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p r e f a c e 

It is a pleasure to be writing a preface to the second edition of this book. Three 
years have passed since the first edition came out. We have received an enormous 
number of comments from students who have studied the material in the book 
and from instructors who have taught from it. Almost all have been very positive. 
It is gratifying to know that a lot of people agree with our approach, and that 
this agreement is based on real firsthand experience learning from it (in the case 
of students) or watching students learn from it (in the case of instructors). The 
excitement displayed in their e-mail continues to be a high for us. 

However, as we said in the preface to the first edition, this book will always 
be a "work in progress." Along with the accolades, we have received some good 
advice on how to make it better. We thank you for that. We have also each taught the 
course two more times since the first edition came out, and that, too, has improved 
our insights into what we think we did right and what needed improvement. The 
result has been a lot of changes in the second edition, while hopefully maintaining 
the essence of what we had before. How well we have succeeded we hope to soon 
learn from you. 

Major Changes to [lie First Edition 
The LC-3 
One of the more obvious changes in the second edition is the replacement of the 
LC-2 with the LC-3. We insisted on keeping the basic concept of the LC-2: a 
rich ISA that can be described in a few pages, and hopefully mastered in a short 
time. We kept the 16-bit instruction and 4-bit opcode. One of our students pointed 
out that the subroutine return instruction (RET) was just a special case of LC-2's 
JMPR instruction, so we eliminated RET as a separate opcode. The LC-3 specifies 
only 15 opcodes—and leaves one for future use (perhaps, the third edition!). 

We received a lot of push-back on the PC-concatenate addressing mode, 
particularly for branches. The addressing mode had its roots in the old PDP-8 of 
the mid-1960s. A major problem with it comes up when an instruction on one page 
wants to dereference the next (or previous) page. This has been a major hassle, 
particularly for forward branches close to a page boundary. A lot of people have 
asked us to use the more modern PC+offset, and we agreed. We have replaced all 
uses of PC'offset with PC+SEXT(offset). 

We incorporated other changes in the LC-3. Stacks now grow toward 0, 
in keeping with current conventional practice. The offset in LDR/STR is now 
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a signed value, so addresses can be computed plus or minus a base address. 
The opcode 1101 is not specified. The JSR/JMP opcodes have been reorganized 
slightly. Finally, we expanded the condition codes to a 16-bit processor status 
register (PSR) that includes a privilege mode and a priority level. As in the first 
edition, Appendix A specifies the LC-3 completely. 

Additional Material 
Although no chapter in the book has remained untouched, some chapters have 
been changed more than others. We added discussions to Chapter 1 on the nature 
and importance of abstraction and the interplay of hardware and software because 
it became clear that these points needed to be made explicit. We added a full 
section to Chapter 3 on finite state control and its implementation as a sequential 
switching circuit because we believe the concept of state and finite state control 
are among the most important concepts a computer science or engineering student 
encounters. We feel it is also useful to the understanding of the von Neumann 
model of execution discussed in Chapter 4. We added a section to Chapter 4 giving 
a glimpse of the underlying microarchitecture of the LC-3, which is spelled out in 
all its detail in the overhauled Appendix C. We were told by more than one reader 
that Chapter 5 was too terse. We added little new material, but lots of figures and 
explanations that hopefully make the concepts clearer. We also added major new 
sections on interrupt-driven I/O to Chapters 8 and 10. 

Just as in the first edition, Chapters 11 through 14 introduce the C program-
ming language. Unlike the first edition, these chapters are more focused on the 
essential aspects of the language useful to a beginning programmer. Special-
ized features, for example the C switch construct, are relegated to the ends of 
the chapters (or to Appendix D), out of the main line of the text. All of these 
chapters include more examples than the first edition. The second edition also 
places a heavier emphasis on "how to program" via problem-solving examples 
that demonstrate how newly introduced C constructs can be used in C program-
ming. In Chapter 14, students are exposed to a new LC-3 calling convention that 
more closely reflects the calling convention used by real systems. Chapter 15 
contains a deeper treatment of testing and debugging. Based on our experiences 
teaching the introductory course, we have decided to swap the order of the chapter 
on recursion with the chapter on pointers and arrays. Moving recursion later (now 
Chapter 17) in the order of treatment allows students to gain more experience with 
basic programming concepts before they start programming recursive functions. 

The Simulator 
Brian Hartman has updated the simulator that runs on Windows to incorporate 
the changes to the LC-3. Ashley Wise has written an LC-3 simulator that runs on 
UNIX. Both have incorporated interrupt-driven I/O into the simulator's function-
ality. We believe strongly that there is no substitute for hands-on practice testing 
one's knowledge. With the addition of interrupt-driven I/O to the simulator, the 
student can now interrupt an executing program by typing a key on the keyboard 
and invoke an interrupt service routine. 
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Alternate Uses of the Booh 
We wrote the book as a textbook for a freshman introduction to computing. We 
strongly believe, as stated more completely in the preface to our first edition, 
that our motivated bottom-up approach is the best way for students to learn the 
fundamentals of computing. We have seen lots of evidence that suggests that in 
general, students who understand the fundamentals of how the computer works 
are better able to grasp the stuff that they encounter later, including the high-level 
programming languages that they must work in, and that they can learn the rules 
of these programming languages with far less memorizing because everything 
makes sense. For us, the best use of the book is a one-semester freshman course 
for particularly motivated students, or a two-semester sequence where the pace 
is tempered. If you choose to go the route of a one-semester course heavy on 
high-level language programming, you probably want to leave Out the material 
on sequential machines and interrupt-driven I/O. If you choose to go the one-
semester route heavy on the first half of the book, you probably want to leave out 
much of Chapters 15, 17, 18, and 19. 

We have also seen the book used effectively in each of the following 
environments: 

Two Quarters, Freshman Course 
In some sense this is the best use of the book. In the first quarter, Chapters 1 

through 10 are covered; in the second quarter, Chapters 11 through 19. The pace 
is brisk, but the entire book can be covered in two academic quarters. 

One-Semester Second Course 
The book has been used successfully as a second course in computing, after 

the student has spent the first course with a high-level programming language. 
The rationale is that after exposure to high-level language programming in the 
first course, the second course should treat at an introductory level digital logic, 
basic computer organization, and assembly language programming. Most of the 
semester is spent on Chapters 1 through 10, with the last few weeks spent on a few 
topics from Chapters 11 through 19, showing how some of the magic from the 
students' first course can actually be implemented. Functions, activation records, 
recursion, pointer variables, and some elementary data structures are typically the 
topics that get covered. 

A Sophomore-Level Computer Organization Course 
The book has been used to delve deeply into computer implementation in 

the sophomore year. The semester is spent in Chapters 1 through 10, sometimes 
culminating in a thorough study of Appendix C, which provides the complete 
microarchitecture of a microprogrammed LC-3. We note, however, that some 
very important ideas in computer architecture are not covered here, most notably 
cache memory, pipelining, and virtual memory. We agree that these topics are 
very important to the education of a computer scientist or computer engineer, but 
we feel these topics are better suited to a senior course in computer architecture 
and design. This book is not intended for that purpose. 
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p r e f a c e to t h e f i r s t e d i t i o n 

This textbook has evolved from EECS 100, the first computing course for com-
puter science, computer engineering, and electrical engineering majors at the 
University of Michigan, that Kevin Compton and the first author introduced for 
the first time in the fall term, 1995. 

EECS 100 happened because Computer Science and Engineering faculty 
had been dissatisfied for many years with the lack of student comprehension of 
some very basic concepts. For example, students had a lot of trouble with pointer 
variables. Recursion seemed to be "magic," beyond understanding. 

We decided in 1993 that the conventional wisdom of starting with a high-
level programming language, which was the way we (and most universities) were 
doing it, had its shortcomings. We decided that the reason students were not 
getting it was that they were forced to memorize technical details when they did 
not understand the basic underpinnings. 

The result is the bottom-up approach taken in this book. We treat (in order) 
MOS transistors (very briefly, long enough for students to grasp their global 
switch-level behavior), logic gates, latches, logic structures (MUX, Decoder, 
Adder, gated latches), finally culminating in an implementation of memory. From 
there, we move on to the Von Neumann model of execution, then a simple com-
puter (the LC-2), machine language programming of the LC-2, assembly language 
programming of the LC-2, the high level language C, recursion, pointers, arrays, 
and finally some elementary data structures. 

We do not endorse today's popular information hiding approach when it 
comes to learning. Information hiding is a useful productivity enhancement tech-
nique after one understands what is going on. But until one gets to that point, we 
insist that information hiding gets in the way of understanding. Thus, we contin-
ually build on what has gone before, so that nothing is magic, and everything can 
be tied to the foundation that has already been laid. 

We should point out that we do not disagree with the notion of top-down 
design. On the contrary, we believe strongly that top-down design is correct 
design. But there is a clear difference between how one approaches a design 
problem (after one understands the underlying building blocks), and what it takes 
to get to the point where one does understand the building blocks. In short, we 
believe in top-down design, but bottom-up learning for understanding. 



Htiaf Is in the Booh 
The book breaks down into two major segments, a) the underlying structure of a 
computer, as manifested in the LC-2; and b) programming in a high level language, 
in our case C. 

The LC-2 
We start with the underpinnings that are needed to understand the workings of a 
real computer. Chapter 2 introduces the bit and arithmetic and logical operations 
on bits, Then we begin to build the structure needed to understand the LC-2. 
Chapter 3 takes the student from a MOS transistor, step by step, to a real memory. 
Our real memory consists of 4 words of 3 bits each, rather than 64 megabytes. The 
picture fits on a single page (Figure 3.20), making it easy for a student to grasp. 
By the time the students get there, they have been exposed to all the elements that 
make memory work. Chapter 4 introduces the Von Neumann execution model, 
as a lead-in to Chapter 5, the LC-2. 

The LC-2 is a 16-bit architecture that includes physical I/O via keyboard and 
monitor; TRAPs to the operating system for handling service calls; conditional 
branches on N, Z, and P condition codes; a subroutine call/return mechanism; a 
minimal set of operate instructions (ADD, AND, and NOT); and various address-
ing modes for loads and stores (direct, indirect, Base+offset, and an immediate 
mode for loading effective addresses). 

Chapter 6 is devoted to programming methodology (stepwise refinement) and 
debugging, and Chapter 7 is an introduction to assembly language programming. 
We have developed a simulator and an assembler for the LC-2. Actually, we have 
developed two simulators, one that runs on Windows platforms and one that runs 
on UNIX. The Windows simulator is available on the website and on the CD-
ROM. Students who would rather use the UNIX version can download and install 
the software from the web at no charge. 

Students use the simulator to test and debug programs written in LC-2 
machine language and in LC-2 assembly language. The simulator allows online 
debugging (deposit, examine, single-step, set breakpoint, and so on). The sim-
ulator can be used for simple LC-2 machine language and assembly language 
programming assignments, which are essential for students to master the concepts 
presented throughout the first 10 chapters. 

Assembly language is taught, but not to train expert assembly language pro-
grammers. Indeed, if the purpose was to train assembly language programmers, 
the material would be presented in an upper-level course, not in an introductory 
course for freshmen. Rather, the material is presented in Chapter 7 because it 
is consistent with the paradigm of the book. In our bottom-up approach, by the 
time the student reaches Chapter 7, he/she can handle the process of transform-
ing assembly language programs to sequences of 0s and Is. We go through the 
process of assembly step-by-step for a very simple LC-2 Assembler. By hand 
assembling, the student (at a very small additional cost in time) reinforces the 
important fundamental concept of translation. 

It is also the case that assembly language provides a user-friendly notation 
to describe machine instructions, something that is particularly useful for the 
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second half of the book. Starting in Chapter 11, when we teach the semantics of 
C statements, it is far easier for the reader to deal with ADD Rl, R2, R3 than with 
0001001010000011. 

Chapter 8 deals with physical input (from a keyboard) and output (to a mon-
itor). Chapter 9 deals with TRAPs to the operating system, and subroutine calls 
and returns. Students study the operating system routines (written in LC-2 code) 
for carrying out physical I/O invoked by the TRAP instruction. 

The first half of the book concludes with Chapter 10, a treatment of stacks 
and data conversion at the LC-2 level, and a comprehensive example that makes 
use of both. The example is the simulation of a calculator, which is implemented 
by a main program and 11 subroutines. 

The Language C 
From there, we move on to C. The C programming language occupies the second 
half of the book. By the time the student gets to C, he/she has an understanding 
of the layers below. 

The C programming language fits very nicely with our bottom-up approach. 
Its low-level nature allows students to see clearly the connection between software 
and the underlying hardware. In this book we focus on basic concepts such as 
control structures, functions, and arrays. Once basic programming concepts are 
mastered, it is a short step for students to learn more advanced concepts such as 
objects and abstraction. 

Each time a new construct in C is introduced, the student is shown the LC-2 
code that a compiler would produce. We cover the basic constructs of C (vari-
ables, operators, control, and functions), pointers, recursion, arrays, structures, 
I/O, complex data structures, and dynamic allocation. 

Chapter 11 is a gentle introduction to high-level programming languages. At 
this point, students have dealt heavily with assembly language and can understand 
the motivation behind what high-level programming languages provide. Chapter 
11 also contains a simple C program, which we use to kick-start the process of 
learning C. 

Chapter 12 deals with values, variables, constants, and operators. Chapter 13 
introduces C control structures. We provide many complete program examples 
to give students a sample of how each of these concepts is used in practice. LC-2 
code is used to demonstrate how each C construct affects the machine at the lower 
levels. 

In Chapter 14, students are exposed to techniques for debugging high-level 
source code. Chapter 15 introduces functions in C. Students are not merely 
exposed to the syntax of functions. Rather they learn how functions are actually 
executed using a run-time stack. A number of examples are provided. 

Chapter 16 teaches recursion, using the student's newly gained knowledge of 
functions, activation records, and the run-time stack. Chapter 17 teaches pointers 
and arrays, relying heavily on the student's understanding of how memory is 
organized. Chapter 18 introduces the details of I/O functions in C, in particular, 
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streams, variable length argument lists, and how C I/O is affected by the various 
format specifications. This chapter relies on the student's earlier exposure to 
physical I/O in Chapter 8. Chapter 19 concludes the coverage of C with structures, 
dynamic memory allocation, and linked lists. 

Along the way, we have tried to emphasize good programming style and 
coding methodology by means of examples. Novice programmers probably learn 
at least as much from the programming examples they read as from the rules they 
are forced to study. Insights that accompany these examples are highlighted by 
means of lightbulb icons that are included in the margins. 

We have found that the concept of pointer variables (Chapter 17) is not at all 
a problem. By the time students encounter it, they have a good understanding of 
what memory is all about, since they have analyzed the logic design of a small 
memory (Chapter 3). They know the difference, for example, between a memory 
location's address and the data stored there. 

Recursion ceases to be magic since, by the time a student gets to that point 
(Chapter 16), he/she has already encountered all the underpinnings. Students 
understand how stacks work at the machine level (Chapter 10), and they under-
stand the call/return mechanism from their LC-2 machine language programming 
experience, and the need for linkages between a called program and the return to 
the caller (Chapter 9). From this foundation, it is not a large step to explain func-
tions by introducing run-time activation records (Chapter 15), with a lot of the 
mystery about argument passing, dynamic declarations, and so on, going away. 
Since a function can call a function, it is one additional small step (certainly no 
magic involved) for a function to call itself. 

Horn to Use This Booh 
We have discovered over the past two years that there are many ways the material 
in this book can be presented in class effectively. We suggest six presentations 
below: 

1. The Michigan model. First course, no formal prerequisites. Very intensive, 
this course covers the entire book. We have found that with talented, very 
highly motivated students, this works best. 

2. Normal usage. First course, no prerequisites. This course is also intensive, 
although less so. It covers most of the book, leaving out Sections 10.3 and 
10.4 of Chapter 10, Chapters 16 (recursion), 18 (the details of C I/O), and 
19 (data structures). 

3. Second course. Several schools have successfully used the book in their 
second course, after the students have been exposed to programming with 
an object-oriented programming language in a milder first course. In this 
second course, the entire book is covered, spending the first two-thirds of 
the semester on the first 10 chapters, and the last one-third of the semester 
on the second half of the book. The second half of the book can move 
more quickly, given that it follows both Chapters 1-10 and the 
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introductory programming course, which the student has already taken. 
Since students have experience with programming, lengthier 
programming projects can be assigned. This model allows students who 
were introduced to programming via an object-oriented language to pick 
up C, which they will certainly need if they plan to go on to advanced 
software courses such as operating systems. 

4. Two quarters. An excellent use of the book. No prerequisites, the entire 
book can be covered easily in two quarters, the first quarter for Chapters 
1-10, the second quarter fcr Chapters 11-19. 

5. Two semesters. Perhaps the optimal use of the book. A two-semester 
sequence for freshmen. No formal prerequisites. First semester, Chapters 
1-10, with supplemental material from Appendix C, the Microarchitecture 
of the LC-2. Second semester, Chapters 11-19 with additional substantial 
programming projects so that the students can solidify the concepts they 
learn in lectures. 

6. A sophomore course in computer hardware. Some universities have found 
the book useful for a sophomore level breadth-first survey of computer 
hardware. They wish to introduce students in one semester to number 
systems, digital logic, computer organization, machine language and 
assembly language programming, finishing up with the material on stacks, 
activation records, recursion, and linked lists. The idea is to tie the 
hardware knowledge the students have acquired in the first part of the 
course to some of the harder to understand concepts that they struggled 
with in their freshman programming course. We strongly believe the better 
paradigm is to study the material in this book before tackling an 
object-oriented language. Nonetheless, we have seen this approach used 
successfully, where the sophomore student gets to understand the concepts 
in this course, after struggling with them during the freshman year. 

Some Observations 
Understanding, Not Memorizing 
Since the course builds from the bottom up, we have found that less memorization 
of seemingly arbitary rules is required than in traditional programming courses. 
Students understand that the rules make sense since by the time a topic is taught, 
they have an awareness of how that topic is implemented at the levels below it. This 
approach is good preparation for later courses in design, where understanding of 
and insights gained from fundamental underpinnings are essential to making the 
required design tradeoffs. 

The Student Debugs the Student's Program 
We hear complaints from industry all the time about CS graduates not being able 
to program. Part of the problem is the helpful teaching assistant, who contributes 
far too much of the intellectual component of the student's program, so the student 



xxii preface to the first edition 

never has to really master the art. Our approach is to push the student to do the 
job without the teaching assistant (TA). Part of this comes from the bottom-
up approach where memorizing is minimized and the student builds on what 
he/she already knows. Part of this is the simulator, which the student uses from 
day one. The student is taught debugging from the beginning and is required to 
use the debugging tools of the simulator to get his/her programs to work from 
the very beginning. The combination of the simulator and the order in which 
the subject material is taught results in students actually debugging their own 
programs instead of taking their programs to the TA for help . . . and the common 
result that the TAs end up writing the programs for the students. 

Preparation for the Future: Cutting Through Protective Layers 
In today's real world, professionals who use computers in systems but remain 
ignorant of what is going on underneath are likely to discover the hard way 
that the effectiveness of their solutions is impacted adversely by things other 
than the actual programs they write. This is true for the sophisticated computer 
programmer as well as the sophisticated engineer. 

Serious programmers will write more efficient code if they understand what 
is going on beyond the statements in their high-level language. Engineers, and not 
just computer engineers, are having to interact with their computer systems today 
more and more at the device or pin level. In systems where the computer is being 
used to sample data from some metering device such as a weather meter or feed-
back control system, the engineer needs to know more than just how to program 
in FORTRAN. This is true of mechanical, chemical, and aeronautical engineers 
today, not just electrical engineers. Consequently, the high-level programming 
language course, where the compiler protects the student from everything "ugly" 
underneath, does not serve most engineering students well, and certainly does not 
prepare them for the future. 

Rippling Effects Through the Curriculum 
The material of this text clearly has a rippling effect on what can be taught in 
subsequent courses. Subsequent programming courses can not only assume the 
students know the syntax of C but also understand how it relates to the under-
lying architecture. Consequently, the focus can be on problem solving and more 
sophisticated data structures. On the hardware side, a similar effect is seen in 
courses in digital logic design and in computer organization. Students start the 
logic design course with an appreciation of what the logic circuits they master are 
good for. In the computer organization course, the starting point is much further 
along than when students are seeing the term Program Counter for the first time. 
Feedback from Michigan faculty members in the follow-on courses have noticed 
substantial improvement in students' comprehension, compared to what they saw 
before students took EECS 100. 
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c h a p t e r 

i 

W e l c o m e Aboard 

1.1 What He Hill Try to Do 
Welcome to From Bits and Gates to C and Beyond. Our intent is to introduce 
you over the next 632 pages to come, to the world of computing. As we do so, 
we have one objective above all others: to show you very clearly that there is no 
magic to computing. The computer is a deterministic system—every time we hit 
it over the head in the same way and in the same place (provided, of course, it was 
in the same starting condition), we get the same response. The computer is not 
an electronic genius; on the contrary, if anything, it is an electronic idiot, doing 
exactly what we tell it to do. It has no mind of its own. 

What appears to be a very complex organism is really just a huge, system-
atically interconnected collection of very simple parts. Our job throughout this 
book is to introduce you to those very simple parts, and, step-by-step, build the 
interconnected structure that you know by the name computer. Like a house, we 
will start at the bottom, construct the foundation first, and then go on to add layers 
and layers, as we get closer and closer to what most people know as a full-blown 
computer. Each time we add a layer, we will explain what we are doing, tying the 
new ideas to the underlying fabric. Our goal is that when we are done, you will be 
able to write programs in a computer language such as C, using the sophisticated 
features of that language, and understand what is going on underneath, inside the 
computer. 
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1.2 How We Will Gel" There 
We will start (in Chapter 2) by noting that the computer is a piece of electronic 
equipment and, as such, consists of electronic parts interconnected by wires. 
Every wire in the computer, at every moment in time, is either at a high voltage or 
a low voltage. We do not differentiate exactly how high. For example, we do not 
distinguish voltages of 115 volts from voltages of 118 volts. We only care whether 
there is or is not a large voltage relative to 0 volts. That absence or presence of a 
large voltage relative to 0 volts is represented as 0 or 1. 

We will encode all information as sequences of Os and Is. For example, one 
encoding of the letter a that is commonly used is the sequence 01100001. One 
encoding of the decimal number 35 is the sequence 00100011. We will see how 
to perform operations on such encoded information. 

Once we are comfortable with information represented as codes made up 
of 0s and Is and operations (addition, for example) being performed on these 
representations, we will begin the process of showing how a computer works. 
In Chapter 3, we will see how the transistors that make up today's microproces-
sors work. We will further see how those transistors are combined into larger 
structures that perform operations, such as addition, and into structures that allow 
us to save information for later use. In Chapter 4, we will combine these larger 
structures into the Von Neumann machine, a basic model that describes how a 
computer works. In Chapter 5, we will begin to study a simple computer, the 
LC-3. LC-3 stands for Little Computer 3; we started with LC-1 but needed 
two more shots at it before we got it right! The LC-3 has all the important 
characteristics of the microprocessors that you may have already heard of, for 
example, the Intel 8088, which was used in the first IBM PCs back in 1981. Or 
the Motorola 68000, which was used in the Macintosh, vintage 1984. Or the Pen-
tium IV, one of the high-performance microprocessors of choice in the PC of the 
year 2003. That is, the LC-3 has all the important characteristics of these "real" 
microprocessors, without being so complicated that it gets in the way of your 
understanding. 

Once we understand how the LC-3 works, the next step is to program it, first 
in its own language (Chapter 6), then in a language called assembly language 
that is a little bit easier for humans to work with (Chapter 7). Chapter 8 deals 
with the problem of getting information into (input) and out of (output) the LC-3. 
Chapter 9 covers two sophisticated LC-3 mechanisms, TRAPs and subroutines. 

We conclude our introduction to programming the LC-3 in Chapter 10 by 
first introducing two important concepts (stacks and data conversion), and then 
by showing a sophisticated example: an LC-3 program that carries out the work 
of a handheld calculator. 

In the second half of the book (Chapters 11-19), we turn our attention to 
a high-level programming language, C. We include many aspects of C that are 
usually not dealt with in an introductory textbook. In almost all cases, we try to tie 
high-level C constructs to the underlying LC-3, so that you will understand what 
you demand of the computer when you use a particular construct in a C program. 

Our treatment of C starts with basic topics such as variables and operators 
(Chapter 12), control structures (Chapter 13), and functions (Chapter 14). We then 
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move on to the more advanced topics of debugging C programs (Chapter 15), 
recursion (Chapter 16), and pointers and arrays (Chapter 17). 

We conclude our introduction to C by examining two very common high-level 
constructs, input/output in C (Chapter 18) and the linked list (Chapter 19). 

1.3 T U J O Recurring Themes 
Two themes permeate this book that we have previously taken for granted, 
assuming that everyone recognized their value and regularly emphasized them 
to students of engineering and computer science. Lately, it has become clear to 
us that from the git-go, we need to make these points explicit. So, we state them 
here up front. The two themes are (a) the notion of abstraction and (b) the impor-
tance of not separating in your mind the notions of hardware and software. Their 
value to your development as an effective engineer or computer scientist goes 
well beyond your understanding of how a computer works and how to program it. 

The notion of abstraction is central to all that you will learn and expect to 
use in practicing your craft, whether it be in mathematics, physics, any aspect of 
engineering, or business. It is hard to think of any body of knowledge where the 
notion of abstraction is not central. The misguided hardware/software separation 
is directly related to your continuing study of computers and your work with 
them. We will discuss each in turn. 

1.3.1 The Notion of Abstraction 
The use of abstraction is all around us. When we get in a taxi and tell the driver, 
"Take me to the airport," we are using abstraction. If we had to, we could probably 
direct the driver each step of the way: "Go down this street ten blocks, and make 
a left turn." And, when he got there, "Now take this street five blocks and make a 
right turn." And on and on. You know the details, but it is a lot quicker to just tell 
the driver to take you to the airport. 

Even the statement "Go down this street ten blocks.. ." can be broken down 
further with instructions on using the accelerator, the steering wheel, watching 
out for other vehicles, pedestrians, etc. 

Our ability to abstract is very much a productivity enhancer. It allows us to 
deal with a situation at a higher level, focusing on the essential aspects, while 
keeping the component ideas in the background. It allows us to be more efficient 
in our use of time and brain activity. It allows us to not get bogged down in the 
detail when everything about the detail is working just fine. 

There is an underlying assumption to this, however: "when everything about 
the detail is just fine." What if everything about the detail is not just fine? Then, 
to be successful, our ability to abstract must be combined with our ability to 
wn-abstract. Some people use the word deconstruct—the ability to go from the 
abstraction back to its component parts. 

Two stories come to mind. 
The first involves a trip through Arizona the first author made a long time ago 

in the hottest part of the summer. At the time I was living in Palo Alto, California, 
where the temperature tends to be mild almost always. I knew enough to take 
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the car to a mechanic before making the trip, and I told him to check the cooling 
system. That was the abstraction: cooling system. What I had not mastered was 
that the capability of a cooling system for Palo Alto, California is not the same as 
the capability of a cooling system for the summer deserts of Arizona. The result: 
two days in Deer Lodge, Arizona (population 3), waiting for a head gasket to be 
shipped in. 

The second story (perhaps apocryphal) is supposed to have happened during 
the infancy of electric power generation. General Electric Co. was having trouble 
with one of its huge electric power generators and did not know what to do. 
On the front of the generator were lots of dials containing lots of information, 
and lots of screws that could be rotated clockwise or counterclockwise as the 
operator wished. Something on the other side of the wall of dials and screws was 
malfunctioning and no one knew what to do. So, as the story goes, they called in 
one of the early giants in the electric power industry. He looked at the dials and 
listened to the noises for a minute, then took a small pocket screwdriver out of 
his geek pack and rotated one screw 35 degrees counterclockwise. The problem 
immediately went away. He submitted a bill for $1,000 (a lot of money in those 
days) without any elaboration. The controller found the bill for two minutes' work 
a little unsettling, and asked for further clarification. Back came the new bill: 

Turning a screw 35 degrees counterclockwise: $ 0.75 
Knowing which screw to turn and by how much: 999.25 

In both stories the message is the same. It is more efficient to think of entities 
as abstractions. One does not want to get bogged down in details unnecessarily. 
And as long as nothing untoward happens, we are OK. If I had never tried to make 
the trip to Arizona, the abstraction "cooling system" would have been sufficient. 
If the electric power generator never malfunctioned, there would have been no 
need for the power engineering guru's deeper understanding. 

When one designs a logic circuit out of gates, it is much more efficient to 
not have to think about the internals of each gate. To do so would slow down 
the process of designing the logic circuit. One wants to think of the gate as a 
component. But if there is a problem with getting the logic circuit to work, it 
is often helpful to look at the internal structure of the gate and see if something 
about its functioning is causing the problem. 

When one designs a sophisticated computer application program, whether it 
be a new spreadsheet program, word processing system, or computer game, one 
wants to think of each of the components one is using as an abstraction. If one 
spent time thinking about the details of a component when it is not necessary, the 
distraction could easily prevent the total job from ever getting finished. But when 
there is a problem putting the components together, it is often useful to examine 
carefully the details of each component in order to uncover the problem. 

The ability to abstract is a most important skill. In our view, one should try to 
keep the level of abstraction as high as possible, consistent with getting everything 
to work effectively. Our approach in this book is to continually raise the level of 
abstraction. We describe logic gates in terms of transistors. Once we understand 
the abstraction of gates, we no longer think in terms of transistors. Then we build 



1.3 Two Recurring Themes 5 

larger structures out of gates. Once we understand these larger abstractions, we 
no longer think in terms of gates. 

The Bottom Line 
Abstractions allow us to be much more efficient in dealing with all kinds of 
situations. It is also true that one can be effective without understanding what is 
below the abstraction as long as everything behaves nicely. So, one should not 
pooh-pooh the notion of abstraction. On the contrary, one should celebrate it since 
it allows us to be more efficient. 

In fact, if we never have to combine a component with anything else into a 
larger system, and if nothing can go wrong with the component, then it is perfectly 
fine to understand this component only at the level of its abstraction. 

But if we have to combine multiple components into a larger system, we 
should be careful not to allow their abstractions to be the deepest level of 
our understanding. If we don't know the components below the level of their 
abstractions, then we are at the mercy of them working together without our 
intervention. If they don't work together, and we are unable to go below the level 
of abstraction, we are stuck. And that is the state we should take care not to find 
ourselves in. 

1.3.2 Hardware versus Software 
Many computer scientists and engineers refer to themselves as hardware people 
or software people. By hardware, they generally mean the physical computer and 
all the specifications associated with it. By software, they generally mean the 
pro-ams, whether operating s> stems like UNIX or Windows, or database sys-
tems like Oracle or DB-terrific, or application programs like Excel or Word. The 
implication is that the person knows a whole lot about one of these two things and 
precious little about the other. Usually, there is the further implication that it is OK 
to be an expert at one of these (hardware OR software) and clueless about the other. 
It is as if there were a big wall between the hardware (the computer and how it actu-
ally works) and the software (the programs that direct the computer's bidding), 
and that one should be content to remain on one side of that wall or the other. 

As you approach your study and practice of computing, we urge you to take 
the opposite approach—that hardware and software are names for components 
of two parts of a computing system that work best when they are designed by 
someone who took into account the capabilities and limitations of both. 

Microprocessor designers who understand the needs of the programs that 
will execute on that microprocessor they are designing can design much more 
effective microprocessors than those who don't. For example, Intel, Motorola, 
and other major producers of microprocessors recognized a few years ago that 
a large fraction of future programs would contain video clips as part of e-mail, 
video games, and full-length movies. They recognized that it would be important 
for such programs to execute efficiently. The result: most microprocessors today 
contain special hardware capability to process these video clips. Intel defined addi-
tional instructions, collectively called their MMX instruction set, and developed 



6 chapter 1 Welcome Aboard 

special hardware for it. Motorola, IBM, and Apple did essentially the same thing, 
resulting in the AltaVec instruction set and special hardware to support it. 

A similar story can be told about software designers. The designer of a large 
computer program who understands the capabilities and limitations of the hard-
ware that will carry out the tasks of that program can design the program more 
efficiently than the designer who does not understand the nature of the hardware. 
One important task that almost all large software systems have to carry out is 
called sorting, where a number of items have to be arranged in some order. The 
words in a dictionary are arranged in alphabetical order. Students in a class are 
often arranged in numeric order, according to their scores on the final exam. There 
are a huge number of fundamentally different programs one can write to arrange 
a collection of items in order. Donald Knuth devoted 391 pages to the task in The 
Art of Computer Programming, vol. 3. Which sorting program works best is often 
very dependent on how much the software designer is aware of the characteristics 
of the hardware. 

The Bottom Line 
We believe that whether your inclinations are in the direction of a computer 
hardware career or a computer software career, you will be much more capable if 
you master both. This book is about getting you started on the path to mastering 
both hardware and software. Although we sometimes ignore making the point 
explicitly when we are in the trenches of working through a concept, it really is 
the case that each sheds light on the other. 

When you study data types, a software concept (in C, Chapter 12), you will 
understand how the finite word length of the computer, a hardware concept, affects 
our notion of data types. 

When you study functions (in C, Chapter 14), you will be able to tie the rules 
of calling a function with the hardware implementation that makes those rules 
necessary. 

When you study recursion (a powerful algorithmic device, in Chapter 16), 
you will be able to tie it to the hardware. If you take the time to do that, you will 
better understand when the additional time to execute a procedure recursively is 
worth it. 

When you study pointer variables (in C, in Chapter 17), your knowledge of 
computer memory will provide a deeper understanding of what pointers provide, 
when they should be used, and when they should be avoided. 

When you study data structures (in C, in Chapter 19), your knowledge of com-
puter memory will help you better understand what must be done to manipulate 
the actual structures in memory efficiently. 

We understand that most of the terms in the preceding five short paragraphs 
are not familiar to you yet. That is OK; you can reread this page at the end of the 
semester. What is important to know right now is that there are important topics 
in the software that are very deeply interwoven with topics in the hardware. Our 
contention is that mastering either is easier if you pay attention to both. 

Most importantly, most computing problems yield better solutions when the 
problem solver has the capability of both at his or her disposal. 
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1.4 (1 Computer System 
We have used the word computer many times in the preceding paragraphs, and 
although we did not say so explicitly, we used it to mean a mechanism that does 
two things: It directs the processing of information and it performs the actual 
processing of information. It does both of these things in response to a com-
puter program. When we say "directing the processing of information," we mean 
figuring out which task should get carried out next. When we say "performing 
the actual processing," we mean doing the actual additions, multiplications, and 
so forth that are necessary to get the job done. A more precise term for this mech-
anism is a central processing unit (CPU), or simply a processor. This textbook is 
primarily about the processor and the programs that are executed by the processor. 

Twenty years ago, the processor was constructed out of ten or more 18-inch 
electronic boards, each containing 50 or more electronic parts known as inte-
grated circuit packages (see Figure 1.1). Today, a processor usually consists 
of a single microprocessor chip, built on a piece of silicon material, measur-
ing less than an inch square, and containing many millions of transistors (see 
Figure 1.2). 

However, when most people use the word computer, they usually mean more 
than the processor. They usually mean the collection of parts that in combination 

Figure 1.1 A processor board, vintage 1980s (Courtesy of Emil io Salgueiro, Unisys 
Corporation.) 



Figure 1.2 A microprocessor, vintage 1998 (Courtesy of Intel Corporation.) 

form their computer system (see Figure 1.3). A computer system usually includes, 
in addition to the processor, a keyboard for typing commands, a mouse for clicking 
on menu entries, a monitor for displaying information that the computer system 
has produced, a printer for obtaining paper copies of that information, memory for 
temporarily storing information, disks and CD-ROMs of one sort or another for 
storing information for a very long time, even after the computer has been turned 
off, and the collection of programs (the software) that the user wishes to execute. 
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These additional items are useful in helping the computer user do his or her 
job. Without a printer, for example, the user would have to copy by hand what 
is displayed on the monitor. Without a mouse, the user would have to type each 
command, rather than simply clicking on the mouse button. 

So, as we begin our journey, which focuses on how we get less than 1 square 
inch of silicon to do our bidding, we note that the computer systems we use 
contain a lot of other components to make our life more comfortable. 

1.5 Two Verij Important Ideas 
Before we leave this first chapter, there are two very important ideas that we 
would like you to understand, ideas that are at the core of what computing is all 
about. 

Idea 1: All computers (the biggest and the smallest, the fastest and the 
slowest, the most expensive and the cheapest) are capable of computing 
exactly the same things if they are given enough time and enough memory. 
That is, anything a fast computer can do, a slow computer can do also. 
The slow computer just does it more slowly. A more expensive computer 
cannot figure out something that a cheaper computer is unable to figure 
out as long as the cheap computer can access enough memory. (You may 
have to go to the store to buy disks whenever it runs out of memory in 
order to keep increasing memory.) All computers can do exactly the same 
things. Some computers can do things faster, but none can do more than any 
other. 

Idea 2: We describe our problems in English or some other language spo-
ken by people. Yet the problems are solved by electrons running around 
inside the computer. I t is necessary to transform our problem from the lan-
guage of humans to the voltages that influence the flow of electrons. This 
transformation is really a sequence of systematic transformations, developed 
and improved over the last 50 years, which combine to give the computer 
the ability to carry out what appears to be some very complicated tasks. In 
reality, these tasks are simple and straightforward. 

The rest of this chapter is devoted to discussing these two ideas. 

1.6 Computers as Universal Computational Devices 
It may seem strange that an introductory textbook begins by describing how com-
puters work. After all, mechanical engineering students begin by studying physics, 
not how car engines work. Chemical engineering students begin by studying 
chemistry, not oil refineries. Why should computing students begin by studying 
computers? 

The answer is that computers are different. To learn the fundamental prin-
ciples of computing, you must study computers or machines that can do what 



33 chapter 1 Welcome Aboard 

computers can do. The reason for this has to do with the notion that computers 
are universal computational devices. Let's see what that means. 

Before modern computers, there were many kinds of calculating machines. 
Some were analog machines—machines that produced an answer by measuring 
some physical quantity such as distance or voltage. For example, a slide rule is 
an analog machine that multiplies numbers by sliding one logarithmically graded 
ruler next to another. The user can read a logarithmic "distance" on the second 
ruler. Some early analog adding machines worked by dropping weights on a scale. 
The difficulty with analog machines is that it is very hard to increase their accuracy. 

This is why digital machines—machines that perform computations by 
manipulating a fixed finite set of digits or letters—came to dominate comput-
ing. You are familiar with the distinction between analog and digital watches. An 
analog watch has hour and minute hands, and perhaps a second hand. It gives 
the time by the positions of its hands, which are really angular measures. Digital 
watches give the time in digits. You can increase accuracy just by adding more 
digits. For example, if it is important for you to measure time in hundredths of 
a second, you can buy a watch that gives a reading like 10:35.16 rather than just 
10:35. How would you get an analog watch that would give you an accurate read-
ing to one one-hundredth of a second? You could do it, but it would take a mighty 
long second hand! When we talk about computers in this book, we will always 
mean digital machines. 

Before modern digital computers, the most common digital machines in the 
West were adding machines. In other parts of the world another digital machine, 
the abacus, was common. Digital adding machines were mechanical or elec-
tromechanical devices that could perform a specific kind of computation: adding 
integers. There were also digital machines that could multiply integers. There 
were digital machines that could put a stack of cards with punched names in 
alphabetical order. The main limitation of all of these machines is that they could 
do only one specific kind of computation. If you owned only an adding machine 
and wanted to multiply two integers, you had some pencil and paper work to do. 

This is why computers are different. You can tell a computer how to add 
numbers. You can tell it how to multiply. You can tell it how to alphabetize a list or 
perform any computation you like. When you think of a new kind of computation, 
you do not have to buy or design a new computer. You just give the old computer a 
new set of instructions (or program) to carry out the computation. This is why we 
say the computer is a universal computational device. Computer scientists believe 
that anything that can be computed, can be computed by a computer provided it 
has enough time and enough memory. When we study computers, we study the 
fundamentals of all computing. We learn what computation is and what can be 
computed. 

The idea of a universal computational device is due to Alan Turing. Tur-
ing proposed in 1937 that all computations could be carried out by a particular 
kind of machine, which is now called a Turing machine. He gave a mathemat-
ical description of this kind of machine, but did not actually build one. Digital 
computers were not operating until 1946. Turing was more interested in solving 
a philosophical problem: defining computation. He began by looking at the kinds 
of actions that people perform when they compute; these include making marks 
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Figure 1 . 4 Black box models of Turing machines 

on paper, writing symbols according to certain rules when other symbols are 
present, and so on. He abstracted these actions and specified a mechanism that 
could carry them out. He gave some examples of the kinds of things that these 
machines could do. One Turing machine could add two integers; another could 
multiply two integers. 

Figure 1.4 provides what we call "black box" models of Turing machines 
that add and multiply. In each case, the operation to be performed is described 
in the box. The data on which to operate is shown as input to the box. The result 
of the operation is shown as output from the box. A black box model provides no 
information as to exactly how the operation is performed, and indeed, there are 
many ways to add or multiply two numbers. 

Turing proposed that every computation can be performed by some Turing 
machine. We call this Turing's thesis. Although Turing's thesis has never been 
proved, there does exist a lot of evidence to suggest it is true. We know, for 
example, that various enhancements one can make to Turing machines do not 
result in machines that can compute more. 

Perhaps the best argument to support Turing's thesis was provided by Turing 
himself in his original paper. He said that one way to try to construct a machine 
more powerful than any particular Turing machine was to make a machine U 
that could simulate all Turing machines. You would simply describe to U the 
particular Turing machine you wanted it to simulate, say a machine to add two 
integers, give U the input data, and U would compute the appropriate output, in 
this case the sum of the inputs. Turing then showed that there was, in fact, a Turing 
machine that could do this, so even this attempt to find something that could not 
be computed by Turing machines failed. 

Figure 1.5 further illustrates the point. Suppose you wanted to compute 
g - + / ) • You would simply provide to U descriptions of the Turing machines 
to add and to multiply, and the three inputs, e, / , and g. U would do the rest. 

In specifying U, Turing had provided us with a deep insight: He had given us 
the first description of what computers do. In fact, both a computer (with as much 
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Figure 1.5 Black box model of a universal Turing machine 
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memory as it wants) and a universal Turing machine can compute exactly the same 
things. In both cases you give the machine a description of a computation and the 
data it needs, and the machine computes the appropriate answer. Computers and 
universal Turing machines can compute anything that can be computed because 
they are programmable. 

This is the reason that a big or expensive computer cannot do more than a 
small, cheap computer. More money may buy you a faster computer, a monitor 
with higher resolution, or a nice sound system. But if you have a small, cheap 
computer, you already have a universal computational device. 

1.7 How Do We Get the Electrons to Do [lie WorH? 
Figure 1.6 shows the process we must go through to get the electrons (which 
actually do the work) to do our bidding. We call the steps of this process the 
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"Levels of Transformation." As we will see, at each level we have choices. If we 
ignore any of the levels, our ability to make the best use of our computing system 
can be very adversely affected. 

1.7.1 The Statement of the Problem 
We describe the problems we wish to solve with a computer in a "natural 
language." Natural languages are languages that people speak, like English, 
French, Japanese, Italian, and so on. They have evolved over centuries in accor-
dance with their usage. They are fraught with a lot of things unacceptable for 
providing instructions to a computer. Most important of these unacceptable 
attributes is ambiguity. Natural language is filled with ambiguity. To infer the 
meaning of a sentence, a listener is often helped by the tone of voice of the 
speaker, or at the very least, the context of the sentence. 

An example of ambiguity in English is the sentence, "Time flies like an arrow." 
At least three interpretations are possible, depending on whether (1) one is noticing 
how fast time passes, (2) one is at a track meet for insects, or (3) one is writing a 
letter to the Dear Abby of Insectville. In the first case, a simile, one is comparing 
the speed of time passing to the speed of an arrow that has been released. In the 
second case, one is telling the timekeeper to do his/her job much like an arrow 
would. In the third case, one is relating that a particular group of flies (time flies, 
as opposed to fruit flies) are all in love with the same arrow. 

Such ambiguity would be unacceptable in instructions provided to a com-
puter. The computer, electronic idiot that it is, can only do as it is told. To tell it to 
do something where there are multiple interpretations would cause the computer 
to not know which interpretation to follow. 

1.7.2 The Algorithm 
The first step in the sequence of transformations is to transform the natural lan-
guage description of the problem to an algorithm, and in so doing, get rid of 
the objectionable characteristics. An algorithm is a step-by-step procedure that is 
guaranteed to terminate, such that each step is precisely stated and can be carried 
out by the computer. There are terms to describe each of these properties. 

We use the term definiteness to describe the notion that each step is precisely 
stated. A recipe for excellent pancakes that instructs the preparer to "stir until 
lumpy" lacks definiteness, since the notion of lumpiness is not precise. 

We use the term effective computability to describe the notion that each step 
can be carried out by a computer. A procedure that instructs the computer to "take 
the largest prime number" lacks effective computability, since there is no largest 
prime number. 

We use the termftniteness to describe the notion that the procedure terminates. 
For every problem there are usually many different algorithms for solving 

that problem. One algorithm may require the fewest number of steps. Another 
algorithm may allow some steps to be performed concurrently. A computer that 
allows more than one thing to be done at a time can often solve the problem in 
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less time, even though it is likely that the total number of steps to be performed 
has increased. 

1.7.3 The Program 
The next step is to transform the algorithm into a computer program, in one of the 
programming languages that are available. Programming languages are "mechan-
ical languages." That is, unlike natural languages, mechanical languages did not 
evolve through human discourse. Rather, they were invented for use in specifying 
a sequence of instructions to a computer. Therefore, mechanical languages do not 
suffer from failings such as ambiguity that would make them unacceptable for 
specifying a computer program. 

There are more than 1,000 programming languages. Some have been designed 
for use with particular applications, such as Fortran for solving scientific calcula-
tions and COBOL for solving business data-processing problems. In the second 
half of this book, we will use C, a language that was designed for manipulating 
low-level hardware structures. 

Other languages are useful for still other purposes. Prolog is the language of 
choice for many applications that require the design of an expert system. LISP 
was for years the language of choice of a substantial number of people working 
on problems dealing with artificial intelligence. Pascal is a language invented as 
a vehicle for teaching beginning students how to program. 

There are two kinds of programming languages, high-level languages and 
low-level languages. High-level languages are at a distance (a high level) from the 
underlying computer. At their best, they are independent of the computer on which 
the programs will execute. We say the language is "machine independent." All the 
languages mentioned thus far are high-level languages. Low-level languages are 
tied to the computer on which the programs will execute. There is generally one 
such low-level language for each computer. That language is called the assembly 
language for that computer. 

1.7.4 The ISA 
The next step is to translate the program into the instruction set of the particular 
computer that will be used to carry out the work of the program. The instruction set 
architecture (ISA) is the complete specification of the interface between programs 
that have been written and the underlying computer hardware that must carry out 
the work of those programs. 

The ISA specifies the set of instructions the computer can carry out, that 
is, what operations the computer can perform and what data is needed by each 
operation. The term operand is used to describe individual data values. The ISA 
specifies the acceptable representations for operands. They are called data types. 
A data type is a legitimate representation for an operand such that the computer 
can perform operations on that representation. The ISA specifies the mechanisms 
that the computer can use to figure out where the operands are located. These 
mechanisms are called addressing modes. 
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The number of operations, data types, and addressing modes specified by 
an ISA vary among the different ISAs. Some ISAs have as few as a half dozen 
operations, whereas others have as many as several hundred. Some ISAs have 
only one data type, while others have more than a dozen. Some ISAs have one or 
two addressing modes, whereas others have more than 20. The x86, the ISA used 
in the PC, has more than 100 operations, more than a dozen data types, and more 
than two dozen addressing modes. 

The ISA also specifies the number of unique locations that comprise the 
computer's memory and the number of individual 0s and Is that are contained in 
each location. 

Many ISAs are in use today. The most common example is the x86, introduced 
by Intel Corporation in 1979 and currently also manufactured by AMD and other 
companies. Other ISAs are the Power PC (IBM and Motorola), PA-RISC (Hewlett 
Packard), and SPARC (Sun Microsystems). 

The translation from a high-level language (such as C) to the ISA of the 
computer on which the program will execute (such as x86) is usually done by a 
translating program called a compiler. To translate from a program written in C 
to the x86 ISA, one would need an x86 C compiler. For each high-level language 
and each desired target computer, one must provide a corresponding compiler. 

The translation from the unique assembly language of a computer to its ISA 
is done by an assembler. 

1.7.5 The Microarchitecture 
The next step is to transform the ISA into an implementation. The detailed organ-
ization of an implementation is called its microarchitecture. So, for example, the 
x86 has been implemented by several different microprocessors over the years, 
each having its own unique microarchitecture. The original implementation was 
the 8086 in 1979. More recently, in 2001, Intel introduced the Pentium IV micro-
processor. Motorola and IBM have implemented the Power PC ISA with more 
than a dozen different microprocessors, each having its own microarchitecture. 
Two of the more recent implementations are the Motorola MPC 7455 and the 
IBM Power PC 750FX. 

Each implementation is an opportunity for computer designers to make dif-
ferent trade-offs between the cost of the microprocessor and the performance that 
microprocessor will provide. Computer design is always an exercise in trade-offs, 
as the designer opts for higher (or lower) performance at greater (or lesser) cost. 

The automobile provides a good analogy of the relationship between an ISA 
and a microarchitecture that implements that ISA. The ISA describes what the 
driver sees as he/she sits inside the automobile. All automobiles provide the same 
interface (an ISA different from the ISA for boats and the ISA for airplanes). 
Of the three pedals on the floor, the middle one is always the brake. The one on 
the right is the accelerator, and when it is depressed, the car will move faster. The 
ISA is about basic functionality. All cars can get from point A to point B, can 
move forward and backward, and can turn to the right and to the left. 
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The implementation of the ISA is about what goes on under the hood. Here 
all automobile makes and models are different, depending on what cost/perfor-
mance trade-offs the automobile designer made before the car was manufactured. 
So, some automobiles come with disc brakes, others (in the past, at least) with 
drums. Some automobiles have eight cylinders, others run on six cylinders, 
and still others have four. Some are turbocharged, some are not. In each case, 
the "microarchitecture" of the specific automobile is a result of the automobile 
designers' decisions regarding cost and performance. 

1.7.6 The Logic Circuit 
The next step is to implement each element of the microarchitecture out of simple 
logic circuits. Here, also, there are choices, as the logic designer decides how to 
best make the trade-offs between cost and performance. So, for example, even 
for the simple operation of addition, there are several choices of logic circuits to 
perform this operation at differing speeds and corresponding costs. 

1.7.7 The Devices 
Finally, each basic logic circuit is implemented in accordance with the require-
ments of the particular device technology used. So, CMOS circuits are different 
from NMOS circuits, which are different, in turn, from gallium arsenide 
circuits. 

1.7.8 Putting It Together 
In summary, from the natural language description of a problem to the electrons 
running around that actually solve the problem, many transformations need to be 
performed. If we could speak electron, or the electrons could understand English, 
perhaps we could just walk up to the computer and get the electrons to do our 
bidding. Since we can't speak electron and they can't speak English, the best we 
can do is this systematic sequence of transformations. At each level of transfor-
mation, there are choices as to how to proceed. Our handling of those choices 
determines the resulting cost and performance of our computer. 

In this book, we describe each of these transformations. We show how tran-
sistors combine to form logic circuits, how logic circuits combine to form the 
microarchitecture, and how the microarchitecture implements a particular ISA, 
in our case, the LC-3. We complete the process by going from the English-
language description of a problem to a C program that solves the problem, 
and we show how that C program is translated (i.e., compiled) to the ISA of 
the LC-3. 

We hope you enjoy the ride. 
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1.1 Explain the first of the two important ideas stated in Section 1.5. 
1.2 Can a higher-level programming language instruct a computer to 

compute more than a lower-level programming language? 
1.3 What difficulty with analog computers encourages computer designers to 

use digital designs? 
1.4 Name one characteristic of natural languages that prevents them from 

being used as programming languages. 
1.5 Say we had a "black box," which takes two numbers as input and outputs 

their sum. See Figure 1.7a. Say we had another box capable of 
multiplying two numbers together. See Figure 1.7b. We can connect these 
boxes together to calculate p x (m + n). See Figure 1.7c. Assume we 
have an unlimited number of these boxes. Show how to connect them 
together to calculate: 

a. ax + b 
b. The average of the four input numbers w, x, y, and z 
c. a2 + lab + b2 (Can you do it with one add box and one multiply box?) 

1.6 Write a statement in a natural language and offer two different 
interpretations of that statement. 

1.7 The discussion of abstraction in Section 1.3.1 noted that one does not 
need to understand the makeup of the components as long as "everything 
about the detail is just fine." The case was made that when everything is 
not fine, one must be able to deconstruct the components, or be at the 
mercy of the abstractions. In the taxi example, suppose you did not 
understand the component, that is, you had no clue how to get to the 
airport. Using the notion of abstraction, you simply tell the driver, 

(a) (b) (c) 
m n m n m n p 

px(m+ n) 

Figure 1.7 "Black boxes" capable of (a) addition, Cb) mult ipl ication, and (c) a 
combination of addition and multipl ication 
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'Take me to the airport." Explain when this is a productivity enhancer, 
and when it could result in very negative consequences. 

1.8 John said, "I saw the man in the park with a telescope." What did he 
mean? How many reasonable interpretations can you provide for this 
statement? List them. What property does this sentence demonstrate that 
makes it unacceptable as a statement in a program. 

1-9 Are natural languages capable of expressing algorithms? 
1.10 Name three characteristics of algorithms. Briefly explain each of these 

three characteristics. 
1.11 For each characteristic of an algorithm, give an example of a procedure 

that does not have the characteristic, and is therefore not an algorithm. 
1.12 Are items a through e in the following list algorithms? If not, what 

qualities required of algorithms do they lack? 
a. Add the first row of the following matrix to another row whose first 

column contains a nonzero entry. (Reminder: Columns run vertically; 
rows run horizontally.) 

- 1 2 0 4" 
0 3 2 4 
2 3 10 22 
12 4 3 4 

b. In order to show that there are as many prime numbers as there are 
natural numbers, match each prime number with a natural number in 
the following manner. Create pairs of prime and natural numbers by 
matching the first prime number with 1 (which is the first natural 
number) and the second prime number with 2, the third with 3, and so 
forth. If, in the end, it turns out that each prime number can be paired 
with each natural number, then it is shown that there are as many 
prime numbers as natural numbers. 

c. Suppose you're given two vectors each with 20 elements and asked to 
perform the following operation. Take the first element of the first 
vector and multiply it by the first element of the second vector. Do the 
same to the second elements, and so forth. Add all the individual 
products together to derive the dot product. 

d. Lynne and Calvin are trying to decided who will take the dog for a 
walk. Lynne suggests that they flip a coin and pulls a quarter out of 
her pocket. Calvin does not trust Lynne and suspects that the quarter 
may be weighted (meaning that it might favor a particular outcome 
when tossed) and suggests the following procedure to fairly determine 
who will walk the dog. 
1. Flip the quarter twice. 
2. If the outcome is heads on the first flip and tails on the second, 

then I will walk the dog. 
3. If the outcome is tails on the first flip, and heads on the second, 

then you will walk the dog. 
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4. If both outcomes are tails or both outcomes are heads, then we flip 
twice again. 

Is Calvin's technique an algorithm? 
e. Given a number, perform the following steps in order: 

1. Multiply it by four 
2. Add four 
3. Divide by two 
4. Subtract two 
5. Divide by two 
6. Subtract one 
7. At this point, add one to a counter to keep track of the fact that you 

performed steps 1 through 6. Then test the result you got when you 
subtracted one. If 0, write down the number of times you 
performed steps 1 through 6 and stop. If not 0, starting with the 
result of subtracting 1, perform the above 7 steps again. 

1.13 Two computers, A and B, are identical except for the fact that A has a 
subtract instruction and B does not. Both have add instructions. Both 
have instructions that can take a value and produce the negative of that 
value. Which computer is able to solve more problems, A or B? Prove 
your result. 

1.14 Suppose we wish to put a set of names in alphabetical order. We call the 
act of doing so sorting. One algorithm that can accomplish that is called 
the bubble sort. We could then program our bubble sort algorithm in C, 
and compile the C program to execute on an x86 ISA. The x86 ISA can 
be implemented with an Intel Pentium IV microarchitecture. Let us call 
the sequence "Bubble Sort, C program, x86 ISA, Pentium IV 
microarchitecture" one transformation process. 

Assume we have available four sorting algorithms and can 
program in C, C++, Pascal, Fortran, and COBOL. We have available 
compilers that can translate from each of these to either x86 or SPARC, 
and we have available three different microarchitectures for x86 and 
three different microarchitectures for SPARC. 
a. How many transformation processes are possible? 
b. Write three examples of transformation processes. 
c. How many transformation processes are possible if instead of three 

different microarchitectures for x86 and three different 
microarchitectures for SPARC, there were two for x86 and four for 
SPARC? 

1.15 Identify one advantage of programming in a higher-level language 
compared to a lower-level language. Identify one disadvantage. 

1.16 Name at least three things specified by an ISA. 

1.17 Briefly describe the difference between an ISA and a microarchitecture. 
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1-18 How many ISAs are normally implemented by a single 
microarchitecture? Conversely, how many microarchitectures could exist 
for a single ISA? 

1.19 List the levels of transformation and name an example for each level. 
1.20 The levels of transformation in Figure 1.6 are often referred to as levels 

of abstraction. Is that a reasonable characterization? If yes, give an 
example. If no, why not? 

1.21 Say you go to the store and buy some word processing software. What 
form is the software actually in? Is it in a high-level programming 
language? Is it in assembly language? Is it in the ISA of the computer on 
which you'll run it? Justify your answer. 

1.22 Suppose you were given a task at one of the transformation levels shown 
in Figure 1.6, and required to tranform it to the level just below. At which 
level would it be most difficult to perform the transformation to the next 
lower level? Why? 

1.23 Why is an ISA unlikely to change between successive generations of 
microarchitectures that implement it? For example, why would Intel want 
to make certain that the ISA implemented by the Pentium III is the same 
as the one implemented by the Pentium II? Hint: When you upgrade your 
computer (or buy one with a newer CPU), do you need to throw out all 
your old software? 
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Bi ts . Dafa T y p e s , and O p e r a t i o n s 

2.1 Bits and Data T p s 
2.1.1 The Bit as the Unit of Information 
We noted in Chapter 1 that the computer was organized as a system with several 
levels of transformation. A problem stated in a natural language such as English 
is actually solved by the electrons moving around inside the electronics of the 
computer. 

Inside the computer, millions of very tiny, very fast devices control the move-
ment of those electrons. These devices react to the presence or absence of voltages 
in electronic circuits. They could react to the actual voltages, rather than simply 
to the presence or absence of voltages. However, this would make the control and 
detection circuits more complex than they need to be. It is much easier simply to 
detect whether or not a voltage exists between a pair of points in a circuit than it 
is to measure exactly what that voltage is. 

To understand this, consider any wall outlet in your home. You could measure 
the exact voltage it is carrying, whether 120 volts or 115 volts, or 118.6 volts, 
for example. However, the detection circuitry to determine only whether there 
is a voltage (any of the above three will do) or whether there is no voltage is 
much simpler. Your finger casually inserted into the wall socket, for example, 
will suffice. 

We symbolically represent the presence of a voltage as "1" and the absence 
of a voltage as "0." We refer to each 0 and each 1 as a "bit," which is a shortened 
form of binary digit. Recall the digits you have been using since you were a 
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child—0, 1, 2, 3 , . . . , 9. There are 10 of them, and they are referred to as decimal 
digits. In the case of binary digits, there are two of them, 0 and 1. 

To be perfectly precise, it is not really the case that the computer differentiates 
the absolute absence of a voltage (that is, 0) from the absolute presence of a voltage 
(that is, 1). Actually, the electronic circuits in the computer differentiate voltages 
close to 0 from voltages far from 0. So, for example, if the computer expects 
a voltage of 2.9 volts or a voltage of 0 volts (2.9 volts signifying 1 and 0 volts 
signifying 0), then a voltage of 2.6 volts will be taken as a 1 and 0.2 volts will be 
taken as a 0. 

To get useful work done by the computer, it is necessary to be able to identify 
uniquely a large number of distinct values. The voltage on one wire can represent 
uniquely one of only two things. One thing can be represented by 0, the other thing 
can be represented by 1. Thus, to identify uniquely many things, it is necessary 
to combine multiple bits. For example, if we use eight bits (corresponding to 
the voltage present on eight wires), we can represent one particular value as 
01001110, and another value as 11100111. In fact, if we are limited to eight bits, 
we can differentiate at most only 256 (that is, 28) different values. In general, 
with k bits, we can distinguish at most 2k distinct items. Each pattern of these k 
bits is a code; that is, it corresponds to a particular value. 

2.1.2 Data Types 
There are many ways to represent the same value. For example, the number five 
can be written as a 5. This is the standard decimal notation that you are used to. The 
value five can also be represented by someone holding up one hand, with all fingers 
and thumb extended. The person is saying, "The number I wish to communicate 
can be determined by counting the number of fingers I am showing." A written 
version of that scheme would be the value 11111. This notation has a name 
also—unary. The Romans had yet another notation for five—the character V. We 
will see momentarily that a fourth notation for five is the binary representation 
00000101. 

It is not enough simply to represent values; we must be able to operate on those 
values. We say a particular representation is a data type if there are operations in 
the computer that can operate on information that is encoded in that representation. 
Each ISA has its own set of data types and its own set of instructions that can 
operate on those data types. In this book, we will mainly use two data types: 
2's complement integers for representing positive and negative integers that we 
wish to perform arithmetic on, and ASCII codes for representing characters on 
the keyboard that we wish to input to a computer or display on the computer's 
monitor. Both data types will be explained shortly. 

There are other representations of information that could be used, and indeed 
that are present in most computers. Recall the "scientific notation" from high 
school chemistry where you were admonished to represent the decimal num-
ber 621 as 6.21102. There are computers that represent numbers in that form, 
and they provide operations that can operate on numbers so represented. That 
data type is usually called floating point. We will show you its representation in 
Section 2.6. 
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2.2 Integer Data Types 
2.2.1 Unsigned Integers 
The first representation of information, or data type, that we shall look at is the 
unsigned integer. Unsigned integers have many uses in a computer. If we wish 
to perform a task some specific number of times, unsigned integers enable us to 
keep track of this number easily by simply counting how many times we have 
performed the task "so far." Unsigned integers also provide a means for identifying 
different memory locations in the computer, in the same way that house numbers 
differentiate 129 Main Street from 131 Main Street. 

We can represent unsigned integers as strings of binary digits. To do this, we 
use a positional notation much like the decimal system that you have been using 
since you were three years old. 

You are familiar with the decimal number 329, which also uses positional 
notation. The 3 is worth much more than the 9, even though the absolute value of 
3 standing alone is only worth 1/3 the value of 9 standing alone. This is because, 
as you know, the 3 stands for 300 (3 * 102) due to its position in the decimal string 
329, while the 9 stands for 9 • 10°. 

The 2's complement representation works the same way, except that the digits 
used are the binary digits 0 and 1, and the base is 2, rather than 10. So, for example, 
if we have five bits available to represent our values, the number 6 is represented 
as 00110, corresponding to 

0 • 24 + 0 • 23 + 1 • 22 + 1 • 21 + 0 • 2° 

With k bits, we can represent in this positional notation exactly 2k integers, ranging 
from 0 to 2k — 1. In our five-bit example, we can represent the integers from 0 to 31. 

2.2.2 Signed Integers 
However, to do useful arithmetic, it is often (although not always) necessary to 
be able to deal with negative quantities as well as positive. We could take our 2k 

distinct patterns of k bits and separate them in half, half for positive numbers, and 
half for negative numbers. In this way, with five-bit codes, instead of representing 
integers from 0 to +31, we could choose to represent positive integers from +1 
to +15 and negative integers from —1 to —15. There are 30 such integers. Since 
25 is 32, we still have two 5-bit codes unassigned. One of them, 00000, we would 
presumably assign to the value 0, giving us the full range of integer values from 
— 15 to +15. That leaves one more five-bit code to assign, and there are different 
ways to do this, as we will see momentarily. 

We are still left with the problem of determining what codes to assign to what 
values. That is, we have 32 codes, but which value should go with which code? 

Positive integers are represented in the straightforward positional scheme. 
Since there are k bits, and we wish to use exactly half of the 2k codes to represent 
the integers from 0 to 2k~l — 1, all positive integers will have a leading 0 in their 
representation. In our example (with k = 5), the largest positive integer +15 is 
represented as 01111. 
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Representation Value Represented 

Signed Magnitude l's Complement 2's Complement 

00000 0 0 0 
00001 1 1 1 
00010 2 2 2 
00011 3 3 3 
00100 4 4 4 
00101 5 5 5 
00110 6 6 6 
00111 7 7 7 
01000 8 8 8 
01001 9 9 9 
01010 10 10 10 
01011 11 11 11 
01100 12 12 12 
01101 13 13 13 
01110 14 14 14 
01111 15 15 15 
10000 - 0 - 1 5 - 1 6 
10001 - 1 - 1 4 - 1 5 
10010 - 2 - 1 3 - 1 4 
10011 - 3 - 1 2 - 1 3 
10100 - 4 - 1 1 - 1 2 
10101 - 5 - 1 0 - 1 1 
10110 - 6 - 9 - 1 0 
10111 - 7 - 8 - 9 
11000 - 8 - 7 - 8 
11001 - 9 - 6 - 7 
11010 - 1 0 - 5 - 6 
11011 - 1 1 - 4 - 5 
11100 - 1 2 - 3 - 4 
11101 - 1 3 - 2 - 3 
11110 - 1 4 - 1 - 2 
11111 - 1 5 - 0 - 1 

Figure 2.1 Three representations of signed integers 

Note that in all three data types shown in Figure 2.1, the representation for 0 
and all the positive integers start with a leading 0. What about the representations 
for the negative numbers (in our five-bit example, —1 to -15)? The first thought 
that usually comes to mind is: If a leading 0 signifies a positive integer, how about 
letting a leading 1 signify a negative integer? The result is the signed-magnitude 
data type shown in Figure 2.1. A second idea (which was actually used on some 
early computers such as the Control Data Corporation 6600) was the following: 
Let a negative number be represented by taking the representation of the positive 
number having the same magnitude, and "flipping" all the bits. So, for example, 
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since +5 is represented as 00101, we designate —5 as 11010. This data type is 
referred to in the computer engineering community as 1's complement, and is 
also shown in Figure 2.1. 

At this point, you might think that a computer designer could assign any bit 
pattern to represent any integer he or she wants. And you would be right! Unfor-
tunately, that could complicate matters when we try to build a logic circuit to add 
two integers. In fact, the signed-magnitude and l 's complement data types both 
require unnecessarily cumbersome hardware to do addition. Because computer 
designers knew what it would take to design a logic circuit to add two integers, 
they chose representations that simplified that logic circuit. The result is the 2's 
complement data type, also shown in Figure 2.1. It is used on just about every 
computer manufactured today. 

2.3 2's Complement Integers 
We see in Figure 2.1 the representations of the integers from —16 to +15 for the 
2's complement data type. Why were the representations chosen that way? 

The positive integers, we saw, are represented in the straightforward posi-
tional scheme. With five bits, we use exactly half of the 25 codes to represent 0 
and the positive integers from 1 to 24 — 1. 

The choice of representations for the negative integers was based, as we said 
previously, on the wish to keep the logic circuits as simple as possible. Almost all 
computers use the same basic mechanism to do addition. It is called an arithmetic 
and logic unit, usually known by its acronym ALU. We will get into the actual 
structure of the ALU in Chapters 3 and 4. What is relevant right now is that an 
ALU has two inputs and one output. It performs addition by adding the binary bit 
patterns at its inputs, producing a bit pattern at its output that is the sum of the 
two input bit patterns. 

For example, if the ALU processed five-bit input patterns, and the two inputs 
were 00110 and 00101, the result (output of the ALU) would be 01011. The 
addition is as follows: 

00110 
00101 
01011 

The addition of two binary strings is performed in the same way addition 
of two decimal strings is performed, from right to left, column by column. If 
the addition in a column generates a carry, the carry is added to the column 
immediately to its left. 

What is particularly relevant is that the binary ALU does not know (and does 
not care) what the two patterns it is adding represent. It simply adds the two binary 
patterns. Since the binary ALU only ADDs and does not CARE, it would be a 
nice benefit of our assignment of codes to the integers if it resulted in the ALU 
doing the right thing. 
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For starters, it would be nice if, when the ALU adds the representation for an 
arbitrary integer to the integer of the same magnitude and opposite sign, the sum 
is 0. That is, if the inputs to the ALU are the representations of non-zero integers 
A and -A, the output of the ALU should be 00000. 

To accomplish that, the 2's complement data type specifies the representation 
for each negative integer so that when the ALU adds it to the representation of 
the positive integer of the same magnitude, the result will be the representation 
for 0. For example, since 00101 is the representation of +5, 11011 is chosen as 
the representation for —5. 

Moreover, and more importantly, as we sequence from representations of 
— 15 to +15, the ALU is adding 00001 to each successive representation. 

We can express this mathematically as: 

REPRESENTATION(value + 1) = 
REPRESENTATION(value) + REPRESENTATION 1). 

Example 2.1 

This is sufficient to guarantee (as long as we do not get a result larger than 
+15 or smaller than — 16) that the binary ALU will perform addition correctly. 

Note in particular the representations for — 1 and 0, that is, 11111 and 00000. 
When we add 00001 to the representation for —1, we do get 00000, but we also 
generate a carry. That carry does not influence the result. That is, the correct 
result of adding 00001 to the representation for —1 is 0, not 100000. Therefore, 
the carry is ignored. In fact, because the carry obtained by adding 00001 to 11111 
is ignored, the carry can always be ignored when dealing with 2's complement 
arithmetic. 

Note: A shortcut for figuring out the representation for ~A(A ^ 0), if we 
know the representation for A, is as follows: Flip all the bits of A (the term for 
"flip" is complement), and add 1 to the complement of A. The sum of A and the 
complement of A is 11111. If we then add 00001 to 11111, the final result is 
00000. Thus, the representation for —A can be easily obtained by adding 1 to the 
complement of A. 

What is ilie 2's complement representation for - 137 

1. Lei A be \ 13. Then the representation for A is 01101. 

2. The complement of A is 10010. 

3. Adding 1 to 10010 gives us 10011, the 2's complement representation for - 1 3 . 

We can verify our result by adding the representations for A and - A, 

00000 

You may have noticed that the addition of 01101 and 10011, in addition to 
producing 00000, also produces a carry out of the five-bit ALU. That is, the binary 
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addition of 01101 and 10011 is really 100000. However, as we saw previously, 
this carry out can be ignored in the case of the 2's complement data type. 

At this point, we have identified in our five-bit scheme 15 positive integers. We 
have constructed 15 negative integers. We also have a representation for 0. With 
k = 5, we can uniquely identify 32 distinct quantities, and we have accounted for 
only 31 (15 + 15 + 1). The remaining representation is 10000. What value shall 
we assign to it? 

We note that—1 is 11111, —2is 11110, —3 is 11101, and so on. If we continue 
this, we note that —15 is 10001. Note that, as in the case of the positive represen-
tations, as we sequence backwards from representations of —1 to —15, the ALU 
is subtracting 00001 from each successive representation. Thus, it is convenient 
to assign to 10000 the value —16; that is the value one gets by subtracting 00001 
from 10001 (the representation for —15). 

In Chapter 5 we will specify a computer that we affectionately have named 
the LC-3 (for Little Computer 3). The LC-3 operates on 16-bit values. Therefore, 
the 2's complement integers that can be represented in the LC-3 are the integers 
from -32,768 to +32,767. 

2.4 Binary-Decimal Conversion 
It is often useful to convert integers between the 2's complement data type and 
the decimal representation that you have used all your life. 

2.4.1 Binary to Decimal Conversion 
We convert from 2's complement to a decimal representation as follows: For 
purposes of illustration, we will assume 2's complement representations of eight 
bits, corresponding to decimal integer values from —128 to +127. 

Recall that an eight-bit 2's complement number takes the form 

aj as a4 <23 a\ ao 

where each of the bits a,- is either 0 or 1. 

1. Examine the leading bit aj. If it is a 0, the integer is positive, and we can 
begin evaluating its magnitude. If it is a 1, the integer is negative. In that 
case, we need to first obtain the 2's complement representation of the 
positive number having the same magnitude. 

2. The magnitude is simply 

a6 • 26 + as • 25 + a4 • 24 + a 3 • 23 + a2 • 22 + a\ • 21 + a 0 • 2° 

which we obtain by simply adding the powers of 2 that have coefficients 
of 1. 

3. Finally, if the original number is negative, we affix a minus sign in front. 
Done! 
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Example 2.2 Convert ihe 2's complement integer IIU00111 U) a decimal integer value. 

1. Sincc ihc leading binary digit is a 1, the number is negative. We must first find the 
2's complement representation of the positive number of the same magnitude. 
This is 00111001. 

2. The magnitude can be represented as 

0 • 26 + I • 2s + I • 24 + 1 • 2* + 0 • 2~ \ 0 • 21 \ 1 • 2° 

3 2 + 16 \ K + 1. 

3. The decimal integer value corresponding to 11000111 is 57. 

2.4.2 Decimal to Binary Conversion 
Converting from decimal to 2's complement is a little more complicated. The 
crux of the method is to note that a positive binary number is odd if the rightmost 
digit is 1 and even if the rightmost digit is 0. 

Consider again our generic eight-bit representation: 

a7 • 27 + a6 • 26 + a 5 • 25 + a4 • 24 + a 3 • 23 + a2 • 22 + a\ • 21 + a 0 • 2° 

We can illustrate the conversion best by first working through an example. 
Suppose we wish to convert the value +105 to a 2's complement binary 

code. We note that +105 is positive. We first find values for a*, representing the 
magnitude 105. Since the value is positive, we will then obtain the 2's complement 
result by simply appending a-], which we know is 0. 

Our first step is to find values for a,- that satisfy the following: 

105 = a6 • 26 + a5 • 25 + a4 • 24 + a3 • 23 + a2 * 22 + a\ • 21 + a0 • 2° 

Since 105 is odd, we know that ao is 1. We subtract 1 from both sides of the 
equation, yielding 

104 = * 26 + a5 • 25 + 04 • 24 + a3 • 23 + a2 • 22 + ax - 21 

We next divide both sides of the equation by 2, yielding 

52 = a6 • 25 + a 5 • 24 + a 4 • 23 +a3 • 22 + a 2 • 21 + a\ • 2° 

We note that 52 is even, so a\9 the only coefficient not multiplied by a power of 
2, must be equal to 0. 

We now iterate the process, each time subtracting the rightmost digit from 
both sides of the equation, then dividing both sides by 2, and finally noting whether 
the new decimal number on the left side is odd or even. Starting where we left 
off, with 

52 = a6 • 25 + a5 • 24 + a4 • 23 + a3 • 22 + a2 • 21 
r 

the process produces, in turn: 

26 = a 6 - 24 + a5 • 23 + aA • 22 + a3 - 21 + a2 • 2° 
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Therefore, a i — 0. 

13 = a6 • 23 + a5 • 22 + a4 • 21 + a3 - 2° 

Therefore, a3 = 1. 

6 = a6 • 22 + a5 • 21 + a4 • 2° 

Therefore, <34 = 0. 

3 = a6 • 21 + a 5 • 2° 

Therefore, = 1. 

1 = a6 - 2° 

Therefore, = 1, and we are done. The binary representation is 01101001. 
Let's summarize the process. If we are given a decimal integer value N, we 

construct the 2's complement representation as follows: 

1. We first obtain the binary representation of the magnitude of N by forming 
the equation 

N = a6 • 26 + a5 • 25 + <z4 • 24 + a3 • 23 + a 2 • 22 + ax * 21 + • 2° 

and repeating the following, until the left side of the equation is 0: 
a. If N is odd, the rightmost bit is 1. If N is even, the rightmost bit is 0. 
b. Subtract 1 or 0 (according to whether N is odd or even) from N, 

remove the least significant term from the right side, and divide both 
sides of the equation by 2. 

Each iteration produces the value of one coefficient a,-. 
2. If the original decimal number is positive, append a leading 0 sign bit, and 

you are done. 
3. If the original decimal number is negative, append a leading 0 and then 

form the negative of this 2's complement representation, and then you 
are done. 

2.5 Operations on B i t s — P a r t I: Arithmetic 
2.5.1 Addition and Subtraction 
Arithmetic on 2's complement numbers is very much like the arithmetic on 
decimal numbers that you have been doing for a long time. 

Addition still proceeds from right to left, one digit at a time. At each point, 
we generate a sum digit and a carry. Instead of generating a carry after 9 (since 
9 is the largest decimal digit), we generate a carry after 1 (since 1 is the largest 
binary digit). 
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Using our five-bit notation, what is 11 + 3? 

The decimal value 11 is represented as 01011 
The decimal value 3 is represented 00011 
The sum, which is the value 14, is OHIO 

Subtrac t ion is s imply addi t ion, p receded b y de te rmin ing the negat ive of the 
n u m b e r to b e subtracted. Tha t is, A — B is s imply A + (—B). 

The decimal value 14 is represented as 01110 
The decimal value 9 is represented as 01001 

First we form the negative, that is, -9: 10111 

Adding 14 to -9, we get . 01110 

which results in the value 5. 00101 

Note again that the carry out is ignored. 

What happens when wo add a number to itself (e.g., jr + jr)? 
Let's assume for this example eight-bit codes, which would allow us to represent 

integers from - 1 2 8 to 127. Consider a value for A, the integer 59, represented as 
00111011. If we add 59 to itself, we get the code 01110110. Note that the bits have all 
shifted to the left by one position. Is that a curiosity, or will thul happen all tiie time 
long as the sum a +• a is not too large to represent with the a\;iilahle miinher of hiK.' 

Using our positional notation, the number 59 is 

0 - 26 + I • 2 s -I I • 2'1 + I • 23 -M) • 2* t I • 21 H • 2° 

The sum 59 f 59 is 2 • 59, which, in our representation, is 

2 • (0 • 2° I I • 2 s + 1 • 24 + I • 2* M> • 22 f I • 21 +• I • 2°) 

But that is nothing more than 

0 • 27 + 1 • 26 I 1 - 2 * + 1 - 2 4 + 0 - 2 3 + 1 -2 2 + I • 21 

which shifts each digit one position to the left. Thus, adding a number to itself (provided 
there are enough bits to represent the result) is equivalent to shifting the repri'scnUiiun 
one bit position to the left. 

2.5.2 Sign-Extension 
It is o f t en u s e f u l to represent a smal l n u m b e r wi th f e w e r bi ts . For example , ra ther 
than represent the va lue 5 as 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 , there are t imes w h e n it is u s e f u l 
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to allocate only six bits to represent the value 5:000101. There is little confusion, 
since we are all used to adding leading zeros without affecting the value of a 
number. A check for $456.78 and a check for $0000456.78 are checks having the 
same value. 

What about negative representations ? We obtained the negative representation 
from its positive counterpart by complementing the positive representation and 
adding 1. Thus, the representation for —5, given that 5 is represented as 000101, 
is 111011. If 5 is represented as 0000000000000101, then the representation for 
—5 is 1111111111111011. In the same way that leading 0s do not affect the value 
of a positive number, leading Is do not affect the value of a negative number. 

In order to add representations of different lengths, it is first necessary to 
represent them with the same number of bits. For example, suppose we wish to 
add the number 13 to - 5 , where 13 is represented as 0000000000001101 and 
—5 is represented as 111011. If we do not represent the two values with the same 
number of bits, we have 

0000000000001X01 
+ 111011 

When we attempt to perform the addition, what shall we do with the missing bits 
in the representation for —5? If we take the absence of a bit to be a 0, then we are 
no longer adding —5 to 13. On the contrary, if we take the absence of bits to be 
0s, we have changed the —5 to the number represented as 0000000000111011, 
that is +59. Not surprisingly, then, our result turns out to be the representation 
for 72. 

However, if we understand that a six-bit —5 and a 16-bit —5 differ only in 
the number of meaningless leading Is, then we first extend the value of —5 to 16 
bits before we perform the addition. Thus, we have 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
+ 1111111111111011 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

and the result is +8, as we should expect. 
The value of a positive number does not change if we extend the sign bit 

0 as many bit positions to the left as desired. Similarly, the value of a negative 
number does not change by extending the sign bit 1 as many bit positions to the 
left as desired. Since in both cases, it is the sign bit that is extended, we refer 
to the operation as Sign-EXTension, often abbreviated SEXT. Sign-extension is 
performed in order to be able to operate on bit patterns of different lengths. It 
does not affect the values of the numbers being represented. 

2.5.3 Overflow 
Up to now, we have always insisted that the sum of two integers be small enough 
to be represented by the available bits. What happens if such is not the case? 

You are undoubtedly familiar with the odometer on the front dashboard of 
your automobile. It keeps track of how many miles your car has been driven—but 
only up to a point. In the old days, when the odometer registered 99992 and you 
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drove it 100 miles, its new reading became 00092. A brand new car! The problem, 
as you know, is that the largest value the odometer could store was 99999, so the 
value 100092 showed up as 00092. The canyout of the ten-thousands digit was 
lost. (Of course, if you grew up in Boston, the carryout was not lost at all—it was 
in full display in the rusted chrome all over the car.) 

We say the odometer overflowed. Representing 100092 as 00092 is unac-
ceptable. As more and more cars lasted more than 100,000 miles, car makers felt 
the pressure to add a digit to the odometer. Today, practically all cars overflow at 
1,000,000 miles, rather than 100,000 miles. 

The odometer provides an example of unsigned arithmetic. The miles you 
add are always positive miles. The odometer reads 000129 and you drive 50 miles. 
The odometer now reads 000179. Overflow is a carry out of the leading digit. 

In the case of signed arithmetic, or more particularly, 2's complement 
arithmetic, overflow is a little more subtle. 

Let's return to our five-bit 2's complement data type, which allowed us to 
represent integers from —16 to +15. Suppose we wish to add +9 and +11. Our 
arithmetic takes the following form: 

01001 
01011 
10100 

Note that the sum is larger than +15, and therefore too large to represent with 
our 2's complement scheme. The fact that the number is too large means that the 
number is larger than 01111, the largest positive number we can represent with 
a five-bit 2's complement data type. Note that because our positive result was 
larger than +15, it generated a carry into the leading bit position. But this bit 
position is used to indicate the sign of a value. Thus detecting that the result is 
too large is an easy matter. Since we are adding two positive numbers, the result 
must be positive. Since the ALU has produced a negative result, something must 
be wrong. The thing that is wrong is that the sum of the two positive numbers 
is too large to be represented with the available bits. We say that the result has 
overflowed the capacity of the representation. 

Suppose instead, we had started with negative numbers, for example, —12 
and —6. In this case our arithmetic takes the following form: 

10100 
11010 
OHIO 

Here, too, the result has overflowed the capacity of the machine, since -12-1—6 
equals —18, which is "more negative" than —16, the negative number with the 
largest allowable magnitude. The ALU obliges by producing a positive result. 
Again, this is easy to detect since the sum of two negative numbers cannot be 
positive. 
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Note that the sum of a negative number and a positive number never presents 
a problem. Why is that? See Exercise 2.25. 

S.G Operations on B i t s — P a r i II: Logical Operations 
We have seen that it is possible to perform arithmetic (e.g., add, subtract) on 
values represented as binary patterns. Another class of operations that it is useful 
to perform on binary patterns is the set of logical operations. 

Logical operations operate on logical variables. A logical variable can have 
one of two values, 0 or 1. The name logical is a historical one; it comes from the 
fact that the two values 0 and 1 can represent the two logical values false and true, 
but the use of logical operations has traveled far from this original meaning. 

There are several basic logic functions, and most ALUs perform all of them. 

2.6.1 The AND Function 
AND is a binary logical function. This means it requires two pieces of input data. 
Said another way, AND requires two source operands. Each source is a logical 
variable, taking the value 0 or 1. The output of AND is 1 only if both sources have 
the value 1. Otherwise, the output is 0. We can think of the AND operation as the 
ALL operation; that is, the output is 1 only if ALL two inputs are 1. Otherwise, 
the output is 0. 

A convenient mechanism for representing the behavior of a logical operation 
is the truth table. A truth table consists of n + 1 columns and 2n rows. The first 
n columns correspond to the n source operands. Since each source operand is a 
logical variable and can have one of two values, there are 2n unique values that 
these source operands can have. Each such set of values (sometimes called an 
input combination) is represented as one row of the truth table. The final column 
in the truth table shows the output for each input combination. 

In the case of a two-input AND function, the truth table has two columns for 
source operands, and four (22) rows for unique input combinations. 

A B AND 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

We can apply the logical operation AND to two bit patterns of m bits each. This 
involves applying the operation individually to each pair of bits in the two source 
operands. For example, if a and b in Example 2.6 are 16-bit patterns, then c is 
the AND of a and b. This operation is often called a bit-wise AND. 
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E-.i-rnl- 2.6 IfristJicANDoftfandA.whcrctf - (X)l 1 IdtOOl 101(H)] aml/i . ulul UM>ICKJ1 tJtHN11 

Wc form the AND o f « and b by hit-wise ANDing the two values. 
Thai means individually ANDing each pairufbits rii and/?/ to form r-i. For example, 

since«0 = I and hn 1.,-Uisihi' - \NDol Mand hi). which is I. 
Since = 1 and b6 0, c is the AND of and b6, which is 0. 
The complete solution for c is 

a: 0011101001101001 
b: 0101100100100001 
c: booiioooboiooooi 

Suppose wc hate an cight-hii p;iilern. lei's call it A, in which the rightmost two bits have 
particular significance. The computer could be asked to do one of four tasks depending 
on the value stored in the two rightmost bits of A. Can we isolate those two bits? 

Yes, we can, using a bit mask. A bit mask is a binary patten that enables the hits 
of A Lo be separated into two parts generally the part you care about and the pail uui 
wish it* it'iiiMV. hi ihi\ I'lhi*. ihe hil mask (XXHKH)I1 ANDed with .-A producc^ II in hii 
positions 7 through 2. and the original values of bits 1 and 0 of A in hit positions 1 
and 0. The bit mask is said to mask our the values in bit positions 7 through 2. 

If A is 01010110. the AND of A and the bit mask (XXXXX)I1 is (XXXXX)IO. If 4 is 
11111100, the AND of A and the bit mask (XXXXX)l I is (XXXXXXX). 

That is. the result of ANDing any eight-bit pattern with the mask (XXXKXJl I is 
one of the four patterns (XXXXXXX), 00000001. 0(XXXX)10, or (XXXXXH1. The result of 
ANDing with the mask is to hiuhlipht the t\w> hits thai arc1 rde\ant. 

2.6.2 The OR Function 
OR is also a binary logical function. It requires two source operands, both of 
which are logical variables. The output of OR is 1 if any source has the value 1. 
Only if both sources are 0 is the output 0. We can think of the OR operation as 
the ANY operation; that is, the output is 1 if ANY of the two inputs are 1. 

The truth table for a two-input OR function is 

B 

0 0 

0 1 

1 0 

1 1 

OR 

In the same way that we applied the logical operation AND to two m-bit patterns, 
we can apply the OR operation bit-wise to two m-bit patterns. 
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I1Y is the OR of « and b. where a = 0011101001101001 and b = 0101100100100001. 
as before, what is c? 

We form the OR of a and h by bit-wise ORing the two values. That means 
individually ORing each pair of hits ai and hi to form ci. For example. Mike i/t» I 
and bO = 1, rO is ihe OR of aO and W), which is 1. Since u6 = I and b(t = 0, c is the 
OR of Aft and /j6. which is also 1. 

The complete solution lor c is 

a: 001110X00X101001 
b: 0X01100100100001 
C : 0111101101101001 

Sometimes this OR operation is referred to as the inclusive-OR in order to distinguish 
it from the exelusive-OR function, which we will discuss momentarily. 

Example 2.8 

2.6.3 The NOT Function 
NOT is a unary logical function. This means it operates on only one source 
operand. It is also known as the complement operation. The output is formed by 
complementing the input. We sometimes say the output is formed by inverting 
the input. A 1 input results in a 0 output. A 0 input results in a 1 output. 

The truth table for the NOT function is 

A NOT 
0 1 
1 0 

In the same way that we applied the logical operation AND and OR to two ra-bit 
patterns, we can apply the NOT operation bit-wise to one m-bit pattern. If a is as 
before, then c is the NOT of a. 

a: 0011101001101001 
c: 1100010110010110 

2.6.4 The Exclusive-OR Function 
Exclusive-OR, often abbreviated XOR, is a binary logical function. It, too, 
requires two source operands, both of which are logical variables. The output 
of XOR is 1 if the two sources are different. The output is 0 if the two sources are 
the same. 
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The truth table for the XOR function is 

B 

0 0 

0 1 

1 0 

XOR 

In the same way that we applied the logical operation AND to two m-bit patterns, 
we can apply the XOR operation bit-wise to two m-bit patterns. 

If*/ and b are 16-bit patterns as before, then c (shown here) is the XOR of a and b. 

a: 00X1101001101001 
b: 0101100100100001 
C: 0110001101001000 

Note the distinction between the truth table for XOR shown here and the truth table lor 
OR shown earlier. In the ease of cxclusive-OK, if both source operands are 1, the output 
is 0. That is. the output is I if the first operand is 1 but the second operand is not I or if 
the second operand is I but the first operand is not I. The term exclusive is used because 
the output is I if only one of the two sources is 1. The OR function, on the other hand, 
produces an output I if only one of the two sources is I, or if both sources are 1. Ergo, 
the name inclusive-OR. 

Example 2.10 Suppose we wish to know if two patterns arc identical. Since the XOR function produces 
a 0 only if the corresponding pair of bits is identical, two patterns are identical if the 
output of the XOR is all zeros. 

2.7 Other Representations 
Four other representations of information that we will find useful in our work 
are the bit vector, the floating point data type, ASCII codes, and hexadecimal 
notation. 

2.7.1 The Bit Vector 
It is often useful to describe a complex system made up of several units, each 
of which is individually and independently busy or available. This system could 
be a manufacturing plant where each unit is a particular machine. Or the system 
could be a taxicab network where each unit is a particular taxicab. In both cases, 
it is important to identify which units are busy and which are available, so that 
work can be assigned as needed. 

Say we have n such units. We can keep track of these n units with an n-bit 
binary pattern we call a bit vector, where a bit is 1 if the unit is free and 0 if the 
unit is busy. 
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Suppose we have eight machines that we want to monitor with respect to their avail-
ability. We can keep track of them with an eight-bit BUSYNESS bit vector, where a 
bit is 1 if the unit is free and 0 if the unit is busy. The bits are labeled, from right to 
left, from 0 to 7. 

The BUSYNESS bit vector 11000010 corresponds to the situation where only 
units 7, 6, and 1 are free, and therefore available for work assignment. 

Suppose work is assigned to unit 7. We update our BUSYNESS bit vector by 
performing the logical AND, where our two sources are the current bit vector 11000010 
and the bit mask 01111111. The purpose of the bit mask is to clear bit 7 of the 
BUSYNESS bit vector. The result is the bit vector 01000010. 

Recall that we encountered the concept of bit mask in Example 2.7. Recall that a 
bit mask enables one to interact some bits of a binary pattern while ignoring the rest. 
In this case, the bit mask clears bit 7 and leaves unchanged (ignores) bits 6 through 0. 

Suppose unit 5 finishes its task and becomes idle. We can update the BUSYNESS 
bit vector by performing the logical OR of it with the bit mask 00100000. The result 
is 01100010. 

2.7.2 Floating Point Data Type 
Most of the arithmetic we will do in this book uses integer values. For example, 
the LC-3 uses the 16-bit, 2's complement data type, which provides, in addition 
to one bit to identify positive or negative, 15 bits to represent the magnitude of the 
value. With 16 bits used in this way, we can express values between —32,768 and 
+32,767, that is, between —215 and +21 5 — 1. We say the precision of our value is 
15 bits, and the range is 215. As you learned in high school chemistry or physics, 
sometimes we need to express much larger numbers, but we do not require so 
many digits of precision. In fact, recall the value 6.023-1023, which you may have 
been required to memorize back then. The range required to express this value 
is far greater than the 215 available with 16-bit 2's complement integers. On the 
other hand, the 15 bits of precision available with 16-bit 2's complement integers 
is overkill. We need only enough bits to express four significant decimal digits 
(6023). 

So we have a problem. We have more bits than we need for precision. But 
we don't have enough bits to represent the range. 

The floating point data type is the solution to the problem. Instead of using 
all the bits (except the sign bit) to represent the precision of a value, the floating 
point data type allocates some of the bits to the range of values (i.e., how big or 
small) that can be expressed. The rest of the bits (except for the sign bit) are used 
for precision. 

Most IS As today specify more than one floating point data type. One of them, 
usually called float, consists of 32 bits, allocated as follows: 

1 bit for the sign (positive or negative) 
8 bits for the range (the exponent field) 

23 bits for precision (the fraction field) 

E x a m p l e 2 . 1 1 
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1 ^ 8 - 23 

exponent fraction 

s exponent -127 
N = (-1) x 1 .fraction x2 ,1 $ exponent <r 254 

Figure 2 . 2 The floating point data type 

In most computers manufactured today, these bits represent numbers according to 
the formula in Figure 2.2. This formula is part of the IEEE Standard for Floating 
Point Arithmetic. 

Recall that we said that the floating point data type was very much like the sci-
entific notation you learned in high school, and we gave the example 6.023 • 1023. 
This representation has three parts: the sign, which is positive, the significant dig-
its 6.023, and the exponent 23. We call the significant digits the fraction. Note 
that the fraction is normalized, that is, exactly one nonzero decimal digit appears 
to the left of the decimal point. 

The data type and formula of Figure 2.2 also consist of these three parts. 
Instead of a fraction (i.e., significant digits) of four decimal digits, we have 23 
binary digits. Note that the fraction is normalized, that is, exactly one nonzero 
binary digit appears to the left of the binary point. Since the nonzero binary digit 
has to be a 1 (1 is the only nonzero binary digit) there is no need to represent that 
bit explicitly. Thus, the formula of Figure 2.2 shows 24 bits of precision, the 23 
bits from the data type and the leading one bit to the left of the binary point that 
is unnecessary to represent explicitly. 

Instead of an exponent of two decimal digits as in 6.023 • 1023, we have in 
Figure 2.2 eight binary digits. Instead of a radix of 10, we have a radix of 2. With 
eight bits to represent the exponent, we can represent 256 exponents. Note that 
the formula only gives meaning to 254 of them. If the exponent field contains 
00000000 (that is, 0) or 11111111 (that is, 255), the formula does not tell you 
how to interpret the bits. We will look at those two special cases momentarily. 

For the remaining 254 values in the exponent field of the floating point data 
type, the explanation is as follows: The actual exponent being represented is the 
unsigned number in the data type minus 127. For example, if the actual exponent 
is +8, the exponent field contains 10000111, which is the unsigned number 135. 
Note that 135 — 127 = 8. If the actual exponent is —125, the exponent field 
contains 00000010, which is the unsigned number 2. Note that 2 - 127 = -125. 

The third part is the sign bit: 0 for positive numbers, 1 for negative numbers. 
The formula contains the factor — I s , which evaluates to +1 if s — 0, and —1 
i f s = 1. 
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How is the number — 6$ represented in the floating point data type.' 
hirst, we express —6| as a binary number: —110.101. 

• (I • 22 + 1 • 21 0 • 2° 1 • 2~1 + 0 - 2 2 + I - 2"'',) 

Then we normalize the value, yielding —1.10101 • 22. 
The sign bit is 1, reflecting the fact that - 6 § is a negative number. The exponent 

field contains 10(XXXX)l, the unsigned number 129, reflecting the fact that the real 
exponent is + 2 (129 - 127 = \-2). 'ITie fraction is the 23 bits of precision, after 
removing the leading 1. That is, the fraction is 101010000000CXXXXXXXXXX). The 
result is the number - expressed as a floating point number: 

1 L0000001 10101000000000000000000 

What does the floating point data type 

0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

represent? 
The leading bit is a 0. This signifies a positive number. The next eight bits 

represent the unsigned number 123. If we subtract 127, we get the actual expo-
nent - 4 . The last 23 bits are all 0. Therefore the number being represented is 
+ 1.0(XXXXXXXXXXXXXX)0(XXXKXX) • 2 4 , which is 

We noted that the interpretation of the 32 bits required that the exponent lield 
contain neither (XXXXXX)O nor ] 1111111. The IEEE Standard for Floating Point Arith-
metic also specifies how to interpret the 32 bits if the exponent field contains (XXXXXXX) 
or 111 111 I I. 

li the exponent lield contains (XXXJ0000. the exponent is 126, and the significant 
digits are obtained by starting with a leading 0, followed by a binary point, followed 
by the 23 bits of the fraction field, as follows: 

P • 0. fraction • 2"126 

E x a m p l e 2 . 1 2 

Example 2.13 

For example, the floating point data representation 

0 00000000 00001000000000000000000 

can be evaluated as follows: The leading 0 means the number is positive. The next eight 
bits, a zero exponent, means the exponent is - 1 2 6 . The last 23 bits form the number 
0.00001 (XXX)000(X)00000(XXM), which equals 2 s . Thus, the number represented is 
2 w h i c h is 2 

This allows very tiny numbers to be represented. 
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The following four examples provide further illustrations of the interpretation of the 
32-hit floating poini dala type according to the rules of the IliHLi standard. 

0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 is 1.00101 • 24 == 18.5 

The exponent tield contains the unsigned number 131. Since 131 - 127 is 4. the exponent 
is j 4. Combining a I to the left of the binary point with the fraction held lo the right of 
the binary point yields 1.00101. If we move the binary point four positions to the right, 
we get 10010.1, which is 1 X.5. 

110000 010 00101000000000000000000 is - 1 • 1.00101 '2* = -9.25 

The sign bit is I. signifying a negative number. The exponent is 130. signifying an 
exponent of 130 - 127. or +3. Combining a I to the left of the binary point with the 
fraction field to the right of the binary point yields 1.00101. Moving the binary point 
three positions to the right, we get 1001.01. which is —9.25. 

011111 110 11111111111111111111111 is -2 1 2 8 

The sign is K The exponent is 254 - 127, or f 127. Combining a 1 lo the left of the 
binary point with the fraction lieldlo the right of the binary point yields 1.11111111 . . . I. 
which is approximately 2. Therefore, the result is approximately 2 , 2 X . 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 is - 2 ~ 1 4 9 

The sign is - . The exponent field contains all 0s. signifying an exponent of -12( i . 
Combining a 0 to the left of the binary point with the fraction field to the right of 
the binarv point yields 2 for the fraction. Therefore, the number represented is 

2" • 2 which e q u a l s - 2 

A detailed understanding of IEEE Floating Point Arithmetic is well beyond 
what should be expected in this first course. Indeed, we have not even considered 
how to interpret the 32 bits if the exponent field contains 11111111. Our purpose 
in including this section in the textbook is to at least let you know that there is, in 
addition to 2's complement integers, another very important data type available 
in almost all IS As. This data type is called floating point, it allows very large 
and very tiny numbers to be expressed at the expense of reducing the number of 
binary digits of precision. 

2.7.3 ASCII Codes 
Another representation of information is the standard code that almost all com-
puter equipment manufacturers have agreed to use for transferring character codes 
between the main computer processing unit and the input and output devices. That 
code is an eight-bit code referred to as ASCII. ASCII stands for American Stan-
dard Code for Information Interchange. It (ASCII) greatly simplifies the interface 
between a keyboard manufactured by one company, a computer made by another 
company, and a monitor made by a third company. 
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Each key on the keyboard is identified by its unique ASCII code. So, for 
example, the digit 3 expanded to 8 bits with a leading 0 is 00110011, the digit 2 
is 00110010, the lowercase e is 01100101, and the carriage return is 00001101. 
The entire set of eight-bit ASCII codes is listed in Figure E.3 of Appendix E. 
When you type a key on the keyboard, the corresponding eight-bit code is stored 
and made available to the computer. Where it is stored and how it gets into the 
computer is discussed in Chapter 8. 

Most keys are associated with more than one code. For example, the ASCII 
code for the letter E is 01000101, and the ASCII code for the letter e is 01100101. 
Both are associated with the same key, although in one case the Shift key is also 
depressed while in the other case, it is not. 

In order to display a particular character on the monitor, the computer must 
transfer the ASCII code for that character to the electronics associated with the 
monitor. That, too, is discussed in Chapter 8. 

2.7.4 Hexadecimal Notation 
We have seen that information can be represented as 2's complement integers, 
as bit vectors, in floating point format, or as an ASCII code. There are other 
representations also, but we will leave them for another book. However, before 
we leave this topic, we would like to introduce you to a representation that is used 
more as a convenience for humans than as a data type to support operations being 
performed by the computer. This is the hexadecimal notation. As we will see, it 
evolves nicely from the positional binary notation and is useful for dealing with 
long strings of binary digits without making errors. 

It will be particularly useful in dealing with the LC-3 where 16-bit binary 
strings will be encountered often. 

An example of such a binary string is 

0011110101101110 

Let's try an experiment. Cover the preceding 16-bit binary string of 0s and Is 
with one hand, and try to write it down from memory. How did you do? Hexadec-
imal notation is about being able to do this without making mistakes. We shall 
see how. 

In general, a 16-bit binary string takes the form 

a\5 a\4 ai3 a\2 a\\ a\$ ag a% a-] as a4 <23 ai a\ ao 

where each of the bits a; is either 0 or 1. 
If we think of this binary string as an unsigned integer, its value can be 

computed as 

a\$ • 215 + flu • 214 + an • 213 + a12 • 212 + an • 211 + aw • 210 

+ a9 • 29 + • 28 + an • 27 + a6 - 26 + a5 • 25 + a4 - 24 + a3 • 23 

+ a 2 - 2 2 + a i -21 + a o * 2 ° 
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We can factor 212 from the first four terms, 28 from the second four terms, 24 

from the third set of four terms, and 2° from the last four terms, yielding 

2n[ax5 • 23 + ai4 • 22 + a13 . 21 + al2 • 2°] 

+ 2 8[ f l l l • 23 + aio • 22 + a9 • 21 + «8 • 2°] 

+ 24[a7 • 23 + a6 • 22 + a5 * 21 + a4 • 2°] 

+ 2°[a3 • 23 + • 22 + ai • 21 + a0 • 2°] 

Note that the largest value inside a set of square brackets is 15, which would be 
the case if each of the four bits is 1. If we replace what is inside each square 
bracket by a symbol representing its value (from 0 to 15), and we replace 212 by 
its equivalent 163, 28 by 162, 24 by 161, and 2° by 16°, we have 

h3 • 163 + h2 • 162 + hi • 161 + h0 • 16° 

where h3, for example, is a symbol representing 

a\s • 23 + fli4 • 22 + a n • 21 + 012 • 2° 

Since the symbols must represent values from 0 to 15, we assign symbols to 
these values as follows: 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. That is, we 
represent 0000 with the symbol 0,0001 with the symbol 1 , . . . 1001 with 9,1010 
with A, 1011 with B, . . . 1111 with F. The resulting notation is hexadecimal, or 
base 16. 

So, for example, if the hex digits E92F represent a 16-bit 2's complement 
integer, is the value of that integer positive or negative? How do you know? 

Now, then, what is this hexadecimal representation good for, anyway? It 
seems like just another way to represent a number without adding any benefit. 
Let's return to the exercise where you tried to write from memory the string 

0011110101101110 

If we had first broken the string at four-bit boundaries 

0011 1101 0110 1110 

and then converted each four-bit string to its equivalent hex digit 

3 D 6 E 
it would have been no problem to jot down (with the string covered) 3D6E. 

In summary, hexadecimal notation is mainly used as a convenience for 
humans. It can be used to represent binary strings that are integers or floating 
point numbers or sequences of ASCII codes, or bit vectors. It simply reduces the 
number of digits by a factor of 4, where each digit is in hex (0,1, 2 , . . . F) instead 
of binary (0, 1). The usual result is far fewer copying errors due to too many 0s 
and Is. 
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2.1 Given n bits, how many distinct combinations of the n bits exist? 
2.2 There are 26 characters in the alphabet we use for writing English. What 

is the least number of bits needed to give each character a unique bit 
pattern? How many bits would we need to distinguish between upper-
and lowercase versions of all 26 characters? 

2.3 a. Assume that there are about 400 students in your class. If every 
student is to be assigned a unique bit pattern, what is the minimum 
number of bits required to do this? 

b. How many more students can be admitted to the class without 
requiring additional bits for each student's unique bit pattern? 

2.4 Given n bits, how many unsigned integers can be represented with the n 
bits? What is the range of these integers? 

2.5 Using 5 bits to represent each number, write the representations of 7 and 
—7 in l 's complement, signed magnitude, and 2's complement integers. 

2.6 Write the 6-bit 2's complement representation of —32. 
2.7 Create a table showing the decimal values of all 4-bit 2's complement 

numbers. 
2.8 a. What is the largest positive number one can represent in an 8-bit 2's 

complement code? Write your result in binary and decimal. 
b. What is the greatest magnitude negative number one can represent in 

an 8-bit 2's complement code? Write your result in binary and 
decimal. 

c. What is the largest positive number one can represent in n-bit 2's 
complement code? 

d. What is the greatest magnitude negative number one can represent in 
n-bit 2's complement code? 

2.9 How many bits are needed to represent Avogadro's number (6.02 • 1023) 
in 2's complement binary representation? 

2.10 Convert the following 2's complement binary numbers to decimal. 
a. 1010 
b. 01011010 
c. 11111110 
d. 0011100111010011 

2.11 Convert these decimal numbers to 8-bit 2's complement binary numbers. 
a. 102 
b. 64 
c. 33 
d. - 1 2 8 

127 
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2.12 If the last digit of a 2's complement binary number is 0, then the number 
is even. If the last two digits of a 2's complement binary number are 00 
(e.g., the binary number 01100), what does that tell you about the 
number? 

2.13 Without changing their values, convert the following 2's complement 
binary numbers into 8-bit 2's complement numbers. 
a. 1010 c. 1111111000 
h 011001 d. 01 

2.14 Add the following bit patterns. Leave your results in binary form. 
a. 1011 + 0001 
b. 0000 + 1010 
c. 1100 + 0011 
d. 0101 + 0110 
e. 1111 + 0001 

2.15 It was demonstrated in Example 2.5 that shifting a binary number one bit 
to the left is equivalent to multiplying the number by 2. What operation is 
performed when a binary number is shifted one bit to the right? 

2.16 Write the results of the following additions as both 8-bit binary and 
decimal numbers. For each part, use standard binary addition as 
described in Section 2.5.1. 
a. Add the 1 's complement representation of 7 to the 1 's complement 

representation of —7. 
b. Add the signed magnitude representation of 7 to the signed magnitude 

representation of —7. 
c. Add the 2's complement representation of 7 to the 2's complement 

representation of —7. 

2.17 Add the following 2's complement binary numbers. Also express the 
answer in decimal. 

a. 01 + 1011 
b. 11 + 01010101 
c. 0 1 0 1 + 110 
d. 01 + 10 

2.18 Add the following unsigned binary numbers. Also, express the answer in 
decimal. 

a. 01 + 1011 
b. 11 + 01010101 
c. 0101 + 110 
d. 01 + 10 

2.19 Express the negative value —27 as a 2's complement integer, using eight 
bits. Repeat, using 16 bits. Repeat, using 32 bits. What does this illustrate 
with respect to the properties of sign extension as they pertain to 2's 
complement representation? 
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2.20 The following binary numbers are 4-bit 2's complement binary numbers. 
Which of the following operations generate overflow? Justify your 
answer by translating the operands and results into decimal. 
a. 1100 + 0011 d. 1000 - 0001 
b. 1100 + 0100 e. 0111 + 1001 
c. 0111 + 0001 

2.21 Describe what conditions indicate overflow has occurred when two 2's 
complement numbers are added. 

2.22 Create two 16-bit 2's complement integers such that their sum causes an 
overflow. 

2.23 Describe what conditions indicate overflow has occurred when two 
unsigned numbers are added. 

2.24 Create two 16-bit unsigned integers such that their sum causes an 
overflow. 

2.25 Why does the sum of a negative 2's complement number and a positive 
2's complement number never generate an overflow? 

2.26 You wish to express - 6 4 as a 2's complement number. 
a. How many bits do you need (the minimum number)? 
b. With this number of bits, what is the largest positive number you can 

represent? (Please give answer in both decimal and binary). 
c. With this number of bits, what is the largest unsigned number you can 

represent? (Please give answer in both decimal and binary). 
2.27 The LC-3, a 16-bit machine adds the two 2's complement numbers 

0101010101010101 and 0011100111001111, producing 
1000111100100100. Is there a problem here? If yes, what is the 
problem? If no, why not? 

2.28 When is the output of an AND operation equal to 1? 
2.29 Fill in the following truth table for a one-bit AND operation. 

X Y X A N D Y 

0 0 
0 1 
1 0 
1 1 

2.30 Compute the following. Write your results in binary. 
a. 0 1 0 1 0 1 1 1 AND 1 1 0 1 0 1 1 1 
b. 1 0 1 AND 1 1 0 
C. 1 1 1 0 0 0 0 0 AND 1 0 1 1 0 1 0 0 
d. 0 0 0 1 1 1 1 1 AND 1 0 1 1 0 1 0 0 
e. ( 0 0 1 1 AND 0 1 1 0 ) AND 1 1 0 1 
f . 0 0 1 1 AND ( 0 1 1 0 AND 1 1 0 1 ) 
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2.31 When is the output of an OR operation equal to 1? 
2.32 Fill in the following truth table for a one-bit OR operation. 

X Y X OR Y 
0 0 
0 1 
1 0 
1 1 

2.33 Compute the following: 
a. 0 1 0 1 0 1 1 1 OR 1 1 0 1 0 1 1 1 
b. 1 0 1 OR 1 1 0 
c. 1 1 1 0 0 0 0 0 OR 1 0 1 1 0 1 0 0 
d. 0 0 0 1 1 1 1 1 OR 1 0 1 1 0 1 0 0 
e. ( 0 1 0 1 OR 1 1 0 0 ) OR 1 1 0 1 
f . 0 1 0 1 OR ( 1 1 0 0 OR 1 1 0 1 ) 

2.34 Compute the following: 
a. NOT ( 1 0 1 1 ) OR N O T ( l l O O ) 
b. NOT ( 1 0 0 0 AND ( 1 1 0 0 OR 0 1 0 1 ) ) 
C. NOT (NOT ( 1 1 0 1 ) ) 
d. ( 0 1 1 0 OR 0 0 0 0 ) AND 1 1 1 1 

2.35 In Example 2.11, what are the masks used for? 
2.36 Refer to Example 2.11 for the following questions. 

a. What mask value and what operation would one use to indicate that 
machine 2 is busy? 

b. What mask value and what operation would one use to indicate that 
machines 2 and 6 are no longer busy? (Note: This can be done with 
only one operation.) 

c. What mask value and what operation would one use to indicate that 
all machines are busy? 

d. What mask value and what operation would one use to indicate that 
all machines are idle? 

e. Develop a procedure to isolate the status bit of machine 2 as the sign 
bit. For example, if the BUSYNESS pattern is 01011100, then the 
output of this procedure is 10000000. If the BUSYNESS pattern is 
01110011, then the output is 00000000. In general, if the BUSYNESS 
pattern is: 

b7 b6 b5 b4 b3 b2 bl bO 

the output is: 

b2 0 0 0 0 0 0 0 • 

Hint: What happens when you ADD a bit pattern to itself? 
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2.37 If n and m are both 4-bit 2's complement numbers, and s is the 4-bit 
result of adding them together, how can we determine, using only the 
logical operations described in Section 2.6, if an overflow occurred 
during the addition? Develop a "procedure" for doing so. The inputs 
to the procedure are n, m, and s, and the output will be a bit pattern 
of all zeros (0000) if no overflow occurred and 1000 if an overflow 
did occur. 

2.38 If n and m are both 4-bit unsigned numbers, and s is the 4-bit result of 
adding them together, how can we determine, using only the logical 
operations described in Section 2.6, if an overflow occurred during the 
addition? Develop a "procedure" for doing so. The inputs to the 
procedure are n, m, and s, and the output will be a bit pattern of 
all zeros (0000) if no overflow occurred and 1000 if an overflow 
did occur. 

2.39 Write IEEE floating point representation of the following 
decimal numbers. 
a. 3.75 
b - 5 5 § 
c. 3.1415927 
d. 64,000 

2.40 Write the decimal equivalents for these IEEE floating point 
numbers. 
a. 0 10000000 00000000000000000000000 
b. 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c. 0 11111111 00000000000000000000000 
d. 1 10000000 10010000000000000000000 

2.41 a. What is the largest exponent the IEEE standard allows for a 32-bit 
floating point number? 

h What is the smallest exponent the IEEE standard allows for a 32-bit 
floating point number? 

2.42 A computer programmer wrote a program that adds two numbers. The 
programmer ran the program and observed that when 5 is added to 8, 
the result is the character m. Explain why this program is behaving 
erroneously. 

2.43 Translate the following ASCII codes into strings of characters by 
interpreting each group of eight bits as an ASCII character. 
a. x48656c6c6f21 
b. x68454c4c4f21 
c. x436f6d70757465727321 
d. x4c432d32 
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2.44 What operation(s) can be used to convert the binary representation for 3 
(i.e., 0000 0011) into the ASCII representation for 3 (i.e., 0011 0011)? 
What about the binary 4 into the ASCII 4? What about any digit? 

2.45 Convert the following unsigned binary numbers to hexadecimal. 
a. 1101 0001 1010 1111 
b. 001 1111 
c. 1 
d. 1110 1101 1011 0010 

2.46 Convert the following hexadecimal numbers to binary. 
a. xlO 
b. x801 
c. xF731 
d. X0F1E2D 
e. xBCAD 

2.47 Convert the following hexadecimal representations of 2's complement 
binary numbers to decimal numbers. 
a. xFO 
fc x7FF 
c. xl6 
d. x8000 

2.48 Convert the following decimal numbers to hexadecimal representations 
of 2's, complement numbers. 
a. 256 
b. I l l 
c. 123,456,789 
d. - 4 4 

2.49 Perform the following additions. The corresponding 16-bit binary 
numbers are in 2's complement notation. Provide your answers in 
hexadecimal. 
a. x025B + x26DE 
k x7D96 + xFOAO 
c. xA397 + xA35D 
d. x7D96 + x7412 
e. What else can you say about the answers to parts c and dl 

2.50 Perform the following logical operations. Express your answers in 
hexadecimal notation. 
a. x5478 AND xFDEA 
b. xABCD OR xl234 
c. NOT((NOT(xDEFA)) AND (NOT(xFFFF))) 
d. xOOFF XOR x325C 
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2.51 What is the hexadecimal representation of the following numbers? 
a. 25,675 
b. 675.625 (that is, 675|), in the IEEE 754 floating point standard 
c. The ASCII string: Hello 

2.52 Consider two hexadecimal numbers: x434F4D50 and x55544552. What 
values do they represent for each of the five data types shown? 

X434F4D50 X55544552 
Unsigned binary 
1 's complement 
2's complement 
IEEE 754 floating point 
ASCII string 

2.53 Fill in the truth table for the equations given. The first line is done as an 
example. 

Qi = NOT(A AND B) 

Q2 = NOT(NOT(A) AND NOT(B)) 

A B 

0 0 
Qi Qi_ 
i o 

i 

Express Q2 another way. 
2.54 Fill in the truth table for the equations given. The first line is done as an 

example. 

Q i = NOT(NOT(X) OR (X AND Y AND Z)) 

Q2 = NOT((Y OR Z) AND (X AND Y AND Z)) 

X Y Z Q\ Qi 
0 0 0 0 
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2.55 We have represented numbers in base-2 (binary) and in base-16 (hex). 
We are now ready for unsigned base-4, which we will call quad numbers. 
A quad digit can be 0, 1, 2, or 3. 
a. What is the maximum unsigned decimal value that one can represent 

with 3 quad digits? 
b. What is the maximum unsigned decimal value that one can represent 

with n quad digits (Hint: your answer should be a function of n)l 
c. Add the two unsigned quad numbers: 023 and 221. 
d. What is the quad representation of the decimal number 42? 
e. What is the binary representation of the unsigned quad number 123.3? 
f . Express the unsigned quad number 123.3 in IEEE floating point 

format. 
g. Given a black box which takes m quad digits as input and produces 

one quad digit for output, what is the maximum number of unique 
functions this black box can implement? 

2.56 Define a new 8-bit floating point format with 1 sign bit, 4 bits of 
exponent, using an excess-7 code (that is, the bias is 7), and 3 bits of 
fraction. If xE5 is the bit pattern for a number in this 8-bit floating point 
format, what value does it have? (Express as a decimal number.) 
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3 

Digital Logic 

In Chapter 1, we stated that computers were built from very large numbers of very 
simple structures. For example, Intel's Pentium IV microprocessor, first offered 
for sale in 2000, was made up of more than 42 million MOS transistors. The 
IBM Power PC 750 FX, released in 2002, consists of more than 38 million MOS 
transistors. In this chapter, we will explain how the MOS transistor works (as a 
logic element), show how these transistors are connected to form logic gates, and 
then show how logic gates are interconnected to form larger units that are needed 
to construct a computer. In Chapter 4, we will connect those larger units into a 
computer. 

But first, the transistor. 

3.1 The Transistor 
Most computers today, or rather most microprocessors (which form the core of the 
computer) are constructed out of MOS transistors. MOS stands for metal-oxide 
semiconductor. The electrical properties of metal-oxide semiconductors are well 
beyond the scope of what we want to understand in this course. They are below 
our lowest level of abstraction, which means that if somehow transistors start 
misbehaving, we are at their mercy. It is unlikely that we will have any problems 
from the transistors. 

However, it is useful to know that there are two types of MOS transistors: 
p-type and n-type. They both operate "logically," very similar to the way wall 
switches work. 

Structures 
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Wall switch 

/ 

120-volt 
power supply 

Figure 3 .1 A simple electric circuit showing the use of a wall switch 

(a) 

Drain 

Gate — 

Source 

Figure 3 .2 Then-type MOS 

Figure 3.1 shows the most basic of electrical circuits: a power supply (in this 
case, the 120 volts that come into your house), a wall switch, and a lamp (plugged 
into an outlet in the wall). In order for the lamp to glow, electrons must flow; in 
order for electrons to flow, there must be a closed circuit from the power supply 
to the lamp and back to the power supply. The lamp can be turned on and off by 
simply manipulating the wall switch to make or break the closed circuit. 

Instead of the wall switch, we could use an n-type or a p-type MOS transistor 
to make or break the closed circuit. Figure 3.2 shows a schematic rendering of 
an n-type transistor (a) by itself, and (b) in a circuit. Note (Figure 3.2a) that the 
transistor has three terminals. They are called the gate, the source, and the drain. 
The reasons for the names source and drain are not of interest to us in this course. 
What is of interest is the fact that if the gate of the n-type transistor is supplied with 
2.9 volts, the connection from source to drain acts like a piece of wire. We say (in 
the language of electricity) that we have a closed circuit between the source and 
drain. If the gate of the n-type transistor is supplied with 0 volts, the connection 
between the source and drain is broken. We say that between the source and drain 
we have an open circuit. 

Figure 3.2b shows the n-type transistor in a circuit with a battery and a bulb. 
When the gate is supplied with 2.9 volts, the transistor acts like a piece of wire, 

(c) 

Gate -

transistor 



Source 

3.2 Logic Gates 

Gate 

Drain 

Figure 3 .3 A p-type MOS transistor 

completing the circuit and causing the bulb to glow. When the gate is supplied 
with 0 volts, the transistor acts like an open circuit, breaking the circuit, and 
causing the bulb not to glow. 

Figure 3.2c is a shorthand notation for describing the circuit of Figure 3.2b. 
Rather than always showing the power supply and the complete circuit, electrical 
engineers usually show only the terminals of the power supply. The fact that 
the power supply itself provides the completion of the completed circuit is well 
understood, and so is not usually shown. 

The p-type transistor works in exactly the opposite fashion from the n-type 
transistor. Figure 3.3 shows the schematic representation of a p-type transistor. 
When the gate is supplied with 0 volts, the p-type transistor acts (more or less) 
like a piece of wire, closing the circuit. When the gate is supplied with 2.9 volts, 
the p-type transistor acts like an open circuit. Because the p-type and n-type 
transistors act in this complementary way, we refer to circuits that contain both 
p-type and n-type transistors as CMOS circuits, for complementary metal-oxide 
semiconductor. 

3 . 2 Logic Gates 
One step up from the transistor is the logic gate. That is, we construct basic logic 
structures out of individual MOS transistors. In Chapter 2, we studied the behavior 
of the AND, the OR, and the NOT functions. In this chapter we construct transistor 
circuits that implement each of these functions. The corresponding circuits are 
called AND, OR, and NOT gates. 

3.2.1 The NOT Gate (Inverter) 
Figure 3.4 shows the simplest logic structure that exists in a computer. It is con-
structed from two MOS transistors, one p-type and one n-type. Figure 3.4a is 
the schematic representation of that circuit. Figure 3.4b shows the behavior of 
the circuit if the input is supplied with 0 volts. Note that the p-type transistor 
conducts and the n-type transistor does not conduct. The output is, therefore, 
connected to 2.9 volts. On the other hand, if the input is supplied with 2.9 volts, 
the p-type transistor does not conduct, but the n-type transistor does conduct. The 
output in this case is connected to ground (i.e., 0 volts). The complete behavior 
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(a) 

— i — 2.9 volts 

(b) 

5 p-type 

In Out In = 0 Out = 1 

» n-type 

\ 7 0 volts V 
(c) 

Figure 3 .4 A CMOS inverter 

(d) 

In Out In Out 
0 volts 2.9 volts 0 1 

2.9 volts 0 volts 1 0 

of the circuit can be described by means of a table, as shown in Figure 3.4c. If 
we replace 0 volts by the symbol 0 and 2.9 volts by the symbol 1, we have the 
truth table (Figure 3.4d) for the complement or NOT function, which we studied 
in Chapter 2. 

In other words, we have just shown how to construct an electronic circuit that 
implements the NOT logic function discussed in Chapter 2. We call this circuit 
a NOT gate, or an inverter. 

3.2.2 OR and NOR Gates 
Figure 3.5 illustrates a NOR gate. Figure 3.5a is a schematic of a circuit that 
implements a NOR gate. It contains two p-type and two n-type transistors. 

Figure 3.5b shows the behavior of the circuit if A is supplied with 0 volts and 
B is supplied with 2.9 volts. In this case, the lower of the two p-type transistors 
produces an open circuit, and the output C is disconnected from the 2.9-volt 
power supply. However, the leftmost n-type transistor acts like a piece of wire, 
connecting the output C to 0 volts. 

Note that if both A and B are supplied with 0 volts, the two p-type transistors 
conduct, and the output C is connected to 2.9 volts. Note further that there is 
no ambiguity here, since both n-type transistors act as open circuits, and so C is 
disconnected from ground. 

If either A or B is supplied with 2.9 volts, the corresponding p-type transistor 
results in an open circuit. That is sufficient to break the connection from C to 
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A B C A B C 
0 volts 0 volts 2.9 volts 0 0 1 
0 volts 2.9 volts 0 volts 0 1 0 

2.9 volts 0 volts 0 volts 1 0 0 
2.9 volts 2.9 volts 0 volts 1 1 0 

Figure 3.5 The NOR gate 

the 2.9-volt source. However, 2.9 volts supplied to the gate of one of the n-type 
transistors is sufficient to cause that transistor to conduct, resulting in C being 
connected to ground (i.e., 0 volts). 

Figure 3.5c summarizes the complete behavior of the circuit of Figure 3.5a. 
It shows the behavior of the circuit for each of the four pairs of voltages that can 
be supplied to A and B. That is, 

A = 0 volts, B = 0 volts 
A = 0 volts, B = 2.9 volts 
A = 2.9 volts, B = 0 volts 
A = 2.9 volts, B = 2.9 volts 

If we replace the voltages with their logical equivalents, we have the truth 
table of Figure 3.5d. Note that the output C is exactly the opposite of the logical 
OR function that we studied in Chapter 2. In fact, it is the NOT-OR function, 
more typically abbreviated as NOR. We refer to the circuit that implements the 
NOR function as a NOR gate. 

If we augment the circuit of Figure 3.5a by adding an inverter at the output, as 
shown in Figure 3.6a, we have at the output D the logical function OR. Figure 3.6a 
is the circuit for an OR gate. Figure 3.6b describes the behavior of this circuit if 
the input variable A is set to 0 and the input variable B is set to 1. Figure 3.6c 
shows the circuit's truth table. 
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0 0 1 0 
0 1 0 1 
1 0 0 1 
1 1 0 1 

Figure 3.6 The OR gate 

3.2.3 AND and NAND Gates 
Figure 3.7 shows an AND gate. Note that if either A or B is supplied with 0 volts, 
there is a direct connection from C to the 2.9-volt power supply. The fact that C 
is at 2.9 volts means the n-type transistor whose gate is connected to C provides 
a path from D to ground. Therefore, if either A or B is supplied with 0 volts, the 
output D of the circuit of Figure 3.7 is 0 volts. 

Again, we note that there is no ambiguity. The fact that at least one of the two 
inputs A or B is supplied with 0 volts means that at least one of the two n-type 
transistors whose gates are connected to A or B is open, and that consequently, 
C is disconnected from ground. Furthermore, the fact that C is at 2.9 volts means 
the p-type transistor whose gate is connected to C is open-circuited. Therefore, 
D is not connected to 2.9 volts. 

On the other hand, if both A and B are supplied with 2.9 volts, then both 
of their corresponding p-type transistors are open. However, their corresponding 
n-type transistors act like pieces of wire, providing a direct connection from C to 
ground. Because C is at ground, the rightmost p-type transistor acts like a closed 
circuit, forcing D to 2.9 volts. 
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Figure 3.7 The AND gate 
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A B C D 
0 0 1 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

Figure 3.7b summarizes in truth table form the behavior of the circuit of 
Figure 3.7a. Note that the circuit is an AND gate. The circuit shown within the 
dashed lines (i.e., having output C) is a NOT-AND gate, which we generally 
abbreviate as NAND. 

The gates just discussed are very common in digital logic circuits and in 
digital computers. There are millions of inverters (NOT gates) in the Pentium IV 
microprocessor. As a convenience, we can represent each of these gates by stan-
dard symbols, as shown in Figure 3.8. The bubble shown in the inverter, NAND, 
and NOR gates signifies the complement (i.e., NOT) function. 

From now on, we will not draw circuits showing the individual transistors. 
Instead, we will raise our level of abstraction and use the symbols shown in 
Figure 3.8. 

(a) Inverter (b) AND gate (c) OR gate 

(d) NAND gate (e) NOR gate 

Figure 3.8 Basic logic gates 
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(a) (b) 

(c) 

A B A B AND C 
0 0 1 1 1 0 
0 1 1 0 0 1 
1 0 0 1 0 1 
1 1 0 0 0 1 

Figure 3 .9 DeMorgan's law 

3.2.4 DeMorgan's Law 
Note (see Figure 3.9a) that one can complement an input before applying it to a 
gate. Consider the effect on the two-input AND gate if we apply the complements 
of A and B as inputs to the gate, and also complement the output of the AND 
gate. The "bubbles" at the inputs to the AND gate designate that the inputs A and 
B are complemented before they are used as inputs to the AND gate. 

Figure 3.9b shows the behavior of this structure for the input combination 
A = 0, B = 1. For ease of representation, we have moved the bubbles away from 
the inputs and the output of the AND gate. That way, we can more easily see what 
happens to each value as it passes through a bubble. 

Figure 3.9c summarizes by means of a truth table the behavior of the logic 
circuit of Figure 3.9a for all four combinations of input values. Note that the NOT 
of A is represented as A. 

We can describe the behavior of this circuit algebraically: 

A AND 1$ = A OR B 

We can also state this behavior in English: 

"It is not the case that both A and B are false" is equivalent to saying "At 
least one of A and B is true." 

This equivalence is known as DeMorgan's law. Is there a similar result if one 
inverts both inputs to an OR gate, and then inverts the output? 

3.2.5 Larger Gates 
Before we leave the topic of logic gates, we should note that the notion of AND, 
OR, NAND, and NOR gates extends to larger numbers of inputs. One could build 
a three-input AND gate or a four-input OR gate, for example. An n-input AND 
gate has an output value of 1 only if ALL n input variables have values of 1. If 
any of the n inputs has a value of 0, the output of the n-input AND gate is 0. An 
n-input OR gate has an output value of 1 if ANY of the n input variables has a 
value of 1. That is, an n-input OR gate has an output value of 0 only if ALL n 
input variables have values of 0. 
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(a) (b) 

A B c OUT 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

OUT 

Figure 3 .10 A three-input AND gate 

Figure 3.10 illustrates a three-input AND gate. Figure 3.10a shows its truth 
table. Figure 3.10b shows the symbol for a three-input AND gate. 

Can you draw a transistor-level circuit for a three-input AND gate? How 
about a four-input AND gate? How about a four-input OR gate? 

3.3 Combinational Logic Circuits 
Now that we understand the workings of the basic logic gates, the next step 
is to build some of the logic structures that are important components of the 
microarchitecture of a computer. 

There are fundamentally two kinds of logic structures, those that include 
the storage of information and those that do not. In Sections 3.4, 3.5, and 3.6, 
we will deal with structures that store information. In this section, we will deal 
with those that do not. These structures are sometimes referred to as decision 
elements. Usually, they are referred to as combinational logic structures, because 
their outputs are strictly dependent on the combination of input values that are 
being applied to the structure right now. Their outputs are not at all dependent on 
any past history of information that is stored internally, since no information can 
be stored internally in a combinational logic circuit. 

We will next examine a decoder, a mux, and a full adder. 

3.3.1 Decoder 
Figure 3.11 shows a logic gate description of a two-input decoder. A decoder 
has the property that exactly one of its outputs is 1 and all the rest are 0s. The 
one output that is logically 1 is the output corresponding to the input pattern 
that it is expected to detect. In general, decoders have n inputs and 2n out-
puts. We say the output line that detects the input pattern is asserted. That is, 
that output line has the value 1, rather than 0 as is the case for all the other 
output lines. In Figure 3.11, note that for each of the four possible combina-
tions of inputs A and /?, exactly one output has the value 1 at any one time. In 
Figure 3.1 lb, the input to the decoder is 10, resulting in the third output line being 
asserted. 

The decoder is useful in determining how to interpret a bit pattern. We will 
see in Chapter 5 that the work to be carried out by each instruction in the LC-3 is 
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(a) (b) 

1, if A, B is 00 

1, if A, B is 01 

1, if A, B is 10 

1, if A, B is 11 

>4=1 
8 = 0 

Figure 3 . 1 1 A two-input decoder 

determined by a four-bit pattern, called an opcode, that is part of the instruction. 
A 4-to-16 decoder is a simple combinational logic structure for identifying what 
work is to be performed by each instruction. 

3.3.2 Mux 
Figure 3.12a shows a gate-level description of a two-input multiplexer, more 
commonly referred to as a mux. The function of a mux is to select one of the 
inputs and connect it to the output. The select signal (S in Figure 3.12) determines 
which input is connected to the output. The mux of Figure 3.12 works as follows: 
Suppose S = 0, as shown in Figure 3.12b. Since the output of an AND gate is 
0 unless all inputs are 1, the output of the rightmost AND gate is 0. Also, the 
output of the leftmost AND gate is whatever the input A is. That is, if A = 0, 
then the output of the leftmost AND gate is 0, and if A = 1, then the output is 1. 
Since the output of the rightmost AND gate is 0, it has no effect on the OR gate. 
Consequently, the output at C is exactly the same as the output of the leftmost 
AND gate. The net result of all this is that if S = 0, the output C is identical to 
the input A. 

On the other hand, if S = 1, it is B that is ANDed with 1, resulting in the 
output of the OR gate having the value of B. 

In summary, the output C is always connected to either the input A or the 
input B—which one depends on the value of the select line S. We say S selects 
the source of the mux (either A or B) to be routed through to the output C. 
Figure 3.12c shows the standard representation for a mux. 

In general, a mux consists of 2n inputs and n select lines. Figure 3.13a shows a 
gate-level description of a four-input mux. It requires two select lines. Figure 3.13b 
shows the standard representation for a four-input mux. 

Can you construct the gate-level representation for an eight-input mux? How 
many select lines must you have? 
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(a) (b) (c) 

A B A B 
A B 

S = 0 

Figure 3.12 A 2- to- l mux 

(a) (b) 

A B C D A B CD 

l l 
S[1:0] 

Y Y 2 
^ — S T 

OUT 

OUT 

Figure 3.13 A four-input mux 

3.3.3 Full Adder 
In Chapter 2, we discussed binary addition. Recall that a simple algorithm for 
binary addition is to proceed as you have always done in the case of decimal 
addition, from right to left, one column at a time, adding the two digits from the 
two values plus the carry in, and generating a sum digit and a carry to the next 
column. The only difference is you get a carry after 1, rather than after 9. 

Figure 3.14 is a truth table that describes the result of binary addition on one 
column of bits within two n-bit operands. At each column, there are three values 
that must be added: one bit from each of the two operands and the carry from the 
previous column. We designate these three bits as a\, and carryi. There are 
two results, the sum bit 0;) and the carryover to the next column, carryi+\. Note 
that if only one of the three bits equals 1, we get a sum of 1, and no carry (i.e., 
carryi+\ = 0). If two of the three bits equal 1, we get a sum of 0, and a carry 
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3/ bi carryj carry Si 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

Figure 3.14 A truth table for a binary adder 

of 1. If all three bits equal 1, the sum is 3, which in binary addition corresponds 
to a sum of 1 and a carry of 1. 

Figure 3.15 is the gate-level description of the truth table of Figure 3.14. Note 
that each AND gate in Figure 3.15 produces an output 1 for exactly one of the 
eight input combinations of a,, bt, and carryt. The output of the OR gate for Q+\ 
must be 1 in exactly those cases where the corresponding input combinations in 
Figure 3.14 produce an output 1. Therefore the inputs to the OR gate that generates 
Cj+i are the outputs of the AND gates corresponding to those input combinations. 
Similarly, the inputs to the OR gate that generates Si are the outputs of the AND 
gates corresponding to the input combinations that require an output 1 for St in 
the truth table of Figure 3.14. 
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Figure 3 .16 A circuit for adding two 4-bit binary numbers 

Note that since the input combination 000 does not result in an output 1 for 
either C,-+1 or its corresponding AND gate is not an input to either of the two 
OR gates. 

We call the logic circuit of Figure 3.15 that provides three inputs (a,-, b(, and 
carry{) and two outputs (the sum bit st and the carryover to the next column 
carryi+\) a full adder. 

Figure 3.16 illustrates a circuit for adding two 4-bit binary numbers, using 
four of the full adder circuits of Figure 3.15. Note that the carry out of column i 
is an input to the addition performed in column i + 1. 

3.3.4 The Programmable Logic Array (PLA) 
Figure 3.17 illustrates a very common building block for implementing any collec-
tion of logic functions one wishes to. The building block is called a programmable 
logic array (PLA). It consists of an array of AND gates (called an AND array) 
followed by an array of OR gates (called an OR array). The number of AND gates 
corresponds to the number of input combinations (rows) in the truth table. For n 
input logic functions, we need a PLA with 2" n-input AND gates. In Figure 3.17, 
we have 23 3-input AND gates. The number of OR gates corresponds to the 
number of output columns in the truth table. The implementation algorithm is 
simply to connect the output of an AND gate to the input of an OR gate if the 
corresponding row of the truth table produces an output 1 for that output column. 
Hence the notion of programmable. That is, we say we program the connec-
tions from AND gate outputs to OR gate inputs to implement our desired logic 
functions. 

Figure 3.15 showed eight AND gates connected to two OR gates since our 
requirement was to implement two functions (sum and carry) of three input vari-
ables. Figure 3.17 shows a PLA that can implement any four functions of three 
variables one wishes to, by appropriately connecting AND gate outputs to OR 
gate inputs. 
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3.3.5 Logical Completeness 
Before we leave the topic of combinational logic circuits, it is worth noting an 
important property of building blocks for logic circuits: logical completeness. We 
showed in Section 3.3.4 that any logic function we wished to implement could be 
accomplished with a PLA. We saw that the PLA consists of only AND gates, OR 
gates, and inverters. That means that any logic function we wish to implement can 
be accomplished, provided that enough AND, OR, and NOT gates are available. 
We say that the set of gates {AND, OR, NOT} is logically complete because we 
can build a circuit to carry out the specification of any truth table we wish without 
using any other kind of gate. That is, the set of gates {AND, OR, and NOT} 
is logically complete because a barrel of AND gates, a barrel of OR gates, and 
a barrel of NOT gates are sufficient to build a logic circuit that carries out the 
specification of any desired truth table. The barrels may have to be big ones, but 
the point is, we do not need any other kind of gate to do the job. 

3.4 Basic Storage Elements 
Recall our statement at the beginning of Section 3.3 that there are two kinds of 
logic structures, those that involve the storage of information and those that do 
not. We have discussed three examples of those that do not: the decoder, the mux, 
and the full adder. Now we are ready to discuss logic structures that do include 
the storage of information. 

3.4.1 The R-S Latch 
A simple example of a storage element is the R-S latch. It can store one bit of 
information. The R-S latch can be implemented in many ways, the simplest being 
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the one shown in Figure 3.18. Two 2-input NAND gates are connected such that 
the output of each is connected to one of the inputs of the other. The remaining 
inputs S and R are normally held at a logic level 1. 

The R-S latch works as follows: We start with what we call the quiescent (or 
quiet) state, where inputs S and R both have logic value 1. We consider first the 
case where the output a is 1. Since that means the input A equals 1 (and we know 
the input R equals 1 since we are in the quiescent state), the output b must be 0. 
That, in turn, means the input B must be 0, which results in the output a equal to 
1. As long as the inputs S and R remain 1, the state of the circuit will not change. 
We say the R-S latch stores the value 1 (the value of the output a). 

If, on the other hand, we assume the output a is 0, then the input A must 
be 0, and the output b must be 1. This, in turn, results in the input B equal to 1, 
and combined with the input S equal to 1 (again due to quiescence) results in the 
output a equal to 0. Again, as long as the inputs S and R remain 1, the state of 
the circuit will not change. In this case, we say the R-S latch stores the value 0. 

The latch can be set to 1 by momentarily setting S to 0, provided we keep 
the value of R at 1. Similarly, the latch can be set to 0 by momentarily setting R 
to 0, provided we keep the value of 5 at 1. We use the term set to denote setting a 
variable to 0 or 1, as in "set to 0" or "set to 1." In addition, we often use the term 
clear to denote the act of setting a variable to 0. 

If we clear S, then a equals 1, which in turn causes A to equal 1. Since R is 
also 1, the output at b must be 0. This causes B to be 0, which in turn makes a 
equal to 1. If we now return S to 1, it does not affect a, since B is also 0, and only 
one input to a NAND gate must be 0 in order to guarantee that the output of the 
NAND gate is 1. Thus, the latch continues to store a 1 long after S returns to 1. 

In the same way, we can clear the latch (set the latch to 0) by momentarily 
setting R to 0. 

We should also note that in order for the R-S latch to work properly, one must 
take care that it is never the case that both S and R are allowed to be set to 0 at 
the same time. If that does happen, the outputs a and b are both 1, and the final 
state of the latch depends on the electrical properties of the transistors making up 
the gates and not on the logic being performed. How the electrical properties of 
the transistors will determine the final state in this case is a subject we will have 
to leave for a later semester. 

Figure 3.18 An R-S latch 
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3.4.2 The Gated D Latch 
To be useful, it is necessary to control when a latch is set and when it is cleared. 
A simple way to accomplish this is with the gated latch. 

Figure 3.19 shows a logic circuit that implements a gated D latch. It consists 
of the R-S latch of Figure 3.18, plus two additional gates that allow the latch to be 
set to the value of D, but only when WE is asserted. WE stands for write enable. 
When WE is not asserted (i.e., when WE equals 0), the outputs S and R are both 
equal to 1. Since S and R are also inputs to the R-S latch, if they are kept at 1, the 
value stored in the latch remains unchanged, as we explained in Section 3.4.1. 
When WE is momentarily asserted (i.e., set to 1), exactly one of the outputs S or 
R is set to 0, depending on the value of D. If D equals 1, then S is set to 0. If D 
equals 0, then both inputs to the lower NAND gate are 1, resulting in R being set 
to 0. As we saw earlier, if S is set to 0, the R-S latch is set to 1. If R is set to 0, 
the R-S latch is set to 0. Thus, the R-S latch is set to 1 or 0 according to whether 
D is 1 or 0. When WE returns to 0, S and R return to 1, and the value stored in 
the R-S latch persists. 

3.4.3 A Register 
We have already seen in Chapter 2 that it is useful to deal with values consisting 
of more than one bit. In Chapter 5, we will introduce the LC-3 computer, where 
most values are represented by 16 bits. It is useful to be able to store these larger 
numbers of bits as self-contained units. The register is a structure that stores a 
number of bits, taken together as a unit. That number can be as large as is useful 
or as small as 1. In the LC-3, we will need many 16-bit registers, and also a few 
one-bit registers. We will see in Figure 3.33, which describes the internal structure 
of the LC-3, that PC, IR, and MAR are all 16-bit registers, and that N, Z, and P 
are all one-bit registers. 

Figure 3.20 shows a four-bit register made up of four gated D latches. The 
four-bit value stored in the register is Qi, Qi, Qo- The value D3, D2, Du 
Do can be written into the register when WE is asserted. 

Note: A common shorthand notation to describe a sequence of bits that are 
numbered as just described is Q[3:0]. That is, each bit is assigned its own bit 
number. The rightmost bit is bit [0], and the numbering continues from right to 

D 

WE 

Figure 3 .19 A gated D latch 
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Figure 3 .20 A four-bit register 

left. If there are n bits, the leftmost bit is bit [n — 1]. For example, in the following 
16-bit pattern, 

0011101100011110 

bit [15] is 0, bit [14] is 0, bit [13] is 1, bit [12] is 1, and so on. 
We can designate a subunit of this pattern with the notation Q[l:r], where I 

is the leftmost bit in the subunit and r is the rightmost bit in the subunit. We call 
such a subunit a field. 

In this 16-bit pattern, if A[15:0] is the entire 16-bit pattern, then, for example: 

A [ 15 : 12] is 0011 
A [ 13 : 7] is 1110110 
A [2 : 0] is 110 
A [ 1:1] is 1 

We should also point out that the numbering scheme from right to left is purely 
arbitrary. We could just as easily have designated the leftmost bit as bit [0] and 
numbered them from left to right. Indeed, many people do. So, it is not important 
whether the numbering scheme is left to right or right to left. But it is important 
that the bit numbering be consistent in a given setting, that is, that it is always 
done the same way. In our work, we will always number bits from right to left. 

3.5 The Concept of Memorii 
We now have all the tools we need to describe one of the most important structures 
in the electronic digital computer, its memory. We will see in Chapter 4 how 
memory fits into the basic scheme of computer processing, and you will see 
throughout the rest of the book and indeed the rest of your work with computers 
how important the concept of memory is to computing. 

Memory is made up of a (usually large) number of locations, each uniquely 
identifiable and each having the ability to store a value. We refer to the unique 
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identifier associated with each memory location as its address. We refer to the 
number of bits of information stored in each location as its addressability. 

For example, an advertisement for a personal computer might say, "This 
computer comes with 16 megabytes of memory." Actually, most ads generally use 
the abbreviation 16 MB. This statement means, as we will explain momentarily, 
that the computer system includes 16 million memory locations, each containing 
1 byte of information. 

3.5.1 Address Space 
We refer to the total number of uniquely identifiable locations as the memory's 
address space. A 16 MB memory, for example, refers to a memory that consists 
of 16 million uniquely identifiable memory locations. 

Actually, the number 16 million is only an approximation, due to the way we 
identify memory locations. Since everything else in the computer is represented by 
sequences of Os and 1 s, it should not be surprising that memory locations are iden-
tified by binary addresses as well. With n bits of address, we can uniquely identify 
2n locations. Ten bits provide 1,024 locations, which is approximately 1,000. If 
we have 20 bits to represent each address, we have 220 uniquely identifiable loca-
tions, which is approximately 1 million. Thus 16 mega really corresponds to the 
number of uniquely identifiable locations that can be specified with 24 address 
bits. We say the address space is 224, which is exactly 16,777,216 locations, rather 
than 16,000,000, although we colloquially refer to it as 16 million. 

3.5.2 Addressability 
The number of bits stored in each memory location is the memory's address-
ability. A 16 megabyte memory is a memory consisting of 16,777,216 memory 
locations, each containing 1 byte (i.e., 8 bits) of storage. Most memories are byte-
addressable. The reason is historical; most computers got their start processing 
data, and one character stroke on the keyboard corresponds to one 8-bit ASCII 
character, as we learned in Chapter 2. If the memory is byte-addressable, then each 
ASCII code occupies one location in memory. Uniquely identifying each byte of 
memory allowed individual bytes of stored information to be changed easily. 

Many computers that have been designed specifically to perform large scien-
tific calculations are 64-bit addressable. This is due to the fact that numbers used 
in scientific calculations are often represented as 64-bit floating point quantities. 
Recall that we discussed the floating point data type in Chapter 2. Since scientific 
calculations are likely to use numbers that require 64 bits to represent them, it is 
reasonable to design a memory for such a computer that stores one such number 
in each uniquely identifiable memory location. 

3.5.3 A 22-by-3-Bit Memory 
Figure 3.21 illustrates a memory of size 22 by 3 bits. That is, the memory has an 
address space of four locations, and an addressability of 3 bits. A memory of size 
22 requires 2 bits to specify the address. A memory of addressability 3 stores 3 bits 
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A[1:0] D,[ 2] Dy[1 ] D,[0] 

D[ 2] D11] D[ 0] 

Figure 3 .21 A 22-by-3-bit memory 

of information in each memory location. Accesses of memory require decoding 
the address bits. Note that the address decoder takes as input A[1:0] and asserts 
exactly one of its four outputs, corresponding to the word line being addressed. In 
Figure 3.21, each row of the memory corresponds to a unique three-bit word; thus 
the term word line. Memory can be read by applying the address A[1:0], which 
asserts the word line to be read. Note that each bit of the memory is ANDed 
with its word line and then ORed with the corresponding bits of the other words. 
Since only one word line can be asserted at a time, this is effectively a mux with 
the output of the decoder providing the select function to each bit line. Thus, the 
appropriate word is read. 

Figure 3.22 shows the process of reading location 3. The code for 3 is 11. 
The address A[1:0] = 11 is decoded, and the bottom word line is asserted. Note 
that the three other decoder outputs are not asserted. That is, they have the value 
0. The value stored in location 3 is 101. These three bits are each ANDed with 
their word line producing the bits 101, which are supplied to the three output 
OR gates. Note that all other inputs to the OR gates are 0, since they have been 
produced by ANDing with unasserted word lines. The result is that D[2:0] = 101. 
That is, the value stored in location 3 is output by the OR gates. Memory can 
be written in a similar fashion. The address specified by A[1:0] is presented to 
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A[ 1:0] D,[ 2] 
11 

DA 1] D,[0] 

0 
D[ 1] D[2] D[1] D[0] 

Figure 3 .22 Reading location 3 in our 22-by-3-bit memory 

the address decoder, resulting in the correct word line being asserted. With WE 
asserted as well, the three bits A [2:0] can be written into the three gated latches 
corresponding to that word line. 

3.G Sequential Logic Circuits 
In Section 3.3, we discussed digital logic structures that process information 
(decision structures, we call them) wherein the outputs depend solely on the 
values that are present on the inputs now. Examples are muxes, decoders, and full 
adders. We call these structures combinational logic circuits. In these circuits there 
is no sense of the past. Indeed, there is no capability for storing any information 
of anything that happened before the present time. In Sections 3.4 and 3.5, we 
described structures that do store information—in Section 3.4, some basic storage 
elements, and in Section 3.5, a simple 22-by-3-bit memory. 

In this section, we discuss digital logic structures that can both process infor-
mation (i.e., make decisions) and store information. That is, these structures base 
their decisions not only on the input values now present, but also (and this is 



3.6 Sequential Logic Circuits 94 

Figure 3 .23 Sequential logic circuit block diagram 

very important) on what has happened before. These structures are usually called 
sequential logic circuits: They are distinguishable from combinational logic cir-
cuits because, unlike combinational logic circuits, they contain storage elements 
that allow them to keep track of prior history information. Figure 3.23 shows a 
block diagram of a sequential logic circuit. Note the storage elements. Note, also, 
that the output can be dependent on both the inputs now and the values stored in 
the storage elements. The values stored in the storage elements reflect the history 
of what has happened before. 

Sequential logic circuits are used to implement a very important class of 
mechanisms called finite state machines. We use finite state machines in essen-
tially all branches of engineering. For example, they are used as controllers of 
electrical systems, mechanical systems, aeronautical systems, and so forth. A traf-
fic light controller that sets the traffic light to red, yellow, or green depends on the 
light that is currently on (history information) and input information from sensors 
such as trip wires on the road and optical devices that are monitoring traffic. 

We will see in Chapter 4 when we introduce the von Neumann model of a 
computer that a finite state controller is at the heart of the computer. It controls 
the processing of information by the computer. 

3.6.1 A Simple Example: The Combination Lock 
A simple example shows the difference between combinational logic structures 
and sequential logic structures. Suppose one wishes to secure a bicycle with a 
lock, but does not want to carry a key. A common solution is the combination 
lock. The person memorizes a "combination" and uses this to open the lock. Two 
common types of locks are shown in Figure 3.24. 

In Figure 3.24a, the lock consists of a dial, with the numbers from 0 to 30 
equally spaced around its circumference. To open the lock, one needs to know the 
"combination." One such combination could be: R13-L22-R3. If this were the 
case, one would open the lock by turning the dial two complete turns to the right, 
and then continuing until the dial points to 13, followed by one complete turn to 
the left, and then continuing until the dial points to 22, followed by turning the 
dial again to the right until it points to 3. At that point, the lock opens. What is 
important here is the sequence of the turns. The lock will not open, for example 
if one performed two turns to the right, and then stopped on 20, followed by one 
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Figure 3 .24 Combination locks 

complete turn to the left, ending on 22, followed by one turn to the right, ending 
on 3. That is, even though the final position of the dial is 3, the lock would not 
open. Why? Because the lock stores the previous rotations and makes its decision 
(open or don't open) on the basis of the current input value (R3) and the history of 
the past operations. This mechanism is a simple example of a sequential structure. 

Another type of lock is shown in Figure 3.24b. The mechanism consists of 
(usually) four wheels, each containing the digits 0 through 9. When the digits 
are lined up properly, the lock will open. In this case, the combination is the set 
of four digits. Whether or not this lock opens is totally independent of the past 
rotations of the four wheels. The lock does not care at all about past rotations. 
The only thing important is the current value of each of the four wheels. This is 
a simple example of a combinational structure. 

It is curious that in our everyday speech, both mechanisms are referred to as 
"combination locks." In fact, only the lock of Figure 3.24b is a combinational 
lock. The lock of Figure 3.24a would be better called a sequential lock! 

3.6.2 The Concept of State 
For the mechanism of Figure 3.24a to work properly, it has to keep track of the 
sequence of rotations leading up to the opening of the lock. In particular, it has 
to differentiate the correct sequence R13-L22-R3 from all other sequences. For 
example, R13-L29-R3 must not be allowed to open the lock. Likewise, R10-L22-
R3 must also not be allowed to open the lock. The problem is that, at any one 
time, the only external input to the lock is the current rotation. 

For the lock of Figure 3.24a to work, it must identify several relevant 
situations, as follows: 
A. The lock is not open, and NO relevant operations have been 

performed. 
B. The lock is not open, but the user has just completed the 

R13 operation. 
C. The lock is not open, but the user has just completed R13, 

followed by L22. 
D. The lock is open. 

We have labeled these four situations A, B, C, and D. We refer to each of these 
situations as the state of the lock. 
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The notion of state is a very important concept in computer engineering, and 
actually, in just about all branches of engineering. The state of a mechanism— 
more generally, the state of a system—is a snapshot of that system in which all 
relevant items are explicitly expressed. 

That is: The state of a system is a snapshot of all the relevant elements of the 
system at the moment the snapshot is taken. 

In the case of the lock of Figure 3.24a, there are four states A, B, C, and D. 
Either the lock is open (State D), or if it is not open, we have already performed 
either zero (State A), one (State B), or two (State C) correct operations. This is the 
sum total of all possible states that can exist. Exercise: Why is that the case? That 
is, what would be the snapshot of a fifth state that describes a possible situation 
for the combination lock? 

There are many common examples of systems that can be easily described 
by means of states. 

The state of a game of basketball can be described by the scoreboard in the 
basketball arena. Figure 3.25 shows the state of the basketball game as Texas 73, 
Oklahoma 68, 7 minutes and 38 seconds left in the second half, 14 seconds left 
on the shot clock, Texas with the ball, and Texas and Oklahoma each with four 
team fouls. This is a snapshot of the basketball game. It describes the state of 
the basketball game right now. If, 12 seconds later, a Texas player were to score 
a two-point shot, the new state would be described by the updated scoreboard. 
That is, the score would then be Texas 75, Oklahoma 68, the time remaining in 
the game would be 7 minutes and 26 seconds, the shot clock would be back to 25 
seconds, and Oklahoma would have the ball. 

The game of tic-tac-toe can also be described in accordance with the notion 
of state. Recall that the game is played by two people (or, in our case, a person 
and the computer). The state is a snapshot of the game in progress each time the 
computer asks the person to make a move. The game is played as follows: There 

TEXAS O OKLAHOMA 

FOULS : 4 

1 3 1 2 
HALF O • 

FOULS : 4 

E B 

I H 
SHOT CLOCK 

Figure 3.25 An example of a state 
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X X 0 X 

0 o 

(a) (b) (c) 

Figure 3 .26 Three states in a tic-tac-toe machine 

are nine locations on the diagram. The person and then the computer take turns 
placing an X (the person) and an O (the computer) in an empty location. The 
person goes first. The winner is the first to place three symbols (three Xs for the 
person, three Os for the computer) in a straight line, either vertically, horizontally, 
or diagonally. 

The initial state, before either the person or computer has had a turn, is shown 
in Figure 3.26a. Figure 3.26b shows a possible state of the game when the person 
is prompted for a second move, if he/she put an X in the upper left corner as the 
first move. In the state shown, the computer put an O in the middle square as its 
first move. Figure 3.26c shows a possible state of the game when the person is 
being prompted for a third move if he/she put an X in the upper right corner on 
the second move (after putting the first X in the upper left corner). In the state 
shown, the computer put its second O in the upper middle location. 

3.6.3 Finite State Machines 
We have seen that a state is a snapshot of all relevant parts of a system at a 
particular point in time. At other times, that system can be in other states. The 
behavior of a system can often be best understood by describing it as a finite state 
machine. 

A finite state machine consists of five elements: 

1. a finite number of states 
2. a finite number of external inputs 
3. a finite number of external outputs 
4. an explicit specification of all state transitions 
5. an explicit specification of what determines each external 

output value. 

The set of states represents all possible situations (or snapshots) that the 
system can be in. Each state transition describes what it takes to get from one 
state to another. 

The State Diagram 
A finite state machine can be conveniently represented by means of a state dia-
gram. Figure 3.27 is an example of a state diagram. A state diagram is drawn as a 
set of circles, where each circle corresponds to one state, and a set of connections 
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Figure 3 .27 A state diagram 

between some of the states, where each connection is drawn as an arrow. The more 
sophisticated term for "connection" is arc. Each arc identifies the transition from 
one state to another. The arrowhead on each arc specifies which state the system 
is coming from, and which state it is going to. We refer to the state the system is 
coming from as the current state, and the state it is going to as the next state. The 
finite state machine represented by the state diagram of Figure 3.27 consists of 
three states, with six state transitions. Note that there is no state transition from 
state Y to state X. 

It is often the case that from a current state there are multiple transitions to 
next states. The state transition that occurs depends on the values of the external 
inputs. In Figure 3.27, if the current state is state X and the external input has 
value 0, the next state is state Y. If the current state is state X and the external 
input has the value 1, the next state is state Z. In short, the next state is determined 
by the combination of the current state and the current external input. 

The output values of a system can be determined just by the current state of 
the system, or they can be determined by the combination of the current state and 
the values of the current external inputs. In all the cases we will study, the output 
values are specified by the current state of the system. In Figure 3.27, the output is 
101 when the system is in state X, the output is 110 when the system is in state Y, 
and 001 when the system is in state Z. 

Figure 3.28 is a state diagram of the combination lock of Figure 3.24a, for 
which the correct combination is R13, L22, R3. Note the four states, labeled A, 
B, C, D, identifying whether the lock is open, or, in the cases where it is not open, 
the number of correct rotations performed up to now. The external inputs are the 
possible rotation operations. The output is the condition "open" or "do not open." 
The output is explicitly associated with each state. That is, in states A, B, and C, 
the output is "do not open." In state D, the output is "open." Note further that the 
"arcs" out of each state comprise all possible operations that one could perform 
when the mechanism is in that state. For example, when in state B, all possible 
rotations can be described as (1) L22 and (2) everything except L22. Note that 
there are two arrows emanating from state B in Figure 3.28, corresponding to 
these two cases. 

We could similarly draw a state diagram for the basketball game we described 
earlier, where each state would be one possible configuration of the scoreboard. A 
transition would occur if either the referee blew a whistle or the other team got the 
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ball. We showed earlier the transition that would be caused by Texas scoring a two-
point shot. Clearly, the number of states in the finite state machine describing a 
basketball game would be huge. Also clearly, the number of legitimate transitions 
from one state to another is small, compared to the number of arcs one could 
draw connecting arbitrary pairs of states. The input is the activity that occurred 
on the basketball court since the last transition. Some input values are: Texas 
scored two points, Oklahoma scored three points, Texas stole the ball, Oklahoma 
successfully rebounded a Texas shot, and so forth. The output is the final result 
of the game. The output has three values: Game still in progress, Texas wins, 
Oklahoma wins. 

Can one have an arc from a state where the score is Texas 30, Oklahoma 28 
to a state where the score is tied, Texas 30, Oklahoma 30? See Exercise 3.38. 

Is it possible to have two states, one where Texas is ahead 30-28 and the other 
where the score is tied 30-30, but no arc between the two? See Exercise 3.39. 

The Clock 
There is still one important property of the behavior of finite state machines that 
we have not discussed—the mechanism that triggers the transition from one state 
to the next. In the case of the "sequential" combination lock, the mechanism is 
the completion of rotating the dial in one direction, and the start of rotating the 
dial in the opposite direction. In the case of the basketball game, the mechanism 
is triggered by the referee blowing a whistle, or someone scoring or the other 
team otherwise getting the ball. 

Frequently, the mechanism that triggers the transition from one state to the 
next is a clock circuit. A clock circuit, or, more commonly, a clock, is a signal 
whose value alternates between 0 volts and some specified fixed voltage. In digital 
logic terms, a clock is a signal whose value alternates between 0 and 1. Figure 3.29 
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Figure 3 .29 A clock signal 

Figure 3 .30 A traffic danger sign 

illustrates the value of the clock signal as a function of time. A clock cycle is one 
interval of the repeated sequence of intervals shown in Figure 3.29. 

In electronic circuit implementations of a finite state machine, the transition 
from one state to another occurs at the start of each clock cycle. 

3.6.4 An Example: The Complete Implementation 
of a Finite State Machine 

We conclude this section with the logic specification of a sequential logic circuit 
that implements a finite state machine. Our example is a controller for a traffic 
danger sign, as shown in Figure 3.30. Note the sign says, "Danger, Move Right." 
The sign also contains five lights (labeled 1 through 5 in the figure). 

Like many sequential logic circuits, the purpose of our controller is to direct 
the behavior of a system. In our case, the system is the set of lights on the traffic 
danger sign. The controller's job is to have the five lights flash on and off as 
follows: During one cycle, all lights will be off. The next cycle, lights 1 and 2 
will be on. The next cycle, lights 1, 2, 3, and 4 will be on. The next cycle, all five 
lights will be on. Then the sequence repeats: next cycle, no lights on, followed 
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by 1 and 2 on, followed by 1, 2, 3, and 4 on, and so forth. Each cycle is to last 
\ second. 

Figure 3.31 is a finite state machine that describes the behavior of the traffic 
danger sign. Note that there are four states, one for each of the four relevant 
situations. Note the transitions from each state to the next state. If the switch is 
on (input = 1), the lights flash in the sequence described. If the switch is turned 
off, the state always transfers immediately to the "all off" state. 

Figure 3.32 shows the implementation of a sequential logic circuit that imple-
ments the finite state machine of Figure 3.31. Figure 3.32a is a block diagram, 
similar to Figure 3.23. Note that there is one external input, a switch that deter-
mines whether or not the lights should flash. There are three external outputs, one 
to control when lights 1 and 2 are on, one to control when lights 3 and 4 are on, 
and one to control when light 5 is on. Note that there are two internal storage 
elements that are needed to keep track of which state the controller is in, which 
is determined by the past behavior of the traffic danger sign. Note finally that 
there is a clock signal that must have a cycle time of \ second in order for the 
state transitions to occur every \ second. 

The only relevant history that must be retained is the state that we are transi-
tioning from. Since there are only four states, we can uniquely identify them with 
two bits. Therefore, only two storage elements are needed. Figure 3.31 shows the 
two-bit code used to identify each of the four states. 

Combinational Logic 
Figure 3.32b shows the combinational logic circuit required to complete the imple-
mentation of the controller for the traffic danger sign. Two sets of outputs of the 
combinational logic circuit are required for the controller to work properly: a set 
of external outputs for the lights and a set of internal outputs to determine the 
inputs to the two storage elements that keep track of the state. 

First, let us look at the outputs that control the lights. As we have said, there 
are only three outputs necessary to control the lights. Light 5 is controlled by the 
output of the AND gate labeled X, since the only time light 5 is on is if the switch 
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Figure 3 .32 Sequential logic circuit implementation of Figure 3.30 
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is on, and the controller is in state 11. Lights 3 and 4 are controlled by the output 
of the OR gate labeled Y, since there are two states in which those lights are on, 
those labeled 10 and 11. Why are lights 1 and 2 controlled by the output of the 
OR gate labeled Z? See Exercise 3.42. 

Next, let us look at the internal outputs that control the storage elements. 
Storage element 1 should be set to 1 for the next clock cycle if the next state is to 
be 10 or 11. This is true only if the switch is on and the current state is either 01 or 
10. Therefore the output signal that will make storage element 1 be 1 in the next 
clock cycle is the output of the OR gate labeled W. Why is the next state of storage 
element 2 controlled by the output of the OR gate labeled U? See Exercise 3.42. 

Storage Elements 
The last piece of logic needed for the traffic danger sign controller is the logic 
circuit for the two storage elements shown in Figure 3.32a. Why can't we use the 
the gated D latch discussed in Section 3.4, one might ask? The reason is as follows: 
During the current clock cycle the output of the storage element is an internal input 
to the combinational logic circuit, and the output of the combinational logic circuit 
is an input to the storage element that must not take effect until the start of the next 
clock cycle. If we used a gated D latch, the input would take effect immediately 
and overwrite the value in the storage element, instead of waiting for the start of 
the next cycle. 

To prevent that from happening, a simple logic circuit for implementing 
the storage element is the master-slave flip-flop. A master-slave flip-flop can be 
constructed out of two gated D latches, as shown in Figure 3.32c. During the first 
half of the clock cycle, it is not possible to change the value stored in latch A. 
Thus, whatever is in latch A is passed to latch B, which is an internal input to the 
combinational logic circuit. During the second half of the clock cycle, it is not 
possible to change the value stored in latch B, so the value present during the first 
half of the clock cycle remains in latch B as the input to the combinational logic 
circuit for the entire cycle. However, during the second half of the clock cycle, it 
is possible to change the value stored in latch A. Thus the master-slave flip-flop 
allows the current state to remain intact for the entire cycle, while the next state 
is produced by the combinational logic to change latch A during the second half 
of the cycle so as to be ready to change latch B at the start of the next cycle. 

3.7 The Dofo Path of me LC-3 
In Chapter 5, we will specify a computer, which we call the LC-3, and you will 
have the opportunity to write computer programs to execute on it. We close out 
this chapter with Figure 3.33, which shows a block diagram of what we call the 
data path of the LC-3 and the finite state machine that controls all the LC-3 
actions. The data path consists of all the logic structures that combine to process 
information in the core of the computer. Right now, Figure 3.33 is undoubtedly 
more than a little intimidating, and you should not be concerned by that. You are 
not ready to analyze it yet. That will come in Chapter 5. We have included it here, 
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Figure 3 .33 The data path of the LC-3 computer 
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however, only to show you that you are already familiar with many of the basic 
structures that make up a computer. That is, you already know how most of the 
elements in the data path work, and furthermore, you know how those elements 
are constructed from gates. For example, PC, IR, MAR, and MDR are registers 
and store 16 bits of information each. Each wire that is labeled with a cross-hatch 
16 represents 16 wires, each carrying one bit of information. N, Z, and P are 
one-bit registers. They could be implemented as master-slave flip-flops. There 
are five muxes, one supplying a 16-bit value to the PC register, one supplying an 
address to the MAR, one selecting one of two sources to the B input of the ALU, 
and two selecting inputs to a 16-bit adder. In Chapter 5, we will see why these 
elements must be connected as shown in order to execute the programs written 
for the LC-3 computer. For now, just enjoy the fact that the components look 
familiar. In Chapters 4 and 5, we will raise the level of abstraction again and put 
these components together into a working computer. 

Exercises 

3.1 In the following table, write whether each type of transistor will act as an 
open circuit or a closed circuit. 

n-type p-type 
Gate 
Gate 

3.2 Replace the missing parts in the circuit below with either a wire or no 
wire to give the output OUT a logical value of 0 when the input IN is a 
logical 1. 

IN = 1 — OUT = 0 

3.3 A two-input AND and a two-input OR are both examples of two-input 
logic functions. How many different two-input logic functions are 
possible? 
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3-4 Replace the missing parts in the circuit below with either a wire or no 
wire to give the output C a logical value of 1. Describe a set of inputs that 
give the output C a logical value of 0. Replace the missing parts with 
wires or no wires corresponding to that set of inputs. 

X 
;, p-type 

B ) p-type 

J:——IL 
» n-type 

n-type X 
3.5 Complete a truth table for the transistor-level circuit in Figure 3.34. 

H L > B 

H 
OUT 

B-

Figure 3.34 Diagram for Exercise 3.5 

— C 
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3.6 For the transistor-level circuit in Figure 3.35, fill in the truth table. What 
is Z in terms of A and B? 

A B C D Z 

H 
T 

- 4 

Figure 3.35 Diagram for Exercise 3.6 

h c 

1? 
T 

D 

i 

A 

k 1, 

3.7 The circuit below has a major flaw. Can you identify it? Hint: Evaluate 
the circuit for all sets of inputs. 

H E > B 

OUT 

B 



Exercises 85 

3.8 The transistor-level circuit below implements the logic equation given 
below. Label the inputs to all the transistors. 

Y = NOT (A AND (B OR C)) 

3.9 Fill in the truth table for the logical expression NOT(NOT(A) OR 
NOT(B)). What single logic gate has the same truth table? 

A B NOT(NOT(A) OR NOT(B)) 
0 0 
0 1 
1 0 
1 1 

3.10 Fill in the truth table for a two-input NOR gate. 

A B A N O R B 
0 0 
0 1 
1 0 
1 1 
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3.11 a. Draw a transistor-level diagram for a three-input AND gate and 
a three-input OR gate. Do this by extending the designs from 
Figures 3.6a and 3.7a. 

b. Replace the transistors in your diagrams from part a with either a wire 
or no wire to reflect the circuit's operation when the following inputs 
are applied. 
(1) A = l, B = 0,C = 0 
(2) A = 0, B = 0 , C = 0 
(3) A = 1,J? = 1,C = 1 

3.12 Following the example of Figure 3.1 la, draw the gate-level schematic 
of a three-input decoder. For each output of this decoder, write the input 
conditions under which that output will be 1. 

3.13 How many output lines will a five-input decoder have? 
3.14 How many output lines will a 16-input multiplexer have? How many 

select lines will this multiplexer have? 
3.15 If A and B are four-bit unsigned binary numbers, 0111 and 1011, 

complete the table obtained when using a two-bit full adder from 
Figure 3.15 to calculate each bit of the sum, S, of A and B. Check your 
answer by adding the decimal value of A and B and comparing the sum 
with 5. Are the answers the same? Why or why not? 

A 
B 
S 
Cout 

3.16 Given the following truth table, generate the gate-level logic circuit, 
using the implementation algorithm referred to in Section 3.3.4. 

A B c z 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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3.17 a. Given four inputs, A, B, C, and D and one output, Z, create a truth 
table for a circuit with at least seven input combinations generating 
Is at the output. (How many rows will this truth table have?) 

b. Now that you have a truth table, generate the gate-level logic circuit 
that implements this truth table. Use the implementation algorithm 
referred to in Section 3.3.4. 

3-18 Implement the following functions using AND, OR, and NOT logic 
gates. The inputs are A, B, and the output is F . 
a. F has the value 1 only if A has the value 0 and B has the value 1. 
b. F has the value 1 only if A has the value 1 and B has the value 0. 
c. Use your answers from (a) and (b) to implement a 1-bit adder. 

The truth table for the 1-bit adder is given below. 

d. Is it possible to create a 4-bit adder (a circuit that will correctly add 
two 4-bit quantities) using only four copies of the logic diagram 
from (c)? If not, what information is missing? Hint: When A = 1 
and B = 1, a sum of 0 is produced. What information is not 
dropped? 

3-19 Logic circuit 1 in Figure 3.36 has inputs A, B, C. Logic circuit 2 in 
Figure 3.37 has inputs A and B. Both logic circuits have an output D. 
There is a fundamental difference between the behavioral characteristics 
of these two circuits. What is it? Hint: What happens when the voltage 
at input A goes from 0 to 1 in both circuits? 

A B Sum 

0 0 
0 1 
1 0 
1 1 

1 
0 

0 

c 

B 

D 

A 

Figure 3 .36 Logic circuit 1 for 
Exercise 3 .19 

B 

Figure 3 .37 Logic circuit 2 for 
Exercise 3 .19 
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3.20 Generate the gate-level logic that implements the following truth table. 
From the gate-level structure, generate a transistor diagram that 
implements the logic structure. Verify that the transistor 
diagram implements the truth table. 

in0 in\ /(/«0, in\) 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

3.21 You know a byte is 8 bits. We call a 4-bit quantity a nibble. If a 
byte-addressable memory has a 14-bit address, how many nibbles of 
storage are in this memory? 

3.22 Implement a 4-to-l mux using only 2-to-l muxes making sure to properly 
connect all of the terminals. Remember that you will have 4 inputs, 2 
control signals, and 1 output. Write out the truth table for this circuit. 

3.23 Given the logic circuit in Figure 3.38, fill in the truth table for the output 
value Z. 

A B c z 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Figure 3 .38 Diagram for Exercise 3.23 
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A3 B3 C3 A2 B2 C2 A\ B1 C 1 AO BO CO 

+ + 
Carry-in 

+ 
Carry-in 

+ 
Carry-in 

+ 
Carry-in 

S 3 S2 

Figure 3 .39 Diagram for Exercise 3 .24 

S1 SO 

3.24 a. Figure 3.39 shows a logic circuit that appears in many of today's 
processors. Each of the boxes is a full-adder circuit. What does the 
value on the wire X do? That is, what is the difference in the output 
of this circuit if X = 0 versus if X = 1? 

b. Construct a logic diagram that implements an adder/subtracter. That 
is, the logic circuit will compute A + B or A — B depending on 
the value of X. Hint: Use the logic diagram of Figure 3.39 as a 
building block. 

3.25 Say the speed of a logic structure depends on the largest number of logic 
gates through which any of the inputs must propagate to reach an output. 
Assume that a NOT, an AND, and an OR gate all count as one gate 
delay. For example, the propagation delay for a two-input decoder 
shown in Figure 3.11 is 2 because some inputs propagate through 
two gates. 

a. What is the propagation delay for the two-input mux shown in 
Figure 3.12? 

b. What is the propagation delay for the 1-bit full adder in 
Figure 3.15? 

c. What is the propagation delay for the 4-bit adder shown in 
Figure 3.16? 

d. What if the 4-bit adder were extended to 32 bits? 
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3-26 Recall that the adder was built with individual "slices" that produced a 
sum bit and carryout bit based on the two operand bits A and B and the 
carryin bit. We called such an element a full adder. Suppose we have a 
3-to-8 decoder and two six-input OR gates, as shown below. Can we 
connect them so that we have a full adder? If so, please do. (Hint: If an 
input to an OR gate is not needed, we can simply put an input 0 on it and 
it will have no effect on anything. For example, see the figure below.) 

3.27 For this question, refer to the figure below. 

a. Describe the output of this logic circuit when the select line S is a 
logical 0. That is, what is the output Z for each value of A? 

b. If the select line S is switched from a logical 0 to 1, what will the 
output be? 

c. Is this logic circuit a storage element? 
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3.28 Having designed a binary adder, you are now ready to design a 2-bit by 
2-bit unsigned binary multiplier. The multiplier takes two 2-bit inputs 
A[1:0] and B[1:0] and produces an output Y which is the product of 
A[1:0] and B[1:0]. The standard notation for this is: 

Y =A[1:0]-B[1:0] 

a. What is the maximum value that can be represented in 2 bits for 
A(A[1:0])? 

b. What is the maximum value that can be represented in 2 bits for 
5(B[1:0])? 

c. What is the maximum possible value of F? 
d. What is the number of required bits to represent the maximum value 

of y? 
e. Write a truth table for the multiplier described above. You will have a 

four-input truth table with the inputs being A[l], A[0], B[l], and 
B[0]. 

f . Implement the third bit of output, Y[2] from the truth table using only 
AND, OR, and NOT gates. 

3.29 A 16-bit register contains a value. The value x75A2 is written into it. Can 
the original value be recovered? 
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3.30 A comparator circuit has two 1-bit inputs A and B and three 1-bit outputs 
G (greater), E (Equal), and L (less than). Refer to Figures 3.40 and 3.41 
for this problem. 

G is 1 if A > B E is 1 if A = B Lis 1 if A < B 
0 otherwise 0 otherwise 0 otherwise 

G 

E 

L 

G 

E 

L 

G 

E 

L 

G 

E 

L 

G 

E 

L 

G 

E 

L 

Figure 3 .40 Diagram for Exercise 3 .30 

Figure 3 . 4 1 Diagram for Exercise 3 .30 

a. Draw the truth table for a 1-bit comparator. 

A B G E L 
0 0 
0 1 
1 0 
1 1 

b. Implement G, E, and L using AND, OR, and NOT gates. 
c. Using the 1-bit comparator as a basic building block, construct a 

four-bit equality checker, such that output EQUAL is 1 if 
A[3:0] = B[3:0], 0 otherwise. 
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3-31 If a computer has eight-byte addressability and needs three bits to access 
a location in memory, what is the total size of memory in bytes? 

3.32 Distinguish between a memory address and the memory's addressability. 
3.33 Using Figure 3.21, the diagram of the 4-entry, 22-by-3-bit memory. 

a. To read from the fourth memory location, what must the values of 
A[ 1:0] and WE be? 

b. To change the number of entries in the memory from 4 to 60, how 
many address lines would be needed? What would the addressability 
of the memory be after this change was made? 

c. Suppose the minimum width (in bits) of the program counter (the 
program counter is a special register within a CPU, and we will 
discuss it in detail in, the next chapter) is the minimum number of bits 
needed to address all 60 locations in our memory from part (b). How 
many additional memory locations could be added to this memory 
without having to alter the width of the program counter? 
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3.34 For the memory shown in Figure 3.42: 
a. What is the address space? 
b. What is the addressability? 
c. What is the data at address 2? 

WE 

Di[3] 

Di[2] 

Di[1] 

A[1] 

A[0] 
U P 

o 

Di[0] 

r 
o 

r^ I - - p - l l 

r 
0 J T 0 

T U — T U — 

1 1 0 

0 1 0 

w J 1 ^ 
1 

J 
1 

J 1 ^ 
1 

€ > ~ D[2] 

€ > - D[1] 

O D[0] 

Figure 3 .42 Diagram for Exercise 3.34 
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3-35 Given a memory that is addressed by 22 bits and is 3-bit addressable, 
how many bits of storage does the memory contain? 

3.36 A combinational logic circuit has two inputs. The values of those two 
inputs during the past ten cycles were 01, 10, 11,01, 10, 11,01, 10, 11, 
and 01. The values of these two inputs during the current cycle are 10. 
Explain the effect on the current output due to the values of the inputs 
during the previous ten cycles. 

3.37 In the case of the lock of Figure 3.24a, there are four states A, B, C, and 
D, as described in Section 3.6.2. Either the lock is open (State D), or if it 
is not open, we have already performed either zero (State A), one 
(State B), or two (State C) correct operations. This is the sum total of all 
possible states that can exist. Exercise: Why is that the case? That is, 
what would be the snapshot of a fifth state that describes a possible 
situation for the combination lock? 

3.38 Recall Section 3.6.2. Can one have an arc from a state where the score is 
Texas 30, Oklahoma 28 to a state where the score is tied, Texas 30, 
Oklahoma 30? Draw an example of the scoreboards (like the one in 
Figure 3.25) for the two states. 

3.39 Recall again Section 3.6.2. Is it possible to have two states, one where 
Texas is ahead 30-28 and the other where the score is tied 30-30, but no 
arc between the two? Draw an example of two scoreboards, one where 
the score is 30-28 and the other where the score is 30-30, but there can be 
no arc between the two. For each of the three output values, game in 
progress, Texas wins, Oklahoma wins, draw an example of a scoreboard 
that corresponds to a state that would produce that output. 

3.40 Refer to Section 3.6.2. Draw a partial finite state machine for the game of 
tic-tac-toe. 

3-41 The IEEE campus society office sells sodas for 35 cents. Suppose they 
install a soda controller that only takes the following three inputs: nickel, 
dime, and quarter. After you put in each poin, you push a pushbutton to 
register the coin. If at least 35 cents has been put in the controller, it will 
output a soda and proper change (if applicable). Draw a finite state 
machine that describes the behavior of the soda controller. Each state will 
represent how much money has been put in (Hint'. There will be seven of 
these states). Once enough money has been put in, the controller will go 
to a final state where the person will receive a soda and proper change 
(Hint: There are five such final states). From the final state, the next coin 
that is put in will start the process again. 

3.42 Refer to Figure 3.32b. Why are lights 1 and 2 controlled by the output of 
the OR gate labeled Z? Why is the next state of storage element 2 
controlled by the output of the OR gate labeled Ul 
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3.43 Shown in Figure 3.43 is an implementation of a finite state machine with 
an input X and output Z. 

a. Complete the rest of the following table. 
SI, SO specifies the present state. 
DI, DO specifies the next state. 

Clock 

Figure 3 .43 Diagram for Exercise 3.43 

SI so X D I DO Z 

0 0 0 

0 0 1 

0 1 0 

0 1 1 1 0 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

b. Draw the state diagram for the truth table from part a. 
3.44 Prove that the NAND gate, by itself, is logically complete (see 

Section 3.3.5) by constructing a logic circuit that performs the AND 
function, a logic circuit that performs the NOT function, and a logic 
circuit that performs the OR function. Use only NAND gates in these 
three logic circuits. 



c h a p t e r 

4 

The von Neumann Model 

We are now ready to raise our level of abstraction another notch. We will build 
on the logic structures that we studied in Chapter 3, both decision elements and 
storage elements, to construct the basic computer model first proposed by John 
von Neumann in 1946. 

4.1 Basic Components 
To get a task done by a computer, we need two things: a computer program that 
specifies what the computer must to do to complete the task, and the computer 
itself that is to carry out the task. 

A computer program consists of a set of instructions, each specifying a well-
defined piece of work for the computer to carry out. The instruction is the smallest 
piece of work specified in a computer program. That is, the computer either carries 
out the work specified by an instruction or it does not. The computer does not 
have the luxury of carrying out a piece of an instruction. 

John von Neumann proposed a fundamental model of a computer for process-
ing computer programs in 1946. Figure 4.1 shows its basic components. We have 
taken a little poetic license and added a few of our own minor embellishments 
to von Neumann's original diagram. The von Neumann model consists of five 
parts: memory; a processing unit, input, output, and a control unit. The computer 
program is contained in the computer's memory. The control of the order in which 
the instructions are carried out is performed by the control unit. 

We will describe each of the five parts of the von Neumann model. 
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MEMORY 

INPUT 

MAR MDR 

OUTPUT 

* Keyboard 
* Mouse 
* Scanner 
* Card reader 
* Disk 

PROCESSING UNIT 

ALU TEMP 

* Monitor 
* Printer 
* LED 
* Disk 

CONTROL UNIT 

a 
PC 

IR 

Figure 4 . 1 The von Neumann model, overall block diagram 

4.1.1 Memory 
Recall that in Chapter 3 we examined a simple 22-by-3-bit memory that was con-
structed out of gates and latches. A more realistic memory for one of today's 
computer systems is 228 by 8 bits. That is, a typical memory in today's world 
of computers consists of 228 distinct memory locations, each of which is capa-
ble of storing 8 bits of information. We say that such a memory has an address 
space of 228 uniquely identifiable locations, and an addressability of 8 bits. We 
refer to such a memory as a 256-megabyte memory (abbreviated, 256MB). The 
"256 mega" refers to the 228 locations, and the "byte" refers to the 8 bits stored 
in each location. The term byte is, by definition, the word used to describe 8 bits, 
much the way gallon describes four quarts. 

We note (as we will note again and again) that with k bits, we can represent 
uniquely 2k items. Thus, to uniquely identify 228 memory locations, each loca-
tion must have its own 28-bit address. In Chapter 5, we will begin the complete 
definition of the instruction set architecture (ISA) of the LC-3 computer. We will 
see that the memory address space of the LC-3 is 216, and the addressability is 
16 bits. 

Recall from Chapter 3 that we access memory by providing the address from 
which we wish to read, or to which we wish to write. To read the contents of a mem-
ory location, we first place the address of that location in the memory's address 
register ( M A R ) , and then interrogate the computer's memory. The information 
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000 

001 

010 

011 
100 
101 

110 

111 

Figure 4.2 Location 6 contains the value 4; location 4 contains the value 6 

stored in the location having that address will be placed in the memory's data 
register (MDR). To write (or store) a value in a memory location, we first write 
the address of the memory location in the MAR, and the value to be stored in the 
MDR. We then interrogate the computer's memory with the Write Enable signal 
asserted. The information contained in the MDR will be written into the memory 
location whose address is in the MAR. 

Before we leave the notion of memory for the moment, let us again emphasize 
the two characteristics of a memory location: its address and what is stored there. 
Figure 4.2 shows a representation of a memory consisting of eight locations. Its 
addresses are shown at the left, numbered in binary from 0 to 7. Each location 
contains 8 bits of information. Note that the value 6 is stored in the memory 
location whose address is 4, and the value 4 is stored in the memory location 
whose address is 6. These represent two very different situations. 

Finally, an analogy comes to mind: the post office boxes in your local post 
office. The box number is like the memory location's address. Each box number is 
unique. The information stored in the memory location is like the letters contained 
in the post office box. As time goes by, what is contained in the post office box at 
any particular moment can change. But the box number remains the same. So, too, 
with each memory location. The value stored in that location can be changed, but 
the location's memory address remains unchanged. 

4.1.2 Processing Unit 
The actual processing of information in the computer is carried out by the 
processing unit. The processing unit in a modern computer can consist of many 
sophisticated complex functional units, each performing one particular operation 
(divide, square root, etc.). The simplest processing unit, and the one normally 
thought of when discussing the basic von Neumann model, is the ALU. ALU is 
the abbreviation for Arithmetic and Logic Unit, so called because it is usually 
capable of performing basic arithmetic functions (like ADD and SUBTRACT) 
and basic logic operations (like bit-wise AND, OR, and NOT that we have already 
studied in Chapter 2). As we will see in Chapter 5, the LC-3 has an ALU, which 
can perform ADD, AND, and NOT operations. 

The size of the quantities normally processed by the ALU is often referred to 
as the word length of the computer, and each element is referred to as a word. In 

00000110 

00000100 
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the LC-3, the ALU processes 16-bit quantities. We say the LC-3 has a word length 
of 16 bits. Each ISA has its own word length, depending on the intended use of the 
computer. Most microprocessors today that are used in PCs or workstations have 
a word length of either 32 bits (as is the case with Intel's Pentium IV) or 64 bits (as 
is the case with Sun's SPARC-V9 processors and Intel's Itanium processor). For 
some applications, like the microprocessors used in pagers, VCRs, and cellular 
telephones, 8 bits are usually enough. Such microprocessors, we say, have a word 
length of 8 bits. 

It is almost always the case that a computer provides some small amount of 
storage very close to the ALU to allow results to be temporarily stored if they 
will be needed to produce additional results in the near future. For example, if a 
computer is to calculate (A + B) • C, it could store the result of A + B in memory, 
and then subsequently read it in order to multiply that result by C. However, the 
time it takes to access memory is long compared to the time it takes to perform the 
ADD or MULTIPLY. Almost all computers, therefore, have temporary storage for 
storing the result of A + B in order to avoid the unnecessarily longer access time 
that would be necessary when it came time to multiply. The most common form of 
temporary storage is a set of registers, like the register described in Section 3.4.3. 
Typically, the size of each register is identical to the size of values processed 
by the ALU, that is, they each contain one word. The LC-3 has eight registers 
(R0, Rl, . . . R7), each containing 16 bits. The SPARC-V9 ISA has 32 registers 
(R0, R l , . . . R31), each containing 64 bits. 

4.1.3 Input and Output 
In order for a computer to process information, the information must get into 
the computer. In order to use the results of that processing, those results must 
be displayed in some fashion outside the computer. Many devices exist for the 
purposes of input and output. They are generically referred to in computer jar-
gon as peripherals because they are in some sense accessories to the processing 
function. Nonetheless, they are no less important. 

In the LC-3 we will have the two most basic of input and output devices. For 
input, we will use the keyboard; for output, we will use the monitor. 

There are, of course, many other input and output devices in computer systems 
today. For input we have among other things the mouse, digital scanners, and 
floppy disks. For output we have among other things printers, LED displays, and 
disks. In the old days, much input and output was carried out by punched cards. 
Fortunately, for those who would have to lug boxes of cards around, the use of 
punched cards has largely disappeared. 

4.1.4 Control Unit 
The control unit is like the conductor of an orchestra; it is in charge of making all 
the other parts play together. As we will see when we describe the step-by-step 
process of executing a computer program, it is the control unit that keeps track 
of both where we are within the process of executing the program and where we 
are in the process of executing each instruction. 
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To keep track of which instruction is being executed, the control unit has an 
instruction register to contain that instruction. To keep track of which instruction 
is to be processed next, the control unit has a register that contains the next 
instruction's address. For historical reasons, that register is called the program 
counter (abbreviated PC), although a better name for it would be the instruction 
pointer, since the contents of this register are, in some sense, "pointing" to the 
next instruction to be processed. Curiously, Intel does in fact call that register the 
instruction pointer, but the simple elegance of that name has not caught on. 

4.2 The LC-3: On Example von Neumann Machine 
In Chapter 5, we will introduce in detail the LC-3, a simple computer that we 
will study extensively. We have already shown you its data path in Chapter 3 
(Figure 3.33) and identified several of its structures in Section 4.1. In this sec-
tion, we will pull together all the parts of the LC-3 we need to describe it as 
a von Neumann computer (see Figure 4.3). We constructed Figure 4.3 by start-
ing with the LC-3's full data path (Figure 3.33) and removing all elements that 
are not essential to pointing out the five basic components of the von Neumann 
model. 

Note that there are two kinds of arrowheads in Figure 4.3: filled-in and 
not-filled-in. Filled-in arrowheads denote data elements that flow along the cor-
responding paths. Not-filled-in arrowheads denote control signals that control the 
processing of the data elements. For example, the box labeled ALU in the pro-
cessing unit processes two 16-bit values and produces a 16-bit result. The two 
sources and the result are all data, and are designated by filled-in arrowheads. 
The operation performed on those two 16-bit data elements (it is labeled ALUK) 
is part of the control—therefore, a not-filled-in arrowhead. 

MEMORY consists of the storage elements, along with the MAR for 
addressing individual locations and the MDR for holding the contents of a 
memory location on its way to/from the storage. Note that the MAR 
contains 16 bits, reflecting the fact that the memory address space of the 
LC-3 is 216 memory locations. The MDR contains 16 bits, reflecting the 
fact that each memory location contains 16 bits—that is, that the LC-3 is 
16-bit addressable. 

INPUT/OUTPUT consists of a keyboard and a monitor. The simplest 
keyboard requires two registers, a data register (KBDR) for holding the 
ASCII codes of keys struck, and a status register (KBSR) for maintaining 
status information about the keys struck. The simplest monitor also requires 
two registers, one (DDR) for holding the ASCII code of something to be 
displayed on the screen, and one (DSR) for maintaining associated status 
information. These input and output registers will be discussed in more 
detail in Chapter 8. 

T H E P R O C E S S I N G U N I T consists of a functional unit that can perform 
arithmetic and logic operations (ALU) and eight registers (R0, . . . R7) for 
storing temporary values that will be needed in the near future as operands 
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for subsequent instructions. The LC-3 ALU can perform one arithmetic 
operation (addition) and two logical operations (bitwise AND and bitwise 
complement). 

THE CONTROL UNIT consists of all the structures needed to manage 
the processing that is carried out by the computer. Its most important 
structure is the finite state machine, which directs all the activity. Recall the 
finite state machines in Section 3.6. Processing is carried out step by step, 
or rather, clock cycle by clock cycle. Note the CLK input to the finite state 
machine in Figure 4.3. It specifies how long each clock cycle lasts. The 
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instruction register (IR) is also an input to the finite state machine since 
what LC-3 instruction is being processed determines what activities must be 
carried out. The program counter (PC) is also a part of the control unit; it 
keeps track of the next instruction to be executed after the current 
instruction finishes. 

Note that all the external outputs of the finite state machine in Figure 4.3 have 
arrowheads that are not filled in. These outputs control the processing throughout 
the computer. For example, one of these outputs (two bits) is ALUK, which 
controls the operation performed in the ALU (add, and, or not) during the current 
clock cycle. Another output is GateALU, which determines whether or not the 
output of the ALU is provided to the processor bus during the current clock cycle. 

The complete description of the data path, control, and finite state machine 
for one implementation of the LC-3 is the subject of Appendix C. 

4.3 Instruction Processing 
The central idea in the von Neumann model of computer processing is that the 
program and data are both stored as sequences of bits in the computer's memory, 
and the program is executed one instruction at a time under the direction of the 
control unit. 

4.3.1 The Instruction 
The most basic unit of computer processing is the instruction. It is made up of 
two parts, the opcode (what the instruction does) and the operands (who it is to 
do it to). In Chapter 5, we will see that each LC-3 instruction consists of 16 bits 
(one word), numbered from left to right, bit [15] to bit [0]. Bits [15:12] contain 
the opcode. This means there are at most 24 distinct opcodes. Bits [11:0] are used 
to figure out where the operands are. 

The ADD Instruction The ADD instruction requires three operands: two source 
operands (the data that is to he added) and one destination operand (the sum that is to 
be stored after the addition is performed). We said that the processing unit of the LC-3 
contained eight registers for purposes of storing data that may be needed later. In fact, 
the ADD instruction requires that at least one of the two source operands (and often 
both) is contained in one of these registers, and that the result of the ADD is put into 
one of these eight registers. Since there are eight registers, three hits are necessary to 
identify each register. Thus the 16-bit LC-3 ADD instruction has the following form 
(we say format): 

Examp le 4 . 1 

15 14 13 I 

0 0 
ADD 

11 10 <) 

R6 

6 
0 I 0 

R2 

1 0 
0 0 | 1 I 0 | 

R6 
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The 4-hii opcode lor ADD. contained in hits 115:121. is 0001. Hits 1 1 i d e n t i f y the 
location Lo he used for storing ihe result, in this case register 6 (R6). Bits |K:ft| and hits 
12:0| identify the regislers lo he used lo obtain Ihe source operands, in this case R2 and 
Rft. Mils 15:31 have a purpose that it is not necessary lo understand in the context of this 
example. We will save Ihe explanation of hils [5:31 for Section 5.2. 

Thus, the instruction we have just encoded is interpreted, "Add the contents of 
register 2 (R2) to the contents of register 6 (Rft) and store the result back into register 
0(K6i; 

The LDR Instruction The LDR instruction requires two operands. LD stands for 
load, which is computerese for "go to a particular memory location, read the value that is 
contained there, and store it in one of the registers." The two operands that are required 
are the value to be read from memory and the destination register, which will contain 
that value after the instruction is processed. The R in LDR identifies the mechanism that 
will be used to calculate the address of the memoiy location to be read. That mechanism 
is called the addressing mode, and the particular addressing mode identified by the use 
of the letter R is called Base+offset. Thus, the 16-bit LC-3 LDR instruction has the 
following format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 
LDR R2 R3 6 

The four-bit opcode for LDR is 0110. Bits [11:9) identify the register that will contain 
the value read from memory after the instruction is executed. Bits [8:0] are used to 
calculate the address of the location to be read. In particular, since the addressing 
mode is BASE+offset, this address is computed by adding the 2's complement integer 
contained in bits [5:0| of the instruction to the contents of the register specified by bits 
18:6]. Thus, the instruction we have just encoded is interpreted: "Add the contents of 
R3 to the value 6 to form the address of a memory location. Load the contents stored 
in that memory location into R2." 

4.3.2 The Instruction Cycle 
Instructions are processed under the direction of the control unit in a very system-
atic, step-by-step manner. The sequence of steps is called the instruction cycle, 
and each step is referred to as a phase. There are fundamentally six phases to the 
instruction cycle, although many computers have been designed such that not all 
instructions require all six phases. We will discuss this momentarily. 

But first, w e will examine the six phases of the instruction cycle: 

FETCH 
DECODE 
EVALUATE ADDRESS 
FETCH OPERANDS 
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EXECUTE 
STORE RESULT 

The process is as follows (again refer to Figure 4.3, our simplified version of the 
LC-3 data path): 

FETCH 

The FETCH phase obtains the next instruction from memory and loads it into 
the instruction register (IR) of the control unit. Recall that a computer program 
consists of a collection of instructions, that each instruction is represented by a 
sequence of bits, and that the entire program (in the von Neumann model) is stored 
in the computer's memory. In order to carry out the work of the next instruction, 
we must first identify where it is. The program counter (PC) contains the address 
of the next instruction. Thus, the FETCH phase takes multiple steps: 

First the MAR is loaded with the contents of the PC. 
Next, the memory is interrogated, which results 
in the next instruction being placed by the memory 
into the MDR. 
Finally, the IR is loaded with the contents 
of the MDR. 

We are now ready for the next phase, decoding the instruction. However, when 
the instruction cycle is complete, and we wish to fetch the next instruction, we 
would like the PC to contain the address of the next instruction. Therefore, one 
more step the FETCH phase must perform is to increment the PC. In that way, at 
the completion of the execution of this instruction, the FETCH phase of the next 
instruction will load into IR the contents of the next memory location, provided 
the execution of the current instruction does not involve changing the value in 
the PC. 

The complete description of the FETCH phase is as follows: 

Step 1: Load the MAR with the contents of the PC, and 
simultaneously increment the PC. 

Step 2: Interrogate memory, resulting in the instruction 
being placed in the MDR. 

Step 3: Load the IR with the contents of the MDR. 

Each of these steps is under the direction of the control unit, much like, as we said 
previously, the instruments in an orchestra are under the control of a conductor's 
baton. Each stroke of the conductor's baton corresponds to one machine cycle. We 
will see in Section 4.4.1 that the amount of time taken by each machine cycle is 
one clock cycle. In fact, we often use the two terms interchangeably. Step 1 takes 
one machine cycle. Step 2 could take one machine cycle, or many machine cycles, 
depending on how long it takes to access the computer's memory. Step 3 takes one 
machine cycle. In a modern digital computer, a machine cycle takes a very small 
fraction of a second. Indeed, a 3.3-GHz Intel Pentium IV completes 3.3. billion 
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machine cycles (or clock cycles) in one second. Said another way, one machine 
cycle (or clock cycle) takes 0.303 billionths of a second (0.303 nanoseconds). 
Recall that the light bulb that is helping you read this text is switching on and 
off at the rate of 60 times a second. Thus, in the time it takes a light bulb to 
switch on and off once, today's computers can complete 55 million machine 
cycles! 

DECODE 

The DECODE phase examines the instruction in order to figure out what the 
microarchitecture is being asked to do. Recall the decoders we studied in Chap-
ter 3. In the LC-3, a 4-to-16 decoder identifies which of the 16 opcodes is to be 
processed. Input is the four-bit opcode IR[15:12]. The output line asserted is the 
one corresponding to the opcode at the input. Depending on which output of the 
decoder is asserted, the remaining 12 bits identify what else is needed to process 
that instruction. 

EVALUATE ADDRESS 
This phase computes the address of the memory location that is needed to process 
the instruction. Recall the example of the LDR instruction: The LDR instruction 
causes a value stored in memory to be loaded into a register. In that example, the 
address was obtained by adding the value 6 to the contents of R3. This calculation 
was performed during the EVALUATE ADDRESS phase. 

FETCH OPERANDS 

This phase obtains the source operands needed to process the instruction. In the 
LDR example, this phase took two steps: loading MAR with the address calculated 
in the EVALUATE ADDRESS phase, and reading memory, which resulted in the 
source operand being placed in MDR. 

In the ADD example, this phase consisted of obtaining the source operands 
from R2 and R6. (In most current microprocessors, this phase [for the ADD 
instruction] can be done at the same time the instruction is being decoded. Exactly 
how we can speed up the processing of an instruction in this way is a fascinating 
subject, but one we are forced to leave for later in your education.) 

EXECUTE 

This phase carries out the execution of the instruction. In the ADD example, this 
phase consisted of the single step of performing the addition in the ALU. 

STORE RESULT 

The final phase of an instruction's execution. The result is written to its designated 
destination. 

Once the sixth phase (STORE RESULT) has been completed, the control unit 
begins anew the instruction cycle, starting from the top with the FETCH phase. 
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Since the PC was updated during the previous instruction cycle, it contains at this 
point the address of the instruction stored in the next sequential memory location. 
Thus the next sequential instruction is fetched next. Processing continues in this 
way until something breaks this sequential flow. 

ADD leax I, edx This is an example of an Intel x86 instruction that requires all six 
phases of the instruction cycle. All instructions require the first two phases, FETCH and 
DECODE. This instruction uses the eax register to calculate the address of a memory 
location (EVALUATE ADDRESS). The contents of that memory location are then 
read (FETCH OPERAND), added to the contents of the edx register (EXECUTE), 
and the result written into the memory location that origiuallx contained the lirst source 
.i|»cr;md (STORE RESULT). 

The I.C-3 ADD and LDR instructions do not require all six phases. In particular, 
the ADD instruction does not require an EVALUATE ADDRESS phase. The LDR 
instruction does not require an EXECUTE phase. 

4.4 Changing The Sequence of Execufion 
Everything we have said thus far suggests that a computer program is executed 
in sequence. That is, the first instruction is executed, then the second instruction 
is executed, followed by the third instruction, and so on. 

We have identified two types of instructions, the ADD, which is an exam-
ple of an operate instruction in that it processes data, and the LDR, which is an 
example of a data movement instruction in that it moves data from one place to 
another. There are other examples of both operate instructions and data move-
ment instructions, as we will discover in Chapter 5 when we study the LC-3 in 
detail. 

There is a third type of instruction, the control instruction, whose purpose 
is to change the sequence of instruction execution. For example, there are times, 
as we shall see, when it is desirable to first execute the first instruction, then the 
second, then the third, then the first again, the second again, then the third again, 
then the first for the third time, the second for the third time, and so on. As we 
know, each instruction cycle starts with loading the MAR with the PC. Thus, if 
we wish to change the sequence of instructions executed, we must change the PC 
between the time it is incremented (during the FETCH phase of one instruction) 
and the start of the FETCH phase of the next. 

Control instructions perform that function by loading the PC during the 
EXECUTE phase, which wipes out the incremented PC that was loaded dur-
ing the FETCH phase. The result is that, at the start of the next instruction cycle, 
when the computer accesses the PC to obtain the address of an instruction to 
fetch, it will get the address loaded during the previous EXECUTE phase, rather 
than the next sequential instruction in the computer's program. 
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Examp le 4 .5 The J M P Instruction Considerthe LC-3 instruction JMP, whose formal follows. 
Assume lliis instruction is stored in memory location x36A2. 

d 
14 3 12 11 10 9 8 

0 0 0 0 0 0 
JMP 

7_ 
r 

R~3 
0 0 

0 
Z ] 

The 4-bit opcode for JMP is I KM). Hits |8:ft| specify the register which contains the 
address of the next instruction to be processed. Thus, the instruction encoded here is 
interpreted, "I ,oad the PC (during the HXliCUTL phase) with the contents of R3 so that 
the next instruction processed will be the one at the address obtained from R3." 

Processing will go on as follows. I,efs start at the beginning of the instruction 
cycle, with PC = X.16A2. The FETCH phase results in the IK being loaded with the 
JMP instruction and the PC updated to contain the address x36A3. Suppose the content 
of R3 at the start of this instruction is x5446. During the KXIiCUTK phase, the PC is 
loaded with x544f>. Therefore, in the next instruction cycle, the instruction processed 
will be the one at address x5446. rather than the one at address x.*f>A3. 

4.4.1 Control of the Instruction Cycle 
We have described the instruction cycle as consisting of six phases, each of which 
has some number of steps. We also noted that one of the six phases, FETCH, 
required the three sequential steps of loading the MAR with the contents of the 
PC, reading memory, and loading the IR with the contents of the MDR. Each step 
of the FETCH phase, and indeed, each step of every operation in the computer is 
controlled by the finite state machine in the control unit. 

Figure 4.4 shows a very abbreviated part of the state diagram corresponding 
to the finite state machine that directs all phases of the instruction cycle. As is the 
case with the finite state machines studied in Section 3.6, each state corresponds 
to one clock cycle of activity. The processing controlled by each state is described 
within the node representing that state. The arcs show the next state transitions. 

Processing starts with state 1. The FETCH phase takes three clock cycles. 
In the first clock cycle, the MAR is loaded with the contents of the PC, and 
the PC is incremented. In order for the contents of the PC to be loaded into the 
MAR (see Figure 4.3), the finite state machine must assert GatePC and LD.MAR. 
GatePC connects the PC to the processor bus. LD.MAR, the write enable signal 
of the MAR register, latches the contents of the bus into the MAR at the end of 
the current clock cycle. (Latches are loaded at the end of the clock cycle if the 
corresponding control signal is asserted.) 

In order for the PC to be incremented (again, see Figure 4.3), the finite state 
machine must assert the PCMUX select lines to choose the output of the box 
labeled +1 and must also assert the LD.PC signal to latch the output of the 
PCMUX at the end of the current cycle. 

The finite state machine then goes to state 2. Here, the MDR is loaded with 
the instruction, which is read from memory. 

In state 3, the data is transferred from MDR to the instruction register (IR). 
This requires the finite state machine to assert GateMDR and LD.IR, which causes 
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To state 1 To state 1 To state 1 

Figure 4 . 4 An abbreviated state diagram of the LC-3 

the IR to be latched at the end of the clock cycle, concluding the FETCH phase 
of the instruction. 

The DECODE phase takes one cycle. In state 4, using the external input 
IR, and in particular the opcode bits of the instruction, the finite state machine 
can go to the appropriate next state for processing instructions depending on 
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the 
instruction completes execution, and the next state logic returns the finite state 
machine to state 1. 

As we mentioned earlier in this section, it is sometimes necessary not to 
execute the next sequential instruction but rather to jump to another location to 
find the next instruction to execute. As we have said, instructions that change the 
flow of instruction processing in this way are called control instructions. This can 
be done very easily by loading the PC during the EXECUTE phase of the control 
instruction, as in state 63 of Figure 4.4, for example. 
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Appendix C contains a full description of the implementation of the LC-3, 
including its full state diagram and data path. We will not go into that level of 
detail in this chapter. Our objective here is to show you that there is nothing magic 
about the processing of the instruction cycle, and that a properly completed state 
diagram would be able to control, clock cycle by clock cycle, all the steps required 
to execute all the phases of every instruction cycle. Since each instruction cycle 
ends by returning to state 1, the finite state machine can process, cycle by cycle, 
a complete computet program. 

4.5 Stopping [tie Computer 
From everything we have said, it appears that the computer will continue 
processing instructions, carrying out the instruction cycle again and again, 
ad nauseum. Since the computer does not have the capacity to be bored, must this 
continue until someone pulls the plug and disconnects power to the computer? 

Usually, user programs execute under the control of an operating system. 
UNIX, DOS, MacOS, and Windows NT are all examples of operating systems. 
Operating systems are just computer programs themselves. So as far as the com-
puter is concerned, the instruction cycle continues whether a user program is being 
processed or the operating system is being processed. This is fine as far as user 
programs are concerned since each user program terminates with a control instruc-
tion that changes the PC to again start processing the operating system—often to 
initiate the execution of another user program. 

But what if we actually want to stop this potentially infinite sequence of 
instruction cycles? Recall our analogy to the conductor's baton, beating at the rate 
of millions of machine cycles per second. Stopping the instruction sequencing 
requires stopping the conductor's baton. We have pointed out many times that 
there is, inside the computer, a component that corresponds very closely to the 
conductor's baton. It is called the clock, and it defines the machine cycle. It 
enables the finite state machine to continue on to the next machine cycle, whether 
that machine cycle is the next step of the current phase or the first step of the next 
phase of the instruction cycle. Stopping the instruction cycle requires stopping 
the clock. 

Figure 4.5a shows a block diagram of the clock circuit, consisting primarily 
of a clock generator and a RUN latch. The clock generator is a crystal oscillator, 
a piezoelectric device that you may have studied in your physics or chemistry class. 
For our purposes, the crystal oscillator is a black box (recall our definition of black 

Clock 
2.9 volts 

0 volts 

Run 

One 
machine 

cycle 

Figure 4 . 5 The clock circuit and its control 
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box in Section 1.4) that produces the oscillating voltage shown in Figure 4.5b. 
Note the resemblance of that voltage to the conductor's baton. Every machine 
cycle, the voltage rises to 2.9 volts and then drops back to 0 volts. 

If the RUN latch is in the 1 state (i.e., Q — 1), the output of the clock circuit 
is the same as the output of the clock generator. If the RUN latch is in the 0 state 
(i.e., Q = 0), the output of the clock circuit is 0. 

Thus, stopping the instruction cycle requires only clearing the RUN latch. 
Every computer has some mechanism for doing that. In some older machines, it 
is done by executing a HALT instruction. In the LC-3, as in many other machines, 
it is done under control of the operating system, as we will see in Chapter 9. 

Question: If a HALT instruction can clear the RUN latch, thereby stopping 
the instruction cycle, what instruction is needed to set the RUN latch, thereby 
reinitiating the instruction cycle? 

Exercises 

4.1 Name the five components of the von Neumann model. For each 
component, state its purpose. 

4.2 Briefly describe the interface between the memory and the processing 
unit. That is, describe the method by which the memory and the 
processing unit communicate. 

4.3 What is misleading about the name program counter? Why is the name 
instruction pointer more insightful? 

4.4 What is the word length of a computer? How does the word length of a 
computer affect what the computer is able to compute? That is, is it a 
valid argument, in light of what you learned in Chapter 1, to say that a 
computer with a larger word size can process more information and 
therefore is capable of computing more than a computer with a smaller 
word size? 

4.5 The following table represents a small memory. Refer to this table for the 
following questions. 

Address Data 
0000 0001 11100100 0011 
0001 1111 0000 0010 0101 
0010 0110 11110000 0001 
0011 0000 0000 0000 0000 
0100 0000 0000 0110 0101 
0101 0000 0000 0000 0110 
0110 1111 1110 1101 0011 

0111 0000 0110 1101 1001 
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a. What binary value does location 3 contain? Location 6? 
b The binary value within each location can be interpreted in many 

ways. We have seen that binary values can represent unsigned 
numbers, 2's complement signed numbers, floating point numbers, 
and so forth. 
(1) Interpret location 0 and location 1 as 2's complement integers. 
(2) Interpret location 4 as an ASCII value. 
(3) Interpret locations 6 and 7 as an IEEE floating point number. 

Location 6 contains number [15:0]. Location 7 contains number 
[31:16]. 

(4) Interpret location 0 and location 1 as unsigned integers. 
c. In the von Neumann model, the contents of a memory location can 

also be an instruction. If the binary pattern in location 0 were 
interpreted as an instruction, what instruction would it represent? 

d. A binary value can also be interpreted as a memory address. Say the 
value stored in location 5 is a memory address. To which location 
does it refer? What binary value does that location contain? 

4.6 What are the two components of an instruction? What information 
do these two components contain? 

4.7 Suppose a 32-bit instruction takes the following format: 

OPCODE SR DR IMM 

If there are 60 opcodes and 32 registers, what is the range of values that 
can be represented by the immediate (IMM)? Assume IMM is a 2's 
complement value. 

4.8 Suppose a 32-bit instruction takes the following format: 

OPCODE DR SRI SR2 UNUSED 

If there are 225 opcodes and 120 registers, 
a. What is the minimum number of bits required to represent the 

OPCODE? 
b. What is the minimum number of bits required to represent the 

Destination Register (DR)? 
c. What is maximum number of UNUSED bits in the instruction 

encoding? 
4.9 The FETCH phase of the instruction cycle does two important things. 

One is that it loads the instruction to be processed next into the IR. What 
is the other important thing? 

4.10 Examples 4.1, 4.2, and 4.5 illustrate the processing of the ADD, LDR, 
and JMP instructions. The PC, IR, MAR, and MDR are written in various 
phases of the instruction cycle, depending on the opcode of the particular 
instruction. In each location in the table below, enter the opcodes which 
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write to the corresponding register (row) during the corresponding phase 
(column) of the instruction cycle. 

Fetch 
Instruction Decode 

Evaluate 
Address 

Fetch 
Data Execute 

Store 
Result 

PC 

IR 

MAR 

MDR 

4.11 State the phases of the instruction cycle and briefly describe what 
operations occur in each phase. 

4.12 For the instructions ADD, LDR, and JMP, write the operations that occur 
in each phase of the instruction cycle. 

4.13 Say it takes 100 cycles to read from or write to memory and only one 
cycle to read from or write to a register. Calculate the number of cycles 
it takes for each phase of the instruction cycle for both the IA-32 
instruction "ADD [eax], edx" (refer to Example 4.3) and the LC-3 
instruction "ADD R6, R2, R6." Assume each phase (if required) takes 
one cycle, unless a memory access is required. 

4.14 Describe the execution of the JMP instruction if R3 contains x369C 
(refer to Example 4.5). 

4.15 If a HALT instruction can clear the RUN latch, thereby stopping the 
instruction cycle, what instruction is needed to set the RUN latch, thereby 
reinitiating the instruction cycle? 

4.16 a. If a machine cycle is 2 nanoseconds (i.e., 2 - 10 - 9 seconds), how 
many machine cycles occur each second? 

b. If the computer requires on the average eight cycles to process each 
instruction, and the computer processes instructions one at a time 
from beginning to end, how many instructions can the computer 
process in 1 second? 

c. Preview of future courses: In today's microprocessors, many features 
are added to increase the number of instructions processed each 
second. One such feature is the computer's equivalent of an assembly 
line. Each phase of the instruction cycle is implemented as one or 
more separate pieces of logic. Each step in the processing of an 
instruction picks up where the previous step left off in the previous 
machine cycle. Using this feature, an instruction can be fetched 
from memory every machine cycle and handed off at the end of the 
machine cycle to the decoder, which performs the decoding function 
during the next machine cycle while the next instruction is being 
fetched. Ergo, the assembly line. Assuming instructions are located at 
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sequential addresses in memory, and nothing breaks the sequential 
flow, how many instructions can the microprocessor execute each 
second if the assembly line is present? (The assembly line is called a 
pipeline, which you will encounter in your advanced courses. There 
are many reasons why the assembly line cannot operate at its 
maximum rate, a topic you will consider at length in some of 
these courses.) 



c h a p t e r 

5 

The L C - 3 

In Chapter 4, we discussed the basic components of a computer—its memory, its 
processing unit, including the associated temporary storage (usually a set of reg-
isters), input and output devices, and the control unit that directs the activity of all 
the units (including itself!). We also studied the six phases of the instruction 
cycle—FETCH, DECODE, ADDRESS EVALUATION, OPERAND FETCH, 
EXECUTE, and STORE RESULT. We are now ready to introduce a "real" com-
puter, the LC-3. To be more nearly exact, we are ready to introduce the instruction 
set architecture (ISA) of the LC-3. We have already teased you with a few facts 
about the LC-3 and a few of its instructions. Now we will examine the ISA of the 
LC-3 in a more comprehensive way. 

Recall from Chapter 1 that the ISA is the interface between what the software 
commands and what the hardware actually carries out. In this chapter and in 
Chapters 8 and 9, we will point out the important features of the ISA of the LC-3. 
You will need these features to write programs in the LC-3's own language, that 
is, in the LC-3's machine language. 

A complete description of the ISA of the LC-3 is contained in Appendix A. 

5.1 The ISR: Overvieui 
The ISA specifies all the information about the computer that the software has to 
be aware of. In other words, the ISA specifies everything in the computer that is 
available to a programmer when he/she writes programs in the computer's own 
machine language. Thus, the ISA also specifies everything in the computer that 
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is available to someone who wishes to translate programs written in a high-level 
language like C or Pascal or Fortran or COBOL into the machine language of the 
computer. 

The ISA specifies the memory organization, register set, and instruction set, 
including opcodes, data types, and addressing modes. 

5.1.1 Memory Organization 
The LC-3 memory has an address space of 216 (i.e., 65,536) locations, and an 
addressability of 16 bits. Not all 65,536 addresses are actually used for memory 
locations, but we will leave that discussion for Chapter 8. Since the normal unit 
of data that is processed in the LC-3 is 16 bits, we refer to 16 bits as one word, 
and we say the LC-3 is word-addressable. 

5.1.2 Registers 
Since it usually takes far more than one machine cycle to obtain data from mem-
ory, the LC-3 provides (like almost all computers) additional temporary storage 
locations that can be accessed in a single machine cycle. 

The most common type of temporary storage locations and the one used in 
the LC-3 is the general purpose register set. Each register in the set is called a 
general purpose register (GPR). Registers have the same property as memory 
locations in that they are used to store information that can be retrieved later. The 
number of bits stored in each register is usually one word. In the LC-3, this means 
16 bits. 

Registers must be uniquely identifiable. The LC-3 specifies eight GPRs, each 
identified by a 3-bit register number. They are referred to as RO, Rl , . . . R7. 
Figure 5.1 shows a snapshot of the LC-3's register set, sometimes called a register 
file, with the eight values 1, 3, 5, 7, - 2 , - 4 , - 6 , and - 8 stored in RO, . . . R7, 
respectively. 

Register 0 (RO) 0000000000000001 

Register 1 (R1) 0000000000000011 

Register 2 (R2) 0000000000000101 

Register 3 (R3) 0000000000000111 

Register 4 (R4) 1111111111111110 

Register 5 (R5) 1111111111111100 

Register 6 (R6) 1111111111111010 

Register 7 (R7) 1111111111111000 

Figure 5 . 1 The register file before the ADD instruction 
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Register 0 (RO) 

Register 1 (Rl) 

Register 2 (R2) 

Register 3 (R3) 

Register 4 (R4) 

Register 5 (R5) 

Register 6 (R6) 

Register 7 (R7) 

Figure 5.2 The register file after the ADD instruction 

Recall that the instruction to ADD the contents of RO to Rl and store the 
result in R2 is specified as 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

ADD R2 RO Rl 

where the two sources of the ADD instruction are specified in bits [8:6] and bits 
[2:0]. The destination of the ADD result is specified in bits [11:9]. Figure 5.2 
shows the contents of the register file of Figure 5.1 AFTER the instruction ADD 
R2, Rl , RO is executed. 

0000000000000001 

0000000000000011 

0000000000000100 

0000000000000111 

1111111111111110 

1111111111111100 

1111111111111010 

1111111111111000 

5.1.3 The Instruction Set 
An instruction is made up of two things, its opcode (what the instruction is asking 
the computer to do) and its operands (who the computer is expected to do it 
to). The instruction set of an ISA is defined by its set of opcodes, data types, 
and addressing modes. The addressing modes determine where the operands are 
located. 

You have just seen an example of one opcode ADD and one addressing mode 
register mode. The operation the instruction is asking the computer to perform is 
2's complement integer addition, and the locations where the computer is expected 
to find the operands are the general purpose registers. 

5.1.4 Opcodes 
Some IS As have a very large set of opcodes, one for each of a large number of tasks 
that a program may wish to carry out. Other IS As have a very small set of opcodes. 
Some ISAs have specific opcodes to help with processing scientific calculations. 
For example, the Hewlett Packard Precision Architecture has an instruction that 
performs a multiply, followed by an add (A * B) + C on three source operands. 
Other ISAs have instructions that process video images obtained from the World 
Wide Web. The Intel x86 ISA added a number of instructions Intel calls MMX 
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instructions because they eXtend the ISA to assist with MultiMedia applications 
that use the Web. Still other IS As have specific opcodes to help with handling the 
tasks of the operating system. For example, the VAX architecture, popular in the 
1980s, had an opcode to save all the information associated with one program 
that was running prior to switching to another program. Almost all computers 
prefer to use a long sequence of instructions to ask the computer to carry out the 
task of saving all that information. Although that sounds counterintuitive, there 
is a rationale for it. Unfortunately, the topic will have to wait for a later semester. 
The decision as to which instructions to include or leave out of an ISA is usually 
a hotly debated topic in a company when a new ISA is being specified. 

The LC-3 ISA has 15 instructions, each identified by its unique opcode. The 
opcode is specified by bits [15:12] of the instruction. Since four bits are used 
to specify the opcode, 16 distinct opcodes are possible. However, the LC-3 ISA 
specifies only 15 opcodes. The code 1101 has been left unspecified, reserved for 
some future need that we are not able to anticipate today. 

There are three different types of instructions, which means three different 
types of opcodes: operates, data movement, and control. Operate instructions 
process information. Data movement instructions move information between 
memory and the registers and between registers/memory and input/output devices. 
Control instructions change the sequence of instructions that will be executed. 
That is, they enable the execution of an instruction other than the one that is stored 
in the next sequential location in memory. 

Figure 5.3 lists all the instructions of the LC-3, the bit encoding [15:12] for 
each opcode, and the format of each instruction. The use of these formats will be 
further explained in Sections 5.2, 5.3, and 5.4. 

5.1.5 Data Types 
A data type is a representation of information such that the ISA has opcodes 
that operate on that representation. There are many ways to represent the same 
information in a computer. That should not surprise us. In our daily lives, we 
regularly represent the same information in many different ways. For example, 
a child, when asked how old he is, might hold up three fingers, signifying he is 
3 years old. If the child is particularly precocious, he might write the decimal digit 
3 to indicate his age. Or, if he is a CS or CE major at the university, he might write 
0000000000000011, the 16-bit binary representation for 3. If he is a chemistry 
major, he might write 3.0 • 10°. All four represent the same entity: 3. 

If the ISA has an opcode that operates on information represented by a data 
type, then we say the ISA supports that data type. In Chapter 2, we introduced 
the only data type supported by the ISA of the LC-3: 2's complement integers. 

5.1.6 Addressing Modes 
An addressing mode is a mechanism for specifying where the operand is located. 
An operand can generally be found in one of three places: in memory, in a register, 
or as a part of the instruction. If the operand is a part of the instruction, we refer 
to it as a literal or as an immediate operand. The term literal comes from the 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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ST 
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STR 
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reserved 

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: + indicates instructions that 
modify condition codes 
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fact that the bits of the instruction literally form the operand. The term immediate 
comes from the fact that we have the operand immediately, that is, we don't have 
to look elsewhere for it. 

The LC-3 supports five addressing modes: immediate (or literal), register, 
and three memory addressing modes: PC-relative, indirect, and Base+offset. We 
will see in Section 5.2 that operate instructions use two addressing modes: register 
and immediate. We will see in Section 5.3 that data movement instructions use 
all five modes. 

5.1.7 Condition Codes 
One final item will complete our overview of the ISA of the LC-3: condition 
codes. Almost all ISAs allow the instruction sequencing to change on the basis of 
a previously generated result. The LC-3 has three single-bit registers that are set 
(set to 1) or cleared (set to 0) each time one of the eight general purpose registers 
is written. The three single-bit registers are called N9 Z, and P, corresponding to 
their meaning: negative, zero, and positive. Each time a GPR is written, the N, Z, 
and P registers are individually set to 0 or 1, corresponding to whether the result 
written to the GPR is negative, zero, or positive. That is, if the result is negative, 
the N register is set, and Z and P are cleared. If the result is zero, Z is set and 
N and P are cleared. Finally, if the result is positive, P is set and N and Z are 
cleared. 

Each of the three single-bit registers is referred to as a condition code 
because the condition of that bit can be used by one of the control instructions 
to change the execution sequence. The x86 and SPARC are two examples of 
ISAs that use condition codes to do this. We show how the LC-3 does it in 
Section 5.4. 

5.2 Operate Instructions 
Operate instructions process data. Arithmetic operations (like ADD, SUB, MUL, 
and DIV) and logical operations (like AND, OR, NOT, XOR) are common 
examples. The LC-3 has three operate instructions: ADD, AND, and NOT. 

The NOT (opcode = 1001) instruction is the only operate instruction that 
performs a unary operation, that is, the operation requires one source operand. 
The NOT instruction bit-wise complements a 16-bit source operand and stores the 
result of this operation in a destination. NOT uses the register addressing mode 
for both its source and destination. Bits [8:6] specify the source register and bits 
[11:9] specify the destination register. Bits [5:0] must contain all Is. 

If R5 initially contains 0101000011110000, after executing the following 
instruction: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 

NOT R3 R5 

R3 will contain 1010111100001111. 
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RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

0101000011110000 

1010111100001111 

/ 
/ 1 6 ' 1 6 

NOT 

Figure 5.4 Data path relevant to the execution of NOT R3, R5 

Figure 5.4 shows the key parts of the data path that are used to perform the 
NOT instruction shown here. Since NOT is a unary operation, only the A input 
of the ALU is relevant. It is sourced from R5. The control signal to the ALU 
directs the ALU to perform the bit-wise complement operation. The output of the 
ALU (the result of the operation) is stored into R3. 

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both 
perform binary operations; they require two 16-bit source operands. The ADD 
instruction performs a 2's complement addition of its two source operands. The 
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit 
operands. Like the NOT, the ADD and AND use the register addressing mode for 
one of the source operands and for the destination operand. Bits [8:6] specify the 
source register and bits [1L;9] specify the destination register (where the result 
will be written). 

The second source operand for both ADD and AND instructions can be speci-
fied by either register mode or as an immediate operand. Bit [5] determines which 
is used. If bit [5] is 0, then the second source operand uses a register, and bits 
[2:0] specify which register. In that case, bits [4:3] are set to 0 to complete the 
specification of the instruction. 
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For example, if R4 contains the value 6 and R5 contains the value - 1 8 , then 
after the following instruction is executed 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 

ADD Rl R4 R5 

Rl will contain the value —12. 
If bit [5] is 1, the second source operand is contained within the instruction. 

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16 
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the 
data path that are used to perform the instruction ADD Rl, R4, # - 2 . 

Since the immediate operand in an ADD or AND instruction must fit in 
bits [4:0] of the instruction, not all 2's complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as 
immediate operands)? 

IR 

Figure 5.5 Data path relevant to the execution of ADD R l , R4, # -2 
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What docs the following instruction do? 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 0 1 0 0 1 0 1 f) 0 0 0 0 

ANSWER: Register 2 is cleared (i.e., set to all ()s). 

Whai dues the following instruction do? 

0 0 0 1 1 1 0 1 0 
1 

0 0 0 0 1 
llllillilll 

ANSWER: Register ft is incremented (i.e., R6 R6 + 1 ) . 
Note that a register can he used as a source and .dsn as a destination in ihe 

instruction. This is true for all the instructions in the I.C-3. 

Examp le 5 . 1 

Examp le 5 .2 

Recall that the 2's complement of a number can be obtained by complementing the 
number and adding 1. Therefore, assuming the value*. A and B are m RO and RI. what 
sequence of three instructions perforins "A minus B" and writes the result into R2? 

Examp le 5 .3 

ANSWER: 

15 14 13 12 II 10 l> 7 ft 5 4 3 2 I 0 

1 0 0 0 0 0 0 1 1 R l NOT(B) 
NOT Rl Rl 111 jjjlf jit̂ t? 

• -i 
0 0 0 1 0 1 0 0 0 J 0 0 0 0 1 

ADD R2 Rl 

0 0 0 1 CJ 1 0 0 0 0 0 0 0 0 0 1 R 2 A + ( - : ; > 
ADD R2 RO 

Question: What distasteful result is 
be avoided? 

5.3 Data Movement Instructions 
Data movement instructions move information between the general purpose reg-
isters and memory, and between the registers and the input/output devices. We will 
ignore for now the business of moving information from input devices to registers 
and from registers to output devices. This will be the major topic of Chapter 8 and 
an important part of Chapter 9 as well. In this chapter, we will confine ourselves 
to moving information between memory and the general purpose registers. 
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The process of moving information from memory to a register is called a 
load, and the process of moving information from a register to memory is called a 
store. In both cases, the information in the location containing the source operand 
remains unchanged. In both cases, the location of the destination operand is 
overwritten with the source operand, destroying the prior value in the destination 
location in the process. 

The LC-3 contains seven instructions that move information: LD, LDR, LDI, 
LEA, ST, STR, and STI. 

The format of the load and store instructions is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
opcode | DR or SR | Addr Gen bits ~| 

Data movement instructions require two operands, a source and a destination. The 
source is the data to be moved; the destination is the location where it is moved 
to. One of these locations is a register, the second is a memory location or an 
input/output device. As we said earlier, in this chapter the second operand will be 
assumed to be in memory. We will save for Chapter 8 the cases where the second 
operand specifies an input or output device. 

Bits [11:9] specify one of these operands, the register. If the instruction is 
a load, DR refers to the destination register that will contain the value after it is 
read from memory (at the completion of the instruction cycle). If the instruction 
is a store, SR refers to the register that contains the value that will be written to 
memory. 

Bits [8:0] contain the address generation bits. That is, bits [8:0] encode infor-
mation that is used to compute the 16-bit address of the second operand. In the 
case of the LC-3's data movement instructions, there are four ways to interpret 
bits [8:0]. They are collectively called addressing modes. The opcode specifies 
how to interpret bits [8:0]. That is, the LC-3's opcode specifies which addressing 
mode should be used to obtain the operand from bits [8:0] of the instruction. 

5.3.1 PC-Relative Mode 
LD (opcode = 0010) and ST (opcode = 0011) specify the PC-relative addressing 
mode. This addressing mode is so named because bits [8:0] of the instruction 
specify an offset relative to the PC. The memory address is computed by sign-
extending bits [8:0] to 16 bits, and adding the result to the incremented PC. 
The incremented PC is the contents of the program counter after the FETCH 
phase; that is, after the PC has been incremented. If a load, the memory location 
corresponding to the computed memory address is read, and the result loaded into 
the register specified by bits [11:9] of the instruction. 

If the instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 

LD R2 xlAF 

is located at x4018, it will cause the contents of x3FC8 to be loaded into R2. 
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15 0 

IR 0010 010 110101111 

LD R2 x1AF 

PC 0100 0000 0001 1001 

RO 

R1 

R2 

' IR[8:0] R 3 

R4 
SEXT 

16 

1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 

' 16 

" V 
ADD 

/ ' 16 

© 
MAR | 

R5 

R6 

R7 

0000000000000101 

16 

MDR 

Figure 5 . 6 Data path relevant to execution of LD R2, x l A F 

Figure 5.6 shows the relevant parts of the data path required to execute this 
instruction. The three steps of the LD instruction are identified. In step 1, the 
incremented PC (x4019) is added to the sign-extended value contained in IR[8:0] 
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is 
read and the contents of x3FC8 are loaded into the MDR. Suppose the value stored 
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction 
cycle. 

Note that the address of the memory operand is limited to a small range of the 
total memory. That is, the address can only be within +256 or —255 locations of 
the LD or ST instruction since the PC is incremented before the offset is added. 
This is the range provided by the sign-extended value contained in bits [8:0] of 
the instruction. 

5.3.2 Indirect Mode 
LD I (opcode — 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST. 
However, instead of this address being the address of the operand to be loaded or 
stored, it contains the address of the operand to be loaded or stored. Hence the 
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name indirect. Note that the address of the operand can be anywhere in the com-
puter's memory, not just within the range provided by bits [8:0] of the instruction 
as is the case for LD and ST. The destination register for the LDI and the source 
register for STI, like all the other loads and stores, are specified in bits [11:9] of 
the instruction. 

If the instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 

LDI R3 xlCC 

is in X4A1B, and the contents of x49E8 is x2110, execution of this instruction 
results in the contents of x2110 being loaded into R3. 

Figure 5.7 shows the relevant parts of the data path required to execute this 
instruction. As is the case with the LD and ST instructions, the first step consists 
of adding the incremented PC (x4AlC) to the sign-extended value contained in 
IR[8:0] (xFFCC), and the result (x49E8) loaded into the MAR. In step 2, memory 
is read and the contents of x49E8 (x2110) is loaded into the MDR. In step 3, since 
x2110 is not the operand, but the address of the operand, it is loaded into the MAR. 
In step 4, memory is again read, and the MDR again loaded. This time the MDR 
is loaded with the contents of x2110. Suppose the value —1 is stored in memory 
location x2110. In step 5, the contents of the MDR (i.e., — 1) are loaded into R3, 
completing the instruction cycle. 

15 
IR 

PC 

1010 011 111001100 

LDI R3 x1CC 

0100 1010 0001 1100 

RO 

R1 

R2 

' IR[8:0] R 3 

R4 
SEXT 

16 

xFFCC 

16 

ADD 

R5 

R6 

R7 

1111111111111111 

t '16 

0 

I MAR | 

x2110 

(D(D 

16 

MDR 

Figure 5.5 Data path relevant to the execution of ADD R l , R4, #-2 
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5.3.3 Base+offset Mode 
LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset 
addressing mode. The Base+offset mode is so named because the address of the 
operand is obtained by adding a sign-extended 6-bit offset to a base register. The 
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is 
specified by bits [8:6] of the instruction. 

The Base+offset addressing uses the 6-bit value as a 2's complement integer 
between —32 and +31. Thus it must first be sign-extended to 16 bits before it is 
added to the base register. 

If R2 contains the 16-bit quantity x2345, the instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 

LDR R1 R2 x lD 

loads R1 with the contents of x2362. 
Figure 5.8 shows the relevant parts of the data path required to execute this 

instruction. First the contents of R2 (x2345) are added to the sign-extended value 
contained in IR[5:0] (xOOlD), and the result (x2362) is loaded into the MAR. 
Second, memory is read, and the contents of x2362 are loaded into the MDR. 
Suppose the value stored in memory location x2362 is xOFOF. Third, and finally, 
the contents of the MDR (in this case, xOFOF) are loaded into Rl . 

15 0 

IR 1010 011 011 011101 

LDR R1 R2 x1D 

' IR[5:0] 

SEXT 

/ 1 6 

X 0 0 1 D 

ADD 

/ '16 

© 
MAR | 

R0 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

0000111100001111 

0010001101000101 

' 1 6 

MDR 

® 

Figure 5.8 Data path relevant to the execution of LDR R l , R2, x l D 
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Note that the Base+offset addressing mode also allows the address of the 
operand to be anywhere in the computer's memory. 

5.3.4 Immediate Mode 
The fourth and last addressing mode used by the data movement instructions is 
the immediate (or, literal) addressing mode. It is used only with the load effective 
address (LEA) instruction. LEA (opcode =1110) loads the register specified by 
bits [11:9] of the instruction with the value formed by adding the incremented 
program counter to the sign-extended bits [8:0] of the instruction. The immediate 
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of 
memory. 

The LEA instruction is useful to initialize a register with an address that 
is very close to the address of the instruction doing the initializing. If memory 
location x4018 contains the instruction LEA R5, # - 3 , and the PC contains x4018, 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 

LEA R5 - 3 

R5 will contain x4016 after the instruction at x4018 is executed. 
Figure 5.9 shows the relevant parts of the data path required to execute the 

LEA instruction. Note that no access to memory is required to obtain the value 
to be loaded. 

15 

IR 

PC 

1110 101 111111101 

LEA R5 x1 FD 

0100 0000 0001 1001 

IR[8:0] 

SEXT 

16 

1111111111111101 

16 

R0 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

0100000000010110 

Figure 5.5 Data path relevant to the execution of ADD R l , R4, #-2 
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Again, LEA is the only load instruction that does not access memory to obtain 
the information it will load into the DR. It loads into the DR the address formed 
from the incremented PC and the address generation bits of the instruction. 

5.3.5 An Example 
We conclude our study of addressing modes with a comprehensive example. 
Assume the contents of memory locations x30F6 through x30FC are as shown in 
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying 
out the instruction cycle seven consecutive times. 

The PC points initially to location x30F6. That is, the content of the PC is 
the address x30F6. Therefore, the first instruction to be executed is the one stored 
in location x30F6. The opcode of that instruction is 1110, which identifies the 
load effective address instruction (LEA). LEA loads the register specified by bits 
[11:9] with the address formed by sign-extending bits [8:0] of the instruction 
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7. 
Therefore, at the end of execution of the LEA instruction, Rl contains x30F4, 
and the PC contains x30F7. 

The second instruction to be executed is the one stored in location x30F7. 
The opcode 0001 identifies the ADD instruction, which stores the result of adding 
the contents of the register specified in bits [8:6] to the sign-extended immediate 
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since 
the previous instruction loaded x30F4 into Rl , and the sign-extended immediate 
value is xOOOE, the value to be loaded into R2 is x3102. At the end of execution of 
this instruction, R2 contains x3102, and the PC contains x30F8. Rl still contains 
x30F4. 

The third instruction to be executed is stored in x30F8. The opcode 0011 
specifies the ST instruction, which stores the contents of the register specified by 
bits [11:9] of the instruction into the memory location whose address is computed 
using the PC-relative addressing mode. That is, the address is computed by adding 
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of 
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the 
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of 

Address 
x30F6 
x30F7 
x30F8 
x30F9 
x30FA 
x30FB 
x30FC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 
0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 
0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 
0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 
0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 
1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 

R l < - PC-3 
R2<- Rl+14 
M [ x 3 0 F 4 ] < - R2 
R2<- 0 
R2<- R2+5 
M [ R l + 1 4 ] < - R2 
R3<- M[M[x3F04]] 

Figure 5 . 1 0 Addressing mode example 
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execution of the ST instruction, memory location x30F4 contains x3102, and the 
PC contains x30F9. 

At x30F9, we find the opcode 0101, which represents the AND instruction. 
After execution, R2 contains the value 0, and the PC contains x30FA. 

At x30FA, we find the opcode 0001, signifying the ADD instruction. After 
execution, R2 contains the value 5, and the PC contains x30FB. 

At x30FB, we find the opcode 0111, signifying the STR instruction. The 
STR instruction (like the LDR instruction) uses the Base+offset addressing mode. 
The memory address is obtained by adding the contents of the register specified 
by bits [8:61 (the BASE register) to the sign-extended offset contained in bits 
[5:0]. In this case, bits [8:6] specify Rl . The contents of R1 are still x30F4. 
The 16-bit sign-extended offset is xOOOE. Since x30F4 + xOOOE is x3102, the 
memory address is x3102. The STR instruction stores into x3102 the contents of 
the register specified by bits [11:9], that is, R2. Recall that the previous instruc-
tion (at x30FA) stored the value 5 into R2. Therefore, at the end of execution 
of this instruction, location x3102 contains the value 5, and the PC contains 
x30FC. 

At x30FC, we find the opcode 1010, signifying the LDI instruction. The 
LDI instruction (like the STI instruction) uses the indirect addressing mode. The 
memory address is obtained by first forming an address as is done in the PC-
relative addressing mode. In this case, the 16-bit value obtained by sign-extending 
bits [8:0] of the instruction is xFFF7. The incremented PC is x30FD. Their sum 
is x30F4, which is the address of the operand address. Memory location x30F4 
contains x3102. Therefore, x3102 is the operand address. The LDI instruction 
loads the value found at this address (in this case 5) into the register identified 
by bits [11:9] of the instruction (in this case R3). At the end of execution of this 
instruction, R3 contains the value 5 and the PC contains x30FD. 

5.4 Control Instructions 
Control instructions change the sequence of the instructions that are executed. If 
there were no control instructions, the next instruction fetched after the current 
instruction finishes would be the instruction located in the next sequential memory 
location. As you know, this is because the PC is incremented in the FETCH phase 
of each instruction. We will see momentarily that it is often useful to be able to 
break that sequence. 

The LC-3 has five opcodes that enable this sequential flow to be broken: con-
ditional branch, unconditional jump, subroutine (sometimes called function) call, 
TRAP, and return from interrupt. In this section, we will deal almost exclusively 
with the most common control instruction, the conditional branch. We will also 
introduce the unconditional jump and the TRAP instruction. The TRAP instruc-
tion is particularly useful because, among other things, it allows a programmer 
to get information into and out of the computer without fully understanding the 
intricacies of the input and output devices. However, most of the discussion of the 
TRAP instruction and all of the discussion of the subroutine call and the return 
from interrupt we will leave for Chapters 9 and 10. 
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5.4.1 Conditional Branches 
The format of the conditional branch instruction (opcode = 0000) is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 N z p PCoffset 

Bits [11], [10], and [9] correspond to the three condition codes discussed in 
Section 5.1.7. Recall that in the LC-3, all instructions that write values into the 
general purpose registers set the three condition codes (i.e., the single-bit registers 
N, Z, P) in accordance with whether the value written is negative, zero, or positive. 
These instructions are ADD, AND, NOT, LD, LDI, LDR, and LEA. 

The condition codes are used by the conditional branch instruction to deter-
mine whether to change the instruction flow; that is, whether to depart from the 
usual sequential execution of instructions that we get as a result of incrementing 
PC during the FETCH phase of each instruction. 

The instruction cycle is as follows: FETCH and DECODE are the same for all 
instructions. The PC is incremented during FETCH. The EVALUATE ADDRESS 
phase is the same as that for LD and ST: the address is computed by adding the 
incremented PC to the 16-bit value formed by sign-extending bits [8:0] of the 
instruction. 

During the EXECUTE phase, the processor examines the condition codes 
whose corresponding bits in the instruction are 1. That is, if bit [ 11 ] is 1, condition 
code N is examined. If bit [10] is 1, condition code Z is examined. If bit [9] 
is 1, condition code P is examined. If any of bits [11:9] are 0, the corresponding 
condition codes are not examined. If any of the condition codes that are examined 
are in state 1, then the PC is loaded with the address obtained in the EVALUATE 
ADDRESS phase. If none of the condition codes that are examined are in state 1, 
the PC is left unchanged. In that case, in the next instruction cycle, the next 
sequential instruction will be fetched. 

For example, if the last value loaded into a general purpose register was 0, 
then the current instruction (located at x4027) shown here 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 

BR n z p xOD9 

would load the PC with x4101, and the next instruction executed would be the 
one at x4101, rather than the instruction at x4028. 

Figure 5.11 shows the data path elements that are required to execute this 
instruction. Note the logic required to determine whether the sequential instruction 
flow should be broken. In this case the answer is yes, and the PC is loaded with 
x4101, replacing x4028, which had been loaded during the FETCH phase of the 
conditional branch instruction. 

If all three bits [11:9] are 1, then all three condition codes are examined. In 
this case, since the last result stored into a register had to be either negative, zero, 
or positive (there are no other choices), one of the three condition codes must be 
in state 1. Since all three are examined, the PC is loaded with the address obtained 
in the EVALUATE ADDRESS phase. We call this an wrcconditional branch since 
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Yes! 

Figure 5 . 1 1 Data path relevant to the execution of BRz xOD9 

the instruction flow is changed unconditionally, that is, independent of the data 
that is being processed. 

For example, if the following instruction, 

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 

BR n xl85 

located at x507B, is executed, the PC is loaded with x5001. 
What happens if all three bits [11:9] in the BR instruction are 0? 

5.4.2 An Example 
We are ready to show by means of a simple example the value of having control 
instructions in the instruction set. 

Suppose we know that the 12 locations x3100 to x310B contain integers, and 
we wish to compute the sum of these 12 integers. 
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Figure 5 . 1 2 An algor i thm for adding 12 integers 

A flowchart for an algorithm to solve the problem is shown in Figure 5.12. 
First, as in all algorithms, we must initialize our variables. That is, we must 

set up the initial values of the variables that the computer will use in executing the 
program that solves the problem. There are three such variables: the address of 
the next integer to be added (assigned to Rl), the running sum (assigned to R3), 
and the number of integers left to be added (assigned to R2). The three variables 
are initialized as follows: The address of the first integer to be added is put in Rl . 
R3, which will keep track of the running sum, is initialized to 0. R2, which will 
keep track of the number of integers left to be added, is initialized to 12. Then the 
process of adding begins. 

The program repeats the process of loading into R4 one of the 12 integers, 
and adding it to R3. Each time we perform the ADD, we increment Rl so it will 
point to (i.e., contain the address of) the next number to be added and decrement 
R2 so we will know how many numbers still need to be added. When R2 becomes 
zero, the Z condition code is set, and we can detect that we are done. 

The 10-instruction program shown in Figure 5.13 accomplishes the task. 
The details of the program execution are as follows: The program starts with 

PC = x3000. The first instruction (at location x3000) loads Rl with the address 
x3100. (The incremented PC is x3001; the sign-extended PCoffset is xOOFF.) 

The instruction at x3001 clears R3. R3 will keep track of the running sum, so 
it must start off with the value 0. As we said previously, this is called initializing 
the SUM to zero. 

The instructions at x3002 and x3003 set the value of R2 to 12, the number of 
integers to be added. R2 will keep track of how many numbers have already been 
added. This will be done (by the instruction contained in x3008) by decrementing 
R2 after each addition takes place. 

The instruction at x3004 is a conditional branch instruction. Note that bit [10] 
is a 1. That means that the Z condition code will be examined. If it is set, we know 
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Address 
x3000 
x3001 
x3002 
x3003 
x3004 
x3005 
x3006 
x3007 
x3008 
x3009 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 
0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 
0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 
0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 
0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 

Rl<- 3100 
R3 <- 0 
R2 < - 0 
R2 <- 12 
BRz x300A 
R4 <- M [Rl] 
R3 <- R3+R4 
Rl <- Rl+1 
R2 <- R2-1 
BRnzp x3004 

Figure 5 . 1 3 A program that implements the a lgor i thm of Figure 5.12 

R2 must have just been decremented to 0. That means there are no more numbers 
to be added and we are done. If it is clear, we know we still have work to do and 
we continue. 

The instruction at x3005 loads the contents of x3100 (i.e., the first integer) 
into R4, and the instruction at x3006 adds it to R3. 

The instructions at x3007 and x3008 perform the necessary bookkeeping. 
The instruction at x3007 increments Rl, so Rl will point to the next location in 
memory containing an integer to be added (in this case, x3101). The instruction 
at x3008 decrements R2, which is keeping track of the number of integers still to 
be added, as we have already explained, and sets the N, Z, and P condition codes. 

The instruction at x3009 is an unconditional branch, since bits [11:9] are all 1. 
It loads the PC with x3004. It also does not affect the condition codes, so the next 
instruction to be executed (the conditional branch at x3004) will be based on the 
instruction executed at x3008. 

This is worth saying again. The conditional branch instruction at x3004 fol-
lows the instruction at x3009, which does not affect condition codes, which in 
turn follows the instruction at x3008. Thus, the conditional branch instruction at 
x3004 will be based on the condition codes set by the instruction at x3008. The 
instruction at x3008 sets the condition codes depending on the value produced 
by decrementing R2. As long as there are still integers to be added, the ADD 
instruction at x3008 will produce a value greater than zero and therefore clear 
the Z condition code. The conditional branch instruction at x3004 examines the 
Z condition code. As long as Z is clear, the PC will not be affected, and the next 
instruction cycle will start with an instruction fetch from x3005. 

The conditional branch instruction causes the execution sequence to follow: 
x3000, x3001, x3002, x3003, x3004, x3005, x3006, x3007, x3008, x3009, x3004, 
x3005, x3006, x3007, x3008, x3009, x3004, x3005, and so on until the value in R2 
becomes 0. The next time the conditional branch instruction at x3004 is executed, 
the PC is loaded with x300A, and the program continues at x300A with its next 
activity. 

Finally, it is worth noting that we could have written a program to add these 
12 integers without any control instructions. We still would have needed the LEA 
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instruction in x3000 to initialize Rl . We would not have needed the instruction 
at x3001 to initialize the running sum, nor the instructions at x3002, and x3003 
to initialize the number of integers left to be added. We could have loaded the 
contents of x3100 directly into R3, and then repeatedly (by incrementing Rl , 
loading the next integer into R4, and adding R4 to the running sum in R3) added 
the remaining 11 integers. After the addition of the twelfth integer, we would go 
on to the next task, as does the example of Figure 5.13 with the branch instruction 
in x3004. 

Unfortunately, instead of a 10-instruction program, we would have had a 35-
instruction program. Moreover, if we had wished to add 100 integers without any 
control instructions instead of 12, we would have had a 299-instruction program 
instead of 10. The control instructions in the example of Figure 5.13 permit the 
reuse of sequences of code by breaking the sequential instruction execution flow. 

5.4.3 Two Methods for Loop Control 
We use the term loop to describe a sequence of instructions that get executed 
again and again under some controlling mechanism. The example of adding 12 
integers contains a loop. Each time the body of the loop executes, one more integer 
is added to the running total, and the counter is decremented so we can detect 
whether there are any more integers left to add. Each time the loop body executes 
is called one iteration of the loop. 

There are two common methods for controlling the number of iterations of a 
loop. One method we just examined: the use of a counter. If we know we wish to 
execute a loop n times, we simply set a counter to n, then after each execution of 
the loop, we decrement the counter and check to see if it is zero. If it is not zero, 
we set the PC to the start of the loop and continue with another iteration. 

A second method for controlling the number of executions of a loop is to use 
a sentinel. This method is particularly effective if we do not know ahead of time 
how many iterations we will want to perform. Each iteration is usually based on 
processing a value. We append to our sequence of values to be processed a value 
that we know ahead of time can never occur (i.e., the sentinel). For example, 
if we are adding a sequence of numbers, a sentinel could be a # or a *, that is, 
something that is not a number. Our loop test is simply a test for the occurrence 
of the sentinel. When we find it, we know we are done. 

5.4.4 Example: Adding a Column of Numbers Using a Sentinel 
Suppose in our example of Section 5.4.2, we know the values stored in locations 
x3100 to x310B are all positive. Then we could use any negative number as 
a sentinel. Let's say the sentinel stored at memory address x310C is —1. The 
resulting flowchart for the program is shown in Figure 5.14 and the resulting 
program is shown in Figure 5.15. 

As before, the instruction at x3000 loads Rl with the address of the first value 
to be added, and the instruction at x3001 initializes R3 (which keeps track of the 
sum) to 0. 
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1 
R1 < - x3100 

R3 < - 0 
R4 < - M[R1] 

R3 < - R3 + R4 
Increment R1 
R4 < - M[R1] 

Figure 5 .14 An algorithm showing the use of a sentinel for loop control 

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 
x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 
x3002 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 
x3004 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 
x3005 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 
x3006 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 

Rl<- x3100 
R3 < - 0 
R4 <- M[Rl] 
BRn x3008 
R3 <- R3+R4 
Rl <- Rl+1 
R4 <- MtRl] 
BRnzp x3003 

Figure 5 .15 A program that implements the algorithm of Figure 5.14 

At x3002, we load the contents of the next memory location into R4. If the 
sentinel is loaded, the N condition code is set. 

The conditional branch at x3003 examines the N condition code, and if it is 
set, sets PC to x3008 and onto the next task to be done. If the N condition code 
is clear, R4 must contain a valid number to be added. In this case, the number 
is added to R3 (x3004), Rl is incremented to point to the next memory location 
(x3005), R4 is loaded with the contents of the next memory location (x3006), and 
the PC is loaded with x3003 to begin the next iteration (x3007). 

5.4.5 The J MP Instruction 
The conditional branch instruction, for all its capability, does have one unfortunate 
limitation. The next instruction executed must be within the range of addresses 
that can be computed by adding the incremented PC to the sign-extended offset 
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obtained from bits [8:0] of the instruction. Since bits [8:0] specify a 2's comple-
ment integer, the next instruction executed after the conditional branch can be 
at most +256 or —255 locations from the branch instruction itself. What if we 
would like to execute next an instruction that is 1,000 locations from the current 
instruction. We cannot fit the value 1,000 into the 9-bit field; ergo, the conditional 
branch instruction does not work. 

The LC-3 ISA does provide an instruction JMP (opcode = 1100) that can 
do the job. An example follows: . 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

JMP R2 

The JMP instruction loads the PC with the contents of the register specified by 
bits [8:6] of the instruction. If this JMP instruction is located at address x4000, 
R2 contains the value x6600, and the PC contains x4000, then the instruction at 
x4000 (the JMP instruction) will be executed, followed by the instruction located 
at x6600. Since registers contain 16 bits, the full address space of memory, the 
JMP instruction has no limitation on where the next instruction to be executed 
must reside. 

5.4.6 The TRAP Instruction 
Finally, because it will be useful long before Chapter 9 to get data into and out 
of the computer, we introduce the TRAP instruction now. The TRAP (opcode = 
1111) instruction changes the PC to a memory address that is part of the operating 
system so that the operating system will perform some task in behalf of the 
program that is executing. In the language of operating system jargon, we say 
the TRAP instruction invokes an operating system SERVICE CALL. Bits [7:0] 
of the TRAP instruction form the trapvector, which identifies the service call 
that the program wishes the operating system to perform. Table A.2 contains the 
trapvectors for all the service calls that we will use with the LC-3 in this book. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 1 0 0 0 0 trapvector 

Once the operating system is finished performing the service call, the program 
counter is set to the address of the instruction following the TRAP instruction, 
and the program continues. In this way, a program can, during its execution, 
request services from the operating system and continue processing after each 
such service is performed. The services we will require for now are 

* Input a character from the keyboard (trapvector = x23). 
* Output a character to the monitor (trapvector = x21). 
* Halt the program (trapvector = x25). 

Exactly how the LC-3 carries out the interaction between operating system 
and executing programs is an important topic for Chapter 9. 
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5.5 Another Example: Counting Occurrences of a Character 
We will finish our introduction to the ISA of the LC-3 with another example 
program. We would like to be able to input a character from the keyboard and 
then count the number of occurrences of that character in a file. Finally, we would 
like to display that count on the monitor. We will simplify the problem by assuming 
that the number of occurrences of any character that we would be interested in is 
small. That is, there will be at most nine occurrences. This simplification allows us 
to not have to worry about complex conversion routines between the binary count 
and the ASCII display on the monitor—a subject we will get into in Chapter 10, 
but not today. 

Figure 5.16 is a flowchart of the algorithm that solves this problem. Note that 
each step is expressed both in English and also (in parentheses) in terms of an 
LC-3 implementation. 

The first step is (as always) to initialize all the variables. This means providing 
starting values (called initial values) for R0, Rl , R2, and R3, the four registers 
the computer will use to execute the program that will solve the problem. R2 will 
keep track of the number of occurrences; in Figure 5.16, it is referred to as count. 
It is initialized to zero. R3 will point to the next character in the file that is being 
examined. We refer to it as pointer since it contains the address of the location 
where the next character of the file that we wish to examine resides. The pointer 
is initialized with the address of the first character in the file. R0 will hold the 
character that is being counted; we will input that character from the keyboard 
and put it in R0. Rl will hold, in turn, each character that we get from the file 
being examined. 

We should also note that there is no requirement that the file we are examining 
be close to or far away from the program we are developing. For example, it is 
perfectly reasonable for the program we are developing to start at x3000, and the 
file we are examining to start at x9000. If that were the case, in the initialization 
process, R3 would be initialized to x9000. 

The next step is to count the number of occurrences of the input character. 
This is done by processing, in turn, each character in the file being examined, 
until the file is exhausted. Processing each character requires one iteration of a 
loop. Recall from Section 5.4.3 that there are two common methods for keeping 
track of iterations of a loop. We will use the sentinel method, using the ASCII 
code for EOT (End of Text) (00000100) as the sentinel. A table of ASCII codes 
is in Appendix E. 

In each iteration of the loop, the contents of Rl are first compared to the 
ASCII code for EOT. If they are equal, the loop is exited, and the program moves 
on to the final step, displaying on the screen the number of occurrences. If not, 
there is work to do. Rl (the current character under examination) is compared to 
R0 (the character input from the keyboard). If they match, R2 is incremented. In 
either case, we get the next character, that is, R3 is incremented, the next character 
is loaded into Rl , and the program returns to the test that checks for the sentinel 
at the end of the file. 

When the end of the file is reached, all the characters have been examined, 
and the count is contained as a binary number in R2. In order to display the 
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Figure 5 . 1 6 An algorithm to count occurrences of a character 



140 chapter 5 The LC-3 

Address 
x3000 
x3001 
x3002 
x3003 
x3004 
x3005 
x3006 
x3007 
x3008 
x3009 
x300A 
x300B 
x300C 
x300D 
x300E 
x300F 
x3010 
x3011 
x3012 
x3013 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 
0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 
0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 
1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 

Starting address of file 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

R2 < - 0 
R3 <- M[x3012] 
TRAP x23 
Rl <- M[R3] 
R4 <- R l - 4 
BRz x300E 
Rl <- NOT Rl 
Rl <- Rl + 1 
Rl <- Rl + R0 
BRnp x300B 
R2 < - R2 + 1 
R3 <- R3 + 1 
Rl <- M[R3] 
BRnzp x3004 
R0 <- M[x3013] 
R0 < - R0 + R2 
TRAP x 2 1 
TRAP x25 

ASCII TEMPLATE 

Figure 5 . 1 7 A machine language program that implements the a lgor i thm of Figure 5.16 

count on the monitor, it is necessary to first convert it to an ASCII code. Since 
we have assumed the count is less than 10, we can do this by putting a leading 
0011 in front of the 4-bit binary representation of the count. Note in Figure E.2 
the relationship between the binary value of each decimal digit between 0 and 9 
and its corresponding ASCII code. Finally, the count is output to the monitor, and 
the program terminates. 

Figure 5.17 is a machine language program that implements the flowchart of 
Figure 5.16. 

First the initialization steps. The instruction at x3000 clears R2 by ANDing it 
with xOOOO; the instruction at x3001 loads the value stored in x3012 into R3. This 
is the address of the first character in the file that is to be examined for occurrences 
of our character. Again, we note that this file can be anywhere in memory. Prior to 
starting execution at x3000, some sequence of instructions must have stored the 
first address of this file in x3012. Location x3002 contains the TRAP instruction, 
which requests the operating system to perform a service call on behalf of this 
program. The function requested, as identified by the 8-bit trapvector 00100011 
(or, x23), is to input a character from the keyboard and load it into R0. Table A.2 
lists trapvectors for all operating system service calls that can be performed on 
behalf of a user program. Note (from Table A.2) that x23 directs the operating 
system to perform the service call that reads the next character struck and loads 
it into R0. The instruction at x3003 loads the character pointed to by R3 into Rl. 

Then the process of examining characters begins. We start (x3004) by sub-
tracting 4 (the ASCII code for EOT) from Rl , and storing it in R4. If the result 
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is zero, the end of the file has been reached, and it is time to output the count. 
The instruction at x3005 conditionally branches to x300E, where the process of 
outputting the count begins. 

If R4 is not equal to zero, the character in Rl is legitimate and must be 
examined. The sequence of instructions at locations x3006, x3007, and x3008 
determine if the contents of Rl and RO are identical. The sequence of instructions 
perform the following operation: 

RO + (NOT (Rl) + 1) 

This produces all zeros only if the bit patterns of Rl and RO are identical. If the 
bit patterns are not identical, the conditional branch at x3009 branches to x300B, 
that is, it skips the instruction x300A, which increments R2, the counter. 

The instruction at x300B increments R3, so it will point to the next character 
in the file being examined, the instruction at x300C loads that character into 
Rl , and the instruction at x300D unconditionally takes us back to x3004 to start 
processing that character. 

When the sentinel (EOT) is finally detected, the process of outputting the 
count begins (at x300E). The instruction at x300E loads 00110000 into R0, and 
the instruction at x300F adds the count to R0. This converts the binary represen-
tation of the count (in R2) to the ASCII representation of the count (in R0). The 
instruction at x3010 invokes a TRAP to the operating system to output the con-
tents of R0 on the monitor. When that is done and the program resumes execution, 
the instruction at x3011 invokes a TRAP instruction to terminate the program. 

5.6 The Data Path Revisited 
Before we leave Chapter 5, let us revisit the data path diagram that we first 
encountered in Chapter 3 (Figure 3.33). Now we are ready to examine all the 
structures that are needed to implement the LC-3 ISA. Many of them we have seen 
earlier in this chapter in Figures 5.4,5.5,5.6,5.7,5.8,5.9, and 5.11. We reproduce 
this diagram as Figure 5.18. Note at the outset that there are two kinds of arrows 
in the data path, those with arrowheads filled in, and those with arrowheads not 
filled in. Filled-in arrowheads designate information that is processed. Unfilled-
in arrowheads designate control signals. Control signals emanate from the block 
labeled "Control." The connections from Control to most control signals have 
been left off Figure 5.18 to reduce unnecessary clutter in the diagram. 

5.6.1 Basic Components of the Data Path 
The Global Bus 
You undoubtedly first notice the heavy black structure with arrowheads at both 
ends. This represents the data path's global bus. The LC-3 global bus consists 
of 16 wires and associated electronics. It allows one structure to transfer up to 
16 bits of information to another structure by making the necessary electronic 
connections on the bus. Exactly one value can be transferred on the bus at one 
time. Note that each structure that supplies values to the bus has a triangle just 
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behind its input arrow to the bus. This triangle (called a tri-state device) allows the 
computer's control logic to enable exactly one supplier to provide information to 
the bus at any one time. The structure wishing to obtain the value being supplied 
can do so by asserting its LD.x (load enable) signal (recall our discussion of gated 
latches in Section 3.4.2). Not all computers have a single global bus. The pros 
and cons of a single global bus is yet another one of those topics that will have to 
wait for later in your education. 

Memory 

One of the most important parts of any computer is the memory that contains 
both instructions and data. Memory is accessed by loading the memory address 
register (MAR) with the address of the location to be accessed. If a load is being 
performed, control signals then read the memory, and the result of that read is 
delivered by the memory to the memory data register (MDR). On the other hand, 
if a store is being performed, the data to be stored is first loaded into the MDR. 
Then the control signals specify that WE is asserted in order to store into that 
memory location. 

The ALU and the Register File 

The ALU is the processing element. It has two inputs, source 1 from a register and 
source 2 from either a register or the sign-extended immediate value provided by 
the instruction. The registers (RO through R7) can provide two values, source 1, 
which is controlled by the 3-bit register number SRI, and source 2, which is 
controlled by the 3-bit register number SR2. SRI and SR2 are fields in the LC-3 
operate instruction. The selection of a second register operand or a sign-extended 
immediate operand is determined by bit [5] of the LC-3 instruction. Note the mux 
that provides source 2 to the ALU. The select line of that mux, coming from the 
control logic, is bit [5] of the LC-3 operate instruction. 

The result of an ALU operation is a result that is stored in one of the registers, 
and the three single-bit condition codes. Note that the ALU can supply 16 bits to 
the bus, and that value can then be written into the register specified by the 3-bit 
register number DR. Also, note that the 16 bits supplied to the bus are also input 
to logic that determines whether that 16-bit quantity is negative, zero, or positive, 
and sets the three registers N, Z, and P accordingly. 

The PC and the PCMUX 

The PC supplies via the global bus to the MAR the address of the instruction to 
be fetched at the start of the instruction cycle. The PC, in turn, is supplied via the 
three-to-one PCMUX, depending on the instruction being executed. During the 
FETCH phase of the instruction cycle, the PC is incremented and written into 
the PC. That is shown as the rightmost input to the PCMUX. 

If the current instruction is a control instruction, then the relevant source of 
the PCMUX depends on which control instruction is currently being processed. 
If the current instruction is a conditional branch and the branch is taken, then the 
PC is loaded with the incremented PC + PCoffset (the 16-bit value obtained by 
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sign-extending IR[8:0]). Note that this addition takes place in the special adder 
and not in the ALU. The output of the adder is the middle input to PCMUX. The 
third input to PCMUX is obtained from the global bus. Its use will become clear 
after we discuss the other control instructions in Chapters 9 and 10. 

The MARMUX 

As you know, memory is accessed by supplying the address to the MAR. The 
MARMUX controls which of two sources will supply the MAR with the appro-
priate address during the execution of a load, a store, or a TRAP instruction. The 
right input to the MARMUX is obtained by adding either the incremented PC or 
a base register to a literal value or zero supplied by the IR. Whether the PC or a 
base register and what literal value depends on which opcode is being processed. 
The control signal ADDR1MUX specifies the PC or base register. The control 
signal ADDR2MUX specifies which of four values to be added. The left input 
to MARMUX provides the zero-extended trapvector, which is needed to invoke 
service calls, as will be discussed in further detail in Chapter 9. 

5.6.2 The Instruction Cycle 
We complete our tour of the LC-3 data path by following the flow through an 
instruction cycle. Suppose the content of the PC is x3456 and the content of 
location x3456 is 0110011010000100. And suppose the LC-3 has just completed 
processing the instruction at x3455, which happened to be an ADD instruction. 

FETCH 

As you know, the instruction cycle starts with the FETCH phase. That is, the 
instruction is obtained by accessing memory with the address contained in the PC. 
In the first cycle, the contents of the PC are loaded via the global bus into the 
MAR, and the PC is incremented and loaded into the PC. At the end of this cycle, 
the PC contains x3457. In the next cycle (if memory can provide information in 
one cycle), the memory is read, and the instruction 0110011010000100 is loaded 
into the MDR. In the next cycle, the contents of the MDR are loaded into the 
instruction register (IR), completing the FETCH phase. 

DECODE 
In the next cycle, the contents of the IR are decoded, resulting in the control 
logic providing the correct control signals (unfilled arrowheads) to control the 
processing of the rest of this instruction. The opcode is 0110, identifying the 
LDR instruction. This means that the Base+offset addressing mode is to be used 
to determine the address of data to be loaded into the destination register R3. 

EVALUATE ADDRESS 
In the next cycle, the contents of R2 (the base register) and the sign-extended bits 
[5:0] of the IR are added and supplied via the MARMUX to the MAR. The SRI 
field specifies 010, the register to be read to obtain the base address. ADDR1 MUX 
selects SRI OUT, and ADDR2MUX selects the second from the right source. 
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OPERAND FETCH 

In the next cycle (or more than one, if memory access takes more than one cycle), 
the data at that address is loaded into the MDR. 

EXECUTE 

The LDR instruction does not require an EXECUTE phase, so this phase takes 
zero cycles. 

STORE RESULT 

In the last cycle, the contents of the MDR are loaded into R3. The DR control 
field specifies Oil, the register to be loaded. 

Exercises 

5.1 Given instructions ADD, JMP, LEA, and NOT, identify whether the 
instructions are operate instructions, data movement instructions, or 
control instructions. For each instruction, list the addressing modes that 
can be used with the instruction. 

5.2 A memory's addressibility is 64 bits. What does that tell you about the 
size of the MAR and MDR? 

5.3 There are two common ways to terminate a loop. One way uses a counter 
to keep track of the number of iterations. The other way uses an element 
called a . What is the distinguishing characteristic of this element? 

5.4 Say we have a memory consisting of 256 locations, and each location 
contains 16 bits. 
a. How many bits are required for the address? 
b. If we use the PC-relative addressing mode, and want to allow control 

transfer between instructions 20 locations away, how many bits of a 
branch instruction are needed to specify the PC-relative offset? 

c. If a control instruction is in location 3, what is the PC-relative offset 
of address 10. Assume that the control transfer instructions work the 
same way as in the LC-3. 

5.5 a. What is an addressing mode? 
b. Name three places an instruction's operands might be located. 
c. List the five addressing modes of the LC-3, and for each one state 

where the operand is located (from part b). 
d. What addressing mode is used by the ADD instruction shown in 

Section 5.1.2? 
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5.6 Recall the machine busy example from Section 2.7.1. Assuming the 
BUSYNESS bit vector is stored in R2, we can use the LC-3 instruction 
0101 011 010 1 00001 (AND R3, R2, #1) to determine whether machine 
0 is busy or not. If the result of this instruction is 0, then machine 0 is 
busy. 
a. Write an LC-3 instruction that determines whether machine 2 

is busy. 
b. Write an LC-3 instruction that determines whether both machines 2 

and 3 are busy. 
c. Write an LC-3 instruction that indicates none of the machines are 

busy. 
d. Can you write an LC-3 instruction that determines whether machine 6 

is busy? Is there a problem here? 
5.7 What is the largest positive number we can represent literally (i.e., as an 

immediate value) within an LC-3 ADD instruction? 

5.8 We want to increase the number of registers that we can specify in the 
LC-3 ADD instruction to 32. Do you see any problem with that? 
Explain. 

5.9 We would like to have an instruction that does nothing. Many ISAs 
actually have an opcode devoted to doing nothing. It is usually called 
NOP, for NO OPERATION. The instruction is fetched, decoded, and 
executed. The execution phase is to do nothing! Which of the following 
three instructions could be used for NOP and have the program still work 
correctly? 

a. 0001 001 001 1 00000 
b. 0000 111000000001 
c. 0000 000 000000000 

What does the ADD instruction do that the others do not do? 

5.10 What is the difference between the following LC-3 instructions A and B? 
How are they similar? How are they different? 

A: 0000111101010101 
B: 0100111101010101 

5.11 We wish to execute a single LC-3 instruction that will subtract the 
decimal number 20 from register 1 and put the result into register 2. Can 
we do it? If yes, do it. If not, explain why not. 

5.12 After executing the following LC-3 instruction: ADD R2, R0, Rl, we 
notice that R0[15] equals Rl[15], but is different from R2[15]. We are 
told that R0 and Rl contain UNSIGNED integers (that is, nonnegative 
integers between 0 and 65,535). Under what conditions can we trust the 
result in R2? 
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5.13 a. How might one use a single LC-3 instruction to move the value in R2 
into R3? 

b. The LC-3 has no subtract instruction. How could one perform the 
following operation using only three LC-3 instructions: 

Rl <r- R2- R3 

c. Using only one LC-3 instruction and without changing the contents of 
any register, how might one set the condition codes based on the value 
that resides in Rl? 

d. Is there a sequence of LC-3 instructions that will cause the condition 
codes at the end of the sequence to be N = 1, Z = 1, and P = 0? 
Explain. 

e. Write an LC-3 instruction that clears the contents of R2. 
5.14 The LC-3 does not have an opcode for the logical function OR. That is, 

there is no instruction in the LC-3 ISA that performs the OR operation. 
However, we can write a sequence of instructions to implement the OR 
operation. The four instruction sequence below performs the OR of the 
contents of register 1 and register 2 and puts the result in register 3. Fill 
in the two missing instructions so that the four instruction sequence will 
do the job. 

(1): 1001 100 001 111111 
( 2 ) : 

(3): 0101 110 100 000 101 
(4) : 

5.15 State the contents of Rl, R2, R3, and R4 after the program starting at 
location x3100 halts. 

Address Data 

0011 0001 0000 0000 1110 001 000100000 

0011 0001 0000 0001 0010 010 000100000 

0011 0001 0000 0010 1010 011 000100000 

0011 0001 0000 0011 0110 100 010 000001 

0011 0001 0000 0100 1111 0000 0010 0101 

0011 0001 0010 0010 0100 0101 0110 0110 
0011 0001 00100011 01000101 01100111 

01000101 01100111 1010 1011 1100 1101 
01000101 0110 1000 1111 1110 1101 0011 
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5.16 Which LC-3 addressing mode makes the most sense to use under the 
following conditions. (There may be more than one correct answer to 
each of these; therefore, justify your answers with some explanation.) 
a. You want to load one value from an address which is less than ±2 8 

locations away. 
b. You want to load one value from an address which is more than 28 

locations away. 
c. You want to load an array of sequential addresses. 

5.17 How many times does the LC-3 make a read or write request to memory 
during the processing of the LD instruction? How many times during 
the processing of the LDI instruction? How many times during the 
processing of the LEA instruction? Processing includes all phases of the 
instruction cycle. 

5.18 The program counter contains the address of an LDR instruction. In order 
for the LC-3 to process that instruction, how many memory accesses 
must be made? Repeat this task for S H and TRAP. 

5.19 The LC-3 Instruction Register (IR) is made up of 16 bits, of which the 
least significant nine bits [8:0] represent the PC-relative offset for the LD 
instruction. If we change the ISA so that bits [6:0] represent the 
PC-relative offset, what is the new range of addresses we can load data 
from using the LD instruction? 

5.20 If we made the LC-3 ISA such that we allow the LD instruction to load 
data only ±32 locations away from the incremented PC value, how many 
bits would be required for the PC-relative offset in the LD instruction? 

5.21 What is the maximum number of TRAP service routines that the LC-3 
ISA can support? Explain. 

5.22 The PC contains x3010. The following memory locations contain values 
as shown: 

x3 050: X70A4 
X70A2: X70A3 
X70A3 : xFFFF 
X70A4: X123B 

The following three LC-3 instructions are then executed, causing a value 
to be loaded into R6. What is that value? 

X3010 1110 0110 0011 1111 
X3011 0110 1000 1100 0000 
X3012 0110 1101 0000 0000 

We could replace the three-instruction sequence with a single instruction. 
What is it? 
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5.23 Suppose the following LC-3 program is loaded into memory starting at 
location x30FF: 

x3 OFF 1110 0010 0000 0001 
x310 0 0110 0100 0100 0010 
x3101 1111 0000 0010 0101 
x3102 0001 0100 0100 0001 
x3103 0001 0100 1000 0010 

If the program is executed, what is the value in R2 at the end of 
execution? 

5.24 An LDR instruction, located at x3200, uses R4 as its base register. The 
value currently in R4 is x4011. What is the largest address that this 
instruction can load from? Suppose we redefine the LDR offset to be 
zero-extended, rather than sign-extended. Then what would be the largest 
address that this instruction could load from? With the new definition, 
what would be the smallest address that this instruction could 
load from? 

5.25 Write an LC-3 program that compares two numbers in R2 and R3 and 
puts the larger number in Rl. If the numbers are equal, then Rl is set 
equal to 0. 

5.26 Your task is to consider the successor to the LC-3. We will add 16 
additional instructions to the ISA and expand the register set from 8 to 
16. We would like our machine to have an addressability of 1 byte and a 
total memory size of 64K bytes. We will keep the size of an instruction at 
16 bits. Also, we will encode all new instructions with the same five 
fields as the original 16 instructions, although it may be necessary to 
change the size of some of those fields. 

a. How many bits do we need in the PC to be able to address all of 
memory? 

b. What is the largest immediate value that can be represented in an 
arithmetic instruction? 

c. If we want 128 different operating system routines to be able to be 
accessed with a trap instruction and we form the address of each of 
these routines by shifting the trap vector to the left by 5 bits, what is 
the minimum amount of memory required by the trap service 
routines? 

d. If, in the new version of the LC-3, we reduced the number of registers 
from eight to four and kept the number of opcodes at 16, what is the 
largest immediate value we could represent in an ADD instruction on 
this new machine? 

5.27 Before the seven instructions are executed in the example of Section 
5.3.5, R2 contains the value xAAAA. How many different values are 
contained in R2 during the execution of the seven instructions? What 
are they? 



150 chapter 5 The LC-3 

5.28 It is the case that we REALLY don't need to have load indirect (1010) 
and store indirect (1011) instructions. We can accomplish the same 
results using other instruction sequences instead of using these 
instructions. Replace the store indirect (1011) instruction in the code 
below with whatever instructions are necessary to perform the same 
function. 

X3000 0010 0000 0000 0010 
x3001 1011 0000 0000 0010 
x3 002 1111 0000 0010 0101 
X3003 0000 0000 0100 1000 
x3 004 1111 0011 1111 1111 

5.29 The LC-3 ISA contains the instruction LDR DR, BaseR, offset. After 
the instruction is decoded, the following operations (called 
microinstructions) are carried out to complete the processing of the 
LDR instruction: 

MAR BaseR + SEXT(Offset6) ; set up the memory address 
MDR Memory [MAR] ; read mem at BaseR + offset 
DR MDR ; load DR 

Suppose that the architect of the LC-3 wanted to include an instruction 
MOVE DR, SR that would copy the memory location with address given 
by SR and store it into the memory location whose address is in DR. 
a. The MOVE instruction is not really necessary since it can be 

accomplished with a sequence of existing LC-3 instructions. What 
sequence of existing LC-3 instructions implements (also called 
"emulates") MOVE R0,R1? 

b. If the MOVE instruction were added to the LC-3 ISA, what sequence 
of microinstructions, following the decode operation, would emulate 
MOVE DR,SR? 

5.30 The following table shows a part of the LC-3's memory: 

Address Data 

0011 0001 0000 0000 1001 001 001 111111 

0011 0001 0000 0001 0001 010 000 000 001 

0011 0001 0000 0010 1001 010010 111111 

0011 0001 0000 0011 0000 010 111111100 

State what is known about Rl and R0 if the conditional branch redirects 
control to location x3100. 
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5-31 The figure at the top of the next page shows a snapshot of the 8 registers 
of the LC-3 before and after the instruction at location xlOOO is executed. 
Fill in the bits of the instruction at location xlOOO. 

BEFORE AFTER 

R0 xOOOO R0 xOOOO 

Rl x l l l l Rl x l l l l 

R2 x2222 R2 x2222 

R3 x3333 R3 x3333 

R4 x4444 R4 x4444 

R5 x5555 R5 xFFF8 

R6 x66£6 R6 x6666 

R7 xllll R7 xllll 

0 0 0 1 

5.32 If the condition codes have values N = 0, Z = 0, P = 1 at the beginning 
of the execution of the following sequence of LC-3 instructions? 

x3050 0000 0010 0000 0010 
x3051 0101 0000 0010 0000 
x3052 0000 1110 0000 0010 
x3053 0101 0000 0010 0000 
x3054 0001 0000 0011 1111 

5.33 If the value stored in R0 is 5 at the end of the execution of the following 
instructions, what can be inferred about R5? 

x3 000 0101 1111 1110 0000 
X3001 0001 1101 1110 0001 
x3 002 0101 1001 0100 0110 
x3 003 0000 0100 0000 0001 
x3 004 0001 0000 0010 0001 
x3 005 0001 1101 1000 0110 
x3 0 06 0001 1111 1110 0001 
x3 007 0001 0011 1111 1000 
x3 008 0000 1001 1111 1001 
x3 009 0101 1111 1110 0000 

5.34 Using the overall data path in Figure 5.18, identify the elements that 
implement the NOT instruction of Figure 5.4. 
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5.35 Using the overall data path in Figure 5.18, identify the elements that 
implement the ADD instruction of Figure 5.5. 

5.36 Using the overall data path in Figure 5.18, identify the elements that 
implement the LD instruction of Figure 5.6. 

5.37 Using the overall data path in Figure 5.18, identify the elements that 
implement the LDI instruction of Figure 5.7. 

5.38 Using the overall data path in Figure 5.18, identify the elements that 
implement the LDR instruction of Figure 5.8. 

5.39 Using the overall data path in Figure 5.18, identify the elements that 
implement the LEA instruction of Figure 5.9. 

5.40 The logic diagram below shows part of the control structure of the LC-3 
machine. What is the purpose of the signal labeled A? 

5.41 A part of the implementation of the LC-3 architecture is shown on the top 
of the next page. 

a. What information does Y provide? 
b. The signal X is the control signal that gates the gated D latch. Is there 

an error in the logic that produces X? 
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.42 The LC-3 macho-company had decided to use opcode 1101 to implement 
a new instruction. They need you help to pick the most useful one from 
the following: 
a. MOVE Ri, Rj; The contents of Rj are copied into Ri. 
b. NAND Ri, Rj, Rk; Ri is the bit-wise NAND of Rj, Rk 
c. SHFL Ri, Rj, #2; The contents of Rj are shifted left 2 bits and stored 

into Ri. 
d. MUL Ri, Rj, Rk; Ri is the product of 2's complement integers 

in Rj, Rk. 
Justify your answer. 
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6 
P r o g r a m m i n g 

We are now ready to start developing programs to solve problems with the com-
puter. In this chapter we attempt to do two things: first, we develop a methodology 
for constructing programs; and second, we develop a methodology for fixing those 
programs under the likely condition that we did not get it right the first time. There 
is a long tradition that the errors present in programs are referred to as bugs, and 
the process of removing those errors debugging. The opportunities for introduc-
ing bugs into a complicated program are so great that it usually takes much more 
time to get the program to work (debugging) than it does to create it in the first 
place. 

6.1 Problem Solving 
6.1.1 Systematic Decomposition 
Recall from Chapter 1 that in order for electrons to solve a problem, we need 
to go through several levels of transformation to get from a natural language 
description of the problem (in our case English, although some of you might 
prefer Italian, Mandarin, Hindi, or something else) to something electrons can 
deal with. Once we have a natural language description of the problem, the 
next step is to transform the problem statement into an algorithm. That is, 
the next step is to transform the problem statement into a step-by-step proce-
dure that has the properties of finiteness (it terminates), definiteness (each step is 
precisely stated), and effective computability (each step can be carried out by a 
computer). 
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In the late 1960s, the concept of structured programming emerged as a way 
to improve the ability of average programmers to take a complex description of 
a problem and systematically decompose it into sufficiently smaller, manageable 
units that they could ultimately write as a program that executed correctly. The 
mechanism has also been called systematic decomposition because the larger tasks 
are systematically broken down into smaller ones. 

We will find the systematic decomposition model a useful technique for 
designing computer programs to carry out complex tasks. 

6.1.2 The Three Constructs: Sequential, Conditional, Iterative 
Systematic decomposition is the process of taking a task, that is, a unit of work 
(see Figure 6.1a), and breaking it down into smaller units of work such that the 
collection of smaller units carries out the same task as the one larger unit. The 
idea is that if one starts with a large, complex task and applies this process again 
and again, one will end up with very small units of work, and consequently, be 
able to easily write a program to carry out each of these small units of work. The 
process is also referred to as stepwise refinement, because the process is applied 
one step at a time, and each step refines one of the tasks that is still too complex 
into a collection of simpler subtasks. 

The idea is to replace each larger unit of work with a construct that correctly 
decomposes it. There are basically three constructs for doing this: sequential, 
conditional, and iterative. 

(a) 

y 
The task 

to be 
decomposed 

v 

(b) (c) (d) 
Sequential Conditional Iterative 

Figure 6.1 The basic constructs of structured programming 
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The sequential construct (Figure 6.1b) is the one to use if the designated 
task can be broken down into two subtasks, one following the other. That is, the 
computer is to carry out the first subtask completely, then go on and carry out the 
second subtask completely—never going back to the first subtask after starting 
the second subtask. 

The conditional construct (Figure 6.1c) is the one to use if the task consists 
of doing one of two subtasks but not both, depending on some condition. If the 
condition is true, the computer is to carry out one subtask. If the condition is 
not true, the computer is to carry out a different subtask. Either subtask may 
be vacuous, that is, it may "do nothing." Regardless, after the correct subtask is 
completed, the program moves onward. The program never goes back and retests 
the condition. 

The iterative construct (Figure 6. Id) is the one to use if the task consists of 
doing a subtask a number of times, but only as long as some condition is true. If 
the condition is true, do the subtask. After the subtask is finished, go back and 
test the condition again. As long as the result of the condition tested is true, the 
program continues to carry out the same subtask. The first time the test is not true, 
the program proceeds onward. 

Note in Figure 6.1 that whatever the task of Figure 6.1a, work starts with the 
arrow into the top of the "box" representing the task and finishes with the arrow 
out of the bottom of the box. There is no mention of what goes on inside the box. 
In each of the three possible decompositions of Figure 6.1a (i.e., Figures 6.1b, lc, 
and Id), there is exactly one entrance into the construct and one exit out of the 
construct. Thus, it is easy to replace any task of the form of Figure 6.1a with 
whichever of its three decompositions apply. We will see how in the following 
example. 

6.1.3 LC-3 Control Instructions to Implement 
the Three Constructs 

Before we move on to an example, we illustrate in Figure 6.2 the use of LC-3 
control instructions to direct the program counter to carry out each of the 
three decomposition constructs. That is, Figures 6.2b, 6.2c, and 6.2d correspond 
respectively to the three constructs shown in Figures 6.1b, 6.1c, and 6. Id. 

We use the letters A, B, C, and D to represent addresses in memory containing 
LC-3 instructions. A, for example, is used in all three cases to represent the address 
of the first LC-3 instruction to be executed. 

Figure 6.2b illustrates the control flow of the sequential decomposition. Note 
that no control instructions are needed since the PC is incremented from Address 
Bi to Address Bi + 1. The program continues to execute instructions through 
address Di. It does not return to the first subtask. 

Figure 6.2c illustrates the control flow of the conditional decomposition. 
First, a condition is generated, resulting in the setting of one of the condition 
codes. This condition is tested by the conditional branch instruction at Address 
B2. If the condition is true, the PC is set to Address C2+I, and subtask 1 is 
executed. (Note: x corresponds to the number of instructions in subtask 2.) If 
the condition is false, the PC (which had been incremented during the FETCH 
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(a) 

The task 
to be 

decomposed 

Bi 
Bi+1 

D1 

(b) 

First 
subtask 

Second 
subtask 

Be 

0, 

(c) 

Generate 
condition 

0000 

Subtask 
2 

0000 111 

Subtask 
1 

D' 

(d) 

Generate 
condition 

0000 

Subtask 

0000 111 w 

Figure 6 . 2 Use of LC-3 control instructions to implement structured programming 

phase of the branch instruction) fetches the instruction at Address B2-bl, and 
subtask 2 is executed. Subtask 2 terminates in a branch instruction that at Address 
C2 unconditionally branches to D 2 + l . (Note: j corresponds to the number of 
instructions in subtask 1.) 

Figure 6.2d illustrates the control flow of the iterative decomposition. As in 
the case of the conditional construct, first a condition is generated, a condition 
code is set, and a conditional branch is executed. In this case, the condition bits of 
the instruction at address B3 are set to cause a conditional branch if the condition 
generated is false. If the condition is false, the PC is set to address D 3 + l . (Note: 
z corresponds to the number of instructions in the subtask in Figure 6.2d.) On the 
other hand, as long as the condition is true, the PC will be incremented to B3+I, 
and the subtask will be executed. The subtask terminates in an unconditional 
branch instruction at address D3, which sets the PC to A to again generate and 
test the condition. (Note: w corresponds to the total number of instructions in the 
decomposition shown as Figure 6.2d.) 

Now, we are ready to move on to an example. 

6.1.4 The Character Count Example from Chapter 5, Revisited 
Recall the example of Section 5.5. The statement of the problem is as follows: 
"We wish to count the number of occurrences of a character in a file. The character 
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(a) (b) 

Start 

! 

Input a character. Then scan 
a file, counting occurrences 
of that character. Finally, 
display on the monitor the 
number of occurrences of 
that character (up to 9). 

! 

Stop 

Initialize: Put initial values 
into all locations that will be 
needed to carry out this task. 

* Input a character. 

* Set up the pointer to the 
first location in the file that 
will be scanned. 

* Get the first character from 
the file. 

* Zero the register that holds 
the count. 

\( 

Scan the file, location by 
location, incrementing the 
counter if the character 
matches. 

\ f 

Display the count on the 
monitor. 

V 

Stop 

F i g u r e 6 . 3 Stepwise refinement of the character count program 

in question is to be input from the keyboard; the result is to be displayed on the 
monitor." 

The systematic decomposition of this English language statement of the prob-
lem to the final LC-3 implementation is shown in Figure 6.3. Figure 6.3a is a brief 
statement of the problem. 

In order to solve the problem, it is always a good idea first to examine exactly 
what is being asked for, and what is available to help solve the problem. In this 
case, the statement of the problem says that we will get the character of interest 
from the keyboard, and that we must examine all the characters in a file and 
determine how many are identical to the character obtained from the keyboard. 
Finally, we must output the result. 
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(c) (d) 

Figure 6 . 3 Stepwise refinement of the character count program (continued) 

To do this, we will need a mechanism for scanning all the characters in a file, 
and we will need a counter so that when we find a match, we can increment that 
counter. 

We will need places to hold all these pieces of information: 

1. The character input from the keyboard. 
2. Where we are (a pointer) in our scan of the file. 
3. The character in the file that is currently being examined. 
4. The count of the number of occurrences. 

We will also need some mechanism for knowing when the file terminates. 
The problem decomposes naturally (using the sequential construct) into three 

parts as shown in Figure 6.3b: (A) initialization, which includes keyboard input 
of the character to be "counted," (B) the actual process of determining how many 
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(e) 

Start 

R2 < - 0 (count) 
I 

RO < - input 

R3 < - starting address 
J 

Display output 

i 
Stop 

Figure 6.3 Stepwise refinement of the character count program (continued) 

occurrences of the character are present in the file, and (C) displaying the count 
on the monitor. 

We have seen the importance of proper initialization in several examples 
already. Before a computer program can get to the crux of the problem, it must 
have the correct initial values. These initial values do not just show up in the GPRs 
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by magic. They get there as a result of the first set of steps in every algorithm: the 
initialization of its variables. 

In this particular algorithm, initialization (as we said in Chapter 5) consists 
of starting the counter at 0, setting the pointer to the address of the first character 
in the file to be examined, getting an input character from the keyboard, and 
getting the first character from the file. Collectively, these four steps comprise the 
initialization of the algorithm shown in Figure 6.3b as A. 

Figure 6.3c decomposes B into an iteration construct, such that as long as 
there are characters in the file to examine, the loop iterates. B1 shows what gets 
accomplished in each iteration. The character is tested and the count incremented 
if there is a match. Then the next character is prepared for examination. Recall 
from Chapter 5 that there are two basic techniques for controlling the number of 
iterations of a loop: the sentinel method and the use of a counter. This program 
uses the sentinel method by terminating the file we are examining with an EOT 
(end of text) character. The test to see if there are more legitimate characters in 
the file is a test for the ASCII code for EOT. 

Figure 6.3c also shows the initialization step in greater detail. Four LC-3 
registers (R0, Rl, R2, and R3) have been specified to handle the four requirements 
of the algorithm: the input character from the keyboard, the current character being 
tested, the counter, and the pointer to the next character to be tested. 

Figure 6.3d decomposes both B1 and C using the sequential construct. In the 
case of Bl , first the current character is tested (B2), and the counter incremented 
if we have a match, and then the next character is fetched (B3). In the case of 
C, first the count is prepared for display by converting it from a 2's complement 
integer to ASCII (CI), and then the actual character output is performed (C2). 

Finally, Figure 6.3e completes the decomposition, replacing B2 with the 
elements of the condition construct and B3 with the sequential construct (first the 
pointer is incremented, and then the next character to be scanned is loaded). 

The last step (and the easy part, actually) is to write the LC-3 code corre-
sponding to each box in Figure 6.3e. Note that Figure 6.3e is essentially identical 
to Figure 5.7 of Chapter 5 (except now you know where it all came from!). 

Before leaving this topic, it is worth pointing out that it is not always possible 
to understand everything at the outset. When you find that to be the case, it is not 
a signal simply to throw up your hands and quit. In such cases (which realistically 
are most cases), you should see if you can make sense of a piece of the problem, 
and expand from there. Problems are like puzzles; initially they can be opaque, 
but the more you work at it, the more they yield under your attack. Once you do 
understand what is given, what is being asked for, and how to proceed, you are 
ready to return to square one (Figure 6.3a) and restart the process of systematically 
decomposing the problem. 

6.2 Debugging 
Debugging a program is pretty much applied common sense. A simple example 
comes to mind: You are driving to a place you have never visited, and somewhere 
along the way you made a wrong turn. What do you do now? One common 
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"driving debugging" technique is to wander aimlessly, hoping to find your way 
back. When that does not work, and you are finally willing to listen to the person 
sitting next to you, you turn around and return to some "known" position on the 
route. Then, using a map (very difficult for some people), you follow the directions 
provided, periodically comparing where you are (from landmarks you see out the 
window) with where the map says you should be, until you reach your desired 
destination. 

Debugging is somewhat like that. A logical error in a program can make you 
take a wrong turn. The simplest way to keep track of where you are as compared 
to where you want to be is to trace the program. This consists of keeping track 
of the sequence of instructions that have been executed and the results produced 
by each instruction executed. When you examine the sequence of instructions 
executed, you can detect errors in the control flow of the program. When you 
compare what each instruction has done to what it is supposed to do, you can 
detect logical errors in the program. In short, when the behavior of the program 
as it is executing is different from what it should be doing, you know there is a bug. 

A useful technique is to partition the program into parts, often referred to as 
modules, and examine the results that have been computed at the end of execu-
tion of each module. In fact, the structured programming approach discussed in 
Section 6.1 can help you determine where in the program's execution you should 
examine results. This allows you to systematically get to the point where you 
are focusing your attention on the instruction or instructions that are causing the 
problem. 

6.2.1 Debugging Operations 
Many sophisticated debugging tools are offered in the marketplace, and undoubt-
edly you will use many of them in the years ahead. In Chapter 15, we will examine 
some debugging techniques available through dbx, the source-level debugger for 
the programming language C. Right now, however, we wish to stay at the level of 
the machine architecture, and so we will see what we can accomplish with a few 
very elementary interactive debugging operations. When debugging interactively, 
the user sits in front of the keyboard and monitor and issues commands to the 
computer. In our case, this means operating an LC-3 simulator, using the menu 
available with the simulator. 

It is important to be able to 

1. Deposit values in memory and in registers. 
2. Execute instruction sequences in a program. 
3. Stop execution when desired. 
4. Examine what is in memory and registers at any point in the program. 

These few simple operations will go a long way toward debugging programs. 

Set Values 

It is useful to deposit values in memory and in registers in order to test the 
execution of a part of a program in isolation, without having to worry about parts 
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of the program that come before it. For example, suppose one module in your 
program supplies input from a keyboard, and a subsequent module operates on 
that input. Suppose you want to test the second module before you have finished 
debugging the first module. If you know that the keyboard input module ends up 
with an ASCII code in RO, you can test the module that operates on that input by 
first placing an ASCII code in RO. 

Execute Sequences 

It is important to be able to execute a sequence of instructions and then stop execu-
tion in order to examine the values that the program has computed. Three simple 
mechanisms are usually available for doing this: run, step, and set breakpoints. 

The Run command causes the program to execute until something makes it 
stop. This can be either a HALT instruction or a breakpoint. 

The Step command causes the program to execute a fixed number of instruc-
tions and then stop. The interactive user enters the number of instructions he/she 
wishes the simulator to execute before it stops. When that number is 1, the com-
puter executes one instruction, then stops. Executing one instruction and then 
stopping is called single-stepping. It allows the person debugging the program to 
examine the individual results of every instruction executed. 

The Set Breakpoint command causes the program to stop execution at a 
specific instruction in a program. Executing the debugging command Set Break-
point consists of adding an address to a list maintained by the simulator. During 
the FETCH phase of each instruction, the simulator compares the PC with the 
addresses in that list. If there is a match, execution stops. Thus, the effect of setting 
a breakpoint is to allow execution to proceed until the PC contains the address of 
the breakpoint. This is useful if one wishes to know what has been computed up 
to a particular point in the program. One sets a breakpoint at that address in the 
program and executes the Run command. The program executes until that point, 
thereby allowing the user to examine what has been computed up to that point. 
(When one no longer wishes to have the program stop execution at that point, one 
can remove the breakpoint by executing the Clear Breakpoint command.) 

Display Values 

Finally, it is useful to examine the results of execution when the simulator has 
stopped execution. The Display command allows the user to examine the contents 
of any memory location or any register. 

6.2.2 Examples: Use of the Interactive Debugger 
We conclude this chapter with four examples, showing how the use of the interac-
tive debugging operations can help us find errors in a program. We have chosen the 
following four errors: (1) incorrectly setting the loop control so that the loop exe-
cutes an incorrect number of times, (2) confusing the load instruction 0010, which 
loads a register with the contents of a memory location, with the load effective 
address instruction 1110, which loads a register with the address of a memory 
location, (3) forgetting which instructions set the condition codes, resulting in 
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a branch instruction testing the wrong condition, and (4) not covering all possible 
cases of input values. 

Example 1: Multiplying Without a Multiply Instruction 

Consider the program of Figure 6.4a. The goal of the program is to multiply the 
two positive numbers contained in R4 and R5. A program is necessary since the 
LC-3 does not have a multiply instruction. 

If we go through the program instruction by instruction, we note that the 
program first clears R2 (that is, initializes R2 to 0) and then attempts to perform 
the multiplication by adding R4 to itself a number of times equal to the initial 
value in R5. Each time an add is performed, R5 is decremented. When R5 = 0, 
the program terminates. 

It sounds like the program should work! Upon execution, however, we find 
that if R4 is initially 10 and R5 is initially 3, the program produces the value 40. 
What went wrong? 

Our first thought is to trace the program. Before we do that, we note that the 
program assumes positive integers in R4 and R5. Using the Set Values command, 
we put the value 10 in R4 and the value 3 in R5. 

It is also useful to annotate each instruction with some algorithmic description 
of exactly what each instruction is doing. While this can be very tedious and not 

(a) 

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x3200 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 <-
x3201 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 R2 <-
x3202 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 R5 <-
x3203 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 BRzp 
x3204 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT 

(b) 

PC R2 R4 R5 
x3201 0 10 3 
x3202 10 10 3 
x3203 10 10 2 
x3201 10 10 2 
x3202 20 10 2 
x3203 20 10 1 
x3201 20 10 1 
x3202 30 10 1 
x3203 30 10 0 
x3201 30 10 0 
x3202 40 10 0 
x3203 40 10 - 1 
x3204 40 10 - 1 

40 10 - 1 

(c) 

PC R2 R4 R5 
x3203 10 10 2 
x3203 20 10 1 
x3203 30 10 0 
x3203 40 10 - 1 

Figure 6.4 The use of interactive debugging to find the error in Example 1. (a) An LC-3 program to multiply 
(without a Mult iply instruction), (b) A trace of the Mult iply program, (c) Tracing with breakpoints. 
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very helpful in a 10,000 instruction program, it often can be very helpful after one 
has isolated a bug to within a few instructions. There is a big difference between 
quickly eyeballing a sequence of instructions and stating precisely what each 
instruction is doing. We have included in Figure 6.4a, next to each instruction, 
such an annotation. 

Figure 6.4b shows a trace of the program, which we can obtain by single-
stepping. The column labeled PC shows the contents of the PC at the start of each 
instruction. R2, R4, and R5 show the values in those three registers at the start 
of each instruction. If we examine the contents of the registers, we see that the 
branch condition codes were set wrong; that is, the conditional branch should be 
taken as long as R5 is positive, not as long as R5 is nonnegative, as is the case in 
x3203. That causes an extra iteration of the loop, resulting in 10 being added to 
itself four times, rather than three. 

The program can be corrected by simply replacing the instruction at x3203 
with 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 

BR n z p - 3 

We should also note that we could have saved some of the work of tracing the 
program by using a breakpoint. That is, instead of examining the results of each 
instruction, setting a breakpoint at x3203 allows us to examine the results of 
each iteration of the loop. Figure 6.4c shows the results of tracing the program, 
where each step is one iteration of the loop. We see that the loop executed four 
times rather than three, as it should have. 

One last comment before we leave this example. Before we started tracing 
the program, we initialized R4 and R5 with values 10 and 3. When testing a 
program, it is important to judiciously choose the initial values for the test. Here, 
the program stated that the program had to work only for positive integers. So, 10 
and 3 are probably OK. What if a (different) multiply program had been written 
to work for all integers? Then, we could have tried initial values of —6 and 3, 4 
and —12, and perhaps —5 and —7. The problem with this set of tests is that we 
have left out one of the most important initial values of all: 0. For the program 
to work for "all" integers, it has to work for 0 as well. The point is that, for a 
program to work, it must work for all values, and a good test of such a program 
is to initialize its variables to the unusual values, the ones the programmer may 
have failed to consider. These values are often referred to colloquially as corner 
cases. 

Example 2: Adding a Column of Numbers 

The program of Figure 6.5 is supposed to add the numbers stored in the 10 
locations starting with x3100, and leave the result in Rl. The contents of the 20 
memory locations starting at location x3100 are shown in Figure 6.6. 

The program should work as follows. The instructions in x3000 to x3003 
initialize the variables. In x3000, the sum (Rl) is initialized to 0. In x3001 and 
x3002, the loop control (R4), which counts the number of values added to Rl, is 



6.2 Debugging 167 
(a) 

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 Rl < - 0 
x3001 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 R4 < - 0 
x3002 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 R4 < - R4 + 10 
x3003 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 R2 < - M [ x 3 1 0 0 ] 
x3004 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 R3 < - M[R2] 
x3005 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 < - R2 + 1 
x3006 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 Rl < - R l + R3 
x3007 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 R4 < - R4 - 1 
x3008 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 BRp X3004 
x3009 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT 

(b) 

PC Rl R2 R4 
x3001 0 X X 

x3002 0 X 0 
x3003 0 X #10 
x3004 0 x3107 #10 

Figure 6.5 The use of interactive debugging to find the error in Example 2. (a) An LC-3 program to add 10 integers, 
(b) A trace of the first four instructions of the Add program 

Address Contents 
x3100 x3107 
x3101 x2819 
x3102 xOllO 
x3103 x0310 
x3104 xOllO 
x3105 x l l l O 
x3106 x l l B l 
x3107 x0019 
x3108 x0007 
x3109 x0004 
x310A xOOOO 
x310B xOOOO 
x310C xOOOO 
x310D xOOOO 
x310E xOOOO 
x310F xOOOO 
x3110 xOOOO 
x3111 xOOOO 
x3112 xOOOO 
x3113 xOOOO 

Figure 6.6 Contents of memory locations x3100 to x3113 for Example 2 
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initialized to #10. The program subtracts 1 each time through the loop and repeats 
until R4 contains 0. In x3003, the base register (R2) is initialized to the starting 
location of the values to be added: x3100. 

From there, each time through the loop, one value is loaded into R3 (in x3004), 
the base register is incremented to get ready for the next iteration (x3005), the 
value in R3 is added to Rl, which contains the running sum (x3006), the counter 
is decremented (x3007), the P bit is tested, and if true, the PC is set to x3004 to 
begin the loop again (x3008). After 10 times through the loop, R4 contains 0, the 
P bit is 0, the branch is not taken, and the program terminates (x3009). 

It looks like the program should work. However, when we execute the pro-
gram and then check the value in Rl, we find the number x0024, which is not 
x8135, the sum of the numbers stored in locations x3100 to x3109. What went 
wrong? 

We turn to the debugger and trace the program. Figure 6.5b shows a trace of 
the first four instructions executed. Note that after the instruction at x3003 has 
executed, R2 contains x3107, not x3100, as we had expected. The problem is that 
the opcode 0010 loaded the contents of x3100 into R2, not the address x3100. 
Our mistake: We should have used the opcode 1110, which would have loaded 
the address of x3100 into R2. We correct the bug by replacing the opcode 0010 
with 1110, and the program runs correctly. 

Example 3: Determining Whether a Sequence 
of Memory Locations Contains a 5 

The program of Figure 6.7 has been written to examine the contents of the 10 
memory locations starting at address x3100 and to store a 1 in R0 if any of them 
contains a 5 and a 0 in R0 if none of them contains a 5. 

The program is supposed to work as follows: The first six instructions (at 
x3000 to x3005) initialize R0 to 1, Rl to - 5 , and R3 to 10. In each case, the 
register is first cleared by ANDing it with 0, and then ADDing the corresponding 
immediate value. For example, in x3003, —5 is added to Rl, and the result is 
stored in R1. 

The instruction at x3006 initializes R4 to the starting address (x3100) of the 
values to be tested, and x3007 loads the contents of x3100 into R2. 

x3008 and x3009 determine if R2 contains the value 5 by adding —5 to it 
and branching to x300F if the result is 0. Since R0 is initialized to 1, the program 
terminates with R0 reporting the presence of a 5 among the locations tested. 

x300A increments R4, preparing to load the next value. x300B decrements 
R3, indicating the number of values remaining to be tested. x300C loads the next 
value into R2. x300D branches back to x3008 to repeat the process if R3 still 
indicates more values to be tested. If R3 = 0, we have exhausted our tests, so R0 
is set to 0 (x300E), and the program terminates (x300F). 

When we run the program for some sample data that contains a 5 in location 
x3108, the program terminates with R0 = 0, indicating there were no 5s in 
locations x3100 to x310A. 

What went wrong? We examine a trace of the program, with a breakpoint set 
at x300D. The results are shown in Figure 6.7b. 
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(a) 
Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x3000 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 RO < - 0 
x3001 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 RO < - RO + 1 
x3002 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R l < - 0 
x3003 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 R l < - R l - 5 
x3004 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 < - 0 
x3005 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 R3 < - R3 + 10 
x3006 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 R4 < - M [ x 3 0 1 0 ] 
x3007 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 < - M[R4] 
x3008 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 R2 < - R2 + Rl 
x3009 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 BRz X300F 
x300A 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 R4 < - R4 + 1 
x300B 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 R3 < - R3 - 1 
x300C 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 R2 < - M[R4] 
x300D 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 BRp x 3 0 0 8 
x300E 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 RO < - 0 
x300F 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT 
x3010 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 X3100 

(b) 
PC Rl R2 R3 R4 

x300D - 5 7 9 3101 
x300D - 5 32 8 3102 
x300D - 5 0 7 3013 

Figure 6 .7 The use of interactive debugging to find the error in Example 3. (a) An LC-3 program to detect the 
presence of a 5. (b) Tracing Example 3 with a breakpoint at x300D. 

The first time the PC is at x300D, we have already tested the value stored in 
x3100, we have loaded 7 (the contents of x3101) into R2, and R3 indicates there 
are still nine values to be tested. R4 contains the address from which we most 
recently loaded R2. 

The second time the PC is at x300D, we have loaded 32 (the contents of 
x3102) into R2, and R3 indicates there are eight values still to be tested. The third 
time the PC is at x300D, we have loaded 0 (the contents of x3103) into R2, and 
R3 indicates seven values still to be tested. 

However, the value 0 stored in x3103 causes the load instruction at x300C 
to clear the P condition code. This, in turn, causes the branch at x300D not to be 
taken, RO is set to 0 (x300E), and the program terminates (x300F). 

The error in the program was putting a load instruction at x300C between 
x300B, which kept track of how many values still needed to be tested, and x300D, 
the branch instruction that returned to x3008 to perform the next test. The load 
instruction sets condition codes. Therefore, the branch at x300D was based on 
the value loaded into R2, rather than on the count of how many values remained 
to be tested. If we remove the instruction at x300C and change the target of the 
branch in x300D to x3007, the program executes correctly. 
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Example 4: Finding the First 1 in a Word 
Our last example contains an error that is usually one of the hardest to find, 
as we will see presently. The program of Figure 6.8 has been written to exam-
ine the contents of a memory location, find the first bit (reading left to right) 
that is set, and store the bit position of that bit into Rl. If no bit is set, the 
program is to store - 1 in Rl . For example, if the location examined contained 
0010000000000000, the program would terminate with Rl = 13. If the location 
contained 0000000000000100, the program would terminate with Rl = 2. 

(a) 
Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
x3000 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 R l < - 0 
x3001 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 R l < - R l + 15 
x3002 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 R2 < - M[M[x3009]J 
x3003 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 BRn x 3 0 0 8 
x3004 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R l < - R l - 1 
x3005 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 R2 < - R2 + R2 
x3006 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 BRn x 3 0 0 8 
x3007 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 BRnzp x 3 0 0 4 
x3008 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT 
x3009 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 x 3 1 0 0 

(b) 

PC Rl 
x3007 14 
x3007 13 
x3007 12 
x3007 11 
x3007 10 
x3007 9 
x3007 8 
x3007 7 
x3007 6 
x3007 5 
x3007 4 
x3007 3 
x3007 2 
x3007 1 
x3007 0 
x3007 - 1 
x3007 - 2 
x3007 - 3 
x3007 - 4 

Figure 6 .8 The use of interactive debugging to find the error in Example 4. (a) An LC-3 program to find the first 1 in a 
word, (b) Tracing Example 4 with a breakpoint at x3007. 
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The program is supposed to work as follows (and it usually does): x3000 and 
x3001 initialize Rl in the same way as we have done in the previous examples. 
In this case, Rl is initialized to 15. 

x3002 loads R2 with the contents of x3100, the value to be examined. It does 
this by the load indirect instruction, which finds the location of the value to be 
loaded in x3009. 

x3003 tests the high bit of that value, and if it is a 1, it branches to x3008, 
where the program terminates with Rl = 15. If the high bit is a 0, the branch is 
not taken and Rl is decremented (x3004), indicating the next bit to be tested is 
bit [14]. 

In x3005, the value in R2 is added to itself, and the result is stored back 
in R2. That is, the value in R2 is multiplied by 2. This is the same as shift-
ing the contents of R2 one bit to the left. This causes the value in bit [14] 
to move into the bit [15] position, where it can be tested by a branch on 
negative instruction. x3006 performs the test of bit [14] (now in the bit [15] 
position), and if the bit is 1, the branch is taken, and the program terminates with 
Rl = 14. 

If the bit is 0, x3007 takes an unconditional branch to x3004, where the 
process repeats. That is, Rl is decremented (x3004), indicating the next lower bit 
number, R2, is shifted one bit to the left (x3005), and the new occupant of bit [15] 
is tested (x3006). 

The process continues until the first 1 is found. The program works almost 
all the time. However, when we ran the program on our data, the program failed 
to terminate. What went wrong? 

A trace of the program, with a breakpoint set at x3007, is illuminating. Each 
time the PC contained the address x3007, Rl contained a value smaller by 1 
than the previous time. The reason is as follows: After Rl was decremented and 
the value in R2 shifted left, the bit tested was a 0, and so the program did not 
terminate. This continued for values in Rl equal to 14, 13, 12, 11, 10, 9, 8, 7, 6, 
5, 4, 3, 2, 1, 0, - 1 , - 2 , - 3 , - 4 , and so forth. 

The problem was that the initial value in x3100 was xOOOO; that is, there 
were no Is present. The program worked fine as long as there was at least one 1 
present. For the case where x3100 contained all zeros, the conditional branch at 
x3006 was never taken, and so the program continued with execution of x3007, 
then x3004, x3005, x3006, x3007, and then back again to x3004. There was no 
way to break out of the sequence x3004, x3005, x3006, x3007, and back again 
to x3004. We call the sequence x3004 to x3007 a loop. Because there is no 
way for the program execution to break out of this loop, we call it an infinite 
loop. Thus, the program never terminates, and so we can never get the correct 
answer. 

Again, we emphasize that this is often the hardest error to detect. It is also 
often the most important one. That is, it is not enough for a program to execute 
correctly most of the time; it must execute correctly all the time, independent of 
the data that the program is asked to process. We will see more examples of this 
kind of error later in the book. 
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6.1 Can a procedure that is not an algorithm be constructed from the three 
basic constructs of structured programming? If so, demonstrate through 
an example. 

6.2 The LC-3 has no Subtract instruction. If a programmer needed to 
subtract two numbers he/she would have to write a routine to handle it. 
Show the systematic decomposition of the process of subtracting two 
integers. 

6.3 Recall the machine busy example from previous chapters. Suppose 
memory location x4000 contains an integer between 0 and 15 identifying 
a particular machine that has just become busy. Suppose further that the 
value in memory location x4001 tells which machines are busy and 
which machines are idle. Write an LC-3 machine language program 
that sets the appropriate bit in x4001 indicating that the machine in 
x4000 is busy. 

For example, if x4000 contains x0005 and x4001 contains x3101 at 
the start of execution, x4001 should contain x3121 after your program 
terminates. 

6.4 Write a short LC-3 program that compares the two numbers in Rl and 
R2 and puts the value 0 in RO if Rl = R2, 1 if Rl > R2 and - 1 if 
Rl < R2. 

6.5 Which of the two algorithms for multiplying two numbers is preferable 
and why? 88 • 3 = 88 + 88 + 88 OR 3 + 3 + 3 + 3 + . . . + 3? 

6.6 Use your answers from Exercises 6.3 and 6.4 to develop a program that 
efficiently multiplies two integers and places the result in R3. Show the 
complete systematic decomposition, from the problem statement to the 
final program. 
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6.7 What does the following LC-3 program do? 

x3 001 1110 0000 0000 1100 
x3 0 02 1110 0010 0001 0000 
x3 0 03 0101 0100 1010 0000 
x3 0 04 0010 0100 0001 0011 
x3 005 0110 0110 0000 0000 
x3 006 0110 1000 0100 0000 
x3 0 07 0001 0110 1100 0100 
x3 0 08 0111 0110 0000 0000 
x3 0 09 0001 0000 0010 0001 
x3 00A 0001 0010 0110 0001 
x3 00B 0001 0100 1011 1111 
x300C 0000 0011 1111 1000 
X3 0 0D 1111 0000 0010 0101 
x3 00E 0000 0000 0000 0101 
x3 OOF 0000 0000 0000 0100 
X3010 0000 0000 0000 0011 
x3 011 0000 0000 0000 0110 
x3 012 0000 0000 0000 0010 
x3 013 0000 0000 0000 0100 
x3 014 0000 0000 0000 0111 
x3 015 0000 0000 0000 0110 
x3 016 0000 0000 0000 1000 
x3 017 0000 0000 0000 0111 
x3 018 0000 0000 0000 0101 

6.8 Why is it necessary to initialize R2 in the character counting example 
in Section 6.1.4? In other words, in what manner might the program 
behave incorrectly if the R2 0 step were removed from the 
routine? 

6.9 Using the iteration construct, write an LC-3 machine language routine 
that displays exactly 100 Zs on the screen. 

6.10 Using the conditional construct, write an LC-3 machine language routine 
that determines if a number stored in R2 is odd. 

6.11 Write an LC-3 machine language routine to increment each of the 
numbers stored in memory location A through memory location B. 
Assume these locations have already been initialized with meaningful 
numbers. The addresses A and B can be found in memory locations 
x3100 and x3101. 

6.12 a. Write an LC-3 machine language routine that echoes the last character 
typed at the keyboard. If the user types an R, the program then 
immediately outputs an R on the screen. 

b. Expand the routine from part a such that it echoes a line at a time. For 
example, if the user types: 
The quick brown fox jumps over the lazy dog. 
then the program waits for the user to press the Enter key (the ASCII 
code for which is xOA) and then outputs the same line. 
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6.13 Notice that we can shift a number to the left by one bit position by adding 
it to itself. For example, when the binary number 0011 is added to itself, 
the result is 0110. Shifting a number one bit pattern to the right is not as 
easy. Devise a routine in LC-3 machine code to shift the contents of 
memory location x3100 to the right by one bit. 

6.14 Consider the following machine language program: 

X3000 0101 0100 1010 0000 
x3 0 01 0001 0010 0111 1111 
x3 002 0001 0010 0111 1111 
x3 003 0001 0010 0111 1111 
X3004 0000 1000 0000 0010 
x3 005 0001 0100 1010 0001 
X3006 0000 1111 1111 1010 
X3007 1111 0000 0010 0101 

What are the possible initial values of Rl that cause the final value in 
R2 to be 3? 

6.15 Shown below are the contents of memory and registers before and after 
the LC-3 instruction at location x3010 is executed. Your job: Identify the 
instruction stored in x3010. Note: There is enough information below to 
uniquely specify the instruction at x3010. 

Before After 

R0: x3208 x3208 
Rl x2d7c x2d7c 
R2 xe373 xe373 
R3 x2053 x2053 
R4 x33ff x33ff 
R5 x3flf x3f l f 
R6 xf4a2 xf4a2 
R7 x5220 x5220 

X 3 4 0 0 x3001 x3001 
x3401 x7a00 x7a00 
x3402 x7a2b x7a2b 
x3403 xa700 xa700 
x3404 xfOll xfOll 
x3405 x2003 x2003 
x3406 x31ba xe373 
x3407 xclOO xclOO 
x3408 xefef xefef 
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6.16 An LC-3 program is located in memory locations x3000 to x3006. It 
starts executing at x3000. If we keep track of all values loaded into the 
MAR as the program executes, we will get a sequence that starts as 
follows. Such a sequence of values is referred to as a trace. 

MAR Trace 
x3000 
x3005 
x3001 
x3002 
x3006 
x4001 
x3003 
x0021 

We have shown below some of the bits stored in locations x3000 to 
x3006. Your job is to fill in each blank space with a 0 or a 1, as 
appropriate. 

x3000 0 0 1 0 0 0 0 
x3001 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 
x3002 1 0 1 1 0 0 0 
x3003 

x3004 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 
x3005 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
x3006 

6.17 Shown below are the contents of registers before and after the LC-3 
instruction at location x3210 is executed. Your job: Identify the 
instruction stored in x3210. Note: There is enough information below 
to uniquely specify the instruction at x3210. 

Before After 

RO xFFID xFFID 
Rl x301C x301C 
R2 x2Fl l x 2 F l l 
R3 x5321 x5321 
R4 x331F x331F 
R5 x lF22 x lF22 
R6 xOlFF xOlFF 
R7 x341F x3211 
PC x3210 x3220 
N: 0 0 
Z: 1 1 
P: 0 0 
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6.18 The LC-3 has no Divide instruction. A programmer needing to divide two 
numbers would have to write a routine to handle it. Show the systematic 
decomposition of the process of dividing two positive integers. Write an 
LC-3 machine language program starting at location x3000 which divides 
the number in memory location x4000 by the number in memory location 
x4001 and stores the quotient at x5000 and the remainder at x5001. 

6.19 It is often necessary to encrypt messages to keep them away from prying 
eyes. A message can be represented as a string of ASCII characters, one 
per memory location, in consecutive memory locations. Bits [15:8] of 
each location contains 0, and the location immediately following the 
string contains xOOOO. 

A student who has not taken this course has written the following 
LC-3 machine language program to encrypt the message starting at 
location x4000 by adding 4 to each character and storing the resulting 
message at x5000. For example, if the message at x4000 is "Matt," then 
the encrypted message at x5000 is "Qeyy." However, there are four bugs 
in his code. Find and correct these errors so that the program works 
correctly. 

x3 00 0 1110 0000 0000 1010 
x3 001 0010 0010 0000 1010 
x3 002 0110 0100 0000 0000 
x3 0 03 0000 0100 0000 0101 
x3 0 04 0001 0100 1010 0101 
x3 005 0111 0100 0100 0000 
x3 006 0001 0000 0010 0001 
x3 007 0001 0010 0110 0001 
x3 0 08 0000 1001 1111 1001 
x3 00 9 0110 0100 0100 0000 
x3 Q0A 1111 0000 0010 0101 
x3 00B 0100 0000 0000 0000 
X300C 0101 0000 0000 0000 

6.20 Redo Exercise 6.18 for all integers, not just positive integers. 
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7 
Assembly Language 

By now, you are probably a little tired of Is and Os and keeping track of 0001 
meaning ADD and 1001 meaning NOT. Also, wouldn'titbe nice if we could refer 
to a memory location by some meaningful symbolic name instead of memorizing 
its 16-bit address? And wouldn't it be nice if we could represent each instruction in 
some more easily comprehensible way, instead of having to keep track of which 
bit of the instruction conveys which individual piece of information about the 
instruction. It turns out that help is on the way. 

In this chapter, we introduce assembly language, a mechanism that does all 
that, and more. 

7.1 Assembly Language Programming—Moving Up o Level 
Recall the levels of transformation identified in Figure 1.6 of Chapter 1. Algo-
rithms are transformed into programs described in some mechanical language. 
This mechanical language can be, as it is in Chapter 5, the machine language of a 
particular computer. Recall that a program is in a computer's machine language 
if every instruction in the program is from the ISA of that computer. 

On the other hand, the mechanical language can be more user-friendly. We 
generally partition mechanical languages into two classes, high-level and low-
level. Of the two, high-level languages are much more user-friendly. Examples 
are C, C++, Java, Fortran, COBOL, Pascal, plus more than a thousand others. 
Instructions in a high-level language almost (but not quite) resemble statements 
in a natural language such as English. High-level languages tend to be ISA inde-
pendent. That is, once you learn how to program in C (or Fortran or Pascal) 
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for one ISA, it is a small step to write programs in C (or Fortran or Pascal) for 
another ISA. 

Before a program written in a high-level language can be executed, it must be 
translated into a program in the ISA of the computer on which it is expected to exe-
cute. It is usually the case that each statement in the high-level language specifies 
several instructions in the ISA of the computer. In Chapter 11, we will introduce 
the high-level language C, and in Chapters 12 through 19, we will show the rela-
tionship between various statements in C and their corresponding translations in 
LC-3 code. In this chapter, however, we will only move up a small notch from 
the ISA we dealt with in Chapter 5. 

A small step up from the ISA of a machine is that ISA's assembly language. 
Assembly language is a low-level language. There is no confusing an instruction 
in a low-level language with a statement in English. Each assembly language 
instruction usually specifies a single instruction in the ISA. Unlike high-level 
languages, which are usually ISA independent, low-level languages are very much 
ISA dependent. In fact, it is usually the case that each ISA has only one assembly 
language. 

The purpose of assembly language is to make the programming process more 
user-friendly than programming in machine language (i.e., the ISA of the com-
puter with which we are dealing), while still providing the programmer with 
detailed control over the instructions that the computer can execute. So, for exam-
ple, while still retaining control over the detailed instructions the computer is to 
carry out, we are freed from having to remember what opcode is 0001 and what 
opcode is 1001, or what is being stored in memory location 0011111100001010 
and what is being stored in location 0011111100000101. Assembly languages let 
us use mnemonic devices for opcodes, such as ADD and NOT, and they let us give 
meaningful symbolic names to memory locations, such as SUM or PRODUCT, 
rather than use their 16-bit addresses. This makes it easier to differentiate which 
memory location is keeping track of a SUM and which memory location is keeping 
track of a PRODUCT. We call these names symbolic addresses. 

We will see, starting in Chapter 11, that when we take the larger step of moving 
up to a higher-level language (such as C), programming will be even more user-
friendly, but we will relinquish control of exactly which detailed instructions are 
to be carried out in behalf of a high-level language statement. 

7.2 fln Assembly Language Program 
We will begin our study of the LC-3 assembly language by means of an example. 
The program in Figure 7.1 multiplies the integer intially stored in NUMBER by 6 
by adding the integer to itself six times. For example, if the integer is 123, the 
program computes the product by adding 123 + 123 + 123 + 123+ 123 + 123. 

The program consists of 21 lines of code. We have added a line number to 
each line of the program in order to be able to refer to individual lines easily. 
This is a common practice. These line numbers are not part of the program. Ten 
lines start with a semicolon, designating that they are strictly for the benefit of 
the human reader. More on this momentarily. Seven lines (06, 07, 08, 0C, 0D, 
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01 
02 ; Program to multiply an integer by the constant 6. 
03 ; Before execution, an integer must be stored in NUMBER 
04 
05 .ORIG x3 050 
06 LD Rl,SIX 
07 LD R2,NUMBER 
08 AND R3,R3,#0 Clear R3. It will 
09 / contain the product. 
OA ; The inner loop 
0B f 
o c AGAIN ADD R3,R3, R2 
0D ADD Rl,Rl,#-1 Rl keeps track of 
0E BRp AGAIN the iterations 
OF / 

10 HALT 
11 ! 

12 NUMBER .BLKW 1 
13 SIX .FILL X0006 
14 / 

15 .END 
Figure 7 . 1 An assembly language program 

OE, and 10) specify assembly language instructions to be translated into machine 
language instructions of the LC-3, which will actually be carried out when the 
program runs. The remaining four lines (05, 12, 13, and 15) contain pseudo-ops, 
which are messages from the programmer to the translation program to help in 
the translation process. The translation program is called an assembler (in this 
case the LC-3 assembler), and the translation process is called assembly. 

7.2.1 Instructions 
Instead of an instruction being 16 0s and Is, as is the case in the LC-3 ISA, an 
instruction in assembly language consists of four parts, as follows: 

LABEL OPCODE OPERANDS ; COMMENTS 
Two of the parts (LABEL and COMMENTS) are optional. More on that 
momentarily. 

Opcodes and Operands 
Two of the parts (OPCODE and OPERANDS) are mandatory. An instruction 
must have an OPCODE (the thing the instruction is to do), and the appropriate 
number of OPERANDS (the things it is supposed to do it to). Not surprisingly, this 
was exactly what we encountered in Chapter 5 when we studied the LC-3 ISA. 

The OPCODE is a symbolic name for the opcode of the corresponding LC-3 
instruction. The idea is that it is easier to remember an operation by the symbolic 
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name ADD, AND, or LDR than by the 4-bit quantity 0001, 0101, or 0110. 
Figure 5.3 (also Figure A.2) lists the OPCODES of the 15 LC-3 instructions. 
Pages 526 through 541 show the assembly language representations for the 15 
LC-3 instructions. 

The number of operands depends on the operation being performed. For 
example, the ADD instruction (line 0C) requires three operands (two sources to 
obtain the numbers to be added, and one destination to designate where the result 
is to be placed). All three operands must be explicitly identified in the instruction. 

AGAIN ADD R3 , R3 , R2 
The operands to be added are obtained from register 2 and from register 3. The 
result is to be placed in register 3. We represent each of the registers 0 through 7 
as R 0 , R 1 , R 2 , . . . ,R7. 

The LD instruction (line 07) requires two operands (the memory location 
from which the value is to be read and the destination register that is to contain 
the value after the instruction completes its execution). We will see momentarily 
that memory locations will be given symbolic addresses called labels. In this case, 
the location from which the value is to be read is given the label NUMBER. The 
destination into which the value is to be loaded is register 2. 

LD R2, NUMBER 
As we discussed in Section 5.1.6, operands can be obtained from registers, from 
memory, or they may be literal (i.e., immediate) values in the instruction. In the 
case of register operands, the registers are explicitly represented (such as R2 and 
R3 in line 0C). In the case of memory operands, the symbolic name of the memory 
location is explicitly represented (such as NUMBER in line 07 and SIX in line 
06). In the case of immediate operands, the actual value is explicitly represented 
(such as the value 0 in line 08). 

AND R3, R3, #0 ; Clear R3. It will contain the product. 
A literal value must contain a symbol identifying the representation base of the 
number. We use # for decimal, x for hexadecimal, and b for binary. Sometimes 
there is no ambiguity, such as in the case 3F0A, which is a hex number. Nonethe-
less, we write it as x3F0A. Sometimes there is ambiguity, such as in the case 
1000. xlOOO represents the decimal number 4096, blOOO represents the decimal 
number 8, and #1000 represents the decimal number 1000. 

Labels 
Labels are symbolic names that are used to identify memory locations that are 
referred to explicitly in the program. In LC-3 assembly language, a label consists 
of from one to 20 alphanumeric characters (i.e., a capital or lowercase letter of the 
alphabet, or a decimal digit), starting with a letter of the alphabet. NOW, Under21, 
R2D2, and C3PO are all examples of possible LC-3 assembly language labels. 

There are two reasons for explicitly referring to a memory location. 

1. The location contains the target of a branch instruction (for example, 
AGAIN in line 0C). 
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2. The location contains a value that is loaded or stored (for example, 
NUMBER, line 12, and SIX, line 13). 

The location AGAIN is specifically referenced by the branch instruction in 
line OE. 
BRp AGAIN 
If the result of ADD R1 ,R 1 ,#-1 is positive (as evidenced by the P condition code 
being set), then the program branches to the location explicitly referenced as 
AGAIN to perform another iteration. 

The location NUMBER is specifically referenced by the load instruction 
in line 07. The value stored in the memory location explicitly referenced as 
NUMBER is loaded into R2. 

If a location in the program is not explicitly referenced, then there is no need 
to give it a label. 

Comments 

Comments are messages intended only for human consumption. They have no 
effect on the translation process and indeed are not acted on by the LC-3 assembler. 
They are identified in the program by semicolons. A semicolon signifies that 
the rest of the line is a comment and is to be ignored by the assembler. If the 
semicolon is the first nonblank character on the line, the entire line is ignored. If 
the semicolon follows the operands of an instruction, then only the comment is 
ignored by the assembler. 

The purpose of comments is to make the program more comprehensible to 
the human reader. They help explain a nonintuitive aspect of an instruction or a 
set of instructions. In lines 08 and 09, the comment "Clear R3; it will contain 
the product" lets the reader know that the instruction on line 08 is initializing 
R3 prior to accumulating the product of the two numbers. While the purpose of 
line 08 may be obvious to the programmer today, it may not be the case two years 
from now, after the programmer has written an additional 30,000 lines of code 
and cannot remember why he/she wrote AND R3,R3,#0. It may also be the case 
that two years from now, the programmer no longer works for the company and 
the company needs to modify the program in response to a product update. If the 
task is assigned to someone who has never seen the code before, comments go a 
long way toward improving comprehension. 

It is important to make comments that provide additional insight and not just 
restate the obvious. There are two reasons for this. First, comments that restate 
the obvious are a waste of everyone's time. Second, they tend to obscure the 
comments that say something important because they add clutter to the program. 
For example, in line 0D, the comment "Decrement R l" would be a bad idea. It 
would provide no additional insight to the instruction, and it would add clutter to 
the page. 

Another purpose of comments, and also the judicious use of extra blank spaces 
to a line, is to make the visual presentation of a program easier to understand. So, 
for example, comments are used to separate pieces of the program from each other 
to make the program more readable. That is, lines of code that work together to 
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compute a single result are placed on successive lines, while pieces of a program 
that produce separate results are separated from each other. For example, note 
that lines OC through OE are separated from the rest of the code by lines OB and 
OF. There is nothing on lines OB and OF other than the semicolons. 

Extra spaces that are ignored by the assembler provide an opportunity to align 
elements of a program for easier readability. For example, all the opcodes start in 
the same column on the page. 

7.2.2 Pseudo-ops (Assembler Directives) 
The LC-3 assembler is a program that takes as input a string of characters repre-
senting a computer program written in LC-3 assembly language and translates it 
into a program in the ISA of the LC-3. Pseudo-ops are helpful to the assembler 
in performing that task. 

Actually, a more formal name for a pseudo-op is assembler directive. They are 
called pseudo-ops because they do not refer to operations that will be performed 
by the program during execution. Rather, the pseudo-op is strictly a message to 
the assembler to help the assembler in the assembly process. Once the assembler 
handles the message, the pseudo-op is discarded. The LC-3 assembler contains 
five pseudo-ops: .ORIG, .FILL, .BLKW, .STRINGZ, and .END. All are easily 
recognizable by the dot as their first character. 

.ORIG 

.ORIG tells the assembler where in memory to place the LC-3 program. In 
line 05, .ORIG x3050 says, start with location x3050. As a result, the LD R1,SIX 
instruction will be put in location x3050. 

.FILL 

.FILL tells the assembler to set aside the next location in the program and initialize 
it with the value of the operand. In line 13, the ninth location in the resultant LC-3 
program is initialized to the value x0006. 

.BLKW 

.BLKW tells the assembler to set aside some number of sequential memory loca-
tions (i.e., a BLocK of Words) in the program. The actual number is the operand 
of the .BLKW pseudo-op. In line 12, the pseudo-op instructs the assembler to set 
aside one location in memory (and also to label it NUMBER, incidentally). 

The pseudo-op .BLKW is particularly useful when the actual value of the 
operand is not yet known. For example, one might want to set aside a location 
in memory for storing a character input from a keyboard. It will not be until the 
program is run that we will know the identity of that keystroke. 

.STRINGZ 

.STRINGZ tells the assembler to initialize a sequence of n + 1 memory locations. 
The argument is a sequence of n characters, inside double quotation marks. The 
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first n words of memory are initialized with the zero-extended ASCII codes of the 
corresponding characters in the string. The final word of memory is initialized 
to 0. The last character, xOOOO, provides a convenient sentinel for processing the 
string of ASCII codes. 

For example, the code fragment 

.ORIG X3010 
HELLO .STRINGZ "Hello, World!" 

would result in the assembler initializing locations x3010 through x301D to the 
following values: 

x3 010: x0 048 
x3 Oil: x0065 
x3 012: x0 06C 
x3 013: X006C 
x3 014: X006F 
x3 015: X002C 
x3016 : X0020 
x3 017: x0057 
x3 018: X006F 
x3 019: x0072 
X301A: X006C 
X301B: x0064 
x3 01C: x0 021 
X301D: xOOOO 

.END 

.END tells the assembler where the program ends. Any characters that come after 

.END will not be used by the assembler. Note: .END does not stop the program 
during execution. In fact, .END does not even exist at the time of execution. It is 
simply a delimiter—it marks the end of the source program. 

7.2.3 Example: The Character Count Example of Section 5.5, 
Revisited 

Now we are ready for a complete example. Let's consider again the problem of 
Section 5.5. We wish to write a program that will take a character that is input 
from the keyboard and a file and count the number of occurrences of that char-
acter in that file. As before, we first develop the algorithm by constructing the 
flowchart. Recall that in Section 6.1, we showed how to decompose the problem 
systematically so as to generate the flowchart of Figure 5.16. In fact, the final step 
of that process in Chapter 6 is the flowchart of Figure 6.3e, which is essentially 
identical to Figure 5.16. Next, we use the flowchart to write the actual program. 
This time, however, we enjoy the luxury of not worrying about 0s and Is and 
instead write the program in LC-3 assembly language. The program is shown in 
Figure 7.2. 
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Program to count occurrences of a character in a file. 
Character to be input from the keyboard. 
Result to be displayed on the monitor. 
Program works only if no more than 9 occurrences are found. 

Initialization 

.ORIG 
AND 
LD 
TRAP 
LDR 

x3 000 
R2,R2,#0 
R3,PTR 
x23 
Rl,R3,#0 

R2 is counter, initialize to 0 
R3 is pointer to characters 
R0 gets character input 
Rl gets the next character 

Test character for end of file 

TEST ADD R4,Rl,#-4 ; Test for EOT 
BRz OUTPUT ; If done, prepare the output 

Test character for match. If a match, increment count. 

NOT 
ADD 
NOT 
BRnp 
ADD 

Rl, Rl 
Rl,R1,R0 
Rl, Rl 
GETCHAR 
R2,R2,#1 

If match, Rl = xFFFF 
If match, Rl = xOOOO 
If no match, do not increment 

Get next character from the file 

GETCHAR ADD 
LDR 
BRnzp 

R3,R3,#1 
Rl,R3,#0 
TEST 

Output the count. 

OUTPUT LD 
ADD 
TRAP 
TRAP 

R0,ASCII 
R0,R0,R2 
x21 
x2 5 

Increment the pointer 
Rl gets the next character to test 

Load the ASCII template 
Convert binary to ASCII 
ASCII code in R0 is displayed 
Halt machine 

Storage for pointer and ASCII template 

ASCII .FILL x003 0 
PTR .FILL X4000 

. END 

Figure 7.2 The assembly language program to count occurrences of a character 

A few notes regarding this program: 
Three times during this program, assistance in the form of a service call is 

required of the operating system. In each case, a TRAP instruction is used. TRAP 
x23 causes a character to be input from the keyboard and placed in R0 (line 0D). 
TRAP x21 causes the ASCII code in R0 to be displayed on the monitor (line 28). 
TRAP x25 causes the machine to be halted (line 29). As we said before, we will 
leave the details of how the TRAP instruction is carried out until Chapter 9. 
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The ASCII codes for the decimal digits 0 to 9 (0000 to 1001) are x30 to x39. 
The conversion from binary to ASCII is done simply by adding x30 to the binary 
value of the decimal digit. Line 2D shows the label ASCII used to identify the 
memory location containing x0030. 

The file that is to be examined starts at address x4000 (see line 2E). Usually, 
this starting address would not be known to the programmer who is writing this 
program since we would want the program to work on files that will become 
available in the future. That situation will be discussed in Section 7.4. 

7.3 The Rssemblq Process 
7.3.1 Introduction 
Before an LC-3 assembly language program can be executed, it must first be 
translated into a machine language program, that is, one in which each instruction 
is in the LC-3 ISA. It is the job of the LC-3 assembler to perform that translation. 

If you have available an LC-3 assembler, you can cause it to translate your 
assembly language program into a machine language program by executing an 
appropriate command. In the LC-3 assembler that is generally available via the 
Web, that command is assemble and requires as an argument the filename of your 
assembly language program. For example, if the filename is solution 1.asm, then 

assemble solutionl.asm outfile 
produces the file outfile, which is in the ISA of the LC-3. It is necessary to check 
with your instructor for the correct command line to cause the LC-3 assembler to 
produce a file of 0s and Is in the ISA of the LC-3. 

7.3.2 A Two-Pass Process 
In this section, we will see how the assembler goes through the process of trans-
lating an assembly language program into a machine language program. We will 
use as our input to the process the assembly language program of Figure 7.2. 

You remember that there is in general a one-to-one correspondence between 
instructions in an assembly language program and instructions in the final machine 
language program. We could try to perform this translation in one pass through 
the assembly language program. Starting from the top of Figure 7.2, the assembler 
discards lines 01 to 09, since they contain only comments. Comments are strictly 
for human consumption; they have no bearing on the translation process. The 
assembler then moves on to line OA. Line OA is a pseudo-op; it tells the assembler 
that the machine language program is to start at location x3000. The assembler 
then moves on to line 0B, which it can easily translate into LC-3 machine code. 
At this point, we have 

x3 000: 0101010010100000 

The LC-3 assembler moves on to translate the next instruction (line 0C). Unfor-
tunately, it is unable to do so since it does not know the meaning of the symbolic 
address PTR. At this point the assembler is stuck, and the assembly process fails. 
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To prevent this from occurring, the assembly process is done in two complete 
passes (from beginning to .END) through the entire assembly language program. 
The objective of the first pass is to identify the actual binary addresses correspond-
ing to the symbolic names (or labels). This set of correspondences is known as 
the symbol table. In pass 1, we construct the symbol table. In pass 2, we translate 
the individual assembly language instructions into their corresponding machine 
language instructions. 

Thus, when the assembler examines line OC for the purpose of translating 

LD R3,PTR 

during the second pass, it already knows the correspondence between PTR and 
x3013 (from the first pass). Thus it can easily translate line OC to 

X3 001: 0010011000010001 

The problem of not knowing the 16-bit address corresponding to PTR no longer 
exists. 

7.3.3 The First Pass: Creating the Symbol Table 
For our purposes, the symbol table is simply a correspondence of symbolic names 
with their 16-bit memory addresses. We obtain these correspondences by passing 
through the assembly language program once, noting which instruction is assigned 
to which address, and identifying each label with the address of its assigned entry. 

Recall that we provide labels in those cases where we have to refer to a loca-
tion, either because it is the target of a branch instruction or because it contains 
data that must be loaded or stored. Consequently, if we have not made any pro-
gramming mistakes, and if we identify all the labels, we will have identified all 
the symbolic addresses used in the program. 

The preceding paragraph assumes that our entire program exists between our 
.ORIG and .END pseudo-ops. This is true for the assembly language program of 
Figure 7.2. In Section 7.4, we will consider programs that consist of multiple parts, 
each with its own .ORIG and .END, wherein each part is assembled separately. 

The first pass starts, after discarding the comments on lines 01 to 09, by noting 
(line OA) that the first instruction will be assigned to address x3000. We keep track 
of the location assigned to each instruction by means of a location counter (LC). 
The LC is initialized to the address specified in .ORIG, that is, x3000. 

The assembler examines each instruction in sequence and increments the LC 
once for each assembly language instruction. If the instruction examined contains 
a label, a symbol table entry is made for that label, specifying the current contents 
of LC as its address. The first pass terminates when the .END instruction is 
encountered. 

The first instruction that has a label is at line 13. Since it is the fifth instruction 
in the program and since the LC at that point contains x3004, a symbol table entry 
is constructed thus: 

Symbol Address 
TEST x3 004 
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The second instruction that has a label is at line 20. At this point, the LC has been 
incremented to x300B. Thus a symbol table entry is constructed, as follows: 

Symbol Address 
GETCHAR x3 0 0B 

At the conclusion of the first pass, the symbol table has the following entries: 

Symbol Address 
TEST x3 0 04 
GETCHAR x3 00B 
OUTPUT x3 00E 
ASCII x3 012 
PTR x3 013 

7.3.4 The Second Pass: Generating the 
Machine Language Program 

The second pass consists of going through the assembly language program a 
second time, line by line, this time with the help of the symbol table. At each line, 
the assembly language instruction is translated into an LC-3 machine language 
instruction. 

Starting again at the top, the assembler again discards lines 01 through 09 
because they contain only comments. Line OA is the .ORIG pseudo-op, which 
the assembler uses to initialize LC to x3000. The assembler moves on to line 
OB and produces the machine language instruction 0101010010100000. Then the 
assembler moves on to line 0C. 

This time, when the assembler gets to line 0C, it can completely assemble 
the instruction since it knows that PTR corresponds to x3013. The instruction is 
LD, which has an opcode encoding of 0010. The destination register (DR) is R3, 
that is, 011. 

PCoffset is computed as follows: We know that PTR is the label for address 
x3013, and that the incremented PC is LC+1, in this case x3002. Since PTR 
(x3013) must be the sum of the incremented PC (x3002) and the sign-extended 
PCoffset, PCoffset must be xOOll. Putting this all together, x3001 is set to 
0010011000010001, and the LC is incremented to x3002. 

Note: In order to use the LD instruction, it is necessary that the source of the 
load, in this case the address whose label is PTR, is not more than +256 or —255 
memory locations from the LD instruction itself. If the address of PTR had been 
greater than LC+1 +255 or less than LC+1 —256, then the offset would not fit in 
bits [8:0] of the instruction. In such a case, an assembly error would have occurred, 
preventing the assembly process from finishing successfully. Fortunately, PTR is 
close enough to the LD instruction, so the instruction assembled correctly. 

The second pass continues. At each step, the LC is incremented and the 
location specified by LC is assigned the translated LC-3 instruction or, in the 
case of .FILL, the value specified. When the second pass encounters the .END 
instruction, assembly terminates. 

The resulting translated program is shown in Figure 7.3. 
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Address Binary 

0011000000000000 
x3000 0101010010100000 
x3001 0010011000010001 
x3002 1111000000100011 
x3003 0110001011000000 
x3004 0001100001111100 
x3005 0000010000001000 
x3006 1001001001111111 
x3007 0001001001000000 
x3008 1001001001111111 
x3009 0000101000000001 
x300A 0001010010100001 
x300B 0001011011100001 
x300C 0110001011000000 
x300D 0000111111110110 
x300E 0010000000000011 
x300F 0001000000000010 
x3010 1111000000100001 
x3011 1111000000100101 
x3012 0000000000110000 
x3013 0100000000000000 

Figure 7 .3 The machine language program for the assembly language program of 
Figure 7.2 

That process was, on a good day, merely tedious. Fortunately, you do not have 
to do it for a living—the LC-3 assembler does that. And, since you now know 
LC-3 assembly language, there is no need to program in machine language. Now 
we can write our programs symbolically in LC-3 assembly language and invoke 
the LC-3 assembler to create the machine language versions that can execute on 
an LC-3 computer. 

7.4 Beyond the Assembly of a Single Hssemblq Language Program 
Our purpose in this chapter has been to take you up one more notch from the 
ISA of the computer and introduce assembly language. Although it is still quite 
a large step from C or C++, assembly language does, in fact, save us a good 
deal of pain. We have also shown how a rudimentary two-pass assembler actually 
works to translate an assembly language program into the machine language of 
the LC-3 ISA. 

There are many more aspects to sophisticated assembly language program-
ming that go well beyond an introductory course. However, our reason for teaching 
assembly language is not to deal with its sophistication, but rather to show its 
innate simplicity. Before we leave this chapter, however, there are a few additional 
highlights we should explore. 
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7.4.1 The Executable Image 
When a computer begins execution of a program, the entity being executed is 
called an executable image. The executable image is created from modules often 
created independently by several different programmers. Each module is trans-
lated separately into an object file. We have just gone through the process of 
performing that translation ourselves by mimicking the LC-3 assembler. Other 
modules, some written in C perhaps, are translated by the C compiler. Some mod-
ules are written by users, and some modules are supplied as library routines by 
the operating system. Each object file consists of instructions in the ISA of the 
computer being used, along with its associated data. The final step is to link all 
the object modules together into one executable image. During execution of the 
program, the FETCH, DECODE, . . . instruction cycle is applied to instructions 
in the executable image. 

7.4.2 More than One Object File 
It is very common to form an executable image from more than one object file. 
In fact, in the real world, where most programs invoke libraries provided by the 
operating system as well as modules generated by other programmers, it is much 
more common to have multiple object files than a single one. 

A case in point is our example character count program. The program counts 
the number of occurrences of a character in a file. A typical application could 
easily have the program as one module and the input data file as another. If this 
were the case, then the starting address of the file, shown as x4000 in line 2E of 
Figure 7.2, would not be known when the program was written. If we replace line 
2E with 

PTR .FILL STARTofFILE 

then the program of Figure 7.2 will not assemble because there will be no symbol 
table entry for STARTofFILE. What can we do? 

If the LC-3 assembly language, on the other hand, contained the pseudo-op 
.EXTERNAL, we could identify STARTofFILE as the symbolic name of an 
address that is not known at the time the program of Figure 7.2 is assembled. 
This would be done by the following line 

.EXTERNAL STARTofFILE, 
which would send a message to the LC-3 assembler that the absence of label 
STARTofFILE is not an error in the program. Rather, STARTofFILE is a label in 
some other module that will be translated independently. In fact, in our case, it 
will be the label of the location of the first character in the file to be examined by 
our character count program. 

If the LC-3 assembly language had the pseudo-op .EXTERNAL, and if we 
had designated STARTofFILE as .EXTERNAL, the LC-3 would be able to create 
a symbol table entry for STARTofFILE, and instead of assigning it an address, it 
would mark the symbol as belonging to another module. At link time, when all 
the modules are combined, the linker (the program that manages the "combining" 
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process) would use the symbol table entry for STARTofFILE in another module 
to complete the translation of our revised line 2E. 

In this way, the .EXTERNAL pseudo-op allows references by one module to 
symbolic locations in another module without a problem. The proper translations 
are resolved by the linker. 

7.1 An assembly language program contains the following two instructions. 
The assembler puts the translated version of the LDI instruction that 
follows into location x3025 of the object module. After assembly is 
complete, what is in location x3025? 

PLACE .FILL X45A7 
LDI R3, PLACE 

7.2 An LC-3 assembly language program contains the instruction: 

ASCII LD Rl, ASCII 

The symbol table entry for ASCII is x4F08. If this instruction is executed 
during the running of the program, what will be contained in Rl 
immediately after the instruction is executed? 

7.3 What is the problem with using the string AND as a label? 
7.4 Create the symbol table entries generated by the assembler when 

translating the following routine into machine code: 

.ORIG X301C 
ST R3, SAVE3 
ST R2, SAVE2 
AND R2, R2, #0 

TEST IN 
BRz TEST 
ADD Rl, RO, #-
BRn FINISH 
ADD Rl/ RO, #-
NOT Rl, Rl 
BRn FINISH 
HALT 

FINISH ADD R2, R2, #1 
HALT 

SAVE 3 .FILL XOOOO 
SAVE 2 .FILL XOOOO 

.END 
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7.5 a. What does the following program do? 

.ORIG x3000 
LD R2, ZERO 
LD R0, M0 
LD Rl, Ml 

LOOP BRz DONE 
ADD R2, R2, R0 
ADD Rl, Rl, -1 
BR LOOP 

DONE ST R2, RESULT 
HALT 

RESULT .FILL X0000 
ZERO -FILL xOOOO 
M0 .FILL X0004 
Ml .FILL x08 03 

.END 

b. What value will be contained in RESULT after the program runs to 
completion? 

7.6 Our assembler has crashed and we need your help! Create a symbol table 
and assemble the instructions at labels D, E, and F for the program below. 
You may assume another module deposits a positive value into A before 
this module executes. 

.ORIG X3000 
AND R0, R0, #0 

D LD Rl, A 
AND R2 , Rl, #1 
BRp B 

E ADD Rl, Rl, #-1 
B ADD R0, R0, Rl 

ADD Rl, Rl, #-2 
F BRp B 

ST R0, C 
TRAP x2 5 

A . BLKW 1 
C . BLKW 

.END 
1 

In no more than 15 words, what does the above program do? 
7.7 Write an LC-3 assembly language program that counts the number of Is 

in the value stored in RO and stores the result into Rl . For example, if RO 
contains 0001001101110000, then after the program executes, the result 
stored in Rl would be 0000 0000 0000 0110. 
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7.8 An engineer is in the process of debugging a program she has written. 
She is looking at the following segment of the program, and decides to 
place a breakpoint in memory at location 0xA404. Starting with the 
PC = 0xA400, she initializes all the registers to zero and runs the 
program until the breakpoint is encountered. 

Code Segment 

0xA4 00 
0xA4 01 
0xA4 02 
0xA4 03 
0xA4 04 

THIS1 
THIS2 
THIS3 
THIS4 
THIS 5 

LEA 
LD 
LDI 
LDR 
.FILL 

R0 
Rl 
R2 
R3 

THIS1 
THIS2 
THIS5 
R0, #2 

xA4 00 

Show the contents of the register file (in hexadecimal) when the 
breakpoint is encountered. 

7.9 What is the purpose of the . END pseudo-op? How does it differ from the 
HALT instruction? 

7.10 The following program fragment has an error in it. Identify the error and 
explain how to fix it. 

ADD R3, R3, #3 0 
ST R3, A 
HALT 

A .FILL #0 

Will this error be detected when this code is assembled or when this code 
is run on the LC-3? 

7.11 The LC-3 assembler must be able to convert constants represented in 
ASCII into their appropriate binary values. For instance, x2A translates 
into 00101010 and #12 translates into 00001100. Write an LC-3 
assembly language program that reads a decimal or hexadecimal constant 
from the keyboard (i.e., it is preceded by a # character signifying it is a 
decimal, or x signifying it is hex) and prints out the binary representation. 
Assume the constants can be expressed with no more than two decimal or 
hex digits. 
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7-12 What does the following LC-3 program do? 

. O R I G X3000 
AND R5, R5, #0 
AND R 3 , R3 , #0 
ADD R 3 , R 3 , #8 
LDI R l , A 
ADD R2 , Rl, #0 

AG ADD R 2 , R2 , R2 
ADD R3 , R 3 , #-1 
BRnp AG 
LD R4, B 
AND Rl, Rl, R4 
NOT Rl / Rl 
ADD R l , R l , #1 
ADD R 2 , R2, Rl 
BRnp NO 
ADD R5, R 5 , #1 

NO HALT 
B .FILL xFFOO 
A . FILL x4 0 00 

.END 

7.13 The following program adds the values stored in memory locations A, B, 
and C, and stores the result into memory. There are two errors in the 
code. For each, describe the error and indicate whether it will be detected 
at assembly time or at run time. 

Line No. 
1 -ORIG x3 000 
2 ONE LD R0 , A 
3 ADD Rl , Rl, R0 
4 TWO LD R0 , B 
5 ADD Rl , Rl, R0 
6 THREE LD R0 , c 
7 ADD Rl , Rl, R0 
8 ST Rl , SUM 
9 TRAP x2 5 
10 A .FILL xOOOl 
11 B .FILL X0002 
12 C .FILL x0003 
13 D .FILL xO 004 
14 .END 
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7.14 a. Assemble the following program: 

LABEL 

.ORIG 
STI 
OUT 
HALT 
.STRINGZ 
.END 

X3000 
RO, LABEL 

b. The programmer intended the program to output a % to the monitor, 
and then halt. Unfortunately, the programmer got confused about the 
semantics of each of the opcodes (that is, exactly what function is 
carried out by the LC-3 in response to each opcode). Replace exactly 
one opcode in this program with the correct opcode to make the 
program work as intended. 

c. The original program from part a was executed. However, execution 
exhibited some very strange behavior. The strange behavior was in 
part due to the programming error, and in part due to the fact that the 
value in RO when the program started executing was x3000. Explain 
what the strange behavior was and why the program behaved that way. 

7.15 The following is an LC-3 program that performs a function. Assume a 
sequence of integers is stored in consecutive memory locations, one 
integer per memory location, starting at the location x4000. The sequence 
terminates with the value xOOOO. What does the following program do? 

.ORIG x3 000 
LD RO, NUMBERS 
LD R2, MASK 

LOOP LDR Rl, RO, #0 
BRz DONE 
AND R5, Rl, R2 
BRz LI 
BRnzp NEXT 

LI ADD Rl, Rl, Rl 
STR Rl, RO, #0 

NEXT ADD RO, RO, #1 
BRnzp LOOP 

DONE HALT 
NUMBERS .FILL X4000 
MASK .FILL xSOOO 
.END 
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7.16 

7.17 

7.18 

Assume a sequence of nonnegative integers is stored in consecutive 
memory locations, one integer per memory location, starting at location 
x4000. Each integer has a value between 0 and 30,000 (decimal). The 
sequence terminates with the value —1 (i.e., xFFFF). 

What does the following program do? 
.ORIG x3 000 
AND R4, R4, #0 
AND R3, R3, #0 
LD R0, NUMBERS 

LOOP LDR Rl, R0, #0 
NOT R2, Rl 
BRz DONE 
AND R2, Rl, #1 
BRz LI 
ADD R4 , R4 , #1 
BRnzp NEXT 

LI ADD R3, R3, #1 
NEXT ADD R0, R0, #1 

BRnzp LOOP 
DONE TRAP x2 5 
NUMBERS .FILL x4 000 

.END 

Suppose you write two separate assembly language modules that you 
expect to be combined by the linker. Each module uses the label AGAIN, 
and neither module contains the pseudo-op . EXTERNAL AGAIN. Is 
there a problem using the label AGAIN in both modules? Why or why not? 
The following LC-3 program compares two character strings of the same 
length. The source strings are in the . S T R I N G Z form. The first string starts 
at memory location x4000, and the second string starts at memory location 
x4100. If the strings are the same, the program terminates with the value 0 
in R5. Insert instructions at (a), (b), and (c) that will complete the program. 

.ORIG X3000 
LD Rl, FIRST 
LD R2, SECOND 
AND R0, R0, #0 

LOOP (a) LOOP (a) 
LDR R4, R2 , #0 
BRz NEXT 
ADD Rl, Rl, #1 
ADD R2, R2, #1 

(b) (b) 
(c) (c) 

ADD R3, R3, R4 
BRz LOOP 
AND R5, R5, #0 
BRnzp DONE 

NEXT AND R5, R5, #0 
ADD R5, R5, #1 

DONE TRAP x2 5 
FIRST .FILL x40 00 
SECOND .FILL 

.END 
X4100 



218 chapter 7 Assembly Language 

7.19 When the following LC-3 program is executed, how many 
times will the instruction at the memory address labeled LOOP execute? 

.ORIG X3005 
LEA R2, DATA 
LDR R4, R2, #0 

LOOP ADD R4, R4, #-3 
BRzp LOOPk 

DATA .FILL xOOOB 
.END 

TRAP x2 5 

7.20 LC-3 assembly language modules (a) and (b) have been 
written by different programmers to store x0015 into memory location 
x4000. What is fundamentally different about their approaches? 

a. .ORIG X5000 
AND R0, R0, #0 
ADD R 0 , R 0 , #15 
ADD R 0 , R0, #6 
STI R0, PTR 
HALT 

PTR .FILL x4 0 00 
.END 

b. .ORIG x4 000 
.FILL X0015 
.END 

7.21 Assemble the following LC-3 assembly language program. 

.ORIG x3 000 
AND R0, R0, #0 
ADD R2, R0, #10 
LD Rl, MASK 
LD R3, PTR1 

LOOP LDR R4, R3, #0 
AND R4, R4, Rl 
BRz NEXT 
ADD R0, R0, #1 

NEXT ADD R3, R3, #1 
ADD R2, R2, #-1 
B RP LOOP 
STI R0, PTR2 

HALT 
MASK .FILL x8 00 0 
PTR1 .FILL x4 000 
PTR2 . FILL x50 00 

.END 
What does the program do (in no more than 20 words)? 

7.22 The LC-3 assembler must be 
able to map an instruction's mnemonic opcode into its binary opcode. For 
instance, given an ADD, it must generate the binary pattern 0001. Write 
an LC-3 assembly language program that prompts the user to type in 
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an LC-3 assembly language opcode and then displays its binary opcode. 
If the assembly language opcode is invalid, it displays an error message. 

7.23 The following LC-3 program determines whether a character 
string is a palindrome or not. A palindrome is a string that reads the same 
backwards as forwards. For example, the string "racecar" is a palindrome. 
Suppose a string starts at memory location x4000, and is in the 
. STRINGZ format. If the string is a palindrome, the program terminates 
with the value 1 in R5. If not, the program terminates with the value 
0 in R5. Insert instructions at (a)-(e) that will complete the program. 

.ORIG x3 0 00 
LD RO, PTR 
ADD Rl, RO, #0 

AGAIN LDR R2 , Rl, #0 
BRz CONT 
ADD Rl, Rl, #1 
BRnzp AGAIN 

CONT (a) CONT (a) 
LOOP LDR R3, RO , #0 

(b) (b) 
NOT R4, R4 
ADD R4, R4, #1 
ADD R3, R3, R4 
BRnp NO 

(c) (c) 
(d) (d) 

NOT R2 , RO 
ADD R2 , R2 , #1 
ADD R2 , Rl, R2 
BRnz YES 

(e) (e) 
YES AND R5, R5, #0 

ADD R5, R5, #1 
BRnzp DONE 

NO AND R5, R5, #0 
DONE HALT 
PTR .FILL X4000 

.END 

7.24 We want the following program fragment to shift R3 to the left by four 
bits, but it has an error in it. Identify the error and explain how to fix it. 

.ORIG x3 000 
AND R2, R2, #0 
ADD R2 , R2 , #4 
BRz DONE 
ADD R2, R2, #-1 
ADD R3, R3, R3 
BR LOOP 
HALT 
.END 

7.25 What does the pseudo-op . FILL XFFOO4 do? Why? 
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Up to now, we have paid little attention to input/output (I/O). We did note (in 
Chapter 4) that input/output is an important component of the von Neumann 
model. There must be a way to get information into the computer in order to 
process it, and there must be a way to get the result of that processing out of the 
computer so humans can use it. Figure 4.1 depicts a number of different input 
and output devices. 

We suggested (in Chapter 5) that input and output can be accomplished by 
executing the TRAP instruction, which asks the operating system to do it for us. 
Figure 5.17 illustrates this for input (at address x3002) and for output (at address 
x3010). 

In this chapter, we are ready to do I/O by ourselves. We have chosen to study 
the keyboard as our input device and the monitor display as our output device. Not 
only are they the simplest I/O devices and the ones most familiar to us, but they 
have characteristics that allow us to study important concepts about I/O without 
getting bogged down in unnecessary detail. 

8.1 I/O Basics 
8.1.1 Device Registers 
Although we often think of an I/O device as a single entity, interaction with a 
single I/O device usually means interacting with more than one device register. 
The simplest I/O devices usually have at least two device registers: one to hold the 
data being transferred between the device and the computer, and one to indicate 
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status information about the device. An example of status information is whether 
the device is available or is still busy processing the most recent I/O task. 

8.1.2 Memory-Mapped I/O versus Special 
Input/Output Instructions 

An instruction that interacts with an input or output device register must identify 
the particular input or output device register with which it is interacting. Two 
schemes have been used in the past. Some computers use special input and output 
instructions. Most computers prefer to use the same data movement instructions 
that are used to move data in and out of memory. 

The very old PDP-8 (from Digital Equipment Corporation, light years ago— 
1965) is an example of a computer that used special input and output instructions. 
The 12-bit PDP-8 instruction contained a 3-bit opcode. If the opcode was 110, an 
I/O instruction was indicated. The remaining nine bits of the PDP-8 instruction 
identified which I/O device register and what operation was to be performed. 

Most computer designers prefer not to specify an additional set of instructions 
for dealing with input and output. They use the same data movement instructions 
that are used for loading and storing data between memory and the general purpose 
registers. For example, a load instruction, in which the source address is that of an 
input device register, is an input instruction. Similarly, a store instruction in which 
the destination address is that of an output device register is an output instruction. 

Since programmers use the same data movement instructions that are used 
for memory, every input device register and every output device register must be 
uniquely identified in the same way that memory locations are uniquely identified. 
Therefore, each device register is assigned an address from the memory address 
space of the ISA. That is, the I/O device registers are mapped to a set of addresses 
that are allocated to I/O device registers rather than to memory locations. Hence 
the name memory-mapped I/O. 

The original PDP-11 ISA had a 16-bit address space. All addresses wherein 
bits [15:13] = 111 were allocated to I/O device registers. That is, of the 216 

addresses, only 57,344 corresponded to memory locations. The remaining 213 

were memory-mapped I/O addresses. 
The LC-3 uses memory-mapped I/O. Addresses xOOOO to xFDFF are allocated 

to memory locations. Addresses xFEOO to xFFFF are reserved for input/output 
device registers. Table A.3 lists the memory-mapped addresses of the LC-3 device 
registers that have been assigned so far. Future uses and sales of LC-3 micropro-
cessors may require the expansion of device register address assignments as new 
and exciting applications emerge! 

8.1.3 Asynchronous versus Synchronous 
Most I/O is carried out at speeds very much slower than the speed of the processor. 
A typist, typing on a keyboard, loads an input device register with one ASCII code 
every time he/she types a character. A computer can read the contents of that device 
register every time it executes a load instruction, where the operand address is the 
memory-mapped address of that input device register. 
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Many of today's microprocessors execute instructions under the control of 
a clock that operates well in excess of 300 MHz. Even for a microprocessor 
operating at only 300 MHz, a clock cycle lasts only 3.3 nanoseconds. Suppose a 
processor executed one instruction at a time, and it took the processor 10 clock 
cycles to execute the instruction that reads the input device register and stores its 
contents. At that rate, the processor could read the contents of the input device 
register once every 33 nanoseconds. Unfortunately, people do not type fast enough 
to keep this processor busy full-time reading characters. Question: How fast 
would a person have to type to supply input characters to the processor at the 
maximum rate the processor can receive them? Assume the average word length 
is six characters. See Exercise 8.3. 

We could mitigate this speed disparity by designing hardware that would 
accept typed characters at some slower fixed rate. For example, we could design 
a piece of hardware that accepts one character every 30 million cycles. This 
would require a typing speed of 100 words/minute, which is certainly doable. 
Unfortunately, it would also require that the typist work in lockstep with the 
computer's clock. That is not acceptable since the typing speed (even of the same 
typist) varies from moment to moment. 

What's the point? The point is that I/O devices usually operate at speeds 
very different from that of a microprocessor, and not in lockstep. This latter 
characteristic we call asynchronous. Most interaction between a processor and 
I/O is asynchronous. To control processing in an asynchronous world requires 
some protocol or handshaking mechanism. So it is with our keyboard and monitor 
display. In the case of the keyboard, we will need a 1-bit status register, called 
a flag, to indicate if someone has or has not typed a character. In the case of the 
monitor, we will need a 1-bit status register to indicate whether or not the most 
recent character sent to the monitor has been displayed. 

These flags are the simplest form of synchronization. A single flag, called the 
Ready bit, is enough to synchronize the output of the typist who can type characters 
at the rate of 100 words/minute with the input to a processor that can accept these 
characters at the rate of 300 million characters/second. Each time the typist types 
a character, the Ready bit is set. Each time the computer reads a character, it 
clears the Ready bit. By examining the Ready bit before reading a character, the 
computer can tell whether it has already read the last character typed. If the Ready 
bit is clear, no characters have been typed since the last time the computer read a 
character, and so no additional read would take place. When the computer detects 
that the Ready bit is set, it could only have been caused by a new character being 
typed, so the computer would know to again read a character. 

The single Ready bit provides enough handshaking to ensure that the asyn-
chronous transfer of information between the typist and the microprocessor can 
be carried out accurately. 

If the typist could type at a constant speed, and we did have a piece of 
hardware that would accept typed characters at precise intervals (for example, 
one character every 30 million cycles), then we would not need the Ready bit. 
The computer would simply know, after 30 million cycles of doing other stuff, 
that the typist had typed exactly one more character, and the computer would 
read that character. In this hypothetical situation, the typist would be typing in 
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lockstep with the processor, and no additional synchronization would be needed. 
We would say the computer and typist were operating synchronously, or the input 
activity was synchronous. 

8.1.4 Interrupt-Driven versus Polling 
The processor, which is computing, and the typist, who is typing, are two separate 
entities. Each is doing its own thing. Still, they need to interact, that is, the data that 
is typed has to get into the computer. The issue of interrupt-driven versus polling is 
the issue of who controls the interaction. Does the processor do its own thing until 
being interrupted by an announcement from the keyboard, "Hey, a key has been 
struck. The ASCII code is in the input device register. You need to read it." This 
is called interrupt-driven I/O, where the keyboard controls the interaction. Or, 
does the processor control the interaction, specifically by interrogating (usually, 
again and again) the Ready bit until it (the processor) detects that the Ready bit is 
set. At that point, the processor knows it is time to read the device register. This 
second type of interaction is called pollingy since the Ready bit is polled by the 
processor, asking if any key has been struck. 

Section 8.2.2 describes how the polling method works. Section 8.5 explains 
interrupt-driven I/O. 

8.2 Input from [he Keyboard 
8.2.1 Basic Input Registers (the KBDR and the KBSR) 
We have already noted that in order to handle character input from the keyboard, 
we need two things: a data register that contains the character to be input, and 
a synchronization mechanism to let the processor know that input has occurred. 
The synchronization mechanism is contained in the status register associated with 
the keyboard. 

These two registers are called the keyboard data register (KBDR) and the 
keyboard status register (KBSR). They are assigned addresses from the memory 
address space. As shown in Table A.3, KBDR is assigned to xFE02; KBSR is 
assigned to xFEOO. 

Even though a character needs only eight bits and the synchronization mech-
anism needs only one bit, it is easier to assign 16 bits (like all memory addresses 
in the LC-3) to each. In the case of KBDR, bits [7:0] are used for the data, and 
bits [15:8] contain xOO. In the case of KBSR, bit [15] contains the synchroniza-
tion mechanism, that is, the Ready bit. Figure 8.1 shows the two device registers 
needed by the keyboard. 

8.2.2 The Basic Input Service Routine 
KBSR[15] controls the synchronization of the slow keyboard and the fast pro-
cessor. When a key on the keyboard is struck, the ASCII code for that key is 
loaded into KBDR[7:0] and the electronic circuits associated with the keyboard 
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KBDR 

KBSR 

Figure 8 .1 Keyboard device registers 

automatically set KBSR[15] to 1. When the LC-3 reads KBDR, the electronic 
circuits associated with the keyboard automatically clear KBSR[15], allowing 
another key to be struck. IfKBSR[15] = 1, the ASCII code corresponding to the 
last key struck has not yet been read, and so the keyboard is disabled. 

If input/output is controlled by the processor (i.e., via polling), then a program 
can repeatedly test KBSR[15] until it notes that the bit is set. At that point, the 
processor can load the ASCII code contained in KBDR into one of the LC-3 
registers. Since the processor only loads the ASCII code if KBSR[15] is 1, there 
is no danger of reading a single typed character multiple times. Furthermore, since 
the keyboard is disabled until the previous code is read, there is no danger of the 
processor missing characters that were typed. In this way, KBSR[15] provides 
the mechanism to guarantee that each key typed will be loaded exactly once. 

The following input routine loads RO with the ASCII code that has been 
entered through the keyboard and then moves on to the NEXT_TASK in the 
program. 

01 START LDI 
02 BRzp 
03 LDI 
04 BRnzp 
05 A .FILL 
06 B .FILL 

Rl, A 
START 
R0, B 
NEXTJTASK 
xFEOO 
XFE02 

Test for 
character input 

Go to the next task 
Address of KBSR 
Address of KBDR 

As long as KBSR[15] is 0, no key has been struck since the last time the processor 
read the data register. Lines 01 and 02 comprise a loop that tests bit [ 15] of KBSR. 
Note the use of the LDI instruction, which loads Rl with the contents of xFEOO, 
the memory-mapped address of KBSR. If the Ready bit, bit [15], is clear, BRzp 
will branch to START and another iteration of the loop. When someone strikes a 
key, KBDR will be loaded with the ASCII code of that key and the Ready bit of 
KBSR will be set. This will cause the branch to fall through and the instruction at 
line 03 to be executed. Again, note the use of the LDI instruction, which this time 
loads R0 with the contents of xFE02, the memory-mapped address of KBDR. 
The input routine is now done, so the program branches unconditionally to its 
NEXT TASK. 

8.2.3 Implementation of Memory-Mapped Input 
Figure 8.2 shows the additional data path required to implement memory-mapped 
input. You are already familiar, from Chapter 5, with the data path required to 
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Figure 8 .2 Memory-mapped input 

carry out the EXECUTE phase of the load instructions. Essentially three steps 
are required: 

1. The MAR is loaded with the address of the memory location to be read. 
2. Memory is read, resulting in MDR being loaded with the contents at the 

specified memory location. 
3. The destination register (DR) is loaded with the contents of MDR. 

In the case of memory-mapped input, the same set of steps are carried out, 
except instead of MAR being loaded with the address of a memory location, MAR 
is loaded with the address of a device register. Instead of the address control logic 
enabling memory to read, the address control logic selects the corresponding 
device register to provide input to the MDR. 

8 .3 Oul-pur to rhe Moni tor 
8.3.1 Basic Output Registers (the DDR and the DSR) 
Output works in a way very similar to input, with DDR and DSR replacing the 
roles of KBDR and KBSR, respectively. DDR stands for Display Data Register, 
which drives the monitor display. DSR stands for Display Status Register. In the 
LC-3, DDR is assigned address xFE06. DSR is assigned address xFE04. 

As is the case with input, even though an output character needs only eight 
bits and the synchronization mechanism needs only one bit, it is easier to assign 
16 bits (like all memory addresses in the LC-3) to each output device register. In 
the case of DDR, bits [7:0] are used for data, and bits [15:8] contain xOO. In the 
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Figure 8 .3 Monitor device registers 

case of DSR, bit [15] contains the synchronization mechanism, that is, the Ready 
bit. Figure 8.3 shows the two device registers needed by the monitor. 

8.3.2 The Basic Output Service Routine 
DSR[15] controls the synchronization of the fast processor and the slow monitor 
display. When the LC-3 transfers an ASCII code to DDR[7:0] for outputting, the 
electronics of the monitor automatically clear DSR[15] as the processing of the 
contents of DDR[7:0] begins. When the monitor finishes processing the character 
on the screen, it (the monitor) automatically sets DSR[15]. This is a signal to 
the processor that it (the processor) can transfer another ASCII code to DDR 
for outputting. As long as DSR[15] is clear, the monitor is still processing the 
previous character, so the monitor is disabled as far as additional output from the 
processor is concerned. 

If input/output is controlled by the processor (i.e., via polling), then a program 
can repeatedly test DSR[ 15] until it notes that the bit is set, indicating that it is OK 
to write a character to the screen. At that point, the processor can store the ASCII 
code for the character it wishes to write into DDR[7:0], setting up the transfer of 
that character to the monitor's display. 

The following routine causes the ASCII code contained in RO to be displayed 
on the monitor: 

01 
02 
03 
04 
05 
06 

START LDI Rl, A 
BRzp START 
STI R0, B 
BRnzp NEXT_TASK 
.FILL XFE04 
. FILL xFE06 

Test to see if 
output register is ready 

Address of DSR 
Address of DDR 

Like the routine for KBDR and KBSR in Section 8.2.2, lines 01 and 02 repeat-
edly poll DSR[15] to see if the monitor electronics is finished yet with the last 
character shipped by the processor. Note the use of LDI and the indirect access 
to xFE04, the memory-mapped address of DSR. As long as DSR[15] is clear, 
the monitor electronics is still processing this character, and BRzp branches to 
START for another iteration of the loop. When the monitor electronics finishes 
with the last character shipped by the processor, it automatically sets DSR[15] 
to 1, which causes the branch to fall through and the instruction at line 03 to be 
executed. Note the use of the STI instruction, which stores R0 into xFE06, the 
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memory-mapped address of DDR. The write to DDR also clears DSR[15], dis-
abling for the moment DDR from further output. The monitor electronics takes 
over and writes the character to the screen. Since the output routine is now done, 
the program unconditionally branches (line 04) to its NEXTJTASK. 

8.3.3 Implementation of Memory-Mapped Output 
Figure 8.4 shows the additional data path required to implement memory-mapped 
output. As we discussed previously with respect to memory-mapped input, 
the mechanisms for handling the device registers provide very little additional 
complexity to what already exists for handling memory accesses. 

In Chapter 5, you became familiar with the process of carrying out the 
EXECUTE phase of the store instructions. 

1. The MAR is loaded with the address of the memory location to be written. 
2. The MDR is loaded with the data to be written to memory. 
3. Memory is written, resulting in the contents of MDR being stored in the 

specified memory location. 

In the case of memory-mapped output, the same steps are carried out, except 
instead of MAR being loaded with the address of a memory location, MAR is 
loaded with the address of a device register. Instead of the address control logic 
enabling memory to write, the address control logic asserts the load enable signal 
of DDR. 

Membry-mapped output also requires the ability to read output device reg-
isters. You saw in Section 8.3.2 that before the DDR could be loaded, the Ready 
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Figure 8.4 Memory-mapped output 
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bit had to be in state 1, indicating that the previous character had already been 
written to the screen. The LDI and BRzp instructions on lines 01 and 02 perform 
that test. To do this the LDI reads the output device register DSR, and BRzp tests 
bit [15]. If the MAR is loaded with xFE04 (the memory-mapped address of the 
DSR), the address control logic selects DSR as the input to the MDR, where it is 
subsequently loaded into Rl and the condition codes are set. 

. 8.3.4 Example: Keyboard Echo 
When we type at the keyboard, it is helpful to know exactly what characters we 
have typed. We can get this echo capability easily (without any sophisticated 
electronics) by simply combining the two routines we have discussed. The key 
typed at the keyboard is displayed on the monitor. 

01 START LDI Rl, KBSR ; Test for character input 
02 BRzp START 
03 LDI R0, KBDR 
04 ECHO LDI Rl, DSR ; Test output register ready 
05 BRzp ECHO 
06 STI R0, DDR 
07 BRnzp NEXT_TASK 
08 KBSR .FILL xFEOO ; Address of KBSR 
09 KBDR .FILL XFE02 ; Address of KBDR 
OA DSR .FILL XFE04 ; Address of DSR 
0B DDR .FILL xFE06 ; Address of DDR 

8.4 II More Sophisticated Input Routine 
In the example of Section 8.2.2, the input routine would be a part of a program 
being executed by the computer. Presumably, the program requires character 
input from the keyboard. But how does the person sitting at the keyboard know 
when to type a character? Sitting there, the person may wonder whether or 
not the program is actually running, or if perhaps the computer is busy doing 
something else. 

To let the person sitting at the keyboard know that the program is waiting for 
input from the keyboard, the computer typically prints a message on the monitor. 
Such a message is often referred to as a prompt. The symbol that is displayed by 
your operating system (for example, % or C:) or by your editor (for example,:) 
are examples of prompts. 

The program fragment shown in Figure 8.5 obtains keyboard input via polling 
as we have shown in Section 8.2.2 already. It also includes a prompt to let the 
person sitting at the keyboard know when it is time to type a key. Let's examine 
this program fragment in parts. 

You are already familiar with lines 13 through 19 and lines 25 through 28, 
which correspond to the code in Section 8.3.4 for inputting a character via the 
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START 

LI 

Loop 

L2 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
IB 
1C 
ID 
IE 
IF 
20 
21 
22 
23 
24 
25 
26 
27 
2 8 
29 
2A 
Figure 8.5 

Input 

L3 

L4 

ST 
ST 
ST 

LD 
LDI 
BRzp 
STI 

LEA 
LDR 
BRz 
LDI 
BRzp 
STI 
ADD 
BRnzp 

LDI 
BRzp 
LDI 
LDI 
BRzp 
STI 

LDI 
BRzp 
STI 
LD 
LD 
LD 
BRnzp 

Rl,SaveRl 
R2,SaveR2 
R3,SaveR3 

R2/Newline 
R3,DSR 
LI 
R2,DDR 

Rl,Prompt 
R0,R1,#0 
Input 
R3,DSR 
L2 
R0,DDR 
R1,R1,#1 
Loop 

R3,KBSR 
Input 
R0,KBDR 
R3,DSR 
L3 
R0,DDR 

R3,DSR 
L4 
R2,DDR 
Rl,SaveRl 
R2,SaveR2 
R3,SaveR3 
NEXT TASK 

Save registers needed 
by this routine 

SaveRl 
SaveR2 
SaveR3 
DSR 
DDR 
KBSR 
KBDR 
Newline .FILL 
Prompt .STRINGZ 

.BKLW 1 

.BKLW 1 

.BKLW 1 

.FILL XFE04 

.FILL XFE06 

.FILL xFEOO 

.FILL XFE02 
xOOOA 

1 * Input a 
The input routine for the LC-3 keyboard 

Loop until monitor is ready 
Move cursor to new clean line 

Starting address of prompt string 
Write the input prompt 
End of prompt string 

Loop until monitor is ready 
Write next prompt character 
Increment prompt pointer 
Get next prompt character 

Poll until a character is typed 
Load input character into R0 

Loop until monitor is ready-
Echo input character 

Loop until monitor is ready 
Move cursor to new clean line 
Restore registers 
to original values 

Do the program's next task 

Memory for registers saved 

; ASCII code for newline 
characters ' 

keyboard and echoing it on the monitor. Lines 01 through 03, lines ID through 
IF, and lines 22 through 24 recognize that this input routine needs to use general 
purpose registers R l , R2, and R3. Unfortunately, they most likely contain values 
that will still be needed after this routine has finished. To prevent the loss of those 
values, the ST instructions in lines 01 through 03 save them in memory locations 
SaveRl, SaveR2, and SaveR3, before the input routine starts its business. These 
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three memory locations have been allocated by the .BLKW pseudo-ops in lines 22 
through 24. After the input routine is finished and before the program branches 
unconditionally to its NEXT_TASK (line 20), the LD instructions in lines ID 
through IF restore the original values saved to their rightful locations in Rl , R2, 
and R3. 

This leaves lines 05 through 08, OA through 11, 1A through 1C, 29 and 2A. 
These lines serve to alert the person sitting at the keyboard that it is time to type 
a character. 

Lines 05 through 08 write the ASCII code xOA to the monitor. This is the 
ASCII code for a new line. Most ASCII codes correspond to characters that are 
visible on the screen. A few, like xOA, are control characters. They cause an action 
to occur. Specifically, the ASCII code xOA causes the cursor to move to the far 
left of the next line on the screen. Thus the name Newline. Before attempting to 
write xOA, however, as is always the case, DSR[15] is tested (line 6) to see if 
DDR can accept a character. If DSR[15] is clear, the monitor is busy, and the loop 
(lines 06 and 07) is repeated. When DSR[15] is 1, the conditional branch (line 7) 
is not taken, and xOA is written to DDR for outputting (line 8). 

Lines OA through 11 cause the prompt input a character> to be written 
to the screen. The prompt is specified by the .STRINGZ pseudo-op on line 2A and 
is stored in 19 memory locations—18 ASCII codes, one per memory location, 
corresponding to the 18 characters in the prompt, and the terminating sentinel 
xOOOO. 

Line 0C iteratively tests to see if the end of the string has been reached (by 
detecting xOOOO), and if not, once DDR is free, line OF writes the next character 
in the input prompt into DDR. When xOOOO is detected, the program knows that 
the entire input prompt has been written to the screen and branches to the code 
that handles the actual keyboard input (starting at line 13). 

After the person at the keyboard has typed a character and it has been echoed 
(lines 13 to 19), the program writes one more new line (lines 1A through 1C) 
before branching to its NEXT_TASK. 

8.5 Interrupt-Driven I/O 
In Section 8.1.4, we noted that interaction between the processor and an I/O device 
can be controlled by the processor (i.e., polling) or it can be controlled by the 
I/O device (i.e., interrupt driven). In Sections 8.2, 8.3, and 8.4, we have studied 
several examples of polling. In each case, the processor tested the Ready bit of the 
status register, again and again, and when it was finally 1, the processor branched 
to the instruction that did the input or output operation. 

We are now ready to study the case where the interaction is controlled by the 
I/O device. 

8.5.1 What Is Interrupt-Driven 1/0? 
The essence of interrupt-driven I/O is the notion that an I/O device that may or 
may not have anything to do with the program that is running can (1) force that 
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Program A is executing instruction n 
Program A is executing instruction n+1 
Program A is executing instruction n+2 

1: Interrupt signal is detected 
1: Program A is put into suspended animation 
2: The needs of the I/O device start being carried out 
2: The needs of the I/O device are being carried out 
2: The needs of the I/O device are being carried out 
2: The needs of the I/O device are being carried out 
2: The needs of the I/O device have been carried out 
3: Program A is brought back to life 

Program A is executing instruction n+3 
Program A is executing instruction n+4 

Figure 8 .6 Instruction execution flow for interrupt-driven I/O 

program to stop, (2) have the processor carry out the needs of the I/O device, and 
then (3) have the stopped program resume execution as if nothing had happened. 
These three stages of the instruction execution flow are shown in Figure 8.6. 

As far as Program A is concerned, the work carried out and the results com-
puted are no different from what would have been the case if the interrupt had 
never happened; that is, as if the instruction execution flow had been the following: 

Program A is executing instruction n 
Program A is executing instruction n+1 
Program A is executing instruction n+2 
Program A is executing instruction n+3 
Program A is executing instruction n+4 

8.5.2 Why Have Interrupt-Driven I/O? 
As is undoubtedly clear, polling requires the processor to waste a lot of time 
spinning its wheels, re-executing again and again the LDI and BR instructions 
until the Ready bit is set. With interrupt-driven I/O, none of that testing and 
branching has to go on. Interrupt-driven I/O allows the processor to spend its time 
doing what is hopefully useful work, executing some other program perhaps, until 
it is notified that some I/O device needs attention. 
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Suppose we are asked lo wrile a program thai lakes a sequence of 100 characters 
typed on a keyboard and processes the information contained in those 100 characters. 
Assume llic characters are typed at the rale of 80 words/minute, which corresponds 
to one character every 0.125 seconds. Assume ihc processing of Ihe 100-characler 
sequence lakes 12.49999 seconds, and that our program is lo perform Ihis process on 
1.000 consecutive sequences. I low long will it take our program lo complete the task? 
(Why did we pick 12.499997 To make the numbers come out nice!) 

We could obtain each character input by polling, as in Section 8.2. If we did. we 
would waste a lot of time waiting tor the "next" character lo be typed. It would take 
100 • 0.125 or 12.5 seconds to get a 100-characler sequence. 

On the other hand, if we use inlerrupl-driven I/O, ihe processor docs not waste 
any time re-executing the LDI and BR instructions while waiting for a character to 
be typed. Rather, the processor can be busy working on the previous I (X)-characler 
sequence that was typed, except for those very small fractions of time when it is 
interrupted by the I/O device lo read the next character typed. Let's say that to read 
die next character typed requires executing a 10-inslruelion program thai takes on 
the average (MXMMXKN)! seconds to execute each instruction. That means 0.0000001 
seconds for each character typed, or 0.00001 seconds for the entire 100-characler 
sequence. That is, with interrupt-driven I/O. since the processor is only needed when 
charactcrs are actually being read, the lime required for each 100-character sequence 
is 0.00001 seconds, instead of 12.50000 seconds. The remaining 12.49999 of every 
12.50(X)0 seconds, the processor is available to do useful work. For example, il can 
process ihe previous 100-character sequence. 

The hottom line: With polling, the lime lo complete the entire task for each 
sequence is 24.9999 seconds. 12.5 seconds to obtain the 100 characters + 12.49999 
seconds to process them. With interrupt-driven I/O, the time to complete the entire task 
for each sequence after the lirsl is 12.5 seconds. 0.00001 seconds to obtain the char-
acters + 12.49999 seconds to process them. l ;or 1,1)00 sequences that is the difference 
between 7 hours and 3 \ hours. 

8.5.3 Generation of the Interrupt Signal 
There are two parts to interrupt-driven I/O, (1) the enabling mechanism that allows 
an I/O device to interrupt the processor when it has input to deliver or is ready to 
accept output, and (2) the mechanism that manages the transfer of the I/O data. 
The two parts can be briefly described as: 

1. generating the interrupt signal, which stops the currently executing process, 
and 

2. handling the request demanded by this signal. 

The first part we will study momentarily. We will examine the various things 
that must come together to force the processor to stop what it is doing and pay 
attention to the interrupt request. 
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The second part, unfortunately, we will have to put off until Section 10.2. 
To handle interrupt requests, the LC-3 uses a stack, and we will not get to stacks 
until Chapter 10. 

Now, then, part 1. Several things must be true for an I/O device to actually 
interrupt the processor: 

1. The I/O device must want service. 
2. The device must have the right to request the service. 
3. The device request must be more urgent than what the processor is currently 

If all three elements are present, the processor stops executing the program 
and takes care of the interrupt. 

The Interrupt Signal from the Device 

For an I/O device to generate an interrupt request, the first two elements in the 
previous list must be true: The device must want service, and it must have the 
right to request that service. 

The first element we have discussed at length in the study of polling. It is the 
Ready bit of the KBSR or the DSR. That is, if the I/O device is the keyboard, it 
wants service if someone has typed a character. If the I/O device is the monitor, it 
wants service (i.e., the next character to output) if the associated electronic circuits 
have successfully completed the display of the last character. In both cases, the 
I/O device wants service when the corresponding Ready bit is set. 

The second element is an interrupt enable bit, which can be set or cleared by 
the processor, depending on whether or not the processor wants to give the I/O 
device the right to request service. In most I/O devices, this interrupt enable (IE) 
bit is part of the device status register. In the KBSR and DSR shown in Figure 8.7, 
the IE bit is bit [14]. The interrupt request from the I/O device is the logical 
AND of the IE bit and the Ready bit, as is also shown in Figure 8.7. 

If the interrupt enable bit (bit [14]) is clear, it does not matter whether the 
Ready bit is set; the I/O device will not be able to interrupt the processor. In that 
case, the program will have to poll the I/O device to determine if it is ready. 

If bit [14] is set, then interrupt-driven I/O is enabled. In that case, as soon 
as someone types a key (or as soon as the monitor has finished processing the 

doing. 

151413 0 
KBSR 

to the processor 

151413 0 
DSR 

—Interrupt signal to the processor 

F i g u r e 8 . 7 In terrupt enable bits and their use 



8.5 Interrupt-Driven I/O 213 

last character), bit [15] is set. This, in turn, asserts the output of the AND gate, 
causing an interrupt request to be generated from the I/O device. 

The Importance of Priority 

The third element in the list of things that must be true for an I/O device to 
actually interrupt the processor is whether the request is sufficiently urgent. Every 
instruction that the processor executes, it does with a stated level of urgency. The 
term we give for the urgency of execution is priority. 

We say that a program is being executed at a specified priority level. Almost 
all computers have a set of priority levels that programs can run at. The LC-3 
has eight priority levels, PLO,.. PL7. The higher the number, the more urgent the 
program. The PL of a program is usually the same as the PL (i.e., urgency) of the 
request to run that program. If a program is running at one PL, and a higher-level 
PL request seeks access to the computer, the lower-priority program suspends 
processing until the higher-PL program executes and satisfies that more urgent 
request. For example, a computer's payroll program may run overnight, and at 
PLO. It has all night to finish—not terribly urgent. A program that corrects for 
a nuclear plant current surge may run at PL6. We are perfectly happy to let the 
payroll wait while the nuclear power correction keeps us from being blown to bits. 

For our I/O device to successfully stop the processor and start an interrupt-
driven I/O request, the priority of the request must be higher than the priority 
of the program it wishes to interrupt. For example, we would not normally want 
to allow a keyboard interrupt from a professor checking e-mail to interrupt the 
nuclear power correction program. 

We will see momentarily that the processor will stop executing its current 
program and service an interrupt request if the INT signal is asserted. Figure 8.8 
shows what is required to assert the INT signal and where the notion of priority 
level comes into play. Figure 8.8 shows the status registers of several devices 
operating at various priority levels. Any device that has bits [14] and [15] both 
set asserts its interrupt request signal. The interrupt request signals are input to a 
priority encoder, a combinational logic structure that selects the highest priority 
request from all those asserted. If the PL of that request is higher than the PL 
of the currently executing program, the INT signal is asserted and the executing 
program is stopped. 

The Test for INT 

The final step in the first part of interrupt-driven I/O is the test to see if the processor 
should stop and handle an interrupt. Recall from Chapter 4 that the instruc-
tion cycle sequences through the six phases of FETCH, DECODE, EVALUATE 
ADDRESS, FETCH OPERAND, EXECUTE, and STORE RESULT. Recall fur-
ther that after the sixth phase, the control unit returns to the first phase, that is, 
the FETCH of the next instruction. 

The additional logic to test for the interrupt signal is to replace that last sequen-
tial step of always going from STORE RESULT back to FETCH, as follows: The 
STORE RESULT phase is instead accompanied by a test for the interrupt signal 
INT. If INT is not asserted, then it is business as usual, with the control unit 
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returning to the FETCH phase to start processing the next instruction. If INT 
is asserted, then the control unit does two things before returning to the FETCH 
phase. First it saves enough state information to be able to return to the interrupted 
program where it left off. Second it loads the PC with the starting address of the 
program that is to carry out the requirements of the I/O device. How it does that 
is the topic of Section 10.2, which we will study after we learn how stacks work. 

8.G Implementation of Memory-Napped I/O, Revisited 
We showed in Figures 8.2 and 8.4 partial implementations of the data path to 
handle (separately) memory-mapped input and memory-mapped output. We have 
also learned that in order to support interrupt-driven I/O, the two status registers 
must be writeable as well as readable. 

Figure 8.9 (reproduced from Figure C.3 of Appendix C) shows the data path 
necessary to support the full range of features we have discussed for the I/O 
device registers. The Address Control Logic block controls the input or output 
operation. Note that there are three inputs to this block. MIO.EN indicates whether 
a data movement from/to memory or I/O is to take place this clock cycle. MAR 
contains the address of the memory location or the memory-mapped address of 
an I/O device register. R.W indicates whether a load or a store is to take place. 
Depending on the values of these three inputs, the Address Control Logic does 
nothing (MIO.EN = 0), or provides the control signals to direct the transfer of 
data between the MDR and the memory or I/O registers. 
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DSR 

If R.W indicates a load, the transfer is from memory or I/O device to the 
MDR. The Address Control Logic block provides the select lines to INMUX to 
source the appropriate I/O device register or memory (depending on MAR) and 
also enables the memory if MAR contains the address of a memory location. 

If R.W indicates a store, the contents of the MDR are written either to memory 
or to one of the device registers. The Address Control Logic either enables a write 
to memory or it asserts the load enable line of the device register specified by the 
contents of the MAR. 

E x e r c i s e s 

8.1 a. What is a device register? 
b. What is a device data register? 
c. What is a device status register? 

8.2 Why is a Ready bit not needed if synchronous I/O is used? 
8.3 In Section 8.1.3, the statement is made that a typist would have trouble 

supplying keyboard input to a 300-MHz processor at the maximum rate 
(one character every 33 nanoseconds) that the processor can accept it. 
Assume an average word (including spaces between words) consists of 
six characters. How many words/minute would the typist have to type in 
order to exceed the processor's ability to handle the input? 

8.4 Are the following interactions usually synchronous or asynchronous? 
a. Between a remote control and a television set 
b. Between the mailcarrier and you, via a mailbox 
c. Between a mouse and your PC 

Under what conditions would each of them be synchronous? Under 
what conditions would each of them be asynchronous? 
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8.5 What is the purpose of bit [15] in the KBSR? 
8.6 What problem could occur if a program does not check the Ready bit of 

the KBSR before reading the KBDR? 

8.7 Which of the following combinations describe the system described in 
Section 8.2.2? 

a. Memory mapped and interrupt driven 
b. Memory mapped and polling 
c. Special opcode for I/O and interrupt driven 
d. Special opcode for I/O and polling 

8.8 Write a program that checks the initial value in memory location x4000 
to see if it is a valid ASCII code and if it is a valid ASCII code, prints the 
character. If the value in x4000 is not a valid ASCII code, the program 
prints nothing. 

8.9 What problem is likely to occur if the keyboard hardware does not check 
the KBSR before writing to the KBDR? 

8.10 What problem could occur if the display hardware does not check the 
DSR before writing to the DDR? 

8.11 Which is more efficient, interrupt-driven I/O or polling? Explain. 
8.12 Adam H. decided to design a variant of the LC-3 that did not need a 

keyboard status register. Instead, he created a readable/writable keyboard 
data and status register (KBDSR), which contains the same data as the 
KBDR. With the KBDSR, a program requiring keyboard input would 
wait until a nonzero value appeared in the KBDSR. The nonzero value 
would be the ASCII value of the last key press. Then the program would 
write a zero into the KBDSR indicating that it had read the key press. 
Modify the basic input service of Section 8.2.2 to implement Adam's 
scheme. 

8.13 Some computer engineering students decided to revise the LC-3 for their 
senior project. In designing the LC-4, they decided to conserve on device 
registers by combining the KBSR and the DSR into one status register: 
the IOSR (the input/output status register). IOSR[15] is the keyboard 
device Ready bit and IOSR[14] is the display device Ready bit. What are 
the implications for programs wishing to do I/O? Is this a poor design 
decision? 

8.14 An LC-3 Load instruction specifies the address xFE02. How do we 
know whether to load from the KBDR or from memory location 
xFE02? 
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8.15 Interrupt-driven I/O: 
a. What does the following LC-3 program do? 

.ORIG 
LD 

x3 000 
R3 , A 

AGAIN 
STI 
LD 

R3, KBSR 
RO, B 
x21 

A 
B 
KBSR 

TRAP 
BRnzp 
.FILL 
.FILL 
.FILL 
.END 

AGAIN 
x4 000 
X0032 
xFEOO 

b. If someone strikes a key, the program will be interrupted and the 
keyboard interrupt service routine will be executed as shown below. 
What does the keyboard interrupt service routine do? 

NOTE: RTI will be studied in chapter 10. 

c. Finally, suppose the program of part a started executing, and someone 
sitting at the keyboard struck a key. What would you see on the 
screen? 

8.16 What does the following LC-3 program do? 

.ORIG 
LDI 
TRAP 
TRAP 
RTI 

xlOOO 
R0, KBDR 
x21 
x21 

KBDR .FILL 
.END 

XFE02 

.ORIG X3000 
LD R0 , ASCI I 
LD Rl,NEG 

AGAIN LDI R2,DSR 
BRzp AGAIN 
STI R0,DDR 
ADD R0,R0,#1 
ADD R2 , R0 , Rl 
BRnp AGAIN 
HALT 

ASCII .FILL XG041 
NEG .FILL XFFB6 ; -X004A 
DSR .FILL XFE04 
DDR .FILL XFE06 

.END 



c h a p t e r 

9 
TRAP 

9.1 LC-3 TRAP Routines 
9.1.1 Introduction 
Recall Figure 8.5 of the previous chapter. In order to have the program successfully 
obtain input from the keyboard, it was necessary for the programmer (in Chapter 
8) to know several things: 

1. The hardware data registers for both the keyboard and the monitor: the 
monitor so a prompt could be displayed, and the keyboard so the program 
would know where to look for the input character. 

2. The hardware status registers for both the keyboard and the monitor: the 
monitor so the program would know when it was OK to display the next 
character in the input prompt, and the keyboard so the program would know 
when someone had struck a key. 

3. The asynchronous nature of keyboard input relative to the executing 
program. 

This is beyond the knowledge of most application programmers. In fact, in 
the real world, if application programmers (or user programmers, as they are 
sometimes called) had to understand I/O at this level, there would be much less 
I/O and far fewer programmers in the business. 

There is another problem with allowing user programs to perform I/O activity 
by directly accessing KBDR and KBSR. I/O activity involves the use of device 
registers that are shared by many programs. This means that if a user programmer 

Routines and Subrout ines 
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User Program 

were allowed to access the hardware registers, and he/she messed up, it could 
create havoc for other user programs. Thus, it is ill-advised to give user program-
mers access to these registers. We say the hardware registers are privileged and 
accessible only to programs that have the proper degree of privilege. 

The notion of privilege introduces a pretty big can of worms. Unfortunately, 
we cannot do much more than mention it here and leave serious treatment for 
later. For now, we simply note that there are resources that are not accessible to 
the user program, and access to those resources is controlled by endowing some 
programs with sufficient privilege and other programs without. Having said that, 
we move on to our problem at hand, a "better" solution for user programs that 
require input and/or output. 

The simpler solution as well as the safer solution to the problem of user 
programs requiring I/O involves the TRAP instruction and the operating system. 
The operating system does have the proper degree of privilege. 

We were introduced to the TRAP instruction in Chapter 5. We saw that for 
certain tasks, a user program could get the operating system to do the job for 
it by invoking the TRAP instruction. That way, the user programmer does not 
have to know the gory details previously mentioned, and other user programs are 
protected from the consequences of inept user programmers. 

Figure 9.1 shows a user program that, upon reaching location x4000, needs an 
I/O task performed. The user program requests the operating system to perform 
the task on behalf of the user program. The operating system takes control of the 
computer, handles the request specified by the TRAP instruction, and then returns 
control to the user program, at location x4001. We often refer to the request made 
by the user program as a service call or a system call. 

9.1.2 The TRAP Mechanism 
The TRAP mechanism involves several elements, as follows: 

1. A set of service routines executed on behalf of user programs by the 
operating system. These are part of the operating system and start at 
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X0020 X0400 

X0021 X0430 

X0022 X0450 

X0023 X04A0 

X0024 X04E0 

X0025 xFD70 
• 
• 
• 
• 

• 
• 
• 
• 

Figure 9 . 2 The Trap Vector Table 

arbitrary addresses in memory. The LC-3 was designed so that up to 256 
service routines can be specified. Table A.2 in Appendix A contains the 
LC-3's current complete list of operating system service routines. 

2. A table of the starting addresses of these 256 service routines. This table 
is stored in memory locations xOOOO to xOOFF. The table is referred to by 
various names by various companies. One company calls this table the 
System Control Block. Another company calls it the Trap Vector Table. 
Figure 9.2 provides a snapshot of the Trap Vector Table of the LC-3, with 
specific starting addresses highlighted. Among the starting addresses are the 
one for the character output service routine (location x0430), which is 
contained in location x0021, the one for the keyboard input service routine 
(location x04A0), contained in location x0023, and the one for the machine 
halt service routine (location xFD70), contained in location x0025. 

3. The TRAP instruction. When a user program wishes to have the operating 
system execute a specific service routine on behalf of the user program, and 
then return control to the user program, the user program uses the TRAP 
instruction. 

4. A linkage back to the user program. The service routine must have a 
mechanism for returning control to the user program. 

9.1.3 The TRAP Instruction 
The TRAP instruction causes the service routine to execute by doing two things: 

• It changes the PC to the starting address of the relevant service routine on the 
basis of its trap vector. 

• It provides a way to get back to the program that initiated the TRAP 
instruction. The "way back" is referred to as a linkage. 

The TRAP instruction is specified as follows. The TRAP instruction is made 
up of two parts: the TRAP opcode 1111 and the trap vector (bits [7:0]). Bits [11:8] 
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must be zero. The trap vector identifies the service routine the user program wants 
the operating system to perform. In the following example, the trap vector is x23. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 

TRAP trap vector 

The EXECUTE phase of the TRAP instruction's instruction cycle does four 
things: 

1. The 8-bit trap vector is zero-extended to 16 bits to form an address, which is 
loaded into the MAR. For the trap vector x23, that address is x0023, which 
is the address of an entry in the Trap Vector Table. 

2. The Trap Vector Table is in memory locations xOOOO to xOOFF. The entry at 
x0023 is read and its contents, in this case x04A0 (see Figure 9.2), are 
loaded into the MDR. 

3. The general purpose register R7 is loaded with the current contents of the 
PC. This will provide a way back to the user program, as will become clear 
momentarily. 

4. The contents of the MDR are loaded into the PC, completing the instruction 
cycle. 

Since the PC now contains x04A0, processing continues at memory address 
x04A0. 

Location x04A0 is the starting address of the operating system service routine 
to input a character from the keyboard. We say the trap vector "points" to the 
starting address of the TRAP routine. Thus, TRAP x23 causes the operating 
system to start executing the keyboard input service routine. 

In order to return to the instruction following the TRAP instruction in the user 
program (after the service routine has ended), there must be some mechanism for 
saving the address of the user program's next instruction. Step 3 of the EXECUTE 
phase listed above provides this linkage. By storing the PC in R7 before loading 
the PC with the starting address of the service routine, the TRAP instruction 
provides the service routine with all the information it needs to return control to 
the user program at the proper location. You know that the PC was already updated 
(in the FETCH phase of the TRAP instruction) to point to the next instruction. 
Thus, at the start of execution of the trap service routine, R7 contains the address 
of the instruction in the user program that follows the TRAP instruction. 

9.1.4 The Complete Mechanism 
We have shown in detail how the TRAP instruction invokes the service routine 
to do the user program's bidding. We have also shown how the TRAP instruc-
tion provides the information that the service routine needs to return control to 
the correct place in the user program. The only thing left is to show the actual 
instruction in the service routine that returns control to the correct place in the 
user program. Recall the JMP instruction from Chapter 5. Assume that during 
the execution of the trap service routine, the contents of R7 was not changed. If 
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User program T r a p V e c t o r Table 

F i g u r e 9 . 3 Flow of control f rom a user program to an OS service routine and back 

that is the case, control can return to the correct location in the user program by 
executing JMP R7 as the last instruction in the trap service routine. 

Figure 9.3 shows the LC-3 using the TRAP instruction and the JMP instruc-
tion to implement the example of Figure 9.1. The flow of control goes from (A) 
within a user program that needs a character input from the keyboard, to (B) the 
operating system service routine that performs that task on behalf of the user 
program, back to the user program (C) that presumably uses the information 
contained in the input character. 

Recall that the computer continually executes its instruction cycle (FETCH, 
DECODE, etc.). As you know, the way to change the flow of control is to change 
the contents of the PC during the EXECUTE phase of the current instruction. In 
that way, the next FETCH will be at a redirected address. 

Thus, to request the character input service routine, we use the TRAP instruc-
tion with trap vector x23 in our user program. Execution of that instruction causes 
the contents of memory location x0023 (which, in this case, contains x04A0) to 
be loaded into the PC and the address of the instruction following the TRAP 
instruction to be loaded into R7. The dashed lines on Figure 9.3 show the use of 
the trap vector to obtain the starting address of the trap service routine from the 
Trap Vector Table. 

The next instruction cycle starts with the FETCH of the contents of x04A0, 
which is the first instruction of the operating system service routine that requests 
(and accepts) keyboard input. That service routine, as we will see momentarily, is 
patterned after the keyboard input routine we studied in Section 8.4. Recall that 
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upon completion of that input routine (see Figure 8.5), RO contains the ASCII 
code of the key that was typed. 

The trap service routine executes to completion, ending with the JMP R7 
instruction. Execution of JMP R7 loads the PC with the contents of R7. If R7 was 
not changed during execution of the service routine, it still contains the address 
of the instruction following the TRAP instruction in the initiating user program. 
Thus, the user program resumes execution, with RO containing the ASCII code 
of the keyboard character that was typed. 

The JMP R7 instruction is so convenient for providing a return to the user 
program that the LC-3 assembly language provides the mnemonic RET for this 
instruction, as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

RET 

The following program is provided to illustrate the use of the TRAP instruction. 
It can also be used to amuse the average four-year-old! 

Write a game program to do the following: A person is sitting at a keyboard, i-uch time 
the person types a capital letter, the program outputs the lowercase version of that letter. 
If the person types a 7. the program terminates. 

The following I.C-3 assembly language program will do the job. 

01 . .ORIG X30Q0 
02 LD R2, TERM. ; Load -7 
03 ^ s R3,ASCII Load ASCII difference 
04 AGAIN TRAP x2 3 ; Request ke yboard 
0 c ADD R1,R2,R0 ; Test for t erminating 
06 BRz EXIT ; character 
07 ADD R0,R0,R3 ; Change to lowercase 
08 TRAP x21 ; Output to the monitor 
0 9 BRnzp AGAIN ; ... and do it again! 
OA TERM .FILL xFFC9 ; FFC9 is ne gative of AS. 
0B 7\ O /I T T PITT T AbL.L L . b ILL x002 0 
A UL. EXIT - TRAP x25 ; Halt 
on .END 
The program executes as follows: The program first loads constants xFFCy and 

x0020 into R2 and R3. The constant xH ;C9, which is the negative of the ASCIJ code 
for 7. is used to lest the character typed at the keyboard to see if the four-year-old wants 
to continue playing. The constant x(X)20 is the zero-extended difference between the 
ASCII code for a capital letter and the ASCII code for that same letter's lowercase 
representation. For example, the ASCII code for A is x41; the ASCII code for a is xfi I. 
The ASCII codes for Z and / arc x5A and x7A. respectively. 
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Then TRAP \23 is executed, which invokes the keyboard input service routine. 
When ihe service routine is finished, control returns lo the application program (at 
line 05), and RO contains the ASCII code of the character typed. The ADD and BR/ 
instructions test for the terminating character 7. If the character typed is not a 7, the 
ASCII uppercase/lowercase difference (x0020) is added to the input ASCII code, storing 
the result in RO. Then a TRAP to the monitor output service routine is called. This causes 
the lowercase representation of the same letter lo be displayed on the monitor. When 
control returns to the application program (this time at line 09), an unconditional BR lo 
AGAIN is executed, and another request for keyboard input appears. 

The correct operation of the program in this example assumes that the person 
sitting at the keyboard only types capital letters and the value 7. What if the 
person types a $? A better solution to Example 9.1 would be a program that tests 
the character typed to be sure it really is a capital letter from among the 26 capital 
letters in the alphabet, and if it is not, takes corrective action. 

Question: Augment this program to add the test for bad data. That is, write a 
program that will type the lowercase representation of any capital letter typed and 
will terminate if anything other than a capital letter is typed. See Exercise 9.6. 

9.1.5 TRAP Routines for Handling I/O 
With the constructs just provided, the input routine described in Figure 8.5 can 
be slightly modified to be the input service routine shown in Figure 9.4. Two 
changes are needed: (1) We add the appropriate .ORIG and .END pseudo-ops. 
.ORIG specifies the starting address of the input service routine—the address 
found at location x0023 in the Trap Vector Table. And (2) we terminate the input 
service routine with the JMP R7 instruction (mnemonically, RET) rather than the 
BR NEXT_TASK, as is done on line 20 in Figure 8.5. We use JMP R7 because 
the service routine is invoked by TRAP x23. It is not part of the user program, as 
was the case in Figure 8.5. 

The output routine of Section 8.3.2 can be modified in a similar way, as shown 
in Figure 9.5. The results are input (Figure 9.4) and output (Figure 9.5) service 
routines that can be invoked simply and safely by the TRAP instruction with the 
appropriate trap vector. In the case of input, upon completion of TRAP x23, RO 
contains the ASCII code of the keyboard character typed. In the case of output, 
the initiating program must load RO with the ASCII code of the character it wishes 
displayed on the monitor and then invoke TRAP x21. 

9.1.6 TRAP Routine for Halting the Computer 
Recall from Section 4.5 that the RUN latch is ANDed with the crystal oscillator 
to produce the clock that controls the operation of the computer. We noted that 
if that 1-bit latch was cleared, the output of the AND gate would be 0, stopping 
the clock. 

Years ago, most ISAs had a HALT instruction for stopping the clock. Given 
how infrequently that instruction is executed, it seems wasteful to devote an 
opcode to it. In many modern computers, the RUN latch is cleared by a TRAP 
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01 ; Service Routine for Keyboard Input 
02 / 

03 .ORIG X04A0 
04 START ST Rl,SaveRl ; Save the values in the registers 
05 ST R2,SaveR2 ; that are used so that they 
06 ST R3,SaveR3 ; can be restored before RET 
07 / 

08 LD R2,Newline 
09 LI LDI R3,DSR ; Check DDR -- is it free? 
OA BRzp LI 
OB STI R2,DDR ; Move cursor to new clean line 
OC / 

OD LEA Rl,Prompt ; Prompt is starting address 
OE ; of prompt string 
IF Loop LDR R0,R1,#0 ; Get next prompt character 
10 BRz Input ; Check for end of prompt string 
11 L2 LDI R3,DSR 
12 BRzp L2 
13 STI R0,DDR ; Write next character of 
14 ; prompt string 
15 ADD R1,R1,#1 ; Increment prompt pointer 
16 BRnzp Loop 
17 / 

18 Input LDI R3,KBSR ; Has a character been typed? 
19 BRzp Input 

; Has a character been typed? 
1A LDI R0,KBDR ; Load it into R0 
IB L3 LDI R3,DSR 
1C BRzp L3 
ID STI R0,DDR ; Echo input character 
IE ; to the monitor 
IF / 

20 L4 LDI R3,DSR 
21 BRzp L4 
22 STI R2,DDR ; Move cursor to new clean line 
23 LD Rl,SaveRl ; Service routine done, restore 
24 LD R2,SaveR2 ; original values in registers. 
25 LD R3,SaveR3 
26 
27 

RET Return from trap (i.e., JMP R7) 
28 

/ 

SaveRl . BLKW 1 
29 SaveR2 . BLKW 1 
2A SaveR3 .BLKW 1 
2B DSR .FILL XFE04 
2C DDR .FILL XFE06 
2D KBSR .FILL xFEOO 
2E KBDR .FILL XFE02 
2F Newline .FILL xOOOA ; ASCII code for newline 
30 Prompt .STRINGZ "Input a characters 
31 .END 
F i g u r e 9 . 4 Character input service routine 
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01 .ORIG x043 0 / 

02 ST Rl, SaveRl / 

03 / 

04 ; Write the character 
05 TryWrite LDI Rl, DSR / 

06 BRzp TryWrite 
07 Writelt STI R0, DDR i 
08 
09 ; return from trap 
OA Return LD Rl, SaveRl 
0B RET 
0C DSR .FILL XFE04 
0D DDR .FILL XFE06 
0E SaveRl .BLKW 1 
OF .END 

System call starting address 
Rl will be used to poll the DSR 
hardware 

Get status 
Bit 15 on says display is ready 
Write character 

Restore registers 
Return from trap (JMP R7, actually) 
Address of display status register 
Address of display data register 

F i g u r e 9 . 5 Character output service routine 

routine. In the LC-3, the RUN latch is bit [15] of the Machine Control Register, 
which is memory-mapped to location xFFFE. Figure 9.6 shows the trap service 
routine for halting the processor, that is, for stopping the clock. 

First (lines 02, 03, and 04), registers R7, Rl , and R0 are saved. Rl and RO 
are saved because they are needed by the service routine. R7 is saved because its 
contents will be overwritten after TRAP x21 executes (line 09). Then (lines 08 
through 0D), the banner Halting the machine is displayed on the monitor. Finally 
(lines 11 through 14), the RUN latch (MCR[15]) is cleared by ANDing the MCR 
with 0111111111111111. That is, MCR[14:0] remains unchanged, but MCR[15] 
is cleared. Question: What instruction (or trap service routine) can be used to start 
the clock? 

01 .ORIG xFD70 ; Where this routine resides 
02 ST R7, SaveR7 
03 ST Rl, SaveRl ; Rl: a temp for MC register 
04 ST R0, SaveRO ; R0 is used as working space 
05 
06 ; print message that machine is halting 
07 
08 LD R0, ASCIINewLine 
0 9 TRAP x21 
OA LEA R0, Message 
0B TRAP x22 
0C LD R0, ASCIINewLine 
0D TRAP x21 
0E ; 
OF ; clear bit 15 at xFFFE to stop the machine 
10 ; 
11 LDI Rl, MCR ; Load MC register into Rl 
12 LD R0, MASK ; R0 = X7FFF 
13 AND R0, Rl, R0 ; Mask to clear the top bit 
14 STI R0, MCR ; Store R0 into MC register 
15 ; 
F i g u r e 9 . 6 HALT service routine for the LC-3 
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16 ; return from HALT routine. 
17 ; (how can this routine return if the machine is halted above? 
18 
19 LD Rl, SaveRl ; Restore registers 
1A LD R0, SaveRO 
IB LD R7, SaveR7 
1C RET ; JMP R7, actually 
ID 
IE ; Some constants 
IF 
20 ASCIINewLine .FILL xOOOA 
21 SaveRO .BLKW 1 
22 SaveRl .BLKW 1 
23 SaveR7 .BLKW 1 
24 Message .STRINGZ "Halting the machine." 
25 MCR .FILL xFFFE ; Address of MCR 
26 MASK .FILL X7FFF ; Mask to clear the top bit 
27 .END 
F i g u r e 9 . 6 HALT service routine for the LC-3 (continued) 

9.1.7 Saving and Restoring Registers 
One item we have mentioned in passing that we should emphasize more explicitly 
is the need to save the value in a register 

• if the value will be destroyed by some subsequent action, and 

• if we will need to use it after that subsequent action. 

Suppose we want to input from the keyboard 10 decimal digits, convert their 
ASCII codes into their binary representations, and store the binary values in 
10 successive memory locations, starting at the address Binary. The following 
program fragment does the job. 

01 LEA R3,Binary Initialize to first location 
02 LD R6,ASCII Template for line 05 
03 LD R7,COUNT Initialize to 10 
04 AGAIN TRAP x23 Get keyboard input 
05 ADD R0,R0,R6 Strip ASCII template 
06 STR R0,R3,#0 Store binary digit 
07 ADD R3,R3,#1 Increment pointer 
08 ADD R7,R7,#-1 Decrement COUNT. 
09 BRp AGAIN More characters? 
OA BRnzp NEXT_TASK 
0B ASCII .FILL xFFDO Negative of x0030. 
0C COUNT . FILL #10 
0D Binary -BLKW #10 
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The first step in the program fragment is initialization. We load R3 with the 
starting address of the memory space set aside to store the 10 decimal digits. We 
load R6 with the negative of the ASCII template. This is used to subtract x0030 
from each ASCII code. We load R7 with 10, the initial value of the count. Then 
we execute the loop 10 times, each time getting a character from the keyboard, 
stripping away the ASCII template, storing the binary result, and testing to see 
if we are done. But the program does not work! Why? Answer: The TRAP 
instruction in line 04 replaces the value 10 that was loaded into R7 in line 03 
with the address of the ADD R0,R0,R6 instruction. Therefore, the instructions in 
lines 08 and 09 do not perform the loop control function they were programmed 
to do. 

The message is this: If a value in a register will be needed after something 
else is stored in that register, we must save it before the something else hap-
pens and restore it before we can subsequently use it. We save a register value 
by storing it in memory; we restore it by loading it back into the register. In 
Figure 9.6, line 03 contains the ST instruction that saves Rl , line 11 contains the 
LDI instruction that loads Rl with a value to do the work of the trap service rou-
tine, line 19 contains the LD instruction that restores R1 to its original value before 
the service routine was called, and line 22 sets aside a location in memory for 
storing Rl . 

The save/restore problem can be handled either by the initiating program 
before the TRAP occurs or by the called program (for example, the service rou-
tine) after the TRAP instruction executes. We will see in Section 9.2 that the 
same problem exists for another class of calling/called programs, the subroutine 
mechanism. 

We use the term caller-save if the calling program handles the problem. 
We use the term callee-save if the called program handles the problem. The 
appropriate one to handle the problem is the one that knows which registers will 
be destroyed by subsequent actions. 

The callee knows which registers it needs to do the job of the called program. 
Therefore, before it starts, it saves those registers with a sequence of stores. After 
it finishes, it restores those registers with a sequence of loads. And it sets aside 
memory locations to save those register values. In Figure 9.6, the HALT routine 
needs R0 and R l . So it saves their values with ST instructions in lines 03 and 
04, restores their values with LD instructions in lines 19 and 1A, and sets aside 
memory locations for these values in lines 21 and 22. 

The caller knows what damage will be done by instructions under its control. 
Again, in Figure 9.6, the caller knows that each instance of the TRAP instruction 
will destroy what is in R7. So, before the first TRAP instruction in the HALT 
service routine is executed, R7 is saved. After the last TRAP instruction in the 
HALT service routine is executed, R7 is restored. 
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9.2 Subroutines 
We have just seen how programmers' productivity can be enhanced if they do not 
have to learn details of the I/O hardware, but can rely instead on the operating 
system to supply the program fragments needed to perform those tasks. We also 
mentioned in passing that it is kind of nice to have the operating system access 
these device registers so we do not have to be at the mercy of some other user 
programmer. 

We have seen that a request for a service routine is invoked in the user program 
by the TRAP instruction and handled by the operating system. Return to the 
initiating program is obtained via the JMP R7 instruction. 

In a similar vein, it is often useful to be able to invoke a program fragment 
multiple times within the same program without having to specify its details all 
over again in the source program each time it is needed. In addition, it is sometimes 
the case that one person writes a program that requires such fragments and another 
person writes the fragments. 

Also, one might require a fragment that has been supplied by the manufac-
turer or by some independent software supplier. It is almost always the case that 
collections of such fragments are available to user programmers to free them from 
having to write their own. These collections are referred to as libraries. An exam-
ple is the Math Library, which consists of fragments that execute such functions 
as square root, sine, and arctangent. 

For all of these reasons, it is good to have a way to use program fragments 
efficiently. Such program fragments are called subroutines, or alternatively, pro-
cedures, or in C terminology, functions. The mechanism for using them is referred 
to as a Call/Return mechanism. 

9.2.1 The Call/Return Mechanism 
Figure 9.4 provides a simple illustration of a fragment that must be executed 
multiple times within the same program. Note the three instructions starting at 
symbolic address LI. Note also the three instructions starting at addresses L2, 
L3, and L4. Each of these four 3-instruction sequences do the following: 

LABEL LDI R3,DSR 
BRzp LABEL 
STI Reg,DDR 

Two of the four program fragments store the contents of RO and the other two 
store the contents of R2, but that is easy to take care of, as we will see. The main 
point is that, aside from the small nuisance of which register is being used for the 
source for the STI instruction, the four program fragments do exactly the same 
thing. The Call/Return mechanism allows us to execute this one 3-instruction 
sequence multiple times while requiring us to include it as a subroutine in our 
program only once. 
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W 

(a) Without subroutines (b) With subroutines 

Figure 9 .7 Instruction execution flow with/without subroutines 

The call mechanism computes the starting address of the subroutine, loads it 
into the PC, and saves the return address for getting back to the next instruction in 
the calling program. The return mechanism loads the PC with the return address. 
Figure 9.7 shows the instruction execution flow for a program with and without 
subroutines. 

The Call/Return mechanism acts very much like the TRAP instruction in that 
it redirects control to a program fragment while saving the linkage back to the 
calling program. In both cases, the PC is loaded with the starting address of the 
program fragment, while R7 is loaded with the address that is needed to get back 
to the calling program. The last instruction in the program fragment, whether the 
fragment is a trap service routine or a subroutine, is the JMP R7 instruction, which 
loads the PC with the contents of R7, thereby returning control to the instruction 
following the calling instruction. 

There is an important difference between subroutines and the service routines 
that are called by the TRAP instruction. Although it is somewhat beyond the scope 
of this course, we will mention it briefly. It has to do with the nature of the work 
that the program fragment is being asked to do. In the case of the TRAP instruction 
(as we saw), the service routines involve operating system resources, and they 
generally require privileged access to the underlying hardware of the computer. 
They are written by systems programmers charged with managing the resources 
of the computer. In the case of subroutines, they are either written by the same 
programmer who wrote the program containing the calling instruction, or they 
are written by a colleague, or they are provided as part of a library. In all cases, 
they involve resources that cannot mess up other people's programs, and so we 
are not concerned that they are part of a user program. 
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9.2.2 The JSR(R) Instruction 
The LC-3 specifies one opcode for calling subroutines, 0100. The instruction uses 
one of two addressing modes for computing the starting address of the subroutine, 
PC-relative addressing or Base addressing. The LC-3 assembly language provides 
two different mnemonic names for the opcode, JSR and JSRR, depending on 
which addressing mode is used. 

The instruction does two things. It saves the return address in R7 and it 
computes the starting address of the subroutine and loads it into the PC. The 
return address is the incremented PC, which points to the instruction following 
the JSR or JSRR instruction in the calling program. 

The JSR(R) instruction consists of three parts. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode A Address evaluation bits 

Bits [15:12] contain the opcode, 0100. Bit [11] specifies the addressing mode, 
the value 1 if the addressing mode is PC-relative, and the value 0 if the addressing 
mode is Base addressing. Bits [10:0] contain information that is used to evaluate 
the starting address of the subroutine. The only difference between JSR and JSRR 
is the addressing mode that is used for evaluating the starting address of the 
subroutine. 

JSR 
The JSR instruction computes the target address of the subroutine by sign-
extending the 11-bit offset (bits [10:0]) of the instruction to 16 bits and adding that 
to the incremented PC. This addressing mode is almost identical to the addressing 
mode of the LD and ST instructions, except 11 bits of PCoffset are used, rather 
than nine bits as is the case for LD and ST. 

If the following JSR instruction is stored in location x4200, its execution will 
cause the PC to be loaded with x3E05 and R7 to be loaded with x4201. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 

JSR A PCoffset 11 

JSRR 
The JSRR instruction is exactly like the JSR instruction except for the addressing 
mode. JSRR obtains the starting address of the subroutine in exactly the same 
way the JMP instruction does, that is, it uses the contents of the register specified 
by bits [8:6] of the instruction. 

If the following JSRR instruction is stored in location x420A, and if R5 
contains x3002, the execution of the JSRR will cause R7 to be loaded with x420B, 
and the PC to be loaded with x3002. 

Question: What important feature does the JSRR instruction provide that the 
JSR instruction does not provide? 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 

JSRR A BaseR 

9.2.3 The TRAP Routine for Character Input, Revisited 
Let's look again at the keyboard input service routine of Figure 9.4. In particular, 
let's look at the three-line sequence that occurs at symbolic addresses LI, L2, L3, 
and L4: 

LABEL LDI R3,DSR 
BRzp LABEL 
STI Reg,DDR 

Can the JSR/RET mechanism enable us to replace these four occurrences of the 
same sequence with a single subroutine? Answer: Yes, almost. 

Figure 9.8, our "improved" keyboard input service routine, contains 
JSR WriteChar 

at lines 05, 0B, 11, and 14, and the four-instruction subroutine 
WriteChar LDI R3,DSR 

BRzp WriteChar 
STI R2,DDR 
RET 

at lines ID through 20. Note the RET instruction (actually, JMP R7) that is needed 
to terminate the subroutine. 

Note the hedging: almost. In the original sequences starting at L2 and L3, 
the STI instruction forwards the contents of RO (not R2) to the DDR. We can fix 
that easily enough, as follows: In line 09 of Figure 9.8, we use 

LDR R2,Rl,#0 

instead of 
LDR R0,Rl,#0 

This causes each character in the prompt to be loaded into R2. The subroutine 
Writechar forwards each character from R2 to the DDR. 

In line 10 of Figure 9.8, we insert the instruction 
ADD R2,R0,#0 

in order to move the keyboard input (which is in R0) into R2. The subroutine 
Writechar forwards it from R2 to the DDR. Note that R0 still contains the keyboard 
input. Furthermore, since no subsequent instruction in the service routine loads 
R0, R0 still contains the keyboard input after control returns to the user program. 

In line 13 of Figure 9.8, we insert the instruction 
LD R2,Newline 

in order to move the "newline" character into R2. The subroutine Writechar 
forwards it from R2 to the DDR. 

Finally, we note that unlike Figure 9.4, this trap service routine contains 
several instances of the JSR instruction. Thus any linkage back to the calling 



01 .ORIG X04A0 
02 START ST R7,SaveR7 
03 JSR SaveReg 
04 LD R2,Newline 
05 JSR WriteChar 
06 LEA Rl,PROMPT 
07 ! 

08 1 

09 Loop LDR R2,Rl,#0 
OA BRz Input 
0B JSR WriteChar 
OC ADD Rl,Rl,#1 
0D BRnzp Loop 
0E / 

OF Input JSR ReadChar 
10 ADD R2,R0,#0 
11 JSR WriteChar 
12 / 

13 LD R2, Newline 
14 JSR WriteChar 
15 JSR RestoreReg 
16 LD R7,SaveR7 
17 RET 
18 / 

19 SaveR7 -FILL xOOOO 
1A Newline .FILL xOOOA 
IB Prompt .STRINGZ "Input a • 
1C / 

ID WriteChar LDI R3,DSR 
IE BRzp WriteChar 
IF STI R2,DDR 
20 RET 
21 DSR .FILL XFE04 
22 DDR .FILL XFE06 
23 t 

24 ReadChar LDI R3 , KBSR 
25 BRzp ReadChar 
26 LDI R0,KBDR 
27 RET 
28 KBSR .FILL xFEOO 
29 KBDR .FILL XFE02 
2A / 

2B SaveReg ST Rl,SaveRl 
2C ST R2,SaveR2 
2D ST R3,SaveR3 
2E ST R4,SaveR4 
2F ST R5,SaveR5 
30 ST R6,SaveR6 
31 RET 
32 / 

33 RestoreReg LD Rl,SaveRl 
34 LD R2,SaveR2 
35 LD R3,SaveR3 
36 LD R4,SaveR4 
37 LD R5,SaveR5 
38 LD R6,SaveR6 
39 RET 
3A SaveRl .FILL X0000 
3B SaveR2 .FILL xOOOO 
3C SaveR3 .FILL xOOOO 
3D SaveR4 .FILL X0000 
3E SaveR5 -FILL xOOOO 
3F SaveR6 .FILL X000 0 
40 .END 

; Get next prompt char 

Move char to R2 for writing 
Echo to monitor 

JMP R7 terminates 
the TRAP routine 

character>" 

; JMP R7 terminates subroutine 

Figure 9 .8 The LC-3 trap service routine for character input 
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program that was contained in R7 when the service routine started execution was 
long ago overwritten (by the first JSR instruction, actually, in line 03). Therefore, 
we save R7 in line 02 before we execute our first JSR instruction, and we restore 
R7 in line 16 after we execute our last JSR instruction. 

Figure 9.8 is the actual LC-3 trap service routine provided for keyboard input. 

9.2.4 PUTS: Writing a Character String to the Monitor 
Before we leave the example of Figure 9.8, note the code on lines 09 through 0D. 
This fragment of the service routine is used to write the sequence of characters 
Input a character to the monitor. A sequence of characters is often referred to 
as a string of characters or a character string. This fragment is also present in 
Figure 9.6, with the result that Halting the machine is written to the monitor. 
In fact, it is so often the case that a user program needs to write a string of 
characters to the monitor that this function is given its own trap vector in the LC-3 
operating system. Thus, if a user program requires a character string to be written 
to the monitor, it need only provide (in RO) the starting address of the character 
string, and then invoke TRAP x22. In LC-3 assembly language this TRAP is 
called PITTS. 

Thus, PUTS (or TRAP x22) causes control to be passed to the operating 
system, and the procedure shown in Figure 9.9 is executed. Note that PUTS is 
the code of lines 09 through 0D of Figure 9.8, with a few minor adjustments. 

9.2.5 Library Routines 
We noted early in this section that there are many uses for the Call/Return mech-
anism, among them the ability of a user program to call library subroutines that 
are usually delivered as part of the computer system. Libraries are provided as 
a convenience to the user programmer. They are legitimately advertised as "pro-
ductivity enhancers" since they allow the user programmer to use them without 
having to know or learn much of their inner details. For example, a user program-
mer knows what a square root is (we abbreviate SQRT), and may need to use 
sqrt(x) for some value x but does not have a clue as to how to write a program to 
do it, and probably would rather not have to learn how. 

A simple example illustrates the point. We have lost our key and need to get 
into our apartment. We can lean a ladder up against the wall so that the ladder 
touches the bottom of our open window, 24 feet above the ground. There is a 
10-foot flower bed on the ground along the edge of the wall, so we need to keep 
the base of the ladder outside the flower bed. How big a ladder do we need so 
that we can lean it against the wall and climb through the window? Or, stated less 
colorfully: If the sides of a right triangle are 24 feet and 10 feet, how big is the 
hypotenuse (see Figure 9.10)? 

We remember from high school that Pythagoras answered that one for us: 

2 2 , i2 c — a + b 
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01 This service routine writes a NULL-terminated string to the console 
02 It services the PUTS service call (TRAP x22). 
03 Inputs R0 is a pointer to the string to print. 
04 
05 .ORIG X0450 Where this ISR resides 
06 ST R7, SaveR7 Save R7 for later return 
07 ST R0( SaveRO Save other registers that 
08 ST Rl, SaveRl are needed by this routine 
09 ST R3, SaveR3 
OA 
OB Loop through each character in the array 
OC 
OD Loop LDR Rl, R0, #0 Retrieve the character(s) 
OE BRz Return If it is 0, done 
OF L2 LDI R3,DSR 
10 BRzp L2 
11 STI Rl, DDR Write the character 
12 ADD R0, R0, #1 Increment pointer 
13 BRnzp Loop Do it all over again 
14 
15 Return from the request for service call 
16 Return LD R3, SaveR3 
17 LD Rl, SaveRl 
18 LD R0, SaveRO 
19 LD R7, SaveR7 
1A RET 
IB / 

1C . Register locations 
ID DSR .FILL XFE04 
IE DDR .FILL XFE06 
IF SaveRO .FILL xOOOO 
20 SaveRl .FILL xOOOO 
21 SaveR3 .FILL xOOOO 
22 SaveR7 .FILL xOOOO 
23 .END 
Figure 9 .9 The LC-3 PUTS service routine 

10 feet 

Figure 9 . 1 0 Solving for the length of the hypotenuse 
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Knowing a and b, we can easily solve for c by taking the square root of the sum 
of a2 and b2. Taking the sum is not hard—the LC-3 ADD instruction will do the 
job. The square is also not hard; we can multiply two numbers by a sequence of 
additions. But how does one get the square root? The structure of our solution is 
shown in Figure 9.11. 

The subroutine SQRT has yet to be written. If it were not for the Math 
Library, the programmer would have to pick up a math book (or get someone 
to do it for him/her), check out the Newton-Raphson method, and produce the 
missing subroutine. 

However, with the Math Library, the problem pretty much goes away. Since 
the Math Library supplies a number of subroutines (including SQRT), the user 
programmer can continue to be ignorant of the likes of Newton-Raphson. The 
user still needs to know the label of the target address of the library routine that 
performs the square root function, where to put the argument x, and where to 
expect the result SQRT(x). But these are easy conventions that can be obtained 
from the documentation associated with the Math Library. 

01 
02 
03 LD RO,SIDE1 
04 BRz SI 
05 JSR SQUARE 
06 SI ADD Rl,R0,#0 
07 LD R0,SIDE2 
08 BRz S2 
09 JSR SQUARE 
OA S2 ADD R0,R0,Rl 
0B JSR SQRT 
0C ST R0,HYPOT 
0D BRnzp NEXT_TASK 
0E SQUARE ADD R2,R0,#0 
OF ADD R3,R0,#0 
10 AGAIN ADD R2,R2,#-1 
11 BRz DONE 
12 ADD R0,R0,R3 
13 BRnzp AGAIN 
14 DONE RET 
15 SQRT ... ; R0 <-- SQRT(R0) 
16 
17 ... ; How do we write this subroutine? 
18 
19 
1A RET 
IB SIDE1 .BLKW 1 
1C SIDE2 .BLKW 1 
ID HYPOT .BLKW 1 
IE 
IF 
Figure 9 . 1 1 A program fragment to compute the hypotenuse of a right triangle 
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If the library routine starts at address SQRT, and the argument is provided to 
the library routine at RO, and the result is obtained from the library routine at RO, 
Figure 9.11 reduces to Figure 9.12. 

Two things are worth noting: 

• Thing 1—The programmer no longer has to worry about how to compute the 
square root function. The library routine does that for us. 

• Thing 2—The pseudo-op .EXTERNAL. We already saw in Section 7.4.2 that 
this pseudo-op tells the assembler that the label (SQRT), which is needed 
to assemble the .FILL pseudo-op in line 19, will be supplied by some other 
program fragment (i.e., module) and will be combined with this program 
fragment (i.e., module) when the executable image is produced. The exe-
cutable image is the binary module that actually executes. The executable 
image is produced at link time. 

This notion of combining multiple modules at link time to produce an exe-
cutable image is the normal case. Figure 9.13 illustrates the process. You will see 
concrete examples of this when we work with the programming language C in 
the second half of this course. 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
0B 
0C 
0D 
0E 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
IB 
1C 
ID 
IE 

SQUARE ADD 
ADD 

AGAIN ADD 

DONE RET 
BASE .FILL 
SIDE1 .BLKW 
SIDE2 .BLKW 
HYPOT .BLKW 

2 $ 

1$ 

BRz 
ADD 
BRnzp 

LD 
BRz 
JSR 
ADD 
LD 
BRz 
JSR 
ADD 
LD 
JSRR 
ST 
BRnzp 

EXTERNAL SQRT 

R0,R0,R3 
AGAIN 

R0,HYPOT 
NEXT_TASK 
R2,R0,#0 
R3,R0,#0 
R2,R2,#-1 
DONE 

SQRT 

R0,SIDE1 
1$ 

SQUARE 
R0,R0,Rl ; R0 contains argument x 

Rl,R0,#0 
R0,SIDE2 
2 $ 

R4,BASE 
R4 

SQUARE 

1 
1 
1 

Figure 9 .12 The program fragment of Figure 9.10, using a library routine 



Source module A Object module for A 

.EXTERNAL SQRT 

JSRR 

.END 

Assemble 

Symbol table for A 

Object module for 
math library 

Symbol table 
for math library 

Some other separately 
assembled module 

Symbol table 

Figure 9 .13 An executable image constructed from multiple files 
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Most application software requires library routines from various libraries. It 
would be very inefficient for the typical programmer to produce all of them— 
assuming the typical programmer could produce such routines in the first place. 
We have mentioned routines from the Math Library. There are also a number of 
preprocessing routines for producing "pretty" graphic images. There are other 
routines for a number of other tasks where it would make no sense at all to 
have the programmer write them from scratch. It is much easier to require only 
(1) appropriate documentation so that the interface between the library routine and 
the program that calls that routine is clear, and (2) the use of the proper pseudo-
ops such as .EXTERNAL in the source program. The linker can then produce an 
executable image at link time from the separately assembled modules. 

9.1 Name some of the advantages of doing I/O through a TRAP routine 
instead of writing the routine yourself each time you would like your 
program to perform I/O. 

9.2 a. How many trap service routines can be implemented in the LC-3? 
Why? 

b. Why must a RET instruction be used to return from a TRAP 
routine? Why won't a BR (Unconditional Branch) instruction work 
instead? 

c. How many accesses to memory are made during the processing of a 
TRAP instruction? Assume the TRAP is already in the IR. 

9.3 Refer to Figure 9.6, the HALT service routine. 

a. What starts the clock after the machine is HALTed? Hint: How can 
the HALT service routine return after bit [15] of the machine control 
register is cleared? 

b. Which instruction actually halts the machine? 
c. What is the first instruction executed when the machine is started 

again? 
d. Where will the RET of the HALT routine return to? 
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9.4 Consider the following LC-3 assembly language program: 
.ORIG X3000 

LI LEA Rl, LI 
AND R2, R2, xO 
ADD R2, R2, x2 
LD R3, PI 

L2 LDR RO, Rl, xC 
OUT 
ADD R3, R3, #-1 
BRz GLUE 
ADD Rlr Rl, R2 
BR L2 

GLUE 
PI 

HALT 
.FILL xB 
.STRINGZ "HBoeoakteSmtHaotren!s" 
. END 

a. After this program is assembled and loaded, what binary pattern is 
stored in memory location x3005? 

b. Which instruction (provide a memory address) is executed after 
instruction x3005 is executed? 

c. Which instruction (provide a memory address) is executed prior to 
instruction x3006? 

d. What is the output of this program? 

9.5 The following LC-3 program is assembled and then executed. There are 
no assemble time or run-time errors. What is the output of this program? 
Assume all registers are initialized to 0 before the program executes. 

9.6 The correct operation of the program in Example 9.1 assumes that the 
person sitting at the keyboard only types capital letters and the value 7. 
What if the person types a $? A better program would be one that tests 
the character typed to be sure it really is a capital letter from among the 
26 capital letters in the alphabet, and if it is not, takes corrective action. 
Your job: Augment the program of Example 9.1 to add a test for bad data. 
That is, write a program that will type the lowercase representation of 
any capital letter typed and will terminate if anything other than a capital 
letter is typed. 

9.7 Two students wrote interrupt service routines for an assignment. Both 
service routines did exactly the same work, but the first student 
accidentally used RET at the end of his routine, while the second student 
correctly used RTI. There are three errors that arose in the first student's 
program due to his mistake. Describe any two of them. 

.ORIG 
ST 
LEA 
TRAP 

X3000 
RO, x3 007 
RO, LABEL 
X22 

TRAP x25 
LABEL .STRINGZ "FUNKY" 
LABEL2 .STRINGZ "HELLO WORLD" 

.END 
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9.8 Assume that an integer greater than 2 and less than 32,768 is deposited in 
memory location A by another module before the program below is 
executed. 

.ORIG X3000 
AND R4, R4, #0 
LD RO, A 
NOT R5, RO 
ADD R5, R5, #2 
ADD Rl, R4, #2 

REMOD 
/ 

JSR MOD 
BRz STORE0 
/ 

ADD R7, Rl, R5 
BRz STORE1 
ADD Rl, Rl, #1 
BR REMOD 

STORE1 
/ 

ADD R4, R4, #1 
STORE0 ST R4, RESULT 

TRAP x25 

MOD 
> 

ADD R2 , RO, #0 
NOT R3, Rl 
ADD R3, R3, #1 

DEC ADD R2 , R2 , R3 
BRp DEC 
RET 

A 
r 

.BLKW 1 
RESULT .BLKW 1 

.END 

In 20 words or fewer, what does the above program do? 

9.9 Recall the machine busy example. Suppose the bit pattern indicating 
which machines are busy and which are free is stored in memory location 
x4001. Write subroutines that do the following. 

a. Check if no machines are busy, and return 1 if none are busy. 
b. Check if all machines are busy, and return 1 if all are busy. 
c. Check how many machines are busy, and return the number of busy 

machines. 
d. Check how many machines are free, and return the number of free 

machines. 
e. Check if a certain machine number, passed as an argument in R5, is 

busy, and return 1 if that machine is busy. 
f . Return the number of a machine that is not busy. 

9.10 The starting address of the trap routine is stored at the address specified 
in the TRAP instruction. Why isn't the first instruction of the trap routine 
stored at that address instead? Assume each trap service routine requires 
at most 16 instructions. Modify the semantics of the LC-3 TRAP 
instruction so that the trap vector provides the starting address of the 
service routine. 
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9.11 Following is part of a program that was fed to the LC-3 assembler. The 
program is supposed to read a series of input lines from the console into a 
buffer, search for a particular character, and output the number of times 
that character occurs in the text. The input text is terminated by an EOT 
and is guaranteed to be no more than 1,000 characters in length. After the 
text has been input, the program reads the character to count. 

The subroutine labeled COUNT that actually does the counting was 
written by another person and is located at address x3500. When called, 
the subroutine expects the address of the buffer to be in R5 and the 
address of the character to count to be in R6. The buffer should 
have a NULL to mark the end of the text. It returns the count in 
R6. 

The OUTPUT subroutine that converts the binary count to ASCII 
digits and displays them was also written by another person and is at 
address x3600. It expects the number to print to be in R6. 

Here is the code that reads the input and calls COUNT: 

.ORIG x3 000 
LEA Rl, BUFFER 

G TEXT TRAP x2 0 Get input text 
ADD R2, R0, x-4 
BRz G_CHAR 
STR R0, Rl, #0 
ADD Rl, Rl, #1 
BRz G TEXT 

G_CHAR STR R2, Rl, #0 xOOOO terminates buffer 
Get character to count TRAP x20 

ST R0, S_CHAR 
LEA R5, BUFFER 
LEA R6, S_CHAR 
LD R4, CADDR 
JSRR R4 
LD R4 . OADDR 
JSRR R4 
TRAP x25 

Convert R6 and display 

Count character 

CADDR .FILL x3500 
OADDR .FILL x3600 
BUFFER .BLKW 1001 
S__CHAR .FILL xOOOO 

.END 

Address of COUNT 
Address of OUTPUT 

There is a problem with this code. What is it, and how might it be fixed? 
(The problem is not that the code for COUNT and OUTPUT is missing.) 
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9.12 Consider the following LC-3 assembly language program: 
.ORIG X3000 
LEA RO,DATA 
AND R1,R1,#0 
ADD R1,R1,#9 

LOOPl ADD R2,R0,#0 
ADD R3,Rl,#0 

LOOP2 JSR SUB1 
ADD R4,R4,#0 
BRzp LABEL 
JSR SUB 2 

LABEL ADD R2,R2,#1 
ADD R3,R3,#~1 
BRP LOOP2 
ADD R l , R l , 1 
BRp LOOPl 
HALT 

DATA .BLKW 10 xOOOO 
SUB1 LDR R5,R2,#0 

NOT R5,R5 
ADD R5,R5,#1 
LDR R6,R2,#1 
ADD R4,R5,R6 
RET 

SUB 2 LDR R4,R2,#0 
LDR R5,R2,#1 
STR R4,R2,#1 
STR R5,R2,#0 
RET 
.END 

Assuming that the memory locations at DATA get filled in before the 
program executes, what is the relationship between the final values at 
DATA and the initial values at DATA? 

9.13 The following program is supposed to print the number 5 on the screen. It 
does not work. Why? Answer in no more than ten words, please. 

.ORIG x3 0 00 
JSR A 
OUT 
BRnzp DONE 

A AND R0,R0,#0 
ADD R0,R0,#5 
JSR B 
RET 

DONE HALT 
ASCII .FILL x003 0 
B LD Rl,ASCII 

ADD R0,R0,R1 
RET 
.END 
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9.14 Figure 9.6 shows a service routine to stop the computer by clearing the 
RUN latch, bit [15] of the Machine Control Register. The latch is cleared 
by the instruction in line 14, and the computer stops. What purpose is 
served by the instructions on lines 19 through 1C? 

9.15 Suppose we define a new service routine starting at memory location 
x4000. This routine reads in a character and echoes it to the screen. 
Suppose memory location x0072 contains the value x4000. The service 
routine is shown below. 

.ORIG x4000 
ST R7, SaveR7 
GETC 
OUT 
LD R7, SaveR7 
RET 

SaveR7 .FILL xOOOO 

a. Identify the instruction that will invoke this routine. 
b. Will this service routine work? Explain. 

9.16 The two code sequences a and b are assembled separately. There is one 
error that will be caught at assemble time or at link time. Identify and 
describe why the bug will cause an error, and whether it will be detected 
at assemble time or link time. 
a. .ORIG x3200 

SQRT ADD RO, RO, #0 
; code to perform square 
; root function and 
; return the result in R0 
RET 
.END 

VALUE 
DEST 

.EXTERNAL SQRT 

.ORIG X3000 
LD 
JSR 
ST 
HALT 
. FILL 
. FILL 
.END 

R0,VALUE 
SQRT 
R0,DEST 

x3 000 0 
x0025 
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9.17 Shown below is a partially constructed program. The program asks the 
user his/her name and stores the sentence "Hello, name" as a string 
starting from the memory location indicated by the symbol HELLO. The 
program then outputs that sentence to the screen. The program assumes 
that the user has finished entering his/her name when he/she presses the 
Enter key, whose ASCII code is xOA. The name is restricted to be not 
more than 25 characters. 

Assuming that the user enters Onur followed by a carriage return 
when prompted to enter his/her name, the output of the program looks 
exactly like: 
Please enter your name: Onur 
Hello, Onur 

Insert instructions at (a)-(d) that will complete the program. 
.ORIG x3000 
LEA Rl,HELLO 

AGAIN LDR R2,Rl,#0 
BRz NEXT 
ADD Rl,Rl,#1 
BR AGAIN 

NEXT LEA RO,PROMPT 
TRAP x22 ; PUTS 

(a) 
AGAIN2 TRAP x2 0 ; GETC 

TRAP x21 ; OUT 
ADD R2,RO,R3 
BRz CONT 

(b) 
Cc) 

CONT 
BR 
AND 

NEGENTER 
PROMPT 
HELLO 

LEA 
TRAP 
TRAP 
.FILL 

AGAIN2 
R2,R2,#0 

(d) 
RO, HELLO 
x22 
x25 
XFFF6 

.STRINGZ "Please 

.STRINGZ "Hello, 

.BLKW #2 5 

.END 

PUTS 
HALT 
-xOA 

enter your name: 
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9-18 The program below, when complete, should print the following to the 
monitor: 

ABCFGH 

Insert instructions at (a)-(d) that will complete the program. 
.ORIG x3 000 
LEA Rl, TESTOUT 

BACK_ 1 LDR RO, Rl, #0 
BRz NEXT_1 
TRAP x21 

(a) 
BRnzp BACK_1 

NEXT_ 1 
j 
LEA Rl, TESTOUT 

BACK_ 2 .. LDR RO, Rl, #0 
BRz NEXT_2 
JSR SUB_1 
ADD Rl, Rl, #1 
BRnzp BACK_2 

NEXT_ 2 
/ 

(b) 

SUB_1 
/ 

(c) 

K LDI R2, DSR 
(d) 

STI RO, DDR 
RET 

DSR .FILL xFE04 
DDR .FILL XFE06 
TESTOUT .STRINGZ "ABC" 

.END 
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9.19 A local company has decided to build a real LC-3 computer. In order 
to make the computer work in a network, four interrupt-driven I/O 
devices are connected. To request service, a device asserts its interrupt 
request signal (IRQ). This causes a bit to get set in a special LC-3 
memory-mapped interrupt control register called INTCTL which is 
mapped to address xFFOO. The INTCTL register is shown below. When a 
device requests service, the INT signal in the LC-3 data path is asserted. 
The LC-3 interrupt service routine determines which device has 
requested service and calls the appropriate subroutine for that device. If 
more than one device asserts its IRQ signal at the same time, only the 
subroutine for the highest priority device is executed. During execution 
of the subroutine, the corresponding bit in INTCTL is cleared. 

INT 

The following labels are used to identify the first instruction of each 
device subroutine: 

HARDDISK ETHERNET PRINTER CDROM 

For example, if the highest priority device requesting service is the 
printer, the interrupt service routine will call the printer subroutine with 
the following instruction: 

JSR PRINTER 
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Finish the code in the LC-3 interrupt service routine for the 
following priority scheme by filling in the spaces labeled (a)-(k). The 
lower the number, the higher the priority of the device. 

1. Hard disk 
2. Ethernet card 
3. Printer 
4. CD-ROM 

DEVO 

DEVI 

DEV2 

DEV3 
/ 

END 

LDI Rl, INTCTL 
LD R 2 , ( a ) 
AND R2, R2, Rl 
BRnz DEVI 
JSR (b) 

( c ) 

LD R 2 , (d) 
AND R2, R2, Rl 
BRnz DEV2 
JSR (e) 

(f) 

LD R2, (g) 
AND R2, R 2 , Rl 
BRnz DEV3 
JSR (h) 

( i ) 

JSR (j) 

( k ) 

INTCTL 
MASK8 
MASK4 
MASK2 
MASK1 

.FILL 

.FILL 

.FILL 

.FILL 

. FILL 

xFFOO 
X0008 
xOO 04 
X0002 
xOOOl 
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10 

And. Fin a l l i | . . . The S l a c k 

We have finished our treatment of the LC-3 ISA. Before moving up another 
level of abstraction in Chapter 11 to programming in C, there is a particularly 
important fundamental topic that we should spend some time on: the stack. First 
we will explain in detail its basic structure. Then, we will describe three uses of 
the stack: (1) interrupt-driven I/O—the rest of the mechanism that we promised 
in Section 8.5, (2) a mechanism for performing arithmetic where the temporary 
storage for intermediate results is a stack instead of general purpose registers, 
and (3) algorithms for converting integers between 2's complement binary and 
ASCII character strings. These three examples are just the tip of the iceberg. You 
will find that the stack has enormous use in much of what you do in computer 
science and engineering. We suspect you will be discovering new uses for stacks 
long after this book is just a pleasant memory. 

We will close our introduction to the ISA level with the design of a calculator, 
a comprehensive application that makes use of many of the topics studied in this 
chapter. 

10.1 The Stock: Its Basic Structure 
10.1.1 The Stack-An Abstract Data Type 
Throughout your future usage (or design) of computers, you will encounter the 
storage mechanism known as a stack. Stacks can be implemented in many different 
ways, and we will get to that momentarily. But first, it is important to know that 
the concept of a stack has nothing to do with how it is implemented. The concept 
of a stack is the specification of how it is to be accessed. That is, the defining 
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1996 Quarter 

1998 Quarter 

1982 Quarter 

1995 Quarter 

1982 Quarter 

1995 Quarter 

(a) Initial state (b) After one push (c) After three pushes (d) After two pops 
(Empty) 

Figure 1 0 . 1 A coin holder in an auto armrest—example of a stack 

ingredient of a stack is that the last thing you stored in it is the first thing you 
remove from it. That is what makes a stack different from everything else in the 
world. Simply put: Last In, First Out, or LIFO. 

In the terminology of computer programming languages, we say the stack is 
an example of an abstract data type. That is, an abstract data type is a storage 
mechanism that is defined by the operations performed on it and not at all by the 
specific manner in which it is implemented. In Chapter 19, we will write programs 
in C that use linked lists, another example of an abstract data type. 

10.1.2 Two Example Implementations 
A coin holder in the armrest of an automobile is an example of a stack. The first 
quarter you take to pay the highway toll is the last quarter you added to the stack 
of quarters. As you add quarters, you push the earlier quarters down into the coin 
holder. 

Figure 10.1 shows the behavior of a coin holder. Initially, as shown in 
Figure 10.1a, the coin holder is empty. The first highway toll is 75 cents, and 
you give the toll collector a dollar. She gives you 25 cents change, a 1995 quar-
ter, which you insert into the coin holder. The coin holder appears as shown in 
Figure 10.1b. 

There are special terms for the insertion and removal of elements from a 
stack. We say we push an element onto the stack when we insert it. We say we 
pop an element from the stack when we remove it. 

The second highway toll is $4.25, and you give the toll collector $5.00. She 
gives you 75 cents change, which you insert into the coin holder: first a 1982 
quarter, then a 1998 quarter, and finally, a 1996 quarter. Now the coin holder is 
as shown in Figure 10.1c. The third toll is 50 cents, and you remove (pop) the 
top two quarters from the coin holder: the 1996 quarter first and then the 1998 
quarter. The coin holder is then as shown in Figure 10. Id. 

The coin holder is an example of a stack, precisely because it obeys the LIFO 
requirement. Each time you insert a quarter, you do so at the top. Each time you 
remove a quarter, you do so from the top. The last coin you inserted is the first 
coin you remove; therefore, it is a stack. 

Another implementation of a stack, sometimes referred to as a hardware stack, 
is shown in Figure 10.2. Its behavior resembles that of the coin holder we just 
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Empty: Yes Empty: No Empty: | No Empty: No 

mm nnu mill mm 
mm mm 18 mill 
mill mill 31 mill 
mm mill 5 18 

mill TOP 18 TOP 12 TOP 31 TOP 

(a) Initial state (b) After one push (c) After three pushes (d) After two pops 

Figure 10 .2 A stack, implemented in hardware—data entries move 

described. It consists of some number of registers, each of which can store an 
element. The example of Figure 10.2 contains five registers. As each element is 
added to the stack or removed from the stack, the elements already on the stack 
move. 

In Figure 10.2a, the stack is initially shown as empty. Access is always via 
the first element, which is labeled TOP. If the value 18 is pushed on to the stack, 
we have Figure 10.2b. If the three values, 31,5, and 12, are pushed (in that order), 
the result is Figure 10.2c. Finally, if two elements are popped from the stack, we 
have Figure 10.2d. The distinguishing feature of the stack of Figure 10.2 is that, 
like the quarters in the coin holder, as each value is added or removed, all the 
values already on the stack move. 

10.1.3 Implementation in Memory 
By far the most common implementation of a stack in a computer is as shown in 
Figure 10.3. The stack consists of a sequence of memory locations along with a 
mechanism, called the stack pointer, that keeps track of the top of the stack, that 
is, the location containing the most recent element pushed. Each value pushed is 
stored in one of the memory locations. In this case, the data already stored on the 
stack does not physically move. 

X3FFB 

X3FFC 

X3FFD 

X3FFE 

X3FFF 

/ / / / / / 

/ / / / / / 

nnu 
nnu 
mill 

X4000 

X3FFB 

X3FFC 

X3FFD 

X3FFE 

X3FFF 
TOP 

R6 

mill 
mill 
mill 
mill 

18 

X3FFF 

TOP 

R6 

X3FFB 

X3FFC 

X3FFD 

X3FFE 

X3FFF 

mill 
12 

31 

18 

X3FFC 

X3FFB 

X3FFC 

X3FFD 

X3FFE 

X3FFF 

R6 

mill 
12 

31 

18 

X3FFE 

TOP 

R6 

(a) Initial state (b) After one push (c) After three pushes 

Figure 10 .3 A stack, implemented in memory—data entries do not move 

(d) After two pops 
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In the example shown in Figure 10.3, the stack consists of five locations, 
x3FFF through x3FFB. R6 is the stack pointer. 

Figure 10.3a shows an initially empty stack. Figure 10.3b shows the stack 
after pushing the value 18. Figure 10.3c shows the stack after pushing the values 
31,5, and 12, in that order. Figure 10.3d shows the stack after popping the top 
two elements off the stack. Note that those top two elements (the values 5 and 12) 
are still present in memory locations x3FFD and x3FFC. However, as we will see 
momentarily, those values 5 and 12 cannot be accessed from memory, as long as 
the access to memory is controlled by the stack mechanism. 

Push 
In Figure 10.3a, R6 contains x4000, the address just ahead of the first (BASE) 
location in the stack. This indicates that the stack is initially empty. The BASE 
address of the stack of Figure 10.3 is x3FFF. 

We first push the value 18 onto the stack, resulting in Figure 10.3b. The stack 
pointer provides the address of the last value pushed, in this case, x3FFF, where 18 
is stored. Note that the contents of locations x3FFE, x3FFD, x3FFC, and x3FFB 
are not shown. As will be seen momentarily, the contents of these locations are 
irrelevant since they can never be accessed provided that locations x3FFF through 
x3FFB are accessed only as a stack. 

When we push a value onto the stack, the stack pointer is decremented and 
the value stored. The two-instruction sequence 

PUSH ADD R6 , R6 , # -1 
STR R0,R6,#0 

pushes the value contained in R0 onto the stack. Thus, for the stack to be as shown 
in Figure 10.3b, R0 must have contained the value 18 before the two-instruction 
sequence was executed. 

The three values 31, 5, and 12 are pushed onto the stack by loading each in 
turn into R0, and then executing the two-instruction sequence. In Figure 10.3c, 
R6 (the stack pointer) contains x3FFC, indicating that 12 was the last element 
pushed. 

Pop 
To pop a value from the stack, the value is read and the stack pointer is incremented. 
The following two-instruction sequence 

POP LDR R0,R6,#0 
ADD R6,R6,#1 

pops the value contained in the top of the stack and loads it into R0. 
If the stack were as shown in Figure 10.3c and we executed the sequence 

twice, we would pop two values from the stack. In this case, we would first 
remove the 12, and then the 5. Assuming the purpose of popping two values is to 
use those two values, we would, of course, have to move the 12 from R0 to some 
other location before calling POP a second time. 
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Figure 10.3d shows the stack after that sequence of operations. R6 contains 
x3FFE, indicating that 31 is now at the top of the stack. Note that the values 
12 and 5 are still stored in memory locations x3FFD and x3FFC, respectively. 
However, since the stack requires that we push by executing the PUSH sequence 
and pop by executing the POP sequence, we cannot access these two values if we 
obey the rules. The fancy name for "the rules" is the stack protocol. 

Underflow 
What happens if we now attempt to pop three values from the stack? Since only 
two values remain on the stack, we would have a problem. Attempting to pop 
items that have not been previously pushed results in an underflow situation. In 
our example, we can test for underflow by comparing the stack pointer with x4000, 
which would be the contents of R6 if there were nothing left on the stack to pop. 
If UNDERFLOW is the label of a routine that handles the underflow condition, 
our resulting POP sequence would be 

POP LD Rl,EMPTY 
ADD R2,R6,Rl ; Compare stack 
BRz UNDERFLOW ; pointer with x4000 
LDR RO,R6,#0 
ADD R6,R6,#1 
RET 
.FILL xCOOO ; EMPTY <-- -x4000 EMPTY 

Rather than have the POP routine immediately jump to the UNDERFLOW 
routine if the POP is unsuccessful, it is often useful to have the POP routine return 
to the calling program, with the underflow information contained in a register. 

A common convention for doing this is to use a register to provide success/ 
failure information. Figure 10.4 is a flowchart showing how the POP routine could 
be augmented, using R5 to report this success/failure information. 

Figure 10.4 POP routine, including test for underflow 
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Upon return from the POP routine, the calling program would examine 
R5 to determine whether the POP completed successfully (R5 = 0), or not 
(R5 = 1). 

Note that since the POP routine reports success or failure in R5, whatever 
was stored in R5 before the POP routine was called is lost. Thus, it is the job 
of the calling program to save the contents of R5 before the JSR instruction 
is executed. Recall from Section 9.1.7 that this is an example of a caller-save 
situation. 

The resulting POP routine is shown in the following instruction sequence. 
Note that since the instruction immediately preceding the RET instruction set-
s/clears the condition codes, the calling program can simply test Z to determine 
whether the POP was completed successfully. 

POP 

EMPTY 

LD Rl,EMPTY 
ADD R2/R6,R1 
BRz Failure 
LDR RO,R6,#0 
ADD R6,R6,#1 
AND R5,R5,#0 
RET 
AND R5,R5,#0 
ADD R5,R5,#1 
RET 
.FILL xCOOO EMPTY < -X4000 

Overflow 
What happens when we run out of available space and we try to push a value 
onto the stack? Since we cannot store values where there is no room, we have 
an overflow situation. We can test for overflow by comparing the stack pointer 
with (in the example of Figure 10.3) x3FFB. If they are equal, we have no 
room to push another value onto the stack. If OVERFLOW is the label of 
a routine that handles the overflow condition, our resulting PUSH sequence 
would be 

PUSH 

MAX 

LD Rl,MAX 
ADD R2,R6,R1 
BRz OVERFLOW 
ADD R6,R6,#-1 
STR R0,R6,#0 
RET 
.FILL xC005 ; MAX <-- -X3FFB 

In the same way that it is useful to have the POP routine return to the 
calling program with success/failure information, rather than immediately jump-
ing to the UNDERFLOW routine, it is useful to have the PUSH routine act 
similarly. 
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We augment the PUSH routine with instructions to store 0 (success) or 
1 (failure) in R5, depending on whether or not the push completed success-
fully. Upon return from the PUSH routine, the calling program would examine 
R5 to determine whether the PUSH completed successfully (R5 = 0) or not 
(R5 - 1). 

Note again that since the PUSH routine reports success or failure in R5, 
we have another example of a caller-save situation. That is, since whatever 
was stored in R5 before the PUSH routine was called is lost, it is the job of 
the calling program to save the contents of R5 before the JSR instruction is 
executed. 

Also, note again that since the instruction immediately preceding the RET 
instruction sets/clears the condition codes, the calling program can simply test 
Z or P to determine whether the POP completed successfully (see the following 
PUSH routine). 

PUSH LD 
ADD 
BRz 
ADD 
STR 
AND 
RET 

Failure AND 
•ADD 
RET 

MAX .FILL 

10.1.4 The Complete Picture 
The POP and PUSH routines allow us to use memory locations x3FFF through 
x3FFB as a five-entry stack. If we wish to push a value onto the stack, we simply 
load that value into RO and execute JSR PUSH. To pop a value from the stack 
into RO, we simply execute JSR POP. If we wish to change the location or the 
size of the stack, we adjust BASE and MAX accordingly. 

Before leaving this topic, we should be careful to clean up one detail. The 
subroutines PUSH and POP make use of Rl , R2, and R5. If we wish to use the 
values stored in those registers after returning from the PUSH or POP routine, we 
had best save them before using them. In the case of R l and R2, it is easiest to 
save them in the PUSH and POP routines before using them and then to restore 
them before returning to the calling program. That way, the calling program does 
not even have to know that these registers are used in the PUSH and POP routines. 
This is an example of the callee-save situation described in Section 9.1.7. In the 
case of R5, the situation is different since the calling program does have to know 
the success or failure that is reported in R5. Thus, it is the job of the calling 
program to save the contents of R5 before the JSR instruction is executed if the 
calling program wishes to use the value stored there again. This is an example of 
the caller-save situation. 

The final code for our PUSH and POP operations is shown in Figure 10.5. 

Rl,MAX 
R2,R6,Rl 
Failure 
R6,R6,#-1 
RO,R6,#0 
R5,R5,#0 

R5,R5,#0 
R5,R5,#1 

XC005 ; MAX <-- ~x3FFB 
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01 
02 
03 
04 
05 

Subroutines for carrying out the PUSH and POP functions. This 
program works with a stack consisting of memory locations x3FFF 
(BASE) through x3FFB (MAX). R6 is the stack pointer. 

06 POP ST R2,Save2 ; are needed by POP. 
07 ST Rl,Savel 
08 LD Rl,BASE BASE contains -X3FFF. 
09 ADD R1,R1,#-1 Rl contains -x4000. 
OA ADD R2,R6,R1 Compare stack pointer to 
0B BRz fail exit Branch if stack is empty 
OC LDR R0,R6,#0 The actual "pop11 
0D ADD R6,R6,#1 Adjust stack pointer. 
0E BRnzp success_exit 
OF PUSH ST R2,Save2 Save registers that 
10 ST Rl,Savel are needed by PUSH. 
11 LD Rl,MAX MAX contains -x3FFB 
12 ADD R2,R6, Rl Compare stack pointer to 
13 BRz fail exit Branch if stack is full. 
14 ADD R6,R6, # -1 Adjust stack pointer. 
15 STR R0,R6,#0 The actual "push" 
16 success exit LD Rl,Savel Restore original 
17 LD R2,Save2 register values. 
18 AND R5,R5,#0 R5 <-- success. 
19 RET 
1A fail exit LD Rl,Savel Restore original 
IB LD R2,Save2 register values. 
1C AND R5,R5,#0 
ID ADD R5,R5,#1 R5 <-- failure. 
IE RET 
IF BASE .FILL XC0 01 ; BASE contains -x3FFF. 
20 MAX .FILL XC005 
21 Savel .FILL xOOOO 
22 Save 2 .FILL xOOOO 
Figure 10.5 The stack protocol 

10.2 Inrerrupr-Driven I/O [Part 
Recall our discussion in Section 8.1.4 about interrupt-driven I/O as an alternative 
to polling. As you know, in polling, the processor wastes its time spinning its 
wheels, re-executing again and again the LDI and BR instructions until the Ready 
bit is set. With interrupt-driven I/O, none of that testing and branching has to go 
on. Instead, the processor spends its time doing what is hopefully useful work, 
executing some program, until it is notified that some I/O device needs attention. 

You remember that there are two parts to interrupt-driven I/O: 

1. the enabling mechanism that allows an I/O device to interrupt the processor 
when it has input to deliver or is ready to accept output, and 

2. the process that manages the transfer of the I/O data. 
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In Section 8.5, we showed the enabling mechanism for interrupting the pro-
cessor, that is, asserting the INT signal. We showed how the Ready bit, combined 
with the Interrupt Enable bit, provided an interrupt request signal. We showed that 
if the interrupt request signal is at a higher priority level (PL) than the PL of the 
currently executing process, the INT signal is asserted. We saw (Figure 8.8) that 
with this mechanism, the processor did not have to waste a lot of time polling. In 
Section 8.5, we could not study the process that manages the transfer of the I/O 
data because it involves the use of a stack, and you were not yet familiar with the 
stack. Now you know about stacks, so we can finish the explanation. 

The actual management of the I/O data transfer goes through three stages, as 
shown in Figure 8.6: 

1. Initiate the interrupt. 
2. Service the interrupt. 
3. Return from the interrupt. 

We will discuss these in turn. 

10.2.1 Initiate and Service the Interrupt 
Recall from Section 8.5 (and Figure 8.8) that an interrupt is initiated because an 
I/O device with higher priority than the currently running program has caused 
the INT signal to be asserted. The processor, for its part, tests for the presence of 
INT each time it completes an instruction cycle. If the test is negative, business 
continues as usual and the next instruction of the currently running program is 
fetched. If the test is positive, that next instruction is not fetched. 

Instead, preparation is made to interrupt the program that is running and 
execute the interrupt service routine that deals with the needs of the I/O device 
that has requested this higher priority service. Two steps must be carried out: 
(1) Enough of the state of the program that is running must be saved so we can 
later continue where we left off, and (2) enough of the state of the interrupt service 
routine must be loaded so we can begin to service the interrupt request. 

The State of a Program 
The state of a program is a snapshot of the contents of all the resources that the 
program affects. It includes the contents of the memory locations that are part of 
the program and the contents of all the general purpose registers. It also includes 
two very important registers, the PC and the PSR. The PC you are very familiar 
with; it contains the address of the next instruction to be executed. The PSR, 
shown here, is the Processor Status Register. It contains several important pieces 
of information about the status of the running program. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Pr PL N Z P 
Priv Priority cond codes 

PSR[15] indicates whether the program is running in privileged (supervi-
sor) or unprivileged (user) mode. In privileged mode, the program has access to 
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important resources not available to user programs. We will see momentarily why 
that is important in dealing with interrupts. PSR[10:8] specifies the priority level 
(PL) or sense of urgency of the execution of the program. As has been mentioned 
previously, there are eight priority levels, PLO (lowest) to PL7 (highest). Finally, 
PSR[2:0] is used to store the condition codes. PSR[2] is the N bit, PSR[1] is the 
Z bit, and PSR[0] is the P bit. 

Saving the State of the Interrupted Program 

The first step in initiating the interrupt is to save enough of the state of the program 
that is running so it can continue where it left off after the I/O device request has 
been satisfied. That means, in the case of the LC-3, saving the PC and the PSR. 
The PC must be saved since it knows which instruction should be executed next 
when the interrupted program resumes execution. The condition codes (the N, Z, 
and P flags) must be saved since they may be needed by a subsequent conditional 
branch instruction after the program resumes execution. The priority level of 
the interrupted program must be saved because it specifies the urgency of the 
interrupted program with respect to all other programs. When the interrupted 
program resumes execution, it is important to know what priority level programs 
can interrupt it again and which ones can not. Finally, the privilege level of 
the program must be saved since it contains information about what processor 
resources the interrupted program can and can not access. 

It is not necessary to save the contents of the general purpose registers since 
we assume that the service routine will save the contents of any general pur-
pose register it needs before using it, and will restore it before returning to the 
interrupted program. 

The LC-3 saves this state information on a special stack, called the Supervisor 
Stack, that is used only by programs that execute in privileged mode. A section of 
memory is dedicated for this purpose. This stack is separate from the User Stack, 
which is accessed by user programs. Programs access both stacks using R6 as 
the stack pointer. When accessing the Supervisor Stack, R6 is the Supervisor 
Stack Pointer. When accessing the User Stack, R6 is the User Stack Pointer. Two 
internal registers, Saved.SSP and Saved.USP, are used to save the stack pointer 
not in use. When the privilege mode changes from user to supervisor, the contents 
of R6 are saved in Saved.USP, and R6 is loaded with the contents of Saved.SSP 
before processing begins. 

That is, before die interrupt service routine starts, R6 is loaded with the 
contents of the Supervisor Stack Pointer. Then PC and PSR of the interrupted 
program are pushed onto the Supervisor Stack, where they remain unmolested 
while the service routine executes. 

Loading the State of the Interrupt Service Routine 
Once the state of the interrupted program has been safely saved on the Supervisor 
Stack, the second step is to load the PC and PSR of the interrupt service routine. 
Interrupt service routines are similar to the trap service routines discussed in 
Chapter 9. They are program fragments stored in some prearranged set of locations 
in memory. They service interrupt requests. 
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Most processors use the mechanism of vectored interrupts. You are famil-
iar with this notion from your study of the trap vector contained in the TRAP 
instruction. In the case of interrupts, the 8-bit vector is provided by the device 
that is requesting the processor be interrupted. That is, the I/O device transmits 
to the processor an 8-bit interrupt vector along with its interrupt request signal 
and its priority level. The interrupt vector corresponding to the highest priority 
interrupt request is the one supplied to the processor. It is designated INTV. If 
the interrupt is taken, the processor expands the 8-bit interrupt vector (INTV) to 
form a 16-bit address, which is an entry into the Interrupt Vector Table. Recall 
from Chapter 9 that the Trap Vector Table consists of memory locations xOOOO to 
xOOFF, each containing the starting address of a trap service routine. The Interrupt 
Vector Table consists of memory locations xOlOO to xOlFF, each containing the 
starting address of an interrupt service routine. The processor loads the PC with 
the contents of the address formed by expanding the interrupt vector INTV. 

The PSR is loaded as follows: Since no instructions in the service routine 
have yet executed, PSR[2:0] is initially loaded with zeros. Since the interrupt 
service routine runs in privileged mode, PSR[15] is set to 0. PSR[10:8] is set to 
the priority level associated with the interrupt request. 

This completes the initiation phase and the interrupt service routine is ready 
to go. 

Service the Interrupt 
Since the PC contains the starting address of the interrupt service routine, the 
service routine will execute, and the requirements of the I/O device will be 
serviced. 

For example, the LC-3 keyboard could interrupt the processor every time a 
key is pressed by someone sitting at the keyboard. The keyboard interrupt vector 
would indicate the handler to invoke. The handler would then copy the contents 
of the data register into some preestablished location in memory. 

10.2.2 Return from the Interrupt 
The last instruction in every interrupt service routine is RTI, return from interrupt. 
When the processor finally accesses the RTI instruction, all the requirements of 
the I/O device have been taken care of. 

Execution of the RTI instruction (opcode = 1000) consists simply of pop-
ping the PSR and the PC from the Supervisor Stack (where they have been resting 
peacefully) and restoring them to their rightful places in the processor. The condi-
tion codes are now restored to what they were when the program was interrupted, 
in case they are needed by a subsequent BR instruction in the program. PSR[15] 
and PSR[ 10:8] now reflect the privilege level and priority level of the about-to-be-
resumed program. Similarly, the PC is restored to the address of the instruction 
that would have been executed next if the program had not been interrupted. 

With all these things as they were before the interrupt occurred, the program 
can resume as if nothing had happened. 
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Program A 

10.2.3 An Example 
We complete the discussion of interrupt-driven I/O with an example. 

Suppose program A is executing when I/O device B, having a PL higher than 
that of A, requests service. During the execution of the service routine for I/O 
device B, a still more urgent device C requests service. 

Figure 10.6 shows the execution flow that must take place. 
Program A consists of instructions in locations x3000 to x3010 and was in 

the middle of executing the ADD instruction at x3006, when device B sent its 
interrupt request signal and accompanying interrupt vector xFl , causing INT to 
be asserted. 

Note that the interrupt service routine for device B is stored in locations x6200 
to x6210; x6210 contains the RTI instruction. Note that the service routine for 
B was in the middle of executing the AND instruction at x6202, when device C 
sent its interrupt request signal and accompanying interrupt vector xF2. Since the 
request associated with device C is of a higher priority than that of device B, INT 
is again asserted. 

Note that the interrupt service routine for device C is stored in locations x6300 
to x6315; x6315 contains the RTI instruction. 

Let us examine the order of execution by the processor. Figure 10.7 shows 
several snapshots of the contents of the Supervisor Stack and the PC dining the 
execution of this example. 

The processor executes as follows: Figure 10.7a shows the Supervisor Stack 
and the PC before program A fetches the instruction at x3006. Note that the stack 
pointer is shown as Saved.SSP, not R6. Since the interrupt has not yet occurred, 
R6 is pointing to the current contents of the User Stack. The INT signal (caused 
by an interrupt from device B) is detected at the end of execution of the instruction 
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\ Saved. 
SSP 

PSR of program A 

x 3 0 0 7 

\ 

R6 

PSR for device B 

X6203 

PSR of program A 

X3007 

\ 

R6 

P C x 3 0 0 6 P C x 6 2 0 0 PC X6300 

(a) (b) (c) 

PSR for device B 

X6203 

PSR of program A 

X 3 0 0 7 

R6 

PSR for device B 

X 6 2 0 3 

PSR of program A 

X 3 0 0 7 

Saved. SSP 

PC X 6 2 0 3 PC X3007 

(d) (e) 

Figure 10 .7 Snapshots of the contents of the Supervisor Stack and the PC during 
interrupt-driven I/O 

in x3006. Since the state of program A must be saved on the Supervisor Stack, the 
first step is to start using the Supervisor Stack. This is done by saving R6 in the 
Saved.USP register, and loading R6 with the contents of the Saved.SSP register. 
The address x3007, the PC for the next instruction to be executed in program A, is 
pushed onto the stack. The PSR of program A, which includes the condition codes 
produced by the ADD instruction, is pushed onto the stack. The interrupt vector 
associated with device B is expanded to 16 bits xOlFl, and the contents of xOlFl 
(x6200) are loaded into the PC. Figure 10.7b shows the stack and PC at this point. 

The service routine for device B executes until a higher priority interrupt is 
detected at the end of execution of the instruction at x6202. The address x6203 
is pushed onto the stack, along with the PSR of the service routine for B, which 
includes the condition codes produced by the AND instruction. The interrupt 
vector associated with device C is expanded to 16 bits (x01F2), and the contents 
of x01F2 (x6300) are loaded into the PC. Figure 10.7c shows the Supervisor Stack 
and PC at this point. 
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The interrupt service routine for device C executes to completion, finishing 
with the RTI instruction in x6315. The Supervisor Stack is popped twice, restoring 
the PSR of the service routine for device B, including the condition codes produced 
by the AND instruction in x6202, and restoring the PC to x6203. Figure 10.7d 
shows the stack and PC at this point. 

The interrupt service routine for device B resumes execution at x6203 and runs 
to completion, finishing with the RTI instruction in x6210. The Supervisor Stack 
is popped twice, restoring the PSR of program A, including the condition codes 
produced by the ADD instruction in x3006, and restoring the PC to x3007. Finally, 
since program A is in User Mode, the contents of R6 are stored in Saved.SSP and 
R6 is loaded with the contents of Saved.USP. Figure 10.7e shows the Supervisor 
Stack and PC at this point. 

Program A resumes execution with the instruction at x3007. 

10.3 H i i m e t i c Using o Stock 
10.3.1 The Stack as Temporary Storage 
There are computers that use a stack instead of general purpose registers to store 
temporary values during a computation. Recall that our ADD instruction 

ADD RO,Rl,R2 

takes source operands from Rl and R2 and writes the result of the addition into 
RO. We call the LC-3 a three-address machine because all three locations (the 
two sources and the destination) are explicitly identified. Some computers use a 
stack for source and destination operands and explicitly identify none of them. 
The instruction would simply be 

ADD 
We call such a computer a stack machine, or a zero-address machine. The hardware 
would know that the source operands are the top two elements on the stack, which 
would be popped and then supplied to the ALU, and that the result of the addition 
would be pushed onto the stack. 

To perform an ADD on a stack machine, the hardware would execute two 
pops, an add, and a push. The two pops would remove the two source operands 
from the stack, the add would compute their sum, and the push would place the 
result back on the stack. Note that the pop, push, and add are not part of the ISA 
of that computer, and therefore not available to the programmer. They are control 
signals that the hardware uses to make the actual pop, push, and add occur. The 
control signals are part of the microarchitecture, similar to the load enable signals 
and mux select signals we discussed in Chapters 4 and 5. As is the case with 
LC-3 instructions LD and ST, and control signals PCMUX and LD.MDR, the 
programmer simply instructs the computer to ADD, and the microarchitecture 
does the rest. 

Sometimes (as we will see in our final example of this chapter), it is useful 
to process arithmetic using a stack. Intermediate values are maintained on the 



10.3 Arithmetic Using a Stack 265 

stack rather than in general purpose registers, such as the LC-3's RO through R7. 
Most general purpose microprocessors, including the LC-3, use general purpose 
registers. Most calculators use a stack. 

10.3.2 An Example 
For example, suppose we wanted to evaluate (A + B) • (C + D), where A contains 
25, B contains 17, C contains 3, and D contains 2, and store the result in E. If 
the LC-3 had a multiply instruction (we would probably call it MUL), we could 
use the following program: 

LD R0, A 
LD Rl, B 
ADD R0,RO,Rl 
LD R2 , C 
LD R3,D 
ADD R2,R2, R3 
MUL R0,R0,R2 
ST R0, E 

With a calculator, we could execute the following eight operations: 

(1) push 25 
(2) push 17 
(3) add 
(4) push 3 
(5) push 2 
(6) add 
(7) multiply 
(8) pop E 

with the final result popped being the result of the computation, that is, 210. 
Figure 10.8 shows a snapshot of the stack after each of the eight operations. 

In Section 10.5, we write a program to cause the LC-3 (with keyboard and 
monitor) to act like such a calculator. We say the LC-3 simulates the calculator 
when it executes that program. 

But first, let's examine the subroutines we need to conduct the various 
arithmetic operations. 

10.3.3 OpAdd, OpMult, and OpNeg 
The calculator we simulate in Section 10.5 has the ability to enter values, add, 
subtract, multiply, and display results. To add, subtract, and multiply, we need 
three subroutines: 

1. OpAdd, which will pop two values from the stack, add them, and push the 
result onto the stack. 
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/ / / / / X3FFB / / / / / X3FFB / / / / / X3FFB 
/ / / / / X3FFC / / / / / X3FFC / / / / / X3FFC 
/ / / / / X3FFD / / / / / X3FFD / / / / / X3FFD 
/ / / / / X3FFE / / / / / X3FFE 17 X3FFE 
/ / / / / X3FFF 25 X3FFF 25 X3FFF 

X4000 Stack pointer X3FFF Stack pointer X3FFE Stack pointer 

(a) Before (b) After first push (c) After second push 

/ / / / / X3FFB 
/ / / / / X3FFC 
/ / / / / X3FFD 

17 X3FFE 
42 X3FFF 

X3FFF Stack pointer 

(d) After first add 

/ / / / / X3FFB 
/ / / / / X3FFC 
/ / / / / X3FFD 

3 X3FFE 
42 X3FFF 

X3FFE Stack pointer 

(e) After third push 

/ / / / / X3FFB 
/ / / / / X3FFC 

2 X3FFD 
3 X3FFE 

42 X3FFF 

X3FFD Stack pointer 

(f) After fourth push 

/ / / / / X3FFB / / / / / X3FFB / / / / / X3FFB 
/ / / / / X3FFC / / / / / X3FFC / / / / / X3FFC 

2 X3FFD 2 X3FFD 2 X3FFD 
5 X3FFE 5 X3FFE 5 X3FFE 

42 X3FFF 210 X3FFF 210 X3FFF 

X3FFE Stack pointer X3FFF Stack pointer X4000 Stack pointer 

(g) After second add (h) After multiply (i) After pop 

Figure 10 .8 Stack usage during the computation of (25 + 17) (3 + 2) 

2. OpMult, which will pop two values from the stack, multiply them, and push 
the result onto the stack. 

3. OpNeg, which will pop the top value, form its 2's complement negative 
value, and push the result onto the stack. 

The OpAdd Algorithm 
Figure 10.9 shows the flowchart of the OpAdd algorithm. Basically, the algorithm 
attempts to pop two values off the stack and, if successful, add them. If the result 
is within the range of acceptable values (that is, an integer between - 9 9 9 and 
+999), then the result is pushed onto the stack. 

There are two things that could prevent the OpAdd algorithm from completing 
successfully: Fewer than two values are available on the stack for source operands, 
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Figure 10.9 Flowchart for OpAdd algorithm 

or the result is out of range. In both cases, the stack is put back to the way it was 
at the start of the OpAdd algorithm, a 1 is stored in R5 to indicate failure, and 
control is returned to the calling program. If the first pop is unsuccessful, the 
stack is not changed since the POP routine leaves the stack as it was. If the second 
of the two pops reports back unsuccessfully, the stack pointer is decremented, 
which effectively returns the first value popped to the top of the stack. If the result 
is outside the range of acceptable values, then the stack pointer is decremented 
twice, returning both values to the top of the stack. 

The OpAdd algorithm is shown in Figure 10.10. 
Note that the OpAdd algorithm calls the RangeCheck algorithm. This is a 

simple test to be sure the result of the computation is within what can successfully 
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01 
02 
03 
04 
05 
06 OpAdd JSR 
07 ADD 
08 BRp 
09 ADD 
OA JSR 
OB ADD 
OC BRp 
OD ADD 
OE JSR 
OF BRp 
10 JSR 
11 RET 
12 Restore2 ADD 
13 Restorel ADD 
14 Exit RET 
Figure 10.10 The OpAdd a lgor i thm 

Routine to pop the top 
add them, and push the 
the stack pointer. 

POP 
R5,R5,#0 
Exit 
Rl,R0,#0 
POP 
R5,R5,#0 
Restorel 
R0,R0,Rl 
RangeCheck 
Restore2 
PUSH 

R6,R6,#-1 
R6,R6,#-1 

two elements from the stack, 
sum onto the stack. R6 is 

Get first source operand. 
Test if POP was successful. 
Branch if not successful. 
Make room for second operand. 
Get second source operand. 
Test if POP was successful. 
Not successful, put back first 
THE Add. 
Check size of result. 
Out of range, restore both. 
Push sum on the stack. 
On to the next task... 
Decrement stack pointer. 
Decrement stack pointer. 

Figure 10.11 The RangeCheck a lgor i thm flowchart 

be stored in a single stack location. For our purposes, suppose we restrict values 
to integers in the range - 9 9 9 to +999. This will come in handy in Section 10.5 
when we design our home-brew calculator. The flowchart for the RangeCheck 
algorithm is shown in Figure 10.11. The LC-3 program that implements this 
algorithm is shown in Figure 10.12. 
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01 
02 ; Routine to check that the magnitude of a value is 
03 ; between -999 and +999. 
04 
05 RangeCheck LD R5,Neg999 
06 ADD R4,R0,R5 ; Recall that R0 contains 
07 BRp BadRange ; result being checked. 
08 LD R5, Pos999 
09 ADD R4,R0,R5 
OA BRn BadRange 
0B AND R5,R5,#0 ; R5 <-- success 
OC RET 
0D BadRange ST R7,Save ; R7 is needed by TRAP/RET 
0E LEA R0,RangeErrorMsg 
OF TRAP x22 ; Output character string 
10 LD R7,Save 
11 AND R5,R5,#0 / 

12 ADD R5,R5,#1 ; R5 <-- failure 
13 RET 
14 Neg999 .FILL #-999 
15 Pos99 9 .FILL #999 
16 Save .FILL xOOOO 
17 RangeErrorMsg .FILL xOOOA 
18 .STRINGZ "Error: Number is out of range." 
Figure 10 .12 The RangeCheck algorithm 

The OpMult Algorithm 
Figure 10.13 shows the flowchart of the OpMult algorithm, and Figure 10.14 
shows the LC-3 program that implements that algorithm. Similar to the OpAdd 
algorithm, the OpMult algorithm attempts to pop two values off the stack and, if 
successful, multiplies them. Since the LC-3 does not have a multiply instruction, 
multiplication is performed as we have done in the past as a sequence of adds. 
Lines 17 to 19 of Figure 10.14 contain the crux of the actual multiply. If the result 
is within the range of acceptable values, then the result is pushed onto the stack. 

If the second of the two pops reports back unsuccessfully, the stack pointer 
is decremented, which effectively returns the first value popped to the top of the 
stack. If the result is outside the range of acceptable values, which as before will 
be indicated by a 1 in R5, then the stack pointer is decremented twice, returning 
both values to the top of the stack. 

The OpNeg Algorithm 
We have provided algorithms to add and multiply the top two elements on the 
stack. To subtract the top two elements on the stack, we can use our OpAdd 
algorithm if we first replace the top of the stack with its negative value. That is, if 
the top of the stack contains A, and the second element on the stack contains B, 
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Figure 10.13 Flowchart for the OpMult algorithm 
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01 ; 
02 ; Algorithm to pop two values from the stack, multiply them, 
03 ; and if their product is within the acceptable range, push 
04 ; the result onto the stack. R6 is stack pointer. 
05 ; 
06 OpMult AND R3,R3,#0 / R3 holds sign of multiplier. 
07 JSR POP / Get first source from stack. 
08 ADD R5,R5,#0 f Test for successful POP. 
09 BRp Exit t Failure 
OA ADD Rl,R0,#0 i Make room for next POP. 
0B JSR POP i Get second source operand. 
OC ADD R5,R5,#0 t Test for successful POP. 
0D BRp Restorel / Failure; restore first POP. 
0E ADD R2,R0,#0 / Moves multiplier, tests sign 
OF BRzp PosMultiplier 
10 ADD R3,R3,#1 / Sets FLAG: Multiplier is neg 
11 NOT R2, R2 
12 ADD R2 , R2 , # 1 / R2 contains -(multiplier). 
13 PosMultiplier AND R0,R0,#0 ! Clear product register. 
14 ADD R2,R2,#0 
15 
16 

BRz PushMult / Multiplier = 0, Done. 

17 
/ 

MultLoop ADD R0,R0,Rl t THE actual "multiply" 
18 ADD R2,R2,#-1 I Iteration Control 
19 BRp MultLoop 
1A / 

IB JSR RangeCheck 
1C ADD R5,R5,#0 ! R5 contains success/failure. 
ID BRp Restore2 
IE i 
IF ADD R3,R3,#0 t Test for negative multiplier 
20 BRz PushMult 
21 NOT R0, R0 1 Adjust for 
22 ADD R0,R0,#1 t sign of result. 
23 PushMult JSR PUSH f Push product on the stack. 
24 RET 
25 Restore2 ADD R6,R6,#-1 § Adjust stack pointer. 
26 Restorel . ADD R6,R6,#-1 1 Adjust stack pointer. 
27 Exit RET 
Figure 10.14 The OpMult algorithm 

and we wish to pop A, B and push B—A, we can accomplish this by first negating 
the top of the stack and then performing OpAdd. 

The algorithm for negating the element on the top of the stack, OpNeg, is 
shown in Figure 10.15. 
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01 ; Algorithm to pop the top 
02 ; and push the result onto 
03 
04 OpNeg JSR POP 
05 ADD R5,R5, #0 
06 BRp Exit 
07 NOT R0, R0 
08 ADD R0,R0, #1 
09 JSR PUSH 
OA Exit RET 

of the stack, form its negative, 
the stack. 

Get the source operand. 
Test for successful pop 
Branch if failure. 

Form the negative of source. 
Push result onto the stack. 

Figure 10 .15 The OpNeg algorithm 

10.4 Data Tijpe Conversion 
It has been a long time since we talked about data types. We have been exposed 
to several data types: unsigned integers for address arithmetic, 2's complement 
integers for integer arithmetic, 16-bit binary strings for logical operations, floating 
point numbers for scientific computation, and ASCII codes for interaction with 
input and output devices. 

It is important that every instruction be provided with source operands of 
the data type that the instruction requires. For example, ADD requires operands 
that are 2's complement integers. If the ALU were supplied with floating point 
operands, the computer would produce garbage results. 

It is not uncommon in high-level language programs to find an instruction of 
the form A = R + / where R (floating point) and / (2's complement integer) are 
represented in different data types. 

If the operation is to be performed by a floating point adder, then we have a 
problem with I . To handle the problem, one must first convert the value I from 
its original data type (2's complement integer) to the data type required by the 
operation (floating point). 

Even the LC-3 has this data type conversion problem. Consider a multiple-
digit integer that has been entered via the keyboard. It is represented as a string 
of ASCII characters. To perform arithmetic on it, you must first convert the value 
to a 2's complement integer. Consider a 2's complement representation of a value 
that you wish to display on the monitor. To do so, you must first convert it to an 
ASCn string. 

In this section, we will examine routines to convert between ASCII strings 
of decimal digits and 2's complement binary integers. 

10.4.1 Example: The Bogus Program: 2 + 3 = e 
First, let's examine Figure 10.16, a concrete example of how one can get into 
trouble if one is not careful about keeping track of the data type of each of the 
values with which one is working. 

Suppose we wish to enter two digits from the keyboard, add them, and dis-
play the results on the monitor. At first blush, we write the simple program of 
Figure 10.16. What happens? 
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01 TRAP x23 Input from the keyboard. 
02 ADD Rl,R0,#0 Make room for another input. 
03 TRAP x23 Input another character. 
04 ADD R0,R1,R0 Add the two inputs. 
05 TRAP x21 Display result on the monitor 
06 TRAP x25 Halt. 
Figure 10.16 ADDITION without paying attention to data types 

Suppose the first digit entered via the keyboard is a 2 and the second digit 
entered via the keyboard is a 3. What will be displayed on the monitor before the 
program terminates? The value loaded into RO as a result of entering a 2 is the 
ASCII code for 2, which is x0032. When the 3 is entered, the ASCII code for 3, 
which is x0033, will be loaded. Thus, the ADD instruction will add the two binary 
strings x0032 and x0033, producing x0065. When that value is displayed on the 
monitor, it will be treated as an ASCII code. Since x0065 is the ASCII code for a 
lowercase e, that is what will be displayed on the monitor. 

The reason why we did not get 5 (which, at last calculation, was the correct 
result when adding 2 + 3) was that we didn't (a) convert the two input char-
acters from ASCII to 2's complement integers before performing addition and 
(b) convert the result back to ASCII before displaying it on the monitor. 

Exercise: Correct Figure 10.16 so that it will add two single-digit positive 
integers and give a single-digit positive sum. Assume that the two digits being 
added do in fact produce a single-digit sum. 

10.4.2 ASCII to Binary 
It is often useful to deal with numbers that require more than one digit to express 
them. Figure 10.17 shows the ASCII representation of the three-digit number 295, 
stored as an ASCII string in three consecutive LC-3 memory locations, starting 
at ASCIIBUFF.R1 contains the number of decimal digits in die number. 

Note that in Figure 10.17, a whole LC-3 word (16 bits) is allocated for each 
ASCII character. One can (and, in fact, more typically, one does) store each ASCII 
character in a single byte of memory. In this example, we have decided to give 
each ASCII character its own word of memory in order to simplify the algorithm. 

X 0 0 3 2 

x 0 0 3 9 

X 0 0 3 5 

ASCIIBUFF 

3 Rt 

Figure 10.17 The ASCII representation of 295 stored in consecutive memory locations 
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Figure 10.18 shows the flowchart for converting the ASCII representation of 
Figure 10.17 into a binary integer. The value represented must be in the range 0 
to +999, that is, it is limited to three decimal digits. 

The algorithm systematically takes each digit, converts it from its ASCII code 
to its binary code by stripping away all but the last four bits, and then uses it to 
index into a table of 10 binary values, each corresponding to the value of one 
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of the 10 digits. That value is then added to RO. RO is used to accumulate the 
contributions of all the digits. The result is returned in RO. 

Figure 10.19 shows the LC-3 program that implements this algorithm. 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
0B 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
IB 
1C 
ID 
IE 
IF 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2 C 
2D 
Figure 

This algorithm takes an ASCII string of three decimal digits and 
converts it into a binary number. R0 is used to collect the result. 
Rl keeps track of how many digits are left to process. ASCIIBUFF 
contains the most significant digit in the ASCII string. 

ASCIItoBinary AND 
ADD 
BRz 

/ 

LD 
LEA 
ADD 
ADD 

/ 

LDR 
ADD 
ADD 

/ 

ADD 
BRz 
ADD 

/ 

LDR 
ADD 
LEA 
ADD 
LDR 
ADD 

/ 

ADD 
BRz 
ADD 

I 

LDR 
ADD 
LEA 
ADD 
LDR 
ADD 

R0,R0,#0 
R1,R1,#0 
DoneAtoB 

R0 will be used for our result 
Test number of digits. 
There are no digits. 

R3,NegASCIIOffset 
R2,ASCIIBUFF 
R2,R2,Rl 
R2,R2,#-1 

R3 gets xFFDO, i.e. -X0030 

R4,R2,#0 
R4 , R4 , R3 
R0,R0,R4 

R1,R1,#-1 
DoneAtoB 
R2,R2,#-1 

R4,R2,#0 
R4 , R4 , R3 
R5,LookUplO 
R5,R5, R4 
R4,R5,#0 
R0,R0,R4 

Rl,Rl,#-1 
DoneAtoB 
R2,R2,#-1 

R4/R2/#0 
R4 , R4 , R3 
R5,LookUpl00 
R5,R5,R4 
R4,R5,#0 
R0,R0,R4 

DoneAtoB RET 
NegASCIIOffset .FILL xFFDO 
ASCIIBUFF .BLKW 4 
LookUplO .FILL #0 
10.19 ASCII-to-binary conversion routine 

R2 now points to "ones11 digit. 

R4 <-- "ones" digit 
Strip off the ASCII template. 
Add ones contribution. 

The original number had one digit 
R2 now points to "tens" digit. 

R4 <-- "tens" digit 
Strip off ASCII template. 
LookUplO is BASE of tens values. 
R5 points to the right tens value 

Add tens contribution to total. 

The original number had two digits. 
R2 now points to "hundreds" digit. 

R4 <-- "hundreds" digit 
Strip off ASCII template. 
LookUplOO is hundreds BASE. 
R5 points to hundreds value. 

Add hundreds contribution to total. 
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2E .FILL #10 
2F .FILL #2 0 
30 .FILL #30 
31 .FILL #4 0 
32 .FILL #50 
33 .FILL #60 
34 .FILL #70 
35 .FILL #80 
36 .FILL #90 
37 / 

38 LookUplOO .FILL #0 
39 .FILL #100 
3A .FILL #200 
3B .FILL #300 
3C .FILL #400 
3D .FILL #500 
3E .FILL #600 
3F .FILL #700 
40 .FILL #800 
41 .FILL #900 
Figure 10 .19 ASCII-to-binary conversion routine (continued) 

10.4.3 Binary to ASCII 
Similarly, it is useful to convert the 2's complement integer into an ASCII string 
so that it can be displayed on the monitor. Figure 10.20 shows the algorithm for 
converting a 2's complement integer stored in R0 into an ASCII string stored in 
four consecutive memory locations, starting at ASCIIBUFF. The value initially 
in R0 is restricted to be within the range —999 to +999. After the algorithm 
completes execution, ASCIIBUFF contains the sign of the value initially stored 
in R0. The following three locations contain the three ASCII codes corresponding 
to the three decimal digits representing its magnitude. 

The algorithm works as follows: First, the sign of the value is determined, 
and the appropriate ASCII code is stored. The value in R0 is replaced by its 
absolute value. The algorithm determines the hundreds-place digit by repeatedly 
subtracting 100 from R0 until the result goes negative. This is next repeated for 
the tens-place digit. The value left is the ones digit. 

Exercise: [Very challenging] Suppose the decimal number is arbitrarily long. 
Rather than store a table of 10 values for the thousands-place digit, another table 
for the 10 ten-thousands-place digit, and so on, design an algorithm to do the 
conversion without resorting to any tables whatsoever. See Exercise 10.20. 

Exercise: This algorithm always produces a string of four characters inde-
pendent of the sign and magnitude of the integer being converted. Devise an 
algorithm that eliminates unnecessary characters in common representations, 
that is, an algorithm that does not store leading zeros nor a leading + sign. See 
Exercise 10.22. 
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01 
02 ; This algorithm takes the 2's complement representation of a signed 
03 ; integer within the range -999 to +999 and converts it into an ASCII 
04 ; string consisting of a sign digit, followed by three decimal digits. 
05 ; R0 contains the initial value being converted. 
06 
07 BinarytoASCII LEA Rl,ASCIIBUFF ; Rl points to string being generated 
08 ADD R0,R0,#0 ; R0 contains the binary value. 
09 BRn NegSign ; 
OA LD R2,ASCIIplus ; First store the ASCII plus sign. 
0B STR R2,Rl,#0 
OC BRnzp BeginlOO 
OD NegSign LD R2,ASCIIminus ; First store ASCII minus sign. 
0E STR R2,Rl,#0 
OF NOT R0,R0 ; Convert the number to absolute 
10 ADD R0,R0,#1 ; value; it is easier to work with. 
11 / 

12 BeginlOO LD R2,ASCIIoffset ; Prepare for "hundreds" digit. 
- L j 

14 
/ 

LD R3,NeglOO ; Determine the hundreds digit. 
15 LooplOO ADD R0,R0,R3 
16 BRn EndlOO 
17 ADD R2,R2,#1 
18 BRnzp LooplOO 
19 ) 
1A EndlOO STR R2,R1,#1 ; Store ASCII code for hundreds digit. 
IB LD R3,PoslOO 
1C ADD R0,R0,R3 ; Correct R0 for one-too-many subtracts 
ID / 

IE LD R2ASCIIoffset ; Prepare for "tens" digit. 
IF ! 

20 BeginlO LD R3,NeglO ; Determine the tens digit. 
21 Loopl0 ADD R0,R0,R3 
22 BRn EndlO 
23 ADD R2,R2,#1 
24 BRnzp Loop10 
25 / 

26 End 10 STR R2,R1,#2 ; Store ASCII code for, tens digit. 
27 ADD R0,R0,#10 ; Correct R0 for one-too-many subtracts 
29 Beginl LD R2,ASCIIoffset ; Prepare for "ones" digit. 
2A ADD R2 , R2 , R0 
2B STR R2,R1,#3 
2C RET 
2D / 

2E ASCIIplus .FILL X002B 
2F ASCIIminus .FILL X002D 
30 ASCIIoffset .FILL X0030 
31 NeglOO .FILL XFF9C 
32 PoslOO .FILL X0064 
33 NeglO .FILL XFFF6 
Figure 10 .20 Binary-to-ASCII conversion routine 
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10.5 Our Final Example: The Calculator 
We conclude Chapter 10 with the code for a comprehensive example: the simula-
tion of a calculator. The intent is to demonstrate the use of many of the concepts 
discussed thus far, as well as to show an example of well-documented, clearly 
written code, where the example is much more complicated than what can fit 
on one or two pages. The calculator simulation consists of 11 separate routines. 
You are encouraged to study this example before moving on to Chapter 11 and 
High-Level Language Programming. 

The calculator works as follows: We use the keyboard to input commands and 
decimal values. We use the monitor to display results. We use a stack to perform 
arithmetic operations as described in Section 10.2. Values entered and displayed 
are restricted to three decimal digits, that is, only values between —999 and +999, 
inclusive. The available operations are 

X Exit the simulation. 

D Display the value at the top of the stack. 

C Clear all values from the stack. 
+ Replace the top two elements on the stack with their sum. 
* Replace the top two elements on the stack with their product. 
- Negate the top element on the stack. 

Enter Push the value typed on the keyboard onto the top of the stack. 

Figure 10.21 is a flowchart that gives an overview of our calculator simulation. 
Simulation of the calculator starts with initialization, which includes setting R6, 
the stack pointer, to an empty stack. Then the user sitting at the keyboard is 
prompted for input. 

Input is echoed, and the calculator simulation systematically tests the char-
acter to determine the user's command. Depending on the user's command, the 
calculator simulation carries out the corresponding action, followed by a prompt 
for another command. The calculator simulation continues in this way until the 
user presses X, signaling that the user is finished with the calculator. 

Eleven routines comprise the calculator simulation. Figure 10.22 is the main 
algorithm. Figure 10.23 takes an ASCII string of digits typed by a user, converts it 
to a binary number, and pushes the binary number onto the top of the stack. Figure 
10.19 provides the ASCII-to-binary conversion routine. Figure 10.26 pops the 
entry on the top of the stack, converts it to an ASCII string, and displays the ASCII 
string on the monitor. Figure 10.20 provides the binary-to-ASCII conversion 
routine. Figures 10.10 (OpAdd), 10.14 (OpMult), and 10.15 (OpNeg) supply 
the basic arithmetic algorithms using a stack. Figures 10.24 and 10.25 contain 
versions of the POP and PUSH routines tailored for this application. Finally, 
Figure 10.27 clears the stack. 
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Figure 10.21 The calculator, overview 
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01 
02 ; The Calculator, Main Algorithm 
03 
04 LEA R6,StackBase Initialize the stack 
05 ADD R6,R6,#-1 R6 is stack pointer. 
06 LEA R0,PromptMsg 
07 PUTS 
08 GETC 
09 OUT 
OA 
OB ; Check the command 
OC 
OD Test LD Rl,NegX Check for X. 
OE ADD Rl,Rl,R0 
OF BRz Exit 
10 / 

11 LD Rl,NegC Check for C. 
12 ADD Rl,Rl,R0 
13 BRz OpClear See Figure 10.27. 
14 / 

15 LD Rl,NegPlus Check for + 
16 ADD Rl,Rl,R0 
17 BRz OpAdd See Figure 10.10. 
18 / 

19 LD Rl,NegMult Check for * 
1A ADD Rl,Rl,R0 
IB BRz OpMult See Figure 10.14. 
1C / 

ID LD Rl,NegMinus ; Check for -
IE ADD Rl,Rl,R0 
IF BRz OpNeg ; See Figure 10.15. 
20 / 

21 LD Rl,NegD Check for D 
22 ADD Rl,Rl,R0 
23 BRz OpDisplay ; See Figure 10.24. 
24 
25 ; Then we must be entering an integer 
26 
27 BRnzp PushValue ; See Figure 10.23. 
28 / 

See Figure 10.23. 

29 NewCommand LEA R0,PromptMsg 
2A PUTS 
2B GETC 
2C OUT 
2D BRnzp Test 
2E Exit HALT 
2F PromptMsg .FILL xOOOA 
30 .STRINGZ "Enter a command: m 
31 NegX .FILL XFFA8 
32 NegC .FILL xFFBD 
33 NegPlus .FILL XFFD5 
34 NegMinus .FILL XFFD3 
35 NegMult .FILL XFFD6 
36 NegD .FILL xFFBC 
Figure 10 .22 The calculator's main algorithm 
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01 ; This algorithm takes a sequence of ASCII digits typed by the user, 
02 ; converts it into a binary value by calling the ASCIItoBinary 
03 ; subroutine, and pushes the binary value onto the stack. 
04 
05 PushValue LEA R1,ASCIIBUFF ; Rl points to string being 
06 LD R2,MaxDigits ; generated. 
07 
08 ValueLoop ADD R3,R0,xFFF6 ; Test for carriage return. 
09 BRz Goodlnput 
OA ADD R2,R2,#0 
0B BRz TooLargeInput 
0C ADD R2,R2,#-1 ; Still room for more digits. 
0D STR R0,Rl,#0 ; Store last character read. 
0E ADD Rl,Rl,#1 
OF GETC 
10 OUT ; Echo it. 
11 BRnzp ValueLoop 
12 
13 Goodlnput LEA R2,ASCIIBUFF 
14 NOT R2,R2 
15 ADD R2,R2,#1 
16 ADD Rl,Rl,R2 ; Rl now contains no. of char. 
17 JSR ASCIItoBinary 
18 JSR PUSH 
19 BRnzp NewCommand 
1A 
IB TooLargeInput GETC ; Spin until carriage return. 
1C OUT 
ID ADD R3,R0,xFFF6 
IE BRnp TooLargelnput 
IF LEA R0,TooManyDigits 
2 0 PUTS 
21 BRnzp NewCommand 
22 TooManyDigits .FILL xOOOA 
2 3 .STRINGZ "Too many digits" 
24 MaxDigits .FILL x0003 
Figure 10.23 The calculator's PushValue routine 

Note that a few changes are needed if the various routines are to work with 
the main program of Figure 10.17. For example, OpAdd, OpMult, and OpNeg 
must all terminate with 

BRnzp NewCommand 

instead of RET. Also, some labels are used in more than one subroutine. If the sub-
routines are assembled separately and certain labels are identified as .EXTERNAL 
(see Section 9.2.5), then the use of the same label in more than one subroutine is 
not a problem. However, if the entire program is assembled as a single module, 
then duplicate labels are not allowed. In that case, one must rename some of the 
labels (e.g., Restore 1, Restore2, Exit, and Save) so that all labels are unique. 
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01 
02 
03 

This algorithm POPs a value from the stack and puts it in 
RO before returning to the calling program. R5 is used to 
report success (R5 = 0) or failure (R5 = 1) of the POP operation 

04 POP LEA R0,StackBase 
05 NOT R0, R0 
06 ADD R0,R0,#2 R0 = -(addr.ofStackB 
07 ADD R0,R0,R6 R6 = StackPointer 
08 BRz Underflow 
09 LDR R0,R6,#0 The actual POP 
OA ADD R6,R6,#1 Adjust StackPointer 
0B AND R5,R5,#0 R5 <-- success 
OC RET 
0D Underflow ST R7,Save TRAP/RET needs R7. 
0E LEA R0,UnderflowMsg 
OF PUTS t Print error message. 
10 LD Rl,Save Restore R7. 
11 AND R5,R5,#0 
12 ADD R5,R5,#1 R5 <-- failure 
13 RET 
14 Save .FILL xOOOO 
15 StackMax .BLKW 9 
16 StackBase .FILL xOOOO 
17 UnderflowMsg .FILL X0 00A 
18 .STRINGZ "Error: Too Few Values on the Stack. 
Figure 1 0 . 2 4 The calculator 's POP routine 

10.1 What are the defining characteristics of a stack? 

10.2 What is an advantage to using the model in Figure 10.3 to implement a 
stack versus the model in Figure 10.2? 

10.3 The LC-3 ISA has been augmented with the following Push and Pop 
instructions. Push Rn pushes the value in Register n onto the stack. Pop 
Rn removes a value from the stack and loads it into Rn. The figure 
below shows a snapshot of the eight registers of the LC-3 BEFORE and 
AFTER the following six stack operations are performed. Identify (a)-(d). 

BEFORE AFTER 
R0 X 0 0 0 0 PUSH R4 R0 xllll 
Rl xllll PUSH (a) Rl xllll 
R2 X 2 2 2 2 POP (b) R0 X 3 3 3 3 

R3 X 3 3 3 3 PUSH (c) R3 X 3 3 3 3 

R4 X 4 4 4 4 POP R2 R4 X 4 4 4 4 

R5 X 5 5 5 5 POP (d) R5 X 5 5 5 5 

R6 X 6 6 6 6 R6 X 6 6 6 6 

R7 xllll R7 X 4 4 4 4 
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01 
02 
03 
04 

This algorithm PUSHes on the stack the value stored in RO. 
R5 is used to report success (R5 = 0) or failure (R5 = 1) of 
the PUSH operation. 

05 PUSH ST Rl,Savel ; Rl is needed by this routine 
06 LEA Rl,StackMax 
07 NOT Rl, Rl 
08 ADD Rl,Rl,#1 Rl = - addr. of StackMax 
09 ADD Rl,Rl,R6 R6 = StackPointer 
OA BRz Overflow 
0B ADD R6,R6,#-1 Adjust StackPointer for PUSH 
OC STR R0,R6,#0 The actual PUSH 
0D BRnzp Success_exit 
0E Overflow ST R7,Save 
OF LEA R0,OverflowMsg 
10 PUTS 
11 LD R7,Save 
12 LD Rl, Savel Restore Rl. 
13 AND R5,R5,#0 
14 ADD R5,R5,#1 R5 <-- failure 
15 RET 
16 Success exit LD Rl,Savel Restore Rl. 
17 AND R5,R5,#0 ; R5 <-- success 
18 RET 
19 Save .FILL X0000 
1A Savel .FILL X0000 
IB OverflowMsg .STRINGZ "Error: Stack is Full." 
Figure 10.25 The calculator's PUSH routine 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
0B 
0C 
0D 
0E 

This algorithm calls BinarytoASCII to convert the 2's complement 
number on the top of the stack into an ASCII character string, and 
then calls PUTS to display that number on the screen. 

OpDisplay 

NewlineChar 

JSR 
ADD 
BRp 
JSR 
LD 
OUT 
LEA 
PUTS 
ADD 
BRnzp 
.FILL 

POP 
R5,R5,#0 
NewCommand ; 
BinarytoASCII 
R0,NewlineChar 

R0, ASCIIBUFF 

R6,R6,#-1 
NewCommand 
xOOOA 

R0 gets the value to be displayed. 

POP failed, nothing on the stack. 

Push displayed number back on stack 

Figure 10.26 The calculator's display routine 

01 
02 
03 
04 
05 
06 

This routine clears the stack by resetting the stack pointer (R6). 

OpClear LEA 
ADD 
BRnzp 

Figure 10.27 The OpClear routine 

R6,StackBase 
R6,R6,#1 
NewCommand 

Initialize the stack. 
R6 is stack pointer. 
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10.4 Write a function that implements another stack function, peek. Peek 
returns the value of the first element on the stack without removing the 
element from the stack. Peek should also do underflow error checking. 
(Why is overflow error checking unnecessary?) 

10.5 How would you check for underflow and overflow conditions if you 
implemented a stack using the model in Figure 10.2? Rewrite the PUSH 
and POP routines to model a stack implemented as in Figure 10.2, that 
is, one in which the data entries move with each 
operation. 

10.6 Rewrite the PUSH and POP routines such that the stack on which they 
operate holds elements that take up two memory locations 
each. 

10.7 Rewrite the PUSH and POP routines to handle stack elements of 
arbitrary sizes. 

10.8 The following operations are performed on a stack: 

PUSH A, PUSH B, POP, PUSH C, PUSH D, POP, PUSH E, 
POP, POP, PUSH F 

a. What does the stack contain after the P U S H F? 

b. At which point does the stack contain the most elements? Without 
removing the elements left on the stack from the previous 
operations, we perform: 

PUSH G, PUSH H, PUSH I, PUSH J, POP, PUSH K, 
POP, POP, POP, PUSH L, POP, POP, PUSH M 

c. What does the stack contain now? 
10.9 The input stream of a stack is a list of all the elements we pushed onto 

the stack, in the order that we pushed them. The input stream from 
Exercise 10.8 was ABCDEFGHIJKLM 

The output stream is a list of all the elements that are popped off the 
stack, in the order that they are popped off. 

a. What is the output stream from Exercise 10.8? 
Hint: BDE . . . 

b. If the input stream is ZYXWVUTSR, create a sequence of pushes 
and pops such that the output stream is YXVUWZSRT. 

c. If the input stream is ZYXW, how many different output streams can 
be created? 

10.10 During the initiation of the interrupt service routine, the N, Z, and P 
condition codes are saved on the stack. Show by means of a simple 
example how incorrect results would be generated if the condition 
codes were not saved. 
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10.11 In the example of Section 10.2.3, what are the contents of locations 
xOlFl and x01F2? They are part of a larger structure. Provide a name 
for that structure. (Hint: See Table A.3.) 

10.12 Expand the example of Section 10.2.3 to include an interrupt by a still 
more urgent device D while the service routine of device C is executing 
the instruction at x6310. Assume device D's interrupt vector is xF3. 
Assume the interrupt service routine is stored in locations x6400 to 
x6412. Show the contents of the stack and PC at each relevant point in 
the execution flow. 

10.13 Suppose device D in Exercise 10.12 has a lower priority than device C 
but a higher priority than device B. Rework Exercise 10.12 with this 
new wrinkle. 

10.14 Write an interrupt handler to accept keyboard input as follows: A buffer 
is allocated to memory locations x4000 through x40FE. The interrupt 
handler must accept the next character typed and store it in the next 
"empty" location in the buffer. Memory location x40FF is used as a 
pointer to the next available empty buffer location. If the buffer is full 
(i.e., if a character has been stored in location x40FE), the interrupt 
handler must display on the screen: "Character cannot be accepted; 
input buffer full." 

10.15 Consider the interrupt handler of Exercise 10.14. The buffer is modified 
as follows: The buffer is allocated to memory locations x4000 through 
x40FC. Location x40FF contains, as before, the address of the next 
available empty location in the buffer. Location x40FE contains the 
address of the oldest character in the buffer. Location x40FD contains 
the number of characters in the buffer. Other programs can remove 
characters from the buffer. Modify the interrupt handler so that, after 
x40FC is filled, the next location filled is x4000, assuming the character 
in x4000 has been previously removed. As before, if the buffer is full, 
the interrupt handler must display on the screen: "Character cannot be 
accepted; input buffer full." 

10.16 Consider the modified interrupt handler of Exercise 10.15, used in 
conjunction with a program that removes characters from the buffer. 
Can you think of any problem that might prevent the interrupt handler 
that is adding characters to the buffer and the program that is removing 
characters from the buffer from working correctly together? 

10.17 Describe, in your own words, how the Multiply step of the OpMult 
algorithm in Figure 10.14 works. How many instructions are executed 
to perform the Multiply step? Express your answer in terms of n, the 
value of the multiplier. (Note: If an instruction executes five times, it 
contributes 5 to the total count.) Write a program fragment that 
performs the Multiply step in fewer instructions if the value of the 
multiplier is less than 25. How many? 



305 chapter 10 And, Finally . . . The Stack t 

10.18 Correct Figure 10.16 so that it will add two single-digit positive integers 
and produce a single-digit positive sum. Assume that the two digits 
being added do in fact produce a single-digit sum. 

10.19 Modify Figure 10.16, assuming that the input numbers are one-digit 
positive hex numbers. Assume that the two hex digits being added 
together do in fact produce a single hex-digit sum. 

10.20 Figure 10.19 provides an algorithm for converting ASCII strings to 
binary values. Suppose the decimal number is arbitrarily long. Rather 
than store a table of 10 values for the thousands-place digit, another 
table for the 10 ten-thousands-place digit, and so on, design an 
algorithm to do the conversion without resorting to any tables 
whatsoever. 

10.21 The code in Figure 10.19 converts a decimal number represented as 
ASCII digits into binary. Extend this code to also convert a hexadecimal 
number represented in ASCII into binary. If the number is preceded by 
an x, then the subsequent ASCII digits (three at most) represent a hex 
number; otherwise it is decimal. 

10.22 The algorithm of Figure 10.20 always produces a string of four 
characters independent of the sign and magnitude of the integer being 
converted. Devise an algorithm that eliminates unnecessary characters 
in common representations, that is, an algorithm that does not store 
leading 0s nor a leading + sign. 
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10.23 What does the following LC-3 program do? 
.ORIG 
LEA 
LEA 
TRAP 
AND 

LOOP TRAP 
TRAP 
ADD 
BRz 
JSR 
ADD 
BRnzp 

INPUTDONE ADD 
BRz 

L00P2 JSR 
TRAP 
ADD 
BRp 

DONE TRAP 

X30Q0 
R6, STACKBASE 
RO, PROMPT 
x22 
Rl, Rl, #0 
x2 0 
x21 
R3, RO, #-10 
INPUTDONE 
PUSH 
Rl, Rl 
LOOP 
Rl, Rl 
DONE 
POP 
x21 
Rl, Rl 
L00P2 
x25 

#1 

#0 

#-1 

PUTS 

IN 

Check for newline 

HALT 

PUSH ADD 
STR 
RET 

R6, R6, #-2 
RO, R6, #0 

POP LDR R0, R6, #0 
ADD R6, R6, #2 
RET 

PROMPT .STRINGZ * 4Please enter a sentence; '' 
STACKSPAC .BLKW #50 
STACKBASE .FILL #0 

.END 
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10.24 Suppose the keyboard interrupt vector is x34 and the keyboard interrupt 
service routine starts at location xlOOO. What can you infer about the 
contents of any memory location from the above statement? 



c h a p t e r 

11 

I n t r o d u c t i o n lo P r o g r a m m i n g in C 

11.1 Our Objective 
Congratulations, and welcome to the second half of the book! You just completed 
an introduction to the basic underlying structure of modern computer systems. 
With this foundational material solidly in place, you are now well prepared to 
learn the fundamentals of programming in a high-level programming language. 

In the second half of this book, we will discuss high-level programming con-
cepts in the context of the C programming language. At every step, with every 
new high-level concept, we will be able to make a connection to the lower lev-
els of the computer system. From this perspective, nothing will be mysterious. 
We approach the computer system from the bottom up in order to reveal that 
there indeed is no magic going on when the computer executes the programs 
you write. It is our belief that with this mystery removed, you will compre-
hend programming concepts more quickly and deeply and in turn become better 
programmers. 

Let's begin with a quick overview of the first half. In the first 10 chapters, we 
described the LC-3, a simple computer that has all the important characteristics 
of a more complex, real computer. A basic idea behind the design of the LC-3 
(and indeed, behind all modern computers) is that simple elements are system-
atically interconnected to form more sophisticated devices. MOS transistors are 
connected to build logic gates. Logic gates are used to build memory and data 
path elements. Memory and data path elements are interconnected to build the 
LC-3. This systematic connection of simple elements to create something more 
sophisticated is an important concept that is pervasive throughout computing, 
not only in hardware design but also in software design. It is this simple design 
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philosophy that enables us to build computing systems that are, as a whole, very 
complex. 

After describing the hardware of the LC-3, we described how to program it 
in the Is and 0s of its native machine language. Having gotten a taste of the error-
prone and unnatural process of programming in machine language, we quickly 
moved to the more user-friendly LC-3 assembly language. We described how 
to decompose a programming problem systematically into pieces that could be 
easily coded on the LC-3. We examined how low-level TRAP subroutines perform 
commonly needed tasks, such as input and output, on behalf of the programmer. 
The concepts of systematic decomposition and subroutines are important not 
only for assembly-level programming but also for programming in a high-level 
language. You will continue to see examples of these concepts many times before 
the end of the book. 

In this half of the book, our primary objectives are to introduce fundamen-
tal high-level programming constructs—variables, control structures, functions, 
arrays, pointers, recursion, simple data structures—and to teach a good problem-
solving methodology for attacking programming problems. Our primary vehicle 
for doing so is the C programming language. It is not our objective to provide a 
complete coverage of C, but only the portions essential for a novice programmer 
to gain exposure to the fundamentals of programming and to be able to write 
fairly sophisticated programs. For the reader curious about aspects of C not cov-
ered in the main text, we provide a more complete description of the language in 
Appendix D. 

In this chapter, we make the transition from programming in low-level 
assembly language to high-level language programming in C. We'll explain why 
high-level languages came about, why they are important, and how they interact 
with the lower levels of the computing system. We'll then dive headfirst into C 
by examining a simple example program. Using this example, we point out some 
important details that you will need to know in order to start writing your own 
C code. 

11.2 Bridging [he Gap 
As computing hardware becomes faster and more powerful, software applications 
become more complex and sophisticated. New generations of computer systems 
spawn new generations of software that can do more powerful things than previ-
ous generations. As the software gets more sophisticated, the job of developing 
it becomes more difficult. To keep the programmer from being quickly over-
whelmed, it is critical that the process of programming be kept as simple as 
possible. Automating any part of this process (i.e., having the computer do part 
of the work) is a welcome enhancement. 

As we made the transition from LC-3 machine language in Chapters 5 and 6 
to LC-3 assembly language in Chapter 7, you no doubt noticed and appreciated 
how assembly language simplified programming the LC-3. The Is and 0s became 
mnemonics, and memory addresses became symbolic labels. Both instructions 
and memory addresses took on a form more comfortable for the human than for 
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the machine. The assembler filled some of the gap between the algorithm level 
and the ISA level in the levels of transformation (see Figure 1.6). It would be 
desirable for the language level to fill more of that gap. High-level languages do 
just that. They help make the job of programming easier. Let's look at some ways 
in which they help. 

• High-level languages allow us to give symbolic names to values. When 
programming in machine language, if we want to keep track of the iteration count 
of a loop, we need to set aside a memory location or a register in which to store 
the counter value. To access the counter, we need to remember the spot where we 
last stored it. The process is easier in assembly language because we can assign 
a meaningful label to the counter's memory location. In a higher-level language 
such as C, the programmer simply assigns the value a name (and, as we will 
see later, provides a type) and the programming language takes care of allocating 
storage for it and performing the appropriate data movement operations whenever 
the programmer refers to it. Since most programs contain many values, having 
such a convenient way to handle values is a critically useful enhancement. 

• High-level languages provide expressiveness. Most humans are more com-
fortable describing the interaction of objects in the real world than describing 
the interaction of objects such as integers, characters, and floating-point numbers 
in the digital world. Because of their human-friendly orientation, high-level lan-
guages enable the programmer to be more expressive. In a high-level language, 
the programmer can express complex tasks with a smaller amount of code, with 
the code itself looking more like a human language. For example, if we wanted 
to calculate the area of a triangle, we could simply write: 

area = 0.5 * base * height; 

Another example: we often write code to test a condition and do something 
if the condition is true or do something else if the condition is false. In high-level 
languages, such common tasks can be simply stated in an English-like form. For 
example, if we want to get (Umbrella) if the condition isitcioudy is true, 
otherwise get (Sunglasses) if it is false, then in C we can use the following C 
control structure: 

if (isitcioudy) 
get(Umbrella); 

else 
get(Sunglasses); 

• High-level languages provide an abstraction of the underlying hardware. 
In other words, high-level languages provide a uniform interface independent 
of underlying ISA or hardware. For example, often a programmer will want 
to do an operation that is not naturally supported by the instruction set. In the 
LC-3, there is no one instruction that performs an integer multiplication. Instead, 
an LC-3 assembly language programmer must write a small piece of code to 
perform multiplication. The set of operations supported by a high-level language 
is usually larger than the set supported by the ISA. The language will generate the 
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necessary code to carry out the operation whenever the programmer uses it. The 
programmer can concentrate on the actual programming task knowing that these 
high-level operations will be performed correctly and without having to deal with 
the low-level implementation. 

• High-level languages enhance code readability. Since common control 
structures are expressed using simple, English-like statements, the program itself 
becomes easier to read. One can look at a program in a high-level language, notice 
loops and decision constructs, and understand the code with less effort than with 
a program written in assembly language. As you will no doubt discover if you 
have not already, the readability of code is very important in programming. Often 
as programmers, we are given the task of debugging or building upon someone 
else's code. If the organization of the language is human-friendly to begin with, 
then understanding code in that language is a much simpler task. 

• Many high-level languages provide safeguards against bugs. By making 
the programmer adhere to a strict set of rules, the language can make checks as the 
program is translated or as it is executed. If certain rules or conditions are violated, 
an error message will direct the programmer to the spot in the code where the 
bug is likely to exist. In this manner, the language helps the programmer to get 
his/her program working more quickly. 

11.3 Translating High-Level Language Programs 
Just as LC-3 assembly language programs need to be translated (or more spe-
cifically, assembled) into machine language, so must all programs written in 
high-level languages. After all, the underlying hardware can only execute machine 
code. How this translation is done depends on the particular high-level language. 
One translation technique is called interpretation. With interpretation, a trans-
lation program called an interpreter reads in the high-level language program 
and performs the operations indicated by the programmer. The high-level lan-
guage program does not directly execute but rather is executed by the interpreter 
program. The other technique is called compilation, and the translator, called a 
compiler, completely translates the high-level language program into machine 
language. The output of the compiler is called the executable image, and it 
can directly execute on the hardware. Keep in mind that both interpreters and 
compilers are themselves programs running on the computer system. 

11.3.1 Interpretation 
With interpretation, a high-level language program is a set of commands for the 
interpreter program. The interpreter reads in the commands and carries them out as 
defined by the language. The high-level language program is not directly executed 
by the hardware but is in fact just input data for the interpreter. The interpreter is a 
virtual machine that executes the program. Many interpreters translate the high-
level language program section by section, one line, command, or subroutine at 
a time. 
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For example, the interpreter might read a single line of the high-level language 
program and directly carry out the effects of that line on the underlying hardware. 
If the line said, "Take the square root of B and store it into C t h e interpreter will 
carry out the square root by issuing the correct stream of instructions in the ISA 
of the computer to perform square root. Once the current line is processed, the 
interpreter moves on to the next line and executes it. This process continues until 
the entire high-level language program is done. 

High-level languages that are often interpreted include LISP, BASIC, and 
Perl. Special-purpose languages tend to be interpreted, such as the math language 
called Matlab. The LC-3 simulator is also an interpreter. Other examples include 
the UNIX command shell. 

11.3.2 Compilation 
With compilation, on the other hand, a high-level language program is translated 
into machine code that can be directly executed on the hardware. To do this 
effectively, the compiler must analyze the source program as a larger unit (usually, 
the entire source file) before producing the translation. A program need only be 
compiled once and can be executed many times. Many programming languages, 
including C, C++, and FORTRAN, are typically compiled. The LC-3 assembler 
is an example of a rudimentary compiler. A compiler processes the file (or files) 
containing the high-level language program and produces an executable image. 
The compiler does not execute the program (though some sophisticated compilers 
do execute the program in order to better optimize its performance), but rather 
only transforms it from the high-level language into the computer's native machine 
language. 

11.3.3 Pros and Cons 
There are advantages and disadvantages with either translation technique. With 
interpretation, developing and debugging a program is usually easier. Interpreters 
often permit the execution of a program one section (single line, for example) at a 
time. This allows the programmer to examine intermediate results and make code 
modifications on-the-fly. Often the debugging is easier with interpretation. Inter-
preted code is more easily portable across different computing systems. However, 
with interpretation, programs take longer to execute because there is an inter-
mediary, the interpreter, which is actually doing the work. With the compiler's 
assistance, the programmer can produce code that executes more quickly and uses 
memory more efficiently. Since compilation produces more efficient code, most 
commercially produced software tends to be programmed in compiled languages. 

11.4 The C Programming Language 
The C programming language was developed in 1972 by Dennis Ritchie at Bell 
Laboratories. C was developed for use in writing compilers and operating systems, 
and for this reason the language has a low-level bent to it. The language allows 
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Figure 11 .1 A timeline of the development of programming languages. While each new language shares some link to all 
previous languages, there is a strong relationship between C and both C++ and Java 

the programmer to manipulate data items at a very low level yet still provides the 
expressiveness and convenience of a high-level language. It is for these reasons 
that C is very widely used today as more than just a language to develop compilers 
and system software. 

The C programming language has a special place in the evolution of program-
ming languages. Figure 11.1 provides a timeline of the development of some of 
the more significant programming languages. Starting with the introduction of 
the first high-level programming language FORTRAN in 1954, each subsequent 
language was an attempt to fix the problems with its predecessors. While it is 
somewhat difficult to completely track the "parents" of a language (in fact, one 
can only surely say that all previous languages have some influence on a particu-
lar language), it is fairly clear that C had a direct influence on C++ and Java, both 
of which are two of the more significant languages today. C++ and Java were 
also influenced by Simula and its predecessors. The object-oriented features of 
C++ and Java come from these languages. Almost all of the aspects of the C 
programming language that we discuss in this textbook would be the same if we 
were programming in C++ or Java. Once you've understood the concepts in this 
half of the textbook, both C++ and Java will also be easier to master because of 
their similarity to C. 

Because of its low-level approach and because of its root influence on oilier 
current major languages, C is the language of choice for our bottom-up exploration 
of computing systems. C allows us to make clearer connections to the underlying 
levels in our discussions of basic high-level programming concepts. Learning 
more advanced concepts, such as object-oriented programming, is a shorter leap 
forward once these more fundamental, basic concepts are understood. 

All of the examples and specific details of C presented in this text are based on 
a standard version of C called ANSI C. As with many programming languages, 
several variants of C have been introduced throughout the years. In 1989, the 
American National Standards Institute (ANSI) approved "an unambiguous and 
machine-independent definition of the language C" in order to standardize the 
popular language. This version is referred to as ANSI C. ANSI C is supported 
by most C compilers. In order to compile and try out the sample code in this 
textbook, having access to an ANSI-compliant C compiler will be essential. 
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11.4.1 The C Compiler 
The C compiler is the typical mode of translation from a C source program to an 
executable image. Recall from Section 7.4.1 that an executable image is a machine 
language representation of a program that is ready to be loaded into memory and 
executed. The entire compilation process involves the preprocessor, the compiler 
itself, and the linker. Often, the entire mechanism is casually referred to as the 
compiler, because when we use the C compiler, the preprocessor and the linker 
are often automatically invoked. Figure 11.2 shows how the compilation process 
is handled by these components. 

/ Executable 
V image 

Figure 11.2 The dotted box indicates the overall compilation process—the preprocessor, the 
compiler, and the linker. The entire process is called compilation even though 
the compiler is only one part of it. The inputs are C source and header files and 
various object files. The output is an executable image. 
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The Preprocessor 

As its name implies, the C preprocessor "preprocesses" the C program before 
handing it off to the compiler. The C preprocessor scans through the source 
files (the source files contain the actual C program) looking for and acting upon 
C preprocessor directives. These directives are similar to pseudo-ops in LC-3 
assembly language. They instruct the preprocessor to transform the C source 
file in some controlled manner. For example, we can direct the preprocessor to 
substitute the character string DAYS THIS MONTH with the string 3 0 or direct 
it to insert the contents of file stdio.h into the source file at the current line. 
We'll discuss why both of these actions are useful in the subsequent chapters. 
All preprocessor directives begin with a pound sign, #, as the first character. All 
useful C programs rely on the preprocessor in some way. 

The Compiler 

After the preprocessor transforms the input source file, the program is ready to be 
handed over to the compiler. The compiler transforms the preprocessed program 
into an object module. Recall from Section 7.4.2 that an object module is the 
machine code for one section of the entire program. There are two major phases 
of compilation: analysis, in which the source program is broken down or parsed 
into its constituent parts, and synthesis, in which a machine code version of the 
program is generated. It is the job of the analysis phase to read in, parse, and build 
an internal representation of the original program. The synthesis phase generates 
machine code and, if directed, attempts to optimize this code to execute more 
quickly and efficiently on the computer on which it will be run. Each of these two 
phases is typically divided into subphases where specific tasks, such as parsing, 
register allocation, or instruction scheduling, are accomplished. Some compil-
ers generate assembly code and use an assembler to complete the translation to 
machine code. 

One of the most important internal bookkeeping mechanisms the com-
piler uses in translating a program is the symbol table. A symbol table is the 
compiler's internal bookkeeping method for keeping track of all the symbolic 
names the programmer has used in the program. The C compiler's symbol table 
is very similar to the symbol table maintained by the LC-3 assembler (see 
Section 7.3.3). We'll examine the C compiler's symbol table in more detail in 
the next chapter. 

The Linker 

The linker takes over after the compiler has translated the source file into object 
code. It is the linker's job to link together all object modules to form an executable 
image of the program. The executable image is a version of the program that can 
be loaded into memory and executed by the underlying hardware. When you click 
on the icon for the web browser on your PC, for example, you are instructing the 
operating system to read the web browser's executable image from your hard 
drive, load it into memory, and start executing it. 

Often, C programs rely upon library routines. Library routines perform 
common and useful tasks (such as I/O) and are prepared for general use by 
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the developers of the system software (the operating system and compiler, 
for example). If a program uses a library routine, then the linker will find the 
object code corresponding to the routine and link it within the final executable 
image. This process of linking in library objects should not be new to you; we 
described the process in Section 9.2.5 in the context of the LC-3. Usually, library 
objects are stored in a particular place depending on the computer system. In 
UNIX, for example, many common library objects can be found in the directory 
/usr/lib. 

11.5 R Simple Example 
We are now ready to start discussing programming concepts in the C programming 
language. Many of the new C concepts we present will be coupled with LC-3 code 
generated by a "hypothetical" LC-3 C compiler. In some cases, we will describe 
what actually happens when this code is executed. Keep in mind that you are not 
likely to be using an LC-3-based computer but rather one based on a real ISA 
such as the x86. For example, if you are using a Windows-based PC, then it is 
likely that your compiler will generate x86 code, not LC-3 code. 

Many of the examples we provide are complete programs that you can com-
pile and execute. For the sake of clearer illustration, some of the examples we 
provide are not quite complete programs and need to be completed before they 
can be compiled. In order to keep things straight, we'll refer to these partial code 
examples as code segments. 

Let's begin by diving headfirst into a simple C example. Figure 11.3 shows 
its source code. We will use this example to jump-start the process of learning C 
by pointing out some important aspects of a typical C program. The example is a 
simple one: It prompts the user to type in a number and then counts down from 
that number to 0. 

You are encouraged to compile and execute this program. At this point, it 
is not important to completely understand the purpose of each line. There are 
however several aspects of this example that will help you with writing your own 
C code and with comprehending the subsequent examples in the text. We'll focus 
on four such aspects: the function main, the code's comments and programming 
style, preprocessor directives, and the I/O function calls. 

11.5.1 The Function main 
The function main begins at the line containing int main {} (line 17) and ends 
at the closing brace on the last line of the code. These lines of the source code 
constitute a function definition for the function named main. What were called 
subroutines in LC-3 assembly language programming (discussed in Chapter 9) 
are referred to as functions in C. Functions are a very important part of C, and 
we will devote all of Chapter 14 to them. In C, the function main serves a special 
purpose: It is where execution of the program begins. Every C program, therefore, 
requires a function main. Note that in ANSI C, main must be declared to return 
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1 /* 
2 * 
3 * Program Name : countdown, our first C program 
4 * 
5 * Description : This program prompts the user to type in 
6 * a positive number and counts down from that number to 0, 
7 * displaying each number along the way. 
8 * 

9 */ 
10 
11 /* The next two lines are preprocessor directives */ 
12 #include <stdio.h> 
13 #define STOP 0 
14 
15 /* Function : main */ 
16 /* Description : prompt for input, then display countdown */ 
17 int main() 
18 { 
19 /* Variable declarations */ 
20 int counter; /* Holds intermediate count values */ 
21 int startPoint; /* Starting point for count down */ 
2 2 
23 /* Prompt the user for input */ 
24 printf(»===== Countdown Program =====\n"); 
25 printf("Enter a positive integer: "); 
26 scanf("%d", &startPoint); 
27 
2 8 /* Count down from the input number to 0 */ 
29 for (counter = startPoint; counter >= STOP; counter--) 
30 printf("%d\nn, counter); 
31 } 
Figure 11.3 A program prompts the user for a decimal integer and counts down f rom that 

number to 0 

an integer value. That is, main must be of type int, thus line 17 of the code is 
int main(). 

In this example, the code for function main (i.e., the code in between the curly 
braces) can be broken down into two components. The first component contains 
the variable declarations for the function. Two variables, one called counter and 
the other startPoint, are created for use within the function main. Variables are 
a very useful feature provided by high-level programming languages. They give 
us a way to symbolically name the values within a program. 

The second component contains the statements of the function. These state-
ments express the actions that will be performed when the function is executed. For 
all C programs, execution starts in main and progresses, statement by statement, 
until the last statement in main is completed. 

In this example, the first grouping of statements (lines 24-26) displays a 
message and prompts the user to input an integer number. Once the user enters 
a number, the program enters the last statement, which is a for loop (a type of 
iteration construct that we will discuss in Chapter 13). The loop counts downward 
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from the number typed by the user to 0. For example, if the user entered the number 
5, the program's output would look as follows: 

===== Countdown Program ===== 
Enter a positive integer: 5 
5 
4 
3 
2 
1 
0 

Notice in this example that many lines of the source code are terminated by 
semicolons,;. In C, semicolons are used to terminate declarations and statements; 
they are necessary for the compiler to break the program down unambiguously 
into its constituents. 

11.5.2 Formatting, Comments, and Style 
C is a free-format language. That is, the amount of spacing between words and 
between lines within a program does not change the meaning of the program. The 
programmer is free to structure the program in whatever manner he/she sees fit 
while obeying the syntactic rules of C. Programmers use this freedom to format the 
code in a manner that makes it easier to read. In the example program, notice that 
the for loop is indented in such a manner that the statement being iterated is easier 
to identify. Also in the example, notice the use of blank lines to separate different 
regions of code in the function main. These blank lines are not necessary but 
are used to provide visual separation of the code. Often, statements that together 
accomplish a larger task are grouped together into a visually identifiable unit. The 
C code examples throughout this book use a conventional indentation style typical 
for C. Styles vary. Programmers sometimes use style as a means of expression. 
Feel free to define your own style, keeping in mind that the objective is to help 
convey the meaning of the program through its formatting. 

Comments in C are different than in LC-3 assembly language. Comments in 
C begin with /* and end with */. They can span multiple lines. Notice that this 
example program contains several lines of comments, some on a single line, some 
spanning multiple lines. Comments are expressed differently from one program-
ming language to another. For example, comments in C++ can also begin with the 
sequence / / and extend to the end of the line. Regardless of how comments are 
expressed, the purpose is always the same: They provide a way for programmers 
to describe in human terms what their code does. 

Proper commenting of code is an important part of the programming process. 
Good comments enhance code readability, allowing someone not familiar with 
the code to understand it more quickly. Since programming tasks often involve 
working in teams, code very often gets shared or borrowed between programmers. 
In order to work effectively on a programming team, or to write code that is worth 
sharing, you must adopt a good commenting style early on. 
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One aspect of good commenting style is to provide information at the begin-
ning of each source file that describes the code contained within it, the date 
it was last modified, and by whom. Furthermore, each function (see function 
main in the example) should have a brief description of what the function 
accomplishes, along with a description of its inputs and outputs. Also, com-
ments are usually interspersed within the code to explain the intent of the 
various sections of the code. But overcommenting can be detrimental as it can 
clutter up your code, making it harder to read. In particular, watch out for 
comments that provide no additional information beyond what is obvious from 
the code. 

11,5.3 The C Preprocessor 
We briefly mentioned the C preprocessor in Section 11.4.1. Recall that it trans-
forms the original C program before it is handed off to the compiler. Our simple 
example contains two commonly used preprocessor directives: #define and 
#inciude. The C examples in this book rely only on these two directives. 

The #def ine directive is a simple yet powerful directive that instructs the C 
preprocessor to replace occurrences of any text that matches X with text Y. That 
is, the macro X gets substituted with Y. In the example, the #def ine causes the 
text STOP to be substituted with the text O. So the following source line 

for {counter - startPoint; counter >= STOP; counter--) 

is transformed (internally, only between the preprocessor and compiler) into 

for (counter = startPoint; counter >= 0; counter--) 

Why is this helpful? Often, the #def ine directive is used to create fixed values 
within a program. Following are several examples. 

#define NUMBER_OF_STUDENTS 25 
#define MAX_LENGTH 80 
#define LENGTH_OF_GAME 3 00 
#define PRICE_OF_FUEL 1.49 
#define COLOR_OF_EYES brown 

So for example, we can symbolically refer to the price of fuel as 
PRICE OF FUEL. If the price of fuel were to change, we would simply modify 
the definition of the macro PRICE OF FUEL and the preprocessor would han-
dle the actual substitution for us. This can be very convenient—if the cost of 
fuel was used heavily within a program, we would only need to modify one 
line in the source code to change the price throughout the code. Notice that the 
last example is slightly different from the others. In this example, one string of 
characters COLOR OF EYES is being substituted for another, brown. The common 
programming style is to use uppercase for the macro name. 

The #include directive instructs the preprocessor literally to insert another 
file into the source file. Essentially, the #include directive itself is replaced by 
the contents of another file. At this point, the usefulness of this command may not 
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be completely apparent to you, but as we progress deeper into the C language, you 
will understand how Cheaderfiles can be used to hold #defines and declarations 
that are useful among multiple source files. 

For instance, all programs that use the C I/O functions must include the I/O 
library's header file s t dio. h. This file defines some relevant information about the 
I/O functions in the C library. The preprocessor directive, #include <stdio. h> 
is used to insert the header file before compilation begins. 

There are two variations of the #include directive: 

#include <stdio. h> 
#include "program.h" 

*The first variation uses angle brackets (< >) around the filename. This tells the 
preprocessor that the header file can be found in a predefined directory. This is 
usually determined by the configuration of the system and contains many system-
related and library-related header files, such as st dio. h. Often we want to include 
headers files we have created ourselves for the particular program we are writing. 
The second variation, using double quotes (M ") around the filename, instructs 
the preprocessor that the header file can be found in the same directory as the 
C source file. 

Notice that none of the preprocessor macros ends with a semicolon. Since 
#def ine and #include are preprocessor directives and not C statements, they 
are not required to be terminated by semicolons. 

11.5.4 Input and Output 
We close this chapter by pointing out how to perform input and output from 
within a C program. We describe these functions at a high level now and save the 
details for Chapter 18, when we have introduced enough background material to 
understand C I/O down to a low level. Since all useful programs perform some 
form of I/O, learning the I/O capabilities of C is an important first step. In C, 
I/O is performed by library functions, similar to the IN and OUT trap routines 
provided by the LC-3 system software. 

Three lines of the example program perform output using the C library 
function print f or print formatted (refer to lines 24, 25, and 30). The func-
tion printf performs output to the standard output device, which is typically the 
monitor. It requires a format string in which we provide two things: (1) text to 
print out and (2) specifications on how to print out values within that text. For 
example, the statement 

printf("43 is a prime number."); 

prints out the following text to the output device. 

43 is a prime number. 

In addition to text, it is often useful to print out values generated within a program. 
Specifications within the format string indicate how we want these values to be 
printed out. Let's examine a few examples. 
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printf("%d is a prime number.", 43); 

This first example contains the format specification %d in its format string. It 
causes the value listed after the format string to be embedded in the output as a 
decimal number in place of the %d. The resulting output would be 

43 is a prime number. 

The following examples show other variants of printf. 

printf("43 plus 59 in decimal is %d.", 43 + 59); 
printf("43 plus 59 in hexadecimal is %x.", 43 + 59); 
printf("43 plus 59 as a character is %c.", 43 + 59); 

In the first printf, the format specification causes the value 102 to be 
embedded in the text because the result of "43 + 59" is printed as a decimal 
number. In the next example, the format specification %x causes 66 (because 
102 equals x66) to be embedded in the text. Similarly, in the third example, 
the format specification of %c displays the value interpreted as an ASCII char-
acter which, in this case, would be lowercase f . The output of this statement 
would be 

43 plus 59 as a character is f. 

What is important to notice is that the binary pattern being supplied to printf 
after the format string is the same for all three statements. Here, printf interprets 
the binary pattern 0110 0110 (decimal 102) first as a decimal number, then as a 
hexadecimal number, and finally as an ASCII character. The C output function 
printf converts the bit pattern into the proper sequence of ASCII characters 
based on the format sepecifications we provide it. Table D.6 contains a list of all 
the format specifications that can be used with printf. All format specifications 
begin with the percent sign, %. 

The final example demonstrates a very common and powerful use of print f. 

printf("The wind speed is %d km/hr.", windSpeed); 

Here, a value generated during the execution of the program, in this case the 
variable windSpeed, is output as a decimal number. The value displayed depends 
on the value of windSpeed when this line of code is executed. So if windSpeed 
equals 2 when the statement containing printf is executed, the following output 
would result: 

The wind speed is 2 km/hr. 

If you were to execute a program containing the five preceding printf state-
ments in these examples, you would notice that they would all be displayed on one 
single line without any line breaks. If we want line breaks to appear, we must put 
them explicitly within the format string in the places we want them to occur. New 
lines, tabs, and other special characters require the use of a special backslash (\) 
sequence. For example, to print a new line character (and thus cause a line break), 
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we use the special sequence \n. We can rewrite the preceding printf statements 
as such: 

printf("%d is a prime number.\n", 43); 
printf("43 plus 59 in decimal is %d.\n", 43 + 59); 
printf("43 plus 59 in hexadecimal is %x.\n", 43 + 59); 
printf("43 plus 59 as a character is %c.\n", 43 + 59); 
printf{"The wind speed is %d km/hr.\n", windSpeed); 

Notice that each format string ends by printing the new line character \n, so 
therefore each subsequent printf will begin on a new line. Table D.l contains a 
list of other special characters that are useful when generating output. The output 
generated by these five statements would look as follows: 

43 is a prime number. 
43 plus 59 in decimal is 102. 
43 plus 59 in hexadecimal is 66. 
43 plus 59 as a character is f. 
The wind speed is 2 km/hr. 

In our sample program in Figure 11.3, printf appears three times in the 
source. The first two versions display only text and no values (thus, they have no 
format specifications). The third version prints out the value of variable counter. 
Generally speaking, we can display as many values as we like within a single 
printf. The number of format specifications (for example, %d) must equal the 
number of values that follow the format string. 

Question: What happens if we replace the third printf in the example pro-
gram with the following? The expression "startPoint - counter" calculates 
the value of startPoint minus the value of counter. 

printf("%d %d\n", counter, startPoint - counter); 

Having dealt with output, we now turn to the corresponding input func-
tion scanf. The function scanf performs input from the standard input device, 
which is typically the keyboard. It requires a format string (similar to the one 
required by printf) and a list of variables into which the values retrieved from 
the keyboard should be stored. The function scanf reads input from the key-
board and, according to the conversion characters in the format string, converts 
the input and assigns the converted values to the variables listed. Let's look at an 
example. 

In the example program in Figure 11.3, we use scanf to read in a single 
decimal number using the format specification %d. Recall from our discussion 
on LC-3 keyboard input, the value received via the keyboard is in ASCII. The 
format specification %d informs scanf to expect a sequence of numeric ASCII 
keystrokes (i.e., the digits 0 to 9). This sequence is interpreted as a decimal number 
and converted into an integer. The resulting binary pattern will be stored in the 
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variable called startPoint. The function scanf automatically performs type 
conversions (in this case, from ASCII to integer) for us! The format specification 
%d is one of several that can be used with scanf. Table D.5 lists them all. There are 
specifications to read in a single character, a floating point value, an integer 
expressed as a hexadecimal value, and so forth. 

A very important thing to remember about scanf is that variables that are 
being modified by the scanf function (for example, startPoint) must be pre-
ceded by an & character. This may seem a bit mysterious, but we will discuss the 
reason for this strange notation in Chapter 16. 

Following are several more examples of scanf. 

/* Reads in a character and stores it in nextChar */ 
scanf (He", fcnextChar) ; 

/* Reads in a floating point number into radius */ 
scanf("% f", &radius) ; 

/* Reads two decimal numbers into length and width */ 
scanf (!,%d Id", &length, &width) ; 

11.6 Summon! 
In this chapter, we have introduced some key characteristics of high-level pro-
gramming languages and provided an initial exposure to the C programming 
language. We conclude this chapter with a listing of the major topics we've 
covered. 

• High-Level Programming Languages. High-level languages aim to make 
the programming process easier by connecting real-world objects with the low-
level concepts, such as bits and operations on bits, that a computer natively deals 
with. Because computers can only execute machine code, programs in high-level 
languages must be translated using the process of compilation or interpretation 
into machine code. 

• The C Programming Language. The C programming language is an ideal 
language for a bottom-up exposure to computing because of its low-level nature 
and because of its root influence on current popular programming languages. The 
C compilation process involves a preprocessor, a compiler, and a linker. 

• Our First C Program. We provided a very simple program to illustrate 
several basic features of C programs. Comments, indentation, and style can help 
convey the meaning of a program to someone trying to understand the code. Many 
C programs use the preprocessor macros #def ine and #include. The execution 
of a C program begins at the function main, which itself consists of variable 
declarations and statements. Finally, I/O in C can be accomplished using the 
library functions printf and scanf. 
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11-1 Describe some problems or inconveniences you found when 
programming in lower-level languages. 

11.2 How do higher-level languages help reduce the tedium of programming 
in lower-level languages? 

11-3 What are some disadvantages to programming in a higher-level 
language? 

11.4 Compare and contrast the execution process of an interpreter versus the 
execution process of a compiled binary. What implication does 
interpretation have on performance? 

11.5 A language is portable if its code can run on different computer 
systems, say with different ISAs. What makes interpreted languages 
more portable than compiled languages? 

11.6 The UNIX command line shell is an interpreter. Why can't it be a 
compiler? 

11.7 Is the LC-3 simulator a compiler or an interpreter? 
11.8 Another advantage of compilation over interpretation is that a compiler 

can optimize code more thoroughly. Since a compiler can examine the 
entire program when generating machine code, it can reduce the amount 
of computation by analyzing what the program is trying to do. 

The following algorithm performs some very straightforward 
arithmetic based on values typed at the keyboard. It outputs a single result. 
1. Get W from the keyboard 
2. X ^ W + W 
3. Y ^ - X + X 
4. Z Y + Y 
5. Print Z to the screen 
a. An interpreter would execute the program statement by statement. In 

total, five statements would execute. At least how many arithmetic 
operations would the interpreter perform on behalf of this program? 
State what the operations would be. 

b. A compiler would analyze the entire program before generating 
machine code, and possibly optimize the code. If the underlying ISA 
were capable of all arithmetic operations (i.e., addition, subtraction, 
multiplication, division), at least how many operations would be 
needed to carry out this program? State what the operations 
would be. 

11.9 For this question refer to Figure 11.2. 
a. Describe the input to the C preprocessor. 
b. Describe the input to the C compiler. 
c. Describe the input to the linker. 
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11-10 What happens if we changed the second-to-last line of the program in 
Figure 11.3 from printf ("%d\nH, counter) ; to: 
a. printf("%c\n", counter + 'A') ; 
h printf("%d\n%d\n", counter, startPoint + counter); 
C. printf("%x\n", counter); 

11.11 The function scanf reads in a character from the keyboard and the 
function printf prints it out. What do the following two statements 
accomplish? 
scanf("%c", &nextChar); 
printf("%d\nn, nextChar); 

11.12 The following lines of C code appear in a program. What will be the 
output of each printf statement? 
#define LETTER '1' 
#define ZERO 0 
#define NUMBER 123 

printf("%c", ' a' ) ; 

printf(nx%xu, 12288); 

printf (,,$%d.%C%d\n"/ NUMBER, LETTER, ZERO) ; 

11.13 Describe a program (at this point we do not expect you to be able to 
write working C code) that reads a decimal number from the keyboard 
and prints out its hexadecimal equivalent. 



c h a p t e r 

12 
and O p e r a t o r s 

12.1 Introduction 
In this chapter, we cover two basic concepts of high-level language programming, 
variables and operators. Variables hold the values upon which a program acts, and 
operators are the language mechanisms for manipulating these values. Variables 
and operators together allow the programmer to more easily express the work that 
a program is to carry out. 

The following line of C code is a statement that involves both variables and 
operators. In this statement, the addition operator + is used to add 3 to the original 
value of the variable score. This new value is then assigned using the assignment 
operator = back to score. If score was equal to 7 before this statement was 
executed, it would equal 10 afterwards. 

score = score + 3; 

In the first part of this chapter, we'll take a closer look at variables in the C 
programming language. Variables in C are straightforward: the three most basic 
flavors are integers, characters, and floating point numbers. After variables, we'll 
cover C's rich set of operators, providing plenty of examples to help illustrate 
their operations. One unique feature of our approach is that we can connect both 
of these high-level concepts back to solid low-level material, and in the third 
part of the chapter we'll do just that by discussing the compiler's point of view 
when it tries to deal with variables and operators in generating machine code. We 
close this chapter with some problem solving and some miscellaneous concepts 
involving variables and operators in C. 

Var iab les 
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12.2 V a r i a b l e s 
A value is any data item upon which a program performs an operation. Examples 
of values include the iteration counter for a loop, an input value entered by a 
user, or the partial sum of a series of numbers that are being added together. 
Programmers spend a lot of effort keeping track of these values. 

Because values are such an important programming concept, high-level lan-
guages try to make the process of managing them easier on the programmer. 
High-level languages allow the programmer to refer to values symbolically, by a 
name rather than a memory location. And whenever we want to operate on the 
value, the language will automatically generate the proper sequence of data move-
ment operations. The programmer can then focus on writing the program and need 
not worry about where in memory to store a value or about juggling the value 
between memory and the registers. In high-level languages, these symbolically 
named values are called variables. 

In order to properly track the variables in a program, the high-level language 
translator (the C compiler, for instance) needs to know several characteristics 
about each variable. It needs to know, obviously, the symbolic name of the vari-
able. It needs to know what type of information the variable will contain. It needs 
to know where in the program the variable will be accessible. In most languages, 
C included, this information is provided by the variable's declaration. 

Let's look at an example. The following declares a variable called echo that 
will contain an integer value. 

int echo; 

Based on this declaration, the compiler reserves an integer's worth of memory 
for echo (sometimes, the compiler can optimize the program such that echo is 
stored in a register and therefore does not require a memory location, but that is 
a subject for a later course). Whenever echo is referred to in the subsequent C 
code, the compiler generates the appropriate machine code to access it. 

12.2.1 Three Basic Data Types: int, char, double 
By now, you should be very familiar with the following concept: the meaning 
of a particular bit pattern depends on the data type imposed on the pattern. For 
example, the binary pattern ono ono might represent the lowercase f or it might 
represent the decimal number 102, depending on whether we treat the pattern 
as an ASCII data type or as a 2's complement integer data type. A variable's 
declaration informs the compiler about the variable's type. The compiler uses a 
variable's type information to allocate a proper amount of storage for the variable. 
Also, type indicates how operations on the variable are to be performed at the 
machine level. For instance, performing an addition on two integer variables can 
be done on the LC-3 with one ADD instruction. If the two variables were of 
floating point type, the LC-3 compiler would generate a sequence of instructions 
to perform the addition because no single LC-3 instruction performs a floating 
point addition. 
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C supports three basic data types: integers, characters, and floating point 
numbers. Variables of these types can be created with the type specifiers int, 
Char, and double (which is short for afowWe-precision floating point). 

int 
The int type specifier declares a signed integer variable. The internal represen-
tation and range of values of an int depends on the ISA of the computer and 
the specifics of the compiler being used. In the LC-3, for example, an int is 
a 16-bit 2's complement integer that can represent numbers between -32 ,768 
and +32,767. On an x86-based computer, an int is likely to be a 32-bit 2's 
complement number that can represent numbers between -2,147,483,648 and 
+2,147,483,647. In most cases, an int is a 2's complement integer in the word 
length of the underlying ISA. 

The following line of code declares an integer variable called 
numberOfSeconds. When the compiler sees this declaration, the compiler sets 
aside enough storage for this variable (in the case of the LC-3, one memory 
location). 

int numberOfSeconds; 
It should be no surprise that variables of integer type are frequently used 

in programs. They often conveniently represent the real-world data we want our 
programs to process. If we wanted to represent time, say for example in seconds, 
an integer variable would be perfect. In an application that tracks whale migration, 
we can use an integer to represent the sizes of pods of gray whales seen off the 
California coast. Integers are also useful for program control. An integer can be 
useful as the iteration counter for a counter-controlled loop. 

char 
The char type specifier declares a variable whose data value represents a char-
acter. Following are two examples. The first declaration creates a variable named 
lock. The second one declares key. The second declaration is slightly different; 
it also contains an initializer. In C, any variables can be set to an initial value 
directly in its declaration. In this example, the variable key will have the initial 
value of the ASCII code for uppercase Q. Also notice that the uppercase Q is 
surrounded by single quotes, ' ' . In C, characters that are to be interpreted as 
ASCII literals are surrounded by single quotes. What about lock? What initial 
value will it have? We'll address this issue shortly. 

char lock; 
char key = 'Q'; 

Although eight bits are sufficient to hold an ASCII character, for purposes 
of making the examples in this textbook less cluttered, all char variables will 
occupy 16 bits. That is, chars, like ints, will each occupy one memory location. 

double 
The type specifier double allows us to declare variables of the floating point 
type that we examined in Section 2.7.2. Floating point numbers allow us to 
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conveniently deal with numbers that have fractional components or numbers that 
are very large or very small. Recall from our previous discussion in Section 2.7.2 
that at the lowest level, a floating point number is a bit pattern that has three parts: 
a sign, a fraction, and an exponent. 

Here are three examples of variables of type double: 

double costPerLiter; 
double electronsPerSecond; 
double averageTemp; 

As with i n t s and chars, we can also optionally initialize a floating point 
number along with its declaration. Before we can completely describe how 
to initialize floating point variables, we must first discuss how to represent 
floating point literals in C. Floating point literals are represented containing 
either a decimal point or an exponent, or both, as demonstrated in the exam-
ple code that follows. The exponent is signified by the character e or E and can 
be positive or negative. It represents the power of 10 by which the fractional 
part (the part that precedes the e or E) is multiplied. Note that the exponent 
must be an integer value. For more information on floating point literals, see 
Appendix D.2.4. 

double twoPointOne = 2.1; /* This is 2.1 */ 
double twoHundredTen = 2.1E2; /* This is 210.0 */ 
double twoHundred = 2E2; /* This is 200.0 */ 
double twoTenths = 2E-1; /* This is 0.2 */ 
double minusTwoTenths = -2E-1; /* This is -0.2 */ 

Another floating point type specifier in C is called float. It declares a single-
precision floating point variable; double creates one that is double-precision. 
Recall from our previous discussion on floating point numbers in Chapter 2 that 
the precision of a floating point number depends on the number of bits of the 
representation allocated to the fraction. In C, depending on the compiler and the 
ISA, a double may have more bits allocated for the fraction than a float, but 
never fewer. The size of the double is dependent upon the ISA and the compiler. 
Usually, a double is 64 bits long and a float is 32 bits in compliance with the 
IEEE 754 floating point standard. 

12.2.2 Choosing Identifiers 
Most high-level languages have flexible rules for the variable names (more gen-
erally known as identifiers) that can be chosen within a program. C allows 
you to create identifiers composed of letters of the alphabet, digits, and the 
underscore character, Only letters and the underscore character, however, 
can be used to begin an identifier. An identifier can be of any length, but only 
the first 31 characters are used by the C compiler to differentiate variables— 
only the first 31 characters matter to the compiler. Also, the use of upper-
and lowercase has significance: C will treat Capital and capital as different 
indentifiers. 
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Here are several tips on standard C naming conventions: Variables beginning 
with an underscore (e.g., index ) conventionally are used only in special library 
code. Variables are almost never declared in all uppercase letters. The convention 
of all uppercase is used solely for symbolic values created using the preproces-
sor directive #define. See Section 11.5.3 for examples of symbolic constants. 
Programmers like to visually partition variables that consist of multiple words. In 
this book, we use uppercase (e.g., wordsPerSecond). Other programmers prefer 
underscores (e.g., words__per_second). 

Giving variables meaningful names is important for writing good code. Vari-
able names should be chosen to reflect a characteristic of the value they represent, 
allowing the programmer to more easily recall what the value is used for. For 
example, a value used to count the number of words the person at the keyboard 
types per second might be named wordsPerSecond. 

There are certain keywords in C that have special meaning and are therefore 
restricted from being used as identifiers. A list of C keywords can be found in 
Appendix D.2.6. One keyword we have encountered already is int, and therefore 
we cannot use int as a variable name. Having a variable named int would not 
only be confusing to someone trying to read through the code but might also 
confuse the compiler trying to translate it. The compiler may not be able to 
determine whether a particular int refers to the variable or to the type specifier. 

12.2.3 Scope: Local versus Global 
As we mentioned, a variable's declaration assists the compiler in managing the 
storage of that variable. In C, a variable's declaration conveys three pieces of 
information to the compiler: the variable's identifier, its type, and its scope. The 
first two of these, identifier and type, the C compiler gets explicitly from the 
variable's declaration. The third piece, scope, the compiler infers from the position 
of the declaration within the code. The scope of a variable is the region of the 
program in which the variable is "alive" and accessible. 

The good news is that in C, there are only two basic types of scope for a 
variable. Either the variable is global to the entire program,1 or it is local, or 
private, to a particular block of code. 

Local Variables 

In C, all variables must be declared before they can be used. In fact, some variables 
must be declared at the beginning of the block in which they appear—these are 
called local variables. In C, a block is any subsection of a program beginning with 
the open brace character, { and ending with the closing brace character, }. All 
local variables must be declared immediately following the block's open brace. 

The following code is a simple C program that gets a number from the key-
board and redisplays it on the screen. The integer variable echo is declared within 

1This is a slight simplification because C allows globals to be optionally declared to be global only 
to a particular source file and not the entire program, but this caveat is not relevant for our 
discussion here. 
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the block that contains the code for function main. It is only visible to the func-
tion main. If the program contained any other functions besides main, the variable 
would not be accessible from those other functions. Typically, most local vari-
ables are declared at the beginning of the function in which they are used, as for 
example echo in the code. 

#include <stdio.h> 

int main() { 
int echo; 

scanf("%d", &echo); 
printf("%d\n", echo); 

} 

It is possible, and sometimes useful, to declare two different variables with 
the same name within different blocks of the same function. For instance, it might 
be convenient to use the name count for the counter variable for several different 
loops within the same program. C allows this, as long as the different variables 
sharing the same name are declared in seperate blocks. Figure 12.1, which we 
discuss in the next section, provides an example of this. 

Global Variables 
In contrast to local variables, which can only be accessed within the block in which 
they are declared, global variables can be accessed throughout the program. They 
retain their storage and values throughout the duration of the program. 

#include <stdio.h> 

int globalVar = 2 ; /* This variable is global */ 

int main() 
{ 

int localVar = 3 ; /* This variable is local to main */ 

printf{"Global %d Local %d\n", globalVar, localVar); 
{ 

int localVar = 4 ; /* Local to this sub-block */ 

printf("Global %d Local %d\n", globalVar, localVar); 
} 

printf("Global %d Local %d\n", globalVar, localVar); 
} 
Figure 12.1 A C program that demonstrates nested scope 
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The following code contains both a global variable and a variable local to the 
function main: 

#include <stdio.h> 

int globalVar = 2 ; /* This variable is global */ 

int main{) { 
int localVar = 3 ; /* This variable is local to main */ 

printf{"Global %d Local %d\n", globalVar, localVar); 
} 

Globals can be extremely helpful in certain programming situations, but 
novice programmers are often instructed to adopt a programming style that uses 
locals over globals. Because global variables are public and can be modified from 
anywhere within the code, the heavy use of globals can make your code more 
vulnerable to bugs and more difficult to reuse and modify. In almost all C code 
examples in this textbook, we use only local variables. 

Let's look at a slightly more complex example. The C program in Figure 12.1 
is similar to the previous program except we have added a sub-block within main. 
Within this sub-block, we have declared a new variable localVar. It has the 
same name as the local variable declared at the beginning of main. Execute this 
program and you will notice that when the sub-block is executing the prior version 
of localVar is not visible; that is, the new declaration of a variable of the same 
name supersedes the previous one. Once the sub-block is done executing, the 
previous version of localVar becomes visible again. This is an example of what 
is called nested scope. 

Initialization of Variables 

Now that we have discussed global and local variables, let's answer the question 
we asked earlier: What initial value will a variable have if it has no initializer? 
In C, by default, local variables start with an unknown value. That is, the storage 
location a local variable is assigned is not cleared and thus contains whatever 
last value was stored there. More generally, in C, local variables are uninitialized 
(in particular, all variables of the automatic storage class). Global variables (and 
all other static storage class variables) are, in contrast, initialized to 0 when the 
program starts execution. 

12.2.4 More Examples 
Let's examine a couple more examples of variable declarations in C. The fol-
lowing examples demonstrate declarations of the three basic types discussed in 
this chapter. Some declarations have no initializers; some do. Notice how floating 
point and character literals are expressed in C. 
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double width; 
double pType = 9.44; 
double mass = 6.34E2; 
double verySmallAmount = 9.1094E-31; 
double veryLargeAmount = 7.334553E102; 
int average = 12; 
int windChi11Index = -21; 
int unknownValue; 
int mysteryAmount; 
char car = 'A' ; 
char number = '4'; 

In C, it is also possible to have literals that are hexadecimal values. A literal 
that has the prefix ox will be treated as a hexadecimal number. In the following 
examples, all three integer variables are initialized using hexadecimal literals. 

int programCounter = 0x3000; 
int sevenBits = QxA1234; 
int valueD = OxD; 

Questions: What happens if we perform a printf (n%d\nn, valueD) ; after 
the declarations? What bit pattern would you expect to find in the memory location 
associated with valueD? 

12.3 Operators 
Having covered the basics of variables in C, we are now ready to investigate oper-
ators. C, like many other high-level languages, supports a rich set of operators 
that allow the programmer to manipulate variables. Some operators perform arith-
metic, some perform logic functions, and others perform comparisons between 
values. These operators allow the programmer to express a computation in a 
more natural, convenient, and compact way than by expressing it as a sequence 
of assembly language instructions. 

Given some C code, the compiler's job is to take the code and convert it into 
machine code that the underlying hardware can execute. In the case of a C program 
being compiled for the LC-3, the compiler must translate whatever operations the 
program might contain into the instructions of the LC-3 instruction set—clearly 
not an easy task given that the LC-3 has very few operate instructions. 

To help illustrate this point, we examine the code generated by a simple C 
statement in which two integers are multiplied together. In the following code 
segment, x, y, and z are integer variables where x and y are multiplied and the 
result assigned to z. 

z = X * y; 

Since there is no single LC-3 instruction to multiply two values, our LC-3 
compiler must generate a sequence of code that accomplishes the multiplication of 
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AND RO, RO, #0 RO <= 0 

LDR Rl, R5, #0 load value of x 
LDR R2, R5, #-1 load value of y 
BRZ DONE if y is zero, we're done 
BRp LOOP if y is positive, start mult 

y is negative 
NOT Rl, Rl 
ADD Rl / Rl, #1 Rl <= -x 

NOT R2, R2 
ADD R2, R2 , #1 R2 <= -y (-y is positive) 

LOOP ADD RO, RO, Rl Multiply loop 
ADD R2 , R2, #-1 The result is in R2 
BRp LOOP 

DONE: STR RO, R5, #-2 z = x * y ; 

Figure 12.2 The LC-3 code for C multipl ication 

two (possibly negative) integers. One possible manner in which this can be accom-
plished is by repeatedly adding the value of x to itself a total of y times. This code 
is similar to the code in the calculator example in Chapter 10. Figure 12.2 lists 
the resulting LC-3 code generated by the LC-3 compiler. Assume that register 5 
(R5) contains the memory address where variable x is allocated. Immediately 
prior to that location is where variable y is allocated (i.e., R5 — 1), and imme-
diately prior to that is where variable z resides. While this method of allocating 
variables in memory might seem a little strange at first, we will explain this later 
in Section 12.5.2. 

12.3.1 Expressions and Statements 
Before proceeding with our coverage of operators, we'll diverge a little into C 
syntax to help clarify some syntactic notations used within C programs. We can 
combine variables and literal values with operators, such as the multiply operator 
from the previous example, to form a C expression. In the previous example, 
x * y is an expression. 

Expressions can be grouped together to form a statement. For example, 
z = x * y; is a statement. Statements in C are like complete sentences 
in English. Just as a sentence captures a complete thought or action, a C state-
ment expresses a complete unit of work to be carried out by the computer. All 
statements in C end with a semicolon character, ; (or as we'll see in the next 
paragraph, a closing brace, }). The semicolon terminates the end of a statement 
in much the same way a punctuation mark terminates a sentence in English. An 
interesting (or perhaps odd) feature of C is that it is possible to create statements 
that do not express any computation but are syntactically considered statements. 
The null statement is simply a semicolon and it accomplishes nothing. 
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One or more simple statements can be grouped together to form a compound 
statement, or block, by enclosing the simple statements within braces, { }. Syn-
tactically, compound statements are equivalent to simple statements. We will see 
many real uses of compound statements in the next chapter. 

The following examples show some simple, compound, and null statements. 

z = x * y; /* This statement accomplishes some work */ 

{ /* This is a compound statement */ 
a = b + c ; 
i = p * r * t; 

} 
k = k + 1; /* This is another simple statement */ 
; /* Null statement -- no work done here */ 

12.3.2 The Assignment Operator 
We've already seen examples of C's assignment operator. Its symbol is the equal 
sign, =. The operator works by first evaluating the right-hand side of the assign-
ment, and then assigning the value of the right-hand side to the object on the 
left-hand side. For example, in the C statement 

a = b + c; 

the value of variable a will be set equal to the value of the expression b + c. 
Notice that even though the arithmetic symbol for equality is the same as 

the C symbol for assignment, they have different meanings. In mathematics, by 
using the equal sign, =, one is making the assertion that the right-hand and left-
hand expressions are equivalent. In C, using the = operator causes the compiler to 
generate code that will make the left-hand side change its value to equal the value 
of the right-hand side. In other words, the left-hand side is assigned the value of 
the right-hand side. 

Let's examine what happens when the LC-3 C compiler generates code 
for a statement containing the assignment operator. The C following statement 
represents the increment by 4 of the integer variable x. 

X = x + 4 ; 

The LC-3 code for this statement is straightforward. Here, R5 contains the address 
of variable x. 

LDR RO, R5, #0 ; Get the value of x 
ADD RO, RO, #4 ; calculate x + 4 
STR RO, R5, #0 ; x = x + 4; 

In C, all expressions evaluate to a value of a particular type. From the pre-
vious example, the expression x + 4 evaluates to an integral value because we 
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are adding an integer 4 to another integer (the variable x). This integer result is 
then assigned to an integer variable. But what would happen if we constructed an 
expression of mixed type, for example x + 4.3 ? The general rule in C is that the 
mixed expressions like the one shown will be converted from integer to floating 
point. If an expression contains both integer and character types, it will be pro-
moted to integer type. In general, in C shorter types are converted to longer types. 
What if we tried to assign an expression of one type to a variable of another, for 
example x = x + 4.3? In C, the type of a variable remains immutable (meaning 
it cannot be changed), so the expression is converted to the type of the variable. 
In this case, the floating point expression x + 4.3 is converted to integer. In C, 
floating point values are rounded into integers by dropping the fractional part. For 
example, 4.3 will be rounded to 4 when converting from a floating point into an 
integer; 5.9 will be rounded to 5. 

12.3.3 Arithmetic Operators 
The arithmetic operators are easy to understand. Many of the operations and 
corresponding symbols are ones to which we are accustomed, having used 
them since learning arithmetic in grade school. For instance, + performs addi-
tion, - subtraction, * performs multiplication (which is different from the symbol 
we are accustomed to for multiplication in order to avoid confusion with the letter 
x), and / performs division. Just as when doing arithmetic by hand, there is an 
order in which expressions are evaluated. Multiplication and division are evalu-
ated first, followed by addition and subtraction. The order in which operators are 
evaluated is called precedence, and we discuss it in more detail in the next section. 
Following are several C statements formed using the arithmetic operators: 

distance = rate * time; 
netIncome = income - taxesPaid; 
fuelEconomy = milesTraveled / fuelConsumed; 
area - 3.14159 * radius * radius; 
y - a*x*x + b*x + c; 

C has another arithmetic operator that might not be as familiar to you as +, 
*, and / . It is the modulus operator, % (also known as the integer remainder 

operator). To illustrate its operation, consider what happens when we divide two 
integer values. When performing an integer divide in C, the fractional part is 
dropped and the integral part is the result. The expression n / 4 evaluates to 
2. The modulus operator % can be used to calculate the integer remainder. For 
example, n % 4 evaluates to 3. Said another way, ( n / 4 ) * 4 + ( n % 4) 
is equal to 11. In the following example, all variables are integers. 

quotient = x / y; /* if x = 7 and y = 2, quotient = 3 */ 
remainder = x % y; /* if x = 7 and y = 2, remainder = 1 */ 

Table 12.1 lists all the arithmetic operations and their symbols. Multiplication, 
division, and modulus have higher precedence than addition and subtraction. 
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ictic Operators in C 

Operator symbol Operation Example usage 

multiplication x * y 
x / y 
x % y 
x + y 
x - y 

/ division 
modulus 
addition 
subtraction 

12.3.4 Order of Evaluation 
Before proceeding onwards to the next set of C operators, we diverge momen-
tarily to answer an important question: What value is stored in x as a result of the 
following statement? 

X = 2 + 3 * 4; 

Precedence 
Just as when doing arithmetic by hand, there is an order to which expressions are 
evaluated. And this order is called operator precedence. For instance, when doing 
arithmetic, multiplication and division have higher precedence than addition and 
subtraction. For the arithmetic operators, the C precedence rules are the same 
as we were taught in grade-school arithmetic. In the preceding statement, x is 
assigned the value 14 because the multiplication operator has higher precedence 
than addition. That is, the expression evaluates as if it were 2 + (3 * 4). 

Associativity 
But what about operators of equal precedence? What does the following statement 
evaluate to? 

x = 2 + 3 - 4 + 5 ; 

Depending on which operator we evaluate first, the value of the expression 
2 + 3 — 4 + 5 could equal 6 or it could equal —4. Since the precedence of 
both operators is the same (that is, addition has the same precedence as subtrac-
tion in C), we clearly need a rule on how such expressions should be evaluated 
in C. For operations of equal precedence, their associativity determines the 
order in which they are evaluated. In the case of addition and subtraction, both 
associate from left to right. Therefore 2 + 3 - 4 + 5 evaluates as if it were 

The complete set of precedence and associativity rules for all operators in C is 
provided in Table 12.5 at the end of this chapter and also in Table D.4. We suggest 
that you do not try to memorize this table (unless you enjoy quoting C trivia to 
your friends). Instead, it is important to realize that the precedence rules exist and 
to roughly comprehend the logic behind them. You can always refer to the table 
whenever you need to know the relationship between particular operators. There 
is a safeguard, however: parentheses. 

((2 + 3 ) - 4 ) + 5. 
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Parentheses 

Parentheses override the evaluation rules by specifying explicitly which opera-
tions are to be performed ahead of others. As in arithmetic, evaluation always 
begins at the innermost set of parentheses. We can surround a subexpression with 
parentheses if we want that subexpression to be evaluated first. So in the following 
example, say the variables a, b, c, and d are all equal to 4. The statement 

x = a * b + c * d / 2 ; 

could be written equivalently as 

X = (a * b) + { (c * d) / 4) ; 

For both statements, x is set to the value of 20. Here the program will always 
evaluate the innermost subexpression first and move outward before falling back 
on the precedence rules. 

What value would the following expression evaluate to if a, b, c, and d 
equal 4? 

x = a * (b + c) * d / 4; 

Parentheses can help make code more readable, too. Most people reading your 
code are unlikely to have memorized C's precedence rules. For this reason, for 
long or complex expressions, it is often stylistically preferable to use parentheses, 
even if the code works fine without them. 

12.3.5 Bitwise Operators 
We now return to our discussion of C operators. C has a set of operators called 
bitwise operators that manipulate bits of a value. That is, they perform a logical 
operation such as AND, OR, NOT, XOR across the individual bits of a value. For 
example, the C bitwise operator & performs an operation similar to the LC-3 AND 
instruction. That is, the & operator performs an AND operation bit by bit across 
the two input operands. The C operator | performs a bitwise OR. The operator ~ 
performs a bitwise NOT and takes only one operand (i.e., it is a unary operator) 
The operator ~ performs a bitwise XOR. Examples of expressions using these 
operators on 16-bit values follow. 

0x1234 | 0x5678 
0x1234 & 0x5678 
0x1234 " 0x5678 
-0x1234 
1234 & 5678 

/* equals 0x567C */ 
/* equals 0x1230 */ 
/* equals 0x444C */ 
/* equals OxEDCB */ 
/* equals 1026 */ 

C's set of bitwise operators includes two shift operators: <<, which performs a 
left shift, and > >, which performs a right shift. Both are binary operators, meaning 
they require two operands. The first operand is the value to be shifted and the 
second operand indicates the number of bit positions to shift by. On a left shift, 
the vacated bit positions of the value are filled with zeros; on a right shift, the 
value is sign-extended. The result is the value of the expression; neither of the 
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Operators in C 

Operator symbol Operation Example usage 

bitwise NOT 
left shift 
right shift 
bitwise AND 
bitwise XOR 
bitwise OR 

two original operand values are modified. The following expressions provide 
examples of these two operators operating on 16-bit integers. 

0x1234 << 3 /* equals 0x91A0 */ 
0x1234 >> 2 /* equals 0x048D */ 
1234 << 3 /* equals 9872 */ 
1234 >> 2 /* equals 308 */ 
0x1234 << 5 /* equals 0x4680 (result is 16 bits) */ 
OxFEDC >> 3 /* equals OxFFDB (from sign-extension) */ 

Here we show several C statements formed using the bitwise operators. For 
all of C's bitwise operators, neither operand can be a floating point value. For these 
statements, f, g, and h are integers. 

h = f & g ; /* if f = 7, g = 8, h will equal 0 */ 
h = f | g; /* if f = 7, g = 8, h will equal 15 */ 
h = f « 1; /* if f = 7, g = 8, h will equal 14 */ 
h = g << f; /* if f = 7, g = 8, h will equal 1024 */ 
h = ~f | ~g; /* if f = 7, g = 8, h will equal -1 */ 

/* because h is a signed integer */ 

Question: Say that on a particular machine, the integer x occupies 16 bits and 
has the value 1. What happens after the statement x = x << i e ; is executed? 
Conceptually, we are shifting x by its data width, replacing all bits with 0. You 
might expect the value of x to be 0. To remain generic, C formally defines the result 
of shifting a value by its width (or more than its data width) as implementation-
dependent. This means that the result might be 0 or it might not, depending on 
the system on which the code is executed. 

Table 12.2 lists all the bitwise operations and their symbols. The operators 
are listed in order of precedence, the NOT operator having highest precedence, 
and the left and right shift operators having equal precedence, followed by AND, 
then XOR, then OR. They all associate from left to right. See Table 12.5 for a 
complete listing of operator precedence. 

12.3.6 Relational Operators 
C has several operators to test the relationship between two values. As we will 
see in the next chapter, these operators are often used in C to generate conditional 
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mal Operators in C 

Operator symbol Operation Example usage 

< 

< = 

> = 

> greater than 
greater than or equal 
less than 
less than or equal 
equal 
not equal 

x > y 
x >= y 
x < y 
x <= y 
x == y 
x ! = y 

constructs (similar to the conditional constructs we discussed in Section 6.1.2 
when we discussed systematic decomposition). 

The equality operator, ==, is one of C's relational operators. This operator 
tests if two values are equal. If they are equal, the expression evaluates to a 1, and 
if they are not, the expression evaluates to 0. The following shows two examples: 

q = (312 == 83); /* q will equal 0 */ 
z = (x == y); /* z will equal 1 if x equals y */ 

In the second example, the right-hand side of the assignment operator = is the 
expression x == y, which evaluates to a 1 or a 0, depending on whether x and 
y are equal. (Note: The parentheses are not required because the == operator has 
higher precedence than the = operator. We added them to help make the example 
clearer). 

Opposite the equality operator, the inequality operator, i =, evaluates to a 1 
if the operands are not equal. Other relational operators test for greater than, less 
than, and so on, as described in the following examples. For these examples, the 
variables f, g, and h are integers. The variable f has the value 7, and g is 8. 

h = f == g ; /* Equal To operator. h will equal 0 */ 
h = f > g ; /* Greater Than operator, h will equal 0 */ 
h = f != g ; /* Not Equal To operator, h will equal 1 */ 
h = f <= g ; /* Less Than Or Equal To. h will equal 1 */ 

The next example is a preview of coming attractions. The C relational oper-
ators are very useful for performing tests on variables in order to change the flow 
of the program. In the next chapter, we describe the C i f statement in more detail. 
However, the concept of an if construct is not a new one—we have been dealing 
with this particular decision construct ever since learning how to program the 
LC-3 in Chapter 6. Here, a message is printed only if the variable tankLevel is 
equal to zero. 

if (tankLevel == 0) 
printf("Warning: Tank Empty!!\n"); 

Table 12.3 lists all the relational operators and provides a simple example of 
each. The first four operators have higher precedence than the last two. Both sets 
associate from left to right. 
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12.3.7 Logical Operators 
C's logical operators appear at first glance to be exactly like some of the bitwise 
operators, and many novice programmers sometimes confuse the two. Before we 
explain their operation, we need to mention C's concept of logically true and 
logically false values. C adopts the notion that a nonzero value (i.e., a value other 
than zero) is logically true. A value of zero is logically false. It is an important 
concept to remember, and we will see it surface many times as we go through the 
various components of the C language. 

C supports three logical operators: &&, | |, and I. The && operator performs 
a logical AND of its two operands; it evaluates to an integer value of 1 (which is 
logically true) if both of its operands are logically true, or nonzero. It evaluates to 
0 otherwise. For example, 3 && 4 evaluates to a 1, whereas 3 && 0 evaluates to 0. 
The | | operator is C's logical OR operator. The expression x | | y evaluates to a 
1 if either x OR y are nonzero. For example, 3 | | 4 evaluates to a 1. Also, 3 | | 0 
evaluates to 1. The negation operator i evalutes to the other logical state of its 
operand. So \ x is 1 only if x equals 0. It is 0 otherwise. 

What are the logical operators useful for? One use is for constructing logical 
conditions within a program. For example, we can determine if a variable is 
within a particular range of values using a combination of relational and logical 
operators. To check if x is between 10 and 20, inclusive, we can use the following 
expression: 

(10 <= x) && (x <= 20) 

Or to test if a character c is a letter of the alphabet: 

(('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= '2')) 

Here are some examples of the logical operators, with several previous exam-
ples of bitwise operators included to highlight the difference. As in the previous 
examples, the variables f, g, and h are integers. The variable f has the value 7, 
and g is 8. 

& g; 
ScSc g 

* I 9; 
f II g; 
~f I ~g; 
i f ScSc ! g ; 

29 I| -52 

/ * 
/ * 

/ * 
/ * 
/ * 
/ * 
/ * 

bitwise operator: 
logical operator: 
bitwise operator: 
logical operator: 
bitwise operator: 
logical operator: 
logical operator: 

will equal 
will equal 
will equal 
will equal 
will equal 
will equal 

equal 

h 
h 
h 
h 
h 
h 
h will 

0 
1 
15 
1 
-1 
0 
1 

* / 
* / 
* / 
* / 
* / 
* / 
* / 

Table 12.4 lists logical operators in C and their symbols. The logical 
NOT operator has highest precedence, then logical AND, then logical OR. See 
Table 12.5 for a complete listing of operator precedence. 

12.3.8 Increment/Decrement Operators 
Because incrementing and decrementing variables is such a commonly performed 
operation, the designers of the C programming language decided to include special 
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.ogical Operators in C 

Operator symbol Operation Example usage 
r logical NOT ! x 

&& logical AND x && y 
I I logical OR x I I y 

:or Precedence, f rom Highest to Lowest. 
Descriptions of Some Operators are Provided in Parentheses 

Precedence Associativity Operators 

1 (highest) 
2 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 (lowest) 

I to r 
r to I 
r to I 
r to I 

r to I 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
I to r 
r to I 

() (function call) [ ] (array index) 
++ - - (postfix versions) 
+ + - - (prefix versions) 
* (indirection) & (address of) 
+ (unary) - (unary) ~ i s i z e o f 
( t y p e ) (typecast) 
* (multiplication) / % 
+ (addition) - (subtraction) 

&& II 
?: (conditional expression) 

+= - = *= etc. 

operators to perform them. The + + operator increments a variable to the next higher 
value. The - - operator decrements it. For example, the expression x++ increments 
the value of integer variable x by 1. The expression x-- decrements the value of 
x by 1. Keep in mind that these operators modify the value of the variable itself. 
That is, x++ is similar to the operation x = x + l . 

The ++ and - - operators can be used on either side of a variable. The expres-
sion ++x operates in a slightly different order than x++. If x++ is part of a larger 
expression, then the value of x++ is the value of x prior to the increment, whereas 
the value of++x is the incremented value of x. If the operator ++ appears before the 
variable, then it is used in prefix form. If it appears after the variable, it is in postfix 
form. The prefix forms are often referred to as preincrement and predecrement, 
whereas the postfix are postincrement and postdecrement. 

Let's examine a couple of examples: 

X = 4 ; 
y = X++; 

Here, the integer variable x is incremented. However, the original value of 
x is assigned to the variable y (i.e., the value of x++ evaluates to the original 
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value of x). After this code executes, the variable y will have the value 4, and x 
will be 5. 

Similarly, the following code increments x. 
X = 4; 
y - + +X; 
However with this code, the expression ++x evaluates to the value after the 
increment. In this case, the value of both y and x will be 5. 

This subtle distinction between the postfix and prefix forms is not too impor-
tant to understand for now. For the few examples in this book that use these oper-
ators, the prefix and postfix forms of these operators can be used interchangeably. 
You can find a precise description of this difference in Appendix D.5.6. 

12.3.9 Expressions with Multiple Operators 
Thus far we've only seen examples of expressions with one or two operators. Real 
and useful expressions sometimes have more. We can combine various operators 
and operands to form complex expressions. The following example demonstrates 
a peculiar blend of operators forming a complex expression. 
y = x & z + 3 || 9 - w % 6 ; 
In order to figure out what this statement evaluates to, we need to examine the 
order of evaluation of operators. Table 12.5 lists all the C operators (including 
some that we have not yet covered but will cover later in this textbook) and their 
order of evaluation. According to precedence rules, this statement is equivalent 
to the following: 

y = (x & (z + 3) ) | | (9 - (w % 6) ) ; 
Another more useful expression that consists of multiple operators is given 

in the example that follows. In this example, if the value of the variable age is 
between 18 and 25, the expression evaluates to 1. Otherwise it is 0. Notice that 
even though the parentheses are not required to make the expression evaluate as 
we described, they do help make the code easier to read. 
(18 <= age) && (age <= 25) 

12.4 Problem Solving Using Operators 
At this point, we have covered enough C operators to attempt a simple problem-
solving exercise. For this problem, we will create a program that performs a 
simple network calculation: It calculates the amount of time required to transfer 
some number of bytes across a network with a particular transfer rate (provided in 
bytes per second). The twist to this problem is that transfer time is to be displayed 
as hours, minutes, and seconds. 

We approach this problem by applying the decomposition techniques 
described in Chapter 6. That is, we will start with a very rough description of 
our program and continually refine it using the sequential, decision, and iteration 
constructs (see Chapter 6 if you need a refresher) until we arrive at something 
from which we can easily write C code. This technique is called top-down 
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decomposition because we start with a rough description of the algorithm and 
refine it by breaking larger steps into smaller ones, eventually arriving at some-
thing that resembles a program. Many experienced programmers rely on their 
understanding of the lower levels of the system to help make good decisions on 
how to decompose a problem. That is, in order to reduce a problem into a program, 
good programmers rely on their understanding of the basic primitives of systems 
they are programming on. In our case (at this point), these basic primitives are 
variables of the three C types and the operations we can perform on them. 

In the subsequent chapters, we will go through several problem-solving exam-
ples to illustrate this top-down process. In doing so, we hope to provide you with 
a sense of the mental process a programmer might use to solve such problems. 

The very first step (step 0) we need to consider for all problems from now 
on is how we represent the data items that the program will need to manipulate. 
At this point, we get to select from the three basic C types: integer, character, 
and floating point. For this problem, we can represent our internal calculations 
with either floating point values or integers. Since we are ultimately interested in 
displaying the result as hours, minutes, and seconds, any fractional components of 

Step 1 Step 2 Step 3 

Figure 12.3 Stepwise refinement of a simple network transfer time problem 
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time are unnecessary. For example, displaying the total transfer time as 10.1 hours, 
12.7 minutes, 9.3 seconds does not make sense. Rather, 10 hours, 18 minutes, 
51 seconds is the preferred output. Because of this, the better choice of data type 
for the time calculation is integer (yes, there are rounding issues, but say we can 
ignore them for this calculation). 

Having chosen our data representations, we can now apply stepwise refine-
ment to decompose the problem. Figure 12.3 shows our decomposition of this 
particular programming problem. Step 1 in the figure shows the initial formula-
tion of the problem. It involves three phases: get input, calculate results, output 
results. In the first phase, we will query the user about the amount of data to be 
transfered (in bytes) and the transfer rate of the network (in bytes per second). In 
the second phase, we will perform all necessary calculations, which we will then 
output in the third phase. 

Step 1 is not detailed enough to translate directly into C code, and therefore 
we perform another refinement of it in step 2. Here we realize that the calculation 
phase can be further refined into a subphase that first calculates total time in 
seconds—which is an easy calculation given the input data—and a subphase to 
convert total time in seconds into hours, minutes, and seconds. 

Step 2 is still not complete enough for mapping into C; we perform another 
refinement of it in step 3. Most phases of step 2 are fairly simple enough to convert 
into C, except for the conversion of seconds into hours, minutes, and seconds. In 
step 3, we refine this phase into three subphases. First we will calculate total hours 
based on the total number of seconds. Second, we will use the remaining seconds 
to calculate minutes. Finally, we determine the remaining number of seconds after 
the minutes have been calculated. 

Based on the total breakdown of the problem after three steps of refinement 
presented in Figure 12.3, it should be fairly straightforward to map out the C code. 
The complete C program for this problem is presented in Figure 12.4. 

12.5 Tying ir HII Togerher 
We've now covered all the basic C types and operators that we plan to use through-
out this textbook. Having completed this first exposure, we are now ready to 
examine these concepts from the compiler's viewpoint. That is, how does a com-
piler translate code containing variables and operators into machine code. There 
are two basic mechanisms that help the compiler do its job of translation. The 
compiler makes heavy use of a symbol table to keep track of variables during 
compilation. The compiler also follows a systematic partitioning of memory—it 
carefully allocates memory to these variables based on certain characteristics, 
with certain regions of memory reserved for objects of a particular class. In this 
section, we'll take a closer look at these two processes. 

12.5.1 Symbol Table 
In Chapter 7, we examined how the assembler systematically keeps track of labels 
within an assembly program by using a symbol table. Like the assembler, the C 



12.5 Tying It All Together 327 

#include <stdio.h> 

int raainO 

int amount; / * The number of bytes to be transferred * / 
int rate; / * The average network transfer rate * / 
int t ime; / * The time, in seconds, for the transfer * / 

int hours; / * The number of hours for the transfer * / 
int minutes; / * The number of mins for the transfer * / 
int seconds; / * The number of sees for the transfer * / 

/* Get input: number of bytes and network transfer rate * / 
printf("How many bytes of data to be transferred? "); 
scanf("%d", &amount); 

printf("What is the transfer rate (in bytes/sec)? ") ; 
scanf("%d", &rate); 

/* Calculate total time in seconds */ 
time = amount / rate; 

/* Convert time into hours, minutes, seconds */ 
hours = time / 3600; /*3600 seconds in an hour */ 
minutes = (time % 3600) / 60; /* 60 seconds in a minute */ 
seconds = ((time % 3600) % 60); /* remainder is seconds */ 

/* Output results */ 
printf("Time : %dh %dm %ds\n", hours, minutes, seconds); 

} 
Figure 12 .4 A C program that performs a simple network rate calculation 

compiler keeps track of variables in a program with a symbol table. Whenever 
the compiler reads a variable declaration, it creates a new entry in its symbol 
table corresponding to the variable being declared. The entry contains enough 
information for the compiler to manage the storage allocation for the variable 
and generation of the proper sequence of machine code whenever the variable is 
used in the program. Each symbol table entry for a variable contains (1) its name, 
(2) its type, (3) the place in memory the variable has been allocated storage, and 
(4) an identifier to indicate the block in which the variable is declared (i.e., the 
scope of the variable). 

Figure 12.5 shows the symbol table entries corresponding to the variables 
declared in the network rate calculation program in Figure 12.4. Since this pro-
gram contains six variables declarations, the compiler ends up with six entries in 
its symbol table for them. Notice that the compiler records a variable's location 
in memory as an offset, with most offsets being negative. This offset indi-
cates the relative position of the variable within the region of memory it is 
allocated. 
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Identifier Type Location 
(as an offset) 

Scope Other 
info... 

amount int 0 main 

hours int - 3 main 

minutes int - 4 main 

rate int - 1 main 

seconds int - 5 main 

time int - 2 main 

Figure 1 2 . 5 The compiler's symbol table when it compiles the program from Chapter 11 

12.5.2 Allocating Space for Variables 
There are two regions of memory in which C variables are allocated storage: the 
global data section and the run-time stack? The global data section is where 
all global variables are stored. More generally, it is where variables of the static 
storage class are allocated (we say more about this in Section 12.6). The run-time 
stack is where local variables (of the default automatic storage class) are allocated 
storage. 

The offset field in the symbol table provides the precise information about 
where in memory variables are actually stored. The offset field simply indicates 
how many locations from the base of the section a variable is allocated storage. 

For instance, if a global variable earth has an offset of 4 and the global 
data section starts at memory location 0x5000, then earth is stored in location 
0x5004. All our examples of compiler-generated machine code use R4 to contain 
the address of the beginning of the global data section—R4 is referred to as 
the global pointer. Loading the variable earth into R3, for example, can be 
accomplished with the following LC-3 instruction: 
LDR R 3 , R4, #4 
If earth is instead a local variable, say for example in the function main, the 
story is slightly more complicated. All local variables for a function are allocated 
in a "memory template" called an activation record or stack frame. For now, 
we'll examine the format of an activation record and leave the motivation for 
why we need it for Chapter 14 when we discuss functions. An activation record 
is a region of contiguous memory locations that contains all the local variables 
for a given function. Every function has an activation record (or more precisely, 
every invocation of a function has an activation record—more on this later). 

2 For examples in this textbook, all variables will be assigned a memory location. However, real 
compilers perform code optimizations that attempt to allocate variables in registers. Since registers 
take less time to access than memory, the program will run faster if frequently accessed values are 
put into registers. 
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Location xOOOO 

R5 

seconds 

minutes 

hours 

time 

rate 

amount 

Location xFFFF 

Figure 12.6 An example of an activation record in the LC-3's memory. This function has five 
local variables. R5 is the frame pointer and points to the first local variable 

Whenever we are executing a particular function, the highest memory address of 
the activation record will be stored in R5—R5 is called thz frame pointer. For 
example, the activation record for the function main from the code in Figure 12.4 
is shown in Figure 12.6. Notice that the variables are allocated in the record in the 
reverse order in which they are declared. Since the variable amount is declared 
first, it appears nearest to the frame pointer R5. 

If we make a reference to a particular local variable, the compiler will use the 
variable's symbol table entry to generate the proper code to access it. In particular, 
the offset in the variable's symbol table entry indicates where in the activation 
record the variable has been allocated storage. To access the variable seconds, 
the compiler would generate the instruction: 

LDR RO, R5, #-5 

A preview of things to come: Whenever we call a function in C (in C, sub-
routines are called functions), the activation record for the function is pushed 
on to the run-time stack. That is, the function's activation record is allocated on 
top of the stack. R5 is appropriately adjusted to point to the base of the record— 
therefore any code within the function that accesses local variables will now work 
correctly. Whenever the function completes and control is about to return to the 
caller, the activation record is popped off the stack. R5 is adjusted to point to the 
caller's activation record. Throughout all of this, R6 always contains the address 
of the top of the run-time stack—it is called the stack pointer. We will revisit this 
in more detail in Chapter 14. 

Figure 12.7 shows the organization of the LC-3's memory when a program 
is running. Many UNIX-based systems arrange their memory space similarly. 
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xOOOO H i ^ ^ H 

Program text 
- P C 

- R4 

Global data section 

Heap 
(for dynamically allocated memory) 

11 

Run-time stack 

R6 (Stack pointer) 
R5 (Frame pointer) 

xFFFF 

Figure 12.7 The LC-3 memory map showing various sections active during program 
execution 

The program itself occupies a region of memory (labelled Program text in the 
diagram); so does the run-time stack and the global data section. There is another 
region reserved for dynamically allocated data called the heap (we will discuss 
this region in Chapter 19). Both the run-time stack and the heap can change size as 
the program executes. For example, whenever one function calls another, the run-
time stack grows because we push another activation record onto the stack—in 
fact, it grows toward memory address xOOOO. In contrast, the heap grows toward 
OxFFFF. Since the stack grows toward xOOOO, the organization of an activation 
record appears to be "upside-down": that is, the first local variable appears at the 
memory location pointed to by R5, the next one at R5 — 1, the subsequent one at 
R5 — 2, and so forth (as opposed to R5, R5 + 1, R5 + 2, etc). 

During execution, the PC points to a location in the program text, R4 points 
to the beginning of the global data section, R5 points within the run-time stack, 
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and R6 points to the very top of the run-time stack. There are certain regions of 
memory, marked System space in Figure 12.7, that are reserved for the operating 
system, for things such as TRAP routines, vector tables, I/O registers, and boot 
code. 

12.5.3 A Comprehensive Example 
Now that we have examined the LC-3 compiler's techniques for tracking and 
allocating space for variables in memory, let's take a look at a comprehensive C 
example and its translation into LC-3 code. 

Figure 12.8 is a C program that performs some simple operations on integer 
variables and then outputs the results of these operations. The program contains 
one global variable, inGlobal, and three local variables, inLocal, outLocalA, 
and outLocalB, which are local to the function main. 

The program starts off by assigning initial values to inLocal and inGlobal. 
After the initialization step, the variables outLocalA and outLocalB are updated 
based on two calculations performed using inLocal and inGlobal. After the 
calculation step, the values of outLocalA and outLocalB are output using the 
printf library function. Notice because we are using printf, we must include 
the standard I/O library header file, stdio. h. 

When analyzing this code, the LC-3 C compiler will assign the global vari-
able inGlobal the first available spot in the global data section, which is at 
offset 0. When analyzing the function main, it will assign inLocalA to offset 0, 
outLocalA to offset —1, and outLocalB to offset —2 within main's activation 

/* Include the standard I/O header file */ 
#include <stdio.h> 

int inGlobal; /* inGlobal is a global variable because */ 
/* it is declared outside of all blocks */ 

int main() { 
int inLocal; /* inLocal, outLocalA, outLocalB are all */ 
int outLocalA; /* local to main */ 
int outLocalB; 

/* Initialize */ 
inLocal = 5; 
inGlobal = 3; 

/* Perform calculations */ 
outLocalA = inLocal & -inGlobal; 

outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal); 

/* Print out results */ printf("outLocalA = %d,outLocalB=%d\n",outLocalA,outLocalB); 
} 
Figure 12 .8 A C program that performs simple operations 
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Identifier Type Location 
(as an offset) 

Scope Other 
info... 

inGlobal int 0 global 

inLocal int 0 main 

outLocalA int -1 main 
outLocalB int -2 main 

Location xOOOO 

outLocalB 

outLocalA 
R5 • inLocal 

Location xFFFF 

(a) Symbol table (b) Activation record for main 

Figure 1 2 . 9 The LC-3 C compiler's symbol table when compiling the program in Figure 12.8 and the activation record 
format for its function main 

record. A snapshot of the compiler's symbol table corresponding to this program 
along with the activation record of main are shown in Figure 12.9. 

The resulting assembly code generated by the LC-3 C compiler is listed in 
Figure 12.10. Execution starts at the instruction labeled main. 

12.G fldditional Topics 
The last major section of this chapter involves a set of additional topics involving 
variables and operators. Some of the topics are advanced issues involving concepts 
we covered earlier in the chapter; some of the topics are miscellaneous features 
of C. We provide this section in order to complete our coverage of C, but this 
material is not essential to your understanding of the material in later chapters. 
For those of you interested in a more complete coverage of variables and operators 
in C, read on! 

12.6.1 Variations of the Three Basic Types 
C gives the programmer the ability to specify larger or smaller sizes for the 
three basic types int, char, and double. The modifiers long and short can be 
attached to int with the intent of extending or shortening the default size. For 
example, a long int can declare an integer that has twice the number of bits 
as a regular int, thereby allowing us to represent a larger range of integers in 
a C program. Similarly, the specifier long can be attached to the double type 
to create a larger floating point type (if supported by the particular system) with 
greater range and precision. 
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1 main: 
2 : 
3 : 
4 <startup code> 
5 : 
6 : 
7 AND RO, RO, #0 
8 ADD RO, RO, #5 ; inLocal is at offset 0 
9 STR RO, R5, #0 ; inLocal = 5; 

10 
11 AND RO, RO, #0 
12 ADD RO, RO, #3 ; inGlobal is at offset 0, in globals 
13 STR RO, R4, #0 ; inGlobal = = 3; 
14 
15 LDR RO, R5, #0 ; get value of inLocal ^ 
16 LDR Rl / R4, #0 ; get value of inGlobal 
17 NOT Rl, Rl i -inGlobal 
18 AND R2, RO, Rl ; calculate inLocal & -inGlobal 
19 STR R2 , R5, #-1 ; outLocalA = inLocal & -inGlobal; 
20 
O 1 

/ outLocalA is at offset -1 
Z 1 
22 LDR RO, R5, #0 ; get value of inLocal 
23 LDR Rl / R4, #0 ; get value of inGlobal 
24 ADD RO, RO, Rl ; calculate inLocal + inGlobal 
25 
26 LDR R2 , R5, #0 ; get value of inLocal 
27 LDR R3, R4, #0 ; get value of inGlobal 
28 NOT R3 
29 ADD R3, R3, #1 ? calculate -inGlobal 
o u 
31 ADD R2 , R2, R3 ; calculate inLocal - inGlobal 
32 NOT R2 
33 ADD R2 , R2 , #1 ; calculate -(inLocal - inGlobal) 
34 
35 ADD RO, RO, R2 (inLocal + • inGlobal) - (inLocal - inGlobal} 
36 STR RO, R5, #-2 ; outLocalB = . . . 

37 ; outLocalB is at offset -2 
38 : 
39 : 
40 <code for calling the function printf> 
41 : 
42 
Figure 12.10 The LC-3 code for the C program in Figure 12.8 

The modifier short can be used to create variables that are smaller than the 
default size, which can be useful when trying to conserve on memory space when 
handling data that does not require the full range of the default data type. The 
following example demonstates how the variations are declared: 

long double particlesInUniverse; 
long int worldPopulation; 
short int ageOfStudent; 
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Because the size of the three basic C types is closely tied to the types sup-
ported by the underlying ISA, many compilers only support these modifiers long 
and short if the computer's ISA supports these size variations. Even though a 
variable can be declared as a long int, it may be equivalent to a regular int if 
the underlying ISA has no support for longer versions of the integer data type. 
See Appendix D.3.2 for more examples and additional information on long and 
short. 

Another useful variation of the basic int data type is the unsigned integer. We 
can declare an unsigned integer using the unsigned type modifier. With unsigned 
integers, all bits are used to represent nonnegative integers (i.e., positive numbers 
and zero). In the LC-3 for instance, which has 16-bit integers, an unsigned integer 
has a value between 0 and 65,535. When dealing with real-world objects that by 
nature do not take on negative values, unsigned integers might be the data type 
of choice. The following are examples of unsigned integers: 

unsigned int numberOfDays; 
unsigned int populationSize; 

Following are some sample variations of the three basic types: 

long int ounces; 
short int gallons; 
long double veryVeryLargeNumber = 4.12936E361; 
unsigned int sizeOfClass = 900; 
float oType = 9.24; 
float tonsOfGrain = 2.998E8; 

12.6.2 Literals, Constants, and Symbolic Values 
In C, variables can also be declared as constants by adding the const qualifier 
before the type specifier. These constants are really variables whose values do 
not change during the execution of a program. For example, in writing a program 
that calculates the area and circumference of a circle of a given radius, it might be 
useful to create a floating point constant called p i initialized to the value 3.14159. 
Figure 12.11 contains an example of such a program. 

This example is useful for making a distinction between three types of con-
stant values that often appear in C code. Literal constants are unnamed values 
that appear literally in the source code. In the circle example, the values 2 and 
3 .14159 are examples of literal constants. In C, we can represent literal con-
stants in hexadecimal by prepending a ox in front of them, for example OXIDB. 
ASCII literals require single quotes around them, as for example 'R ' , which 
is the ASCII value of the character R. Floating point literals can be the expo-
nential notation described in Section 12.2.1. An example of the second type of 
constant value is pi, which is declared as a constant value using a variable decla-
ration with the const qualifier. The third type of constant value is created using 
the preprocessor directive #def ine, an example of which is the symbolic value 
RADIUS. All three types create values that do not change during the execution of 
a program. 
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1 
9 

#include <stdio.h> 
Z 
3 
A 

#define RADIUS 15.0 /* This value is in centimeters * / 
rt 
5 int main() 
6 { 
7 const double pi = 3.14159; 
8 double area; 
9 double circumference; 

10 
11 /* Calculations */ 
12 area = pi * RADIUS * RADIUS; /* area = pi*r^2 * / 
13 
14 circumference = 2 * pi * RADIUS; /* circumference = * / 
15 /* 2*pi*r * / 
16 f 
17 printf("Area of a circle with radius %f cm is %f cmA2\n <1 
18 RADIUS, area); 
19 
20 printf("Circumference of the circle is %f cm\nH, 
21 circumference); 
22 } 
Figure 12.11 A C program that computes the area and circumference of a circle wi th a radius 

of 15 cm 

The distinction between constants declared using const and symbolic values 
defined using #def ine might seem a little subtle to you. Using one versus another 
is really a matter of programming style rather than function. Declared constants 
are used for things we traditionally think of as constant values, which are values 
that never change. The constant pi is an example. Physical constants such as the 
speed of light, or the number of days in a week, are conventionally represented 
by declared constants. 

Values that stay constant during a single execution of the program but which 
might be different from user to user, or possibly from invocation to invocation, 
are represented by symbolic values using #def ine. Such values can be thought 
of as parameters for the program. For example, RADIUS in Figure 12.11 can be 
changed and the program recompiled, then re-executed. 

In general, naming a constant using const or #def ine is preferred over 
leaving the constant as a literal in your code. Names convey more meaning about 
your code than unnamed literal values. 

12.6.3 Storage Class 
Earlier in the chapter, we mentioned three basic properties of a C variable: its 
identifier, its type, and its scope. There is another: storage class. The storage class 
of a variable indicates how the C compiler allocates its storage, and in particular 
indicates whether or not the variable loses its value when the block that contains it 
has completed execution. There are two storage classes in C: static and automatic. 
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Static variables retain their values between invocations. Automatic variables lose 
their values when their block terminates. In C, global variables are of static storage 
class, that is, they retain their value until the program ends. Local variables are 
by default of automatic storage class. Local variables can be declared as static 
class variables by using the static modifier on the declaration. For example, the 
variable declared by static int localVar ; will retain its value even when its 
function completes execution. If the function is executed again (during the same 
program execution), localVar will retain its previous value. In particular, the 
use of the static keyword on a local variable causes the compiler to^allocate 
storage for the variable in the global data section, while keeping it private to its 
block. See Appendix D.3.3 for additional examples on storage class. 

12.6.4 Additional C Operators 
The C programming language has a collection of unusual operators, which have 
become a trademark of C programming. Most of these operators are combinations 
of operators we have already seen. The combinations are such that they make 
expressing commonly used computations even simpler. However, to someone 
who is not accustomed to the shorthand notation of these operators, reading and 
trying to understand C code that contains them can be difficult. 

Assignment Operators 

C also allows certain arithmetic and bitwise operators to be combined with the 
assignment operator. For instance, if we wanted to add 29 to variable x, we could 
use the shorthand operator += as follows: 
X += 29; 
This code is equivalent to 
x = x + 29; 

Table 12.6 lists some of the special operators provided by C. The postfix 
operators have highest precedence, followed by prefix. The assignment operators 
have lowest precedence. Each group associates from right to left. 

lent Operators in C 

Operator symbol Operation Example usage 

+ = add and assign x += y 
x -= y 
x *= y 
x /= y 
x %= y 
x &= y 

/ = 

* _ 

subtract and assign 
multiply and assign 
divide and assign 

% = modulus and assign 
and and assign 
or and assign 
xor and assign 

x |= y A. x = y 
left-shift and assign 
right-shift and assign 

x «= y 
x »= y 
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More examples are as follows: 
h += g; /* Equivalent to h = h + g; */ 
h %= f; /* Equivalent to h = h % f; */ 
h <<= 3; /* Equivalent t o h = h < < 3 ; */ 

Conditional Expressions 

Conditional expressions are a unique feature of C that allow for simple decisions 
to be made with a simple expression. The symbols for the conditional expression 
are the question mark and colon, ? and :. The following is an example: 
x = a ? b : c ; 
Here variable x will get either the value of b or the value of c based on the logical 
value of a. If a is nonzero, x will get the value of b. Otherwise, it will get the 
value of c. 

Figure 12.12 is a complete program that uses a conditional expression to 
calculate the maximum of two integers. The maximum of these two input values is 
determined by a conditional expression and is assigned to the variable maxVaiue. 
The value of maxVaiue is output using printf. 

1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int maxVaiue; 
6 int input1; 
7 int input2; 
8 
9 printf("Input an integer: "); 

10 scanf("%d", &inputl); 
11 printf("Input another integer: "); 
12 scanf("%dM, &input2); 
13 
14 maxVaiue = (inputl > input2) ? inputl : input2; 
15 printf("The larger number is %d\n", maxVaiue); 
16 } 
Figure 12 .12 A C program that uses a conditional expression 

12,7 Summarq 
We conclude this chapter by summarizing the three key concepts we covered. 

• Variables in C. The C programming language supports variables of three 
basic types: integers (int), characters (char), and floating point numbers 
(double). C, like all other high-level languages, provides the programmer the 
ability to provide symbolic names to these variables. Variables in C can be locally 
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declared within a block of code (such as a function) or globally visible by all 
blocks. 

• Operators in C. C's operators can be categorized by the function they per-
form: assignment, arithmetic, bitwise manipulations, logical and relational tests. 
We can form expressions using variables and operators such that the expressions 
get evaluated according to precedence and associativity rules. Expressions are 
grouped into statements, which express the work the program is to perform. 

• Translating C Variables and Operators into LC-3 Code. Using a symbol 
table to keep track of variable declarations, a compiler will allocate local variables 
for a function within an activation record for the function. The activation record for 
the function is pushed onto the run-time stack whenever the function is executed. 
Global variables in a program are allocated in the global data section. 

Exerc ises 

12.1 Generate the compiler's symbol table for the following code. Assume 
all variables occupy one location in memory. 
{ 

double ff; 
char cc; 
int ii; 
char dd; 

} 
12.2 The following variable declaration appears in a program: 

int r ; 

a. If r is a local variable, to what value will it be initialized? 
b. If r if a global variable, to what value will it be initialized? 

12.3 What are the ranges for the following two variables if they are stored as 
32-bit quantities? 
int plusOrMinus; 
unsigned int positive; 

12.4 Evaluate the following floating point literals. Write their values in 
standard decimal notation. 
a. I l l E —11 
b. -0.00021 E 4 
c. 101.101 E 0 
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12-5 Write the LC-3 code that would result if the following local variable 
declarations were compiled using the LC-3 C compiler: 
char c = 'a'; 
int x = 3; 
int y; 
int z = 10; 

12.6 For the following code, state the values that are printed out by each 
printf statement. The statements are executed in the order A, B, C, D. 

int t; /* This variable is global */ 
{ 

int t = 2; 

printf("%d\n", t); /* 
{ 

printf("%d\n", t); /* 
t = 3; 

} 
printf("%d\nn, t); /* 

} 
{ 

printf("%d\n", t); /* 
} 

12.7 Given that a and b are both integers where a and b have been assigned 
the values 6 and 9, respectively, what is the value of each of the 
following expressions? Also, if the value of a or b changes, give their 
new value. 

a. a | b 
b. a | | b 
c. a & b 
d. a && b 
e. i (a + b) 
/ a % b 
g. b / a 
h. a - b 
I a = b = 5 
j. ++a + b--
k. a = (++b < 3) ? a : b 
1. a <<= b 

12.8 For the following questions, write a C expression to perform the 
following relational test on the character variable letter. 
a. Test if letter is any alphabetic character or a number. 
b. Test if letter is any character except an alphabetic character or a 

number. 

A */ 

B */ 

C */ 

D */ 
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12.9 a. What does the following statement accomplish? The variable 
letter is a character variable. 
letter = ((letter >= 'a' && letter <= 'z') ? '!' : 

h Modify the statement in (a) so that it converts lowercase to 
uppercase. 

12.10 Write a program that reads an integer from the keyboard and displays a 
1 if it is divisible by 3 or a 0 otherwise. 

12.11 Explain the differences between the following C statements: 
a. j = i + + ; 
b. j = + + i; 
C. j = i + 1; 
d. i + = 1 ; 
e. j = i += 1; 
f . Which statements modify the value of i? Which ones modify the 

value of j ? If i = l and j = o initially, what will the values of 
i and j be after each statement is run separately? 

12.12 Say variables a and b are both declared locally as long int. 
a. Translate the expression a + b into LC-3 code, assuming a 

long int occupies two bytes. Assume a is allocated at offset 0 and 
b is at offset — 1 in the activation record for their function. 

b. Translate the same expression, assuming a long int occupies four 
bytes, a is allocated offset 0, and b is at offset —2. 

12.13 If initially, a = l, b = i, c = 3, and result = 9 99, what are the 
values of the variables after the following C statement is executed? 
result = b + 1 | c + a; 

12.14 Recall the machine busy example from Chapter 2. Say the integer 
variable machineBusy tracks the busyness of all 16 machines. Recall 
that a 0 in a particular bit position indicates the machine is busy and 
a 1 in that position indicates the machine is idle. 

a. Write a C statement to make machine 5 busy. 
b. Write a C statement to make machine 10 idle. 
c. Write a C statement to make machine n busy. That is, the machine 

that has become busy is an integer variable n. 
d. Write a C expression to check if machine 3 is idle. If it is idle, the 

expression returns a 1. If it is busy, the expression returns a 0. 
e. Write a C expression that evaluates to the number of idle machines. 

For example, if the binary pattern in machineBusy were 
i o n ooio m o IOOI , then the expression will evaluate to 9. 
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12.15 What purpose does the semicolon serve in C? 
12.16 Say we are designing a new computer programming language that 

includes the operators #, $ and u. How would the expression 
w @ x # y $ z u a get evaluated under the following constraints? 
a. The precedence of @ is higher than # is higher than $ is higher than 

u. Use parentheses to indicate the order. 
b. The precedence of # is higher than u is higher than @ is higher than $. 
c. Their precedence is all the same, but they associate left to right. 
d. Their precedence is all the same, but they associate right to left. 

12.17 Notice that the C assignment operators have the lowest precedence. Say 
we have developed a new programming language called Q that works 
exactly like C, except that the assignment operator had the highest 
precedence. 

a. What is the result of the following Q statement? In other words, 
what would the value of x be after it executed? 
X - x + 1 ; 

b. How would we change this Q statement so that it works the same 
way as it would in C? 

12.18 Modify the example program in Chapter 11 (Figure 11.3) so that it 
prompts the user to type a character and then prints every character 
from that character down to the character t in the order they appear in 
the ASCII table. 

12.19 Write a C program to calculate the sales tax on a sales transaction. 
Prompt the user to enter the amount of the purchase and the tax rate. 
Output the amount of sales tax and the total amount (including tax) on 
the whole purchase. 

12.20 Suppose a program contains the two integer variables x and y, which 
have values 3 and 4, respectively. Write C statements that will exchange 
the values in x and y so that after the statements are executed, x is equal 
to 4 and y is equal to 3. 
a. First, write this routine using a temporary variable for storage. 
b. Now rewrite this routine without using a temporary variable. 
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13 

Control S t ructures 

13.1 Introduction 
In Chapter 6, we introduced our top-down problem-solving methodology where a 
problem is systematically refined into smaller, more detailed subtasks using three 
programming constructs: the sequential construct, the conditional construct, and 
the iteration construct. 

We applied this methodology in the previous chapter to derive a simple 
C program that calculates network transfer time. The problem's refinement into a 
program only required the use of the sequential construct. For transforming more 
complex problems into C programs, we will need a way to invoke the conditional 
and iteration constructs in our programs. In this chapter, we cover C's version of 
these two constructs. 

We begin this chapter by describing C's conditional constructs. The if and 
if-else statements allow us to conditionally execute a statement. After condi-
tional constructs, we move on to C's iteration constructs: the for, the while, and 
the do-while statements, all of which allow us to express loops. With many of 
these constructs, we will present the corresponding LC-3 code generated by our 
hypothetical LC-3 C compiler to better illustrate how these constructs behave at 
the lower levels. C also provides additional control constructs, such as the switch, 
break, and continue statements, all of which provide a convenient way to rep-
resent some particular control tasks. We discuss these in Section 13.5. In the final 
part of the chapter, we'll use the top-down problem-solving methodology to solve 
some complex problems involving control structures. 
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13.3 Conditionol Constructs 
Conditional constructs allow a programmer to select an action based on some 
condition. This is a very common programming construct and is supported by 
every useful programming language. C provides two types of basic conditional 
constructs: if and if-else. 

13.2.1 The i f Statement 
The if statement is quite simple. It performs an action if a condition is true. The 
action is a C statement, and it is executed only if the condition, which is a C 
expression, evaluates to a nonzero (logically true) value. Let's take a look at an 
example. 

if (x <= 10} 
y = x * x + 5 ; 

The statement y = x * x + 5; is only executed if the expression x <= 10 is 
nonzero. Recall from our discussion of the <= operator (the less than or equal to 
operator) that it evaluates to 1 if the relationship is true, 0 otherwise. 

The statement following the condition can also be a compound statement, or 
block, which is a sequence of statements beginning with an open brace and ending 
with a closing brace. Compound statements are used to group one or more simple 
statements into a single entity. This entity is itself equivalent to a simple statement. 
Using compound statements with an if statement, we can conditionally execute 
several statements on a single condition. For example, in the following code, both 
y and z will be modified if x is less than or equal to 10. 

if (x <= 10) { 
y = x * x + 5 ; 
z = (2 * y) / 3; 

} 

As with all statements in C, the format of the if statement is flexible. The line 
breaks and indentation used in the preceding example are features of a popular 
style for formatting an i f statement. It allows someone reading the code to quickly 
identify the portion that executes if the condition is true. Keep in mind that the for-
mat does not affect the behavior of the program. Even though the following code 
is indented like the previous code, it behaves differently. The second statement 
Z - (2 * y) / 3; is not associated with the if and will execute regardless of 
the condition. 

if (x <= 10) 
y = x * x + 5 ; 
z = (2 * y) / 3; 
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Figure 13.1 shows the control flow of an if statement. The diagram 
corresponds to the following code: 

if (condition) 
action; 

Syntactically, the condition must be surrounded by parentheses in order to enable 
the compiler to unambiguously separate the condition from the rest of the if 
statement. The action must be a simple or compound statement. 

Here are more examples of if statements demonstrating programming 
situations where this decision construct might be useful. 

if (temperature <= 0} 
printf("At or below freezing point.\n"); 

if ('a' <= key && key <= 'z') 
numLowerCase++; 

if (current > currentLimit) 
blownFuse = 1; 

if (loadMAR & clock) 
registerMAR = bus; 

if (month == 4 || month == 6 || month == 9 || month == 11) 
printf("The month has 30 days\n"); 

if (x = 2) /* This condition is always true. */ 
y = 5; /* The variable y will always be 5 */ 
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The last example in the preceding code illustrates a very common mistake 
made when programming in C. (Sometimes even expert C programmers make 
this mistake. Good C compilers will warn you if they detect such code.) The 
condition uses the assignment operator = rather than the equality operator, which 
causes the value of x to change to 2. This condition is always true: expressions 
containing the assignment operator evaluate to the value being assigned (in this 
case, 2). Since the condition is always nonzero, y will always get assigned the 
value 5 and x will always be assigned 2. 

Even though they look similar at first glance, the following code is a 
"repaired" version of the previous code. 

i f ( X = = 2) 
y - 5; 

Let's look at the LC-3 code that is generated for this code, assuming that x and y 
are integers that are locally declared. This means that R5 will point to the variable 
x and R5 - 1 will point to y. 

LDR RO, R5, #0 
ADD R0, R0, #-2 
BRnp NOT TRUE 

load x into R0 
subtract 2 from x 
If condition is not true, 
then skip the assignment 

AND R0, R0, #0 
ADD RO, RO, #5 
STR RO, R5, #-1 

RO <- 0 
RO <- 5 
y = 5; 

NOT TRUE the rest of the program 

Notice that it is most straightforward for the LC-3 C compiler to generate code 
that tests for the opposite of the original condition (x not equal to 2) and to branch 
based on its outcome. 

The if statement is itself a statement. Therefore, it is legal to nest an if 
statement as demonstrated in the following C code. Since the statement following 
the first i f is a simple statement (i.e., composed of only one statement), no braces 
are required. 

if (x == 3) 
if (y != 6) { 

Z - 2 + 1 ; 

W = W + 2; 
} 
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The inner i f statement only executes if x is equal to 3. There is an easier way to 
express this code. Can you do it with only one if statement? The following code 
demonstrates how. 

if ((x == 3) && (y != 6)) { 
Z = Z + 1 ; 
W = W + 2 ; 

} 

13.2.2 The i f - e l s e Statement 
If we wanted to perform one set of actions if a condition were true and another 
set if the same condition were false, we could use the following sequence of if 
statements: 

if (temperature <= 0) 
printf("At or below freezing point.\n"); 

if (temperature > 0) 
printf("Above freezing.\n"); 

Here, a single message is printed depending on whether the variable 
temperature is below or equal to zero or if it is above zero. It turns out that 
this type of conditional execution is a very useful construct in programming. 
Since expressing code in the preceding way can be a bit cumbersome, C provides 
a more convenient construct: the if-else statement. 

The following code is equivalent to the previous code segment. 

if (temperature <= 0) 
printf("At or below freezing point.\n"); 

else 
printf("Above freezing.\n"); 

Here, the statement appearing immediately after the else keyword executes only 
if the condition is false. 

The flow diagram for the if-else is shown in Figure 13.2. The figure 
corresponds to the following code: 

if (condition) 
action__if ; 

else 
action_else; 

The lines action if and action_else can correspond to compound statements 
and thus consist of multiple statements, as in the following example. 
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Figure 13.2 The C i f - e l s e statement, pictorially represented 

if (x) { y++; 
z-- ; 

} 
else { 

y - - ; 
Z + + ; 

} 

If the variable x is nonzero, the if's condition is true, y is incremented, and 
z decremented. Otherwise, y is decremented and z incremented. The LC-3 code 
generated by the LC-3 C compiler is listed in Figure 13.3. The three variables x, 
y, and z are locally declared integers. 

We can connect conditional constructs together to form a longer sequence of 
conditional tests. The example in Figure 13.4 shows a complex decision structure 
created using the if and if-else statements. No other control structures are 
used. This program gets a number of a month from the user and displays the 
number of days in that month. 

At this point, we need to mention a C syntax rule for associating ifs with 
eises: An else is associated with the closest unassociated if. The following 
example points out why this is important. 

if (x != 10) 
if (y > 3) 

Z = z / 2; 
e l s e 

z = z * 2; 
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1 LDR RO, R5, #0 load the value of x 
2 BRz ELSE ; if x equals 0, perform else part 
3 

4 LDR R0, R5, #-l ; load y into R0 
5 ADD R0, R0, #1 
6 
7 

STR R0, R5, #-i ; y++; 
/ 
8 LDR R0, R5, #-2 ; load z into R0 
9 ADD R0, R0, #-1 

10 STR R0, R5, #-2 ; z-- ; 
11 BR DONE 
12 
13 ELSE: LDR R0, R5, #-1 ; load y into R0 
14 ADD R0, R0, #-1 
15 STR R0, R5, #-1 ; y__ . 
16 
17 LDR R0, R5, #-2 ; load z into R0 
18 ADD R0, R0, #1 
19 STR RO, R5, #-2 ; z + + ; 
2 0 DONE: : 
21 : 
Figure 13.3 The LC-3 code generated for an i f - e l s e statement 

1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int month; 
6 
7 printf{"Enter the number of the month: "); 
8 scanf("%d", &month); 
9 

10 if (month == 4 \\ month == 6 || month == 9 || month == 11) 
11 printf("The month has 30 days\n"); 
12 else if (month == 1 || month = = 3 || month = = 5 || 
13 month == 7 || month == 8 || month = = 1 0 j | month == 12) 
14 printf("The month has 31 days\n"); 
15 else if (month == 2) 
16 printf("The month has either 28 days or 29 days\n"); 
17 else 
18 printf("Don't know that month\n"); 
19 } 
Figure 13.4 A program that determines the number of days in a month 
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Without this rule, it would not be clear whether the else should be paired 
with the outer if or the inner if. For this situation, the rule states that the else 
is coupled with the inner i f because it is closer than the outer i f and the inner i f 
statement has not already been coupled to another else (i.e., it is unassociated). 
The code is equivalent to the following: 

if (x != 10) { 
if (y > 3) 

Z = z / 2; 
else 

z = z * 2; 
} 

Just as parentheses can be used to modify the order of evaluation of expres-
sions, braces can be used to associate statements. If we wanted to associate the 
else with the outer if, we could write the code as 

if (x != 10) { 
if (y > 3) 

Z = z / 2; 
} 
else 

z = z * 2 ; 

Before we leave the if-else statement for bigger things, we present a very 
common use for the if-else construct. The if-else statement is very handy 
for checking for bad situations during program execution. We can use it for error 
checking, as shown in Figure 13.5. This example performs a simple division based 
on two numbers scanned from the keyboard. Because division by 0 is undefined, 
if the user enters a 0 divisor, a message is displayed indicating the result cannot 
be generated. The if-else statement serves nicely for this purpose. 

Notice that the nonerror case appears in the if-else statement first and the 
error case second. Although we could have coded this either way, having the 
common, nonerror case first provides a visual cue to someone reading the code 
that the error case is the uncommon one. 

13.3 Iteration Constructs 
Being able to iterate, or repeat, a computation is part of the power of computing. 
Almost all useful programs perform some form of iteration. In C, there are three 
iteration constructs, each a slight variant of the others: the while statement, the 
for statement, and the do-while statement. 

13.3.1 The while Statement 
We begin by describing C's simplest iteration statement: the while. A while loop 
executes a statement repeatedly while a condition is true. Before each iteration 
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1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int div i dend; 
6 int divisor; 
7 int result; 
8 
9 printf("Enter the dividend: "); 

10 scanf("%d", ^dividend); 
11 
12 printf("Enter the divisor: "); 
13 scanf("%d", &divisor) 
14 
15 if (divisor 1= 0) { 
16 result = dividend / divisor; 
17 printf("The result of the division is %d\n", result); 
18 } 
19 else 
20 printf("A divisor of zero is not allowed\nM); 
21 } 
Figure 13.5 A program that has error-checking code 

of the statement, the condition is checked. If the condition evaluates to a logical 
true (nonzero) value, the statement is executed again. 

In the following example program, the loop keeps iterating while the value 
of variable x is less than 10. It produces the following output: 

0 1 2 3 4 5 6 7 8 9 

#include <stdio.h> 

int main() { 
int x = 0; 

while (x < 10) { 
printf("%d ", x); 
X = x + 1; 

} 
} 

The while statement can be broken down into two components. The test 
condition is an expression used to determine whether or not to continue executing 
the loop. 
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F 

T 

Loop body 

Figure 13.6 The C while s ta tement , pictorially represented 

while (test) 
loop_body; 

It is tested before each execution of the loop body. The loop_body is a statement 
that expresses the work to be done within the loop. Like all statements, it can be 
a compound statement. 

Figure 13.6 shows the control flow using the notation of systematic decom-
position. Two branches are required: one conditional branch to exit the loop and 
one unconditional branch to loop back to the test to determine whether or not to 
execute another iteration. 

The LC-3 code generated by the compiler for the while example that counts 
from 0 to 9 is listed in Figure 13.7. 

The while statement is useful for coding loops where the iteration process 
involves testing for a sentinel condition. That is, we don't know the number of 
iterations beforehand but we wish to keep looping until some event (i.e., the 

1 AND RO, RO, #0 ; clear out RO 
2 STR RO, R5, #0 ; x = 0; 
3 
4 
5 LOOP: 

; while (x < 10) 
LDR RO, R5, #0 
ADD R0, R0, #-10 
BRpz DONE 

perform the test 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

LDR R0, R5, #0 
ADD R0, R0, #1 
STR R0, R5, #0 
BR LOOP 

ccode for calling the function printf> 

; loop body 

R0 <- x 
x + 1 
x = x + 1; 
another iteration 

x is not less than 10 

17 DONE: : 
18 : 

Figure 13.7 The LC-3 code generated for a while loop tha t counts to 9 
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1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 char echo = 'A'; /* Initialize char variable echo */ 
6 
7 while (echo != '\n') { 
8 scanf("%cn, &echo); 
9 printf("%c", echo); 

10 } 
11 } 
Figure 13.8 Another program with a simple w h i l e loop 

sentinel) occurs. For example, when we wrote the character counting program in 
Chapters 5 and 7, we created a loop that terminated when the sentinel EOT charac-
ter (a character with ASCII code 4) was detected. If we were coding that program 
in C rather than LC-3 assembly language, we would use a while loop. The pro-
gram in Figure 13.8 uses the while statement to test for a sentinel condition. Can 
you determine what this program does without executing it?1 

We end our discussion of the while statement by pointing out a common 
mistake when using while loops. The following program will never terminate 
because the loop body does not change the looping condition. In this case, the 
condition always remains true and the loop never terminates. Such loops are called 
infinite loops, and most of the time they occur because of programming errors. 

#include <stdio.h> 

int main() { 
int x = 0; 

while (x < 10) 
printf ( " %d 11, x) ; 

} 

13.3.2 The f o r Statement 
Just as the while loop is a perfect match for a sentinel-controlled loop, the C 
for loop is a perfect match for a counter-controlled loop. In fact, the for loop is 
a special case of the while loop that happens to work well when the number of 
iterations is known ahead of time. 

1This program behaves a bit differently than you might expect. You might expect it to print out each 
input character as the user types it in. Because of the way C deals with keyboard I/O, the program 
does not get any input until the user hits the Enter key. We explain why this is so when dealing with 
the low-level issues surrounding I/O in Chapter 18. 
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In its most straightforward form, the for statement allows us to repeat a 
statement a specified number of times. For example, 

#include <stdio.h> 

int main() { 
int x ; 

for (x = 0; x < 10; x++) 
printf(»%d "f x); 

} 

will produce the following output. It loops exactly 10 times. 

0 1 2 3 4 5 6 7 8 9 

The syntax for the C for statement may look a little perplexing at first. The 
for statement is composed of four components, broken down as follows: 

for (init; test; reinit) 
loop__body ; 

The three components within the parentheses, init, test, and reinit, con-
trol the behavior of the loop and must be separated by semicolons. The final 
component, ioop_body, specifies the actual computation to be executed in each 
iteration. 

Let's take a look at each component of the for loop in detail. The init 
component is an expression that is evaluated before the first iteration. It is typically 
used to initialize variables in preparation for executing the loop. 

The test is an expression that gets evaluated before every iteration to deter-
mine if another iteration should be executed. If the test expression evaluates to 
zero, the for terminates and the control flow passes to the statement immediately 
following the for. If the expression is nonzero, another iteration of the loop body 
is performed. Therefore, in the previous code example, the test expression x < l o 
causes the loop to keep repeating as long as x is less than 10. 

The reinit component is an expression that is evaluated at the end of every 
iteration. It is used to prepare (or reinitialize) for the next iteration. In the pre-
vious code example, the variable x is incremented before each repetition of the 
loop body. 

The ioop_body is a statement that defines the work to be performed in each 
iteration. It can be a compound statement. 

Figure 13.9 shows the flow diagram of the for statement. There are four 
blocks, one for each of the four components of the for statement. There is a 
conditional branch that determines whether to exit the loop based on the outcome 
of the test expression or to proceed with another iteration. An unconditional 
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Figure 13.9 The C f o r statement 

branch loops back to the test at the end of each iteration, after the reinit 
expression is evaluated. 

Even though the syntax of a for statement allows it to be very flexible, most 
of the for loops you will encounter (or will write) will be of the counter-controlled 
variety, that is, loops that iterate for a certain number of iterations. Following are 
some examples of code that demonstrate the counter-controlled nature of for 
loops. 

/* What does the loop output? */ 
for (x = 0; x < = 10; x++) 

printf{"%d ", x); 

/* What does this one output? */ 
letter = 'a' ,-

for (c = 0; c < 26; C + + ) 

printf("%c letter + c); 

/* What does this loop do? */ 
numberOfOnes = 0; 

for (bitNum = 0; bitNum < 16; bitNum++) { 
if (inputValue & {1 << bitNum)) 

numberOfOnes++; 
} 
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1 AND R 0 , R 0 , # 0 c l e a r o u t R0 
2 
-i 

STR RO, R 5 , # - 1 ; s u m = 0 ; 
j 
4 

; i n i t 
5 AND R 0 , R 0 , # 0 c l e a r o u t R0 
6 
7 

STR R 0 , R 5 , # 0 i n i t ( x = 0 ) 
/ 
8 ; t e s t 
9 L O O P : LDR R 0 , R 5 , # 0 p e r f o r m t h e t e s t 

1 0 ADD R 0 , R 0 , # - 1 0 
1 1 B R p z DONE j x i s n o t l e s s t h a n 
12 
13 ; l o o p b o d y 
14 LDR R 0 , R 5 , # 0 g e t x 
1 5 LDR R l , R 5 , # - 1 ; g e t s u m 
1 6 ADD R l , R l , R0 s u m + x 
1 7 STR R 0 , R 5 , # - 1 ; s u m = s u m + x ; 
18 
1 9 ; r e i n i t 
2 0 LDR R 0 , R 5 , # 0 g e t x 
2 1 ADD R 0 , R 0 , # 1 
2 2 STR R 0 , R 5 , # 0 X+ + 
2 3 BR LOOP 
2 4 
2 5 DONE: : 

2 6 : 

Figure 13.10 The LC-3 code generated for a f o r statement 

Let's take a look at the LC-3 translation of a simple for loop. The program 
is a simple one: it calculates the sum of all integers between 0 and 9. 

# i n c l u d e < s t d i o . h > 

i n t m a i n ( ) 
{ 

i n t x ; 
i n t s u m = 0 ; 

f o r { x = 0 ; x < 1 0 ; X + + ) 

s u m = s u m + x ; 

} 

The LC-3 code generated by the compiler is shown in Figure 13.10. 
The following code contains a mistake commonly made when using for 

loops. 
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sum = 0; 
for (x = 0; X < 10; X++); 

sum = sum + x; 

printf("sum = %d\n", sum); 
printf ("x = %d\n'r, x) ; 

What is output by the first printf? The answer is sum = 10. Why? The second 
printf outputs x - io. Why? If you look carefully, you might be able to notice 
a misplaced semicolon. 

A for loop can be constructed using a while loop (actually, vice versa as 
well). In programming, they can be used interchangeably, to a degree. Which 
construct to use in which situation may seem puzzling at first, but keep in mind 
the general rule that whi 1 e is best suited for loops that involve sentinel conditions, 
whereas for fits situations where the number of iterations is known beforehand. 

Nested Loops 
Figure 13.11 contains an example of a for where the loop body is composed 
of another for loop. This construct is referred to as a nested loop because the 
inner loop is nested within the outer. In this example, the program prints out a 
multiplication table for the numbers 0 through 9. Each iteration of the inner loop 
prints out a single product in the table. That is, the inner loop iterates 10 times 
for each iteration of the outer loop. An entire row is printed for each iteration of 
the outer loop. Notice that the printf function call contains a special character 
sequence in its format string. The \ t sequence causes a tab character to be printed 
out. The tab helps align the columns of the multiplication table so the output looks 
neater. 

1 #include <stdio.h> 
2 
3 int main() 

/* Outer Loop */ 
for (multiplicand = 0; multiplicand < 10; multiplicand++) 

/* Inner Loop */ 
for (multiplier = 0; multiplier < 10; multiplier++) { 

printf("%d\t", multiplier * multiplicand); 

9 
10 
11 
12 
13 
14 
15 
16 

printf("\n"); 

Figure 13.11 A program that prints out a multiplication table 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2 0 
21 
2 2 

#include <stdio.h> 

int main() { 
int sum = 0; 
int input; 
int inner; 
int outer; 

/ * 

/ * 
/ * 

Initial the result variable */ 
Holds user input */ 
Iteration variables */ 

/* Get input */ 
printf("Input an integer: 
scanf (nd", &input) ; 

/* Perform calculation * 
for (outer = 1; outer <= 

for (inner = 0; inner 
sum += inner; 

} 

/* Output result */ 
printf("The result is 

/ 
= input; outer++) 
< outer; inner++ 

d\n", sum) 

Figure 1 3 . 1 2 A program wi th a nested for loop 

Figure 13.12 contains a slightly more complex example. The number of iter-
ations of the inner loop depends on the value of outer as determined by the outer 
loop. The inner loop will first execute 0 time, then 1 time, then 2 times, etc. For 
a challenging exercise based on this example, see Exercise 13.6 at the end of this 
chapter. 

13.3.3 The do-while Statement 
With a while loop, the condition is always evaluated before an iteration is per-
formed. Therefore, it is possible for the whi le loop to execute zero iterations (i.e., 
when the condition is false from the start). There is a slight variant of the while 
statement in C called do-while, which always performs at least one iteration. In 
a do-while loop, the condition is evaluated after the first iteration is performed. 
The operation of the do-while is demonstrated in the following example: 

X - 0; 
do { 

printf("%d \n", x); 
X = X + 1 ; 

} while (x < 10); 

Here, the conditional test, x < 10, is evaluated at the end of each iteration. 
Thus, the loop body will execute at least once. The next iteration is performed 
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only if the test evaluates to a nonzero value. This code produces the following 
output: 

0 1 2 3 4 5 6 7 8 9 

Syntactically, a do-while is composed of two components, exactly like the 
while. 

do 
loop_body; 

while (test); 

The loop body component is a statement (simple or compound) that 
describes the computation to be performed by the loop. The test is an expression 
that determines whether another iteration is to be performed. 

Figure 13.13 shows the control flow of the do-while loop. Notice the slight 
change from the flow of a whi l e loop. The loop body and the test are interchanged. 
A conditional branch loops back to the top of the loop body, initiating another 
iteration. 

At this point, the differences between the three types of C iteration constructs 
may seem very subtle, but once you become comfortable with them and build 
up experience using these constructs, you will more easily be able to pick the 
right construct to fit the situation. To a large degree, these constructs can be 
used interchangeably. Stylistically, there are times when one construct makes 
more sense to use than another—often the type of loop you choose will convey 
information about the intent of the loop to someone reading your code. 

13.4 Problem Solving Using Control Structures 
Armed with a new arsenal of control structures, we can attempt to solve more 
complex programming problems. In this section, we will apply our top-down 
problem-solving methodology to four problems requiring the use of C control 
structures. 
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Being effective at solving programming problems requires that you under-
stand the basic primitives of the system on which you are programming. You 
will need to invoke them at the appropriate times to solve various programming 
puzzles. At this point, our list of C primitives includes variables of the three basic 
types, operators, two decision structures, and three control structures. 

13.4.1 Problem 1: Approximating the Value of n 
For the first programming problem, we will calculate the value of tt using the 
following series expansion: 

4 4 4 , 4 
tt = 4 - - + + ••• + ( - 1 ) " ' 1 H 

3 5 7 V } 2n + 1 

The problem is to evaluate this series for the number of terms indicated by the user. 
If the user enters 3, the program will evaluate 4 - | + The series is an infinite 
series, and the more terms we evaluate, the more accurate our approximation 
Of TT. 

As we did for the problem-solving example in Chapter 12, we first invoke 
step 0: we select a representation for the data involved in the computation. Since 
the series deals with fractional numbers, we use the double floating point type 
for any variables directly involved in the series calculation. Given the nature of 
the computation, this seems clearly to be the best choice. 

Now we invoke stepwise refinement to decompose a roughly stated algorithm 
into a C program. Roughly, we want the program to initialize all data that requires 
initialization. Then ask the user to input the number of terms of the series to 
evaluate. Then evaluate the series for the given number of terms. Finally, print 
out the result. We have defined the problem as a set of sequential constructs. 
Figure 13.14 shows the decomposition thus far. 

Most of the sequential constructs in Figure 13.14 are very straightforward. 
Converting them into C code should be quite simple. One of the constructs in 
the figure, however, requires some additional refinement. We need to put a little 
thought into the subtask labeled Evaluate series. For this subtask, we essentially 
want to iterate through the series, term by term, until we evaluate exactly the 
number of terms indicated by the user. We want to use a counter-controlled iter-
ation construct. Figure 13.15 shows the decomposition. We maintain a counter 
for the current loop iteration. If the counter is less than the limit indicated by the 
user, then we evaluate another term. Notice that the refined version of the subtask 
looks like the flow diagram for a for loop. 

We are almost done. The only nontrivial subtask remaining is Evaluate 
another term. Notice that all even terms in the series are subtracted, and all 
odd terms are added. Within this subtask, we need to determine if the particular 
term we are evaluating is an odd or an even term, and then accordingly factor it 
into the current value of the approximation. This involves using a decision con-
struct as shown in Figure 13.16. The complete code resulting from this stepwise 
refinement is shown in Figure 13.17. 
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Step 1 Step 2 

Figure 13.14 The initial decomposition of a program that evaluates the series expansion for iz 
for a given number of terms 

Evaluate series 

Initialize 
iteration count 

Evaluate 
another term 

i 

count = count + 1 

Figure 13.15 The refinement of the subtask Evaluate series into an iteration construct that 
iterates a given number of times. Within this loop, we evaluate terms for a series 
expansion for jr 
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Figure 13.16 Incorporate the current term based on whether it is odd or even 

1 
o 

#include <stdio.h> 
z 
3 int main() 
4 { 
5 int count; /* Iteration variable * / 
6 int numOfTerms; /* Number of terms to evaluate * / 
7 
8 

double pi = 0; /* approximation of pi * / 

9 printf("Number of terms (must be 1 or larger) : "); 
10 scanf("%d", &numOfTerms); 
11 
12 for (count = 1; count <= numOfTerms; count++) { 
13 if (count % 2) 
14 pi = pi + (4.0 / (2.0 * count - 1)); /* Odd term * / 
15 else 
16 pi = pi - (4.0 / (2.0 * count - 1)); /* Even term * / 
17 } 
18 
19 printf("The approximate value of pi is %f\n", pi); 
20 } 
Figure 13.17 A program to calculate n 

13.4.2 Problem 2: Finding Prime Numbers Less than 100 
Our next problem-solving example involves finding all the prime numbers that are 
less than 100. Recall that a number is prime only if the only numbers that evenly 
divide it are 1 and itself. 
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Step 2 Step 3 

363 

CalcPrime 

* f 
Num = Num + 1 

T 

Figure 13.18 Decomposing a problem to compute prime numbers less than 100. The first 
three steps involve creating a loop that iterates between the 2 and 100 

Step 0, as with our previous examples, is to select an appropriate data repre-
sentation for the various data associated with the problem. Since the property of 
prime numbers only applies to integers, using the integer data type for the main 
computation seems a good choice. 

Next we apply stepwise refinement to the problem to reduce it into a C pro-
gram. We can approach this problem by first stating it as a single task (step 1). We 
then refine this single task into two separate sequential subtasks: Initialize and 
then perform the calculation (step 2). 

Performing the Calculation subtask is the brunt of the programming effort. 
Essentially, the Calculation subtask can be stated as follows: We want to check 
every integer between 2 and 100 to determine if it is prime. If it is prime, we want 
to print it out. A counter-controlled loop should work just fine for this purpose. 
We can further refine the Calculation subtask into smaller subtasks, as shown in 
Figure 13.18. Notice that the flow diagram has the shape of a f o r loop. 

Already, the problem is starting to resolve into C code. We still need to refine 
the CalcPrime subtask. In this subtask, we need to determine if the current number 
is prime or not. Here, we rely on the fact that any number between 2 and 100 that 
is not prime will have at least one divisor between 2 and 10 that is not itself. We 



chapter 13 Control Structures 

Step 3 

CalcPrime 

Num = Num + 1 

Divide Num by 
integers 2 thru 10 

CalcPrime / 
F 

/ No \ F 
\ divisors?/ 

T 

Num is prime. 
Print it out. 

Stop 

Figure 13.19 Decomposing the CalcPrime subtask 

can refine this subtask as shown in Figure 13.19. Basically, we will determine if 
each number is divisible by an integer between 2 and 10 (being careful to exclude 
the number itself). If it has no divisors between 2 and 10, except perhaps itself, 
then the number is prime. 

Finally, we need to refine the Divide number by integers 2 through 10 subtask. 
It involves dividing the current number by all integers between 2 and 10 and 
determining if any of them evenly divide it. A simple way to do this is to use 
another counter-controlled loop to cycle through all the integers between 2 and 
10. Figure 13.20 shows the decomposition using the iteration construct. 

Now, coding this problem into a C program is a small step forward. The 
program is listed in Figure 13.21. There are two for loops within the program, 
one of which is nested within the other. The outer loop sequences through all 
the integers between 2 and 100; it corresponds to the loop created when we 
decomposed the Calculation subtask. An inner loop determines if the number 
generated by the outer loop has any divisors; it corresponds to the loop created 
when we decomposed the Divide number by integers 2 through 10 subtask. 
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Figure 13.20 Decomposing the Divide numbers by integers 2 through 10 subtask 

1 #include <stdio.h> 
2 #define FALSE 0 
3 #define TRUE 1 
4 
5 int main() 
6 { 
7 int num; 
8 int divisor; 
9 int prime; 

10 
11 /* Start at 2 and go until 100 */ 
12 for (num = 2; num <= 100; num++) { 
13 prime = TRUE; /* Assume the number is prime */ 
14 
15 /* Test if the candidate number is a prime */ 
16 for (divisor = 2; divisor <= 10; divisor++) 
17 if (((num % divisor) == 0) && num != divis'or) 
18 prime = FALSE; 
19 
20 if (prime) 
21 printf("The number %d is prime\n", num); 
22 } 
23 } 
Figure 13 .21 A program that finds all prime numbers between 2 and 100 
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One item of note: If a divisor between 2 and 10 is found, then a flag variable 
called prime is set to false. It is set to true before the inner loop begins. If it remains 
true, then the number generated by the outer loop has no divisors and is therefore 
prime. To do this, we are utilizing the C preprocessor's macro substitution facility. 
We have defined, using #def ine, two symbolic names, FALSE, which maps to 
the value 0 and TRUE, which maps to 1. The preprocessor will simply replace 
each occurrence of the word TRUE in the source file with 1 and each occurrence 
of FALSE with 0. 

13.4.3 Problem 3: Analyzing an E-mail Address 
Our final problem in this section involves analyzing an e-mail address typed in 
at the keyboard to determine if it is of valid format. For this problem, we'll use 
a simple definition of validity: an e-mail address is a sequence of characters that 
must contain an at sign, and a period, with the at sign preceding the 
period. 

As before, we start by choosing an appropriate data representation for 
the underlying data of the problem. Here, we are processing text data entered 
by the user. The type best suited for text is the ASCII character type, char. Actu-
ally, the best representation for input text is an array of characters, or character 
string, but as we have not yet introduced arrays into our lexicon of primitive ele-
ments (and we will in Chapter 16), we instead target our solution to use a single 
variable of the char type. 

Next, we apply stepwise refinement. The entire process is diagrammed in 
Figure 13.22. We start with a rough flow of the program where we have two 

Step 1 

(^^tart^) 

Proce; 3s input 

Outpu t result 

(^Stop 

Step 3 

Get 
next char 

Process 
next char ^ 

Check for At 

Check for Dot 
after At 

i / 

Figure 13 .22 A stepwise refinement of the analyze e-mail address program 
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tasks (step 1): Process input and Output results. Here, the Output results task is 
straightforward. We will output either that the input text is a valid e-mail address 
or that it is invalid. The Process input task requires more refinement. 

In decomposing the Process input task (step 2), we need to keep in mind that 
our choice of data representation (variable of the char type) implies that we will 
need to read and process the user's input one character at a time. We will keep 
processing, character by character, until we have reached the end of the e-mail 
address, implying that we select some form of sentinel-controlled loop. Step 2 of 
the decomposition divides the Process input task into a sentinel-controlled itera-
tion construct that terminates when the end of an e-mail address is encountered, 
which we'll say is either a space or a newline character, \n. 

The next step (step 3) of the decomposition involves detailing what processing 
occurs within the loop. Here, we need to check each character within the e-mail 
address and remember if we have seen an at sign or a period in the proper order. To 
do this, we will use two variables to record this status. When the loop terminates 

1 #include <stdio.h> 
2 #define FALSE 0 
3 #define TRUE 1 
4 
5 int main() 
6 { 
7 char nextChar; /* Next character in e-mail address */ 
8 int gotAt = FALSE; /* Indicates if At @ was found */ 
9 int gotDot = FALSE; /* Indicates if Dot . was found */ 

10 
11 printf("Enter your e-mail address: "); 
12 
13 do { 
14 scanf("%c", fcnextChar); 
15 
16 if (nextChar == '@') 
17 gotAt = TRUE; 
18 
19 if (nextChar == && gotAt == TRUE) 
2 0 gotDot = TRUE; 
21 } 
22 while (nextChar ! = ' ' & & nextChar != '\n'); 
23 
24 if (gotAt == TRUE && gotDot == TRUE) 
25 printf("Your e-mail address appears to be valid.\n"); 
26 else 
27 printf("Your e-mail address is not valid!\n"); 
28 } 

Figure 13 .23 A C program to determine if an e-mail address is valid 
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and we are ready to display the result, we can examine these variables to display 
the appropriate output message. 

At this point, we are not far from C code. Notice that the loop structure is 
very similar to the flow diagram of the do-while statement. The C code for this 
problem is provided in Figure 13.23. 

13.5 ndditional C Control Structures 
We complete our coverage of the C control structures by examining the switch, 
break, and continue statements. These three statements provide specialized 
program control that programmers occasionally find useful for very particular 
programming situations. We provide them here primarily for completeness; none 
of the examples in the remainder of the textbook use any of these three constructs. 

13.5.1 The switch Statement 
Occasionally, we run into programming situations where we want to perform a 
series of tests on a single value. For example, in the following code, we test the 
character variable keypress to see if it equals a series of particular characters. 

char keyPress; 

if (keyPress == 'a') 
/* statement A */ 

else if (keyPress == 'b') 
/* statement B */ 

else if (keyPress == 'x'} 
/* statement C */ 

else if (keyPress == 'y') 
/* statement D */ 

In this code, one (or none) of the statements labeled A, B, C, or D will execute, 
depending on the value of the variable keyPress. If keyPress is equal to the 
character a, then statement A is performed, if it is equal to the character b, then 
statement B is performed, and so forth. If keypress does not equal a or b or x 
or y, then none of the statements are executed. 

If there are many of these conditions to check, then many tests will be required 
in order to find the "matching" one. In order to give the compiler an opportunity 
to better optimize this code by bypassing some of this testing, C provides the 
switch statement. The following code segment behaves the same as the code in 
the previous example. It uses a switch statement instead of cascaded if-else 
statements. 
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char keyPress; 

switch (keyPress) { 
case 'a': 

/* statement A */ 
break; 

case 'b': 
/* statement B */ 
break; 

case 'x' : 
/* statement C */ 
break; 

case 'y': 
/* statement D */ 
break; 

} 

Notice that the switch statement contains several lines beginning with the 
keyword case, followed by a label. The program evaluates keypress first. Then 
it determines which of the following case labels matches the value of keyPress. 
If any label matches, then the statements following it are executed. 

Let's go through the switch construct piece by piece. The switch keyword 
precedes the expression on which to base the decision. This expression must be 
of integral type (for example, an int or a char). If one of the case labels matches 
the value of the expression, then program control passes to the statement or block 
associated with (usually, immediately below) that case label. Each case consists 
of a sequence of zero or more statements similar to a compound statement, but 
no delimiting braces are required. The place within this compound statement to 
start executing is determined by which case matches the value of the switch 
expression. Each case label within a switch statement must be unique; identical 
labels are not allowed. 

Furthermore, each case label must be a constant expression. It cannot be 
based on a value that changes as the program is executing. The following is not 
a legal case label (assuming i is a variable): 

case i: 

In the preceding switch example, each case ends with a break statement. 
The break exits the switch construct and changes the flow of control directly 
to the statement after the closing brace of the switch. The break statements are 
optional. If they are not used, then control will go from the current case to the 
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next. For example, if the break after statement C were omitted, then a match on 
case 'x' would cause statement C and statement D to be executed. However, 
in practice, cases almost always end with a break. 

We can also include a default case. This case is selected if the switch 
expression matches none of the case constants. If no default case is given, 
and the expression matches none of the constants, none of the cases are 
executed. 

A stylistic note: The last case of a switch does not need to end with a break 
since execution of the switch ends there, anyway. However, including a break 
for the final case is good programming practice. If another case is ever added to 
the end of the switch, then you will not have to remember to also add the break 
to the previous case. It is good, defensive programming. 

13.5.2 The break and continue Statements 
In the previous section, we saw an example of how the C break statement is 
used with switch. The break statement, and also the continue statement, are 
occasionally used with iteration constructs. 

The break statement causes the compiler to generate code that will prema-
turely exit a loop or a switch statement. When used within a loop body, break 
causes the loop to terminate by causing control to jump out of the innermost loop 
that contains it. The continue statement, on the other hand, causes the com-
piler to generate code that will end the current iteration and start the next. These 
statements can occur within a loop body and apply to the iteration construct imme-
diately enclosing them. Essentially, the break and continue statements cause 
the compiler to generate an unconditional branch instruction that leaves the loop 
from somewhere in the loop body. Following are two example code segments that 
use break and continue. 

/* This code segment produces the output: 0 1 2 3 4 * / 
for (i = 0; i < 10; i++) { 

if (i == 5) 
break; 

printf(»%d i); 
} 
/* This code produces the output: 0 1 2 3 4 6 7 8 9 * / 
for (i = 0; i < 10; i++) { 

if (i == 5) 
continue; 

printf("%d i) ; 
} 

13.5.3 An Example: Simple Calculator 
The program in Figure 13.24 performs a function similar to the calculator exam-
ple from Chapter 10. The user is prompted for three items: an integer operand, 
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1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int operandi, operand2; /* Input values */ 
6 int result = 0 ; /* Result of the operation */ 
7 char operation; /* operation to perform */ 
8 
9 /* Get the input values */ 

10 printf{"Enter first operand: "); 
11 scanf("%d", &operandl); 
12 printf("Enter operation to perform (+, -, *, /): "); 
13 scanf("\n%c", ^operation); 
14 printf("Enter second operand: "); 
15 scanf (11 %d", &operand2) ; 
16 
17 /* Perform the calculation */ 
18 switch(operation) { 
19 case ' +' : 
20 result = operandi + operand2; 
21 break; 
22 
23 case '-': 
24 result = operandi - operand2; 
25 break; 
26 
27 case '*': 
28 result = operandi * operand2; 
2 9 break; 
30 
31 case '/': 
32 if (operand2 1= 0) /* Error-checking code. */ 
3 3 result = operandi / operand2; 
34 else 
35 printf("Divide by 0 error!\n"); 
36 break; 
37 
38 default: 
39 printf("Invalid operation!\n"); 
4 0 break; 
41 } 
42 
43 printf("The answer is %d\n", result); 
44 } J c 
Figure 1 3 . 2 4 Calculator program in C 

an operation to perform, and another integer operand. The program performs 
the operation on the two input values and displays the result. The program 
makes use of a switch to base its computation on the operator the user has 
selected. 
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13.6 Summary 
We conclude this chapter by summarizing the key concepts we've covered. The 
basic objective of this chapter was to enlarge our set of problem-solving primitives 
by exploring the various control structures supported by the C programming 
language. 

• Decision Construct in C. We covered two basic C decision statements: 
if and if-else. Both of these statements conditionally execute a statement 
depending on whether a specified expression is true or false. 

• Iteration Constructs in C. C provides three iteration statements: while, 
for, and do-while. All of these statements execute a statement possibly multi-
ple times until a specified expression becomes false. The while and do-while 
statements are particularly well-suited for expressing sentinel-controlled loops. 
The for statement works well for expressing counter-controlled loops. 

• Problem Solving Using Control Structures. To our arsenal of primitives 
for problem solving (which already includes the three basic C types, variables, 
operators, and I/O using printf and scanf), we added control constructs. We 
practiced some problem-solving examples that required application of these 
control constructs. 

Exerc ises 

13.1 

13.2 

#define VERO -2 

if (VERO) 
printf("True!"); 

else 
printf("False I"); 

b. What is the output produced when this code is run? 
c. If we modified the code to the following, does the code behave 

differently? If so, how? 

#define VERO ~2 

if (VERO) 
printf("True!"); 

else if (!VERO) 
printf("False!"); 

Recreate the LC-3 compiler's symbol table when it compiles the 
calculator program listed in Figure 13.24. 
a. What does the following code look like after it is processed by the 

preprocessor? 
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13.3 An if-else statement can be used in place of the C conditional 
operator (see Section 12.6.3). Rewrite the following statement using an 
if-else rather than the conditional operator. 

X = a ? b : C ; 

13.4 Describe the behavior of the following statements for the case when x 
equals 0 and when x equals 1. 
a. if (x = o) 

printf("x equals 0\n"); 
else 

printf{"x does not equal 0\n"); 
b. if (x == 0) 

printf("x equals 0\n"); 
else 

printf("x does not equal 0\n"); 
c. if (x == 0) 

printf("A\n"); 
else if (x != 1) 

printf("B\n"); 
else if (x < 1} 

printf("C\n") ; 
else if (x) 

printf("D\n"}; 
d. int x; 

int y; 

switch (x) { 
case 0: 

Y - 3; 

case 1: 
Y = 4; 
break; 

default: 
7 = 5 ; 
break; 

} 
e. What happens if x is not equal to 0 or 1 for part 4? 

13.5 Provide the LC-3 code generated by our LC-3 C compiler when it 
compiles the switch statement in part 4 of Exercise 13.4. 

13.6 Figure 13.12 contains a C program with a nested for loop. 
a. Mathematically state the series that this program calculates. 
b. Write a program to calculate the following function: 

fin) = f(n - 1) + f(n - 2) 

with the following initial conditions, 

/(0) = 1, /(1) = 1 
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13.7 Can the following if-else statement be converted into a switch? If 
yes, convert it. If no, why not? 
if {y, : == 0) 

Y = 3; 
else if (x == 1) 

y = 4; 
else if (x == 2) 

y = 5; 
else if (x == y) 

y = 6; 
else 

y = 7; 

13.8 At least how many times will the statement called loopBody execute 
the following constructs? 
a. while (condition) 

loopBody; 

b. do 
loopBody; 

while (condition); 

C. for (init; condition; reinit) 
loopBody; 

d. while (conditionl) 
for (init; condition2; reinit) 

loopBody; 

e. do 
do 

loopBody; 
while (conditionl); 

while (condition2); 
13.9 What is the output of each of the following code segments? 

a. a = 2; 
while (a > 0) { 

a- - ; 
} 
printf{"%d", a); 

b. a = 2 ; 
do { 

a- - ; 
} while (a > 0) 
printf("%d", a); 

C. b = 0; 
for (a = 3; a < 10; a += 2) 

b = b + 1; 
printf("%d %d", a, b); 
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13.10 Convert the program in Figure 13.4 into one that uses a switch 
statement instead of if-else. 

13.11 Modify the e-mail address validation program in Figure 13.23 so that 
it requires that at least one alphabetic character appears prior to the at 
sign, one appears between the at sign and the period, and one appears 
after the period in order for an e-mail address to be valid. 

13.12 For the following questions, x is an integer with the value 4. 
a. What output is generated by the following code segment? 

if (7 > x > 2} 
printf ("True . ") ; 

else 
printf("False."); 

b. Does the following code cause an infinite loop? 
while (x > 0) 

x++ ; 

c. What is the value of x after the following code has executed? 
for (x = 4; x < 4; X--) { 

if (x < 2} 
break; 

else if (x == 2) 
continue; 

x = -1; 
} 

13.13 Change this program so that it uses a do-while loop instead of a 
for loop. 
int main() { 

int i ; 
int sum; 

for (i - 0; i <= 100; i++) { 
if (i % 4 == 0) 

sum = sum + 2; 
else if (i % 4 = = 1 

sum = sum - 6; 
else if (i % 4 = = 2 

sum = sum * 3; 
else if (i % 4 = = 3 

sum = sum / 2; 
} 
printf("%d\n", sum); 

} 
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13.14 Write a C program that accepts as input a single integer k, then writes a 
pattern consisting of a single 1 on the first line, two 2s on the second 
line, three 3s on the third line, and so forth, until it writes k occurrences 
of k on the last line. 

For example, if the input is 5, the output should be the following: 
l 
2 2 
3 3 3 
4 4 4 4 
5 5 5 5 5 

13.15 a. Convert the following while loop into a for loop. 
while (condition) 

loopBody; 
b. Convert the following for loop into a while loop. 

for (init; condition; reinit) 
loopBody; 

13.16 What is the output of the following code? 
int r = 0; 
int s - 0; 
int w = 12; 
int sum = 0; 

for (r = 1; r <= w; r++) 
for (s = r; s w; s++) 

sum = sum + s; 

printf("sum =%d\n", sum) ; 

13.17 The following code performs something quite specific. Describe its 
output. 
int i; 

scanf("%d", &i); 
for (j = 0? j < 16; j++) { 

if (i & (1 << j)) { 
count++; 

printf("%d\n", count); 
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13.18 Provide the output of each of the following code segments. 
a. int x = 20; 

int y = 10; 

while ((x > 10) && (y & 15)) { 
y = y + 1 ; 
x = x - 1 ; 
printf("*"); 

} 
b. int x ; 

for (x= 10; X ; x = x - 1) 
printf(»*»); 

C. int x; 

for (x~ 0; X < 10; x = x + 1) { 
if (x % 2) 

printf(«*») ; 
} 

d. int x = 0 ; 
int i ; 

while (x < 10) { 
for (i = 0; i < x; i = x + l) 

printf("*"); 
X = X + 1 ; 

} 
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14 

Funct ions 

14.1 Introduction 
Functions are subprograms, and subprograms are the soul of modern program-
ming languages. Functions provide the programmer with a way to enlarge the set 
of elementary building blocks with which to write programs. That is, they enable 
the programmer to extend the set of operations and constructs natively supported 
by the language to include new primitives. Functions are such an important con-
cept that they have been part of languages since the very early days, and support for 
them is provided directly in all instruction set architectures, including the LC-3. 

Why are they so important? Functions (or procedures, or subroutines, or 
methods—all of which are variations of the same theme) enable abstraction. 
That is, they increase our ability to separate the "function" of a component from 
the details of how it accomplishes that "function." Once the component is created 
and we understand its construction, we can use the component as a building block 
without giving much thought to its detailed implementation. Without abstraction, 
our ability to create complex systems such as computers, and the software that 
runs on them, would be seriously impaired. 

Functions are not new to us. We have have been using variants of functions 
ever since we programmed subroutines in LC-3 assembly language; while there 
are syntactic differences between subroutines in LC-3 assembly and functions 
in C, the concepts behind them are largely the same. 

The C programming language is heavily oriented around functions. A C pro-
gram is essentially a collection of functions. Every statement belongs to one (and 
only one) function. All C programs start and finish execution in the function main. 
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The function main might call other functions along the way, and they might, in 
turn, call more functions. Control eventually returns to the function main, and 
when main ends, the program ends (provided something did not cause the program 
to terminate prematurely). 

In this chapter, we provide an introduction to functions in C. We begin by 
examining several short programs in order to get a sense of the C syntax involving 
functions. Next, we examine how functions are implemented, examining the low-
level operations necessary for functions to work in high-level languages. In the 
last part of the chapter, we apply our problem-solving methodology to some 
programming problems that benefit from the use of functions. 

14.2 Functions in C 
Let's start off with a simple example of a C program involving functions. 
Figure 14.1 is a program that prints a message using a function named 
PrintBanner. This program begins execution at the function main, which then 
calls the function PrintBanner. This function prints a line of text consisting of 
the = character to the output device. 

PrintBanner is the simplest form of a function: it requires no input from 
its caller to do its job, and it provides its caller with no output data (not counting 
the banner printed to the screen). In other words, no arguments are passed from 
main to PrintBanner and no value is returned from PrintBanner to main. We 
refer to the function main as the caller and to PrintBanner as the callee. 

14.2.1 A Function with a Parameter 
The fact that PrintBanner and main require no exchange of information sim-
plifies their interface. In general, however, we'd like to be able to pass some 
information between the caller and the callee. The next example demonstrates 

1 #include <stdio.h> 
2 
3 void PrintBanner{); /* Function declaration */ 
4 
5 int main() 
6 { 
7 PrintBanner(); /* Function call */ 
8 printf{"A simple C program.\n"); 
9 PrintBanner(); 

10 } 
11 
12 void PrintBanner{) /* Function definition */ 
13 { 
14 printf("============================\nM); 
15 } 
Figure 14.1 A C program that uses a function to print a banner message 
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1 #include <stdio.h> 
2 
3 int Factorial{int n) ; 
4 
5 int main() 
6 { 
7 int number; 
8 int answer; 
9 

10 printf("Input a number: "); 
11 
12 scanf("%d", &number); 
13 
14 answer = Factorial(number); 
15 
16 printf("The factorial of %d 
17 } 
18 
19 int Factorial(int n) 
20 { 
21 int i; 
22 int result = 1; 
23 
24 for (i = 1; i <= n; i++) 
25 result = result * i; 
26 
27 return result; 
28 } 

Figure 14.2 A C program to calculate factorial 

/*! Function Declaration !*/ 

/* Definition for main */ 

/* Number from user */ 
/* Answer of factorial */ 

* / 

* / 

/* Call to printf 

/* Call to scanf 

/*! Call to factorial !*/ 

is %d\n"/ number, answer); 

/*! Function Definition !*/ 

/* Iteration count */ 
/* Initialized result */ 

/* Calculate factorial */ 

/*! Return to caller !*/ 

how this is done in C. The code in Figure 14.2 contains a function Factorial 
that performs an operation based on an input parameter. 

Factorial performs a multiplication of all integers between 1 and n, where 
n is the value provided by the caller function (in this case main). The calculation 
performed by this function can be algebraically stated as: 

factorial(n) = n ! = l x 2 x 3 x . . . x n 

The value calculated by this function is named r e sul t in the C code in Figure 14.2. 
Its value is returned (using the return statement) to the caller. We say that the 
function Factorial requires a single integer argument from its caller, and it 
returns an integer value back to its caller. In this particular example, the variable 
answer in the caller is assigned the return value from Factorial (line 14). 

Let's take a closer look at the syntax involved with functions in C. In the 
code in Figure 14.2, there are four lines that are of particular interest to us. The 
declaration for Factorial is at line 3. Its definition starts at line 19. The call 
to Factorial is at line 14; this statement invokes the function. The return from 
Factorial back to its caller is at line 27. 
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The Declaration 

In the preceding example, the function declaration for Factorial appears at 
line 3. What is the purpose of a function's declaration? It informs the com-
piler about some relevant properties of the function in the same way a variable's 
declaration informs the compiler about a variable. Sometimes called a function 
prototype, a function declaration contains the name of the function, the type of 
value it returns, and a list of input values it expects. The function declaration ends 
with a semicolon. 

The first item appearing in a function's declaration is the type of the value 
the function returns. The type can be any C data type (e.g., int, char, double). 
This type describes the type of the single output value that the function produces. 
Not all functions return values. For example, the function PrintBanner from the 
previous example did not return a value. If a function does not return a value, 
then its return type must be declared as void, indicating to the compiler that the 
function returns nothing. 

The next item on the declaration is the function's name. A function's name 
can be any legal C identifier. Often, programmers choose function names some-
what carefully to reflect the actions performed by the function. Factorial, for 
example, is a good choice for the function in our example because the mathemat-
ical term for the operation it performs is factorial. Also, it is good style to use a 
naming convention where the names of functions and the names of variables are 
easily distinguishable. In the examples in this book, we do this by capitalizing 
the first character of all function names, such as Factorial. 

Finally, a function's declaration also describes the type and order of the input 
parameters required by the function. These are the types of values that the function 
expects to receive from its callers and the order in which it expects to receive 
them. We can optionally specify (and often do) the name of each parameter in the 
declaration. For example, the function Factorial takes one integer value as an 
input parameter, and it refers to this value internally as n. Some functions may 
not require any input. The function PrintBanner requires no input parameters; 
therefore its parameter list is empty. 

The Call 

Line 14 in our example is the function call that invokes Factorial. In this state-
ment, the function main calls Factorial. Before Factorial can start, however, 
main must transmit a single integer value to Factorial. Such values within the 
caller that are transmitted to the callee are called arguments. Arguments can be 
any legal expression, but they should match the type expected by the callee. These 
arguments are enclosed in parentheses immediately after the callee's name. In this 
example, the function main passes the value of the variable number as the argu-
ment. The value returned by Factorial is then assigned to the integer variable 
answer. 

The Definition 

The code beginning at line 19 is the function definition for Factorial. Notice that 
the first line of the definition matches the function declaration (however, minus the 
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semicolon). Within the parentheses after the name of the function is the function's 
formal parameter list. The formal parameter list is a list of variable declarations, 
where each variable will be initialized with the corresponding argument provided 
by the caller. In this example, when Factorial is called on line 14, the parameter 
n will be initialized to the value of number from main. From every place in the 
program where a function is called, the actual arguments appearing in each call 
should match the type and ordering of the formal parameter list. 

The function's body appears in the braces following the parameter list. A 
function's body consists of declarations and statements that define the computa-
tion the function performs. Any variable declared within these braces is local to 
the function. 

A very important concept to realize about functions in C is that none of the 
local variables of the caller are explicitly visible by the callee function. And in 
particular, Factorial cannot modify the variable number. In C, the arguments 
of the caller are passed as values to the callee. 

The Return Value 

In line 27, control passes back from Factorial to the caller main. Since 
Factorial is returning a value, an expression must follow the return key-
word, and the type of this expression should match the return type declared for 
the function. In the case of Factorial, the statement return resulttransmits 
the calculated value stored in result back to the caller. In general, functions that 
return a value must include at least one return statement in their body. Func-
tions that do not return a value—functions declared as type void—do not require 
a return statement; the return is optional. For these functions, control passes 
back to the caller after the last statement has executed. 

What about the function main? Its type is int (as required by the ANSI 
standard), yet it does not contain a return. Strictly speaking, we should include 
a return o at the end of main in the examples we've seen thus far. In C, if a 
non-void function does not explicitly return a value, the value of the last state-
ment is returned to the caller. Since main's return value will be ignored by most 
callers (who are the callers of main?), we've omitted them in the text to make our 
examples more compact. 

Let's summarize these various syntactic components: A function declaration 
(or prototype) informs the compiler about the function, indicating its name, the 
number and types of parameters the function expects from a caller, and the type 
of value the function returns. A function definition is the actual source code for 
the function. The definition includes a formal parameter list, which indicates the 
names of the function's parameters and the order in which they will be expected 
from the caller. A function is invoked via a function call. Input values, or argu-
ments, for the function are listed within the parentheses of the function call. 
Literally, the value of each argument listed in the function call is assigned to 
the corresponding parameter in the parameter list, the first argument assigned 
to the first parameter, the second argument to the second parameter, and so forth. 
The return value is the output of the function, and it is passed back to the caller 
function. 
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14.2.2 Example: Area of a Ring 
We further demonstrate C function syntax with a short example in Figure 14.3. 
This C program calculates the area of a circle that has a smaller circle removed 
from it. In other words, it calculates the area of a ring with a specified outer and 
inner radius. In this program, a function is used to calculate the area of a circle 
with a given radius. The function AreaOf circle takes a single parameter of type 
double and returns a double value back to the caller. 

The following point is important for us to reiterate: when function 
AreaOf circle is active, it can "see" and modify its local variable pi and its 
parameter radius. It cannot, however, modify any of the variables within the 
function main, except via the value it returns. 

The function Areaofcircle in this example has a slightly different usage 
than the functions that we've seen in the previous examples in this chapter. Notice 
that there are multiple calls to AreaOf Circle from the function main. In this case, 
AreaOf circle performs a useful, primitive computation such that encapsulating 
it into a function is beneficial. On a larger scale, real programs will include func-
tions that are called from hundreds or thousands of different places. By forming 

1 #include <stdio.h> 
2 
3 /* Function declarations */ 
4 double AreaOfCircle(double radius); 
5 
6 int main() 
V { 
8 double outer; /* inner radius */ 
9 double inner; /* Outer radius */ 

10 double areaOfRing; /* Area of ring */ 
11 
12 printf("Enter inner radius: ") ; 
13 scanf("%lf", &outer); 
14 
15 printf("Enter outer radius: "); 
16 scanf("%lf", &inner); 
17 
18 areaOfRing = AreaOfCircle(outer) - AreaOfCircle(inner); 
19 printf("The area of the ring is %f\n", areaOfRing); 
20 } 
21 
22 /* Calculate area of circle given a radius */ 
23 double AreaOfCircle(double radius) 
24 { 
25 double pi = 3.14159265; 
26 
2 7 return pi * radius * radius; 
28 } 
Figure 14.3 A C program calculates the area of a ring 



14.3 Implementing Functions in C 402 

AreaOf Circle and similar primitive operations into functions, we potentially 
save on the amount of code in the program, which is beneficial for code main-
tenance. The program also takes on a better structure. With AreaOf circle, the 
intent of the code is more visibly apparent than if the formula were directly 
embedded in-line. 

Some of you might remember our discussion on constant values from 
Section 12.6.2, where we argue that the variable pi should be declared as a 
constant using the const qualifier on line 25 of the code. We omit it here to make 
the example accessible to those who that might have skipped over the Additional 
Topics section of Chapter 12. 

14.3 Implementing Functions in C 
Let's now take a closer look at how functions in C are implemented at the machine 
level. Functions are the C equivalent of subroutines in LC-3 assembly language 
(which we discussed in Chapter 9), and the core of their operation is the same. In 
C, making a function call involves three basic steps: (1) the parameters from the 
caller are passed to the callee and control is transfered to the callee, (2) the callee 
does its task, (3) a return value is passed back to the caller, and control returns to 
the caller. An important constraint that we will put on the calling mechanism is 
that a function should be caller-independent. That is, a function should be callable 
from any function. In this section we will examine how this is accomplished using 
the LC-3 to demonstrate. 

14.3.1 Run-Time Stack 
Before we proceed, we first need to discuss a very important component of 
functions in C and other modern programming languages. We require a way to 
"activate" a function when it is called. That is, when a function starts executing, 
its local variables must be given locations in memory. Let us explain: 

Each function has a memory template in which its local variables are stored. 
Recall from our discussion in Section 12.5.2 that an activation record for a function 
is a template of the relative positions of its local variables in memory. Each local 
variable declared in a function will have a position in the activation record. Recall 
that the frame pointer (R5) indicates the start of the activation record. Question: 
Where in memory does the activation record of a function reside? Let's consider 
some options. 

Option 1: The compiler could systematically assign spots in memory for 
each function to place its activation record. Function A might be assigned memory 
location X to place its activation record, function B might be assigned location 
Y, and so forth, provided, of course, that the activation records do not overlap. 
While this seems like the most straightforward way to manage the allocation, a 
serious limitation arises with this option. What happens if function A calls itself? 
We call this recursion, and it is a very important programming concept that we 
will discuss in Chapter 17. If function A calls itself, then the callee version of 
function A will overwrite the local values of the caller version of function A, and 
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the program will not behave as we expect it to. For the C programming language, 
which allows recursive functions, option 1 will not work. 

Option 2: Every time a function is called, an activation record is allocated 
for it in memory. And when the function returns to the caller, its activation record 
is reclaimed to be assigned later to another function. While this option appears to 
be conceptually more difficult than option 1, it permits functions to be recursive. 
Each invocation of a function gets its own space in memory for its locals. For 
example, if function A calls function A, the callee version will be allocated its 
own activation record for storing local values, and this record will be different 
than the caller's. There is a factor that reduces the complexity of making option 2 
work: The calling pattern of functions (i.e., function A calls B which calls C, etc.) 
can be easily tracked with a stack data structure (Chapter 10). Let us demonstrate 
with an example. 

The code in Figure 14.4 contains three functions, main, Watt, and Volta. 
What each function does is not important for this example, so we've omitted some 
of their details but provided enough so that the calling pattern between them is 

1 int main() 
2 { 
3 int a; 
4 int b; 
5 
6 : 
7 b = Watt(a); /* main calls both */ 
8 b = Volta(a, b); 
9 } 

10 
11 int Watt(int a) 
12 { 
13 int w; 
14 
15 : 
16 w = Volta(w, 10); /* watt calls Volta */ 
17 
18 return w; 
19 } 
20 
21 int Volta(int q, int r) 
22 { 
23 int k; 
24 int m; 
25 
2 6 : /* Volta calls no one */ 
2 7 return k; 
28 } 
Figure 14.4 Code example that demonstrates the stack-like nature of function calls 
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Figure 14.5 Several snapshots of the run-time stack while the program outlined in 
Figure 14.4 executes 

apparent. The function main calls watt and Watt calls volta. Eventually, control 
returns back to main which then calls volta. 

Each function has an activation record that consists of its local variables, 
some bookkeeping information, and the incoming parameters from the caller 
(we'll mention more about the parameters and bookkeeping information in the 
subsequent paragraphs). Whenever a function is called, its activation record will 
be allocated somewhere in memory, and as we indicated in the previous paragraph, 
in a stack-like fashion. This is illustrated in the diagrams of Figure 14.5. 

Each of the shaded regions represents the activation record of a particular 
function call. The sequence of figures shows how the run-time stack grows and 
shrinks as the various functions are called and return to their caller. Keep in mind 
that, as we push items onto the stack, the top of the stack moves, or "grows," 
toward lower-numbered memory locations. 

Figure 14.5(a) is a picture of the run-time stack when the program starts 
execution. Since the execution of a C program starts in main, the activation record 
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for main is the first to be allocated on the stack. Figure 14.5(b) shows the run-
time stack immediately after Watt is called by main. Notice that the activation 
records are allocated in a stack-like fashion. That is, whenever a function is called, 
its activation record is pushed onto the stack. Whenever the function returns, its 
activation is popped off the stack. Figure 14.5 parts (c) through (f) show the state 
of the run-time stack at various points during the execution of this code. Notice 
that R5 points to some internal location within the activation record (it points to 
the base of the local variables). Also notice how R6 always points to the very 
top of the stack—it is called the stack pointer. Both of these registers have a key 
role to play in the implementation of the run-time stack and of functions in C in 
general. 

14.3.2 Getting It All to Work 
It is clear that there is a lot of work going on at the machine level when a function is 
called. Parameters must be passed, activation records pushed and popped, control 
moved from one function to another. Some of this work is accomplished by the 
caller, some by the callee. 

To accomplish all of this, the following steps are required: First, code in 
the caller function copies its arguments into a region of memory accessible by 
the callee. Second, the code at the beginning of the callee function pushes its 
activation record onto the stack and saves some bookkeeping information so that 
when control returns to the caller, it appears to the caller as if its local variables 
and registers were untouched. Third, the callee does its thing. Fourth, when the 
callee function has completed its job, its activation record is popped off the run-
time stack and control is returned to the caller. Finally, once control is back in the 
caller, code is executed to retrieve the callee's return value. 

Now we'll examine the actual LC-3 code for carrying out these operations. 
We do so by examining the LC-3 code associated with the following function 
call: w = Volta (w, 10) ; from line 18 of the code in Figure 14.4. 

The Call 
In the statement w = volta (w, 10) ;, the function volta is called with two 
arguments. The value returned by Volt a is then assigned to the local integer 
variable w. In translating this function call, the compiler generates LC-3 code that 
does the following: 

1. Transmits the value of the two arguments to the function v o l t a by pushing 
them directly onto the top of the run-time stack. Recall that R6 points to the 
top of the run-time stack. That is, it contains the address of the data item 
currently at the top of the run-time stack. To push an item onto the stack, we 
first decrement R6 and then store the data value using R6 as a base address. 
In the LC-3, the arguments of a C function call are pushed onto the stack 
from right-to-left in order they appear in the function call. In the case of 
watt , we will first push the value 10 (rightmost argument) and then the 
value of w. 

2. Transfers control to Volta via the JSR instruction. 
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Figure 14.6 The run-time stack Watt pushes the values it wants to pass to volta 

The LC-3 code to perform this function call looks like this: 

AND RO, RO, #0 R0 <-- 0 
ADD RO, RO, #10 R0 <-- 10 
ADD R6, R6 , #-1 
STR RO, R6 , #0 Push 10 

LDR RO, R5 , #0 Load w 
ADD R6, R6 , #-1 
STR RO, R6, #0 Push w 

JSR Volta 

Figure 14.6 illustrates the modifications made to the run-time stack by these 
instructions. Notice that the argument values are pushed immediately on top of 
the activation record of the caller (watt). The activation record for the callee 
(volt a) will be constructed on the stack directly on top of the record of the caller. 

Starting the Callee Function 

The instruction executed immediately after the JSR in the function Watt is the 
first instruction in the callee function volta. 

The code at the beginning of the callee handles some important bookkeeping 
associated with the call. The very first thing is the allocation of memory for the 
return value. The callee will push a memory location onto the stack by decre-
menting the stack pointer. And this location will be written with the return value 
prior to the return to the caller. 
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Next, the callee function saves enough information about the caller so that 
eventually when the called has finished, the caller can correctly regain program 
control. In particular, we will need to save the caller's return address, which is 
in R7 (Why is it in R7? Recall how the JSR instruction works.) and the caller's 
frame pointer, which is in R5. It is important to make a copy of the caller's frame 
pointer, which we call the dynamic link, so that when control returns to the caller 
it will be able once again to access its local variables. If either the return address 
or the dynamic link is destroyed, then we will have trouble restarting the caller 
correctly when the callee finishes. Therefore it is important that we make copies 
of both in memory. 

Finally, when all of this is done, the callee will allocate enough space on the 
stack for its local variables by adjusting R6, and it will set R5 to point to the base 
of its locals. 

To recap, here is the list of actions that need to happen at the beginning of a 
function: 

1. The callee saves space on the stack for the return value. The return value 
is located immediately on top of the parameters for the callee. 

2. The callee pushes a copy of the return address in R7 onto the stack. 
3. The callee pushes a copy of the dynamic link (caller's frame pointer) in 

R5 onto the stack. 
4. The callee allocates enough space on the stack for its local variables and 

adjusts R5 to point to the base of the local variables and R6 to point to the 
top of the stack. 

The code to accomplish this for volta is: 

Volta: 
ADD R6 , R6, #-1 ; Allocate spot for the return value 

ADD 
STR 

R6, 
R7, 

R6, 
R6 , 

#-1 
#0 

! 

; Push R7 {Return address) 

ADD 
STR 

R6, 
R5, 

R6 , 
R6, 

#-1 
#0 

; Push R5 (Caller's frame pointer) 
; We call this the dynamic link 

ADD 
ADD 

R5, 
R6, 

R6, 
R6, 

#-1 
#-2 

; Set new frame pointer 
; Allocate memory for Volta's locals 

Figure 14.7 summarizes the changes to memory accomplished by the code we 
have encountered so far. The layout in memory of these two activation records-
one for watt and one for volta—is apparent. Notice that some entries of the 
activation record of Volt a are written by watt. In particular, these are the param-
eter fields of Volta 's activation record, watt writes the value of its local variable 
w as the first parameter and the value 10 for the second parameter. Keep in mind 
that these values are pushed from right to left according to their position in the 
function call. Therefore, the value of w appears on top of the value 10. Once 
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Figure 14.7 The run-time stack after the activation record for Volta is pushed onto the 
stack 

invoked, volta will refer to these values with the names q and r. Question: What 
are the initial values of volta's local variable? Recall from Chapter 11 that local 
variables such as these are uninitialized. See Exercise 14.10 for an exercise on 
the initial values of local variables. 

Notice that each activation record on the stack has the same structure. Each 
activation record contains locations for the function's local variables, for the 
bookkeeping information (consisting of the caller's return address and dynamic 
link), the return value, and the function's parameters. 

Ending the Callee Function 

Once the callee function has completed its work, it must perform several tasks 
prior to returning control to the caller function. Firstly, a function that returns a 
value needs a mechanism for the return value to be transmitted properly to the 
caller function. Secondly, the callee must pop the current activation record. To 
enumerate, 

1. If there is a return value, it is written into the return value entry of the 
activation record. 

2. The local variables are popped off the stack. 
3. The dynamic link is restored. 
4. The return address is restored. 
5. The RET instruction returns control to the caller function. 
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The LC-3 instructions corresponding to this for v o l t a are 

LDR RO, R5, #0 ; Load local variable k 
STR RO, R5, #3 ; Write it in return value 

ADD R6, R5, #1 ; Pop local variables 

LDR R5, R6, #0 ; Pop the dynamic link 
ADD R6, R6, #1 t 

LDR R7, R6 , #0 ; Pop the return address 
ADD R6, R6, #1 / 

RET 

The first two instructions write the return value, which in this case is the local 
variable k, into the return value entry of vo i t a ' s activation record. Next, the local 
variables are popped by moving the stack pointer to the location immediately 
below the frame pointer. The dynamic link is restored, then the return address is 
restored, and finally we return to the caller. 

You should keep in mind that even though the activation record for Volta is 
popped off the stack, the values remain in memory. 

Returning to the Caller Function 

After the callee function executes the RET instruction, control is passed back to 
the caller function. In some cases, there is no return value (if the callee is declared 
of type void) and, in some cases, the caller function ignores the return value. 
Again, from our previous example, the return value is assigned to the variable w 
in watt. 

In particular, there are two actions that must be performed: 

1. The return value (if there is one) is popped off the stack. 
2. The arguments are popped off the stack. 

The code after the JSR looks like the following: 

JSR Volta 

LDR RO, R6, #0 

STR RO, R5, #0 
ADD R6, R6, #1 

Load the return value 
at the top of stack 
w = Volta(w, 10); 
Pop return value 

ADD R6, R6, #2 ; Pop arguments 

Once this code is done, the call is now complete and the caller function can 
resume its normal operation. Notice that prior to the return to the caller, the callee 
restores the environment of the caller. To the caller, it appears as if nothing has 
changed except that a new value (the return value) has been pushed onto the stack. 
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Caller Save/Callee Save 

Before we complete our discussion of the implementation of functions, we need 
to cover a topic that we've so far swept under the rug. During the execution of a 
function, RO through R3 can contain temporary values that are part of an ongoing 
computation. Registers R4 through R7 are reserved for other purposes: R4 is the 
pointer to the global data section, R5 is the frame pointer, R6 is the stack pointer, 
and R7 is used to hold return addresses. If we make a function call, based on the 
calling convention we've described R4 through R7 do not change or change in 
predetermined ways. But what happens to registers RO, R1, R2, and R3 ? In the gen-
eral case, we'd like to make sure that the callee function does not overwrite them. 
To address this, calling conventions typically adopt one of two strategies: (1) The 
caller will save these registers by pushing them onto its activation record. This is 
called the caller-save convention. (We also discussed this in Chapter 9.) When 
control is returned to the caller, the caller will restore these registers by popping 
them off the stack. (2) Alternatively, the callee can save these registers by adding 
four fields in the bookkeeping area of its record. This is called the callee-save con-
vention. When the callee is initiated, it will save RO through R3 and R5 and R7 into 
the bookkeeping region and restore these registers prior to the return to the caller. 

14.3.3 Tying It All Together 
The code for the function call in watt and the beginning and end of vol ta is listed 
in Figure 14.8. The LC-3 code segments presented in the previous sections are all 
combined, showing the overall structure of the code. This code is more optimized 
than the previous individual code segments. We've combined the manipulation 
of the stack pointer R6 associated with pushing and popping the return value into 
single instructions. 

To summarize, our LC-3 C calling convention involves a series of steps that 
are performed when a function calls another function. The caller function pushes 
the value of each parameter onto the stack and performs a Jump To Subroutine 
(JSR) to the callee. The callee allocates a space for the return value, saves some 
bookkeeping information about the caller, and then allocates space on the stack 
for its local variables. The callee then proceeds to carry out its task. When the task 
is complete, the callee writes the return value into the space reserved for it, pops 
and restores the bookkeeping information, and returns to the caller. The caller 
then pops the return value and the parameters it placed on the stack and resumes 
its execution. 

You might be wondering why we would go through all these steps just to 
make a function call. That is, is all this code really required and couldn't the 
calling convention be made simpler? One of the characteristics of real calling 
conventions is that in the general case, any function should be able to call any 
other function. To enable this, the calling convention should be organized so 
that a caller does not need to know anything about a callee except its interface 
(that is, the type of value the callee returns and the types of values it expects as 
parameters). Likewise, a callee is written to be independent of the functions that 
call it. Because of this generality, the calling convention for C functions require 
the steps we have outlined here. 
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1 Watt: 
A 
3 AND RO, RO, #0 R0 <- 0 
4 ADD RO, RO, #10 R0 <- 10 
5 ADD R6, R6, #-1 
6 STR RO, R6, #0 Push 10 
7 LDR RO, R5, #0 Load w 
8 ADD R6, R6, #-1 
9 STR RO, R6, #0 Push w 

10 
11 JSR Volta 
12 
13 LDR RO, R6, #0 - Load the return value at top of stack 
14 STR RO, R5, #0 - w = Volta(w, 10); 
15 ADD R6, R6, #3 • Pop return value, arguments 
16 . . . 
17 
18 Volta 
19 ADD R6, R6, #-2 Push return value 
20 STR R7, R6, #0 Push return address 
21 ADD R6, R6, #-1 Push R5 (Caller's frame pointer) 
22 STR R5, R6 , #0 We call this the dynamic link 
23 ADD R5, R6, #-1 Set new base pointer 
24 ADD R6, R6, #-2 Allocate memory for Volta's locals 
25 
26 . . . ; Volta performs its work 
27 
28 LDR RO, R5 , #0 Load local variable k 
29 STR RO, R5, #3 Write it in return value slot 
30 ADD R6, R5, #1 Pop local variables 
31 LDR R5, R6, #0 Pop the dynamic link 
32 ADD R6, R6, #1 
33 LDR R7, R6, #0 Pop the return address 
34 ADD R6, R6, #1 
35 RET 
Figure 14.8 The LC-3 code corresponding to a C function call and return 

14.4 Problem Solving Using Functions 
For functions to be useful to us, we must somehow integrate them into our pro-
gramming problem-solving methodology. In this section we will demonstrate the 
use of functions through two example problems, with each example demonstrating 
a slightly different application of functions. 

Conceptually, functions are a good point of division during the top-down 
design of an algorithm from a problem. As we decompose a problem, natural 
"components" will appear in the tasks that are to be performed by the algorithm. 
And these components are natural candidates for functions. Our first exam-
ple involves converting text from lowercase into uppercase, and it presents an 
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example of a component function that is naturally apparent during the top-down 
design process. 

Functions are also useful for encapsulating primitive operations that the pro-
gram requires at various spots in the code. By creating such a function, we are 
in a sense extending the set of operations of the programming language, tailor-
ing them to the specific problem at hand. In the case of the second problem, 
which determines Pythagorean Triples, we will develop a primitive function to 
calculate x2 to assist with the calculation. 

14.4.1 Problem 1: Case Conversion 
In this section, we go through the development of a program that reads input from 
the keyboard and echos it back to the screen. We have already seen an example of 
a program that does just this in Chapter 13 (see Figure 13.8). However, this time, 
we throw in a slight twist: We want the program to convert lowercase characters 
into uppercase before echoing them onto the screen. 

Figure 14.9 The decomposition into smaller subtasks of a program that converts input 
characters into uppercase 
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1 #include <stdio.h> 
2 
3 /* Function declaration */ char ToUpper{char inchar); 
4 
5 /* Function main: */ 
6 /* Prompt for a line of text, Read one character, */ 
7 /* convert to uppercase, print it out, then get another */ 
8 int main() 
9 { 

10 char echo = 'A'; /* Initialize input character */ 
11 char upcase; /* Converted character */ 
12 
13 while (echo != '\n') { 
14 scanf (nc", &echo) ; 
15 upcase = ToUpper(echo); 
16 printf{"%c", upcase); 
17 } 
18 } 
19 
20 /* Function ToUpper: */ 
21 /* If the parameter is lower case return */ 
22 /* its uppercase ASCII value */ 
23 char ToUpper(char inchar) 
24 { 
2 5 char outchar; 
26 
27 if {'a' <= inchar && inchar <= 'z') 
28 outchar = inchar - ('a' - 'A'); 
29 else 
3 0 outchar = inchar; 
31 
32 return outchar; 
33 } 
Figure 14.10 A program with a function to convert lowercase letters to uppercase 

Our approach to solving this problem is to use the echo program from 
Figure 13.8 as a starting point. The previous code used a while loop to read 
an input character from the keyboard and then print it to the output device. To 
this basic structure, we want to add a component that checks if a character is 
lowercase and converts it to uppercase if it is. There is a single input and a sin-
gle output. We could add code to perform this directly into the while loop, but 
given the self-contained nature of this component, we will create a function to do 
this job. 

The conversion function is called after each character is scanned from the 
keyboard and before it is displayed to the screen. The function requires a sin-
gle character as a parameter and returns either the same character (for cases 
in which the character is already uppercase or is not a character of the alpha-
bet) or it will return an uppercase version of the character. Figure 14.9 shows 
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the flow of this program. The flowchart of the original echo program is shaded. 
To this original flowchart, we are adding a component function to perform the 
conversion. 

Figure 14.10 shows the complete C program. It takes input from the keyboard, 
converts each input character into uppercase, and prints out the result. When the 
input character is the new line character, the program terminates. The conversion 
process from lowercase to uppercase is done by the function ToUpper. Notice the 
use of ASCII literals in the function body to perform the actual conversion. Keep 
in mind that a character in single quotes (e.g., 'A') is evaluated as the ASCII 
value of that character. The expression ' a ' - 'A' is therefore the ASCII value 
of the character a minus the ASCII of A. 

14.4.2 Problem 2: Pythagorean Triples 
Now we'll attempt a programming problem involving calculating all Pythagorean 
Triples less than a particular input value. A Pythagorean Triple is a set of three 
integer values a, b, and c that satisfy the property c2 = a2 + b2. In other 
words, a and b are the lengths of the sides of a right triangle where c is the 
hypotenuse. For example, 3, 4, and 5 is a Pythagorean Triple. The problem here 
is to calculate all Triples a, b, and c where all are less than a limit provided by 
the user. 

For this problem, we will attempt to find all Triples by brute force. That is, 
if the limit indicated by the user is max, we will check all combinations of three 
integers less than max to see if they satisfy the Triple property. In order to check 
all combinations, we will want to vary each sideA, sideB, and sidec from 1 
to max. This implies the use of counter-controlled loops. More exactly, we will 
want to use a for loop to vary sidec, another to vary sideB, and another to 
vary sideA, each nested within the other. At the core of these loops, we will 
check to see if the property holds for the three values, and if so, we'll print 
them out. 

Now, in performing the Triple check, we will need to evaluate the following 
expression. 

{sideC * sideC == (sideA * sideA + sideB * sideB)) 

Because the square operation is a primitive operation for this problem—meaning 
it is required in several spots—we will encapsulate it into a function Squared 
that returns the square of its integer parameter. The preceding expression will be 
rewritten as follows. Notice that this code gives a clearer indication of what is 
being calculated. 

(Squared(sideC) == Squared(sideA) + Squared(sideB)) 

The C program for this is provided in Figure 14.11. There are better ways to 
calculate Triples than with a brute-force technique of checking all combinations 
(Can you modify the code to run more efficiently?); the brute-force technique 
suits our purposes of demonstrating the use of functions. 

397 
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1 #include <stdio.h> 
2 
3 int Squared(int x); 
4 
5 int main() 
6 { 
7 int sideA; 
8 int sideB; 
9 int sideC; 

10 int maxC; 
11 
12 printf("Enter the maximum length of hypotenuse: "); 
13 scanf("%d", &maxC); 
14 
15 for (sideC = 1; sideC <= maxC; sideC++) { 
16 for (sideB = 1; sideB < = maxC; sideB++) { 
17 for {sideA = 1; sideA <= maxC; sideA++) { 
18 if (Squared(sideC) == Squared(sideA) + Squared(sideB)) 
19 printf("%d %d %d\nM, sideA, sideB, sideC); 
20 } 
21 } 
22 } 
23 } 
24 
2 5 /* Calculate the square of a number */ 
26 int Squared(int x) 
27 { 
28 return x * x; 
29 } 
Figure 14.11 A C program that calculates Pythagorean Triples 

14.5 Summary 
In this chapter, we introduced the concept of functions in C. The general notion of 
subprograms such as functions have been part of programming languages since 
the earliest languages. Functions are useful because they allow us to create new 
primitive building blocks that might be useful for a particular programming task 
(or for a variety of tasks). In a sense, they allow us to extend the native operations 
and constructs supported by the language. 

The key notions that you should take away from this chapter are: 
• Syntax of functions in C. To use a function in C, we must declare the function 

using a function declaration (which we typically do at the beginning of our code) 
that indicates the function's name, the type of value the function returns, and the 
types and order of values the function expects as inputs. A function's definition 
contains the actual code for the function. A function is invoked when a call to it 
is executed. A function call contains arguments—values that are to be passed to 
the function as parameters. 
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• Implementation of C functions at the lower level. Part of the complexity 
associated with implementing functions is that in C, a function can be called from 
any other function in the source file (and even from functions in other object files). 
To assist in dealing with this, we adopt a general calling convention for calling 
one function from another. To assist with the fact that some functions might even 
call themselves, we base this calling convention on the run-time stack. The calling 
convention involves the caller passing the value of its arguments by pushing them 
onto the stack, then calling the callee. The arguments written by the caller become 
the parameters of the callee's activation record. The callee does its task and then 
pops its activation record off the stack, leaving behind its return value for the 
caller. 

• Using functions when programming. It is conceivable to write all your 
programs without ever using functions, the result would be that your code would 
be hard to read, maintain, and extend and would probably be buggier than if your 
code used functions. Functions enable abstraction: we can write a function to 
perform a particular task, debug it, test it, and then use it within the program 
whereever it is needed. 

Exerc ises 

14.1 What is the significance of the function main? Why must all programs 
contain this function? 

14.2 Refer to the structure of an activation record for these questions. 
a. What is the purpose of the dynamic link? 
b. What is the purpose of the return address? 
c. What is the purpose of the return value? 

14.3 Refer to the C syntax of functions for these questions. 
a. What is a function declaration? What is its purpose? 
b. What is a function prototype? 
c. What is a function definition? 
d. What are arguments? 
e. What are parameters? 

14.4 For each of the following items, identify whether the caller function or 
the callee function performs the action. 
a. Writing the parameters into the activation record. 
b. Writing the return value. 
c. Writing the dynamic link. 
d. Modifying the value in R5 to point within the callee function's 

activation record. 
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14.5 What is the output of the following program? Explain. 
void MyFunc(int z) ; 

int main() { 
int z = 2; 

MyFunc(z); 
MyFunc(z); 

} 
void MyFunc(int z) { 

printf(»%d z); 
Z + + ; 

} 
14.6 What is the output of the following program? 

#include <stdio.h> 

int Multiply(int d, int b); 

int d = 3; 

int main() { 
int a, b, c; 
int e = 4; 

a = 1 ; 
b = 2; 

c = Multiply(a, b); 
printf("%d %d %d %d %d\n", a, b, c, d, e); 

int Multiply(int d7 int b) { 
int a; 
a = 2 ; 
b = 3; 

return (a * b); } / 
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14.7 Following is the code for a C function named Bump. 
int Bump(int x) { 

int a ; 

a = x + 1 ; 

return a; 
} 
a. Draw the activation record for Bump. 
h Write one of the following in each entry of the activation record to 

indicate what is stored there. 
(1) Local variable 
(2) Argument 
(3) Address of an instruction 
(4) Address of data 
(5) Other 

c. Some of the entries in the activation record for Bump are written by 
the function that calls Bump; some are written by Bump itself. Identify 
the entries written by Bump. 

14.8 What is the output of the following code? Explain why the function 
Swap behaves the way it does. 
int main() 
{ 

int x = 1 ; 
int y = 2; 

Swap(x, y); 
printf("x = %d y - %d\n", x, y); 

} 
void Swap(int y, int x) { 

int temp 

temp = x; 
x = y; 
y = temp; 

} 
14.9 Are the parameters to a function placed on the stack before or after the 

JSR to that function? Why? 
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14.10 A C program containing the function food has been compiled into LC-3 
assembly language. The partial translation of the function into LC-3 is: 
food: 

ADD R6, R6, #-2 
STR R7, R6, #0 
ADD R6, R6, #-1 
STR R5, R6, #0 
ADD R5, R6, #-1 
ADD R6, R6, #-4 

a. How many local variables does this function have? 
b. Say this function takes two integer parameters x and y. Generate the 

code to evaluate the expression x + y. 
14.11 Following is the code for a C function named unit. 

int main{) { 
int a = 1; 
int b = 2; 

a = Init(a); 
b = Unit(b); 

printf("a = %d b = %d\n", a, b); 
} 
int Init(int x) { 

int y = 2; 

return y + x; 
} 
int Unit(int x) { 

int Z ; 

return z + x; 
} 
a. What is the output of this program? 
b. What determines the value of local variable z when function Unit 

starts execution? 
14.12 Modify the example in Figure 14.10 to also convert each character to 

lowercase. The new program should print out both the lower- and 
uppercase versions of each input character. 

14.13 Write a function to print out an integer value in base 4 (using only the 
digits 0, 1, 2, 3). Use this function to write a program that reads two 
integers from the keyboard and displays both numbers and their sum in 
base 4 on the screen. 
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14.14 Write a function that returns a 1 if the first integer input parameter is 
evenly divisible by the second. Using this function, write a program to 
find the smallest number that is evenly divisible by all integers less 
than 10. 

14.15 The following C program is compiled into LC-3 machine language and 
loaded into address x3000 before execution. Not counting the JSRs to 
library routines for I/O, the object code contains three JSRs (one to 
function f, one to g, and one to h). Suppose the addresses of the three 
JSR instructions are x3102, x3301, and x3304. And suppose the user 
provides 4 5 6 as input values. Draw a picture of the run-time stack, 
providing the contents of locations, if possible, when the program is 
about to return from function f. Assume the base of the run-time stack 
is location xEFFF. 
#include <stdio.h> 

int f(int x, int y, int z); 
int g(int arg); 
int h(int argl, int arg2); 

int main() { 
int a, b, c; 

printf(MType three numbers: ") ; 
scanf("%d %d %d", &a, &b, &c); 
printf("%d", f(a, b# c)); 

} 
int f(int x, int y, int z) 
{ 

int xl; 

xl = g (x) ;. 
return h(y, z) * xl; 

} 
int g(int arg) { 

return arg * arg; 

int h(int argl, int arg2) { 
return argl / arg2; 
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14.16 Referring once again to the machine-busy example from previous 
chapters, remember that we represent the busyness of a set of 16 
machines with a bit pattern. Recall that a 0 in a particular bit position 
indicates the corresponding machine is busy and a 1 in that position 
indicates that machine is idle. 

a. Write a function to count the number of busy machines for a given 
busyness pattern. The input to this function will be a bit pattern 
(which can be represented by an integer variable), and the output 
will be an integer corresponding to the number of busy machines. 

b. Write a function to take two busyness patterns and determine which 
machines have changed state, that is, gone from busy to idle, or idle 
to busy. The output of this function is simply another bit pattern with 
a 1 in each position corresponding to a machine that has changed its 
state. 

c. Write a program that reads a sequence of 10 busyness patterns from 
the keyboard and determines the average number of busy machines 
and the average number of machines that change state from one 
pattern to the next. The user signals the end of busyness patterns by 
entering a pattern of all Is (all machines idle). Use the functions you 
developed for parts 1 and 2 to write your program. 

14.17 a. Write a C function that mimics the behavior of a 4-to-l multiplexor. 
See Figure 3.13 for a description of a 4-to-l MUX. 

b. Write a C function that mimics the behavior of the LC-3 ALU. 
14.18 Notice that on a telephone keypad, the keys labeled 2, 3, 4 , . . . , 9 also 

have letters associated with them. For example, the key labeled 2 
corresponds to the letters A, B, and C. Write a program that will map a 
seven-digit telephone number into all possible character sequences that 
the phone number can represent. For this program, use a function that 
performs the mapping between digits and characters. The digits 1 and 0 
map to nothing. 
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14.19 The following C program uses a combination of global variables and 
local variables with different scope. What is the output? 
#include <stdio.h> 
int t = 1; /* Global variable */ 
int subl(int fluff); 
int main () { 

int t = 2; 
int z; 
2 = t ; 
Z = Z + 1 ; 
printf("A: The variable z equals %d\n", z); 
{ 

z = t ; 
t = 3; 

{ 
int t = 4; 
Z = t; 
Z = Z + 1 ; 
printf("B: The variable z equals %d\n", z); 

} 
z = subl (z); 
Z = Z + 1 ; 
printf("C: The variable z equals %d\n", z); 

} 
z = t ; 
Z = Z + 1 ; 
printf("D: The variable z equals %d\n", z); 

} 
int subl(int fluff) { 

int i ; 
i = t; 
return (fluff + i) ; 

} 
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15 

Test ing 

15.1 Introduction 
In December 1999, NASA mission controllers lost contact with the Mars Polar 
Lander as it approached the Martian surface. The Mars Polar Lander was on 
a mission to study the southern polar region of the Red Planet. Contact was 
never reestablished, and NASA announced that the spacecraft most probably 
crashed onto the planet's surface during the landing process. After evaluating the 
situation, investigators concluded that the likely cause was faulty control software 
that prematurely caused the on-board engines to shut down when the probe was 
40 meters above the surface rather than when the probe had actually landed. The 
physical complexities of sending probes into space is astounding, and the software 
systems that control these spacecraft are no less complex. Software is as integral 
to a system as any mechanical or electrical subsystem, and all the more difficult 
to make correct because it is "invisible." It cannot be visually observed as easily 
as, say, a propulsion system or landing system. 

Software is everywhere today. It is in your cell phone, in your automobile— 
even the text of this book was processed by numerous lines of software before 
appearing in front of you on good old-fashioned printed pages. Because soft-
ware plays a vital and critical part in our world, it is important that this software 
behave correctly according to specification. Designing working programs is not 
automatic. Programs are not correct by construction. That is, just because a pro-
gram is written does not mean that it functions correctly. We must test and debug 
it as thoroughly as possible before we can deem it to be complete. 

and Debugging 
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Programmers often spend more time debugging their programs than they 
spend writing them. A general observation made by experts is that an experi-
enced programmer spends as much time debugging code as he/she does writing 
it. Because of this inseparable relation between writing code and testing and 
debugging it, we introduce you to some basic concepts in testing and debugging 
in this chapter. 

Testing is the process of exposing bugs, and debugging is the process of fixing 
them. Testing a piece of code involves subjecting it to as many input conditions 
as possible, in order to stress the software into revealing its bugs. For example, in 
testing the function ToUpper from the previous chapter (recall that this function 
returns the uppercase version of an alphabetic character passed as a parameter), we 
might want to pass every possible ASCII value as an input parameter and observe 
the function's output in order to determine if the function behaves according to 
specification. If the function produces incorrect output for a particular input, then 
we've discovered a bug. It is better to find the bug while the code is still in 
development than to have an unsuspecting user stumble on the bug inadvertently. 
It would have been better for the NASA software engineers to find the bug in the 
Mars Polar Lander on the surface of the earth rather than encounter it 40 meters 
above the surface of Mars. 

Using information about a program and its execution, a programmer can apply 
common sense to deduce where things are going awry. Debugging a program is 
a bit like solving a puzzle. Like a detective at a crime scene, a programmer must 
examine the available clues in order to track down the source of the problem. 
Debugging code is significantly easier if you know how to gather information 
about the bug—such as the value of key variables during the execution of the 
program—in a systematic way. 

In this chapter, we describe several techniques you can use to find and fix 
bugs within a program. We first describe some broad categories of errors that 
can creep into programs. We then describe testing methods for quickly finding 
these errors. We finally describe some debugging techniques for isolating and 
repairing these errors, and we provide some defensive programming techniques 
to minimize the bugs in the code you write. 

15.2 Types of Errors 
To better understand how to find and fix errors in programs, it is useful to get 
a sense of the types of errors that can creep into the programs we write. There 
are three broad categories of errors that you are likely to encounter in your code. 
Syntactic errors are the easiest to deal with because they are caught by the com-
piler. The compiler notifies us of such errors when it attempts to translate the 
source code into machine code, often pointing out exactly in which line the error 
occurred. Semantic errors, on the other hand, are problems that can often be 
very difficult to repair. They occur when the program is syntactically correct but 
does not behave exactly as we expected. Both syntactic and semantic errors are 
generally typographic errors: these occur when we type something we did not 
mean to type. Algorithmic errors are errors in which our approach to solving a 
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1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int i 
6 
7 

int j ; 

9 
10 
11 

8 for (i = 0; i <= 10; i++) { 
j = i * 7; 
printf("%d x 7 = %d\n", i, j); 

12 } 
Figure 15.1 This program contains a syntactic error 

problem is wrong. They are often hard to detect and, once detected, can be very 
hard to fix. 

15.2.1 Syntactic Errors 
In C, syntactic errors (or syntax errors or parse errors) are always caught by 
the compiler. These occur when we ask the compiler to translate code that does 
not conform to the C specification. For instance, the code listed in Figure 15.1 
contains a syntax error, which the compiler will flag when the code is compiled. 

The declaration for the variable i is missing a semicolon. As a novice C pro-
grammer, missing semicolons and variable declarations will account for a good 
number of the syntax errors you will encounter. The good news is that these types 
of errors are easy to find, because the compiler detects them, and are easy to fix, 
because the compiler indicates where they occur. The real problems start once 
the syntax errors have been fixed and the harder semantic and algorithmic errors 
remain. 

15.2.2 Semantic Errors 
Semantic errors are similar to syntactic errors. They occur for the same reason: Our 
minds and our fingers are not completely coordinated when typing in a program. 
Semantic errors do not involve incorrect syntax; therefore, the program gets trans-
lated and we are able to execute it. It is not until we analyze the output that we dis-
cover that the program is not performing as expected. Figure 15.2 lists an example 
of the same program as Figure 15.1 with a simple semantic error (the syntax error 
is fixed). The program should print out a multiplication table for the number 7. 

Here, a single execution of the program reveals the problem. Only one entry 
of the multiplication table is printed. You should be able to deduce, given your 
knowledge of the C programming language, why this program behaves incor-
rectly. Why is i i x 7 — 7 o printed out? This program demonstrates something 
called a control flow error. Here, the program's control flow, or the order in which 
statements are executed, is different than we intended. 

The code listed in Figure 15.3 contains a common, but tricky semantic error 
involving local variables. This example is similar to the factorial program we 
discussed in Section 14.2. 
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1 #include <stdio.h> 
2 
3 int main() 
4 { 
5 int i ; 
6 int j ; 
7 
8 for (i = 0; i <= 
9 j = i * 7; 

10 printf("%d x 7 
11 } 
Figure 15.2 A program with a semantic error 

This program calculates the sum of all integers less than or equal to the 
number input from the keyboard (i.e., it calculates 1 + 2 + 3 + . . . + n). Try 
executing this program and you will notice that the output is not what you would 
expect. Why doesn't it work properly? Hint: Draw out the run-time stack for an 
execution of this program. 

Semantic errors are particularly troubling because they often go undetected 
by both the compiler and the programmer until a particular set of inputs triggers 

1 #include <stdio.h> 
z 
3 
A 

int AllSum(int n); 

5 
(Z 

int main() 
/ o 

7 
i 

int in; / * Input value * / 
8 q int sum; / * Value of 1+2+3+..+n * / 

10 printf("Input a number: "); 
11 scanf("%dM, &in); 
12 
13 sum = AllSum(in); 
14 printf("The AllSum of %d is %d\n", in, sum); 
15 } 
16 
17 
18 int AllSum(int n) 
19 { 
20 int result; / * Result to be returned * / 
21 int i ; / * Iteration count * / 
22 
23 for (i = 1; i <= n; i++) / * This calculates sum * / 
24 result = result + i; 
25 
26 return result; / * Return to caller * / 
27 } 
Figure 15.3 A program with a bug involving local variables 
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the error. Refer to the Alisum program in Figure 15.3, but repair the previous 
semantic error and notice that if the value passed to Alisum is less than or equal 
to 0 or too large, then All Sum may return an erroneous result because it has 
exceeded the range of the integer variable result. Fix the previous bug, compile 
the program, and input a number smaller than 1 and you will notice another bug. 

Some errors are caught during execution because an illegal action is per-
formed by the program. Almost all computer systems have safeguards that prevent 
a program from performing actions that might affect other unrelated programs. 
For instance, it is undesirable for a user's program to modify the memory that 
stores the operating system or to write a control register that might affect other 
programs, such as a control register that causes the computer to shut down. When 
such an illegal action is performed by a program, the operating system termi-
nates its execution and prints out a run-time error message. Modify the scanf 
statement from the A H Sum example to the following: 

scanf (15 %d", in) ; 

In this case, the ampersand character, as we shall see in Chapter 16, is 
a special operator in the C language. Omitting it here causes a run-time error 
because the program has attempted to modify a memory location to which it does 
not have access. We will look at this example and the reasons for the error in more 
detail in later chapters. 

15.2.3 Algorithmic Errors 
Algorithmic errors are the result of an incorrect program design. That is, the 
program itself behaves exactly as we designed, but the design itself was flawed. 
These types of errors can be hidden; they may not appear until many trials of 
the program have been run. Even when they are detected and isolated, they can 
be very hard to repair. The good news is that these types of errors can often be 
reduced and even eliminated by proper planning during the design phase, before 
any code is written. 

An example of a program with a simple algorithmic flaw is provided in 
Figure 15.4. This code takes as input the number of a calendar year and determines 
if that year is a leap year or not. 

At first glance, this code appears to be correct. Leap years do occur every four 
years. However they are skipped at the turn of every century, except every fourth 
century (i.e., the year 2000 was a leap year, but 2100,2200, and 2300 will not be). 
The code works for almost all years, except those falling into these exceptional 
cases. We categorize this as an algorithmic error, or design flaw. 

Another example of an algorithmic error also involving dates is the infamous 
Year 2000 computer bug, or Y2K bug. Many computer programs minimize the 
amount of memory required to store dates. They use enough bits to store only the 
last two digits of the year, and no more. Thus, the year 2000 is indistinguishable 
from the year 1900 (or 1800 or 2100 for that matter). This presented a problem 
during the recent century crossover on December 31,1999. Say, for example, you 
had checked out a book from the university library in late 1999 and it was due 
back sometime in early 2000. If the library's computer system suffered from the 
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1 #include <stdio.h> 

3 int main() 
4 { 
5 int year; 

7 printf("Input a year (i. .e., 1996): "); 
8 
Q 

scanf("%d", &year); 
j 10 if (year % 4 == 0) 

11 printf("This year is a leap year"\n) 
12 else 
13 printf("This year is not a leap year 
14 } 
Figure 15.4 This program to determine leap years has an algorithmic bug 

Y2K bug, you would have gotten an overdue notice in the mail with some hefty 
fines listed on it. As a consequence, a lot of money and effort were devoted to 
tracking down Y2K-related bugs before January 1, 2000 rolled around. 

15.3 Testing 
There is an adage among seasoned programmers that any line of code that is 
untested is probably buggy. Good testing techniques are crucial to writing good 
software. What is testing? With testing, we basically put the software through 
trials where input patterns are applied (in order to mimic what the software might 
see during real operation) and the output of the program is checked for correctness. 
Real-world software might undergo millions of trials before it is released. 

In an ideal world, we could test a program by examining its operation under 
every possible input condition. But for a program that is anything more than trivial, 
testing for every input combination is impossible. For example, if we wanted to 
test a program that finds prime numbers between integers A and B, where A and 
B are 32-bit input values, there are (232)2 possible input combinations. Even if 
we could run 1 million trials in 1 second, it would still take half a million years 
to completely test the program. Clearly, testing each input combination is not an 
option. So which input combinations do we test with? We could randomly pick 
inputs in hopes that some of those random patterns will expose the program's bugs. 
Software engineers typically rely on more systematic ways of testing their code. In 
particular, black-box testing is used to check if a program meets its specifications, 
and white-box testing targets various facets of the program's implementation in 
order to provide some assurance that every line of code is tested. 

15.3.1 Black-Box Testing 
With black-box testing, we examine if the program meets its input and output 
specifications, disregarding the internals of the program. That is, with black-box 
testing, we are concerned with what the program does and not how it does it. For 
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example, a black-box test of the program A U S u m in Figure 15.3 might involve 
running the program, typing an input number, and comparing the resulting output 
to what you calculated by hand. If the two do not match, then either the program 
contains a bug or your arithmetic skills are shoddy. We might continue attempting 
trials until we are reasonably confident that the program is functional. 

For testing larger programs, the testing process is automated in order to run 
more tests per unit time. That is, we construct another program to automatically 
run the original program, provide some random inputs, check that the output 
meets specifications, and repeat. With such a process, we can clearly run many 
more trials than we could if a person performed each trial. 

In order to automate the black-box process, however, we need a way to 
automatically test whether the program's output was correct or incorrect. Here, 
we might need to construct a checker program that is different than the original 
program but performs a similar computation. If the original and checker programs 
had the same bug, it would go undetected by the black-box testing process. For this 
reason, black-box testers who write checker programs are often not permitted to 
see the code within the black box they are testing so that we get a truly independent 
version of the checker. 

15.3.2 White-Box Testing 
For larger software systems, black-box testing is not enough. With black-box 
testing, it is not possible to know which lines of code have been tested and 
which have not, and therefore, according to the adage stated previously, all are 
presumed to be buggy. Black-box testing is sometimes difficult when the input 
or output specification of a program is not concrete. For example, black-box 
testing of an audio player (such as an MP3 player) might be difficult because of 
the inexact nature of the output. Also, black-box testing can only start once the 
software is complete—the software must compile and must meet some part of 
the specification in order to be tested. 

Software engineers supplement black-box testing with white-box tests. 
White-box tests isolate various internal components of the software, and test 
whether the components conform to their intended design. For example, testing 
to see that each function performs correctly according to the design is a white-box 
test. How we divide a program into functions is part of its implementation and 
not its specification. We can apply the same type of testing to loops and other 
constructs within a function. 

How might a white-box test be constructed? For many tests, we might need to 
modify the code itself. For example, in order to see whether a function is working 
correctly, we might add extra code to call the function a few extra times with 
different inputs and check the outputs. We might add extra printf statements to 
the code with which we can observe values of internal variables to see if things 
are working as expected. Once the code is complete and ready for release, these 
printf statements can be removed. 

A common white-box testing technique is the use of error-detecting code 
strategically placed within a program. This code might check for conditions that 
indicate that the program is not working correctly. When an incorrect situation is 



414 chapter 15 Testing and Debugging 

detected, the code prints out a warning message, displays some relevant informa-
tion about the situation, or causes the program to prematurely terminate. Since 
this error-detecting code asserts that certain conditions hold during program 
execution, we generally call these checks assertions. 

For example, assertions can be used to check whether a function returns a 
value within an expected range. If the return value is out of this range, an error 
message is displayed. In the following example, we are checking whether the 
calculation performed by the function incomeTax is within reasonable bounds. 
As you can deduce from this code fragment, this function calculates the income 
tax based on a particular income provided as a parameter to it. We do not pay 
more tax than we collect in income (fortunately!), and we never pay a negative 
tax. Here if the calculation within incomeTax is incorrect, a warning message 
will be displayed by the assertion code. 

tax = IncomeTax(income); 

if (tax < 0 || tax > income) 
printf ("Error in function IncomeTax! \n11) ; 

A thorough testing methodology requires the use of both black-box and white-
box tests. It is important to realize that white-box tests alone do not cover the 
complete functionality of the software—even if all white-box tests pass, there 
might be a portion of the specification that is missing. Similarly, black-box tests 
alone do not guarantee that every line of code is tested. 

15.4 Debugging 
Once a bug is found, we start the process of repairing it, which can often be more 
tricky than finding it. Debugging an error requires full use of our reasoning skills: 
We observe a symptom of the error, such as bad output, and we might even have 
some other information, such as the place in the code where the error occurred, 
and from this limited information, we will need to use deduction to isolate the 
source of the error. The key to effective debugging is being able to quickly gather 
relevant information that will lead to identifying the bug, similar to the way a 
detective might gather evidence at a crime scene or the way a physician might 
perform a series of tests in order to diagnose a sick patient's illness. 

There are a number of ways you can gather more information in order to 
diagnose a bug, ranging from ad hoc techniques that are quick and dirty to more 
systematic techniques that involve the use of software debugging tools. 

15.4.1 Ad Hoc Techniques 
The simplest thing to do once you realize that there is a problem with your program 
is to visually inspect the source code. Sometimes the nature of the failure tips you 
off to the region of the code where the bug is likely to exist. This technique is fine 
if the region of source code is small and you are very familiar with the code. 
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Another simple technique is to insert statements within the code to print out 
information during execution. You might print out, using printf statements, the 
values of important variables that you think will be useful in finding the bug. You 
can also add printf statements at various points within your code to see if the 
control flow of the program is working correctly. For example, if you wanted to 
quickly determine if a counter-controlled loop is iterating for the correct number 
of iterations, you could place a print f statement within the loop body. For simple 
programs, such ad hoc techniques are easy and reasonable to use. Large programs 
with intricate bugs require the use of more heavy-duty techniques. 

15.4.2 Source-Level Debuggers 
Often ad hoc techniques cannot provide enough information to uncover the source 
of a bug. In these cases, programmers often turn to a source-level debugger to 
isolate a bug. A source-level debugger is a tool that allows a program to be 
executed in a controlled environment, where all aspects of the execution of the 
program can be controlled and examined by the programmer. For example, a 
debugger can allow us to execute the program one statement at a time and examine 
the values of variables (and memory locations and registers, if we so choose) 
along the way. Source-level debuggers are similar to the LC-3 debugger that we 
described in Chapter 6, except that a source-level debugger operates in relation 
to high-level source code rather than LC-3 machine instructions. 

For a source-level debugger to be used on a program, the program must 
be compiled such that the compiler augments the executable image with enough 
additional information for the debugger to function properly. Among other things, 
the debugger will need information from the compilation process in order to map 
every machine language instruction to its corresponding statement in the high-
level source program. The debugger also needs information about variable names 
and their locations in memory (i.e., the symbol table). This is required so that a 
programmer can examine the value of any variable within the program using its 
name in the source code. 

There are many source-level debuggers available, each of which has its 
own user interface. Different debuggers are available for UNIX and Windows, 
each with its own flavor of operation. For example, gdb is a free source-level 
debugger available on most UNIX-based platforms. All debuggers support a core 
set of necessary operations required to probe a program's execution, many of 
which are similar to the debugging features of the LC-3 debugger. So rather than 
describe the user interface for any one particular debugger, in this section we will 
describe the core set of operations that are universal to any debugger. 

The core debugger commands fall into two categories: those that let you 
control the execution of the program and those that let you examine the value of 
variables and memory, etc. during the execution. 

Breakpoints 

Breakpoints allow us to specify points during the execution of a program when 
the program should be temporarily stopped so that we can examine or modify the 
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state of the program. This is useful because it helps us examine the program's 
execution in the region of the code where the bug occurs. 

For example, we can add a breakpoint at a particular line in the source code 
or at a particular function. When execution reaches that line, program execution 
is frozen in time, and we can examine everything about that program at that 
particular instance. How a breakpoint is added is specific to the user interface 
of the debugger. Some allow breakpoints to be added by clicking on a line of 
code. Others require that the breakpoint be added by specifying the line number 
through a command prompt. 

Sometimes it is useful to stop at a line only if a certain condition is 
true. Such conditional breakpoints are useful for isolating specific situations in 
which we suspect buggy behavior. For example, if we suspect that the function 
Perf ormCalcuiation works incorrectly when its input parameter is 16, then we 
might want to add a breakpoint that stops execution only when x is equal to 16 
in the following code: 

for (x = 0; x < 100; x++) 
PerformCalcuiation(x); 

Alternatively, we can set a watchpoint to stop the program at any point where 
a particular condition is true. For example, we can use a watchpoint to stop 
execution whenever the variable Lastitem is equal to 4. This will cause the 
debugger to stop execution at any statement that causes Lastitem to equal 4. 
Unlike breakpoints, watchpoints are not associated with any single line of the 
code but apply to every line. 

Single-Stepping 
Once the debugger reaches a breakpoint (or watchpoint), it temporarily suspends 
program execution and awaits our next command. At this point we can examine 
program state, such as values of variables, or we can continue with execution. 

It is often useful to proceed from a breakpoint one statement at time—a 
process referred to as single-stepping. The LC-3 debugger has a command that 
executes a single LC-3 instruction and similarly a source-level debugger that 
allows execution to proceed one statement at a time. The single-step command 
executes the current source line and then suspends the program again. Most debug-
gers will also display the source code in a separate window so we can monitor 
where the program has currently been suspended. Single-stepping through a pro-
gram is very useful, particularly when executing the region of a program where 
the bug is suspected to exist. We can set a breakpoint near the suspected region 
and then check the values of variables as we single-step through the code. 

A common use of single-stepping is to verify that the control flow of the 
program does what we expect. We can single-step through a loop to verify that 
it performs the correct number of iterations or we can single-step through an 
if-else to verify that we have programmed the condition correctly. 

Variations of single-stepping exist that allow us to skip over functions, or to 
skip to the last iteration of a loop. These variations are useful for skipping over 
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code that we do not suspect to contain errors but are in the execution path between 
a breakpoint and the error itself. 

Displaying Values 

The art of debugging is about gathering the information required to logically 
deduce the source of the error. The debugger is the tool of choice for gathering 
information when debugging large programs. While execution is suspended at a 
breakpoint, we can gather information about the bug by examining the values of 
variables related to the suspected bug. Generally speaking, we can examine all 
execution states of the program at the breakpoint. We can examine the values of 
variables, memory, the stack, and even the registers. How this is done is debugger 
specific. Some debuggers allow you to use the mouse to point to a variable in the 
source code window, causing a pop-up window to display the variable's current 
value. Some debuggers require you to type in a command indicating the name of 
the variable you want to examine. 

We encourage you to familiarize yourself with a source-level debugger. At 
the end of this chapter, we provide several problems that you can use to gain some 
experience with this useful debugging tool. 

15.5 Programming for Correctness 
Knowing how to test and debug your code is a prerequisite for being a good pro-
grammer. Great programmers know how to avoid many error-causing situations 
in the first place. Poor programming practices cause bugs. Being aware of some 
defensive programming techniques can help reduce the amount of time required 
to get a piece of code up and running. The battle against bugs starts before any 
line of code is written. Here, we provide three general methods for catching errors 
even before they become errors. 

15.5.1 Nailing Down the Specification 
Many bugs arise from poor or incomplete program specifications. Specifications 
sometimes do not cover all possible operating scenarios, and thus they leave 
some conditions open for interpretation by the programmer. For example, recall 
the factorial example from Chapter 14: Figure 14.2 is a program that calculates the 
factorial of a number typed at the keyboard. You can imagine that the specification 
for the program might have been "Write a program to take an integer value from 
the keyboard and calculate its factorial." As such, the specification is incomplete. 
What if the user enters a negative number? Or zero? What if the user enters a 
number that is too large and results in an overflow? In these cases, the code as 
written will not perform correctly, and it is therefore buggy. To fix this, we need 
to modify the specification of the program to allow the program to indicate an 
error if the input is less than or equal to zero, or if the input is such that n! > 231, 
implying n must be less than or equal to 31. In the code that follows we have 
added an input range check to the Factorial function from Chapter 14. Now 
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the function prints a warning message and returns a - 1 if its input parameter is 
out of the correct operating range. 

1 int Factorial(int n) 
2 { 
3 int i; /* Iteration count */ 
4 int result = 1; /* Initialized result */ 
5 
6 /* Check for legal parameter values */ 
7 if (n < 1 || n > 31) { 
8 printf("Bad input. Input must be >= 1 and <= 31.\n"); 
9 return -1; 

10 } 
11 
12 for (i = 1; i <= n; i++) /* Calculates factorial */ 
13 result = result * i; 
14 
15 return result; /* Return to caller */ 
16 } 

15.5.2 Modular Design 
Functions are useful for extending the functionality of the programming language. 
With functions we can add new operations and constructs that are helpful for a 
particular programming task. In this manner, functions enable us to write programs 
in a modular fashion. 

Once a function is complete, we can test it independently in isolation (i.e., as 
a white-box test) and determine that it is working as we expect. Since a typical 
function performs a smaller task than the complete program, it is easier to test than 
the entire program. Once we have tested and debugged each function in isolation, 
we will have an easier chance getting the program to work when everything is 
integrated. 

This modular design concept of building a program out of simple, pretested, 
working components is a fundamental concept in systems design. In subsequent 
chapters we will introduce the concept of a library. A library is a collection of 
pretested components that all programmers can use in writing their code. Modern 
programming practices are heavily oriented around the use of libraries because 
of the benefits inherent to modular design. We design not only software, but 
circuits, hardware, and various other layers of the computing system using a 
similar modular design philosophy. 

15.5.3 Defensive Programming 
All seasoned programmers have techniques to prevent bugs from creeping into 
their code. They construct their code in a such a way that those errors that they 
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suspect might affect the program are eliminated by design. That is, they program 
defensively. We provide a short list of general defensive programming techniques 
that you should adopt to avoid problems with the programs you write. 

• Comment your code. Writing comments makes you think about the code 
you've written. Code documentation is not only a way to inform others about 
how your code works, but also is a process that makes you reflect on and 
reconsider your code. During this process you might discover that you forgot 
a special case or operating condition that will ultimately break your code. 

• Adopt a consistent coding style. For instance, aligning opening and closing 
braces will let you identify simple semantic errors associated with missing 
braces. Along these lines, also be consistent in variable naming. The name of 
a variable should convey some meaningful information about the value the 
variable contains. 

• Avoid assumptions. It is tempting to make simple, innocent assumptions when 
writing code, but these can ultimately lead to broken code. For example, in 
writing a function, we might assume that the input parameter will always be 
within a certain range. If this assumption is not grounded in the program's 
specification, then the possibility for an error has been introduced. Write code 
that is free of such assumptions—or at least use assertions and spot checks 
to indicate when the assumptions do not hold. 

• Avoid global variables. While some experienced programmers rely heavily 
on global variables, many software engineers advocate avoiding them when-
ever possible. Global variables can make some programming tasks easier. 
However, they often make code more difficult to understand, and extend, and 
when a bug is detected, harder to analyze. 

• Rely on the compiler. Most good compilers have an option to carefully check 
your program for suspicious code (for example, an uninitialized variable) or 
commonly misapplied code constructs (for example, using the assignment 
operator = instead of the equality operator ==). While these checks are not 
thorough, they do help identify some commonly made programming mis-
takes. If you are use the gcc compiler, use gcc - wal 1 to enable all warning 
messages from the compiler. 

The defensive techniques mentioned here are particular to the programming 
concepts we've already discussed. In subsequent chapters, after we introduce new 
programming concepts, we also discuss how to use defensive techniques when 
writing programs that use them. 

15.6 Summary 
In this chapter, we presented methodologies for finding and fixing bugs within 
your code. Modern systems are increasingly reliant on software, and modern 
software is often very complex. In order to prevent software bugs from often 
rendering our cell phones unusable or from occasionally causing airplanes to 
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crash, it is important that software tightly conform to its specifications. The key 
concepts that we covered in this chapter are: 

• Testing. Finding bugs in code is not easy, particularly when the program 
is large. Software engineers use systematic testing to find errors in software. 
Black-box testing is done to validate that the behavior of a program conforms to 
specification. White-box testing targets the structure of a program and provides 
some assurance that every line of code has undergone some level of testing. 

• Debugging. Debugging an error requires the ability to take the available 
information and deduce the source of the error. While ad hoc techniques can 
provide us with a little additional information about the bug, the source-level 
debugger is the software engineering tool of choice for most debugging tasks. 
Source-level debuggers allow a programmer to execute a program in a controlled 
environment and examine various values and states within the program during 
execution. 

• Programming for correctness. Experienced programmers try to avoid bugs 
even before the first line of code is written. Often, the specification of the program 
is the source of bugs, and nailing down loose ends will help eliminate bugs after 
the code has been written. Modular design involves writing a larger program out 
of simple pretested functions and helps reduce the difficulty in testing a large 
program. Following a defensive programming style helps reduce situations that 
lead to buggy code. 
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15.1 The following programs each have a single error that prevents them 
from operating as specified. With as few changes as possible, correct 
the programs. They all should output the sum of the integers from 
1 to 10, inclusive. 

a. # i n c l u d e < s t d i o . h > 
int m a i n ( ) 
{ 

int i = 1; 
int s u m = 0; 

w h i l e (i < 11) { 
sum = sum + i; 
+ + i ; 
p r i n t f (" %d\n!1 , sum) ; 

} 
} 

b. # i n c l u d e < s t d i o . h > 
int m a i n ( ) 
{ 

int i ; 
int sum = 0; 

for (i = 0; i >= 10; ++i) 
sum = sum + i; 

p r i n t f (" %d\n l f, sum) ; 
} 

C. # i n c l u d e < s t d i o . h > 
int m a i n ( ) 
{ 

int i = 0; 
int sum = 0; 

w h i l e (i <= 11) 
s u m = sum + i++; 

p r i n t f { " % d \ n " , sum); 
} 

d. # i n c l u d e < s t d i o . h > 
int m a i n ( ) 
{ 

int i = 0; 
int sum = 0; 

for (i = 0; i <= 10;) 
sum = sum + ++i; 

p r i n t f { " % d \ n " , sum); 
} 
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15.2 The following program fragments have syntax errors and therefore will 
not compile. Assume that all variables have been properly declared. Fix 
the errors so that the fragments will not cause compiler errors. 
a. i = 0; 

j = 0; 
w h i l e (i < 5) 
{ 

j = j + i; 
i = j >> l 

} 
b. if (cont == 0) 

a = 2; 
b = 3; 

e l s e 
a = - 2 ; 
b = -3; 

C. # d e f i n e L I M I T 5; 

if 1 (LIMIT) 
p r i n t f ( " T r u e " ) ; 

e l s e 
p r i n t f ( " F a l s e " ) ; 

15.3 The following C code was written to find the minimum of a set of 
positive integers that a user enters from the keyboard. The user signifies 
the end of the set by entering the value — 1. Once all the numbers have 
been entered and processed, the program outputs the minimum. 
However, the code contains an error. Identify and suggest ways to fix 
the error. Use a source-level debugger, if needed, to find it. 

# i n c l u d e < s t d i o , h > 
int m a i n ( ) 
{ 

int s m a l l e s t N u m b e r = 0; 
int n e x t I n p u t ; 

/* Get the first input n u m b e r */ 
s c a n f ( " % d " , & n e x t I n p u t ) ; 

/* K e e p r e a d i n g i n p u t s u n t i l u s e r e n t e r s -1 */ 
w h i l e (nextlnput I= -1) { 

if (nextlnput < s m a l l e s t N u m b e r ) 
s m a l l e s t N u m b e r = n e x t l n p u t ; 

s c a n f ( " % d " , & n e x t l n p u t ) ; 
} 
p r i n t f ( " T h e s m a l l e s t n u m b e r is %d\n", s m a l l e s t N u m b e r ) 
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The following program reads in a line of characters from the keyboard 
and echoes only the alphabetic, numeric, and space characters. For 
example, if the input were "Let's m e e t at 6: oopm.", the output 
should be: "Lets m e e t at 6 0 0pm". The program does not work as 
specified. Fix it. 

# i n c l u d e < s t d i o . h > 
int m a i n ( ) 
{ 

c h a r e c h o = '0'; 

w h i l e (echo != '\n') { 
scanf £"%c H, &echo) ; 
if ((echo > 'a' || e c h o < 'z' ) & & 

(echo > 'A' || e c h o < 'Z')) 
p r i n t f ( " % c", e c h o ) ; 

} 
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15.5 Use a source-level debugger to monitor the execution of the following 
code: 

# i n c l u d e < s t d i o . h > 

int I s D i v i s i b l e B y ( i n t d i v i d e n d , int d i v i s o r ) ; 

int m a i n ( ) 
{ 

int i; /* I t e r a t i o n v a r i a b l e */ 
int j; /* I t e r a t i o n v a r i a b l e */ 
int f; /* T h e n u m b e r of f a c t o r s of a n u m b e r */ 

for (i = 2; i < 1000; i++) { 

f = 0; 
for (j = 2; j < i; j++) { 

if (IsDivisibleBy(i, j)) 
f + + ; 

} 
p r i n t f ( " T h e n u m b e r %d h a s %d f a c t o r s \ n " , i, f ) ; 

int I s D i v i s i b l e B y ( i n t d i v i d e n d , int d i v i s o r ) 

{ 
if (dividend % d i v i s o r == 0) 

r e t u r n 1; 
e l s e 

r e t u r n 0; 
} 

a. Set a breakpoint at the beginning of function I s D i v i s i b l e B y and 
examine the parameter values for the first 10 calls. What are they? 

b. What is the value of f after the inner for loop ends and the value of 
i equals 660? 

c. Can this program be written more efficiently? Hint: Monitor the 
value of the arguments when the return value of I s D i v i s i b l e B y 
is 1. 
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15.6 Using a source-level debugger, determine for what values of parameters 
the function M y s t e r y returns a zero. 

# i n c l u d e < s t d i o . h > 

int M y s t e r y ( i n t a, int b, int c); 

int m a i n ( ) 

425 

int i ; 
int j ; 
int k ; 
int sum 0 ; 

/* I t e r a t i o n v a r i a b l e 
/* I t e r a t i o n v a r i a b l e 
/* I t e r a t i o n v a r i a b l e 
/* r u n n i n g sum of M y s t e r y 

* / 

* / 

* / 

* / 

for (i - 100; i > 0; i--) { 
for (j = 1; j < i; -J++) { 

for (k = j; k < 100; k++) 
sum = sum + M y s t e r y ( i , j, k); 

int M y s t e r y ( i n t a, int b, int c) 
{ 

int out; 

out = 3 * a * a + 7*a - 5 * b * b + 4 * b + 5*c ; 

r e t u r n o u t ; 

} 
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15.7 The following program manages flight reservations for a small airline 
that has only one plane that has SEATS number of seats for passengers. 
This program processes ticket requests from the airline's website. The 
command R requests a reservation. If there is a seat available, the 
reservation is approved. If there are no seats, the reservation is denied. 
Subsequently, a passenger with a reservation can purchase a ticket using 
the P command. This means that for every P command, there must be a 
preceding R command; however, not every R will materialize into a 
purchased ticket. The program ends when the X command is entered. 
Following is the program, but it contains serious design errors. Identify 
the errors. Propose and implement a correct solution. 
# i n c l u d e < s t d i o . h > 

# d e f i n e S E A T S 10 

int m a i n ( ) 
{ 

int s e a t s A v a i l a b l e = S E A T S ; 
c h a r r e q u e s t = '0'; 

w h i l e (request != 'X') { 
s c a n f ( " % c " , ^ r e q u e s t ) ; 

if (request == "R') { 
if (seatsAvailable) 

p r i n t f ( " R e s e r v a t i o n A p p r o v e d !\n") ; 
e l s e 

p r i n t f ( " S o r r y , flight f u l l y b o o k e d . \ n " ) ; 
} 
if (request == 'P') { 

s e a t s A v a i l a b l e - - ; 
p r i n t f ( " T i c k e t p u r c h a s e d ! \ n " ) ; 

} 
} 
p r i n t f ( " D o n e ! %d s e a t s not sold\n", s e a t s A v a i l a b l e ) ; 
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P o i n t e r s and Rrroqs 

1G.1 Introduction 
In this chapter, we introduce (actually, reintroduce) two simple but powerful 
programming constructs: pointers and arrays. We used pointers and arrays when 
writing LC-3 assembly code. Now, we examine them in the context of C. 

A pointer is simply the address of a memory object, such as a variable. With 
y pointers, we can indirectly access these objects, which provides some very useful 

capabilities. For example, with pointers, we can create functions that modify the 
arguments passed by the caller. With pointers, we can create sophisticated data 
organizations that grow and shrink (like the run-time stack) during a program's 
execution. 

An array is a list of data arranged sequentially in memory. For example, in 
a few of the LC-3 examples from the first half of the book, we represented a file 
of characters as a sequence of characters arranged sequentially in memory. This 
sequential arrangement of characters is known as an array of characters. To access 
a particular item in an array, we need to specify which element we want. As we'll 
see, an expression like a [4 ] will access the fifth element in the array named a—it 
is the fifth element because we start numbering the array at element 0. Arrays 
are useful because they allow us to conveniently process groups of data such as 
vectors, matrices, lists, and character strings, which are naturally representative 
of certain objects in the real world. 
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16.2 Pointers 
We begin our discussion of pointers with a classic example of their utility. In the C 
program in Figure 16.1, the function S w a p is designed to switch the value of its two 
arguments. The function Swap is called from m a i n with the arguments valueA, 
which in this case equals 3, and vaiueB, which equals 4. Once S w a p returns 
control to main, we expect v a l u e A and v a i u e B to have their values swapped. 
However, compile and execute the code and you will notice that the arguments 
passed to S w a p remain the same. 

Let's examine the run-time stack during the execution of Swap to analyze 
why. Figure 16.2 shows the state of the run-time stack just prior to the completion 
of the function, just after the statement on line 25 has executed but before control 
returns to function main. Notice that the function Swap has modified the local 
copies of the parameters f irstval and s e c o n d v a l within its own activation 
record. When swap finishes and control returns to main, these modified values are 
lost when the activation record for Swap is popped off the stack. The values from 
main ' s perspective have not been swapped. We have a buggy program. 

In C, arguments are always passed from the caller function to the callee by 
value. C evaluates each argument that appears in a function call as an expression 
and pushes the value of the expression onto the run-time stack in order to pass 
them to the function being called. For S w a p to modify the arguments that the caller 

1 # i n c l u d e < s t d i o . h > 
2 
3 v o i d S w a p ( i n t f i r s t V a l , int s e c o n d V a l ) ; 
4 
5 int m a i n ( ) 
6 { 
7 int v a l u e A = 3; 
8 int v a i u e B = 4; 
9 

10 p r i n t f ( " B e f o r e S w a p "); 
11 p r i n t f ( " v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B ) ; 
12 
13 S w a p ( v a l u e A , v a i u e B ) ; 
14 
15 p r i n t f ( " A f t e r S w a p "); 
16 p r i n t f ( " v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B ) ; 
17 } 
18 
19 v o i d S w a p ( i n t f i r s t V a l , int s e c o n d V a l ) 
20 { 
21 int t e m p V a l ; /* H o l d s f i r s t V a l w h e n s w a p p i n g */ 
22 
23 t e m p V a l = f i r s t V a l ; 
24 f i r s t V a l = s e c o n d V a l ; 
2 5 s e c o n d V a l = t e m p V a l ; 
26 } 

Figure 16.1 The funct ion Swap attempts to swap the values of its two parameters 
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Figure 16 .2 A snapshot of the run-t ime stack when the funct ion Swap is about to return 
control to main 

passes to it, it must have access to the caller function's activation record—it must 
access the locations at which the arguments are stored in order to modify their 
values. The function Swap needs the addresses of valueA and valueB in main 
in order to change their values. As we shall see in the next few sections, pointers 
and their associated operators enable this to happen. 

16.2.1 Declaring Pointer Variables 
A pointer variable contains the address of a memory object, such as a variable. 
A pointer is said to point to the variable whose address it contains. Associated 
with a pointer variable is the type of object to which it points. So, for instance, an 
integer pointer variable points to an integer variable. To declare a pointer variable 
in C, we use the following syntax: 

i n t * p t r ; 

Here we have declared a variable named ptr that points to an integer. The 
asterisk (*) indicates that the identifier that follows is a pointer variable. C 
programmers will often say that ptr is of type int star. Similarly, we can declare 

c h a r * c p ; 
d o u b l e *dp; 

The variable cp points to a character and dp points to a double-precision float-
ing point number. Pointer variables are initialized in a manner similar to all 
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other variables. If a pointer variable is declared as a local variable, it will not 
be initialized automatically. 

The syntax of declaring a pointer variable using * may seem a bit odd at first, 
but once we have gone through the pointer operators, the rationale behind the 
syntax will be more clear. 

16.2.2 Pointer Operators 
C has two operators for pointer-related manipulations, the address operator & and 
the indirection operator *. 

The Address Operator & 

The address operator, whose symbol is an ampersand, generates the memory 
address of its operand, which must be a memory object such as a variable. In 
the following code sequence, the pointer variable ptr will point to the integer 
variable ob j ect. The expression on the right-hand side of the second assignment 
statement generates the memory address of ob j ect. 

int o b j e c t ; 
int *ptr; 

o b j e c t = 4; 
p t r = & o b j e c t ; 

Let's examine the LC-3 code for this sequence. Both declared variables are locals 
and are allocated on the stack. Recall that R5, the base pointer, points to the first 
declared local variable, or o b j e c t in this case. 

A N D RO, RO, #0 
A D D RO, RO, #4 
STR RO, R5, #0 

C l e a r RO 
RO = 4 
O b j e c t = 4; 

A D D RO, R5, #0 
STR RO, R5, # - 1 

G e n e r a t e m e m o r y a d d r e s s of o b j e c t 
Ptr = & o b j e c t ; 

Figure 16.3 shows the activation record of the function containing this code 
after the statement p t r = &obj ect ; has executed. In order to make things more 
concrete, each memory location is labeled with an address, which we've arbitrarily 
selected to be in the xEFFO range. The base pointer R5 currently points to xEFF2. 
Notice that o b j e c t contains the integer value 4 and p t r contains the memory 
address of object. 

The Indirection Operator * 

The second pointer operator is called the indirection, or dereference, operator, 
and its symbol is the asterisk, * (pronounced star in this context). This operator 
allows us to indirectly manipulate the value of a memory object. For example, the 
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ptr = &obj ect has executed 

expression *ptr refers to the value pointed to by the pointer variable ptr. Recall 
the previous example: *ptr refers to the value stored in variable object. Here, 
*ptr and o b j e c t can be used interchangeably. Adding to the previous C code 
example, 

int obj ect; 
int *ptr; 

obj ect = 4; 
p t r = & o b j e c t ; 
*ptr = *ptr + 1; 

Essentially, *ptr = *ptr + i; is another way of saying o b j e c t -
obj ect + l; . Just as with other types of variables we have seen, the *ptr means 
different things depending on which side of the assignment operator it appears 
on. On the right-hand side of the assignment operator, it refers to the value that 
appears at that location (in this case the value 4). On the left-hand side, it specifies 
the location that gets modified (in this case, the address of obj ect). Let's examine 
the LC-3 code for the last statement in the preceding code. 

LDR RO, R5, #-1 
LDR RL, RO, #0 
ADD RL, RL, #1 
STR RL, RO, #0 

RO c o n t a i n s the v a l u e of p t r 
Rl <- *ptr 
*ptr + 1 
*ptr = *ptr + 1; 

Notice that this code is different from what would get generated if the 
final C statement had been o b j e c t = o b j e c t + i ;. With the pointer deref-
erence, the compiler generates two LDR instructions for the indirection operator 
on the right-hand side, one to load the memory address contained in ptr and 
another to get the value stored at that address. With the dereference on the left-
hand side, the compiler generates a STR RI, RO, #O. Had the statement been 
o b j e c t = *ptr + i ; , the compiler would have generated STR RI, RS, #O. 
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16.2.3 Passing a Reference Using Pointers 
Using the address and indirection operator, we can repair the Swap function from 
Figure 16.1 that did not quite accomplish the swap of its two input parameters. 
Figure 16.4 lists the same program with a revised version of Swap called NewSwap. 

The first modification we've made is that the parameters of N e w S w a p are no 
longer integers but are now pointers to integers (int *). These two parameters 
are the memory addresses of the two variables that are to be swapped. Within the 
function body of NewSwap, we use the indirection operator * to obtain the values 
that these pointers point to. 

Now when we call N e w S w a p from main, we need to supply the memory 
addresses for the two variables we want swapped, rather than the values of the 
variables as we did in the previous version of the code. For this, the & operator 
does the trick. Figure 16.5 shows the run-time stack when various statements of 
the function N e w S w a p are executed. The three subfigures (A-C) correspond to the 
run-time stack after lines 23, 24, and 25 execute. 

By design, C passes information from the caller function to the callee by 
value: that is, each argument expression in the call statement is evaluated, and 
the resulting value is passed to the callee via the run-time stack. However, in 
N e w S w a p we created a call by reference for the two arguments by using the address 

1 # i n c l u d e < s t d i o . h > 
2 
3 v o i d N e w S w a p { i n t * f i r s t V a l , int * s e c o n d V a l ) ; 
4 
5 int m a i n { ) 
6 { 
7 int v a l u e A = 3; 
8 int v a i u e B = 4; 
9 

10 p r i n t f ( " B e f o r e S w a p "); 
11 p r i n t f ( " v a l u e A = %d and v a i u e B = %d\n", v a l u e A , v a i u e B ) ; 
12 
13 N e w S w a p (&valueA, & v a l u e B ) ; 
14 
15 p r i n t f ( " A f t e r S w a p "); 
16 p r i n t f ( " v a l u e A = %d a n d v a i u e B = %d\n", v a l u e A , v a i u e B ) ; 
17 } 
18 
19 v o i d N e w S w a p { i n t * f i r s t V a l , int * s e c o n d V a l ) 
20 { 
21 int t e m p V a l ; /* H o l d s f i r s t V a l w h e n s w a p p i n g */ 
2 2 
23 t e m p V a l = * f i r s t V a l ; 
24 * f i r s t V a l = * s e c o n d V a l ; 
25 * s e c o n d V a l = t e m p V a l ; 
26 } 

Figure 16.4 The funct ion NewSwap swaps the values of its two parameters 
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operator &. When an argument is passed as a reference, its address is passed 
to the callee function—for this to be valid, the argument must be a variable or 
other memory object (i.e., it must have an address). The callee function then 
can use the indirection operator * to access (and modify) the original value of 
the object. 

16.2.4 Null Pointers 
Sometimes it is convenient for us to say that a pointer points to nothing. Why 
such a concept is useful will be eminently clear to you when we discuss dynamic 
data structures such as linked lists in Chapter 19. For now, let us say that a pointer 
that points to nothing is a null pointer. In C, we make this designation with the 
following assignment: 

int *ptr; 

p t r = N U L L ; 

Here, we are assigning the value of NULL to the pointer variable ptr. In C, NULL 
is a specially defined preprocessor macro that contains a value that no pointer 
should ever hold unless it is null. For example, NULL might equal 0 on a particular 
system because no valid memory object can exist at location 0. 
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16.2.5 Demystifying the Syntax 
It is now time to revisit some notation that we introduced in Chapter 11. Now that 
we know how to pass a reference, let's reexamine the I/O library function scanf: 

s c a n f ( " % d " , & i n p u t ) ; 

Since function scanf needs to update the variable input with the decimal value 
read from the keyboard, s c a n f needs the address of input and not its value. 
Thus, the address operator & is required. If we omit the address operator, the 
program terminates with an error. Can you come up with a plausible reason why 
this happens? Why is it not possible for scanf to work correctly without the use 
of a reference? 

Before we complete our introduction to pointers, let's attempt to make 
sense of the pointer declaration syntax. To declare a pointer variable, we use 
a declaration of the following form: 

type *ptr; 

where t y p e can be any of the predefined (or programmer-defined) types such 
as int, char, double, and so forth. The name p t r is simply any legal variable 
identifier. With this declaration, we are declaring a variable that, when the * 
(dereference) operator is applied to it, generates a variable of type type. That is, 
*ptr is of type type. 

We can also declare functions to return a pointer type (why we would want 
to do so will be more apparent in later chapters). For example, we can declare a 
function using a declaration of the form int * M a x S w a p (). 

As with all other operators, the address and indirection operator are evalu-
ated according to the C precedence and associativity rules. The precedence and 
associativity of these and all other operators is listed in Table 12.5. Notice that 
both of the pointer operators have very high precedence. 

16.2.6 An Example Problem Involving Pointers 
Let's examine an example problem involving pointers. Say we want to develop 
a program that calculates the quotient and remainder given an integer dividend 
and integer divisor. That is, the program will calculate dividend / divisor and 
dividend % divisor where both values are integers. The structure of this program 
is very simple and requires only sequential constructs—that is, iteration is not 
required. The twist, however, is that we want the calculation of quotient and 
remainder to be performed by a single C function. 

We can easily construct a function to generate a single output value (say, 
quotient) that we can pass back to the caller using the return value mechanism. A 
function that calculates only the quotient, for example, could consist of the single 
statement r e t u r n d i v i d e n d / d i v i s o r ; . To provide the caller with multiple 
values, however, we will make use of the call by reference mechanism using 
pointer variables. 

The code in Figure 16.6 contains a function that does just so. The function 
i n t D i v i d e takes four parameters, two of which are integers and two of which 
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1 # i n c l u d e < s t d i o . h > 
2 
3 int I n t D i v i d e { i n t x, int y, int *quoPtr, int * r e m P t r ) ; 
4 
5 int m a i n ( ) 
6 { 
1 int d i v i d e n d ; / * T h e n u m b e r to b e d i v i d e d * / 
8 int d i v i s o r ; / * T h e n u m b e r to d i v i d e b y * / 
9 int q u o t i e n t ; / * I n t e g e r r e s u l t of d i v i s i o n * / 

10 int r e m a i n d e r ; / * I n t e g e r r e m a i n d e r of d i v i s i o n * / 
11 int e r r o r ; / * D i d s o m e t h i n g g o w r o n g ? * / 
12 
13 p r i n t f ( " I n p u t d i v i d e n d : "); 
14 s c a n f ( " % d " , ^ d i v i d e n d ) ; 
15 p r i n t f ( " I n p u t d i v i s o r : "); 
16 s c a n f ( " % d " , ^ d i v i s o r ) ; 
17 
18 e r r o r = I n t D i v i d e ( d i v i d e n d , d i v i s o r , & q u o t i e n t , ^ r e m a i n d e r ) ; 
19 
20 if (lerror) /* !error i n d i c a t e s n o e r r o r */ 
21 p r i n t f ( " A n s w e r : %d r e m a i n d e r %d\n", q u o t i e n t , r e m a i n d e r ) ; 
22 e l s e 
23 p r i n t f ( " I n t D i v i d e f a i l e d . \ n " ) ; 
24 } 
25 
26 int I n t D i v i d e ( i n t x, int y, int * q u o P t r , int *remPtr) 
27 { 
28 if (y != 0) { 
29 * q u o P t r = x / y; /* M o d i f y * q u o P t r */ 
30 * r e m P t r = x % y? /* M o d i f y * r e m P t r */ 
31 r e t u r n 0; 
32 } 
33 e l s e 
34 r e t u r n -1; 
35 } 

Figure 16.6 The funct ion IntDivide calculates the integer port ion and remainder of an 
integer divide; it returns a —1 if the divisor is 0 

are pointers to integers. The function divides the first parameter x by the second 
parameter y. The integer portion of the result is assigned to the memory loca-
tion pointed to by quoPtr, and the integer remainder is assigned to the memory 
location pointed to by remPtr. 

Notice that the function IntDivide also returns a value to indicate its status: 
It returns a —1 if the d i v i s o r is zero, indicating to the caller that an error has 
occurred. It returns a zero otherwise, indicating to the caller that the computation 
proceeded without a hitch. The function main, upon return, checks the return 
value to determine if the values in quotient and remainder are correct. Using the 
return value to signal a problem during a function call between caller and callee 
is an excellent defensive programming practice for conveying error conditions 
across a call. 
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16.3 Arrays 
Consider a program that keeps track of the final exam scores for each of the 50 
students in a computer engineering course. The most convenient way to store 
this data would be to declare a single object, say examScore, in which we can 
store 50 different integer values. We can access a particular exam score within 
this object using an index that is an offset from the beginning of the object. For 
example, e x a m S c o r e [32] provides the exam score for the 33rd student (the very 
first student's score Stored in e x a m S c o r e [0]). The object e x a m S c o r e in this 
example is an array of integers. An array is a collection of similar data items that 
are stored sequentially in memory. Specifically, all the elements in the array are 
of the same type (e.g., int, char, etc.). 

Arrays are most useful when the data upon which the program operates is 
naturally expressed as a contiguous sequence of values. Because a lot of real-
world data falls into this category (such as exam scores for students in a course), 
arrays are incredibly useful data structures. For instance, if we wanted to write a 
program to take a sequence of 100 numbers entered from the keyboard and sort 
them into ascending order, then an array would be the natural choice for storing 
these numbers in memory. The program would be almost impossible to write 
using the simple variables we have been using thus far. 

16.3.1 Declaring and Using Arrays 
First, let's examine how to declare an array in a C program. Like all other variables, 
arrays must have a type associated with them. The type indicates the properties 
of the values stored in the array. Following is a declaration for an array of 10 
integers: 
int g r i d [ 1 0 ] ; 

The keyword int indicates that we are declaring something of type integer. The 
name of the array is grid. The brackets indicate we are declaring an array and the 
10 indicates that the array is to contain 10 integers, all of which will be sequentially 
located in memory. Figure 16.7 shows a pictorial representation of how g r i d is 
allocated. The first element, g r i d [0], is allocated in the lowest memory address 
and the last element, g r i d [9], in the highest address. If the array g r i d were a 
local variable, then its memory space would be allocated on the run-time stack. 

Let's examine how to access different values in this array. Notice in 
Figure 16.7 that the array's first element is actually numbered 0, which means the 
last element is numbered 9. To access a particular element, we provide an index 
within brackets. For example, 
g r i d [6] = grid[3] + 1; 

The statement reads the value stored in the fourth (remember, we start num-
bering with 0) element of grid, adds 1 to it, and stores the result into the seventh 
element of grid. Let's look at the LC-3 code for this example. Let's say that g r i d 
is the only local variable allocated on the run-time stack. This means that the base 
pointer R5 will point to g r i d [9]. 
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A D D RO, R5, # - 9 
L D R Rl, RO, #3 
A D D Rl, Rl, #1 
STR Rl, RO, #6 

Put t h e b a s e a d d r e s s of g r i d i n t o RO 
R l <-- g r i d [ 3 ] 
Rl <-- grid[3] + 1 
g r i d [6] = g r i d [ 3 ] + 1; 

Notice that the first instruction calculates the base address of the array, which 
is the address of g r i d [o], and puts it into RO. The base address of an array in 
general is the address of the first element of the array. We can access any element 
in the array by adding the index of the desired element to the base address. 

The power of arrays comes from the fact that an array's index can be any 
legal C expression of integer type. The following example demonstrates: 

g r i d [ x + l ] = g r i d [ x ] + 2; 

Let's look at the LC-3 code for this statement. Assume x is another local 
variable allocated on the run-time stack directly on top of the array g r id . 

L D R RO, R5 , # - 1 0 L o a d t h e v a l u e of x 
A D D Rl, R5, # - 9 Put t h e b a s e a d d r e s s of g r i d i n t o Rl 
A D D Rl, RO , R l C a l c u l a t e a d d r e s s of g r i d [ x ] 
LDR R2 , Rl, #0 R2 <-- g r i d [ x ] 
A D D R2 , R2 , #2 R2 <-- g r i d [ x ] + 2 

L D R RO, R5, # - 1 0 L o a d t h e v a l u e of x 
A D D RO, RO, #1 R 0 <-- x + 1 
A D D Rl, R5 , Put the b a s e a d d r e s s of g r i d i n t o Rl 
A D D Rl, RO, Rl C a l c u l a t e a d d r e s s of g r i d [ x + 1 ] 
STR R2 , Rl, #0 g r i d [ x + l ] = g r i d [ x ] +• 2; 
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16.3.2 Examples Using Arrays 
We start off with a simple C program that adds two arrays together by adding the 
corresponding elements from each array to form the sum. Each array represents 
a list of exam scores for students in a course. Each array contains an element 
for each student's score. To generate the cumulative points for each student, we 
effectively want to perform T o t a l [i] = E x a m i [i] + E x a m 2 [i]. Figure 16.8 
contains the C code to read in two 10-element integer arrays, add them together 
into another 10-element array, and print out the sum. 

A style note: Notice the use of the preprocessor macro NUM STUDENTS to 
represent a constant value of the size of the input set. This is a common use for 
preprocessor macros, which are usually found at the beginning of the source file 
(or within C header files). Now, if we want to increase the size of the array, for 
example if the student enrollment changes, we simply change the definition of 

1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e N U M _ S T U D E N T S 10 
3 
4 int m a i n ( ) 
5 { 
6 int i; 
7 int E x a m l [ N U M _ S T U D E N T S ] ; 
8 int E x a m 2 [ N U M _ S T U D E N T S ] ; 
9 int T o t a l [ N U M _ S T U D E N T S ] ; 

10 
11 /* Input E x a m 1 s c o r e s */ 
12 for (i = 0; i < N U M _ S T U D E N T S ; i++) { 
13 p r i n t f ( " I n p u t E x a m 1 score for s t u d e n t %d : ", i); 
14 s c a n f ( " % d " , & E x a m l [ i ] ) ; 
1 5 } 
16 p r i n t f { " \ n M ) ; 
17 
18 /* Input E x a m 2 s c o r e s */ 
19 for (i = 0; i < N U M _ S T U D E N T S ; i++) { 
20 p r i n t f ( " I n p u t E x a m 2 score for s t u d e n t %d : i); 
21 s c a n f ( " % d " , & E x a m 2 [ i ] ) ; 
2 2 } 
23 p r i n t f ( u \ n M ) ; 
24 
25 /* C a l c u l a t e T o t a l P o i n t s */ 
2 6 for (i = 0; i < N U M _ S T U D E N T S ; i++) { 
27 T o t a l [ i ] = E x a m l [ i ] + E x a m 2 [ i ] ; 
2 8 } 
29 
30 /* O u t p u t t h e T o t a l P o i n t s */ 
31 for (i = 0; i < N U M _ S T U D E N T S ; i++) { 
32 p r i n t f ( " T o t a l for S t u d e n t %d = %d\n", i. T o t a l [ i ] ) ; 
33 } 
34 } 

Figure 1 6 . 8 A C program that calculates the sum of two 10-element arrays 
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the macro (one change) and recompile the program. If we did not use the macro, 
changing the array size would require changes to the code in multiple places. 
The changes could be potentially difficult to track down, and forgetting to do one 
would likely result in a program that did not work correctly. Using preprocessor 
macros for the size of an array is good programming practice. 

Now onto a slightly more complex example involving arrays. Figure 16.9 lists 
a C program that reads in a sequence of decimal numbers (in total MAX JNTUMS of 
them) from the keyboard and determines the number of times each input number 
is repeated within the sequence. The program then prints out each number, along 
with the number of times it repeats. 

In this program, we use two arrays, n u m b e r s and repeats. Both are declared 
to contain MAX_NUMS integer values. The array n u m b e r s stores the input sequence. 
The array r e p e a t s is calculated by the program to contain the number of times 
the corresponding element in n u m b e r s is repeated in the input sequence. For 
example, if n u m b e r s [3 ] equals 115, and there are a total of four 115s in the input 

1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e M A X _ N U M S 10 
3 
4 int m a i n ( ) 
5 { 
6 int index; /* L o o p i t e r a t i o n v a r i a b l e */ 
7 int r e p l n d e x ; /* L o o p v a r i a b l e for rep loop */ 
8 int n u m b e r s [ M A X _ N U M S ] ; /* O r i g i n a l input n u m b e r s */ 
9 int r e p e a t s [ M A X _ N U M S ] ; /* N u m b e r of r e p e a t s */ 

10 
11 /* G e t input */ 
12 p r i n t f ( " E n t e r %d n u m b e r s . \ n " , M A X _ N U M S ) ; 
13 for (index = 0; i n d e x < MAX__NUMS; index++) { 
14 p r i n t f ( " I n p u t n u m b e r %d : ", index); 
15 s c a n f ( " % d " , ^ n u m b e r s [ i n d e x ] ) ; 
16 } 
17 
18 /* S c a n t h r o u g h e n t i r e array, c o u n t i n g n u m b e r of */ 
19 /* r e p e a t s p e r e l e m e n t w i t h i n the o r i g i n a l a r r a y */ 
20 for (index = 0; i n d e x < M A X _ N U M S ; index++) { 
21 r e p e a t s [ i n d e x ] = 0; 
22 for (replndex = 0; r e p l n d e x < M A X I M U M S ; r e p l n d e x + + ) { 
23 if (numbers[replndex] == n u m b e r s [ i n d e x ] ) 
24 r e p e a t s [ i n d e x ] + + ; 
25 } 
26 } 
27 
28 /* Print the r e s u l t s */ 
29 for (index = 0; i n d e x < M A X _ N U M S ; index++) 
30 p r i n t f ( " O r i g i n a l n u m b e r %d. N u m b e r of r e p e a t s %d\n", 
31 n u m b e r s [ i n d e x ] , r e p e a t s [index]); 
32 } 

Figure 1 6 . 9 A C program that determines the number of repeated values in an array 



456 chapter 16 Pointers and Arrays 

sequence (i.e., there are four 115s in the array numbers), then r e p e a t s [3] will 
equal 4. 

This program consists of three outer loops, of which the middle loop is actu-
ally a nested loop (see Section 13.3.2) consisting of two loops. The first and last 
for loops are simple loops that get keyboard input and produce program output. 

The middle for loop contains the nested loop. This body of code deter-
mines how many copies of each element exist within the entire array. The 
outer loop iterates the variable i n d e x from 0 through MAX NUMS; we use 
index to scan through the array from the first element n u m b e r s [o] through 
the last element numbers[MAX_NUMS] . The inner loop also iterates from 0 
through MAX NUMS; we use this loop to scan through the array again, this 
time determining how many of the elements match the element selected by 
the outer loop (i.e., n u m b e r s [index]) . Each time a copy is detected (i.e., 
n u m b e r s [replndex] == n u m b e r s [index] ), the corresponding element in the 
r e p e a t s array is incremented (i.e., r e p e a t s [index] ++). 

16.3.3 Arrays as Parameters 
Passing arrays between functions is a useful thing because it allows us to create 
functions that operate on arrays. Say we want to create a set of functions that 
calculates the mean and median on an array of integers. We would need either 
(1) to pass the entire array of values from one function to another or (2) to pass a 
reference to the array. If the array contains a large number of elements, copying 
each element from one activation record onto another could be very costly in 
execution time. Fortunately, C naturally passes arrays by reference. Figure 16.10 
is a C program that contains a function A v e r a g e whose single parameter is an 
array of integers. 

When calling the function A v e r a g e from main, we pass to it the value asso-
ciated with the array identifier numbers. Notice that here we are not using the 
standard notation involving brackets [ ] that we normally use for arrays. In C, 
an array's name refers to the address of the base element of the array. The name 
n u m b e r s is equivalent to ^ n u m b e r s [0]. The type n u m b e r s is similar to int *. 
It is an address of memory location containing an integer. 

In using n u m b e r s as the argument to the function Average, we are causing the 
address of the array n u m b e r s to be pushed onto the stack and passed to the function 
Average. Within the function Average, the parameter i n p u t v a l u e s is assigned 
the address of the array. Within A v e r a g e we can access the elements of the original 
array using standard array notation. Figure 16.11 shows the run-time stack just 
prior to the execution of the r e t u r n from A v e r a g e (line 34 of the program). 

Notice how the input parameter i n p u t v a l u e s is specified in the declaration 
of the function Average. The brackets [ ] indicate to the compiler that the 
corresponding parameter will be the base address to an array of the specified 
type, in this case an array of integers. 

Since arrays are passed by reference in C, any modifications to the array values 
made by the called function will be visible to the caller once control returns to 
it. How would we go about passing only a single element of an array by value? 
How about by reference? 
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1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e M A X _ N U M S 10 
3 
4 int A v e r a g e ( i n t i n p u t _ v a l u e s []); 
5 
6 int m a i n O 
7 { 
8 int index; /* L o o p i t e r a t i o n v a r i a b l e */ 
9 int m e a n ; /* A v e r a g e of n u m b e r s */ 

10 int n u m b e r s [ M A X _ N U M S ] ; /* O r i g i n a l input n u m b e r s */ 
11 
12 
13 /* Get input */ 
14 p r i n t f ("Enter %d n u m b e r s . \n" , MAXJSTUMS) ; 
15 for (index = 0; index < M A X _ N U M S ; index++) { 
16 p r i n t f ( " I n p u t n u m b e r %d : ", index); 
17 s c a n f ( " % d " , ^ n u m b e r s [ i n d e x ] ) ; 
18 } 
19 
20 m e a n = A v e r a g e { n u m b e r s ) ; 
21 
22 p r i n t f ( " T h e a v e r a g e of t h e s e n u m b e r s is %d\n", m e a n ) ; 
23 } 
24 
2 5 int A v e r a g e ( i n t i n p u t V a l u e s [ ] ) 
26 { 
2 7 int index; 
2 8 int s u m = 0; 
29 
3 0 for (index = 0; i n d e x < M A X _ N U M S ; index++) { 
31 s u m = sum + i n p u t V a l u e s [ i n d e x ] ; 
32 } 
33 
34 r e t u r n (sum / M A X _ N U M S ) ; 
3 5 } 

Figure 16.10 An example of an array as a parameter to a funct ion 

16.3.4 Strings in C 
A very common use for arrays in C is for strings. Strings are sequences of charac-
ters that represent text. Strings are simply character arrays, with each subsequent 
element containing the next character of the string. For example, 

c h a r w o r d [ 1 0 ] ; 

declares an array that can store a string of up to 10 characters. Longer strings 
require a larger array. What if the string is shorter than 10 characters? In C and 
many other modern programming languages, the end of a string is denoted by the 
null character whose ASCII value is 0. It is a sentinel that identifies the end of 
the string. Such strings are also called null-terminated strings. ' \o ' is the special 
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Figure 16.11 The run-t ime stack prior to the execution of the return f rom Average 

sequence that corresponds to the null character. Continuing with our previous 
declaration, 

c h a r w o r d [ 1 0 ] ; 

' H ' ; 
' e ' ; 
' 1 ' ; 
' 1 ' ; 
' O' ; 
' \ 0 ' ; 

w o r d [ 0 ] = 
w o r d [ l ] = 
word [2] = 
word[3] = 
w o r d [ 4 ] = 
w o r d [5] = 

p r i n t f ( " % s " , w o r d ) ; 



16.3 Arrays 443 

Here, we are assigning each element of the array individually. The array 
will contain the string "Hello." Notice that the end-of-string character itself is a 
character that occupies an element of the array. Even though the array is declared 
for 10 elements, we must reserve one element for the null character, and therefore 
strings that are longer than nine characters cannot be stored in this array. 

Wehave also used a new p r i n t f format specification %sinthis example. This 
specification prints out a string of characters, starting with the character pointed 
to by the corresponding parameter and ending at the end-of-string character ' \of. 

ANSI C compilers also allow strings to be initialized within their declarations. 
For instance, the preceding example can be rewritten to the following. 

char w o r d [ 1 0 ] - "Hello"; 

p r i n t f ( " % s " f w o r d ) ; 

Make note of two things here: First, character strings are distinguished from single 
characters with double quotes, " M. Single quotes are used for single characters, 
such as ' A '. Second, notice that the compiler automatically adds the null character 
to the end of the string. 

Examples of Strings 
Figure 16.12 contains a program that performs a very simple and useful primitive 
operation on strings: it calculates the length of a string. Since the size of the array 
that contains the string does not indicate the actual length of the string (it does, 
however, tell us the maximum length of the string), we need to examine the string 
itself to calculate its length. 

The algorithm for determining string length is easy. Starting with the first 
element, we count the number of characters before we encounter the null character. 
The function st r i n g L e n g t h in the code in Figure 16.12 performs this calculation. 

Notice that we are using the format specification %s in the scanf statement. 
This specification causes s c a n f to read in a string of characters from the keyboard 
until the first white space character. In C, any space, tab, new line, carriage return, 
vertical tab, or form-feed character is considered white space. So if the user types 
(from The New Colossus, by Emma Lazarus) 

Not like the b r a z e n g i a n t of G r e e k fame, 
W i t h c o n q u e r i n g limbs a s t r i d e from land to land; 

only the word Not is stored in the array input. The remainder of the text line 
is reserved for subsequent scanf calls to read. So if we performed another 
scanf {»%s", input ) , the word like will be stored in the array input. Notice 
that the white space is automatically discarded by this %s specification. We exam-
ine this I/O behavior more closely in Chapter 18 when we take a deeper look into 
I/O in C. 

Notice that the maximum word size is 20 characters. What happens if the 
first word is longer? The scanf function has no information on the size of the 
array input and will keep storing characters to the array address it was provided 
until white space is encountered. So what then happens if the first word is longer 
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1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e M A X _ S T R I N G 2 0 
3 
4 int S t r i n g L e n g t h { c h a r s t r i n g [ ] ) ; 
5 
6 int m a i n ( ) 
7 { 
8 c h a r i n p u t [ M A X _ S T R I N G ] ; /* Input s t r i n g */ 
9 int l e n g t h = 0; 

10 
11 p r i n t f ( " I n p u t a w o r d {less t h a n 20 c h a r a c t e r s ) : "); 
12 s c a n f ( " % s " , i n p u t ) ; 
13 
14 l e n g t h = S t r i n g L e n g t h ( i n p u t ) ; 
15 p r i n t f ( " T h e w o r d c o n t a i n s %d c h a r a c t e r s \ n " , l e n g t h ) ; 
16 } 
17 
18 int S t r i n g L e n g t h ( c h a r s t r i n g [ ] ) 
19 { 
2 0 int i n d e x = 0; 
21 
22 w h i l e (string[index] != '\0') 
23 i n d e x = index + 1; 
24 
25 r e t u r n index; 
26 } 

Figure 1 6 . 1 2 A program that calculates the length of a str ing 

than 20 characters? Any local variables that are allocated after the array input in 
the function m a i n will be overwritten. Draw out the activation record before and 
after the call to scanf to see why. In the exercises at the end of this chapter, we 
provide a problem where you need to modify this program in order to catch the 
scenario where the user enters a word longer than what fits into the input array. 

Let's examine a slightly more complex example that uses the S t r i n g L e n g t h 
function from the previous code example. In this example, listed in Figure 16.13, 
we read an input string from the keyboard using scanf, then call a function to 
reverse the string. The reversed string is then displayed on the output device. 

The function R e v e r s e performs two tasks in order to reverse the string prop-
erly. First it determines the length of the string to reverse using the S t r i n g L e n g t h 
function from the previous code example. Then it performs the reversal by swap-
ping the first character with the last, the second character with the second to last, 
the third character with the third to last, and so on. 

To perform the swap, it uses a modified version of the N e w S w a p function from 
Figure 16.4. The reversal loop calls the function c h a r S w a p on pairs of characters 
within the string. First, C h a r S w a p is called on the first and last character, then on 
the second and second to last character, and so forth. 

The C standard library provides many prewritten functions for strings. For 
example, functions to copy strings, merge strings together, compare them, or 
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1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e M A X _ S T R I N G 20 
3 
4 int S t r i n g L e n g t h ( c h a r s t r i n g [ ] ) ; 
5 v o i d C h a r S w a p ( c h a r * f i r s t V a l , c h a r * s e c o n d V a l ) ; 
6 v o i d R e v e r s e ( c h a r s t r i n g [ ] ) ; 
7 
8 int m a i n ( ) 
9 { 

10 c h a r i n p u t [ M A X _ S T R I N G ] ; /* Input s t r i n g */ 
11 
12 p r i n t f ( " I n p u t a w o r d (less t h a n 20 c h a r a c t e r s ) : ") ; 
13 s c a n f ( " % s " , i n p u t ) ; 
14 
15 R e v e r s e ( i n p u t ) ; 
16 p r i n t f ( " T h e w o r d r e v e r s e d is %s.\n", input); 
17 } 
18 
19 int S t r i n g L e n g t h ( c h a r string[]) 
20 { 
21 int i n d e x = 0; 
22 
23 w h i l e (string[index] != '\0' ) 
24 i n d e x = i n d e x + 1; 
25 
26 r e t u r n index; 
27 } 
2 8 
29 v o i d C h a r S w a p ( c h a r * f i r s t V a l , c h a r * s e c o n d V a l ) 
30 { 
31 c h a r t e m p V a l ; /* T e m p o r a r y l o c a t i o n for s w a p p i n g */ 
32 
33 t e m p V a l = * f i r s t V a l ; 
34 * f i r s t V a l = * s e c o n d V a l ; 
35 * s e c o n d V a l = t e m p V a l ; 
36 } 
37 
38 v o i d R e v e r s e ( c h a r s t r i n g [ ] ) 
39 { 
4 0 int i n d e x ; 
41 int length; 
42 
43 l e n g t h = S t r i n g L e n g t h ( s t r i n g ) ; 
44 
45 for (index = 0; index < (length / 2); index++) 
46 C h a r S w a p ( & s t r i n g [ i n d e x ] , ^ s t r i n g [ l e n g t h - (index + 1)]); 
47 } 

Figure 1 6 . 1 3 A program that reverses a str ing 
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Between Pointers and Arrays 

cptr word &word [0] 
(cptr + n) word + n &word[n] 
*cptr •word word [0] 
* (cptr + n) *(word + n) word[n] 

calculate their length can be found in the C standard library, and the declara-
tions for these functions can be included via the < s t r i n g . h > header file. More 
information on some of these string functions can be found in Appendix D.9.2. 

16.3.5 The Relationship Between Arrays and Pointers in C 
You might have noticed that there is a similarity between an array's name and a 
pointer variable to an element of the same type as the array. For instance, 

c h a r w o r d [ 1 0 ] ; 
c h a r *cptr; 

c p t r = w o r d ; 

is a legal, and sometimes useful, sequence of code. Here, we have assigned the 
pointer variable cptr to point to the base address of the array word. Because 
they are both pointers to characters, c p t r and w o r d can be used interchangeably. 
For example, we can access the fourth character within the string either by using 
w o r d [3] o r * (cptr + 3). 

One difference between the two, though, is that c p t r is a variable and can be 
reassigned. The array identifier word, on the other hand, cannot be. For example, 
the following statement is illegal: w o r d = newArray. The identifier always points 
to a fixed spot in memory where the compiler has placed the array. Once it has 
been allocated, it cannot be moved. 

Table 16.1 shows the equivalence of several expressions involving pointer 
and array notation. Rows in the table are expressions with the same meaning. 

16.3.6 Problem Solving: Insertion Sort 
With this initial exposure to arrays under our belt, we can now attempt an inter-
esting and sizeable (and useful!) problem: we will write C code to sort an array 
of integers into ascending order. That is, the code arranges the array a [ ] such that 
a [0] < a [ l ] < a [ 2 ] .... 

To accomplish this, we will use an algorithm for sorting called Insertion Sort. 
Sorting is an important primitive operation, and people in computing have devoted 
considerable time to understanding, analyzing, and refining the sorting process. 
As a result, there are many algorithms for sorting, and you will gain exposure to 
some basic techniques in subsequent computing courses. We use insertion sort 
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here because it parallels how we might sort items in the real world. It is quite 
straightforward. 

Insertion sort is best described by an example. Say you want to sort your 
compact disc collection into alphabetical order by artist. If you were sorting your 
compact discs using insertion sort, you would split the CDs into two groups, the 
sorted group and the unsorted group. Initially, the sorted group would be empty 
as all your CDs would be yet unsorted. The sorting process proceeds by taking a 
CD from the unsorted group and inserting it into the proper position among the 
sorted CDs. For example, if the sorted group contained three CDs, one by John 
Coltrane, one by Charles Mingus, and one by Thelonious Monk, then inserting 
the Miles Davis CD would mean inserting it between the Coltrane CD and the 
Mingus CD. You keep doing this until all CDs in the unsorted group have been 
inserted into the sorted group. This is insertion sort. 

How would we go about applying this same technique to sort an array of 
integers? Applying systematic decomposition to the preceding algorithm, we see 
that the core of the program involves iterating through the elements of the array, 
inserting each element into the proper spot in a new array where all items are in 
ascending order. This process continues until all elements of the original array 
have been inserted into the new array. Once done, the new array will contain the 
same elements as the first array, except in sorted order. 

For this technique we basically need to represent two groups of items, the 
original unsorted elements and the sorted elements. And for this we could use 
two separate arrays. It turns out, however, that we can represent both groups of 
elements within the original array. Doing so results in code that requires less 
memory and is more compact, though slightly more complex upon first glance. 
The initial part of the array contains the sorted elements and the remainder of the 
array contains the unsorted elements. We pick the next unsorted item and insert 
it into the sorted part at the correct point. We keep doing this until we have gone 
through the entire array. 

The actual i n s e r t ionSort routine (shown in Figure 16.14) contains a nested 
loop. The outer loop scans through all the unsorted items (analogous to going 
through the unsorted CDs, one by one). The inner loop scans through the already 
sorted items, scanning for the place at which to insert the new item. Once we 
detect an already sorted element that is larger than the one we are inserting, we 
insert the new element between the larger and the one before it. 

Let's take a closer look by examining what happens during a pass of the 
insertion sort. Say we examine the insertion sort process (lines 33—43) when 
the variable unsor ted is equal to 4. The array l i s t contains the following 10 
elements: 

2 16 69 92 15 37 92 38 82 19 

During this pass, the code inserts list[4],orl5, into the already sorted portion 
of the array, elements list to] through list [3]. 

The inner loop iterates the variable so r t ed through the list of already sorted 
elements. It does this from the highest numbered element down to 0 (i.e., starting 
at 3 down to 0). Notice that the condition on the f o r loop terminates the loop 
once a list item less than the current item, 15, is found. 



448 chapter 16 Pointers and Arrays 

1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e MAXJSJUMS 10 
3 
4 v o i d I n s e r t i o n S o r t ( i n t list [] ) ; 
5 
6 int m a i n ( ) 
7 { 
8 int index; /* I t e r a t i o n v a r i a b l e */ 
9 int n u m b e r s [ M A X _ N U M S ] ; /* L i s t of n u m b e r s to b e s o r t e d */ 

10 
11 /* G e t input */ 
12 p r i n t f ( "Enter %d n u m b e r s . \n" , MAX__NUMS) ; 
13 for (index = 0; i n d e x < MAX_NUMS; index++) { 
14 p r i n t f ( " I n p u t n u m b e r %d : ", i n d e x ) ; 
15 s c a n f ( " % d " , ^ n u m b e r s [ i n d e x ] ) ; 
16 } 
17 
18 I n s e r t i o n S o r t ( n u m b e r s ) ; /* Call s o r t i n g r o u t i n e */ 
19 
20 /* Print s o r t e d list */ 
21 p r i n t f ( " \ n T h e input set, in a s c e n d i n g o r d e r : \ n " ) ; 
22 for (index = 0; i n d e x < M A X _ N U M S ; index++) 
23 p r i n t f ( " % d \ n " , n u m b e r s [ i n d e x ] ) ; 
24 } 
25 
26 v o i d I n s e r t i o n S o r t ( i n t list[]) 
27 { 
28 int u n s o r t e d ; /* I n d e x for u n s o r t e d list i t e m s */ 
29 int s o r t e d ; /* I n d e x for s o r t e d items */ 
3 0 int u n s o r t e d l t e m ; /* C u r r e n t i t e m t o b e s o r t e d */ 
31 
32 /* T h i s loop i t e r a t e s from 1 t h r u M A X _ N U M S */ 
33 for (unsorted = 1; u n s o r t e d < M A X _ N U M S ; u n s o r t e d + + ) { 
34 u n s o r t e d l t e m = l i s t [ u n s o r t e d ] ; 
35 
36 /* T h i s loop i t e r a t e s from u n s o r t e d t h r u 0, u n l e s s 
37 w e h i t a n e l e m e n t s m a l l e r t h a n c u r r e n t i t e m */ 
38 for (sorted = u n s o r t e d - 1; 
39 (sorted >= 0) & & {list[sorted] > u n s o r t e d l t e m ) ; 
40 sorted--) 
41 l i s t [ s o r t e d + 1] = l i s t [ s o r t e d ] ; 
42 
43 l i s t [ s o r t e d + 1] = u n s o r t e d l t e m ; /* Insert item */ 
44 } 
45 } 

Figure 1 6 . 1 4 Insertion sort program 
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In each iteration of this inner loop (lines 38^1), an element in the sorted 
part of the array is copied to the next position in the array. In the first iteration, 
list [3] is copied to list [4]. So after the first iteration of the inner loop, the 
array list contains 

2 16 69 92 92 37 92 38 82 19 

Notice that we have overwritten 15 (list [4]). This is OK because we have 
a copy of its value in the variable unsor tedi tem (from line 34). The second 
iteration performs the same operation on list [2]. After the second iteration, 
list contains 
2 16 69 69 92 37 92 38 82 19 
After the third iteration, list contains: 

2 16 16 69 92 37 92 38 82 19 

Now the f o r loop terminates because the evaluation condition is no longer 
true. More specifically, l i s t [sorted] > unsor tedi tem is not true. The cur-
rent sorted list item l i s t [ o ] , which is 2, is not larger than the current 
unsorted item unsortedi tem, which is 15. Now the inner loop terminates, 
and the statement fol lowing it, l i s t [ s o r t e d + l ] = u n s o r t e d i t e m ; exe-
cutes. Now l i s t contains, and the sorted part of the array contains, one more 
element. 

2 15 16 69 92 37 92 38 82 19 

This process continues until all items have been sorted, meaning the outer 
loop has iterated through all elements of the array list. 

16.3.7 Common Pitfalls with Arrays in C 
Unlike some other modern programming languages, C does not provide protection 
against exceeding the size (or bounds) of an array. It is a common error made 
with arrays in C programming. C provides no support for ensuring that an array 
index is actually within an array. The compiler blindly generates code for the 
expression a[i], even if the index i accesses a memory location beyond the 
end of the array. To demonstrate, the code in Figure 16.15 lists an example of 
how exceeding the array bounds can lead to a serious debugging effort. Enter 
a number larger than the array size and this program exhibits some peculiar 
behavior.1 

Analyze this program by drawing out the run-time stack and you will see 
more clearly why this bug causes the behavior it does. 

C does not perform bounds checking on array accesses. C code tends to be 
faster because array accesses incur less overhead. This is yet another manner in 

1 Depending on the compiler you are using, you might need to enter a number larger than 16, or you 
might need to declare index after array in order to observe the problem. 
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1 # i n c l u d e < s t d i o . h > 
2 # d e f i n e M A X _ S I Z E 10 
3 
4 int m a i n ( ) 
5 { 
6 int index; 
7 int a r r a y [ M A X _ S I Z E ] ; 
8 int limit; 
9 

10 p r i n t f { " E n t e r limit (integer): ") ; 
11 s c a n f ( " % d " , & l i m i t ) ; 
12 
13 f o r ( i n d e x = 0; i n d e x < l i m i t ; index++) { 
14 a r r a y [ i n d e x ] = 0; 
15 p r i n t f ( " a r r a y [ % d ] is set to 0\n", i n d e x ) ; 
16 } 
17 } 

F igure 1 6 . 1 5 This C program has peculiar behavior if the user enters a number that is 
too large 

which C provides more control to the programmer than other languages. If you 
are not careful in your coding, this bare-bones philosophy can, however, lead to 
undue debugging effort. To counter this, experienced C programmers often use 
some specific defensive programming techniques when it comes to arrays. 

Another common pitfall with arrays in C revolves around the fact that arrays 
(in particular, statically declared arrays such as the ones we've seen) must be of 
a fixed size. We must know the size of the array when we compile the program. 
C does not support array declarations with variable expressions. The following 
code in C is illegal. The size of array t e m p must be known when the compiler 
analyzes the source code. 

v o i d S o m e F u n c t i o n ( i n t n u m _ e l e m e n t s ) 
{ 

int t e m p [ n u m _ e l e m e n t s ] ; /* G e n e r a t e s a s y n t a x e r r o r */ 

} 

To deal with this limitation, experienced C programmers carefully analyze 
the situations in which their code will be used and then allocate arrays with ample 
space. To supplement this built-in assumption in their code, bounds checks are 
added to warn if the size of the array is not sufficient. Another option is to use 
dynamic memory allocation to allocate the array at run-time. More on this in 
Chapter 19. 
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16.4 Summary 
In this chapter we covered two important high-level programming constructs: 
pointers and arrays. Both constructs enable us to access memory indirectly. The 
key notions we covered in this chapter are: 

• Pointers. Pointers are variables that contain addresses of other memory 
objects (such as other variables). With pointers we can indirectly access and 
manipulate these other objects. A very simple application of pointers is to use 
them to pass parameters by reference. Pointers have more substantial applications, 
and we will see them in subsequent chapters. 

• Arrays. An array is a collection of elements of the same type arranged sequen-
tially in memory. We can access a particular element within an array by providing 
an index to the element that is its offset from the beginning of the array. Many 
real-world objects are best represented within a computer program as an array 
of items, thus making the array a significant structure for organizing data. With 
arrays, we can represent character strings that hold text data, for example. We 
examine several important array operations, including the sorting operation via 
insertion sort. 

Exercises 

16.1 Write a C function that takes as a parameter a character string of 
unknown length, containing a single word. Your function should 
translate this string from English into Pig Latin. This translation is 
performed by removing the first letter of the string, appending it onto 
the end, and concatenating the letters ay. You can assume that the array 
contains enough space for you to add the extra characters. 

For example, if your function is passed the string "Hello," after 
your function returns, the string should have the value "elloHay." The 
first character of the string should be "e." 

16.2 Write a C program that accepts a list of numbers from the user until a 
number is repeated (i.e., is the same as the number preceding it). The 
program then prints out the number of numbers entered (excluding the 
last) and their sum. When the program is run, the prompts and 
responses will look like the following: 

N u m b e r 5 
N u m b e r -6 
N u m b e r 0 
N u m b e r 45 
N u m b e r 45 
4 n u m b e r s w e r e e n t e r e d a n d t h e i r sum is 44 
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16.3 What is the output when the following code is compiled and run? 

int x; 

int m a i n { ) 
{ 

int *px = &x; 
int x = 7; 

*px = 4; 
p r i n t f ( " x = %d\n", x) ; 

} 

16.4 Create a string function that takes two input strings, s t r i n g A and 
stringB, and returns a 0 if both strings are the same, a 1 if s t r i n g A 
appears before s t r i n g B in the sorted order of a dictionary, or a 2 if 
s t r i n g B appears before stringA. 

16.5 Using the function developed for Exercise 16.4, modify the Insertion 
Sort program so that it operates upon strings instead of integers. 

16.6 Translate the following C function into LC-3 assembly language. 

int m a i n ( ) 
{ 

int a [5], i; 

i = 4; 
w h i l e (i >= 0) { 

a[i] = i; 
i-- ; } 
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16.7 For this question, examine the following program. Notice that the 
variable ind is a pointer variable that points to another pointer variable. 
Such a construction is legal in C. 

# i n c l u d e < s t d i o . h > 

int m a i n ( ) 
{ 

int a p p l e ; 
int *ptr; 
int **ind; 
ind = &ptr; 
*ind = d a p p l e ; 
**ind - 123; 

ind++; 
*ptr++; 
a p p l e + + ; 

p r i n t f (,!%x %x % d \ n H , ind, ptr, a p p l e ) ; 
} 

Analyze what this program performs by drawing out the run-time stack 
at the point just after the statement a p p l e + + ; executes. 

16.8 The following code contains a call to the function triple. What is the 
minimum size of the activation record of t r i p l e ? 
int m a i n ( ) 
{ 

int a r r a y [ 3 ] ; 

array[0] = 1; 
a r r a y [ 1 ] = 2; 
a r r a y [ 2 ] = 3; 

t r i p l e ( a r r a y ) ; 
} 

16.9 Write a program to remove any duplicates from a sequence of numbers. 
For example, if the list consisted of the numbers 5, 4, 5, 5, and 3, the 
program would output 5, 4, 3. 

16.10 Write a program to find the median of a set of numbers. Recall that the 
median is a number within the set in which half the numbers are larger 
and half are smaller. Hint: To perform this, you may need to sort the 
list first. 
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16.11 For this question, refer to the following C program: 
int F i n d L e n ( c h a r *); 

int m a i n ( ) 
{ 

char str [10] ; 

p r i n t f ( " E n t e r a string : "); 
s c a n f ( " % s " , str); 
p r i n t f ( " % s h a s %d c h a r a c t e r s \ n " , str, F i n d L e n ( s t r ) ) ; 

int F i n d L e n ( c h a r * s) 
{ 

int l e n = 0 ; 

w h i l e {* s != '\0') { 
1en+ +; 
s + +; 

} 
r e t u r n l e n ; 

} 

a. For the preceding C program, what is the size of the activation 
record for the functions m a i n and F i n d L e n ? 

b. Show the contents of the stack just before the function F i n d L e n 
returns if the input string is apple. 

c. What would the activation record look like if the program were run 
and the user typed a string of length greater than 10 characters? 
What would happen to the program? 
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16.12 The following code reads a string from the keyboard and prints out a 
version with any uppercase characters converted to lowercase. 
However, it has a flaw. Identify it. 
# i n c l u d e < s t d i o . h > 
# d e f i n e M A X _ L E N 10 
char * L o w e r c a s e ( c h a r *s); 

int m a i n ( ) 
{ 

c h a r s t r [ M A X _ L E N ] ; 

p r i n t f ( " E n t e r a string : "); 
s c a n f ( " I s " , str); 

p r i n t f ( " L o w e r c a s e : %s \n", L o w e r C a s e ( s t r ) ) ; 
} 
char * L o w e r C a s e ( c h a r *s) { 

c h a r n e w S t r [ M A X _ L E N ] ; 
int index; 

for (index = 0; i n d e x < M A X _ L E N ; index++) { 
if ('A' <= s[index] && s[index] <= 'Z') 

n e w S t r [ i n d e x ] = s[index] + ('a' - 'A'); 
e l s e 

n e w S t r [ i n d e x ] - s [index] ; 
} 
r e t u r n n e w S t r ; 

} 

16.13 Consider the following declarations. 
# d e f i n e S T A C K _ S I Z E 100 

int s t a c k [ S T A C K _ S I Z E ] ; 
int t o p O f S t a c k ; 

int P u s h ( i n t item); 

a. Write a funtion P u s h (the declaration is provided) that will push the 
value of item onto the top of the stack. If the stack is full and the 
item cannot be added, the function should return a 1. If the item is 
successfully pushed, the function should return a 0. 

b. Write a function Pop that will pop an item from the top of the stack. 
Like Push, this function will return a 1 if the operation is 
unsuccessful. That is, a Pop was attempted on an empty stack. It 
should return a 0 if successful. Consider carefully how the popped 
value can be returned to the caller. 
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17 

R e c u r s i o n 

17.1 Introduction 
We start this chapter by describing a recursive procedure that you might already 
be familiar with. Suppose we want to find a particular student's exam in a set 
of exams that are already in alphabetical order. We might randomly examine the 
name on an exam about halfway through the set. If that randomly chosen exam 
is not the one we are looking for, we search the appropriate half using the very 
same technique. That is, we repeat the search on the first half or the second half, 
depending on whether the name we are looking for is less than or greater than 
the name on the exam at the halfway point. For example, say we are looking for 
Babe Ruth's exam and, at the halfway point, we find Mickey Mantle's exam. We 
then repeat the search on the second half of the original stack. Fairly quickly, we 
will locate Babe Ruth's exam, if it exists in the set. This technique of searching 
through a set of elements already in sorted order is recursive. We are applying the 
same searching algorithm to continually smaller and smaller subsets of exams. 

The idea behind recursion is simple: A recursive function solves a task by 
calling itself on a smaller subtask. As we shall see, recursion is another way of 
expressing iterative program constructs. The power of recursion lies in its abil-
ity to elegantly capture the flow of control for certain tasks. There are some 
programming problems for which the recursive solution is far simpler than the 
corresponding solution using conventional iteration. In this chapter, we introduce 
you to the concept of recursion via five different examples. We examine how 
recursive functions are implemented on the LC-3. The elegance of the run-time 
stack mechanism is that recursive functions require no special handling—they 
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execute in the same manner as any other function. The main purpose of this chap-
ter is to provide you with an initial but deep exposure to recursion so that you can 
analyze and reason about recursive programs. Being able to understand recursive 
code is a necessary ingredient for writing recursive code, and ultimately for recur-
sion to become part of your problem-solving toolkit for attacking programming 
problems. 

17.2 What Is Recursion? 
A function that calls itself is a recursive function, as in the function R u n n i n g S u m 
in Figure 17.1. 

This function calculates the sum of all the integers between the input param-
eter n and 1. For example, R u n n i n g S u m (4) calculates 4 + 3 + 2 + 1 . However, it 
does the calculation recursively. Notice that the running sum of 4 is really 4 plus 
the running sum of 3. Likewise, the running sum of 3 is 3 plus the running sum of 
2. This recursive definition is the basis for a recursive algorithm. In other words, 

RunningSum(n) = n + RunningSum(n — 1) 
In mathematics, we use recurrence equations to express such functions. The 

preceding equation is a recurrence equation for RunningSum. In order to complete 
the evaluation of this equation, we must also supply an initial case. So in addition 
to the preceding formula, we need to state 

RunningSum(l) = 1 

before we can completely evaluate the recurrence, which we do as follows: 

RunningSum(4) = 4 + RunningSum(3) 

= 4 + 3 + RunningSum(2) 

= 4 + 3 + 2 + RunningSum(l) 

= 4 + 3 + 2 + 1 
TheC version of R u n n i n g S u m works in the same manner as the recurrence equa-
tion. During execution of the function call R u n n i n g S u m (4), R u n n i n g S u m makes 
a function call to itself, with an argument of 3 (i.e., R u n n i n g S u m (3)). However, 
before R u n n i n g S u m ( 3 ) ends, it makes a call to R u n n i n g S u m ( 2 ) . And before 
R u n n i n g S u m (2) ends, it makes a call to R u n n i n g S u m (1). R u n n i n g S u m (1), 
however, makes no additional recursive calls and returns the value 1 to 

1 int R u n n i n g S u m ( i n t n) 
2 { 
3 if (n == 1) 
4 r e t u r n 1; 
5 e l s e 
6 r e t u r n (n + R u n n i n g S u m ( n - 1 ) ) ; 
7 > 

Figure 1 7 . 1 A recursive funct ion 
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Figure 17.2 The f low of control when RunningSum ( 4 ) is called 

R u n n i n g S u m {2), which enables R u n n i n g S u m (2) to end, and return the value 
2 + 1 back to R u n n i n g S u m ( 3 ) . This enables R u n n i n g S u m ( 3 ) to end and pass 
a value of 3 + 2 + 1 to R u n n i n g S u m ( 4 ) . Figure 17.2 pictorially shows how the 
execution of R u n n i n g S u m {4) proceeds. 

17.3 Recursion versus Iteration 
Clearly, we could have written R u n n i n g S u m using a for loop, and the code would 
have been more straightforward than its recursive counterpart. We provided a 
recursive version here in order to demonstrate a recursive call in the context of 
an easy-to-understand example. 

There is a parallel between using recursion and using conventional iteration 
(such as for and w h i l e loops) in programming. All recursive functions can be 
written using iteration. For certain programming problems, however, the recursive 
version is simpler and more elegant than the iterative version. Solutions to certain 
problems are naturally expressed in a recursive manner, such as problems that are 
expressed with recurrence equations. It is because of such problems that recursion 
is an indispensable programming technique. Knowing which problems require 
recursion and which are better solved with iteration is part of the art of computer 
programming; you will become better at when to use which with experience. 
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Recursion, as useful as it is, comes at a cost. As an experiment, write an 
iterative version of R u n n i n g S u m and compare the running time for large n with 
the recursive version. To do this you can use library functions to get the time of 
day (for example, g e t t i m e o f d a y ) before the function starts and when it ends. 
Plot the running time for a variety of values of n and you will notice that the 
recursive version is relatively slow (provided the compiler did not optimize away 
the recursion). As we shall see in Section 17.5, recursive functions incur function 
call overhead that iterative solutions do not. 

17.4 ToLuers of Hanoi 
One problem for which the recursive solution is the simpler solution is the classic 
puzzle Towers of Hanoi. The puzzle involves a platform with three posts. Qn one 
of the posts sit a number of wooden disks, each smaller than the one below it. The 
objective is to move all the disks from their current post to one of the other posts. 
However, there are two rules for moving disks: only one disk can be moved at 
a time, and a larger disk can never be placed upon a smaller disk. For example, 
Figure 17.3 shows a puzzle where five disks are on post 1. To solve this puzzle, 
these five disks must be moved to one of the other posts obeying the two rules. 

As the legend associated with the puzzle goes, when the world was created, 
the priests at the Temple of Brahma were given the task of moving 64 disks from 
one post to another. When they completed their task, the world would end. 

Now how would we go about writing a computer program to solve this 
puzzle? If we view the problem from the end first, we can make the fol-
lowing observation: the final sequence of moves must involve moving the 
largest disk from post 1 to the target post, say post 3, and then moving the 
other disks back on top of it. Conceptually, we need to move all n — 1 disks 
off the largest disk and onto the intermediate post, then move the largest 
disk from its post onto the target post. Finally, we move all n — 1 disks from 
the intermediate post onto the target post. And we are done! Actually, we are not 
quite done because moving n — 1 disks in one move is not legal. However, we 
have stated the problem in such a manner that we can solve it if we can solve the 

Post 1 Post 2 Post 3 

Figure 17.3 The Towers of Hanoi puzzfe 
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/ * 

** I n p u t s 
** d i s k N u m b e r is t h e d i s k to be m o v e d (diskl is s m a l l e s t ) 
** s t a r t P o s t is the p o s t the d i s k is c u r r e n t l y o n 
** e n d P o s t is the p o s t w e w a n t t h e d i s k to end o n 
** m i d P o s t is the i n t e r m e d i a t e p o s t 
*/ 
M o v e D i s k ( d i s k N u m b e r , s t a r t P o s t , e n d P o s t , m i d P o s t ) 
{ 

if (diskNumber > 1) { 
/* M o v e n - 1 d i s k s off the c u r r e n t d i s k o n */ 
/* s t a r t P o s t a n d p u t t h e m o n the m i d P o s t */ 
M o v e D i s k (diskNumber-1, s t a r t P o s t , m i d P o s t , e n d P o s t ) ,-

/* M o v e t h e l a r g e s t disk. */ 
p r i n t f ( " M o v e d i s k %d from p o s t %d to p o s t %d.\n", 

d i s k N u m b e r , s t a r t P o s t , e n d P o s t ) ; 

/* M o v e all n - 1 d i s k s from m i d P o s t o n t o e n d P o s t */ 
M o v e D i s k ( d i s k N u m b e r - 1 , m i d P o s t , e n d P o s t , s t a r t P o s t ) ; 

} 
e l s e 

p r i n t f ( " M o v e d i s k 1 from p o s t %d to p o s t %d.\n", 
s t a r t P o s t , e n d P o s t ) ; 

} 
Figure 17 .4 A recursive funct ion to solve the Towers of Hanoi puzzle 

two smaller subproblems of it. Once the largest disk is on the target post, we do 
not need to deal with it any further. Now the n — Ith disk becomes the largest 
disk, and the subobjective becomes to move it to the target pole. We can therefore 
apply the same technique but on a smaller subproblem. 

We now have a recursive definition of the problem: In order to move n disks to 
the target post, which we symbolically represent as M o v e (n, t a r g e t ) , we first 
rnoven — 1 disks to the intermediate pos t—Move(n-1, i n t e r m e d i a t e ) — t h e n 

move the nth disk to the target, and finally move n — 1 disks from the intermediate 
to the target, or M o v e (n-1, t a r g e t ) . So in order to M o v e (n, t a r g e t ) , two 
recursive calls are made to solve two smaller subproblems involving n — 1 disks. 

As with recurrence equations in mathematics, all recursive definitions require 
a base case, which ends the recursion. In the way we have formulated the problem, 
the base case involves moving the smallest disk (disk 1). Moving disk 1 requires 
no other disks to be moved since it is always on top and can be moved directly 
from one post to any another without moving any other disks. Without a base 
case, a recursive function would have an infinite recursion, similar to an infinite 
loop in conventional iteration. 

Taking our recursive definition to C code is fairly straightforward. Figure 17.4 
is a recursive C function of this algorithm. 

Let's see what happens when we play a game with three disks. Following is 
an initial function call to MoveDisk. We start off by saying that we want to move 
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f 1 I ( 3 ) f 1 I 
1 2 3 

Figure 17.5 The Towers of Hanoi Figure 17.6 The Towers of Hanoi 
puzzle, in i t ia l puzzle, af ter f i rst move 
configurat ion 

disk 3 (the largest disk) from post 1 to post 3, using post 2 as the intermediate 
storage post. That is, we want to solve a three-disk Towers of Hanoi puzzle. See 
Figure 17.5. 

/* d i s k N u m b e r 3; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */ 
M o v e D i s k ( 3 , 1, 3, 2) 

This call invokes another call to M o v e D i s k to move disks 1 and 2 off disk 3 and 
onto post 2 using post 3 as intermediate storage. The call is performed at line 15 
in the source code. 

/* d i s k N u m b e r 2; s t a r t P o s t 1; e n d P o s t 2; m i d P o s t 3 */ 
M o v e D i s k ( 2 , 1, 2, 3) 

To move disk 2 from post 1 to post 2, we must first move disk 1 off disk 2 and 
onto post 3 (the intermediate post). So this triggers another call to M o v e D i s k 
again from the call on line 15. 

/* d i s k N u m b e r 1; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */ 
M o v e D i s k ( 1 , 1, 3, 2) 

Since disk 1 can be directly moved, the second p r i n t f statement is executed. 
See Figure 17.6. 

M o v e d i s k n u m b e r 1 from p o s t 1 to p o s t 3. 

Now, this invocation of M o v e D i s k returns to its caller, which was the call 
M o v e D i s k (2, i , 2 , 3) . Recall that we were waiting for all disks on top of 
disk 2 to be moved to post 3. Since that is now complete, we can now move disk 
2 from post 1 to post 2. The p r i n t f is the next statement to execute, signaling 
another disk to be moved. See Figure 17.7. 

M o v e d i s k n u m b e r 2 from p o s t 1 to p o s t 2. 

Next, a call is made to move all disks that were on disk 2 back onto disk 2. 
This happens at the call on line 22 of the source code for MoveDisk. 

/* d i s k N u m b e r 1; s t a r t P o s t 2; e n d P o s t 3; m i d P o s t 1 */ 
M o v e D i s k ( 1 , 2, 3, 1) 
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Figure 17.7 

m 

The Towers of Hanoi 
puzzle, after second 
move 

Figure 17.8 
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The Towers of Hanoi 
puzzle, af ter th i rd move 
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The Towers of Hanoi 
puzzle/ after four th 
move 
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F igure 1 7 . 1 0 The Towers of Hanoi 
puzzle, af ter fifth move 

Again, since disk 1 has no disks on top of it, we see the move printed. See 
Figure 17.8. 

M o v e d i s k n u m b e r 1 from p o s t 3 to p o s t 2. 

Now control passes back to the call M o v e D i s k (2, l, 2, 3) which, having 
completed its task of moving disk 2 (and all disks on top of it) from post 1 to post 
2, returns to its caller. Its caller is M o v e D i s k (3, l, 3, 2) . Now, all disks have 
been moved off disk 3 and onto post 2. Disk 3 can be moved from post 1 onto 
post 3. The p r i n t f is the next statement executed. See Figure 17.9. 

M o v e d i s k n u m b e r 3 from p o s t 1 to p o s t 3. 

The next subtask remaining is to move disk 2 (and all disks on top of it) from 
post 2 onto post 3. We can use post 1 for intermediate storage. The following call 
occurs on line 22 of the source code. 

/* d i s k N u m b e r 2; s t a r t P o s t 2; e n d P o s t 3; m i d P o s t 1 */ 
M o v e D i s k ( 2 , 2, 3, 1) 

In order to do so, we must first move disk 1 from post 2 onto post 1. This call 
is made from line 15 in the source code. 

/* d i s k N u m b e r 1; s t a r t P o s t 2; e n d P o s t 1; m i d P o s t 3 */ 
M o v e D i s k ( 1 , 2, 1, 3) 

The move requires no submoves. See Figure 17.10. 
M o v e d i s k n u m b e r 1 from p o s t 2 to p o s t 1. 
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Figure 17.11 The Towers of Hanoi 
puzzle, af ter sixth move 

Figure 17.12 The Towers of Hanoi 
puzzle, completed 

Return passes back to the caller M o v e D i s k (2, 2 f 3, i ) , and disk 2 is 
moved onto post 3. See Figure 17.11. 

M o v e d i s k n u m b e r 2 from p o s t 2 to p o s t 3. 

The only thing remaining is to move all disks that were on disk 2 back on top. 

/* d i s k N u m b e r 1; s t a r t P o s t 1; e n d P o s t 3; m i d P o s t 2 */ 
M o v e D i s k ( 1 , 1, 3, 2) 

The move is done immediately. See Figure 17.12. 

M o v e d i s k n u m b e r 1 from p o s t 1 to p o s t 3. 

and the puzzle is completed! 
Let's summarize the action of the recursion by examining the sequence of 

function calls that were made in solving the three-disk puzzle: 

M o v e D i s k { 3 , 1, 3, 2) /* Initial Call */ 
M o v e D i s k ( 2 , 1, 2, 3) 
M o v e D i s k ( 1 , l f 3, 2} 
M o v e D i s k ( 1 , 2, 3, 1) 
M o v e D i s k { 2 , 2, 3, 1) 
M o v e D i s k ( 1 , 2, 1, 3) 
M o v e D i s k ( 1 , 1, 3, 2) 

Consider how you would write an iterative version of a program to solve this 
puzzle and you will appreciate the simplicity of the recursive version. Returning 
to the legend of the Towers of Hanoi: the world will end when the monks finish 
solving a 64-disk version of the puzzle. If each move takes one second, how long 
will it take the monks to solve the puzzle? 

17.5 Fibonacci Numbers 
The following recurrence equations generate a well-known sequence of num-
bers called the Fibonacci numbers, which has some interesting mathematical, 
geometrical, and natural properties. 
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/ ( * ) = / ( * - ! ) + / ( / ! - 2 ) 

/ ( I ) = 1 

/ ( 0 ) = 1 

In other words, the nth Fibonacci number is the sum of the previous two. The series 
is 1, 1, 2, 3, 5, 8, 13,.. .This series was first formulated by the Italian mathemati-
cian Leonardo of Pisa around the year 1200. His father's name was Bonacci, thus 
he often called himself Fibonacci as a shortening of filius Bonacci, or son of 
Bonacci. Fibonacci formulated this series as a way of estimating breeding rabbit 
populations, and we have since discovered some facinating ways in which the 
series models some other natural phenomena such as the structure of a spiral 
shell or the pattern of petals on a flower. 

We can formulate a recursive function to calculate the nth Fibonacci number 
directly from the recurrence equations. F i b o n a c c i (n) is recursively calculated 
by F i b o n a c c i (n-i) + F i b o n a c c i (n-2) . The base case of the recursion is sim-
ply the fact that F i b o n a c c i (i) and F i b o n a c c i (0) both equal 1. Figure 17.13 
lists the recursive code to calculate the nth Fibonacci number. 

1 # i n c l u d e < s t d i o . h > 
2 
3 int F i b o n a c c i ( i n t n); 
4 
5 int m a i n ( ) 
6 { 
7 int in; 
8 int n u m b e r ; 
9 

10 p r i n t f ( " W h i c h F i b o n a c c i n u m b e r ? ") ; 
11 s c a n f ( " % d " , &in); 
12 
13 n u m b e r = F i b o n a c c i ( i n ) ; 
14 p r i n t f ( " T h a t F i b o n a c c i n u m b e r is %d\n", n u m b e r ) ; 
15 } 
16 
17 int F i b o n a c c i ( i n t n) 
18 { 
19 int sum; 
20 
21 if (n == 0 || n == 1) 
22 r e t u r n 1; 
23 else { 
24 sum = (Fibonacci(n-1) + F i b o n a c c i ( n - 2 ) ) ; 
2 5 r e t u r n sum; 
26 } 
27 } 

Figure 17.13 Fibonacci is a recursive C funct ion to calculate the n t h Fibonacci number 
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We will use this example to examine how recursion works from the perspec-
tive of the lower levels of the computing system. In particular, we will examine 
the run-time stack mechanism and how it deals with recursive calls. Whenever 
the function is called, whether from itself or another function, a new copy of its 
activation record is pushed onto the run-time stack. That is, each invocation of the 
function gets a new, private copy of parameters and local variables, where each 
copy is different than any other copy. This must be the case in order for recursion 
to work, and the run-time stack enables this. If the variables of this function were 
statically allocated in memory, each recursive call to F i b o n a c c i would overwrite 
the values of the previous call. 

Let's see what happens when we call the function F i b o n a c c i with the param-
eter 3, F i b o n a c c i (3). We start off with the activation record for F i b o n a c c i (3) 
on top of the run-time stack. Figure 17.14 shows the progression of the stack as 
the original function call is evaluated. 

The function call F i b o n a c c i (3) will calculate first F i b o n a c c i (3-1) , as 
the expression F i b o n a c c i (n-i) + F i b o n a c c i (n-2) is evaluated left to right. 
Therefore, a call is first made to F i b o n a c c i (2), and an activation record for 
F i b o n a c c i (2) is pushed onto the run-time stack (see Figure 17.14, step 2). 

For F i b o n a c c i (2), the parameter n equals 2 and does not meet 
the terminal condition, therefore a call is made to F i b o n a c c i (l) (see 
Figure 17.14, step 3). This call is made in the course of evaluating 
F i b o n a c c i ( 2 - 1 ) + Fibonacci(2-2). 

The call F i b o n a c c i (l) results in no more recursive calls because the param-
eter n meets the terminal condition. The value 1 is returned to F i b o n a c c i (2), 
which now can complete the evaluation of F i b o n a c c i (i) + F i b o n a c c i (0) 
by calling F i b o n a c c i (0) (see Figure 17.14, step 4). The call F i b o n a c c i (0) 
immediately returns a 1. 

Now, the call F i b o n a c c i (2) can complete and return its subcalculation (its 
result is 2) to its caller, F i b o n a c c i (3). Having completed the left-hand compo-
nent of the expression F i b o n a c c i (2) + F i b o n a c c i (1), F i b o n a c c i (3) calls 
F i b o n a c c i (l) (see Figure 17.14, step 5), which immediately returns the value 
1. Now F i b o n a c c i (3) is done—its result is 3 (Figure 17.14, step 6). 

We could state the recursion of F i b o n a c c i (3) algebraically, as follows: 

F i b o n a c c i ( 3 ) = F i b o n a c c i ( 2 ) + F i b o n a c c i ( 1 ) 
= (Fibonacci(1) + F i b o n a c c i ( 0 ) ) + F i b o n a c c i ( 1 ) 
= 1 + 1 + 1 = 3 

The sequence of function calls made during the evaluations of F i b o n a c c i (3) 
is as follows: 

F i b o n a c c i ( 3 ) 
F i b o n a c c i ( 2 ) 
F i b o n a c c i ( 1 ) 
F i b o n a c c i ( 0 ) 
F i b o n a c c i ( 1 ) 
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Fibonacci(3) 

mam 

R6 

Fibonacci(2) 

Fibonacci(3) 

mam 

R6 

Step 1: Initial call Step 2: Fibonacci (3) calls Fibonacci (2) 

Fibonacci (1) 

Fibonacci (2) 

Fibonacci (3) 

mam 

R6 
Fibonacci(0) 

Fibonacci(2) 

Fibonacci(3) 

mam 

R6 

Step 3: Fibonacci (2) calls Fibonacci (1) Step 4: Fibonacci (2) calls Fibonacci (0) 

Fibonacci(1 

Fibonacci(3) 

mam 

R6 

Fibonacci(3) 

main 

R6 

Step 5: Fibonacci (3) calls Fibonacci ( l ) Step 6: Back to the starting point 

Figure 17.14 Snapshots of the run-t ime stack for the funct ion call Fibonacci (3) 
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Walk through the execution of F i b o n a c c i (4) and you will notice that 
the sequence of calls made by F i b o n a c c i (3) is a subset of the calls made 
by F i b o n a c c i (4). No surprise, since F i b o n a c c i (4) = F i b o n a c c i (3) + 
F i b o n a c c i (2 ) . Likewise, the sequence of calls made by F i b o n a c c i { 4 } is a 
subset of the calls made by F i b o n a c c i (5). There is an exercise at the end of 
this chapter involving calculating the number of function calls made during the 
evaluation of F i b o n a c c i (n). 

The LC-3 C compiler generates the following code for this program, listed in 
Figure 17.15. Notice that no special treatment was required because this function 
is recursive. Because of the run-time stack mechanism for activating functions, a 
recursive function gets treated like every other function. If you examine this code 
closely, you will notice that the compiler generated a temporary variable in order 
to translate line 24 of F i b o n a c c i properly. Most compilers will generate such 
temporaries when compiling complex expressions. Such temporary values are 
allocated storage in the activation on top of the space for the programmer-declared 
local variables. 

17.6 Binary Search 
In the introduction to this chapter, we described a recursive technique for finding 
a particular exam in a set of exams that are in alphabetical order. The technique 
is called binary search, and it is a very rapid way of finding a particular element 
within a list of elements in sorted order. At this point, given our understanding 
of recursion and of arrays, we can specify a recursive function in C to perform 
binary search. 

Say we want to find a particular integer value in an array of integers that is 
in ascending order. The function should return the index of the integer, or a —1 
if the integer does not exist. To accomplish this, we will use the binary search 
technique as such: given an array and an integer to search for, we will examine 
the midpoint of the array and determine if the integer is (1) equal to the value 
at the midpoint, (2) less than the value at the midpoint, or (3) greater than the 
value at the midpoint. If it is equal, we are done. If it is less than, we perform the 
search again, but this time only on the first half of the array. If it is greater than, 
we perform the search only on the second half of the array. Notice that we can 
express cases (2) and (3) using recursive calls. But what happens if the value we 
are searching for does not exist within the array? Given this recursive technique 
of performing searches on smaller and smaller subarrays of the original array, we 
eventually perform a search on an array that has no elements (e.g., of size 0) if 
the item we are searching for does not exist. If we encounter this situation, we 
will return a — 1. This will be a base case in the recursion. 

Figure 17.16 contains the recursive implementation of the binary search algo-
rithm in C. Notice that in order to determine the size of the array at each step, we 
pass the starting point and ending point of the subarray along with each call to 
BinarySearch. Each call refines the variables start and end to search smaller 
and smaller subarrays of the original array list. 
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1 F i b o n a c c i : 
2 A D D R6, R6, # - 2 
3 STR R7, R6, #0 
4 A D D R6 , R6, # - 1 
5 STR R5, R6, #0 
6 A D D R5, R6, # - 1 
7 A D D R6, R6, # - 2 
8 
9 LDR RO, R5, #4 

10 B R Z FIB_ _BASE 
11 A D D RO, RO, # - 1 
12 B R Z FIB_ _BASE 
13 
14 LDR RO, R5, #4 
15 A D D RO, RO, # - 1 
16 A D D R6, R6, # - 1 
17 STR RO, R6, #0 
18 J S R F i b o n a c c i 
19 
20 L D R RO, R6, #0 
21 A D D R6 , R6, # - 1 
22 S T R RO, R5, # - 1 
23 L D R RO, R5, #4 
24 A D D RO, RO, # - 2 
25 A D D R6, R6 , # - 1 
26 STR RO, R6, #0 
27 J S R F i b o n a c c i 
28 
29 L D R RO, R6, #0 
30 A D D R6, R6, # - 1 
31 L D R R l / R5, # - 1 
32 A D D RO, RO, Rl 
33 BR FIB_ _END 
34 
35 F I B _ B A S E : 
36 A N D RO, RO, #0 
37 A D D RO, RO, #1 
38 
39 F I B _ E N D : 
40 S T R RO, R5, #3 
41 A D D R6, R5, #1 
42 L D R R5, R6, #0 
43 A D D R6, R6, #1 
44 L D R R7, R6, #0 
45 A D D R6, R6, #1 
46 R E T 

p u s h r e t u r n v a l u e / a d d r e s s 
s t o r e r e t u r n a d d r e s s 
p u s h c a l l e r ' s f r a m e p o i n t e r 

set n e w f r a m e p o i n t e r 
a l l o c a t e s p a c e for l o c a l s a n d t e m p s 

load the p a r a m e t e r n 
n= = 0 

n = = l 

load the p a r a m e t e r n 
c a l c u l a t e n - 1 
p u s h n - 1 

call to F i b o n a c c i ( n - 1 ) 

r e a d the r e t u r n v a l u e at top of s t a c k 
p o p r e t u r n v a l u e 
s t o r e it i n t o t e m p o r a r y v a l u e 
load the p a r a m e t e r n 
c a l c u l a t e n - 2 
p u s h n - 2 

call to F i b o n a c c i ( n - 2 ) 

r e a d t h e r e t u r n v a l u e at top of s t a c k 
p o p r e t u r n v a l u e 
r e a d t e m p o r a r y v a l u e : F i b o n a c c i ( n - 1 ) 
F i b o n a c c i ( n - 1 ) + F i b o n a c c i ( n - 2 ) 
b r a n c h to e n d of c o d e 

; c l e a r RO 
; RO = 1 

w r i t e t h e r e t u r n v a l u e 
p o p local v a r i a b l e s 
r e s t o r e c a l l e r ' s frame p o i n t e r 

p o p r e t u r n a d d r e s s 

Figure 17.15 Fibonacci in LC-3 assembly code 
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1 / * 
2 ** T h i s f u n c t i o n r e t u r n s the p o s i t i o n of 'item' if it e x i s t s 
3 ** b e t w e e n l i s t [ s t a r t ] and l i s t [ e n d ] , o r -1 if it d o e s not. 
4 */ 
5 int B i n a r y S e a r c h ( i n t item, int list [] , int start, int end) 
6 { 
7 int m i d d l e = (end + start) / 2; 
8 
9 /* D i d we not find w h a t we a r e l o o k i n g for? */ 

10 if (end < start) 
11 r e t u r n -1; 
12 
13 /* D i d we find the item? */ 
14 e l s e if (list[middle] == item) 
15 r e t u r n m i d d l e ; 
16 
17 /* S h o u l d we s e a r c h the first half of t h e array? */ 
18 e l s e if (item < l i s t [ m i d d l e ] ) 
19 r e t u r n B i n a r y S e a r c h ( i t e m , list, start, m i d d l e - 1); 
2 0 
21 /* O r s h o u l d we s e a r c h t h e s e c o n d half of the a r r a y ? */ 
22 e l s e 
23 r e t u r n B i n a r y S e a r c h ( i t e m , list, m i d d l e + 1, end); 
24 } 

Figure 17.16 A recursive C funct ion to perform binary search 

Figure 17.17 provides a pictorial representation of this code during execution. 
The array list contains 11 elements as shown. The initial call to B i n a r y S e a r c h 
passes the value we are looking for (item) and the array to be searched (recall 
from Chapter 16 that this is the address of the very first element, or base address, 
of the array). Along with the array, we provide the extent of the array. That is, 
we provide the starting point and ending point of the portion of the array to be 
searched. In every subsequent recursive call to B i n a r y S e a r c h , this extent is made 
smaller, eventually reaching a point where the subset of the array we are searching 
has either only one element or no elements at all. These two situations are the 
base cases of the recursion. 

Instead of resorting to a technique like binary search, we could have attempted 
a more straightforward sequential search through the array. That is, we could 
examine list [0], then list [l], then list [2], etc., and eventually either find 
the item or determine that it does not exist. Binary search, however, will require 
fewer comparisons and can potentially execute faster if the array is large enough. 
In subsequent computing courses you will analyze binary search and derive that its 
running time is proportional to log2 n, where n is the size of the array. Sequential 
search, on the other hand, is proportional to n. 



17.7 Integer to ASCII 4 7 1 

start middle end 

12 32 37 49 109 110 153 387 392 777,, 926 

Binary-Search (109, array, 0, 10) 

start middle end 

list 

list 

list 

12 32 37 49 109 110 153 387 392 777 926 

BinarySearch(109, array, 0, 4) 

middle 
start end 

! 

12 32 37 49 109 110 153 387 392 777 926 

BinarySearch(10 9, array, 3 , 4) 

middle 
start end 

12 32 37 49 100 110 153 387 392 777 926 

BinarySearch(109, array, 4, 4) 
Figure 1 7 . 1 7 BinarySearch performed on an array of 11 elements. We are searching for 

the element 109 

17.7 Integer to ASCII 
Our final example of a recursive function is a function that converts an arbitrary 
integer value into a string of ASCII characters. Recall from Chapter 10 that in 
order to display an integer value on the screen, each digit of the value must be 
individually extracted, converted into ASCII, and then displayed on the output 
device. In Chapter 10, we wrote an LC-3 routine to do this using a straightforward 
iterative technique. 

We can do this recursively with the following recursive formulation: if the 
number to be displayed is a single digit, we convert it to ASCII and display it and 
we are done (base case). If the number is multiple digits, we make a recursive 
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1 # i n c l u d e < s t d i o . h > 
2 
3 v o i d I n t T o A s c i i { i n t i); 
4 
5 int m a i n ( ) 
6 { 
7 int in; 
8 
9 p r i n t f ( " I n p u t n u m b e r : "); 

10 s c a n f ( " % d " , &in); 
11 
12 I n t T o A s c i i ( i n ) ; 
13 p r i n t f ( " \ n " ) ; 
14 } 
15 
16 v o i d I n t T o A s c i i ( i n t num) 
17 { 
18 int p r e f i x ; 
19 int c u r r D i g i t ; 
20 
21 if (num < 10) /* T h e t e r m i n a l c a s e */ 
22 p r i n t f < " % c " , n u m + '0'); 
23 e l s e { 
24 p r e f i x = n u m / 10; /* C o n v e r t t h e n u m b e r */ 
25 I n t T o A s c i i ( p r e f i x ) ; /* w i t h o u t last d i g i t */ 
26 
27 c u r r D i g i t = n u m % 10; /* T h e n p r i n t last d i g i t */ 
2 8 p r i n t f ( " % c " , c u r r D i g i t + '0'); 
29 } 
30 } 
Figure 17.18 I n tToAsc i i is a recursive funct ion that converts a positive integer to ASCI I 

call on the number without the least significant (rightmost) digit, and when the 
recursive call returns we display the rightmost digit. 

Figure 17.18 lists the recursive C function. It takes a positive integer value and 
converts each digit of the value into ASCII and displays the resulting characters. 

The recursive function I n t T o A s c i i works as follows: to print out a number, 
say 21,669, for example (i.e., we are making the call I n t T o A s c i i (21669) ) , the 
function will subdivide the problem into two parts. First 2166 must be printed 
out via a recursive call to IntToAscii, and once the call is done, the 9 will be 
printed. 

The function removes the least significant digit of the parameter num by 
shifting it to the right one digit by dividing by 10. With this new (and smaller) 
value, we make a recursive call. If the input value num is only a single digit, it is 
converted to ASCII and displayed to the screen—no recursive calls necessary for 
this case. 

Once control returns to each call, the digit that was removed is converted to 
ASCII and displayed. To clarify, we present the series of calls for the original call 
o f I n t T o A s c i i ( 1 2 3 4 5 ) : 
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I n t T o A s c i i ( 1 2 3 4 5 ) 
I n t T o A s c i i ( 1 2 3 4 ) 
I n t T o A s c i i ( 1 2 3 ) 
I n t T o A s c i i ( 1 2 ) 
I n t T o A s c i i ( 1 ) 
p r i n t f ( ' 1 ' ) 
p r i n t f ( ' 2 ' ) 
p r i n t f ( ' 3 ' ) 
p r i n t f ( ' 4 ' ) 
p r i n t f ( ' 5 ' ) 

17.8 Summary 
In this chapter, we introduced the concept of recursion. We can solve a problem 
recursively by using a function that calls itself on smaller subproblems. With 
recursion, we state the function, say f(n), in terms of the same function on 
smaller values of n, say for example, f(n — 1). The Fibonacci series, for example, 
is recursively stated as 
F i b o n a c c i ( n ) = F i b o n a c c i ( n - 1 ) + F i b o n a c c i ( n - 2 ) ; 

For the recursion to eventually terminate, recursive calls require a base case. 
Recursion is a powerful programming tool that, when applied to the right 

problem, can make the task of programming considerably easier. For example, 
the Towers of Hanoi puzzle can be solved in a simple manner with recursion. It 
is much harder to formulate using iteration. In future courses, you will examine 
ways of organizing data involving pointers (e.g., trees and graphs) where the 
simplest techniques to manipulate the data structure involve recursive functions. 
At the lower levels, recursive functions are handled in exactly the same manner as 
any other function call. The run-time stack mechanism enables this by allowing 
us to allocate in memory an activation record for each function invocation so that 
it does not conflict with any other invocation's activation record. 

Exercises 

17.1 For these questions, refer to the examples that appear in the chapter. 
a. How many calls to R u n n i n g S u m (see Section 17.2) are made for the 

call R u n n i n g S u m (10)? 
b. How about for the call R u n n i n g S u m (n) ? Give your answer in terms 

of n. 
c. How many calls to M o v e D i s k are made in the Towers of Hanoi 

problem if the initial call is M o v e D i s k (4, i, 3, 2)1 This call 
plays out a four-disk game. 

d. How many calls are made for an n-disk game? 
e. How many calls to F i b o n a c c i (see Figure 17.13) are made for the 

initial call F i b o n a c c i (10) ? 
f . How many calls are required for the nth Fibonacci number? 
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17.2 Is the return address for a recursive function always the same at each 
function call? Why or why not? 

17.3 What would happen if we swapped the p r i n t f call with the recursive 
call in the code for i n t T o A s c i i in Figure 17.18? 

17.4 What does the following function produce for count (20) ? 
int c o u n t ( i n t arg) 
{ 

if (arg < 1) 
r e t u r n 0; 

e l s e if (arg % 2) 
r e t u r n ( 1 + c o u n t ( a r g - 2)); 

e l s e 
r e t u r n ( 1 + c o u n t ( a r g - 1)); 

} 

17.5 Consider the following C program: 

# i n c l u d e < s t d i o . h > 

int P o w e r ( i n t a, int b ) ; 

int m a i n ( v o i d ) 
{ 

int x, y, 2; 

p r i n t f ( " I n p u t two n u m b e r s : "); 
s c a n f ( " % d %d", &x, &y); 

if (x > 0 & & y > 0) 
z = P o w e r ( x , y ) ; 

e l s e 
2 = 0 ; 

p r i n t f ( " T h e r e s u l t is %d.\n", z) ; 

} 

int P o w e r ( i n t a, int b) 
{ 

if (a < b) 
r e t u r n 0; 

e l s e 
r e t u r n 1 + P o w e r ( a / b , b); 

} 
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t 
j i 

? 

j i 

? Activation record for Power 

? 

? 

? Activation record for Power 

11 

7 

Figure 17.19 Run-time stack after funct ion Power is called 

a. State the complete output if the input is 
(1) 4 9 
(2) 27 5 
(3) 3 

b. What does the function P o w e r compute? 
c. Figure 17.19 is a snapshot of the stack after a call to the function 

Power. Two activation records are shown, with some of the entries 
filled in. Assume the snapshot was taken just before execution of one 
of the r e t u r n statements in Power. What are the values in the 
entries marked with a question mark? If an entry contains an 
address, use an arrow to indicate the location the address 
refers to. 
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17.6 Consider the following C function: 

int Sigma( int k ) 
{ 

int 1; 

1 = k -1; 

if (k==0) 
r e t u r n 0; 

e l s e 
r e t u r n (k + S i g m a ( 1 ) ) ; 

a. Convert the recursive function into a nonrecursive function. Assume 
S i g m a () will always be called with a nonnegative argument. 

b. Exactly 1 KB of contiguous memory is available for the run-time 
stack, and addresses and integers are 16 bits wide. How many 
recursive function calls can be made before the program runs out of 
memory? Assume no storage is needed for temporary values. 

17.7 The following C program is compiled and executed on the LC-3. When 
the program is executed, the run-time stack starts at memory location 
xFEFF and grows toward xCOOO (the stack can occupy up to 16 KBytes 
of memory). 

S e v e n U p ( i n t x) 
{ 

if (x == 1} 
r e t u r n 7; 

e l s e 
r e t u r n (7 + s e v e n U p ( x - 1)); 

} 
int m a i n ( ) 
{ 

int a; 

p r i n t f ( " I n p u t a n u m b e r \n"); 
s c a n f ( " % d " , &a); 

a = S e v e n U p ( a ) ; 

p r i n t f ( " % d is 7 t i m e s t h e n u m b e r \ n " , a); 

a. What is the largest input value for which this program will run 
correctly? Explain your answer. 

b. If the run-time stack can occupy only 4 KBytes of memory, what is 
the largest input value for which this program will run correctly? 
Explain your answer. 
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17.8 Write an iterative version of a function to find the nth Fibonacci number. 
Plot the running time of this iterative version to the running time of the 
recursive version on a variety of values for n. Why is the recursive 
version significantly slower when n is sufficiently large? 

17.9 The binary search routine shown in Figure 17.16 searches through an 
array that is in ascending order. Rewrite the code so that it works for 
arrays in descending order. 

17.10 Following is a very famous algorithm whose recursive version is 
significantly easier to express than the iterative one. For the following 
subproblems, provide the final value returned by the function. 

int e a { i n t x, int y) 
{ 

int a; 

if (y == 0 ) 
r e t u r n x; 

e l s e { 
a = x % y; 
r e t u r n (ea(y, a)); 

} 
} 

a. ea(12, 15) 
b. ea (6, 10) 
C. ea (110, 24) 
d. What does this function calculate? Consider how you might 

construct an iterative version to calculate the same thing. 
17.11 Write a program without recursive functions equivalent to the following 

C program. 

int m a i n ( ) 
{ 

p r i n t f { " % d " , M() ) ; 

v o i d M() 
{ 

int num, x; 
p r i n t f { " T y p e a n u m b e r : "); 
s c a n f ( " % d " , &num); 
if (num <= 0) 

r e t u r n 0; 
e l s e { 

x = M ( ) ; 
if (num > x) 

r e t u r n n u m ; 
e l s e 

r e t u r n x; 
} 

} 
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17.12 Consider the following recursive function: 

int func (int arg) 
{ 

if (arg % 2 != 0) 
r e t u r n f u n c ( a r g - 1); 

if (arg <= 0) 
r e t u r n 1; 

r e t u r n f u n c ( a r g / 2 ) + 1; 
} 

a. Is there a value of arg that causes an infinite recursion? If so, what 
is it? 

b. Suppose that the function func is part of a program whose m a i n 
function follows. How many function calls are made to func when 
the program is executed? 

int m a i n ( ) 
{ 

p r i n t f ( " T h e v a l u e is %d\n", f u n c ( 1 0 ) ) ; 
} 

c. What value is output by the program? 
17,13 The following function is a recursive function that takes a string of 

characters of unknown length and determines if it contains balanced 
parentheses. The function B a l a n c e d is designed to match parentheses. 
It returns a 0 if the parentheses in the character array string are balanced 
and a nonzero value if the parentheses are not balanced. The initial call 
to B a l a n c e d would be: B a l a n c e d (string, 0, 0) ; 

The function B a l a n c e d that follows, however, is missing a few key 
pieces of code. Fill in the three underlined missing portions in the code. 

int B a l a n c e d ( c h a r s t r i n g [ ] , int p o s i t i o n , int count) 
{ 

if ( ) 
r e t u r n c o u n t ; 

e l s e if (string [position] == ) 
r e t u r n B a l a n c e d ( string, + + p o s i t i o n , + + c o u n t ) ; 

e l s e if (string [position] == ) 
r e t u r n B a l a n c e d ( string, + + p o s i t i o n , --count); 

e l s e 
r e t u r n B a l a n c e d ( string, + + p o s i t i o n , c o u n t ) ; 

} 
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17.14 What is the output of the following C program? 

# i n c l u d e < s t d i o . h > 

v o i d M a g i c ( i n t in); 
int E v e n ( i n t n ) ; 

int m a i n ( ) 
{ 

M a g i c ( 1 0 ) ; 

} 

v o i d M a g i c ( i n t in) 
{ 

if (in == 0) 
r e t u r n ; 

if (Even(in)) 
p r i n t f ( " % i \ n " , in); 

M a g i c ( i n - 1); 
if (!Even(in)) 

p r i n t f ( " % i \ n " , in); 
r e t u r n ; 

} 

int E v e n ( i n t n) 
{ 

/* even, r e t u r n 1; odd, r e t u r n 0 */ 
r e t u r n (n % 2) == 0 ? 1 : 0; 

} 
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18 

I / O in C 

18.1 Introduction 
Whether it be to the screen, to a file, or to another computer across a network, 
all useful programs perform output of some sort or another. Most programs also 
require some form of input. As is the case with many other modern programming 
languages, input and output are not directly supported by C. Instead input/output 
(I/O) is handled by a set of standard library functions that extend the base language. 
The behavior of these standard library functions is precisely defined by the ANSI 
C standard. 

In this chapter, we will discuss several functions in the C standard library 
that support simple I/O. The functions p u t c h a r and p r i n t f write to the output 
device and g e t c h a r and s c a n f read from the input device. The more general 
functions f p r i n t f and f s c a n f perform file I/O, such as to a file on disk. We 
have used p r i n t f and s c a n f extensively throughout the second half of this 
book. In this chapter, we examine the details of how these functions work. Along 
the way, we will introduce the notion of variable argument lists and demonstrate 
how parameter-passing on the LC-3 run-time stack handles function calls with a 
variable number of arguments. 

18.2 The C Standard Library 
The C standard library is a major extension of the C programming language. 
It provides support for input/ouput, character string manipulations, mathemat-
ical functions, file access functions, and various system utilities that are not 
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specifically required for a single program but are generally useful in many 
programs. The standard library is intended to be a repository of useful, prim-
itive functions that serve as components for building complex software. This 
component-based library approach is a characteristic of many programming lan-
guages: C++ and Java also have similar standard libraries of primitive functions. 
We provide a short description of some useful C library functions in Appendix D.9. 
The library's functions are typically written by designers of the compiler and oper-
ating system, and on many occasions they are optimized for the system on which 
they are installed. 

To use a function defined within the C standard library, we must include 
the appropriate header file ( .h file). The functions within the standard library 
are grouped according to their functionality. Each of these groups has a header 
file associated with it. For example, mathematical functions such as sin and tan 
use the common header file m a t h . h. The standard I/O functions use the header file 
stdio. h. These header files contain, among other things, function declarations 
for the I/O functions and preprocessor macros relating to I/O. A library header 
file does not contain the source code for library functions. 

If the header files do not contain source code, how does the machine code 
for, say, p r i n t f get added to our programs? Each library function called within 
a program is linked in when the executable image is formed. The object files 
containing the library functions are stored somewhere on the system and are 
accessed by the linker, which links together the various function binaries into a 
single executable program. 

As an aside, programs can be linked dynamically. With certain types of 
libraries (dynamically linked libraries [DLLs] or shared libraries), the machine 
code for a library routine does not appear within the executable image but is 
"linked" on demand, while the program executes. 

18.3 I/O, One Character at a Time 
We'll start by examining two of the simplest I/O functions provided by the C 
library. The functions g e t c h a r and p u t c h a r perform input and output on a single 
character at a time. Input is read in as ASCII and output is written out as ASCII, 
in a manner similar to the IN and OUT TRAP routines of the LC-3. 

18.3.1 I/O Streams 
Conceptually, all character-based input and output is performed on streams. The 
sequence of ASCII characters typed by the user at the keyboard is an example 
of an input stream. As each character is typed, it is added to the end of the 
stream. Whenever a program reads keyboard input, it reads from the beginning of 
the stream. The sequence of ASCII characters printed by a program, similarly, is 
added to the end of the output stream. In other words, this stream abstraction allows 
us to further decouple the producer from the consumer, which is helpful because 
the two are usually operating at different rates (see Chapter 8). For example, if a 
program wants to perform some output, it adds characters to the end of the output 
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stream without being required to wait for the output device to finish displaying the 
previous character. Many other popular languages such as C++ provide a similar 
stream-based abstraction for I/O. 

In C the standard input stream is referred to as stdin and is mapped to the 
keyboard by default. The standard output stream is referred to as stdout and is 
mapped by default to the display. The functions getchar and putchar operate 
on these two streams. 

18.3.2 putchar 
The function putchar is the high-level language equivalent of the LC-3 OUT 
TRAP routine. The function putchar displays on the stdout output stream the 
ASCII value of the parameter passed to it. It performs no type conversions—the 
value passed to it is assumed to be ASCII and is added directly to the output stream. 
All the calls to putchar in the following code segment cause the same character 
(lowercase h) to be displayed. A putchar function call is treated like any other 
function call, except here the function resides within the standard library. The 
function declaration for putchar appears in the stdio.h header file. Its code 
will be linked into the executable during the compiler's link phase. 

char c = 'h'; 

putchar(c); 
putchar('h'); 
putchar(104); 

18.3.3 getchar 
The function getchar is the high-level language equivalent of the LC-3 IN TRAP 
function. It returns the ASCII value of the next input character appearing in the 
stdin input stream. By default, the stdin input stream is simply the stream of 
characters typed at the keyboard. In the following code segment, getchar returns 
the ASCII value of the next character typed at the keyboard. This return value is 
assigned to the variable c. 

char c; 

c = getchar(}; 

18.3.4 Buffered I/O 
Run the C code in Figure 18.1 and you will notice something peculiar. The program 
prompts the user for the first input character and waits for that input to be typed in. 
Type in a single character (say z, for example) and nothing happens. The second 
prompt does not appear, as if the call to getchar has missed the keystroke. In 
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1 
o 

#include <stdio.h> 
z 
3 int main( ) 
4 { 
5 char inCharl; 
6 
•7 

char inChar2; 
/ 
8 printf( "Input character 1:\n"] > ; 
9 inCharl = getchar(); 

10 
11 printf( "Input character 2:\n"] 1 ; 
12 inChar2 = getchar(); 
13 
14 printf( "Character 1 is %c\n", inCharl) 
15 printf( "Character 2 is %c\n", inChar2) 
16 } 
Figure 18.1 An example of buffered input 

fact, the program seems to make no progress at all until the Enter key is pressed. 
Such behavior seems unexpected considering that get char is specified to read 
only a single character from the keyboard input stream. 

This unexpected behavior is due to buffering of the keyboard input stream. 
On most computer systems, I/O streams are buffered. Every key typed on the 
keyboard is captured by the low-level operating system software and kept in a 
buffer, which is a small array, until it is released into the input stream. In the case 
of the input stream, the buffer is released when the user presses Enter. The Enter 
key itself appears as a newline character in the input stream. So in the example 
in Figure 18.1, if the user types the character A and presses Enter, the variable 
inChar i will equal the ASCII value of A (which is 65) and the variable inchar2 
will equal the ASCII value of newline (which is 10). 

There is a good reason for buffering, particularly for keyboard input: Pressing 
the Enter key allows the user to confirm the input. Say you mistyped some input 
and wanted to correct it before the program detects it. You can edit what you type 
using the backspace and delete keys, and then confirm your input by pressing 
Enter. 

The output stream is similarly buffered. Observe by running the program in 
Figure 18.2. 

This program uses a new library function called sleep that suspends the 
execution of the program for approximately the number of seconds provided as 
the integer argument, which in this case is 5. This library function requires that 
we include the unistd. h header file. Run this code and you will notice that the 
output of the character a does not happen quite as you might expect. Instead of 
appearing prior to the five-second delay, the character a appears afterwards, only 
after the newline character releases the output buffer to the output stream. We 
say that the putchar ( ' \n') causes output to be flushed. Add a putchar ('\n') 
statement immediately after line 6 and the program will behave differently. 

Despite the slightly complex behavior of buffered I/O streams, the underlying 
mechanism used to make this happen are the IN and OUT TRAP routines described 
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1 #include <stdio.h> 
2 #include <unistd.h> 
3 
4 int main() 
5 { 
6 putchar('a7); 
7 
8 sleep (5) ; 
9 

10 putchar('b'); 
11 putchar('\n'); 
12 } 
Figure 18.2 An example of buffered output 

in Chapter 8. The buffering of streams is accomplished by extra layers of software 
surrounding the IN and OUT service routines. 

18.4 Formatted I/O 
The functions putchar and getchar suffice for simple I/O tasks but are cumber-
some for performing non-ASCII I/O. The functions printf and scanf perform 
more sophisticated formatted I/O, and they are designed to more conveniently 
handle I/O of integer and floating point values. 

18.4.1 printf 
The function printf writes formatted text to the output stream. Using printf, 
we can print out ASCII text embedded with values generated by the running 
program. The printf function takes care of all the type conversions neces-
sary for this to occur. For example, the following code prints out the value 
of integer variable x. In doing so, the printf must convert the integer value 
of x into a sequence of ASCII characters that can be embedded in the output 
stream. 

int x; 

printf("The value is %d\n", x); 

Generally speaking, printf writes its first parameter to the output stream. The 
first parameter is the format string. It is a character string (i.e., of type char*) 
containing text to be displayed on the output device. Embedded within the format 
string are zero or more conversion specifications. 

The conversion specifications indicate how to print out any of the parameters 
that follow the format string in the function call. Conversion specifications all 
begin with a % character. As their name implies, they indicate how the values of 
the parameters that follow the format string should be treated when converted 
to ASCII. In many of the examples we have encountered so far, integers have 
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been printed out as decimal numbers using the %d specification. We could also 
use the %x specification to print integers as hexadecimal numbers, or %b to print 
them as binary numbers (represented as ASCII text, of course). Other conversions 
include: %c causes a value to be interpreted as straight ASCII, the %s specification 
is used for strings and causes characters stored consecutively in memory to be 
output (for this the corresponding parameter is expected to be of type char*). 
The specification %f interprets the corresponding parameter as a floating point 
number and displays it in a floating point format. What if we wanted to print out 
the % character itself? We use the sequence %%. See Appendix D for a full listing 
of conversion specifiers. 

As mentioned in Chapter 11, special characters such as newline can also be 
embedded in the format string. The \n prints a new line and a \ t character prints 
a tab; both are examples of these special characters. All special characters begin 
with a \ and they can appear anywhere within a format string. In order to print 
out a backslash character, we use a \ \ . See Table D.l in the appendix for a list of 
special characters. 

Here are some examples of various format specifications: 

int a = 102; 
int b = 65; 
char c = ' z' ; 
char banner[10] = "Hola!"; 
double pi = 3.14159; 

printf("The variable 'a' decimal : %d\n", a); 
printf("The variable 'a' hex : %x\n", a); 
printf("The variable 'a' binary : %b\n", a); 
printf("'a' plus 'b' as character : %c\n", a + b); 
printf("Char %c.\t String %s\n Float %f\n", c, banner, pi); 

The function printf begins by examining the format string a single character 
at a time. If the current character is not a % or \ , then the character is directly 
written to the output stream. (Recall that the output stream is buffered so the 
output might not appear on the display until a new line is written.) If the character 
is a \ , then the next character indicates the particular special character to print out. 
For instance, the escape sequence \n indicates a newline character. If the current 
character is a %, indicating a conversion specification, then the next character 
indicates how the next pending parameter should be interpreted. For instance, 
if the conversion specification is a %d and the next pending parameter is the bit 
pattern 0000000001101000, then the number 104 is written to the output stream. 
If the conversion character is a %c, then the character h is written. A different value 
is printed if %f is the conversion specification. The conversion specifier indicates 
to print f how the next parameter should be interpreted. It is important to realize 
that, within the printf routine, there is no relationship between a conversion 
specification and the type of a parameter. The programmer is free to choose how 
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things are to be interpreted as they are displayed to the screen. Question: What 
happens with the following function call? 

printf("The value of nothing is %d\n"); 

There is no argument corresponding to the %d specification. When the printf 
routine is called, it assumes the correct number of values were written onto the 
stack, so it blindly reads a value off the stack for the %d spec, assuming it was 
intentionally placed there by the caller. Here, a garbage value is displayed to the 
screen. However, it is displayed in decimal. 

18.4.2 scanf 
The function scanf is used to read formatted ASCII data from the input stream. A 
call to scanf is similar to a call to printf. Both calls require a format string as the 
first argument followed by a variable number of other arguments. Both functions 
are controlled by characters within the format string. The function scanf differs 
in that all arguments following the format string must be pointers. As we discussed 
in Chapter 16, scanf must be able to access the original locations of the objects 
in memory in order to assign new values to them. 

The format string for scanf contains ASCII text and conversion specifi-
cations, just like the format string for printf. The conversion characters are 
similar to those used for printf. A table of these specifications can be found 
in Appendix D. Essentially, the format string represents the format of the input 
stream. For example, the format string "%dn indicates to scanf that the next 
sequence of non-white space characters (white space is defined as spaces, tabs, 
new lines, carriage returns, vertical tabs, and form feeds) is a sequence of digits 
in ASCII representing an integer in decimal notation. After this decimal num-
ber is read from the input stream, it is converted into an integer and stored in 
the corresponding argument. Since scanf modifies the values of the variables 
passed to it, arguments are passed by reference using the & operator. In addi-
tion to conversion specifications, the format string also can contain plain text, 
which scanf tries to match with the input stream. We use the following code to 
demonstrate. 

char name[100]; 
int month, day, year; 
double gpa; 

printf("Enter : lastname birthdate grade_point_average\n"); 
scanf("%s %d/%d/%d %lfn, name, &month, &day, &year, &gpa); 

printf("\n"); 
printf("Name : %s\n", name); 
printf("Birthday : %d/%d/%d\n"/ month, day, year); 
printf("GPA : %f\n", gpa); 
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In this scanf statement, the first specification is a %s that scans a string of 
characters from the input stream. In this context, all characters starting from the 
first non-white space character and ending with the next white space character 
(conceptually, the next word in the input stream) are stored in memory starting 
at the address of name. An \o character is automatically added to signify the 
end of the string. Since the argument name is an array, it is automatically passed 
by reference, that is, the address of the first element of the array is passed to 
scanf. 

The next specification is for a decimal number, %d. Now, scanf expects to find 
a sequence of digits (at least one digit) as the next set of non-white space characters 
in the standard input stream. Characters from standard input are analyzed white 
space characters are discarded, and the decimal number (i.e., a sequence of digits 
terminated by a nondigit) is read in. The number is converted from a sequence of 
ASCII characters into a binary integer and stored in the memory location indicated 
by the argument &month. 

The next input field is the ASCII character / . Now, scanf expects to find 
this character, possibly surrounded by white space, in the input stream. Since this 
input field is not a conversion specification, it is not assigned to any variable. 
Once it is read in from the input stream, it is discarded, and scanf moves onto 
the next field of the format string. Similarly, the next three input fields %d/%d 
read in two decimal numbers separated by a / . These values are converted into 
integers and are assigned to the locations indicated by the pointers appearing as 
the next two arguments (which correspond to the addresses of the variables day 
and year). 

The last field in the format string specifies that the input stream contains a 
long floating point number, which is the specification used to read in a value 
of type double. For this specifier, scanf expects to see a sequence of decimal 
numbers, and possibly a decimal point, possibly an E or e signifying exponential 
notation, in the input stream (see Appendix D.2.4). This field is terminated once 
a nondigit (excluding the first E, or the decimal point or a plus or minus sign 
for the fraction or exponent) or white space is detected. The scanf routine takes 
this sequence of ASCII characters and converts them into a properly expressed, 
double-precision floating point number and stores it into gpa. 

Once it is done processing the format string, scanf returns to the caller. 
It also returns an integer value. The number of format specifications that were 
successfully scanned in the input stream is passed back to the caller. In this case, 
if everything went correctly, scanf would return the value 5. In the preceding 
code example, we chose to ignore the return value. 

So, for example, the following line of input yields the following output: 

Enter : lastname birthdate grade_point_average 
Mudd 02/16/69 3.02 

Name : Mudd 
Birthday : 2/16/69 
GPA : 3.02 
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Since scanf ignores white space for this format string, the following input 
stream yields the same results. Remember, newline characters are considered 
white space. 

Enter : lastname birthdate grade_point_average 
Mudd 02 
/ 
16 / 69 3.02 

Name : Mudd 
Birthday : 2/16/69 
GPA : 3.02 

What if the format of the input stream does not match the format string? For 
instance, what happens with the following stream? 

Enter : lastname birthdate grade_point_average 
Mudd 02 16 69 3.02 

Here, the input stream does not contain the / characters encoded in the format 
string. In this case, scanf returns the value 2, since the variables name and month 
are correctly assigned before the mismatch between the format string and the 
input stream is detected. The remaining variables go unmodified. Since the input 
stream is buffered, unused input is not discarded, and subsequent reads of the 
input stream begin where the last call left off. 

If the next two reads of the input stream are 

a = getchar(); 
b = getchar(); 

what do a and b contain? The answer ' ' (the space character) and i should be 
no surprise. 

18.4.3 Variable Argument Lists 
By now, you might have noticed something different about the functions printf 
and scanf from all other functions we have described thus far. The two functions 
have a variable number of arguments passed to them. The number of arguments 
passed to printf and scanf depends on the number of items being printed or 
scanned. We say such functions have variable argument lists. 

There is a one-to-one correspondence between each conversion specification 
in the format string and each argument that appears after the format string in such 
function calls. The following printf statement is from a previous example: 

printf (!'Char %c.\t String %s\n Float %f\n", c, banner, pi) ; 

The format string contains three format specifications; therefore, three argu-
ments follow it in the function call. The %c spec in the string is associated with the 
first argument that follows (the variable c). The %s is associated with banner, and 
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printf("%d %d %d\n", x, z) ; 

xOOOO 

xFFFF 

ptr to format string 

Parameters for 
printf 

Activation record 
for previous function 

ptr to format string 

(a) (b) 

Figure 18.3 Subfigure (a) shows the stack if the arguments to the printf call are pushed 
from right to left. Subfigure (b) shows the stack if the arguments are pushed left 
to right. 

%f with pi. There are three values to be printed; therefore, this call contains four 
arguments altogether. If we want to print five values, the function call contains 
six arguments. 

Recall from Chapter 14 that our LC-3 calling convention pushed items onto 
the run-time stack from right to left of the order in which they appear on the 
function call. This places the pointer to the format string immediately at the top 
of the stack when printf or scanf takes over. Since it is the leftmost argument, 
it will always be the last item pushed onto the stack before the function call 
occurs. Once printf or scanf takes over, they can access the first parameter 
directly off the top of the stack. Once this parameter (which is the format string) 
is analyzed, the functions can determine the other parameters on the stack. If the 
arguments on a function call were pushed from left to right, it would be much 
more difficult for printf and scanf to discern the location of the format string 
parameter. Figure 18.3 shows two diagrams of the run-time stack. In diagram (a), 
the arguments to the call for printf are passed from right to left and in (b) from 
left to right. Consider for which case the resulting LC-3 code for printf will 
be simpler. In version (a), the offset of the format string from the stack pointer 
will always be zero, regardless of the number of other parameters on the stack. 
In version (b), the offset of the format string from the stack pointer depends on 
the number of parameters on the stack. 

The format string, like all other strings embedded within a program's source 
code, is stored in a special region of memory reserved for constants, or literal 
values. 
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18.5 I/O from Files 
Say we wanted to process a large set of data, such as the daily closing price of 
IBM stock for the last 20 years. To ask the user to type this via keyboard would 
render it very "user-unfriendly." Instead, we would want the program to read the 
data off a file on disk, and possibly write its output to disk. I/O in C is based on 
streams, as we described earlier, and these streams are conceptually all bound 
to files. 

That is, the functions printf and scanf are in actuality special cases of more 
general-purpose C I/O functions. These two functions operate specifically on two 
special files called stdin and stdout. In C, stdin and stdout are mapped by 
default to the keyboard and the display. 

The general-purpose version of printf is called f printf, and the general-
purpose version of scanf is called f scanf. The functions fprintf and f scanf 
work like their counterparts, with the main difference being that they allow us to 
specify the stream on which they act. For example, we can inform fprintf 
to write its output to a specific file on disk. Let's examine how this can be 
accomplished. 

Before we can perform file I/O, we need to declare a file pointer for each 
file we want to manipulate. Typically, files are stored on the file system of the 
computer system. In C, we can declare a file pointer called inf ile as follows: 

FILE *infile; 

Here we are declaring a pointer to something of type FILE. The type FILE 
is defined within the header file stdio.h. Its details are not important for our 
discussion. 

Once the file pointer is declared, we need to map it to a file on the computer's 
file system. The C library call fopen performs this mapping. Each fopen call 
requires two arguments: the name of the file to open and the description of what 
type of operation the we want to perform on the file. To follow is an example. 

FILE * infile; 

infile = fopen("ibm_stock_prices", "r"); 

The first argument to fopen is the string ibm stock prices, which is the 
name of the file to open. The second argument is the operation we want to perform 
on this file. Several useful modes are " r11 for reading," wH for writing (a file opened 
with this mode will lose its previous contents), "a" for appending (here, previous 
contents are not lost; new data is added to the end of the file), nr+" for reading 
and writing. Note that both arguments must be character strings; therefore, they 
are surrounded by double quotes in this example. In this case, we are opening the 
file called (libm_stock_prices" for reading. 

If the fopen call is successful, the function returns a file pointer to the physical 
file. If the open for some reason fails (such as the file could not be found), then 
the function returns a null pointer. Recall that a null pointer is an invalid pointer 
that has the value NULL. It is always good practice to check if the fopen call was 
successful. 
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FILE *infile; 

infile = fopen("ibm_stock_prices", "r"); 

if (infile == NULL) 
printf("fopen unsuccessful!\n"); 

Now with the file pointer properly mapped to a physical file, we can use 
f scanf and fprintf to read and write it just as we used printf and scanf to 
read the standard devices. The functions f scanf and fprintf both require a file 
pointer as their first argument to indicate on which stream the operations are to 
be performed. The example in Figure 18.4 demonstrates. 

Here, we are reading from an ASCII text file called ibm stock prices and 
writing to a file called buy ho l d or s ell. The input file contains a floating point 

1 #include <stdio.h> 
2 #define LIMIT 10000 
3 
4 int main() 
5 { 
6 
7 FILE *infile; 
8 FILE *outfile; 
9 double prices[LIMIT]; 

10 char answer[10]; 
11 int i = 0; 
12 
13 infile = fopen("ibm_stock_jprices", MrM); 
14 outfile = fopen("buy_hold_or_selln, "w"); 
15 
16 if (infile != NULL && outfile != NULL) { 
17 /* Read the input data */ 
18 while ((fscanf(infile, M%lfM, &prices[i]) != EOF) && i < LIMIT) 
19 i++; 
20 
21 printf("%d prices read from the data file", i); 
22 
23 /* Process the data... */ 
24 : 
25 : 
26 
27 
2 8 /* Write the output */ 
29 fprintf(outfile, "%sH, answer); 
30 } 
31 else { 
32 printf("fopen unsuccessful!\n"); 
3 3 } 
34 } 
Figure 18.4 An example of a program that performs file 1/0 
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data item separated by white space. Even though the file can contain more, at most 
10,000 items are read by this program using f scanf. The f scanf function returns 
a special value when no more data can be read from the input file, indicating the 
end of file has been reached. We can check the return value of f scanf against this 
special character, which is defined to the preprocessor macro EOF. The condition 
on the while loop causes it to terminate if EOF is encountered or if the limit of 
input values is exceeded. After reading the input file, the program processes the 
input data, and the output file is written with the value of the string answer. 

The function printf is equivalent to calling fprintf using stdout as the 
file pointer. Likewise, scanf is equivalent to calling f scanf using stdin. 

18.6 Summoni 
In this chapter, we examined the C facilities for performing input and output. 
Like many other current programming languages, C provides no direct support 
for input and output. Rather, standard library functions are provided for I/O. At 
their core, these functions perform I/O one character at a time using the IN and 
OUT routines supported by the underlying machine. 

The key concepts that you should take away from this chapter are: 

• Input and output on streams. Modern programming languages create a 
useful abstraction for thinking about I/O. Input and output occur on streams. The 
producer adds data to the stream, and the consumer reads data from the stream. 
With this relationship, both can operate at their own rate without waiting for the 
other to be ready to conduct the I/O. For example, a program generating output 
for the display writes data into the output stream without necessarily waiting for 
the display to keep pace. 

• The four basic I/O functions. We discuss the operation, at a fairly detailed 
level, of four basic I/O functions: putchar, getchar, printf, and scanf. The 
latter two functions require the use of variable argument lists, which our LC-3 
calling convention can easily handle because of the order in which we push 
arguments onto the run-time stack. 

• File I/O. C treats all I/O streams as file I/O. Functions like printf and scanf 
are special cases where the I/O files are the standard output and input devices. The 
more general functions fprintf and fscanf enable us to specify a file pointer 
to which the corresponding operations are to be performed. We can bind a file 
pointer to a physical file on the file system using f open. 
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18.1 Write an I/O function call to handle the following tasks. All can be 
handled by a single call. 

a. Print out an integer followed by a string followed by a floating point 
number. 

b. Print out a phone number in (XXX)-XXX-XXXX format. Internally, 
the phone number is stored as three integers. 

c. Print out a student ID number in XXX-XX-XXXX format. 
Internally, the ID number is stored as three character strings. 

d. Read a student ID number in XXX-XX-XXXX format. The number 
is to be stored internally as three integers. 

e. Read in a line of input containing Last name, First name, 
Middle initial age sex. The name fields are separated by 
commas. The middle initial and sex should be stored as characters. 
Age is an integer. 

18.2 What does the value returned by scanf represent? 

18.3 Why is buffering of the keyboard input stream useful? 

18.4 What must happen when a program tries to read from the input stream 
but the stream is empty? 

18.5 Why does the following code print out a strange value (such as 
1073741824)? 

float x = 192 .27163; 
printf("The value of x is %d\n", x); 

18.6 What is the value of input for the following function call: 

scanf("%d", &input); 

if the input stream contains 

This is not the input you are looking for. 
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18.7 Consider the following program: 

#include <stdio.h> 

int main{) 
{ 

int x = 0; 
int y - 0; 
char label [10] ; 

scanf("%d %d", &x, &y); 
scanf("%s", label); 

printf("%d %d %s\n", x, y, label); 
} 

a. What gets printed out if the input stream is 46 2 9 BlueMoon? 
b. What gets printed out if the input stream is 4 6 BlueMoon? 
c. What gets printed out if the input stream is in 999 888? 

18.8 Write a program to read in a C source file and write it back to a file 
called "condensed program" with all white space removed. 

18.9 Write a program to read in a text file and provide a count of 

a. The number of strings in the file, where a string begins with a 
non-white space character and ends with a white space character. 

b. The number of words in the file, where a word begins with an 
alphabetic character (e.g., a-z or A-Z) and ends with a 
nonalphabetic character. 

c. The number of unique words in the file. Words are as defined in 
Part b. The set of unique words has no duplicates. 

d. The frequency of words in order of most frequent to least frequent. 
In other words, analyze the text file, count the number of times each 
word occurs, and display these counts from most frequent word to 
least frequent. 



c h a p r e r 

19 

D a l a S t r u c t u r e s 

19.1 Introduction 
C, at its core, provides support for three fundamental types of data: integers, 
characters, and floating point values.1 That is, C natively supports the allocation 
of variables of these types and natively supports operators that manipulate these 
types, such as + for addition and * for multiplication. As we traversed the topics in 
the second half of this textbook, we saw the need for extending these basic types 
to include pointers and arrays. Both pointers and arrays are derived from the three 
fundamental types. Pointers point to one of the three types; we can declare arrays 
of int, char, or double. 

Ultimately, though, the job of the programmer is to write programs that deal 
with real-world objects, such as an aircraft wing or a group of people or a pod 
of migrating whales. The problem lies in the reality that integers, characters, and 
floating point values are the only things that the underlying computing system 
can deal with. The programmer must map these real-world objects onto these 
primitive types, which can be burdensome. But the programming language can 
assist in making that bridge. Providing support for describing real-world objects 
and specifying operations upon them is the basis for object orientation. 

Orienting a program around the objects that it manipulates rather than the 
primitive types that the hardware supports is the basic precept of object-oriented 
programming. We take a small step toward object orientation in this chapter by 
examining how a C programmer can build a type that is a combination of the 

1 Enumerations are another fundamental type that are closely tied to integer types. 
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more basic types. This aggregation is called a structure in C. Structures pro-
vide the programmer with a convenient way of representing objects that are 
best represented by multiple values. For example, an employee might be rep-
resented as a structure containing a name (character string), job title (character 
string), department (perhaps integer), and employee ID (integer) within a corpo-
rate database program. In devising such a database program we might use a C 
structure. 

The main theme of this chapter is C's support for advanced data structures. 
First, we examine how to create structures in C and examine a simple program 
that manipulates an array of structures. Second, we examine dynamic memory 
allocation in C. Dynamic allocation is not directly related to the concept of struc-
tures, but it is a component we use for the third item of this chapter, linked lists. 
A linked list is a fundamental (and common) data organization that is similar to 
an array—both store collections of data items—but has a different organization 
for its data items. We will look at functions for adding, deleting, and searching 
for data items within linked lists. 

19.2 Structures 
Some things are best described by an aggregation of fundamental types. For 
such objects, C provides the concept of structures. Structures allow the pro-
grammer to define a new type that consists of a combination of fundamental 
data items such as int, char, and double, as well as pointers to them and 
arrays of them. Structure variables are declared in the same way variables of 
fundamental data types are declared. Before any structure variables are declared, 
however, the organization and naming of the data items within the structure must 
be defined. 

For example, in representing an airborne aircraft, say for a flight simulator or 
for a program that manages air traffic over Chicago, we would want to describe 
several flight characteristics that are relevant for the application at hand. The air-
craft's flight number is useful for identification, and since this would typically be 
a sequence of digits and characters, we could use a character string for represent-
ing it. The altitude, longitude, latitude, and heading of the flight are also useful, 
all of which we might store as integers. Airspeed is another characteristic that 
would be important, and it is best represented as a double-precision floating point 
number. Following are the variable declarations for describing a single aircraft in 
flight. 

char flightNum[7]; /* Max 6 characters */ 
int altitude; /* in meters */ 
int longitude; /* in tenths of degrees */ 
int latitude; /* in tenths of degrees */ 
int heading; /* in tenths of degrees */ 
double airspeed; /* in kilometers/hour */ 
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If the program modeled multiple flights, we would need to declare a copy of 
these variables for each one, which is tedious and could result in excessively long 
code. C provides a convenient way to aggregate these characteristics into a single 
type via the struct construct, as follows: 

struct flightType { 
char flightNum[7]; /* Max 6 characters */ 
int altitude; /* in meters */ 
int longitude; /* in tenths of degrees */ 
int latitude; /* in tenths of degrees */ 
int heading; /* in tenths of degrees */ 
double airspeed; /* in kilometers/hour */ 

} ; 

In the preceding declaration, we have created a new type containing six 
member elements. We have not yet declared any storage; rather we have indicated 
to the compiler the composition of this new type. We have given the structure the 
tag f lightType, which is necessary for referring to the structure in other parts 
of the code. 

To declare a variable of this new type, we do the following: 

struct flightType plane; 

This declares a variable called plane that consists of the six fields defined in the 
structure declaration but otherwise gets treated like any other variable. 

We can access the individual members of this structure variable using the 
following syntax: 

struct flightType plane; 

plane.airspeed = 800.00; 
plane.altitude = 10000; 

Each member can be accessed using the variable's name as the base name followed 
by a dot . followed by the member name. 

The variable declaration plane gets allocated onto the stack if it is a local 
variable and occupies a contiguous region of memory large enough to hold all 
member elements. In this case, if each of the fundamental types occupies one 
LC-3 memory location, the variable plane would occupy 12 locations. 

The allocation of the structure is straightforward. A structure is allocated 
the same way a variable of a basic data type is allocated: locals (by default) 
are allocated on the run-time stack, and globals are allocated in the global data 
section. Figure 19.1 shows a portion of the run-time stack when a function that 
contains the following declarations is invoked. 

int x; 
struct airplaneType plane; 
int y; 
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Run-time stack 

t 
y 

plane.flightNum[0] 
plane.flightNum[1] 
plane.flightNum[2] 
plane.flightNum[3] 
plane.flightNum[4] 
plane.flightNum[5] 
plane.flightNum[6] 
plane.altitude 
plane.longitude 
plane.latitude 
plane.heading 
plane.airspeed 

x 

Figure 19.1 The run-time stack showing an allocation of a variable of structure type 

Generically, the syntax for a structure declaration is as follows: 

struct tag { 
typel memberl; 
type2 member2; 

typeN memberN 
} identifiers; 

The tag provides a handle for referring to the structure later in the code, as in 
the case of later declaring variables of the structure's format. The list of members 
defines the organization of a structure and is syntactically a list of declarations. 
A member can be of any type, including another structure type. Finally, we can 
optionally include identifiers in a structure's declaration to actually declare vari-
ables of that structure's type. These appear after the closing brace of the structure 
declaration, prior to the semicolon. 

19.2.1 typedef 
C structures enable programmers to define their own types. C typedef allows 
programmers to name their own types. It has the general form 

typedef type name; 
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This statement causes the identifier name to be synonymous with the type type, 
which can be any basic type or aggregate type (e.g., a structure). So for instance, 

typedef int Color; 

allows us to define variables of type Color, which will now be synonymous 
with integer. Using this definition, we can declare (for a bitmapped image, for 
example): 

Color pixels [500]; 

The typedef declaration is particularly useful when dealing with structures. 
For example, we can create a name for the structure we defined earlier: 

struct flightType { 
char flightNum[7]; / * Max 6 characters * / 
int altitude; / * in meters * / 
int longitude; / * in tenths of degrees * / 
int latitude; / * in tenths of degrees * / 
int heading; / * in tenths of degrees * / 
double airspeed; / * in kilometers/hour * / 

typedef struct flightType Flight; 

Now we can declare variables of this type by using the type name Flight. 
For example, 

Flight plane; 

is now equivalent to the declaration struct f lightType plane; that we used 
previously. 

The typedef declaration provides no additional functionality. However, it 
gives clarity to code, particularly code heavy with programmer-defined types. 
Well-chosen type names connote properties of the variables they declare even 
beyond what can be expressed by the names of the variables themselves. 

19.2.2 Implementing Structures in C 
Now that we have seen the technique for declaring and allocating variables of 
structure type (and have given them new type names), we focus on accessing the 
member fields and performing operations on them. For example, in the following 
code, the member altitude of the structure variable of type Flight is accessed. 
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int x ; 
Flight plane; 
int y; 

plane.altitude = 0; 

Here, the variable plane is of type Flight, meaning it contains the six 
member fields we defined previously. The member field labeled altitude is 
accessed using the variable's name followed by a period, followed by the member 
field label. The compiler, knowing the layout of the structure, generates code that 
accesses the structure's member field using the appropriate offset. Figure 19.1 
shows the layout of the portion of the activation record for this function. The 
compiler keeps track, in its symbol table, of the position of each variable in 
relation to the base pointer R5, and if the variable is an aggregate data type, it also 
tracks the position of each field within the variable. Notice that for the particular 
reference plane. altitude = o , the compiler must generate code to access the 
second variable on the stack and the second member element of that variable. 

Following is the code generated by the LC-3 C compiler for the assignment 
statement plane, altitude = o ; . 

AND Rl, Rl, #0 ; zero out Rl 

ADD RO, R5, #-12 ; RO contains base address of plane 
STR Rl, RO, #7 ; plane.altitude = 0; 

19.3 flrraqs of S t r u c t u r e s 
Let's say we are writing a piece of software to determine if any flights over the 
skies of Chicago are in danger of colliding. For this program, we will use the 
F l i g h t type that we previously defined. If the maximum number of flights that 
will ever simultaneously exist in this airspace is 100 planes, then the following 
declaration is appropriate: 

Flight planes[100]; 

This declaration is similar to the simple declaration int d [100], except instead 
of declaring 100 integer values, we have declared a contiguous region of memory 
containing 100 structures, each of which is composed of the six members indicated 
in the declaration struct f lightType. The reference planes [123, for example, 
would refer to the thirteenth object in the region of 100 such objects in memory. 
Each object contains enough storage for its six constituent member elements. 

Each element of this array is of type Flight and can be accessed using 
standard array notation. For example, accessing the flight characteristics of the 
first flight can be done using the identifier plane [0]. Accessing a member 
field is done by accessing an element of the array and then specifying a field: 
plane to] . heading. The following code segment provides an example. It finds 
the average airspeed of all flights in the airspace monitored by the program. 
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int i; 
double sum = 0; 
double averageAirSpeed; 

for (i = 0; i < 100; i++) 
sum = sum + plane[i].airspeed; 

averageAirSpeed = sum / 100; 

We can also create pointers to structures. The following declaration creates a 
pointer variable that contains the address of a variable of type Flight. 

Flight *planePtr; 

We can assign this variable as we would any pointer variable. 

planePtr = &plane[34]; 

If we want to access any of the member fields pointed to by this pointer 
variable, we could use an expression such as the following: 

(*planePtr).longitude 

With this cumbersome expression, we are dereferencing the variable planePtr. It 
points to something of type Flight. Therefore when planePtr is dereferenced, 
we are accessing an object of type FI ight. We can access one of its member fields 
by using the dot operator ( .) . As we shall see, refering to a structure with a pointer 
is a common operation, and since this expression is not very straightforward 
to grasp, a special operator has been defined for it. The previous expression is 
equivalent to 

planePtr->longitude 

That is, the expression -> is like the deference operator *, except it is used for 
deferencing member elements of a structure type. 

Now we are ready to put our discussion of structures to use by presenting 
an example of a function that manipulates an array of structures. This example 
examines the 100 flights that are airborne to determine if any pair of them are 
potentially in danger of colliding. To do this, we need to examine the position, 
altitude, and heading of each flight to determine if there exists the potential of 
collision. In Figure 19.2, the function PotentialCollisions calls the function 
Collide on each pair of flights to determine if their flight paths dangerously 
intersect. (This function is only partially complete; it is left as an exercise for you 
to write the code to more precisely determine if two flight paths intersect.) 

Notice that PotentialCollisions passes Collide two pointers rather than 
the structures themselves. While it is possible to pass structures, passing pointers 
is likely to be more efficient because it involves less pushing of data onto the 
run-time stack; that is, in this case two pointers are pushed rather than 24 locations' 
worth of data for two objects of type Flight. 
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1 #include <stdio.h> 
2 #define TOTAL_FLIGHTS 100 
3 
4 /* Structure definition */ 
5 struct flightType { 
6 char flightNum[7]; / * Max 6 characters * / 
7 int altitude; / * in meters * / 
8 int longitude; / * in tenths of degrees * / 
9 int latitude; / * in tenths of degrees * / 

10 int heading; / * in tenths of degrees * / 
11 double airspeed; / * in kilometers/hour * / 
12 } ; 
13 
14 typedef struct flightType Flight; 
15 
16 int Collide(Flight *planeA, Flight *planeB); void 
17 PotentialCollisions(Flight planes []) ; 
18 
19 int Collide(Flight *planeA, Flight *planeB) 
20 { 
21 if (planeA->altitude == planeB->altitude) { 
22 
23 /** More logic to detect collision goes here **/ 
24 } 
25 else 
26 return 0; 
27 } 
28 
29 void PotentialCollisions(Flight planes []) 
30 { 
31 int i; 
3 2 int j; 
33 
34 for (i = 0; i < TOTAL_FLIGHTS; i++) { 
35 for (j = 0; j < TOTAL_FLIGHTS; j++) { 
36 if (Collide(&planes[i], &planes[j])) 
37 printf("Flights %s and %s are on collision course I\n" 
38 planes[i].flightNum, planes[j].flightNum); 
39 } 
40 } 
41 } 
F i g u r e 1 9 . 2 An example function based on the structure Flight 

19.4 D p m i c Memorq Allocation 
Memory objects (e.g., variables) in C programs are allocated to one of three 
spots in memory: the run-time stack, the global data section, or the heap. Vari-
ables declared local to functions are allocated during execution onto the run-time 
stack by default. Global variables are allocated to the global data section and are 
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accessible by all parts of a program. Dynamically allocated data objects—objects 
that are created during run-time—are allocated onto the heap. 

In the previous example, we declared an array that contained 100 objects, 
where each object was an aircraft in flight. But what if we wanted to create a 
flexible program that could handle as many flights as were airborne at any given 
moment, whether it be 2 or 20,000? One possible solution would be to declare 
the array assuming a large upper limit to the number of flights the program might 
encounter. This could result in a lot of potentially wasted memory space, or 
worse, we might underestimate the number of flights, which could have potentially 
devastating repercussions. A better solution is to dynamically adapt the size of 
the array based on the number of planes in the air. To accomplish this, we rely on 
the concept of dynamic memory allocation. 

In a nutshell, dynamic memory allocation works as follows: A piece of 
code called the memory allocator manages an area of memory called the heap. 
Figure 19.3 is a copy of Figure 12.7; it shows the relationship of the various 
regions of memory, including the heap. During execution, a program can make 
requests to the memory allocator for contiguous pieces of memory of a particular 

xOOOO 

Program text 
PC 

R4 

Global data section 

Heap 
(for dynamically allocated memory) 

Run-time stack 

•<- - R 6 (stack pointer) 
-R5 (frame pointer) 

xFFFF 

Figure 19.3 The LC-3 memory map showing the heap region of memory 
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size. The memory allocator then reserves this memory and returns a pointer to 
the newly reserved memory to the program. For example, if we wanted to store 
1,000 flights' worth of data in our air traffic control program, we could request 
the allocator for this space. If enough space exists in the heap, the allocator will 
return a pointer to it. Notice that the heap and the stack both grow toward each 
other. The size of the stack is based on the depth of the current function call, 
whereas the size of the heap is based on how much memory the memory allocator 
has reserved for the requests it has received. 

A block of memory that is allocated onto the heap stays allocated until 
the programmer explicitly deallocates it by calling the memory deallocator. The 
deallocator adds the block back onto the heap for subsequent reallocation. 

19.4.1 Dynamically Sized Arrays 
Dynamic allocation in C is handled by the C standard library functions. In partic-
ular, the memory allocator is invoked by the function malloc. Let's take a look 
at an example that uses the function malloc: 

int airbornePlanes; 
Flight *planes; 

printf("How many planes are in the air?"); 
scanf("%d", ^airbornePlanes); 

planes = malloc(24 * airbornePlanes); 

The function malloc allocates a contiguous region 
of the size in bytes indicated by the single parameter, 
unclaimed memory and the call is successful, malloc 
allocated region. 

Here we allocate a chunk of memory consisting of 24 * airbornePlane 
bytes, where airbornePlanes is the number of planes in the air as indicated 
by the user. What about the 24? Recall that the type Flight is composed of six 
members—an array of 7 characters, 4 integers, and a double, each occupy a single 
two-byte location on the LC-3. Each structure requires 24 bytes of memory. As a 
necessary convenience for programmers, the C language supports a compile-time 
operator called sizeof. This operator returns the size, in bytes, of the memory 
object or type passed to it as an argument. For example, sizeof (Flight) will 
return the number of bytes occupied by a variable of type Flight, or 24. The 
programmer does not need to calculate the sizes of various data objects; the 
compiler can be instructed to perform the calculation. 

If all the memory on the heap has been allocated and the current allocation 
cannot be accomplished, malloc returns the value NULL. Recall that the symbol 
NULL is a preprocessor macro symbol, defined to a particular value depending on 
the computer system, that represents a null pointer. It is good programming prac-
tice to check that the return value from malloc indicates the memory allocation 
was successful. 

of memory on the heap 
If the heap has enough 
returns a pointer to the 
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The function maiioc returns a pointer. But what is the type of the pointer? In 
the preceding example, we are treating the pointer that is returned by mai loc as a 
pointer to some variable of type Flight. Later we might use malloc to allocate an 
array of integers, meaning the return value will be treated as an int *. To enable 
this, mai loc returns a generic data pointer, or void *, that needs to be type cast to 
the appropriate form upon return. That is, whenever we call the memory allocator, 
we need to instruct the compiler to treat the return value as of a different type than 
was declared. 

In the preceding example, we need to type cast the pointer returned by malloc 
to the type of the variable to which we are assigning it. Since we assigned the 
pointer to planes, which is of type Flight *, we therefore cast the pointer to 
type Flight *. To do otherwise makes the code less portable across different 
computer systems; most compilers generate a warning message because we are 
assigning a pointer value of one type to a pointer variable of another. Type casting 
causes the compiler to treat a value of one type as if it were of another type. To 
type cast a value from one type to a newType, we use the following syntax. The 
variable var should be of newType. For more information on type casting, refer 
to section D.5.11. 

var = (newType) expression; 

Given type casting and the sizeof operation and the error checking of the 
return value from malloc, the correct way to write the code from the previous 
example is: 

int airbornePlanes; 
Flight *planes; 

printf("How many planes are in the air?"); 
scanf (nd", ^airbornePlanes) ; 

/* A more correctly written call malloc */ 
planes = (Flight *) malloc(sizeof(Flight) * airbornePlanes); 
if (planes = = NULL) { 

printf("Error in allocating the planes array\n"); 

} 
plane [0] .altitude = ... 

Since the region that is allocated by malloc is contiguous in memory, we 
can switch between pointer notation and array notation. Now we can use the 
expression planes [29] to access the characteristics of the 30th aircraft (pro-
vided that airbornePlanes was larger than 30, of course). Notice that we 
smoothly switched from pointer notation to array notation; this flexibility has 
helped make C a very popular programming language. Other derivative languages, 
C++ in particular, keep this duality between pointers to contiguous memory and 
arrays. 

The function malloc is only one of several memory allocation functions in 
the standard library. The function cal loc allocates memory and initializes it to the 
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value 0. The function reaiioc attempts to grow or shrink previously allocated 
regions of memory. To use the memory allocation functions of the C standard 
library, we need to include the stdlib.h header file. Can you use realloc to 
create an array that adapts to the size of the data size—for example, write a 
function AddPlane () that adds a plane if the current size of the planes is too 
small? Likewise, write the function DeletePlane () when the size of the array 
is larger than what is required. 

A very important counterpart to the memory allocation functions is a function 
to deallocate memory and return it to the heap. This function is called free. It 
takes as its parameter a pointer to a region that was previously allocated by mai loc 
(or calloc or realloc) and deallocates it. After a region has been free'd, it is 
once again eligible for allocation. Why is deallocation necessary? As we shall 
see, there is a class of data structures that dynamically grow and shrink as the 
program executes. For the shrinking operation, we put allocated memory back on 
the heap so that we can use it again in subsequent allocations. 

19.5 L inhed Lists 
Having discussed the notion of structures and the concept of dynamic memory 
allocation, we are now ready to introduce a fundamental data structure that is 
pervasive in computing. A linked list is similar to an array in that both can be 
used to store data that is best represented as a list of elements. In an array, each 
element (except the last) has a next element that follows it sequentially in memory. 
Likewise in a linked list, each element has a next element, but the next element 
need not be sequentially adjacent in memory. Rather, each element contains a 
pointer to the next element. 

A linked list is a collection of nodes, where each node is one "unit" of data, 
such as the characteristics of an airborne aircraft from the previous section. In a 
linked list we connect these nodes together using pointers. Each node contains 
a pointer element that points to the next node in the list. Given a starting node, 
we can go from one node to another by following the pointer in each node. To 
create these nodes, we rely on C structures. A critical element for the structure that 
defines the nodes of a linked list is that it contains a member element that points 
to nodes like itself. The following code demonstrates how this is accomplished. 
We use the F l i g h t type we defined in the previous sections. Notice that we have 
added a new member element to the structure definition. It is a pointer to a node 
of the same type. 

typedef struct flightType Flight; 
struct flightType { 

char f 1'ightNum [7] ; / * Max 6 characters * / 
int altitude; / * in meters * / 
int longitude; / * in tenths of degrees * / 
int latitude; / * in tenths of degrees * / 
int heading; / * in tenths of degrees * / 
double airspeed; / * in kilometers/hour * / 
Flight *next; 
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A linked list in abstract form 

Head jail 

NULL 

A linked list in memory 

Like an array, a linked list has a beginning and an end. Its beginning, or head, 
is accessed using a pointer called the head pointer. The final node in the list, or 
tail, points to the NULL value. Figure 19.4 shows two representations of a linked 
list data structure: an abstract depiction where nodes are represented as blocks 
and pointers are represented by arrows, and a more physical representation that 
shows what the data structure might look like in memory. 

Despite their similarities, arrays and linked lists have fundamental differ-
ences. An array can be accessed in random order. We can access element number 
4, followed by element 911, followed by 45, for example. A simple linked list 
must be traversed sequentially starting at its head. If we wanted to access node 29, 
then we must start at node 0 (the head node) and then go to node 1, then to node 2, 
and so forth. But linked lists are dynamic in nature; additional nodes can be added 
or deleted without movement of the other nodes. While it is straightforward to 
dynamically size an array (see Section 19.4.1 on using malloc), it is much more 
costly to remove a single element in an array, particularly if it lies in the middle. 
Consider, for example, how you would remove the information for a plane that 
has just landed from the air traffic control program from Section 19.3. With a 
linked list we can dynamically add nodes to make room for more data, and we 
can delete nodes that are no longer required. 
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19.5.1 An Example 
Say we want to write a program to manage the inventory at a used car lot. 
At the lot, cars keep coming and going, and the database needs to be updated 
continually—a new entry is created whenever a car is added to the lot and 
an entry deleted whenever a car is sold. Furthermore, the entries are stored in 
order by vehicle identification number so that queries from the used car sales-
people can be handled quickly. The information we need to keep per car is as 
follows: 

int vehiclelD; / * Unique identifier for a car */ 
char make[2 0]; / * Manufacturer * / char model[20]; / * Model name * / int year; / * Year of manufacture * / int mileage; / * in miles * / double cost; / * in dollars * / 

Car *next; / * Points to a car node * / 

In reality, a vehicle ID is a sequence of characters and numbers and cannot 
be stored as a single int, but we store it as an integer to make the example 
simpler. 

The frequent operations we want to perform—adding, deleting, and searching 
for entries—can be performed simply and quickly using a linked list data structure. 
Each node in the linked list contains all the information associated with a car in 
the lot, as shown. We can now define the node structure, which is then given the 
name CarNode using typedef: 

typedef struct carType Car; 

struct carType { 
int vehiclelD; / * Unique identifier for a car * / 
char make[20]; / * Manufacturer * / char model[2 0]; / * Model name * / int year; / * Year of manufacture * / int mileage; / * in miles * / double cost; / * in dollars * / 

Car *next; / * Points to a car node * / 

Notice that this structure contains a pointer element that points to something 
of the same type as itself, or type Car. We will use this member element to point 
to the next node in the linked list. If the next field is equal to NULL, then the node 
is the last in the list. 
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1 int main() 
2 { 
3 int op = 0; /* Current operation to be performed. */ 
4 Car carBase; /* carBase an empty head node */ 
5 
6 carBase.next = NULL; /* Initialize the list to empty */ 
7 
8 printf(M=========================\n"); 
9 printf("=== Used car database ===\n"); 

10 printf(»=========================\n\nn); 
11 
12 while (op != 4) { 
13 printf("Enter an operation:\n"); 
14 printf("1 - Car aquired. Add a new entry for it.\nM); 
15 printf("2 - Car sold. Remove its entry.\nM); 
16 printf("3 - Query. Look up a car's information.\n"); 
17 printf("4 - Quit.\n"); 
18 scanf("%dM, &op); 
19 
20 if (op == 1) 
21 AddEntry(&carBase); 
22 else if (op == 2) 
23 DeleteEntry(&carBase); 
24 else if (op == 3) 
25 Search(&carBase); 
26 else if (op == 4) 
27 printf("Goodbye.\n\nM); 
28 else 
29 printf("Invalid option. Try again.\n\n"); 
30 } 
31 } 
Figure 19.5 The function main for our used car database program 

Now that we have defined the elementary data type and the organization of 
data in memory, we want to focus on the flow of the program, which we can do 
by writing the function main. The code is listed in Figure 19.5. 

With this code, we create a menu-driven interface for the used car database. 
The main data structure is accessed using the variable carBase, which is of type 
CarNode. We will use it as a dummy head node, meaning that we will not be 
storing any information about any particular car within the fields of carBase; 
instead, we will use carBase simply as a placeholder for the rest of the linked 
list. Using this dummy head node makes the algorithms for inserting and deleting 
slightly simpler because we do not have to deal with the special case of an empty 
list. Initially, carBase.next is set equal to NULL, indicating that no data items 
are stored in the database. Notice that we pass the address of carBase whenever 
we call the functions to insert a new car in the list (AddEntry), to delete a car 
(DeleteEntry), and to search the list for a particular car (search). 
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1 Car *ScanList(Car *headPointer, int searchID) 
2 { 
3 Car *previous; 
4 Car *current; 
5 
6 /* Point to start of list */ 
7 previous = headPointer; 
8 current = headPointer->next; 
9 

10 /* Traverse list -- scan until we find a node with a */ 
11 /* vehiclelD greater than or equal to searchID */ 
12 while ((current 1= NULL) && 
13 (current->vehicleID < searchID)) { 
14 previous = current; 
15 current = current->next; 
16 } 
17 
18 /* The variable previous points to node prior to the */ 
19 /* node being searched for. Either current->vehicleID */ 
20 /* equals searchID or the node does not exist. */ 
21 return previous; 
22 } 

Figure 19.6 A function to scan through the linked list for a particular vehicle ID 

As we shall see, the functions AddEntry, DeleteEntry, and search all rely 
upon a basic operation to be performed on the linked list: scanning the list to find 
a particular node. For example, when adding the entry for a new car, we need to 
know where in the list the entry should be added. Since the list is kept in sorted 
order of increasing vehicle ID numbers, any new car node added to the list must be 
placed prior to the first existing node with a larger vehicle ID. To accomplish this, 
we have created a support function called ScanList that traverses the list (which 
is passed as the first argument) searching for a particular vehicle ID (passed as 
the second argument). ScanList always returns a pointer to the node just before 
the node for which we are scanning. If the node we are scanning for is not in the 
list, then ScanList returns a pointer to the node just prior to the place in the list 
where the node would have resided. Why does ScanList return a pointer to the 
previous node? As we shall see, passing back the previous node makes inserting 
new nodes easier. The code for ScanList is listed in Figure 19.6. 

Next we will examine the function to add a newly acquired car to the database. 
The function AddEntry gets information from the user about the newly acquired 
car and inserts a node containing this information into the proper spot in the linked 
list. The code is listed in Figure 19.7. The first part of the function allocates a 
carNode-sized chunk of memory on the heap using mai loc. If the allocation fails, 
an error message is displayed and the program exits using the exit library call, 
which terminates the program. The second part of the function reads in input from 
the standard keyboard and assigns it the proper fields within the new node. The 
third part performs the insertion by calling ScanList to find the place in the list 
to insert the new node. If the node already exists in the list then an error message 
is displayed and the new node is deallocated by a call to the free library call. 
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1 void AddEntry(Car *headPointer) 
2 { 
3 Car *newNode; /* Points to the new car info */ 
4 Car *nextNode; /* Points to car to follow new one */ 
5 Car *prevNode; /* Points to car before this one */ 
6 
7 /* Dynamically allocate memory for this new entry. */ 
8 newNode = (Car *) malloc(sizeof(Car)); 
9 

10 if (newNode == NULL) { 
11 printf("Error: could not allocate a new node\n"); 
12 exit(1); 
13 } 
14 
15 printf("Enter the following info about the car.\n"); 
16 printf("Separate each field by white space:\n"); 
17 printf("vehicle_id make model year mileage cost\nn); 
18 
19 scanf("%d %s %s %d %d %lf", 
20 &newNode->vehicleID, newNode->make, newNode->model, 
21 &newNode->year, &newNode->mileage, &newNode->cost); 
22 
23 prevNode = ScanList(headPointer, newNode->vehicleID); 
2 4 nextNode = prevNode->next; 
25 
2 6 if ((nextNode == NULL) || 
27 (nextNode->vehicleID i = newNode->vehicleID)) { 
2 8 prevNode->next = newNode; 
2 9 newNode->next = nextNode; 
30 printf("Entry added.\n\n"); 
31 } 
32 else { 
33 printf("That car already exists in the database!\n"); 
34 printf("Entry not added.\n\n"); 
3 5 free(newNode); 
36 } 
37 } 
Figure 19.7 A function to add an entry to the database 

Let's take a closer look at how a node is inserted into the linked list. Figure 19.8 
shows a pictorial representation of this process. Once the proper spot to insert 
is found using ScanList, first, the prevNode's next pointer is updated to point 
to the new node and, second, the new node's next pointer is updated to point to 
nextNode. Also shown in the figure is the degenerate case of adding a node to 
an empty list. Here, prevNode points to the empty head node. The head node's 
next pointer is updated to point to the new node. 

The routine to delete a node from the linked list is very similar to AddEntry. 
Functionally, we want to first query the user about which vehicle ID to delete and 
then use ScanList to locate a node with that ID. Once the node is found, the list is 
manipulated to remove the node. The code is listed in Figure 19.9. Notice that once 
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Inserting a new node into a linked list 

nextNode 

Inserting into an empty list 

prevNode\ 
-newNode 

Rasel-

v 
NULL 

nextNode 
Figure 19.8 Inserting a node into a linked list. The dashed lines indicate 

newly formed links 

1 void DeleteEntry(Car *headPointer) 
2 { 
3 int vehiclelD; 
4 Car *delNode; /* Points to node to delete */ 
5 Car *prevNode,- /* Points to node prior to delNode */ 
6 
7 printf("Enter the vehicle ID of the car to delete:\n"); 
8 scanf (Hd", &vehicleID) ; 
9 

10 prevNode = ScanList(headPointer, vehiclelD); 
11 delNode = prevNode->next; 
12 
13 /* Either the car does not exist or */ 
14 /* delNode points to the car to be deleted. */ 
15 if (delNode != NULL && delNode->vehicleID == vehiclelD) { 
16 prevNode->next = delNode->next; 
17 printf("Vehicle with ID %d deleted.\n\n", vehiclelD); 
18 free(delNode); 
19 } 
20 else 
21 printf("The vehicle was not found' in the database\n"); 
22 } 

Figure 19.9 A function to delete an entry from the database 
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prevNode 

delNode 
Figure 19.10 Deleting a node from a linked list. The dashed line indicates 

a newly formed link 

1 void Search(CarNode *headPointer) 
2 { 
3 int vehiclelD; 
4 Car *searchNode; /* Points to node to delete to follow */ 
5 Car *prevNode; /* Points to car before one to delete */ 
6 
7 printf("Enter the vehicle ID number of the car to search £or:\n"); 
8 scanf("%d"r fcvehiclelD); 
9 

10 prevNode = ScanList(headPointer, vehiclelD); 
11 searchNode = prevNode->next; 
12 
13 /* Either the car does not exist in the list or */ 
14 /* searchNode points to the car we are looking for. */ 
15 if (searchNode != NULL && searchNode->vehicleID == vehiclelD) { 
16 printf( "vehicle ID %d\n", searchNode- >vehicleID); 
17 printf( " make %s\n", searchNode- >make) ; 
18 printf( "model %s\n", searchNode- >model) ; 
19 printf( "year %d\n", searchNode- >year); 
20 printf( "mileage %d\n", searchNode- >mileage); 
21 
22 /* The following printf has a field width specification on */ 
23 /* %f specification. The 10.2 indicates that the floating */ 
24 /* point number should be printed in a 10 character field */ 
25 /* with two units after the decimal displayed. */ 
26 printf("cost : $%10.2f\n\n", searchNode->cost); 
27 } 
28 else { 
2 9 printf("The vehicle ID %d was not found in the database.\n\n", 
30 vehiclelD); 
31 } 
32 } 
Figure 19.11 A function to query the database 

a node is deleted, its memory is added back to the heap using the free function 
call. Figure 19.10 shows a pictorial representation of the deletion of a node. 

At this point, we can draw an interesting parallel between the way elements 
are inserted and deleted from linked lists versus arrays. In a linked list, once we 
have identified the item to delete, the deletion is accomplished by manipulating 
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a few pointers. If we wanted to delete an element in an array, we would need to 
move all elements that follow it in the array upwards. If the array is large, this 
can result in a significant amount of data movement. The bottom line is that the 
operations of insertion and deletion can be cheaper to perform on a linked list 
than on an array. 

Finally, we write the code for performing a search. The Search operation is 
very similar to the AddEntry and DelEntry functions, except that the list is not 
modified. The code is listed in Figure 19.11. The support function ScanList is 
used to locate the requested node. 

19.6 Summary 
We conclude this chapter by a summarizing the three key concepts we covered. 

• Structures in C. The primary objective of this chapter was to introduce the 
concept of user-defined aggregate types in C, or structures. C structures allow us 
to create new data types by grouping together data of more primitive types. C 
structures provide a small step toward object orientation, that is, of structuring a 
program around the real-world objects that it manipulates rather than the primitive 
types supported by the underlying computing system. 

• Dynamic memory allocation. The concept of dynamic memory allocation 
is an important prerequisite for advanced programming concepts. In particular, 
dynamic data structures that grow and shrink during program execution require 
some form of memory allocation. C provides some standard memory allocation 
func t ions such as malloc, calloc, realloc, and free. 

• Linked lists. We combine the concepts of structures and dynamic memory 
allocation to introduce a fundamental new data structure called a linked list. 
It is similar to an array in that it contains data that is best organized in a list 
fashion. Why is the linked list such an important data structure? For one thing, 
it is a dynamic structure that can be expanded or shrunk during execution. This 
dynamic quality makes it appealing to use in certain situations where the static 
nature of arrays would be wasteful. The concept of connecting data elements 
together using pointers is fundamental, and you will encounter it often when 
dealing with advanced structures such as hash tables, trees, and graphs. 
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19.1 Is there a bug in the following program? Explain. 

struct node { 
int count; 
struct node *next; 

} ; 

int main() { 
int data = 0; 
struct node *getdata; 

getdata->count = data + 1; 
printf("%d", getdata->count); 

} 

19.2 The following are a few lines of a C program: 

struct node { 
int count; 
struct node *next; 

} ; 

main() 
{ 
int data = 0; 
struct node *getdata; 

getdata = getdata->next; 

} 
Write, in LC-3 assembly language, the instructions that are generated 
by the compiler for the line getdata = getdata- >next;. 
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19.3 The code for P o t e n t i a i c o l l i s l o n s in Figure 19.2 performs a 
pairwise check of all aircraft currently in the airspace. It checks each 
plane with every other plane for a potential collision scenario. This 
code, however, can be made more efficient with a very simple change. 
What is the change? 

19.4 The following program is compiled on a machine in which each basic 
data type (pointer, character, integer, floating point) occupies one 
location of memory. 

struct element { 
char name[25]; 
int atomic_number; 
float atomic_mass; 

} ; 

is_it_noble(struct element t[], int i) { 
if ((t[i].atomic_number=-2) || 

(t[i].atomic_number==10) || 
(t[i].atomic_number==18) || 
(t[i].atomic_number==3 6) || 
(t[i] .atomic_number==54) || 
(t[i].atomic_number==86}) 

return 1; 
else 

return 0; 
} 
int main() { 

int x, y; 
struct element periodic_table[110]; 

x = is_it_noble(periodic_table, y); 

} 

a. How many locations will the activation record of the function 
is_it_noble contain? 

b. Assuming that periodic table, x, and y are the only local 
variables, how many locations in the activation record for main 
will be devoted to local variables? 
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19.5 The following C program is compiled into the LC-3 machine language 
and executed. The run-time stack begins at xEFFF. The user types the 
input abac followed by a return. 

#include <stdio.h> 
#define MAX 4 

struct char_rec { 
char ch; 
struct char rec *back; 

} ; 

int main() 
{ ~ -
struct char_rec *ptr, pat[MAX+2]; 
int i = 1, j = i; 
printf("Pattern: "); 
pat [1] .back = pat; 
ptr = pat; 

while ((pat [i] .ch = getchar()) ! = '\n') { 

ptr [++i] .back = ++ptr; 

if (i > MAX) break; 
} 
while (j <= i) 
printf("%d »# pat[j++].back - pat); 

/* Note the pointer arithmetic here: subtraction 
of pointers to structures gives the number of 
structures between addresses, not the number 
of memory locations */ 

} 

a. Show the contents of the activation record for main when the 
program terminates. 

b. What is the output of this program for the input abac? 



fl.l Overview 
The Instruction Set Architecture (ISA) of the LC-3 is defined as follows: 

Memory address space 16 bits, corresponding to 216 locations, each 
containing one word (16 bits). Addresses are numbered from 0 (i.e, xOOOO) 
to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations 
and memory-mapped I/O device registers. Certain regions of memory are 
reserved for special uses, as described in Figure A. 1. 

Bit numbering Bits of all quantities are numbered, from right to left, 
starting with bit 0. The leftmost bit of the contents of a memory location is 
bit 15. 

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode 
(operation to be performed), bits [11:0] provide further information that is 

xOOOO 

xOOFF 
xOtOO 

x01FF 
X0200 

X2FFF 
X3000 

xFDFF 
xFEOO 

xFFFF 

Trap Vector Table 

Interrupt Vector Table 

Operating system and 
Supervisor Stack 

Available for 
user programs 

Figure A . l Memory map of the LC-3 
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needed to execute the instruction. The specific operation of each LC-3 
instruction is described in Section A.3. 
Illegal opcode exception Bits [15:12] = 1101 has not been specified. If an 
instruction contains 1101 in bits [15:12], an illegal opcode exception 
occurs. Section A.4 explains what happens. 

Program counter A 16-bit register containing the address of the next 
instruction to be processed. 

General purpose registers Eight 16-bit registers, numbered from 000 to 
1 1 1 . 
Condition codes Three 1-bit registers: N (negative), Z (zero), and P 
(positive). Load instructions (LD, LDI, LDR, and LEA) and operate 
instructions (ADD, AND, and NOT) each load a result into one of the eight 
general purpose registers. The condition codes are set, based on whether 
that result, taken as a 16-bit 2's complement integer, is negative 
( N = 1; Z, P = 0), zero (Z = 1; N. P = 0), or positive (P = 1 ; N , Z = 0). 
All other LC-3 instructions leave the condition codes unchanged. 

Memory-mapped I/O Input and output are handled by load/store 
(LDI/STI, LDR/STR) instructions using memory addresses to designate 
each I/O device register. Addresses xFEOO through xFFFF have been 
allocated to represent the addresses of I/O devices. See Figure A. 1. Also, 
Table A.3 lists each of the relevant device registers that have been identified 
for the LC-3 thus far, along with their corresponding assigned addresses 
from the memory address space. 

Interrupt processing I/O devices have the capability of interrupting the 
processor. Section A.4 describes the mechanism. 

Priority level The LC-3 supports eight levels of priority. Priority level 7 
(PL7) is the highest; PL0 is the lowest. The priority level of the currently 
executing process is specified in bits PSR[10:8J. 
Processor status register (PSR) A 16-bit register, containing status 
information about the currently executing process. Seven bits of the PSR 
have been defined thus far. PSR[15] specifies the privilege mode of 
the executing process. PSR[10:8] specifies the priority level of the currently 
executing process. PSR[2:0] contains the condition codes. PSR[2] is N, 
PSRfl] is Z, and PSR[0] is P. 

Privilege mode The LC-3 specifies two levels of privilege, Supervisor 
mode (privileged) and User mode (unprivileged). Interrupt service routines 
execute in Supervisor mode. The privilege mode is specified by PSR[15]. 
PSR[15J = 0 indicates Supervisor mode; PSR[15] = 1 indicates User 
mode. 

Privilege mode exception The RTI instruction executes in Supervisor 
mode. If the processor attempts to execute an RTI instruction while in User 
mode, a privilege mode exception occurs. Section A.4 explains what 
happens. 
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Supervisor Stack A region of memory in supervisor space accessible via 
the Supervisor Stack Pointer (SSP). When PSR[15] = 0, the stack pointer 
(R6) is SSP 

User Stack A region of memory in user space accessible via the User Stack 
Pointer (USP). When PSRL15] = 1, the stack pointer (R6) is USP 

A.2 Notation 
The notation in Table A. 1 will be helpful in understanding the descriptions of the 
LC-3 instructions (Section A.3). 

fl.3 The Instruction Set 
The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists 
of an opcode (bits[l 5:12]) plus 12 additional bits to specify the other information 
that is needed to carry out the work of that instruction. Figure A.2 summarizes 
the 15 different opcodes in the LC-3 and the specification of the remaining bits of 
each instruction. The 16th 4-bit opcode is not specified, but is reserved for future 
use. In the following pages, the instructions will be described in greater detail. 
For each instruction, we show the assembly language representation, the format 
of the 16-bit instruction, the operation of the instruction, an English-language 
description of its operation, and one or more examples of the instruction. Where 
relevant, additional notes about the instruction are also provided. 
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Notational Conventions 

Notation Meaning 

xINJumber The number in hexadecimal notation. 
#Number The number in decimal notation. 
AEl:r] The field delimited by bit [ | ] on the left and bit CrU on the right, of the datum A. For 

example, if PC contains 0011001100111111, then PCC15:9] is 0011001. PC12:2\ 
is 1. If I and r are the same bit number, the notation is usually abbreviated PCC21 

BaseR Base Register; one of R0..R7, used in conjunction with a six-bit offset to compute 
Base+offset addresses. 

DR Destination Register; one of R0..R7, which specifies which register the result of an 
instruction should be written to. 

imm5 A 5-bit immediate value; bits [ 4 :0 ] of an instruction when used as a literal 
(immediate) value. Taken as a 5-bit, 2's complement integer, it is sign-extended to 
16 bits before it is used. Range: —16..15. 

LABEL An assembly language construct that identifies a location symbolically (i.e., by mears 
of a name, rather than its 16-bit address). 

memCaddress] Denotes the contents of memory at the given address. 
offset6 A 6-bit value; bits [ 5 :0 ] of an instruction; used with the Base+offset addressing mcc: 

Bits [ 5 : 0 ] are taken as a 6-bit signed 2's complement integer, sign-extended to 
16 bits and then added to the Base Register to form an address. Range: - 3 2 . . 3 1 . 

PC Program Counter; 16-bit register that contains the memory address of the next 
instruction to be fetched. For example, during execution of the instruction at addres 
A, the PC contains address A + 1, indicating the next instruction is contained in 
A + 1. 

PCoffset9 A 9-bit value; bits [ 8 :0 ] of an instruction; used with the PC+offset addressing mode-
Bits [ 8 : 0 ] are taken as a 9-bit signed 2's complement integer, sign-extended to 16 
bits and then added to the incremented PC to form an address. Range -256 . . 255 . 

PCo f f se t l l An 11-bit value; bits [ 10 :0 ] of an instruction; used with the JSR opcode to compute 
the target address of a subroutine call. Bits [10:03 are taken as an 11-bit 2's 
complement integer, sign-extended to 16 bits and then added to the incremented P~. 
to form the target address. Range - 1 0 2 4 . . 1 0 2 3 . 

PSR Processor Status Register; 16-bit register that contains status information of the 
process that is running. PSRC15] = privilege mode. PSR[2:0] contains the condit : 
codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P. 

setccO Indicates that condition codes N, Z, and P are set based on the value of the result 
written to DR. If the value is negative, N = 1, Z = 0, P = 0. If the value is zero, 
N = 0, Z = 1, P = 0. If the value is positive, N = 0, Z = 0, P = 1. 

SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times as necessar, : 
extend A to 16 bits. For example, if A = 110000, then SEXT(A) = 1111 1111 
1111 0000. 

SP The current stack pointer. R6 is the current stack pointer. There are two stacks, one 
for each privilege mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1. 

SR, SRI , SR2 Source Register; one of R0..R7 which specifies the register from which a source 
operand is obtained. 

SSP The Supervisor Stack Pointer. 
trapvect8 An 8-bit value; bits [ 7 :0 ] of an instruction; used with the TRAP opcode to determine 

the starting address of a trap service routine. Bits [ 7 : 0 ] are taken as an unsigned 
integer and zero-extended to 16 bits. This is the address of the memory location 
containing the starting address of the corresponding service routine. Range 0..255. 

USP The User Stack Pointer. 
ZEXT(A) Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. F ; 

example, if A = 110000, then ZEXT(A) = 0000 0000 0011 0000. 
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i i 

0 0 0 
i i 
SR2 
i i 

I I I 
0101 

I I I 

i i 
DR 
i i 

SR1 
i i 

1 
i i i i 

imm5 
i i i i 

I I I 
0000 

I I I 
n z P 

i i i i i i i i 
PCoffset9 

i i i i i i i i 
I I I 

1100 
I I I 

i i 
000 
I I 

BaseR 
i i 

I I I I I 
000000 

0100 
I I I 

1 
i i i i i i i i i i 

PCoffsetl 1 i i i i i i i i i i 
j I I 

0100 
I I I 

0 
i 

0 0 
I 

i i 
BaseR 
i i 

I I I I I 
000000 

I I I I I 
I I I 

0010 
I I I 

I I 
DR 
i i 

i i i i i i i i 
PCoffset9 

i i i i i i i i 
I I I 

1010 
I I I 

i i 
DR 

i i 

i i i i i i i i 
i PCoffset9 

I I I 
I I I 

0110 I I I 

i i 
DR BaseR 

i i 

I I I I I 
offset6 

i i i i i 

1110 
I I I 

i i 
DR 

i i i i i i i i 
PCoffset9 

I I I 
1001 

I i I 

t i 
DR 

i i 
SR 
i i 

i i i i i 
111111 

i i i i i 

1100 
I I I 

i i 
000 
I I 

i i 
111 
i i 

i i i i 
000000 

I I I I I 
I I I 

1000 
I I I 

I I I I I I I I I I I 
000000000000 

I 
I I I 

0011 
I I I 

I I 
SR 
I I 

PCoffset9 
i i i i i i i i 

I I I 
1011 SR 

i i 

i i i i i i i i 
PCoffset9 

i = . I I I 
I I I 

0111 
I I I 

SR 
i i 

i i 
BaseR 
i i 

I I I I I 
offset6 

i i i i i 
I I I 

1111 
I I I 

1 1 ! 1 1 1 1 1 1 1 
0000 trapvect8 

i i i 
I I I 

1101 
I I I 

i i i i i 

i i i i i i i i i i i 
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A D D Addition 

Assembler Formats 

ADD DR, SR1,SR2 
ADD DR, SRI, imm5 

Encodings 
15 12 11 9 8 6 5 4 3 2 0 

1 1 
0001 

1 1 

1 1 
DR 

i i 

CO
 

0 00 
1 1 
SR2 
i i 

15 12 11 9 8 6 5 4 0 
i i i 

0001 
1 1 

1 1 
DR 

i i 

i i 
SRI 
i i 

1 
i i i i 

i m m 5 
i i i i 

Operation 

if (bit [5] = = 0) 
DR - SRI + SR2 ; 

else 
DR = SRI + SEXT ( imm5 ) ; 

setcc(); 

Description 

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the 
second source operand is obtained by sign-extending the imm5 field to 16 bits. 
In both cases, the second source operand is added to the contents of SRI and the 
result stored in DR. The condition codes are set, based on whether the result is 
negative, zero, or positive. 

Examples 

ADD R2, R3, R4 ; R2 R3 + R4 
ADD R2, R3, #7 ; R2 R3 + 7 
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AND 
Assembler Formats 

AND DR, SRI, SR2 
AND DR, SRl , imm5 

Encodings 

1 1 1 
0101 

1 1 1 

i i 
DR 

i i 
SRI 
i i 

0 
I 

00 
i i 
SR2 
i i 

15 12 11 9 8 6 5 4 0 
1 1 

0101 
1 1 1 

1 1 
DR 

1 I 
SRI 
i i 

1 
i i l i 

i m m 5 
i i i i 

Operation 

if (bit [5] = = 0} 
DR - SRI AND SR2; 

e l s e 
DR - SRI AND SEXT(imm5) ; 

s e t c c ( ) ; 

Description 

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the 
second source operand is obtained by sign-extending the imm5 field to 16 bits. 
In either case, the second source operand and the contents of SRI are bit-wise 
ANDed, and the result stored in DR. The condition codes are set, based on whether 
the binary value produced, taken as a 2's complement integer, is negative, zero, 
or positive. 

Examples 

AND R2, R3, R4 ;R2 R3 AND R4 
AND R2, R3, #7 ;R2 R3 AND 7 

Bit-wise Logical AND 
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BR 
Assembler Formats 

BRn LABEL BRzp 
BRz LABEL BRnp 
BRp LABEL BRnz 
BR1" LABEL BRnzp 

LABEL 
LABEL 
LABEL 
LABEL 

Conditional Branch 

Encoding 
15 12 11 10 9 8 0 

I I I 
0000 

1 1 1 
n z P 

i i I 1 1 1 1 1 
PCoffset9 

i i i i > i i i 

Operation 

if ((n AND N) OR (z AND Z) OR (p AND P)) 
PC - PC:: + SEXT (PCof fset9 ) ; 

Description 

The condition codes specified by the state of bits [11:9] are tested. If bit [11] is 
set, N is tested; if bit [11] is clear, N is not tested. If bit [10] is set, Z is tested, etc. 
If any of the condition codes tested is set, the program branches to the location 
specified by adding the sign-extended PCoffset9 field to the incremented PC. 

Examples 

BRzp LOOP ; Branch to LOOP if the last result was zero or positive. 
BR+ NEXT ; Unconditionally branch to NEXT. 

"^The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the 
target address. 
i Th is is the incremented PC. 
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J M P Jump 

R E T Return from Subroutine 

Assembler Formats 

JMP BaseR 
RET 

Encoding 

J M P 

RET 

Operation 

PC = BaseR; 

Description 

The program unconditionally jumps to the location specified by the contents of 
the base register. Bits [8:6] identify the base register. 

Examples 

JMP R2 ; PC R2 
RET ; PC R7 

Note 

The RET instruction is a special case of the JMP instruction. The PC is loaded 
with the contents of R7, which contains the linkage back to the instruction 
following the subroutine call instruction. 

15 12 11 9 8 6 5 0 
1 1 1 

1100 
1 1 1 

1 1 
0 0 0 
1 1 

1 1 
BaseR 
i i 

1 1 i i i 
0 0 0 0 0 0 

15 12 11 9 8 6 5 o 

1 i 
1100 

1 1 1 

1 1 
0 0 0 
1 1 

i i 
111 
i i 

1 1 1 I 1 
0 0 0 0 0 0 

1 1 1 1 1 
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Jump to Subroutine 

JSRR 
Assembler Formats 

JSR LABEL 
JSRR BaseR 

Encoding 
15 12 11 10 0 

JSR 
I I 

0100 
1 1 

1 
1 [ 1 I 1 1 1 1 1 1 

PCoffset 11 
1 ! 1 1 

15 12 11 10 9 8 6 5 0 

JSRR 
1 1 

0100 
1 1 

0 
1 

00 
1 1 

BaseR 
i i 

l 1 l i i 
000000 

! I 1 1 1 

Operation 

TEMP - PC ; ' 
if (bit [11] ~ = 0} 

PC = BaseR; 
else 

PC - PC' + SEXT(PCoffset11! ; 
R7 - TEMP; 

Description 

First, the incremented PC is saved in a temporary location. Then the PC is loaded 
with the address of the first instruction of the subroutine, causing an unconditional 
jump to that address. The address of the subroutine is obtained from the base 
register (if bit [11] is 0), or the address is computed by sign-extending bits [10:0] 
and adding this value to the incremented PC (if bit [ 11] is 1). Finally, R7 is loaded 
with the value stored in the temporary location. This is the linkage back to the 
calling routine. 

Examples 

JSR QUEUE ; Put the address of the instruction following JSR into R7; 
; Jump to QUEUE. 

JSRR R3 ; Put the address following JSRR into R7; Jump to the 
; address contained in R3. 

f This is the incremented PC. 
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LD Load 

Assembler Format 

LD DR, LABEL 

Encoding 
15 1 2 11 

0010 DR PCoffset9 

Operation 

DR = mem [ PC 

set.cc () ; 
;XT (?Cof f set9') ] ; 

Description 

An address is computed by sign-extending bits [8:0] to 16 bits and adding this 
value to the incremented PC. The contents of memory at this address are loaded 
into DR. The condition codes are set, based on whether the value loaded is 
negative, zero, or positive. 

Example 

LD R4, VALUE ; R4 mem[VALUE] 

' T h i s is the incremented PC. 
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LDI 
Assembler Format 

LDI DR, LABEL 

Load Indirect 

Encoding 
15 12 11 9 8 

i r 

1010 
J L 

i r 

DR 
J L 

i 1 1 1 1 1 1 r 
PCoffset9 

i i i i i i i i 

Operation 

DR = mem [mem [PC~;' + SEXT fPCof f s e t 9 ) 1 ] ; 
s e t c c ( ) ; 

Description 

An address is computed by sign-extending bits [8:0] to 16 bits and adding this 
value to the incremented PC. What is stored in memory at this address is the 
address of the data to be loaded into DR. The condition codes are set, based on 
whether the value loaded is negative, zero, or positive. 

Example 

LDI R4, ONEMORE ; R4 mem[mem[ONEMORE]] 

f This is the incremented PC. 



LDR 
Assembler Format 

LDR DR, BaseR, offset6 

Encoding 

A.3 The Instruction Set 

Load Base+offset 

15 12 11 9 8 6 5 0 
1 1 1 

o n o 
i i i 

1 1 

DR 
1 1 

BaseR 
I I 1 1 1 

offset6 
i i i i i 

Operation 

DR = mem [BaseR 4 SEXT (of f set6 ) ] ; 
setcc(}; 

Description 

An address is computed by sign-extending bits [5:0] to 16 bits and adding this 
value to the contents of the register specified by bits [8:6]. The contents of memory 
at this address are loaded into DR. The condition codes are set, based on whether 
the value loaded is negative, zero, or positive. 

Example 

LDR R4, R2, # - 5 ; R4 mem[R2 - 5] 
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LEA 
Assembler Format 

LEA DR, LABEL 

Load Effective Address 

Encoding 
15 12 11 9 8 

1110 
i r 

OR 
i I r i i 

PCoffset9 

Operation 

DR ~ PC7 + SEXT(PCoffset 9) ; 
setcc 0 ; 

Description 

An address is computed by sign-extending bits [8:0] to 16 bits and adding this 
value to the incremented PC. This address is loaded into DR.4" The condition 
codes are set, based on whether the value loaded is negative, zero, or positive. 

Example 

LEA R4, TARGET ; R4 address of TARGET. 

f This is the incremented PC. 
+ The LEA instruction does not read memory to obtain the information to load into DR. The address 
itself is loaded into DR. 



NOT 
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Bit-Wise Complement 

535 

Assembler Format 

NOT DR, SR 

Encoding 
15 12 11 9 8 6 5 4 3 2 0 i I I 

1001 
1 1 1 

i i 
DR 
i i 

CO
 

ZD
 

1 

i i i i 
1 1 1 1 1 

i i i i 

Operation 

DR = NOT ( S R ) / 

set.cc ( ) ; 

Description 

The bit-wise complement of the contents of SR is stored in DR. The condi-
tion codes are set, based on whether the binary value produced, taken as a 2's 
complement integer, is negative, zero, or positive. 

Example 

NOT R4, R2 ; R4 NOT(R2) 
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p ^ y t Return from Subroutine 

Assembler Format 

RET 

Encoding 
15 12 11 9 8 6 5 0 

1 1 
1100 

1 1 

1 1 
000 
1 1 

1 1 
111 
1 1 

1 1 1 1 1 
000000 

1 1 1 1 1 

Operation 

PC - R7; 

Description 

The PC is loaded with the value in R7. This causes a return from a previous JSR 
instruction. 

Example 

RET ; PC R7 

fThe RET instruction is a specific encoding of the J M P instruction. See also JMP. 



Return from Interrupt 

0 

Operation 
if (PSR [15] = = 0) 

PC = mem[R6J ; R6 is the SSP 
R6 - R6 + 1; 
TEMP = mem [R6 ] ; 
R6 = R6 + 1 ; 
PSR = TEMP; the privilege mode and condition codes of 
the interrupted process are restored 

else 
Initiate a privilege mode exception; 

Description 
If the processor is running in Supervisor mode, the top two elements on the 
Supervisor Stack are popped and loaded into PC, PSR. If the processor is running 
in User mode, a privilege mode violation exception occurs. 

Example 
RTI ; PC, PSR top two values popped off stack. 

Note 
On an external interrupt or an internal exception, the initiating sequence first 
changes the privilege mode to Supervisor mode (PSR[15] = 0). Then the PSR 
and PC of the interrupted program are pushed onto the Supervisor Stack before 
loading the PC with the starting address of the interrupt or exception service 
routine. Interrupt and exception service routines run with Supervisor privilege. 
The last instruction in the service routine is RTI, which returns control to the 
interrupted program by popping two values off the Supervisor Stack to restore 
the PC and PSR. In the case of an interrupt, the PC is restored to the address of the 
instruction that was about to be processed when the interrupt was initiated. In the 
case of an exception, the PC is restored to either the address of the instruction 
that caused the exception or the address of the following instruction, depending 
on whether the instruction that caused the exception is to be re-executed. In the 
case of an interrupt, the PSR is restored to the value it had when the interrupt was 
initiated. In the case of an exception, the PSR is restored to the value it had when 
the exception occurred or to some modified value, depending on the exception. 
See also Section A.4. 

If the processor is running in User mode, a privilege mode violation exception 
occurs. Section A.4 describes what happens in this case. 

RTI 
Assembler Format 

RTI 

Encoding 
15 12 11 —i r 

1000 
1 I 

i 1 1 1 1 1 r 
000000000000 

J L 
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ST Store 

Assembler Format 

ST SR, LABEL 

Encoding 
15 12 11 9 8 

0011 
I I I 

SR PCoffset9 

Operation 

mem [PC"" + SEXT ( PCof f sec9 ) ] — SR; 

Description 

The contents of the register specified by SR are stored in the memory location 
whose address is computed by sign-extending bits [8:0] to 16 bits and adding this 
value to the incremented PC. 

Example 

ST R4, HERE ; mem [HERE] R4 

f This is the incremented PC. 
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S T I Store Indirect 

Assembler Format 

STI SR, LABEL 

Encoding 
15 12 j 11 9 J 8 0 

1 i 1 
1011 

1 1 

1 1 
SR 
i i 

1 I l i l i i i 
PCoffset9 

i i i i i i i i 

Operation 

mem [mem [PCV + SEXT (PCof f set.9) 1 j — SR; 

Description 

The contents of the register specified by SR are stored in the memory location 
whose address is obtained as follows: Bits [8:0] are sign-extended to 16 bits and 
added to the incremented PC. What is in memory at this address is the address of 
the location to which the data in SR is stored. 

Example 

STI R4, NOT_HERE ; mem [mem [NOT_HERE] ] R4 

' This is the incremented PC. 
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STR Store Base+offset 

Assembler Format 

STR SR, BaseR, offset6 

Encoding 
15 12 11 9 8 6 5 1 1 

0111 
1 1 

1 1 
SR 
1 1 

1 1 
BaseR 
i i 

i i i i i 
offset6 

Operation 

mem[BaseR + SEXT(offsets) ] = SR; 

Description 

The contents of the register specified by SR are stored in the memory location 
whose address is computed by sign-extending bits [5:0] to 16 bits and adding this 
value to the contents of the register specified by bits [8:6]. 

Example 

STR R4, R2, #5 ; mem[R2 + 5] R4 



A.3 The Instruction Set 5 4 1 

TRAP 
Assembler Format 

TRAP trapvector8 

System Call 

Encoding 
15 12 11 8 7 
i 1 r 
i m 

i — i — 
0000 

i 1 1 1 1 r 
trapvect8 

J L J L 

Operation 

R7 - PC;'' 
PC - mem[ZEXT(trapvectS)] ; 

Description 

First R7 is loaded with the incremented PC. (This enables a return to the instruction 
physically following the TRAP instruction in the original program after the service 
routine has completed execution.) Then the PC is loaded with the starting address 
of the system call specified by trapvector8. The starting address is contained in 
the memory location whose address is obtained by zero-extending trapvector8 to 
16 bits. 

Example 

TRAP x23 ; Directs the operating system to execute the IN system call. 
; The starting address of this system call is contained in 
; memory location x0023. 

Note 

Memory locations xOOOO through xOOFF, 256 in all, are available to contain 
starting addresses for system calls specified by their corresponding trap vectors. 
This region of memory is called the Trap Vector Table. Table A.2 describes the 
functions performed by the service routines corresponding to trap vectors x20 
to x25. 

' This is the incremented PC. 
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Unused Opcode 
Assembler Format 

none 

Encoding 

15 12 11 0 | 
[——i 1 1 1 1 i i r i r~ i i i 
1101 

i i i I i i i i i i i i i 1 1 

Operation 

Initiate an illegal opcode exception. 

Description 

If an illegal opcode is encountered, an illegal opcode exception occurs. 

Note 

The opcode 1101 has been reserved for future use. It is currently not defined. If 
the instruction currently executing has bits [15:12] = 1101, an illegal opcode 
exception occurs. Section A.4 describes what happens. 
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Service Routines 

Trap Vector Assembler Name Description 

x20 

x21 
x22 

x23 

x24 

GETC 

OUT 
PUTS 

IN 

PUTSP 

x25 HALT 

Read a single character f rom the keyboard. The character is not echoed onto the 
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared. 

Wri te a character in R0E7:0] to the console display. 
Wri te a string of ASCII characters to the console display. The characters are contained 

in consecutive memory locations, one character per memory location, starting with 
the address specified in RO. Wri t ing terminates with the occurrence of xOOOO in a 
memory location. 

Print a prompt on the screen and read a single character from the keyboard. The 
character is echoed onto the console monitor, and its ASCII code is copied into RO. 
The high eight bits of RO are cleared. 

Wri te a string of ASCII characters to the console. The characters are contained in 
consecutive memory locations, two characters per memory location, starting with the 
address specified in RO. The ASCII code contained in bits [ 7 :0 ] of a memory location 
is written to the console first. Then the ASCII code contained in bits [15 :8 ] of that 
memory location is written to the console. (A character string consisting of an odd 
number of characters to be written wi l l have xOO in bits [15:8J of the memory 
location containing the last character to be written.) Wri t ing terminates with the 
occurrence of xOOOO in a memory location. 

Halt execution and print a message on the console. 

svice Register Assignments 

Address I/O Register Name I/O Register Function 

xFEOO Keyboard status register 

xFE02 Keyboard data register 

xFE04 Display status register 

xFE06 Display data register 

xFFFE Machine control register 

Also known as KBSR. The ready bit (bit [15 ] ) indicates if 
the keyboard has received a new character. 

Also known as KBDR. Bits [ 7 : 0 ] contain the last 
character typed on the keyboard. 

Also known as DSR. The ready bit (bit [15 ] ) indicates if 
the display device is ready to receive another character 
to print on the screen. 

Also known as DDR. A character written in the low byte 
of this register wil l be displayed on the screen. 

Also known as MCR. Bit [ 1 5 ] is the clock enable bit. 
When cleared, instruction processing stops. 

1.4 Interrupt and Exception Processing 
Events external to the program that is running can interrupt the processor. A 
common example of an external event is interrupt-driven I/O. It is also the case 
that the processor can be interrupted by exceptional events that occur while the 
program is running that are caused by the program itself. An example of such an 
"internal" event is the presence of an unused opcode in the computer program 
that is running. 

Associated with each event that can interrupt the processor is an 8-bit vector 
that provides an entry point into a 256-entry interrupt vector table. The starting 
address of the interrupt vector table is xOlOO. That is, the interrupt vector table 
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occupies memory locations xOlOO to xOlFF. Each entry in the interrupt vector 
table contains the starting address of the service routine that handles the needs of 
the corresponding event. These service routines execute in Supervisor mode. 

Half (128) of these entries, locations xOlOO to x017F, provide the starting 
addresses of routines that service events caused by the running program itself. 
These routines are called exception service routines because they handle excep-
tional events, that is, events that prevent the program from executing normally. The 
other half of the entries, locations xO 180 to xO 1FF, provide the starting addresses 
of routines that service events that are external to the program that is running, such 
as requests from I/O devices. These routines are called interrupt service routines. 

A.4.1 Interrupts 
At this time, an LC-3 computer system provides only one I/O device that can 
interrupt the processor. That device is the keyboard. It interrupts at priority level 
PL4 and supplies the interrupt vector x80. 

An I/O device can interrupt the processor if it wants service, if its Interrupt 
Enable (IE) bit is set, and if the priority of its request is greater than the priority 
of the program that is running. 

Assume a program is running at a priority level less than 4, and someone 
strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently executing 
program is interrupted at the end of the current instruction cycle. The interrupt 
service routine is initiated as follows: 

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0). 
2. The processor sets the priority level to PL4, the priority level of the 

interrupting device (PSR[10:8] = 100). 
3. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already 

contain the SSP. 
4. The PSR and PC of the interrupted process are pushed onto the Supervisor 

Stack. 
5. The keyboard supplies its 8-bit interrupt vector, in this case x80. 
6. The processor expands that vector to x0180, the corresponding 16-bit 

address in the interrupt vector table. 
7. The PC is loaded with the contents of memory location x0180, the address 

of the first instruction in the keyboard interrupt service routine. 

The processor then begins execution of the interrupt service routine. 
The last instruction executed in an interrupt service routine is RTI. The top two 

elements of the Supervisor Stack are popped and loaded into the PC and PSR reg-
isters. R6 is loaded with the appropriate stack pointer, depending on the new value 
of PSR[15]. Processing then continues where the interrupted program left off. 

A.4.2 Exceptions 
At this time, the LC-3 ISA specifies two exception conditions: privilege mode 
violation and illegal opcode. The privilege mode violation occurs if the processor 
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encounters the RTI instruction while running in User mode. The illegal opcode 
exception occurs if the processor encounters the unused opcode (Bits [15:12] = 
1101) in the instruction it is is processing. 

Exceptions are handled as soon as they are detected. They are initiated very 
much like interrupts are initiated, that is: 

1. The processor sets the privilege mode to Supervisor mode (PSR[15] = 0). 
2. R6 is loaded with the Supervisor Stack Pointer (SSP) if it does not already 

contain the SSP. 
3. The PSR and PC of the interrupted process are pushed onto the Supervisor 

Stack. 
4. The exception supplies its 8-bit vector. In the case of the Privilege mode vio-

lation, that vector is xOO. In the case of the illegal opcode, that vector is xOl. 
5. The processor expands that vector to xOlOO or xOlOl, the corresponding 

16-bit address in the interrupt vector table. 
6. The PC is loaded with the contents of memory location xOlOO or xOlOl, 

the address of the first instruction in the corresponding exception service 
routine. 

The processor then begins execution of the exception service routine. 
The details of the exception service routine depend on the exception and the 

way in which the operating system wishes to handle that exception. 
In many cases, the exception service routine can correct any problem caused 

by the exceptional event and then continue processing the original program. In 
those cases the last instruction in the exception service routine is RTI, which pops 
the top two elements from the Supervisor Stack and loads them into the PC and 
PSR registers. The program then resumes execution with the problem corrected. 

In some cases, the cause of the exceptional event is so catastrophic that the 
exception service routine removes the program from further processing. 

Another difference between the handling of interrupts and the handling of 
exceptions is the priority level of the processor during the execution of the service 
routine. In the case of exceptions, we normally do not change the priority level 
when we service the exception. The priority level of a program is the urgency 
with which it needs to be executed. In the case of the two exceptions specified by 
the LC-3 ISA, the urgency of a program is not changed by the fact that a privilege 
mode violation occurred or there was an illegal opcode in the program. 



From LC-3 fo x86 

As you know, the ISA of the LC-3 explicitly specifies the interface between what 
the LC-3 machine language programmer or LC-3 compilers produce and what 
a microarchitecture of the LC-3 can accept and process. Among those things 
specified are the address space and addressability of memory, the number and 
size of the registers, the format of the instructions, the opcodes, the data types 
that are the encodings used to represent information, and the addressing modes 
that are available for determining the location of an operand. 

The ISA of the microprocessor in your PC also specifies an interface between 
the compilers and the microarchitecture. However, in the case of the PC, the ISA 
is not the LC-3. Rather it is the x86. Intel introduced the first member of this ISA 
in 1979. It was called the 8086, and the "normal" size of the addresses and data 
elements it processed was 16 bits. The typical size of addresses and data today is 
32 bits. From the 8086 to the present time, Intel has continued implementations 
of this ISA, the 80286 (in 1982), 386 (in 1985), 486 (in 1989), Pentium (in 
1992), Pentium Pro (in 1995), Pentium II (in 1997), Pentium III (in 1999), and 
Pentium IV (in 2001). 

The ISA of the x86 is much more complicated than that of the LC-3. There 
are more opcodes, more data types, more addressing modes, a more complicated 
memory structure, and a more complicated encoding of instructions into 0s and 
Is. However, fundamentally, they have the same basic ingredients. 

You have spent a good deal of time understanding computing within the 
context of the LC-3. Some may feel that it would be good to learn about a real 
ISA. One way to do that would be to have some company such as Intel mass-
produce LC-3s, some other company like Dell use them in their PCs, and a third 
company such as Microsoft compile Windows NT into the ISA of the LC-3. An 
easier way to introduce you to a real ISA is by way of this appendix. 

We present here elements of the x86, a very complicated ISA. We do so in 
spite of its complexity, because it is the most pervasive of all ISAs available in 
the marketplace. 

We make no attempt to provide a complete specification of the x86 ISA. 
That would require a whole book by itself, and to appreciate it, a deeper under-
standing of operating systems, compilers, and computer systems than we think 
is reasonable at this point in your education. If one wants a complete treatment, 
we recommend Intel Architecture Software Developer's Manual, volumes 1, 2, 
and 3, published by Intel Corporation, 1997. In this appendix, we restrict our-
selves to some of the characteristics that are relevant to application programs. 
Our intent is to give you a sense of the richness of the x86 ISA. We introduce 
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these characteristics within the context of the LC-3 ISA, an ISA with which you 
are familiar. 

B.l LC-3 Features and Corresponding x8G Features 
B. l . l Instruction Set 
An instruction set is made up of instructions, each of which has an opcode and 
zero or more operands. The number of operands depends on how many are needed 
by the corresponding opcode. Each operand is a data element and is encoded 
according to its data type. The location of an operand is determined by evaluating 
its addressing mode. 

The LC-3 instruction set contains one data type, 15 opcodes, and three 
addressing modes: PC-relative (LD, ST), indirect (LDI, STI), and register-plus-
offset (LDR, STR). The x86 instruction set has more than a dozen data types, 
over a hundred opcodes, and more than two dozen addressing modes (depending 
on how you count). 

Data Types 

Recall that a data type is a representation of information such that the ISA provides 
opcodes that operate on information that is encoded in that representation. 

The LC-3 supports only one data type, 16-bit 2's-complement integers. This is 
not enough for efficient processing in the real world. Scientific applications need 
numbers that are represented by the floating point data type. Multimedia applica-
tions require information that is represented by a different data type. Commercial 
applications written years ago, but still active today, require an additional data 
type, referred to as packed decimal. Some applications require a greater range of 
values and a greater precision of each value than other applications. 

As a result of all these requirements, the x86 is designed with instructions that 
operate on (for example) 8-bit integers, 16-bit integers, and 32-bit integers, 32-
bit floating point numbers and 64-bit floating point numbers, 64-bit multimedia 
values and 128-bit multimedia values. Figure B.l shows some of the data types 
present in the x86 ISA. 

Opcodes 

The LC-3 comprises 15 opcodes; the x86 instruction set comprises more than 
200 opcodes. Recall that the three basic instruction types are operates, data 
movement, and control. Operates process information, data movement opcodes 
move information from one place to another (including input and output), and 
control opcodes change the flow of the instruction stream. 

In addition, we should add a fourth category to handle functions that must 
be performed in the real world because a user program runs in the context of an 
operating system that is controlling a computer system, rather than in isolation. 
These instructions deal with computer security, system management, hardware 
performance monitoring, and various other issues that are beyond what the typicai 
application program pays attention to. We will ignore those instructions in this 
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Integer: 
7 0 
IS; I 
15 
Is; 
31 
is! 

Unsigned Integer: 
7 0 
I I 
15 
I 
31 

BCD Integer: 
20 16 12 

digit N 

Packed BCD: 

digit 2 digit 1 digit 0 

12 8 4 0 

digit digit 
N N - 1 

digit digit digit digit 
3 2 1 0 

Floating Point: 
31 22 

exponent 
63 51 

fraction 

exponent 
79 63 

fraction 

exponent fraction 

Bit String: 
.. X + 4 X + 3 X + 2 X + 1 address X 

length of bit string-
last bit bitO 

M M X Data Type: 
63 48 32 16 0 

element 3 

63 56 48 

element 2 

40 32 

element 1 

24 16 

element 0 

8 0 

7 6 5 4 

F i g u r e B . l A sample of x 8 6 da ta types 

1 element 0 
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appendix, but please note that they do exist, and you will see them as your studies 
progress. 

Here we will concentrate on the three basic instruction types: operates, data 
movement, and control. 

Operates The LC-3 has three operate instructions: ADD, AND, and NOT The 
ADD opcode is the only LC-3 opcode that performs arithmetic. If one wants to 
subtract, one obtains the negative of an operand and then adds. If one wants 
to multiply, one can write a program with a loop to ADD a number some specified 
number of times. However, this is too time-consuming for a real microprocessor. 
So the x86 has separate SUB and MUL, as well as DIV, INC (increment), DEC 
(decrement), and ADC (add with carry), to name a few. 

A useful feature of an ISA is to extend the size of the integers on which it can 
operate. To do this one writes a program to operate on such long integers. The 
ADC opcode, which adds two operands plus the carry from the previous add, is 
a very useful opcode for extending the size of integers. 

In addition, the x86 has, for each data type, its own set of opcodes to operate 
on that data type. For example, multimedia instructions (collectively called the 
MMX instructions) often require saturating arithmetic, which is very different 
from the arithmetic we are used to. PADDS is an opcode that adds two operands 
with saturating arithmetic. 

Saturating arithmetic can be explained as follows: Suppose we represent the 
degree of grayness of an element in a figure with a digit from 0 to 9, where 0 is 
white and 9 is black. Suppose we want to add some darkness to an existing value 
of grayness of that figure. An element could start out with a grayness value of 
7, and we might wish to add a 5 worth of darkness to it. In normal arithmetic, 
7 + 5 is 2 (with a carry), which is lighter than either 7 or 5. Something is wrong! 
With saturating arithmetic, when we reach 9, we stay there—we do not generate 
a carry. So, for example, 7 + 5 = 9 and 9 + n = 9. Saturating arithmetic is a 
different kind of arithmetic, and the x86 has opcodes (MMX instructions) that 
perform this type of arithmetic. 

Scientific applications require opcodes that operate on values represented 
in the floating point data type. FADD, FMUL, FSIN, FSQRT are examples of 
floating point opcodes in the x86 ISA. 

The AND and NOT opcodes are the only LC-3 opcodes that perform logical 
functions. One can construct any logical expression using these two opcodes. 
However, as is the case with arithmetic, this also is too time-consuming. The x86 
has in addition separate OR, XOR, AND-NOT, and separate logical operators for 
different data types. 

Furthermore, the x86 has a number of other operate instructions that set and 
clear registers, convert a value from one data type to another, shift or rotate the 
bits of a data element, and so on. 

Table B.l lists some of the operate opcodes in the x86 instruction set. 

Data Movement The LC-3 has seven data movement opcodes: LD, LDI, ST, 
STI, LDR, STR, and LEA. Except for LEA, which loads an address into a register, 
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lerate Instructions, x86 ISA 

Instruction Explanation 

ADC x. y x, y, and the carry retained f rom the last relevant operation (in CF) are added and 
the result stored in x. 

M U L x The value in EAX is mult ip l ied by x, and the result is stored in the 64-bi t register 
formed by EDX, EAX. 

SAR x x is ar i thmetic r ight is shifted n bits, and the result is stored in x. The value of n can 
be 1, an immediate operand, or the count in the CL register. 

XOR x. y A bit-wise exclusive-OR is performed on x. y and the result is stored in x. 
DAA Af ter adding two packed decimal numbers, AL contains two BCD values, which may 

be incorrect due to propagation of the carry bit after 15, rather than after 9. DAA 
corrects the two BCD digits in AL . 

FSIN The top of the stack (call it x) is popped. The sin(x) is computed and pushed onto the 
stack. 

FADD The top two elements on the stack are popped, added, and their result pushed onto 
the stack. 

PAN DIM x. y A bit-wise AND-NOT operation is performed on M MX values x. y, and the result is 
stored in x. 

PADDS x, y Saturat ing addit ion is performed on packed M M X values x. y, and the result is stored 
in x. 

they copy information between memory (and memory-mapped device registers) 
and the eight general purpose registers, RO to R7. 

The x86 has, in addition to these, many other data movement opcodes. XCHG 
can swap the contents of two locations. PUSHA pushes all eight general purpose 
registers onto the stack. IN and OUT move data between input and output ports 
and the processor. CMOVcc copies a value from one location to another only if 
a previously computed condition is true. 

Table B.2 lists some of the data movement opcodes in the x86 instruction set. 

(a Movement Instructions, x86 ISA 

Instruction Explanation 

MOV x, y The value stored in y is copied into x. 
XCHG x. y The values stored in x and y are swapped. 
PUSHA Al l the registers are pushed onto the top of the stack. 
MOVS The element in the DS segment pointed to by ESI is copied into the location in the ES 

segment pointed to by EDI. Af ter the copy has been performed, ESI and EDI are 
both incremented. 

REP MOVS Perform the MOVS. Then decrement ECX. Repeat this instruction until ECX = 0. 
(This allows a string to be copied in a single instruction, after in i t ia l iz ing ECX.) 

LODS The element in the DS segment pointed to by ESI is loaded into EAX, and ESI is 
incremented or decremented, according to the value of the DF flag. 

INS Data f rom the I/O port specified by the DX register is loaded into the EAX register (or 
AX or AL , if the size of the data is 16 bits or 8 bits, respectively). 

CMOVZ x, y I f ZF = 1, the value stored in y is copied into x. I f ZF = 0, the instruction acts like a 
no-op. 

LEA x. y The address y is stored in x. This is very much like the LC-3 instruction of the same 
name. 
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Control Instructions, x86 ISA 

Instruction Explanation 

J M P x IP is loaded wi th the address x. This is very much like the LC-3 instruction of the same 
name. 

CALL x The IP is pushed onto the stack, and a new IP is loaded wi th x. 
RET The stack is popped, and the value popped is loaded into IP. 
LOOP x ECX is decremented. I f ECX is not 0 and ZF - 1, the IP is loaded wi th x. 
INT n The value n is an index into a table of descriptors that specify operating system service 

routines. The end result of this instruction is that IP is loaded wi th the start ing result 
of the corresponding service routine. This is very much like the TRAP instruction in 
the LC-3. 

Control The LC-3 has five control opcodes: BR, JSR/JSRR, JMP, RTI, and 
TRAP. x86 has all these and more. Table B.3 lists some of the control opcodes in 
the x86 instruction set. 

Two Address versus Three Address 

The LC-3 is a three-address ISA. This description reflects the number of operands 
explicitly specified by the ADD instruction. An add operation requires two source 
operands (the numbers to be added) and one destination operand, to store the 
result. In the LC-3, all three must be specified explicitly, hence the name three-
address ISA. 

Even if the same location is to be used both for one of the sources and for 
the destination, the three addresses are all specified. For example, the LC-3 ADD 
R1,R1,R2 identifies Rl as both a source and the destination. 

The x86 is a two-address ISA. Since the add operation needs three operands, 
the location of one of the sources must also be used to store the result. For example, 
the corresponding ADD instruction in the x86 ISA would be ADD EAX, EBX. 
(EAX and EBX are names of two of the eight general purpose registers.) EAX 
and EBX are the sources, and EAX is the destination. 

Since the result of the operate is stored in the location that originally contained 
one of the sources, that source operand is no longer available after that instruction 
is executed. If that source operand is needed later, it must be saved before the 
operate instruction is executed. 

Memory Operands 

A major difference between the LC-3 instruction set and the x86 instruction set 
is the restriction on where operate instructions can get their operands. An LC-3 
operate instruction must obtain its source operands from registers and write the 
result to a destination register. An x86 instruction, on the other hand, can obtain 
one of its sources from memory and/or write its result to memory. In other words, 
the x86 can read a value from memory, operate on that value, and store the result 
in memory all in a single instruction. The LC-3 cannot. 

The LC-3 program requires a separate load instruction to read the value from 
memory before operating on it, and a separate store instruction to write the result 
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in memory after the operate instruction. An ISA, like the LC-3, that has this 
restriction is called a load-store ISA. The x86 is not a load-store ISA. 

B.1.2 Memory 
The LC-3 memory consists of 216 locations, each containing 16 bits of informa-
tion. We say the LC-3 has a 16-bit address space, since one can uniquely address 
its 216 locations with 16 bits of address. We say the LC-3 has an addressability 
of 16 bits, since each memory location contains 16 bits of information. 

The x86 memory has a 32-bit address space and an addressability of eight bits. 
Since one byte contains eight bits, we say the x86 memory is byte addressable. 
Since each location contains only eight bits, four contiguous locations in memory 
are needed to store a 32-bit data element, say locations X, X + l , X+2, and X+3. 
We designate X as the address of the 32-bit data element. In actuality, X only 
contains bits [7:01, X + l contains bits [15:8], X+2 contains bits [23:16], and 
X + 3 contains bits [31:24] of the 32-bit value. 

One can determine an LC-3 memory location by simply obtaining its address 
from the instruction, using one of the three addressing modes available in the 
instruction set. An x86 instruction has available to it more than two dozen address-
ing modes that it can use to specify the memory address of an operand. We examine 
the addressing modes in Section B.2 in the context of the x86 instruction format. 

In addition to the larger number of addressing modes, the x86 contains a 
mechanism called segmentation that provides a measure of protection against 
unwanted accesses to particular memory addresses. The address produced by an 
instruction's addressing mode, rather than being an address in its own right, is 
used as an address within a segment of memory. Access to that memory location 
must take into account the segment register that controls access to that segment. 
The details of how the protection mechanism works will have to wait for later in 
your studies. 

However, Figure B.2 does show how an address is calculated for the 
register+offset addressing mode, both for the LC-3, and for the x86, with segmen-
tation. In both cases, the opcode is to move data from memory to a general purpose 
register. The LC-3 uses the LDR instruction. The x86 uses the MOV instruction. 
In the case of the x86, the address calculated is in the DS segment, which is 
accessed via the DS register. That access is done through a 16-bit selector, which 
indexes into a segment descriptor table, yielding the segment descriptor for that 
segment. The segment descriptor contains a segment base register and a segment 
limit register, and the protection information. The memory address obtained from 
the addressing mode of the instruction is added to the segment base register to 
provide the actual memory address, as shown in Figure B.2. 

B.1.3 Internal State 
The internal state of the LC-3 consists of eight 16-bit general purpose registers, 
RO to R7, a 16-bit PC, and a 16-bit PSR that specifies the privilege mode, priority, 
and three 1-bit condition codes (N, Z, and P). The user-visible internal state of 
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LC-3 instruction: Base Offset 

x86 instruction: Mod R/M 4-byte displacement 

F i g u r e B . 2 Regis ter+of fset addressing mode in LC-3 and x 8 6 ISAs 
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the x86 consists of application-visible registers, an Instruction pointer, a FLAGS 
register, and the segment registers. 

A p p l i c a t i o n - V i s i b l e Reg is te rs 

Figure B.3 shows some of the application-visible registers in the x86 ISA. 
Corresponding to RO through R7, the x86 also has eight general purpose 

registers, EAX, EBX, ECX, EDX, ESP, EBP, ECI, and EDI. Each contains 32 
bits, reflecting the normal size of its operands. However, since the x86 provides 
opcodes that process 16-bit operands and 8-bit operands, it should also provide 16-
bit and 8-bit registers. The ISA identities the low 16 bits of each 32-bit register as a 
16-bit register and the low 8 bits and the high 8 bits of four of the registers as 
8-bit registers for the use of instructions that require those smaller operands. 
So, for example, AX, BX, to DI are 16-bit registers, and AL, BL, CL, DL, AH, 
BH, CH, and DH are 8-bit registers. 

The x86 also provides 64-bit registers for storing values needed for floating 
point and MMX computations. They are, respectively, FPO through FP7 and MMO 
through MM7. 

General Purpose Registers: 

31 0 
AX 

DX 

CX 

BX 

BP 

CI 

DI 

SP 

EAX AL = EAX [7:0] 

EDX DL = EDX [7:0] 

ECX CL = ECX [7:0] 

EBX BL = EBX [7:0] 

EBP AH = EAX [15:8] 

ECI DH = EDX [15:8] 

EDI CH = ECX [15:8] 

ESP BH = EBX [15:8] 

Floating Point Registers: 
63 

Multimedia Registers: 

63 
FPO 

FP1 

FP2 

FP3 

FP4 

FP5 

FP6 

FP7 

MMO 

MM1 

MM2 

MM3 

MM4 

MM5 

MM6 

MM7 

F i g u r e B . 3 Some x 8 6 app l ica t ion-v is ib le registers 
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S y s t e m Reg is te rs 

The LC-3 has two system-level registers—the PC and the PSR. The user-visible 
x86 has these and more. 

Figure B.4 shows some of the user-visible system registers in the x86 ISA. 

I n s t r u c t i o n P o i n t e r 

The x86 has the equivalent of the LC-3's 16-bit program counter. The x86 calls 
it an instruction pointer (IP). Since the address space of the x86 is 32 bits, IP is 
a 32-bit register. 

F L A G S Reg is te r 

Corresponding to the LC-3's N, Z, and P condition codes, the x86 has a 1-bit SF 
(sign flag) register and a 1-bit ZF (zero flag) register. SF and ZF provide exactly 
the same functions as the N and Z condition codes of the LC-3. The x86 does 
not have the equivalent of the LC-3's P condition code. In fact, the P condition 
code is redundant, since if one knows the values of N and Z, one knows the value 
of P. We included it in the LC-3 ISA anyway, for the convenience of assembly 
language programmers and compiler writers. 

The x86 collects other 1 -bit values in addition to N and Z. These 1 -bit values 
(called flags) are contained in a 16-bit register called FLAGS. Several of these 
flags are discussed in the following paragraphs. 

The CF flag stores the carry produced by the last relevant operation that 
generated a carry. As we said earlier, together with the ADC instruction, CF facil-
itates the generation of procedures, which allows the software to deal with larger 
integers than the ISA supports. 

The OF flag stores an overflow condition if the last relevant operate generated 
a value too large to store in the available number of bits. Recall the discussion of 
overflow in Section 2.5.3. 

31 

Instruction Pointer (EIP): 

15 

FLAGS Register: PRIV OF DF IF TF SF ZF AF PF 

Segment Registers (Selectors): CS 

S S 

DS 

ES 

FS 

GS 

15 C 

0 
CF] 

F i g u r e B . 4 x 8 6 system registers 
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The DF flag indicates the direction in which string operations are to process 
strings. If DF = 0, the string is processed from the high-address byte down (i.e., 
the pointer keeping track of the element in the string to be processed next is 
decremented). If DF = 1, the string is processed from the low-address byte up 
(i.e., the string pointer is incremented). 

Two flags not usually considered as part of the application state are the IF 
(,interrupt) flag and the TF (trap) flag. Both correspond to functions with which 
you are familiar. 

IF is very similar to the IE (interrupt enable) bit in the KBSR and DSR, 
discussed in Section 8.5. If IF = 1, the processor can recognize external interrupts 
(like keyboard input, for example). If IF = 0, these external interrupts have no 
effect on the process that is executing. We say the interrupts are disabled. 

TF is very similar to single-step mode in the LC-3 simulator, only in this case 
it is part of the ISA. If TF = 1, the processor halts after every instruction so the 
state of the system can be examined. If TF = 0, the processor ignores the trap 
and processes the next instruction. 

Segment Registers 

When operating in its preferred operating mode (called protected mode), the 
address calculated by the instruction is really an offset from the starting address 
of a segment, which is specified by some segment base register. These segment 
base registers are part of their corresponding data segment descriptors, which 
are contained in the segment descriptor table. At each instant of time, six of 
these segments are active. They are called, respectively, the code segment (CS), 
stack segment (SS), and four data segments (DS, ES, FS, and GS). The six active 
segments are accessed via their corresponding segment registers shown in Figure 
B.4, which contain pointers to their respective segment descriptors. 

1.2 The Formal and Specif icat ion of x86 Instructions 
The LC-3 instruction is a 16-bit instruction. Bits [15:12] always contain the 
opcode; the remaining 12 bits of each instruction are used to support the needs 
of that opcode. 

The length of an x86 instruction is not fixed. It consists of a variable num-
ber of bytes, depending on the needs of that instruction. A lot of information 
can be packed into one x86 instruction. Figure B.5 shows the format of an 

(see Table B.5) (see Table B.6) 

F i g u r e B . 5 F o r m a t of the x86 ins t ruc t ion 
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x86 instruction. The instruction consists of anywhere from 1 to 15 bytes, as 
shown in the figure. 

The two key parts of an x86 instruction are the opcode and, where necessary, 
the ModR/M byte. The opcode specifies the operation the instruction is to perform. 
The ModR/M byte specifies how to obtain the operands it needs. The ModR/M 
byte specifies one of several addressing modes, some of which require the use 
of registers and a one-, two-, or four-byte displacement. The register information 
is encoded in a SIB byte. Both the SIB byte and the displacement (if one is 
necessary) follow the ModR/M byte in the instruction. 

Some opcodes specify an immediate operand and also specify the number 
of bytes of the instruction that is used to store that immediate information. The 
immediate value (when one is specified) is the last element of the instruction. 

Finally, the instruction assumes certain default information with respect to 
the semantics of an instruction, such as address size, operand size, segment to be 
used, and so forth. The instruction can change this default information by means 
of one or more prefixes, which are located at the beginning of the instruction. 

Each part of an x86 instruction is discussed in more detail in Sections B.2.1 
through B.2.6. 

B.2.1 Prefix 
Prefixes provide additional information that is used to process the instruction. 
There are four classes of prefix information, and each instruction can have from 
zero to four prefixes, depending on its needs. Fundamentally, a prefix overrides 
the usual interpretation of the instruction. 

The four classes of prefixes are lock and repeat, segment override, operand 
override, and address override. Table B.4 describes the four types of prefixes. 

^efixes, x86 ISA 

Repeat/Lock 
xFO(LOCK) 

xF2, xF3 
( R E P / R E P E / R E P N E ) 

Segment override 
x2E(CS) , x36(SS), 
x3E(DS) , x26(ES) / 

x64(FS) , x65(GS) 

Operand size override 
xfefe 

Address size override 
x67 

This prefix guarantees that the instruction wi l l have exclusive use of 
all shared memory until the instruction completes execution. 

This prefix allows the instruction (a string instruction) to be 
repeated some specified number of times. The iteration count is 
specified by ECX. The instruction is also terminated on the 
occurrence of a specified value of ZF. 

This prefix causes the memory access to use the specified segment, 
instead of the default segment expected for that instruction. 

This prefix changes the size of data expected for this instruction. 
That is, instructions expecting 32-bi t data elements use 16-bi t data 
elements. And instructions expecting 16-bi t data elements use 
32-bi t data elements. 

This prefix changes the size of operand addresses expected for this 
instruction. That is, instructions expecting a 32-b i t address use 
16-bi t addresses. And instructions expecting 16-bi t addresses use 
32-bi t addresses. 
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B.2.2 Opcode 
The opcode byte (or bytes—some opcodes are represented by two bytes) specifies 
a large amount of information about the needs of that instruction. The opcode byte 
(or bytes) specifies, among other things, the operation to be performed, whether 
the operands are to be obtained from memory or from registers, the size of the 
operands, whether or not one of the source operands is an immediate value in the 
instruction, and if so, the size of that immediate operand. 

Some opcodes are formed by combining the opcode byte with bits [5:3] 
of the ModR/M byte, if those bits are not needed to provide addressing mode 
information. The ModR/M byte is described in Section B.2.3. 

B.2.3 ModR/M Byte 
The ModR/M byte, shown in Figure B.5, provides addressing mode information 
for two operands, when necessary, or for one operand, if that is all that is needed. 
If two operands are needed, one may be in memory, the other in a register, or both 
may be in registers. If one operand is needed, it can be either in a register or in 
memory. The ModR/M byte supports all cases. 

The ModR/M byte is essentially partitioned into two parts. The first part 
consists of bits [7:6] and bits [2:0]. The second part consists of bits [5:3]. 

If bits [7:6] = 00, 01, or 10, the first part specifies the addressing mode 
of a memory operand, and the combined five bits ([7:6],[2:0]) identify which 
addressing mode. If bits [7:6] = 1 1 , there is no memory operand, and bits L2:0] 
specify a register operand. 

Bits [5:3] specify the register number of the other operand, if the opcode 
requires two operands. If the opcode only requires one operand, bits [5:3] are 
available as a subopcode to differentiate among eight opcodes that have the same 
opcode byte, as described in Section B.2.2. 

Table B.5 lists some of the interpretations of the ModR/M byte. 

IdR/M Byte, Examples 

Mod Reg R/M Eff. Addr. Reg Explanation 

00 O i l 000 [ E A X ] EBX EAX contains the address of the memory operand. 
EBX contains the register operand. 

01 010 000 disp8[ E A X ] EDX Memory operand's address is obtained by adding the 
displacement byte of the instruction to the contents 
of EAX. EDX contains the register operand. 

10 000 100 d i sp32 [ -X - ] EAX Memory operand's address is obtained by adding the 
four-byte (32 bits) displacement of the instruction to 
an address that wi l l need an SIB byte to compute. 
(See Section B.2.4 for the discussion of the SIB 
byte.) EAX contains the register operand. 

11 001 110 ESI ECX If the opcode requires two operands, both are in 
registers (ES I and ECX). I f the opcode requires one 
operand, it is in ESI. In that case, 001 (bits [ 5 : 3 ] ) 
are part of the opcode. 
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SIB Byte, Examples 

Scale Index Base Computation Explanation 

00 

01 

01 

10 

Oil 

000 

100 

110 

0 0 0 

001 

001 

0 1 0 

E B X + E A X The contents of EBX are added to the contents of EAX. 
The result is added to whatever is specified by the 
ModR/M byte. 

2 • EAX + ECX The contents of EAX are mult ip l ied by 2, and the result 
is added to the contents of ECX. This is then added to 
whatever is specified by the ModR/M byte. 

ECX The contents of ECX are added to whatever is specified 
by the ModR/M byte. 

4 • ESI H- EDX The contents of ESI are mult ip l ied by 4, and the result 
is added to the contents of EDX. This is then added to 
whatever is specified by the ModR/M byte. 

B.2.4 SIB Byte 
If the opcode specifies that an operand is to be obtained from memory, the Mod-
R/M byte specifies the addressing mode, that is, the information that is needed 
to calculate the address of that operand. Some addressing modes require more 
information than can be specified by the ModR/M byte alone. Those operand 
specifiers (see example 3 in Table B.5) specify the inclusion of an SIB byte in the 
instruction. The SIB byte (for scaled-index-base), shown in Figure B.5, provides 
scaling information and identifies which register is to be used as an index register 
and/or which register is to be used as a base register. Taken together, the SIB byte 
computes scale • index + base, where base and/or index can be zero, and scale 
can be 1. Table B.6 lists some of the interpretations of the SIB byte. 

B.2.5 Displacement 
If the ModR/M byte specifies that the address calculation requires a displacement, 
the displacement (one, two, or four bytes) is contained in the instruction. The 
opcode and/or ModR/M byte specifies the size of the displacement. 

Figure B.6 shows the addressing mode calculation for the source operand if 
the instruction is as shown. The prefix x26 overrides the segment register and 
specifies using the ES segment. The ModR/M and SIB bytes specify that a four-
byte displacement is to be added to the base register ECX + the index register 
EBX after its contents are multiplied by 4. 

B.2.6 Immediate 
Recall that the LC-3 allowed small immediate values to be present in the instruc-
tion, by setting inst[5:5] to 1. The x86 also permits immediate values in the 
instruction. As stated previously, if the opcode specifies that a source operand is 
an immediate value in the instruction, it also specifies the number of bytes of the 
instruction used to represent the operand. That is, an immediate can be represented 
in the instruction with one, two, or four bytes. Since the opcode also specifies the 
size of the operand, immediate values that can be stored in fewer bytes than the 
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Prefix O p c o d e ModR/M SIB 

00100110 00000011 10000100 10011001 
Displacement 

32 bits ~~l 
ES 

override 
ADD 

r32, m32 
disp32 [][] EBX * 4 + ECX 

EAX 

32 bits 

Address 

F i g u r e B . 6 Addressing mode ca lcu la t ion fo r Base+Sca led Indes+d i sp32 

operand size are first sign-extended to their full size before being operated on. 
Figure B.7 shows the use of the immediate operand with the ADD instruction. 
The example is ADD EAX, $5. We are very familiar with the corresponding LC-3 
instruction: ADD R0,R0,#5. 

Opcode ModR/M imm8 

10000011 11000000 00000101 
ADD 

r/m 32, imm8 

EAX 

EAX 

EAX 

+5 

SEXT 

32 

ADD 

F i g u r e B . 7 Example x 8 6 ins t ruc t ion : A D D E A X , $5 



573 appendix b From LC-3 to x8fe 

U Rn Example 
We conclude this appendix with an example. The problem is one we have dealt 
with extensively in Chapter 14. Given an input character string consisting of 
text, numbers, and punctuation, write a C program to convert all the lowercase 
letters to uppercase. Figure B.8 shows a C program that solves this problem. 
Figure B.9 shows the annotated LC-3 assembly language code that a C compiler 
would generate. Figure B.10 shows the corresponding annotated x86 assembly 
language code. For readability, we show assembly language representations of 
the LC-3 and x86 programs rather than the machine code. 

#include <stdio.h> 

void UpcaseString(char inputString[]); 

main () 
{ 

char string[8]; 

scanf("Is", string); 
UpcaseString(string); 

} 

void UpcaseString(char inputString[]) 
{ 

int i = 0; 

while(inputString [i] ) { 
if ({'a' <= inputString [i] ) && (inputString [i] <= 'z')) 

inputString[i] = inputString [i] - {'a' - 'A'); 
i + + ; 

} 
} 
F i g u r e B . 8 C source code fo r the upper- / lowercase p rog ram 
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; uppercase: converts lower- to uppercase 
.ORIG x3 0 0 0 
LEA R6, STACK 

MAIN ADD Rl, R6, #3 
READCHAR IN 

OUT 
; read in input string: scanf 

STR RO, Rl, #0 
ADD Rl, Rl, #1 
ADD R2, RO, x-A 
BRnp READCHAR 
ADD Rl, Rl, #-1 
STR R2, Rl, #0 ; put in NULL char to mark the "end" 
ADD Rl, R6, #3 ; get the starting address of the string 
STR Rl, R6, #14 ; pass the parameter 
STR R6, R6, #13 
ADD R6, R6, #11 
JSR UPPERCASE 
HALT 

UPPERCASE STR R7, R6, #1 
AND Rl, Rl, #0 
STR Rl, R6, #4 
LDR R2, R6, #3 

CONVERT ADD R3, Rl, R2 ; add index to starting addr of string 
LDR R4, R3, #0 
BRz DONE ; Done if NULL char reached 
LD R5, a 
ADD R5, R5, R4 ; 'a' <= input string 
BRn NEXT 
LD R5, z 
ADD R5, R4, R5 ; input string <= 'z' 
BRp NEXT 
LD R5, asubA ; convert to uppercase 
ADD R4, R4, R5 
STR R4, R3, #0 

NEXT ADD Rl, Rl, #1 ; increment the array index, i 
STR Rl, R6, #4 
BRnzp CONVERT 

DONE LDR R7, R6, #1 
LDR R6, R6, #2 
RET 

a . FILL #-97 
z . FILL #-122 
asubA . FILL #-32 
STACK .BLKW 

.END 
100 

F i g u r e B . 9 LC-3 assembly language code fo r the upper- / iowercase p rog ram 
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. 386P 

.model FLAT 

_DATA SEGMENT 
$SG3 97 DB 
DATA ENDS 

%s 0 OH 

The NULL-terminated scanf format 
string is stored in global data space 

TEXT SEGMENT 

string$ = -8 ; Location of "string" in local stack 
main PROC NEAR 

sub esp, 8 ; Allocate stack space to store "string" 
lea eax, DWORD PTR _string$ [esp + 8] 
push eax ; Push arguments to scanf 
push OFFSET FLAT:$SG397 
call scanf 

lea ecx, DWORD PTR string$ [esp + 16] 

main 

push ecx 
call _UpcaseString 

add esp, 2 0 
ret 0 
ENDP 

Push argument to UpcaseString 

Release local stack space 

"inputString" location in local stack _inputString$ = 8 
^UpcaseString PROC NEAR 

mov ecx, DWORD PTR _inputString$[esp-4] 
cmp BYTE PTR [ecx], 0 
je SHORT $L404 

$L403: mov al, BYTE PTR [ecx] 
cmp al, 9 7 

jl SHORT $L405 
cmp al, 122 
jg SHORT $L405 
sub al, 32 
mov BYTE PTR [ecx], al 

$L4 0 5: inc ecx 
mov al, BYTE PTR [ecx] 
test al, al 
jne SHORT $L403 

$L4 04: ret 0 
JJpcaseString ENDP 
_TEXT ENDS 
END 
F i g u r e B . 1 0 x86 assembly language code fo r the upper- / lowercase p rog ram 

If inputString [0]= = 0, skip the loop 
Load inputString [i] into AL 
97 == 'a' 

122 == 'z' 

32 == 'a' - 'A' 

i + + %$ 

Loop if inputString[i] != 0 
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We have seen in Chapters 4 and 5 the several stages of the instruction cycle that 
must occur in order for the computer to process each instruction. If a microar-
chitecture is to implement an ISA, it must be able to carry out this instruction 
cycle for every instruction in the ISA. This appendix illustrates one example of 
a microarchitecture that can do that for the LC-3 ISA. Many of the details of the 
microarchitecture and the reasons for each design decision are well beyond the 
scope of an introductory course. However, for those who want to understand how 
a microarchitecture can carry out the requirements of each instruction of the LC-3 
ISA, this appendix is provided. 

C.l Overview 
Figure C.l shows the two main components of an ISA: the data path, which 
contains all the components that actually process the instructions, and the control, 
which contains all the components that generate the set of control signals that are 
needed to control the processing at each instant of time. 

We say, "at each instant of time," but we really mean during each clock cycle. 
That is, time is divided into clock cycles. The cycle time of a microprocessor is 
the duration of a clock cycle. A common cycle time for a microprocessor today 
is 0.5 nanoseconds, which corresponds to 2 billion clock cycles each second. We 
say that such a microprocessor is operating at a frequency of 2 gigahertz. 

At each instant of time—or, rather, during each clock cycle—the 49 control 
signals (as shown in Figure C.l) control both the processing in the data path and 
the generation of the control signals for the next clock cycle. Processing in the 
data path is controlled by 39 bits, and the generation of the control signals for the 
next clock cycle is controlled by 10 bits. 

Note that the hardware that determines which control signals are needed each 
clock cycle does not operate in a vacuum. On the contrary, the control signals 
needed in the "next" clock cycle depend on all of the following: 

1. What is going on in the current clock cycle. 
2. The LC-3 instruction that is being executed. 
3. The privilege mode of the program that is executing. 
4. If that LC-3 instruction is a BR, whether the conditions for the branch 

have been met (i.e., the state of the relevant condition codes). 
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(J, COND, IRD) 

F i g u r e C . l M i c roa rch i t ec tu re of the LC-3/ ma jo r components 

5. Whether or not an external device is requesting that the processor be 
interrupted. 

6. If a memory operation is in progress, whether it is completing during this 
cycle. 

Figure C.l identifies the specific information in our implementation of the 
LC-3 that corresponds to these five items. They are, respectively: 

1. J[5:0], COND[2:OJ, and IRD—10 bits of control signals provided by the 
current clock cycle. 

2. inst[15:12], which identifies the opcode, and instfl 1:11], which 
differentiates JSR from JSRR (i.e., the addressing mode for the target of 
the subroutine call). 

3. PSR[15], bit [15] of the Processor Status Register, which indicates whether 
the current program is executing with supervisor or user privileges. 

4. BEN to indicate whether or not a BR should be taken. 
5. INT to indicate that some external device of higher priority than the 

executing process requests service. 
6. R to indicate the end of a memory operation. 



C.2 The State Machine 

C.2 The State Machine 
The behavior of the LC-3 microarchitecture during a given clock cycle is com-
pletely determined by the 49 control signals, combined with nine bits of additional 
information (inst[15:l 1], PSR[151, BEN, INT, and R), as shown in Figure C.l . 
We have said that during each clock cycle, 39 of these control signals determine 
the processing of information in the data path and the other 10 control signals 
combine with the nine bits of additional information to determine which set of 
control signals will be required in the next clock cycle. 

We say that these 49 control signals specify the state of the control struc-
ture of the LC-3 microarchitecture. We can completely describe the behavior of 
the LC-3 microarchitecture by means of a directed graph that consists of nodes 
(one corresponding to each state) and arcs (showing the flow from each state to 
the one[s] it goes to next). We call such a graph a state machine. 

Figure C.2 is the state machine for our implementation of the LC-3. The state 
machine describes what happens during each clock cycle in which the computer 
is running. Each state is active for exactly one clock cycle before control passes to 
the next state. The state machine shows the step-by-step (clock cycle-by-clock 
cycle) process that each instruction goes through from the start of its FETCH 
phase to the end of that instruction, as described in Section 4.2.2. Each node in 
the state machine corresponds to the activity that the processor carries out during 
a single clock cycle. The actual processing that is performed in the data path is 
contained inside the node. The step-by-step flow is conveyed by the arcs that take 
the processor from one state to the next. 

For example, recall from Chapter 4 that the FETCH phase of every instruction 
cycle starts with a memory access to read the instruction at the address specified 
by the PC. Note that in the state numbered 18, the MAR is loaded with the address 
contained in PC, the PC is incremented in preparation for the FETCH of the next 
LC-3 instruction, and, if there is no interrupt request present (INT = 0), the flow 
passes to the state numbered 33. We will describe in Section C.6 the flow of 
control if INT = 1, that is, if an external device is requesting an interrupt. 

Before we get into what happens during the clock cycle when the processor 
is in the state numbered 33, we should explain the numbering system—that is, 
why 18 and 33. Recall, from our discussion of finite state machines in Chapter 3, 
that each state must be uniquely specified and that this unique specification is 
accomplished by means of the state variables. Our state machine that implements 
the LC-3 ISA requires 52 distinct states to describe the entire behavior of the 
LC-3. Figure C.2 shows 31 of them plus pointers to three others (states 8, 13, and 
49). Figure C.l shows the other 18 states (plus 8, 13, and 49) that are pointed 
to in Figure C.2. We will come into contact with all of them as we go through 
this appendix. Since k logical variables can uniquely identify 2k items, six state 
variables are needed to uniquely specify 52 states. The number next to each node in 
Figure C.2 is the decimal equivalent of the values (0 or 1) of the six state variables 
for the corresponding state. Thus, the state numbered 18 has state variable values 
010010. 

Now, then, back to what happens after the clock cycle in which the activity 
of state 18 has finished. Again, if no external device is requesting an interrupt. 
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the flow passes to state 33. In state 33, since the MAR contains the address 
of the instruction to be processed, this instruction is read from memory and 
loaded into the MDR. Since this memory access can take multiple cycles, this 
state continues to execute until a ready signal from the memory (R) is asserted, 
indicating that the memory access has completed. Thus the MDR contains the 
valid contents of the memory location specified by MAR. The state machine then 
moves on to state 35, where the instruction is loaded into the instruction register 
(IR), completing the fetch phase of the instruction cycle. 

Note that the arrow from the last state of each instruction cycle (i.e., the 
state that completes the processing of that LC-3 instruction) takes us to state 18 
(to begin the instruction cycle of the next LC-3 instruction). 

C.3 The Data Path 
The data path consists of all components that actually process the information 
during a cycle—the functional units that operate on the information, the registers 
that store information at the end of one cycle so it will be available for further use 
in subsequent cycles, and the buses and wires that carry information from one 
point to another in the data path. Figure C. 3, an expanded version of what you have 
already encountered in Figure 5.9, illustrates the data path of our microarchitecture 
of the LC-3. 

Note the control signals that are associated with each component in the data 
path. For example, ALUK, consisting of two control signals, is associated with 
the ALU. These control signals determine how the component will be used each 
cycle. Table C.l lists the set of control signals that control the elements of the 
data path and the set of values that each control signal can have. (Actually, for 
readability, we list a symbolic name for each value, rather than the binary value.) 
For example, since ALUK consists of two bits, it can have one of four values. 
Which value it has during any particular clock cycle depends on whether the 
ALU is required to ADD, AND, NOT, or simply pass one of its inputs to the 
output during that clock cycle. PCMUX also consists of two control signals and 
specifies which input to the MUX is required during a given clock cycle. LD.PC 
is a single-bit control signal, and is a 0 (NO) or a 1 (YES), depending on whether 
or not the PC is to be loaded during the given clock cycle. 

During each clock cycle, corresponding to the "current state" in the state 
machine, the 39 bits of control direct the processing of all components in the data 
path that are required during that clock cycle. The processing that takes place in 
the data path during that clock cycle, as we have said, is specified inside the node 
representing the state. 

C.4 The Control Structure 
The control structure of a microarchitecture is specified by its state machine. As 
described earlier, the state machine (Figure C.2) determines which control signals 
are needed each clock cycle to process information in the data path and which 
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INT R 

(J, COND, IRD) 

F i g u r e C .4 The con t ro l s t ruc ture of a m i c r o p r o g r a m m e d imp lementa t ion , overal l block 
d i ag ram 

control signals are needed each clock cycle to direct the flow of control from the 
currently active state to its successor state. 

Figure C.4 shows a block diagram of the control structure of our imple-
mentation of the LC-3. Many implementations are possible, and the design 
considerations that must be studied to determine which of many possible 
implementations should be used is the subject of a full course in computer 
architecture. 

We have chosen here a straightforward microprogrammed implementation. 
Each state of the control structure requires 39 bits to control the processing in the 
data path and 10 bits to help determine which state comes next. These 49 bits are 
collectively known as a microinstruction. Each microinstruction (i.e., each state 
of the state machine) is stored in one 49-bit location of a special memory called 
the control store. There are 52 distinct states. Since each state corresponds to one 
microinstruction in the control store, the control store for our microprogrammed 
implementation requires six bits to specify the address of each microinstruction. 



Data Path Control Signals 

Signal Name Signal Values 

LD. MAR/1 
LD.MDR/1 

LD.IR/1 
LD.BEN/1 
LD.REG/1 

LD.CC/1 
LD. PC/1 

LD.Priv/1 
LD.SavedSS P / l 
LD.SavedUSP/1 

LD.Vector/1 

Gate PC/1 
GateM DR/1 
Gate ALU /1 

GateM ARM UX/1 
GateVector/1 

GatePC-1/1 
GatePSR/1 

GateS P / l 

PCMUX/2: 

DRMUX/2: 

SR1MUX/2: 

ADDR1MUX/1: 

ADDR2M UX/2: 

SPMUX/2: 

MARMUX/1 : 

VectorM U X/2: 

PSRMUX/1: 

ALU l</2: 

MIO.EN/1: 
R.W/1: 

Set. Priv/1: 

NO, LOAD 
NO, LOAD 
NO/ LOAD 
NO, LOAD 
NO/ LOAD 
NO/ LOAD 
NO, LOAD 
NO/ LOAD 
NO/ LOAD 
NO/ LOAD 
NO, LOAD 

NO/ YES 
NO/ YES 
NO, YES 
NO, YES 
NO/ YES 
NO, YES 
NO, YES 
NO/ YES 

PC+1 
BUS 
ADDER 

11.9 
R7 
SP 

11.9 
8.6 
SP 

PC/ BaseR 

ZERO 
offsetb 
PCoffset9 
PCof f se t l l 

S P + 1 
S P - 1 
Saved SSP 
Saved USP 

7.0 

ADDER 

INTV 
Priv.exception 
Opc.exception 

;select pc+1 
;select value from bus 
;select output of address adder 

/•destination 1R[11:9] 
/•destination R7 
/•destination R6 

;source IR[11:91 
;source I RL8:6J 
;source R6 

;select the value zero 
;select SEXTTIR[5 :0 ] ] 
;select SEXTCIRE8:0]] 
;select S E X T [ I R [ 1 0 : 0 ] ] 

;select stack po in ter+1 
;select stack po in te r -1 
;select saved Supervisor Stack Pointer 
;select saved User Stack Pointer 

;select Z E X T [ I R [ 7 : 0 ] ] 
;select output of address adder 

individual settings, BUS 

ADD, AND/ NOT, PASSA 

NO/ YES 
RO, WR 

0 
1 

;Supervisor mode 
;User mode 
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Microsequencer Control Signals 

Signal Name Signal Values 

J/6: 
COND/3: CONDO Uncond i t i ona l 

CONDI ;Memory Ready 
C0ND2 ; Branch 
C0ND3 ;Addressing Mode 
C0ND4 ;Priv i lege Mode 
C0ND5 . ' Interrupt test 

IRD/1: NO, YES 

Table C.2 lists the function of the 10 bits of control information that help 
determine which state comes next. Figure C.5 shows the logic of the microse-
quencer. The purpose of the microsequencer is to determine the address in the 
control store that corresponds to the next state, that is, the location where the 
49 bits of control information for the next state are stored. 

COND2 COND1 CONDO 

INT PSR[15] 

Clq. 

BEN 

o I ft 

IR[11] 

J[5] J[4] 

0,0,IR[15:12] 

Interrupt 
present 

J[3] 

User 
privilege 
mode j[2] 

Branch 

J[1] 

Ready 

J[0] 

Addr. 
mode 

IRD 

V 
Address of next state 

Figure C.5 The microsequencer of the LC-3 
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IR[11:9] 

110 — 

111 ^ 

D R M U X 

(a) 

IR[11:9] 

N 
Z P 

^ DR 

IR[11:9] 

IR[8:6] 

110 

SR1 M U X 

(b) 

(c) 

^ SR1 

F i g u r e C.6 Add i t i ona l logic requi red to provide cont ro l signals 

Note that state 32 of the state machine (Figure C.2) has 16 "next'' states, 
depending on the LC-3 instruction being executed during the current instruction 
cycle. This state carries out the DECODE phase of the instruction cycle described 
in Chapter 4. If the IRD control signal in the microinstruction corresponding to 
state 32 is 1, the output MUX of the microsequencer (Figure C.5) will take its 
source from the six bits formed by 00 concatenated with the four opcode bits 
IR[ 15:12J. Since IR[15:12] specifies the opcode of the current LC-3 instruction 
being processed, the next address of the control store will be one of 16 addresses, 
corresponding to the 15 opcodes plus the one unused opcode, TR[ 15:12] = 1101. 
That is, each of the 16 next states is the first state to be carried out after the 
instruction has been decoded in state 32. For example, if the instruction being 
processed is ADD, the address of the next state is state 1, whose microinstruction 
is stored at location 000001. Recall that IR[15:12] for ADD is 0001. 

If, somehow, the instruction inadvertently contained IR[15:12] = 1101, 
the unused opcode, the microarchitecture would execute a sequence of 
microinstructions, starting at state 13. These microinstructions would respond to 
the fact that an instruction with an illegal opcode had been fetched. Section C.6.3 
describes what happens. 

Several signals necessary to control the data path and the microsequencer are 
not among those listed in Tables C.l and C.2. They are DR, SRI, BEN, INT, and 
R. Figure C.6 shows the additional logic needed to generate DR, SRI, and BEN. 

The INT signal is supplied by some event external to the normal instruction 
processing, indicating that normal instruction processing should be interrupted 
and this external event dealt with. The interrupt mechanism was described in 
Chapter 8. The corresponding flow of control within the microarchitecture is 
described in Section C.6. 

The remaining signal, R, is a signal generated by the memory in order to allow 
the LC-3 to operate correctly with a memory that takes multiple clock cycles to 
read or store a value. 
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Suppose it takes memory five cycles to read a value. That is, once MAR 
contains the address to be read and the microinstruction asserts READ, it will take 
five cycles before the contents of the specified location in memory are available 
to be loaded into MDR. (Note that the microinstruction asserts READ by means 
of two control signals: MIO.EN/YES and R.W/RD; see Figure C.3.) 

Recall our discussion in Section C.2 of the function of state 33, which accesses 
an instruction from memory during the FETCH phase of each instruction cycle. 
For the LC-3 to operate correctly, state 33 must execute five times before moving 
on to state 35. That is, until MDR contains valid data from the memory location 
specified by the contents of MAR, we want state 33 to continue to re-execute. After 
five clock cycles, the memory has completed the "read," resulting in valid data 
in MDR, so the processor can move on to state 35. What if the microarchitecture 
did not wait for the memory to complete the read operation before moving on to 
state 35? Since the contents of MDR would still be garbage, the microarchitecture 
would put garbage into IR in state 35. 

The ready signal (R) enables the memory read to execute correctly. Since the 
memory knows it needs five clock cycles to complete the read, it asserts a ready 
signal (R) throughout the fifth clock cycle. Figure C.2 shows that the next state 
is 33 (i.e., 100001) if the memory read will not complete in the current clock 
cycle and state 35 (i.e., 100011) if it will. As we have seen, it is the job of the 
microsequencer (Figure C.5) to produce the next state address. 

The 10 microsequencer control bits for state 33 are as follows: 

With these control signals, what next state address is generated by the microse-
quencer? For each of the first four executions of state 33, since R = 0, the next 
state address is 100001. This causes state 33 to be executed again in the next clock 
cycle. In the fifth clock cycle, since R = 1, the next state address is 100011, and 
the LC-3 moves on to state 35. Note that in order for the ready signal (R) from 
memory to be part of the next state address, COND had to be set to 001, which 
allowed R to pass through its four-input AND gate. 

C.5 M e m o r y - M a p p e d I /O 
As you know from Chapter 8, the LC-3 ISA performs input and output via 
memory-mapped I/O, that is, with the same data movement instructions that 
it uses to read from and write to memory. The LC-3 does this by assigning an 
address to each device register. Input is accomplished by a load instruction whose 
effective address is the address of an input device register. Output is accomplished 
by a store instruction whose effective address is the address of an output device 
register. For example, in state 25 of Figure C.2, if the address in MAR is xFE02, 
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T r u t h T a b l e f o r A d d r e s s C o n t r o l L o g i c 

MAR MIO.EN R.W M E M . E N I N . M U X LD.KBSR LD.DSR LD.DDR 

xFEOO 0 R 0 x 0 0 0 

xFEOO 0 W 0 X 0 0 0 

xFEOO 1 R 0 KBSR 0 0 0 

xFEOO 1 W 0 X 1 0 0 

xF E02 0 R 0 X 0 0 0 

xFE02 0 W 0 X 0 0 0 

xFE02 1 R 0 KBDR 0 0 0 

xF E02 1 W 0 X 0 0 0 

xF E04 0 R 0 X 0 0 0 

xFE04 0 W 0 X 0 0 0 

xFE04 1 R 0 DSR 0 0 0 

xF E04 1 W 0 X 0 1 0 

xF E06 0 R 0 X 0 0 0 

xFE06 0 W 0 X 0 0 0 

xFE06 1 R 0 X 0 0 0 

xFE06 1 W 0 X 0 0 1 

other 0 R 0 X 0 0 0 

other 0 W 0 X 0 0 0 

other 1 R 1 mem 0 0 0 

other 1 W 1 X 0 0 0 

MDR is supplied by the KBDR, and the data input will be the last keyboard 
character typed. On the other hand, if the address in MAR is a legitimate memory 
address, MDR is supplied by the memory. 

The state machine of Figure C.2 does not have to be altered to accommodate 
memory-mapped I/O. However, something has to determine when memory should 
be accessed and when I/O device registers should be accessed. This is the job of 
the address control logic shown in Figure C.3. 

Table C.3 is a truth table for the address control logic, showing what control 
signals are generated, based on (1) the contents of MAR, (2) whether or not 
memory or I/O is accessed this cycle (MIO.EN/NO, YES), and (3) whether a 
load or store is requested (R.W/Read, Write). Note that, for a memory-mapped 
load, data can be supplied to MDR from one of four sources: memory, KBDR, 
KBSR, or DSR. The address control logic provides the appropriate select signals 
to the INMUX. For a memory-mapped store, the data supplied by MDR can be 
written to memory, KBSR, DDR, or DSR. The address control logic supplies the 
appropriate enable signal to the corresponding structure. 

C.6 Interrupt and Exception Control 
The final piece of the state machine needed to complete the LC-3 story are those 
states that control the initiation of an interrupt, those states that control the return 
from an interrupt (the RTI instruction), and those states that control the initiation 
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42 
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34 
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Saved_SSP<-SP 
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MDR<-PSR 
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[PSR[15]j 
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[IR[15:12]] 

See Figure C.2 

Vector<-x01 
MDR<-PSR 
PSR[15]<-0 

[PSR[15]] 

Write 

4 3 

To 37 T o 45 

MDR<-PC-1 

MAR, SP<-SP-1 

Q 
I 

Write 

l 50 

MAR<-x01'Vector 

I 5 2 
^-rMV1DR<-MJ 

F i g u r e C . 7 L C - 3 s ta te m a c h i n e s h o w i n g i n t e r r u p t c o n t r o l 

of one of the two exceptions specified by the ISA. The two exceptions are a priv-
ilege mode violation and an illegal opcode. Figure C.7 shows the state machine 
that carries these out. Figure C.8 shows the data path, after adding the addi-
tional structures to Figure C.3 that are needed to make interrupt and exception 
processing work. 
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C.6.1 Initiating an Interrupt 
While a program is executing, an interrupt can be requested by some external 
event so that the normal processing of instructions can be preempted and the con-
trol can turn its attention to processing the interrupt. The external event requests 
an interrupt by asserting its interrupt request signal. Recall from Chapter 8 that 
if the priority level of the device asserting its interrupt request signal is higher than 
the priority level of the currently executing program, INT is asserted and INTV 
is loaded with the appropriate interrupt vector. The microprocessor responds to 
INT by initiating the interrupt. That is, the processor puts itself into supervisor 
mode, pushes the PSR and PC of the interrupted process onto the supervisor stack, 
and loads the PC with the starting address of the interrupt service routine. The 
PSR contains the privilege mode PSR[15], priority level PSR[ 10:8], and condition 
codes PSR[2:0] of a program. It is important that when the processor resumes exe-
cution of the interrupted program, the privilege mode, priority level, and condition 
codes are restored to what they were when the interrupt occurred. 

The microarchitecture of the LC-3 initiates an interrupt as follows: Recall 
from Figure C.2 that in state 18, while MAR is loaded with the contents of PC 
and PC is incremented, INT is tested. 

State 18 is the only state in which the processor checks for interrupts. The 
reason for only testing in state 18 is straightforward: Once an LC-3 instruction 
starts processing, it is easier to let it finish its complete instruction cycle (FETCH, 
DECODE, etc.) than to interrupt it in the middle and have to keep track of how far 
along it was when the external device requested an interrupt (i.e., asserted INT). 
If INT is only tested in state 18, the current instruction cycle can be aborted early 
(even before the instruction has been fetched), and control directed to initiating 
the interrupt. 

The test is enabled by the control signals that make up COND5, which are 
101 only in state 18, allowing the value of INT to pass through its four-input AND 
gate to contribute to the address of the next state. Since the COND signals are not 
101 in any other state, INT has no effect in any other state. 

In state 18, the 10 microsequencer control bits are as follows: 

If INT = 1, a 1 is produced at the output of the AND gate, which in turn 
makes the next state address not 100001, corresponding to state 33, but rather 
110001, corresponding to state 49. This starts the initiation of the interrupt (see 
Figure C.l). 

Several functions are performed in state 49. The PSR, which contains the 
privilege mode, priority level, and condition codes of the interrupted program, are 
loaded into MDR, in preparation for pushing it onto the Supervisor Stack. PSR[ 15] 
is cleared, reflecting the change to Supervisor mode, since all interrupt service 
routines execute in Supervisor mode. The 3-bit priority level and 8-bit interrupt 
vector (INTV) provided by the interrupting device are recorded. PSR[10:8] is 
loaded with the priority level. The internal register Vector is loaded with INTV. 
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Finally, the processor must test the old PSR[15] to see which stack R6 points to 
before pushing PSR and PC. 

If the old PSR[ 15] = 0, the processor is already operating in Supervisor mode. 
R6 is the Supervisor Stack Pointer (SSP), so the processor proceeds immediately 
to states 37 and 44 to push the PSR of the interrupted program onto the Supervisor 
Stack. If PSR[ 15J — 1, the interrupted process was in User mode. In that case, the 
USP (the current contents of R6) must be saved in Saved_USP and R6 must be 
loaded with the contents of Saved_SSP before moving to state 37. This is done 
in state 45. 

The control flow from state 49 to either 37 or 45 is enabled by the 10 
microsequencer control bits, as follows: 

or 

If PSR[15] = 0, control goes to state 37 (100101); if PSR[15] = 1, control 
goes to state 45 (101101). 

In state 37, R6 (SSP) is decremented (preparing for the push), and MAR is 
loaded with the address of the new top of the stack. 

In state 41, the memory is enabled to WRITE (MIO.EN/YES, R.W/WR). 
When the write completes, signaled by R = 1, PSR has been pushed onto the 
Supervisor Stack, and the flow moves on to state 43. 

In state 43, the PC is loaded into MDR. Note that state 43 says MDR is loaded 
with PC-1. Recall that in state 18, at the beginning of the instruction cycle for the 
interrupted instruction, PC was incremented. Loading MDR with PC-1 adjusts 
PC to the correct address of the interrupted instruction. 

In states 47 and 48, the same sequence as in states 37 and 56 occurs, only 
this time, the PC of the interrupted process is pushed onto the Supervisor Stack. 

The final task to complete the initiation of the interrupt is to load the PC with 
the starting address of the interrupt service routine. This is carried out by states 
50, 52, and 54. It is accomplished in a manner similar to the loading of the PC 
with the starting address of a TRAP service routine. The event causing the INT 
request supplies the 8-bit interrupt vector INTV associated with the interrupt, 
similar to the 8-bit trap vector contained in the TRAP instruction. This interrupt 
vector is stored in the 8-bit register INTV, shown on the data path in Figure C.8. 

The interrupt vector table occupies memory locations xOlOO to xOlFF. In 
state 50, the interrupt vector that was loaded into Vector in state 49 is added to the 
base address of the interrupt vector table (xOlOO) and loaded into MAR. In state 
52, memory is enabled to READ. When R = 1, the read has completed and MDR 
contains the starting address of the interrupt service routine. In state 54, the PC 
is loaded with that starting address, completing the initiation of the interrupt. 

It is important to emphasize that the LC-3 supports two stacks, one for each 
privilege mode, and two stack pointers (USP and SSP), one for each stack. R6 is 
the stack pointer and is loaded from the Saved_SSP when privilege changes from 
User mode to Supervisor mode, and from Saved_USP when privilege changes 
from Supervisor mode to User mode. Needless to say, when the Privilege mode 
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changes, the current value in R6 must be stored in the appropriate "Saved" stack 
pointer in order to be available the next time the privilege mode changes back. 

C.6.2 Returning from an Interrupt, RTI 
The interrupt service routine ends with the execution of the RTI instruction. The 
job of the RTI instruction is to restore the computer to the state it was in when 
the interrupt was initiated. This means restoring the PSR (i.e., the privilege mode, 
priority level, and the values of the condition codes N, Z, P) and restoring the PC. 
Recall that these values were pushed onto the stack during the initiation of the 
interrupt. They must, therefore, be popped off the stack in the reverse order. 

The first state after DECODE is state 8. Here we load the MAR with the 
address of the top of the Supervisor Stack, which contains the last thing pushed 
(that has not been subsequently popped)—the state of the PC when the interrupt 
was initiated. At the same time, we test PSR[ 15] since RTI is a privileged instruc-
tion and can only execute in Supervisor mode. If PSR[15] = 0, we can continue 
to carry out the requirements of RTI. 

P S R [ 1 5 ] = 0 ; R T I Completes Execution 

States 36 and 38 complete the operation of restoring PC to the value it had when 
the interrupt was initiated. In state 36, the memory is read. When the read is 
completed, MDR contains the address of the instruction that was to be processed 
next when the interrupt occurred. State 38 loads that address into the PC. 

States 39, 40, 42, and 34 restore the privilege mode, priority level, and con-
dition codes (N, Z, P) to their original values. In state 39, the Supervisor Stack 
Pointer is incremented so that it points to the top of the stack after the PC was 
popped. The MAR is loaded with the address of the new top of the stack. State 40 
initiates the memory READ; when the READ is completed, MDR contains the 
interrupted PSR. State 42 loads the PSR from MDR, and state 34 increments the 
stack pointer. 

The only thing left is to check the privilege mode of the interrupted program to 
see whether the stack pointers have to be switched. In state 34, the microsequencer 
control bits are as follows: 

IRD/0 ; NO 
CCND/100 ; Test: PSR [is] , privilege mode 

If PSRL15] = 0, control flows to state 51 (110011) to do nothing for one 
cycle. If PSR[15J = 1, control flows to state 59 where R6 is saved in Saved_SSP 
and R6 is loaded from Saved_USP. In both cases control returns to state 18 to 
begin processing the next instruction. 

P S R [ 1 5 ] = 1 ; Privilege Mode Exception 

If PSR[151 = 1, the processor has a privilege mode violation. It is attempting to 
execute RTI while the processor is in User mode, which is not allowed. 
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The processor responds to this situation by pushing the PSR and the address 
of the RTI instruction onto the Supervisor Stack and loading the PC with the 
starting address of the service routine that handles privilege mode violations. The 
processor does this in a way very similar to the mechanism for initiating interrupts. 

First, in state 44, three functions are performed. The Vector register is loaded 
with the 8-bit vector that points to the entry in the interrupt vector table that 
contains the starting address of the Privilege mode violation exception service 
routine. This 8-bit vector is xOO. The MDR is loaded with the PSR of the program 
that caused the violation. Third, PSR[15] is set to 0, since the service routine will 
execute with Supervisor privileges. Then the processor moves to state 45, where 
it follows the same flow as the initiation of interrupts. 

The main difference between this flow and that for the initiation of interrupts 
flow comes in state 50, where MAR is loaded with xOTVector. In the case of 
interrupts, Vector had previously been loaded in state 49 with INTV, which is 
supplied by the interrupting device. In the case of the privilege mode violation, 
Vector was loaded in state 44 with xOO. 

Two other minor differences reflect the additional functions performed in 
state 49 if an interrupt is initiated. First, the priority level is changed, based 
on the priority of the interrupting device. We do not change the priority in hand-
ling the privilege mode violation. The service routine executes at the same priority 
as the program that caused the violation. Second, a test to determine the privi-
lege mode is performed for an interrupt. This is unnecessary for a privilege mode 
violation since the processor already knows it is executing in User mode. 

C.6.3 The Illegal Opcode Exception 
At the outset of Section C.6, we said the LC-3 ISA specifies two exceptions, a 
privilege mode violation and an illegal opcode. The privilege mode violation, as 
you have just seen, occurs when the processor tries to execute the RTI instruc-
tion while in User mode. The illegal opcode exception occurs if the instruction 
being processed specifies the undefined opcode (i.e., 1101) in bits [15:12] of the 
instruction. The action the processor takes is very similar to what happens when a 
privilege mode exception is detected. That is, the PSR and PC of the program are 
pushed onto the Supervisor Stack and the PC is loaded with the starting address 
of the Illegal Opcode Exception service routine. That initiates the service routine. 
From there, the service routine does whatever has been specified as the corrective 
action when an illegal opcode is detected. 

The fact that the processor is in state 13 is enough to know that an illegal 
opcode is being processed. The reason: the only way it could get there is via the 
IR decode state 32. State 13 starts the initiation of the exception. State 13 is very 
similar to state 49, which starts the initiation of an interrupt, and state 44, which 
starts the initiation of a privilege mode violation. As with states 49 and 44, the 
Vector register is loaded in preparation for vectoring to the Interrupt Vector Table 
to find the starting address of the service routine. The exception vector in this case 
is xOl. As with states 49 and 44, state 13 sets the Privilege mode to Supervisor 
(PSR[15] 0), since the service routine executes in Supervisor mode. Also like 
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those states, it loads the PSR into the MDR to start the process of pushing the 
PSR onto the Supervisor Stack. 

Like state 44, it does not change the priority of the running program, since 
the urgency of handling the exception is the same as the urgency of executing 
the program that contains it. Like state 49, it tests the Privilege mode of the 
program that contains the illegal opcode, since if the currently executing program 
is in User mode, the stack pointers need to be switched as was described in 
Section C.6.1. Like state 49, the processor then microbranches either to state 37 
if the stack pointer is already pointing to the Supervisor Stack, or to state 45 if the 
stack pointers have to be switched. From there, the initiating sequence continues 
in states 37, 41, 43, etc.. identical to what happens when an interrupt is initiated 
(Section C.6.1) or a privilege mode exception is initiated (Section C.6.2). The 
PSR and PC are pushed onto the Supervisor Stack and the starting address of the 
service routine is loaded into the PC, completing the initiation of the exception. 

Figure C.9 completes our microprogrammed implementation of the LC-3. It 
shows the contents of each location of the control store, corresponding to the 
49 control signals required by each state of the state machine. We have left the 
exact entries blank to allow you, the reader, the joy of filling in the required signals 
yourself. The solution is available from your instructor. 

Control Store 
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The C Programming Language 

D.I Overvieiii 
This appendix is a C reference manual oriented toward the novice C programmer. 
It covers a significant portion of the language, including material not covered in the 
main text of this book. The intent of this appendix is to provide a quick reference to 
various features of the language for use during programming. Each item covered 
within the following sections contains a brief summary of a particular C feature 
and an illustrative example, when appropriate. 

We start our coverage of the C programming language by describing the lexical 
elements of a C program and some of the conventions used by C programmers 
for writing C programs. 

The C programming convention is to separate programs into files of two types: 
source files (with the extension . c) and header files (with the extension .h). 
Source files, sometimes called . c or dot-c files, contain the C code for a group 
of related functions. For example, functions related to managing a stack data 
structure might be placed in a file named stack. c . Each . c file is compiled into 
an object file, and these objects are linked together into an executable image by 
the linker. 

Header files typically do not contain C statements but rather contain function, 
variable, structure, and type declarations, as well as preprocessor macros. The 
programming convention is to couple a header file with the source file in which 
the declared items are defined. For example, if the source file stai o. c con-
tains the definitions for the functions printf, scanf, getchar, and putchar, 
then the header file stdio. h contains the declarations for these functions. If one 
of these functions is called from another .c file, then the stdio.h header file 
should be #included to get the proper function declarations. 

D.2 CConveni ions 

D.2.1 Source Files 

D.2.2 Header Files 
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D.2.3 Comments 
In C, comments begin with the two-character delimiter - and end with */'. 
Comments can span multiple lines. Comments within comments are not legal 
and will generate a syntax error on most compilers. Comments within strings 
or character literals are not recognized as comments and will be treated as part of 
the character string. While some C compilers accept the C + + notation for 
comments ( ), the ANSI C standard only allows for * and * . 

D.2.4 Literals 
C programs can contain literal constant values that are integers, floating point 
values, characters, character strings, or enumeration constants. These literals can 
be used as initializers for variables, or within expressions. Some examples are 
provided in the following subsections. 

In teger 

Integer literals can be expressed either in decimal, octal, or hexadecimal notation. 
If the literal is prefixed by a j (zero), it will be interpreted as an octal number. If the 
literal begins with a ::->:, it will be interpreted as hexadecimal (thus it can consist 
of the digits 0 through 9 and the characters a through / . Uppercase .4 through F 
can be used as well. An unprefixed literal (i.e.. it doesn't begin with a c or Ox) 
indicates it is in decimal notation and consists of a sequence of digits. Regardless 
of its base, an integer literal can be preceded by a minus sign, --, to indicate a 
negative value. 

An integer literal can be suffixed with the letter / or L to indicate that it is 
of type v. . An integer literal suffixed with the letter a or U indit ites m 
unsigned value. Refer to Section D.3.2 for a discussion of icr^y and 
types. 

The first three examples that follow express the same number, 87. The two 
last versions express it as an . value and as a value. 

/* 87 in decimal */ 
/'* 87 in hexadecimal */ 
/* 87 in octal */ 
/* -24 in decimal */ 

-••:•;• /* -20 in octal */ 
/* -36 in hexadecimal */ 

Floating Point 

Floating point constants consist of three parts: an integer part, a decimal point, 
and a fractional part. The fractional part and integer part are optional, but one 
of the two must be present. The number preceded by a minus sign indicates a 
negative value. Several examples follow: 

/* expresses the number 1.0 */ 
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Floating point literals can also be expressed in exponential notation. With 
this form, a floating point constant (such as 1.613123) is followed by an e or E. 
The e or E signals the beginning of the integer exponent, which is the power of 
10 by which the part preceding the exponent is multiplied. The exponent can be a 
negative value. The exponent is obviously optional, and if used, then the decimal 
point is optional. Examples follow: 

5.02 3 e2 3 /* 6.023 * 10^23 */ 
454_323e-22 /* 454.323 * 10^(-22) */ 
SEI3 /* 5.0 * 10"13 */ 

By default, a floating point type is a or double-precision floating point 
number. This can be modified with ihe optional suffix / or F, which indicates 
a f l o a t or single-precision floating point number. The suffix / or L indicates a 
long double (see Section D.3.2). 

Character 

A character literal can be expressed by surrounding a particular character by single 
quotes, e.g., 5 o ' . This converts the character into the internal character code used 
by the computer, which for most computers today, including the LC-3, is ASCII. 

Table D. 1 lists some special characters that typically cannot be expressed with 
a single keystroke. The C programming language provides a means to state them 
via a special sequence of characters. The last two forms, octal and hexadecimal, 
specify ways of stating an arbitrary character by using its code value, stated as 
either octal or hex. For example, the character ' S \ which has the ASCII value of 
83 (decimal), can be stated as ' \0123' or fc\x53\ 

String Literals 

A string literal within a C program must be enclosed within double quote char-
acters, ». String literals have the type char - and space for them is allocated in 

Special Characters in C 

Character Sequence 

newline 
horizontal tab 
vertical tab 
backspace 
carriage return 
formfeed 
audible alert 
backslash '•. 
question mark ? 
single quote ' 
double quote n 

octal number 
hexadecimal number 



588 appendix d The C Programming Language 

a special section of the memory address space reserved for literal constants. The 
termination character ' ' . o' is automatically added to the character string. 
The following are two examples of string literals: 

char greeting[I0J = "bon jouri"; 
printf ("This is a string literal11 j ; 

String literals can be used to initialize character strings, or they can be used 
wherever an object of type c nar * is expected, for example as an argument to a 
function expecting a parameter of type char *. String literals, however, cannot 
be used for the assignment of arrays. For example, the following code is not legal 
inC. 

char greeting lie] ; 

greeting = !'bon j our : " ; 

Enumerat ion Constants 

Associated with an enumerated type (see Section D.3.1) are enumerators, or enu-
meration constants. These constants are of type int, and their precise value is 
defined by the enumerator list of an enumeration declaration. In essence, an 
enumeration constant is a symbolic, integral value. 

D.2.5 Formatting 
C is a freely formatted language. The programmer is free to add spaces, tabs, 
carriage returns, new lines between and within statements and declarations. C 
programmers often adopt a style helpful for making the code more readable, 
which includes adequate indenting of control constructs, consistent alignment of 
open and close braces, and adequate commenting that does not obstruct someone 
trying to read the code. See the numerous examples in the C programming chapters 
of the book for a typical style of formatting C code. 

D.2.6 Keywords 
The following list is a set of reserved words, or keywords, that have special 
meaning within the C language. They are the names of the primitive types, type 
modifiers, control constructs, and other features natively supported by the lan-
guage. These names cannot be used by the programmer as names of variables, 
functions, or any other object that the programmer might provide a name for. 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float short unsigned 
continue for- signed void 
default go to sizeof volatile 
do if static whx le 
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D.3 Types 
In C, expressions, functions, and objects have types associated with them. The type 
of a variable, for example, indicates something about the actual value the variable 
represents. For instance, if the variable kappa is of type int, then the value (which 
is essentially just a bit pattern) referred to by kappa will be interpreted as a signed 
integer. In C, there are the basic data types, which are types natively supported 
by the programming language, and derived types, which are types based on basic 
types and which include programmer-defined types. 

D.3.1 Basic Data Types 
There are several predefined basic types within the C language: int, float, 
double, and char. They exist automatically within all implementations 
of C, though their sizes and range of values depends upon the computer system 
being used. 

ii V 
The binary value of something of int type will be interpreted as a signed whole 
number. Typical computers use 32 bits to represent signed integers, expressed in 
2's complement form. Such integers can take on values between (and including) 
-2,147.483,648 and +2,147,483,647. 

float 
Objects declared of type float represent single-precision floating point numbers. 
These numbers typically, but not always, follow the representations defined by 
the IEEE standard for single-precision floating point numbers, which means that 
the type is a 32-bit type, where 1 bit is used for sign, 8 bits for exponent (expressed 
in bias-127 code), and 23 bits for fraction. See Section 2.7.1. 

cLoiifo 13 
Objects declared of type double deal with double-precision floating point num-
bers. Like objects of type float, objects of type double are also typically 
represented using the IEEE standard. The precise difference between objects 
of type float and of type double depends on the system being used; however, 
the ANSI C standard specifies that the precision of a double should never be less 
than that of a float. On most machines a double is 64 bits. 

char 
Objects of character type contain a single character, expressed in the character 
code used by the computer system. Typical computer systems use the ASCII 
character code (see Appendix E). The size of a char is large enough to store a 
character from the character set. C also imposes that the size of a short int 
must be at least the size of a char. 

Collectively, the int and char types (and enumerated types) are referred to 
as integral types, whereas float and double are floating types. 
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Enumerated Types 

C provides a way for the programmer to specify objects that take on symbolic 
values. For example, we iiny want to create a type that takes on one of four values: 
Penguin, Riddier, Ca i, Joker. We can do so by using an enumerated 
type, as follows: 

/* Specifier */ 
enum villains ( Penguin, Riddier, Cai^oman, Joker 

/* Declaration */ 
enum villains badGuy; 

The variable badGuy is of the enumerated type villains. It can take on one 
of the four symbolic values defined by enumerator list in the specifier. The four 
symbolic values are called enumeration constants (see Section D.2.4) and are 
actually integer values. 

In an enumerator list, the value of the first enumeration constant will be 0, 
the next will be 1, and so forth. In the type villains, the value of Penguin 
will be 0, Riddier will be 1, Catwoman will be 2, doner will be 3. The value of 
an enumerator can be explicitly set by the programmer by using the assignment 
operator, For example, 

/* Specifier */ 
enum vi J. _ a ins \ Penguin - .5, Ki da_er , uauvvorfian, ... o.^ j. > ; 

causes Penguin to be 3, Riddier to be 4, and so forth. 

D.3.2 Type Qualifiers 
The basic types can be modified with the use of a type qualifier. These modifiers 
alter the basic type in some small fashion or change its default size. 

signed, unsigned 
The types int and char can be modified with the use of the s 1 gnea and unsigned 
qualifiers. By default, integers are signed; the default on characters depends on 
the computer system. 

For example, if a computer uses 32-bit 2's complement signed integers, 
then a signed int can have any value in the range -2,147,483,648 to 
+2,147,483,647. On the same machine, an unsigned int can have a value 
in the range 0 to +4.294,967,295. 

signed i n c; /* the signed modifier is redundant */ 

signed char j; ' /* forces the char to be interpreted 
as a signed value */ 

unsigned char k; /* the char will be interpreted as an 
unsigned value */ 
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long, short 
The qualifiers long and short allow the programmer to manipulate the physical 
size of a basic type. For example, the qualifiers can be used with an integer to 
create short int and long int. 

It is important to note that there is no strict definition of how much larger 
one type of integer is than another. The C language states only that the size of a 
short int is less than or equal to the size of an i nr., which is less than or equal 
to the size of a long int. Stated more completely and precisely: 
sizeof: ( c h a r < = sizeof i short :nt) <- sizeof • m o ; <= sizeof<long int 

New computers that support 64-bit data types make a distinction on the long 
qualifier. On these machines, a long int. might be a 64-bit integer, whereas 
an int might be a 32-bit integer. The range of values of types on a particular 
computer can be found in the standard header file •• l-v.. • -. h>. On most UNIX 
systems, it will be in the /nsr/include directory. 

The following are several examples of type modifiers on the integral data 
types. 
short int q; 
long int p; 
unsigned long int r; 

The long and short qualifiers can also be used with the floating type double 
to create a floating point number with higher precision or larger range (if such 
a type is available on the computer) than a double. As stated by the ANSI C 
specification: the size of a float is less than or equal to the size of a double, 
which is less than or equal to the size of a acng double. 

double X; 
long double y; 

w rt 
SmJ Jn W W 

A value that does not change through the course of execution can be qualified 
with the const qualifier. For example, 
const double pi =- 3.14159; 

By using this qualifier, the programmer is providing information that might enable 
an optimizing compiler to perform more powerful optimizations on the resulting 
code. All variables with a const qualifier must be explicitly initialized. 

D.3.3 Storage Class 
Memory objects in C can be of the static or automatic storage class. Objects of 
the automatic class are local to a block (such as a function) and lose their value 
once their block is completed. By default, local variables within a function are of 
the automatic class and are allocated on the run-time stack (see Section 14.3.1). 

Objects of the static class retain their values throughout program execution. 
Global variables and other objects declared outside of all blocks are of the static 
class. Objects declared within a function can be qualified with the s tat ic qualifier 
to indicate that they are to be allocated with other static objects, allowing their 
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value to persist across invocations of the function in which they are declared. For 
example, 

int Count: { inz x> 
/ i 

static int y; 

} 
The value of y will not be lost when the activation record of Ccunt. is popped 

off the stack. To enable this, the compiler will allocate a static local variable in 
the global data section. Every call of the function updates the value of y. 

Unlike typical local variables of the automatic class, variables of the static 
class are initialized to zero. Variables of the automatic class must be initialized 
by the programmer. 

There is a special qualifier called r e g i s t e r that can be applied to objects in 
the automatic class. This qualifier provides a hint to the compiler that the value 
is frequently accessed within the code and should be allocated in a register to 
potentially enhance performance. The compiler, however, treats this only as a 
suggestion and can override or ignore this specifier based on its own analysis. 

Functions, as well as variables, can be qualified with the qualifier extern. 
This qualifier indicates that the function's or variable's storage is defined in 
another object module that will be linked together with the current module when 
the executable is constructed. 

D.3.4 Derived Types 
The derived types are extensions of the basic types provided by C. The derived 
types include pointers, arrays, structures, and unions. Structures and unions enable 
the programmer to create new types that are aggregations of other types. 

Arrays 

An array is a sequence of objects of a particular type that is allocated sequentially 
in memory. That is, if the first element of the array of type T is at memory location 
X, the next element will be at memory location X + sizeof , and so forth. 
Each element of the array is accessible using an integer index, starting with the 
index 0. That is, the first element of array l i s - is l i s t ;oj , numbered starting 
at 0. The size of the array must be stated as a constant integral expression (it is 
not required to be a literal) when the array is declared. 

char s t r i n g [ 1 0 0 / * Declares array of 100 characters */ 
int data [20] ; /* Declares array of 20 integers */ 

To access a particular element within an array, an index is formed using an 
integral expression within square brackets, ; ]. 

data [0j /* Accesses first element of array data */ 
data [i + 3] /* The variable i must be an integer */ 
string[x + y; /* x and y must be integers */ 
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The compiler is not required to check (nor is it required to generate code to 
check) whether the value of the index falls within the bounds of the array. The 
responsibility of ensuring proper access to the array is upon the programmer. For 
example, based on the previous declarations and array expressions, the reference 
string [x + y], the value of x + y should be 100 or less; otherwise the 
reference exceeds the bounds of the array st r ing. 

Pointers 

Pointers are objects that are addresses of other objects. Pointer types are declared 
by prefixing an identifier with an asterisk, *. The type of a pointer indicates the 
type of the object that the pointer points to. For example, 

int *v; /* v points to an integer */ 

C allows a restricted set of operations to be used on pointer variables. Point-
ers can be manipulated in expressions, thus allowing "pointer arithmetic" to be 
performed. C allows assigment between pointers of the same type, or assignment, 
of a pointer to 0. Assignment of a pointer to the constant value 0 causes the gener-
ation of a null pointer. Integer values can be added to or subtracted from a pointer 
value. Also, pointers of the same type can be compared (using the relational oper-
ators) or subtracted from one another, but this is meaningful only if the pointers 
involved point to elements of the same array. All other pointer manipulations are 
not explicitly allowed in C but can be done with the appropriate casting. 

Structures 

Structures enable the programmer to specify an aggregate type. That is, a structure 
consists of member elements, each of which has its own type. The programmer can 
specify a structure using the following syntax. Notice that each member element 
has its own type. 

struct tag_id { 
typel memberl; 
type2 member2; 

t ypeN membe rN; 
[ • 

This structure has member elements named memberi of type typei, member2 
of type2, up to memberN of typeN. Member elements can take on any basic or 
derived type, including other programmer-defined types. 

The programmer can specify an optional tag, which in this case is tag id. 
Using the tag, the programmer can declare structure variables, such as the variable 
x in the following declaration: 

struct tag_ id x; 

A structure is defined by its tag. Multiple structures can be declared in a program 
with the same member elements and member element identifiers; they are different 
if they have different tags. 
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Alternatively, variables can be declared along with the structure declaration, 
as shown in the following example. In this example, the variable first.Point is 
declared along with the structure. The array m a e is declared using the structure 
tag point. 

struct point < 
int x; 
int y; 
first Point; 

/* declares an array of structure type variables */ 
struct point: imaqeilQC] ; 

See Section 19.2 for more information on structures. 

Unions 

Structures are containers that hold multiple objects of various types. Unions, on 
the other hand, are containers that hold a single object that can take on different 
predetermined types at various points in a program. For example, the following 
is the declaration of a union variable j omed: 

ui __tag { 
ival ; 

e ; - • 
oval ; 

} j - - ^ - j Q ; 

The variable joined ultimately contains bits. These bits can be an integer, 
double, or character data type, depending on what the programmer decides to put 
there. For example, the variable will be treated as an integer with the expression 
j oi ned. ival, or as a double-precision floating point value with joined, ival, 
or as a character with j oir.ed . oval. The compiler will allocate enough space for 
union variables as required for the largest data type. 

D.3.5 typedef 
In C, a programmer can use typedef to create a synonym for an existing type. 
This is particularly useful for providing names for programmer-defined types. 
The general form for a typedef follows: 

typedef type nave; 

Here, type can be any basic type, enumerated type, or derived type. The identifier 
name can be any legal identifier. The result of this typedef is that name is a 
synonym for type. The t ypedef declaration is an important feature for enhancing 
code readability; a well-chosen type name conveys additional information about 
the object declared of that type. Following are some examples. 
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:ee , tea , water , soda \ leverage ; 
/* Declaration uses previous typedef */ 

j- Pixel; 

Pixel bitmap I] 024*320] ; /^Declares an array of pixels*/ 

D.4 Declarat ions 
An object is a named section of memory, such as a variable. In C, an object 
must be declared with a declaration before it can be used. Declarations inform 
the compiler of characteristics, such as its type, name, and storage class, so that 
correct machine code can be generated whenever the object is manipulated within 
the body of the program. 

In C, functions are also declared before they are used. A function declaration 
informs the compiler about the return value, function name, and types and order 
of input parameters. 

D.4.1 Variable Declarations 
The format for a variable declaration is as follows: 
[storage-class] [ t ype-qua 1: t i e t ] | ? •{ identifier < ] = initializer: 

The curly braces, { }, indicate items that are required and the square brackets, 
[ ] , indicate optional items. 

The optional storage-class can be any storage class modifier listed in 
Section D.3.3, such as s t a t i c . 

The optional type-qualifier can be any legal type qualifiers, such as the 
qualifiers provided in Section D.3.2. 

The type of a variable can be any of the basic types (int, char, float, 
double), enumerated types, or derived type (array, pointer, structure, or union). 

An identifier can be any sequence of letters, digits, and the underscore char-
acter, _. The first character must be a letter or the underscore character. Identifiers 
can have any length, but for most variables you will use, at least 31 characters will 
be significant. That is, variables that differ only after the 31 st character might be 
treated as the same variable by an ANSI C compiler. Uppercase letters are differ-
ent from lowercase, so the identifier sum is different from Sum. Identifiers must 
be different from any of the C keywords (see Section D.2.6). Several examples 
of legal identifiers follow. Each is a distinct identifier. 
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The initializer for variables of automatic storage (see Section D.3.3) can 
be any expression that uses previously defined values. For variables of the static 
class (such as global values) or external variables, the initializer must be a constant 
expression. 

Also, multiple identifiers (and initializers) can be placed on the same line, 
creating multiple variables of the same type, having the same storage class and 
type characteristics. 

static long unsigned int > ~ 10UL; 
register char 1 - 'Q'; 
m t list [100] ; 
struct node_type r:; /* Declares a structure variable */ 

Declarations can be placed at the beginning of any block (see Section D.6.2), 
before any statements. Such declarations are visible only within the block in 
which they appear. Declarations can also appear at the outermost level of the 
program, outside of all functions. Such declarations are global variables. They 
are visible from all parts of the program. See Section 12.2.3 for more information 
on variable declarations. 

D.4.2 Function Declarations 
A function's declaration informs the compiler about the type of value returned by 
the function and the type, number, and order of parameters the function expects 
to receive from its caller. The format for a function declaration is as follows: 

The curly braces, { }, indicate items that are required and the square brackets, 
[ ], indicate items that are optional. 

The type indicates the type of the value returned by the function and can be 
of any basic type, enumerated type, a structure, a union, a pointer, or void (note: 
it cannot be an array). If a function does not return a value, then its type must be 
dec l a red as void. 

The function-id can be any legal identifier that has not already been defined. 
Enclosed within parentheses following the function-id are the types of each of 

the input parameters expected by the function, indicated by type I, type2, typeN, 
each separated by a comma. Optionally, an identifier can be supplied for each 
argument, indicating what the particular argument will be called within the func-
tion's definition. For example, the following might be a declaration for a function 
that returns the average of an in i> of integers: 

int Average tint srs [ j , int ; 

D.5 Operators 
In this section, we describe the C operators. The operators are grouped by the 
operations they perform. 
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D.5.1 Assignment Operators 
C supports multiple assignment operators, the most basic of which is the simple 
assigment operator =. All assignment operators associate from right to left. 

A standard form for a simple assignment expression is as follows: 

The left-expression must be a modifiable object. It cannot, for example, be a 
function, an object with a type qualifier const, or an array (it can, however, be 
an element of an array). The left-expression is often referred to as an lvalue. The 
left-expression can be an object of a structure or union type. 

After the assignment expression is evaluated, the value of the object referred 
to by the left-expression will take on the value of the right-expression. In most 
usages of the assignment operator, the types of the two expressions will be the 
same. If they are different, and both are basic types, then the right operand is 
converted to the type of the left operand. 

The other assignment operators include: 

All of these assignment operators combine an operation with an assignment. 
In general, A op= b is equivalent to a = a op ;3 . For example, x += y is 
equivalent to x - x + y. 

Examples of the various assignment operators can be found in Sections 12.3.2 
and 12.6.4. 

D.5.2 Arithmetic Operators 
C supports basic arithmetic operations via the following binary operators: 

+ ~ * / % 

These operators perform addition, subtraction, multiplication, division, and 
modulus. These operators are most commonly used with operands of the basic 
types (int, double, float, and char). If the operands have different types (such 
as a floating point value plus an integer), then the resulting expression is converted 
according to the conversion rules (see Section D.5.11). There is one restriction, 
however: the operands of the modulus operator % must be of the integral type 
(e.g., int, char, or enumerated). 

The addition and subtraction operators can also be used with pointers that 
point to values within arrays. The use of these operators in this context is referred 
to as pointer arithmetic. For example, the expression ptr + i where ptr is of 
type type *, is equivalent to ptr e sizeof (typeA The expression ptr + i 
generates the address of the next element in the array. 

C also supports the two unary operators + and The negation operator, - , 
generates the negative of its operand. The unary plus operator, +, generates its 
operand. This operator is included in the C language primarily for symmetry with 
the negation operator. 

For more examples involving the arithmetic operators, see Section 12.3.3. 
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D.5.3 Bit-Wise Operators 
The following operators: 

are C's bit-wise operators. They perform bit-wise operation only on integral 
values. That is, they cannot be used with floating point values. 

The left shift operator, , and right shift operator, > >, evaluate to the value 
of the left operand shifted by the number of bit positions indicated by the right 
operand. In ANSI C, if the right operand is greater than the number of bits in 
the representation (say, for example, 33 for a 32-bit integer) or negative, then the 
result is undefined. 

Table D.2 provides some additional details 011 these operators. It provides an 
example usage and evaluation of each with an integer operand x equal to 186 and 
the integer operand y equal to 6. 

D.5.4 Logical Operators 
The logical operators in C are particularly useful for constructing logical expres-
sions with multiple clauses. For example, if we want to test whether both condition 
A and condition B are true, then we might want to use the logical AND operator. 

The logical AND operator takes two operands (which do not need to be of 
the same type). The operator evaluates to a 1 if both operands are nonzero. It 
evaluates to 0 otherwise. 

The logical OR operator takes two operands and evaluates to 1 if either is 
nonzero. If both are zero, the operator evaluates to 0. 

The logical NOT operator is a unary operate that evaluates to the logical 
inverse of its operand: it evaluates to 1 if the operand is zero, 0 otherwise. 

The logical AND and logical OR operators are short-circuit operators. That 
is, if in evaluating the left operand, the value of the operation becomes known, 
then the right operand is not evaluated. For example, in evaluating :: • ! : • .•. 
if x is nonzero, then will not be evaluated, meaning that the side effect of the 
increment will not occur. 

Table D.3 provides some additional details on the logical operators and pro-
vides an example usage and evaluation of each with an integer operand x equal 
to 186 and the integer operand y equal to 6. 

Bit-Wise Operators in C 

x=l 86 
Operator Symbol Operation Example Usage y=6 

bit-wise AND 
bit-wise OR 
bit-wise NOT 
bit-wise XOR 
left shift 

2 
190 

- 1 8 7 
188 

11904 
2 r ight shift 
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E S l H f S V - ' ' Log ica l O p e r a t o r s in C 

x-186 
Operator Symbol Operation Example Usage y=6 

&& logical A N D x && y 1 
1 ! logical OR x U y 1 
! logical NOT ix 0 

D.5.5 Relational Operators 
The following operators: 

are the relational operators in C. They perform a relational comparison between 
the left and right operands, such as equal to, not equal to, and greater than. The 
typical use of these operators is to compare expressions of the basic types. If 
the relationship is true, then the result is the integer value 1; otherwise it is 0. 
Expressions of mixed type undergo the standard type conversions described in 
Section D.5.11. C also allows the relational operators to be used on pointers. 
However, such pointer expressions only have meaning if both pointers point to 
the same object, such as the same array. 

D.5.6 Increment/Decrement Operators 
The increment/decrement operators in C are and - -. They increment or 
decrement the operand by 1. Both operators can be used in prefix and postfix 
forms. 

In the prefix form, for example ++x, the value of the object is incremented 
(or decremented). The value of the expression is then the value of the result. For 
example, after the following executes: 

i n t x = 4; 
i n t y ; 

y = + + X ; 

both x and y equal 5. 
In the postfix form, for example the value of the expression is the value 

of the operand prior to the increment (or decrement). Once the value is recorded, 
the operand is incremented (or decremented) by 1. For example, the result of the 
following code: 

int. x = 4; 
i n t y ; 

y = x i -f ; 

is that x equals 5 and y equals 4. 
Like the addition and subtraction operators, the increment and decrement 

operators can be used with pointer types. See Section D.5.2. 
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D.5.7 Conditional Expression Operators 
The conditional expression operator in C has the following form: 

^expressionA* ? ( expressions > : { expressionC 

Here, if expressionA is logically true, that is, it evaluates to a nonzero value, then 
the value of the entire expression is the value of expressionB. If expressionA is 
logically false, that is, it evaluates to zero, then the value of the entire expression 
is the value of expressionC. For example, in the following code segment: 

the value of the conditional expression x v y : z will depend on the value of 
x. If x is nonzero, then w will be assigned the value of y. Otherwise x will be 
assigned the value of 

Like the logical AND and logical OR operators, the conditional expression 
short-circuits the evaluation of expressionB or expressionC, depending on the 
state of expressionA. See Section D.5.4. 

D.5.8 Pointer, Array, and Structure Operators 
This final batch of operators performs address-related operations for use with the 
derived data types. 

Address Operator 

The address operator is the i . It takes the address of its operand. The operand 
must be a memory object, such as a variable, array element, or structure member. 

Dereference Operator 

The complement of the address operator is the dereference operator. It returns the 
object to which the operand is pointing. For example, given the following code: 

- I:- t 

int. x = 5; 

p = &x; 
n:- •• =• A 

the expression *p returns x. When appears on the left-hand side of an assign-
ment operator, it is treated as an lvalue (see Section D.5.1). Otherwise *p evaluates 
to the value of x. 

Array Reference 

In C, an integral expression within square brackets, [ ] , designates a subscripted 
array reference. The typical use of this operator is with an object declared as an 
array. The following code contains an example of an array reference on the array 
I i s l . 

int x; 

int list [ICC] ; 

x - . - - 10]; 
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Structure and Union References 

C contains two operators for referring to member elements within a structure or 
union. The first is the dot, or period, which directly accesses the member element 
of a structure or union variable. The following is an example: 

struct pointType { 
inf. x; 
int y; 

i . 
/ ; 

typedef poi nr.Type Point; 

Point pixel; 

pixel.x - 3; pixel.y - pixel.x + 10 7 

The variable pixel is a structure variable, and its member elements are 
accessed using the dot operator. 

The second means of accessing member elements of a structure is the arrow, 
or -> operator. Here, a pointer to a structure or union can be dereferenced 
and a member element selected with a single operator. The following code 
demonstrates: 

Point pixel; 
Point *ptr; 

ptr - &pixel; 
ptr->x = ptr->x + 1; 

Here, the pointer variable ptr points to the structure variable pixel. 

D.5.9 sizeof 
The sizeof operator returns the number of bytes required to store an object of 
the type specified. For example, sizeof ;int) will return the number of bytes 
occupied by an integer. If the operand is an array, then si zeof will return the size 
of the array. The following is an example: 

int. list [45] ; 

struct example _type { 
int valueA; 
int valueB; 
double valueC; 

\ . j ' 
typedef struct example _type Example; 

s i z e A ~ 
sizeB = 

sizeof(list); 
sizeof(Example) 

/* 45 * sizeof(int) */ 
/* Size of structure */ 
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Ulf inr lT Operator Precedence, from Highest to Lowest. 
Descriptions of Some Operators are Provided in Parentheses 

Precedence Group Assoc ia t i v i t y Opera to rs 

1 (h ighest) 1 to r ( ) ( func t ion cah) [ ] (a r ray index) - > 

2 r to ! + + - - (post f ix versions) 

3 r to 1 + + - - (pref ix versions) 

4 r to 1 * ( i nd i rec t ion ) & (adcress of) 
+ ( i inary ) - (unary) ~ ! s i z e o f 

5 r to 1 ( t y p e ) (type cast) 

6 1 to r * ;n iL i l t i p ! ' ca t ion) / % 

7 
8 

1 to r 
1 to r 

+ ' '.addition) - ( sub t rac t i on ; 
« » 

9 1 to r < > < = > = 

10 1 to r I -

1 1 I to r & 

12 1 to r 

13 1 to r 
14 1 to r 
15 1 to r i 
16 1 to r 0 . 

17 ( lowest) r to 1 + = * = etc. 

D.5.10 Order of Evaluation 
The order of evaluation of an expression starts at the subexpression in the inner-
most parentheses, with the operator with the highest precedence, moving to the 
operator with the lowest precedence within the same subexpression. If two oper-
ators have the same precedence (for example, two of the same operators, as in 
the expression :: — then the associativity of the operators determines the 
order of evaluation, either from left to right or from right to left. The evaluation 
of the expression continues recursively from there. 

Table D.4 provides the precedence and associativity of the C operators. The 
operators of highest precedence are listed at the top of the tabic, in lower numbered 
precedence groups. 

D.5.11 Type Conversions 
Consider the following expression involving the operator op. 

The resulting value of this expression will have a particular type associated 
with it. This resulting type depends on (1) the types of the operands A and B, and 
(2) the nature of the operator op. 

If the types of A and B are the same and the operator can operate on that 
type, the result is the type defined by the operator. 

When an expression contains variables that are a mixture of the basic types, 
C performs a set of standard arithmetic conversions of the operand values. In gen-
eral, smaller types are converted into larger types, and integral types are converted 
into floating types. For example, if A is of type : and B is of type int, the 
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result is of type double. Integral values, such as char, im, or an enumerated 
type, are converted to i ne (or unsigned int, depending on the implementation). 
The following are examples. 

i * i /* This expression is an integer */ 
-j .1 /* This expression is an integer */ 
j + 1,0 /* This expression is a float */ 
1 + l.o /* This expression is a float */ 
x - y /* This expression is a double */ 
i + j 4 x -r y /* This is a double */ 

As in case (2) above, some operators require operands of a particular type or 
generate results of a particular type. For example, the modulus operator % only 
operates on integral values. Here integral type conversions are performed on the 
operands (e.g., char is converted to rut). Floating point values are not allowed 
and will generate compilation errors. 

If a floating point type is converted to an integral type (which does not happen 
with the usual type conversion, but can happen with casting as described in the 
next subsection), the fractional portion is discarded. If the resulting integer cannot 
be represented by the integral type, the result is undefined. 

Casting 

The programmer can explicitly control the type conversion process by type 
casting. A cast has the general form; 

Here the expression is converted into the new-type using the usual conver-
sion rules described in the preceding paragraphs. Continuing with the previous 
example code: 

-i (int} x -+ y; /* This results in conversion of 
double into an integer */ 

D.6 Expressions and Statements 
In C, the work, performed by a program is described by the expressions and 
statements within the bodies of functions. 

D.6.1 Expressions 
An expression is any legal combination of constants, variables, operators, and 
function calls that evaluates to a value of a particular type. The order of evaluation 
is based on the precedence and associativity rules described in Section D.5.10. 
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The type of an expression is based on the individual elements of the expression, 
according to the C type promotion rules (see Section D.5.11). If all the elements 
of an expression are int types, then the expression is of int type. Following are 
several examples of expressions: 

a * a - b * b 
a++ - c / 3 
a 4 
q ! | integrate : x"> 

D.6.2 Statements 
In C, simple statements are expressions terminated by a semicolon, ; . Typically, 
statements modify a variable or have some other side effect when the expression 
is evaluated. Once a statement has completed execution, the next statement in 
sequential order is executed. If the statement is the last statement in its function, 
then the function terminates. 

/* Two simple statements */ 

Related statements can be grouped togethered into a compound statement, or 
block, by surrounding them with curly braces, { }. Syntactically, the compound 
statement is the same as a simple statement, and they can be used interchangeably. 

{ /* One compound statement */ 
c = a * a + b * b ; 
b = a+4 - c / 3; 

} 

0.7 Control 
The control constructs in C enable the programmer to alter the sequential 
execution of statements with statements that execute conditionally or iteratively. 

D.7.1 i f 
An if statement has the format 

if (expression) 
statement 

If the expression, which can be of any basic, enumerated, or pointer types, eval-
uates to a nonzero value, then the statement, which can be a simple or compound 
statement, is executed. 

if (x < 0) 
a = b + c; /* Executes if x is less than zero */ 
See Section 13.2.1 for more examples of if statements. 
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D.7.2 If-else 
An if-else statement has the format 

if (expression) 
statement:! 

else 
statement.2 

If the expression, which can be of any basic, enumerated, or pointer type, eval-
uates to a nonzero value, then statement! is executed. Otherwise, statement2 is 
executed. Both statement 1 and statement2 can be simple or compound statements. 

a = b + c; / * Executes if x is less than zero * / 

a - ):• - c; / * Otherwise, this is executed. * / 

See Section 13.2.2 for more examples of if_-else statements. 

D.7.3 Switch 
A switch statement has the following format: 

switch(expression; ( 
case const-exprl: 

statementlA 
statement 15 

case const-expr2: 
stateiuer:t-2A 
stat ement2B 

case const-expx'N: 
statements 
statementNB 

A switch statement is composed of an expression, which must be of integral 
type (see Section D.3.1), followed by a compound statement (though it is not 
required to be compound, it almost always is). Within the compound statement 
exist one or more case labels, each with an associated constant integral expres-
sion, called const-exprl, const-expr2, const-exprN in the preceding example. 
Within a switch, each case label must be different. 
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When a switch is encountered, the controlling expression is evaluated. If 
one of the case labels matches the value of expression, then control jumps to the 
statement that follows and proceeds from there. 

The special case label default can be used to catch the situation where none 
of the other case labels match. If the def aui t case is not present and none of the 
labels match the value of the controlling expression, then no statements within 
the switch are executed. 

The following is an example of a code segment that uses a s w i t c h state-
ment. The use of the break statement causes control to leave the swi tch . See 
Section D.7.7 for more information on break. 
char k; 

k = g e t c h a r ( ) ; 
s w i t c h (k) { 
ca se ' * ' : 

a ^ b + c; 
b r e a k ; /' * b reak causes c o n t r o l t o l eave swi t ch * / 

case ' - ' : 
a = b - c ; 
b r e a k ; 

ca se 1 * 1 : 
a ^ b * c ; 
b r e a k ; 

case '/': 
a - b / c ; 
b r e a k ; -i 

See Section 13.5.1 for more examples of swircn statements. 

D.7.4 While 
A while statement has the following format: 
while (expression) 

statement 

The while statement is an iteration construct. If the value of expression evaluates 
to nonzero, then the statement is executed. Control does not pass to the subsequent 
statement, but rather the expression is evaluated again and the process is repeated. 
This continues until expression evaluates to 0, in which case control passes to the 
next statement. The statement can be a simple or compound statement. 

In the following example, the wnile loop will iterate 100 times. 

X = 0; 
while (x < 100) { 

printf[nx - %d\n", x) ; 
X ~ X + 1 ; 

1 

See Section 13.3.1 for more examples of while statements. 
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D.7.5 For 
A for statement has the following format: 

for (initializer; term-expr; reinitializer) 
s t a t emerit 

The f o r statement is an iteration construct. The initializer, which is an expression, 
is evaluated only once, before the loop begins. The term-expr is an expression 
that is evaluated before each iteration of the loop. If the term-expr evaluates to 
nonzero, the loop progresses; otherwise the loop terminates and control passes 
to the statement following the loop. Each iteration of the loop consists of the exe-
cution of the statement, which makes up the body of the loop, and the evaluation 
of the reinitializer expression. 

The following example is a for loop that iterates 100 times. 

for (X = 0; X < 100; X++i { 
printf(Mx = %d\n", x) ; 

See Section 13.3.2 for more examples of for statements. 

D.7.6 Do-while 
A do-while statement has the format 

do 
statement 

while (expression); 

The do - while statement is an iteration construct similar to the while statement. 
When a do-whi le is first encountered, the statement that makes up the loop 
body is executed first, then the expression is evaluated to determine whether to 
execute another iteration. If it is nonzero, then another iteration is executed (in 
other words, statement is executed again). In this manner, a do-while always 
executes its loop body at least once. 

The following do- while loop iterates 100 times. 

printf("x = %d\n", x); 

\ j 
while (x < 100); 

See Section 13.3.3 for more examples of do-while statements. 
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D.7.7 Break 
A break statement has the format: 

The break statement can only be used in an iteration statement or in a switch 
statement. It passes control out of the smallest statement containing it to the 
statement immediately following. Typically, creak is used to exit a loop before 
the terminating condition is encountered. 

In the following example, the execution of the rreak statement causes control 
to pass out of the f o r loop. 

See Section 13.5.2 for more examples of break statements. 

D.7.8 continue 
A continue statement has the following format: 

The continue statement can be used only in an iteration statement. It prema-
turely terminates the execution of the loop body. That is, it terminates the current 
iteration of the loop. The looping expression is evaluated to determine whether 
another iteration should be performed. In a for loop the reinitialize}' is also 
evaluated. 

If the continue statement is executed, then x is incremented, and the reinitial-
ize r executed, and the loop expression evaluated to determine if another iteration 
should be executed. 

if (skip) 
continue; 

See Section 13.5.2 for more examples of c statements. 
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D.7.9 return 
A return statement has the format 
return expression; 

The return statement causes control to return to the current caller function, that 
is, the function that called the function that contains the return statement. Also, 
after the last statement of a function is executed, an implicit return is made to the 
caller. 

The expression that follows the return is the return value generated by 
the function. It is converted to the return type of the function. If a function returns 
a value, and yet no return statement within the function explicitly generates a 
return value, then the return value is undefined. 
return x y; 

D.8 The C Preprocessor 
The C programming language includes a preprocessing step that modifies, in 
a programmer-controlled manner, the source code presented to the compiler. 
The most frequently used features of the C preprocessor are its macro substi-
tution facility (#def ine), which replaces a sequence of source text with another 
sequence, and the file inclusion facility (^include), which includes the con-
tents of a file into the source text. Both of these are described in the following 
subsections. 

None of the preprocessor directives are required to end with a semicolon. 
Since #def ine and ̂ include are preprocessor directives and not C statements, 
they are not required to be terminated by semicolons. 

D.8.1 Macro Substitution 
The #define preprocessor directive instructs the C preprocessor to replace 
occurrences of one character sequence with another. Consider the following 
example: 
#define A 3 

Here, any token that matches A will be replaced by B. That is, the macro A gets 
substituted with B. The character A must appear as an individual sequence, i.e., 
the A in APPLE will not be substituted, and not appear in quoted strings, i.e., 
neither will "A". 

The replacement text spans until the end of the line. If a longer sequence is 
required, the backslash character, \ , can be used to continue to the next line. 

Macros can also take arguments. They are specified in parentheses immedi-
ately after the text to be replaced. For example: 
#derine REMAINDER (X, Y) ( (X) % \Y> i 
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Here, every occurrence of the macro COPY in the source code will be accompanied 
by two values, as in the following example. 

The macro REMAINDER will be replaced by the preprocessor with the replace-
ment text provided in the ^def,ne, and the two arguments A and B will be 
substituted with the two arguments that appear in the source code. The previous 
code will be modified to the following after preprocessing: 

vaiueC - ((valueA^ % (valueR - 15};; 

Notice that the parentheses sunuundm^ X md Y in the macro definition were 
required. Without them, the macro i: would have calculated the wrong 
value. 

While the r e m a i n d e r macro appears to be similar to a function call, 
notice that it incurs none of the function call overhead associated with regular 
functions. 

D.8.2 File Inclusion 
The tf include directive instructs the preprocessor to insert the contents of a file 
into the source file. Typically, the s i n ^ u d e directive is used to attach header 
files to C source files. C header files typically contain - d e f i n e s and declarations 
that are useful among multiple source files. 

There are two variations of the sinclude directive: 

#include <stdio.h> 
^include "program h" 

The first variation uses angle brackets, < >, around the filename. This tells the 
preprocessor that the header file can be found in a predefined directory, usually 
determined by the configuration of the system and which contains many system-
related and library-related header files, such as stdic.h. The second variation, 
using double quotes, n n , around the filename, instructs the preprocessor that 
the header file can be found in the same directory as the C source file. 

D.9 Some Standard Library Functions 
The ANSI C standard library contains over 150 functions that perform a variety 
of useful tasks (for example, I/O and dynamic memory allocation) on behalf of 
your program. Every installation of ANSI C will have these functions available, 
so even if you make use of these functions, your program will still be portable 
from one ANSI C platform to another. In this section, we will describe some 
useful standard library functions. 
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D.9.1 I/O Functions 
The <stdlc. h> header file must be included in any source file that contains calls 
to the standard I/O functions. Following is a small sample of these functions. 

This function has the following declaration: 

The function gee char reads the next character from the standard input device, 
or stdin. The value of this character is returned (as an integer) as the return value. 

The behavior of getchar is very similar to the LC-3 input TRAP (except no 
input banner is displayed on the screen). 

Most computer systems will implement getchar using buffered I/O. This 
means that keystrokes (assuming standard input is coming from the keyboard) 
will be buffered by the operating system until the Enter key is pressed. Once Enter 
is pressed, the entire line of characters is added to the standard input stream. 

putchar 
This function has the following declaration: 

The function putchar takes an integer value representing an ASCII character 
and puts the character to the standard output stream. This is similar to the LC-3 
TRAP OUT 

If the standard output stream is the monitor, the character will appear on the 
screen. However, since many systems buffer the output stream, the character may 
not appear until the system's output buffer is flushed, which is usually done once 
a newline appears in the output stream. 

S TTi 

This function has the following declaration: 
int scanf ; const char * format string, *ptrl, . . . ,-

The function scant: is passed a format string (which is passed as pointer 
to the initial character) and a list of pointers. The format string contains format 
specifications that control how scanf will interpret fields in the input stream. For 
example, the specification %d causes scanf to interpret the next sequence of non-
white space characters as adecimal number. This decimal is converted from ASCII 
into an integer value and assigned to the variable pointed to by the next pointer in 
the parameter list. Table D.5 contains a listing of the possible specifications for use 
with scanf. The number of pointers that follow the format string in the parameter 
list should correspond to the number of format specifications in the format string. 
The value returned by scanf corresponds to the number of variables that were 
successfully assigned. 
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scanf Conversion Specifications 

scanf Conversions Parameter Type 

signed decimal 
* i decimal, octal (leading : ) , hex (leading c x or ox ) 
•i - octal 

hexadecimal 
l u unsigned decimal 

char 
string of non-white space characters, : added 

, f loat ing point number 
double precision floating point number 

printf Conversion Specifications 

printf Conversions Printed as 

signed decimal 
octal 
hexadecimal (a - f or A - F ) 
unsigned decimal 
single chat-
string, terminated by 0 
floating point in decimal notation 
floating point in exponential notation 
pointer 

This function has the following declaration: 
inr printf • ccrist cnar *formatString, . . . ; ; 

The function printf writes the format string (passed as a pointer to the initial 
character) to the standard output stream. If the format string contains a format 
specification, then print f will interpret the next parameter in the parameter list 
as indicated by the specification, and embed the interpreted value into the output 
stream. For example, the format specification : : will cause printf to interpret 
the next parameter as a decimal value, printf will write the resulting digits into 
the output stream. Table D.6 contains a listing of the format specifications for 
use with princf . In general, the number of values following the format string 
on the parameter list should correspond to the number of format specifications in 
the format string, printf returns the number of characters written to the output 
stream. However, if an error occurs, a negative value is returned. 

D.9.2 String Functions 
The C standard library contains around 15 functions that perform operations on 
strings (that is, null-terminated arrays of characters). To use the string functions 
from within a program, include the ^ s t n a c . b header file in each source file 
that contains a call to a library string function. In this section, we describe two 
examples of C string functions. 
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strcmp 
This function has the following declaration: 

int strcmp(char *stringA, char *stringB); 

This function compares stringA with strings. It returns a 0 if they are 
equal. It returns a value greater than 0 if stringA is lexicographically greater than 
strings (lexicographically greater means that stringA occurs later in a diction-
ary than stnngB). It returns a value less than 0 if stringA is lexicographically 
less than strings. 

strcpy 
This function has the following declaration: 

char *strcpy(char *stringA, char *stringB;; 
This function copies srringB to stringA. It copies every character in 

strings up to and including the null character. The function returns a pointer to 
st ringA if no errors occurred. 

D.9.3 Math Functions 
The C standard math functions perform commonly used mathematical operations. 
Using them requires including the <math.. header file. In this section, we list a 
small sample of C math functions. Each of the listed functions takes as parameters 
values of type acubi e, and each returns a value of type double. 
double sin(double x); / * sine of x, expressed in radians */ 
double cos(double x); /* cosine of x, expressed in radians */ 
double /* tan of x, expressed in radians */ 
doub:e /* exponential function, e Ax */ 
double ^ * /* natural log of x */ 
~ e j - /* square root of x */ 
u le lou-cle y) /* x Ay - - x to the y power */ 

D.9.4 Utility Functions 
The C library contains a set of functions that perform useful tasks such as memory 
allocation, data conversion, sorting, and other miscellaneous things. The common 
header file for these functions is <stdlib.n>. 

in 3.1 x o c 
As described in Section 19.3, the function ma Hoc allocates a fixed-sized chunk 
from memory. 

This function has the following declaration: 
void *malloc(size_t size); 

The input parameter is the number of bytes to be allocated. The parameter is 
of type size t, which is the same type returned by the sizeof operator (very 
often, this type is typedefed as an unsigned integer). If the memory allocation 



6 1 4 appendix d The C Programming Language 

goes successfully, a pointer to the allocated region of memory is returned. If the 
request cannot be satisfied, the value NULL is returned. 

This function has the following declaration: 
void free(void *ptr'; 

This function returns to the heap a previously allocated chunk of memory 
pointed to by the parameter. In other words, free deallocates memory pointed 
to by ptr. The value passed to free must be a pointer to a previously allocated 
region of memory, otherwise errors could occur. 

rand and srand 
The C standard utility functions contain a function to generate a sequence of 
random numbers. The function is called rand. It does not generate a truly random 
sequence, however. Instead, it generates the same sequence of varying values 
based on an initial seed value. When the seed is changed, a different sequence is 
generated. For example, when seeded with the value 10, the generator will always 
generate the same sequence of numbers. However, this sequence will be different 
than the sequence generated by another seed value. 

The function rand has the following declaration: 

int rand(void) 

It returns a pseudo-random integer in the range 0 to RAND MAX, which is at 
least 32,767. 

To seed the pseudo-random number generator, use the function srand. This 
function has the following declaration: 
void srand(unsigned int seed); 
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Numerical Prefixes 

Amount 
Commonly Used 
Base-2 Approx. Prefix Abbreviation Derived From 

102 4 280 yotta Y Greek for eight: okto 
10 2 1 270 zetta z Greek for seven: hepta 
101 8 260 exa E Greek for six: hexa 
101 5 250 peta P Greek for five: pente 
101 2 240 tera T Greek for monster: teras 
109 230 giga G Greek for giant: gigas 
106 220 mega M Greek for large: megas 
103 210 kilo k Greek for thousand: chilioi 

1 0 " 3 mil l i m Latin for thousand: mil l i 
1 0 - 6 micro \x Greek for small: mikros 
1 0 " 9 nano n Greek for dwarf: nanos 
1 (T 1 2 pico P Spanish for a l itt le: pico 
1 0 " 1 5 femto f Danish and Norwegian for 15: femten 
1 0 " 1 8 atto a Danish and Norwegian for 18: atten 
1 0 " 2 1 zepto z Greek for seven: hepta 
1 0 " 2 4 yocto y Greek for eight: okto 
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E.2 Standard HSCII codes 

The Standard ASCII Table 

ASCI I ASCI I ASCI I ASCI I 

Character Dec Hex Character Dec Hex Character Dec Hex Character Dec Hex 
nul 0 00 sc 32 20 "r: 64 40 96 60 
s o h 1 01 1 33 21 A 65 41 a 97 61 
SIX 2 02 " 34 22 B 66 42 b 98 62 
e t x 3 03 # 35 23 £ 67 43 c 99 63 
eoc 4 04 $ 36 24 68 44 d 100 64 
enq 5 05 % 37 25 E 69 45 e 101 65 
ack 6 06 5c 38 26 F 70 46 f 102 66 
bel 7 07 ' 39 27 '•j 71 47 q 103 67 
bs 8 08 ( 40 28 H 72 48 h 104 68 
ht 9 09 ) 41 29 I 73 49 i 105 69 
If 10 OA * 42 2A 74 4A j 106 6A 
vt 11 0B + 43 2 B K 75 4B k 107 6B 
ff. 12 OC 44 2C T_ 76 4C x 108 6C 
cr 13 0D - 45 2D M 77 4D y-n 109 6D 
so 14 OE 46 2 E i>I 78 4E n 110 6E 
si 15 OF i 47 2 F 0 79 4F G 111 6F 
die 16 10 0 48 30 P 80 50 P 112 70 
del 17 11 1 49 31 Q 81 51 Q" 113 71 
dc2 18 12 50 32 •Q 82 52 r 114 72 
dc3 19 13 3 51 33 3 83 53 s 115 73 
dc4 20 14 4 52 34 T 84 54 t 116 74 
nak 21 15 5 53 35 U 85 55 u 117 75 
syn 22 16 6 54 36 \ j 86 56 v 118 76 
etb 23 17 7 55 37 \\ 87 57 w 119 77 
can 24 18 8 56 38 X 88 58 X 120 78 
em 25 19 9 57 39 'f 89 59 v 121 79 
sub 26 1A 58 3A 7 90 5A 7. 122 7A 
esc 27 I B • 59 3B r 91 5B / 123 7B 
f s 28 1C < 60 3C 92 5C 124 7C 
gs 29 I D = 61 3D 93 5D } 125 7D 
rs 30 I E > 62 3 E 94 5 E 126 7 E 
LIS 31 I F : 63 3F — 95 5F del 127 7F 
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E.3 Powers of 2 

P o w e r s of 2 

C o m m o n 
A m o u n t Decimal Convers ion Abbrev ia t ion 

2 1 2 — 

22 4 — 

23 8 — 

2 4 16 — 

25 32 — 

2e 64 — 

2 7 128 _ 
28 256 — 

29 512 — 
2io 1/024 I K 
2 i i 2 ,048 2I< 
212 4 ; 096 4K 
213 8/192 8I< 
214 16/384 16 K 
215 32/768 32 K 
216 65/536 641< 
217 131/072 128K 
218 262 /144 256K 
219 544/288 512 K 
220 1 /048/576 I M 
230 1 /073/741/824 1G 
232 4 /294 /967 /296 4G 



Solutions to Selected Exercises 

Solutions to selected exercises can be found on our website: 
http://www.mhhe.com/patt2 

http://www.mhhe.com/patt2

