need to conduct the various
arithmetic operations.

10.3.3 OpAdd, OpMult, and OpNeg
The calculator we simulate in Section 10.5 has the ability to enter values, add,
subtract, multiply, and display results. To add, subtract, and multiply, we need
three subroutines:

1. OpAdd, which will pop two values from the stack, add them, and push the
result onto the stack.

266 chapter 10 And, Finally . . . The Stack t

/ / / / / X3FFB / / / / / X3FFB / / / / / X3FFB
/ / / / / X3FFC / / / / / X3FFC / / / / / X3FFC
/ / / / / X3FFD / / / / / X3FFD / / / / / X3FFD
/ / / / / X3FFE / / / / / X3FFE 17 X3FFE
/ / / / / X3FFF 25 X3FFF 25 X3FFF

X4000 Stack pointer X3FFF Stack pointer X3FFE Stack pointer

(a) Before (b) After first push (c) After second push

/ / / / / X3FFB
/ / / / / X3FFC
/ / / / / X3FFD

17 X3FFE
42 X3FFF

X3FFF Stack pointer

(d) After first add

/ / / / / X3FFB
/ / / / / X3FFC
/ / / / / X3FFD

3 X3FFE
42 X3FFF

X3FFE Stack pointer

(e) After third push

/ / / / / X3FFB
/ / / / / X3FFC

2 X3FFD
3 X3FFE

42 X3FFF

X3FFD Stack pointer

(f) After fourth push

/ / / / / X3FFB / / / / / X3FFB / / / / / X3FFB
/ / / / / X3FFC / / / / / X3FFC / / / / / X3FFC

2 X3FFD 2 X3FFD 2 X3FFD
5 X3FFE 5 X3FFE 5 X3FFE

42 X3FFF 210 X3FFF 210 X3FFF

X3FFE Stack pointer X3FFF Stack pointer X4000 Stack pointer

(g) After second add (h) After multiply (i) After pop

Figure 10 .8 Stack usage during the computation of (25 + 17) (3 + 2)

2. OpMult, which will pop two values from the stack, multiply them, and push
the result onto the stack.

3. OpNeg, which will pop the top value, form its 2's complement negative
value, and push the result onto the stack.

The OpAdd Algorithm
Figure 10.9 shows the flowchart of the OpAdd algorithm. Basically, the algorithm
attempts to pop two values off the stack and, if successful, add them. If the result
is within the range of acceptable values (that is, an integer between - 9 9 9 and
+999), then the result is pushed onto the stack.

There are two things that could prevent the OpAdd algorithm from completing
successfully: Fewer than two values are available on the stack for source operands,

10.3 Arithmetic Using a Stack 267

Figure 10.9 Flowchart for OpAdd algorithm

or the result is out of range. In both cases, the stack is put back to the way it was
at the start of the OpAdd algorithm, a 1 is stored in R5 to indicate failure, and
control is returned to the calling program. If the first pop is unsuccessful, the
stack is not changed since the POP routine leaves the stack as it was. If the second
of the two pops reports back unsuccessfully, the stack pointer is decremented,
which effectively returns the first value popped to the top of the stack. If the result
is outside the range of acceptable values, then the stack pointer is decremented
twice, returning both values to the top of the stack.

The OpAdd algorithm is shown in Figure 10.10.
Note that the OpAdd algorithm calls the RangeCheck algorithm. This is a

simple test to be sure the result of the computation is within what can successfully

268 chapter 10 And, Finally . . . The Stack t

01
02
03
04
05
06 OpAdd JSR
07 ADD
08 BRp
09 ADD
OA JSR
OB ADD
OC BRp
OD ADD
OE JSR
OF BRp
10 JSR
11 RET
12 Restore2 ADD
13 Restorel ADD
14 Exit RET
Figure 10.10 The OpAdd a lgor i thm

Routine to pop the top
add them, and push the
the stack pointer.

POP
R5,R5,#0
Exit
Rl,R0,#0
POP
R5,R5,#0
Restorel
R0,R0,Rl
RangeCheck
Restore2
PUSH

R6,R6,#-1
R6,R6,#-1

two elements from the stack,
sum onto the stack. R6 is

Get first source operand.
Test if POP was successful.
Branch if not successful.
Make room for second operand.
Get second source operand.
Test if POP was successful.
Not successful, put back first
THE Add.
Check size of result.
Out of range, restore both.
Push sum on the stack.
On to the next task...
Decrement stack pointer.
Decrement stack pointer.

Figure 10.11 The RangeCheck a lgor i thm flowchart

be stored in a single stack location. For our purposes, suppose we restrict values
to integers in the range - 9 9 9 to +999. This will come in handy in Section 10.5
when we design our home-brew calculator. The flowchart for the RangeCheck
algorithm is shown in Figure 10.11. The LC-3 program that implements this
algorithm is shown in Figure 10.12.

10.3 Arithmetic Using a Stack 269

01
02 ; Routine to check that the magnitude of a value is
03 ; between -999 and +999.
04
05 RangeCheck LD R5,Neg999
06 ADD R4,R0,R5 ; Recall that R0 contains
07 BRp BadRange ; result being checked.
08 LD R5, Pos999
09 ADD R4,R0,R5
OA BRn BadRange
0B AND R5,R5,#0 ; R5 <-- success
OC RET
0D BadRange ST R7,Save ; R7 is needed by TRAP/RET
0E LEA R0,RangeErrorMsg
OF TRAP x22 ; Output character string
10 LD R7,Save
11 AND R5,R5,#0 /

12 ADD R5,R5,#1 ; R5 <-- failure
13 RET
14 Neg999 .FILL #-999
15 Pos99 9 .FILL #999
16 Save .FILL xOOOO
17 RangeErrorMsg .FILL xOOOA
18 .STRINGZ "Error: Number is out of range."
Figure 10 .12 The RangeCheck algorithm

The OpMult Algorithm
Figure 10.13 shows the flowchart of the OpMult algorithm, and Figure 10.14
shows the LC-3 program that implements that algorithm. Similar to the OpAdd
algorithm, the OpMult algorithm attempts to pop two values off the stack and, if
successful, multiplies them. Since the LC-3 does not have a multiply instruction,
multiplication is performed as we have done in the past as a sequence of adds.
Lines 17 to 19 of Figure 10.14 contain the crux of the actual multiply. If the result
is within the range of acceptable values, then the result is pushed onto the stack.

If the second of the two pops reports back unsuccessfully, the stack pointer
is decremented, which effectively returns the first value popped to the top of the
stack. If the result is outside the range of acceptable values, which as before will
be indicated by a 1 in R5, then the stack pointer is decremented twice, returning
both values to the top of the stack.

The OpNeg Algorithm
We have provided algorithms to add and multiply the top two elements on the
stack. To subtract the top two elements on the stack, we can use our OpAdd
algorithm if we first replace the top of the stack with its negative value. That is, if
the top of the stack contains A, and the second element on the stack contains B,

289 chapter 10 And, Finally . . . The Stack t

Figure 10.13 Flowchart for the OpMult algorithm

10.3 Arithmetic Using a Stack

01 ;
02 ; Algorithm to pop two values from the stack, multiply them,
03 ; and if their product is within the acceptable range, push
04 ; the result onto the stack. R6 is stack pointer.
05 ;
06 OpMult AND R3,R3,#0 / R3 holds sign of multiplier.
07 JSR POP / Get first source from stack.
08 ADD R5,R5,#0 f Test for successful POP.
09 BRp Exit t Failure
OA ADD Rl,R0,#0 i Make room for next POP.
0B JSR POP i Get second source operand.
OC ADD R5,R5,#0 t Test for successful POP.
0D BRp Restorel / Failure; restore first POP.
0E ADD R2,R0,#0 / Moves multiplier, tests sign
OF BRzp PosMultiplier
10 ADD R3,R3,#1 / Sets FLAG: Multiplier is neg
11 NOT R2, R2
12 ADD R2 , R2 , # 1 / R2 contains -(multiplier).
13 PosMultiplier AND R0,R0,#0 ! Clear product register.
14 ADD R2,R2,#0
15
16

BRz PushMult / Multiplier = 0, Done.

17
/

MultLoop ADD R0,R0,Rl t THE actual "multiply"
18 ADD R2,R2,#-1 I Iteration Control
19 BRp MultLoop
1A /

IB JSR RangeCheck
1C ADD R5,R5,#0 ! R5 contains success/failure.
ID BRp Restore2
IE i
IF ADD R3,R3,#0 t Test for negative multiplier
20 BRz PushMult
21 NOT R0, R0 1 Adjust for
22 ADD R0,R0,#1 t sign of result.
23 PushMult JSR PUSH f Push product on the stack.
24 RET
25 Restore2 ADD R6,R6,#-1 § Adjust stack pointer.
26 Restorel . ADD R6,R6,#-1 1 Adjust stack pointer.
27 Exit RET
Figure 10.14 The OpMult algorithm

and we wish to pop A, B and push B—A, we can accomplish this by first negating
the top of the stack and then performing OpAdd.

The algorithm for negating the element on the top of the stack, OpNeg, is
shown in Figure 10.15.

272 chapter 10 And, Finally . . . The Stack t

01 ; Algorithm to pop the top
02 ; and push the result onto
03
04 OpNeg JSR POP
05 ADD R5,R5, #0
06 BRp Exit
07 NOT R0, R0
08 ADD R0,R0, #1
09 JSR PUSH
OA Exit RET

of the stack, form its negative,
the stack.

Get the source operand.
Test for successful pop
Branch if failure.

Form the negative of source.
Push result onto the stack.

Figure 10 .15 The OpNeg algorithm

10.4 Data Tijpe Conversion
It has been a long time since we talked about data types. We have been exposed
to several data types: unsigned integers for address arithmetic, 2's complement
integers for integer arithmetic, 16-bit binary strings for logical operations, floating
point numbers for scientific computation, and ASCII codes for interaction with
input and output devices.

It is important that every instruction be provided with source operands of
the data type that the instruction requires. For example, ADD requires operands
that are 2's complement integers. If the ALU were supplied with floating point
operands, the computer would produce garbage results.

It is not uncommon in high-level language programs to find an instruction of
the form A = R + / where R (floating point) and / (2's complement integer) are
represented in different data types.

If the operation is to be performed by a floating point adder, then we have a
problem with I . To handle the problem, one must first convert the value I from
its original data type (2's complement integer) to the data type required by the
operation (floating point).

Even the LC-3 has this data type conversion problem. Consider a multiple-
digit integer that has been entered via the keyboard. It is represented as a string
of ASCII characters. To perform arithmetic on it, you must first convert the value
to a 2's complement integer. Consider a 2's complement representation of a value
that you wish to display on the monitor. To do so, you must first convert it to an
ASCn string.

In this section, we will examine routines to convert between ASCII strings
of decimal digits and 2's complement binary integers.

10.4.1 Example: The Bogus Program: 2 + 3 = e
First, let's examine Figure 10.16, a concrete example of how one can get into
trouble if one is not careful about keeping track of the data type of each of the
values with which one is working.

Suppose we wish to enter two digits from the keyboard, add them, and dis-
play the results on the monitor. At first blush, we write the simple program of
Figure 10.16. What happens?

10.4 Data Type Conversion 273

01 TRAP x23 Input from the keyboard.
02 ADD Rl,R0,#0 Make room for another input.
03 TRAP x23 Input another character.
04 ADD R0,R1,R0 Add the two inputs.
05 TRAP x21 Display result on the monitor
06 TRAP x25 Halt.
Figure 10.16 ADDITION without paying attention to data types

Suppose the first digit entered via the keyboard is a 2 and the second digit
entered via the keyboard is a 3. What will be displayed on the monitor before the
program terminates? The value loaded into RO as a result of entering a 2 is the
ASCII code for 2, which is x0032. When the 3 is entered, the ASCII code for 3,
which is x0033, will be loaded. Thus, the ADD instruction will add the two binary
strings x0032 and x0033, producing x0065. When that value is displayed on the
monitor, it will be treated as an ASCII code. Since x0065 is the ASCII code for a
lowercase e, that is what will be displayed on the monitor.

The reason why we did not get 5 (which, at last calculation, was the correct
result when adding 2 + 3) was that we didn't (a) convert the two input char-
acters from ASCII to 2's complement integers before performing addition and
(b) convert the result back to ASCII before displaying it on the monitor.

Exercise: Correct Figure 10.16 so that it will add two single-digit positive
integers and give a single-digit positive sum. Assume that the two digits being
added do in fact produce a single-digit sum.

10.4.2 ASCII to Binary
It is often useful to deal with numbers that require more than one digit to express
them. Figure 10.17 shows the ASCII representation of the three-digit number 295,
stored as an ASCII string in three consecutive LC-3 memory locations, starting
at ASCIIBUFF.R1 contains the number of decimal digits in die number.

Note that in Figure 10.17, a whole LC-3 word (16 bits) is allocated for each
ASCII character. One can (and, in fact, more typically, one does) store each ASCII
character in a single byte of memory. In this example, we have decided to give
each ASCII character its own word of memory in order to simplify the algorithm.

X 0 0 3 2

x 0 0 3 9

X 0 0 3 5

ASCIIBUFF

3 Rt

Figure 10.17 The ASCII representation of 295 stored in consecutive memory locations

274 chapter 10 And, Finally . . . The Stack t

Figure 10.18 shows the flowchart for converting the ASCII representation of
Figure 10.17 into a binary integer. The value represented must be in the range 0
to +999, that is, it is limited to three decimal digits.

The algorithm systematically takes each digit, converts it from its ASCII code
to its binary code by stripping away all but the last four bits, and then uses it to
index into a table of 10 binary values, each corresponding to the value of one

10.4 Data Type Conversion 275

of the 10 digits. That value is then added to RO. RO is used to accumulate the
contributions of all the digits. The result is returned in RO.

Figure 10.19 shows the LC-3 program that implements this algorithm.

01
02
03
04
05
06
07
08
09
OA
0B
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2 C
2D
Figure

This algorithm takes an ASCII string of three decimal digits and
converts it into a binary number. R0 is used to collect the result.
Rl keeps track of how many digits are left to process. ASCIIBUFF
contains the most significant digit in the ASCII string.

ASCIItoBinary AND
ADD
BRz

/

LD
LEA
ADD
ADD

/

LDR
ADD
ADD

/

ADD
BRz
ADD

/

LDR
ADD
LEA
ADD
LDR
ADD

/

ADD
BRz
ADD

I

LDR
ADD
LEA
ADD
LDR
ADD

R0,R0,#0
R1,R1,#0
DoneAtoB

R0 will be used for our result
Test number of digits.
There are no digits.

R3,NegASCIIOffset
R2,ASCIIBUFF
R2,R2,Rl
R2,R2,#-1

R3 gets xFFDO, i.e. -X0030

R4,R2,#0
R4 , R4 , R3
R0,R0,R4

R1,R1,#-1
DoneAtoB
R2,R2,#-1

R4,R2,#0
R4 , R4 , R3
R5,LookUplO
R5,R5, R4
R4,R5,#0
R0,R0,R4

Rl,Rl,#-1
DoneAtoB
R2,R2,#-1

R4/R2/#0
R4 , R4 , R3
R5,LookUpl00
R5,R5,R4
R4,R5,#0
R0,R0,R4

DoneAtoB RET
NegASCIIOffset .FILL xFFDO
ASCIIBUFF .BLKW 4
LookUplO .FILL #0
10.19 ASCII-to-binary conversion routine

R2 now points to "ones11 digit.

R4 <-- "ones" digit
Strip off the ASCII template.
Add ones contribution.

The original number had one digit
R2 now points to "tens" digit.

R4 <-- "tens" digit
Strip off ASCII template.
LookUplO is BASE of tens values.
R5 points to the right tens value

Add tens contribution to total.

The original number had two digits.
R2 now points to "hundreds" digit.

R4 <-- "hundreds" digit
Strip off ASCII template.
LookUplOO is hundreds BASE.
R5 points to hundreds value.

Add hundreds contribution to total.

276 chapter 10 And, Finally . . . The Stack t

2E .FILL #10
2F .FILL #2 0
30 .FILL #30
31 .FILL #4 0
32 .FILL #50
33 .FILL #60
34 .FILL #70
35 .FILL #80
36 .FILL #90
37 /

38 LookUplOO .FILL #0
39 .FILL #100
3A .FILL #200
3B .FILL #300
3C .FILL #400
3D .FILL #500
3E .FILL #600
3F .FILL #700
40 .FILL #800
41 .FILL #900
Figure 10 .19 ASCII-to-binary conversion routine (continued)

10.4.3 Binary to ASCII
Similarly, it is useful to convert the 2's complement integer into an ASCII string
so that it can be displayed on the monitor. Figure 10.20 shows the algorithm for
converting a 2's complement integer stored in R0 into an ASCII string stored in
four consecutive memory locations, starting at ASCIIBUFF. The value initially
in R0 is restricted to be within the range —999 to +999. After the algorithm
completes execution, ASCIIBUFF contains the sign of the value initially stored
in R0. The following three locations contain the three ASCII codes corresponding
to the three decimal digits representing its magnitude.

The algorithm works as follows: First, the sign of the value is determined,
and the appropriate ASCII code is stored. The value in R0 is replaced by its
absolute value. The algorithm determines the hundreds-place digit by repeatedly
subtracting 100 from R0 until the result goes negative. This is next repeated for
the tens-place digit. The value left is the ones digit.

Exercise: [Very challenging] Suppose the decimal number is arbitrarily long.
Rather than store a table of 10 values for the thousands-place digit, another table
for the 10 ten-thousands-place digit, and so on, design an algorithm to do the
conversion without resorting to any tables whatsoever. See Exercise 10.20.

Exercise: This algorithm always produces a string of four characters inde-
pendent of the sign and magnitude of the integer being converted. Devise an
algorithm that eliminates unnecessary characters in common representations,
that is, an algorithm that does not store leading zeros nor a leading + sign. See
Exercise 10.22.

10.4 Data Type Conversion 277

01
02 ; This algorithm takes the 2's complement representation of a signed
03 ; integer within the range -999 to +999 and converts it into an ASCII
04 ; string consisting of a sign digit, followed by three decimal digits.
05 ; R0 contains the initial value being converted.
06
07 BinarytoASCII LEA Rl,ASCIIBUFF ; Rl points to string being generated
08 ADD R0,R0,#0 ; R0 contains the binary value.
09 BRn NegSign ;
OA LD R2,ASCIIplus ; First store the ASCII plus sign.
0B STR R2,Rl,#0
OC BRnzp BeginlOO
OD NegSign LD R2,ASCIIminus ; First store ASCII minus sign.
0E STR R2,Rl,#0
OF NOT R0,R0 ; Convert the number to absolute
10 ADD R0,R0,#1 ; value; it is easier to work with.
11 /

12 BeginlOO LD R2,ASCIIoffset ; Prepare for "hundreds" digit.
- L j

14
/

LD R3,NeglOO ; Determine the hundreds digit.
15 LooplOO ADD R0,R0,R3
16 BRn EndlOO
17 ADD R2,R2,#1
18 BRnzp LooplOO
19)
1A EndlOO STR R2,R1,#1 ; Store ASCII code for hundreds digit.
IB LD R3,PoslOO
1C ADD R0,R0,R3 ; Correct R0 for one-too-many subtracts
ID /

IE LD R2ASCIIoffset ; Prepare for "tens" digit.
IF !

20 BeginlO LD R3,NeglO ; Determine the tens digit.
21 Loopl0 ADD R0,R0,R3
22 BRn EndlO
23 ADD R2,R2,#1
24 BRnzp Loop10
25 /

26 End 10 STR R2,R1,#2 ; Store ASCII code for, tens digit.
27 ADD R0,R0,#10 ; Correct R0 for one-too-many subtracts
29 Beginl LD R2,ASCIIoffset ; Prepare for "ones" digit.
2A ADD R2 , R2 , R0
2B STR R2,R1,#3
2C RET
2D /

2E ASCIIplus .FILL X002B
2F ASCIIminus .FILL X002D
30 ASCIIoffset .FILL X0030
31 NeglOO .FILL XFF9C
32 PoslOO .FILL X0064
33 NeglO .FILL XFFF6
Figure 10 .20 Binary-to-ASCII conversion routine

278 chapter 10 And, Finally . . . The Stack t

10.5 Our Final Example: The Calculator
We conclude Chapter 10 with the code for a comprehensive example: the simula-
tion of a calculator. The intent is to demonstrate the use of many of the concepts
discussed thus far, as well as to show an example of well-documented, clearly
written code, where the example is much more complicated than what can fit
on one or two pages. The calculator simulation consists of 11 separate routines.
You are encouraged to study this example before moving on to Chapter 11 and
High-Level Language Programming.

The calculator works as follows: We use the keyboard to input commands and
decimal values. We use the monitor to display results. We use a stack to perform
arithmetic operations as described in Section 10.2. Values entered and displayed
are restricted to three decimal digits, that is, only values between —999 and +999,
inclusive. The available operations are

X Exit the simulation.

D Display the value at the top of the stack.

C Clear all values from the stack.
+ Replace the top two elements on the stack with their sum.
* Replace the top two elements on the stack with their product.
- Negate the top element on the stack.

Enter Push the value typed on the keyboard onto the top of the stack.

Figure 10.21 is a flowchart that gives an overview of our calculator simulation.
Simulation of the calculator starts with initialization, which includes setting R6,
the stack pointer, to an empty stack. Then the user sitting at the keyboard is
prompted for input.

Input is echoed, and the calculator simulation systematically tests the char-
acter to determine the user's command. Depending on the user's command, the
calculator simulation carries out the corresponding action, followed by a prompt
for another command. The calculator simulation continues in this way until the
user presses X, signaling that the user is finished with the calculator.

Eleven routines comprise the calculator simulation. Figure 10.22 is the main
algorithm. Figure 10.23 takes an ASCII string of digits typed by a user, converts it
to a binary number, and pushes the binary number onto the top of the stack. Figure
10.19 provides the ASCII-to-binary conversion routine. Figure 10.26 pops the
entry on the top of the stack, converts it to an ASCII string, and displays the ASCII
string on the monitor. Figure 10.20 provides the binary-to-ASCII conversion
routine. Figures 10.10 (OpAdd), 10.14 (OpMult), and 10.15 (OpNeg) supply
the basic arithmetic algorithms using a stack. Figures 10.24 and 10.25 contain
versions of the POP and PUSH routines tailored for this application. Finally,
Figure 10.27 clears the stack.

10.5 Our Final Example: The Calculator 279

Figure 10.21 The calculator, overview

280 chapter 10 And, Finally . . . The Stack t

01
02 ; The Calculator, Main Algorithm
03
04 LEA R6,StackBase Initialize the stack
05 ADD R6,R6,#-1 R6 is stack pointer.
06 LEA R0,PromptMsg
07 PUTS
08 GETC
09 OUT
OA
OB ; Check the command
OC
OD Test LD Rl,NegX Check for X.
OE ADD Rl,Rl,R0
OF BRz Exit
10 /

11 LD Rl,NegC Check for C.
12 ADD Rl,Rl,R0
13 BRz OpClear See Figure 10.27.
14 /

15 LD Rl,NegPlus Check for +
16 ADD Rl,Rl,R0
17 BRz OpAdd See Figure 10.10.
18 /

19 LD Rl,NegMult Check for *
1A ADD Rl,Rl,R0
IB BRz OpMult See Figure 10.14.
1C /

ID LD Rl,NegMinus ; Check for -
IE ADD Rl,Rl,R0
IF BRz OpNeg ; See Figure 10.15.
20 /

21 LD Rl,NegD Check for D
22 ADD Rl,Rl,R0
23 BRz OpDisplay ; See Figure 10.24.
24
25 ; Then we must be entering an integer
26
27 BRnzp PushValue ; See Figure 10.23.
28 /

See Figure 10.23.

29 NewCommand LEA R0,PromptMsg
2A PUTS
2B GETC
2C OUT
2D BRnzp Test
2E Exit HALT
2F PromptMsg .FILL xOOOA
30 .STRINGZ "Enter a command: m
31 NegX .FILL XFFA8
32 NegC .FILL xFFBD
33 NegPlus .FILL XFFD5
34 NegMinus .FILL XFFD3
35 NegMult .FILL XFFD6
36 NegD .FILL xFFBC
Figure 10 .22 The calculator's main algorithm

10.5 Our Final Example: The Calculator 281

01 ; This algorithm takes a sequence of ASCII digits typed by the user,
02 ; converts it into a binary value by calling the ASCIItoBinary
03 ; subroutine, and pushes the binary value onto the stack.
04
05 PushValue LEA R1,ASCIIBUFF ; Rl points to string being
06 LD R2,MaxDigits ; generated.
07
08 ValueLoop ADD R3,R0,xFFF6 ; Test for carriage return.
09 BRz Goodlnput
OA ADD R2,R2,#0
0B BRz TooLargeInput
0C ADD R2,R2,#-1 ; Still room for more digits.
0D STR R0,Rl,#0 ; Store last character read.
0E ADD Rl,Rl,#1
OF GETC
10 OUT ; Echo it.
11 BRnzp ValueLoop
12
13 Goodlnput LEA R2,ASCIIBUFF
14 NOT R2,R2
15 ADD R2,R2,#1
16 ADD Rl,Rl,R2 ; Rl now contains no. of char.
17 JSR ASCIItoBinary
18 JSR PUSH
19 BRnzp NewCommand
1A
IB TooLargeInput GETC ; Spin until carriage return.
1C OUT
ID ADD R3,R0,xFFF6
IE BRnp TooLargelnput
IF LEA R0,TooManyDigits
2 0 PUTS
21 BRnzp NewCommand
22 TooManyDigits .FILL xOOOA
2 3 .STRINGZ "Too many digits"
24 MaxDigits .FILL x0003
Figure 10.23 The calculator's PushValue routine

Note that a few changes are needed if the various routines are to work with
the main program of Figure 10.17. For example, OpAdd, OpMult, and OpNeg
must all terminate with

BRnzp NewCommand

instead of RET. Also, some labels are used in more than one subroutine. If the sub-
routines are assembled separately and certain labels are identified as .EXTERNAL
(see Section 9.2.5), then the use of the same label in more than one subroutine is
not a problem. However, if the entire program is assembled as a single module,
then duplicate labels are not allowed. In that case, one must rename some of the
labels (e.g., Restore 1, Restore2, Exit, and Save) so that all labels are unique.

282 chapter 10 And, Finally . . . The Stack t

01
02
03

This algorithm POPs a value from the stack and puts it in
RO before returning to the calling program. R5 is used to
report success (R5 = 0) or failure (R5 = 1) of the POP operation

04 POP LEA R0,StackBase
05 NOT R0, R0
06 ADD R0,R0,#2 R0 = -(addr.ofStackB
07 ADD R0,R0,R6 R6 = StackPointer
08 BRz Underflow
09 LDR R0,R6,#0 The actual POP
OA ADD R6,R6,#1 Adjust StackPointer
0B AND R5,R5,#0 R5 <-- success
OC RET
0D Underflow ST R7,Save TRAP/RET needs R7.
0E LEA R0,UnderflowMsg
OF PUTS t Print error message.
10 LD Rl,Save Restore R7.
11 AND R5,R5,#0
12 ADD R5,R5,#1 R5 <-- failure
13 RET
14 Save .FILL xOOOO
15 StackMax .BLKW 9
16 StackBase .FILL xOOOO
17 UnderflowMsg .FILL X0 00A
18 .STRINGZ "Error: Too Few Values on the Stack.
Figure 1 0 . 2 4 The calculator 's POP routine

10.1 What are the defining characteristics of a stack?

10.2 What is an advantage to using the model in Figure 10.3 to implement a
stack versus the model in Figure 10.2?

10.3 The LC-3 ISA has been augmented with the following Push and Pop
instructions. Push Rn pushes the value in Register n onto the stack. Pop
Rn removes a value from the stack and loads it into Rn. The figure
below shows a snapshot of the eight registers of the LC-3 BEFORE and
AFTER the following six stack operations are performed. Identify (a)-(d).

BEFORE AFTER
R0 X 0 0 0 0 PUSH R4 R0 xllll
Rl xllll PUSH (a) Rl xllll
R2 X 2 2 2 2 POP (b) R0 X 3 3 3 3

R3 X 3 3 3 3 PUSH (c) R3 X 3 3 3 3

R4 X 4 4 4 4 POP R2 R4 X 4 4 4 4

R5 X 5 5 5 5 POP (d) R5 X 5 5 5 5

R6 X 6 6 6 6 R6 X 6 6 6 6

R7 xllll R7 X 4 4 4 4

Exercises 283

01
02
03
04

This algorithm PUSHes on the stack the value stored in RO.
R5 is used to report success (R5 = 0) or failure (R5 = 1) of
the PUSH operation.

05 PUSH ST Rl,Savel ; Rl is needed by this routine
06 LEA Rl,StackMax
07 NOT Rl, Rl
08 ADD Rl,Rl,#1 Rl = - addr. of StackMax
09 ADD Rl,Rl,R6 R6 = StackPointer
OA BRz Overflow
0B ADD R6,R6,#-1 Adjust StackPointer for PUSH
OC STR R0,R6,#0 The actual PUSH
0D BRnzp Success_exit
0E Overflow ST R7,Save
OF LEA R0,OverflowMsg
10 PUTS
11 LD R7,Save
12 LD Rl, Savel Restore Rl.
13 AND R5,R5,#0
14 ADD R5,R5,#1 R5 <-- failure
15 RET
16 Success exit LD Rl,Savel Restore Rl.
17 AND R5,R5,#0 ; R5 <-- success
18 RET
19 Save .FILL X0000
1A Savel .FILL X0000
IB OverflowMsg .STRINGZ "Error: Stack is Full."
Figure 10.25 The calculator's PUSH routine

01
02
03
04
05
06
07
08
09
OA
0B
0C
0D
0E

This algorithm calls BinarytoASCII to convert the 2's complement
number on the top of the stack into an ASCII character string, and
then calls PUTS to display that number on the screen.

OpDisplay

NewlineChar

JSR
ADD
BRp
JSR
LD
OUT
LEA
PUTS
ADD
BRnzp
.FILL

POP
R5,R5,#0
NewCommand ;
BinarytoASCII
R0,NewlineChar

R0, ASCIIBUFF

R6,R6,#-1
NewCommand
xOOOA

R0 gets the value to be displayed.

POP failed, nothing on the stack.

Push displayed number back on stack

Figure 10.26 The calculator's display routine

01
02
03
04
05
06

This routine clears the stack by resetting the stack pointer (R6).

OpClear LEA
ADD
BRnzp

Figure 10.27 The OpClear routine

R6,StackBase
R6,R6,#1
NewCommand

Initialize the stack.
R6 is stack pointer.

284 chapter 10 And, Finally . . . The Stack t

10.4 Write a function that implements another stack function, peek. Peek
returns the value of the first element on the stack without removing the
element from the stack. Peek should also do underflow error checking.
(Why is overflow error checking unnecessary?)

10.5 How would you check for underflow and overflow conditions if you
implemented a stack using the model in Figure 10.2? Rewrite the PUSH
and POP routines to model a stack implemented as in Figure 10.2, that
is, one in which the data entries move with each
operation.

10.6 Rewrite the PUSH and POP routines such that the stack on which they
operate holds elements that take up two memory locations
each.

10.7 Rewrite the PUSH and POP routines to handle stack elements of
arbitrary sizes.

10.8 The following operations are performed on a stack:

PUSH A, PUSH B, POP, PUSH C, PUSH D, POP, PUSH E,
POP, POP, PUSH F

a. What does the stack contain after the P U S H F?

b. At which point does the stack contain the most elements? Without
removing the elements left on the stack from the previous
operations, we perform:

PUSH G, PUSH H, PUSH I, PUSH J, POP, PUSH K,
POP, POP, POP, PUSH L, POP, POP, PUSH M

c. What does the stack contain now?
10.9 The input stream of a stack is a list of all the elements we pushed onto

the stack, in the order that we pushed them. The input stream from
Exercise 10.8 was ABCDEFGHIJKLM

The output stream is a list of all the elements that are popped off the
stack, in the order that they are popped off.

a. What is the output stream from Exercise 10.8?
Hint: BDE . . .

b. If the input stream is ZYXWVUTSR, create a sequence of pushes
and pops such that the output stream is YXVUWZSRT.

c. If the input stream is ZYXW, how many different output streams can
be created?

10.10 During the initiation of the interrupt service routine, the N, Z, and P
condition codes are saved on the stack. Show by means of a simple
example how incorrect results would be generated if the condition
codes were not saved.

Exercises 285

10.11 In the example of Section 10.2.3, what are the contents of locations
xOlFl and x01F2? They are part of a larger structure. Provide a name
for that structure. (Hint: See Table A.3.)

10.12 Expand the example of Section 10.2.3 to include an interrupt by a still
more urgent device D while the service routine of device C is executing
the instruction at x6310. Assume device D's interrupt vector is xF3.
Assume the interrupt service routine is stored in locations x6400 to
x6412. Show the contents of the stack and PC at each relevant point in
the execution flow.

10.13 Suppose device D in Exercise 10.12 has a lower priority than device C
but a higher priority than device B. Rework Exercise 10.12 with this
new wrinkle.

10.14 Write an interrupt handler to accept keyboard input as follows: A buffer
is allocated to memory locations x4000 through x40FE. The interrupt
handler must accept the next character typed and store it in the next
"empty" location in the buffer. Memory location x40FF is used as a
pointer to the next available empty buffer location. If the buffer is full
(i.e., if a character has been stored in location x40FE), the interrupt
handler must display on the screen: "Character cannot be accepted;
input buffer full."

10.15 Consider the interrupt handler of Exercise 10.14. The buffer is modified
as follows: The buffer is allocated to memory locations x4000 through
x40FC. Location x40FF contains, as before, the address of the next
available empty location in the buffer. Location x40FE contains the
address of the oldest character in the buffer. Location x40FD contains
the number of characters in the buffer. Other programs can remove
characters from the buffer. Modify the interrupt handler so that, after
x40FC is filled, the next location filled is x4000, assuming the character
in x4000 has been previously removed. As before, if the buffer is full,
the interrupt handler must display on the screen: "Character cannot be
accepted; input buffer full."

10.16 Consider the modified interrupt handler of Exercise 10.15, used in
conjunction with a program that removes characters from the buffer.
Can you think of any problem that might prevent the interrupt handler
that is adding characters to the buffer and the program that is removing
characters from the buffer from working correctly together?

10.17 Describe, in your own words, how the Multiply step of the OpMult
algorithm in Figure 10.14 works. How many instructions are executed
to perform the Multiply step? Express your answer in terms of n, the
value of the multiplier. (Note: If an instruction executes five times, it
contributes 5 to the total count.) Write a program fragment that
performs the Multiply step in fewer instructions if the value of the
multiplier is less than 25. How many?

305 chapter 10 And, Finally . . . The Stack t

10.18 Correct Figure 10.16 so that it will add two single-digit positive integers
and produce a single-digit positive sum. Assume that the two digits
being added do in fact produce a single-digit sum.

10.19 Modify Figure 10.16, assuming that the input numbers are one-digit
positive hex numbers. Assume that the two hex digits being added
together do in fact produce a single hex-digit sum.

10.20 Figure 10.19 provides an algorithm for converting ASCII strings to
binary values. Suppose the decimal number is arbitrarily long. Rather
than store a table of 10 values for the thousands-place digit, another
table for the 10 ten-thousands-place digit, and so on, design an
algorithm to do the conversion without resorting to any tables
whatsoever.

10.21 The code in Figure 10.19 converts a decimal number represented as
ASCII digits into binary. Extend this code to also convert a hexadecimal
number represented in ASCII into binary. If the number is preceded by
an x, then the subsequent ASCII digits (three at most) represent a hex
number; otherwise it is decimal.

10.22 The algorithm of Figure 10.20 always produces a string of four
characters independent of the sign and magnitude of the integer being
converted. Devise an algorithm that eliminates unnecessary characters
in common representations, that is, an algorithm that does not store
leading 0s nor a leading + sign.

Exercises 287

10.23 What does the following LC-3 program do?
.ORIG
LEA
LEA
TRAP
AND

LOOP TRAP
TRAP
ADD
BRz
JSR
ADD
BRnzp

INPUTDONE ADD
BRz

L00P2 JSR
TRAP
ADD
BRp

DONE TRAP

X30Q0
R6, STACKBASE
RO, PROMPT
x22
Rl, Rl, #0
x2 0
x21
R3, RO, #-10
INPUTDONE
PUSH
Rl, Rl
LOOP
Rl, Rl
DONE
POP
x21
Rl, Rl
L00P2
x25

#1

#0

#-1

PUTS

IN

Check for newline

HALT

PUSH ADD
STR
RET

R6, R6, #-2
RO, R6, #0

POP LDR R0, R6, #0
ADD R6, R6, #2
RET

PROMPT .STRINGZ * 4Please enter a sentence; ''
STACKSPAC .BLKW #50
STACKBASE .FILL #0

.END

307 chapter 10 And, Finally . . . The Stack t

10.24 Suppose the keyboard interrupt vector is x34 and the keyboard interrupt
service routine starts at location xlOOO. What can you infer about the
contents of any memory location from the above statement?

c h a p t e r

11

I n t r o d u c t i o n lo P r o g r a m m i n g in C

11.1 Our Objective
Congratulations, and welcome to the second half of the book! You just completed
an introduction to the basic underlying structure of modern computer systems.
With this foundational material solidly in place, you are now well prepared to
learn the fundamentals of programming in a high-level programming language.

In the second half of this book, we will discuss high-level programming con-
cepts in the context of the C programming language. At every step, with every
new high-level concept, we will be able to make a connection to the lower lev-
els of the computer system. From this perspective, nothing will be mysterious.
We approach the computer system from the bottom up in order to reveal that
there indeed is no magic going on when the computer executes the programs
you write. It is our belief that with this mystery removed, you will compre-
hend programming concepts more quickly and deeply and in turn become better
programmers.

Let's begin with a quick overview of the first half. In the first 10 chapters, we
described the LC-3, a simple computer that has all the important characteristics
of a more complex, real computer. A basic idea behind the design of the LC-3
(and indeed, behind all modern computers) is that simple elements are system-
atically interconnected to form more sophisticated devices. MOS transistors are
connected to build logic gates. Logic gates are used to build memory and data
path elements. Memory and data path elements are interconnected to build the
LC-3. This systematic connection of simple elements to create something more
sophisticated is an important concept that is pervasive throughout computing,
not only in hardware design but also in software design. It is this simple design

290 chapter 11 Introduction to Programming in C

philosophy that enables us to build computing systems that are, as a whole, very
complex.

After describing the hardware of the LC-3, we described how to program it
in the Is and 0s of its native machine language. Having gotten a taste of the error-
prone and unnatural process of programming in machine language, we quickly
moved to the more user-friendly LC-3 assembly language. We described how
to decompose a programming problem systematically into pieces that could be
easily coded on the LC-3. We examined how low-level TRAP subroutines perform
commonly needed tasks, such as input and output, on behalf of the programmer.
The concepts of systematic decomposition and subroutines are important not
only for assembly-level programming but also for programming in a high-level
language. You will continue to see examples of these concepts many times before
the end of the book.

In this half of the book, our primary objectives are to introduce fundamen-
tal high-level programming constructs—variables, control structures, functions,
arrays, pointers, recursion, simple data structures—and to teach a good problem-
solving methodology for attacking programming problems. Our primary vehicle
for doing so is the C programming language. It is not our objective to provide a
complete coverage of C, but only the portions essential for a novice programmer
to gain exposure to the fundamentals of programming and to be able to write
fairly sophisticated programs. For the reader curious about aspects of C not cov-
ered in the main text, we provide a more complete description of the language in
Appendix D.

In this chapter, we make the transition from programming in low-level
assembly language to high-level language programming in C. We'll explain why
high-level languages came about, why they are important, and how they interact
with the lower levels of the computing system. We'll then dive headfirst into C
by examining a simple example program. Using this example, we point out some
important details that you will need to know in order to start writing your own
C code.

11.2 Bridging [he Gap
As computing hardware becomes faster and more powerful, software applications
become more complex and sophisticated. New generations of computer systems
spawn new generations of software that can do more powerful things than previ-
ous generations. As the software gets more sophisticated, the job of developing
it becomes more difficult. To keep the programmer from being quickly over-
whelmed, it is critical that the process of programming be kept as simple as
possible. Automating any part of this process (i.e., having the computer do part
of the work) is a welcome enhancement.

As we made the transition from LC-3 machine language in Chapters 5 and 6
to LC-3 assembly language in Chapter 7, you no doubt noticed and appreciated
how assembly language simplified programming the LC-3. The Is and 0s became
mnemonics, and memory addresses became symbolic labels. Both instructions
and memory addresses took on a form more comfortable for the human than for

11.2 Bridging the Gap 291

the machine. The assembler filled some of the gap between the algorithm level
and the ISA level in the levels of transformation (see Figure 1.6). It would be
desirable for the language level to fill more of that gap. High-level languages do
just that. They help make the job of programming easier. Let's look at some ways
in which they help.

• High-level languages allow us to give symbolic names to values. When
programming in machine language, if we want to keep track of the iteration count
of a loop, we need to set aside a memory location or a register in which to store
the counter value. To access the counter, we need to remember the spot where we
last stored it. The process is easier in assembly language because we can assign
a meaningful label to the counter's memory location. In a higher-level language
such as C, the programmer simply assigns the value a name (and, as we will
see later, provides a type) and the programming language takes care of allocating
storage for it and performing the appropriate data movement operations whenever
the programmer refers to it. Since most programs contain many values, having
such a convenient way to handle values is a critically useful enhancement.

• High-level languages provide expressiveness. Most humans are more com-
fortable describing the interaction of objects in the real world than describing
the interaction of objects such as integers, characters, and floating-point numbers
in the digital world. Because of their human-friendly orientation, high-level lan-
guages enable the programmer to be more expressive. In a high-level language,
the programmer can express complex tasks with a smaller amount of code, with
the code itself looking more like a human language. For example, if we wanted
to calculate the area of a triangle, we could simply write:

area = 0.5 * base * height;

Another example: we often write code to test a condition and do something
if the condition is true or do something else if the condition is false. In high-level
languages, such common tasks can be simply stated in an English-like form. For
example, if we want to get (Umbrella) if the condition isitcioudy is true,
otherwise get (Sunglasses) if it is false, then in C we can use the following C
control structure:

if (isitcioudy)
get(Umbrella);

else
get(Sunglasses);

• High-level languages provide an abstraction of the underlying hardware.
In other words, high-level languages provide a uniform interface independent
of underlying ISA or hardware. For example, often a programmer will want
to do an operation that is not naturally supported by the instruction set. In the
LC-3, there is no one instruction that performs an integer multiplication. Instead,
an LC-3 assembly language programmer must write a small piece of code to
perform multiplication. The set of operations supported by a high-level language
is usually larger than the set supported by the ISA. The language will generate the

292 * chapter 11 Introduction to Programming in C

necessary code to carry out the operation whenever the programmer uses it. The
programmer can concentrate on the actual programming task knowing that these
high-level operations will be performed correctly and without having to deal with
the low-level implementation.

• High-level languages enhance code readability. Since common control
structures are expressed using simple, English-like statements, the program itself
becomes easier to read. One can look at a program in a high-level language, notice
loops and decision constructs, and understand the code with less effort than with
a program written in assembly language. As you will no doubt discover if you
have not already, the readability of code is very important in programming. Often
as programmers, we are given the task of debugging or building upon someone
else's code. If the organization of the language is human-friendly to begin with,
then understanding code in that language is a much simpler task.

• Many high-level languages provide safeguards against bugs. By making
the programmer adhere to a strict set of rules, the language can make checks as the
program is translated or as it is executed. If certain rules or conditions are violated,
an error message will direct the programmer to the spot in the code where the
bug is likely to exist. In this manner, the language helps the programmer to get
his/her program working more quickly.

11.3 Translating High-Level Language Programs
Just as LC-3 assembly language programs need to be translated (or more spe-
cifically, assembled) into machine language, so must all programs written in
high-level languages. After all, the underlying hardware can only execute machine
code. How this translation is done depends on the particular high-level language.
One translation technique is called interpretation. With interpretation, a trans-
lation program called an interpreter reads in the high-level language program
and performs the operations indicated by the programmer. The high-level lan-
guage program does not directly execute but rather is executed by the interpreter
program. The other technique is called compilation, and the translator, called a
compiler, completely translates the high-level language program into machine
language. The output of the compiler is called the executable image, and it
can directly execute on the hardware. Keep in mind that both interpreters and
compilers are themselves programs running on the computer system.

11.3.1 Interpretation
With interpretation, a high-level language program is a set of commands for the
interpreter program. The interpreter reads in the commands and carries them out as
defined by the language. The high-level language program is not directly executed
by the hardware but is in fact just input data for the interpreter. The interpreter is a
virtual machine that executes the program. Many interpreters translate the high-
level language program section by section, one line, command, or subroutine at
a time.

11.4 The C Programming Language

For example, the interpreter might read a single line of the high-level language
program and directly carry out the effects of that line on the underlying hardware.
If the line said, "Take the square root of B and store it into C t h e interpreter will
carry out the square root by issuing the correct stream of instructions in the ISA
of the computer to perform square root. Once the current line is processed, the
interpreter moves on to the next line and executes it. This process continues until
the entire high-level language program is done.

High-level languages that are often interpreted include LISP, BASIC, and
Perl. Special-purpose languages tend to be interpreted, such as the math language
called Matlab. The LC-3 simulator is also an interpreter. Other examples include
the UNIX command shell.

11.3.2 Compilation
With compilation, on the other hand, a high-level language program is translated
into machine code that can be directly executed on the hardware. To do this
effectively, the compiler must analyze the source program as a larger unit (usually,
the entire source file) before producing the translation. A program need only be
compiled once and can be executed many times. Many programming languages,
including C, C++, and FORTRAN, are typically compiled. The LC-3 assembler
is an example of a rudimentary compiler. A compiler processes the file (or files)
containing the high-level language program and produces an executable image.
The compiler does not execute the program (though some sophisticated compilers
do execute the program in order to better optimize its performance), but rather
only transforms it from the high-level language into the computer's native machine
language.

11.3.3 Pros and Cons
There are advantages and disadvantages with either translation technique. With
interpretation, developing and debugging a program is usually easier. Interpreters
often permit the execution of a program one section (single line, for example) at a
time. This allows the programmer to examine intermediate results and make code
modifications on-the-fly. Often the debugging is easier with interpretation. Inter-
preted code is more easily portable across different computing systems. However,
with interpretation, programs take longer to execute because there is an inter-
mediary, the interpreter, which is actually doing the work. With the compiler's
assistance, the programmer can produce code that executes more quickly and uses
memory more efficiently. Since compilation produces more efficient code, most
commercially produced software tends to be programmed in compiled languages.

11.4 The C Programming Language
The C programming language was developed in 1972 by Dennis Ritchie at Bell
Laboratories. C was developed for use in writing compilers and operating systems,
and for this reason the language has a low-level bent to it. The language allows

294 * chapter 11 Introduction to Programming in C

FORTRAN

COBOL
PL/1 Pascal

BASIC

C
Algol Simula!

Smalltalk

LISP
Prolog

- C++

Perl

Java

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 11 .1 A timeline of the development of programming languages. While each new language shares some link to all
previous languages, there is a strong relationship between C and both C++ and Java

the programmer to manipulate data items at a very low level yet still provides the
expressiveness and convenience of a high-level language. It is for these reasons
that C is very widely used today as more than just a language to develop compilers
and system software.

The C programming language has a special place in the evolution of program-
ming languages. Figure 11.1 provides a timeline of the development of some of
the more significant programming languages. Starting with the introduction of
the first high-level programming language FORTRAN in 1954, each subsequent
language was an attempt to fix the problems with its predecessors. While it is
somewhat difficult to completely track the "parents" of a language (in fact, one
can only surely say that all previous languages have some influence on a particu-
lar language), it is fairly clear that C had a direct influence on C++ and Java, both
of which are two of the more significant languages today. C++ and Java were
also influenced by Simula and its predecessors. The object-oriented features of
C++ and Java come from these languages. Almost all of the aspects of the C
programming language that we discuss in this textbook would be the same if we
were programming in C++ or Java. Once you've understood the concepts in this
half of the textbook, both C++ and Java will also be easier to master because of
their similarity to C.

Because of its low-level approach and because of its root influence on oilier
current major languages, C is the language of choice for our bottom-up exploration
of computing systems. C allows us to make clearer connections to the underlying
levels in our discussions of basic high-level programming concepts. Learning
more advanced concepts, such as object-oriented programming, is a shorter leap
forward once these more fundamental, basic concepts are understood.

All of the examples and specific details of C presented in this text are based on
a standard version of C called ANSI C. As with many programming languages,
several variants of C have been introduced throughout the years. In 1989, the
American National Standards Institute (ANSI) approved "an unambiguous and
machine-independent definition of the language C" in order to standardize the
popular language. This version is referred to as ANSI C. ANSI C is supported
by most C compilers. In order to compile and try out the sample code in this
textbook, having access to an ANSI-compliant C compiler will be essential.

11.4 The C Programming Language

11.4.1 The C Compiler
The C compiler is the typical mode of translation from a C source program to an
executable image. Recall from Section 7.4.1 that an executable image is a machine
language representation of a program that is ready to be loaded into memory and
executed. The entire compilation process involves the preprocessor, the compiler
itself, and the linker. Often, the entire mechanism is casually referred to as the
compiler, because when we use the C compiler, the preprocessor and the linker
are often automatically invoked. Figure 11.2 shows how the compilation process
is handled by these components.

/ Executable
V image

Figure 11.2 The dotted box indicates the overall compilation process—the preprocessor, the
compiler, and the linker. The entire process is called compilation even though
the compiler is only one part of it. The inputs are C source and header files and
various object files. The output is an executable image.

296 * chapter 11 Introduction to Programming in C

The Preprocessor

As its name implies, the C preprocessor "preprocesses" the C program before
handing it off to the compiler. The C preprocessor scans through the source
files (the source files contain the actual C program) looking for and acting upon
C preprocessor directives. These directives are similar to pseudo-ops in LC-3
assembly language. They instruct the preprocessor to transform the C source
file in some controlled manner. For example, we can direct the preprocessor to
substitute the character string DAYS THIS MONTH with the string 3 0 or direct
it to insert the contents of file stdio.h into the source file at the current line.
We'll discuss why both of these actions are useful in the subsequent chapters.
All preprocessor directives begin with a pound sign, #, as the first character. All
useful C programs rely on the preprocessor in some way.

The Compiler

After the preprocessor transforms the input source file, the program is ready to be
handed over to the compiler. The compiler transforms the preprocessed program
into an object module. Recall from Section 7.4.2 that an object module is the
machine code for one section of the entire program. There are two major phases
of compilation: analysis, in which the source program is broken down or parsed
into its constituent parts, and synthesis, in which a machine code version of the
program is generated. It is the job of the analysis phase to read in, parse, and build
an internal representation of the original program. The synthesis phase generates
machine code and, if directed, attempts to optimize this code to execute more
quickly and efficiently on the computer on which it will be run. Each of these two
phases is typically divided into subphases where specific tasks, such as parsing,
register allocation, or instruction scheduling, are accomplished. Some compil-
ers generate assembly code and use an assembler to complete the translation to
machine code.

One of the most important internal bookkeeping mechanisms the com-
piler uses in translating a program is the symbol table. A symbol table is the
compiler's internal bookkeeping method for keeping track of all the symbolic
names the programmer has used in the program. The C compiler's symbol table
is very similar to the symbol table maintained by the LC-3 assembler (see
Section 7.3.3). We'll examine the C compiler's symbol table in more detail in
the next chapter.

The Linker

The linker takes over after the compiler has translated the source file into object
code. It is the linker's job to link together all object modules to form an executable
image of the program. The executable image is a version of the program that can
be loaded into memory and executed by the underlying hardware. When you click
on the icon for the web browser on your PC, for example, you are instructing the
operating system to read the web browser's executable image from your hard
drive, load it into memory, and start executing it.

Often, C programs rely upon library routines. Library routines perform
common and useful tasks (such as I/O) and are prepared for general use by

11.5 A Simple Example 316

the developers of the system software (the operating system and compiler,
for example). If a program uses a library routine, then the linker will find the
object code corresponding to the routine and link it within the final executable
image. This process of linking in library objects should not be new to you; we
described the process in Section 9.2.5 in the context of the LC-3. Usually, library
objects are stored in a particular place depending on the computer system. In
UNIX, for example, many common library objects can be found in the directory
/usr/lib.

11.5 R Simple Example
We are now ready to start discussing programming concepts in the C programming
language. Many of the new C concepts we present will be coupled with LC-3 code
generated by a "hypothetical" LC-3 C compiler. In some cases, we will describe
what actually happens when this code is executed. Keep in mind that you are not
likely to be using an LC-3-based computer but rather one based on a real ISA
such as the x86. For example, if you are using a Windows-based PC, then it is
likely that your compiler will generate x86 code, not LC-3 code.

Many of the examples we provide are complete programs that you can com-
pile and execute. For the sake of clearer illustration, some of the examples we
provide are not quite complete programs and need to be completed before they
can be compiled. In order to keep things straight, we'll refer to these partial code
examples as code segments.

Let's begin by diving headfirst into a simple C example. Figure 11.3 shows
its source code. We will use this example to jump-start the process of learning C
by pointing out some important aspects of a typical C program. The example is a
simple one: It prompts the user to type in a number and then counts down from
that number to 0.

You are encouraged to compile and execute this program. At this point, it
is not important to completely understand the purpose of each line. There are
however several aspects of this example that will help you with writing your own
C code and with comprehending the subsequent examples in the text. We'll focus
on four such aspects: the function main, the code's comments and programming
style, preprocessor directives, and the I/O function calls.

11.5.1 The Function main
The function main begins at the line containing int main {} (line 17) and ends
at the closing brace on the last line of the code. These lines of the source code
constitute a function definition for the function named main. What were called
subroutines in LC-3 assembly language programming (discussed in Chapter 9)
are referred to as functions in C. Functions are a very important part of C, and
we will devote all of Chapter 14 to them. In C, the function main serves a special
purpose: It is where execution of the program begins. Every C program, therefore,
requires a function main. Note that in ANSI C, main must be declared to return

298 * chapter 11 Introduction to Programming in C

1 /*
2 *
3 * Program Name : countdown, our first C program
4 *
5 * Description : This program prompts the user to type in
6 * a positive number and counts down from that number to 0,
7 * displaying each number along the way.
8 *

9 */
10
11 /* The next two lines are preprocessor directives */
12 #include <stdio.h>
13 #define STOP 0
14
15 /* Function : main */
16 /* Description : prompt for input, then display countdown */
17 int main()
18 {
19 /* Variable declarations */
20 int counter; /* Holds intermediate count values */
21 int startPoint; /* Starting point for count down */
2 2
23 /* Prompt the user for input */
24 printf(»===== Countdown Program =====\n");
25 printf("Enter a positive integer: ");
26 scanf("%d", &startPoint);
27
2 8 /* Count down from the input number to 0 */
29 for (counter = startPoint; counter >= STOP; counter--)
30 printf("%d\nn, counter);
31 }
Figure 11.3 A program prompts the user for a decimal integer and counts down f rom that

number to 0

an integer value. That is, main must be of type int, thus line 17 of the code is
int main().

In this example, the code for function main (i.e., the code in between the curly
braces) can be broken down into two components. The first component contains
the variable declarations for the function. Two variables, one called counter and
the other startPoint, are created for use within the function main. Variables are
a very useful feature provided by high-level programming languages. They give
us a way to symbolically name the values within a program.

The second component contains the statements of the function. These state-
ments express the actions that will be performed when the function is executed. For
all C programs, execution starts in main and progresses, statement by statement,
until the last statement in main is completed.

In this example, the first grouping of statements (lines 24-26) displays a
message and prompts the user to input an integer number. Once the user enters
a number, the program enters the last statement, which is a for loop (a type of
iteration construct that we will discuss in Chapter 13). The loop counts downward

11.5 A Simple Example 299

from the number typed by the user to 0. For example, if the user entered the number
5, the program's output would look as follows:

===== Countdown Program =====
Enter a positive integer: 5
5
4
3
2
1
0

Notice in this example that many lines of the source code are terminated by
semicolons,;. In C, semicolons are used to terminate declarations and statements;
they are necessary for the compiler to break the program down unambiguously
into its constituents.

11.5.2 Formatting, Comments, and Style
C is a free-format language. That is, the amount of spacing between words and
between lines within a program does not change the meaning of the program. The
programmer is free to structure the program in whatever manner he/she sees fit
while obeying the syntactic rules of C. Programmers use this freedom to format the
code in a manner that makes it easier to read. In the example program, notice that
the for loop is indented in such a manner that the statement being iterated is easier
to identify. Also in the example, notice the use of blank lines to separate different
regions of code in the function main. These blank lines are not necessary but
are used to provide visual separation of the code. Often, statements that together
accomplish a larger task are grouped together into a visually identifiable unit. The
C code examples throughout this book use a conventional indentation style typical
for C. Styles vary. Programmers sometimes use style as a means of expression.
Feel free to define your own style, keeping in mind that the objective is to help
convey the meaning of the program through its formatting.

Comments in C are different than in LC-3 assembly language. Comments in
C begin with /* and end with */. They can span multiple lines. Notice that this
example program contains several lines of comments, some on a single line, some
spanning multiple lines. Comments are expressed differently from one program-
ming language to another. For example, comments in C++ can also begin with the
sequence / / and extend to the end of the line. Regardless of how comments are
expressed, the purpose is always the same: They provide a way for programmers
to describe in human terms what their code does.

Proper commenting of code is an important part of the programming process.
Good comments enhance code readability, allowing someone not familiar with
the code to understand it more quickly. Since programming tasks often involve
working in teams, code very often gets shared or borrowed between programmers.
In order to work effectively on a programming team, or to write code that is worth
sharing, you must adopt a good commenting style early on.

300 * chapter 11 Introduction to Programming in C

One aspect of good commenting style is to provide information at the begin-
ning of each source file that describes the code contained within it, the date
it was last modified, and by whom. Furthermore, each function (see function
main in the example) should have a brief description of what the function
accomplishes, along with a description of its inputs and outputs. Also, com-
ments are usually interspersed within the code to explain the intent of the
various sections of the code. But overcommenting can be detrimental as it can
clutter up your code, making it harder to read. In particular, watch out for
comments that provide no additional information beyond what is obvious from
the code.

11,5.3 The C Preprocessor
We briefly mentioned the C preprocessor in Section 11.4.1. Recall that it trans-
forms the original C program before it is handed off to the compiler. Our simple
example contains two commonly used preprocessor directives: #define and
#inciude. The C examples in this book rely only on these two directives.

The #def ine directive is a simple yet powerful directive that instructs the C
preprocessor to replace occurrences of any text that matches X with text Y. That
is, the macro X gets substituted with Y. In the example, the #def ine causes the
text STOP to be substituted with the text O. So the following source line

for {counter - startPoint; counter >= STOP; counter--)

is transformed (internally, only between the preprocessor and compiler) into

for (counter = startPoint; counter >= 0; counter--)

Why is this helpful? Often, the #def ine directive is used to create fixed values
within a program. Following are several examples.

#define NUMBER_OF_STUDENTS 25
#define MAX_LENGTH 80
#define LENGTH_OF_GAME 3 00
#define PRICE_OF_FUEL 1.49
#define COLOR_OF_EYES brown

So for example, we can symbolically refer to the price of fuel as
PRICE OF FUEL. If the price of fuel were to change, we would simply modify
the definition of the macro PRICE OF FUEL and the preprocessor would han-
dle the actual substitution for us. This can be very convenient—if the cost of
fuel was used heavily within a program, we would only need to modify one
line in the source code to change the price throughout the code. Notice that the
last example is slightly different from the others. In this example, one string of
characters COLOR OF EYES is being substituted for another, brown. The common
programming style is to use uppercase for the macro name.

The #include directive instructs the preprocessor literally to insert another
file into the source file. Essentially, the #include directive itself is replaced by
the contents of another file. At this point, the usefulness of this command may not

11.5 A Simple Example 301

be completely apparent to you, but as we progress deeper into the C language, you
will understand how Cheaderfiles can be used to hold #defines and declarations
that are useful among multiple source files.

For instance, all programs that use the C I/O functions must include the I/O
library's header file s t dio. h. This file defines some relevant information about the
I/O functions in the C library. The preprocessor directive, #include <stdio. h>
is used to insert the header file before compilation begins.

There are two variations of the #include directive:

#include <stdio. h>
#include "program.h"

*The first variation uses angle brackets (< >) around the filename. This tells the
preprocessor that the header file can be found in a predefined directory. This is
usually determined by the configuration of the system and contains many system-
related and library-related header files, such as st dio. h. Often we want to include
headers files we have created ourselves for the particular program we are writing.
The second variation, using double quotes (M ") around the filename, instructs
the preprocessor that the header file can be found in the same directory as the
C source file.

Notice that none of the preprocessor macros ends with a semicolon. Since
#def ine and #include are preprocessor directives and not C statements, they
are not required to be terminated by semicolons.

11.5.4 Input and Output
We close this chapter by pointing out how to perform input and output from
within a C program. We describe these functions at a high level now and save the
details for Chapter 18, when we have introduced enough background material to
understand C I/O down to a low level. Since all useful programs perform some
form of I/O, learning the I/O capabilities of C is an important first step. In C,
I/O is performed by library functions, similar to the IN and OUT trap routines
provided by the LC-3 system software.

Three lines of the example program perform output using the C library
function print f or print formatted (refer to lines 24, 25, and 30). The func-
tion printf performs output to the standard output device, which is typically the
monitor. It requires a format string in which we provide two things: (1) text to
print out and (2) specifications on how to print out values within that text. For
example, the statement

printf("43 is a prime number.");

prints out the following text to the output device.

43 is a prime number.

In addition to text, it is often useful to print out values generated within a program.
Specifications within the format string indicate how we want these values to be
printed out. Let's examine a few examples.

302 * chapter 11 Introduction to Programming in C

printf("%d is a prime number.", 43);

This first example contains the format specification %d in its format string. It
causes the value listed after the format string to be embedded in the output as a
decimal number in place of the %d. The resulting output would be

43 is a prime number.

The following examples show other variants of printf.

printf("43 plus 59 in decimal is %d.", 43 + 59);
printf("43 plus 59 in hexadecimal is %x.", 43 + 59);
printf("43 plus 59 as a character is %c.", 43 + 59);

In the first printf, the format specification causes the value 102 to be
embedded in the text because the result of "43 + 59" is printed as a decimal
number. In the next example, the format specification %x causes 66 (because
102 equals x66) to be embedded in the text. Similarly, in the third example,
the format specification of %c displays the value interpreted as an ASCII char-
acter which, in this case, would be lowercase f . The output of this statement
would be

43 plus 59 as a character is f.

What is important to notice is that the binary pattern being supplied to printf
after the format string is the same for all three statements. Here, printf interprets
the binary pattern 0110 0110 (decimal 102) first as a decimal number, then as a
hexadecimal number, and finally as an ASCII character. The C output function
printf converts the bit pattern into the proper sequence of ASCII characters
based on the format sepecifications we provide it. Table D.6 contains a list of all
the format specifications that can be used with printf. All format specifications
begin with the percent sign, %.

The final example demonstrates a very common and powerful use of print f.

printf("The wind speed is %d km/hr.", windSpeed);

Here, a value generated during the execution of the program, in this case the
variable windSpeed, is output as a decimal number. The value displayed depends
on the value of windSpeed when this line of code is executed. So if windSpeed
equals 2 when the statement containing printf is executed, the following output
would result:

The wind speed is 2 km/hr.

If you were to execute a program containing the five preceding printf state-
ments in these examples, you would notice that they would all be displayed on one
single line without any line breaks. If we want line breaks to appear, we must put
them explicitly within the format string in the places we want them to occur. New
lines, tabs, and other special characters require the use of a special backslash (\)
sequence. For example, to print a new line character (and thus cause a line break),

11.5 A Simple Example 322

we use the special sequence \n. We can rewrite the preceding printf statements
as such:

printf("%d is a prime number.\n", 43);
printf("43 plus 59 in decimal is %d.\n", 43 + 59);
printf("43 plus 59 in hexadecimal is %x.\n", 43 + 59);
printf("43 plus 59 as a character is %c.\n", 43 + 59);
printf{"The wind speed is %d km/hr.\n", windSpeed);

Notice that each format string ends by printing the new line character \n, so
therefore each subsequent printf will begin on a new line. Table D.l contains a
list of other special characters that are useful when generating output. The output
generated by these five statements would look as follows:

43 is a prime number.
43 plus 59 in decimal is 102.
43 plus 59 in hexadecimal is 66.
43 plus 59 as a character is f.
The wind speed is 2 km/hr.

In our sample program in Figure 11.3, printf appears three times in the
source. The first two versions display only text and no values (thus, they have no
format specifications). The third version prints out the value of variable counter.
Generally speaking, we can display as many values as we like within a single
printf. The number of format specifications (for example, %d) must equal the
number of values that follow the format string.

Question: What happens if we replace the third printf in the example pro-
gram with the following? The expression "startPoint - counter" calculates
the value of startPoint minus the value of counter.

printf("%d %d\n", counter, startPoint - counter);

Having dealt with output, we now turn to the corresponding input func-
tion scanf. The function scanf performs input from the standard input device,
which is typically the keyboard. It requires a format string (similar to the one
required by printf) and a list of variables into which the values retrieved from
the keyboard should be stored. The function scanf reads input from the key-
board and, according to the conversion characters in the format string, converts
the input and assigns the converted values to the variables listed. Let's look at an
example.

In the example program in Figure 11.3, we use scanf to read in a single
decimal number using the format specification %d. Recall from our discussion
on LC-3 keyboard input, the value received via the keyboard is in ASCII. The
format specification %d informs scanf to expect a sequence of numeric ASCII
keystrokes (i.e., the digits 0 to 9). This sequence is interpreted as a decimal number
and converted into an integer. The resulting binary pattern will be stored in the

304 * chapter 11 Introduction to Programming in C

variable called startPoint. The function scanf automatically performs type
conversions (in this case, from ASCII to integer) for us! The format specification
%d is one of several that can be used with scanf. Table D.5 lists them all. There are
specifications to read in a single character, a floating point value, an integer
expressed as a hexadecimal value, and so forth.

A very important thing to remember about scanf is that variables that are
being modified by the scanf function (for example, startPoint) must be pre-
ceded by an & character. This may seem a bit mysterious, but we will discuss the
reason for this strange notation in Chapter 16.

Following are several more examples of scanf.

/* Reads in a character and stores it in nextChar */
scanf (He", fcnextChar) ;

/* Reads in a floating point number into radius */
scanf("% f", &radius) ;

/* Reads two decimal numbers into length and width */
scanf (!,%d Id", &length, &width) ;

11.6 Summon!
In this chapter, we have introduced some key characteristics of high-level pro-
gramming languages and provided an initial exposure to the C programming
language. We conclude this chapter with a listing of the major topics we've
covered.

• High-Level Programming Languages. High-level languages aim to make
the programming process easier by connecting real-world objects with the low-
level concepts, such as bits and operations on bits, that a computer natively deals
with. Because computers can only execute machine code, programs in high-level
languages must be translated using the process of compilation or interpretation
into machine code.

• The C Programming Language. The C programming language is an ideal
language for a bottom-up exposure to computing because of its low-level nature
and because of its root influence on current popular programming languages. The
C compilation process involves a preprocessor, a compiler, and a linker.

• Our First C Program. We provided a very simple program to illustrate
several basic features of C programs. Comments, indentation, and style can help
convey the meaning of a program to someone trying to understand the code. Many
C programs use the preprocessor macros #def ine and #include. The execution
of a C program begins at the function main, which itself consists of variable
declarations and statements. Finally, I/O in C can be accomplished using the
library functions printf and scanf.

Exercises 305

11-1 Describe some problems or inconveniences you found when
programming in lower-level languages.

11.2 How do higher-level languages help reduce the tedium of programming
in lower-level languages?

11-3 What are some disadvantages to programming in a higher-level
language?

11.4 Compare and contrast the execution process of an interpreter versus the
execution process of a compiled binary. What implication does
interpretation have on performance?

11.5 A language is portable if its code can run on different computer
systems, say with different ISAs. What makes interpreted languages
more portable than compiled languages?

11.6 The UNIX command line shell is an interpreter. Why can't it be a
compiler?

11.7 Is the LC-3 simulator a compiler or an interpreter?
11.8 Another advantage of compilation over interpretation is that a compiler

can optimize code more thoroughly. Since a compiler can examine the
entire program when generating machine code, it can reduce the amount
of computation by analyzing what the program is trying to do.

The following algorithm performs some very straightforward
arithmetic based on values typed at the keyboard. It outputs a single result.
1. Get W from the keyboard
2. X ^ W + W
3. Y ^ - X + X
4. Z Y + Y
5. Print Z to the screen
a. An interpreter would execute the program statement by statement. In

total, five statements would execute. At least how many arithmetic
operations would the interpreter perform on behalf of this program?
State what the operations would be.

b. A compiler would analyze the entire program before generating
machine code, and possibly optimize the code. If the underlying ISA
were capable of all arithmetic operations (i.e., addition, subtraction,
multiplication, division), at least how many operations would be
needed to carry out this program? State what the operations
would be.

11.9 For this question refer to Figure 11.2.
a. Describe the input to the C preprocessor.
b. Describe the input to the C compiler.
c. Describe the input to the linker.

325 * chapter 11 Introduction to Programming in C

11-10 What happens if we changed the second-to-last line of the program in
Figure 11.3 from printf ("%d\nH, counter) ; to:
a. printf("%c\n", counter + 'A') ;
h printf("%d\n%d\n", counter, startPoint + counter);
C. printf("%x\n", counter);

11.11 The function scanf reads in a character from the keyboard and the
function printf prints it out. What do the following two statements
accomplish?
scanf("%c", &nextChar);
printf("%d\nn, nextChar);

11.12 The following lines of C code appear in a program. What will be the
output of each printf statement?
#define LETTER '1'
#define ZERO 0
#define NUMBER 123

printf("%c", ' a') ;

printf(nx%xu, 12288);

printf (,,$%d.%C%d\n"/ NUMBER, LETTER, ZERO) ;

11.13 Describe a program (at this point we do not expect you to be able to
write working C code) that reads a decimal number from the keyboard
and prints out its hexadecimal equivalent.

c h a p t e r

12
and O p e r a t o r s

12.1 Introduction
In this chapter, we cover two basic concepts of high-level language programming,
variables and operators. Variables hold the values upon which a program acts, and
operators are the language mechanisms for manipulating these values. Variables
and operators together allow the programmer to more easily express the work that
a program is to carry out.

The following line of C code is a statement that involves both variables and
operators. In this statement, the addition operator + is used to add 3 to the original
value of the variable score. This new value is then assigned using the assignment
operator = back to score. If score was equal to 7 before this statement was
executed, it would equal 10 afterwards.

score = score + 3;

In the first part of this chapter, we'll take a closer look at variables in the C
programming language. Variables in C are straightforward: the three most basic
flavors are integers, characters, and floating point numbers. After variables, we'll
cover C's rich set of operators, providing plenty of examples to help illustrate
their operations. One unique feature of our approach is that we can connect both
of these high-level concepts back to solid low-level material, and in the third
part of the chapter we'll do just that by discussing the compiler's point of view
when it tries to deal with variables and operators in generating machine code. We
close this chapter with some problem solving and some miscellaneous concepts
involving variables and operators in C.

Var iab les

308 chapter 12 Variables and Operators

12.2 V a r i a b l e s
A value is any data item upon which a program performs an operation. Examples
of values include the iteration counter for a loop, an input value entered by a
user, or the partial sum of a series of numbers that are being added together.
Programmers spend a lot of effort keeping track of these values.

Because values are such an important programming concept, high-level lan-
guages try to make the process of managing them easier on the programmer.
High-level languages allow the programmer to refer to values symbolically, by a
name rather than a memory location. And whenever we want to operate on the
value, the language will automatically generate the proper sequence of data move-
ment operations. The programmer can then focus on writing the program and need
not worry about where in memory to store a value or about juggling the value
between memory and the registers. In high-level languages, these symbolically
named values are called variables.

In order to properly track the variables in a program, the high-level language
translator (the C compiler, for instance) needs to know several characteristics
about each variable. It needs to know, obviously, the symbolic name of the vari-
able. It needs to know what type of information the variable will contain. It needs
to know where in the program the variable will be accessible. In most languages,
C included, this information is provided by the variable's declaration.

Let's look at an example. The following declares a variable called echo that
will contain an integer value.

int echo;

Based on this declaration, the compiler reserves an integer's worth of memory
for echo (sometimes, the compiler can optimize the program such that echo is
stored in a register and therefore does not require a memory location, but that is
a subject for a later course). Whenever echo is referred to in the subsequent C
code, the compiler generates the appropriate machine code to access it.

12.2.1 Three Basic Data Types: int, char, double
By now, you should be very familiar with the following concept: the meaning
of a particular bit pattern depends on the data type imposed on the pattern. For
example, the binary pattern ono ono might represent the lowercase f or it might
represent the decimal number 102, depending on whether we treat the pattern
as an ASCII data type or as a 2's complement integer data type. A variable's
declaration informs the compiler about the variable's type. The compiler uses a
variable's type information to allocate a proper amount of storage for the variable.
Also, type indicates how operations on the variable are to be performed at the
machine level. For instance, performing an addition on two integer variables can
be done on the LC-3 with one ADD instruction. If the two variables were of
floating point type, the LC-3 compiler would generate a sequence of instructions
to perform the addition because no single LC-3 instruction performs a floating
point addition.

12.2 Variables 309

C supports three basic data types: integers, characters, and floating point
numbers. Variables of these types can be created with the type specifiers int,
Char, and double (which is short for afowWe-precision floating point).

int
The int type specifier declares a signed integer variable. The internal represen-
tation and range of values of an int depends on the ISA of the computer and
the specifics of the compiler being used. In the LC-3, for example, an int is
a 16-bit 2's complement integer that can represent numbers between -32 ,768
and +32,767. On an x86-based computer, an int is likely to be a 32-bit 2's
complement number that can represent numbers between -2,147,483,648 and
+2,147,483,647. In most cases, an int is a 2's complement integer in the word
length of the underlying ISA.

The following line of code declares an integer variable called
numberOfSeconds. When the compiler sees this declaration, the compiler sets
aside enough storage for this variable (in the case of the LC-3, one memory
location).

int numberOfSeconds;
It should be no surprise that variables of integer type are frequently used

in programs. They often conveniently represent the real-world data we want our
programs to process. If we wanted to represent time, say for example in seconds,
an integer variable would be perfect. In an application that tracks whale migration,
we can use an integer to represent the sizes of pods of gray whales seen off the
California coast. Integers are also useful for program control. An integer can be
useful as the iteration counter for a counter-controlled loop.

char
The char type specifier declares a variable whose data value represents a char-
acter. Following are two examples. The first declaration creates a variable named
lock. The second one declares key. The second declaration is slightly different;
it also contains an initializer. In C, any variables can be set to an initial value
directly in its declaration. In this example, the variable key will have the initial
value of the ASCII code for uppercase Q. Also notice that the uppercase Q is
surrounded by single quotes, ' ' . In C, characters that are to be interpreted as
ASCII literals are surrounded by single quotes. What about lock? What initial
value will it have? We'll address this issue shortly.

char lock;
char key = 'Q';

Although eight bits are sufficient to hold an ASCII character, for purposes
of making the examples in this textbook less cluttered, all char variables will
occupy 16 bits. That is, chars, like ints, will each occupy one memory location.

double
The type specifier double allows us to declare variables of the floating point
type that we examined in Section 2.7.2. Floating point numbers allow us to

310 chapter 12 Variables and Operators

conveniently deal with numbers that have fractional components or numbers that
are very large or very small. Recall from our previous discussion in Section 2.7.2
that at the lowest level, a floating point number is a bit pattern that has three parts:
a sign, a fraction, and an exponent.

Here are three examples of variables of type double:

double costPerLiter;
double electronsPerSecond;
double averageTemp;

As with i n t s and chars, we can also optionally initialize a floating point
number along with its declaration. Before we can completely describe how
to initialize floating point variables, we must first discuss how to represent
floating point literals in C. Floating point literals are represented containing
either a decimal point or an exponent, or both, as demonstrated in the exam-
ple code that follows. The exponent is signified by the character e or E and can
be positive or negative. It represents the power of 10 by which the fractional
part (the part that precedes the e or E) is multiplied. Note that the exponent
must be an integer value. For more information on floating point literals, see
Appendix D.2.4.

double twoPointOne = 2.1; /* This is 2.1 */
double twoHundredTen = 2.1E2; /* This is 210.0 */
double twoHundred = 2E2; /* This is 200.0 */
double twoTenths = 2E-1; /* This is 0.2 */
double minusTwoTenths = -2E-1; /* This is -0.2 */

Another floating point type specifier in C is called float. It declares a single-
precision floating point variable; double creates one that is double-precision.
Recall from our previous discussion on floating point numbers in Chapter 2 that
the precision of a floating point number depends on the number of bits of the
representation allocated to the fraction. In C, depending on the compiler and the
ISA, a double may have more bits allocated for the fraction than a float, but
never fewer. The size of the double is dependent upon the ISA and the compiler.
Usually, a double is 64 bits long and a float is 32 bits in compliance with the
IEEE 754 floating point standard.

12.2.2 Choosing Identifiers
Most high-level languages have flexible rules for the variable names (more gen-
erally known as identifiers) that can be chosen within a program. C allows
you to create identifiers composed of letters of the alphabet, digits, and the
underscore character, Only letters and the underscore character, however,
can be used to begin an identifier. An identifier can be of any length, but only
the first 31 characters are used by the C compiler to differentiate variables—
only the first 31 characters matter to the compiler. Also, the use of upper-
and lowercase has significance: C will treat Capital and capital as different
indentifiers.

12.2 Variables 330

Here are several tips on standard C naming conventions: Variables beginning
with an underscore (e.g., index) conventionally are used only in special library
code. Variables are almost never declared in all uppercase letters. The convention
of all uppercase is used solely for symbolic values created using the preproces-
sor directive #define. See Section 11.5.3 for examples of symbolic constants.
Programmers like to visually partition variables that consist of multiple words. In
this book, we use uppercase (e.g., wordsPerSecond). Other programmers prefer
underscores (e.g., words__per_second).

Giving variables meaningful names is important for writing good code. Vari-
able names should be chosen to reflect a characteristic of the value they represent,
allowing the programmer to more easily recall what the value is used for. For
example, a value used to count the number of words the person at the keyboard
types per second might be named wordsPerSecond.

There are certain keywords in C that have special meaning and are therefore
restricted from being used as identifiers. A list of C keywords can be found in
Appendix D.2.6. One keyword we have encountered already is int, and therefore
we cannot use int as a variable name. Having a variable named int would not
only be confusing to someone trying to read through the code but might also
confuse the compiler trying to translate it. The compiler may not be able to
determine whether a particular int refers to the variable or to the type specifier.

12.2.3 Scope: Local versus Global
As we mentioned, a variable's declaration assists the compiler in managing the
storage of that variable. In C, a variable's declaration conveys three pieces of
information to the compiler: the variable's identifier, its type, and its scope. The
first two of these, identifier and type, the C compiler gets explicitly from the
variable's declaration. The third piece, scope, the compiler infers from the position
of the declaration within the code. The scope of a variable is the region of the
program in which the variable is "alive" and accessible.

The good news is that in C, there are only two basic types of scope for a
variable. Either the variable is global to the entire program,1 or it is local, or
private, to a particular block of code.

Local Variables

In C, all variables must be declared before they can be used. In fact, some variables
must be declared at the beginning of the block in which they appear—these are
called local variables. In C, a block is any subsection of a program beginning with
the open brace character, { and ending with the closing brace character, }. All
local variables must be declared immediately following the block's open brace.

The following code is a simple C program that gets a number from the key-
board and redisplays it on the screen. The integer variable echo is declared within

1This is a slight simplification because C allows globals to be optionally declared to be global only
to a particular source file and not the entire program, but this caveat is not relevant for our
discussion here.

312 chapter 12 Variables and Operators

the block that contains the code for function main. It is only visible to the func-
tion main. If the program contained any other functions besides main, the variable
would not be accessible from those other functions. Typically, most local vari-
ables are declared at the beginning of the function in which they are used, as for
example echo in the code.

#include <stdio.h>

int main() {
int echo;

scanf("%d", &echo);
printf("%d\n", echo);

}

It is possible, and sometimes useful, to declare two different variables with
the same name within different blocks of the same function. For instance, it might
be convenient to use the name count for the counter variable for several different
loops within the same program. C allows this, as long as the different variables
sharing the same name are declared in seperate blocks. Figure 12.1, which we
discuss in the next section, provides an example of this.

Global Variables
In contrast to local variables, which can only be accessed within the block in which
they are declared, global variables can be accessed throughout the program. They
retain their storage and values throughout the duration of the program.

#include <stdio.h>

int globalVar = 2 ; /* This variable is global */

int main()
{

int localVar = 3 ; /* This variable is local to main */

printf{"Global %d Local %d\n", globalVar, localVar);
{

int localVar = 4 ; /* Local to this sub-block */

printf("Global %d Local %d\n", globalVar, localVar);
}

printf("Global %d Local %d\n", globalVar, localVar);
}
Figure 12.1 A C program that demonstrates nested scope

12.2 Variables 332

The following code contains both a global variable and a variable local to the
function main:

#include <stdio.h>

int globalVar = 2 ; /* This variable is global */

int main{) {
int localVar = 3 ; /* This variable is local to main */

printf{"Global %d Local %d\n", globalVar, localVar);
}

Globals can be extremely helpful in certain programming situations, but
novice programmers are often instructed to adopt a programming style that uses
locals over globals. Because global variables are public and can be modified from
anywhere within the code, the heavy use of globals can make your code more
vulnerable to bugs and more difficult to reuse and modify. In almost all C code
examples in this textbook, we use only local variables.

Let's look at a slightly more complex example. The C program in Figure 12.1
is similar to the previous program except we have added a sub-block within main.
Within this sub-block, we have declared a new variable localVar. It has the
same name as the local variable declared at the beginning of main. Execute this
program and you will notice that when the sub-block is executing the prior version
of localVar is not visible; that is, the new declaration of a variable of the same
name supersedes the previous one. Once the sub-block is done executing, the
previous version of localVar becomes visible again. This is an example of what
is called nested scope.

Initialization of Variables

Now that we have discussed global and local variables, let's answer the question
we asked earlier: What initial value will a variable have if it has no initializer?
In C, by default, local variables start with an unknown value. That is, the storage
location a local variable is assigned is not cleared and thus contains whatever
last value was stored there. More generally, in C, local variables are uninitialized
(in particular, all variables of the automatic storage class). Global variables (and
all other static storage class variables) are, in contrast, initialized to 0 when the
program starts execution.

12.2.4 More Examples
Let's examine a couple more examples of variable declarations in C. The fol-
lowing examples demonstrate declarations of the three basic types discussed in
this chapter. Some declarations have no initializers; some do. Notice how floating
point and character literals are expressed in C.

333 chapter 12 Variables and Operators

double width;
double pType = 9.44;
double mass = 6.34E2;
double verySmallAmount = 9.1094E-31;
double veryLargeAmount = 7.334553E102;
int average = 12;
int windChi11Index = -21;
int unknownValue;
int mysteryAmount;
char car = 'A' ;
char number = '4';

In C, it is also possible to have literals that are hexadecimal values. A literal
that has the prefix ox will be treated as a hexadecimal number. In the following
examples, all three integer variables are initialized using hexadecimal literals.

int programCounter = 0x3000;
int sevenBits = QxA1234;
int valueD = OxD;

Questions: What happens if we perform a printf (n%d\nn, valueD) ; after
the declarations? What bit pattern would you expect to find in the memory location
associated with valueD?

12.3 Operators
Having covered the basics of variables in C, we are now ready to investigate oper-
ators. C, like many other high-level languages, supports a rich set of operators
that allow the programmer to manipulate variables. Some operators perform arith-
metic, some perform logic functions, and others perform comparisons between
values. These operators allow the programmer to express a computation in a
more natural, convenient, and compact way than by expressing it as a sequence
of assembly language instructions.

Given some C code, the compiler's job is to take the code and convert it into
machine code that the underlying hardware can execute. In the case of a C program
being compiled for the LC-3, the compiler must translate whatever operations the
program might contain into the instructions of the LC-3 instruction set—clearly
not an easy task given that the LC-3 has very few operate instructions.

To help illustrate this point, we examine the code generated by a simple C
statement in which two integers are multiplied together. In the following code
segment, x, y, and z are integer variables where x and y are multiplied and the
result assigned to z.

z = X * y;

Since there is no single LC-3 instruction to multiply two values, our LC-3
compiler must generate a sequence of code that accomplishes the multiplication of

12.3 Operators 315

AND RO, RO, #0 RO <= 0

LDR Rl, R5, #0 load value of x
LDR R2, R5, #-1 load value of y
BRZ DONE if y is zero, we're done
BRp LOOP if y is positive, start mult

y is negative
NOT Rl, Rl
ADD Rl / Rl, #1 Rl <= -x

NOT R2, R2
ADD R2, R2 , #1 R2 <= -y (-y is positive)

LOOP ADD RO, RO, Rl Multiply loop
ADD R2 , R2, #-1 The result is in R2
BRp LOOP

DONE: STR RO, R5, #-2 z = x * y ;

Figure 12.2 The LC-3 code for C multipl ication

two (possibly negative) integers. One possible manner in which this can be accom-
plished is by repeatedly adding the value of x to itself a total of y times. This code
is similar to the code in the calculator example in Chapter 10. Figure 12.2 lists
the resulting LC-3 code generated by the LC-3 compiler. Assume that register 5
(R5) contains the memory address where variable x is allocated. Immediately
prior to that location is where variable y is allocated (i.e., R5 — 1), and imme-
diately prior to that is where variable z resides. While this method of allocating
variables in memory might seem a little strange at first, we will explain this later
in Section 12.5.2.

12.3.1 Expressions and Statements
Before proceeding with our coverage of operators, we'll diverge a little into C
syntax to help clarify some syntactic notations used within C programs. We can
combine variables and literal values with operators, such as the multiply operator
from the previous example, to form a C expression. In the previous example,
x * y is an expression.

Expressions can be grouped together to form a statement. For example,
z = x * y; is a statement. Statements in C are like complete sentences
in English. Just as a sentence captures a complete thought or action, a C state-
ment expresses a complete unit of work to be carried out by the computer. All
statements in C end with a semicolon character, ; (or as we'll see in the next
paragraph, a closing brace, }). The semicolon terminates the end of a statement
in much the same way a punctuation mark terminates a sentence in English. An
interesting (or perhaps odd) feature of C is that it is possible to create statements
that do not express any computation but are syntactically considered statements.
The null statement is simply a semicolon and it accomplishes nothing.

316 chapter 12 Variables and Operators

One or more simple statements can be grouped together to form a compound
statement, or block, by enclosing the simple statements within braces, { }. Syn-
tactically, compound statements are equivalent to simple statements. We will see
many real uses of compound statements in the next chapter.

The following examples show some simple, compound, and null statements.

z = x * y; /* This statement accomplishes some work */

{ /* This is a compound statement */
a = b + c ;
i = p * r * t;

}
k = k + 1; /* This is another simple statement */
; /* Null statement -- no work done here */

12.3.2 The Assignment Operator
We've already seen examples of C's assignment operator. Its symbol is the equal
sign, =. The operator works by first evaluating the right-hand side of the assign-
ment, and then assigning the value of the right-hand side to the object on the
left-hand side. For example, in the C statement

a = b + c;

the value of variable a will be set equal to the value of the expression b + c.
Notice that even though the arithmetic symbol for equality is the same as

the C symbol for assignment, they have different meanings. In mathematics, by
using the equal sign, =, one is making the assertion that the right-hand and left-
hand expressions are equivalent. In C, using the = operator causes the compiler to
generate code that will make the left-hand side change its value to equal the value
of the right-hand side. In other words, the left-hand side is assigned the value of
the right-hand side.

Let's examine what happens when the LC-3 C compiler generates code
for a statement containing the assignment operator. The C following statement
represents the increment by 4 of the integer variable x.

X = x + 4 ;

The LC-3 code for this statement is straightforward. Here, R5 contains the address
of variable x.

LDR RO, R5, #0 ; Get the value of x
ADD RO, RO, #4 ; calculate x + 4
STR RO, R5, #0 ; x = x + 4;

In C, all expressions evaluate to a value of a particular type. From the pre-
vious example, the expression x + 4 evaluates to an integral value because we

12.3 Operators 317

are adding an integer 4 to another integer (the variable x). This integer result is
then assigned to an integer variable. But what would happen if we constructed an
expression of mixed type, for example x + 4.3 ? The general rule in C is that the
mixed expressions like the one shown will be converted from integer to floating
point. If an expression contains both integer and character types, it will be pro-
moted to integer type. In general, in C shorter types are converted to longer types.
What if we tried to assign an expression of one type to a variable of another, for
example x = x + 4.3? In C, the type of a variable remains immutable (meaning
it cannot be changed), so the expression is converted to the type of the variable.
In this case, the floating point expression x + 4.3 is converted to integer. In C,
floating point values are rounded into integers by dropping the fractional part. For
example, 4.3 will be rounded to 4 when converting from a floating point into an
integer; 5.9 will be rounded to 5.

12.3.3 Arithmetic Operators
The arithmetic operators are easy to understand. Many of the operations and
corresponding symbols are ones to which we are accustomed, having used
them since learning arithmetic in grade school. For instance, + performs addi-
tion, - subtraction, * performs multiplication (which is different from the symbol
we are accustomed to for multiplication in order to avoid confusion with the letter
x), and / performs division. Just as when doing arithmetic by hand, there is an
order in which expressions are evaluated. Multiplication and division are evalu-
ated first, followed by addition and subtraction. The order in which operators are
evaluated is called precedence, and we discuss it in more detail in the next section.
Following are several C statements formed using the arithmetic operators:

distance = rate * time;
netIncome = income - taxesPaid;
fuelEconomy = milesTraveled / fuelConsumed;
area - 3.14159 * radius * radius;
y - a*x*x + b*x + c;

C has another arithmetic operator that might not be as familiar to you as +,
*, and / . It is the modulus operator, % (also known as the integer remainder

operator). To illustrate its operation, consider what happens when we divide two
integer values. When performing an integer divide in C, the fractional part is
dropped and the integral part is the result. The expression n / 4 evaluates to
2. The modulus operator % can be used to calculate the integer remainder. For
example, n % 4 evaluates to 3. Said another way, (n / 4) * 4 + (n % 4)
is equal to 11. In the following example, all variables are integers.

quotient = x / y; /* if x = 7 and y = 2, quotient = 3 */
remainder = x % y; /* if x = 7 and y = 2, remainder = 1 */

Table 12.1 lists all the arithmetic operations and their symbols. Multiplication,
division, and modulus have higher precedence than addition and subtraction.

318 chapter 12 Variables and Operators

ictic Operators in C

Operator symbol Operation Example usage

multiplication x * y
x / y
x % y
x + y
x - y

/ division
modulus
addition
subtraction

12.3.4 Order of Evaluation
Before proceeding onwards to the next set of C operators, we diverge momen-
tarily to answer an important question: What value is stored in x as a result of the
following statement?

X = 2 + 3 * 4;

Precedence
Just as when doing arithmetic by hand, there is an order to which expressions are
evaluated. And this order is called operator precedence. For instance, when doing
arithmetic, multiplication and division have higher precedence than addition and
subtraction. For the arithmetic operators, the C precedence rules are the same
as we were taught in grade-school arithmetic. In the preceding statement, x is
assigned the value 14 because the multiplication operator has higher precedence
than addition. That is, the expression evaluates as if it were 2 + (3 * 4).

Associativity
But what about operators of equal precedence? What does the following statement
evaluate to?

x = 2 + 3 - 4 + 5 ;

Depending on which operator we evaluate first, the value of the expression
2 + 3 — 4 + 5 could equal 6 or it could equal —4. Since the precedence of
both operators is the same (that is, addition has the same precedence as subtrac-
tion in C), we clearly need a rule on how such expressions should be evaluated
in C. For operations of equal precedence, their associativity determines the
order in which they are evaluated. In the case of addition and subtraction, both
associate from left to right. Therefore 2 + 3 - 4 + 5 evaluates as if it were

The complete set of precedence and associativity rules for all operators in C is
provided in Table 12.5 at the end of this chapter and also in Table D.4. We suggest
that you do not try to memorize this table (unless you enjoy quoting C trivia to
your friends). Instead, it is important to realize that the precedence rules exist and
to roughly comprehend the logic behind them. You can always refer to the table
whenever you need to know the relationship between particular operators. There
is a safeguard, however: parentheses.

((2 + 3) - 4) + 5.

12.3 Operators

Parentheses

Parentheses override the evaluation rules by specifying explicitly which opera-
tions are to be performed ahead of others. As in arithmetic, evaluation always
begins at the innermost set of parentheses. We can surround a subexpression with
parentheses if we want that subexpression to be evaluated first. So in the following
example, say the variables a, b, c, and d are all equal to 4. The statement

x = a * b + c * d / 2 ;

could be written equivalently as

X = (a * b) + { (c * d) / 4) ;

For both statements, x is set to the value of 20. Here the program will always
evaluate the innermost subexpression first and move outward before falling back
on the precedence rules.

What value would the following expression evaluate to if a, b, c, and d
equal 4?

x = a * (b + c) * d / 4;

Parentheses can help make code more readable, too. Most people reading your
code are unlikely to have memorized C's precedence rules. For this reason, for
long or complex expressions, it is often stylistically preferable to use parentheses,
even if the code works fine without them.

12.3.5 Bitwise Operators
We now return to our discussion of C operators. C has a set of operators called
bitwise operators that manipulate bits of a value. That is, they perform a logical
operation such as AND, OR, NOT, XOR across the individual bits of a value. For
example, the C bitwise operator & performs an operation similar to the LC-3 AND
instruction. That is, the & operator performs an AND operation bit by bit across
the two input operands. The C operator | performs a bitwise OR. The operator ~
performs a bitwise NOT and takes only one operand (i.e., it is a unary operator)
The operator ~ performs a bitwise XOR. Examples of expressions using these
operators on 16-bit values follow.

0x1234 | 0x5678
0x1234 & 0x5678
0x1234 " 0x5678
-0x1234
1234 & 5678

/* equals 0x567C */
/* equals 0x1230 */
/* equals 0x444C */
/* equals OxEDCB */
/* equals 1026 */

C's set of bitwise operators includes two shift operators: <<, which performs a
left shift, and > >, which performs a right shift. Both are binary operators, meaning
they require two operands. The first operand is the value to be shifted and the
second operand indicates the number of bit positions to shift by. On a left shift,
the vacated bit positions of the value are filled with zeros; on a right shift, the
value is sign-extended. The result is the value of the expression; neither of the

339 chapter 12 Variables and Operators

Operators in C

Operator symbol Operation Example usage

bitwise NOT
left shift
right shift
bitwise AND
bitwise XOR
bitwise OR

two original operand values are modified. The following expressions provide
examples of these two operators operating on 16-bit integers.

0x1234 << 3 /* equals 0x91A0 */
0x1234 >> 2 /* equals 0x048D */
1234 << 3 /* equals 9872 */
1234 >> 2 /* equals 308 */
0x1234 << 5 /* equals 0x4680 (result is 16 bits) */
OxFEDC >> 3 /* equals OxFFDB (from sign-extension) */

Here we show several C statements formed using the bitwise operators. For
all of C's bitwise operators, neither operand can be a floating point value. For these
statements, f, g, and h are integers.

h = f & g ; /* if f = 7, g = 8, h will equal 0 */
h = f | g; /* if f = 7, g = 8, h will equal 15 */
h = f « 1; /* if f = 7, g = 8, h will equal 14 */
h = g << f; /* if f = 7, g = 8, h will equal 1024 */
h = ~f | ~g; /* if f = 7, g = 8, h will equal -1 */

/* because h is a signed integer */

Question: Say that on a particular machine, the integer x occupies 16 bits and
has the value 1. What happens after the statement x = x << i e ; is executed?
Conceptually, we are shifting x by its data width, replacing all bits with 0. You
might expect the value of x to be 0. To remain generic, C formally defines the result
of shifting a value by its width (or more than its data width) as implementation-
dependent. This means that the result might be 0 or it might not, depending on
the system on which the code is executed.

Table 12.2 lists all the bitwise operations and their symbols. The operators
are listed in order of precedence, the NOT operator having highest precedence,
and the left and right shift operators having equal precedence, followed by AND,
then XOR, then OR. They all associate from left to right. See Table 12.5 for a
complete listing of operator precedence.

12.3.6 Relational Operators
C has several operators to test the relationship between two values. As we will
see in the next chapter, these operators are often used in C to generate conditional

12.3 Operators 321

mal Operators in C

Operator symbol Operation Example usage

<

< =

> =

> greater than
greater than or equal
less than
less than or equal
equal
not equal

x > y
x >= y
x < y
x <= y
x == y
x ! = y

constructs (similar to the conditional constructs we discussed in Section 6.1.2
when we discussed systematic decomposition).

The equality operator, ==, is one of C's relational operators. This operator
tests if two values are equal. If they are equal, the expression evaluates to a 1, and
if they are not, the expression evaluates to 0. The following shows two examples:

q = (312 == 83); /* q will equal 0 */
z = (x == y); /* z will equal 1 if x equals y */

In the second example, the right-hand side of the assignment operator = is the
expression x == y, which evaluates to a 1 or a 0, depending on whether x and
y are equal. (Note: The parentheses are not required because the == operator has
higher precedence than the = operator. We added them to help make the example
clearer).

Opposite the equality operator, the inequality operator, i =, evaluates to a 1
if the operands are not equal. Other relational operators test for greater than, less
than, and so on, as described in the following examples. For these examples, the
variables f, g, and h are integers. The variable f has the value 7, and g is 8.

h = f == g ; /* Equal To operator. h will equal 0 */
h = f > g ; /* Greater Than operator, h will equal 0 */
h = f != g ; /* Not Equal To operator, h will equal 1 */
h = f <= g ; /* Less Than Or Equal To. h will equal 1 */

The next example is a preview of coming attractions. The C relational oper-
ators are very useful for performing tests on variables in order to change the flow
of the program. In the next chapter, we describe the C i f statement in more detail.
However, the concept of an if construct is not a new one—we have been dealing
with this particular decision construct ever since learning how to program the
LC-3 in Chapter 6. Here, a message is printed only if the variable tankLevel is
equal to zero.

if (tankLevel == 0)
printf("Warning: Tank Empty!!\n");

Table 12.3 lists all the relational operators and provides a simple example of
each. The first four operators have higher precedence than the last two. Both sets
associate from left to right.

322 chapter 12 Variables and Operators

12.3.7 Logical Operators
C's logical operators appear at first glance to be exactly like some of the bitwise
operators, and many novice programmers sometimes confuse the two. Before we
explain their operation, we need to mention C's concept of logically true and
logically false values. C adopts the notion that a nonzero value (i.e., a value other
than zero) is logically true. A value of zero is logically false. It is an important
concept to remember, and we will see it surface many times as we go through the
various components of the C language.

C supports three logical operators: &&, | |, and I. The && operator performs
a logical AND of its two operands; it evaluates to an integer value of 1 (which is
logically true) if both of its operands are logically true, or nonzero. It evaluates to
0 otherwise. For example, 3 && 4 evaluates to a 1, whereas 3 && 0 evaluates to 0.
The | | operator is C's logical OR operator. The expression x | | y evaluates to a
1 if either x OR y are nonzero. For example, 3 | | 4 evaluates to a 1. Also, 3 | | 0
evaluates to 1. The negation operator i evalutes to the other logical state of its
operand. So \ x is 1 only if x equals 0. It is 0 otherwise.

What are the logical operators useful for? One use is for constructing logical
conditions within a program. For example, we can determine if a variable is
within a particular range of values using a combination of relational and logical
operators. To check if x is between 10 and 20, inclusive, we can use the following
expression:

(10 <= x) && (x <= 20)

Or to test if a character c is a letter of the alphabet:

(('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= '2'))

Here are some examples of the logical operators, with several previous exam-
ples of bitwise operators included to highlight the difference. As in the previous
examples, the variables f, g, and h are integers. The variable f has the value 7,
and g is 8.

& g;
ScSc g

* I 9;
f II g;
~f I ~g;
i f ScSc ! g ;

29 I| -52

/ *
/ *

/ *
/ *
/ *
/ *
/ *

bitwise operator:
logical operator:
bitwise operator:
logical operator:
bitwise operator:
logical operator:
logical operator:

will equal
will equal
will equal
will equal
will equal
will equal

equal

h
h
h
h
h
h
h will

0
1
15
1
-1
0
1

* /
* /
* /
* /
* /
* /
* /

Table 12.4 lists logical operators in C and their symbols. The logical
NOT operator has highest precedence, then logical AND, then logical OR. See
Table 12.5 for a complete listing of operator precedence.

12.3.8 Increment/Decrement Operators
Because incrementing and decrementing variables is such a commonly performed
operation, the designers of the C programming language decided to include special

12.3 Operators 323

.ogical Operators in C

Operator symbol Operation Example usage
r logical NOT ! x

&& logical AND x && y
I I logical OR x I I y

:or Precedence, f rom Highest to Lowest.
Descriptions of Some Operators are Provided in Parentheses

Precedence Associativity Operators

1 (highest)
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17 (lowest)

I to r
r to I
r to I
r to I

r to I
I to r
I to r
I to r
I to r
I to r
I to r
I to r
I to r
I to r
I to r
I to r
r to I

() (function call) [] (array index)
++ - - (postfix versions)
+ + - - (prefix versions)
* (indirection) & (address of)
+ (unary) - (unary) ~ i s i z e o f
(t y p e) (typecast)
* (multiplication) / %
+ (addition) - (subtraction)

&& II
?: (conditional expression)

+= - = *= etc.

operators to perform them. The + + operator increments a variable to the next higher
value. The - - operator decrements it. For example, the expression x++ increments
the value of integer variable x by 1. The expression x-- decrements the value of
x by 1. Keep in mind that these operators modify the value of the variable itself.
That is, x++ is similar to the operation x = x + l .

The ++ and - - operators can be used on either side of a variable. The expres-
sion ++x operates in a slightly different order than x++. If x++ is part of a larger
expression, then the value of x++ is the value of x prior to the increment, whereas
the value of++x is the incremented value of x. If the operator ++ appears before the
variable, then it is used in prefix form. If it appears after the variable, it is in postfix
form. The prefix forms are often referred to as preincrement and predecrement,
whereas the postfix are postincrement and postdecrement.

Let's examine a couple of examples:

X = 4 ;
y = X++;

Here, the integer variable x is incremented. However, the original value of
x is assigned to the variable y (i.e., the value of x++ evaluates to the original

324 chapter 12 Variables and Operators

value of x). After this code executes, the variable y will have the value 4, and x
will be 5.

Similarly, the following code increments x.
X = 4;
y - + +X;
However with this code, the expression ++x evaluates to the value after the
increment. In this case, the value of both y and x will be 5.

This subtle distinction between the postfix and prefix forms is not too impor-
tant to understand for now. For the few examples in this book that use these oper-
ators, the prefix and postfix forms of these operators can be used interchangeably.
You can find a precise description of this difference in Appendix D.5.6.

12.3.9 Expressions with Multiple Operators
Thus far we've only seen examples of expressions with one or two operators. Real
and useful expressions sometimes have more. We can combine various operators
and operands to form complex expressions. The following example demonstrates
a peculiar blend of operators forming a complex expression.
y = x & z + 3 || 9 - w % 6 ;
In order to figure out what this statement evaluates to, we need to examine the
order of evaluation of operators. Table 12.5 lists all the C operators (including
some that we have not yet covered but will cover later in this textbook) and their
order of evaluation. According to precedence rules, this statement is equivalent
to the following:

y = (x & (z + 3)) | | (9 - (w % 6)) ;
Another more useful expression that consists of multiple operators is given

in the example that follows. In this example, if the value of the variable age is
between 18 and 25, the expression evaluates to 1. Otherwise it is 0. Notice that
even though the parentheses are not required to make the expression evaluate as
we described, they do help make the code easier to read.
(18 <= age) && (age <= 25)

12.4 Problem Solving Using Operators
At this point, we have covered enough C operators to attempt a simple problem-
solving exercise. For this problem, we will create a program that performs a
simple network calculation: It calculates the amount of time required to transfer
some number of bytes across a network with a particular transfer rate (provided in
bytes per second). The twist to this problem is that transfer time is to be displayed
as hours, minutes, and seconds.

We approach this problem by applying the decomposition techniques
described in Chapter 6. That is, we will start with a very rough description of
our program and continually refine it using the sequential, decision, and iteration
constructs (see Chapter 6 if you need a refresher) until we arrive at something
from which we can easily write C code. This technique is called top-down

12.4 Problem Solving Using Operators 325

decomposition because we start with a rough description of the algorithm and
refine it by breaking larger steps into smaller ones, eventually arriving at some-
thing that resembles a program. Many experienced programmers rely on their
understanding of the lower levels of the system to help make good decisions on
how to decompose a problem. That is, in order to reduce a problem into a program,
good programmers rely on their understanding of the basic primitives of systems
they are programming on. In our case (at this point), these basic primitives are
variables of the three C types and the operations we can perform on them.

In the subsequent chapters, we will go through several problem-solving exam-
ples to illustrate this top-down process. In doing so, we hope to provide you with
a sense of the mental process a programmer might use to solve such problems.

The very first step (step 0) we need to consider for all problems from now
on is how we represent the data items that the program will need to manipulate.
At this point, we get to select from the three basic C types: integer, character,
and floating point. For this problem, we can represent our internal calculations
with either floating point values or integers. Since we are ultimately interested in
displaying the result as hours, minutes, and seconds, any fractional components of

Step 1 Step 2 Step 3

Figure 12.3 Stepwise refinement of a simple network transfer time problem

326 chapter 12 Variables and Operators

time are unnecessary. For example, displaying the total transfer time as 10.1 hours,
12.7 minutes, 9.3 seconds does not make sense. Rather, 10 hours, 18 minutes,
51 seconds is the preferred output. Because of this, the better choice of data type
for the time calculation is integer (yes, there are rounding issues, but say we can
ignore them for this calculation).

Having chosen our data representations, we can now apply stepwise refine-
ment to decompose the problem. Figure 12.3 shows our decomposition of this
particular programming problem. Step 1 in the figure shows the initial formula-
tion of the problem. It involves three phases: get input, calculate results, output
results. In the first phase, we will query the user about the amount of data to be
transfered (in bytes) and the transfer rate of the network (in bytes per second). In
the second phase, we will perform all necessary calculations, which we will then
output in the third phase.

Step 1 is not detailed enough to translate directly into C code, and therefore
we perform another refinement of it in step 2. Here we realize that the calculation
phase can be further refined into a subphase that first calculates total time in
seconds—which is an easy calculation given the input data—and a subphase to
convert total time in seconds into hours, minutes, and seconds.

Step 2 is still not complete enough for mapping into C; we perform another
refinement of it in step 3. Most phases of step 2 are fairly simple enough to convert
into C, except for the conversion of seconds into hours, minutes, and seconds. In
step 3, we refine this phase into three subphases. First we will calculate total hours
based on the total number of seconds. Second, we will use the remaining seconds
to calculate minutes. Finally, we determine the remaining number of seconds after
the minutes have been calculated.

Based on the total breakdown of the problem after three steps of refinement
presented in Figure 12.3, it should be fairly straightforward to map out the C code.
The complete C program for this problem is presented in Figure 12.4.

12.5 Tying ir HII Togerher
We've now covered all the basic C types and operators that we plan to use through-
out this textbook. Having completed this first exposure, we are now ready to
examine these concepts from the compiler's viewpoint. That is, how does a com-
piler translate code containing variables and operators into machine code. There
are two basic mechanisms that help the compiler do its job of translation. The
compiler makes heavy use of a symbol table to keep track of variables during
compilation. The compiler also follows a systematic partitioning of memory—it
carefully allocates memory to these variables based on certain characteristics,
with certain regions of memory reserved for objects of a particular class. In this
section, we'll take a closer look at these two processes.

12.5.1 Symbol Table
In Chapter 7, we examined how the assembler systematically keeps track of labels
within an assembly program by using a symbol table. Like the assembler, the C

12.5 Tying It All Together 327

#include <stdio.h>

int raainO

int amount; / * The number of bytes to be transferred * /
int rate; / * The average network transfer rate * /
int t ime; / * The time, in seconds, for the transfer * /

int hours; / * The number of hours for the transfer * /
int minutes; / * The number of mins for the transfer * /
int seconds; / * The number of sees for the transfer * /

/* Get input: number of bytes and network transfer rate * /
printf("How many bytes of data to be transferred? ");
scanf("%d", &amount);

printf("What is the transfer rate (in bytes/sec)? ") ;
scanf("%d", &rate);

/* Calculate total time in seconds */
time = amount / rate;

/* Convert time into hours, minutes, seconds */
hours = time / 3600; /*3600 seconds in an hour */
minutes = (time % 3600) / 60; /* 60 seconds in a minute */
seconds = ((time % 3600) % 60); /* remainder is seconds */

/* Output results */
printf("Time : %dh %dm %ds\n", hours, minutes, seconds);

}
Figure 12 .4 A C program that performs a simple network rate calculation

compiler keeps track of variables in a program with a symbol table. Whenever
the compiler reads a variable declaration, it creates a new entry in its symbol
table corresponding to the variable being declared. The entry contains enough
information for the compiler to manage the storage allocation for the variable
and generation of the proper sequence of machine code whenever the variable is
used in the program. Each symbol table entry for a variable contains (1) its name,
(2) its type, (3) the place in memory the variable has been allocated storage, and
(4) an identifier to indicate the block in which the variable is declared (i.e., the
scope of the variable).

Figure 12.5 shows the symbol table entries corresponding to the variables
declared in the network rate calculation program in Figure 12.4. Since this pro-
gram contains six variables declarations, the compiler ends up with six entries in
its symbol table for them. Notice that the compiler records a variable's location
in memory as an offset, with most offsets being negative. This offset indi-
cates the relative position of the variable within the region of memory it is
allocated.

328 chapter 12 Variables and Operators

Identifier Type Location
(as an offset)

Scope Other
info...

amount int 0 main

hours int - 3 main

minutes int - 4 main

rate int - 1 main

seconds int - 5 main

time int - 2 main

Figure 1 2 . 5 The compiler's symbol table when it compiles the program from Chapter 11

12.5.2 Allocating Space for Variables
There are two regions of memory in which C variables are allocated storage: the
global data section and the run-time stack? The global data section is where
all global variables are stored. More generally, it is where variables of the static
storage class are allocated (we say more about this in Section 12.6). The run-time
stack is where local variables (of the default automatic storage class) are allocated
storage.

The offset field in the symbol table provides the precise information about
where in memory variables are actually stored. The offset field simply indicates
how many locations from the base of the section a variable is allocated storage.

For instance, if a global variable earth has an offset of 4 and the global
data section starts at memory location 0x5000, then earth is stored in location
0x5004. All our examples of compiler-generated machine code use R4 to contain
the address of the beginning of the global data section—R4 is referred to as
the global pointer. Loading the variable earth into R3, for example, can be
accomplished with the following LC-3 instruction:
LDR R 3 , R4, #4
If earth is instead a local variable, say for example in the function main, the
story is slightly more complicated. All local variables for a function are allocated
in a "memory template" called an activation record or stack frame. For now,
we'll examine the format of an activation record and leave the motivation for
why we need it for Chapter 14 when we discuss functions. An activation record
is a region of contiguous memory locations that contains all the local variables
for a given function. Every function has an activation record (or more precisely,
every invocation of a function has an activation record—more on this later).

2 For examples in this textbook, all variables will be assigned a memory location. However, real
compilers perform code optimizations that attempt to allocate variables in registers. Since registers
take less time to access than memory, the program will run faster if frequently accessed values are
put into registers.

12.5 Tying It All Together 329

Location xOOOO

R5

seconds

minutes

hours

time

rate

amount

Location xFFFF

Figure 12.6 An example of an activation record in the LC-3's memory. This function has five
local variables. R5 is the frame pointer and points to the first local variable

Whenever we are executing a particular function, the highest memory address of
the activation record will be stored in R5—R5 is called thz frame pointer. For
example, the activation record for the function main from the code in Figure 12.4
is shown in Figure 12.6. Notice that the variables are allocated in the record in the
reverse order in which they are declared. Since the variable amount is declared
first, it appears nearest to the frame pointer R5.

If we make a reference to a particular local variable, the compiler will use the
variable's symbol table entry to generate the proper code to access it. In particular,
the offset in the variable's symbol table entry indicates where in the activation
record the variable has been allocated storage. To access the variable seconds,
the compiler would generate the instruction:

LDR RO, R5, #-5

A preview of things to come: Whenever we call a function in C (in C, sub-
routines are called functions), the activation record for the function is pushed
on to the run-time stack. That is, the function's activation record is allocated on
top of the stack. R5 is appropriately adjusted to point to the base of the record—
therefore any code within the function that accesses local variables will now work
correctly. Whenever the function completes and control is about to return to the
caller, the activation record is popped off the stack. R5 is adjusted to point to the
caller's activation record. Throughout all of this, R6 always contains the address
of the top of the run-time stack—it is called the stack pointer. We will revisit this
in more detail in Chapter 14.

Figure 12.7 shows the organization of the LC-3's memory when a program
is running. Many UNIX-based systems arrange their memory space similarly.

330 chapter 12 Variables and Operators

xOOOO H i ^ ^ H

Program text
- P C

- R4

Global data section

Heap
(for dynamically allocated memory)

11

Run-time stack

R6 (Stack pointer)
R5 (Frame pointer)

xFFFF

Figure 12.7 The LC-3 memory map showing various sections active during program
execution

The program itself occupies a region of memory (labelled Program text in the
diagram); so does the run-time stack and the global data section. There is another
region reserved for dynamically allocated data called the heap (we will discuss
this region in Chapter 19). Both the run-time stack and the heap can change size as
the program executes. For example, whenever one function calls another, the run-
time stack grows because we push another activation record onto the stack—in
fact, it grows toward memory address xOOOO. In contrast, the heap grows toward
OxFFFF. Since the stack grows toward xOOOO, the organization of an activation
record appears to be "upside-down": that is, the first local variable appears at the
memory location pointed to by R5, the next one at R5 — 1, the subsequent one at
R5 — 2, and so forth (as opposed to R5, R5 + 1, R5 + 2, etc).

During execution, the PC points to a location in the program text, R4 points
to the beginning of the global data section, R5 points within the run-time stack,

12.5 Tying It All Together 331

and R6 points to the very top of the run-time stack. There are certain regions of
memory, marked System space in Figure 12.7, that are reserved for the operating
system, for things such as TRAP routines, vector tables, I/O registers, and boot
code.

12.5.3 A Comprehensive Example
Now that we have examined the LC-3 compiler's techniques for tracking and
allocating space for variables in memory, let's take a look at a comprehensive C
example and its translation into LC-3 code.

Figure 12.8 is a C program that performs some simple operations on integer
variables and then outputs the results of these operations. The program contains
one global variable, inGlobal, and three local variables, inLocal, outLocalA,
and outLocalB, which are local to the function main.

The program starts off by assigning initial values to inLocal and inGlobal.
After the initialization step, the variables outLocalA and outLocalB are updated
based on two calculations performed using inLocal and inGlobal. After the
calculation step, the values of outLocalA and outLocalB are output using the
printf library function. Notice because we are using printf, we must include
the standard I/O library header file, stdio. h.

When analyzing this code, the LC-3 C compiler will assign the global vari-
able inGlobal the first available spot in the global data section, which is at
offset 0. When analyzing the function main, it will assign inLocalA to offset 0,
outLocalA to offset —1, and outLocalB to offset —2 within main's activation

/* Include the standard I/O header file */
#include <stdio.h>

int inGlobal; /* inGlobal is a global variable because */
/* it is declared outside of all blocks */

int main() {
int inLocal; /* inLocal, outLocalA, outLocalB are all */
int outLocalA; /* local to main */
int outLocalB;

/* Initialize */
inLocal = 5;
inGlobal = 3;

/* Perform calculations */
outLocalA = inLocal & -inGlobal;

outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

/* Print out results */ printf("outLocalA = %d,outLocalB=%d\n",outLocalA,outLocalB);
}
Figure 12 .8 A C program that performs simple operations

332 chapter 12 Variables and Operators

Identifier Type Location
(as an offset)

Scope Other
info...

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main
outLocalB int -2 main

Location xOOOO

outLocalB

outLocalA
R5 • inLocal

Location xFFFF

(a) Symbol table (b) Activation record for main

Figure 1 2 . 9 The LC-3 C compiler's symbol table when compiling the program in Figure 12.8 and the activation record
format for its function main

record. A snapshot of the compiler's symbol table corresponding to this program
along with the activation record of main are shown in Figure 12.9.

The resulting assembly code generated by the LC-3 C compiler is listed in
Figure 12.10. Execution starts at the instruction labeled main.

12.G fldditional Topics
The last major section of this chapter involves a set of additional topics involving
variables and operators. Some of the topics are advanced issues involving concepts
we covered earlier in the chapter; some of the topics are miscellaneous features
of C. We provide this section in order to complete our coverage of C, but this
material is not essential to your understanding of the material in later chapters.
For those of you interested in a more complete coverage of variables and operators
in C, read on!

12.6.1 Variations of the Three Basic Types
C gives the programmer the ability to specify larger or smaller sizes for the
three basic types int, char, and double. The modifiers long and short can be
attached to int with the intent of extending or shortening the default size. For
example, a long int can declare an integer that has twice the number of bits
as a regular int, thereby allowing us to represent a larger range of integers in
a C program. Similarly, the specifier long can be attached to the double type
to create a larger floating point type (if supported by the particular system) with
greater range and precision.

12.6 Additional Topics 333

1 main:
2 :
3 :
4 <startup code>
5 :
6 :
7 AND RO, RO, #0
8 ADD RO, RO, #5 ; inLocal is at offset 0
9 STR RO, R5, #0 ; inLocal = 5;

10
11 AND RO, RO, #0
12 ADD RO, RO, #3 ; inGlobal is at offset 0, in globals
13 STR RO, R4, #0 ; inGlobal = = 3;
14
15 LDR RO, R5, #0 ; get value of inLocal ^
16 LDR Rl / R4, #0 ; get value of inGlobal
17 NOT Rl, Rl i -inGlobal
18 AND R2, RO, Rl ; calculate inLocal & -inGlobal
19 STR R2 , R5, #-1 ; outLocalA = inLocal & -inGlobal;
20
O 1

/ outLocalA is at offset -1
Z 1
22 LDR RO, R5, #0 ; get value of inLocal
23 LDR Rl / R4, #0 ; get value of inGlobal
24 ADD RO, RO, Rl ; calculate inLocal + inGlobal
25
26 LDR R2 , R5, #0 ; get value of inLocal
27 LDR R3, R4, #0 ; get value of inGlobal
28 NOT R3
29 ADD R3, R3, #1 ? calculate -inGlobal
o u
31 ADD R2 , R2, R3 ; calculate inLocal - inGlobal
32 NOT R2
33 ADD R2 , R2 , #1 ; calculate -(inLocal - inGlobal)
34
35 ADD RO, RO, R2 (inLocal + • inGlobal) - (inLocal - inGlobal}
36 STR RO, R5, #-2 ; outLocalB = . . .

37 ; outLocalB is at offset -2
38 :
39 :
40 <code for calling the function printf>
41 :
42
Figure 12.10 The LC-3 code for the C program in Figure 12.8

The modifier short can be used to create variables that are smaller than the
default size, which can be useful when trying to conserve on memory space when
handling data that does not require the full range of the default data type. The
following example demonstates how the variations are declared:

long double particlesInUniverse;
long int worldPopulation;
short int ageOfStudent;

334 chapter 12 Variables and Operators

Because the size of the three basic C types is closely tied to the types sup-
ported by the underlying ISA, many compilers only support these modifiers long
and short if the computer's ISA supports these size variations. Even though a
variable can be declared as a long int, it may be equivalent to a regular int if
the underlying ISA has no support for longer versions of the integer data type.
See Appendix D.3.2 for more examples and additional information on long and
short.

Another useful variation of the basic int data type is the unsigned integer. We
can declare an unsigned integer using the unsigned type modifier. With unsigned
integers, all bits are used to represent nonnegative integers (i.e., positive numbers
and zero). In the LC-3 for instance, which has 16-bit integers, an unsigned integer
has a value between 0 and 65,535. When dealing with real-world objects that by
nature do not take on negative values, unsigned integers might be the data type
of choice. The following are examples of unsigned integers:

unsigned int numberOfDays;
unsigned int populationSize;

Following are some sample variations of the three basic types:

long int ounces;
short int gallons;
long double veryVeryLargeNumber = 4.12936E361;
unsigned int sizeOfClass = 900;
float oType = 9.24;
float tonsOfGrain = 2.998E8;

12.6.2 Literals, Constants, and Symbolic Values
In C, variables can also be declared as constants by adding the const qualifier
before the type specifier. These constants are really variables whose values do
not change during the execution of a program. For example, in writing a program
that calculates the area and circumference of a circle of a given radius, it might be
useful to create a floating point constant called p i initialized to the value 3.14159.
Figure 12.11 contains an example of such a program.

This example is useful for making a distinction between three types of con-
stant values that often appear in C code. Literal constants are unnamed values
that appear literally in the source code. In the circle example, the values 2 and
3 .14159 are examples of literal constants. In C, we can represent literal con-
stants in hexadecimal by prepending a ox in front of them, for example OXIDB.
ASCII literals require single quotes around them, as for example 'R ' , which
is the ASCII value of the character R. Floating point literals can be the expo-
nential notation described in Section 12.2.1. An example of the second type of
constant value is pi, which is declared as a constant value using a variable decla-
ration with the const qualifier. The third type of constant value is created using
the preprocessor directive #def ine, an example of which is the symbolic value
RADIUS. All three types create values that do not change during the execution of
a program.

12.6 Additional Topics

1
9

#include <stdio.h>
Z
3
A

#define RADIUS 15.0 /* This value is in centimeters * /
rt
5 int main()
6 {
7 const double pi = 3.14159;
8 double area;
9 double circumference;

10
11 /* Calculations */
12 area = pi * RADIUS * RADIUS; /* area = pi*r^2 * /
13
14 circumference = 2 * pi * RADIUS; /* circumference = * /
15 /* 2*pi*r * /
16 f
17 printf("Area of a circle with radius %f cm is %f cmA2\n <1
18 RADIUS, area);
19
20 printf("Circumference of the circle is %f cm\nH,
21 circumference);
22 }
Figure 12.11 A C program that computes the area and circumference of a circle wi th a radius

of 15 cm

The distinction between constants declared using const and symbolic values
defined using #def ine might seem a little subtle to you. Using one versus another
is really a matter of programming style rather than function. Declared constants
are used for things we traditionally think of as constant values, which are values
that never change. The constant pi is an example. Physical constants such as the
speed of light, or the number of days in a week, are conventionally represented
by declared constants.

Values that stay constant during a single execution of the program but which
might be different from user to user, or possibly from invocation to invocation,
are represented by symbolic values using #def ine. Such values can be thought
of as parameters for the program. For example, RADIUS in Figure 12.11 can be
changed and the program recompiled, then re-executed.

In general, naming a constant using const or #def ine is preferred over
leaving the constant as a literal in your code. Names convey more meaning about
your code than unnamed literal values.

12.6.3 Storage Class
Earlier in the chapter, we mentioned three basic properties of a C variable: its
identifier, its type, and its scope. There is another: storage class. The storage class
of a variable indicates how the C compiler allocates its storage, and in particular
indicates whether or not the variable loses its value when the block that contains it
has completed execution. There are two storage classes in C: static and automatic.

336 chapter 12 Variables and Operators

Static variables retain their values between invocations. Automatic variables lose
their values when their block terminates. In C, global variables are of static storage
class, that is, they retain their value until the program ends. Local variables are
by default of automatic storage class. Local variables can be declared as static
class variables by using the static modifier on the declaration. For example, the
variable declared by static int localVar ; will retain its value even when its
function completes execution. If the function is executed again (during the same
program execution), localVar will retain its previous value. In particular, the
use of the static keyword on a local variable causes the compiler to^allocate
storage for the variable in the global data section, while keeping it private to its
block. See Appendix D.3.3 for additional examples on storage class.

12.6.4 Additional C Operators
The C programming language has a collection of unusual operators, which have
become a trademark of C programming. Most of these operators are combinations
of operators we have already seen. The combinations are such that they make
expressing commonly used computations even simpler. However, to someone
who is not accustomed to the shorthand notation of these operators, reading and
trying to understand C code that contains them can be difficult.

Assignment Operators

C also allows certain arithmetic and bitwise operators to be combined with the
assignment operator. For instance, if we wanted to add 29 to variable x, we could
use the shorthand operator += as follows:
X += 29;
This code is equivalent to
x = x + 29;

Table 12.6 lists some of the special operators provided by C. The postfix
operators have highest precedence, followed by prefix. The assignment operators
have lowest precedence. Each group associates from right to left.

lent Operators in C

Operator symbol Operation Example usage

+ = add and assign x += y
x -= y
x *= y
x /= y
x %= y
x &= y

/ =

* _

subtract and assign
multiply and assign
divide and assign

% = modulus and assign
and and assign
or and assign
xor and assign

x |= y A. x = y
left-shift and assign
right-shift and assign

x «= y
x »= y

12.7 Summary 337

More examples are as follows:
h += g; /* Equivalent to h = h + g; */
h %= f; /* Equivalent to h = h % f; */
h <<= 3; /* Equivalent t o h = h < < 3 ; */

Conditional Expressions

Conditional expressions are a unique feature of C that allow for simple decisions
to be made with a simple expression. The symbols for the conditional expression
are the question mark and colon, ? and :. The following is an example:
x = a ? b : c ;
Here variable x will get either the value of b or the value of c based on the logical
value of a. If a is nonzero, x will get the value of b. Otherwise, it will get the
value of c.

Figure 12.12 is a complete program that uses a conditional expression to
calculate the maximum of two integers. The maximum of these two input values is
determined by a conditional expression and is assigned to the variable maxVaiue.
The value of maxVaiue is output using printf.

1 #include <stdio.h>
2
3 int main()
4 {
5 int maxVaiue;
6 int input1;
7 int input2;
8
9 printf("Input an integer: ");

10 scanf("%d", &inputl);
11 printf("Input another integer: ");
12 scanf("%dM, &input2);
13
14 maxVaiue = (inputl > input2) ? inputl : input2;
15 printf("The larger number is %d\n", maxVaiue);
16 }
Figure 12 .12 A C program that uses a conditional expression

12,7 Summarq
We conclude this chapter by summarizing the three key concepts we covered.

• Variables in C. The C programming language supports variables of three
basic types: integers (int), characters (char), and floating point numbers
(double). C, like all other high-level languages, provides the programmer the
ability to provide symbolic names to these variables. Variables in C can be locally

338 chapter 12 Variables and Operators

declared within a block of code (such as a function) or globally visible by all
blocks.

• Operators in C. C's operators can be categorized by the function they per-
form: assignment, arithmetic, bitwise manipulations, logical and relational tests.
We can form expressions using variables and operators such that the expressions
get evaluated according to precedence and associativity rules. Expressions are
grouped into statements, which express the work the program is to perform.

• Translating C Variables and Operators into LC-3 Code. Using a symbol
table to keep track of variable declarations, a compiler will allocate local variables
for a function within an activation record for the function. The activation record for
the function is pushed onto the run-time stack whenever the function is executed.
Global variables in a program are allocated in the global data section.

Exerc ises

12.1 Generate the compiler's symbol table for the following code. Assume
all variables occupy one location in memory.
{

double ff;
char cc;
int ii;
char dd;

}
12.2 The following variable declaration appears in a program:

int r ;

a. If r is a local variable, to what value will it be initialized?
b. If r if a global variable, to what value will it be initialized?

12.3 What are the ranges for the following two variables if they are stored as
32-bit quantities?
int plusOrMinus;
unsigned int positive;

12.4 Evaluate the following floating point literals. Write their values in
standard decimal notation.
a. I l l E —11
b. -0.00021 E 4
c. 101.101 E 0

Exercises 339

12-5 Write the LC-3 code that would result if the following local variable
declarations were compiled using the LC-3 C compiler:
char c = 'a';
int x = 3;
int y;
int z = 10;

12.6 For the following code, state the values that are printed out by each
printf statement. The statements are executed in the order A, B, C, D.

int t; /* This variable is global */
{

int t = 2;

printf("%d\n", t); /*
{

printf("%d\n", t); /*
t = 3;

}
printf("%d\nn, t); /*

}
{

printf("%d\n", t); /*
}

12.7 Given that a and b are both integers where a and b have been assigned
the values 6 and 9, respectively, what is the value of each of the
following expressions? Also, if the value of a or b changes, give their
new value.

a. a | b
b. a | | b
c. a & b
d. a && b
e. i (a + b)
/ a % b
g. b / a
h. a - b
I a = b = 5
j. ++a + b--
k. a = (++b < 3) ? a : b
1. a <<= b

12.8 For the following questions, write a C expression to perform the
following relational test on the character variable letter.
a. Test if letter is any alphabetic character or a number.
b. Test if letter is any character except an alphabetic character or a

number.

A */

B */

C */

D */

340 chapter 12 Variables and Operators

12.9 a. What does the following statement accomplish? The variable
letter is a character variable.
letter = ((letter >= 'a' && letter <= 'z') ? '!' :

h Modify the statement in (a) so that it converts lowercase to
uppercase.

12.10 Write a program that reads an integer from the keyboard and displays a
1 if it is divisible by 3 or a 0 otherwise.

12.11 Explain the differences between the following C statements:
a. j = i + + ;
b. j = + + i;
C. j = i + 1;
d. i + = 1 ;
e. j = i += 1;
f . Which statements modify the value of i? Which ones modify the

value of j ? If i = l and j = o initially, what will the values of
i and j be after each statement is run separately?

12.12 Say variables a and b are both declared locally as long int.
a. Translate the expression a + b into LC-3 code, assuming a

long int occupies two bytes. Assume a is allocated at offset 0 and
b is at offset — 1 in the activation record for their function.

b. Translate the same expression, assuming a long int occupies four
bytes, a is allocated offset 0, and b is at offset —2.

12.13 If initially, a = l, b = i, c = 3, and result = 9 99, what are the
values of the variables after the following C statement is executed?
result = b + 1 | c + a;

12.14 Recall the machine busy example from Chapter 2. Say the integer
variable machineBusy tracks the busyness of all 16 machines. Recall
that a 0 in a particular bit position indicates the machine is busy and
a 1 in that position indicates the machine is idle.

a. Write a C statement to make machine 5 busy.
b. Write a C statement to make machine 10 idle.
c. Write a C statement to make machine n busy. That is, the machine

that has become busy is an integer variable n.
d. Write a C expression to check if machine 3 is idle. If it is idle, the

expression returns a 1. If it is busy, the expression returns a 0.
e. Write a C expression that evaluates to the number of idle machines.

For example, if the binary pattern in machineBusy were
i o n ooio m o IOOI , then the expression will evaluate to 9.

Exercises 341

12.15 What purpose does the semicolon serve in C?
12.16 Say we are designing a new computer programming language that

includes the operators #, $ and u. How would the expression
w @ x # y $ z u a get evaluated under the following constraints?
a. The precedence of @ is higher than # is higher than $ is higher than

u. Use parentheses to indicate the order.
b. The precedence of # is higher than u is higher than @ is higher than $.
c. Their precedence is all the same, but they associate left to right.
d. Their precedence is all the same, but they associate right to left.

12.17 Notice that the C assignment operators have the lowest precedence. Say
we have developed a new programming language called Q that works
exactly like C, except that the assignment operator had the highest
precedence.

a. What is the result of the following Q statement? In other words,
what would the value of x be after it executed?
X - x + 1 ;

b. How would we change this Q statement so that it works the same
way as it would in C?

12.18 Modify the example program in Chapter 11 (Figure 11.3) so that it
prompts the user to type a character and then prints every character
from that character down to the character t in the order they appear in
the ASCII table.

12.19 Write a C program to calculate the sales tax on a sales transaction.
Prompt the user to enter the amount of the purchase and the tax rate.
Output the amount of sales tax and the total amount (including tax) on
the whole purchase.

12.20 Suppose a program contains the two integer variables x and y, which
have values 3 and 4, respectively. Write C statements that will exchange
the values in x and y so that after the statements are executed, x is equal
to 4 and y is equal to 3.
a. First, write this routine using a temporary variable for storage.
b. Now rewrite this routine without using a temporary variable.

c h a p t e r

13

Control S t ructures

13.1 Introduction
In Chapter 6, we introduced our top-down problem-solving methodology where a
problem is systematically refined into smaller, more detailed subtasks using three
programming constructs: the sequential construct, the conditional construct, and
the iteration construct.

We applied this methodology in the previous chapter to derive a simple
C program that calculates network transfer time. The problem's refinement into a
program only required the use of the sequential construct. For transforming more
complex problems into C programs, we will need a way to invoke the conditional
and iteration constructs in our programs. In this chapter, we cover C's version of
these two constructs.

We begin this chapter by describing C's conditional constructs. The if and
if-else statements allow us to conditionally execute a statement. After condi-
tional constructs, we move on to C's iteration constructs: the for, the while, and
the do-while statements, all of which allow us to express loops. With many of
these constructs, we will present the corresponding LC-3 code generated by our
hypothetical LC-3 C compiler to better illustrate how these constructs behave at
the lower levels. C also provides additional control constructs, such as the switch,
break, and continue statements, all of which provide a convenient way to rep-
resent some particular control tasks. We discuss these in Section 13.5. In the final
part of the chapter, we'll use the top-down problem-solving methodology to solve
some complex problems involving control structures.

344 chapter 13 Control Structures

13.3 Conditionol Constructs
Conditional constructs allow a programmer to select an action based on some
condition. This is a very common programming construct and is supported by
every useful programming language. C provides two types of basic conditional
constructs: if and if-else.

13.2.1 The i f Statement
The if statement is quite simple. It performs an action if a condition is true. The
action is a C statement, and it is executed only if the condition, which is a C
expression, evaluates to a nonzero (logically true) value. Let's take a look at an
example.

if (x <= 10}
y = x * x + 5 ;

The statement y = x * x + 5; is only executed if the expression x <= 10 is
nonzero. Recall from our discussion of the <= operator (the less than or equal to
operator) that it evaluates to 1 if the relationship is true, 0 otherwise.

The statement following the condition can also be a compound statement, or
block, which is a sequence of statements beginning with an open brace and ending
with a closing brace. Compound statements are used to group one or more simple
statements into a single entity. This entity is itself equivalent to a simple statement.
Using compound statements with an if statement, we can conditionally execute
several statements on a single condition. For example, in the following code, both
y and z will be modified if x is less than or equal to 10.

if (x <= 10) {
y = x * x + 5 ;
z = (2 * y) / 3;

}

As with all statements in C, the format of the if statement is flexible. The line
breaks and indentation used in the preceding example are features of a popular
style for formatting an i f statement. It allows someone reading the code to quickly
identify the portion that executes if the condition is true. Keep in mind that the for-
mat does not affect the behavior of the program. Even though the following code
is indented like the previous code, it behaves differently. The second statement
Z - (2 * y) / 3; is not associated with the if and will execute regardless of
the condition.

if (x <= 10)
y = x * x + 5 ;
z = (2 * y) / 3;

13.2 Conditional Constructs 345

Figure 13.1 shows the control flow of an if statement. The diagram
corresponds to the following code:

if (condition)
action;

Syntactically, the condition must be surrounded by parentheses in order to enable
the compiler to unambiguously separate the condition from the rest of the if
statement. The action must be a simple or compound statement.

Here are more examples of if statements demonstrating programming
situations where this decision construct might be useful.

if (temperature <= 0}
printf("At or below freezing point.\n");

if ('a' <= key && key <= 'z')
numLowerCase++;

if (current > currentLimit)
blownFuse = 1;

if (loadMAR & clock)
registerMAR = bus;

if (month == 4 || month == 6 || month == 9 || month == 11)
printf("The month has 30 days\n");

if (x = 2) /* This condition is always true. */
y = 5; /* The variable y will always be 5 */

346 chapter 13 Control Structures

The last example in the preceding code illustrates a very common mistake
made when programming in C. (Sometimes even expert C programmers make
this mistake. Good C compilers will warn you if they detect such code.) The
condition uses the assignment operator = rather than the equality operator, which
causes the value of x to change to 2. This condition is always true: expressions
containing the assignment operator evaluate to the value being assigned (in this
case, 2). Since the condition is always nonzero, y will always get assigned the
value 5 and x will always be assigned 2.

Even though they look similar at first glance, the following code is a
"repaired" version of the previous code.

i f (X = = 2)
y - 5;

Let's look at the LC-3 code that is generated for this code, assuming that x and y
are integers that are locally declared. This means that R5 will point to the variable
x and R5 - 1 will point to y.

LDR RO, R5, #0
ADD R0, R0, #-2
BRnp NOT TRUE

load x into R0
subtract 2 from x
If condition is not true,
then skip the assignment

AND R0, R0, #0
ADD RO, RO, #5
STR RO, R5, #-1

RO <- 0
RO <- 5
y = 5;

NOT TRUE the rest of the program

Notice that it is most straightforward for the LC-3 C compiler to generate code
that tests for the opposite of the original condition (x not equal to 2) and to branch
based on its outcome.

The if statement is itself a statement. Therefore, it is legal to nest an if
statement as demonstrated in the following C code. Since the statement following
the first i f is a simple statement (i.e., composed of only one statement), no braces
are required.

if (x == 3)
if (y != 6) {

Z - 2 + 1 ;

W = W + 2;
}

13.2 Conditional Constructs 347

The inner i f statement only executes if x is equal to 3. There is an easier way to
express this code. Can you do it with only one if statement? The following code
demonstrates how.

if ((x == 3) && (y != 6)) {
Z = Z + 1 ;
W = W + 2 ;

}

13.2.2 The i f - e l s e Statement
If we wanted to perform one set of actions if a condition were true and another
set if the same condition were false, we could use the following sequence of if
statements:

if (temperature <= 0)
printf("At or below freezing point.\n");

if (temperature > 0)
printf("Above freezing.\n");

Here, a single message is printed depending on whether the variable
temperature is below or equal to zero or if it is above zero. It turns out that
this type of conditional execution is a very useful construct in programming.
Since expressing code in the preceding way can be a bit cumbersome, C provides
a more convenient construct: the if-else statement.

The following code is equivalent to the previous code segment.

if (temperature <= 0)
printf("At or below freezing point.\n");

else
printf("Above freezing.\n");

Here, the statement appearing immediately after the else keyword executes only
if the condition is false.

The flow diagram for the if-else is shown in Figure 13.2. The figure
corresponds to the following code:

if (condition)
action__if ;

else
action_else;

The lines action if and action_else can correspond to compound statements
and thus consist of multiple statements, as in the following example.

348 chapter 13 Control Structures

Figure 13.2 The C i f - e l s e statement, pictorially represented

if (x) { y++;
z-- ;

}
else {

y - - ;
Z + + ;

}

If the variable x is nonzero, the if's condition is true, y is incremented, and
z decremented. Otherwise, y is decremented and z incremented. The LC-3 code
generated by the LC-3 C compiler is listed in Figure 13.3. The three variables x,
y, and z are locally declared integers.

We can connect conditional constructs together to form a longer sequence of
conditional tests. The example in Figure 13.4 shows a complex decision structure
created using the if and if-else statements. No other control structures are
used. This program gets a number of a month from the user and displays the
number of days in that month.

At this point, we need to mention a C syntax rule for associating ifs with
eises: An else is associated with the closest unassociated if. The following
example points out why this is important.

if (x != 10)
if (y > 3)

Z = z / 2;
e l s e

z = z * 2;

13.2 Conditional Constructs 349

1 LDR RO, R5, #0 load the value of x
2 BRz ELSE ; if x equals 0, perform else part
3

4 LDR R0, R5, #-l ; load y into R0
5 ADD R0, R0, #1
6
7

STR R0, R5, #-i ; y++;
/
8 LDR R0, R5, #-2 ; load z into R0
9 ADD R0, R0, #-1

10 STR R0, R5, #-2 ; z-- ;
11 BR DONE
12
13 ELSE: LDR R0, R5, #-1 ; load y into R0
14 ADD R0, R0, #-1
15 STR R0, R5, #-1 ; y__ .
16
17 LDR R0, R5, #-2 ; load z into R0
18 ADD R0, R0, #1
19 STR RO, R5, #-2 ; z + + ;
2 0 DONE: :
21 :
Figure 13.3 The LC-3 code generated for an i f - e l s e statement

1 #include <stdio.h>
2
3 int main()
4 {
5 int month;
6
7 printf{"Enter the number of the month: ");
8 scanf("%d", &month);
9

10 if (month == 4 \\ month == 6 || month == 9 || month == 11)
11 printf("The month has 30 days\n");
12 else if (month == 1 || month = = 3 || month = = 5 ||
13 month == 7 || month == 8 || month = = 1 0 j | month == 12)
14 printf("The month has 31 days\n");
15 else if (month == 2)
16 printf("The month has either 28 days or 29 days\n");
17 else
18 printf("Don't know that month\n");
19 }
Figure 13.4 A program that determines the number of days in a month

368 chapter 13 Control Structures

Without this rule, it would not be clear whether the else should be paired
with the outer if or the inner if. For this situation, the rule states that the else
is coupled with the inner i f because it is closer than the outer i f and the inner i f
statement has not already been coupled to another else (i.e., it is unassociated).
The code is equivalent to the following:

if (x != 10) {
if (y > 3)

Z = z / 2;
else

z = z * 2;
}

Just as parentheses can be used to modify the order of evaluation of expres-
sions, braces can be used to associate statements. If we wanted to associate the
else with the outer if, we could write the code as

if (x != 10) {
if (y > 3)

Z = z / 2;
}
else

z = z * 2 ;

Before we leave the if-else statement for bigger things, we present a very
common use for the if-else construct. The if-else statement is very handy
for checking for bad situations during program execution. We can use it for error
checking, as shown in Figure 13.5. This example performs a simple division based
on two numbers scanned from the keyboard. Because division by 0 is undefined,
if the user enters a 0 divisor, a message is displayed indicating the result cannot
be generated. The if-else statement serves nicely for this purpose.

Notice that the nonerror case appears in the if-else statement first and the
error case second. Although we could have coded this either way, having the
common, nonerror case first provides a visual cue to someone reading the code
that the error case is the uncommon one.

13.3 Iteration Constructs
Being able to iterate, or repeat, a computation is part of the power of computing.
Almost all useful programs perform some form of iteration. In C, there are three
iteration constructs, each a slight variant of the others: the while statement, the
for statement, and the do-while statement.

13.3.1 The while Statement
We begin by describing C's simplest iteration statement: the while. A while loop
executes a statement repeatedly while a condition is true. Before each iteration

13.3 Iteration Constructs 351

1 #include <stdio.h>
2
3 int main()
4 {
5 int div i dend;
6 int divisor;
7 int result;
8
9 printf("Enter the dividend: ");

10 scanf("%d", ^dividend);
11
12 printf("Enter the divisor: ");
13 scanf("%d", &divisor)
14
15 if (divisor 1= 0) {
16 result = dividend / divisor;
17 printf("The result of the division is %d\n", result);
18 }
19 else
20 printf("A divisor of zero is not allowed\nM);
21 }
Figure 13.5 A program that has error-checking code

of the statement, the condition is checked. If the condition evaluates to a logical
true (nonzero) value, the statement is executed again.

In the following example program, the loop keeps iterating while the value
of variable x is less than 10. It produces the following output:

0 1 2 3 4 5 6 7 8 9

#include <stdio.h>

int main() {
int x = 0;

while (x < 10) {
printf("%d ", x);
X = x + 1;

}
}

The while statement can be broken down into two components. The test
condition is an expression used to determine whether or not to continue executing
the loop.

352 chapter 13 Control Structures

F

T

Loop body

Figure 13.6 The C while s ta tement , pictorially represented

while (test)
loop_body;

It is tested before each execution of the loop body. The loop_body is a statement
that expresses the work to be done within the loop. Like all statements, it can be
a compound statement.

Figure 13.6 shows the control flow using the notation of systematic decom-
position. Two branches are required: one conditional branch to exit the loop and
one unconditional branch to loop back to the test to determine whether or not to
execute another iteration.

The LC-3 code generated by the compiler for the while example that counts
from 0 to 9 is listed in Figure 13.7.

The while statement is useful for coding loops where the iteration process
involves testing for a sentinel condition. That is, we don't know the number of
iterations beforehand but we wish to keep looping until some event (i.e., the

1 AND RO, RO, #0 ; clear out RO
2 STR RO, R5, #0 ; x = 0;
3
4
5 LOOP:

; while (x < 10)
LDR RO, R5, #0
ADD R0, R0, #-10
BRpz DONE

perform the test
6
7
8
9
10
11
12
13
14
15
16

LDR R0, R5, #0
ADD R0, R0, #1
STR R0, R5, #0
BR LOOP

ccode for calling the function printf>

; loop body

R0 <- x
x + 1
x = x + 1;
another iteration

x is not less than 10

17 DONE: :
18 :

Figure 13.7 The LC-3 code generated for a while loop tha t counts to 9

13.3 Iteration Constructs 371

1 #include <stdio.h>
2
3 int main()
4 {
5 char echo = 'A'; /* Initialize char variable echo */
6
7 while (echo != '\n') {
8 scanf("%cn, &echo);
9 printf("%c", echo);

10 }
11 }
Figure 13.8 Another program with a simple w h i l e loop

sentinel) occurs. For example, when we wrote the character counting program in
Chapters 5 and 7, we created a loop that terminated when the sentinel EOT charac-
ter (a character with ASCII code 4) was detected. If we were coding that program
in C rather than LC-3 assembly language, we would use a while loop. The pro-
gram in Figure 13.8 uses the while statement to test for a sentinel condition. Can
you determine what this program does without executing it?1

We end our discussion of the while statement by pointing out a common
mistake when using while loops. The following program will never terminate
because the loop body does not change the looping condition. In this case, the
condition always remains true and the loop never terminates. Such loops are called
infinite loops, and most of the time they occur because of programming errors.

#include <stdio.h>

int main() {
int x = 0;

while (x < 10)
printf (" %d 11, x) ;

}

13.3.2 The f o r Statement
Just as the while loop is a perfect match for a sentinel-controlled loop, the C
for loop is a perfect match for a counter-controlled loop. In fact, the for loop is
a special case of the while loop that happens to work well when the number of
iterations is known ahead of time.

1This program behaves a bit differently than you might expect. You might expect it to print out each
input character as the user types it in. Because of the way C deals with keyboard I/O, the program
does not get any input until the user hits the Enter key. We explain why this is so when dealing with
the low-level issues surrounding I/O in Chapter 18.

354 chapter 13 Control Structures

In its most straightforward form, the for statement allows us to repeat a
statement a specified number of times. For example,

#include <stdio.h>

int main() {
int x ;

for (x = 0; x < 10; x++)
printf(»%d "f x);

}

will produce the following output. It loops exactly 10 times.

0 1 2 3 4 5 6 7 8 9

The syntax for the C for statement may look a little perplexing at first. The
for statement is composed of four components, broken down as follows:

for (init; test; reinit)
loop__body ;

The three components within the parentheses, init, test, and reinit, con-
trol the behavior of the loop and must be separated by semicolons. The final
component, ioop_body, specifies the actual computation to be executed in each
iteration.

Let's take a look at each component of the for loop in detail. The init
component is an expression that is evaluated before the first iteration. It is typically
used to initialize variables in preparation for executing the loop.

The test is an expression that gets evaluated before every iteration to deter-
mine if another iteration should be executed. If the test expression evaluates to
zero, the for terminates and the control flow passes to the statement immediately
following the for. If the expression is nonzero, another iteration of the loop body
is performed. Therefore, in the previous code example, the test expression x < l o
causes the loop to keep repeating as long as x is less than 10.

The reinit component is an expression that is evaluated at the end of every
iteration. It is used to prepare (or reinitialize) for the next iteration. In the pre-
vious code example, the variable x is incremented before each repetition of the
loop body.

The ioop_body is a statement that defines the work to be performed in each
iteration. It can be a compound statement.

Figure 13.9 shows the flow diagram of the for statement. There are four
blocks, one for each of the four components of the for statement. There is a
conditional branch that determines whether to exit the loop based on the outcome
of the test expression or to proceed with another iteration. An unconditional

13.3 Iteration Constructs 373

Figure 13.9 The C f o r statement

branch loops back to the test at the end of each iteration, after the reinit
expression is evaluated.

Even though the syntax of a for statement allows it to be very flexible, most
of the for loops you will encounter (or will write) will be of the counter-controlled
variety, that is, loops that iterate for a certain number of iterations. Following are
some examples of code that demonstrate the counter-controlled nature of for
loops.

/* What does the loop output? */
for (x = 0; x < = 10; x++)

printf{"%d ", x);

/* What does this one output? */
letter = 'a' ,-

for (c = 0; c < 26; C + +)

printf("%c letter + c);

/* What does this loop do? */
numberOfOnes = 0;

for (bitNum = 0; bitNum < 16; bitNum++) {
if (inputValue & {1 << bitNum))

numberOfOnes++;
}

356 chapter 13 Control Structures

1 AND R 0 , R 0 , # 0 c l e a r o u t R0
2
-i

STR RO, R 5 , # - 1 ; s u m = 0 ;
j
4

; i n i t
5 AND R 0 , R 0 , # 0 c l e a r o u t R0
6
7

STR R 0 , R 5 , # 0 i n i t (x = 0)
/
8 ; t e s t
9 L O O P : LDR R 0 , R 5 , # 0 p e r f o r m t h e t e s t

1 0 ADD R 0 , R 0 , # - 1 0
1 1 B R p z DONE j x i s n o t l e s s t h a n
12
13 ; l o o p b o d y
14 LDR R 0 , R 5 , # 0 g e t x
1 5 LDR R l , R 5 , # - 1 ; g e t s u m
1 6 ADD R l , R l , R0 s u m + x
1 7 STR R 0 , R 5 , # - 1 ; s u m = s u m + x ;
18
1 9 ; r e i n i t
2 0 LDR R 0 , R 5 , # 0 g e t x
2 1 ADD R 0 , R 0 , # 1
2 2 STR R 0 , R 5 , # 0 X+ +
2 3 BR LOOP
2 4
2 5 DONE: :

2 6 :

Figure 13.10 The LC-3 code generated for a f o r statement

Let's take a look at the LC-3 translation of a simple for loop. The program
is a simple one: it calculates the sum of all integers between 0 and 9.

i n c l u d e < s t d i o . h >

i n t m a i n ()
{

i n t x ;
i n t s u m = 0 ;

f o r { x = 0 ; x < 1 0 ; X + +)

s u m = s u m + x ;

}

The LC-3 code generated by the compiler is shown in Figure 13.10.
The following code contains a mistake commonly made when using for

loops.

13.3 Iteration Constructs 375

sum = 0;
for (x = 0; X < 10; X++);

sum = sum + x;

printf("sum = %d\n", sum);
printf ("x = %d\n'r, x) ;

What is output by the first printf? The answer is sum = 10. Why? The second
printf outputs x - io. Why? If you look carefully, you might be able to notice
a misplaced semicolon.

A for loop can be constructed using a while loop (actually, vice versa as
well). In programming, they can be used interchangeably, to a degree. Which
construct to use in which situation may seem puzzling at first, but keep in mind
the general rule that whi 1 e is best suited for loops that involve sentinel conditions,
whereas for fits situations where the number of iterations is known beforehand.

Nested Loops
Figure 13.11 contains an example of a for where the loop body is composed
of another for loop. This construct is referred to as a nested loop because the
inner loop is nested within the outer. In this example, the program prints out a
multiplication table for the numbers 0 through 9. Each iteration of the inner loop
prints out a single product in the table. That is, the inner loop iterates 10 times
for each iteration of the outer loop. An entire row is printed for each iteration of
the outer loop. Notice that the printf function call contains a special character
sequence in its format string. The \ t sequence causes a tab character to be printed
out. The tab helps align the columns of the multiplication table so the output looks
neater.

1 #include <stdio.h>
2
3 int main()

/* Outer Loop */
for (multiplicand = 0; multiplicand < 10; multiplicand++)

/* Inner Loop */
for (multiplier = 0; multiplier < 10; multiplier++) {

printf("%d\t", multiplier * multiplicand);

9
10
11
12
13
14
15
16

printf("\n");

Figure 13.11 A program that prints out a multiplication table

358 chapter 13 Control Structures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2 0
21
2 2

#include <stdio.h>

int main() {
int sum = 0;
int input;
int inner;
int outer;

/ *

/ *
/ *

Initial the result variable */
Holds user input */
Iteration variables */

/* Get input */
printf("Input an integer:
scanf (nd", &input) ;

/* Perform calculation *
for (outer = 1; outer <=

for (inner = 0; inner
sum += inner;

}

/* Output result */
printf("The result is

/
= input; outer++)
< outer; inner++

d\n", sum)

Figure 1 3 . 1 2 A program wi th a nested for loop

Figure 13.12 contains a slightly more complex example. The number of iter-
ations of the inner loop depends on the value of outer as determined by the outer
loop. The inner loop will first execute 0 time, then 1 time, then 2 times, etc. For
a challenging exercise based on this example, see Exercise 13.6 at the end of this
chapter.

13.3.3 The do-while Statement
With a while loop, the condition is always evaluated before an iteration is per-
formed. Therefore, it is possible for the whi le loop to execute zero iterations (i.e.,
when the condition is false from the start). There is a slight variant of the while
statement in C called do-while, which always performs at least one iteration. In
a do-while loop, the condition is evaluated after the first iteration is performed.
The operation of the do-while is demonstrated in the following example:

X - 0;
do {

printf("%d \n", x);
X = X + 1 ;

} while (x < 10);

Here, the conditional test, x < 10, is evaluated at the end of each iteration.
Thus, the loop body will execute at least once. The next iteration is performed

13.4 Problem Solving Using Control Structures 377

only if the test evaluates to a nonzero value. This code produces the following
output:

0 1 2 3 4 5 6 7 8 9

Syntactically, a do-while is composed of two components, exactly like the
while.

do
loop_body;

while (test);

The loop body component is a statement (simple or compound) that
describes the computation to be performed by the loop. The test is an expression
that determines whether another iteration is to be performed.

Figure 13.13 shows the control flow of the do-while loop. Notice the slight
change from the flow of a whi l e loop. The loop body and the test are interchanged.
A conditional branch loops back to the top of the loop body, initiating another
iteration.

At this point, the differences between the three types of C iteration constructs
may seem very subtle, but once you become comfortable with them and build
up experience using these constructs, you will more easily be able to pick the
right construct to fit the situation. To a large degree, these constructs can be
used interchangeably. Stylistically, there are times when one construct makes
more sense to use than another—often the type of loop you choose will convey
information about the intent of the loop to someone reading your code.

13.4 Problem Solving Using Control Structures
Armed with a new arsenal of control structures, we can attempt to solve more
complex programming problems. In this section, we will apply our top-down
problem-solving methodology to four problems requiring the use of C control
structures.

360 chapter 13 Control Structures

Being effective at solving programming problems requires that you under-
stand the basic primitives of the system on which you are programming. You
will need to invoke them at the appropriate times to solve various programming
puzzles. At this point, our list of C primitives includes variables of the three basic
types, operators, two decision structures, and three control structures.

13.4.1 Problem 1: Approximating the Value of n
For the first programming problem, we will calculate the value of tt using the
following series expansion:

4 4 4 , 4
tt = 4 - - + + ••• + (- 1) " ' 1 H

3 5 7 V } 2n + 1

The problem is to evaluate this series for the number of terms indicated by the user.
If the user enters 3, the program will evaluate 4 - | + The series is an infinite
series, and the more terms we evaluate, the more accurate our approximation
Of TT.

As we did for the problem-solving example in Chapter 12, we first invoke
step 0: we select a representation for the data involved in the computation. Since
the series deals with fractional numbers, we use the double floating point type
for any variables directly involved in the series calculation. Given the nature of
the computation, this seems clearly to be the best choice.

Now we invoke stepwise refinement to decompose a roughly stated algorithm
into a C program. Roughly, we want the program to initialize all data that requires
initialization. Then ask the user to input the number of terms of the series to
evaluate. Then evaluate the series for the given number of terms. Finally, print
out the result. We have defined the problem as a set of sequential constructs.
Figure 13.14 shows the decomposition thus far.

Most of the sequential constructs in Figure 13.14 are very straightforward.
Converting them into C code should be quite simple. One of the constructs in
the figure, however, requires some additional refinement. We need to put a little
thought into the subtask labeled Evaluate series. For this subtask, we essentially
want to iterate through the series, term by term, until we evaluate exactly the
number of terms indicated by the user. We want to use a counter-controlled iter-
ation construct. Figure 13.15 shows the decomposition. We maintain a counter
for the current loop iteration. If the counter is less than the limit indicated by the
user, then we evaluate another term. Notice that the refined version of the subtask
looks like the flow diagram for a for loop.

We are almost done. The only nontrivial subtask remaining is Evaluate
another term. Notice that all even terms in the series are subtracted, and all
odd terms are added. Within this subtask, we need to determine if the particular
term we are evaluating is an odd or an even term, and then accordingly factor it
into the current value of the approximation. This involves using a decision con-
struct as shown in Figure 13.16. The complete code resulting from this stepwise
refinement is shown in Figure 13.17.

13.4 Problem Solving Using Control Structures 379

Step 1 Step 2

Figure 13.14 The initial decomposition of a program that evaluates the series expansion for iz
for a given number of terms

Evaluate series

Initialize
iteration count

Evaluate
another term

i

count = count + 1

Figure 13.15 The refinement of the subtask Evaluate series into an iteration construct that
iterates a given number of times. Within this loop, we evaluate terms for a series
expansion for jr

380 chapter 13 Control Structures

Figure 13.16 Incorporate the current term based on whether it is odd or even

1
o

#include <stdio.h>
z
3 int main()
4 {
5 int count; /* Iteration variable * /
6 int numOfTerms; /* Number of terms to evaluate * /
7
8

double pi = 0; /* approximation of pi * /

9 printf("Number of terms (must be 1 or larger) : ");
10 scanf("%d", &numOfTerms);
11
12 for (count = 1; count <= numOfTerms; count++) {
13 if (count % 2)
14 pi = pi + (4.0 / (2.0 * count - 1)); /* Odd term * /
15 else
16 pi = pi - (4.0 / (2.0 * count - 1)); /* Even term * /
17 }
18
19 printf("The approximate value of pi is %f\n", pi);
20 }
Figure 13.17 A program to calculate n

13.4.2 Problem 2: Finding Prime Numbers Less than 100
Our next problem-solving example involves finding all the prime numbers that are
less than 100. Recall that a number is prime only if the only numbers that evenly
divide it are 1 and itself.

Step 1

13.4 Problem Solving Using Control Structures

Step 2 Step 3

363

CalcPrime

* f
Num = Num + 1

T

Figure 13.18 Decomposing a problem to compute prime numbers less than 100. The first
three steps involve creating a loop that iterates between the 2 and 100

Step 0, as with our previous examples, is to select an appropriate data repre-
sentation for the various data associated with the problem. Since the property of
prime numbers only applies to integers, using the integer data type for the main
computation seems a good choice.

Next we apply stepwise refinement to the problem to reduce it into a C pro-
gram. We can approach this problem by first stating it as a single task (step 1). We
then refine this single task into two separate sequential subtasks: Initialize and
then perform the calculation (step 2).

Performing the Calculation subtask is the brunt of the programming effort.
Essentially, the Calculation subtask can be stated as follows: We want to check
every integer between 2 and 100 to determine if it is prime. If it is prime, we want
to print it out. A counter-controlled loop should work just fine for this purpose.
We can further refine the Calculation subtask into smaller subtasks, as shown in
Figure 13.18. Notice that the flow diagram has the shape of a f o r loop.

Already, the problem is starting to resolve into C code. We still need to refine
the CalcPrime subtask. In this subtask, we need to determine if the current number
is prime or not. Here, we rely on the fact that any number between 2 and 100 that
is not prime will have at least one divisor between 2 and 10 that is not itself. We

chapter 13 Control Structures

Step 3

CalcPrime

Num = Num + 1

Divide Num by
integers 2 thru 10

CalcPrime /
F

/ No \ F
\ divisors?/

T

Num is prime.
Print it out.

Stop

Figure 13.19 Decomposing the CalcPrime subtask

can refine this subtask as shown in Figure 13.19. Basically, we will determine if
each number is divisible by an integer between 2 and 10 (being careful to exclude
the number itself). If it has no divisors between 2 and 10, except perhaps itself,
then the number is prime.

Finally, we need to refine the Divide number by integers 2 through 10 subtask.
It involves dividing the current number by all integers between 2 and 10 and
determining if any of them evenly divide it. A simple way to do this is to use
another counter-controlled loop to cycle through all the integers between 2 and
10. Figure 13.20 shows the decomposition using the iteration construct.

Now, coding this problem into a C program is a small step forward. The
program is listed in Figure 13.21. There are two for loops within the program,
one of which is nested within the other. The outer loop sequences through all
the integers between 2 and 100; it corresponds to the loop created when we
decomposed the Calculation subtask. An inner loop determines if the number
generated by the outer loop has any divisors; it corresponds to the loop created
when we decomposed the Divide number by integers 2 through 10 subtask.

13.4 Problem Solving Using Control Structures 365

Figure 13.20 Decomposing the Divide numbers by integers 2 through 10 subtask

1 #include <stdio.h>
2 #define FALSE 0
3 #define TRUE 1
4
5 int main()
6 {
7 int num;
8 int divisor;
9 int prime;

10
11 /* Start at 2 and go until 100 */
12 for (num = 2; num <= 100; num++) {
13 prime = TRUE; /* Assume the number is prime */
14
15 /* Test if the candidate number is a prime */
16 for (divisor = 2; divisor <= 10; divisor++)
17 if (((num % divisor) == 0) && num != divis'or)
18 prime = FALSE;
19
20 if (prime)
21 printf("The number %d is prime\n", num);
22 }
23 }
Figure 13 .21 A program that finds all prime numbers between 2 and 100

366 chapter 13 Control Structures

One item of note: If a divisor between 2 and 10 is found, then a flag variable
called prime is set to false. It is set to true before the inner loop begins. If it remains
true, then the number generated by the outer loop has no divisors and is therefore
prime. To do this, we are utilizing the C preprocessor's macro substitution facility.
We have defined, using #def ine, two symbolic names, FALSE, which maps to
the value 0 and TRUE, which maps to 1. The preprocessor will simply replace
each occurrence of the word TRUE in the source file with 1 and each occurrence
of FALSE with 0.

13.4.3 Problem 3: Analyzing an E-mail Address
Our final problem in this section involves analyzing an e-mail address typed in
at the keyboard to determine if it is of valid format. For this problem, we'll use
a simple definition of validity: an e-mail address is a sequence of characters that
must contain an at sign, and a period, with the at sign preceding the
period.

As before, we start by choosing an appropriate data representation for
the underlying data of the problem. Here, we are processing text data entered
by the user. The type best suited for text is the ASCII character type, char. Actu-
ally, the best representation for input text is an array of characters, or character
string, but as we have not yet introduced arrays into our lexicon of primitive ele-
ments (and we will in Chapter 16), we instead target our solution to use a single
variable of the char type.

Next, we apply stepwise refinement. The entire process is diagrammed in
Figure 13.22. We start with a rough flow of the program where we have two

Step 1

(^^tart^)

Proce; 3s input

Outpu t result

(^Stop

Step 3

Get
next char

Process
next char ^

Check for At

Check for Dot
after At

i /

Figure 13 .22 A stepwise refinement of the analyze e-mail address program

13.4 Problem Solving Using Control Structures 367

tasks (step 1): Process input and Output results. Here, the Output results task is
straightforward. We will output either that the input text is a valid e-mail address
or that it is invalid. The Process input task requires more refinement.

In decomposing the Process input task (step 2), we need to keep in mind that
our choice of data representation (variable of the char type) implies that we will
need to read and process the user's input one character at a time. We will keep
processing, character by character, until we have reached the end of the e-mail
address, implying that we select some form of sentinel-controlled loop. Step 2 of
the decomposition divides the Process input task into a sentinel-controlled itera-
tion construct that terminates when the end of an e-mail address is encountered,
which we'll say is either a space or a newline character, \n.

The next step (step 3) of the decomposition involves detailing what processing
occurs within the loop. Here, we need to check each character within the e-mail
address and remember if we have seen an at sign or a period in the proper order. To
do this, we will use two variables to record this status. When the loop terminates

1 #include <stdio.h>
2 #define FALSE 0
3 #define TRUE 1
4
5 int main()
6 {
7 char nextChar; /* Next character in e-mail address */
8 int gotAt = FALSE; /* Indicates if At @ was found */
9 int gotDot = FALSE; /* Indicates if Dot . was found */

10
11 printf("Enter your e-mail address: ");
12
13 do {
14 scanf("%c", fcnextChar);
15
16 if (nextChar == '@')
17 gotAt = TRUE;
18
19 if (nextChar == && gotAt == TRUE)
2 0 gotDot = TRUE;
21 }
22 while (nextChar ! = ' ' & & nextChar != '\n');
23
24 if (gotAt == TRUE && gotDot == TRUE)
25 printf("Your e-mail address appears to be valid.\n");
26 else
27 printf("Your e-mail address is not valid!\n");
28 }

Figure 13 .23 A C program to determine if an e-mail address is valid

368 chapter 13 Control Structures

and we are ready to display the result, we can examine these variables to display
the appropriate output message.

At this point, we are not far from C code. Notice that the loop structure is
very similar to the flow diagram of the do-while statement. The C code for this
problem is provided in Figure 13.23.

13.5 ndditional C Control Structures
We complete our coverage of the C control structures by examining the switch,
break, and continue statements. These three statements provide specialized
program control that programmers occasionally find useful for very particular
programming situations. We provide them here primarily for completeness; none
of the examples in the remainder of the textbook use any of these three constructs.

13.5.1 The switch Statement
Occasionally, we run into programming situations where we want to perform a
series of tests on a single value. For example, in the following code, we test the
character variable keypress to see if it equals a series of particular characters.

char keyPress;

if (keyPress == 'a')
/* statement A */

else if (keyPress == 'b')
/* statement B */

else if (keyPress == 'x'}
/* statement C */

else if (keyPress == 'y')
/* statement D */

In this code, one (or none) of the statements labeled A, B, C, or D will execute,
depending on the value of the variable keyPress. If keyPress is equal to the
character a, then statement A is performed, if it is equal to the character b, then
statement B is performed, and so forth. If keypress does not equal a or b or x
or y, then none of the statements are executed.

If there are many of these conditions to check, then many tests will be required
in order to find the "matching" one. In order to give the compiler an opportunity
to better optimize this code by bypassing some of this testing, C provides the
switch statement. The following code segment behaves the same as the code in
the previous example. It uses a switch statement instead of cascaded if-else
statements.

13.5 Additional C Control Structures 369

char keyPress;

switch (keyPress) {
case 'a':

/* statement A */
break;

case 'b':
/* statement B */
break;

case 'x' :
/* statement C */
break;

case 'y':
/* statement D */
break;

}

Notice that the switch statement contains several lines beginning with the
keyword case, followed by a label. The program evaluates keypress first. Then
it determines which of the following case labels matches the value of keyPress.
If any label matches, then the statements following it are executed.

Let's go through the switch construct piece by piece. The switch keyword
precedes the expression on which to base the decision. This expression must be
of integral type (for example, an int or a char). If one of the case labels matches
the value of the expression, then program control passes to the statement or block
associated with (usually, immediately below) that case label. Each case consists
of a sequence of zero or more statements similar to a compound statement, but
no delimiting braces are required. The place within this compound statement to
start executing is determined by which case matches the value of the switch
expression. Each case label within a switch statement must be unique; identical
labels are not allowed.

Furthermore, each case label must be a constant expression. It cannot be
based on a value that changes as the program is executing. The following is not
a legal case label (assuming i is a variable):

case i:

In the preceding switch example, each case ends with a break statement.
The break exits the switch construct and changes the flow of control directly
to the statement after the closing brace of the switch. The break statements are
optional. If they are not used, then control will go from the current case to the

388 chapter 13 Control Structures

next. For example, if the break after statement C were omitted, then a match on
case 'x' would cause statement C and statement D to be executed. However,
in practice, cases almost always end with a break.

We can also include a default case. This case is selected if the switch
expression matches none of the case constants. If no default case is given,
and the expression matches none of the constants, none of the cases are
executed.

A stylistic note: The last case of a switch does not need to end with a break
since execution of the switch ends there, anyway. However, including a break
for the final case is good programming practice. If another case is ever added to
the end of the switch, then you will not have to remember to also add the break
to the previous case. It is good, defensive programming.

13.5.2 The break and continue Statements
In the previous section, we saw an example of how the C break statement is
used with switch. The break statement, and also the continue statement, are
occasionally used with iteration constructs.

The break statement causes the compiler to generate code that will prema-
turely exit a loop or a switch statement. When used within a loop body, break
causes the loop to terminate by causing control to jump out of the innermost loop
that contains it. The continue statement, on the other hand, causes the com-
piler to generate code that will end the current iteration and start the next. These
statements can occur within a loop body and apply to the iteration construct imme-
diately enclosing them. Essentially, the break and continue statements cause
the compiler to generate an unconditional branch instruction that leaves the loop
from somewhere in the loop body. Following are two example code segments that
use break and continue.

/* This code segment produces the output: 0 1 2 3 4 * /
for (i = 0; i < 10; i++) {

if (i == 5)
break;

printf(»%d i);
}
/* This code produces the output: 0 1 2 3 4 6 7 8 9 * /
for (i = 0; i < 10; i++) {

if (i == 5)
continue;

printf("%d i) ;
}

13.5.3 An Example: Simple Calculator
The program in Figure 13.24 performs a function similar to the calculator exam-
ple from Chapter 10. The user is prompted for three items: an integer operand,

13.5 Additional C Control Structures 389

1 #include <stdio.h>
2
3 int main()
4 {
5 int operandi, operand2; /* Input values */
6 int result = 0 ; /* Result of the operation */
7 char operation; /* operation to perform */
8
9 /* Get the input values */

10 printf{"Enter first operand: ");
11 scanf("%d", &operandl);
12 printf("Enter operation to perform (+, -, *, /): ");
13 scanf("\n%c", ^operation);
14 printf("Enter second operand: ");
15 scanf (11 %d", &operand2) ;
16
17 /* Perform the calculation */
18 switch(operation) {
19 case ' +' :
20 result = operandi + operand2;
21 break;
22
23 case '-':
24 result = operandi - operand2;
25 break;
26
27 case '*':
28 result = operandi * operand2;
2 9 break;
30
31 case '/':
32 if (operand2 1= 0) /* Error-checking code. */
3 3 result = operandi / operand2;
34 else
35 printf("Divide by 0 error!\n");
36 break;
37
38 default:
39 printf("Invalid operation!\n");
4 0 break;
41 }
42
43 printf("The answer is %d\n", result);
44 } J c
Figure 1 3 . 2 4 Calculator program in C

an operation to perform, and another integer operand. The program performs
the operation on the two input values and displays the result. The program
makes use of a switch to base its computation on the operator the user has
selected.

372 chapter 13 Control Structures

13.6 Summary
We conclude this chapter by summarizing the key concepts we've covered. The
basic objective of this chapter was to enlarge our set of problem-solving primitives
by exploring the various control structures supported by the C programming
language.

• Decision Construct in C. We covered two basic C decision statements:
if and if-else. Both of these statements conditionally execute a statement
depending on whether a specified expression is true or false.

• Iteration Constructs in C. C provides three iteration statements: while,
for, and do-while. All of these statements execute a statement possibly multi-
ple times until a specified expression becomes false. The while and do-while
statements are particularly well-suited for expressing sentinel-controlled loops.
The for statement works well for expressing counter-controlled loops.

• Problem Solving Using Control Structures. To our arsenal of primitives
for problem solving (which already includes the three basic C types, variables,
operators, and I/O using printf and scanf), we added control constructs. We
practiced some problem-solving examples that required application of these
control constructs.

Exerc ises

13.1

13.2

#define VERO -2

if (VERO)
printf("True!");

else
printf("False I");

b. What is the output produced when this code is run?
c. If we modified the code to the following, does the code behave

differently? If so, how?

#define VERO ~2

if (VERO)
printf("True!");

else if (!VERO)
printf("False!");

Recreate the LC-3 compiler's symbol table when it compiles the
calculator program listed in Figure 13.24.
a. What does the following code look like after it is processed by the

preprocessor?

Exercises 373

13.3 An if-else statement can be used in place of the C conditional
operator (see Section 12.6.3). Rewrite the following statement using an
if-else rather than the conditional operator.

X = a ? b : C ;

13.4 Describe the behavior of the following statements for the case when x
equals 0 and when x equals 1.
a. if (x = o)

printf("x equals 0\n");
else

printf{"x does not equal 0\n");
b. if (x == 0)

printf("x equals 0\n");
else

printf("x does not equal 0\n");
c. if (x == 0)

printf("A\n");
else if (x != 1)

printf("B\n");
else if (x < 1}

printf("C\n") ;
else if (x)

printf("D\n"};
d. int x;

int y;

switch (x) {
case 0:

Y - 3;

case 1:
Y = 4;
break;

default:
7 = 5 ;
break;

}
e. What happens if x is not equal to 0 or 1 for part 4?

13.5 Provide the LC-3 code generated by our LC-3 C compiler when it
compiles the switch statement in part 4 of Exercise 13.4.

13.6 Figure 13.12 contains a C program with a nested for loop.
a. Mathematically state the series that this program calculates.
b. Write a program to calculate the following function:

fin) = f(n - 1) + f(n - 2)

with the following initial conditions,

/(0) = 1, /(1) = 1

374 chapter 13 Control Structures

13.7 Can the following if-else statement be converted into a switch? If
yes, convert it. If no, why not?
if {y, : == 0)

Y = 3;
else if (x == 1)

y = 4;
else if (x == 2)

y = 5;
else if (x == y)

y = 6;
else

y = 7;

13.8 At least how many times will the statement called loopBody execute
the following constructs?
a. while (condition)

loopBody;

b. do
loopBody;

while (condition);

C. for (init; condition; reinit)
loopBody;

d. while (conditionl)
for (init; condition2; reinit)

loopBody;

e. do
do

loopBody;
while (conditionl);

while (condition2);
13.9 What is the output of each of the following code segments?

a. a = 2;
while (a > 0) {

a- - ;
}
printf{"%d", a);

b. a = 2 ;
do {

a- - ;
} while (a > 0)
printf("%d", a);

C. b = 0;
for (a = 3; a < 10; a += 2)

b = b + 1;
printf("%d %d", a, b);

Exercises 375

13.10 Convert the program in Figure 13.4 into one that uses a switch
statement instead of if-else.

13.11 Modify the e-mail address validation program in Figure 13.23 so that
it requires that at least one alphabetic character appears prior to the at
sign, one appears between the at sign and the period, and one appears
after the period in order for an e-mail address to be valid.

13.12 For the following questions, x is an integer with the value 4.
a. What output is generated by the following code segment?

if (7 > x > 2}
printf ("True . ") ;

else
printf("False.");

b. Does the following code cause an infinite loop?
while (x > 0)

x++ ;

c. What is the value of x after the following code has executed?
for (x = 4; x < 4; X--) {

if (x < 2}
break;

else if (x == 2)
continue;

x = -1;
}

13.13 Change this program so that it uses a do-while loop instead of a
for loop.
int main() {

int i ;
int sum;

for (i - 0; i <= 100; i++) {
if (i % 4 == 0)

sum = sum + 2;
else if (i % 4 = = 1

sum = sum - 6;
else if (i % 4 = = 2

sum = sum * 3;
else if (i % 4 = = 3

sum = sum / 2;
}
printf("%d\n", sum);

}

376 chapter 13 Control Structures

13.14 Write a C program that accepts as input a single integer k, then writes a
pattern consisting of a single 1 on the first line, two 2s on the second
line, three 3s on the third line, and so forth, until it writes k occurrences
of k on the last line.

For example, if the input is 5, the output should be the following:
l
2 2
3 3 3
4 4 4 4
5 5 5 5 5

13.15 a. Convert the following while loop into a for loop.
while (condition)

loopBody;
b. Convert the following for loop into a while loop.

for (init; condition; reinit)
loopBody;

13.16 What is the output of the following code?
int r = 0;
int s - 0;
int w = 12;
int sum = 0;

for (r = 1; r <= w; r++)
for (s = r; s w; s++)

sum = sum + s;

printf("sum =%d\n", sum) ;

13.17 The following code performs something quite specific. Describe its
output.
int i;

scanf("%d", &i);
for (j = 0? j < 16; j++) {

if (i & (1 << j)) {
count++;

printf("%d\n", count);

Exercises 377

13.18 Provide the output of each of the following code segments.
a. int x = 20;

int y = 10;

while ((x > 10) && (y & 15)) {
y = y + 1 ;
x = x - 1 ;
printf("*");

}
b. int x ;

for (x= 10; X ; x = x - 1)
printf(»*»);

C. int x;

for (x~ 0; X < 10; x = x + 1) {
if (x % 2)

printf(«*») ;
}

d. int x = 0 ;
int i ;

while (x < 10) {
for (i = 0; i < x; i = x + l)

printf("*");
X = X + 1 ;

}

c h a p r e r

14

Funct ions

14.1 Introduction
Functions are subprograms, and subprograms are the soul of modern program-
ming languages. Functions provide the programmer with a way to enlarge the set
of elementary building blocks with which to write programs. That is, they enable
the programmer to extend the set of operations and constructs natively supported
by the language to include new primitives. Functions are such an important con-
cept that they have been part of languages since the very early days, and support for
them is provided directly in all instruction set architectures, including the LC-3.

Why are they so important? Functions (or procedures, or subroutines, or
methods—all of which are variations of the same theme) enable abstraction.
That is, they increase our ability to separate the "function" of a component from
the details of how it accomplishes that "function." Once the component is created
and we understand its construction, we can use the component as a building block
without giving much thought to its detailed implementation. Without abstraction,
our ability to create complex systems such as computers, and the software that
runs on them, would be seriously impaired.

Functions are not new to us. We have have been using variants of functions
ever since we programmed subroutines in LC-3 assembly language; while there
are syntactic differences between subroutines in LC-3 assembly and functions
in C, the concepts behind them are largely the same.

The C programming language is heavily oriented around functions. A C pro-
gram is essentially a collection of functions. Every statement belongs to one (and
only one) function. All C programs start and finish execution in the function main.

380 chapter 14 Functions

The function main might call other functions along the way, and they might, in
turn, call more functions. Control eventually returns to the function main, and
when main ends, the program ends (provided something did not cause the program
to terminate prematurely).

In this chapter, we provide an introduction to functions in C. We begin by
examining several short programs in order to get a sense of the C syntax involving
functions. Next, we examine how functions are implemented, examining the low-
level operations necessary for functions to work in high-level languages. In the
last part of the chapter, we apply our problem-solving methodology to some
programming problems that benefit from the use of functions.

14.2 Functions in C
Let's start off with a simple example of a C program involving functions.
Figure 14.1 is a program that prints a message using a function named
PrintBanner. This program begins execution at the function main, which then
calls the function PrintBanner. This function prints a line of text consisting of
the = character to the output device.

PrintBanner is the simplest form of a function: it requires no input from
its caller to do its job, and it provides its caller with no output data (not counting
the banner printed to the screen). In other words, no arguments are passed from
main to PrintBanner and no value is returned from PrintBanner to main. We
refer to the function main as the caller and to PrintBanner as the callee.

14.2.1 A Function with a Parameter
The fact that PrintBanner and main require no exchange of information sim-
plifies their interface. In general, however, we'd like to be able to pass some
information between the caller and the callee. The next example demonstrates

1 #include <stdio.h>
2
3 void PrintBanner{); /* Function declaration */
4
5 int main()
6 {
7 PrintBanner(); /* Function call */
8 printf{"A simple C program.\n");
9 PrintBanner();

10 }
11
12 void PrintBanner{) /* Function definition */
13 {
14 printf("============================\nM);
15 }
Figure 14.1 A C program that uses a function to print a banner message

14.2 Functions in C 381

1 #include <stdio.h>
2
3 int Factorial{int n) ;
4
5 int main()
6 {
7 int number;
8 int answer;
9

10 printf("Input a number: ");
11
12 scanf("%d", &number);
13
14 answer = Factorial(number);
15
16 printf("The factorial of %d
17 }
18
19 int Factorial(int n)
20 {
21 int i;
22 int result = 1;
23
24 for (i = 1; i <= n; i++)
25 result = result * i;
26
27 return result;
28 }

Figure 14.2 A C program to calculate factorial

/*! Function Declaration !*/

/* Definition for main */

/* Number from user */
/* Answer of factorial */

* /

* /

/* Call to printf

/* Call to scanf

/*! Call to factorial !*/

is %d\n"/ number, answer);

/*! Function Definition !*/

/* Iteration count */
/* Initialized result */

/* Calculate factorial */

/*! Return to caller !*/

how this is done in C. The code in Figure 14.2 contains a function Factorial
that performs an operation based on an input parameter.

Factorial performs a multiplication of all integers between 1 and n, where
n is the value provided by the caller function (in this case main). The calculation
performed by this function can be algebraically stated as:

factorial(n) = n ! = l x 2 x 3 x . . . x n

The value calculated by this function is named r e sul t in the C code in Figure 14.2.
Its value is returned (using the return statement) to the caller. We say that the
function Factorial requires a single integer argument from its caller, and it
returns an integer value back to its caller. In this particular example, the variable
answer in the caller is assigned the return value from Factorial (line 14).

Let's take a closer look at the syntax involved with functions in C. In the
code in Figure 14.2, there are four lines that are of particular interest to us. The
declaration for Factorial is at line 3. Its definition starts at line 19. The call
to Factorial is at line 14; this statement invokes the function. The return from
Factorial back to its caller is at line 27.

chapter 14 Functions

The Declaration

In the preceding example, the function declaration for Factorial appears at
line 3. What is the purpose of a function's declaration? It informs the com-
piler about some relevant properties of the function in the same way a variable's
declaration informs the compiler about a variable. Sometimes called a function
prototype, a function declaration contains the name of the function, the type of
value it returns, and a list of input values it expects. The function declaration ends
with a semicolon.

The first item appearing in a function's declaration is the type of the value
the function returns. The type can be any C data type (e.g., int, char, double).
This type describes the type of the single output value that the function produces.
Not all functions return values. For example, the function PrintBanner from the
previous example did not return a value. If a function does not return a value,
then its return type must be declared as void, indicating to the compiler that the
function returns nothing.

The next item on the declaration is the function's name. A function's name
can be any legal C identifier. Often, programmers choose function names some-
what carefully to reflect the actions performed by the function. Factorial, for
example, is a good choice for the function in our example because the mathemat-
ical term for the operation it performs is factorial. Also, it is good style to use a
naming convention where the names of functions and the names of variables are
easily distinguishable. In the examples in this book, we do this by capitalizing
the first character of all function names, such as Factorial.

Finally, a function's declaration also describes the type and order of the input
parameters required by the function. These are the types of values that the function
expects to receive from its callers and the order in which it expects to receive
them. We can optionally specify (and often do) the name of each parameter in the
declaration. For example, the function Factorial takes one integer value as an
input parameter, and it refers to this value internally as n. Some functions may
not require any input. The function PrintBanner requires no input parameters;
therefore its parameter list is empty.

The Call

Line 14 in our example is the function call that invokes Factorial. In this state-
ment, the function main calls Factorial. Before Factorial can start, however,
main must transmit a single integer value to Factorial. Such values within the
caller that are transmitted to the callee are called arguments. Arguments can be
any legal expression, but they should match the type expected by the callee. These
arguments are enclosed in parentheses immediately after the callee's name. In this
example, the function main passes the value of the variable number as the argu-
ment. The value returned by Factorial is then assigned to the integer variable
answer.

The Definition

The code beginning at line 19 is the function definition for Factorial. Notice that
the first line of the definition matches the function declaration (however, minus the

14.2 Functions in C 383

semicolon). Within the parentheses after the name of the function is the function's
formal parameter list. The formal parameter list is a list of variable declarations,
where each variable will be initialized with the corresponding argument provided
by the caller. In this example, when Factorial is called on line 14, the parameter
n will be initialized to the value of number from main. From every place in the
program where a function is called, the actual arguments appearing in each call
should match the type and ordering of the formal parameter list.

The function's body appears in the braces following the parameter list. A
function's body consists of declarations and statements that define the computa-
tion the function performs. Any variable declared within these braces is local to
the function.

A very important concept to realize about functions in C is that none of the
local variables of the caller are explicitly visible by the callee function. And in
particular, Factorial cannot modify the variable number. In C, the arguments
of the caller are passed as values to the callee.

The Return Value

In line 27, control passes back from Factorial to the caller main. Since
Factorial is returning a value, an expression must follow the return key-
word, and the type of this expression should match the return type declared for
the function. In the case of Factorial, the statement return resulttransmits
the calculated value stored in result back to the caller. In general, functions that
return a value must include at least one return statement in their body. Func-
tions that do not return a value—functions declared as type void—do not require
a return statement; the return is optional. For these functions, control passes
back to the caller after the last statement has executed.

What about the function main? Its type is int (as required by the ANSI
standard), yet it does not contain a return. Strictly speaking, we should include
a return o at the end of main in the examples we've seen thus far. In C, if a
non-void function does not explicitly return a value, the value of the last state-
ment is returned to the caller. Since main's return value will be ignored by most
callers (who are the callers of main?), we've omitted them in the text to make our
examples more compact.

Let's summarize these various syntactic components: A function declaration
(or prototype) informs the compiler about the function, indicating its name, the
number and types of parameters the function expects from a caller, and the type
of value the function returns. A function definition is the actual source code for
the function. The definition includes a formal parameter list, which indicates the
names of the function's parameters and the order in which they will be expected
from the caller. A function is invoked via a function call. Input values, or argu-
ments, for the function are listed within the parentheses of the function call.
Literally, the value of each argument listed in the function call is assigned to
the corresponding parameter in the parameter list, the first argument assigned
to the first parameter, the second argument to the second parameter, and so forth.
The return value is the output of the function, and it is passed back to the caller
function.

384 chapter 14 Functions

14.2.2 Example: Area of a Ring
We further demonstrate C function syntax with a short example in Figure 14.3.
This C program calculates the area of a circle that has a smaller circle removed
from it. In other words, it calculates the area of a ring with a specified outer and
inner radius. In this program, a function is used to calculate the area of a circle
with a given radius. The function AreaOf circle takes a single parameter of type
double and returns a double value back to the caller.

The following point is important for us to reiterate: when function
AreaOf circle is active, it can "see" and modify its local variable pi and its
parameter radius. It cannot, however, modify any of the variables within the
function main, except via the value it returns.

The function Areaofcircle in this example has a slightly different usage
than the functions that we've seen in the previous examples in this chapter. Notice
that there are multiple calls to AreaOf Circle from the function main. In this case,
AreaOf circle performs a useful, primitive computation such that encapsulating
it into a function is beneficial. On a larger scale, real programs will include func-
tions that are called from hundreds or thousands of different places. By forming

1 #include <stdio.h>
2
3 /* Function declarations */
4 double AreaOfCircle(double radius);
5
6 int main()
V {
8 double outer; /* inner radius */
9 double inner; /* Outer radius */

10 double areaOfRing; /* Area of ring */
11
12 printf("Enter inner radius: ") ;
13 scanf("%lf", &outer);
14
15 printf("Enter outer radius: ");
16 scanf("%lf", &inner);
17
18 areaOfRing = AreaOfCircle(outer) - AreaOfCircle(inner);
19 printf("The area of the ring is %f\n", areaOfRing);
20 }
21
22 /* Calculate area of circle given a radius */
23 double AreaOfCircle(double radius)
24 {
25 double pi = 3.14159265;
26
2 7 return pi * radius * radius;
28 }
Figure 14.3 A C program calculates the area of a ring

14.3 Implementing Functions in C 402

AreaOf Circle and similar primitive operations into functions, we potentially
save on the amount of code in the program, which is beneficial for code main-
tenance. The program also takes on a better structure. With AreaOf circle, the
intent of the code is more visibly apparent than if the formula were directly
embedded in-line.

Some of you might remember our discussion on constant values from
Section 12.6.2, where we argue that the variable pi should be declared as a
constant using the const qualifier on line 25 of the code. We omit it here to make
the example accessible to those who that might have skipped over the Additional
Topics section of Chapter 12.

14.3 Implementing Functions in C
Let's now take a closer look at how functions in C are implemented at the machine
level. Functions are the C equivalent of subroutines in LC-3 assembly language
(which we discussed in Chapter 9), and the core of their operation is the same. In
C, making a function call involves three basic steps: (1) the parameters from the
caller are passed to the callee and control is transfered to the callee, (2) the callee
does its task, (3) a return value is passed back to the caller, and control returns to
the caller. An important constraint that we will put on the calling mechanism is
that a function should be caller-independent. That is, a function should be callable
from any function. In this section we will examine how this is accomplished using
the LC-3 to demonstrate.

14.3.1 Run-Time Stack
Before we proceed, we first need to discuss a very important component of
functions in C and other modern programming languages. We require a way to
"activate" a function when it is called. That is, when a function starts executing,
its local variables must be given locations in memory. Let us explain:

Each function has a memory template in which its local variables are stored.
Recall from our discussion in Section 12.5.2 that an activation record for a function
is a template of the relative positions of its local variables in memory. Each local
variable declared in a function will have a position in the activation record. Recall
that the frame pointer (R5) indicates the start of the activation record. Question:
Where in memory does the activation record of a function reside? Let's consider
some options.

Option 1: The compiler could systematically assign spots in memory for
each function to place its activation record. Function A might be assigned memory
location X to place its activation record, function B might be assigned location
Y, and so forth, provided, of course, that the activation records do not overlap.
While this seems like the most straightforward way to manage the allocation, a
serious limitation arises with this option. What happens if function A calls itself?
We call this recursion, and it is a very important programming concept that we
will discuss in Chapter 17. If function A calls itself, then the callee version of
function A will overwrite the local values of the caller version of function A, and

386 chapter 14 Functions

the program will not behave as we expect it to. For the C programming language,
which allows recursive functions, option 1 will not work.

Option 2: Every time a function is called, an activation record is allocated
for it in memory. And when the function returns to the caller, its activation record
is reclaimed to be assigned later to another function. While this option appears to
be conceptually more difficult than option 1, it permits functions to be recursive.
Each invocation of a function gets its own space in memory for its locals. For
example, if function A calls function A, the callee version will be allocated its
own activation record for storing local values, and this record will be different
than the caller's. There is a factor that reduces the complexity of making option 2
work: The calling pattern of functions (i.e., function A calls B which calls C, etc.)
can be easily tracked with a stack data structure (Chapter 10). Let us demonstrate
with an example.

The code in Figure 14.4 contains three functions, main, Watt, and Volta.
What each function does is not important for this example, so we've omitted some
of their details but provided enough so that the calling pattern between them is

1 int main()
2 {
3 int a;
4 int b;
5
6 :
7 b = Watt(a); /* main calls both */
8 b = Volta(a, b);
9 }

10
11 int Watt(int a)
12 {
13 int w;
14
15 :
16 w = Volta(w, 10); /* watt calls Volta */
17
18 return w;
19 }
20
21 int Volta(int q, int r)
22 {
23 int k;
24 int m;
25
2 6 : /* Volta calls no one */
2 7 return k;
28 }
Figure 14.4 Code example that demonstrates the stack-like nature of function calls

14.3 Implementing Functions in C 387

xOOOO

xFFFF

Memory

- R 6

^ ! L—R5

(a) Run-time stack
when execution starts

*
 1 *7" &

ftufnmtelo n(

R6

R5
vm

R6

R5

(b) When watt executes (c) When v o i t a executes

WBMKmk

R6

R5
R6

R5

'f̂ bro'jf/i u<tii
mfclilfiPttfiottt

; miiWfthikui

R6

R5

(d) After v o i t a completes (e) After w a t t completes (f) When V o l t a executes

Figure 14.5 Several snapshots of the run-time stack while the program outlined in
Figure 14.4 executes

apparent. The function main calls watt and Watt calls volta. Eventually, control
returns back to main which then calls volta.

Each function has an activation record that consists of its local variables,
some bookkeeping information, and the incoming parameters from the caller
(we'll mention more about the parameters and bookkeeping information in the
subsequent paragraphs). Whenever a function is called, its activation record will
be allocated somewhere in memory, and as we indicated in the previous paragraph,
in a stack-like fashion. This is illustrated in the diagrams of Figure 14.5.

Each of the shaded regions represents the activation record of a particular
function call. The sequence of figures shows how the run-time stack grows and
shrinks as the various functions are called and return to their caller. Keep in mind
that, as we push items onto the stack, the top of the stack moves, or "grows,"
toward lower-numbered memory locations.

Figure 14.5(a) is a picture of the run-time stack when the program starts
execution. Since the execution of a C program starts in main, the activation record

chapter 14 Functions

for main is the first to be allocated on the stack. Figure 14.5(b) shows the run-
time stack immediately after Watt is called by main. Notice that the activation
records are allocated in a stack-like fashion. That is, whenever a function is called,
its activation record is pushed onto the stack. Whenever the function returns, its
activation is popped off the stack. Figure 14.5 parts (c) through (f) show the state
of the run-time stack at various points during the execution of this code. Notice
that R5 points to some internal location within the activation record (it points to
the base of the local variables). Also notice how R6 always points to the very
top of the stack—it is called the stack pointer. Both of these registers have a key
role to play in the implementation of the run-time stack and of functions in C in
general.

14.3.2 Getting It All to Work
It is clear that there is a lot of work going on at the machine level when a function is
called. Parameters must be passed, activation records pushed and popped, control
moved from one function to another. Some of this work is accomplished by the
caller, some by the callee.

To accomplish all of this, the following steps are required: First, code in
the caller function copies its arguments into a region of memory accessible by
the callee. Second, the code at the beginning of the callee function pushes its
activation record onto the stack and saves some bookkeeping information so that
when control returns to the caller, it appears to the caller as if its local variables
and registers were untouched. Third, the callee does its thing. Fourth, when the
callee function has completed its job, its activation record is popped off the run-
time stack and control is returned to the caller. Finally, once control is back in the
caller, code is executed to retrieve the callee's return value.

Now we'll examine the actual LC-3 code for carrying out these operations.
We do so by examining the LC-3 code associated with the following function
call: w = Volta (w, 10) ; from line 18 of the code in Figure 14.4.

The Call
In the statement w = volta (w, 10) ;, the function volta is called with two
arguments. The value returned by Volt a is then assigned to the local integer
variable w. In translating this function call, the compiler generates LC-3 code that
does the following:

1. Transmits the value of the two arguments to the function v o l t a by pushing
them directly onto the top of the run-time stack. Recall that R6 points to the
top of the run-time stack. That is, it contains the address of the data item
currently at the top of the run-time stack. To push an item onto the stack, we
first decrement R6 and then store the data value using R6 as a base address.
In the LC-3, the arguments of a C function call are pushed onto the stack
from right-to-left in order they appear in the function call. In the case of
watt , we will first push the value 10 (rightmost argument) and then the
value of w.

2. Transfers control to Volta via the JSR instruction.

14.3 Implementing Functions in C 389

xOOOO Memory

value of w

10
w

Parameters
for volta

Local variable
Of Watt

Activation record of w a t t

i

xFFFF

Figure 14.6 The run-time stack Watt pushes the values it wants to pass to volta

The LC-3 code to perform this function call looks like this:

AND RO, RO, #0 R0 <-- 0
ADD RO, RO, #10 R0 <-- 10
ADD R6, R6 , #-1
STR RO, R6 , #0 Push 10

LDR RO, R5 , #0 Load w
ADD R6, R6 , #-1
STR RO, R6, #0 Push w

JSR Volta

Figure 14.6 illustrates the modifications made to the run-time stack by these
instructions. Notice that the argument values are pushed immediately on top of
the activation record of the caller (watt). The activation record for the callee
(volt a) will be constructed on the stack directly on top of the record of the caller.

Starting the Callee Function

The instruction executed immediately after the JSR in the function Watt is the
first instruction in the callee function volta.

The code at the beginning of the callee handles some important bookkeeping
associated with the call. The very first thing is the allocation of memory for the
return value. The callee will push a memory location onto the stack by decre-
menting the stack pointer. And this location will be written with the return value
prior to the return to the caller.

390 chapter 14 Functions

Next, the callee function saves enough information about the caller so that
eventually when the called has finished, the caller can correctly regain program
control. In particular, we will need to save the caller's return address, which is
in R7 (Why is it in R7? Recall how the JSR instruction works.) and the caller's
frame pointer, which is in R5. It is important to make a copy of the caller's frame
pointer, which we call the dynamic link, so that when control returns to the caller
it will be able once again to access its local variables. If either the return address
or the dynamic link is destroyed, then we will have trouble restarting the caller
correctly when the callee finishes. Therefore it is important that we make copies
of both in memory.

Finally, when all of this is done, the callee will allocate enough space on the
stack for its local variables by adjusting R6, and it will set R5 to point to the base
of its locals.

To recap, here is the list of actions that need to happen at the beginning of a
function:

1. The callee saves space on the stack for the return value. The return value
is located immediately on top of the parameters for the callee.

2. The callee pushes a copy of the return address in R7 onto the stack.
3. The callee pushes a copy of the dynamic link (caller's frame pointer) in

R5 onto the stack.
4. The callee allocates enough space on the stack for its local variables and

adjusts R5 to point to the base of the local variables and R6 to point to the
top of the stack.

The code to accomplish this for volta is:

Volta:
ADD R6 , R6, #-1 ; Allocate spot for the return value

ADD
STR

R6,
R7,

R6,
R6 ,

#-1
#0

!

; Push R7 {Return address)

ADD
STR

R6,
R5,

R6 ,
R6,

#-1
#0

; Push R5 (Caller's frame pointer)
; We call this the dynamic link

ADD
ADD

R5,
R6,

R6,
R6,

#-1
#-2

; Set new frame pointer
; Allocate memory for Volta's locals

Figure 14.7 summarizes the changes to memory accomplished by the code we
have encountered so far. The layout in memory of these two activation records-
one for watt and one for volta—is apparent. Notice that some entries of the
activation record of Volt a are written by watt. In particular, these are the param-
eter fields of Volta 's activation record, watt writes the value of its local variable
w as the first parameter and the value 10 for the second parameter. Keep in mind
that these values are pushed from right to left according to their position in the
function call. Therefore, the value of w appears on top of the value 10. Once

14.3 Implementing Functions in C 408

xOOOO

R6

R5

watt's frame pointer

Return address for Watt

Return value to watt

(value of w)

(10)

w-

main's frame pointer

Return address for main

Return value to main

Local variables

Bookkeeping
info

Parameters

Activation record
for Volta

Activation record
for Watt

t
xFFFF

Figure 14.7 The run-time stack after the activation record for Volta is pushed onto the
stack

invoked, volta will refer to these values with the names q and r. Question: What
are the initial values of volta's local variable? Recall from Chapter 11 that local
variables such as these are uninitialized. See Exercise 14.10 for an exercise on
the initial values of local variables.

Notice that each activation record on the stack has the same structure. Each
activation record contains locations for the function's local variables, for the
bookkeeping information (consisting of the caller's return address and dynamic
link), the return value, and the function's parameters.

Ending the Callee Function

Once the callee function has completed its work, it must perform several tasks
prior to returning control to the caller function. Firstly, a function that returns a
value needs a mechanism for the return value to be transmitted properly to the
caller function. Secondly, the callee must pop the current activation record. To
enumerate,

1. If there is a return value, it is written into the return value entry of the
activation record.

2. The local variables are popped off the stack.
3. The dynamic link is restored.
4. The return address is restored.
5. The RET instruction returns control to the caller function.

392 chapter 14 Functions

The LC-3 instructions corresponding to this for v o l t a are

LDR RO, R5, #0 ; Load local variable k
STR RO, R5, #3 ; Write it in return value

ADD R6, R5, #1 ; Pop local variables

LDR R5, R6, #0 ; Pop the dynamic link
ADD R6, R6, #1 t

LDR R7, R6 , #0 ; Pop the return address
ADD R6, R6, #1 /

RET

The first two instructions write the return value, which in this case is the local
variable k, into the return value entry of vo i t a ' s activation record. Next, the local
variables are popped by moving the stack pointer to the location immediately
below the frame pointer. The dynamic link is restored, then the return address is
restored, and finally we return to the caller.

You should keep in mind that even though the activation record for Volta is
popped off the stack, the values remain in memory.

Returning to the Caller Function

After the callee function executes the RET instruction, control is passed back to
the caller function. In some cases, there is no return value (if the callee is declared
of type void) and, in some cases, the caller function ignores the return value.
Again, from our previous example, the return value is assigned to the variable w
in watt.

In particular, there are two actions that must be performed:

1. The return value (if there is one) is popped off the stack.
2. The arguments are popped off the stack.

The code after the JSR looks like the following:

JSR Volta

LDR RO, R6, #0

STR RO, R5, #0
ADD R6, R6, #1

Load the return value
at the top of stack
w = Volta(w, 10);
Pop return value

ADD R6, R6, #2 ; Pop arguments

Once this code is done, the call is now complete and the caller function can
resume its normal operation. Notice that prior to the return to the caller, the callee
restores the environment of the caller. To the caller, it appears as if nothing has
changed except that a new value (the return value) has been pushed onto the stack.

14.3 Implementing Functions in C 393

Caller Save/Callee Save

Before we complete our discussion of the implementation of functions, we need
to cover a topic that we've so far swept under the rug. During the execution of a
function, RO through R3 can contain temporary values that are part of an ongoing
computation. Registers R4 through R7 are reserved for other purposes: R4 is the
pointer to the global data section, R5 is the frame pointer, R6 is the stack pointer,
and R7 is used to hold return addresses. If we make a function call, based on the
calling convention we've described R4 through R7 do not change or change in
predetermined ways. But what happens to registers RO, R1, R2, and R3 ? In the gen-
eral case, we'd like to make sure that the callee function does not overwrite them.
To address this, calling conventions typically adopt one of two strategies: (1) The
caller will save these registers by pushing them onto its activation record. This is
called the caller-save convention. (We also discussed this in Chapter 9.) When
control is returned to the caller, the caller will restore these registers by popping
them off the stack. (2) Alternatively, the callee can save these registers by adding
four fields in the bookkeeping area of its record. This is called the callee-save con-
vention. When the callee is initiated, it will save RO through R3 and R5 and R7 into
the bookkeeping region and restore these registers prior to the return to the caller.

14.3.3 Tying It All Together
The code for the function call in watt and the beginning and end of vol ta is listed
in Figure 14.8. The LC-3 code segments presented in the previous sections are all
combined, showing the overall structure of the code. This code is more optimized
than the previous individual code segments. We've combined the manipulation
of the stack pointer R6 associated with pushing and popping the return value into
single instructions.

To summarize, our LC-3 C calling convention involves a series of steps that
are performed when a function calls another function. The caller function pushes
the value of each parameter onto the stack and performs a Jump To Subroutine
(JSR) to the callee. The callee allocates a space for the return value, saves some
bookkeeping information about the caller, and then allocates space on the stack
for its local variables. The callee then proceeds to carry out its task. When the task
is complete, the callee writes the return value into the space reserved for it, pops
and restores the bookkeeping information, and returns to the caller. The caller
then pops the return value and the parameters it placed on the stack and resumes
its execution.

You might be wondering why we would go through all these steps just to
make a function call. That is, is all this code really required and couldn't the
calling convention be made simpler? One of the characteristics of real calling
conventions is that in the general case, any function should be able to call any
other function. To enable this, the calling convention should be organized so
that a caller does not need to know anything about a callee except its interface
(that is, the type of value the callee returns and the types of values it expects as
parameters). Likewise, a callee is written to be independent of the functions that
call it. Because of this generality, the calling convention for C functions require
the steps we have outlined here.

394 chapter 14 Functions

1 Watt:
A
3 AND RO, RO, #0 R0 <- 0
4 ADD RO, RO, #10 R0 <- 10
5 ADD R6, R6, #-1
6 STR RO, R6, #0 Push 10
7 LDR RO, R5, #0 Load w
8 ADD R6, R6, #-1
9 STR RO, R6, #0 Push w

10
11 JSR Volta
12
13 LDR RO, R6, #0 - Load the return value at top of stack
14 STR RO, R5, #0 - w = Volta(w, 10);
15 ADD R6, R6, #3 • Pop return value, arguments
16 . . .
17
18 Volta
19 ADD R6, R6, #-2 Push return value
20 STR R7, R6, #0 Push return address
21 ADD R6, R6, #-1 Push R5 (Caller's frame pointer)
22 STR R5, R6 , #0 We call this the dynamic link
23 ADD R5, R6, #-1 Set new base pointer
24 ADD R6, R6, #-2 Allocate memory for Volta's locals
25
26 . . . ; Volta performs its work
27
28 LDR RO, R5 , #0 Load local variable k
29 STR RO, R5, #3 Write it in return value slot
30 ADD R6, R5, #1 Pop local variables
31 LDR R5, R6, #0 Pop the dynamic link
32 ADD R6, R6, #1
33 LDR R7, R6, #0 Pop the return address
34 ADD R6, R6, #1
35 RET
Figure 14.8 The LC-3 code corresponding to a C function call and return

14.4 Problem Solving Using Functions
For functions to be useful to us, we must somehow integrate them into our pro-
gramming problem-solving methodology. In this section we will demonstrate the
use of functions through two example problems, with each example demonstrating
a slightly different application of functions.

Conceptually, functions are a good point of division during the top-down
design of an algorithm from a problem. As we decompose a problem, natural
"components" will appear in the tasks that are to be performed by the algorithm.
And these components are natural candidates for functions. Our first exam-
ple involves converting text from lowercase into uppercase, and it presents an

14.4 Problem Solving Using Functions

example of a component function that is naturally apparent during the top-down
design process.

Functions are also useful for encapsulating primitive operations that the pro-
gram requires at various spots in the code. By creating such a function, we are
in a sense extending the set of operations of the programming language, tailor-
ing them to the specific problem at hand. In the case of the second problem,
which determines Pythagorean Triples, we will develop a primitive function to
calculate x2 to assist with the calculation.

14.4.1 Problem 1: Case Conversion
In this section, we go through the development of a program that reads input from
the keyboard and echos it back to the screen. We have already seen an example of
a program that does just this in Chapter 13 (see Figure 13.8). However, this time,
we throw in a slight twist: We want the program to convert lowercase characters
into uppercase before echoing them onto the screen.

Figure 14.9 The decomposition into smaller subtasks of a program that converts input
characters into uppercase

396 chapter 14 Functions

1 #include <stdio.h>
2
3 /* Function declaration */ char ToUpper{char inchar);
4
5 /* Function main: */
6 /* Prompt for a line of text, Read one character, */
7 /* convert to uppercase, print it out, then get another */
8 int main()
9 {

10 char echo = 'A'; /* Initialize input character */
11 char upcase; /* Converted character */
12
13 while (echo != '\n') {
14 scanf (nc", &echo) ;
15 upcase = ToUpper(echo);
16 printf{"%c", upcase);
17 }
18 }
19
20 /* Function ToUpper: */
21 /* If the parameter is lower case return */
22 /* its uppercase ASCII value */
23 char ToUpper(char inchar)
24 {
2 5 char outchar;
26
27 if {'a' <= inchar && inchar <= 'z')
28 outchar = inchar - ('a' - 'A');
29 else
3 0 outchar = inchar;
31
32 return outchar;
33 }
Figure 14.10 A program with a function to convert lowercase letters to uppercase

Our approach to solving this problem is to use the echo program from
Figure 13.8 as a starting point. The previous code used a while loop to read
an input character from the keyboard and then print it to the output device. To
this basic structure, we want to add a component that checks if a character is
lowercase and converts it to uppercase if it is. There is a single input and a sin-
gle output. We could add code to perform this directly into the while loop, but
given the self-contained nature of this component, we will create a function to do
this job.

The conversion function is called after each character is scanned from the
keyboard and before it is displayed to the screen. The function requires a sin-
gle character as a parameter and returns either the same character (for cases
in which the character is already uppercase or is not a character of the alpha-
bet) or it will return an uppercase version of the character. Figure 14.9 shows

14.4 Problem Solving Using Functions

the flow of this program. The flowchart of the original echo program is shaded.
To this original flowchart, we are adding a component function to perform the
conversion.

Figure 14.10 shows the complete C program. It takes input from the keyboard,
converts each input character into uppercase, and prints out the result. When the
input character is the new line character, the program terminates. The conversion
process from lowercase to uppercase is done by the function ToUpper. Notice the
use of ASCII literals in the function body to perform the actual conversion. Keep
in mind that a character in single quotes (e.g., 'A') is evaluated as the ASCII
value of that character. The expression ' a ' - 'A' is therefore the ASCII value
of the character a minus the ASCII of A.

14.4.2 Problem 2: Pythagorean Triples
Now we'll attempt a programming problem involving calculating all Pythagorean
Triples less than a particular input value. A Pythagorean Triple is a set of three
integer values a, b, and c that satisfy the property c2 = a2 + b2. In other
words, a and b are the lengths of the sides of a right triangle where c is the
hypotenuse. For example, 3, 4, and 5 is a Pythagorean Triple. The problem here
is to calculate all Triples a, b, and c where all are less than a limit provided by
the user.

For this problem, we will attempt to find all Triples by brute force. That is,
if the limit indicated by the user is max, we will check all combinations of three
integers less than max to see if they satisfy the Triple property. In order to check
all combinations, we will want to vary each sideA, sideB, and sidec from 1
to max. This implies the use of counter-controlled loops. More exactly, we will
want to use a for loop to vary sidec, another to vary sideB, and another to
vary sideA, each nested within the other. At the core of these loops, we will
check to see if the property holds for the three values, and if so, we'll print
them out.

Now, in performing the Triple check, we will need to evaluate the following
expression.

{sideC * sideC == (sideA * sideA + sideB * sideB))

Because the square operation is a primitive operation for this problem—meaning
it is required in several spots—we will encapsulate it into a function Squared
that returns the square of its integer parameter. The preceding expression will be
rewritten as follows. Notice that this code gives a clearer indication of what is
being calculated.

(Squared(sideC) == Squared(sideA) + Squared(sideB))

The C program for this is provided in Figure 14.11. There are better ways to
calculate Triples than with a brute-force technique of checking all combinations
(Can you modify the code to run more efficiently?); the brute-force technique
suits our purposes of demonstrating the use of functions.

397

398 chapter 14 Functions

1 #include <stdio.h>
2
3 int Squared(int x);
4
5 int main()
6 {
7 int sideA;
8 int sideB;
9 int sideC;

10 int maxC;
11
12 printf("Enter the maximum length of hypotenuse: ");
13 scanf("%d", &maxC);
14
15 for (sideC = 1; sideC <= maxC; sideC++) {
16 for (sideB = 1; sideB < = maxC; sideB++) {
17 for {sideA = 1; sideA <= maxC; sideA++) {
18 if (Squared(sideC) == Squared(sideA) + Squared(sideB))
19 printf("%d %d %d\nM, sideA, sideB, sideC);
20 }
21 }
22 }
23 }
24
2 5 /* Calculate the square of a number */
26 int Squared(int x)
27 {
28 return x * x;
29 }
Figure 14.11 A C program that calculates Pythagorean Triples

14.5 Summary
In this chapter, we introduced the concept of functions in C. The general notion of
subprograms such as functions have been part of programming languages since
the earliest languages. Functions are useful because they allow us to create new
primitive building blocks that might be useful for a particular programming task
(or for a variety of tasks). In a sense, they allow us to extend the native operations
and constructs supported by the language.

The key notions that you should take away from this chapter are:
• Syntax of functions in C. To use a function in C, we must declare the function

using a function declaration (which we typically do at the beginning of our code)
that indicates the function's name, the type of value the function returns, and the
types and order of values the function expects as inputs. A function's definition
contains the actual code for the function. A function is invoked when a call to it
is executed. A function call contains arguments—values that are to be passed to
the function as parameters.

Exercises 399

• Implementation of C functions at the lower level. Part of the complexity
associated with implementing functions is that in C, a function can be called from
any other function in the source file (and even from functions in other object files).
To assist in dealing with this, we adopt a general calling convention for calling
one function from another. To assist with the fact that some functions might even
call themselves, we base this calling convention on the run-time stack. The calling
convention involves the caller passing the value of its arguments by pushing them
onto the stack, then calling the callee. The arguments written by the caller become
the parameters of the callee's activation record. The callee does its task and then
pops its activation record off the stack, leaving behind its return value for the
caller.

• Using functions when programming. It is conceivable to write all your
programs without ever using functions, the result would be that your code would
be hard to read, maintain, and extend and would probably be buggier than if your
code used functions. Functions enable abstraction: we can write a function to
perform a particular task, debug it, test it, and then use it within the program
whereever it is needed.

Exerc ises

14.1 What is the significance of the function main? Why must all programs
contain this function?

14.2 Refer to the structure of an activation record for these questions.
a. What is the purpose of the dynamic link?
b. What is the purpose of the return address?
c. What is the purpose of the return value?

14.3 Refer to the C syntax of functions for these questions.
a. What is a function declaration? What is its purpose?
b. What is a function prototype?
c. What is a function definition?
d. What are arguments?
e. What are parameters?

14.4 For each of the following items, identify whether the caller function or
the callee function performs the action.
a. Writing the parameters into the activation record.
b. Writing the return value.
c. Writing the dynamic link.
d. Modifying the value in R5 to point within the callee function's

activation record.

400 chapter 14 Functions

14.5 What is the output of the following program? Explain.
void MyFunc(int z) ;

int main() {
int z = 2;

MyFunc(z);
MyFunc(z);

}
void MyFunc(int z) {

printf(»%d z);
Z + + ;

}
14.6 What is the output of the following program?

#include <stdio.h>

int Multiply(int d, int b);

int d = 3;

int main() {
int a, b, c;
int e = 4;

a = 1 ;
b = 2;

c = Multiply(a, b);
printf("%d %d %d %d %d\n", a, b, c, d, e);

int Multiply(int d7 int b) {
int a;
a = 2 ;
b = 3;

return (a * b); } /

Exercises 401

14.7 Following is the code for a C function named Bump.
int Bump(int x) {

int a ;

a = x + 1 ;

return a;
}
a. Draw the activation record for Bump.
h Write one of the following in each entry of the activation record to

indicate what is stored there.
(1) Local variable
(2) Argument
(3) Address of an instruction
(4) Address of data
(5) Other

c. Some of the entries in the activation record for Bump are written by
the function that calls Bump; some are written by Bump itself. Identify
the entries written by Bump.

14.8 What is the output of the following code? Explain why the function
Swap behaves the way it does.
int main()
{

int x = 1 ;
int y = 2;

Swap(x, y);
printf("x = %d y - %d\n", x, y);

}
void Swap(int y, int x) {

int temp

temp = x;
x = y;
y = temp;

}
14.9 Are the parameters to a function placed on the stack before or after the

JSR to that function? Why?

402 chapter 14 Functions

14.10 A C program containing the function food has been compiled into LC-3
assembly language. The partial translation of the function into LC-3 is:
food:

ADD R6, R6, #-2
STR R7, R6, #0
ADD R6, R6, #-1
STR R5, R6, #0
ADD R5, R6, #-1
ADD R6, R6, #-4

a. How many local variables does this function have?
b. Say this function takes two integer parameters x and y. Generate the

code to evaluate the expression x + y.
14.11 Following is the code for a C function named unit.

int main{) {
int a = 1;
int b = 2;

a = Init(a);
b = Unit(b);

printf("a = %d b = %d\n", a, b);
}
int Init(int x) {

int y = 2;

return y + x;
}
int Unit(int x) {

int Z ;

return z + x;
}
a. What is the output of this program?
b. What determines the value of local variable z when function Unit

starts execution?
14.12 Modify the example in Figure 14.10 to also convert each character to

lowercase. The new program should print out both the lower- and
uppercase versions of each input character.

14.13 Write a function to print out an integer value in base 4 (using only the
digits 0, 1, 2, 3). Use this function to write a program that reads two
integers from the keyboard and displays both numbers and their sum in
base 4 on the screen.

Exercises 403

14.14 Write a function that returns a 1 if the first integer input parameter is
evenly divisible by the second. Using this function, write a program to
find the smallest number that is evenly divisible by all integers less
than 10.

14.15 The following C program is compiled into LC-3 machine language and
loaded into address x3000 before execution. Not counting the JSRs to
library routines for I/O, the object code contains three JSRs (one to
function f, one to g, and one to h). Suppose the addresses of the three
JSR instructions are x3102, x3301, and x3304. And suppose the user
provides 4 5 6 as input values. Draw a picture of the run-time stack,
providing the contents of locations, if possible, when the program is
about to return from function f. Assume the base of the run-time stack
is location xEFFF.
#include <stdio.h>

int f(int x, int y, int z);
int g(int arg);
int h(int argl, int arg2);

int main() {
int a, b, c;

printf(MType three numbers: ") ;
scanf("%d %d %d", &a, &b, &c);
printf("%d", f(a, b# c));

}
int f(int x, int y, int z)
{

int xl;

xl = g (x) ;.
return h(y, z) * xl;

}
int g(int arg) {

return arg * arg;

int h(int argl, int arg2) {
return argl / arg2;

404 chapter 14 Functions

14.16 Referring once again to the machine-busy example from previous
chapters, remember that we represent the busyness of a set of 16
machines with a bit pattern. Recall that a 0 in a particular bit position
indicates the corresponding machine is busy and a 1 in that position
indicates that machine is idle.

a. Write a function to count the number of busy machines for a given
busyness pattern. The input to this function will be a bit pattern
(which can be represented by an integer variable), and the output
will be an integer corresponding to the number of busy machines.

b. Write a function to take two busyness patterns and determine which
machines have changed state, that is, gone from busy to idle, or idle
to busy. The output of this function is simply another bit pattern with
a 1 in each position corresponding to a machine that has changed its
state.

c. Write a program that reads a sequence of 10 busyness patterns from
the keyboard and determines the average number of busy machines
and the average number of machines that change state from one
pattern to the next. The user signals the end of busyness patterns by
entering a pattern of all Is (all machines idle). Use the functions you
developed for parts 1 and 2 to write your program.

14.17 a. Write a C function that mimics the behavior of a 4-to-l multiplexor.
See Figure 3.13 for a description of a 4-to-l MUX.

b. Write a C function that mimics the behavior of the LC-3 ALU.
14.18 Notice that on a telephone keypad, the keys labeled 2, 3, 4 , . . . , 9 also

have letters associated with them. For example, the key labeled 2
corresponds to the letters A, B, and C. Write a program that will map a
seven-digit telephone number into all possible character sequences that
the phone number can represent. For this program, use a function that
performs the mapping between digits and characters. The digits 1 and 0
map to nothing.

Exercises 405

14.19 The following C program uses a combination of global variables and
local variables with different scope. What is the output?
#include <stdio.h>
int t = 1; /* Global variable */
int subl(int fluff);
int main () {

int t = 2;
int z;
2 = t ;
Z = Z + 1 ;
printf("A: The variable z equals %d\n", z);
{

z = t ;
t = 3;

{
int t = 4;
Z = t;
Z = Z + 1 ;
printf("B: The variable z equals %d\n", z);

}
z = subl (z);
Z = Z + 1 ;
printf("C: The variable z equals %d\n", z);

}
z = t ;
Z = Z + 1 ;
printf("D: The variable z equals %d\n", z);

}
int subl(int fluff) {

int i ;
i = t;
return (fluff + i) ;

}

c h a p t e r

15

Test ing

15.1 Introduction
In December 1999, NASA mission controllers lost contact with the Mars Polar
Lander as it approached the Martian surface. The Mars Polar Lander was on
a mission to study the southern polar region of the Red Planet. Contact was
never reestablished, and NASA announced that the spacecraft most probably
crashed onto the planet's surface during the landing process. After evaluating the
situation, investigators concluded that the likely cause was faulty control software
that prematurely caused the on-board engines to shut down when the probe was
40 meters above the surface rather than when the probe had actually landed. The
physical complexities of sending probes into space is astounding, and the software
systems that control these spacecraft are no less complex. Software is as integral
to a system as any mechanical or electrical subsystem, and all the more difficult
to make correct because it is "invisible." It cannot be visually observed as easily
as, say, a propulsion system or landing system.

Software is everywhere today. It is in your cell phone, in your automobile—
even the text of this book was processed by numerous lines of software before
appearing in front of you on good old-fashioned printed pages. Because soft-
ware plays a vital and critical part in our world, it is important that this software
behave correctly according to specification. Designing working programs is not
automatic. Programs are not correct by construction. That is, just because a pro-
gram is written does not mean that it functions correctly. We must test and debug
it as thoroughly as possible before we can deem it to be complete.

and Debugging

408 chapter 15 Testing and Debugging

Programmers often spend more time debugging their programs than they
spend writing them. A general observation made by experts is that an experi-
enced programmer spends as much time debugging code as he/she does writing
it. Because of this inseparable relation between writing code and testing and
debugging it, we introduce you to some basic concepts in testing and debugging
in this chapter.

Testing is the process of exposing bugs, and debugging is the process of fixing
them. Testing a piece of code involves subjecting it to as many input conditions
as possible, in order to stress the software into revealing its bugs. For example, in
testing the function ToUpper from the previous chapter (recall that this function
returns the uppercase version of an alphabetic character passed as a parameter), we
might want to pass every possible ASCII value as an input parameter and observe
the function's output in order to determine if the function behaves according to
specification. If the function produces incorrect output for a particular input, then
we've discovered a bug. It is better to find the bug while the code is still in
development than to have an unsuspecting user stumble on the bug inadvertently.
It would have been better for the NASA software engineers to find the bug in the
Mars Polar Lander on the surface of the earth rather than encounter it 40 meters
above the surface of Mars.

Using information about a program and its execution, a programmer can apply
common sense to deduce where things are going awry. Debugging a program is
a bit like solving a puzzle. Like a detective at a crime scene, a programmer must
examine the available clues in order to track down the source of the problem.
Debugging code is significantly easier if you know how to gather information
about the bug—such as the value of key variables during the execution of the
program—in a systematic way.

In this chapter, we describe several techniques you can use to find and fix
bugs within a program. We first describe some broad categories of errors that
can creep into programs. We then describe testing methods for quickly finding
these errors. We finally describe some debugging techniques for isolating and
repairing these errors, and we provide some defensive programming techniques
to minimize the bugs in the code you write.

15.2 Types of Errors
To better understand how to find and fix errors in programs, it is useful to get
a sense of the types of errors that can creep into the programs we write. There
are three broad categories of errors that you are likely to encounter in your code.
Syntactic errors are the easiest to deal with because they are caught by the com-
piler. The compiler notifies us of such errors when it attempts to translate the
source code into machine code, often pointing out exactly in which line the error
occurred. Semantic errors, on the other hand, are problems that can often be
very difficult to repair. They occur when the program is syntactically correct but
does not behave exactly as we expected. Both syntactic and semantic errors are
generally typographic errors: these occur when we type something we did not
mean to type. Algorithmic errors are errors in which our approach to solving a

15.2 Types of Errors 409

1 #include <stdio.h>
2
3 int main()
4 {
5 int i
6
7

int j ;

9
10
11

8 for (i = 0; i <= 10; i++) {
j = i * 7;
printf("%d x 7 = %d\n", i, j);

12 }
Figure 15.1 This program contains a syntactic error

problem is wrong. They are often hard to detect and, once detected, can be very
hard to fix.

15.2.1 Syntactic Errors
In C, syntactic errors (or syntax errors or parse errors) are always caught by
the compiler. These occur when we ask the compiler to translate code that does
not conform to the C specification. For instance, the code listed in Figure 15.1
contains a syntax error, which the compiler will flag when the code is compiled.

The declaration for the variable i is missing a semicolon. As a novice C pro-
grammer, missing semicolons and variable declarations will account for a good
number of the syntax errors you will encounter. The good news is that these types
of errors are easy to find, because the compiler detects them, and are easy to fix,
because the compiler indicates where they occur. The real problems start once
the syntax errors have been fixed and the harder semantic and algorithmic errors
remain.

15.2.2 Semantic Errors
Semantic errors are similar to syntactic errors. They occur for the same reason: Our
minds and our fingers are not completely coordinated when typing in a program.
Semantic errors do not involve incorrect syntax; therefore, the program gets trans-
lated and we are able to execute it. It is not until we analyze the output that we dis-
cover that the program is not performing as expected. Figure 15.2 lists an example
of the same program as Figure 15.1 with a simple semantic error (the syntax error
is fixed). The program should print out a multiplication table for the number 7.

Here, a single execution of the program reveals the problem. Only one entry
of the multiplication table is printed. You should be able to deduce, given your
knowledge of the C programming language, why this program behaves incor-
rectly. Why is i i x 7 — 7 o printed out? This program demonstrates something
called a control flow error. Here, the program's control flow, or the order in which
statements are executed, is different than we intended.

The code listed in Figure 15.3 contains a common, but tricky semantic error
involving local variables. This example is similar to the factorial program we
discussed in Section 14.2.

426 chapter 15 Testing and Debugging

1 #include <stdio.h>
2
3 int main()
4 {
5 int i ;
6 int j ;
7
8 for (i = 0; i <=
9 j = i * 7;

10 printf("%d x 7
11 }
Figure 15.2 A program with a semantic error

This program calculates the sum of all integers less than or equal to the
number input from the keyboard (i.e., it calculates 1 + 2 + 3 + . . . + n). Try
executing this program and you will notice that the output is not what you would
expect. Why doesn't it work properly? Hint: Draw out the run-time stack for an
execution of this program.

Semantic errors are particularly troubling because they often go undetected
by both the compiler and the programmer until a particular set of inputs triggers

1 #include <stdio.h>
z
3
A

int AllSum(int n);

5
(Z

int main()
/ o

7
i

int in; / * Input value * /
8 q int sum; / * Value of 1+2+3+..+n * /

10 printf("Input a number: ");
11 scanf("%dM, &in);
12
13 sum = AllSum(in);
14 printf("The AllSum of %d is %d\n", in, sum);
15 }
16
17
18 int AllSum(int n)
19 {
20 int result; / * Result to be returned * /
21 int i ; / * Iteration count * /
22
23 for (i = 1; i <= n; i++) / * This calculates sum * /
24 result = result + i;
25
26 return result; / * Return to caller * /
27 }
Figure 15.3 A program with a bug involving local variables

15.2 Types of Errors 411

the error. Refer to the Alisum program in Figure 15.3, but repair the previous
semantic error and notice that if the value passed to Alisum is less than or equal
to 0 or too large, then All Sum may return an erroneous result because it has
exceeded the range of the integer variable result. Fix the previous bug, compile
the program, and input a number smaller than 1 and you will notice another bug.

Some errors are caught during execution because an illegal action is per-
formed by the program. Almost all computer systems have safeguards that prevent
a program from performing actions that might affect other unrelated programs.
For instance, it is undesirable for a user's program to modify the memory that
stores the operating system or to write a control register that might affect other
programs, such as a control register that causes the computer to shut down. When
such an illegal action is performed by a program, the operating system termi-
nates its execution and prints out a run-time error message. Modify the scanf
statement from the A H Sum example to the following:

scanf (15 %d", in) ;

In this case, the ampersand character, as we shall see in Chapter 16, is
a special operator in the C language. Omitting it here causes a run-time error
because the program has attempted to modify a memory location to which it does
not have access. We will look at this example and the reasons for the error in more
detail in later chapters.

15.2.3 Algorithmic Errors
Algorithmic errors are the result of an incorrect program design. That is, the
program itself behaves exactly as we designed, but the design itself was flawed.
These types of errors can be hidden; they may not appear until many trials of
the program have been run. Even when they are detected and isolated, they can
be very hard to repair. The good news is that these types of errors can often be
reduced and even eliminated by proper planning during the design phase, before
any code is written.

An example of a program with a simple algorithmic flaw is provided in
Figure 15.4. This code takes as input the number of a calendar year and determines
if that year is a leap year or not.

At first glance, this code appears to be correct. Leap years do occur every four
years. However they are skipped at the turn of every century, except every fourth
century (i.e., the year 2000 was a leap year, but 2100,2200, and 2300 will not be).
The code works for almost all years, except those falling into these exceptional
cases. We categorize this as an algorithmic error, or design flaw.

Another example of an algorithmic error also involving dates is the infamous
Year 2000 computer bug, or Y2K bug. Many computer programs minimize the
amount of memory required to store dates. They use enough bits to store only the
last two digits of the year, and no more. Thus, the year 2000 is indistinguishable
from the year 1900 (or 1800 or 2100 for that matter). This presented a problem
during the recent century crossover on December 31,1999. Say, for example, you
had checked out a book from the university library in late 1999 and it was due
back sometime in early 2000. If the library's computer system suffered from the

412 chapter 15 Testing and Debugging

1 #include <stdio.h>

3 int main()
4 {
5 int year;

7 printf("Input a year (i. .e., 1996): ");
8
Q

scanf("%d", &year);
j 10 if (year % 4 == 0)

11 printf("This year is a leap year"\n)
12 else
13 printf("This year is not a leap year
14 }
Figure 15.4 This program to determine leap years has an algorithmic bug

Y2K bug, you would have gotten an overdue notice in the mail with some hefty
fines listed on it. As a consequence, a lot of money and effort were devoted to
tracking down Y2K-related bugs before January 1, 2000 rolled around.

15.3 Testing
There is an adage among seasoned programmers that any line of code that is
untested is probably buggy. Good testing techniques are crucial to writing good
software. What is testing? With testing, we basically put the software through
trials where input patterns are applied (in order to mimic what the software might
see during real operation) and the output of the program is checked for correctness.
Real-world software might undergo millions of trials before it is released.

In an ideal world, we could test a program by examining its operation under
every possible input condition. But for a program that is anything more than trivial,
testing for every input combination is impossible. For example, if we wanted to
test a program that finds prime numbers between integers A and B, where A and
B are 32-bit input values, there are (232)2 possible input combinations. Even if
we could run 1 million trials in 1 second, it would still take half a million years
to completely test the program. Clearly, testing each input combination is not an
option. So which input combinations do we test with? We could randomly pick
inputs in hopes that some of those random patterns will expose the program's bugs.
Software engineers typically rely on more systematic ways of testing their code. In
particular, black-box testing is used to check if a program meets its specifications,
and white-box testing targets various facets of the program's implementation in
order to provide some assurance that every line of code is tested.

15.3.1 Black-Box Testing
With black-box testing, we examine if the program meets its input and output
specifications, disregarding the internals of the program. That is, with black-box
testing, we are concerned with what the program does and not how it does it. For

15.3 Testing 413

example, a black-box test of the program A U S u m in Figure 15.3 might involve
running the program, typing an input number, and comparing the resulting output
to what you calculated by hand. If the two do not match, then either the program
contains a bug or your arithmetic skills are shoddy. We might continue attempting
trials until we are reasonably confident that the program is functional.

For testing larger programs, the testing process is automated in order to run
more tests per unit time. That is, we construct another program to automatically
run the original program, provide some random inputs, check that the output
meets specifications, and repeat. With such a process, we can clearly run many
more trials than we could if a person performed each trial.

In order to automate the black-box process, however, we need a way to
automatically test whether the program's output was correct or incorrect. Here,
we might need to construct a checker program that is different than the original
program but performs a similar computation. If the original and checker programs
had the same bug, it would go undetected by the black-box testing process. For this
reason, black-box testers who write checker programs are often not permitted to
see the code within the black box they are testing so that we get a truly independent
version of the checker.

15.3.2 White-Box Testing
For larger software systems, black-box testing is not enough. With black-box
testing, it is not possible to know which lines of code have been tested and
which have not, and therefore, according to the adage stated previously, all are
presumed to be buggy. Black-box testing is sometimes difficult when the input
or output specification of a program is not concrete. For example, black-box
testing of an audio player (such as an MP3 player) might be difficult because of
the inexact nature of the output. Also, black-box testing can only start once the
software is complete—the software must compile and must meet some part of
the specification in order to be tested.

Software engineers supplement black-box testing with white-box tests.
White-box tests isolate various internal components of the software, and test
whether the components conform to their intended design. For example, testing
to see that each function performs correctly according to the design is a white-box
test. How we divide a program into functions is part of its implementation and
not its specification. We can apply the same type of testing to loops and other
constructs within a function.

How might a white-box test be constructed? For many tests, we might need to
modify the code itself. For example, in order to see whether a function is working
correctly, we might add extra code to call the function a few extra times with
different inputs and check the outputs. We might add extra printf statements to
the code with which we can observe values of internal variables to see if things
are working as expected. Once the code is complete and ready for release, these
printf statements can be removed.

A common white-box testing technique is the use of error-detecting code
strategically placed within a program. This code might check for conditions that
indicate that the program is not working correctly. When an incorrect situation is

414 chapter 15 Testing and Debugging

detected, the code prints out a warning message, displays some relevant informa-
tion about the situation, or causes the program to prematurely terminate. Since
this error-detecting code asserts that certain conditions hold during program
execution, we generally call these checks assertions.

For example, assertions can be used to check whether a function returns a
value within an expected range. If the return value is out of this range, an error
message is displayed. In the following example, we are checking whether the
calculation performed by the function incomeTax is within reasonable bounds.
As you can deduce from this code fragment, this function calculates the income
tax based on a particular income provided as a parameter to it. We do not pay
more tax than we collect in income (fortunately!), and we never pay a negative
tax. Here if the calculation within incomeTax is incorrect, a warning message
will be displayed by the assertion code.

tax = IncomeTax(income);

if (tax < 0 || tax > income)
printf ("Error in function IncomeTax! \n11) ;

A thorough testing methodology requires the use of both black-box and white-
box tests. It is important to realize that white-box tests alone do not cover the
complete functionality of the software—even if all white-box tests pass, there
might be a portion of the specification that is missing. Similarly, black-box tests
alone do not guarantee that every line of code is tested.

15.4 Debugging
Once a bug is found, we start the process of repairing it, which can often be more
tricky than finding it. Debugging an error requires full use of our reasoning skills:
We observe a symptom of the error, such as bad output, and we might even have
some other information, such as the place in the code where the error occurred,
and from this limited information, we will need to use deduction to isolate the
source of the error. The key to effective debugging is being able to quickly gather
relevant information that will lead to identifying the bug, similar to the way a
detective might gather evidence at a crime scene or the way a physician might
perform a series of tests in order to diagnose a sick patient's illness.

There are a number of ways you can gather more information in order to
diagnose a bug, ranging from ad hoc techniques that are quick and dirty to more
systematic techniques that involve the use of software debugging tools.

15.4.1 Ad Hoc Techniques
The simplest thing to do once you realize that there is a problem with your program
is to visually inspect the source code. Sometimes the nature of the failure tips you
off to the region of the code where the bug is likely to exist. This technique is fine
if the region of source code is small and you are very familiar with the code.

15.4 Debugging 415

Another simple technique is to insert statements within the code to print out
information during execution. You might print out, using printf statements, the
values of important variables that you think will be useful in finding the bug. You
can also add printf statements at various points within your code to see if the
control flow of the program is working correctly. For example, if you wanted to
quickly determine if a counter-controlled loop is iterating for the correct number
of iterations, you could place a print f statement within the loop body. For simple
programs, such ad hoc techniques are easy and reasonable to use. Large programs
with intricate bugs require the use of more heavy-duty techniques.

15.4.2 Source-Level Debuggers
Often ad hoc techniques cannot provide enough information to uncover the source
of a bug. In these cases, programmers often turn to a source-level debugger to
isolate a bug. A source-level debugger is a tool that allows a program to be
executed in a controlled environment, where all aspects of the execution of the
program can be controlled and examined by the programmer. For example, a
debugger can allow us to execute the program one statement at a time and examine
the values of variables (and memory locations and registers, if we so choose)
along the way. Source-level debuggers are similar to the LC-3 debugger that we
described in Chapter 6, except that a source-level debugger operates in relation
to high-level source code rather than LC-3 machine instructions.

For a source-level debugger to be used on a program, the program must
be compiled such that the compiler augments the executable image with enough
additional information for the debugger to function properly. Among other things,
the debugger will need information from the compilation process in order to map
every machine language instruction to its corresponding statement in the high-
level source program. The debugger also needs information about variable names
and their locations in memory (i.e., the symbol table). This is required so that a
programmer can examine the value of any variable within the program using its
name in the source code.

There are many source-level debuggers available, each of which has its
own user interface. Different debuggers are available for UNIX and Windows,
each with its own flavor of operation. For example, gdb is a free source-level
debugger available on most UNIX-based platforms. All debuggers support a core
set of necessary operations required to probe a program's execution, many of
which are similar to the debugging features of the LC-3 debugger. So rather than
describe the user interface for any one particular debugger, in this section we will
describe the core set of operations that are universal to any debugger.

The core debugger commands fall into two categories: those that let you
control the execution of the program and those that let you examine the value of
variables and memory, etc. during the execution.

Breakpoints

Breakpoints allow us to specify points during the execution of a program when
the program should be temporarily stopped so that we can examine or modify the

416 chapter 15 Testing and Debugging

state of the program. This is useful because it helps us examine the program's
execution in the region of the code where the bug occurs.

For example, we can add a breakpoint at a particular line in the source code
or at a particular function. When execution reaches that line, program execution
is frozen in time, and we can examine everything about that program at that
particular instance. How a breakpoint is added is specific to the user interface
of the debugger. Some allow breakpoints to be added by clicking on a line of
code. Others require that the breakpoint be added by specifying the line number
through a command prompt.

Sometimes it is useful to stop at a line only if a certain condition is
true. Such conditional breakpoints are useful for isolating specific situations in
which we suspect buggy behavior. For example, if we suspect that the function
Perf ormCalcuiation works incorrectly when its input parameter is 16, then we
might want to add a breakpoint that stops execution only when x is equal to 16
in the following code:

for (x = 0; x < 100; x++)
PerformCalcuiation(x);

Alternatively, we can set a watchpoint to stop the program at any point where
a particular condition is true. For example, we can use a watchpoint to stop
execution whenever the variable Lastitem is equal to 4. This will cause the
debugger to stop execution at any statement that causes Lastitem to equal 4.
Unlike breakpoints, watchpoints are not associated with any single line of the
code but apply to every line.

Single-Stepping
Once the debugger reaches a breakpoint (or watchpoint), it temporarily suspends
program execution and awaits our next command. At this point we can examine
program state, such as values of variables, or we can continue with execution.

It is often useful to proceed from a breakpoint one statement at time—a
process referred to as single-stepping. The LC-3 debugger has a command that
executes a single LC-3 instruction and similarly a source-level debugger that
allows execution to proceed one statement at a time. The single-step command
executes the current source line and then suspends the program again. Most debug-
gers will also display the source code in a separate window so we can monitor
where the program has currently been suspended. Single-stepping through a pro-
gram is very useful, particularly when executing the region of a program where
the bug is suspected to exist. We can set a breakpoint near the suspected region
and then check the values of variables as we single-step through the code.

A common use of single-stepping is to verify that the control flow of the
program does what we expect. We can single-step through a loop to verify that
it performs the correct number of iterations or we can single-step through an
if-else to verify that we have programmed the condition correctly.

Variations of single-stepping exist that allow us to skip over functions, or to
skip to the last iteration of a loop. These variations are useful for skipping over

15.5 Programming for Correctness 417

code that we do not suspect to contain errors but are in the execution path between
a breakpoint and the error itself.

Displaying Values

The art of debugging is about gathering the information required to logically
deduce the source of the error. The debugger is the tool of choice for gathering
information when debugging large programs. While execution is suspended at a
breakpoint, we can gather information about the bug by examining the values of
variables related to the suspected bug. Generally speaking, we can examine all
execution states of the program at the breakpoint. We can examine the values of
variables, memory, the stack, and even the registers. How this is done is debugger
specific. Some debuggers allow you to use the mouse to point to a variable in the
source code window, causing a pop-up window to display the variable's current
value. Some debuggers require you to type in a command indicating the name of
the variable you want to examine.

We encourage you to familiarize yourself with a source-level debugger. At
the end of this chapter, we provide several problems that you can use to gain some
experience with this useful debugging tool.

15.5 Programming for Correctness
Knowing how to test and debug your code is a prerequisite for being a good pro-
grammer. Great programmers know how to avoid many error-causing situations
in the first place. Poor programming practices cause bugs. Being aware of some
defensive programming techniques can help reduce the amount of time required
to get a piece of code up and running. The battle against bugs starts before any
line of code is written. Here, we provide three general methods for catching errors
even before they become errors.

15.5.1 Nailing Down the Specification
Many bugs arise from poor or incomplete program specifications. Specifications
sometimes do not cover all possible operating scenarios, and thus they leave
some conditions open for interpretation by the programmer. For example, recall
the factorial example from Chapter 14: Figure 14.2 is a program that calculates the
factorial of a number typed at the keyboard. You can imagine that the specification
for the program might have been "Write a program to take an integer value from
the keyboard and calculate its factorial." As such, the specification is incomplete.
What if the user enters a negative number? Or zero? What if the user enters a
number that is too large and results in an overflow? In these cases, the code as
written will not perform correctly, and it is therefore buggy. To fix this, we need
to modify the specification of the program to allow the program to indicate an
error if the input is less than or equal to zero, or if the input is such that n! > 231,
implying n must be less than or equal to 31. In the code that follows we have
added an input range check to the Factorial function from Chapter 14. Now

418 chapter 15 Testing and Debugging

the function prints a warning message and returns a - 1 if its input parameter is
out of the correct operating range.

1 int Factorial(int n)
2 {
3 int i; /* Iteration count */
4 int result = 1; /* Initialized result */
5
6 /* Check for legal parameter values */
7 if (n < 1 || n > 31) {
8 printf("Bad input. Input must be >= 1 and <= 31.\n");
9 return -1;

10 }
11
12 for (i = 1; i <= n; i++) /* Calculates factorial */
13 result = result * i;
14
15 return result; /* Return to caller */
16 }

15.5.2 Modular Design
Functions are useful for extending the functionality of the programming language.
With functions we can add new operations and constructs that are helpful for a
particular programming task. In this manner, functions enable us to write programs
in a modular fashion.

Once a function is complete, we can test it independently in isolation (i.e., as
a white-box test) and determine that it is working as we expect. Since a typical
function performs a smaller task than the complete program, it is easier to test than
the entire program. Once we have tested and debugged each function in isolation,
we will have an easier chance getting the program to work when everything is
integrated.

This modular design concept of building a program out of simple, pretested,
working components is a fundamental concept in systems design. In subsequent
chapters we will introduce the concept of a library. A library is a collection of
pretested components that all programmers can use in writing their code. Modern
programming practices are heavily oriented around the use of libraries because
of the benefits inherent to modular design. We design not only software, but
circuits, hardware, and various other layers of the computing system using a
similar modular design philosophy.

15.5.3 Defensive Programming
All seasoned programmers have techniques to prevent bugs from creeping into
their code. They construct their code in a such a way that those errors that they

15.6 Summary

suspect might affect the program are eliminated by design. That is, they program
defensively. We provide a short list of general defensive programming techniques
that you should adopt to avoid problems with the programs you write.

• Comment your code. Writing comments makes you think about the code
you've written. Code documentation is not only a way to inform others about
how your code works, but also is a process that makes you reflect on and
reconsider your code. During this process you might discover that you forgot
a special case or operating condition that will ultimately break your code.

• Adopt a consistent coding style. For instance, aligning opening and closing
braces will let you identify simple semantic errors associated with missing
braces. Along these lines, also be consistent in variable naming. The name of
a variable should convey some meaningful information about the value the
variable contains.

• Avoid assumptions. It is tempting to make simple, innocent assumptions when
writing code, but these can ultimately lead to broken code. For example, in
writing a function, we might assume that the input parameter will always be
within a certain range. If this assumption is not grounded in the program's
specification, then the possibility for an error has been introduced. Write code
that is free of such assumptions—or at least use assertions and spot checks
to indicate when the assumptions do not hold.

• Avoid global variables. While some experienced programmers rely heavily
on global variables, many software engineers advocate avoiding them when-
ever possible. Global variables can make some programming tasks easier.
However, they often make code more difficult to understand, and extend, and
when a bug is detected, harder to analyze.

• Rely on the compiler. Most good compilers have an option to carefully check
your program for suspicious code (for example, an uninitialized variable) or
commonly misapplied code constructs (for example, using the assignment
operator = instead of the equality operator ==). While these checks are not
thorough, they do help identify some commonly made programming mis-
takes. If you are use the gcc compiler, use gcc - wal 1 to enable all warning
messages from the compiler.

The defensive techniques mentioned here are particular to the programming
concepts we've already discussed. In subsequent chapters, after we introduce new
programming concepts, we also discuss how to use defensive techniques when
writing programs that use them.

15.6 Summary
In this chapter, we presented methodologies for finding and fixing bugs within
your code. Modern systems are increasingly reliant on software, and modern
software is often very complex. In order to prevent software bugs from often
rendering our cell phones unusable or from occasionally causing airplanes to

420 chapter 15 Testing and Debugging

crash, it is important that software tightly conform to its specifications. The key
concepts that we covered in this chapter are:

• Testing. Finding bugs in code is not easy, particularly when the program
is large. Software engineers use systematic testing to find errors in software.
Black-box testing is done to validate that the behavior of a program conforms to
specification. White-box testing targets the structure of a program and provides
some assurance that every line of code has undergone some level of testing.

• Debugging. Debugging an error requires the ability to take the available
information and deduce the source of the error. While ad hoc techniques can
provide us with a little additional information about the bug, the source-level
debugger is the software engineering tool of choice for most debugging tasks.
Source-level debuggers allow a programmer to execute a program in a controlled
environment and examine various values and states within the program during
execution.

• Programming for correctness. Experienced programmers try to avoid bugs
even before the first line of code is written. Often, the specification of the program
is the source of bugs, and nailing down loose ends will help eliminate bugs after
the code has been written. Modular design involves writing a larger program out
of simple pretested functions and helps reduce the difficulty in testing a large
program. Following a defensive programming style helps reduce situations that
lead to buggy code.

Exercises 4 2 1

15.1 The following programs each have a single error that prevents them
from operating as specified. With as few changes as possible, correct
the programs. They all should output the sum of the integers from
1 to 10, inclusive.

a. # i n c l u d e < s t d i o . h >
int m a i n ()
{

int i = 1;
int s u m = 0;

w h i l e (i < 11) {
sum = sum + i;
+ + i ;
p r i n t f (" %d\n!1 , sum) ;

}
}

b. # i n c l u d e < s t d i o . h >
int m a i n ()
{

int i ;
int sum = 0;

for (i = 0; i >= 10; ++i)
sum = sum + i;

p r i n t f (" %d\n l f, sum) ;
}

C. # i n c l u d e < s t d i o . h >
int m a i n ()
{

int i = 0;
int sum = 0;

w h i l e (i <= 11)
s u m = sum + i++;

p r i n t f { " % d \ n " , sum);
}

d. # i n c l u d e < s t d i o . h >
int m a i n ()
{

int i = 0;
int sum = 0;

for (i = 0; i <= 10;)
sum = sum + ++i;

p r i n t f { " % d \ n " , sum);
}

422 chapter 15 Testing and Debugging

15.2 The following program fragments have syntax errors and therefore will
not compile. Assume that all variables have been properly declared. Fix
the errors so that the fragments will not cause compiler errors.
a. i = 0;

j = 0;
w h i l e (i < 5)
{

j = j + i;
i = j >> l

}
b. if (cont == 0)

a = 2;
b = 3;

e l s e
a = - 2 ;
b = -3;

C. # d e f i n e L I M I T 5;

if 1 (LIMIT)
p r i n t f (" T r u e ") ;

e l s e
p r i n t f (" F a l s e ") ;

15.3 The following C code was written to find the minimum of a set of
positive integers that a user enters from the keyboard. The user signifies
the end of the set by entering the value — 1. Once all the numbers have
been entered and processed, the program outputs the minimum.
However, the code contains an error. Identify and suggest ways to fix
the error. Use a source-level debugger, if needed, to find it.

i n c l u d e < s t d i o , h >
int m a i n ()
{

int s m a l l e s t N u m b e r = 0;
int n e x t I n p u t ;

/* Get the first input n u m b e r */
s c a n f (" % d " , & n e x t I n p u t) ;

/* K e e p r e a d i n g i n p u t s u n t i l u s e r e n t e r s -1 */
w h i l e (nextlnput I= -1) {

if (nextlnput < s m a l l e s t N u m b e r)
s m a l l e s t N u m b e r = n e x t l n p u t ;

s c a n f (" % d " , & n e x t l n p u t) ;
}
p r i n t f (" T h e s m a l l e s t n u m b e r is %d\n", s m a l l e s t N u m b e r)

Exercises 439

The following program reads in a line of characters from the keyboard
and echoes only the alphabetic, numeric, and space characters. For
example, if the input were "Let's m e e t at 6: oopm.", the output
should be: "Lets m e e t at 6 0 0pm". The program does not work as
specified. Fix it.

i n c l u d e < s t d i o . h >
int m a i n ()
{

c h a r e c h o = '0';

w h i l e (echo != '\n') {
scanf £"%c H, &echo) ;
if ((echo > 'a' || e c h o < 'z') & &

(echo > 'A' || e c h o < 'Z'))
p r i n t f (" % c", e c h o) ;

}

424 chapter 15 Testing and Debugging

15.5 Use a source-level debugger to monitor the execution of the following
code:

i n c l u d e < s t d i o . h >

int I s D i v i s i b l e B y (i n t d i v i d e n d , int d i v i s o r) ;

int m a i n ()
{

int i; /* I t e r a t i o n v a r i a b l e */
int j; /* I t e r a t i o n v a r i a b l e */
int f; /* T h e n u m b e r of f a c t o r s of a n u m b e r */

for (i = 2; i < 1000; i++) {

f = 0;
for (j = 2; j < i; j++) {

if (IsDivisibleBy(i, j))
f + + ;

}
p r i n t f (" T h e n u m b e r %d h a s %d f a c t o r s \ n " , i, f) ;

int I s D i v i s i b l e B y (i n t d i v i d e n d , int d i v i s o r)

{
if (dividend % d i v i s o r == 0)

r e t u r n 1;
e l s e

r e t u r n 0;
}

a. Set a breakpoint at the beginning of function I s D i v i s i b l e B y and
examine the parameter values for the first 10 calls. What are they?

b. What is the value of f after the inner for loop ends and the value of
i equals 660?

c. Can this program be written more efficiently? Hint: Monitor the
value of the arguments when the return value of I s D i v i s i b l e B y
is 1.

Exercises

15.6 Using a source-level debugger, determine for what values of parameters
the function M y s t e r y returns a zero.

i n c l u d e < s t d i o . h >

int M y s t e r y (i n t a, int b, int c);

int m a i n ()

425

int i ;
int j ;
int k ;
int sum 0 ;

/* I t e r a t i o n v a r i a b l e
/* I t e r a t i o n v a r i a b l e
/* I t e r a t i o n v a r i a b l e
/* r u n n i n g sum of M y s t e r y

* /

* /

* /

* /

for (i - 100; i > 0; i--) {
for (j = 1; j < i; -J++) {

for (k = j; k < 100; k++)
sum = sum + M y s t e r y (i , j, k);

int M y s t e r y (i n t a, int b, int c)
{

int out;

out = 3 * a * a + 7*a - 5 * b * b + 4 * b + 5*c ;

r e t u r n o u t ;

}

426 chapter 15 Testing and Debugging

15.7 The following program manages flight reservations for a small airline
that has only one plane that has SEATS number of seats for passengers.
This program processes ticket requests from the airline's website. The
command R requests a reservation. If there is a seat available, the
reservation is approved. If there are no seats, the reservation is denied.
Subsequently, a passenger with a reservation can purchase a ticket using
the P command. This means that for every P command, there must be a
preceding R command; however, not every R will materialize into a
purchased ticket. The program ends when the X command is entered.
Following is the program, but it contains serious design errors. Identify
the errors. Propose and implement a correct solution.
i n c l u d e < s t d i o . h >

d e f i n e S E A T S 10

int m a i n ()
{

int s e a t s A v a i l a b l e = S E A T S ;
c h a r r e q u e s t = '0';

w h i l e (request != 'X') {
s c a n f (" % c " , ^ r e q u e s t) ;

if (request == "R') {
if (seatsAvailable)

p r i n t f (" R e s e r v a t i o n A p p r o v e d !\n") ;
e l s e

p r i n t f (" S o r r y , flight f u l l y b o o k e d . \ n ") ;
}
if (request == 'P') {

s e a t s A v a i l a b l e - - ;
p r i n t f (" T i c k e t p u r c h a s e d ! \ n ") ;

}
}
p r i n t f (" D o n e ! %d s e a t s not sold\n", s e a t s A v a i l a b l e) ;

c h a p t e r

16

P o i n t e r s and Rrroqs

1G.1 Introduction
In this chapter, we introduce (actually, reintroduce) two simple but powerful
programming constructs: pointers and arrays. We used pointers and arrays when
writing LC-3 assembly code. Now, we examine them in the context of C.

A pointer is simply the address of a memory object, such as a variable. With
y pointers, we can indirectly access these objects, which provides some very useful

capabilities. For example, with pointers, we can create functions that modify the
arguments passed by the caller. With pointers, we can create sophisticated data
organizations that grow and shrink (like the run-time stack) during a program's
execution.

An array is a list of data arranged sequentially in memory. For example, in
a few of the LC-3 examples from the first half of the book, we represented a file
of characters as a sequence of characters arranged sequentially in memory. This
sequential arrangement of characters is known as an array of characters. To access
a particular item in an array, we need to specify which element we want. As we'll
see, an expression like a [4] will access the fifth element in the array named a—it
is the fifth element because we start numbering the array at element 0. Arrays
are useful because they allow us to conveniently process groups of data such as
vectors, matrices, lists, and character strings, which are naturally representative
of certain objects in the real world.

428 chapter 16 Pointers and Arrays

16.2 Pointers
We begin our discussion of pointers with a classic example of their utility. In the C
program in Figure 16.1, the function S w a p is designed to switch the value of its two
arguments. The function Swap is called from m a i n with the arguments valueA,
which in this case equals 3, and vaiueB, which equals 4. Once S w a p returns
control to main, we expect v a l u e A and v a i u e B to have their values swapped.
However, compile and execute the code and you will notice that the arguments
passed to S w a p remain the same.

Let's examine the run-time stack during the execution of Swap to analyze
why. Figure 16.2 shows the state of the run-time stack just prior to the completion
of the function, just after the statement on line 25 has executed but before control
returns to function main. Notice that the function Swap has modified the local
copies of the parameters f irstval and s e c o n d v a l within its own activation
record. When swap finishes and control returns to main, these modified values are
lost when the activation record for Swap is popped off the stack. The values from
main ' s perspective have not been swapped. We have a buggy program.

In C, arguments are always passed from the caller function to the callee by
value. C evaluates each argument that appears in a function call as an expression
and pushes the value of the expression onto the run-time stack in order to pass
them to the function being called. For S w a p to modify the arguments that the caller

1 # i n c l u d e < s t d i o . h >
2
3 v o i d S w a p (i n t f i r s t V a l , int s e c o n d V a l) ;
4
5 int m a i n ()
6 {
7 int v a l u e A = 3;
8 int v a i u e B = 4;
9

10 p r i n t f (" B e f o r e S w a p ");
11 p r i n t f (" v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B) ;
12
13 S w a p (v a l u e A , v a i u e B) ;
14
15 p r i n t f (" A f t e r S w a p ");
16 p r i n t f (" v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B) ;
17 }
18
19 v o i d S w a p (i n t f i r s t V a l , int s e c o n d V a l)
20 {
21 int t e m p V a l ; /* H o l d s f i r s t V a l w h e n s w a p p i n g */
22
23 t e m p V a l = f i r s t V a l ;
24 f i r s t V a l = s e c o n d V a l ;
2 5 s e c o n d V a l = t e m p V a l ;
26 }

Figure 16.1 The funct ion Swap attempts to swap the values of its two parameters

16.2 Pointers 429

xOOOO

R6
R5

Run-time stack

t
3 tempVal A

Activation record
for Swap

firstVal
secondVal w

main 's frame pointer

tempVal A

Activation record
for Swap

firstVal
secondVal w

Return address in main

tempVal A

Activation record
for Swap

firstVal
secondVal w

Return value to main

tempVal A

Activation record
for Swap

firstVal
secondVal w

4

tempVal A

Activation record
for Swap

firstVal
secondVal w 3

tempVal A

Activation record
for Swap

firstVal
secondVal w

4 valueB k

valueA '
Activation record

for main

1

3

valueB k

valueA '
Activation record

for main

1

valueB k

valueA '
Activation record

for main

1
xFFFF

Figure 16 .2 A snapshot of the run-t ime stack when the funct ion Swap is about to return
control to main

passes to it, it must have access to the caller function's activation record—it must
access the locations at which the arguments are stored in order to modify their
values. The function Swap needs the addresses of valueA and valueB in main
in order to change their values. As we shall see in the next few sections, pointers
and their associated operators enable this to happen.

16.2.1 Declaring Pointer Variables
A pointer variable contains the address of a memory object, such as a variable.
A pointer is said to point to the variable whose address it contains. Associated
with a pointer variable is the type of object to which it points. So, for instance, an
integer pointer variable points to an integer variable. To declare a pointer variable
in C, we use the following syntax:

i n t * p t r ;

Here we have declared a variable named ptr that points to an integer. The
asterisk (*) indicates that the identifier that follows is a pointer variable. C
programmers will often say that ptr is of type int star. Similarly, we can declare

c h a r * c p ;
d o u b l e *dp;

The variable cp points to a character and dp points to a double-precision float-
ing point number. Pointer variables are initialized in a manner similar to all

430 chapter 16 Pointers and Arrays

other variables. If a pointer variable is declared as a local variable, it will not
be initialized automatically.

The syntax of declaring a pointer variable using * may seem a bit odd at first,
but once we have gone through the pointer operators, the rationale behind the
syntax will be more clear.

16.2.2 Pointer Operators
C has two operators for pointer-related manipulations, the address operator & and
the indirection operator *.

The Address Operator &

The address operator, whose symbol is an ampersand, generates the memory
address of its operand, which must be a memory object such as a variable. In
the following code sequence, the pointer variable ptr will point to the integer
variable ob j ect. The expression on the right-hand side of the second assignment
statement generates the memory address of ob j ect.

int o b j e c t ;
int *ptr;

o b j e c t = 4;
p t r = & o b j e c t ;

Let's examine the LC-3 code for this sequence. Both declared variables are locals
and are allocated on the stack. Recall that R5, the base pointer, points to the first
declared local variable, or o b j e c t in this case.

A N D RO, RO, #0
A D D RO, RO, #4
STR RO, R5, #0

C l e a r RO
RO = 4
O b j e c t = 4;

A D D RO, R5, #0
STR RO, R5, # - 1

G e n e r a t e m e m o r y a d d r e s s of o b j e c t
Ptr = & o b j e c t ;

Figure 16.3 shows the activation record of the function containing this code
after the statement p t r = &obj ect ; has executed. In order to make things more
concrete, each memory location is labeled with an address, which we've arbitrarily
selected to be in the xEFFO range. The base pointer R5 currently points to xEFF2.
Notice that o b j e c t contains the integer value 4 and p t r contains the memory
address of object.

The Indirection Operator *

The second pointer operator is called the indirection, or dereference, operator,
and its symbol is the asterisk, * (pronounced star in this context). This operator
allows us to indirectly manipulate the value of a memory object. For example, the

16.2 Pointers 4 3 1

R5
xEFFO
XEFF1
xEFF2
xEFF3
xEFF4
xEFF5

XEFF2 ptr
obj ect

Figure 16.3 The run-t ime stack f rame containing obj ect and ptr af ter the statement
ptr = &obj ect has executed

expression *ptr refers to the value pointed to by the pointer variable ptr. Recall
the previous example: *ptr refers to the value stored in variable object. Here,
*ptr and o b j e c t can be used interchangeably. Adding to the previous C code
example,

int obj ect;
int *ptr;

obj ect = 4;
p t r = & o b j e c t ;
*ptr = *ptr + 1;

Essentially, *ptr = *ptr + i; is another way of saying o b j e c t -
obj ect + l; . Just as with other types of variables we have seen, the *ptr means
different things depending on which side of the assignment operator it appears
on. On the right-hand side of the assignment operator, it refers to the value that
appears at that location (in this case the value 4). On the left-hand side, it specifies
the location that gets modified (in this case, the address of obj ect). Let's examine
the LC-3 code for the last statement in the preceding code.

LDR RO, R5, #-1
LDR RL, RO, #0
ADD RL, RL, #1
STR RL, RO, #0

RO c o n t a i n s the v a l u e of p t r
Rl <- *ptr
*ptr + 1
*ptr = *ptr + 1;

Notice that this code is different from what would get generated if the
final C statement had been o b j e c t = o b j e c t + i ;. With the pointer deref-
erence, the compiler generates two LDR instructions for the indirection operator
on the right-hand side, one to load the memory address contained in ptr and
another to get the value stored at that address. With the dereference on the left-
hand side, the compiler generates a STR RI, RO, #O. Had the statement been
o b j e c t = *ptr + i ; , the compiler would have generated STR RI, RS, #O.

432 chapter 16 Pointers and Arrays

16.2.3 Passing a Reference Using Pointers
Using the address and indirection operator, we can repair the Swap function from
Figure 16.1 that did not quite accomplish the swap of its two input parameters.
Figure 16.4 lists the same program with a revised version of Swap called NewSwap.

The first modification we've made is that the parameters of N e w S w a p are no
longer integers but are now pointers to integers (int *). These two parameters
are the memory addresses of the two variables that are to be swapped. Within the
function body of NewSwap, we use the indirection operator * to obtain the values
that these pointers point to.

Now when we call N e w S w a p from main, we need to supply the memory
addresses for the two variables we want swapped, rather than the values of the
variables as we did in the previous version of the code. For this, the & operator
does the trick. Figure 16.5 shows the run-time stack when various statements of
the function N e w S w a p are executed. The three subfigures (A-C) correspond to the
run-time stack after lines 23, 24, and 25 execute.

By design, C passes information from the caller function to the callee by
value: that is, each argument expression in the call statement is evaluated, and
the resulting value is passed to the callee via the run-time stack. However, in
N e w S w a p we created a call by reference for the two arguments by using the address

1 # i n c l u d e < s t d i o . h >
2
3 v o i d N e w S w a p { i n t * f i r s t V a l , int * s e c o n d V a l) ;
4
5 int m a i n {)
6 {
7 int v a l u e A = 3;
8 int v a i u e B = 4;
9

10 p r i n t f (" B e f o r e S w a p ");
11 p r i n t f (" v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B) ;
12
13 N e w S w a p (&valueA, & v a l u e B) ;
14
15 p r i n t f (" A f t e r S w a p ");
16 p r i n t f (" v a l u e A = %d a n d v a i u e B = %d\n", v a l u e A , v a i u e B) ;
17 }
18
19 v o i d N e w S w a p { i n t * f i r s t V a l , int * s e c o n d V a l)
20 {
21 int t e m p V a l ; /* H o l d s f i r s t V a l w h e n s w a p p i n g */
2 2
23 t e m p V a l = * f i r s t V a l ;
24 * f i r s t V a l = * s e c o n d V a l ;
25 * s e c o n d V a l = t e m p V a l ;
26 }

Figure 16.4 The funct ion NewSwap swaps the values of its two parameters

16.2 Pointers 433

xEFF3

xEFF4

xEFF5

XEFF6

xEFF7

XEFF8

xEFF9

xEFFA

Run-time stack

main 's frame pointer

Return address in main
Return value to main

xEFFA

xEFF9

tempVal

firstVal
secondVal
valueB
valueA

Run-time stack

main 's frame pointer

Return address in main
Return value to main

xEFFA

xEFF9

(a) (b)

Run-time stack

main 's frame pointer

Return address in main
Return value to main

xEFFA

xEFF9

(c)
F igure 16 .5 Snapshots of the run-t ime stack when the funct ion NewSwap executes the statements in (a) line 23, (b) line

24, (c) line 25.

operator &. When an argument is passed as a reference, its address is passed
to the callee function—for this to be valid, the argument must be a variable or
other memory object (i.e., it must have an address). The callee function then
can use the indirection operator * to access (and modify) the original value of
the object.

16.2.4 Null Pointers
Sometimes it is convenient for us to say that a pointer points to nothing. Why
such a concept is useful will be eminently clear to you when we discuss dynamic
data structures such as linked lists in Chapter 19. For now, let us say that a pointer
that points to nothing is a null pointer. In C, we make this designation with the
following assignment:

int *ptr;

p t r = N U L L ;

Here, we are assigning the value of NULL to the pointer variable ptr. In C, NULL
is a specially defined preprocessor macro that contains a value that no pointer
should ever hold unless it is null. For example, NULL might equal 0 on a particular
system because no valid memory object can exist at location 0.

450 chapter 16 Pointers and Arrays

16.2.5 Demystifying the Syntax
It is now time to revisit some notation that we introduced in Chapter 11. Now that
we know how to pass a reference, let's reexamine the I/O library function scanf:

s c a n f (" % d " , & i n p u t) ;

Since function scanf needs to update the variable input with the decimal value
read from the keyboard, s c a n f needs the address of input and not its value.
Thus, the address operator & is required. If we omit the address operator, the
program terminates with an error. Can you come up with a plausible reason why
this happens? Why is it not possible for scanf to work correctly without the use
of a reference?

Before we complete our introduction to pointers, let's attempt to make
sense of the pointer declaration syntax. To declare a pointer variable, we use
a declaration of the following form:

type *ptr;

where t y p e can be any of the predefined (or programmer-defined) types such
as int, char, double, and so forth. The name p t r is simply any legal variable
identifier. With this declaration, we are declaring a variable that, when the *
(dereference) operator is applied to it, generates a variable of type type. That is,
*ptr is of type type.

We can also declare functions to return a pointer type (why we would want
to do so will be more apparent in later chapters). For example, we can declare a
function using a declaration of the form int * M a x S w a p ().

As with all other operators, the address and indirection operator are evalu-
ated according to the C precedence and associativity rules. The precedence and
associativity of these and all other operators is listed in Table 12.5. Notice that
both of the pointer operators have very high precedence.

16.2.6 An Example Problem Involving Pointers
Let's examine an example problem involving pointers. Say we want to develop
a program that calculates the quotient and remainder given an integer dividend
and integer divisor. That is, the program will calculate dividend / divisor and
dividend % divisor where both values are integers. The structure of this program
is very simple and requires only sequential constructs—that is, iteration is not
required. The twist, however, is that we want the calculation of quotient and
remainder to be performed by a single C function.

We can easily construct a function to generate a single output value (say,
quotient) that we can pass back to the caller using the return value mechanism. A
function that calculates only the quotient, for example, could consist of the single
statement r e t u r n d i v i d e n d / d i v i s o r ; . To provide the caller with multiple
values, however, we will make use of the call by reference mechanism using
pointer variables.

The code in Figure 16.6 contains a function that does just so. The function
i n t D i v i d e takes four parameters, two of which are integers and two of which

16.2 Pointers 435

1 # i n c l u d e < s t d i o . h >
2
3 int I n t D i v i d e { i n t x, int y, int *quoPtr, int * r e m P t r) ;
4
5 int m a i n ()
6 {
1 int d i v i d e n d ; / * T h e n u m b e r to b e d i v i d e d * /
8 int d i v i s o r ; / * T h e n u m b e r to d i v i d e b y * /
9 int q u o t i e n t ; / * I n t e g e r r e s u l t of d i v i s i o n * /

10 int r e m a i n d e r ; / * I n t e g e r r e m a i n d e r of d i v i s i o n * /
11 int e r r o r ; / * D i d s o m e t h i n g g o w r o n g ? * /
12
13 p r i n t f (" I n p u t d i v i d e n d : ");
14 s c a n f (" % d " , ^ d i v i d e n d) ;
15 p r i n t f (" I n p u t d i v i s o r : ");
16 s c a n f (" % d " , ^ d i v i s o r) ;
17
18 e r r o r = I n t D i v i d e (d i v i d e n d , d i v i s o r , & q u o t i e n t , ^ r e m a i n d e r) ;
19
20 if (lerror) /* !error i n d i c a t e s n o e r r o r */
21 p r i n t f (" A n s w e r : %d r e m a i n d e r %d\n", q u o t i e n t , r e m a i n d e r) ;
22 e l s e
23 p r i n t f (" I n t D i v i d e f a i l e d . \ n ") ;
24 }
25
26 int I n t D i v i d e (i n t x, int y, int * q u o P t r , int *remPtr)
27 {
28 if (y != 0) {
29 * q u o P t r = x / y; /* M o d i f y * q u o P t r */
30 * r e m P t r = x % y? /* M o d i f y * r e m P t r */
31 r e t u r n 0;
32 }
33 e l s e
34 r e t u r n -1;
35 }

Figure 16.6 The funct ion IntDivide calculates the integer port ion and remainder of an
integer divide; it returns a —1 if the divisor is 0

are pointers to integers. The function divides the first parameter x by the second
parameter y. The integer portion of the result is assigned to the memory loca-
tion pointed to by quoPtr, and the integer remainder is assigned to the memory
location pointed to by remPtr.

Notice that the function IntDivide also returns a value to indicate its status:
It returns a —1 if the d i v i s o r is zero, indicating to the caller that an error has
occurred. It returns a zero otherwise, indicating to the caller that the computation
proceeded without a hitch. The function main, upon return, checks the return
value to determine if the values in quotient and remainder are correct. Using the
return value to signal a problem during a function call between caller and callee
is an excellent defensive programming practice for conveying error conditions
across a call.

436 chapter 16 Pointers and Arrays

16.3 Arrays
Consider a program that keeps track of the final exam scores for each of the 50
students in a computer engineering course. The most convenient way to store
this data would be to declare a single object, say examScore, in which we can
store 50 different integer values. We can access a particular exam score within
this object using an index that is an offset from the beginning of the object. For
example, e x a m S c o r e [32] provides the exam score for the 33rd student (the very
first student's score Stored in e x a m S c o r e [0]). The object e x a m S c o r e in this
example is an array of integers. An array is a collection of similar data items that
are stored sequentially in memory. Specifically, all the elements in the array are
of the same type (e.g., int, char, etc.).

Arrays are most useful when the data upon which the program operates is
naturally expressed as a contiguous sequence of values. Because a lot of real-
world data falls into this category (such as exam scores for students in a course),
arrays are incredibly useful data structures. For instance, if we wanted to write a
program to take a sequence of 100 numbers entered from the keyboard and sort
them into ascending order, then an array would be the natural choice for storing
these numbers in memory. The program would be almost impossible to write
using the simple variables we have been using thus far.

16.3.1 Declaring and Using Arrays
First, let's examine how to declare an array in a C program. Like all other variables,
arrays must have a type associated with them. The type indicates the properties
of the values stored in the array. Following is a declaration for an array of 10
integers:
int g r i d [1 0] ;

The keyword int indicates that we are declaring something of type integer. The
name of the array is grid. The brackets indicate we are declaring an array and the
10 indicates that the array is to contain 10 integers, all of which will be sequentially
located in memory. Figure 16.7 shows a pictorial representation of how g r i d is
allocated. The first element, g r i d [0], is allocated in the lowest memory address
and the last element, g r i d [9], in the highest address. If the array g r i d were a
local variable, then its memory space would be allocated on the run-time stack.

Let's examine how to access different values in this array. Notice in
Figure 16.7 that the array's first element is actually numbered 0, which means the
last element is numbered 9. To access a particular element, we provide an index
within brackets. For example,
g r i d [6] = grid[3] + 1;

The statement reads the value stored in the fourth (remember, we start num-
bering with 0) element of grid, adds 1 to it, and stores the result into the seventh
element of grid. Let's look at the LC-3 code for this example. Let's say that g r i d
is the only local variable allocated on the run-time stack. This means that the base
pointer R5 will point to g r i d [9].

16.3 Arrays 437

Memory

grid [0]
grid[1]
grid[2]
grid[3]
arid Ui Memory allocated for
g array grid
grid [5]
grid[6]
grid [7]
grid [8]
grid [9]

Figure 16 .7 The array grid al located in memory

A D D RO, R5, # - 9
L D R Rl, RO, #3
A D D Rl, Rl, #1
STR Rl, RO, #6

Put t h e b a s e a d d r e s s of g r i d i n t o RO
R l <-- g r i d [3]
Rl <-- grid[3] + 1
g r i d [6] = g r i d [3] + 1;

Notice that the first instruction calculates the base address of the array, which
is the address of g r i d [o], and puts it into RO. The base address of an array in
general is the address of the first element of the array. We can access any element
in the array by adding the index of the desired element to the base address.

The power of arrays comes from the fact that an array's index can be any
legal C expression of integer type. The following example demonstrates:

g r i d [x + l] = g r i d [x] + 2;

Let's look at the LC-3 code for this statement. Assume x is another local
variable allocated on the run-time stack directly on top of the array g r id .

L D R RO, R5 , # - 1 0 L o a d t h e v a l u e of x
A D D Rl, R5, # - 9 Put t h e b a s e a d d r e s s of g r i d i n t o Rl
A D D Rl, RO , R l C a l c u l a t e a d d r e s s of g r i d [x]
LDR R2 , Rl, #0 R2 <-- g r i d [x]
A D D R2 , R2 , #2 R2 <-- g r i d [x] + 2

L D R RO, R5, # - 1 0 L o a d t h e v a l u e of x
A D D RO, RO, #1 R 0 <-- x + 1
A D D Rl, R5 , Put the b a s e a d d r e s s of g r i d i n t o Rl
A D D Rl, RO, Rl C a l c u l a t e a d d r e s s of g r i d [x + 1]
STR R2 , Rl, #0 g r i d [x + l] = g r i d [x] +• 2;

438 chapter 16 Pointers and Arrays

16.3.2 Examples Using Arrays
We start off with a simple C program that adds two arrays together by adding the
corresponding elements from each array to form the sum. Each array represents
a list of exam scores for students in a course. Each array contains an element
for each student's score. To generate the cumulative points for each student, we
effectively want to perform T o t a l [i] = E x a m i [i] + E x a m 2 [i]. Figure 16.8
contains the C code to read in two 10-element integer arrays, add them together
into another 10-element array, and print out the sum.

A style note: Notice the use of the preprocessor macro NUM STUDENTS to
represent a constant value of the size of the input set. This is a common use for
preprocessor macros, which are usually found at the beginning of the source file
(or within C header files). Now, if we want to increase the size of the array, for
example if the student enrollment changes, we simply change the definition of

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e N U M _ S T U D E N T S 10
3
4 int m a i n ()
5 {
6 int i;
7 int E x a m l [N U M _ S T U D E N T S] ;
8 int E x a m 2 [N U M _ S T U D E N T S] ;
9 int T o t a l [N U M _ S T U D E N T S] ;

10
11 /* Input E x a m 1 s c o r e s */
12 for (i = 0; i < N U M _ S T U D E N T S ; i++) {
13 p r i n t f (" I n p u t E x a m 1 score for s t u d e n t %d : ", i);
14 s c a n f (" % d " , & E x a m l [i]) ;
1 5 }
16 p r i n t f { " \ n M) ;
17
18 /* Input E x a m 2 s c o r e s */
19 for (i = 0; i < N U M _ S T U D E N T S ; i++) {
20 p r i n t f (" I n p u t E x a m 2 score for s t u d e n t %d : i);
21 s c a n f (" % d " , & E x a m 2 [i]) ;
2 2 }
23 p r i n t f (u \ n M) ;
24
25 /* C a l c u l a t e T o t a l P o i n t s */
2 6 for (i = 0; i < N U M _ S T U D E N T S ; i++) {
27 T o t a l [i] = E x a m l [i] + E x a m 2 [i] ;
2 8 }
29
30 /* O u t p u t t h e T o t a l P o i n t s */
31 for (i = 0; i < N U M _ S T U D E N T S ; i++) {
32 p r i n t f (" T o t a l for S t u d e n t %d = %d\n", i. T o t a l [i]) ;
33 }
34 }

Figure 1 6 . 8 A C program that calculates the sum of two 10-element arrays

16.3 Arrays 439

the macro (one change) and recompile the program. If we did not use the macro,
changing the array size would require changes to the code in multiple places.
The changes could be potentially difficult to track down, and forgetting to do one
would likely result in a program that did not work correctly. Using preprocessor
macros for the size of an array is good programming practice.

Now onto a slightly more complex example involving arrays. Figure 16.9 lists
a C program that reads in a sequence of decimal numbers (in total MAX JNTUMS of
them) from the keyboard and determines the number of times each input number
is repeated within the sequence. The program then prints out each number, along
with the number of times it repeats.

In this program, we use two arrays, n u m b e r s and repeats. Both are declared
to contain MAX_NUMS integer values. The array n u m b e r s stores the input sequence.
The array r e p e a t s is calculated by the program to contain the number of times
the corresponding element in n u m b e r s is repeated in the input sequence. For
example, if n u m b e r s [3] equals 115, and there are a total of four 115s in the input

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e M A X _ N U M S 10
3
4 int m a i n ()
5 {
6 int index; /* L o o p i t e r a t i o n v a r i a b l e */
7 int r e p l n d e x ; /* L o o p v a r i a b l e for rep loop */
8 int n u m b e r s [M A X _ N U M S] ; /* O r i g i n a l input n u m b e r s */
9 int r e p e a t s [M A X _ N U M S] ; /* N u m b e r of r e p e a t s */

10
11 /* G e t input */
12 p r i n t f (" E n t e r %d n u m b e r s . \ n " , M A X _ N U M S) ;
13 for (index = 0; i n d e x < MAX__NUMS; index++) {
14 p r i n t f (" I n p u t n u m b e r %d : ", index);
15 s c a n f (" % d " , ^ n u m b e r s [i n d e x]) ;
16 }
17
18 /* S c a n t h r o u g h e n t i r e array, c o u n t i n g n u m b e r of */
19 /* r e p e a t s p e r e l e m e n t w i t h i n the o r i g i n a l a r r a y */
20 for (index = 0; i n d e x < M A X _ N U M S ; index++) {
21 r e p e a t s [i n d e x] = 0;
22 for (replndex = 0; r e p l n d e x < M A X I M U M S ; r e p l n d e x + +) {
23 if (numbers[replndex] == n u m b e r s [i n d e x])
24 r e p e a t s [i n d e x] + + ;
25 }
26 }
27
28 /* Print the r e s u l t s */
29 for (index = 0; i n d e x < M A X _ N U M S ; index++)
30 p r i n t f (" O r i g i n a l n u m b e r %d. N u m b e r of r e p e a t s %d\n",
31 n u m b e r s [i n d e x] , r e p e a t s [index]);
32 }

Figure 1 6 . 9 A C program that determines the number of repeated values in an array

456 chapter 16 Pointers and Arrays

sequence (i.e., there are four 115s in the array numbers), then r e p e a t s [3] will
equal 4.

This program consists of three outer loops, of which the middle loop is actu-
ally a nested loop (see Section 13.3.2) consisting of two loops. The first and last
for loops are simple loops that get keyboard input and produce program output.

The middle for loop contains the nested loop. This body of code deter-
mines how many copies of each element exist within the entire array. The
outer loop iterates the variable i n d e x from 0 through MAX NUMS; we use
index to scan through the array from the first element n u m b e r s [o] through
the last element numbers[MAX_NUMS] . The inner loop also iterates from 0
through MAX NUMS; we use this loop to scan through the array again, this
time determining how many of the elements match the element selected by
the outer loop (i.e., n u m b e r s [index]) . Each time a copy is detected (i.e.,
n u m b e r s [replndex] == n u m b e r s [index]), the corresponding element in the
r e p e a t s array is incremented (i.e., r e p e a t s [index] ++).

16.3.3 Arrays as Parameters
Passing arrays between functions is a useful thing because it allows us to create
functions that operate on arrays. Say we want to create a set of functions that
calculates the mean and median on an array of integers. We would need either
(1) to pass the entire array of values from one function to another or (2) to pass a
reference to the array. If the array contains a large number of elements, copying
each element from one activation record onto another could be very costly in
execution time. Fortunately, C naturally passes arrays by reference. Figure 16.10
is a C program that contains a function A v e r a g e whose single parameter is an
array of integers.

When calling the function A v e r a g e from main, we pass to it the value asso-
ciated with the array identifier numbers. Notice that here we are not using the
standard notation involving brackets [] that we normally use for arrays. In C,
an array's name refers to the address of the base element of the array. The name
n u m b e r s is equivalent to ^ n u m b e r s [0]. The type n u m b e r s is similar to int *.
It is an address of memory location containing an integer.

In using n u m b e r s as the argument to the function Average, we are causing the
address of the array n u m b e r s to be pushed onto the stack and passed to the function
Average. Within the function Average, the parameter i n p u t v a l u e s is assigned
the address of the array. Within A v e r a g e we can access the elements of the original
array using standard array notation. Figure 16.11 shows the run-time stack just
prior to the execution of the r e t u r n from A v e r a g e (line 34 of the program).

Notice how the input parameter i n p u t v a l u e s is specified in the declaration
of the function Average. The brackets [] indicate to the compiler that the
corresponding parameter will be the base address to an array of the specified
type, in this case an array of integers.

Since arrays are passed by reference in C, any modifications to the array values
made by the called function will be visible to the caller once control returns to
it. How would we go about passing only a single element of an array by value?
How about by reference?

16.3 Arrays 4 4 1

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e M A X _ N U M S 10
3
4 int A v e r a g e (i n t i n p u t _ v a l u e s []);
5
6 int m a i n O
7 {
8 int index; /* L o o p i t e r a t i o n v a r i a b l e */
9 int m e a n ; /* A v e r a g e of n u m b e r s */

10 int n u m b e r s [M A X _ N U M S] ; /* O r i g i n a l input n u m b e r s */
11
12
13 /* Get input */
14 p r i n t f ("Enter %d n u m b e r s . \n" , MAXJSTUMS) ;
15 for (index = 0; index < M A X _ N U M S ; index++) {
16 p r i n t f (" I n p u t n u m b e r %d : ", index);
17 s c a n f (" % d " , ^ n u m b e r s [i n d e x]) ;
18 }
19
20 m e a n = A v e r a g e { n u m b e r s) ;
21
22 p r i n t f (" T h e a v e r a g e of t h e s e n u m b e r s is %d\n", m e a n) ;
23 }
24
2 5 int A v e r a g e (i n t i n p u t V a l u e s [])
26 {
2 7 int index;
2 8 int s u m = 0;
29
3 0 for (index = 0; i n d e x < M A X _ N U M S ; index++) {
31 s u m = sum + i n p u t V a l u e s [i n d e x] ;
32 }
33
34 r e t u r n (sum / M A X _ N U M S) ;
3 5 }

Figure 16.10 An example of an array as a parameter to a funct ion

16.3.4 Strings in C
A very common use for arrays in C is for strings. Strings are sequences of charac-
ters that represent text. Strings are simply character arrays, with each subsequent
element containing the next character of the string. For example,

c h a r w o r d [1 0] ;

declares an array that can store a string of up to 10 characters. Longer strings
require a larger array. What if the string is shorter than 10 characters? In C and
many other modern programming languages, the end of a string is denoted by the
null character whose ASCII value is 0. It is a sentinel that identifies the end of
the string. Such strings are also called null-terminated strings. ' \o ' is the special

442 chapter 16 Pointers and Arrays

R6

R5

xEFEB

xEFEC

xEFED

xEFEE

xEFEF

xEFFO

xEFF1

XEFF2

xEFF3

xEFF4

XEFF5

XEFF6

XEFF7

XEFF8

XEFF9

xEFFA

Run-time stack

489

10

main 's frame pointer

Return address in main

Return value to main

xEFEF

15

14

236

67

48

18

23

56

? ?

10

sum
index

inputValues

numbers [0]
numbers [1]
numbers [2]
numbers [3]
numbers [4]
numbers [5]
numbers [6]
numbers [7]
numbers [8]
numbers [9]
mean
index

Activation record
for Average

Activation record
for main

Figure 16.11 The run-t ime stack prior to the execution of the return f rom Average

sequence that corresponds to the null character. Continuing with our previous
declaration,

c h a r w o r d [1 0] ;

' H ' ;
' e ' ;
' 1 ' ;
' 1 ' ;
' O' ;
' \ 0 ' ;

w o r d [0] =
w o r d [l] =
word [2] =
word[3] =
w o r d [4] =
w o r d [5] =

p r i n t f (" % s " , w o r d) ;

16.3 Arrays 443

Here, we are assigning each element of the array individually. The array
will contain the string "Hello." Notice that the end-of-string character itself is a
character that occupies an element of the array. Even though the array is declared
for 10 elements, we must reserve one element for the null character, and therefore
strings that are longer than nine characters cannot be stored in this array.

Wehave also used a new p r i n t f format specification %sinthis example. This
specification prints out a string of characters, starting with the character pointed
to by the corresponding parameter and ending at the end-of-string character ' \of.

ANSI C compilers also allow strings to be initialized within their declarations.
For instance, the preceding example can be rewritten to the following.

char w o r d [1 0] - "Hello";

p r i n t f (" % s " f w o r d) ;

Make note of two things here: First, character strings are distinguished from single
characters with double quotes, " M. Single quotes are used for single characters,
such as ' A '. Second, notice that the compiler automatically adds the null character
to the end of the string.

Examples of Strings
Figure 16.12 contains a program that performs a very simple and useful primitive
operation on strings: it calculates the length of a string. Since the size of the array
that contains the string does not indicate the actual length of the string (it does,
however, tell us the maximum length of the string), we need to examine the string
itself to calculate its length.

The algorithm for determining string length is easy. Starting with the first
element, we count the number of characters before we encounter the null character.
The function st r i n g L e n g t h in the code in Figure 16.12 performs this calculation.

Notice that we are using the format specification %s in the scanf statement.
This specification causes s c a n f to read in a string of characters from the keyboard
until the first white space character. In C, any space, tab, new line, carriage return,
vertical tab, or form-feed character is considered white space. So if the user types
(from The New Colossus, by Emma Lazarus)

Not like the b r a z e n g i a n t of G r e e k fame,
W i t h c o n q u e r i n g limbs a s t r i d e from land to land;

only the word Not is stored in the array input. The remainder of the text line
is reserved for subsequent scanf calls to read. So if we performed another
scanf {»%s", input) , the word like will be stored in the array input. Notice
that the white space is automatically discarded by this %s specification. We exam-
ine this I/O behavior more closely in Chapter 18 when we take a deeper look into
I/O in C.

Notice that the maximum word size is 20 characters. What happens if the
first word is longer? The scanf function has no information on the size of the
array input and will keep storing characters to the array address it was provided
until white space is encountered. So what then happens if the first word is longer

444 chapter 16 Pointers and Arrays

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e M A X _ S T R I N G 2 0
3
4 int S t r i n g L e n g t h { c h a r s t r i n g []) ;
5
6 int m a i n ()
7 {
8 c h a r i n p u t [M A X _ S T R I N G] ; /* Input s t r i n g */
9 int l e n g t h = 0;

10
11 p r i n t f (" I n p u t a w o r d {less t h a n 20 c h a r a c t e r s) : ");
12 s c a n f (" % s " , i n p u t) ;
13
14 l e n g t h = S t r i n g L e n g t h (i n p u t) ;
15 p r i n t f (" T h e w o r d c o n t a i n s %d c h a r a c t e r s \ n " , l e n g t h) ;
16 }
17
18 int S t r i n g L e n g t h (c h a r s t r i n g [])
19 {
2 0 int i n d e x = 0;
21
22 w h i l e (string[index] != '\0')
23 i n d e x = index + 1;
24
25 r e t u r n index;
26 }

Figure 1 6 . 1 2 A program that calculates the length of a str ing

than 20 characters? Any local variables that are allocated after the array input in
the function m a i n will be overwritten. Draw out the activation record before and
after the call to scanf to see why. In the exercises at the end of this chapter, we
provide a problem where you need to modify this program in order to catch the
scenario where the user enters a word longer than what fits into the input array.

Let's examine a slightly more complex example that uses the S t r i n g L e n g t h
function from the previous code example. In this example, listed in Figure 16.13,
we read an input string from the keyboard using scanf, then call a function to
reverse the string. The reversed string is then displayed on the output device.

The function R e v e r s e performs two tasks in order to reverse the string prop-
erly. First it determines the length of the string to reverse using the S t r i n g L e n g t h
function from the previous code example. Then it performs the reversal by swap-
ping the first character with the last, the second character with the second to last,
the third character with the third to last, and so on.

To perform the swap, it uses a modified version of the N e w S w a p function from
Figure 16.4. The reversal loop calls the function c h a r S w a p on pairs of characters
within the string. First, C h a r S w a p is called on the first and last character, then on
the second and second to last character, and so forth.

The C standard library provides many prewritten functions for strings. For
example, functions to copy strings, merge strings together, compare them, or

16.3 Arrays 445

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e M A X _ S T R I N G 20
3
4 int S t r i n g L e n g t h (c h a r s t r i n g []) ;
5 v o i d C h a r S w a p (c h a r * f i r s t V a l , c h a r * s e c o n d V a l) ;
6 v o i d R e v e r s e (c h a r s t r i n g []) ;
7
8 int m a i n ()
9 {

10 c h a r i n p u t [M A X _ S T R I N G] ; /* Input s t r i n g */
11
12 p r i n t f (" I n p u t a w o r d (less t h a n 20 c h a r a c t e r s) : ") ;
13 s c a n f (" % s " , i n p u t) ;
14
15 R e v e r s e (i n p u t) ;
16 p r i n t f (" T h e w o r d r e v e r s e d is %s.\n", input);
17 }
18
19 int S t r i n g L e n g t h (c h a r string[])
20 {
21 int i n d e x = 0;
22
23 w h i l e (string[index] != '\0')
24 i n d e x = i n d e x + 1;
25
26 r e t u r n index;
27 }
2 8
29 v o i d C h a r S w a p (c h a r * f i r s t V a l , c h a r * s e c o n d V a l)
30 {
31 c h a r t e m p V a l ; /* T e m p o r a r y l o c a t i o n for s w a p p i n g */
32
33 t e m p V a l = * f i r s t V a l ;
34 * f i r s t V a l = * s e c o n d V a l ;
35 * s e c o n d V a l = t e m p V a l ;
36 }
37
38 v o i d R e v e r s e (c h a r s t r i n g [])
39 {
4 0 int i n d e x ;
41 int length;
42
43 l e n g t h = S t r i n g L e n g t h (s t r i n g) ;
44
45 for (index = 0; index < (length / 2); index++)
46 C h a r S w a p (& s t r i n g [i n d e x] , ^ s t r i n g [l e n g t h - (index + 1)]);
47 }

Figure 1 6 . 1 3 A program that reverses a str ing

446 chapter 16 Pointers and Arrays

Between Pointers and Arrays

cptr word &word [0]
(cptr + n) word + n &word[n]
*cptr •word word [0]
* (cptr + n) *(word + n) word[n]

calculate their length can be found in the C standard library, and the declara-
tions for these functions can be included via the < s t r i n g . h > header file. More
information on some of these string functions can be found in Appendix D.9.2.

16.3.5 The Relationship Between Arrays and Pointers in C
You might have noticed that there is a similarity between an array's name and a
pointer variable to an element of the same type as the array. For instance,

c h a r w o r d [1 0] ;
c h a r *cptr;

c p t r = w o r d ;

is a legal, and sometimes useful, sequence of code. Here, we have assigned the
pointer variable cptr to point to the base address of the array word. Because
they are both pointers to characters, c p t r and w o r d can be used interchangeably.
For example, we can access the fourth character within the string either by using
w o r d [3] o r * (cptr + 3).

One difference between the two, though, is that c p t r is a variable and can be
reassigned. The array identifier word, on the other hand, cannot be. For example,
the following statement is illegal: w o r d = newArray. The identifier always points
to a fixed spot in memory where the compiler has placed the array. Once it has
been allocated, it cannot be moved.

Table 16.1 shows the equivalence of several expressions involving pointer
and array notation. Rows in the table are expressions with the same meaning.

16.3.6 Problem Solving: Insertion Sort
With this initial exposure to arrays under our belt, we can now attempt an inter-
esting and sizeable (and useful!) problem: we will write C code to sort an array
of integers into ascending order. That is, the code arranges the array a [] such that
a [0] < a [l] < a [2]

To accomplish this, we will use an algorithm for sorting called Insertion Sort.
Sorting is an important primitive operation, and people in computing have devoted
considerable time to understanding, analyzing, and refining the sorting process.
As a result, there are many algorithms for sorting, and you will gain exposure to
some basic techniques in subsequent computing courses. We use insertion sort

16.3 Arrays 447

here because it parallels how we might sort items in the real world. It is quite
straightforward.

Insertion sort is best described by an example. Say you want to sort your
compact disc collection into alphabetical order by artist. If you were sorting your
compact discs using insertion sort, you would split the CDs into two groups, the
sorted group and the unsorted group. Initially, the sorted group would be empty
as all your CDs would be yet unsorted. The sorting process proceeds by taking a
CD from the unsorted group and inserting it into the proper position among the
sorted CDs. For example, if the sorted group contained three CDs, one by John
Coltrane, one by Charles Mingus, and one by Thelonious Monk, then inserting
the Miles Davis CD would mean inserting it between the Coltrane CD and the
Mingus CD. You keep doing this until all CDs in the unsorted group have been
inserted into the sorted group. This is insertion sort.

How would we go about applying this same technique to sort an array of
integers? Applying systematic decomposition to the preceding algorithm, we see
that the core of the program involves iterating through the elements of the array,
inserting each element into the proper spot in a new array where all items are in
ascending order. This process continues until all elements of the original array
have been inserted into the new array. Once done, the new array will contain the
same elements as the first array, except in sorted order.

For this technique we basically need to represent two groups of items, the
original unsorted elements and the sorted elements. And for this we could use
two separate arrays. It turns out, however, that we can represent both groups of
elements within the original array. Doing so results in code that requires less
memory and is more compact, though slightly more complex upon first glance.
The initial part of the array contains the sorted elements and the remainder of the
array contains the unsorted elements. We pick the next unsorted item and insert
it into the sorted part at the correct point. We keep doing this until we have gone
through the entire array.

The actual i n s e r t ionSort routine (shown in Figure 16.14) contains a nested
loop. The outer loop scans through all the unsorted items (analogous to going
through the unsorted CDs, one by one). The inner loop scans through the already
sorted items, scanning for the place at which to insert the new item. Once we
detect an already sorted element that is larger than the one we are inserting, we
insert the new element between the larger and the one before it.

Let's take a closer look by examining what happens during a pass of the
insertion sort. Say we examine the insertion sort process (lines 33—43) when
the variable unsor ted is equal to 4. The array l i s t contains the following 10
elements:

2 16 69 92 15 37 92 38 82 19

During this pass, the code inserts list[4],orl5, into the already sorted portion
of the array, elements list to] through list [3].

The inner loop iterates the variable so r t ed through the list of already sorted
elements. It does this from the highest numbered element down to 0 (i.e., starting
at 3 down to 0). Notice that the condition on the f o r loop terminates the loop
once a list item less than the current item, 15, is found.

448 chapter 16 Pointers and Arrays

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e MAXJSJUMS 10
3
4 v o i d I n s e r t i o n S o r t (i n t list []) ;
5
6 int m a i n ()
7 {
8 int index; /* I t e r a t i o n v a r i a b l e */
9 int n u m b e r s [M A X _ N U M S] ; /* L i s t of n u m b e r s to b e s o r t e d */

10
11 /* G e t input */
12 p r i n t f ("Enter %d n u m b e r s . \n" , MAX__NUMS) ;
13 for (index = 0; i n d e x < MAX_NUMS; index++) {
14 p r i n t f (" I n p u t n u m b e r %d : ", i n d e x) ;
15 s c a n f (" % d " , ^ n u m b e r s [i n d e x]) ;
16 }
17
18 I n s e r t i o n S o r t (n u m b e r s) ; /* Call s o r t i n g r o u t i n e */
19
20 /* Print s o r t e d list */
21 p r i n t f (" \ n T h e input set, in a s c e n d i n g o r d e r : \ n ") ;
22 for (index = 0; i n d e x < M A X _ N U M S ; index++)
23 p r i n t f (" % d \ n " , n u m b e r s [i n d e x]) ;
24 }
25
26 v o i d I n s e r t i o n S o r t (i n t list[])
27 {
28 int u n s o r t e d ; /* I n d e x for u n s o r t e d list i t e m s */
29 int s o r t e d ; /* I n d e x for s o r t e d items */
3 0 int u n s o r t e d l t e m ; /* C u r r e n t i t e m t o b e s o r t e d */
31
32 /* T h i s loop i t e r a t e s from 1 t h r u M A X _ N U M S */
33 for (unsorted = 1; u n s o r t e d < M A X _ N U M S ; u n s o r t e d + +) {
34 u n s o r t e d l t e m = l i s t [u n s o r t e d] ;
35
36 /* T h i s loop i t e r a t e s from u n s o r t e d t h r u 0, u n l e s s
37 w e h i t a n e l e m e n t s m a l l e r t h a n c u r r e n t i t e m */
38 for (sorted = u n s o r t e d - 1;
39 (sorted >= 0) & & {list[sorted] > u n s o r t e d l t e m) ;
40 sorted--)
41 l i s t [s o r t e d + 1] = l i s t [s o r t e d] ;
42
43 l i s t [s o r t e d + 1] = u n s o r t e d l t e m ; /* Insert item */
44 }
45 }

Figure 1 6 . 1 4 Insertion sort program

16.3 Arrays 449

In each iteration of this inner loop (lines 38^1), an element in the sorted
part of the array is copied to the next position in the array. In the first iteration,
list [3] is copied to list [4]. So after the first iteration of the inner loop, the
array list contains

2 16 69 92 92 37 92 38 82 19

Notice that we have overwritten 15 (list [4]). This is OK because we have
a copy of its value in the variable unsor tedi tem (from line 34). The second
iteration performs the same operation on list [2]. After the second iteration,
list contains
2 16 69 69 92 37 92 38 82 19
After the third iteration, list contains:

2 16 16 69 92 37 92 38 82 19

Now the f o r loop terminates because the evaluation condition is no longer
true. More specifically, l i s t [sorted] > unsor tedi tem is not true. The cur-
rent sorted list item l i s t [o] , which is 2, is not larger than the current
unsorted item unsortedi tem, which is 15. Now the inner loop terminates,
and the statement fol lowing it, l i s t [s o r t e d + l] = u n s o r t e d i t e m ; exe-
cutes. Now l i s t contains, and the sorted part of the array contains, one more
element.

2 15 16 69 92 37 92 38 82 19

This process continues until all items have been sorted, meaning the outer
loop has iterated through all elements of the array list.

16.3.7 Common Pitfalls with Arrays in C
Unlike some other modern programming languages, C does not provide protection
against exceeding the size (or bounds) of an array. It is a common error made
with arrays in C programming. C provides no support for ensuring that an array
index is actually within an array. The compiler blindly generates code for the
expression a[i], even if the index i accesses a memory location beyond the
end of the array. To demonstrate, the code in Figure 16.15 lists an example of
how exceeding the array bounds can lead to a serious debugging effort. Enter
a number larger than the array size and this program exhibits some peculiar
behavior.1

Analyze this program by drawing out the run-time stack and you will see
more clearly why this bug causes the behavior it does.

C does not perform bounds checking on array accesses. C code tends to be
faster because array accesses incur less overhead. This is yet another manner in

1 Depending on the compiler you are using, you might need to enter a number larger than 16, or you
might need to declare index after array in order to observe the problem.

466 chapter 16 Pointers and Arrays

1 # i n c l u d e < s t d i o . h >
2 # d e f i n e M A X _ S I Z E 10
3
4 int m a i n ()
5 {
6 int index;
7 int a r r a y [M A X _ S I Z E] ;
8 int limit;
9

10 p r i n t f { " E n t e r limit (integer): ") ;
11 s c a n f (" % d " , & l i m i t) ;
12
13 f o r (i n d e x = 0; i n d e x < l i m i t ; index++) {
14 a r r a y [i n d e x] = 0;
15 p r i n t f (" a r r a y [% d] is set to 0\n", i n d e x) ;
16 }
17 }

F igure 1 6 . 1 5 This C program has peculiar behavior if the user enters a number that is
too large

which C provides more control to the programmer than other languages. If you
are not careful in your coding, this bare-bones philosophy can, however, lead to
undue debugging effort. To counter this, experienced C programmers often use
some specific defensive programming techniques when it comes to arrays.

Another common pitfall with arrays in C revolves around the fact that arrays
(in particular, statically declared arrays such as the ones we've seen) must be of
a fixed size. We must know the size of the array when we compile the program.
C does not support array declarations with variable expressions. The following
code in C is illegal. The size of array t e m p must be known when the compiler
analyzes the source code.

v o i d S o m e F u n c t i o n (i n t n u m _ e l e m e n t s)
{

int t e m p [n u m _ e l e m e n t s] ; /* G e n e r a t e s a s y n t a x e r r o r */

}

To deal with this limitation, experienced C programmers carefully analyze
the situations in which their code will be used and then allocate arrays with ample
space. To supplement this built-in assumption in their code, bounds checks are
added to warn if the size of the array is not sufficient. Another option is to use
dynamic memory allocation to allocate the array at run-time. More on this in
Chapter 19.

Exercises 451

16.4 Summary
In this chapter we covered two important high-level programming constructs:
pointers and arrays. Both constructs enable us to access memory indirectly. The
key notions we covered in this chapter are:

• Pointers. Pointers are variables that contain addresses of other memory
objects (such as other variables). With pointers we can indirectly access and
manipulate these other objects. A very simple application of pointers is to use
them to pass parameters by reference. Pointers have more substantial applications,
and we will see them in subsequent chapters.

• Arrays. An array is a collection of elements of the same type arranged sequen-
tially in memory. We can access a particular element within an array by providing
an index to the element that is its offset from the beginning of the array. Many
real-world objects are best represented within a computer program as an array
of items, thus making the array a significant structure for organizing data. With
arrays, we can represent character strings that hold text data, for example. We
examine several important array operations, including the sorting operation via
insertion sort.

Exercises

16.1 Write a C function that takes as a parameter a character string of
unknown length, containing a single word. Your function should
translate this string from English into Pig Latin. This translation is
performed by removing the first letter of the string, appending it onto
the end, and concatenating the letters ay. You can assume that the array
contains enough space for you to add the extra characters.

For example, if your function is passed the string "Hello," after
your function returns, the string should have the value "elloHay." The
first character of the string should be "e."

16.2 Write a C program that accepts a list of numbers from the user until a
number is repeated (i.e., is the same as the number preceding it). The
program then prints out the number of numbers entered (excluding the
last) and their sum. When the program is run, the prompts and
responses will look like the following:

N u m b e r 5
N u m b e r -6
N u m b e r 0
N u m b e r 45
N u m b e r 45
4 n u m b e r s w e r e e n t e r e d a n d t h e i r sum is 44

452 chapter 16 Pointers and Arrays

16.3 What is the output when the following code is compiled and run?

int x;

int m a i n {)
{

int *px = &x;
int x = 7;

*px = 4;
p r i n t f (" x = %d\n", x) ;

}

16.4 Create a string function that takes two input strings, s t r i n g A and
stringB, and returns a 0 if both strings are the same, a 1 if s t r i n g A
appears before s t r i n g B in the sorted order of a dictionary, or a 2 if
s t r i n g B appears before stringA.

16.5 Using the function developed for Exercise 16.4, modify the Insertion
Sort program so that it operates upon strings instead of integers.

16.6 Translate the following C function into LC-3 assembly language.

int m a i n ()
{

int a [5], i;

i = 4;
w h i l e (i >= 0) {

a[i] = i;
i-- ; }

Exercises 453

16.7 For this question, examine the following program. Notice that the
variable ind is a pointer variable that points to another pointer variable.
Such a construction is legal in C.

i n c l u d e < s t d i o . h >

int m a i n ()
{

int a p p l e ;
int *ptr;
int **ind;
ind = &ptr;
*ind = d a p p l e ;
**ind - 123;

ind++;
*ptr++;
a p p l e + + ;

p r i n t f (,!%x %x % d \ n H , ind, ptr, a p p l e) ;
}

Analyze what this program performs by drawing out the run-time stack
at the point just after the statement a p p l e + + ; executes.

16.8 The following code contains a call to the function triple. What is the
minimum size of the activation record of t r i p l e ?
int m a i n ()
{

int a r r a y [3] ;

array[0] = 1;
a r r a y [1] = 2;
a r r a y [2] = 3;

t r i p l e (a r r a y) ;
}

16.9 Write a program to remove any duplicates from a sequence of numbers.
For example, if the list consisted of the numbers 5, 4, 5, 5, and 3, the
program would output 5, 4, 3.

16.10 Write a program to find the median of a set of numbers. Recall that the
median is a number within the set in which half the numbers are larger
and half are smaller. Hint: To perform this, you may need to sort the
list first.

454 chapter 16 Pointers and Arrays

16.11 For this question, refer to the following C program:
int F i n d L e n (c h a r *);

int m a i n ()
{

char str [10] ;

p r i n t f (" E n t e r a string : ");
s c a n f (" % s " , str);
p r i n t f (" % s h a s %d c h a r a c t e r s \ n " , str, F i n d L e n (s t r)) ;

int F i n d L e n (c h a r * s)
{

int l e n = 0 ;

w h i l e {* s != '\0') {
1en+ +;
s + +;

}
r e t u r n l e n ;

}

a. For the preceding C program, what is the size of the activation
record for the functions m a i n and F i n d L e n ?

b. Show the contents of the stack just before the function F i n d L e n
returns if the input string is apple.

c. What would the activation record look like if the program were run
and the user typed a string of length greater than 10 characters?
What would happen to the program?

Exercises 455

16.12 The following code reads a string from the keyboard and prints out a
version with any uppercase characters converted to lowercase.
However, it has a flaw. Identify it.
i n c l u d e < s t d i o . h >
d e f i n e M A X _ L E N 10
char * L o w e r c a s e (c h a r *s);

int m a i n ()
{

c h a r s t r [M A X _ L E N] ;

p r i n t f (" E n t e r a string : ");
s c a n f (" I s " , str);

p r i n t f (" L o w e r c a s e : %s \n", L o w e r C a s e (s t r)) ;
}
char * L o w e r C a s e (c h a r *s) {

c h a r n e w S t r [M A X _ L E N] ;
int index;

for (index = 0; i n d e x < M A X _ L E N ; index++) {
if ('A' <= s[index] && s[index] <= 'Z')

n e w S t r [i n d e x] = s[index] + ('a' - 'A');
e l s e

n e w S t r [i n d e x] - s [index] ;
}
r e t u r n n e w S t r ;

}

16.13 Consider the following declarations.
d e f i n e S T A C K _ S I Z E 100

int s t a c k [S T A C K _ S I Z E] ;
int t o p O f S t a c k ;

int P u s h (i n t item);

a. Write a funtion P u s h (the declaration is provided) that will push the
value of item onto the top of the stack. If the stack is full and the
item cannot be added, the function should return a 1. If the item is
successfully pushed, the function should return a 0.

b. Write a function Pop that will pop an item from the top of the stack.
Like Push, this function will return a 1 if the operation is
unsuccessful. That is, a Pop was attempted on an empty stack. It
should return a 0 if successful. Consider carefully how the popped
value can be returned to the caller.

c h a p t e r

17

R e c u r s i o n

17.1 Introduction
We start this chapter by describing a recursive procedure that you might already
be familiar with. Suppose we want to find a particular student's exam in a set
of exams that are already in alphabetical order. We might randomly examine the
name on an exam about halfway through the set. If that randomly chosen exam
is not the one we are looking for, we search the appropriate half using the very
same technique. That is, we repeat the search on the first half or the second half,
depending on whether the name we are looking for is less than or greater than
the name on the exam at the halfway point. For example, say we are looking for
Babe Ruth's exam and, at the halfway point, we find Mickey Mantle's exam. We
then repeat the search on the second half of the original stack. Fairly quickly, we
will locate Babe Ruth's exam, if it exists in the set. This technique of searching
through a set of elements already in sorted order is recursive. We are applying the
same searching algorithm to continually smaller and smaller subsets of exams.

The idea behind recursion is simple: A recursive function solves a task by
calling itself on a smaller subtask. As we shall see, recursion is another way of
expressing iterative program constructs. The power of recursion lies in its abil-
ity to elegantly capture the flow of control for certain tasks. There are some
programming problems for which the recursive solution is far simpler than the
corresponding solution using conventional iteration. In this chapter, we introduce
you to the concept of recursion via five different examples. We examine how
recursive functions are implemented on the LC-3. The elegance of the run-time
stack mechanism is that recursive functions require no special handling—they

458 chapter 17 Recursion

execute in the same manner as any other function. The main purpose of this chap-
ter is to provide you with an initial but deep exposure to recursion so that you can
analyze and reason about recursive programs. Being able to understand recursive
code is a necessary ingredient for writing recursive code, and ultimately for recur-
sion to become part of your problem-solving toolkit for attacking programming
problems.

17.2 What Is Recursion?
A function that calls itself is a recursive function, as in the function R u n n i n g S u m
in Figure 17.1.

This function calculates the sum of all the integers between the input param-
eter n and 1. For example, R u n n i n g S u m (4) calculates 4 + 3 + 2 + 1 . However, it
does the calculation recursively. Notice that the running sum of 4 is really 4 plus
the running sum of 3. Likewise, the running sum of 3 is 3 plus the running sum of
2. This recursive definition is the basis for a recursive algorithm. In other words,

RunningSum(n) = n + RunningSum(n — 1)
In mathematics, we use recurrence equations to express such functions. The

preceding equation is a recurrence equation for RunningSum. In order to complete
the evaluation of this equation, we must also supply an initial case. So in addition
to the preceding formula, we need to state

RunningSum(l) = 1

before we can completely evaluate the recurrence, which we do as follows:

RunningSum(4) = 4 + RunningSum(3)

= 4 + 3 + RunningSum(2)

= 4 + 3 + 2 + RunningSum(l)

= 4 + 3 + 2 + 1
TheC version of R u n n i n g S u m works in the same manner as the recurrence equa-
tion. During execution of the function call R u n n i n g S u m (4), R u n n i n g S u m makes
a function call to itself, with an argument of 3 (i.e., R u n n i n g S u m (3)). However,
before R u n n i n g S u m (3) ends, it makes a call to R u n n i n g S u m (2) . And before
R u n n i n g S u m (2) ends, it makes a call to R u n n i n g S u m (1). R u n n i n g S u m (1),
however, makes no additional recursive calls and returns the value 1 to

1 int R u n n i n g S u m (i n t n)
2 {
3 if (n == 1)
4 r e t u r n 1;
5 e l s e
6 r e t u r n (n + R u n n i n g S u m (n - 1)) ;
7 >

Figure 1 7 . 1 A recursive funct ion

17.3 Recursion versus Iteration 459

Figure 17.2 The f low of control when RunningSum (4) is called

R u n n i n g S u m {2), which enables R u n n i n g S u m (2) to end, and return the value
2 + 1 back to R u n n i n g S u m (3) . This enables R u n n i n g S u m (3) to end and pass
a value of 3 + 2 + 1 to R u n n i n g S u m (4) . Figure 17.2 pictorially shows how the
execution of R u n n i n g S u m {4) proceeds.

17.3 Recursion versus Iteration
Clearly, we could have written R u n n i n g S u m using a for loop, and the code would
have been more straightforward than its recursive counterpart. We provided a
recursive version here in order to demonstrate a recursive call in the context of
an easy-to-understand example.

There is a parallel between using recursion and using conventional iteration
(such as for and w h i l e loops) in programming. All recursive functions can be
written using iteration. For certain programming problems, however, the recursive
version is simpler and more elegant than the iterative version. Solutions to certain
problems are naturally expressed in a recursive manner, such as problems that are
expressed with recurrence equations. It is because of such problems that recursion
is an indispensable programming technique. Knowing which problems require
recursion and which are better solved with iteration is part of the art of computer
programming; you will become better at when to use which with experience.

460 chapter 17 Recursion

Recursion, as useful as it is, comes at a cost. As an experiment, write an
iterative version of R u n n i n g S u m and compare the running time for large n with
the recursive version. To do this you can use library functions to get the time of
day (for example, g e t t i m e o f d a y) before the function starts and when it ends.
Plot the running time for a variety of values of n and you will notice that the
recursive version is relatively slow (provided the compiler did not optimize away
the recursion). As we shall see in Section 17.5, recursive functions incur function
call overhead that iterative solutions do not.

17.4 ToLuers of Hanoi
One problem for which the recursive solution is the simpler solution is the classic
puzzle Towers of Hanoi. The puzzle involves a platform with three posts. Qn one
of the posts sit a number of wooden disks, each smaller than the one below it. The
objective is to move all the disks from their current post to one of the other posts.
However, there are two rules for moving disks: only one disk can be moved at
a time, and a larger disk can never be placed upon a smaller disk. For example,
Figure 17.3 shows a puzzle where five disks are on post 1. To solve this puzzle,
these five disks must be moved to one of the other posts obeying the two rules.

As the legend associated with the puzzle goes, when the world was created,
the priests at the Temple of Brahma were given the task of moving 64 disks from
one post to another. When they completed their task, the world would end.

Now how would we go about writing a computer program to solve this
puzzle? If we view the problem from the end first, we can make the fol-
lowing observation: the final sequence of moves must involve moving the
largest disk from post 1 to the target post, say post 3, and then moving the
other disks back on top of it. Conceptually, we need to move all n — 1 disks
off the largest disk and onto the intermediate post, then move the largest
disk from its post onto the target post. Finally, we move all n — 1 disks from
the intermediate post onto the target post. And we are done! Actually, we are not
quite done because moving n — 1 disks in one move is not legal. However, we
have stated the problem in such a manner that we can solve it if we can solve the

Post 1 Post 2 Post 3

Figure 17.3 The Towers of Hanoi puzzfe

17.4 Towers of Hanoi 461

/ *

** I n p u t s
** d i s k N u m b e r is t h e d i s k to be m o v e d (diskl is s m a l l e s t)
** s t a r t P o s t is the p o s t the d i s k is c u r r e n t l y o n
** e n d P o s t is the p o s t w e w a n t t h e d i s k to end o n
** m i d P o s t is the i n t e r m e d i a t e p o s t
*/
M o v e D i s k (d i s k N u m b e r , s t a r t P o s t , e n d P o s t , m i d P o s t)
{

if (diskNumber > 1) {
/* M o v e n - 1 d i s k s off the c u r r e n t d i s k o n */
/* s t a r t P o s t a n d p u t t h e m o n the m i d P o s t */
M o v e D i s k (diskNumber-1, s t a r t P o s t , m i d P o s t , e n d P o s t) ,-

/* M o v e t h e l a r g e s t disk. */
p r i n t f (" M o v e d i s k %d from p o s t %d to p o s t %d.\n",

d i s k N u m b e r , s t a r t P o s t , e n d P o s t) ;

/* M o v e all n - 1 d i s k s from m i d P o s t o n t o e n d P o s t */
M o v e D i s k (d i s k N u m b e r - 1 , m i d P o s t , e n d P o s t , s t a r t P o s t) ;

}
e l s e

p r i n t f (" M o v e d i s k 1 from p o s t %d to p o s t %d.\n",
s t a r t P o s t , e n d P o s t) ;

}
Figure 17 .4 A recursive funct ion to solve the Towers of Hanoi puzzle

two smaller subproblems of it. Once the largest disk is on the target post, we do
not need to deal with it any further. Now the n — Ith disk becomes the largest
disk, and the subobjective becomes to move it to the target pole. We can therefore
apply the same technique but on a smaller subproblem.

We now have a recursive definition of the problem: In order to move n disks to
the target post, which we symbolically represent as M o v e (n, t a r g e t) , we first
rnoven — 1 disks to the intermediate pos t—Move(n-1, i n t e r m e d i a t e) — t h e n

move the nth disk to the target, and finally move n — 1 disks from the intermediate
to the target, or M o v e (n-1, t a r g e t) . So in order to M o v e (n, t a r g e t) , two
recursive calls are made to solve two smaller subproblems involving n — 1 disks.

As with recurrence equations in mathematics, all recursive definitions require
a base case, which ends the recursion. In the way we have formulated the problem,
the base case involves moving the smallest disk (disk 1). Moving disk 1 requires
no other disks to be moved since it is always on top and can be moved directly
from one post to any another without moving any other disks. Without a base
case, a recursive function would have an infinite recursion, similar to an infinite
loop in conventional iteration.

Taking our recursive definition to C code is fairly straightforward. Figure 17.4
is a recursive C function of this algorithm.

Let's see what happens when we play a game with three disks. Following is
an initial function call to MoveDisk. We start off by saying that we want to move

462 chapter 17 Recursion

f 1 I (3) f 1 I
1 2 3

Figure 17.5 The Towers of Hanoi Figure 17.6 The Towers of Hanoi
puzzle, in i t ia l puzzle, af ter f i rst move
configurat ion

disk 3 (the largest disk) from post 1 to post 3, using post 2 as the intermediate
storage post. That is, we want to solve a three-disk Towers of Hanoi puzzle. See
Figure 17.5.

/* d i s k N u m b e r 3; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */
M o v e D i s k (3 , 1, 3, 2)

This call invokes another call to M o v e D i s k to move disks 1 and 2 off disk 3 and
onto post 2 using post 3 as intermediate storage. The call is performed at line 15
in the source code.

/* d i s k N u m b e r 2; s t a r t P o s t 1; e n d P o s t 2; m i d P o s t 3 */
M o v e D i s k (2 , 1, 2, 3)

To move disk 2 from post 1 to post 2, we must first move disk 1 off disk 2 and
onto post 3 (the intermediate post). So this triggers another call to M o v e D i s k
again from the call on line 15.

/* d i s k N u m b e r 1; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */
M o v e D i s k (1 , 1, 3, 2)

Since disk 1 can be directly moved, the second p r i n t f statement is executed.
See Figure 17.6.

M o v e d i s k n u m b e r 1 from p o s t 1 to p o s t 3.

Now, this invocation of M o v e D i s k returns to its caller, which was the call
M o v e D i s k (2, i , 2 , 3) . Recall that we were waiting for all disks on top of
disk 2 to be moved to post 3. Since that is now complete, we can now move disk
2 from post 1 to post 2. The p r i n t f is the next statement to execute, signaling
another disk to be moved. See Figure 17.7.

M o v e d i s k n u m b e r 2 from p o s t 1 to p o s t 2.

Next, a call is made to move all disks that were on disk 2 back onto disk 2.
This happens at the call on line 22 of the source code for MoveDisk.

/* d i s k N u m b e r 1; s t a r t P o s t 2; e n d P o s t 3; m i d P o s t 1 */
M o v e D i s k (1 , 2, 3, 1)

17.4 Towers of Hanoi 463

Figure 17.7

m

The Towers of Hanoi
puzzle, after second
move

Figure 17.8

m .
2

The Towers of Hanoi
puzzle, af ter th i rd move

x S

Figure 17.9
h

The Towers of Hanoi
puzzle/ after four th
move

1
I T L i T l J

F igure 1 7 . 1 0 The Towers of Hanoi
puzzle, af ter fifth move

Again, since disk 1 has no disks on top of it, we see the move printed. See
Figure 17.8.

M o v e d i s k n u m b e r 1 from p o s t 3 to p o s t 2.

Now control passes back to the call M o v e D i s k (2, l, 2, 3) which, having
completed its task of moving disk 2 (and all disks on top of it) from post 1 to post
2, returns to its caller. Its caller is M o v e D i s k (3, l, 3, 2) . Now, all disks have
been moved off disk 3 and onto post 2. Disk 3 can be moved from post 1 onto
post 3. The p r i n t f is the next statement executed. See Figure 17.9.

M o v e d i s k n u m b e r 3 from p o s t 1 to p o s t 3.

The next subtask remaining is to move disk 2 (and all disks on top of it) from
post 2 onto post 3. We can use post 1 for intermediate storage. The following call
occurs on line 22 of the source code.

/* d i s k N u m b e r 2; s t a r t P o s t 2; e n d P o s t 3; m i d P o s t 1 */
M o v e D i s k (2 , 2, 3, 1)

In order to do so, we must first move disk 1 from post 2 onto post 1. This call
is made from line 15 in the source code.

/* d i s k N u m b e r 1; s t a r t P o s t 2; e n d P o s t 1; m i d P o s t 3 */
M o v e D i s k (1 , 2, 1, 3)

The move requires no submoves. See Figure 17.10.
M o v e d i s k n u m b e r 1 from p o s t 2 to p o s t 1.

479 chapter 17 Recursion

Figure 17.11 The Towers of Hanoi
puzzle, af ter sixth move

Figure 17.12 The Towers of Hanoi
puzzle, completed

Return passes back to the caller M o v e D i s k (2, 2 f 3, i) , and disk 2 is
moved onto post 3. See Figure 17.11.

M o v e d i s k n u m b e r 2 from p o s t 2 to p o s t 3.

The only thing remaining is to move all disks that were on disk 2 back on top.

/* d i s k N u m b e r 1; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */
M o v e D i s k (1 , 1, 3, 2)

The move is done immediately. See Figure 17.12.

M o v e d i s k n u m b e r 1 from p o s t 1 to p o s t 3.

and the puzzle is completed!
Let's summarize the action of the recursion by examining the sequence of

function calls that were made in solving the three-disk puzzle:

M o v e D i s k { 3 , 1, 3, 2) /* Initial Call */
M o v e D i s k (2 , 1, 2, 3)
M o v e D i s k (1 , l f 3, 2}
M o v e D i s k (1 , 2, 3, 1)
M o v e D i s k { 2 , 2, 3, 1)
M o v e D i s k (1 , 2, 1, 3)
M o v e D i s k (1 , 1, 3, 2)

Consider how you would write an iterative version of a program to solve this
puzzle and you will appreciate the simplicity of the recursive version. Returning
to the legend of the Towers of Hanoi: the world will end when the monks finish
solving a 64-disk version of the puzzle. If each move takes one second, how long
will it take the monks to solve the puzzle?

17.5 Fibonacci Numbers
The following recurrence equations generate a well-known sequence of num-
bers called the Fibonacci numbers, which has some interesting mathematical,
geometrical, and natural properties.

17.5 Fibonacci Numbers 480

/ (*) = / (* - !) + / (/ ! - 2)

/ (I) = 1

/ (0) = 1

In other words, the nth Fibonacci number is the sum of the previous two. The series
is 1, 1, 2, 3, 5, 8, 13,.. .This series was first formulated by the Italian mathemati-
cian Leonardo of Pisa around the year 1200. His father's name was Bonacci, thus
he often called himself Fibonacci as a shortening of filius Bonacci, or son of
Bonacci. Fibonacci formulated this series as a way of estimating breeding rabbit
populations, and we have since discovered some facinating ways in which the
series models some other natural phenomena such as the structure of a spiral
shell or the pattern of petals on a flower.

We can formulate a recursive function to calculate the nth Fibonacci number
directly from the recurrence equations. F i b o n a c c i (n) is recursively calculated
by F i b o n a c c i (n-i) + F i b o n a c c i (n-2) . The base case of the recursion is sim-
ply the fact that F i b o n a c c i (i) and F i b o n a c c i (0) both equal 1. Figure 17.13
lists the recursive code to calculate the nth Fibonacci number.

1 # i n c l u d e < s t d i o . h >
2
3 int F i b o n a c c i (i n t n);
4
5 int m a i n ()
6 {
7 int in;
8 int n u m b e r ;
9

10 p r i n t f (" W h i c h F i b o n a c c i n u m b e r ? ") ;
11 s c a n f (" % d " , &in);
12
13 n u m b e r = F i b o n a c c i (i n) ;
14 p r i n t f (" T h a t F i b o n a c c i n u m b e r is %d\n", n u m b e r) ;
15 }
16
17 int F i b o n a c c i (i n t n)
18 {
19 int sum;
20
21 if (n == 0 || n == 1)
22 r e t u r n 1;
23 else {
24 sum = (Fibonacci(n-1) + F i b o n a c c i (n - 2)) ;
2 5 r e t u r n sum;
26 }
27 }

Figure 17.13 Fibonacci is a recursive C funct ion to calculate the n t h Fibonacci number

466 chapter 17 Recursion

We will use this example to examine how recursion works from the perspec-
tive of the lower levels of the computing system. In particular, we will examine
the run-time stack mechanism and how it deals with recursive calls. Whenever
the function is called, whether from itself or another function, a new copy of its
activation record is pushed onto the run-time stack. That is, each invocation of the
function gets a new, private copy of parameters and local variables, where each
copy is different than any other copy. This must be the case in order for recursion
to work, and the run-time stack enables this. If the variables of this function were
statically allocated in memory, each recursive call to F i b o n a c c i would overwrite
the values of the previous call.

Let's see what happens when we call the function F i b o n a c c i with the param-
eter 3, F i b o n a c c i (3). We start off with the activation record for F i b o n a c c i (3)
on top of the run-time stack. Figure 17.14 shows the progression of the stack as
the original function call is evaluated.

The function call F i b o n a c c i (3) will calculate first F i b o n a c c i (3-1) , as
the expression F i b o n a c c i (n-i) + F i b o n a c c i (n-2) is evaluated left to right.
Therefore, a call is first made to F i b o n a c c i (2), and an activation record for
F i b o n a c c i (2) is pushed onto the run-time stack (see Figure 17.14, step 2).

For F i b o n a c c i (2), the parameter n equals 2 and does not meet
the terminal condition, therefore a call is made to F i b o n a c c i (l) (see
Figure 17.14, step 3). This call is made in the course of evaluating
F i b o n a c c i (2 - 1) + Fibonacci(2-2).

The call F i b o n a c c i (l) results in no more recursive calls because the param-
eter n meets the terminal condition. The value 1 is returned to F i b o n a c c i (2),
which now can complete the evaluation of F i b o n a c c i (i) + F i b o n a c c i (0)
by calling F i b o n a c c i (0) (see Figure 17.14, step 4). The call F i b o n a c c i (0)
immediately returns a 1.

Now, the call F i b o n a c c i (2) can complete and return its subcalculation (its
result is 2) to its caller, F i b o n a c c i (3). Having completed the left-hand compo-
nent of the expression F i b o n a c c i (2) + F i b o n a c c i (1), F i b o n a c c i (3) calls
F i b o n a c c i (l) (see Figure 17.14, step 5), which immediately returns the value
1. Now F i b o n a c c i (3) is done—its result is 3 (Figure 17.14, step 6).

We could state the recursion of F i b o n a c c i (3) algebraically, as follows:

F i b o n a c c i (3) = F i b o n a c c i (2) + F i b o n a c c i (1)
= (Fibonacci(1) + F i b o n a c c i (0)) + F i b o n a c c i (1)
= 1 + 1 + 1 = 3

The sequence of function calls made during the evaluations of F i b o n a c c i (3)
is as follows:

F i b o n a c c i (3)
F i b o n a c c i (2)
F i b o n a c c i (1)
F i b o n a c c i (0)
F i b o n a c c i (1)

17.5 Fibonacci Numbers 467

Fibonacci(3)

mam

R6

Fibonacci(2)

Fibonacci(3)

mam

R6

Step 1: Initial call Step 2: Fibonacci (3) calls Fibonacci (2)

Fibonacci (1)

Fibonacci (2)

Fibonacci (3)

mam

R6
Fibonacci(0)

Fibonacci(2)

Fibonacci(3)

mam

R6

Step 3: Fibonacci (2) calls Fibonacci (1) Step 4: Fibonacci (2) calls Fibonacci (0)

Fibonacci(1

Fibonacci(3)

mam

R6

Fibonacci(3)

main

R6

Step 5: Fibonacci (3) calls Fibonacci (l) Step 6: Back to the starting point

Figure 17.14 Snapshots of the run-t ime stack for the funct ion call Fibonacci (3)

483 chapter 17 Recursion

Walk through the execution of F i b o n a c c i (4) and you will notice that
the sequence of calls made by F i b o n a c c i (3) is a subset of the calls made
by F i b o n a c c i (4). No surprise, since F i b o n a c c i (4) = F i b o n a c c i (3) +
F i b o n a c c i (2) . Likewise, the sequence of calls made by F i b o n a c c i { 4 } is a
subset of the calls made by F i b o n a c c i (5). There is an exercise at the end of
this chapter involving calculating the number of function calls made during the
evaluation of F i b o n a c c i (n).

The LC-3 C compiler generates the following code for this program, listed in
Figure 17.15. Notice that no special treatment was required because this function
is recursive. Because of the run-time stack mechanism for activating functions, a
recursive function gets treated like every other function. If you examine this code
closely, you will notice that the compiler generated a temporary variable in order
to translate line 24 of F i b o n a c c i properly. Most compilers will generate such
temporaries when compiling complex expressions. Such temporary values are
allocated storage in the activation on top of the space for the programmer-declared
local variables.

17.6 Binary Search
In the introduction to this chapter, we described a recursive technique for finding
a particular exam in a set of exams that are in alphabetical order. The technique
is called binary search, and it is a very rapid way of finding a particular element
within a list of elements in sorted order. At this point, given our understanding
of recursion and of arrays, we can specify a recursive function in C to perform
binary search.

Say we want to find a particular integer value in an array of integers that is
in ascending order. The function should return the index of the integer, or a —1
if the integer does not exist. To accomplish this, we will use the binary search
technique as such: given an array and an integer to search for, we will examine
the midpoint of the array and determine if the integer is (1) equal to the value
at the midpoint, (2) less than the value at the midpoint, or (3) greater than the
value at the midpoint. If it is equal, we are done. If it is less than, we perform the
search again, but this time only on the first half of the array. If it is greater than,
we perform the search only on the second half of the array. Notice that we can
express cases (2) and (3) using recursive calls. But what happens if the value we
are searching for does not exist within the array? Given this recursive technique
of performing searches on smaller and smaller subarrays of the original array, we
eventually perform a search on an array that has no elements (e.g., of size 0) if
the item we are searching for does not exist. If we encounter this situation, we
will return a — 1. This will be a base case in the recursion.

Figure 17.16 contains the recursive implementation of the binary search algo-
rithm in C. Notice that in order to determine the size of the array at each step, we
pass the starting point and ending point of the subarray along with each call to
BinarySearch. Each call refines the variables start and end to search smaller
and smaller subarrays of the original array list.

17.6 Binary Search 469

1 F i b o n a c c i :
2 A D D R6, R6, # - 2
3 STR R7, R6, #0
4 A D D R6 , R6, # - 1
5 STR R5, R6, #0
6 A D D R5, R6, # - 1
7 A D D R6, R6, # - 2
8
9 LDR RO, R5, #4

10 B R Z FIB_ _BASE
11 A D D RO, RO, # - 1
12 B R Z FIB_ _BASE
13
14 LDR RO, R5, #4
15 A D D RO, RO, # - 1
16 A D D R6, R6, # - 1
17 STR RO, R6, #0
18 J S R F i b o n a c c i
19
20 L D R RO, R6, #0
21 A D D R6 , R6, # - 1
22 S T R RO, R5, # - 1
23 L D R RO, R5, #4
24 A D D RO, RO, # - 2
25 A D D R6, R6 , # - 1
26 STR RO, R6, #0
27 J S R F i b o n a c c i
28
29 L D R RO, R6, #0
30 A D D R6, R6, # - 1
31 L D R R l / R5, # - 1
32 A D D RO, RO, Rl
33 BR FIB_ _END
34
35 F I B _ B A S E :
36 A N D RO, RO, #0
37 A D D RO, RO, #1
38
39 F I B _ E N D :
40 S T R RO, R5, #3
41 A D D R6, R5, #1
42 L D R R5, R6, #0
43 A D D R6, R6, #1
44 L D R R7, R6, #0
45 A D D R6, R6, #1
46 R E T

p u s h r e t u r n v a l u e / a d d r e s s
s t o r e r e t u r n a d d r e s s
p u s h c a l l e r ' s f r a m e p o i n t e r

set n e w f r a m e p o i n t e r
a l l o c a t e s p a c e for l o c a l s a n d t e m p s

load the p a r a m e t e r n
n= = 0

n = = l

load the p a r a m e t e r n
c a l c u l a t e n - 1
p u s h n - 1

call to F i b o n a c c i (n - 1)

r e a d the r e t u r n v a l u e at top of s t a c k
p o p r e t u r n v a l u e
s t o r e it i n t o t e m p o r a r y v a l u e
load the p a r a m e t e r n
c a l c u l a t e n - 2
p u s h n - 2

call to F i b o n a c c i (n - 2)

r e a d t h e r e t u r n v a l u e at top of s t a c k
p o p r e t u r n v a l u e
r e a d t e m p o r a r y v a l u e : F i b o n a c c i (n - 1)
F i b o n a c c i (n - 1) + F i b o n a c c i (n - 2)
b r a n c h to e n d of c o d e

; c l e a r RO
; RO = 1

w r i t e t h e r e t u r n v a l u e
p o p local v a r i a b l e s
r e s t o r e c a l l e r ' s frame p o i n t e r

p o p r e t u r n a d d r e s s

Figure 17.15 Fibonacci in LC-3 assembly code

485 chapter 17 Recursion

1 / *
2 ** T h i s f u n c t i o n r e t u r n s the p o s i t i o n of 'item' if it e x i s t s
3 ** b e t w e e n l i s t [s t a r t] and l i s t [e n d] , o r -1 if it d o e s not.
4 */
5 int B i n a r y S e a r c h (i n t item, int list [] , int start, int end)
6 {
7 int m i d d l e = (end + start) / 2;
8
9 /* D i d we not find w h a t we a r e l o o k i n g for? */

10 if (end < start)
11 r e t u r n -1;
12
13 /* D i d we find the item? */
14 e l s e if (list[middle] == item)
15 r e t u r n m i d d l e ;
16
17 /* S h o u l d we s e a r c h the first half of t h e array? */
18 e l s e if (item < l i s t [m i d d l e])
19 r e t u r n B i n a r y S e a r c h (i t e m , list, start, m i d d l e - 1);
2 0
21 /* O r s h o u l d we s e a r c h t h e s e c o n d half of the a r r a y ? */
22 e l s e
23 r e t u r n B i n a r y S e a r c h (i t e m , list, m i d d l e + 1, end);
24 }

Figure 17.16 A recursive C funct ion to perform binary search

Figure 17.17 provides a pictorial representation of this code during execution.
The array list contains 11 elements as shown. The initial call to B i n a r y S e a r c h
passes the value we are looking for (item) and the array to be searched (recall
from Chapter 16 that this is the address of the very first element, or base address,
of the array). Along with the array, we provide the extent of the array. That is,
we provide the starting point and ending point of the portion of the array to be
searched. In every subsequent recursive call to B i n a r y S e a r c h , this extent is made
smaller, eventually reaching a point where the subset of the array we are searching
has either only one element or no elements at all. These two situations are the
base cases of the recursion.

Instead of resorting to a technique like binary search, we could have attempted
a more straightforward sequential search through the array. That is, we could
examine list [0], then list [l], then list [2], etc., and eventually either find
the item or determine that it does not exist. Binary search, however, will require
fewer comparisons and can potentially execute faster if the array is large enough.
In subsequent computing courses you will analyze binary search and derive that its
running time is proportional to log2 n, where n is the size of the array. Sequential
search, on the other hand, is proportional to n.

17.7 Integer to ASCII 4 7 1

start middle end

12 32 37 49 109 110 153 387 392 777,, 926

Binary-Search (109, array, 0, 10)

start middle end

list

list

list

12 32 37 49 109 110 153 387 392 777 926

BinarySearch(109, array, 0, 4)

middle
start end

!

12 32 37 49 109 110 153 387 392 777 926

BinarySearch(10 9, array, 3 , 4)

middle
start end

12 32 37 49 100 110 153 387 392 777 926

BinarySearch(109, array, 4, 4)
Figure 1 7 . 1 7 BinarySearch performed on an array of 11 elements. We are searching for

the element 109

17.7 Integer to ASCII
Our final example of a recursive function is a function that converts an arbitrary
integer value into a string of ASCII characters. Recall from Chapter 10 that in
order to display an integer value on the screen, each digit of the value must be
individually extracted, converted into ASCII, and then displayed on the output
device. In Chapter 10, we wrote an LC-3 routine to do this using a straightforward
iterative technique.

We can do this recursively with the following recursive formulation: if the
number to be displayed is a single digit, we convert it to ASCII and display it and
we are done (base case). If the number is multiple digits, we make a recursive

472 chapter 17 Recursion

1 # i n c l u d e < s t d i o . h >
2
3 v o i d I n t T o A s c i i { i n t i);
4
5 int m a i n ()
6 {
7 int in;
8
9 p r i n t f (" I n p u t n u m b e r : ");

10 s c a n f (" % d " , &in);
11
12 I n t T o A s c i i (i n) ;
13 p r i n t f (" \ n ") ;
14 }
15
16 v o i d I n t T o A s c i i (i n t num)
17 {
18 int p r e f i x ;
19 int c u r r D i g i t ;
20
21 if (num < 10) /* T h e t e r m i n a l c a s e */
22 p r i n t f < " % c " , n u m + '0');
23 e l s e {
24 p r e f i x = n u m / 10; /* C o n v e r t t h e n u m b e r */
25 I n t T o A s c i i (p r e f i x) ; /* w i t h o u t last d i g i t */
26
27 c u r r D i g i t = n u m % 10; /* T h e n p r i n t last d i g i t */
2 8 p r i n t f (" % c " , c u r r D i g i t + '0');
29 }
30 }
Figure 17.18 I n tToAsc i i is a recursive funct ion that converts a positive integer to ASCI I

call on the number without the least significant (rightmost) digit, and when the
recursive call returns we display the rightmost digit.

Figure 17.18 lists the recursive C function. It takes a positive integer value and
converts each digit of the value into ASCII and displays the resulting characters.

The recursive function I n t T o A s c i i works as follows: to print out a number,
say 21,669, for example (i.e., we are making the call I n t T o A s c i i (21669)) , the
function will subdivide the problem into two parts. First 2166 must be printed
out via a recursive call to IntToAscii, and once the call is done, the 9 will be
printed.

The function removes the least significant digit of the parameter num by
shifting it to the right one digit by dividing by 10. With this new (and smaller)
value, we make a recursive call. If the input value num is only a single digit, it is
converted to ASCII and displayed to the screen—no recursive calls necessary for
this case.

Once control returns to each call, the digit that was removed is converted to
ASCII and displayed. To clarify, we present the series of calls for the original call
o f I n t T o A s c i i (1 2 3 4 5) :

Exercises 473

I n t T o A s c i i (1 2 3 4 5)
I n t T o A s c i i (1 2 3 4)
I n t T o A s c i i (1 2 3)
I n t T o A s c i i (1 2)
I n t T o A s c i i (1)
p r i n t f (' 1 ')
p r i n t f (' 2 ')
p r i n t f (' 3 ')
p r i n t f (' 4 ')
p r i n t f (' 5 ')

17.8 Summary
In this chapter, we introduced the concept of recursion. We can solve a problem
recursively by using a function that calls itself on smaller subproblems. With
recursion, we state the function, say f(n), in terms of the same function on
smaller values of n, say for example, f(n — 1). The Fibonacci series, for example,
is recursively stated as
F i b o n a c c i (n) = F i b o n a c c i (n - 1) + F i b o n a c c i (n - 2) ;

For the recursion to eventually terminate, recursive calls require a base case.
Recursion is a powerful programming tool that, when applied to the right

problem, can make the task of programming considerably easier. For example,
the Towers of Hanoi puzzle can be solved in a simple manner with recursion. It
is much harder to formulate using iteration. In future courses, you will examine
ways of organizing data involving pointers (e.g., trees and graphs) where the
simplest techniques to manipulate the data structure involve recursive functions.
At the lower levels, recursive functions are handled in exactly the same manner as
any other function call. The run-time stack mechanism enables this by allowing
us to allocate in memory an activation record for each function invocation so that
it does not conflict with any other invocation's activation record.

Exercises

17.1 For these questions, refer to the examples that appear in the chapter.
a. How many calls to R u n n i n g S u m (see Section 17.2) are made for the

call R u n n i n g S u m (10)?
b. How about for the call R u n n i n g S u m (n) ? Give your answer in terms

of n.
c. How many calls to M o v e D i s k are made in the Towers of Hanoi

problem if the initial call is M o v e D i s k (4, i, 3, 2)1 This call
plays out a four-disk game.

d. How many calls are made for an n-disk game?
e. How many calls to F i b o n a c c i (see Figure 17.13) are made for the

initial call F i b o n a c c i (10) ?
f . How many calls are required for the nth Fibonacci number?

474 chapter 17 Recursion

17.2 Is the return address for a recursive function always the same at each
function call? Why or why not?

17.3 What would happen if we swapped the p r i n t f call with the recursive
call in the code for i n t T o A s c i i in Figure 17.18?

17.4 What does the following function produce for count (20) ?
int c o u n t (i n t arg)
{

if (arg < 1)
r e t u r n 0;

e l s e if (arg % 2)
r e t u r n (1 + c o u n t (a r g - 2));

e l s e
r e t u r n (1 + c o u n t (a r g - 1));

}

17.5 Consider the following C program:

i n c l u d e < s t d i o . h >

int P o w e r (i n t a, int b) ;

int m a i n (v o i d)
{

int x, y, 2;

p r i n t f (" I n p u t two n u m b e r s : ");
s c a n f (" % d %d", &x, &y);

if (x > 0 & & y > 0)
z = P o w e r (x , y) ;

e l s e
2 = 0 ;

p r i n t f (" T h e r e s u l t is %d.\n", z) ;

}

int P o w e r (i n t a, int b)
{

if (a < b)
r e t u r n 0;

e l s e
r e t u r n 1 + P o w e r (a / b , b);

}

Exercises 475

t
j i

?

j i

? Activation record for Power

?

?

? Activation record for Power

11

7

Figure 17.19 Run-time stack after funct ion Power is called

a. State the complete output if the input is
(1) 4 9
(2) 27 5
(3) 3

b. What does the function P o w e r compute?
c. Figure 17.19 is a snapshot of the stack after a call to the function

Power. Two activation records are shown, with some of the entries
filled in. Assume the snapshot was taken just before execution of one
of the r e t u r n statements in Power. What are the values in the
entries marked with a question mark? If an entry contains an
address, use an arrow to indicate the location the address
refers to.

476 chapter 17 Recursion

17.6 Consider the following C function:

int Sigma(int k)
{

int 1;

1 = k -1;

if (k==0)
r e t u r n 0;

e l s e
r e t u r n (k + S i g m a (1)) ;

a. Convert the recursive function into a nonrecursive function. Assume
S i g m a () will always be called with a nonnegative argument.

b. Exactly 1 KB of contiguous memory is available for the run-time
stack, and addresses and integers are 16 bits wide. How many
recursive function calls can be made before the program runs out of
memory? Assume no storage is needed for temporary values.

17.7 The following C program is compiled and executed on the LC-3. When
the program is executed, the run-time stack starts at memory location
xFEFF and grows toward xCOOO (the stack can occupy up to 16 KBytes
of memory).

S e v e n U p (i n t x)
{

if (x == 1}
r e t u r n 7;

e l s e
r e t u r n (7 + s e v e n U p (x - 1));

}
int m a i n ()
{

int a;

p r i n t f (" I n p u t a n u m b e r \n");
s c a n f (" % d " , &a);

a = S e v e n U p (a) ;

p r i n t f (" % d is 7 t i m e s t h e n u m b e r \ n " , a);

a. What is the largest input value for which this program will run
correctly? Explain your answer.

b. If the run-time stack can occupy only 4 KBytes of memory, what is
the largest input value for which this program will run correctly?
Explain your answer.

Exercises 492

17.8 Write an iterative version of a function to find the nth Fibonacci number.
Plot the running time of this iterative version to the running time of the
recursive version on a variety of values for n. Why is the recursive
version significantly slower when n is sufficiently large?

17.9 The binary search routine shown in Figure 17.16 searches through an
array that is in ascending order. Rewrite the code so that it works for
arrays in descending order.

17.10 Following is a very famous algorithm whose recursive version is
significantly easier to express than the iterative one. For the following
subproblems, provide the final value returned by the function.

int e a { i n t x, int y)
{

int a;

if (y == 0)
r e t u r n x;

e l s e {
a = x % y;
r e t u r n (ea(y, a));

}
}

a. ea(12, 15)
b. ea (6, 10)
C. ea (110, 24)
d. What does this function calculate? Consider how you might

construct an iterative version to calculate the same thing.
17.11 Write a program without recursive functions equivalent to the following

C program.

int m a i n ()
{

p r i n t f { " % d " , M()) ;

v o i d M()
{

int num, x;
p r i n t f { " T y p e a n u m b e r : ");
s c a n f (" % d " , &num);
if (num <= 0)

r e t u r n 0;
e l s e {

x = M () ;
if (num > x)

r e t u r n n u m ;
e l s e

r e t u r n x;
}

}

478 chapter 17 Recursion

17.12 Consider the following recursive function:

int func (int arg)
{

if (arg % 2 != 0)
r e t u r n f u n c (a r g - 1);

if (arg <= 0)
r e t u r n 1;

r e t u r n f u n c (a r g / 2) + 1;
}

a. Is there a value of arg that causes an infinite recursion? If so, what
is it?

b. Suppose that the function func is part of a program whose m a i n
function follows. How many function calls are made to func when
the program is executed?

int m a i n ()
{

p r i n t f (" T h e v a l u e is %d\n", f u n c (1 0)) ;
}

c. What value is output by the program?
17,13 The following function is a recursive function that takes a string of

characters of unknown length and determines if it contains balanced
parentheses. The function B a l a n c e d is designed to match parentheses.
It returns a 0 if the parentheses in the character array string are balanced
and a nonzero value if the parentheses are not balanced. The initial call
to B a l a n c e d would be: B a l a n c e d (string, 0, 0) ;

The function B a l a n c e d that follows, however, is missing a few key
pieces of code. Fill in the three underlined missing portions in the code.

int B a l a n c e d (c h a r s t r i n g [] , int p o s i t i o n , int count)
{

if ()
r e t u r n c o u n t ;

e l s e if (string [position] ==)
r e t u r n B a l a n c e d (string, + + p o s i t i o n , + + c o u n t) ;

e l s e if (string [position] ==)
r e t u r n B a l a n c e d (string, + + p o s i t i o n , --count);

e l s e
r e t u r n B a l a n c e d (string, + + p o s i t i o n , c o u n t) ;

}

Exercises 4 7 9

17.14 What is the output of the following C program?

i n c l u d e < s t d i o . h >

v o i d M a g i c (i n t in);
int E v e n (i n t n) ;

int m a i n ()
{

M a g i c (1 0) ;

}

v o i d M a g i c (i n t in)
{

if (in == 0)
r e t u r n ;

if (Even(in))
p r i n t f (" % i \ n " , in);

M a g i c (i n - 1);
if (!Even(in))

p r i n t f (" % i \ n " , in);
r e t u r n ;

}

int E v e n (i n t n)
{

/* even, r e t u r n 1; odd, r e t u r n 0 */
r e t u r n (n % 2) == 0 ? 1 : 0;

}

c h a p t e r

18

I / O in C

18.1 Introduction
Whether it be to the screen, to a file, or to another computer across a network,
all useful programs perform output of some sort or another. Most programs also
require some form of input. As is the case with many other modern programming
languages, input and output are not directly supported by C. Instead input/output
(I/O) is handled by a set of standard library functions that extend the base language.
The behavior of these standard library functions is precisely defined by the ANSI
C standard.

In this chapter, we will discuss several functions in the C standard library
that support simple I/O. The functions p u t c h a r and p r i n t f write to the output
device and g e t c h a r and s c a n f read from the input device. The more general
functions f p r i n t f and f s c a n f perform file I/O, such as to a file on disk. We
have used p r i n t f and s c a n f extensively throughout the second half of this
book. In this chapter, we examine the details of how these functions work. Along
the way, we will introduce the notion of variable argument lists and demonstrate
how parameter-passing on the LC-3 run-time stack handles function calls with a
variable number of arguments.

18.2 The C Standard Library
The C standard library is a major extension of the C programming language.
It provides support for input/ouput, character string manipulations, mathemat-
ical functions, file access functions, and various system utilities that are not

482 chapter 18 I/O in C

specifically required for a single program but are generally useful in many
programs. The standard library is intended to be a repository of useful, prim-
itive functions that serve as components for building complex software. This
component-based library approach is a characteristic of many programming lan-
guages: C++ and Java also have similar standard libraries of primitive functions.
We provide a short description of some useful C library functions in Appendix D.9.
The library's functions are typically written by designers of the compiler and oper-
ating system, and on many occasions they are optimized for the system on which
they are installed.

To use a function defined within the C standard library, we must include
the appropriate header file (.h file). The functions within the standard library
are grouped according to their functionality. Each of these groups has a header
file associated with it. For example, mathematical functions such as sin and tan
use the common header file m a t h . h. The standard I/O functions use the header file
stdio. h. These header files contain, among other things, function declarations
for the I/O functions and preprocessor macros relating to I/O. A library header
file does not contain the source code for library functions.

If the header files do not contain source code, how does the machine code
for, say, p r i n t f get added to our programs? Each library function called within
a program is linked in when the executable image is formed. The object files
containing the library functions are stored somewhere on the system and are
accessed by the linker, which links together the various function binaries into a
single executable program.

As an aside, programs can be linked dynamically. With certain types of
libraries (dynamically linked libraries [DLLs] or shared libraries), the machine
code for a library routine does not appear within the executable image but is
"linked" on demand, while the program executes.

18.3 I/O, One Character at a Time
We'll start by examining two of the simplest I/O functions provided by the C
library. The functions g e t c h a r and p u t c h a r perform input and output on a single
character at a time. Input is read in as ASCII and output is written out as ASCII,
in a manner similar to the IN and OUT TRAP routines of the LC-3.

18.3.1 I/O Streams
Conceptually, all character-based input and output is performed on streams. The
sequence of ASCII characters typed by the user at the keyboard is an example
of an input stream. As each character is typed, it is added to the end of the
stream. Whenever a program reads keyboard input, it reads from the beginning of
the stream. The sequence of ASCII characters printed by a program, similarly, is
added to the end of the output stream. In other words, this stream abstraction allows
us to further decouple the producer from the consumer, which is helpful because
the two are usually operating at different rates (see Chapter 8). For example, if a
program wants to perform some output, it adds characters to the end of the output

18.3 I/O, One Character at a Time

stream without being required to wait for the output device to finish displaying the
previous character. Many other popular languages such as C++ provide a similar
stream-based abstraction for I/O.

In C the standard input stream is referred to as stdin and is mapped to the
keyboard by default. The standard output stream is referred to as stdout and is
mapped by default to the display. The functions getchar and putchar operate
on these two streams.

18.3.2 putchar
The function putchar is the high-level language equivalent of the LC-3 OUT
TRAP routine. The function putchar displays on the stdout output stream the
ASCII value of the parameter passed to it. It performs no type conversions—the
value passed to it is assumed to be ASCII and is added directly to the output stream.
All the calls to putchar in the following code segment cause the same character
(lowercase h) to be displayed. A putchar function call is treated like any other
function call, except here the function resides within the standard library. The
function declaration for putchar appears in the stdio.h header file. Its code
will be linked into the executable during the compiler's link phase.

char c = 'h';

putchar(c);
putchar('h');
putchar(104);

18.3.3 getchar
The function getchar is the high-level language equivalent of the LC-3 IN TRAP
function. It returns the ASCII value of the next input character appearing in the
stdin input stream. By default, the stdin input stream is simply the stream of
characters typed at the keyboard. In the following code segment, getchar returns
the ASCII value of the next character typed at the keyboard. This return value is
assigned to the variable c.

char c;

c = getchar(};

18.3.4 Buffered I/O
Run the C code in Figure 18.1 and you will notice something peculiar. The program
prompts the user for the first input character and waits for that input to be typed in.
Type in a single character (say z, for example) and nothing happens. The second
prompt does not appear, as if the call to getchar has missed the keystroke. In

484 chapter 18 I/O in C

1
o

#include <stdio.h>
z
3 int main()
4 {
5 char inCharl;
6
•7

char inChar2;
/
8 printf("Input character 1:\n"] > ;
9 inCharl = getchar();

10
11 printf("Input character 2:\n"] 1 ;
12 inChar2 = getchar();
13
14 printf("Character 1 is %c\n", inCharl)
15 printf("Character 2 is %c\n", inChar2)
16 }
Figure 18.1 An example of buffered input

fact, the program seems to make no progress at all until the Enter key is pressed.
Such behavior seems unexpected considering that get char is specified to read
only a single character from the keyboard input stream.

This unexpected behavior is due to buffering of the keyboard input stream.
On most computer systems, I/O streams are buffered. Every key typed on the
keyboard is captured by the low-level operating system software and kept in a
buffer, which is a small array, until it is released into the input stream. In the case
of the input stream, the buffer is released when the user presses Enter. The Enter
key itself appears as a newline character in the input stream. So in the example
in Figure 18.1, if the user types the character A and presses Enter, the variable
inChar i will equal the ASCII value of A (which is 65) and the variable inchar2
will equal the ASCII value of newline (which is 10).

There is a good reason for buffering, particularly for keyboard input: Pressing
the Enter key allows the user to confirm the input. Say you mistyped some input
and wanted to correct it before the program detects it. You can edit what you type
using the backspace and delete keys, and then confirm your input by pressing
Enter.

The output stream is similarly buffered. Observe by running the program in
Figure 18.2.

This program uses a new library function called sleep that suspends the
execution of the program for approximately the number of seconds provided as
the integer argument, which in this case is 5. This library function requires that
we include the unistd. h header file. Run this code and you will notice that the
output of the character a does not happen quite as you might expect. Instead of
appearing prior to the five-second delay, the character a appears afterwards, only
after the newline character releases the output buffer to the output stream. We
say that the putchar (' \n') causes output to be flushed. Add a putchar ('\n')
statement immediately after line 6 and the program will behave differently.

Despite the slightly complex behavior of buffered I/O streams, the underlying
mechanism used to make this happen are the IN and OUT TRAP routines described

18.4 Formatted I/O 485

1 #include <stdio.h>
2 #include <unistd.h>
3
4 int main()
5 {
6 putchar('a7);
7
8 sleep (5) ;
9

10 putchar('b');
11 putchar('\n');
12 }
Figure 18.2 An example of buffered output

in Chapter 8. The buffering of streams is accomplished by extra layers of software
surrounding the IN and OUT service routines.

18.4 Formatted I/O
The functions putchar and getchar suffice for simple I/O tasks but are cumber-
some for performing non-ASCII I/O. The functions printf and scanf perform
more sophisticated formatted I/O, and they are designed to more conveniently
handle I/O of integer and floating point values.

18.4.1 printf
The function printf writes formatted text to the output stream. Using printf,
we can print out ASCII text embedded with values generated by the running
program. The printf function takes care of all the type conversions neces-
sary for this to occur. For example, the following code prints out the value
of integer variable x. In doing so, the printf must convert the integer value
of x into a sequence of ASCII characters that can be embedded in the output
stream.

int x;

printf("The value is %d\n", x);

Generally speaking, printf writes its first parameter to the output stream. The
first parameter is the format string. It is a character string (i.e., of type char*)
containing text to be displayed on the output device. Embedded within the format
string are zero or more conversion specifications.

The conversion specifications indicate how to print out any of the parameters
that follow the format string in the function call. Conversion specifications all
begin with a % character. As their name implies, they indicate how the values of
the parameters that follow the format string should be treated when converted
to ASCII. In many of the examples we have encountered so far, integers have

486 chapter 18 I/O in C

been printed out as decimal numbers using the %d specification. We could also
use the %x specification to print integers as hexadecimal numbers, or %b to print
them as binary numbers (represented as ASCII text, of course). Other conversions
include: %c causes a value to be interpreted as straight ASCII, the %s specification
is used for strings and causes characters stored consecutively in memory to be
output (for this the corresponding parameter is expected to be of type char*).
The specification %f interprets the corresponding parameter as a floating point
number and displays it in a floating point format. What if we wanted to print out
the % character itself? We use the sequence %%. See Appendix D for a full listing
of conversion specifiers.

As mentioned in Chapter 11, special characters such as newline can also be
embedded in the format string. The \n prints a new line and a \ t character prints
a tab; both are examples of these special characters. All special characters begin
with a \ and they can appear anywhere within a format string. In order to print
out a backslash character, we use a \ \ . See Table D.l in the appendix for a list of
special characters.

Here are some examples of various format specifications:

int a = 102;
int b = 65;
char c = ' z' ;
char banner[10] = "Hola!";
double pi = 3.14159;

printf("The variable 'a' decimal : %d\n", a);
printf("The variable 'a' hex : %x\n", a);
printf("The variable 'a' binary : %b\n", a);
printf("'a' plus 'b' as character : %c\n", a + b);
printf("Char %c.\t String %s\n Float %f\n", c, banner, pi);

The function printf begins by examining the format string a single character
at a time. If the current character is not a % or \ , then the character is directly
written to the output stream. (Recall that the output stream is buffered so the
output might not appear on the display until a new line is written.) If the character
is a \ , then the next character indicates the particular special character to print out.
For instance, the escape sequence \n indicates a newline character. If the current
character is a %, indicating a conversion specification, then the next character
indicates how the next pending parameter should be interpreted. For instance,
if the conversion specification is a %d and the next pending parameter is the bit
pattern 0000000001101000, then the number 104 is written to the output stream.
If the conversion character is a %c, then the character h is written. A different value
is printed if %f is the conversion specification. The conversion specifier indicates
to print f how the next parameter should be interpreted. It is important to realize
that, within the printf routine, there is no relationship between a conversion
specification and the type of a parameter. The programmer is free to choose how

18.4 Formatted I/O 487

things are to be interpreted as they are displayed to the screen. Question: What
happens with the following function call?

printf("The value of nothing is %d\n");

There is no argument corresponding to the %d specification. When the printf
routine is called, it assumes the correct number of values were written onto the
stack, so it blindly reads a value off the stack for the %d spec, assuming it was
intentionally placed there by the caller. Here, a garbage value is displayed to the
screen. However, it is displayed in decimal.

18.4.2 scanf
The function scanf is used to read formatted ASCII data from the input stream. A
call to scanf is similar to a call to printf. Both calls require a format string as the
first argument followed by a variable number of other arguments. Both functions
are controlled by characters within the format string. The function scanf differs
in that all arguments following the format string must be pointers. As we discussed
in Chapter 16, scanf must be able to access the original locations of the objects
in memory in order to assign new values to them.

The format string for scanf contains ASCII text and conversion specifi-
cations, just like the format string for printf. The conversion characters are
similar to those used for printf. A table of these specifications can be found
in Appendix D. Essentially, the format string represents the format of the input
stream. For example, the format string "%dn indicates to scanf that the next
sequence of non-white space characters (white space is defined as spaces, tabs,
new lines, carriage returns, vertical tabs, and form feeds) is a sequence of digits
in ASCII representing an integer in decimal notation. After this decimal num-
ber is read from the input stream, it is converted into an integer and stored in
the corresponding argument. Since scanf modifies the values of the variables
passed to it, arguments are passed by reference using the & operator. In addi-
tion to conversion specifications, the format string also can contain plain text,
which scanf tries to match with the input stream. We use the following code to
demonstrate.

char name[100];
int month, day, year;
double gpa;

printf("Enter : lastname birthdate grade_point_average\n");
scanf("%s %d/%d/%d %lfn, name, &month, &day, &year, &gpa);

printf("\n");
printf("Name : %s\n", name);
printf("Birthday : %d/%d/%d\n"/ month, day, year);
printf("GPA : %f\n", gpa);

488 chapter 18 I/O in C

In this scanf statement, the first specification is a %s that scans a string of
characters from the input stream. In this context, all characters starting from the
first non-white space character and ending with the next white space character
(conceptually, the next word in the input stream) are stored in memory starting
at the address of name. An \o character is automatically added to signify the
end of the string. Since the argument name is an array, it is automatically passed
by reference, that is, the address of the first element of the array is passed to
scanf.

The next specification is for a decimal number, %d. Now, scanf expects to find
a sequence of digits (at least one digit) as the next set of non-white space characters
in the standard input stream. Characters from standard input are analyzed white
space characters are discarded, and the decimal number (i.e., a sequence of digits
terminated by a nondigit) is read in. The number is converted from a sequence of
ASCII characters into a binary integer and stored in the memory location indicated
by the argument &month.

The next input field is the ASCII character / . Now, scanf expects to find
this character, possibly surrounded by white space, in the input stream. Since this
input field is not a conversion specification, it is not assigned to any variable.
Once it is read in from the input stream, it is discarded, and scanf moves onto
the next field of the format string. Similarly, the next three input fields %d/%d
read in two decimal numbers separated by a / . These values are converted into
integers and are assigned to the locations indicated by the pointers appearing as
the next two arguments (which correspond to the addresses of the variables day
and year).

The last field in the format string specifies that the input stream contains a
long floating point number, which is the specification used to read in a value
of type double. For this specifier, scanf expects to see a sequence of decimal
numbers, and possibly a decimal point, possibly an E or e signifying exponential
notation, in the input stream (see Appendix D.2.4). This field is terminated once
a nondigit (excluding the first E, or the decimal point or a plus or minus sign
for the fraction or exponent) or white space is detected. The scanf routine takes
this sequence of ASCII characters and converts them into a properly expressed,
double-precision floating point number and stores it into gpa.

Once it is done processing the format string, scanf returns to the caller.
It also returns an integer value. The number of format specifications that were
successfully scanned in the input stream is passed back to the caller. In this case,
if everything went correctly, scanf would return the value 5. In the preceding
code example, we chose to ignore the return value.

So, for example, the following line of input yields the following output:

Enter : lastname birthdate grade_point_average
Mudd 02/16/69 3.02

Name : Mudd
Birthday : 2/16/69
GPA : 3.02

18.4 Formatted I/O 489

Since scanf ignores white space for this format string, the following input
stream yields the same results. Remember, newline characters are considered
white space.

Enter : lastname birthdate grade_point_average
Mudd 02
/
16 / 69 3.02

Name : Mudd
Birthday : 2/16/69
GPA : 3.02

What if the format of the input stream does not match the format string? For
instance, what happens with the following stream?

Enter : lastname birthdate grade_point_average
Mudd 02 16 69 3.02

Here, the input stream does not contain the / characters encoded in the format
string. In this case, scanf returns the value 2, since the variables name and month
are correctly assigned before the mismatch between the format string and the
input stream is detected. The remaining variables go unmodified. Since the input
stream is buffered, unused input is not discarded, and subsequent reads of the
input stream begin where the last call left off.

If the next two reads of the input stream are

a = getchar();
b = getchar();

what do a and b contain? The answer ' ' (the space character) and i should be
no surprise.

18.4.3 Variable Argument Lists
By now, you might have noticed something different about the functions printf
and scanf from all other functions we have described thus far. The two functions
have a variable number of arguments passed to them. The number of arguments
passed to printf and scanf depends on the number of items being printed or
scanned. We say such functions have variable argument lists.

There is a one-to-one correspondence between each conversion specification
in the format string and each argument that appears after the format string in such
function calls. The following printf statement is from a previous example:

printf (!'Char %c.\t String %s\n Float %f\n", c, banner, pi) ;

The format string contains three format specifications; therefore, three argu-
ments follow it in the function call. The %c spec in the string is associated with the
first argument that follows (the variable c). The %s is associated with banner, and

490 chapter 18 I/O in C

printf("%d %d %d\n", x, z) ;

xOOOO

xFFFF

ptr to format string

Parameters for
printf

Activation record
for previous function

ptr to format string

(a) (b)

Figure 18.3 Subfigure (a) shows the stack if the arguments to the printf call are pushed
from right to left. Subfigure (b) shows the stack if the arguments are pushed left
to right.

%f with pi. There are three values to be printed; therefore, this call contains four
arguments altogether. If we want to print five values, the function call contains
six arguments.

Recall from Chapter 14 that our LC-3 calling convention pushed items onto
the run-time stack from right to left of the order in which they appear on the
function call. This places the pointer to the format string immediately at the top
of the stack when printf or scanf takes over. Since it is the leftmost argument,
it will always be the last item pushed onto the stack before the function call
occurs. Once printf or scanf takes over, they can access the first parameter
directly off the top of the stack. Once this parameter (which is the format string)
is analyzed, the functions can determine the other parameters on the stack. If the
arguments on a function call were pushed from left to right, it would be much
more difficult for printf and scanf to discern the location of the format string
parameter. Figure 18.3 shows two diagrams of the run-time stack. In diagram (a),
the arguments to the call for printf are passed from right to left and in (b) from
left to right. Consider for which case the resulting LC-3 code for printf will
be simpler. In version (a), the offset of the format string from the stack pointer
will always be zero, regardless of the number of other parameters on the stack.
In version (b), the offset of the format string from the stack pointer depends on
the number of parameters on the stack.

The format string, like all other strings embedded within a program's source
code, is stored in a special region of memory reserved for constants, or literal
values.

18.5 I/O from Files

18.5 I/O from Files
Say we wanted to process a large set of data, such as the daily closing price of
IBM stock for the last 20 years. To ask the user to type this via keyboard would
render it very "user-unfriendly." Instead, we would want the program to read the
data off a file on disk, and possibly write its output to disk. I/O in C is based on
streams, as we described earlier, and these streams are conceptually all bound
to files.

That is, the functions printf and scanf are in actuality special cases of more
general-purpose C I/O functions. These two functions operate specifically on two
special files called stdin and stdout. In C, stdin and stdout are mapped by
default to the keyboard and the display.

The general-purpose version of printf is called f printf, and the general-
purpose version of scanf is called f scanf. The functions fprintf and f scanf
work like their counterparts, with the main difference being that they allow us to
specify the stream on which they act. For example, we can inform fprintf
to write its output to a specific file on disk. Let's examine how this can be
accomplished.

Before we can perform file I/O, we need to declare a file pointer for each
file we want to manipulate. Typically, files are stored on the file system of the
computer system. In C, we can declare a file pointer called inf ile as follows:

FILE *infile;

Here we are declaring a pointer to something of type FILE. The type FILE
is defined within the header file stdio.h. Its details are not important for our
discussion.

Once the file pointer is declared, we need to map it to a file on the computer's
file system. The C library call fopen performs this mapping. Each fopen call
requires two arguments: the name of the file to open and the description of what
type of operation the we want to perform on the file. To follow is an example.

FILE * infile;

infile = fopen("ibm_stock_prices", "r");

The first argument to fopen is the string ibm stock prices, which is the
name of the file to open. The second argument is the operation we want to perform
on this file. Several useful modes are " r11 for reading," wH for writing (a file opened
with this mode will lose its previous contents), "a" for appending (here, previous
contents are not lost; new data is added to the end of the file), nr+" for reading
and writing. Note that both arguments must be character strings; therefore, they
are surrounded by double quotes in this example. In this case, we are opening the
file called (libm_stock_prices" for reading.

If the fopen call is successful, the function returns a file pointer to the physical
file. If the open for some reason fails (such as the file could not be found), then
the function returns a null pointer. Recall that a null pointer is an invalid pointer
that has the value NULL. It is always good practice to check if the fopen call was
successful.

492 chapter 18 I/O in C

FILE *infile;

infile = fopen("ibm_stock_prices", "r");

if (infile == NULL)
printf("fopen unsuccessful!\n");

Now with the file pointer properly mapped to a physical file, we can use
f scanf and fprintf to read and write it just as we used printf and scanf to
read the standard devices. The functions f scanf and fprintf both require a file
pointer as their first argument to indicate on which stream the operations are to
be performed. The example in Figure 18.4 demonstrates.

Here, we are reading from an ASCII text file called ibm stock prices and
writing to a file called buy ho l d or s ell. The input file contains a floating point

1 #include <stdio.h>
2 #define LIMIT 10000
3
4 int main()
5 {
6
7 FILE *infile;
8 FILE *outfile;
9 double prices[LIMIT];

10 char answer[10];
11 int i = 0;
12
13 infile = fopen("ibm_stock_jprices", MrM);
14 outfile = fopen("buy_hold_or_selln, "w");
15
16 if (infile != NULL && outfile != NULL) {
17 /* Read the input data */
18 while ((fscanf(infile, M%lfM, &prices[i]) != EOF) && i < LIMIT)
19 i++;
20
21 printf("%d prices read from the data file", i);
22
23 /* Process the data... */
24 :
25 :
26
27
2 8 /* Write the output */
29 fprintf(outfile, "%sH, answer);
30 }
31 else {
32 printf("fopen unsuccessful!\n");
3 3 }
34 }
Figure 18.4 An example of a program that performs file 1/0

18.6 Summary 493

data item separated by white space. Even though the file can contain more, at most
10,000 items are read by this program using f scanf. The f scanf function returns
a special value when no more data can be read from the input file, indicating the
end of file has been reached. We can check the return value of f scanf against this
special character, which is defined to the preprocessor macro EOF. The condition
on the while loop causes it to terminate if EOF is encountered or if the limit of
input values is exceeded. After reading the input file, the program processes the
input data, and the output file is written with the value of the string answer.

The function printf is equivalent to calling fprintf using stdout as the
file pointer. Likewise, scanf is equivalent to calling f scanf using stdin.

18.6 Summoni
In this chapter, we examined the C facilities for performing input and output.
Like many other current programming languages, C provides no direct support
for input and output. Rather, standard library functions are provided for I/O. At
their core, these functions perform I/O one character at a time using the IN and
OUT routines supported by the underlying machine.

The key concepts that you should take away from this chapter are:

• Input and output on streams. Modern programming languages create a
useful abstraction for thinking about I/O. Input and output occur on streams. The
producer adds data to the stream, and the consumer reads data from the stream.
With this relationship, both can operate at their own rate without waiting for the
other to be ready to conduct the I/O. For example, a program generating output
for the display writes data into the output stream without necessarily waiting for
the display to keep pace.

• The four basic I/O functions. We discuss the operation, at a fairly detailed
level, of four basic I/O functions: putchar, getchar, printf, and scanf. The
latter two functions require the use of variable argument lists, which our LC-3
calling convention can easily handle because of the order in which we push
arguments onto the run-time stack.

• File I/O. C treats all I/O streams as file I/O. Functions like printf and scanf
are special cases where the I/O files are the standard output and input devices. The
more general functions fprintf and fscanf enable us to specify a file pointer
to which the corresponding operations are to be performed. We can bind a file
pointer to a physical file on the file system using f open.

494 chapter 18 I/O in C

18.1 Write an I/O function call to handle the following tasks. All can be
handled by a single call.

a. Print out an integer followed by a string followed by a floating point
number.

b. Print out a phone number in (XXX)-XXX-XXXX format. Internally,
the phone number is stored as three integers.

c. Print out a student ID number in XXX-XX-XXXX format.
Internally, the ID number is stored as three character strings.

d. Read a student ID number in XXX-XX-XXXX format. The number
is to be stored internally as three integers.

e. Read in a line of input containing Last name, First name,
Middle initial age sex. The name fields are separated by
commas. The middle initial and sex should be stored as characters.
Age is an integer.

18.2 What does the value returned by scanf represent?

18.3 Why is buffering of the keyboard input stream useful?

18.4 What must happen when a program tries to read from the input stream
but the stream is empty?

18.5 Why does the following code print out a strange value (such as
1073741824)?

float x = 192 .27163;
printf("The value of x is %d\n", x);

18.6 What is the value of input for the following function call:

scanf("%d", &input);

if the input stream contains

This is not the input you are looking for.

Exercises 495

18.7 Consider the following program:

#include <stdio.h>

int main{)
{

int x = 0;
int y - 0;
char label [10] ;

scanf("%d %d", &x, &y);
scanf("%s", label);

printf("%d %d %s\n", x, y, label);
}

a. What gets printed out if the input stream is 46 2 9 BlueMoon?
b. What gets printed out if the input stream is 4 6 BlueMoon?
c. What gets printed out if the input stream is in 999 888?

18.8 Write a program to read in a C source file and write it back to a file
called "condensed program" with all white space removed.

18.9 Write a program to read in a text file and provide a count of

a. The number of strings in the file, where a string begins with a
non-white space character and ends with a white space character.

b. The number of words in the file, where a word begins with an
alphabetic character (e.g., a-z or A-Z) and ends with a
nonalphabetic character.

c. The number of unique words in the file. Words are as defined in
Part b. The set of unique words has no duplicates.

d. The frequency of words in order of most frequent to least frequent.
In other words, analyze the text file, count the number of times each
word occurs, and display these counts from most frequent word to
least frequent.

c h a p r e r

19

D a l a S t r u c t u r e s

19.1 Introduction
C, at its core, provides support for three fundamental types of data: integers,
characters, and floating point values.1 That is, C natively supports the allocation
of variables of these types and natively supports operators that manipulate these
types, such as + for addition and * for multiplication. As we traversed the topics in
the second half of this textbook, we saw the need for extending these basic types
to include pointers and arrays. Both pointers and arrays are derived from the three
fundamental types. Pointers point to one of the three types; we can declare arrays
of int, char, or double.

Ultimately, though, the job of the programmer is to write programs that deal
with real-world objects, such as an aircraft wing or a group of people or a pod
of migrating whales. The problem lies in the reality that integers, characters, and
floating point values are the only things that the underlying computing system
can deal with. The programmer must map these real-world objects onto these
primitive types, which can be burdensome. But the programming language can
assist in making that bridge. Providing support for describing real-world objects
and specifying operations upon them is the basis for object orientation.

Orienting a program around the objects that it manipulates rather than the
primitive types that the hardware supports is the basic precept of object-oriented
programming. We take a small step toward object orientation in this chapter by
examining how a C programmer can build a type that is a combination of the

1 Enumerations are another fundamental type that are closely tied to integer types.

498 chapter 19 Data Structures

more basic types. This aggregation is called a structure in C. Structures pro-
vide the programmer with a convenient way of representing objects that are
best represented by multiple values. For example, an employee might be rep-
resented as a structure containing a name (character string), job title (character
string), department (perhaps integer), and employee ID (integer) within a corpo-
rate database program. In devising such a database program we might use a C
structure.

The main theme of this chapter is C's support for advanced data structures.
First, we examine how to create structures in C and examine a simple program
that manipulates an array of structures. Second, we examine dynamic memory
allocation in C. Dynamic allocation is not directly related to the concept of struc-
tures, but it is a component we use for the third item of this chapter, linked lists.
A linked list is a fundamental (and common) data organization that is similar to
an array—both store collections of data items—but has a different organization
for its data items. We will look at functions for adding, deleting, and searching
for data items within linked lists.

19.2 Structures
Some things are best described by an aggregation of fundamental types. For
such objects, C provides the concept of structures. Structures allow the pro-
grammer to define a new type that consists of a combination of fundamental
data items such as int, char, and double, as well as pointers to them and
arrays of them. Structure variables are declared in the same way variables of
fundamental data types are declared. Before any structure variables are declared,
however, the organization and naming of the data items within the structure must
be defined.

For example, in representing an airborne aircraft, say for a flight simulator or
for a program that manages air traffic over Chicago, we would want to describe
several flight characteristics that are relevant for the application at hand. The air-
craft's flight number is useful for identification, and since this would typically be
a sequence of digits and characters, we could use a character string for represent-
ing it. The altitude, longitude, latitude, and heading of the flight are also useful,
all of which we might store as integers. Airspeed is another characteristic that
would be important, and it is best represented as a double-precision floating point
number. Following are the variable declarations for describing a single aircraft in
flight.

char flightNum[7]; /* Max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airspeed; /* in kilometers/hour */

19.2 Structures 499

If the program modeled multiple flights, we would need to declare a copy of
these variables for each one, which is tedious and could result in excessively long
code. C provides a convenient way to aggregate these characteristics into a single
type via the struct construct, as follows:

struct flightType {
char flightNum[7]; /* Max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airspeed; /* in kilometers/hour */

} ;

In the preceding declaration, we have created a new type containing six
member elements. We have not yet declared any storage; rather we have indicated
to the compiler the composition of this new type. We have given the structure the
tag f lightType, which is necessary for referring to the structure in other parts
of the code.

To declare a variable of this new type, we do the following:

struct flightType plane;

This declares a variable called plane that consists of the six fields defined in the
structure declaration but otherwise gets treated like any other variable.

We can access the individual members of this structure variable using the
following syntax:

struct flightType plane;

plane.airspeed = 800.00;
plane.altitude = 10000;

Each member can be accessed using the variable's name as the base name followed
by a dot . followed by the member name.

The variable declaration plane gets allocated onto the stack if it is a local
variable and occupies a contiguous region of memory large enough to hold all
member elements. In this case, if each of the fundamental types occupies one
LC-3 memory location, the variable plane would occupy 12 locations.

The allocation of the structure is straightforward. A structure is allocated
the same way a variable of a basic data type is allocated: locals (by default)
are allocated on the run-time stack, and globals are allocated in the global data
section. Figure 19.1 shows a portion of the run-time stack when a function that
contains the following declarations is invoked.

int x;
struct airplaneType plane;
int y;

500 chapter 19 Data Structures

Run-time stack

t
y

plane.flightNum[0]
plane.flightNum[1]
plane.flightNum[2]
plane.flightNum[3]
plane.flightNum[4]
plane.flightNum[5]
plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

x

Figure 19.1 The run-time stack showing an allocation of a variable of structure type

Generically, the syntax for a structure declaration is as follows:

struct tag {
typel memberl;
type2 member2;

typeN memberN
} identifiers;

The tag provides a handle for referring to the structure later in the code, as in
the case of later declaring variables of the structure's format. The list of members
defines the organization of a structure and is syntactically a list of declarations.
A member can be of any type, including another structure type. Finally, we can
optionally include identifiers in a structure's declaration to actually declare vari-
ables of that structure's type. These appear after the closing brace of the structure
declaration, prior to the semicolon.

19.2.1 typedef
C structures enable programmers to define their own types. C typedef allows
programmers to name their own types. It has the general form

typedef type name;

19.2 Structures

This statement causes the identifier name to be synonymous with the type type,
which can be any basic type or aggregate type (e.g., a structure). So for instance,

typedef int Color;

allows us to define variables of type Color, which will now be synonymous
with integer. Using this definition, we can declare (for a bitmapped image, for
example):

Color pixels [500];

The typedef declaration is particularly useful when dealing with structures.
For example, we can create a name for the structure we defined earlier:

struct flightType {
char flightNum[7]; / * Max 6 characters * /
int altitude; / * in meters * /
int longitude; / * in tenths of degrees * /
int latitude; / * in tenths of degrees * /
int heading; / * in tenths of degrees * /
double airspeed; / * in kilometers/hour * /

typedef struct flightType Flight;

Now we can declare variables of this type by using the type name Flight.
For example,

Flight plane;

is now equivalent to the declaration struct f lightType plane; that we used
previously.

The typedef declaration provides no additional functionality. However, it
gives clarity to code, particularly code heavy with programmer-defined types.
Well-chosen type names connote properties of the variables they declare even
beyond what can be expressed by the names of the variables themselves.

19.2.2 Implementing Structures in C
Now that we have seen the technique for declaring and allocating variables of
structure type (and have given them new type names), we focus on accessing the
member fields and performing operations on them. For example, in the following
code, the member altitude of the structure variable of type Flight is accessed.

chapter 19 Data Structures

int x ;
Flight plane;
int y;

plane.altitude = 0;

Here, the variable plane is of type Flight, meaning it contains the six
member fields we defined previously. The member field labeled altitude is
accessed using the variable's name followed by a period, followed by the member
field label. The compiler, knowing the layout of the structure, generates code that
accesses the structure's member field using the appropriate offset. Figure 19.1
shows the layout of the portion of the activation record for this function. The
compiler keeps track, in its symbol table, of the position of each variable in
relation to the base pointer R5, and if the variable is an aggregate data type, it also
tracks the position of each field within the variable. Notice that for the particular
reference plane. altitude = o , the compiler must generate code to access the
second variable on the stack and the second member element of that variable.

Following is the code generated by the LC-3 C compiler for the assignment
statement plane, altitude = o ; .

AND Rl, Rl, #0 ; zero out Rl

ADD RO, R5, #-12 ; RO contains base address of plane
STR Rl, RO, #7 ; plane.altitude = 0;

19.3 flrraqs of S t r u c t u r e s
Let's say we are writing a piece of software to determine if any flights over the
skies of Chicago are in danger of colliding. For this program, we will use the
F l i g h t type that we previously defined. If the maximum number of flights that
will ever simultaneously exist in this airspace is 100 planes, then the following
declaration is appropriate:

Flight planes[100];

This declaration is similar to the simple declaration int d [100], except instead
of declaring 100 integer values, we have declared a contiguous region of memory
containing 100 structures, each of which is composed of the six members indicated
in the declaration struct f lightType. The reference planes [123, for example,
would refer to the thirteenth object in the region of 100 such objects in memory.
Each object contains enough storage for its six constituent member elements.

Each element of this array is of type Flight and can be accessed using
standard array notation. For example, accessing the flight characteristics of the
first flight can be done using the identifier plane [0]. Accessing a member
field is done by accessing an element of the array and then specifying a field:
plane to] . heading. The following code segment provides an example. It finds
the average airspeed of all flights in the airspace monitored by the program.

19.3 Arrays of Structures

int i;
double sum = 0;
double averageAirSpeed;

for (i = 0; i < 100; i++)
sum = sum + plane[i].airspeed;

averageAirSpeed = sum / 100;

We can also create pointers to structures. The following declaration creates a
pointer variable that contains the address of a variable of type Flight.

Flight *planePtr;

We can assign this variable as we would any pointer variable.

planePtr = &plane[34];

If we want to access any of the member fields pointed to by this pointer
variable, we could use an expression such as the following:

(*planePtr).longitude

With this cumbersome expression, we are dereferencing the variable planePtr. It
points to something of type Flight. Therefore when planePtr is dereferenced,
we are accessing an object of type FI ight. We can access one of its member fields
by using the dot operator (.) . As we shall see, refering to a structure with a pointer
is a common operation, and since this expression is not very straightforward
to grasp, a special operator has been defined for it. The previous expression is
equivalent to

planePtr->longitude

That is, the expression -> is like the deference operator *, except it is used for
deferencing member elements of a structure type.

Now we are ready to put our discussion of structures to use by presenting
an example of a function that manipulates an array of structures. This example
examines the 100 flights that are airborne to determine if any pair of them are
potentially in danger of colliding. To do this, we need to examine the position,
altitude, and heading of each flight to determine if there exists the potential of
collision. In Figure 19.2, the function PotentialCollisions calls the function
Collide on each pair of flights to determine if their flight paths dangerously
intersect. (This function is only partially complete; it is left as an exercise for you
to write the code to more precisely determine if two flight paths intersect.)

Notice that PotentialCollisions passes Collide two pointers rather than
the structures themselves. While it is possible to pass structures, passing pointers
is likely to be more efficient because it involves less pushing of data onto the
run-time stack; that is, in this case two pointers are pushed rather than 24 locations'
worth of data for two objects of type Flight.

504 chapter 19 Data Structures

1 #include <stdio.h>
2 #define TOTAL_FLIGHTS 100
3
4 /* Structure definition */
5 struct flightType {
6 char flightNum[7]; / * Max 6 characters * /
7 int altitude; / * in meters * /
8 int longitude; / * in tenths of degrees * /
9 int latitude; / * in tenths of degrees * /

10 int heading; / * in tenths of degrees * /
11 double airspeed; / * in kilometers/hour * /
12 } ;
13
14 typedef struct flightType Flight;
15
16 int Collide(Flight *planeA, Flight *planeB); void
17 PotentialCollisions(Flight planes []) ;
18
19 int Collide(Flight *planeA, Flight *planeB)
20 {
21 if (planeA->altitude == planeB->altitude) {
22
23 /** More logic to detect collision goes here **/
24 }
25 else
26 return 0;
27 }
28
29 void PotentialCollisions(Flight planes [])
30 {
31 int i;
3 2 int j;
33
34 for (i = 0; i < TOTAL_FLIGHTS; i++) {
35 for (j = 0; j < TOTAL_FLIGHTS; j++) {
36 if (Collide(&planes[i], &planes[j]))
37 printf("Flights %s and %s are on collision course I\n"
38 planes[i].flightNum, planes[j].flightNum);
39 }
40 }
41 }
F i g u r e 1 9 . 2 An example function based on the structure Flight

19.4 D p m i c Memorq Allocation
Memory objects (e.g., variables) in C programs are allocated to one of three
spots in memory: the run-time stack, the global data section, or the heap. Vari-
ables declared local to functions are allocated during execution onto the run-time
stack by default. Global variables are allocated to the global data section and are

19.4 Dynamic Memory Allocation 505

accessible by all parts of a program. Dynamically allocated data objects—objects
that are created during run-time—are allocated onto the heap.

In the previous example, we declared an array that contained 100 objects,
where each object was an aircraft in flight. But what if we wanted to create a
flexible program that could handle as many flights as were airborne at any given
moment, whether it be 2 or 20,000? One possible solution would be to declare
the array assuming a large upper limit to the number of flights the program might
encounter. This could result in a lot of potentially wasted memory space, or
worse, we might underestimate the number of flights, which could have potentially
devastating repercussions. A better solution is to dynamically adapt the size of
the array based on the number of planes in the air. To accomplish this, we rely on
the concept of dynamic memory allocation.

In a nutshell, dynamic memory allocation works as follows: A piece of
code called the memory allocator manages an area of memory called the heap.
Figure 19.3 is a copy of Figure 12.7; it shows the relationship of the various
regions of memory, including the heap. During execution, a program can make
requests to the memory allocator for contiguous pieces of memory of a particular

xOOOO

Program text
PC

R4

Global data section

Heap
(for dynamically allocated memory)

Run-time stack

•<- - R 6 (stack pointer)
-R5 (frame pointer)

xFFFF

Figure 19.3 The LC-3 memory map showing the heap region of memory

chapter 19 Data Structures

size. The memory allocator then reserves this memory and returns a pointer to
the newly reserved memory to the program. For example, if we wanted to store
1,000 flights' worth of data in our air traffic control program, we could request
the allocator for this space. If enough space exists in the heap, the allocator will
return a pointer to it. Notice that the heap and the stack both grow toward each
other. The size of the stack is based on the depth of the current function call,
whereas the size of the heap is based on how much memory the memory allocator
has reserved for the requests it has received.

A block of memory that is allocated onto the heap stays allocated until
the programmer explicitly deallocates it by calling the memory deallocator. The
deallocator adds the block back onto the heap for subsequent reallocation.

19.4.1 Dynamically Sized Arrays
Dynamic allocation in C is handled by the C standard library functions. In partic-
ular, the memory allocator is invoked by the function malloc. Let's take a look
at an example that uses the function malloc:

int airbornePlanes;
Flight *planes;

printf("How many planes are in the air?");
scanf("%d", ^airbornePlanes);

planes = malloc(24 * airbornePlanes);

The function malloc allocates a contiguous region
of the size in bytes indicated by the single parameter,
unclaimed memory and the call is successful, malloc
allocated region.

Here we allocate a chunk of memory consisting of 24 * airbornePlane
bytes, where airbornePlanes is the number of planes in the air as indicated
by the user. What about the 24? Recall that the type Flight is composed of six
members—an array of 7 characters, 4 integers, and a double, each occupy a single
two-byte location on the LC-3. Each structure requires 24 bytes of memory. As a
necessary convenience for programmers, the C language supports a compile-time
operator called sizeof. This operator returns the size, in bytes, of the memory
object or type passed to it as an argument. For example, sizeof (Flight) will
return the number of bytes occupied by a variable of type Flight, or 24. The
programmer does not need to calculate the sizes of various data objects; the
compiler can be instructed to perform the calculation.

If all the memory on the heap has been allocated and the current allocation
cannot be accomplished, malloc returns the value NULL. Recall that the symbol
NULL is a preprocessor macro symbol, defined to a particular value depending on
the computer system, that represents a null pointer. It is good programming prac-
tice to check that the return value from malloc indicates the memory allocation
was successful.

of memory on the heap
If the heap has enough
returns a pointer to the

19.4 Dynamic Memory Allocation 507

The function maiioc returns a pointer. But what is the type of the pointer? In
the preceding example, we are treating the pointer that is returned by mai loc as a
pointer to some variable of type Flight. Later we might use malloc to allocate an
array of integers, meaning the return value will be treated as an int *. To enable
this, mai loc returns a generic data pointer, or void *, that needs to be type cast to
the appropriate form upon return. That is, whenever we call the memory allocator,
we need to instruct the compiler to treat the return value as of a different type than
was declared.

In the preceding example, we need to type cast the pointer returned by malloc
to the type of the variable to which we are assigning it. Since we assigned the
pointer to planes, which is of type Flight *, we therefore cast the pointer to
type Flight *. To do otherwise makes the code less portable across different
computer systems; most compilers generate a warning message because we are
assigning a pointer value of one type to a pointer variable of another. Type casting
causes the compiler to treat a value of one type as if it were of another type. To
type cast a value from one type to a newType, we use the following syntax. The
variable var should be of newType. For more information on type casting, refer
to section D.5.11.

var = (newType) expression;

Given type casting and the sizeof operation and the error checking of the
return value from malloc, the correct way to write the code from the previous
example is:

int airbornePlanes;
Flight *planes;

printf("How many planes are in the air?");
scanf (nd", ^airbornePlanes) ;

/* A more correctly written call malloc */
planes = (Flight *) malloc(sizeof(Flight) * airbornePlanes);
if (planes = = NULL) {

printf("Error in allocating the planes array\n");

}
plane [0] .altitude = ...

Since the region that is allocated by malloc is contiguous in memory, we
can switch between pointer notation and array notation. Now we can use the
expression planes [29] to access the characteristics of the 30th aircraft (pro-
vided that airbornePlanes was larger than 30, of course). Notice that we
smoothly switched from pointer notation to array notation; this flexibility has
helped make C a very popular programming language. Other derivative languages,
C++ in particular, keep this duality between pointers to contiguous memory and
arrays.

The function malloc is only one of several memory allocation functions in
the standard library. The function cal loc allocates memory and initializes it to the

chapter 19 Data Structures

value 0. The function reaiioc attempts to grow or shrink previously allocated
regions of memory. To use the memory allocation functions of the C standard
library, we need to include the stdlib.h header file. Can you use realloc to
create an array that adapts to the size of the data size—for example, write a
function AddPlane () that adds a plane if the current size of the planes is too
small? Likewise, write the function DeletePlane () when the size of the array
is larger than what is required.

A very important counterpart to the memory allocation functions is a function
to deallocate memory and return it to the heap. This function is called free. It
takes as its parameter a pointer to a region that was previously allocated by mai loc
(or calloc or realloc) and deallocates it. After a region has been free'd, it is
once again eligible for allocation. Why is deallocation necessary? As we shall
see, there is a class of data structures that dynamically grow and shrink as the
program executes. For the shrinking operation, we put allocated memory back on
the heap so that we can use it again in subsequent allocations.

19.5 L inhed Lists
Having discussed the notion of structures and the concept of dynamic memory
allocation, we are now ready to introduce a fundamental data structure that is
pervasive in computing. A linked list is similar to an array in that both can be
used to store data that is best represented as a list of elements. In an array, each
element (except the last) has a next element that follows it sequentially in memory.
Likewise in a linked list, each element has a next element, but the next element
need not be sequentially adjacent in memory. Rather, each element contains a
pointer to the next element.

A linked list is a collection of nodes, where each node is one "unit" of data,
such as the characteristics of an airborne aircraft from the previous section. In a
linked list we connect these nodes together using pointers. Each node contains
a pointer element that points to the next node in the list. Given a starting node,
we can go from one node to another by following the pointer in each node. To
create these nodes, we rely on C structures. A critical element for the structure that
defines the nodes of a linked list is that it contains a member element that points
to nodes like itself. The following code demonstrates how this is accomplished.
We use the F l i g h t type we defined in the previous sections. Notice that we have
added a new member element to the structure definition. It is a pointer to a node
of the same type.

typedef struct flightType Flight;
struct flightType {

char f 1'ightNum [7] ; / * Max 6 characters * /
int altitude; / * in meters * /
int longitude; / * in tenths of degrees * /
int latitude; / * in tenths of degrees * /
int heading; / * in tenths of degrees * /
double airspeed; / * in kilometers/hour * /
Flight *next;

19.5 Linked Lists 509

A linked list in abstract form

Head jail

NULL

A linked list in memory

Like an array, a linked list has a beginning and an end. Its beginning, or head,
is accessed using a pointer called the head pointer. The final node in the list, or
tail, points to the NULL value. Figure 19.4 shows two representations of a linked
list data structure: an abstract depiction where nodes are represented as blocks
and pointers are represented by arrows, and a more physical representation that
shows what the data structure might look like in memory.

Despite their similarities, arrays and linked lists have fundamental differ-
ences. An array can be accessed in random order. We can access element number
4, followed by element 911, followed by 45, for example. A simple linked list
must be traversed sequentially starting at its head. If we wanted to access node 29,
then we must start at node 0 (the head node) and then go to node 1, then to node 2,
and so forth. But linked lists are dynamic in nature; additional nodes can be added
or deleted without movement of the other nodes. While it is straightforward to
dynamically size an array (see Section 19.4.1 on using malloc), it is much more
costly to remove a single element in an array, particularly if it lies in the middle.
Consider, for example, how you would remove the information for a plane that
has just landed from the air traffic control program from Section 19.3. With a
linked list we can dynamically add nodes to make room for more data, and we
can delete nodes that are no longer required.

510 chapter 19 Data Structures

19.5.1 An Example
Say we want to write a program to manage the inventory at a used car lot.
At the lot, cars keep coming and going, and the database needs to be updated
continually—a new entry is created whenever a car is added to the lot and
an entry deleted whenever a car is sold. Furthermore, the entries are stored in
order by vehicle identification number so that queries from the used car sales-
people can be handled quickly. The information we need to keep per car is as
follows:

int vehiclelD; / * Unique identifier for a car */
char make[2 0]; / * Manufacturer * / char model[20]; / * Model name * / int year; / * Year of manufacture * / int mileage; / * in miles * / double cost; / * in dollars * /

Car *next; / * Points to a car node * /

In reality, a vehicle ID is a sequence of characters and numbers and cannot
be stored as a single int, but we store it as an integer to make the example
simpler.

The frequent operations we want to perform—adding, deleting, and searching
for entries—can be performed simply and quickly using a linked list data structure.
Each node in the linked list contains all the information associated with a car in
the lot, as shown. We can now define the node structure, which is then given the
name CarNode using typedef:

typedef struct carType Car;

struct carType {
int vehiclelD; / * Unique identifier for a car * /
char make[20]; / * Manufacturer * / char model[2 0]; / * Model name * / int year; / * Year of manufacture * / int mileage; / * in miles * / double cost; / * in dollars * /

Car *next; / * Points to a car node * /

Notice that this structure contains a pointer element that points to something
of the same type as itself, or type Car. We will use this member element to point
to the next node in the linked list. If the next field is equal to NULL, then the node
is the last in the list.

19.5 Linked Lists 511

1 int main()
2 {
3 int op = 0; /* Current operation to be performed. */
4 Car carBase; /* carBase an empty head node */
5
6 carBase.next = NULL; /* Initialize the list to empty */
7
8 printf(M=========================\n");
9 printf("=== Used car database ===\n");

10 printf(»=========================\n\nn);
11
12 while (op != 4) {
13 printf("Enter an operation:\n");
14 printf("1 - Car aquired. Add a new entry for it.\nM);
15 printf("2 - Car sold. Remove its entry.\nM);
16 printf("3 - Query. Look up a car's information.\n");
17 printf("4 - Quit.\n");
18 scanf("%dM, &op);
19
20 if (op == 1)
21 AddEntry(&carBase);
22 else if (op == 2)
23 DeleteEntry(&carBase);
24 else if (op == 3)
25 Search(&carBase);
26 else if (op == 4)
27 printf("Goodbye.\n\nM);
28 else
29 printf("Invalid option. Try again.\n\n");
30 }
31 }
Figure 19.5 The function main for our used car database program

Now that we have defined the elementary data type and the organization of
data in memory, we want to focus on the flow of the program, which we can do
by writing the function main. The code is listed in Figure 19.5.

With this code, we create a menu-driven interface for the used car database.
The main data structure is accessed using the variable carBase, which is of type
CarNode. We will use it as a dummy head node, meaning that we will not be
storing any information about any particular car within the fields of carBase;
instead, we will use carBase simply as a placeholder for the rest of the linked
list. Using this dummy head node makes the algorithms for inserting and deleting
slightly simpler because we do not have to deal with the special case of an empty
list. Initially, carBase.next is set equal to NULL, indicating that no data items
are stored in the database. Notice that we pass the address of carBase whenever
we call the functions to insert a new car in the list (AddEntry), to delete a car
(DeleteEntry), and to search the list for a particular car (search).

512 chapter 19 Data Structures

1 Car *ScanList(Car *headPointer, int searchID)
2 {
3 Car *previous;
4 Car *current;
5
6 /* Point to start of list */
7 previous = headPointer;
8 current = headPointer->next;
9

10 /* Traverse list -- scan until we find a node with a */
11 /* vehiclelD greater than or equal to searchID */
12 while ((current 1= NULL) &&
13 (current->vehicleID < searchID)) {
14 previous = current;
15 current = current->next;
16 }
17
18 /* The variable previous points to node prior to the */
19 /* node being searched for. Either current->vehicleID */
20 /* equals searchID or the node does not exist. */
21 return previous;
22 }

Figure 19.6 A function to scan through the linked list for a particular vehicle ID

As we shall see, the functions AddEntry, DeleteEntry, and search all rely
upon a basic operation to be performed on the linked list: scanning the list to find
a particular node. For example, when adding the entry for a new car, we need to
know where in the list the entry should be added. Since the list is kept in sorted
order of increasing vehicle ID numbers, any new car node added to the list must be
placed prior to the first existing node with a larger vehicle ID. To accomplish this,
we have created a support function called ScanList that traverses the list (which
is passed as the first argument) searching for a particular vehicle ID (passed as
the second argument). ScanList always returns a pointer to the node just before
the node for which we are scanning. If the node we are scanning for is not in the
list, then ScanList returns a pointer to the node just prior to the place in the list
where the node would have resided. Why does ScanList return a pointer to the
previous node? As we shall see, passing back the previous node makes inserting
new nodes easier. The code for ScanList is listed in Figure 19.6.

Next we will examine the function to add a newly acquired car to the database.
The function AddEntry gets information from the user about the newly acquired
car and inserts a node containing this information into the proper spot in the linked
list. The code is listed in Figure 19.7. The first part of the function allocates a
carNode-sized chunk of memory on the heap using mai loc. If the allocation fails,
an error message is displayed and the program exits using the exit library call,
which terminates the program. The second part of the function reads in input from
the standard keyboard and assigns it the proper fields within the new node. The
third part performs the insertion by calling ScanList to find the place in the list
to insert the new node. If the node already exists in the list then an error message
is displayed and the new node is deallocated by a call to the free library call.

19.5 Linked Lists 513

1 void AddEntry(Car *headPointer)
2 {
3 Car *newNode; /* Points to the new car info */
4 Car *nextNode; /* Points to car to follow new one */
5 Car *prevNode; /* Points to car before this one */
6
7 /* Dynamically allocate memory for this new entry. */
8 newNode = (Car *) malloc(sizeof(Car));
9

10 if (newNode == NULL) {
11 printf("Error: could not allocate a new node\n");
12 exit(1);
13 }
14
15 printf("Enter the following info about the car.\n");
16 printf("Separate each field by white space:\n");
17 printf("vehicle_id make model year mileage cost\nn);
18
19 scanf("%d %s %s %d %d %lf",
20 &newNode->vehicleID, newNode->make, newNode->model,
21 &newNode->year, &newNode->mileage, &newNode->cost);
22
23 prevNode = ScanList(headPointer, newNode->vehicleID);
2 4 nextNode = prevNode->next;
25
2 6 if ((nextNode == NULL) ||
27 (nextNode->vehicleID i = newNode->vehicleID)) {
2 8 prevNode->next = newNode;
2 9 newNode->next = nextNode;
30 printf("Entry added.\n\n");
31 }
32 else {
33 printf("That car already exists in the database!\n");
34 printf("Entry not added.\n\n");
3 5 free(newNode);
36 }
37 }
Figure 19.7 A function to add an entry to the database

Let's take a closer look at how a node is inserted into the linked list. Figure 19.8
shows a pictorial representation of this process. Once the proper spot to insert
is found using ScanList, first, the prevNode's next pointer is updated to point
to the new node and, second, the new node's next pointer is updated to point to
nextNode. Also shown in the figure is the degenerate case of adding a node to
an empty list. Here, prevNode points to the empty head node. The head node's
next pointer is updated to point to the new node.

The routine to delete a node from the linked list is very similar to AddEntry.
Functionally, we want to first query the user about which vehicle ID to delete and
then use ScanList to locate a node with that ID. Once the node is found, the list is
manipulated to remove the node. The code is listed in Figure 19.9. Notice that once

514 chapter 19 Data Structures

Inserting a new node into a linked list

nextNode

Inserting into an empty list

prevNode\
-newNode

Rasel-

v
NULL

nextNode
Figure 19.8 Inserting a node into a linked list. The dashed lines indicate

newly formed links

1 void DeleteEntry(Car *headPointer)
2 {
3 int vehiclelD;
4 Car *delNode; /* Points to node to delete */
5 Car *prevNode,- /* Points to node prior to delNode */
6
7 printf("Enter the vehicle ID of the car to delete:\n");
8 scanf (Hd", &vehicleID) ;
9

10 prevNode = ScanList(headPointer, vehiclelD);
11 delNode = prevNode->next;
12
13 /* Either the car does not exist or */
14 /* delNode points to the car to be deleted. */
15 if (delNode != NULL && delNode->vehicleID == vehiclelD) {
16 prevNode->next = delNode->next;
17 printf("Vehicle with ID %d deleted.\n\n", vehiclelD);
18 free(delNode);
19 }
20 else
21 printf("The vehicle was not found' in the database\n");
22 }

Figure 19.9 A function to delete an entry from the database

19.5 Linked Lists 515

prevNode

delNode
Figure 19.10 Deleting a node from a linked list. The dashed line indicates

a newly formed link

1 void Search(CarNode *headPointer)
2 {
3 int vehiclelD;
4 Car *searchNode; /* Points to node to delete to follow */
5 Car *prevNode; /* Points to car before one to delete */
6
7 printf("Enter the vehicle ID number of the car to search £or:\n");
8 scanf("%d"r fcvehiclelD);
9

10 prevNode = ScanList(headPointer, vehiclelD);
11 searchNode = prevNode->next;
12
13 /* Either the car does not exist in the list or */
14 /* searchNode points to the car we are looking for. */
15 if (searchNode != NULL && searchNode->vehicleID == vehiclelD) {
16 printf("vehicle ID %d\n", searchNode- >vehicleID);
17 printf(" make %s\n", searchNode- >make) ;
18 printf("model %s\n", searchNode- >model) ;
19 printf("year %d\n", searchNode- >year);
20 printf("mileage %d\n", searchNode- >mileage);
21
22 /* The following printf has a field width specification on */
23 /* %f specification. The 10.2 indicates that the floating */
24 /* point number should be printed in a 10 character field */
25 /* with two units after the decimal displayed. */
26 printf("cost : $%10.2f\n\n", searchNode->cost);
27 }
28 else {
2 9 printf("The vehicle ID %d was not found in the database.\n\n",
30 vehiclelD);
31 }
32 }
Figure 19.11 A function to query the database

a node is deleted, its memory is added back to the heap using the free function
call. Figure 19.10 shows a pictorial representation of the deletion of a node.

At this point, we can draw an interesting parallel between the way elements
are inserted and deleted from linked lists versus arrays. In a linked list, once we
have identified the item to delete, the deletion is accomplished by manipulating

516 chapter 19 Data Structures

a few pointers. If we wanted to delete an element in an array, we would need to
move all elements that follow it in the array upwards. If the array is large, this
can result in a significant amount of data movement. The bottom line is that the
operations of insertion and deletion can be cheaper to perform on a linked list
than on an array.

Finally, we write the code for performing a search. The Search operation is
very similar to the AddEntry and DelEntry functions, except that the list is not
modified. The code is listed in Figure 19.11. The support function ScanList is
used to locate the requested node.

19.6 Summary
We conclude this chapter by a summarizing the three key concepts we covered.

• Structures in C. The primary objective of this chapter was to introduce the
concept of user-defined aggregate types in C, or structures. C structures allow us
to create new data types by grouping together data of more primitive types. C
structures provide a small step toward object orientation, that is, of structuring a
program around the real-world objects that it manipulates rather than the primitive
types supported by the underlying computing system.

• Dynamic memory allocation. The concept of dynamic memory allocation
is an important prerequisite for advanced programming concepts. In particular,
dynamic data structures that grow and shrink during program execution require
some form of memory allocation. C provides some standard memory allocation
func t ions such as malloc, calloc, realloc, and free.

• Linked lists. We combine the concepts of structures and dynamic memory
allocation to introduce a fundamental new data structure called a linked list.
It is similar to an array in that it contains data that is best organized in a list
fashion. Why is the linked list such an important data structure? For one thing,
it is a dynamic structure that can be expanded or shrunk during execution. This
dynamic quality makes it appealing to use in certain situations where the static
nature of arrays would be wasteful. The concept of connecting data elements
together using pointers is fundamental, and you will encounter it often when
dealing with advanced structures such as hash tables, trees, and graphs.

Exercises 517

19.1 Is there a bug in the following program? Explain.

struct node {
int count;
struct node *next;

} ;

int main() {
int data = 0;
struct node *getdata;

getdata->count = data + 1;
printf("%d", getdata->count);

}

19.2 The following are a few lines of a C program:

struct node {
int count;
struct node *next;

} ;

main()
{
int data = 0;
struct node *getdata;

getdata = getdata->next;

}
Write, in LC-3 assembly language, the instructions that are generated
by the compiler for the line getdata = getdata- >next;.

518 chapter 19 Data Structures

19.3 The code for P o t e n t i a i c o l l i s l o n s in Figure 19.2 performs a
pairwise check of all aircraft currently in the airspace. It checks each
plane with every other plane for a potential collision scenario. This
code, however, can be made more efficient with a very simple change.
What is the change?

19.4 The following program is compiled on a machine in which each basic
data type (pointer, character, integer, floating point) occupies one
location of memory.

struct element {
char name[25];
int atomic_number;
float atomic_mass;

} ;

is_it_noble(struct element t[], int i) {
if ((t[i].atomic_number=-2) ||

(t[i].atomic_number==10) ||
(t[i].atomic_number==18) ||
(t[i].atomic_number==3 6) ||
(t[i] .atomic_number==54) ||
(t[i].atomic_number==86})

return 1;
else

return 0;
}
int main() {

int x, y;
struct element periodic_table[110];

x = is_it_noble(periodic_table, y);

}

a. How many locations will the activation record of the function
is_it_noble contain?

b. Assuming that periodic table, x, and y are the only local
variables, how many locations in the activation record for main
will be devoted to local variables?

Exercises 519

19.5 The following C program is compiled into the LC-3 machine language
and executed. The run-time stack begins at xEFFF. The user types the
input abac followed by a return.

#include <stdio.h>
#define MAX 4

struct char_rec {
char ch;
struct char rec *back;

} ;

int main()
{ ~ -
struct char_rec *ptr, pat[MAX+2];
int i = 1, j = i;
printf("Pattern: ");
pat [1] .back = pat;
ptr = pat;

while ((pat [i] .ch = getchar()) ! = '\n') {

ptr [++i] .back = ++ptr;

if (i > MAX) break;
}
while (j <= i)
printf("%d »# pat[j++].back - pat);

/* Note the pointer arithmetic here: subtraction
of pointers to structures gives the number of
structures between addresses, not the number
of memory locations */

}

a. Show the contents of the activation record for main when the
program terminates.

b. What is the output of this program for the input abac?

fl.l Overview
The Instruction Set Architecture (ISA) of the LC-3 is defined as follows:

Memory address space 16 bits, corresponding to 216 locations, each
containing one word (16 bits). Addresses are numbered from 0 (i.e, xOOOO)
to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations
and memory-mapped I/O device registers. Certain regions of memory are
reserved for special uses, as described in Figure A. 1.

Bit numbering Bits of all quantities are numbered, from right to left,
starting with bit 0. The leftmost bit of the contents of a memory location is
bit 15.

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode
(operation to be performed), bits [11:0] provide further information that is

xOOOO

xOOFF
xOtOO

x01FF
X0200

X2FFF
X3000

xFDFF
xFEOO

xFFFF

Trap Vector Table

Interrupt Vector Table

Operating system and
Supervisor Stack

Available for
user programs

Figure A . l Memory map of the LC-3

534 appendix a The LC-3 ISA

needed to execute the instruction. The specific operation of each LC-3
instruction is described in Section A.3.
Illegal opcode exception Bits [15:12] = 1101 has not been specified. If an
instruction contains 1101 in bits [15:12], an illegal opcode exception
occurs. Section A.4 explains what happens.

Program counter A 16-bit register containing the address of the next
instruction to be processed.

General purpose registers Eight 16-bit registers, numbered from 000 to
1 1 1 .
Condition codes Three 1-bit registers: N (negative), Z (zero), and P
(positive). Load instructions (LD, LDI, LDR, and LEA) and operate
instructions (ADD, AND, and NOT) each load a result into one of the eight
general purpose registers. The condition codes are set, based on whether
that result, taken as a 16-bit 2's complement integer, is negative
(N = 1; Z, P = 0), zero (Z = 1; N. P = 0), or positive (P = 1 ; N , Z = 0).
All other LC-3 instructions leave the condition codes unchanged.

Memory-mapped I/O Input and output are handled by load/store
(LDI/STI, LDR/STR) instructions using memory addresses to designate
each I/O device register. Addresses xFEOO through xFFFF have been
allocated to represent the addresses of I/O devices. See Figure A. 1. Also,
Table A.3 lists each of the relevant device registers that have been identified
for the LC-3 thus far, along with their corresponding assigned addresses
from the memory address space.

Interrupt processing I/O devices have the capability of interrupting the
processor. Section A.4 describes the mechanism.

Priority level The LC-3 supports eight levels of priority. Priority level 7
(PL7) is the highest; PL0 is the lowest. The priority level of the currently
executing process is specified in bits PSR[10:8J.
Processor status register (PSR) A 16-bit register, containing status
information about the currently executing process. Seven bits of the PSR
have been defined thus far. PSR[15] specifies the privilege mode of
the executing process. PSR[10:8] specifies the priority level of the currently
executing process. PSR[2:0] contains the condition codes. PSR[2] is N,
PSRfl] is Z, and PSR[0] is P.

Privilege mode The LC-3 specifies two levels of privilege, Supervisor
mode (privileged) and User mode (unprivileged). Interrupt service routines
execute in Supervisor mode. The privilege mode is specified by PSR[15].
PSR[15J = 0 indicates Supervisor mode; PSR[15] = 1 indicates User
mode.

Privilege mode exception The RTI instruction executes in Supervisor
mode. If the processor attempts to execute an RTI instruction while in User
mode, a privilege mode exception occurs. Section A.4 explains what
happens.

A.3 The Instruction Set 535

Supervisor Stack A region of memory in supervisor space accessible via
the Supervisor Stack Pointer (SSP). When PSR[15] = 0, the stack pointer
(R6) is SSP

User Stack A region of memory in user space accessible via the User Stack
Pointer (USP). When PSRL15] = 1, the stack pointer (R6) is USP

A.2 Notation
The notation in Table A. 1 will be helpful in understanding the descriptions of the
LC-3 instructions (Section A.3).

fl.3 The Instruction Set
The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists
of an opcode (bits[l 5:12]) plus 12 additional bits to specify the other information
that is needed to carry out the work of that instruction. Figure A.2 summarizes
the 15 different opcodes in the LC-3 and the specification of the remaining bits of
each instruction. The 16th 4-bit opcode is not specified, but is reserved for future
use. In the following pages, the instructions will be described in greater detail.
For each instruction, we show the assembly language representation, the format
of the 16-bit instruction, the operation of the instruction, an English-language
description of its operation, and one or more examples of the instruction. Where
relevant, additional notes about the instruction are also provided.

524 appendix a The LC-3 ISA

Notational Conventions

Notation Meaning

xINJumber The number in hexadecimal notation.
#Number The number in decimal notation.
AEl:r] The field delimited by bit [|] on the left and bit CrU on the right, of the datum A. For

example, if PC contains 0011001100111111, then PCC15:9] is 0011001. PC12:2\
is 1. If I and r are the same bit number, the notation is usually abbreviated PCC21

BaseR Base Register; one of R0..R7, used in conjunction with a six-bit offset to compute
Base+offset addresses.

DR Destination Register; one of R0..R7, which specifies which register the result of an
instruction should be written to.

imm5 A 5-bit immediate value; bits [4 :0] of an instruction when used as a literal
(immediate) value. Taken as a 5-bit, 2's complement integer, it is sign-extended to
16 bits before it is used. Range: —16..15.

LABEL An assembly language construct that identifies a location symbolically (i.e., by mears
of a name, rather than its 16-bit address).

memCaddress] Denotes the contents of memory at the given address.
offset6 A 6-bit value; bits [5 :0] of an instruction; used with the Base+offset addressing mcc:

Bits [5 : 0] are taken as a 6-bit signed 2's complement integer, sign-extended to
16 bits and then added to the Base Register to form an address. Range: - 3 2 . . 3 1 .

PC Program Counter; 16-bit register that contains the memory address of the next
instruction to be fetched. For example, during execution of the instruction at addres
A, the PC contains address A + 1, indicating the next instruction is contained in
A + 1.

PCoffset9 A 9-bit value; bits [8 :0] of an instruction; used with the PC+offset addressing mode-
Bits [8 : 0] are taken as a 9-bit signed 2's complement integer, sign-extended to 16
bits and then added to the incremented PC to form an address. Range -256 . . 255 .

PCo f f se t l l An 11-bit value; bits [10 :0] of an instruction; used with the JSR opcode to compute
the target address of a subroutine call. Bits [10:03 are taken as an 11-bit 2's
complement integer, sign-extended to 16 bits and then added to the incremented P~.
to form the target address. Range - 1 0 2 4 . . 1 0 2 3 .

PSR Processor Status Register; 16-bit register that contains status information of the
process that is running. PSRC15] = privilege mode. PSR[2:0] contains the condit :
codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P.

setccO Indicates that condition codes N, Z, and P are set based on the value of the result
written to DR. If the value is negative, N = 1, Z = 0, P = 0. If the value is zero,
N = 0, Z = 1, P = 0. If the value is positive, N = 0, Z = 0, P = 1.

SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times as necessar, :
extend A to 16 bits. For example, if A = 110000, then SEXT(A) = 1111 1111
1111 0000.

SP The current stack pointer. R6 is the current stack pointer. There are two stacks, one
for each privilege mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1.

SR, SRI , SR2 Source Register; one of R0..R7 which specifies the register from which a source
operand is obtained.

SSP The Supervisor Stack Pointer.
trapvect8 An 8-bit value; bits [7 :0] of an instruction; used with the TRAP opcode to determine

the starting address of a trap service routine. Bits [7 : 0] are taken as an unsigned
integer and zero-extended to 16 bits. This is the address of the memory location
containing the starting address of the corresponding service routine. Range 0..255.

USP The User Stack Pointer.
ZEXT(A) Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. F ;

example, if A = 110000, then ZEXT(A) = 0000 0000 0011 0000.

A.3 The Instruction Set 525

ADD+

ADD+

AND+

AND+

BR

JMP

JSR

JSRR

LD+

LDI +

LDR+

LEA+

NOT +

RET

RTI

ST

STI

STR

TRAP

reserved

F igu re A . 2 Format of the entire LC-3 instruct ion set. Note: + indicates instructions that
modi fy condi t ion codes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I

0001
I I I

I I
DR

I I
SR1
i i

0
i

0 0
I

i i
SR2
i i

I I I
0001

I I I

I I
DR

i i
SR1
i i

1
I I I I

imm5
i i i i

I I I
0101

I I I

I I
DR

i i
SR1
i i

0 0 0
i i
SR2
i i

I I I
0101

I I I

i i
DR
i i

SR1
i i

1
i i i i

imm5
i i i i

I I I
0000

I I I
n z P

i i i i i i i i
PCoffset9

i i i i i i i i
I I I

1100
I I I

i i
000
I I

BaseR
i i

I I I I I
000000

0100
I I I

1
i i i i i i i i i i

PCoffsetl 1 i i i i i i i i i i
j I I

0100
I I I

0
i

0 0
I

i i
BaseR
i i

I I I I I
000000

I I I I I
I I I

0010
I I I

I I
DR
i i

i i i i i i i i
PCoffset9

i i i i i i i i
I I I

1010
I I I

i i
DR

i i

i i i i i i i i
i PCoffset9

I I I
I I I

0110 I I I

i i
DR BaseR

i i

I I I I I
offset6

i i i i i

1110
I I I

i i
DR

i i i i i i i i
PCoffset9

I I I
1001

I i I

t i
DR

i i
SR
i i

i i i i i
111111

i i i i i

1100
I I I

i i
000
I I

i i
111
i i

i i i i
000000

I I I I I
I I I

1000
I I I

I I I I I I I I I I I
000000000000

I
I I I

0011
I I I

I I
SR
I I

PCoffset9
i i i i i i i i

I I I
1011 SR

i i

i i i i i i i i
PCoffset9

i = . I I I
I I I

0111
I I I

SR
i i

i i
BaseR
i i

I I I I I
offset6

i i i i i
I I I

1111
I I I

1 1 ! 1 1 1 1 1 1 1
0000 trapvect8

i i i
I I I

1101
I I I

i i i i i

i i i i i i i i i i i

526 appendix a The LC-3 ISA

A D D Addition

Assembler Formats

ADD DR, SR1,SR2
ADD DR, SRI, imm5

Encodings
15 12 11 9 8 6 5 4 3 2 0

1 1
0001

1 1

1 1
DR

i i

CO

0 00
1 1
SR2
i i

15 12 11 9 8 6 5 4 0
i i i

0001
1 1

1 1
DR

i i

i i
SRI
i i

1
i i i i

i m m 5
i i i i

Operation

if (bit [5] = = 0)
DR - SRI + SR2 ;

else
DR = SRI + SEXT (imm5) ;

setcc();

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the
second source operand is obtained by sign-extending the imm5 field to 16 bits.
In both cases, the second source operand is added to the contents of SRI and the
result stored in DR. The condition codes are set, based on whether the result is
negative, zero, or positive.

Examples

ADD R2, R3, R4 ; R2 R3 + R4
ADD R2, R3, #7 ; R2 R3 + 7

A.3 The Instruction Set 527

AND
Assembler Formats

AND DR, SRI, SR2
AND DR, SRl , imm5

Encodings

1 1 1
0101

1 1 1

i i
DR

i i
SRI
i i

0
I

00
i i
SR2
i i

15 12 11 9 8 6 5 4 0
1 1

0101
1 1 1

1 1
DR

1 I
SRI
i i

1
i i l i

i m m 5
i i i i

Operation

if (bit [5] = = 0}
DR - SRI AND SR2;

e l s e
DR - SRI AND SEXT(imm5) ;

s e t c c () ;

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the
second source operand is obtained by sign-extending the imm5 field to 16 bits.
In either case, the second source operand and the contents of SRI are bit-wise
ANDed, and the result stored in DR. The condition codes are set, based on whether
the binary value produced, taken as a 2's complement integer, is negative, zero,
or positive.

Examples

AND R2, R3, R4 ;R2 R3 AND R4
AND R2, R3, #7 ;R2 R3 AND 7

Bit-wise Logical AND

528 appendix a The LC-3 ISA

BR
Assembler Formats

BRn LABEL BRzp
BRz LABEL BRnp
BRp LABEL BRnz
BR1" LABEL BRnzp

LABEL
LABEL
LABEL
LABEL

Conditional Branch

Encoding
15 12 11 10 9 8 0

I I I
0000

1 1 1
n z P

i i I 1 1 1 1 1
PCoffset9

i i i i > i i i

Operation

if ((n AND N) OR (z AND Z) OR (p AND P))
PC - PC:: + SEXT (PCof fset9) ;

Description

The condition codes specified by the state of bits [11:9] are tested. If bit [11] is
set, N is tested; if bit [11] is clear, N is not tested. If bit [10] is set, Z is tested, etc.
If any of the condition codes tested is set, the program branches to the location
specified by adding the sign-extended PCoffset9 field to the incremented PC.

Examples

BRzp LOOP ; Branch to LOOP if the last result was zero or positive.
BR+ NEXT ; Unconditionally branch to NEXT.

"^The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the
target address.
i Th is is the incremented PC.

A.3 The Instruction Set 541

J M P Jump

R E T Return from Subroutine

Assembler Formats

JMP BaseR
RET

Encoding

J M P

RET

Operation

PC = BaseR;

Description

The program unconditionally jumps to the location specified by the contents of
the base register. Bits [8:6] identify the base register.

Examples

JMP R2 ; PC R2
RET ; PC R7

Note

The RET instruction is a special case of the JMP instruction. The PC is loaded
with the contents of R7, which contains the linkage back to the instruction
following the subroutine call instruction.

15 12 11 9 8 6 5 0
1 1 1

1100
1 1 1

1 1
0 0 0
1 1

1 1
BaseR
i i

1 1 i i i
0 0 0 0 0 0

15 12 11 9 8 6 5 o

1 i
1100

1 1 1

1 1
0 0 0
1 1

i i
111
i i

1 1 1 I 1
0 0 0 0 0 0

1 1 1 1 1

530 appendix a The LC-3 ISA

Jump to Subroutine

JSRR
Assembler Formats

JSR LABEL
JSRR BaseR

Encoding
15 12 11 10 0

JSR
I I

0100
1 1

1
1 [1 I 1 1 1 1 1 1

PCoffset 11
1 ! 1 1

15 12 11 10 9 8 6 5 0

JSRR
1 1

0100
1 1

0
1

00
1 1

BaseR
i i

l 1 l i i
000000

! I 1 1 1

Operation

TEMP - PC ; '
if (bit [11] ~ = 0}

PC = BaseR;
else

PC - PC' + SEXT(PCoffset11! ;
R7 - TEMP;

Description

First, the incremented PC is saved in a temporary location. Then the PC is loaded
with the address of the first instruction of the subroutine, causing an unconditional
jump to that address. The address of the subroutine is obtained from the base
register (if bit [11] is 0), or the address is computed by sign-extending bits [10:0]
and adding this value to the incremented PC (if bit [11] is 1). Finally, R7 is loaded
with the value stored in the temporary location. This is the linkage back to the
calling routine.

Examples

JSR QUEUE ; Put the address of the instruction following JSR into R7;
; Jump to QUEUE.

JSRR R3 ; Put the address following JSRR into R7; Jump to the
; address contained in R3.

f This is the incremented PC.

A.3 The Instruction Set 531

LD Load

Assembler Format

LD DR, LABEL

Encoding
15 1 2 11

0010 DR PCoffset9

Operation

DR = mem [PC

set.cc () ;
;XT (?Cof f set9')] ;

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. The contents of memory at this address are loaded
into DR. The condition codes are set, based on whether the value loaded is
negative, zero, or positive.

Example

LD R4, VALUE ; R4 mem[VALUE]

' T h i s is the incremented PC.

544 appendix a The LC-3 ISA

LDI
Assembler Format

LDI DR, LABEL

Load Indirect

Encoding
15 12 11 9 8

i r

1010
J L

i r

DR
J L

i 1 1 1 1 1 1 r
PCoffset9

i i i i i i i i

Operation

DR = mem [mem [PC~;' + SEXT fPCof f s e t 9) 1] ;
s e t c c () ;

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. What is stored in memory at this address is the
address of the data to be loaded into DR. The condition codes are set, based on
whether the value loaded is negative, zero, or positive.

Example

LDI R4, ONEMORE ; R4 mem[mem[ONEMORE]]

f This is the incremented PC.

LDR
Assembler Format

LDR DR, BaseR, offset6

Encoding

A.3 The Instruction Set

Load Base+offset

15 12 11 9 8 6 5 0
1 1 1

o n o
i i i

1 1

DR
1 1

BaseR
I I 1 1 1

offset6
i i i i i

Operation

DR = mem [BaseR 4 SEXT (of f set6)] ;
setcc(};

Description

An address is computed by sign-extending bits [5:0] to 16 bits and adding this
value to the contents of the register specified by bits [8:6]. The contents of memory
at this address are loaded into DR. The condition codes are set, based on whether
the value loaded is negative, zero, or positive.

Example

LDR R4, R2, # - 5 ; R4 mem[R2 - 5]

534 appendix a The LC-3 ISA

LEA
Assembler Format

LEA DR, LABEL

Load Effective Address

Encoding
15 12 11 9 8

1110
i r

OR
i I r i i

PCoffset9

Operation

DR ~ PC7 + SEXT(PCoffset 9) ;
setcc 0 ;

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC. This address is loaded into DR.4" The condition
codes are set, based on whether the value loaded is negative, zero, or positive.

Example

LEA R4, TARGET ; R4 address of TARGET.

f This is the incremented PC.
+ The LEA instruction does not read memory to obtain the information to load into DR. The address
itself is loaded into DR.

NOT
A.3 The Instruction Set

Bit-Wise Complement

535

Assembler Format

NOT DR, SR

Encoding
15 12 11 9 8 6 5 4 3 2 0 i I I

1001
1 1 1

i i
DR
i i

CO

ZD

1

i i i i
1 1 1 1 1

i i i i

Operation

DR = NOT (S R) /

set.cc () ;

Description

The bit-wise complement of the contents of SR is stored in DR. The condi-
tion codes are set, based on whether the binary value produced, taken as a 2's
complement integer, is negative, zero, or positive.

Example

NOT R4, R2 ; R4 NOT(R2)

appendix a The LC-3 ISA

p ^ y t Return from Subroutine

Assembler Format

RET

Encoding
15 12 11 9 8 6 5 0

1 1
1100

1 1

1 1
000
1 1

1 1
111
1 1

1 1 1 1 1
000000

1 1 1 1 1

Operation

PC - R7;

Description

The PC is loaded with the value in R7. This causes a return from a previous JSR
instruction.

Example

RET ; PC R7

fThe RET instruction is a specific encoding of the J M P instruction. See also JMP.

Return from Interrupt

0

Operation
if (PSR [15] = = 0)

PC = mem[R6J ; R6 is the SSP
R6 - R6 + 1;
TEMP = mem [R6] ;
R6 = R6 + 1 ;
PSR = TEMP; the privilege mode and condition codes of
the interrupted process are restored

else
Initiate a privilege mode exception;

Description
If the processor is running in Supervisor mode, the top two elements on the
Supervisor Stack are popped and loaded into PC, PSR. If the processor is running
in User mode, a privilege mode violation exception occurs.

Example
RTI ; PC, PSR top two values popped off stack.

Note
On an external interrupt or an internal exception, the initiating sequence first
changes the privilege mode to Supervisor mode (PSR[15] = 0). Then the PSR
and PC of the interrupted program are pushed onto the Supervisor Stack before
loading the PC with the starting address of the interrupt or exception service
routine. Interrupt and exception service routines run with Supervisor privilege.
The last instruction in the service routine is RTI, which returns control to the
interrupted program by popping two values off the Supervisor Stack to restore
the PC and PSR. In the case of an interrupt, the PC is restored to the address of the
instruction that was about to be processed when the interrupt was initiated. In the
case of an exception, the PC is restored to either the address of the instruction
that caused the exception or the address of the following instruction, depending
on whether the instruction that caused the exception is to be re-executed. In the
case of an interrupt, the PSR is restored to the value it had when the interrupt was
initiated. In the case of an exception, the PSR is restored to the value it had when
the exception occurred or to some modified value, depending on the exception.
See also Section A.4.

If the processor is running in User mode, a privilege mode violation exception
occurs. Section A.4 describes what happens in this case.

RTI
Assembler Format

RTI

Encoding
15 12 11 —i r

1000
1 I

i 1 1 1 1 1 r
000000000000

J L

550 appendix a The LC-3 ISA

ST Store

Assembler Format

ST SR, LABEL

Encoding
15 12 11 9 8

0011
I I I

SR PCoffset9

Operation

mem [PC"" + SEXT (PCof f sec9)] — SR;

Description

The contents of the register specified by SR are stored in the memory location
whose address is computed by sign-extending bits [8:0] to 16 bits and adding this
value to the incremented PC.

Example

ST R4, HERE ; mem [HERE] R4

f This is the incremented PC.

A.3 The Instruction Set 539

S T I Store Indirect

Assembler Format

STI SR, LABEL

Encoding
15 12 j 11 9 J 8 0

1 i 1
1011

1 1

1 1
SR
i i

1 I l i l i i i
PCoffset9

i i i i i i i i

Operation

mem [mem [PCV + SEXT (PCof f set.9) 1 j — SR;

Description

The contents of the register specified by SR are stored in the memory location
whose address is obtained as follows: Bits [8:0] are sign-extended to 16 bits and
added to the incremented PC. What is in memory at this address is the address of
the location to which the data in SR is stored.

Example

STI R4, NOT_HERE ; mem [mem [NOT_HERE]] R4

' This is the incremented PC.

540 appendix a The LC-3 ISA

STR Store Base+offset

Assembler Format

STR SR, BaseR, offset6

Encoding
15 12 11 9 8 6 5 1 1

0111
1 1

1 1
SR
1 1

1 1
BaseR
i i

i i i i i
offset6

Operation

mem[BaseR + SEXT(offsets)] = SR;

Description

The contents of the register specified by SR are stored in the memory location
whose address is computed by sign-extending bits [5:0] to 16 bits and adding this
value to the contents of the register specified by bits [8:6].

Example

STR R4, R2, #5 ; mem[R2 + 5] R4

A.3 The Instruction Set 5 4 1

TRAP
Assembler Format

TRAP trapvector8

System Call

Encoding
15 12 11 8 7
i 1 r
i m

i — i —
0000

i 1 1 1 1 r
trapvect8

J L J L

Operation

R7 - PC;''
PC - mem[ZEXT(trapvectS)] ;

Description

First R7 is loaded with the incremented PC. (This enables a return to the instruction
physically following the TRAP instruction in the original program after the service
routine has completed execution.) Then the PC is loaded with the starting address
of the system call specified by trapvector8. The starting address is contained in
the memory location whose address is obtained by zero-extending trapvector8 to
16 bits.

Example

TRAP x23 ; Directs the operating system to execute the IN system call.
; The starting address of this system call is contained in
; memory location x0023.

Note

Memory locations xOOOO through xOOFF, 256 in all, are available to contain
starting addresses for system calls specified by their corresponding trap vectors.
This region of memory is called the Trap Vector Table. Table A.2 describes the
functions performed by the service routines corresponding to trap vectors x20
to x25.

' This is the incremented PC.

554 appendix a The LC-3 ISA

Unused Opcode
Assembler Format

none

Encoding

15 12 11 0 |
[——i 1 1 1 1 i i r i r~ i i i
1101

i i i I i i i i i i i i i 1 1

Operation

Initiate an illegal opcode exception.

Description

If an illegal opcode is encountered, an illegal opcode exception occurs.

Note

The opcode 1101 has been reserved for future use. It is currently not defined. If
the instruction currently executing has bits [15:12] = 1101, an illegal opcode
exception occurs. Section A.4 describes what happens.

A.4 Interrupt and Exception Processing 543

Service Routines

Trap Vector Assembler Name Description

x20

x21
x22

x23

x24

GETC

OUT
PUTS

IN

PUTSP

x25 HALT

Read a single character f rom the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

Wri te a character in R0E7:0] to the console display.
Wri te a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Wri t ing terminates with the occurrence of xOOOO in a
memory location.

Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

Wri te a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7 :0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15 :8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written wi l l have xOO in bits [15:8J of the memory
location containing the last character to be written.) Wri t ing terminates with the
occurrence of xOOOO in a memory location.

Halt execution and print a message on the console.

svice Register Assignments

Address I/O Register Name I/O Register Function

xFEOO Keyboard status register

xFE02 Keyboard data register

xFE04 Display status register

xFE06 Display data register

xFFFE Machine control register

Also known as KBSR. The ready bit (bit [15]) indicates if
the keyboard has received a new character.

Also known as KBDR. Bits [7 : 0] contain the last
character typed on the keyboard.

Also known as DSR. The ready bit (bit [15]) indicates if
the display device is ready to receive another character
to print on the screen.

Also known as DDR. A character written in the low byte
of this register wil l be displayed on the screen.

Also known as MCR. Bit [1 5] is the clock enable bit.
When cleared, instruction processing stops.

1.4 Interrupt and Exception Processing
Events external to the program that is running can interrupt the processor. A
common example of an external event is interrupt-driven I/O. It is also the case
that the processor can be interrupted by exceptional events that occur while the
program is running that are caused by the program itself. An example of such an
"internal" event is the presence of an unused opcode in the computer program
that is running.

Associated with each event that can interrupt the processor is an 8-bit vector
that provides an entry point into a 256-entry interrupt vector table. The starting
address of the interrupt vector table is xOlOO. That is, the interrupt vector table

544 appendix a The LC-3 ISA

occupies memory locations xOlOO to xOlFF. Each entry in the interrupt vector
table contains the starting address of the service routine that handles the needs of
the corresponding event. These service routines execute in Supervisor mode.

Half (128) of these entries, locations xOlOO to x017F, provide the starting
addresses of routines that service events caused by the running program itself.
These routines are called exception service routines because they handle excep-
tional events, that is, events that prevent the program from executing normally. The
other half of the entries, locations xO 180 to xO 1FF, provide the starting addresses
of routines that service events that are external to the program that is running, such
as requests from I/O devices. These routines are called interrupt service routines.

A.4.1 Interrupts
At this time, an LC-3 computer system provides only one I/O device that can
interrupt the processor. That device is the keyboard. It interrupts at priority level
PL4 and supplies the interrupt vector x80.

An I/O device can interrupt the processor if it wants service, if its Interrupt
Enable (IE) bit is set, and if the priority of its request is greater than the priority
of the program that is running.

Assume a program is running at a priority level less than 4, and someone
strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently executing
program is interrupted at the end of the current instruction cycle. The interrupt
service routine is initiated as follows:

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0).
2. The processor sets the priority level to PL4, the priority level of the

interrupting device (PSR[10:8] = 100).
3. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already

contain the SSP.
4. The PSR and PC of the interrupted process are pushed onto the Supervisor

Stack.
5. The keyboard supplies its 8-bit interrupt vector, in this case x80.
6. The processor expands that vector to x0180, the corresponding 16-bit

address in the interrupt vector table.
7. The PC is loaded with the contents of memory location x0180, the address

of the first instruction in the keyboard interrupt service routine.

The processor then begins execution of the interrupt service routine.
The last instruction executed in an interrupt service routine is RTI. The top two

elements of the Supervisor Stack are popped and loaded into the PC and PSR reg-
isters. R6 is loaded with the appropriate stack pointer, depending on the new value
of PSR[15]. Processing then continues where the interrupted program left off.

A.4.2 Exceptions
At this time, the LC-3 ISA specifies two exception conditions: privilege mode
violation and illegal opcode. The privilege mode violation occurs if the processor

A.4 Interrupt and Exception Process'";

encounters the RTI instruction while running in User mode. The illegal opcode
exception occurs if the processor encounters the unused opcode (Bits [15:12] =
1101) in the instruction it is is processing.

Exceptions are handled as soon as they are detected. They are initiated very
much like interrupts are initiated, that is:

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0).
2. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already

contain the SSP.
3. The PSR and PC of the interrupted process are pushed onto the Supervisor

Stack.
4. The exception supplies its 8-bit vector. In the case of the Privilege mode vio-

lation, that vector is xOO. In the case of the illegal opcode, that vector is xOl.
5. The processor expands that vector to xOlOO or xOlOl, the corresponding

16-bit address in the interrupt vector table.
6. The PC is loaded with the contents of memory location xOlOO or xOlOl,

the address of the first instruction in the corresponding exception service
routine.

The processor then begins execution of the exception service routine.
The details of the exception service routine depend on the exception and the

way in which the operating system wishes to handle that exception.
In many cases, the exception service routine can correct any problem caused

by the exceptional event and then continue processing the original program. In
those cases the last instruction in the exception service routine is RTI, which pops
the top two elements from the Supervisor Stack and loads them into the PC and
PSR registers. The program then resumes execution with the problem corrected.

In some cases, the cause of the exceptional event is so catastrophic that the
exception service routine removes the program from further processing.

Another difference between the handling of interrupts and the handling of
exceptions is the priority level of the processor during the execution of the service
routine. In the case of exceptions, we normally do not change the priority level
when we service the exception. The priority level of a program is the urgency
with which it needs to be executed. In the case of the two exceptions specified by
the LC-3 ISA, the urgency of a program is not changed by the fact that a privilege
mode violation occurred or there was an illegal opcode in the program.

From LC-3 fo x86

As you know, the ISA of the LC-3 explicitly specifies the interface between what
the LC-3 machine language programmer or LC-3 compilers produce and what
a microarchitecture of the LC-3 can accept and process. Among those things
specified are the address space and addressability of memory, the number and
size of the registers, the format of the instructions, the opcodes, the data types
that are the encodings used to represent information, and the addressing modes
that are available for determining the location of an operand.

The ISA of the microprocessor in your PC also specifies an interface between
the compilers and the microarchitecture. However, in the case of the PC, the ISA
is not the LC-3. Rather it is the x86. Intel introduced the first member of this ISA
in 1979. It was called the 8086, and the "normal" size of the addresses and data
elements it processed was 16 bits. The typical size of addresses and data today is
32 bits. From the 8086 to the present time, Intel has continued implementations
of this ISA, the 80286 (in 1982), 386 (in 1985), 486 (in 1989), Pentium (in
1992), Pentium Pro (in 1995), Pentium II (in 1997), Pentium III (in 1999), and
Pentium IV (in 2001).

The ISA of the x86 is much more complicated than that of the LC-3. There
are more opcodes, more data types, more addressing modes, a more complicated
memory structure, and a more complicated encoding of instructions into 0s and
Is. However, fundamentally, they have the same basic ingredients.

You have spent a good deal of time understanding computing within the
context of the LC-3. Some may feel that it would be good to learn about a real
ISA. One way to do that would be to have some company such as Intel mass-
produce LC-3s, some other company like Dell use them in their PCs, and a third
company such as Microsoft compile Windows NT into the ISA of the LC-3. An
easier way to introduce you to a real ISA is by way of this appendix.

We present here elements of the x86, a very complicated ISA. We do so in
spite of its complexity, because it is the most pervasive of all ISAs available in
the marketplace.

We make no attempt to provide a complete specification of the x86 ISA.
That would require a whole book by itself, and to appreciate it, a deeper under-
standing of operating systems, compilers, and computer systems than we think
is reasonable at this point in your education. If one wants a complete treatment,
we recommend Intel Architecture Software Developer's Manual, volumes 1, 2,
and 3, published by Intel Corporation, 1997. In this appendix, we restrict our-
selves to some of the characteristics that are relevant to application programs.
Our intent is to give you a sense of the richness of the x86 ISA. We introduce

5 4 8 appendix b From LC-3 to x8fe

these characteristics within the context of the LC-3 ISA, an ISA with which you
are familiar.

B.l LC-3 Features and Corresponding x8G Features
B. l . l Instruction Set
An instruction set is made up of instructions, each of which has an opcode and
zero or more operands. The number of operands depends on how many are needed
by the corresponding opcode. Each operand is a data element and is encoded
according to its data type. The location of an operand is determined by evaluating
its addressing mode.

The LC-3 instruction set contains one data type, 15 opcodes, and three
addressing modes: PC-relative (LD, ST), indirect (LDI, STI), and register-plus-
offset (LDR, STR). The x86 instruction set has more than a dozen data types,
over a hundred opcodes, and more than two dozen addressing modes (depending
on how you count).

Data Types

Recall that a data type is a representation of information such that the ISA provides
opcodes that operate on information that is encoded in that representation.

The LC-3 supports only one data type, 16-bit 2's-complement integers. This is
not enough for efficient processing in the real world. Scientific applications need
numbers that are represented by the floating point data type. Multimedia applica-
tions require information that is represented by a different data type. Commercial
applications written years ago, but still active today, require an additional data
type, referred to as packed decimal. Some applications require a greater range of
values and a greater precision of each value than other applications.

As a result of all these requirements, the x86 is designed with instructions that
operate on (for example) 8-bit integers, 16-bit integers, and 32-bit integers, 32-
bit floating point numbers and 64-bit floating point numbers, 64-bit multimedia
values and 128-bit multimedia values. Figure B.l shows some of the data types
present in the x86 ISA.

Opcodes

The LC-3 comprises 15 opcodes; the x86 instruction set comprises more than
200 opcodes. Recall that the three basic instruction types are operates, data
movement, and control. Operates process information, data movement opcodes
move information from one place to another (including input and output), and
control opcodes change the flow of the instruction stream.

In addition, we should add a fourth category to handle functions that must
be performed in the real world because a user program runs in the context of an
operating system that is controlling a computer system, rather than in isolation.
These instructions deal with computer security, system management, hardware
performance monitoring, and various other issues that are beyond what the typicai
application program pays attention to. We will ignore those instructions in this

B . l LC-3 Features and Corresponding x86 Features 560

Integer:
7 0
IS; I
15
Is;
31
is!

Unsigned Integer:
7 0
I I
15
I
31

BCD Integer:
20 16 12

digit N

Packed BCD:

digit 2 digit 1 digit 0

12 8 4 0

digit digit
N N - 1

digit digit digit digit
3 2 1 0

Floating Point:
31 22

exponent
63 51

fraction

exponent
79 63

fraction

exponent fraction

Bit String:
.. X + 4 X + 3 X + 2 X + 1 address X

length of bit string-
last bit bitO

M M X Data Type:
63 48 32 16 0

element 3

63 56 48

element 2

40 32

element 1

24 16

element 0

8 0

7 6 5 4

F i g u r e B . l A sample of x 8 6 da ta types

1 element 0

5 5 0 appendix b From LC-3 to x8fe

appendix, but please note that they do exist, and you will see them as your studies
progress.

Here we will concentrate on the three basic instruction types: operates, data
movement, and control.

Operates The LC-3 has three operate instructions: ADD, AND, and NOT The
ADD opcode is the only LC-3 opcode that performs arithmetic. If one wants to
subtract, one obtains the negative of an operand and then adds. If one wants
to multiply, one can write a program with a loop to ADD a number some specified
number of times. However, this is too time-consuming for a real microprocessor.
So the x86 has separate SUB and MUL, as well as DIV, INC (increment), DEC
(decrement), and ADC (add with carry), to name a few.

A useful feature of an ISA is to extend the size of the integers on which it can
operate. To do this one writes a program to operate on such long integers. The
ADC opcode, which adds two operands plus the carry from the previous add, is
a very useful opcode for extending the size of integers.

In addition, the x86 has, for each data type, its own set of opcodes to operate
on that data type. For example, multimedia instructions (collectively called the
MMX instructions) often require saturating arithmetic, which is very different
from the arithmetic we are used to. PADDS is an opcode that adds two operands
with saturating arithmetic.

Saturating arithmetic can be explained as follows: Suppose we represent the
degree of grayness of an element in a figure with a digit from 0 to 9, where 0 is
white and 9 is black. Suppose we want to add some darkness to an existing value
of grayness of that figure. An element could start out with a grayness value of
7, and we might wish to add a 5 worth of darkness to it. In normal arithmetic,
7 + 5 is 2 (with a carry), which is lighter than either 7 or 5. Something is wrong!
With saturating arithmetic, when we reach 9, we stay there—we do not generate
a carry. So, for example, 7 + 5 = 9 and 9 + n = 9. Saturating arithmetic is a
different kind of arithmetic, and the x86 has opcodes (MMX instructions) that
perform this type of arithmetic.

Scientific applications require opcodes that operate on values represented
in the floating point data type. FADD, FMUL, FSIN, FSQRT are examples of
floating point opcodes in the x86 ISA.

The AND and NOT opcodes are the only LC-3 opcodes that perform logical
functions. One can construct any logical expression using these two opcodes.
However, as is the case with arithmetic, this also is too time-consuming. The x86
has in addition separate OR, XOR, AND-NOT, and separate logical operators for
different data types.

Furthermore, the x86 has a number of other operate instructions that set and
clear registers, convert a value from one data type to another, shift or rotate the
bits of a data element, and so on.

Table B.l lists some of the operate opcodes in the x86 instruction set.

Data Movement The LC-3 has seven data movement opcodes: LD, LDI, ST,
STI, LDR, STR, and LEA. Except for LEA, which loads an address into a register,

B . l LC-3 Features and Corresponding x86 Features 5 5 1

lerate Instructions, x86 ISA

Instruction Explanation

ADC x. y x, y, and the carry retained f rom the last relevant operation (in CF) are added and
the result stored in x.

M U L x The value in EAX is mult ip l ied by x, and the result is stored in the 64-bi t register
formed by EDX, EAX.

SAR x x is ar i thmetic r ight is shifted n bits, and the result is stored in x. The value of n can
be 1, an immediate operand, or the count in the CL register.

XOR x. y A bit-wise exclusive-OR is performed on x. y and the result is stored in x.
DAA Af ter adding two packed decimal numbers, AL contains two BCD values, which may

be incorrect due to propagation of the carry bit after 15, rather than after 9. DAA
corrects the two BCD digits in AL .

FSIN The top of the stack (call it x) is popped. The sin(x) is computed and pushed onto the
stack.

FADD The top two elements on the stack are popped, added, and their result pushed onto
the stack.

PAN DIM x. y A bit-wise AND-NOT operation is performed on M MX values x. y, and the result is
stored in x.

PADDS x, y Saturat ing addit ion is performed on packed M M X values x. y, and the result is stored
in x.

they copy information between memory (and memory-mapped device registers)
and the eight general purpose registers, RO to R7.

The x86 has, in addition to these, many other data movement opcodes. XCHG
can swap the contents of two locations. PUSHA pushes all eight general purpose
registers onto the stack. IN and OUT move data between input and output ports
and the processor. CMOVcc copies a value from one location to another only if
a previously computed condition is true.

Table B.2 lists some of the data movement opcodes in the x86 instruction set.

(a Movement Instructions, x86 ISA

Instruction Explanation

MOV x, y The value stored in y is copied into x.
XCHG x. y The values stored in x and y are swapped.
PUSHA Al l the registers are pushed onto the top of the stack.
MOVS The element in the DS segment pointed to by ESI is copied into the location in the ES

segment pointed to by EDI. Af ter the copy has been performed, ESI and EDI are
both incremented.

REP MOVS Perform the MOVS. Then decrement ECX. Repeat this instruction until ECX = 0.
(This allows a string to be copied in a single instruction, after in i t ia l iz ing ECX.)

LODS The element in the DS segment pointed to by ESI is loaded into EAX, and ESI is
incremented or decremented, according to the value of the DF flag.

INS Data f rom the I/O port specified by the DX register is loaded into the EAX register (or
AX or AL , if the size of the data is 16 bits or 8 bits, respectively).

CMOVZ x, y I f ZF = 1, the value stored in y is copied into x. I f ZF = 0, the instruction acts like a
no-op.

LEA x. y The address y is stored in x. This is very much like the LC-3 instruction of the same
name.

563 appendix b From LC-3 to x8fe

Control Instructions, x86 ISA

Instruction Explanation

J M P x IP is loaded wi th the address x. This is very much like the LC-3 instruction of the same
name.

CALL x The IP is pushed onto the stack, and a new IP is loaded wi th x.
RET The stack is popped, and the value popped is loaded into IP.
LOOP x ECX is decremented. I f ECX is not 0 and ZF - 1, the IP is loaded wi th x.
INT n The value n is an index into a table of descriptors that specify operating system service

routines. The end result of this instruction is that IP is loaded wi th the start ing result
of the corresponding service routine. This is very much like the TRAP instruction in
the LC-3.

Control The LC-3 has five control opcodes: BR, JSR/JSRR, JMP, RTI, and
TRAP. x86 has all these and more. Table B.3 lists some of the control opcodes in
the x86 instruction set.

Two Address versus Three Address

The LC-3 is a three-address ISA. This description reflects the number of operands
explicitly specified by the ADD instruction. An add operation requires two source
operands (the numbers to be added) and one destination operand, to store the
result. In the LC-3, all three must be specified explicitly, hence the name three-
address ISA.

Even if the same location is to be used both for one of the sources and for
the destination, the three addresses are all specified. For example, the LC-3 ADD
R1,R1,R2 identifies Rl as both a source and the destination.

The x86 is a two-address ISA. Since the add operation needs three operands,
the location of one of the sources must also be used to store the result. For example,
the corresponding ADD instruction in the x86 ISA would be ADD EAX, EBX.
(EAX and EBX are names of two of the eight general purpose registers.) EAX
and EBX are the sources, and EAX is the destination.

Since the result of the operate is stored in the location that originally contained
one of the sources, that source operand is no longer available after that instruction
is executed. If that source operand is needed later, it must be saved before the
operate instruction is executed.

Memory Operands

A major difference between the LC-3 instruction set and the x86 instruction set
is the restriction on where operate instructions can get their operands. An LC-3
operate instruction must obtain its source operands from registers and write the
result to a destination register. An x86 instruction, on the other hand, can obtain
one of its sources from memory and/or write its result to memory. In other words,
the x86 can read a value from memory, operate on that value, and store the result
in memory all in a single instruction. The LC-3 cannot.

The LC-3 program requires a separate load instruction to read the value from
memory before operating on it, and a separate store instruction to write the result

B . l LC-3 Features and Corresponding x86 Features 553

in memory after the operate instruction. An ISA, like the LC-3, that has this
restriction is called a load-store ISA. The x86 is not a load-store ISA.

B.1.2 Memory
The LC-3 memory consists of 216 locations, each containing 16 bits of informa-
tion. We say the LC-3 has a 16-bit address space, since one can uniquely address
its 216 locations with 16 bits of address. We say the LC-3 has an addressability
of 16 bits, since each memory location contains 16 bits of information.

The x86 memory has a 32-bit address space and an addressability of eight bits.
Since one byte contains eight bits, we say the x86 memory is byte addressable.
Since each location contains only eight bits, four contiguous locations in memory
are needed to store a 32-bit data element, say locations X, X + l , X+2, and X+3.
We designate X as the address of the 32-bit data element. In actuality, X only
contains bits [7:01, X + l contains bits [15:8], X+2 contains bits [23:16], and
X + 3 contains bits [31:24] of the 32-bit value.

One can determine an LC-3 memory location by simply obtaining its address
from the instruction, using one of the three addressing modes available in the
instruction set. An x86 instruction has available to it more than two dozen address-
ing modes that it can use to specify the memory address of an operand. We examine
the addressing modes in Section B.2 in the context of the x86 instruction format.

In addition to the larger number of addressing modes, the x86 contains a
mechanism called segmentation that provides a measure of protection against
unwanted accesses to particular memory addresses. The address produced by an
instruction's addressing mode, rather than being an address in its own right, is
used as an address within a segment of memory. Access to that memory location
must take into account the segment register that controls access to that segment.
The details of how the protection mechanism works will have to wait for later in
your studies.

However, Figure B.2 does show how an address is calculated for the
register+offset addressing mode, both for the LC-3, and for the x86, with segmen-
tation. In both cases, the opcode is to move data from memory to a general purpose
register. The LC-3 uses the LDR instruction. The x86 uses the MOV instruction.
In the case of the x86, the address calculated is in the DS segment, which is
accessed via the DS register. That access is done through a 16-bit selector, which
indexes into a segment descriptor table, yielding the segment descriptor for that
segment. The segment descriptor contains a segment base register and a segment
limit register, and the protection information. The memory address obtained from
the addressing mode of the instruction is added to the segment base register to
provide the actual memory address, as shown in Figure B.2.

B.1.3 Internal State
The internal state of the LC-3 consists of eight 16-bit general purpose registers,
RO to R7, a 16-bit PC, and a 16-bit PSR that specifies the privilege mode, priority,
and three 1-bit condition codes (N, Z, and P). The user-visible internal state of

554 appendix b From LC-3 to x8fe

LC-3 instruction: Base Offset

x86 instruction: Mod R/M 4-byte displacement

F i g u r e B . 2 Regis ter+of fset addressing mode in LC-3 and x 8 6 ISAs

B.L LC-3 Features and Corresponding x86 Features 566

the x86 consists of application-visible registers, an Instruction pointer, a FLAGS
register, and the segment registers.

A p p l i c a t i o n - V i s i b l e Reg is te rs

Figure B.3 shows some of the application-visible registers in the x86 ISA.
Corresponding to RO through R7, the x86 also has eight general purpose

registers, EAX, EBX, ECX, EDX, ESP, EBP, ECI, and EDI. Each contains 32
bits, reflecting the normal size of its operands. However, since the x86 provides
opcodes that process 16-bit operands and 8-bit operands, it should also provide 16-
bit and 8-bit registers. The ISA identities the low 16 bits of each 32-bit register as a
16-bit register and the low 8 bits and the high 8 bits of four of the registers as
8-bit registers for the use of instructions that require those smaller operands.
So, for example, AX, BX, to DI are 16-bit registers, and AL, BL, CL, DL, AH,
BH, CH, and DH are 8-bit registers.

The x86 also provides 64-bit registers for storing values needed for floating
point and MMX computations. They are, respectively, FPO through FP7 and MMO
through MM7.

General Purpose Registers:

31 0
AX

DX

CX

BX

BP

CI

DI

SP

EAX AL = EAX [7:0]

EDX DL = EDX [7:0]

ECX CL = ECX [7:0]

EBX BL = EBX [7:0]

EBP AH = EAX [15:8]

ECI DH = EDX [15:8]

EDI CH = ECX [15:8]

ESP BH = EBX [15:8]

Floating Point Registers:
63

Multimedia Registers:

63
FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

MMO

MM1

MM2

MM3

MM4

MM5

MM6

MM7

F i g u r e B . 3 Some x 8 6 app l ica t ion-v is ib le registers

556 appendix b From LC-3 to x8fe

S y s t e m Reg is te rs

The LC-3 has two system-level registers—the PC and the PSR. The user-visible
x86 has these and more.

Figure B.4 shows some of the user-visible system registers in the x86 ISA.

I n s t r u c t i o n P o i n t e r

The x86 has the equivalent of the LC-3's 16-bit program counter. The x86 calls
it an instruction pointer (IP). Since the address space of the x86 is 32 bits, IP is
a 32-bit register.

F L A G S Reg is te r

Corresponding to the LC-3's N, Z, and P condition codes, the x86 has a 1-bit SF
(sign flag) register and a 1-bit ZF (zero flag) register. SF and ZF provide exactly
the same functions as the N and Z condition codes of the LC-3. The x86 does
not have the equivalent of the LC-3's P condition code. In fact, the P condition
code is redundant, since if one knows the values of N and Z, one knows the value
of P. We included it in the LC-3 ISA anyway, for the convenience of assembly
language programmers and compiler writers.

The x86 collects other 1 -bit values in addition to N and Z. These 1 -bit values
(called flags) are contained in a 16-bit register called FLAGS. Several of these
flags are discussed in the following paragraphs.

The CF flag stores the carry produced by the last relevant operation that
generated a carry. As we said earlier, together with the ADC instruction, CF facil-
itates the generation of procedures, which allows the software to deal with larger
integers than the ISA supports.

The OF flag stores an overflow condition if the last relevant operate generated
a value too large to store in the available number of bits. Recall the discussion of
overflow in Section 2.5.3.

31

Instruction Pointer (EIP):

15

FLAGS Register: PRIV OF DF IF TF SF ZF AF PF

Segment Registers (Selectors): CS

S S

DS

ES

FS

GS

15 C

0
CF]

F i g u r e B . 4 x 8 6 system registers

B.2 The Format and Specification of x86 Instructions 557

The DF flag indicates the direction in which string operations are to process
strings. If DF = 0, the string is processed from the high-address byte down (i.e.,
the pointer keeping track of the element in the string to be processed next is
decremented). If DF = 1, the string is processed from the low-address byte up
(i.e., the string pointer is incremented).

Two flags not usually considered as part of the application state are the IF
(,interrupt) flag and the TF (trap) flag. Both correspond to functions with which
you are familiar.

IF is very similar to the IE (interrupt enable) bit in the KBSR and DSR,
discussed in Section 8.5. If IF = 1, the processor can recognize external interrupts
(like keyboard input, for example). If IF = 0, these external interrupts have no
effect on the process that is executing. We say the interrupts are disabled.

TF is very similar to single-step mode in the LC-3 simulator, only in this case
it is part of the ISA. If TF = 1, the processor halts after every instruction so the
state of the system can be examined. If TF = 0, the processor ignores the trap
and processes the next instruction.

Segment Registers

When operating in its preferred operating mode (called protected mode), the
address calculated by the instruction is really an offset from the starting address
of a segment, which is specified by some segment base register. These segment
base registers are part of their corresponding data segment descriptors, which
are contained in the segment descriptor table. At each instant of time, six of
these segments are active. They are called, respectively, the code segment (CS),
stack segment (SS), and four data segments (DS, ES, FS, and GS). The six active
segments are accessed via their corresponding segment registers shown in Figure
B.4, which contain pointers to their respective segment descriptors.

1.2 The Formal and Specif icat ion of x86 Instructions
The LC-3 instruction is a 16-bit instruction. Bits [15:12] always contain the
opcode; the remaining 12 bits of each instruction are used to support the needs
of that opcode.

The length of an x86 instruction is not fixed. It consists of a variable num-
ber of bytes, depending on the needs of that instruction. A lot of information
can be packed into one x86 instruction. Figure B.5 shows the format of an

(see Table B.5) (see Table B.6)

F i g u r e B . 5 F o r m a t of the x86 ins t ruc t ion

558 appendix b From LC-3 to x8fe

x86 instruction. The instruction consists of anywhere from 1 to 15 bytes, as
shown in the figure.

The two key parts of an x86 instruction are the opcode and, where necessary,
the ModR/M byte. The opcode specifies the operation the instruction is to perform.
The ModR/M byte specifies how to obtain the operands it needs. The ModR/M
byte specifies one of several addressing modes, some of which require the use
of registers and a one-, two-, or four-byte displacement. The register information
is encoded in a SIB byte. Both the SIB byte and the displacement (if one is
necessary) follow the ModR/M byte in the instruction.

Some opcodes specify an immediate operand and also specify the number
of bytes of the instruction that is used to store that immediate information. The
immediate value (when one is specified) is the last element of the instruction.

Finally, the instruction assumes certain default information with respect to
the semantics of an instruction, such as address size, operand size, segment to be
used, and so forth. The instruction can change this default information by means
of one or more prefixes, which are located at the beginning of the instruction.

Each part of an x86 instruction is discussed in more detail in Sections B.2.1
through B.2.6.

B.2.1 Prefix
Prefixes provide additional information that is used to process the instruction.
There are four classes of prefix information, and each instruction can have from
zero to four prefixes, depending on its needs. Fundamentally, a prefix overrides
the usual interpretation of the instruction.

The four classes of prefixes are lock and repeat, segment override, operand
override, and address override. Table B.4 describes the four types of prefixes.

^efixes, x86 ISA

Repeat/Lock
xFO(LOCK)

xF2, xF3
(R E P / R E P E / R E P N E)

Segment override
x2E(CS) , x36(SS),
x3E(DS) , x26(ES) /

x64(FS) , x65(GS)

Operand size override
xfefe

Address size override
x67

This prefix guarantees that the instruction wi l l have exclusive use of
all shared memory until the instruction completes execution.

This prefix allows the instruction (a string instruction) to be
repeated some specified number of times. The iteration count is
specified by ECX. The instruction is also terminated on the
occurrence of a specified value of ZF.

This prefix causes the memory access to use the specified segment,
instead of the default segment expected for that instruction.

This prefix changes the size of data expected for this instruction.
That is, instructions expecting 32-bi t data elements use 16-bi t data
elements. And instructions expecting 16-bi t data elements use
32-bi t data elements.

This prefix changes the size of operand addresses expected for this
instruction. That is, instructions expecting a 32-b i t address use
16-bi t addresses. And instructions expecting 16-bi t addresses use
32-bi t addresses.

B.2 The Format and Specification of x86 Instructions 559

B.2.2 Opcode
The opcode byte (or bytes—some opcodes are represented by two bytes) specifies
a large amount of information about the needs of that instruction. The opcode byte
(or bytes) specifies, among other things, the operation to be performed, whether
the operands are to be obtained from memory or from registers, the size of the
operands, whether or not one of the source operands is an immediate value in the
instruction, and if so, the size of that immediate operand.

Some opcodes are formed by combining the opcode byte with bits [5:3]
of the ModR/M byte, if those bits are not needed to provide addressing mode
information. The ModR/M byte is described in Section B.2.3.

B.2.3 ModR/M Byte
The ModR/M byte, shown in Figure B.5, provides addressing mode information
for two operands, when necessary, or for one operand, if that is all that is needed.
If two operands are needed, one may be in memory, the other in a register, or both
may be in registers. If one operand is needed, it can be either in a register or in
memory. The ModR/M byte supports all cases.

The ModR/M byte is essentially partitioned into two parts. The first part
consists of bits [7:6] and bits [2:0]. The second part consists of bits [5:3].

If bits [7:6] = 00, 01, or 10, the first part specifies the addressing mode
of a memory operand, and the combined five bits ([7:6],[2:0]) identify which
addressing mode. If bits [7:6] = 1 1 , there is no memory operand, and bits L2:0]
specify a register operand.

Bits [5:3] specify the register number of the other operand, if the opcode
requires two operands. If the opcode only requires one operand, bits [5:3] are
available as a subopcode to differentiate among eight opcodes that have the same
opcode byte, as described in Section B.2.2.

Table B.5 lists some of the interpretations of the ModR/M byte.

IdR/M Byte, Examples

Mod Reg R/M Eff. Addr. Reg Explanation

00 O i l 000 [E A X] EBX EAX contains the address of the memory operand.
EBX contains the register operand.

01 010 000 disp8[E A X] EDX Memory operand's address is obtained by adding the
displacement byte of the instruction to the contents
of EAX. EDX contains the register operand.

10 000 100 d i sp32 [-X -] EAX Memory operand's address is obtained by adding the
four-byte (32 bits) displacement of the instruction to
an address that wi l l need an SIB byte to compute.
(See Section B.2.4 for the discussion of the SIB
byte.) EAX contains the register operand.

11 001 110 ESI ECX If the opcode requires two operands, both are in
registers (ES I and ECX). I f the opcode requires one
operand, it is in ESI. In that case, 001 (bits [5 : 3])
are part of the opcode.

560 appendix b From LC-3 to x8fe

SIB Byte, Examples

Scale Index Base Computation Explanation

00

01

01

10

Oil

000

100

110

0 0 0

001

001

0 1 0

E B X + E A X The contents of EBX are added to the contents of EAX.
The result is added to whatever is specified by the
ModR/M byte.

2 • EAX + ECX The contents of EAX are mult ip l ied by 2, and the result
is added to the contents of ECX. This is then added to
whatever is specified by the ModR/M byte.

ECX The contents of ECX are added to whatever is specified
by the ModR/M byte.

4 • ESI H- EDX The contents of ESI are mult ip l ied by 4, and the result
is added to the contents of EDX. This is then added to
whatever is specified by the ModR/M byte.

B.2.4 SIB Byte
If the opcode specifies that an operand is to be obtained from memory, the Mod-
R/M byte specifies the addressing mode, that is, the information that is needed
to calculate the address of that operand. Some addressing modes require more
information than can be specified by the ModR/M byte alone. Those operand
specifiers (see example 3 in Table B.5) specify the inclusion of an SIB byte in the
instruction. The SIB byte (for scaled-index-base), shown in Figure B.5, provides
scaling information and identifies which register is to be used as an index register
and/or which register is to be used as a base register. Taken together, the SIB byte
computes scale • index + base, where base and/or index can be zero, and scale
can be 1. Table B.6 lists some of the interpretations of the SIB byte.

B.2.5 Displacement
If the ModR/M byte specifies that the address calculation requires a displacement,
the displacement (one, two, or four bytes) is contained in the instruction. The
opcode and/or ModR/M byte specifies the size of the displacement.

Figure B.6 shows the addressing mode calculation for the source operand if
the instruction is as shown. The prefix x26 overrides the segment register and
specifies using the ES segment. The ModR/M and SIB bytes specify that a four-
byte displacement is to be added to the base register ECX + the index register
EBX after its contents are multiplied by 4.

B.2.6 Immediate
Recall that the LC-3 allowed small immediate values to be present in the instruc-
tion, by setting inst[5:5] to 1. The x86 also permits immediate values in the
instruction. As stated previously, if the opcode specifies that a source operand is
an immediate value in the instruction, it also specifies the number of bytes of the
instruction used to represent the operand. That is, an immediate can be represented
in the instruction with one, two, or four bytes. Since the opcode also specifies the
size of the operand, immediate values that can be stored in fewer bytes than the

B.2 The Format and Specification of x86 Instructions

Prefix O p c o d e ModR/M SIB

00100110 00000011 10000100 10011001
Displacement

32 bits ~~l
ES

override
ADD

r32, m32
disp32 [][] EBX * 4 + ECX

EAX

32 bits

Address

F i g u r e B . 6 Addressing mode ca lcu la t ion fo r Base+Sca led Indes+d i sp32

operand size are first sign-extended to their full size before being operated on.
Figure B.7 shows the use of the immediate operand with the ADD instruction.
The example is ADD EAX, $5. We are very familiar with the corresponding LC-3
instruction: ADD R0,R0,#5.

Opcode ModR/M imm8

10000011 11000000 00000101
ADD

r/m 32, imm8

EAX

EAX

EAX

+5

SEXT

32

ADD

F i g u r e B . 7 Example x 8 6 ins t ruc t ion : A D D E A X , $5

573 appendix b From LC-3 to x8fe

U Rn Example
We conclude this appendix with an example. The problem is one we have dealt
with extensively in Chapter 14. Given an input character string consisting of
text, numbers, and punctuation, write a C program to convert all the lowercase
letters to uppercase. Figure B.8 shows a C program that solves this problem.
Figure B.9 shows the annotated LC-3 assembly language code that a C compiler
would generate. Figure B.10 shows the corresponding annotated x86 assembly
language code. For readability, we show assembly language representations of
the LC-3 and x86 programs rather than the machine code.

#include <stdio.h>

void UpcaseString(char inputString[]);

main ()
{

char string[8];

scanf("Is", string);
UpcaseString(string);

}

void UpcaseString(char inputString[])
{

int i = 0;

while(inputString [i]) {
if ({'a' <= inputString [i]) && (inputString [i] <= 'z'))

inputString[i] = inputString [i] - {'a' - 'A');
i + + ;

}
}
F i g u r e B . 8 C source code fo r the upper- / lowercase p rog ram

B.3 An Example 563

; uppercase: converts lower- to uppercase
.ORIG x3 0 0 0
LEA R6, STACK

MAIN ADD Rl, R6, #3
READCHAR IN

OUT
; read in input string: scanf

STR RO, Rl, #0
ADD Rl, Rl, #1
ADD R2, RO, x-A
BRnp READCHAR
ADD Rl, Rl, #-1
STR R2, Rl, #0 ; put in NULL char to mark the "end"
ADD Rl, R6, #3 ; get the starting address of the string
STR Rl, R6, #14 ; pass the parameter
STR R6, R6, #13
ADD R6, R6, #11
JSR UPPERCASE
HALT

UPPERCASE STR R7, R6, #1
AND Rl, Rl, #0
STR Rl, R6, #4
LDR R2, R6, #3

CONVERT ADD R3, Rl, R2 ; add index to starting addr of string
LDR R4, R3, #0
BRz DONE ; Done if NULL char reached
LD R5, a
ADD R5, R5, R4 ; 'a' <= input string
BRn NEXT
LD R5, z
ADD R5, R4, R5 ; input string <= 'z'
BRp NEXT
LD R5, asubA ; convert to uppercase
ADD R4, R4, R5
STR R4, R3, #0

NEXT ADD Rl, Rl, #1 ; increment the array index, i
STR Rl, R6, #4
BRnzp CONVERT

DONE LDR R7, R6, #1
LDR R6, R6, #2
RET

a . FILL #-97
z . FILL #-122
asubA . FILL #-32
STACK .BLKW

.END
100

F i g u r e B . 9 LC-3 assembly language code fo r the upper- / iowercase p rog ram

5 6 4 appendix b From LC-3 to x8fe

. 386P

.model FLAT

_DATA SEGMENT
$SG3 97 DB
DATA ENDS

%s 0 OH

The NULL-terminated scanf format
string is stored in global data space

TEXT SEGMENT

string$ = -8 ; Location of "string" in local stack
main PROC NEAR

sub esp, 8 ; Allocate stack space to store "string"
lea eax, DWORD PTR _string$ [esp + 8]
push eax ; Push arguments to scanf
push OFFSET FLAT:$SG397
call scanf

lea ecx, DWORD PTR string$ [esp + 16]

main

push ecx
call _UpcaseString

add esp, 2 0
ret 0
ENDP

Push argument to UpcaseString

Release local stack space

"inputString" location in local stack _inputString$ = 8
^UpcaseString PROC NEAR

mov ecx, DWORD PTR _inputString$[esp-4]
cmp BYTE PTR [ecx], 0
je SHORT $L404

$L403: mov al, BYTE PTR [ecx]
cmp al, 9 7

jl SHORT $L405
cmp al, 122
jg SHORT $L405
sub al, 32
mov BYTE PTR [ecx], al

$L4 0 5: inc ecx
mov al, BYTE PTR [ecx]
test al, al
jne SHORT $L403

$L4 04: ret 0
JJpcaseString ENDP
_TEXT ENDS
END
F i g u r e B . 1 0 x86 assembly language code fo r the upper- / lowercase p rog ram

If inputString [0]= = 0, skip the loop
Load inputString [i] into AL
97 == 'a'

122 == 'z'

32 == 'a' - 'A'

i + + %$

Loop if inputString[i] != 0

The t l i c r o o r c t i i f e c f u r e o f t h e L C - 3

We have seen in Chapters 4 and 5 the several stages of the instruction cycle that
must occur in order for the computer to process each instruction. If a microar-
chitecture is to implement an ISA, it must be able to carry out this instruction
cycle for every instruction in the ISA. This appendix illustrates one example of
a microarchitecture that can do that for the LC-3 ISA. Many of the details of the
microarchitecture and the reasons for each design decision are well beyond the
scope of an introductory course. However, for those who want to understand how
a microarchitecture can carry out the requirements of each instruction of the LC-3
ISA, this appendix is provided.

C.l Overview
Figure C.l shows the two main components of an ISA: the data path, which
contains all the components that actually process the instructions, and the control,
which contains all the components that generate the set of control signals that are
needed to control the processing at each instant of time.

We say, "at each instant of time," but we really mean during each clock cycle.
That is, time is divided into clock cycles. The cycle time of a microprocessor is
the duration of a clock cycle. A common cycle time for a microprocessor today
is 0.5 nanoseconds, which corresponds to 2 billion clock cycles each second. We
say that such a microprocessor is operating at a frequency of 2 gigahertz.

At each instant of time—or, rather, during each clock cycle—the 49 control
signals (as shown in Figure C.l) control both the processing in the data path and
the generation of the control signals for the next clock cycle. Processing in the
data path is controlled by 39 bits, and the generation of the control signals for the
next clock cycle is controlled by 10 bits.

Note that the hardware that determines which control signals are needed each
clock cycle does not operate in a vacuum. On the contrary, the control signals
needed in the "next" clock cycle depend on all of the following:

1. What is going on in the current clock cycle.
2. The LC-3 instruction that is being executed.
3. The privilege mode of the program that is executing.
4. If that LC-3 instruction is a BR, whether the conditions for the branch

have been met (i.e., the state of the relevant condition codes).

577 appendix c The Microarchi tecture of the LC-3

(J, COND, IRD)

F i g u r e C . l M i c roa rch i t ec tu re of the LC-3/ ma jo r components

5. Whether or not an external device is requesting that the processor be
interrupted.

6. If a memory operation is in progress, whether it is completing during this
cycle.

Figure C.l identifies the specific information in our implementation of the
LC-3 that corresponds to these five items. They are, respectively:

1. J[5:0], COND[2:OJ, and IRD—10 bits of control signals provided by the
current clock cycle.

2. inst[15:12], which identifies the opcode, and instfl 1:11], which
differentiates JSR from JSRR (i.e., the addressing mode for the target of
the subroutine call).

3. PSR[15], bit [15] of the Processor Status Register, which indicates whether
the current program is executing with supervisor or user privileges.

4. BEN to indicate whether or not a BR should be taken.
5. INT to indicate that some external device of higher priority than the

executing process requests service.
6. R to indicate the end of a memory operation.

C.2 The State Machine

C.2 The State Machine
The behavior of the LC-3 microarchitecture during a given clock cycle is com-
pletely determined by the 49 control signals, combined with nine bits of additional
information (inst[15:l 1], PSR[151, BEN, INT, and R), as shown in Figure C.l .
We have said that during each clock cycle, 39 of these control signals determine
the processing of information in the data path and the other 10 control signals
combine with the nine bits of additional information to determine which set of
control signals will be required in the next clock cycle.

We say that these 49 control signals specify the state of the control struc-
ture of the LC-3 microarchitecture. We can completely describe the behavior of
the LC-3 microarchitecture by means of a directed graph that consists of nodes
(one corresponding to each state) and arcs (showing the flow from each state to
the one[s] it goes to next). We call such a graph a state machine.

Figure C.2 is the state machine for our implementation of the LC-3. The state
machine describes what happens during each clock cycle in which the computer
is running. Each state is active for exactly one clock cycle before control passes to
the next state. The state machine shows the step-by-step (clock cycle-by-clock
cycle) process that each instruction goes through from the start of its FETCH
phase to the end of that instruction, as described in Section 4.2.2. Each node in
the state machine corresponds to the activity that the processor carries out during
a single clock cycle. The actual processing that is performed in the data path is
contained inside the node. The step-by-step flow is conveyed by the arcs that take
the processor from one state to the next.

For example, recall from Chapter 4 that the FETCH phase of every instruction
cycle starts with a memory access to read the instruction at the address specified
by the PC. Note that in the state numbered 18, the MAR is loaded with the address
contained in PC, the PC is incremented in preparation for the FETCH of the next
LC-3 instruction, and, if there is no interrupt request present (INT = 0), the flow
passes to the state numbered 33. We will describe in Section C.6 the flow of
control if INT = 1, that is, if an external device is requesting an interrupt.

Before we get into what happens during the clock cycle when the processor
is in the state numbered 33, we should explain the numbering system—that is,
why 18 and 33. Recall, from our discussion of finite state machines in Chapter 3,
that each state must be uniquely specified and that this unique specification is
accomplished by means of the state variables. Our state machine that implements
the LC-3 ISA requires 52 distinct states to describe the entire behavior of the
LC-3. Figure C.2 shows 31 of them plus pointers to three others (states 8, 13, and
49). Figure C.l shows the other 18 states (plus 8, 13, and 49) that are pointed
to in Figure C.2. We will come into contact with all of them as we go through
this appendix. Since k logical variables can uniquely identify 2k items, six state
variables are needed to uniquely specify 52 states. The number next to each node in
Figure C.2 is the decimal equivalent of the values (0 or 1) of the six state variables
for the corresponding state. Thus, the state numbered 18 has state variable values
010010.

Now, then, back to what happens after the clock cycle in which the activity
of state 18 has finished. Again, if no external device is requesting an interrupt.

568 appendix c The Microarch i tec ture of the LC-3

C.4 The Control Structure 5 6 9

the flow passes to state 33. In state 33, since the MAR contains the address
of the instruction to be processed, this instruction is read from memory and
loaded into the MDR. Since this memory access can take multiple cycles, this
state continues to execute until a ready signal from the memory (R) is asserted,
indicating that the memory access has completed. Thus the MDR contains the
valid contents of the memory location specified by MAR. The state machine then
moves on to state 35, where the instruction is loaded into the instruction register
(IR), completing the fetch phase of the instruction cycle.

Note that the arrow from the last state of each instruction cycle (i.e., the
state that completes the processing of that LC-3 instruction) takes us to state 18
(to begin the instruction cycle of the next LC-3 instruction).

C.3 The Data Path
The data path consists of all components that actually process the information
during a cycle—the functional units that operate on the information, the registers
that store information at the end of one cycle so it will be available for further use
in subsequent cycles, and the buses and wires that carry information from one
point to another in the data path. Figure C. 3, an expanded version of what you have
already encountered in Figure 5.9, illustrates the data path of our microarchitecture
of the LC-3.

Note the control signals that are associated with each component in the data
path. For example, ALUK, consisting of two control signals, is associated with
the ALU. These control signals determine how the component will be used each
cycle. Table C.l lists the set of control signals that control the elements of the
data path and the set of values that each control signal can have. (Actually, for
readability, we list a symbolic name for each value, rather than the binary value.)
For example, since ALUK consists of two bits, it can have one of four values.
Which value it has during any particular clock cycle depends on whether the
ALU is required to ADD, AND, NOT, or simply pass one of its inputs to the
output during that clock cycle. PCMUX also consists of two control signals and
specifies which input to the MUX is required during a given clock cycle. LD.PC
is a single-bit control signal, and is a 0 (NO) or a 1 (YES), depending on whether
or not the PC is to be loaded during the given clock cycle.

During each clock cycle, corresponding to the "current state" in the state
machine, the 39 bits of control direct the processing of all components in the data
path that are required during that clock cycle. The processing that takes place in
the data path during that clock cycle, as we have said, is specified inside the node
representing the state.

C.4 The Control Structure
The control structure of a microarchitecture is specified by its state machine. As
described earlier, the state machine (Figure C.2) determines which control signals
are needed each clock cycle to process information in the data path and which

5 7 0 appendix c The Microarch i tec ture of the LC-3

C.4 The Control Structure

INT R

(J, COND, IRD)

F i g u r e C .4 The con t ro l s t ruc ture of a m i c r o p r o g r a m m e d imp lementa t ion , overal l block
d i ag ram

control signals are needed each clock cycle to direct the flow of control from the
currently active state to its successor state.

Figure C.4 shows a block diagram of the control structure of our imple-
mentation of the LC-3. Many implementations are possible, and the design
considerations that must be studied to determine which of many possible
implementations should be used is the subject of a full course in computer
architecture.

We have chosen here a straightforward microprogrammed implementation.
Each state of the control structure requires 39 bits to control the processing in the
data path and 10 bits to help determine which state comes next. These 49 bits are
collectively known as a microinstruction. Each microinstruction (i.e., each state
of the state machine) is stored in one 49-bit location of a special memory called
the control store. There are 52 distinct states. Since each state corresponds to one
microinstruction in the control store, the control store for our microprogrammed
implementation requires six bits to specify the address of each microinstruction.

Data Path Control Signals

Signal Name Signal Values

LD. MAR/1
LD.MDR/1

LD.IR/1
LD.BEN/1
LD.REG/1

LD.CC/1
LD. PC/1

LD.Priv/1
LD.SavedSS P / l
LD.SavedUSP/1

LD.Vector/1

Gate PC/1
GateM DR/1
Gate ALU /1

GateM ARM UX/1
GateVector/1

GatePC-1/1
GatePSR/1

GateS P / l

PCMUX/2:

DRMUX/2:

SR1MUX/2:

ADDR1MUX/1:

ADDR2M UX/2:

SPMUX/2:

MARMUX/1 :

VectorM U X/2:

PSRMUX/1:

ALU l</2:

MIO.EN/1:
R.W/1:

Set. Priv/1:

NO, LOAD
NO, LOAD
NO/ LOAD
NO, LOAD
NO/ LOAD
NO/ LOAD
NO, LOAD
NO/ LOAD
NO/ LOAD
NO/ LOAD
NO, LOAD

NO/ YES
NO/ YES
NO, YES
NO, YES
NO/ YES
NO, YES
NO, YES
NO/ YES

PC+1
BUS
ADDER

11.9
R7
SP

11.9
8.6
SP

PC/ BaseR

ZERO
offsetb
PCoffset9
PCof f se t l l

S P + 1
S P - 1
Saved SSP
Saved USP

7.0

ADDER

INTV
Priv.exception
Opc.exception

;select pc+1
;select value from bus
;select output of address adder

/•destination 1R[11:9]
/•destination R7
/•destination R6

;source IR[11:91
;source I RL8:6J
;source R6

;select the value zero
;select SEXTTIR[5 :0]]
;select SEXTCIRE8:0]]
;select S E X T [I R [1 0 : 0]]

;select stack po in ter+1
;select stack po in te r -1
;select saved Supervisor Stack Pointer
;select saved User Stack Pointer

;select Z E X T [I R [7 : 0]]
;select output of address adder

individual settings, BUS

ADD, AND/ NOT, PASSA

NO/ YES
RO, WR

0
1

;Supervisor mode
;User mode

C.4 The Control Structure 573

Microsequencer Control Signals

Signal Name Signal Values

J/6:
COND/3: CONDO Uncond i t i ona l

CONDI ;Memory Ready
C0ND2 ; Branch
C0ND3 ;Addressing Mode
C0ND4 ;Priv i lege Mode
C0ND5 . ' Interrupt test

IRD/1: NO, YES

Table C.2 lists the function of the 10 bits of control information that help
determine which state comes next. Figure C.5 shows the logic of the microse-
quencer. The purpose of the microsequencer is to determine the address in the
control store that corresponds to the next state, that is, the location where the
49 bits of control information for the next state are stored.

COND2 COND1 CONDO

INT PSR[15]

Clq.

BEN

o I ft

IR[11]

J[5] J[4]

0,0,IR[15:12]

Interrupt
present

J[3]

User
privilege
mode j[2]

Branch

J[1]

Ready

J[0]

Addr.
mode

IRD

V
Address of next state

Figure C.5 The microsequencer of the LC-3

5 7 4 appendix c The Microarchi tecture of the LC-3

IR[11:9]

110 —

111 ^

D R M U X

(a)

IR[11:9]

N
Z P

^ DR

IR[11:9]

IR[8:6]

110

SR1 M U X

(b)

(c)

^ SR1

F i g u r e C.6 Add i t i ona l logic requi red to provide cont ro l signals

Note that state 32 of the state machine (Figure C.2) has 16 "next'' states,
depending on the LC-3 instruction being executed during the current instruction
cycle. This state carries out the DECODE phase of the instruction cycle described
in Chapter 4. If the IRD control signal in the microinstruction corresponding to
state 32 is 1, the output MUX of the microsequencer (Figure C.5) will take its
source from the six bits formed by 00 concatenated with the four opcode bits
IR[15:12J. Since IR[15:12] specifies the opcode of the current LC-3 instruction
being processed, the next address of the control store will be one of 16 addresses,
corresponding to the 15 opcodes plus the one unused opcode, TR[15:12] = 1101.
That is, each of the 16 next states is the first state to be carried out after the
instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction
is stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1101,
the unused opcode, the microarchitecture would execute a sequence of
microinstructions, starting at state 13. These microinstructions would respond to
the fact that an instruction with an illegal opcode had been fetched. Section C.6.3
describes what happens.

Several signals necessary to control the data path and the microsequencer are
not among those listed in Tables C.l and C.2. They are DR, SRI, BEN, INT, and
R. Figure C.6 shows the additional logic needed to generate DR, SRI, and BEN.

The INT signal is supplied by some event external to the normal instruction
processing, indicating that normal instruction processing should be interrupted
and this external event dealt with. The interrupt mechanism was described in
Chapter 8. The corresponding flow of control within the microarchitecture is
described in Section C.6.

The remaining signal, R, is a signal generated by the memory in order to allow
the LC-3 to operate correctly with a memory that takes multiple clock cycles to
read or store a value.

C.5 Memory-Mapped I/O 575

Suppose it takes memory five cycles to read a value. That is, once MAR
contains the address to be read and the microinstruction asserts READ, it will take
five cycles before the contents of the specified location in memory are available
to be loaded into MDR. (Note that the microinstruction asserts READ by means
of two control signals: MIO.EN/YES and R.W/RD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses
an instruction from memory during the FETCH phase of each instruction cycle.
For the LC-3 to operate correctly, state 33 must execute five times before moving
on to state 35. That is, until MDR contains valid data from the memory location
specified by the contents of MAR, we want state 33 to continue to re-execute. After
five clock cycles, the memory has completed the "read," resulting in valid data
in MDR, so the processor can move on to state 35. What if the microarchitecture
did not wait for the memory to complete the read operation before moving on to
state 35? Since the contents of MDR would still be garbage, the microarchitecture
would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the
memory knows it needs five clock cycles to complete the read, it asserts a ready
signal (R) throughout the fifth clock cycle. Figure C.2 shows that the next state
is 33 (i.e., 100001) if the memory read will not complete in the current clock
cycle and state 35 (i.e., 100011) if it will. As we have seen, it is the job of the
microsequencer (Figure C.5) to produce the next state address.

The 10 microsequencer control bits for state 33 are as follows:

With these control signals, what next state address is generated by the microse-
quencer? For each of the first four executions of state 33, since R = 0, the next
state address is 100001. This causes state 33 to be executed again in the next clock
cycle. In the fifth clock cycle, since R = 1, the next state address is 100011, and
the LC-3 moves on to state 35. Note that in order for the ready signal (R) from
memory to be part of the next state address, COND had to be set to 001, which
allowed R to pass through its four-input AND gate.

C.5 M e m o r y - M a p p e d I /O
As you know from Chapter 8, the LC-3 ISA performs input and output via
memory-mapped I/O, that is, with the same data movement instructions that
it uses to read from and write to memory. The LC-3 does this by assigning an
address to each device register. Input is accomplished by a load instruction whose
effective address is the address of an input device register. Output is accomplished
by a store instruction whose effective address is the address of an output device
register. For example, in state 25 of Figure C.2, if the address in MAR is xFE02,

5 7 6 appendix c The Microarchi tecture of the LC-3

T r u t h T a b l e f o r A d d r e s s C o n t r o l L o g i c

MAR MIO.EN R.W M E M . E N I N . M U X LD.KBSR LD.DSR LD.DDR

xFEOO 0 R 0 x 0 0 0

xFEOO 0 W 0 X 0 0 0

xFEOO 1 R 0 KBSR 0 0 0

xFEOO 1 W 0 X 1 0 0

xF E02 0 R 0 X 0 0 0

xFE02 0 W 0 X 0 0 0

xFE02 1 R 0 KBDR 0 0 0

xF E02 1 W 0 X 0 0 0

xF E04 0 R 0 X 0 0 0

xFE04 0 W 0 X 0 0 0

xFE04 1 R 0 DSR 0 0 0

xF E04 1 W 0 X 0 1 0

xF E06 0 R 0 X 0 0 0

xFE06 0 W 0 X 0 0 0

xFE06 1 R 0 X 0 0 0

xFE06 1 W 0 X 0 0 1

other 0 R 0 X 0 0 0

other 0 W 0 X 0 0 0

other 1 R 1 mem 0 0 0

other 1 W 1 X 0 0 0

MDR is supplied by the KBDR, and the data input will be the last keyboard
character typed. On the other hand, if the address in MAR is a legitimate memory
address, MDR is supplied by the memory.

The state machine of Figure C.2 does not have to be altered to accommodate
memory-mapped I/O. However, something has to determine when memory should
be accessed and when I/O device registers should be accessed. This is the job of
the address control logic shown in Figure C.3.

Table C.3 is a truth table for the address control logic, showing what control
signals are generated, based on (1) the contents of MAR, (2) whether or not
memory or I/O is accessed this cycle (MIO.EN/NO, YES), and (3) whether a
load or store is requested (R.W/Read, Write). Note that, for a memory-mapped
load, data can be supplied to MDR from one of four sources: memory, KBDR,
KBSR, or DSR. The address control logic provides the appropriate select signals
to the INMUX. For a memory-mapped store, the data supplied by MDR can be
written to memory, KBSR, DDR, or DSR. The address control logic supplies the
appropriate enable signal to the corresponding structure.

C.6 Interrupt and Exception Control
The final piece of the state machine needed to complete the LC-3 story are those
states that control the initiation of an interrupt, those states that control the return
from an interrupt (the RTI instruction), and those states that control the initiation

C.6 I n t e r r u p t and Except ion Cont ro l 577

^ p c < - m d r)

Vector<-xOO
MDR<-PSR
PSR[15]<-0

T ~
To 45

c 39

MAR, SP<-SP+1

9; MDR<-M

42

PSR<-MDR

34

SP<-SP+1
[PSR[15]]

59
/ -

Nothing

\

V /

Saved_SSP<-SP
SP<-Saved USP

T o 18

Vector<-INTV
PSR[10:8]<—Priority

MDR<-PSR
PSR[15]<-0

[PSR[15]j

BEN<-IR<11 >N+IR<10>Z+IR<9>P
[IR[15:12]]

See Figure C.2

Vector<-x01
MDR<-PSR
PSR[15]<-0

[PSR[15]]

Write

4 3

To 37 T o 45

MDR<-PC-1

MAR, SP<-SP-1

Q
I

Write

l 50

MAR<-x01'Vector

I 5 2
^-rMV1DR<-MJ

F i g u r e C . 7 L C - 3 s ta te m a c h i n e s h o w i n g i n t e r r u p t c o n t r o l

of one of the two exceptions specified by the ISA. The two exceptions are a priv-
ilege mode violation and an illegal opcode. Figure C.7 shows the state machine
that carries these out. Figure C.8 shows the data path, after adding the addi-
tional structures to Figure C.3 that are needed to make interrupt and exception
processing work.

5 7 8 appendix c The M i c r o a r c h i t e c t u r e of the LC-3

GateMARMUX I
1 6

MARMUX

16 • 1 6

GatePC I T GatePC-1

LD.PC—cJ PC

2
PCMUX E H

ZEXT

[7:0]

[10:0]
i y

A D D R 2 M U X

SEXT

[8:0]
SEXT

[5:0]

[4:0]
SEXT

16 /[16
0

A D D R 1 M U X

S R 2 -

16

R E G
F ILE

SR2 SR1
OUT OUT S R 1

1 6

SEXT

t f t ' " I I

CONTROL LOGIC
A L U K A L U K

SR2MUX.

M l r 1 J INT R L

IR LD.IR

16 L D . P r i v

Interrupt 3/
Priority

Priv

P S R M U X

S e t . P r i v

A
[15]

ALU

a>b l d . c c - * > | n | z | p

T "
LD.Priority- Priority

I

t [l5] i - V-GatePSR

r Y
Jl

LOGIC
; T/{ 10:8] T-
[10:8lf ̂ GatePSR^

L D . S a v e d U S P

Sp] p i] p i] | Savsd SSP|<3-|

1 6 1 6

| L D . S a v e d S S P

1 6

S P M U X -

[2 : 0]

GatePSR-V V " G a t e A L U

[2:0]

1 6

GateSP

GateMDR |

>/IDR |<h-LD.MDR |~MA MDR hd-LD.MDR

MIO.EN

MAR |<}- LD.MAR

GateVector

x01

R.W

<H

MIO.EN

MEMORY

MEM.EN

ADDR. CTL.
LOGIC

INPUT
KBDR

OUTPUT

INMUX

-t>| KBSR

M > DDR

[15:8] ^ [7 : 0]

| Vector j-3— L D . V e c t o r

. t 2
/ V e c t o r M U X

DSR
INTV

xOO
x01

Figure C.8 L C - 3 d a t a pa th , i n c l u d i n g a d d i t i o n a l s t r u c t u r e s f o r i n t e r r u p t c o n t r o l

C.6 In ter rupt and Except ion Control 5 7 9

C.6.1 Initiating an Interrupt
While a program is executing, an interrupt can be requested by some external
event so that the normal processing of instructions can be preempted and the con-
trol can turn its attention to processing the interrupt. The external event requests
an interrupt by asserting its interrupt request signal. Recall from Chapter 8 that
if the priority level of the device asserting its interrupt request signal is higher than
the priority level of the currently executing program, INT is asserted and INTV
is loaded with the appropriate interrupt vector. The microprocessor responds to
INT by initiating the interrupt. That is, the processor puts itself into supervisor
mode, pushes the PSR and PC of the interrupted process onto the supervisor stack,
and loads the PC with the starting address of the interrupt service routine. The
PSR contains the privilege mode PSR[15], priority level PSR[10:8], and condition
codes PSR[2:0] of a program. It is important that when the processor resumes exe-
cution of the interrupted program, the privilege mode, priority level, and condition
codes are restored to what they were when the interrupt occurred.

The microarchitecture of the LC-3 initiates an interrupt as follows: Recall
from Figure C.2 that in state 18, while MAR is loaded with the contents of PC
and PC is incremented, INT is tested.

State 18 is the only state in which the processor checks for interrupts. The
reason for only testing in state 18 is straightforward: Once an LC-3 instruction
starts processing, it is easier to let it finish its complete instruction cycle (FETCH,
DECODE, etc.) than to interrupt it in the middle and have to keep track of how far
along it was when the external device requested an interrupt (i.e., asserted INT).
If INT is only tested in state 18, the current instruction cycle can be aborted early
(even before the instruction has been fetched), and control directed to initiating
the interrupt.

The test is enabled by the control signals that make up COND5, which are
101 only in state 18, allowing the value of INT to pass through its four-input AND
gate to contribute to the address of the next state. Since the COND signals are not
101 in any other state, INT has no effect in any other state.

In state 18, the 10 microsequencer control bits are as follows:

If INT = 1, a 1 is produced at the output of the AND gate, which in turn
makes the next state address not 100001, corresponding to state 33, but rather
110001, corresponding to state 49. This starts the initiation of the interrupt (see
Figure C.l).

Several functions are performed in state 49. The PSR, which contains the
privilege mode, priority level, and condition codes of the interrupted program, are
loaded into MDR, in preparation for pushing it onto the Supervisor Stack. PSR[15]
is cleared, reflecting the change to Supervisor mode, since all interrupt service
routines execute in Supervisor mode. The 3-bit priority level and 8-bit interrupt
vector (INTV) provided by the interrupting device are recorded. PSR[10:8] is
loaded with the priority level. The internal register Vector is loaded with INTV.

580 appendix c The Microarch i tec ture of the LC-3

Finally, the processor must test the old PSR[15] to see which stack R6 points to
before pushing PSR and PC.

If the old PSR[15] = 0, the processor is already operating in Supervisor mode.
R6 is the Supervisor Stack Pointer (SSP), so the processor proceeds immediately
to states 37 and 44 to push the PSR of the interrupted program onto the Supervisor
Stack. If PSR[15J — 1, the interrupted process was in User mode. In that case, the
USP (the current contents of R6) must be saved in Saved_USP and R6 must be
loaded with the contents of Saved_SSP before moving to state 37. This is done
in state 45.

The control flow from state 49 to either 37 or 45 is enabled by the 10
microsequencer control bits, as follows:

or

If PSR[15] = 0, control goes to state 37 (100101); if PSR[15] = 1, control
goes to state 45 (101101).

In state 37, R6 (SSP) is decremented (preparing for the push), and MAR is
loaded with the address of the new top of the stack.

In state 41, the memory is enabled to WRITE (MIO.EN/YES, R.W/WR).
When the write completes, signaled by R = 1, PSR has been pushed onto the
Supervisor Stack, and the flow moves on to state 43.

In state 43, the PC is loaded into MDR. Note that state 43 says MDR is loaded
with PC-1. Recall that in state 18, at the beginning of the instruction cycle for the
interrupted instruction, PC was incremented. Loading MDR with PC-1 adjusts
PC to the correct address of the interrupted instruction.

In states 47 and 48, the same sequence as in states 37 and 56 occurs, only
this time, the PC of the interrupted process is pushed onto the Supervisor Stack.

The final task to complete the initiation of the interrupt is to load the PC with
the starting address of the interrupt service routine. This is carried out by states
50, 52, and 54. It is accomplished in a manner similar to the loading of the PC
with the starting address of a TRAP service routine. The event causing the INT
request supplies the 8-bit interrupt vector INTV associated with the interrupt,
similar to the 8-bit trap vector contained in the TRAP instruction. This interrupt
vector is stored in the 8-bit register INTV, shown on the data path in Figure C.8.

The interrupt vector table occupies memory locations xOlOO to xOlFF. In
state 50, the interrupt vector that was loaded into Vector in state 49 is added to the
base address of the interrupt vector table (xOlOO) and loaded into MAR. In state
52, memory is enabled to READ. When R = 1, the read has completed and MDR
contains the starting address of the interrupt service routine. In state 54, the PC
is loaded with that starting address, completing the initiation of the interrupt.

It is important to emphasize that the LC-3 supports two stacks, one for each
privilege mode, and two stack pointers (USP and SSP), one for each stack. R6 is
the stack pointer and is loaded from the Saved_SSP when privilege changes from
User mode to Supervisor mode, and from Saved_USP when privilege changes
from Supervisor mode to User mode. Needless to say, when the Privilege mode

C.6 In ter rupt and Except ion Control 592

changes, the current value in R6 must be stored in the appropriate "Saved" stack
pointer in order to be available the next time the privilege mode changes back.

C.6.2 Returning from an Interrupt, RTI
The interrupt service routine ends with the execution of the RTI instruction. The
job of the RTI instruction is to restore the computer to the state it was in when
the interrupt was initiated. This means restoring the PSR (i.e., the privilege mode,
priority level, and the values of the condition codes N, Z, P) and restoring the PC.
Recall that these values were pushed onto the stack during the initiation of the
interrupt. They must, therefore, be popped off the stack in the reverse order.

The first state after DECODE is state 8. Here we load the MAR with the
address of the top of the Supervisor Stack, which contains the last thing pushed
(that has not been subsequently popped)—the state of the PC when the interrupt
was initiated. At the same time, we test PSR[15] since RTI is a privileged instruc-
tion and can only execute in Supervisor mode. If PSR[15] = 0, we can continue
to carry out the requirements of RTI.

P S R [1 5] = 0 ; R T I Completes Execution

States 36 and 38 complete the operation of restoring PC to the value it had when
the interrupt was initiated. In state 36, the memory is read. When the read is
completed, MDR contains the address of the instruction that was to be processed
next when the interrupt occurred. State 38 loads that address into the PC.

States 39, 40, 42, and 34 restore the privilege mode, priority level, and con-
dition codes (N, Z, P) to their original values. In state 39, the Supervisor Stack
Pointer is incremented so that it points to the top of the stack after the PC was
popped. The MAR is loaded with the address of the new top of the stack. State 40
initiates the memory READ; when the READ is completed, MDR contains the
interrupted PSR. State 42 loads the PSR from MDR, and state 34 increments the
stack pointer.

The only thing left is to check the privilege mode of the interrupted program to
see whether the stack pointers have to be switched. In state 34, the microsequencer
control bits are as follows:

IRD/0 ; NO
CCND/100 ; Test: PSR [is] , privilege mode

If PSRL15] = 0, control flows to state 51 (110011) to do nothing for one
cycle. If PSR[15J = 1, control flows to state 59 where R6 is saved in Saved_SSP
and R6 is loaded from Saved_USP. In both cases control returns to state 18 to
begin processing the next instruction.

P S R [1 5] = 1 ; Privilege Mode Exception

If PSR[151 = 1, the processor has a privilege mode violation. It is attempting to
execute RTI while the processor is in User mode, which is not allowed.

593 appendix c The Microarch i tec ture of the LC-3

The processor responds to this situation by pushing the PSR and the address
of the RTI instruction onto the Supervisor Stack and loading the PC with the
starting address of the service routine that handles privilege mode violations. The
processor does this in a way very similar to the mechanism for initiating interrupts.

First, in state 44, three functions are performed. The Vector register is loaded
with the 8-bit vector that points to the entry in the interrupt vector table that
contains the starting address of the Privilege mode violation exception service
routine. This 8-bit vector is xOO. The MDR is loaded with the PSR of the program
that caused the violation. Third, PSR[15] is set to 0, since the service routine will
execute with Supervisor privileges. Then the processor moves to state 45, where
it follows the same flow as the initiation of interrupts.

The main difference between this flow and that for the initiation of interrupts
flow comes in state 50, where MAR is loaded with xOTVector. In the case of
interrupts, Vector had previously been loaded in state 49 with INTV, which is
supplied by the interrupting device. In the case of the privilege mode violation,
Vector was loaded in state 44 with xOO.

Two other minor differences reflect the additional functions performed in
state 49 if an interrupt is initiated. First, the priority level is changed, based
on the priority of the interrupting device. We do not change the priority in hand-
ling the privilege mode violation. The service routine executes at the same priority
as the program that caused the violation. Second, a test to determine the privi-
lege mode is performed for an interrupt. This is unnecessary for a privilege mode
violation since the processor already knows it is executing in User mode.

C.6.3 The Illegal Opcode Exception
At the outset of Section C.6, we said the LC-3 ISA specifies two exceptions, a
privilege mode violation and an illegal opcode. The privilege mode violation, as
you have just seen, occurs when the processor tries to execute the RTI instruc-
tion while in User mode. The illegal opcode exception occurs if the instruction
being processed specifies the undefined opcode (i.e., 1101) in bits [15:12] of the
instruction. The action the processor takes is very similar to what happens when a
privilege mode exception is detected. That is, the PSR and PC of the program are
pushed onto the Supervisor Stack and the PC is loaded with the starting address
of the Illegal Opcode Exception service routine. That initiates the service routine.
From there, the service routine does whatever has been specified as the corrective
action when an illegal opcode is detected.

The fact that the processor is in state 13 is enough to know that an illegal
opcode is being processed. The reason: the only way it could get there is via the
IR decode state 32. State 13 starts the initiation of the exception. State 13 is very
similar to state 49, which starts the initiation of an interrupt, and state 44, which
starts the initiation of a privilege mode violation. As with states 49 and 44, the
Vector register is loaded in preparation for vectoring to the Interrupt Vector Table
to find the starting address of the service routine. The exception vector in this case
is xOl. As with states 49 and 44, state 13 sets the Privilege mode to Supervisor
(PSR[15] 0), since the service routine executes in Supervisor mode. Also like

C.7 Control Store 583

those states, it loads the PSR into the MDR to start the process of pushing the
PSR onto the Supervisor Stack.

Like state 44, it does not change the priority of the running program, since
the urgency of handling the exception is the same as the urgency of executing
the program that contains it. Like state 49, it tests the Privilege mode of the
program that contains the illegal opcode, since if the currently executing program
is in User mode, the stack pointers need to be switched as was described in
Section C.6.1. Like state 49, the processor then microbranches either to state 37
if the stack pointer is already pointing to the Supervisor Stack, or to state 45 if the
stack pointers have to be switched. From there, the initiating sequence continues
in states 37, 41, 43, etc.. identical to what happens when an interrupt is initiated
(Section C.6.1) or a privilege mode exception is initiated (Section C.6.2). The
PSR and PC are pushed onto the Supervisor Stack and the starting address of the
service routine is loaded into the PC, completing the initiation of the exception.

Figure C.9 completes our microprogrammed implementation of the LC-3. It
shows the contents of each location of the control store, corresponding to the
49 control signals required by each state of the state machine. We have left the
exact entries blank to allow you, the reader, the joy of filling in the required signals
yourself. The solution is available from your instructor.

Control Store

000000
000001

0 0 0 0 1 0

000011
0 0 0 1 0 0

000101

000110
000111
0 0 1 0 0 0

001001
001010
001011
001100
001101
001110
001111
0 1 0 0 0 0

010001

0 1 0 0 1 0

010011

0 1 0 1 0 0

010101

0 1 0 1 1 0

010111
011000
011001

0 1 1 0 1 0

011011
011100
011101

011110
011111
100000
100001
1CC01D
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

State

State

State

State

State

State 5)

State

State

State

State

State

State

State

State

State

State

S ta te

S ta te

S ta te 18)

State 19)

State 20)

State 21)

State 22)

State 23)

State 24)

State 25)

State 26)

State 27)

State 28)

State 29)

State 30)

State 31)

State 32)

State 33)

State 34)

State 35)

State 36)

State 37)

State 38)

State 39)

State 40)

S ta te 41)

S ta te 42)

S ta te 43)

State 44)

State 45)

State 46)

State 47)

State 48)

State 49)

State 50)

State 51)

State 52)

State 53)

State 54)

State 55)

State 56)

S ta te 57)

S ta te 58)

S ta te 59)

State 60)

State 61)

State 62)

State 63)

m w i ; J
The C Programming Language

D.I Overvieiii
This appendix is a C reference manual oriented toward the novice C programmer.
It covers a significant portion of the language, including material not covered in the
main text of this book. The intent of this appendix is to provide a quick reference to
various features of the language for use during programming. Each item covered
within the following sections contains a brief summary of a particular C feature
and an illustrative example, when appropriate.

We start our coverage of the C programming language by describing the lexical
elements of a C program and some of the conventions used by C programmers
for writing C programs.

The C programming convention is to separate programs into files of two types:
source files (with the extension . c) and header files (with the extension .h).
Source files, sometimes called . c or dot-c files, contain the C code for a group
of related functions. For example, functions related to managing a stack data
structure might be placed in a file named stack. c . Each . c file is compiled into
an object file, and these objects are linked together into an executable image by
the linker.

Header files typically do not contain C statements but rather contain function,
variable, structure, and type declarations, as well as preprocessor macros. The
programming convention is to couple a header file with the source file in which
the declared items are defined. For example, if the source file stai o. c con-
tains the definitions for the functions printf, scanf, getchar, and putchar,
then the header file stdio. h contains the declarations for these functions. If one
of these functions is called from another .c file, then the stdio.h header file
should be #included to get the proper function declarations.

D.2 CConveni ions

D.2.1 Source Files

D.2.2 Header Files

5 8 6 appendix d The C Programming Language

D.2.3 Comments
In C, comments begin with the two-character delimiter - and end with */'.
Comments can span multiple lines. Comments within comments are not legal
and will generate a syntax error on most compilers. Comments within strings
or character literals are not recognized as comments and will be treated as part of
the character string. While some C compilers accept the C + + notation for
comments (), the ANSI C standard only allows for * and * .

D.2.4 Literals
C programs can contain literal constant values that are integers, floating point
values, characters, character strings, or enumeration constants. These literals can
be used as initializers for variables, or within expressions. Some examples are
provided in the following subsections.

In teger

Integer literals can be expressed either in decimal, octal, or hexadecimal notation.
If the literal is prefixed by a j (zero), it will be interpreted as an octal number. If the
literal begins with a ::->:, it will be interpreted as hexadecimal (thus it can consist
of the digits 0 through 9 and the characters a through / . Uppercase .4 through F
can be used as well. An unprefixed literal (i.e.. it doesn't begin with a c or Ox)
indicates it is in decimal notation and consists of a sequence of digits. Regardless
of its base, an integer literal can be preceded by a minus sign, --, to indicate a
negative value.

An integer literal can be suffixed with the letter / or L to indicate that it is
of type v. . An integer literal suffixed with the letter a or U indit ites m
unsigned value. Refer to Section D.3.2 for a discussion of icr^y and
types.

The first three examples that follow express the same number, 87. The two
last versions express it as an . value and as a value.

/* 87 in decimal */
/'* 87 in hexadecimal */
/* 87 in octal */
/* -24 in decimal */

-••:•;• /* -20 in octal */
/* -36 in hexadecimal */

Floating Point

Floating point constants consist of three parts: an integer part, a decimal point,
and a fractional part. The fractional part and integer part are optional, but one
of the two must be present. The number preceded by a minus sign indicates a
negative value. Several examples follow:

/* expresses the number 1.0 */

D.2 C Conventions 587

Floating point literals can also be expressed in exponential notation. With
this form, a floating point constant (such as 1.613123) is followed by an e or E.
The e or E signals the beginning of the integer exponent, which is the power of
10 by which the part preceding the exponent is multiplied. The exponent can be a
negative value. The exponent is obviously optional, and if used, then the decimal
point is optional. Examples follow:

5.02 3 e2 3 /* 6.023 * 10^23 */
454_323e-22 /* 454.323 * 10^(-22) */
SEI3 /* 5.0 * 10"13 */

By default, a floating point type is a or double-precision floating point
number. This can be modified with ihe optional suffix / or F, which indicates
a f l o a t or single-precision floating point number. The suffix / or L indicates a
long double (see Section D.3.2).

Character

A character literal can be expressed by surrounding a particular character by single
quotes, e.g., 5 o ' . This converts the character into the internal character code used
by the computer, which for most computers today, including the LC-3, is ASCII.

Table D. 1 lists some special characters that typically cannot be expressed with
a single keystroke. The C programming language provides a means to state them
via a special sequence of characters. The last two forms, octal and hexadecimal,
specify ways of stating an arbitrary character by using its code value, stated as
either octal or hex. For example, the character ' S \ which has the ASCII value of
83 (decimal), can be stated as ' \0123' or fc\x53\

String Literals

A string literal within a C program must be enclosed within double quote char-
acters, ». String literals have the type char - and space for them is allocated in

Special Characters in C

Character Sequence

newline
horizontal tab
vertical tab
backspace
carriage return
formfeed
audible alert
backslash '•.
question mark ?
single quote '
double quote n

octal number
hexadecimal number

588 appendix d The C Programming Language

a special section of the memory address space reserved for literal constants. The
termination character ' ' . o' is automatically added to the character string.
The following are two examples of string literals:

char greeting[I0J = "bon jouri";
printf ("This is a string literal11 j ;

String literals can be used to initialize character strings, or they can be used
wherever an object of type c nar * is expected, for example as an argument to a
function expecting a parameter of type char *. String literals, however, cannot
be used for the assignment of arrays. For example, the following code is not legal
inC.

char greeting lie] ;

greeting = !'bon j our : " ;

Enumerat ion Constants

Associated with an enumerated type (see Section D.3.1) are enumerators, or enu-
meration constants. These constants are of type int, and their precise value is
defined by the enumerator list of an enumeration declaration. In essence, an
enumeration constant is a symbolic, integral value.

D.2.5 Formatting
C is a freely formatted language. The programmer is free to add spaces, tabs,
carriage returns, new lines between and within statements and declarations. C
programmers often adopt a style helpful for making the code more readable,
which includes adequate indenting of control constructs, consistent alignment of
open and close braces, and adequate commenting that does not obstruct someone
trying to read the code. See the numerous examples in the C programming chapters
of the book for a typical style of formatting C code.

D.2.6 Keywords
The following list is a set of reserved words, or keywords, that have special
meaning within the C language. They are the names of the primitive types, type
modifiers, control constructs, and other features natively supported by the lan-
guage. These names cannot be used by the programmer as names of variables,
functions, or any other object that the programmer might provide a name for.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for- signed void
default go to sizeof volatile
do if static whx le

D.3 Types 5 8 9

D.3 Types
In C, expressions, functions, and objects have types associated with them. The type
of a variable, for example, indicates something about the actual value the variable
represents. For instance, if the variable kappa is of type int, then the value (which
is essentially just a bit pattern) referred to by kappa will be interpreted as a signed
integer. In C, there are the basic data types, which are types natively supported
by the programming language, and derived types, which are types based on basic
types and which include programmer-defined types.

D.3.1 Basic Data Types
There are several predefined basic types within the C language: int, float,
double, and char. They exist automatically within all implementations
of C, though their sizes and range of values depends upon the computer system
being used.

ii V
The binary value of something of int type will be interpreted as a signed whole
number. Typical computers use 32 bits to represent signed integers, expressed in
2's complement form. Such integers can take on values between (and including)
-2,147.483,648 and +2,147,483,647.

float
Objects declared of type float represent single-precision floating point numbers.
These numbers typically, but not always, follow the representations defined by
the IEEE standard for single-precision floating point numbers, which means that
the type is a 32-bit type, where 1 bit is used for sign, 8 bits for exponent (expressed
in bias-127 code), and 23 bits for fraction. See Section 2.7.1.

cLoiifo 13
Objects declared of type double deal with double-precision floating point num-
bers. Like objects of type float, objects of type double are also typically
represented using the IEEE standard. The precise difference between objects
of type float and of type double depends on the system being used; however,
the ANSI C standard specifies that the precision of a double should never be less
than that of a float. On most machines a double is 64 bits.

char
Objects of character type contain a single character, expressed in the character
code used by the computer system. Typical computer systems use the ASCII
character code (see Appendix E). The size of a char is large enough to store a
character from the character set. C also imposes that the size of a short int
must be at least the size of a char.

Collectively, the int and char types (and enumerated types) are referred to
as integral types, whereas float and double are floating types.

590 appendix d The C Programming Language

Enumerated Types

C provides a way for the programmer to specify objects that take on symbolic
values. For example, we iiny want to create a type that takes on one of four values:
Penguin, Riddier, Ca i, Joker. We can do so by using an enumerated
type, as follows:

/* Specifier */
enum villains (Penguin, Riddier, Cai^oman, Joker

/* Declaration */
enum villains badGuy;

The variable badGuy is of the enumerated type villains. It can take on one
of the four symbolic values defined by enumerator list in the specifier. The four
symbolic values are called enumeration constants (see Section D.2.4) and are
actually integer values.

In an enumerator list, the value of the first enumeration constant will be 0,
the next will be 1, and so forth. In the type villains, the value of Penguin
will be 0, Riddier will be 1, Catwoman will be 2, doner will be 3. The value of
an enumerator can be explicitly set by the programmer by using the assignment
operator, For example,

/* Specifier */
enum vi J. _ a ins \ Penguin - .5, Ki da_er , uauvvorfian, ... o.^ j. > ;

causes Penguin to be 3, Riddier to be 4, and so forth.

D.3.2 Type Qualifiers
The basic types can be modified with the use of a type qualifier. These modifiers
alter the basic type in some small fashion or change its default size.

signed, unsigned
The types int and char can be modified with the use of the s 1 gnea and unsigned
qualifiers. By default, integers are signed; the default on characters depends on
the computer system.

For example, if a computer uses 32-bit 2's complement signed integers,
then a signed int can have any value in the range -2,147,483,648 to
+2,147,483,647. On the same machine, an unsigned int can have a value
in the range 0 to +4.294,967,295.

signed i n c; /* the signed modifier is redundant */

signed char j; ' /* forces the char to be interpreted
as a signed value */

unsigned char k; /* the char will be interpreted as an
unsigned value */

D.3 Types 5 9 1

long, short
The qualifiers long and short allow the programmer to manipulate the physical
size of a basic type. For example, the qualifiers can be used with an integer to
create short int and long int.

It is important to note that there is no strict definition of how much larger
one type of integer is than another. The C language states only that the size of a
short int is less than or equal to the size of an i nr., which is less than or equal
to the size of a long int. Stated more completely and precisely:
sizeof: (c h a r < = sizeof i short :nt) <- sizeof • m o ; <= sizeof<long int

New computers that support 64-bit data types make a distinction on the long
qualifier. On these machines, a long int. might be a 64-bit integer, whereas
an int might be a 32-bit integer. The range of values of types on a particular
computer can be found in the standard header file •• l-v.. • -. h>. On most UNIX
systems, it will be in the /nsr/include directory.

The following are several examples of type modifiers on the integral data
types.
short int q;
long int p;
unsigned long int r;

The long and short qualifiers can also be used with the floating type double
to create a floating point number with higher precision or larger range (if such
a type is available on the computer) than a double. As stated by the ANSI C
specification: the size of a float is less than or equal to the size of a double,
which is less than or equal to the size of a acng double.

double X;
long double y;

w rt
SmJ Jn W W

A value that does not change through the course of execution can be qualified
with the const qualifier. For example,
const double pi =- 3.14159;

By using this qualifier, the programmer is providing information that might enable
an optimizing compiler to perform more powerful optimizations on the resulting
code. All variables with a const qualifier must be explicitly initialized.

D.3.3 Storage Class
Memory objects in C can be of the static or automatic storage class. Objects of
the automatic class are local to a block (such as a function) and lose their value
once their block is completed. By default, local variables within a function are of
the automatic class and are allocated on the run-time stack (see Section 14.3.1).

Objects of the static class retain their values throughout program execution.
Global variables and other objects declared outside of all blocks are of the static
class. Objects declared within a function can be qualified with the s tat ic qualifier
to indicate that they are to be allocated with other static objects, allowing their

603 appendix d The C Programming Language

value to persist across invocations of the function in which they are declared. For
example,

int Count: { inz x>
/ i

static int y;

}
The value of y will not be lost when the activation record of Ccunt. is popped

off the stack. To enable this, the compiler will allocate a static local variable in
the global data section. Every call of the function updates the value of y.

Unlike typical local variables of the automatic class, variables of the static
class are initialized to zero. Variables of the automatic class must be initialized
by the programmer.

There is a special qualifier called r e g i s t e r that can be applied to objects in
the automatic class. This qualifier provides a hint to the compiler that the value
is frequently accessed within the code and should be allocated in a register to
potentially enhance performance. The compiler, however, treats this only as a
suggestion and can override or ignore this specifier based on its own analysis.

Functions, as well as variables, can be qualified with the qualifier extern.
This qualifier indicates that the function's or variable's storage is defined in
another object module that will be linked together with the current module when
the executable is constructed.

D.3.4 Derived Types
The derived types are extensions of the basic types provided by C. The derived
types include pointers, arrays, structures, and unions. Structures and unions enable
the programmer to create new types that are aggregations of other types.

Arrays

An array is a sequence of objects of a particular type that is allocated sequentially
in memory. That is, if the first element of the array of type T is at memory location
X, the next element will be at memory location X + sizeof , and so forth.
Each element of the array is accessible using an integer index, starting with the
index 0. That is, the first element of array l i s - is l i s t ;oj , numbered starting
at 0. The size of the array must be stated as a constant integral expression (it is
not required to be a literal) when the array is declared.

char s t r i n g [1 0 0 / * Declares array of 100 characters */
int data [20] ; /* Declares array of 20 integers */

To access a particular element within an array, an index is formed using an
integral expression within square brackets, ;].

data [0j /* Accesses first element of array data */
data [i + 3] /* The variable i must be an integer */
string[x + y; /* x and y must be integers */

D.3 Types

The compiler is not required to check (nor is it required to generate code to
check) whether the value of the index falls within the bounds of the array. The
responsibility of ensuring proper access to the array is upon the programmer. For
example, based on the previous declarations and array expressions, the reference
string [x + y], the value of x + y should be 100 or less; otherwise the
reference exceeds the bounds of the array st r ing.

Pointers

Pointers are objects that are addresses of other objects. Pointer types are declared
by prefixing an identifier with an asterisk, *. The type of a pointer indicates the
type of the object that the pointer points to. For example,

int *v; /* v points to an integer */

C allows a restricted set of operations to be used on pointer variables. Point-
ers can be manipulated in expressions, thus allowing "pointer arithmetic" to be
performed. C allows assigment between pointers of the same type, or assignment,
of a pointer to 0. Assignment of a pointer to the constant value 0 causes the gener-
ation of a null pointer. Integer values can be added to or subtracted from a pointer
value. Also, pointers of the same type can be compared (using the relational oper-
ators) or subtracted from one another, but this is meaningful only if the pointers
involved point to elements of the same array. All other pointer manipulations are
not explicitly allowed in C but can be done with the appropriate casting.

Structures

Structures enable the programmer to specify an aggregate type. That is, a structure
consists of member elements, each of which has its own type. The programmer can
specify a structure using the following syntax. Notice that each member element
has its own type.

struct tag_id {
typel memberl;
type2 member2;

t ypeN membe rN;
[•

This structure has member elements named memberi of type typei, member2
of type2, up to memberN of typeN. Member elements can take on any basic or
derived type, including other programmer-defined types.

The programmer can specify an optional tag, which in this case is tag id.
Using the tag, the programmer can declare structure variables, such as the variable
x in the following declaration:

struct tag_ id x;

A structure is defined by its tag. Multiple structures can be declared in a program
with the same member elements and member element identifiers; they are different
if they have different tags.

5 9 4 appendix d The C Programming Language

Alternatively, variables can be declared along with the structure declaration,
as shown in the following example. In this example, the variable first.Point is
declared along with the structure. The array m a e is declared using the structure
tag point.

struct point <
int x;
int y;
first Point;

/* declares an array of structure type variables */
struct point: imaqeilQC] ;

See Section 19.2 for more information on structures.

Unions

Structures are containers that hold multiple objects of various types. Unions, on
the other hand, are containers that hold a single object that can take on different
predetermined types at various points in a program. For example, the following
is the declaration of a union variable j omed:

ui __tag {
ival ;

e ; - •
oval ;

} j - - ^ - j Q ;

The variable joined ultimately contains bits. These bits can be an integer,
double, or character data type, depending on what the programmer decides to put
there. For example, the variable will be treated as an integer with the expression
j oi ned. ival, or as a double-precision floating point value with joined, ival,
or as a character with j oir.ed . oval. The compiler will allocate enough space for
union variables as required for the largest data type.

D.3.5 typedef
In C, a programmer can use typedef to create a synonym for an existing type.
This is particularly useful for providing names for programmer-defined types.
The general form for a typedef follows:

typedef type nave;

Here, type can be any basic type, enumerated type, or derived type. The identifier
name can be any legal identifier. The result of this typedef is that name is a
synonym for type. The t ypedef declaration is an important feature for enhancing
code readability; a well-chosen type name conveys additional information about
the object declared of that type. Following are some examples.

D.4 Declarat ions 5 9 5

:ee , tea , water , soda \ leverage ;
/* Declaration uses previous typedef */

j- Pixel;

Pixel bitmap I] 024*320] ; /^Declares an array of pixels*/

D.4 Declarat ions
An object is a named section of memory, such as a variable. In C, an object
must be declared with a declaration before it can be used. Declarations inform
the compiler of characteristics, such as its type, name, and storage class, so that
correct machine code can be generated whenever the object is manipulated within
the body of the program.

In C, functions are also declared before they are used. A function declaration
informs the compiler about the return value, function name, and types and order
of input parameters.

D.4.1 Variable Declarations
The format for a variable declaration is as follows:
[storage-class] [t ype-qua 1: t i e t] | ? •{ identifier <] = initializer:

The curly braces, { }, indicate items that are required and the square brackets,
[] , indicate optional items.

The optional storage-class can be any storage class modifier listed in
Section D.3.3, such as s t a t i c .

The optional type-qualifier can be any legal type qualifiers, such as the
qualifiers provided in Section D.3.2.

The type of a variable can be any of the basic types (int, char, float,
double), enumerated types, or derived type (array, pointer, structure, or union).

An identifier can be any sequence of letters, digits, and the underscore char-
acter, _. The first character must be a letter or the underscore character. Identifiers
can have any length, but for most variables you will use, at least 31 characters will
be significant. That is, variables that differ only after the 31 st character might be
treated as the same variable by an ANSI C compiler. Uppercase letters are differ-
ent from lowercase, so the identifier sum is different from Sum. Identifiers must
be different from any of the C keywords (see Section D.2.6). Several examples
of legal identifiers follow. Each is a distinct identifier.

5 9 6 appendix d The C Programming Language

The initializer for variables of automatic storage (see Section D.3.3) can
be any expression that uses previously defined values. For variables of the static
class (such as global values) or external variables, the initializer must be a constant
expression.

Also, multiple identifiers (and initializers) can be placed on the same line,
creating multiple variables of the same type, having the same storage class and
type characteristics.

static long unsigned int > ~ 10UL;
register char 1 - 'Q';
m t list [100] ;
struct node_type r:; /* Declares a structure variable */

Declarations can be placed at the beginning of any block (see Section D.6.2),
before any statements. Such declarations are visible only within the block in
which they appear. Declarations can also appear at the outermost level of the
program, outside of all functions. Such declarations are global variables. They
are visible from all parts of the program. See Section 12.2.3 for more information
on variable declarations.

D.4.2 Function Declarations
A function's declaration informs the compiler about the type of value returned by
the function and the type, number, and order of parameters the function expects
to receive from its caller. The format for a function declaration is as follows:

The curly braces, { }, indicate items that are required and the square brackets,
[], indicate items that are optional.

The type indicates the type of the value returned by the function and can be
of any basic type, enumerated type, a structure, a union, a pointer, or void (note:
it cannot be an array). If a function does not return a value, then its type must be
dec l a red as void.

The function-id can be any legal identifier that has not already been defined.
Enclosed within parentheses following the function-id are the types of each of

the input parameters expected by the function, indicated by type I, type2, typeN,
each separated by a comma. Optionally, an identifier can be supplied for each
argument, indicating what the particular argument will be called within the func-
tion's definition. For example, the following might be a declaration for a function
that returns the average of an in i> of integers:

int Average tint srs [j , int ;

D.5 Operators
In this section, we describe the C operators. The operators are grouped by the
operations they perform.

D.5 Operators 5 9 7

D.5.1 Assignment Operators
C supports multiple assignment operators, the most basic of which is the simple
assigment operator =. All assignment operators associate from right to left.

A standard form for a simple assignment expression is as follows:

The left-expression must be a modifiable object. It cannot, for example, be a
function, an object with a type qualifier const, or an array (it can, however, be
an element of an array). The left-expression is often referred to as an lvalue. The
left-expression can be an object of a structure or union type.

After the assignment expression is evaluated, the value of the object referred
to by the left-expression will take on the value of the right-expression. In most
usages of the assignment operator, the types of the two expressions will be the
same. If they are different, and both are basic types, then the right operand is
converted to the type of the left operand.

The other assignment operators include:

All of these assignment operators combine an operation with an assignment.
In general, A op= b is equivalent to a = a op ;3 . For example, x += y is
equivalent to x - x + y.

Examples of the various assignment operators can be found in Sections 12.3.2
and 12.6.4.

D.5.2 Arithmetic Operators
C supports basic arithmetic operations via the following binary operators:

+ ~ * / %

These operators perform addition, subtraction, multiplication, division, and
modulus. These operators are most commonly used with operands of the basic
types (int, double, float, and char). If the operands have different types (such
as a floating point value plus an integer), then the resulting expression is converted
according to the conversion rules (see Section D.5.11). There is one restriction,
however: the operands of the modulus operator % must be of the integral type
(e.g., int, char, or enumerated).

The addition and subtraction operators can also be used with pointers that
point to values within arrays. The use of these operators in this context is referred
to as pointer arithmetic. For example, the expression ptr + i where ptr is of
type type *, is equivalent to ptr e sizeof (typeA The expression ptr + i
generates the address of the next element in the array.

C also supports the two unary operators + and The negation operator, - ,
generates the negative of its operand. The unary plus operator, +, generates its
operand. This operator is included in the C language primarily for symmetry with
the negation operator.

For more examples involving the arithmetic operators, see Section 12.3.3.

5 9 8 appendix d The C Programming Language

D.5.3 Bit-Wise Operators
The following operators:

are C's bit-wise operators. They perform bit-wise operation only on integral
values. That is, they cannot be used with floating point values.

The left shift operator, , and right shift operator, > >, evaluate to the value
of the left operand shifted by the number of bit positions indicated by the right
operand. In ANSI C, if the right operand is greater than the number of bits in
the representation (say, for example, 33 for a 32-bit integer) or negative, then the
result is undefined.

Table D.2 provides some additional details 011 these operators. It provides an
example usage and evaluation of each with an integer operand x equal to 186 and
the integer operand y equal to 6.

D.5.4 Logical Operators
The logical operators in C are particularly useful for constructing logical expres-
sions with multiple clauses. For example, if we want to test whether both condition
A and condition B are true, then we might want to use the logical AND operator.

The logical AND operator takes two operands (which do not need to be of
the same type). The operator evaluates to a 1 if both operands are nonzero. It
evaluates to 0 otherwise.

The logical OR operator takes two operands and evaluates to 1 if either is
nonzero. If both are zero, the operator evaluates to 0.

The logical NOT operator is a unary operate that evaluates to the logical
inverse of its operand: it evaluates to 1 if the operand is zero, 0 otherwise.

The logical AND and logical OR operators are short-circuit operators. That
is, if in evaluating the left operand, the value of the operation becomes known,
then the right operand is not evaluated. For example, in evaluating :: • ! : • .•.
if x is nonzero, then will not be evaluated, meaning that the side effect of the
increment will not occur.

Table D.3 provides some additional details on the logical operators and pro-
vides an example usage and evaluation of each with an integer operand x equal
to 186 and the integer operand y equal to 6.

Bit-Wise Operators in C

x=l 86
Operator Symbol Operation Example Usage y=6

bit-wise AND
bit-wise OR
bit-wise NOT
bit-wise XOR
left shift

2
190

- 1 8 7
188

11904
2 r ight shift

D.5 Operators 5 9 9

E S l H f S V - ' ' Log ica l O p e r a t o r s in C

x-186
Operator Symbol Operation Example Usage y=6

&& logical A N D x && y 1
1 ! logical OR x U y 1
! logical NOT ix 0

D.5.5 Relational Operators
The following operators:

are the relational operators in C. They perform a relational comparison between
the left and right operands, such as equal to, not equal to, and greater than. The
typical use of these operators is to compare expressions of the basic types. If
the relationship is true, then the result is the integer value 1; otherwise it is 0.
Expressions of mixed type undergo the standard type conversions described in
Section D.5.11. C also allows the relational operators to be used on pointers.
However, such pointer expressions only have meaning if both pointers point to
the same object, such as the same array.

D.5.6 Increment/Decrement Operators
The increment/decrement operators in C are and - -. They increment or
decrement the operand by 1. Both operators can be used in prefix and postfix
forms.

In the prefix form, for example ++x, the value of the object is incremented
(or decremented). The value of the expression is then the value of the result. For
example, after the following executes:

i n t x = 4;
i n t y ;

y = + + X ;

both x and y equal 5.
In the postfix form, for example the value of the expression is the value

of the operand prior to the increment (or decrement). Once the value is recorded,
the operand is incremented (or decremented) by 1. For example, the result of the
following code:

int. x = 4;
i n t y ;

y = x i -f ;

is that x equals 5 and y equals 4.
Like the addition and subtraction operators, the increment and decrement

operators can be used with pointer types. See Section D.5.2.

600 appendix d The C Programming Language

D.5.7 Conditional Expression Operators
The conditional expression operator in C has the following form:

^expressionA* ? (expressions > : { expressionC

Here, if expressionA is logically true, that is, it evaluates to a nonzero value, then
the value of the entire expression is the value of expressionB. If expressionA is
logically false, that is, it evaluates to zero, then the value of the entire expression
is the value of expressionC. For example, in the following code segment:

the value of the conditional expression x v y : z will depend on the value of
x. If x is nonzero, then w will be assigned the value of y. Otherwise x will be
assigned the value of

Like the logical AND and logical OR operators, the conditional expression
short-circuits the evaluation of expressionB or expressionC, depending on the
state of expressionA. See Section D.5.4.

D.5.8 Pointer, Array, and Structure Operators
This final batch of operators performs address-related operations for use with the
derived data types.

Address Operator

The address operator is the i . It takes the address of its operand. The operand
must be a memory object, such as a variable, array element, or structure member.

Dereference Operator

The complement of the address operator is the dereference operator. It returns the
object to which the operand is pointing. For example, given the following code:

- I:- t

int. x = 5;

p = &x;
n:- •• =• A

the expression *p returns x. When appears on the left-hand side of an assign-
ment operator, it is treated as an lvalue (see Section D.5.1). Otherwise *p evaluates
to the value of x.

Array Reference

In C, an integral expression within square brackets, [] , designates a subscripted
array reference. The typical use of this operator is with an object declared as an
array. The following code contains an example of an array reference on the array
I i s l .

int x;

int list [ICC] ;

x - . - - 10];

D.5 Operators

Structure and Union References

C contains two operators for referring to member elements within a structure or
union. The first is the dot, or period, which directly accesses the member element
of a structure or union variable. The following is an example:

struct pointType {
inf. x;
int y;

i .
/ ;

typedef poi nr.Type Point;

Point pixel;

pixel.x - 3; pixel.y - pixel.x + 10 7

The variable pixel is a structure variable, and its member elements are
accessed using the dot operator.

The second means of accessing member elements of a structure is the arrow,
or -> operator. Here, a pointer to a structure or union can be dereferenced
and a member element selected with a single operator. The following code
demonstrates:

Point pixel;
Point *ptr;

ptr - &pixel;
ptr->x = ptr->x + 1;

Here, the pointer variable ptr points to the structure variable pixel.

D.5.9 sizeof
The sizeof operator returns the number of bytes required to store an object of
the type specified. For example, sizeof ;int) will return the number of bytes
occupied by an integer. If the operand is an array, then si zeof will return the size
of the array. The following is an example:

int. list [45] ;

struct example _type {
int valueA;
int valueB;
double valueC;

\ . j '
typedef struct example _type Example;

s i z e A ~
sizeB =

sizeof(list);
sizeof(Example)

/* 45 * sizeof(int) */
/* Size of structure */

6 0 2 appendix d The C P r o g r a m m i n g Language

Ulf inr lT Operator Precedence, from Highest to Lowest.
Descriptions of Some Operators are Provided in Parentheses

Precedence Group Assoc ia t i v i t y Opera to rs

1 (h ighest) 1 to r () (func t ion cah) [] (a r ray index) - >

2 r to ! + + - - (post f ix versions)

3 r to 1 + + - - (pref ix versions)

4 r to 1 * (i nd i rec t ion) & (adcress of)
+ (i inary) - (unary) ~ ! s i z e o f

5 r to 1 (t y p e) (type cast)

6 1 to r * ;n iL i l t i p ! ' ca t ion) / %

7
8

1 to r
1 to r

+ ' '.addition) - (sub t rac t i on ;
« »

9 1 to r < > < = > =

10 1 to r I -

1 1 I to r &

12 1 to r

13 1 to r
14 1 to r
15 1 to r i
16 1 to r 0 .

17 (lowest) r to 1 + = * = etc.

D.5.10 Order of Evaluation
The order of evaluation of an expression starts at the subexpression in the inner-
most parentheses, with the operator with the highest precedence, moving to the
operator with the lowest precedence within the same subexpression. If two oper-
ators have the same precedence (for example, two of the same operators, as in
the expression :: — then the associativity of the operators determines the
order of evaluation, either from left to right or from right to left. The evaluation
of the expression continues recursively from there.

Table D.4 provides the precedence and associativity of the C operators. The
operators of highest precedence are listed at the top of the tabic, in lower numbered
precedence groups.

D.5.11 Type Conversions
Consider the following expression involving the operator op.

The resulting value of this expression will have a particular type associated
with it. This resulting type depends on (1) the types of the operands A and B, and
(2) the nature of the operator op.

If the types of A and B are the same and the operator can operate on that
type, the result is the type defined by the operator.

When an expression contains variables that are a mixture of the basic types,
C performs a set of standard arithmetic conversions of the operand values. In gen-
eral, smaller types are converted into larger types, and integral types are converted
into floating types. For example, if A is of type : and B is of type int, the

D.6 Expressions and Statements 603

result is of type double. Integral values, such as char, im, or an enumerated
type, are converted to i ne (or unsigned int, depending on the implementation).
The following are examples.

i * i /* This expression is an integer */
-j .1 /* This expression is an integer */
j + 1,0 /* This expression is a float */
1 + l.o /* This expression is a float */
x - y /* This expression is a double */
i + j 4 x -r y /* This is a double */

As in case (2) above, some operators require operands of a particular type or
generate results of a particular type. For example, the modulus operator % only
operates on integral values. Here integral type conversions are performed on the
operands (e.g., char is converted to rut). Floating point values are not allowed
and will generate compilation errors.

If a floating point type is converted to an integral type (which does not happen
with the usual type conversion, but can happen with casting as described in the
next subsection), the fractional portion is discarded. If the resulting integer cannot
be represented by the integral type, the result is undefined.

Casting

The programmer can explicitly control the type conversion process by type
casting. A cast has the general form;

Here the expression is converted into the new-type using the usual conver-
sion rules described in the preceding paragraphs. Continuing with the previous
example code:

-i (int} x -+ y; /* This results in conversion of
double into an integer */

D.6 Expressions and Statements
In C, the work, performed by a program is described by the expressions and
statements within the bodies of functions.

D.6.1 Expressions
An expression is any legal combination of constants, variables, operators, and
function calls that evaluates to a value of a particular type. The order of evaluation
is based on the precedence and associativity rules described in Section D.5.10.

604 appendix d The C Programming Language

The type of an expression is based on the individual elements of the expression,
according to the C type promotion rules (see Section D.5.11). If all the elements
of an expression are int types, then the expression is of int type. Following are
several examples of expressions:

a * a - b * b
a++ - c / 3
a 4
q ! | integrate : x">

D.6.2 Statements
In C, simple statements are expressions terminated by a semicolon, ; . Typically,
statements modify a variable or have some other side effect when the expression
is evaluated. Once a statement has completed execution, the next statement in
sequential order is executed. If the statement is the last statement in its function,
then the function terminates.

/* Two simple statements */

Related statements can be grouped togethered into a compound statement, or
block, by surrounding them with curly braces, { }. Syntactically, the compound
statement is the same as a simple statement, and they can be used interchangeably.

{ /* One compound statement */
c = a * a + b * b ;
b = a+4 - c / 3;

}

0.7 Control
The control constructs in C enable the programmer to alter the sequential
execution of statements with statements that execute conditionally or iteratively.

D.7.1 i f
An if statement has the format

if (expression)
statement

If the expression, which can be of any basic, enumerated, or pointer types, eval-
uates to a nonzero value, then the statement, which can be a simple or compound
statement, is executed.

if (x < 0)
a = b + c; /* Executes if x is less than zero */
See Section 13.2.1 for more examples of if statements.

D.7 Control 605

D.7.2 If-else
An if-else statement has the format

if (expression)
statement:!

else
statement.2

If the expression, which can be of any basic, enumerated, or pointer type, eval-
uates to a nonzero value, then statement! is executed. Otherwise, statement2 is
executed. Both statement 1 and statement2 can be simple or compound statements.

a = b + c; / * Executes if x is less than zero * /

a -):• - c; / * Otherwise, this is executed. * /

See Section 13.2.2 for more examples of if_-else statements.

D.7.3 Switch
A switch statement has the following format:

switch(expression; (
case const-exprl:

statementlA
statement 15

case const-expr2:
stateiuer:t-2A
stat ement2B

case const-expx'N:
statements
statementNB

A switch statement is composed of an expression, which must be of integral
type (see Section D.3.1), followed by a compound statement (though it is not
required to be compound, it almost always is). Within the compound statement
exist one or more case labels, each with an associated constant integral expres-
sion, called const-exprl, const-expr2, const-exprN in the preceding example.
Within a switch, each case label must be different.

606 appendix d The C Programming Language

When a switch is encountered, the controlling expression is evaluated. If
one of the case labels matches the value of expression, then control jumps to the
statement that follows and proceeds from there.

The special case label default can be used to catch the situation where none
of the other case labels match. If the def aui t case is not present and none of the
labels match the value of the controlling expression, then no statements within
the switch are executed.

The following is an example of a code segment that uses a s w i t c h state-
ment. The use of the break statement causes control to leave the swi tch . See
Section D.7.7 for more information on break.
char k;

k = g e t c h a r () ;
s w i t c h (k) {
ca se ' * ' :

a ^ b + c;
b r e a k ; /' * b reak causes c o n t r o l t o l eave swi t ch * /

case ' - ' :
a = b - c ;
b r e a k ;

ca se 1 * 1 :
a ^ b * c ;
b r e a k ;

case '/':
a - b / c ;
b r e a k ; -i

See Section 13.5.1 for more examples of swircn statements.

D.7.4 While
A while statement has the following format:
while (expression)

statement

The while statement is an iteration construct. If the value of expression evaluates
to nonzero, then the statement is executed. Control does not pass to the subsequent
statement, but rather the expression is evaluated again and the process is repeated.
This continues until expression evaluates to 0, in which case control passes to the
next statement. The statement can be a simple or compound statement.

In the following example, the wnile loop will iterate 100 times.

X = 0;
while (x < 100) {

printf[nx - %d\n", x) ;
X ~ X + 1 ;

1

See Section 13.3.1 for more examples of while statements.

D.7 Control 6 0 7

D.7.5 For
A for statement has the following format:

for (initializer; term-expr; reinitializer)
s t a t emerit

The f o r statement is an iteration construct. The initializer, which is an expression,
is evaluated only once, before the loop begins. The term-expr is an expression
that is evaluated before each iteration of the loop. If the term-expr evaluates to
nonzero, the loop progresses; otherwise the loop terminates and control passes
to the statement following the loop. Each iteration of the loop consists of the exe-
cution of the statement, which makes up the body of the loop, and the evaluation
of the reinitializer expression.

The following example is a for loop that iterates 100 times.

for (X = 0; X < 100; X++i {
printf(Mx = %d\n", x) ;

See Section 13.3.2 for more examples of for statements.

D.7.6 Do-while
A do-while statement has the format

do
statement

while (expression);

The do - while statement is an iteration construct similar to the while statement.
When a do-whi le is first encountered, the statement that makes up the loop
body is executed first, then the expression is evaluated to determine whether to
execute another iteration. If it is nonzero, then another iteration is executed (in
other words, statement is executed again). In this manner, a do-while always
executes its loop body at least once.

The following do- while loop iterates 100 times.

printf("x = %d\n", x);

\ j
while (x < 100);

See Section 13.3.3 for more examples of do-while statements.

608 appendix d The C Programming Language

D.7.7 Break
A break statement has the format:

The break statement can only be used in an iteration statement or in a switch
statement. It passes control out of the smallest statement containing it to the
statement immediately following. Typically, creak is used to exit a loop before
the terminating condition is encountered.

In the following example, the execution of the rreak statement causes control
to pass out of the f o r loop.

See Section 13.5.2 for more examples of break statements.

D.7.8 continue
A continue statement has the following format:

The continue statement can be used only in an iteration statement. It prema-
turely terminates the execution of the loop body. That is, it terminates the current
iteration of the loop. The looping expression is evaluated to determine whether
another iteration should be performed. In a for loop the reinitialize}' is also
evaluated.

If the continue statement is executed, then x is incremented, and the reinitial-
ize r executed, and the loop expression evaluated to determine if another iteration
should be executed.

if (skip)
continue;

See Section 13.5.2 for more examples of c statements.

D.8 The C Preprocessor 6 0 9

D.7.9 return
A return statement has the format
return expression;

The return statement causes control to return to the current caller function, that
is, the function that called the function that contains the return statement. Also,
after the last statement of a function is executed, an implicit return is made to the
caller.

The expression that follows the return is the return value generated by
the function. It is converted to the return type of the function. If a function returns
a value, and yet no return statement within the function explicitly generates a
return value, then the return value is undefined.
return x y;

D.8 The C Preprocessor
The C programming language includes a preprocessing step that modifies, in
a programmer-controlled manner, the source code presented to the compiler.
The most frequently used features of the C preprocessor are its macro substi-
tution facility (#def ine), which replaces a sequence of source text with another
sequence, and the file inclusion facility (^include), which includes the con-
tents of a file into the source text. Both of these are described in the following
subsections.

None of the preprocessor directives are required to end with a semicolon.
Since #def ine and ̂ include are preprocessor directives and not C statements,
they are not required to be terminated by semicolons.

D.8.1 Macro Substitution
The #define preprocessor directive instructs the C preprocessor to replace
occurrences of one character sequence with another. Consider the following
example:
#define A 3

Here, any token that matches A will be replaced by B. That is, the macro A gets
substituted with B. The character A must appear as an individual sequence, i.e.,
the A in APPLE will not be substituted, and not appear in quoted strings, i.e.,
neither will "A".

The replacement text spans until the end of the line. If a longer sequence is
required, the backslash character, \ , can be used to continue to the next line.

Macros can also take arguments. They are specified in parentheses immedi-
ately after the text to be replaced. For example:
#derine REMAINDER (X, Y) ((X) % \Y> i

6 1 0 appendix d The C Programming Language

Here, every occurrence of the macro COPY in the source code will be accompanied
by two values, as in the following example.

The macro REMAINDER will be replaced by the preprocessor with the replace-
ment text provided in the ^def,ne, and the two arguments A and B will be
substituted with the two arguments that appear in the source code. The previous
code will be modified to the following after preprocessing:

vaiueC - ((valueA^ % (valueR - 15};;

Notice that the parentheses sunuundm^ X md Y in the macro definition were
required. Without them, the macro i: would have calculated the wrong
value.

While the r e m a i n d e r macro appears to be similar to a function call,
notice that it incurs none of the function call overhead associated with regular
functions.

D.8.2 File Inclusion
The tf include directive instructs the preprocessor to insert the contents of a file
into the source file. Typically, the s i n ^ u d e directive is used to attach header
files to C source files. C header files typically contain - d e f i n e s and declarations
that are useful among multiple source files.

There are two variations of the sinclude directive:

#include <stdio.h>
^include "program h"

The first variation uses angle brackets, < >, around the filename. This tells the
preprocessor that the header file can be found in a predefined directory, usually
determined by the configuration of the system and which contains many system-
related and library-related header files, such as stdic.h. The second variation,
using double quotes, n n , around the filename, instructs the preprocessor that
the header file can be found in the same directory as the C source file.

D.9 Some Standard Library Functions
The ANSI C standard library contains over 150 functions that perform a variety
of useful tasks (for example, I/O and dynamic memory allocation) on behalf of
your program. Every installation of ANSI C will have these functions available,
so even if you make use of these functions, your program will still be portable
from one ANSI C platform to another. In this section, we will describe some
useful standard library functions.

D.9 Some Standard L ibrary Functions 622

D.9.1 I/O Functions
The <stdlc. h> header file must be included in any source file that contains calls
to the standard I/O functions. Following is a small sample of these functions.

This function has the following declaration:

The function gee char reads the next character from the standard input device,
or stdin. The value of this character is returned (as an integer) as the return value.

The behavior of getchar is very similar to the LC-3 input TRAP (except no
input banner is displayed on the screen).

Most computer systems will implement getchar using buffered I/O. This
means that keystrokes (assuming standard input is coming from the keyboard)
will be buffered by the operating system until the Enter key is pressed. Once Enter
is pressed, the entire line of characters is added to the standard input stream.

putchar
This function has the following declaration:

The function putchar takes an integer value representing an ASCII character
and puts the character to the standard output stream. This is similar to the LC-3
TRAP OUT

If the standard output stream is the monitor, the character will appear on the
screen. However, since many systems buffer the output stream, the character may
not appear until the system's output buffer is flushed, which is usually done once
a newline appears in the output stream.

S TTi

This function has the following declaration:
int scanf ; const char * format string, *ptrl, . . . ,-

The function scant: is passed a format string (which is passed as pointer
to the initial character) and a list of pointers. The format string contains format
specifications that control how scanf will interpret fields in the input stream. For
example, the specification %d causes scanf to interpret the next sequence of non-
white space characters as adecimal number. This decimal is converted from ASCII
into an integer value and assigned to the variable pointed to by the next pointer in
the parameter list. Table D.5 contains a listing of the possible specifications for use
with scanf. The number of pointers that follow the format string in the parameter
list should correspond to the number of format specifications in the format string.
The value returned by scanf corresponds to the number of variables that were
successfully assigned.

612 appendix d The C Programming Language

scanf Conversion Specifications

scanf Conversions Parameter Type

signed decimal
* i decimal, octal (leading :) , hex (leading c x or ox)
•i - octal

hexadecimal
l u unsigned decimal

char
string of non-white space characters, : added

, f loat ing point number
double precision floating point number

printf Conversion Specifications

printf Conversions Printed as

signed decimal
octal
hexadecimal (a - f or A - F)
unsigned decimal
single chat-
string, terminated by 0
floating point in decimal notation
floating point in exponential notation
pointer

This function has the following declaration:
inr printf • ccrist cnar *formatString, . . . ; ;

The function printf writes the format string (passed as a pointer to the initial
character) to the standard output stream. If the format string contains a format
specification, then print f will interpret the next parameter in the parameter list
as indicated by the specification, and embed the interpreted value into the output
stream. For example, the format specification : : will cause printf to interpret
the next parameter as a decimal value, printf will write the resulting digits into
the output stream. Table D.6 contains a listing of the format specifications for
use with princf . In general, the number of values following the format string
on the parameter list should correspond to the number of format specifications in
the format string, printf returns the number of characters written to the output
stream. However, if an error occurs, a negative value is returned.

D.9.2 String Functions
The C standard library contains around 15 functions that perform operations on
strings (that is, null-terminated arrays of characters). To use the string functions
from within a program, include the ^ s t n a c . b header file in each source file
that contains a call to a library string function. In this section, we describe two
examples of C string functions.

D.9 Some Standard L ibrary Functions 613

strcmp
This function has the following declaration:

int strcmp(char *stringA, char *stringB);

This function compares stringA with strings. It returns a 0 if they are
equal. It returns a value greater than 0 if stringA is lexicographically greater than
strings (lexicographically greater means that stringA occurs later in a diction-
ary than stnngB). It returns a value less than 0 if stringA is lexicographically
less than strings.

strcpy
This function has the following declaration:

char *strcpy(char *stringA, char *stringB;;
This function copies srringB to stringA. It copies every character in

strings up to and including the null character. The function returns a pointer to
st ringA if no errors occurred.

D.9.3 Math Functions
The C standard math functions perform commonly used mathematical operations.
Using them requires including the <math.. header file. In this section, we list a
small sample of C math functions. Each of the listed functions takes as parameters
values of type acubi e, and each returns a value of type double.
double sin(double x); / * sine of x, expressed in radians */
double cos(double x); /* cosine of x, expressed in radians */
double /* tan of x, expressed in radians */
doub:e /* exponential function, e Ax */
double ^ * /* natural log of x */
~ e j - /* square root of x */
u le lou-cle y) /* x Ay - - x to the y power */

D.9.4 Utility Functions
The C library contains a set of functions that perform useful tasks such as memory
allocation, data conversion, sorting, and other miscellaneous things. The common
header file for these functions is <stdlib.n>.

in 3.1 x o c
As described in Section 19.3, the function ma Hoc allocates a fixed-sized chunk
from memory.

This function has the following declaration:
void *malloc(size_t size);

The input parameter is the number of bytes to be allocated. The parameter is
of type size t, which is the same type returned by the sizeof operator (very
often, this type is typedefed as an unsigned integer). If the memory allocation

6 1 4 appendix d The C Programming Language

goes successfully, a pointer to the allocated region of memory is returned. If the
request cannot be satisfied, the value NULL is returned.

This function has the following declaration:
void free(void *ptr';

This function returns to the heap a previously allocated chunk of memory
pointed to by the parameter. In other words, free deallocates memory pointed
to by ptr. The value passed to free must be a pointer to a previously allocated
region of memory, otherwise errors could occur.

rand and srand
The C standard utility functions contain a function to generate a sequence of
random numbers. The function is called rand. It does not generate a truly random
sequence, however. Instead, it generates the same sequence of varying values
based on an initial seed value. When the seed is changed, a different sequence is
generated. For example, when seeded with the value 10, the generator will always
generate the same sequence of numbers. However, this sequence will be different
than the sequence generated by another seed value.

The function rand has the following declaration:

int rand(void)

It returns a pseudo-random integer in the range 0 to RAND MAX, which is at
least 32,767.

To seed the pseudo-random number generator, use the function srand. This
function has the following declaration:
void srand(unsigned int seed);

E.l Commonly Used Numerical Prefixes
Numerical Prefixes

Amount
Commonly Used
Base-2 Approx. Prefix Abbreviation Derived From

102 4 280 yotta Y Greek for eight: okto
10 2 1 270 zetta z Greek for seven: hepta
101 8 260 exa E Greek for six: hexa
101 5 250 peta P Greek for five: pente
101 2 240 tera T Greek for monster: teras
109 230 giga G Greek for giant: gigas
106 220 mega M Greek for large: megas
103 210 kilo k Greek for thousand: chilioi

1 0 " 3 mil l i m Latin for thousand: mil l i
1 0 - 6 micro \x Greek for small: mikros
1 0 " 9 nano n Greek for dwarf: nanos
1 (T 1 2 pico P Spanish for a l itt le: pico
1 0 " 1 5 femto f Danish and Norwegian for 15: femten
1 0 " 1 8 atto a Danish and Norwegian for 18: atten
1 0 " 2 1 zepto z Greek for seven: hepta
1 0 " 2 4 yocto y Greek for eight: okto

6 1 6 appendix e Useful Tables

E.2 Standard HSCII codes

The Standard ASCII Table

ASCI I ASCI I ASCI I ASCI I

Character Dec Hex Character Dec Hex Character Dec Hex Character Dec Hex
nul 0 00 sc 32 20 "r: 64 40 96 60
s o h 1 01 1 33 21 A 65 41 a 97 61
SIX 2 02 " 34 22 B 66 42 b 98 62
e t x 3 03 # 35 23 £ 67 43 c 99 63
eoc 4 04 $ 36 24 68 44 d 100 64
enq 5 05 % 37 25 E 69 45 e 101 65
ack 6 06 5c 38 26 F 70 46 f 102 66
bel 7 07 ' 39 27 '•j 71 47 q 103 67
bs 8 08 (40 28 H 72 48 h 104 68
ht 9 09) 41 29 I 73 49 i 105 69
If 10 OA * 42 2A 74 4A j 106 6A
vt 11 0B + 43 2 B K 75 4B k 107 6B
ff. 12 OC 44 2C T_ 76 4C x 108 6C
cr 13 0D - 45 2D M 77 4D y-n 109 6D
so 14 OE 46 2 E i>I 78 4E n 110 6E
si 15 OF i 47 2 F 0 79 4F G 111 6F
die 16 10 0 48 30 P 80 50 P 112 70
del 17 11 1 49 31 Q 81 51 Q" 113 71
dc2 18 12 50 32 •Q 82 52 r 114 72
dc3 19 13 3 51 33 3 83 53 s 115 73
dc4 20 14 4 52 34 T 84 54 t 116 74
nak 21 15 5 53 35 U 85 55 u 117 75
syn 22 16 6 54 36 \ j 86 56 v 118 76
etb 23 17 7 55 37 \\ 87 57 w 119 77
can 24 18 8 56 38 X 88 58 X 120 78
em 25 19 9 57 39 'f 89 59 v 121 79
sub 26 1A 58 3A 7 90 5A 7. 122 7A
esc 27 I B • 59 3B r 91 5B / 123 7B
f s 28 1C < 60 3C 92 5C 124 7C
gs 29 I D = 61 3D 93 5D } 125 7D
rs 30 I E > 62 3 E 94 5 E 126 7 E
LIS 31 I F : 63 3F — 95 5F del 127 7F

E.3 Powers of 2
E.3 Powers of 2

P o w e r s of 2

C o m m o n
A m o u n t Decimal Convers ion Abbrev ia t ion

2 1 2 —

22 4 —

23 8 —

2 4 16 —

25 32 —

2e 64 —

2 7 128 _
28 256 —

29 512 —
2io 1/024 I K
2 i i 2 ,048 2I<
212 4 ; 096 4K
213 8/192 8I<
214 16/384 16 K
215 32/768 32 K
216 65/536 641<
217 131/072 128K
218 262 /144 256K
219 544/288 512 K
220 1 /048/576 I M
230 1 /073/741/824 1G
232 4 /294 /967 /296 4G

Solutions to Selected Exercises

Solutions to selected exercises can be found on our website:
http://www.mhhe.com/patt2

http://www.mhhe.com/patt2

