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Modern Quantum Mechanics is a classic graduate level textbook, covering the main

quantum mechanics concepts in a clear, organized, and engaging manner. The original

author, J. J. Sakurai, was a renowned theorist in particle theory. The Third Edition, revised

by Jim Napolitano, introduces topics that extend the text’s usefulness into the twenty-first

century such as advanced mathematical techniques associated with quantum-mechanical

calculations, while at the same time retaining classic developments such as neutron

interferometer experiments, Feynman path integrals, correlation measurements, and Bell’s

inequality. A solution manual for instructors using this textbook can be downloaded from

www.cambridge.org/sakurai3.

J. J. Sakurai was a noted theorist in particle physics and Professor of Physics at UCLA

(1970–1982) and University of Chicago (1964–1970). He received his Ph.D. from Cornell

University in 1958. He contributed greatly to the field of particle physics before passing

away at the age of 49 in 1982, while he was visiting CERN in Geneva.
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Universities of Tokyo and Nagoya, University of Paris d’Orsay, Scuola Normale Superiore

at Pisa, Stanford Linear Accelerator, CERN at Geneva, and Max Planck Institute at
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(1964–1982), a Guggenheim Fellow (1975–1976) and a von Humboldt Fellow (1981–
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parity-violating electron scattering. An innovative educator, he has developed coursework

and curricula at Rensselaer Polytechnic Institute and Temple University. In all cases,
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Preface

This book covers the material on quantum mechanics typically found in a first year
graduate physics curriculum. The approach emphasizes states, operators, eigenvalues,
and representations from the start. Building on these foundations, the reader sees, for
example, how the Schrödinger representation is just one of several ways to realize quantum
dynamics, and how classical physics emerges as an approximation. This approach also
helps the reader gain an appreciation of purely quantum-mechanical phenomena, for
example the magnetic moment and spin of an electron, that have no classical analogue.

The intended audience is the same as for earlier editions, that is, students having
taken upper level undergraduate coursework in quantum physics, classical mechanics and
electromagnetism, multivariable calculus, and ordinary and partial differential equations.

Professor Jun John Sakurai originally conceived the idea for this textbook, I think
inspired by Dirac’s monograph. Sakurai’s life was cut short suddenly, as he was preparing
the first manuscript. His colleague San Fu Tuan took over as Editor, completing a seven
chapter manuscript for Addison-Wesley, who published the First Edition in 1985 and
a Revised Edition in 1993. Some time later, I started work on the Second Edition for
Pearson (who had since acquired Addison-Wesley). This volume contained a lot of new
material, including an eighth chapter, and was published in 2010. The text was reissued
by Cambridge University Press in 2017, which was also when I started work on the Third
Edition.

Quantum mechanics has always fascinated me, but it was the First Edition of Modern
Quantum Mechanics that finally explained to me the logical progression from fundamental
assumptions to practical applications, with classical physics emerging as an approximation.
When I first taught this material at Rensselaer Polytechnic Institute, I used the Revised Edi-
tion, but found myself supplementing with my own notes on solutions of the Schrödinger
equation and other topics. I also tried to use my course to prepare students for quantum
field theory, introducing second quantization and relativistic quantum mechanics, neither
of which were included in Sakurai’s book.

I was therefore pleased to be asked to take on the Second Edition. Sections were added
to Chapters Two and Three on solutions to the Schrödinger equation. I reversed the order
of Chapters Six and Seven, so that Scattering Theory came first, and I reworked the
treatment so that it was based on the formal theory of time-dependent perturbations. The
following chapter on Identical Particles was augmented to include second quantization
and the quantization of the free electromagnetic field, and I added a new chapter on
Relativistic Quantum Mechanics. I also included several connections throughout the book
to experimental measurements, and worked to fix a number of idiosyncrasies that I found
when I taught out of the book.

xiii



xiv Preface

The result was a text that, I thought, achieved my goal of a high level treatment respect-
ing Sakurai’s vision, adding reference to additional modern concepts and experiment, and
preparing the reader for quantum field theory and beyond. The first two chapters lay the
mathematical and physical foundations for the rest of the book, and connect the reader to
undergraduate topics in wave mechanics. Chapter Three covers angular momentum from
the perspective of the rotation operator, with strong connections to important concepts such
as the density operator, central potentials, and Bell’s inequality. Groups are also introduced
here, with further exposition in Chapter Four. Applications to “real world” problems
are the focus of Chapters Five and Six, all the while keeping to the focus of building
on the fundamentals. Chapters Seven and Eight move the discussion towards the “next”
course in quantum mechanics, covering many-body formalism and the inclusion of special
relativity.

The Third Edition keeps the same ordering of the eight chapters. Significant new
material has been added, but I also worked to clarify some of the discussions and to fix
various issues that I discovered after teaching out of the Second Edition. In fact, I compiled
a long list of “Typographical Errors, Mistakes, and Comments” based on covering nearly
the entire book in class, and working through all of the end-of-chapter problems. The Third
Edition addresses all of the errors. It also addresses most of the comments, having to give
up on some only for lack of time.

There are three new sections of new material. Despite its increasing use in condensed
matter physics, I found no treatments of density functional theory in any quantum
mechanics textbook. So, I added Section 7.6 to introduce the subject and take it through to
its application in the helium atom. A reviewer’s suggestion inspired me to add Section 8.1.5
to show how the Klein–Gordon field, built using second quantization, fixes the problems
of negative energies and nonpositive definite probability currents in the Klein–Gordon
wave equation. The Second Edition treated spontaneous emission only as an end-of-
chapter problem, but Section 5.8.4 now goes through the derivation, with some details
and numerical calculations left as problems.

I added new appendices on the Hamiltonian for a Charge in an Electromagnetic Field,
Notes on Complex Analysis, and Calculating Clebsch–Gordan Coefficients. The appendix
on Electromagnetic Units has been significantly revised, and I updated the appendix on
Elementary Solutions to Schrödinger’s Wave Equation to better connect to the discussions
in the text.

Instructors may elect to pick and choose from topics in the book, and not necessarily
in the order of presentation. Chapter One should be covered first, since it lays down the
notation and fundamental assumptions. One could then, for example, take parts of Chapters
Three and Four to expand on operators, observables, and symmetries, prior to discussing
dynamics in Chapter Two. Many other combinations are possible. Indeed, throughout the
book, I have tried to refer to other places in the text where relevant related material is
covered or discussed.

As befits a graduate level textbook, the strategy here is to lay down the principles,
following up with implications by deduction. Some example calculations are carried
through in the text, but the end-of-chapter problems are generally meant to extend
the discussion, and not simply practice what was covered. As such, I recommend that
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instructors choose problems, from the text or otherwise, that follow this idea, including
connection to experimental measurements, where practical.

In several places in the book, either explicitly or implicitly, computer calculations are
necessary to completely follow the arguments or to work the problems. I worked through
these using MATHEMATICA, and am happy to share the code with anyone who would like
to see it, but any other programming language or application can also be used, of course.

Producing the Second Edition was a long process that would not have been possible
without help from many, many people. Colleagues in physics include John Cummings,
Jack Fishburn, Joel Giedt, David Hertzog, Barry Holstein, Bob Jaffe, Matthew Kirby, Joe
Levinger, Alan Litke, Kam-Biu Luk, Bob McKeown, Harry Nelson, Joe Paki, Murray
Peshkin, Olivier Pfister, Mike Snow, John Townsend, San Fu Tuan, David Van Baak, Dirk
Walecka, and Tony Zee. The people at Addison-Wesley/Pearson who guided me included
Adam Black, Ashley Eklund, Deb Greco, Dyan Menezes, John Rogosich, and Jim Smith.

So many others were very helpful to me as I developed the Third Edition. This includes
colleagues Kieron Burke, Mark Caprio, Carl Carlson, Benjamin Chandran, Chris Cocuzza,
Martha Constantinou, Patrick Fasano, Jeremias Gonzalez, Aaron Kaplan (with special
thanks for helping me learn DFT), Toh-Ming Lu, Carl Maes, Andreas Metz, Jerry Miller,
Djordje Minic, Adilson Motter, Nick Murphy, Steve Naculich, Celso Nishi, John Perdew,
Jon Rosner, and Roland Winkler. I am forever grateful to Simon Capelin at Cambridge
University Press, for first bringing to me the possibility of republishing the Second Edition,
and encouraging me to consider a Third Edition. Other key people at CUP include Jane
Adams, Nick Gibbons, Lisa Pinto, and Ilaria Tassistro.

I can only offer my sincere apologies to people I should have listed, but whose name
doesn’t appear because I’ve been careless with note keeping. There are also the very many
people who, over the past several years, offered comments, some of which I’ve not been
able to incorporate.

Finally, I give a special acknowledgement for Stuart Freedman, my mentor, colleague,
and friend. Stuart’s Ph.D. thesis experiment was the first verification of the violation of
Bell’s inequality, and he used this to stoke my interest in quantum mechanics. His guidance
during my years as a graduate student and young scientist shaped my career, and he
remained my friend and counselor until his untimely passing.

Jim Napolitano
Philadelphia, PA





Preface to the Revised First Edition

Since 1989 the Editor has enthusiastically pursued a revised edition of Modern Quantum
Mechanics by his late great friend J. J. Sakurai, in order to extend this text’s usefulness
into the twenty-first century. Much consultation took place with the panel of Sakurai
friends who helped with the original edition, but in particular with Professor Yasuo Hara
of Tsukuba University and Professor Akio Sakurai of Kyoto Sangyo University in Japan.

This book is intended for the first year graduate student who has studied quantum
mechanics at the junior or senior level. It does not provide an introduction to quantum
mechanics for the beginner. The reader should have had some experience in solving time-
dependent and time-independent wave equations. A familiarity with the time evolution
of the Gaussian wave packet in a force-free region is assumed, as is the ability to solve
one-dimensional transmission-reflection problems. Some of the general properties of the
energy eigenfunctions and the energy eigenvalues should also be known to the student who
uses this text.

The major motivation for this project is to revise the main text. There are three
important additions and/or changes to the revised edition, which otherwise preserves the
original version unchanged. These include a reworking of certain portions of Section 5.2
on time-independent perturbation theory for the degenerate case by Professor Kenneth
Johnson of M.I.T., taking into account a subtle point that has not been properly treated
by a number of texts on quantum mechanics in this country. Professor Roger Newton
of Indiana University contributed refinements on lifetime broadening in Stark effect,
additional explanations of phase shifts at resonances, the optical theorem, and on non-
normalizable state. These appear as “remarks by the editor” or “editor’s note” in the
revised edition. Professor Thomas Fulton of the Johns Hopkins University reworked his
Coulomb Scattering contribution (Section 7.13) so that it now appears as a shorter text
portion emphasizing the physics, with the mathematical details relegated to Appendix C.

Though not a major part of the text, some additions were deemed necessary to take into
account developments in quantum mechanics that have become prominent since November
1, 1982. To this end, two supplements are included at the end of the text. Supplement I is
on adiabatic change and geometrical phase (popularized by M. V. Berry since 1983) and is
actually an English translation of the supplement on this subject written by Professor Akio
Sakurai for the Japanese version of Modern Quantum Mechanics (copyright © Yoshioka-
Shoten Publishing of Kyoto). Supplement II is on non-exponential decays written by my
colleague here, Professor Xerxes Tata, and read over by Professor E. C. G. Sudarshan of
the University of Texas at Austin. Though non-exponential decays have a long history
theoretically, experimental work on transition rates that tests indirectly such decays was
done only in 1990. Introduction of additional material is of course a subjective matter on
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the part of the Editor; the readers will evaluate for themselves its appropriateness. Thanks
to Professor Akio Sakurai, the revised edition has been “finely toothcombed” for misprint
errors of the first ten printings of the original edition. My colleague, Professor Sandip
Pakvasa, provided overall guidance and encouragement to me throughout this process of
revision.

In addition to the acknowledgments above, my former students Li Ping, Shi Xiaohong,
and Yasunaga Suzuki provided the sounding board for ideas on the revised edition when
taking my graduate quantum mechanics course at the University of Hawaii during the
spring of 1992. Suzuki provided the initial translation from Japanese of Supplement I
as a course term paper. Dr. Andy Acker provided me with computer graphic assistance.
The Department of Physics and Astronomy and particularly the High Energy Physics
Group of the University of Hawaii at Manoa provided again both the facilities and a
conducive atmosphere for me to carry out my editorial task. Finally I wish to express
my gratitude to Physics (and sponsoring) Senior Editor, Stuart Johnson, and his Editorial
Assistant, Jennifer Duggan, as well as Senior Production Coordinator Amy Willcutt, of
Addison-Wesley for their encouragement and optimism that the revised edition will indeed
materialize.

San Fu TUAN
Honolulu, Hawaii
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In Memoriam to J. J. Sakurai

Jun John Sakurai was born in 1933 in Tokyo and came to the United States as a high

school student in 1949. He studied at Harvard and at Cornell, where he received his Ph.D.

in 1958. He was then appointed assistant professor of Physics at the University of Chicago,

and became a full professor in 1964. He stayed at Chicago until 1970 when he moved to

the University of California at Los Angeles, where he remained until his death. During

his lifetime he wrote 119 articles in theoretical physics of elementary particles as well as

several books and monographs on both quantum and particle theory.

The discipline of theoretical physics has as its principal aim the formulation of

theoretical descriptions of the physical world that are at once concise and comprehensive.

Because nature is subtle and complex, the pursuit of theoretical physics requires bold and

enthusiastic ventures to the frontiers of newly discovered phenomena. This is an area in

which Sakurai reigned supreme with his uncanny physical insight and intuition and also his

ability to explain these phenomena in illuminating physical terms to the unsophisticated.

One has but to read his very lucid textbooks on Invariance Principles and Elementary

Particles and Advanced Quantum Mechanics as well as his reviews and summer school

lectures to appreciate this. Without exaggeration I could say that much of what I did

understand in particle physics came from these and from his articles and private tutoring.

When Sakurai was still a graduate student, he proposed what is now known as the V-A

theory of weak interactions, independently of (and simultaneously with) Richard Feynman,

Murray Gell-Mann, Robert Marshak, and George Sudarshan. In 1960 he published in

Annals of Physics a prophetic paper, probably his single most important one. It was

concerned with the first serious attempt to construct a theory of strong interactions based

on Abelian and non-Abelian (Yang–Mills) gauge invariance. This seminal work induced

theorists to attempt an understanding of the mechanisms of mass generation for gauge

(vector) fields, now realized as the Higgs mechanism. Above all it stimulated the search

for a realistic unification of forces under the gauge principle, now crowned with success in

the celebrated Glashow–Weinberg–Salam unification of weak and electromagnetic forces.

On the phenomenological side, Sakurai pursued and vigorously advocated the vector

mesons dominance model of hadron dynamics. He was the first to discuss the mixing

of ω and φ meson states. Indeed, he made numerous important contributions to particle

physics phenomenology in a much more general sense, as his heart was always close to

experimental activities.

I knew Jun John for more than 25 years, and I had the greatest admiration not only

for his immense powers as a theoretical physicist but also for the warmth and generosity

of his spirit. Though a graduate student himself at Cornell during 1957–1958, he took

time from his own pioneering research in K-nucleon dispersion relations to help me
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(via extensive correspondence) with my Ph.D. thesis on the same subject at Berkeley. Both

Sandip Pakvasa and I were privileged to be associated with one of his last papers on weak

couplings of heavy quarks, which displayed once more his infectious and intuitive style of

doing physics. It is of course gratifying to us in retrospect that Jun John counted this paper

among the score of his published works that he particularly enjoyed.

The physics community suffered a great loss at Jun John Sakurai’s death. The personal

sense of loss is a severe one for me. Hence I am profoundly thankful for the opportunity to

edit and complete his manuscript on Modern Quantum Mechanics for publication. In my

faith no greater gift can be given me than an opportunity to show my respect and love for

Jun John through meaningful service.

San Fu Tuan

(From the First Edition)
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Foreword from the First Edition

J. J. Sakurai was always a very welcome guest here at CERN, for he was one of those
rare theorists to whom the experimental facts are even more interesting than the theoretical
game itself. Nevertheless, he delighted in theoretical physics and in its teaching, a subject
on which he held strong opinions. He thought that much theoretical physics teaching was
both too narrow and too remote from application: “. . .we see a number of sophisticated, yet
uneducated, theoreticians who are conversant in the LSZ formalism of the Heisenberg field
operators, but do not know why an excited atom radiates, or are ignorant of the quantum
theoretic derivation of Rayleigh’s law that accounts for the blueness of the sky.” And he
insisted that the student must be able to use what has been taught: “The reader who has
read the book but cannot do the exercises has learned nothing.”

He put these principles to work in his fine book Advanced Quantum Mechanics (1967)
and in Invariance Principles and Elementary Particles (1964), both of which have been
very much used in the CERN library. This new book, Modern Quantum Mechanics, should
be used even more, by a larger and less specialized group. The book combines breadth of
interest with a thorough practicality. Its readers will find here what they need to know, with
a sustained and successful effort to make it intelligible.

J. J. Sakurai’s sudden death on November 1, 1982 left this book unfinished. Reinhold
Bertlmann and I helped Mrs. Sakurai sort out her husband’s papers at CERN. Among
them we found a rough, handwritten version of most of the book and a large collection of
exercises. Though only three chapters had been completely finished, it was clear that the
bulk of the creative work had been done. It was also clear that much work remained to fill
in gaps, polish the writing, and put the manuscript in order.

That the book is now finished is due to the determination of Noriko Sakurai and the
dedication of San Fu Tuan. Upon her husband’s death, Mrs. Sakurai resolved immediately
that his last effort should not go to waste. With great courage and dignity she became the
driving force behind the project, overcoming all obstacles and setting the high standards
to be maintained. San Fu Tuan willingly gave his time and energy to the editing and
completion of Sakurai’s work. Perhaps only others close to the hectic field of high-energy
theoretical physics can fully appreciate the sacrifice involved.

For me personally, J. J. had long been far more than just a particularly distinguished
colleague. It saddens me that we will never again laugh together at physics and physicists
and life in general, and that he will not see the success of his last work. But I am happy
that it has been brought to fruition.

John S. Bell
CERN, Geneva

xxi





1 Fundamental Concepts

The revolutionary change in our understanding of microscopic phenomena that took place
during the first 27 years of the twentieth century is unprecedented in the history of natural
sciences. Not only did we witness severe limitations in the validity of classical physics, but
we found the alternative theory that replaced the classical physical theories to be far richer
in scope and far richer in its range of applicability.

The most traditional way to begin a study of quantum mechanics is to follow the histor-
ical developments – Planck’s radiation law, the Einstein–Debye theory of specific heats,
the Bohr atom, de Broglie’s matter waves, and so forth – together with careful analyses of
some key experiments such as the Compton effect, the Franck–Hertz experiment, and the
Davisson–Germer–Thompson experiment. In that way we may come to appreciate how
the physicists in the first quarter of the twentieth century were forced to abandon, little
by little, the cherished concepts of classical physics and how, despite earlier false starts
and wrong turns, the great masters – Heisenberg, Schrödinger, and Dirac, among others –
finally succeeded in formulating quantum mechanics as we know it today.

However, we do not follow the historical approach in this book. Instead, we start with an
example that illustrates, perhaps more than any other example, the inadequacy of classical
concepts in a fundamental way. We hope that by exposing the reader to a “shock treatment”
at the onset, he or she may be attuned to what we might call the “quantum-mechanical way
of thinking” at a very early stage.

This different approach is not merely an academic exercise. Our knowledge of the phys-
ical world comes from making assumptions about nature, formulating these assumptions
into postulates, deriving predictions from those postulates, and testing those predictions
against experiment. If experiment does not agree with the prediction, then, presumably,
the original assumptions were incorrect. Our approach emphasizes the fundamental
assumptions we make about nature, upon which we have come to base all of our physical
laws, and which aim to accommodate profoundly quantum-mechanical observations at the
outset.

1.1 The Stern–Gerlach Experiment

The example we concentrate on in this section is the Stern–Gerlach experiment, originally
conceived by O. Stern in 1921 and carried out in Frankfurt by him in collaboration with

1
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Fig. 1.1 The Stern–Gerlach experiment.

W. Gerlach in 1922.1 This experiment illustrates in a dramatic manner the necessity for
a radical departure from the concepts of classical mechanics. In the subsequent sections
the basic formalism of quantum mechanics is presented in a somewhat axiomatic manner
but always with the example of the Stern–Gerlach experiment in the back of our minds.
In a certain sense, a two-state system of the Stern–Gerlach type is the least classical,
most quantum-mechanical system. A solid understanding of problems involving two-state
systems will turn out to be rewarding to any serious student of quantum mechanics. It is
for this reason that we refer repeatedly to two-state problems throughout this book.

1.1.1 Description of the Experiment

We now present a brief discussion of the Stern–Gerlach experiment, which is discussed
in almost any book on modern physics.2 First, silver (Ag) atoms are heated in an oven.
The oven has a small hole through which some of the silver atoms escape. As shown in
Figure 1.1, the beam goes through a collimator and is then subjected to an inhomogeneous
magnetic field produced by a pair of pole pieces, one of which has a very sharp edge.

We must now work out the effect of the magnetic field on the silver atoms. For our
purpose the following oversimplified model of the silver atom suffices. The silver atom is
made up of a nucleus and 47 electrons, where 46 out of the 47 electrons can be visualized
as forming a spherically symmetrical electron cloud with no net angular momentum. If
we ignore the nuclear spin, which is irrelevant to our discussion, we see that the atom as
a whole does have an angular momentum, which is due solely to the spin – intrinsic as
opposed to orbital – angular momentum of the single 47th (5s) electron. The 47 electrons

1 For an excellent historical discussion of the Stern–Gerlach experiment, see “Stern and Gerlach: how a bad cigar
helped reorient atomic physics,” by Friedrich and Herschbach, Phys. Today, 56 (2003) 53.

2 For an elementary but enlightening discussion of the Stern–Gerlach experiment, see French and Taylor (1978),
pp. 432–438.
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are attached to the nucleus, which is ∼2×105 times heavier than the electron; as a result,
the heavy atom as a whole possesses a magnetic moment equal to the spin magnetic
moment of the 47th electron. In other words, the magnetic moment μ of the atom is
proportional to the electron spin S,

μ ∝ S, (1.1)

where the precise proportionality factor turns out to be e/mec (e < 0 in this book) to an
accuracy of about 0.2%.

Because the interaction energy of the magnetic moment with the magnetic field is just
−μ ·B, the z-component of the force experienced by the atom is given by

Fz =
∂
∂ z

(μ ·B)� μz
∂Bz

∂ z
, (1.2)

where we have ignored the components of B in directions other than the z-direction.
Because the atom as a whole is very heavy, we expect that the classical concept of trajectory
can be legitimately applied, a point which can be justified using the Heisenberg uncertainty
principle to be derived later. With the arrangement of Figure 1.1, the μz > 0 (Sz < 0) atom
experiences an upward force, while the μz < 0 (Sz > 0) atom experiences a downward
force. The beam is then expected to be split according to the values of μz. In other words,
the SG (Stern–Gerlach) apparatus “measures” the z-component of μ or, equivalently, the
z-component of S up to a proportionality factor.

The atoms in the oven are randomly oriented; there is no preferred direction for the
orientation of μ. If the electron were like a classical spinning object, we would expect all
values of μz to be realized between |μ| and −|μ|. This would lead us to expect a continuous
bundle of beams coming out of the SG apparatus, as indicated in Figure 1.1, spread more or
less evenly over the expected range. Instead, what we experimentally observe is more like
the situation also shown in Figure 1.1, where two “spots” are observed, corresponding to
one “up” and one “down” orientation. In other words, the SG apparatus splits the original
silver beam from the oven into two distinct components, a phenomenon referred to in the
early days of quantum theory as “space quantization.” To the extent that μ can be identified
within a proportionality factor with the electron spin S, only two possible values of the z-
component of S are observed to be possible, Sz up and Sz down, which we call Sz+ and
Sz−. The two possible values of Sz are multiples of some fundamental unit of angular
momentum; numerically it turns out that Sz = h̄/2 and −h̄/2, where

h̄ = 1.0546×10−27 erg-s
= 6.5822×10−16 eV-s. (1.3)

This “quantization” of the electron spin angular momentum3 is the first important feature
we deduce from the Stern–Gerlach experiment.

Figure 1.2a shows the result one would have expected from the experiment. According to
classical physics, the beam should have spread itself over a vertical distance corresponding

3 An understanding of the roots of this quantization lies in the application of relativity to quantum mechanics.
See Section 8.2 of this book for a discussion.
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(a) (b)

Fig. 1.2 (a) Classical physics prediction for results from the Stern–Gerlach experiment. The beam should have been spread
out vertically, over a distance corresponding to the range of values of the magnetic moment times the cosine of
the orientation angle. Stern and Gerlach, however, observed the result in (b), namely that only two orientations of
the magnetic moment manifested themselves. These two orientations did not span the entire expected range.

to the (continuous) range of orientation of the magnetic moment. Instead, one observes
Figure 1.2b which is completely at odds with classical physics. The beam mysteriously
splits itself into two parts, one corresponding to spin “up” and the other to spin “down.”

Of course, there is nothing sacred about the up-down direction or the z-axis. We could
just as well have applied an inhomogeneous field in a horizontal direction, say in the
x-direction, with the beam proceeding in the y-direction. In this manner we could have
separated the beam from the oven into an Sx+ component and an Sx− component.

1.1.2 Sequential Stern–Gerlach Experiments

Let us now consider a sequential Stern–Gerlach experiment. By this we mean that the
atomic beam goes through two or more SG apparatuses in sequence. The first arrangement
we consider is relatively straightforward. We subject the beam coming out of the oven
to the arrangement shown in Figure 1.3a, where SGẑ stands for an apparatus with
the inhomogeneous magnetic field in the z-direction, as usual. We then block the Sz−
component coming out of the first SGẑ apparatus and let the remaining Sz+ component be
subjected to another SGẑ apparatus. This time there is only one beam component coming
out of the second apparatus, just the Sz+ component. This is perhaps not so surprising;
after all if the atom spins are up, they are expected to remain so, short of any external field
that rotates the spins between the first and the second SGẑ apparatuses.

A little more interesting is the arrangement shown in Figure 1.3b. Here the first SG
apparatus is the same as before but the second one (SGx̂) has an inhomogeneous magnetic
field in the x-direction. The Sz+ beam that enters the second apparatus (SGx̂) is now split
into two components, an Sx+ component and an Sx− component, with equal intensities.
How can we explain this? Does it mean that 50% of the atoms in the Sz+ beam coming
out of the first apparatus (SGẑ) are made up of atoms characterized by both Sz+ and Sx+,
while the remaining 50% have both Sz+ and Sx−? It turns out that such a picture runs into
difficulty, as will be shown below.
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Oven SGẑ SGẑ

Sz+ comp.
Sz+ comp.

No Sz– comp.
Sz– comp.

Oven SGẑ SGx̂
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Sx– beam
Sz– beam

Oven SGẑ SGx̂ SGẑ

Sz+ beam
Sz+ beam

Sz– beam

Sz– beam

Sx+ beam
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(a)

(b)

(c)

Fig. 1.3 Sequential Stern–Gerlach experiments.

We now consider a third step, the arrangement shown in Figure 1.3c, which most
dramatically illustrates the peculiarities of quantum-mechanical systems. This time we
add to the arrangement of Figure 1.3b yet a third apparatus, of the SGẑ type. It is
observed experimentally that two components emerge from the third apparatus, not one;
the emerging beams are seen to have both an Sz+ component and an Sz− component.
This is a complete surprise because after the atoms emerged from the first apparatus, we
made sure that the Sz− component was completely blocked. How is it possible that the
Sz− component which, we thought, we eliminated earlier reappears? The model in which
the atoms entering the third apparatus are visualized to have both Sz+ and Sx+ is clearly
unsatisfactory.

This example is often used to illustrate that in quantum mechanics we cannot determine
both Sz and Sx simultaneously. More precisely, we can say that the selection of the
Sx+ beam by the second apparatus (SGx̂) completely destroys any previous information
about Sz.

It is amusing to compare this situation with that of a spinning top in classical mechanics,
where the angular momentum

L = Iω (1.4)

can be measured by determining the components of the angular velocity vector ω. By
observing how fast the object is spinning in which direction we can determine ωx, ωy, and
ωz simultaneously. The moment of inertia I is computable if we know the mass density and
the geometric shape of the spinning top, so there is no difficulty in specifying both Lz and
Lx in this classical situation.

It is to be clearly understood that the limitation we have encountered in determining
Sz and Sx is not due to the incompetence of the experimentalist. By improving the



6 Fundamental Concepts

experimental techniques we cannot make the Sz− component out of the third apparatus
in Figure 1.3c disappear. The peculiarities of quantum mechanics are imposed upon us by
the experiment itself. The limitation is, in fact, inherent in microscopic phenomena.

1.1.3 Analogy with Polarization of Light

Because this situation looks so novel, some analogy with a familiar classical situation may
be helpful here. To this end we now digress to consider the polarization of light waves. This
analogy will help us develop a mathematical framework for formulating the postulates of
quantum mechanics.

Consider a monochromatic light wave propagating in the z-direction. A linearly
polarized (or plane polarized) light with a polarization vector in the x-direction, which
we call for short an x-polarized light, has a space-time dependent electric field oscillating
in the x-direction

E = E0x̂ cos(kz−ωt). (1.5)

Likewise, we may consider a y-polarized light, also propagating in the z-direction,

E = E0ŷ cos(kz−ωt). (1.6)

Polarized light beams of type (1.5) or (1.6) can be obtained by letting an unpolarized light
beam go through a Polaroid filter. We call a filter that selects only beams polarized in the
x-direction an x-filter. An x-filter, of course, becomes a y-filter when rotated by 90◦ about
the propagation (z) direction. It is well known that when we let a light beam go through an
x-filter and subsequently let it impinge on a y-filter, no light beam comes out provided, of
course, we are dealing with 100% efficient Polaroids; see Figure 1.4a.

The situation is even more interesting if we insert between the x-filter and the y-filter yet
another Polaroid that selects only a beam polarized in the direction – which we call the x′-
direction – that makes an angle of 45◦ with the x-direction in the xy plane; see Figure 1.4b.

x-filter

x-filter x -filter

y-filter

y-filter

No beam

(45° diagonal)

100%

(a)

(b)

No light

Fig. 1.4 Light beams subjected to Polaroid filters.
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y

xŷ

x̂

ŷ
x̂

y

x

Fig. 1.5 Orientations of the x′- and y′-axes.

This time, there is a light beam coming out of the y-filter despite the fact that right after
the beam went through the x-filter it did not have any polarization component in the y-
direction. In other words, once the x′-filter intervenes and selects the x′-polarized beam, it is
immaterial whether the beam was previously x-polarized. The selection of the x′-polarized
beam by the second Polaroid destroys any previous information on light polarization.
Notice that this situation is quite analogous to the situation that we encountered earlier with
the SG arrangement of Figure 1.3b, provided that the following correspondence is made:

Sz ± atoms ↔ x-, y-polarized light
Sx ± atoms ↔ x′-, y′-polarized light,

(1.7)

where the x′- and the y′-axes are defined as in Figure 1.5.
Let us examine how we can quantitatively describe the behavior of 45◦-polarized beams

(x′- and y′-polarized beams) within the framework of classical electrodynamics. Using
Figure 1.5 we obtain

E0x̂′ cos(kz−ωt) = E0

[
1√
2

x̂cos(kz−ωt)+
1√
2

ŷcos(kz−ωt)
]

,

E0ŷ′ cos(kz−ωt) = E0

[
− 1√

2
x̂cos(kz−ωt)+

1√
2

ŷcos(kz−ωt)
]

.
(1.8)

In the triple-filter arrangement of Figure 1.4b the beam coming out of the first Polaroid
is an x̂-polarized beam, which can be regarded as a linear combination of an x′-polarized
beam and a y′-polarized beam. The second Polaroid selects the x′-polarized beam, which
can in turn be regarded as a linear combination of an x-polarized and a y-polarized beam.
And finally, the third Polaroid selects the y-polarized component.
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Applying correspondence (1.7) from the sequential Stern–Gerlach experiment of
Figure 1.3c, to the triple-filter experiment of Figure 1.4b suggests that we might be
able to represent the spin state of a silver atom by some kind of vector in a new kind of
two-dimensional vector space, an abstract vector space not to be confused with the usual
two-dimensional (xy) space. Just as x̂ and ŷ in (1.8) are the base vectors used to decompose
the polarization vector x̂′ of the x̂′-polarized light, it is reasonable to represent the Sx+

state by a vector, which we call a ket in the Dirac notation to be developed fully in the next
section. We denote this vector by |Sx;+〉 and write it as a linear combination of two base
vectors, |Sz;+〉 and |Sz;−〉, which correspond to the Sz+ and the Sz− states, respectively.
So we may conjecture

|Sx;+〉 ?
=

1√
2
|Sz;+〉+ 1√

2
|Sz;−〉 (1.9a)

|Sx;−〉 ?
= − 1√

2
|Sz;+〉+ 1√

2
|Sz;−〉 (1.9b)

in analogy with (1.8). Later we will show how to obtain these expressions using the general
formalism of quantum mechanics.

Thus the unblocked component coming out of the second (SGx̂) apparatus of Figure 1.3c
is to be regarded as a superposition of Sz+ and Sz− in the sense of (1.9a). It is for this reason
that two components emerge from the third (SGẑ) apparatus.

The next question of immediate concern is: How are we going to represent the Sy±
states? Symmetry arguments suggest that if we observe an Sz± beam going in the
x-direction and subject it to an SGŷ apparatus, the resulting situation will be very similar
to the case where an Sz± beam going in the y-direction is subjected to an SGx̂ apparatus.
The kets for Sy± should then be regarded as a linear combination of |Sz;±〉, but it appears
from (1.9) that we have already used up the available possibilities in writing |Sx;±〉. How
can our vector space formalism distinguish Sy± states from Sx± states?

An analogy with polarized light again rescues us here. This time we consider a circularly
polarized beam of light, which can be obtained by letting a linearly polarized light pass
through a quarter-wave plate. When we pass such a circularly polarized light through an
x-filter or a y-filter, we again obtain either an x-polarized beam or a y-polarized beam of
equal intensity. Yet everybody knows that the circularly polarized light is totally different
from the 45◦-linearly polarized (x′-polarized or y′-polarized) light.

Mathematically, how do we represent a circularly polarized light? A right circularly
polarized light is nothing more than a linear combination of an x-polarized light and a
y-polarized light, where the oscillation of the electric field for the y-polarized component
is 90◦ out of phase with that of the x-polarized component:4

E = E0

[
1√
2

x̂cos(kz−ωt)+
1√
2

ŷcos
(

kz−ωt+
π
2

)]
. (1.10)

4 Unfortunately, there is no unanimity in the definition of right versus left circularly polarized light in the
literature.
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It is more elegant to use complex notation by introducing ε as follows:

Re(ε) = E/E0. (1.11)

For a right circularly polarized light, we can then write

ε =
[

1√
2

x̂ei(kz−ωt) +
i√
2

ŷei(kz−ωt)
]

, (1.12)

where we have used i = eiπ/2.
We can make the following analogy with the spin states of silver atoms:

Sy + atom ↔ right circularly polarized beam,
Sy − atom ↔ left circularly polarized beam.

(1.13)

Applying this analogy to (1.12), we see that if we are allowed to make the coefficients
preceding base kets complex, there is no difficulty in accommodating the Sy± atoms in our
vector space formalism:

|Sy;±〉 ?
=

1√
2
|Sz;+〉± i√

2
|Sz;−〉, (1.14)

which are obviously different from (1.9). We thus see that the two-dimensional vector
space needed to describe the spin states of silver atoms must be a complex vector space; an
arbitrary vector in the vector space is written as a linear combination of the base vectors
|Sz;±〉 with, in general, complex coefficients. The fact that the necessity of complex
numbers is already apparent in such an elementary example is rather remarkable.

The reader must have noted by this time that we have deliberately avoided talking about
photons. In other words, we have completely ignored the quantum aspect of light; nowhere
did we mention the polarization states of individual photons. The analogy we worked out
is between kets in an abstract vector space that describes the spin states of individual atoms
with the polarization vectors of the classical electromagnetic field. Actually we could have
made the analogy even more vivid by introducing the photon concept and talking about
the probability of finding a circularly polarized photon in a linearly polarized state, and so
forth; however, that is not needed here. Without doing so, we have already accomplished
the main goal of this section: to introduce the idea that quantum-mechanical states are to
be represented by vectors in an abstract complex vector space.5

Finally, before outlining the mathematical formalism of quantum mechanics, we remark
that the physics of a Stern–Gerlach apparatus is of far more than simply academic interest.
The ability to separate spin states of atoms has tremendous practical interest as well.
Figure 1.6 shows the use of the Stern–Gerlach technique to analyze the result of spin
manipulation in an atomic beam of cesium atoms. The only stable isotope, 133Cs, of this
alkali atom has a nuclear spin I = 7/2, and the experiment sorts out the F = 4 hyperfine
magnetic substate, giving nine spin orientations. This is only one of many examples where
this once mysterious effect is used for practical devices. Of course, all of these uses only go

5 The reader who is interested in grasping the basic concepts of quantum mechanics through a careful study of
photon polarization may find Chapter 1 of Baym (1969) extremely illuminating.
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Fig. 1.6 A modern Stern–Gerlach apparatus, used to separate spin states of atomic cesium, taken from Lison et al., Phys.
Rev. A, 61 (1999) 013405. The apparatus is shown on the left, while the data show the nine different projections for
the spin-four atom, (a) before and (b) after optical pumping is used to populate only extreme spin projections.
The spin quantum number F = 4 is a coupling between the outermost electron in the atom and the nuclear spin
I = 7/2.

to firmly establish this effect, and the quantum-mechanical principles which we will now
present and further develop.

1.2 Kets, Bras, and Operators

In the preceding section we showed how analyses of the Stern–Gerlach experiment led
us to consider a complex vector space. In this and the following section we formulate the
basic mathematics of vector spaces as used in quantum mechanics. Our notation throughout
this book is the bra and ket notation developed by P. A. M. Dirac. The theory of linear
vector spaces had, of course, been known to mathematicians prior to the birth of quantum
mechanics, but Dirac’s way of introducing vector spaces has many advantages, especially
from the physicist’s point of view.

1.2.1 Ket Space

We consider a complex vector space whose dimensionality is specified according to the
nature of a physical system under consideration. In Stern–Gerlach type experiments where
the only quantum-mechanical degree of freedom is the spin of an atom, the dimensionality
is determined by the number of alternative paths the atoms can follow when subjected to
an SG apparatus; in the case of the silver atoms of the previous section, the dimensionality
is just two, corresponding to the two possible values Sz can assume.6 Later, in Section 1.6,

6 For many physical systems the dimension of the state space is denumerably infinite. While we will usually
indicate a finite number of dimensions, N, of the ket space, the results also hold for denumerably infinite
dimensions.
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we consider the case of continuous spectra, for example, the position (coordinate) or
momentum of a particle, where the number of alternatives is nondenumerably infinite,
in which case the vector space in question is known as a Hilbert space after D. Hilbert,
who studied vector spaces in infinite dimensions.

In quantum mechanics a physical state, for example, a silver atom with a definite spin
orientation, is represented by a state vector in a complex vector space. Following Dirac,
we call such a vector a ket and denote it by |α〉. This state ket is postulated to contain
complete information about the physical state; everything we are allowed to ask about the
state is contained in the ket. Two kets can be added:

|α〉+ |β〉= |γ〉. (1.15)

The sum |γ〉 is just another ket. If we multiply |α〉 by a complex number c, the resulting
product c|α〉 is another ket. The number c can stand on the left or on the right of a ket; it
makes no difference:

c|α〉= |α〉c. (1.16)

In the particular case where c is zero, the resulting ket is said to be a null ket.
One of the physics postulates is that |α〉 and c|α〉, with c 	= 0, represent the same physical

state. In other words, only the “direction” in vector space is of significance. Mathematicians
may prefer to say that we are here dealing with rays rather than vectors.

An observable, such as momentum and spin components, can be represented by an
operator, such as A, in the vector space in question. Quite generally, an operator acts on a
ket from the left,

A · (|α〉) = A|α〉, (1.17)

which is yet another ket. There will be more on multiplication operations later.
In general, A|α〉 is not a constant times |α〉. However, there are particular kets of

importance, known as eigenkets of operator A, denoted by

|a′〉, |a′′〉, |a′′′〉,. . . (1.18)

with the property

A|a′〉= a′|a′〉, A|a′′〉= a′′|a′′〉,. . . (1.19)

where a′,a′′,. . . are just numbers. Notice that applying A to an eigenket just reproduces
the same ket apart from a multiplicative number. The set of numbers {a′,a′′,a′′′,. . .}, more
compactly denoted by {a′}, is called the set of eigenvalues of operator A. When it becomes
necessary to order eigenvalues in a specific manner, {a(1),a(2),a(3),. . .} may be used in
place of {a′,a′′,a′′′,. . .}.

The physical state corresponding to an eigenket is called an eigenstate. In the simplest
case of spin 1

2 systems, the eigenvalue-eigenket relation (1.19) is expressed as

Sz|Sz;+〉= h̄
2
|Sz;+〉, Sz|Sz;−〉=− h̄

2
|Sz;−〉, (1.20)

where |Sz;±〉 are eigenkets of operator Sz with eigenvalues ±h̄/2. Here we could have
used just |h̄/2〉 for |Sz;+〉 in conformity with the notation |a′〉, where an eigenket is labeled
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by its eigenvalue, but the notation |Sz;±〉, already used in the previous section, is more
convenient here because we also consider eigenkets of Sx:

Sx|Sx;±〉=± h̄
2
|Sx;±〉. (1.21)

We remarked earlier that the dimensionality of the vector space is determined by
the number of alternatives in Stern–Gerlach type experiments. More formally, we are
concerned with an N-dimensional vector space spanned by the N eigenkets of observable
A. Any arbitrary ket |α〉 can be written as

|α〉= ∑
a′

ca′ |a′〉, (1.22)

with a′,a′′,. . . up to a(N), where ca′ is a complex coefficient. The question of the uniqueness
of such an expansion will be postponed until we prove the orthogonality of eigenkets.

1.2.2 Bra Space and Inner Products

The vector space we have been dealing with is a ket space. We now introduce the notion
of a bra space, a vector space “dual to” the ket space. We postulate that corresponding
to every ket |α〉 there exists a bra, denoted by 〈α|, in this dual, or bra, space. The bra
space is spanned by eigenbras {〈a′|} which correspond to the eigenkets {|a′〉}. There is a
one-to-one correspondence between a ket space and a bra space:

|α〉DC↔〈α|
|a′〉, |a′′〉,. . . DC↔〈a′|,〈a′′|,. . .

|α〉+ |β〉DC↔〈α|+ 〈β|

(1.23)

where DC stands for dual correspondence. Roughly speaking, we can regard the bra space
as some kind of mirror image of the ket space.

The bra dual to c|α〉 is postulated to be c∗〈α|, not c〈α|, which is a very important point.
More generally, we have

cα|α〉+ cβ|β〉DC↔c∗α〈α|+ c∗β〈β|. (1.24)

We now define the inner product of a bra and a ket.7 The product is written as a bra
standing on the left and a ket standing on the right, for example,

〈β|α〉= (〈β|) · (|α〉)
bra(c)ket

. (1.25)

This product is, in general, a complex number. Notice that in forming an inner product we
always take one vector from the bra space and one vector from the ket space.

We postulate two fundamental properties of inner products. First,

〈β|α〉= 〈α|β〉∗. (1.26)

7 In the literature an inner product is often referred to as a scalar product because it is analogous to a · b in
Euclidean space; in this book, however, we reserve the term scalar for a quantity invariant under rotations in
the usual three-dimensional space.
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In other words, 〈β|α〉 and 〈α|β〉 are complex conjugates of each other. Notice that even
though the inner product is, in some sense, analogous to the familiar scalar product a ·b,
〈β|α〉 must be clearly distinguished from 〈α|β〉; the analogous distinction is not needed in
real vector space because a ·b is equal to b · a. Using (1.26) we can immediately deduce
that 〈α|α〉 must be a real number. To prove this just let 〈β| → 〈α|.

The second postulate on inner products is

〈α|α〉 ≥ 0, (1.27)

where the equality sign holds only if |α〉 is a null ket. This is sometimes known as the
postulate of positive definite metric. From a physicist’s point of view, this postulate
is essential for the probabilistic interpretation of quantum mechanics, as will become
apparent later.8

Two kets |α〉 and |β〉 are said to be orthogonal if

〈α|β〉= 0, (1.28)

even though in the definition of the inner product the bra 〈α| appears. The orthogonality
relation (1.28) also implies, via (1.26),

〈β|α〉= 0. (1.29)

Given a ket which is not a null ket, we can form a normalized ket |α̃〉, where

|α̃〉=
(

1√
〈α|α〉

)
|α〉, (1.30)

with the property

〈α̃|α̃〉= 1. (1.31)

Quite generally,
√

〈α|α〉 is known as the norm of |α〉, analogous to the magnitude of
vector

√
a ·a = |�a| in Euclidean vector space. Because |α〉 and c|α〉 represent the same

physical state, we might as well require that the kets we use for physical states be
normalized in the sense of (1.31).9

1.2.3 Operators

As we remarked earlier, observables like momentum and spin components are to be
represented by operators that can act on kets. We can consider a more general class of
operators that act on kets; they will be denoted by X, Y, and so forth, while A, B, and so on
will be used for a restrictive class of operators that correspond to observables.

An operator acts on a ket from the left side,

X · (|α〉) = X |α〉, (1.32)

8 Attempts to abandon this postulate led to physical theories with “indefinite metric.” We shall not be concerned
with such theories in this book.

9 For eigenkets of observables with continuous spectra, different normalization conventions will be used; see
Section 1.6.
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and the resulting product is another ket. Operators X and Y are said to be equal,

X = Y, (1.33)

if

X |α〉= Y |α〉 (1.34)

for an arbitrary ket in the ket space in question. Operator X is said to be the null operator
if, for any arbitrary ket |α〉, we have

X |α〉= 0. (1.35)

Operators can be added; addition operations are commutative and associative:

X+Y = Y+X, (1.36a)

X+(Y+Z) = (X+Y)+Z. (1.36b)

With the single exception of the time-reversal operator to be considered in Chapter 4, the
operators that appear in this book are all linear, that is,

X(cα|α〉+ cβ|β〉) = cαX |α〉+ cβX |β〉. (1.37)

An operator X always acts on a bra from the right side

(〈α|) ·X = 〈α|X, (1.38)

and the resulting product is another bra. The ket X |α〉 and the bra 〈α|X are, in general, not
dual to each other. We define the symbol X † as

X |α〉DC↔〈α|X †. (1.39)

The operator X † is called the Hermitian adjoint, or simply the adjoint, of X. An operator
X is said to be Hermitian if

X = X †. (1.40)

1.2.4 Multiplication

Operators X and Y can be multiplied. Multiplication operations are, in general, noncommu-
tative, that is,

XY 	= YX. (1.41)

Multiplication operations are, however, associative:

X(YZ) = (XY)Z = XYZ. (1.42)

We also have

X(Y |α〉) = (XY)|α〉= XY |α〉, (〈β|X)Y = 〈β|(XY) = 〈β|XY. (1.43)
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Notice that

(XY)† = Y †X † (1.44)

because

XY |α〉= X(Y |α〉)DC↔(〈α|Y †)X † = 〈α|Y †X †. (1.45)

So far, we have considered the following products: 〈β|α〉,X |α〉,〈α|X, and XY. Are there
other products we are allowed to form? Let us multiply |β〉 and 〈α|, in that order. The
resulting product

(|β〉) · (〈α|) = |β〉〈α| (1.46)

is known as the outer product of |β〉 and 〈α|. We will emphasize in a moment that |β〉〈α|
is to be regarded as an operator; hence it is fundamentally different from the inner product
〈β|α〉, which is just a number.

There are also “illegal products.” We have already mentioned that an operator must stand
on the left of a ket or on the right of a bra. In other words, |α〉X and X〈α| are examples of
illegal products. They are neither kets, nor bras, nor operators; they are simply nonsensical.
Products like |α〉|β〉 and 〈α|〈β| are also illegal when |α〉 and |β〉 (〈α| and 〈β|) are ket (bra)
vectors belonging to the same ket (bra) space.10

1.2.5 The Associative Axiom

As is clear from (1.42), multiplication operations among operators are associative. Actually
the associative property is postulated to hold quite generally as long as we are dealing with
“legal” multiplications among kets, bras, and operators. Dirac calls this important postulate
the associative axiom of multiplication.

To illustrate the power of this axiom let us first consider an outer product acting on a ket:

(|β〉〈α|) · |γ〉. (1.47)

Because of the associative axiom, we can regard this equally well as

|β〉 · (〈α|γ〉), (1.48)

where 〈α|γ〉 is just a number. So the outer product acting on a ket is just another ket; in
other words, |β〉〈α| can be regarded as an operator. Because (1.47) and (1.48) are equal, we
may as well omit the dots and let |β〉〈α|γ〉 stand for the operator |β〉〈α| acting on |γ〉 or,
equivalently, the number 〈α|γ〉 multiplying |β〉. (On the other hand, if (1.48) is written as
(〈α|γ〉) · |β〉, we cannot afford to omit the dot and brackets because the resulting expression
would look illegal.) Notice that the operator |β〉〈α| rotates |γ〉 into the direction of |β〉. It
is easy to see that if

X = |β〉〈α|, (1.49)

10 Later in the book we will encounter products like |α〉|β〉, which are more appropriately written as |α〉⊗|β〉, but
in such cases |α〉 and |β〉 always refer to kets from different vector spaces. For instance, the first ket belongs to
the vector space for electron spin, the second ket to the vector space for electron orbital angular momentum; or
the first ket lies in the vector space of particle 1, the second ket in the vector space of particle 2, and so forth.
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then

X † = |α〉〈β|, (1.50)

which is left as an exercise.
In a second important illustration of the associative axiom, we note that

(〈β|)
bra

·(X |α〉)
ket

= (〈β|X)
bra

·(|α〉)
ket

. (1.51)

Because the two sides are equal, we might as well use the more compact notation

〈β|X |α〉 (1.52)

to stand for either side of (1.51). Recall now that 〈α|X † is the bra that is dual to X |α〉, so

〈β|X |α〉= 〈β| · (X |α〉)
= {(〈α|X †) · |β〉}∗

= 〈α|X †|β〉∗, (1.53)

where, in addition to the associative axiom, we used the fundamental property of the inner
product (1.26). For a Hermitian X we have

〈β|X |α〉= 〈α|X |β〉∗. (1.54)

1.3 Base Kets and Matrix Representations

1.3.1 Eigenkets of an Observable

Let us consider the eigenkets and eigenvalues of a Hermitian operator A. We use the symbol
A, reserved earlier for an observable, because in quantum mechanics Hermitian operators
of interest quite often turn out to be the operators representing some physical observables.

We begin by stating an important theorem.

Theorem 1 The eigenvalues of a Hermitian operator A are real; the eigenkets of A
corresponding to different eigenvalues are orthogonal.

Proof First, recall that

A|a′〉= a′|a′〉. (1.55)

Because A is Hermitian, we also have

〈a′′|A = a′′∗〈a′′|, (1.56)

where, a′,a′′,. . . are eigenvalues of A. If we multiply both sides of (1.55) by 〈a′′| on the
left, both sides of (1.56) by |a′〉 on the right, and subtract, we obtain

(a′ −a′′∗)〈a′′|a′〉= 0. (1.57)
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Now a′ and a′′ can be taken to be either the same or different. Let us first choose them to
be the same; we then deduce the reality condition (the first half of the theorem)

a′ = a′∗, (1.58)

where we have used the fact that |a′〉 is not a null ket. Let us now assume a′ and a′′ to be
different. Because of the just proved reality condition, the difference a′ −a′′∗ that appears
in (1.57) is equal to a′ −a′′, which cannot vanish, by assumption. The inner product 〈a′′|a′〉
must then vanish:

〈a′′|a′〉= 0 (a′ 	= a′′), (1.59)

which proves the orthogonality property (the second half of the theorem). �

We expect on physical grounds that an observable has real eigenvalues, a point that will
become clearer in the next section, where measurements in quantum mechanics will be dis-
cussed. The theorem just proved guarantees the reality of eigenvalues whenever the opera-
tor is Hermitian. That is why we talk about Hermitian observables in quantum mechanics.

It is conventional to normalize |a′〉 so the {|a′〉} form an orthonormal set:

〈a′′|a′〉= δa′′a′ . (1.60)

We may logically ask: Is this set of eigenkets complete? Since we started our discussion
by asserting that the whole ket space is spanned by the eigenkets of A, the eigenkets of A
must therefore form a complete set by construction of our ket space.11

1.3.2 Eigenkets as Base Kets

We have seen that the normalized eigenkets of A form a complete orthonormal set. An
arbitrary ket in the ket space can be expanded in terms of the eigenkets of A. In other
words, the eigenkets of A are to be used as base kets in much the same way as a set of
mutually orthogonal unit vectors is used as base vectors in Euclidean space.

Given an arbitrary ket |α〉 in the ket space spanned by the eigenkets of A, let us attempt
to expand it as follows:

|α〉= ∑
a′

ca′ |a′〉. (1.61)

Multiplying 〈a′′| on the left and using the orthonormality property (1.60), we can
immediately find the expansion coefficient,

ca′ = 〈a′|α〉. (1.62)

In other words, we have

|α〉= ∑
a′
|a′〉〈a′|α〉, (1.63)

11 The astute reader, already familiar with wave mechanics, may point out that the completeness of eigenfunc-
tions we use can be proved by applying the Sturm–Liouville theory to the Schrödinger wave equation. But
to “derive” the Schrödinger wave equation from our fundamental postulates, the completeness of the position
eigenkets must be assumed.
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which is analogous to an expansion of a vector V in (real) Euclidean space:

V = ∑
i

êi(êi ·V), (1.64)

where {êi} form an orthogonal set of unit vectors. We now recall the associative axiom of
multiplication: |a′〉〈a′|α〉 can be regarded either as the number 〈a′|α〉 multiplying |a′〉 or,
equivalently, as the operator |a′〉〈a′| acting on |α〉. Because |α〉 in (1.63) is an arbitrary ket,
we must have

∑
a′
|a′〉〈a′|= 1, (1.65)

where the 1 on the right-hand side is to be understood as the identity operator. Equation
(1.65) is known as the completeness relation or closure.

It is difficult to overestimate the usefulness of (1.65). Given a chain of kets, operators, or
bras multiplied in legal orders, we can insert, in any place at our convenience, the identity
operator written in form (1.65). Consider, for example 〈α|α〉; by inserting the identity
operator between 〈α| and |α〉, we obtain

〈α|α〉= 〈α| ·
(

∑
a′
|a′〉〈a′|

)
· |α〉

= ∑
a′
|〈a′|α〉|2. (1.66)

This, incidentally, shows that if |α〉 is normalized, then the expansion coefficients in (1.61)
must satisfy

∑
a′
|ca′ |2 = ∑

a′
|〈a′|α〉|2 = 1. (1.67)

Let us now look at |a′〉〈a′| that appears in (1.65). Since this is an outer product, it must
be an operator. Let it operate on |α〉:

(|a′〉〈a′|) · |α〉= |a′〉〈a′|α〉= ca′ |a′〉. (1.68)

We see that |a′〉〈a′| selects that portion of the ket |α〉 parallel to |a′〉, so |a′〉〈a′| is known
as the projection operator along the base ket |a′〉 and is denoted by Λa′ :

Λa′ ≡ |a′〉〈a′|. (1.69)

The completeness relation (1.65) can now be written as

∑
a′
Λa′ = 1. (1.70)

1.3.3 Matrix Representations

Having specified the base kets, we now show how to represent an operator, say X, by a
square matrix. First, using (1.65) twice, we write the operator X as

X = ∑
a′′

∑
a′
|a′′〉〈a′′|X |a′〉〈a′|. (1.71)
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There are altogether N2 numbers of form 〈a′′|X |a′〉, where N is the dimensionality of the
ket space. We may arrange them into an N×N square matrix such that the column and row
indices appear as follows:

〈a′′|
row

X |a′〉
column

. (1.72)

Explicitly we may write the matrix as

X .
=

⎛⎜⎜⎝
〈a(1)|X |a(1)〉 〈a(1)|X |a(2)〉 · · ·
〈a(2)|X |a(1)〉 〈a(2)|X |a(2)〉 · · ·

...
...

. . .

⎞⎟⎟⎠ , (1.73)

where the symbol .
= stands for “is represented by.”12

Using (1.53), we can write

〈a′′|X |a′〉= 〈a′|X †|a′′〉∗. (1.74)

At last, the Hermitian adjoint operation, originally defined by (1.39), has been related to
the (perhaps more familiar) concept of complex conjugate transposed. If an operator B is
Hermitian, we have

〈a′′|B|a′〉= 〈a′|B|a′′〉∗. (1.75)

The way we arranged 〈a′′|X |a′〉 into a square matrix is in conformity with the usual rule
of matrix multiplication. To see this just note that the matrix representation of the operator
relation

Z = XY (1.76)

reads
〈a′′|Z|a′〉 = 〈a′′|XY |a′〉

= ∑
a′′′
〈a′′|X |a′′′〉〈a′′′|Y |a′〉. (1.77)

Again, all we have done is to insert the identity operator, written in form (1.65), between
X and Y!

Let us now examine how the ket relation

|γ〉= X |α〉 (1.78)

can be represented using our base kets. The expansion coefficients of |γ〉 can be obtained
by multiplying 〈a′| on the left:

〈a′|γ〉= 〈a′|X |α〉
= ∑

a′′
〈a′|X |a′′〉〈a′′|α〉. (1.79)

12 We do not use the equality sign here because the particular form of a matrix representation depends on the
particular choice of base kets used. The operator is different from a representation of the operator just as the
actress is different from a poster of the actress.
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But this can be seen as an application of the rule for multiplying a square matrix with a
column matrix, once the expansion coefficients of |α〉 and |γ〉 are themselves arranged to
form column matrices as follows:

|α〉 .
=

⎛⎜⎜⎜⎜⎝
〈a(1)|α〉
〈a(2)|α〉
〈a(3)|α〉

...

⎞⎟⎟⎟⎟⎠ , |γ〉 .
=

⎛⎜⎜⎜⎜⎝
〈a(1)|γ〉
〈a(2)|γ〉
〈a(3)|γ〉

...

⎞⎟⎟⎟⎟⎠ . (1.80)

Likewise, given

〈γ|= 〈α|X, (1.81)

we can regard

〈γ|a′〉= ∑
a′′
〈α|a′′〉〈a′′|X |a′〉. (1.82)

So a bra is represented by a row matrix as follows:

〈γ| .
= (〈γ|a(1)〉,〈γ|a(2)〉,〈γ|a(3)〉,. . .) = (〈a(1)|γ〉∗,〈a(2)|γ〉∗,〈a(3)|γ〉∗,. . .). (1.83)

Note the appearance of complex conjugation when the elements of the column matrix are
written as in (1.83). The inner product 〈β|α〉 can be written as the product of the row matrix
representing 〈β| with the column matrix representing |α〉:

〈β|α〉= ∑
a′
〈β|a′〉〈a′|α〉

= (〈a(1)|β〉∗,〈a(2)|β〉∗,. . .)

⎛⎜⎜⎝
〈a(1)|α〉
〈a(2)|α〉

...

⎞⎟⎟⎠ . (1.84)

If we multiply the row matrix representing 〈α| with the column matrix representing |β〉,
then we obtain just the complex conjugate of the preceding expression, which is consistent
with the fundamental property of the inner product (1.26). Finally, the matrix representation
of the outer product |β〉〈α| is easily seen to be

|β〉〈α| .
=

⎛⎜⎜⎝
〈a(1)|β〉〈a(1)|α〉∗ 〈a(1)|β〉〈a(2)|α〉∗ . . .

〈a(2)|β〉〈a(1)|α〉∗ 〈a(2)|β〉〈a(2)|α〉∗ . . .

...
...

. . .

⎞⎟⎟⎠ . (1.85)

The matrix representation of an observable A becomes particularly simple if the
eigenkets of A themselves are used as the base kets. First, we have

A = ∑
a′′

∑
a′
|a′′〉〈a′′|A|a′〉〈a′|. (1.86)

But the square matrix 〈a′′|A|a′〉 is obviously diagonal,

〈a′′|A|a′〉= 〈a′|A|a′〉δa′a′′ = a′δa′a′′ , (1.87)
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so

A = ∑
a′

a′|a′〉〈a′|

= ∑
a′

a′Λa′ . (1.88)

1.3.4 Spin 1
2 Systems

It is here instructive to consider the special case of spin 1
2 systems. The base kets used

are |Sz;±〉, which we denote, for brevity, as |±〉. The simplest operator in the ket space
spanned by |±〉 is the identity operator, which, according to (1.65), can be written as

1 = |+〉〈+|+ |−〉〈−|. (1.89)

According to (1.88), we must be able to write Sz as

Sz = (h̄/2)[(|+〉〈+|)− (|−〉〈−|)]. (1.90)

The eigenket-eigenvalue relation

Sz|±〉=±(h̄/2)|±〉 (1.91)

immediately follows from the orthonormality property of |±〉.
It is also instructive to look at two other operators,

S+ ≡ h̄|+〉〈−|, S− ≡ h̄|−〉〈+|, (1.92)

which are both seen to be non-Hermitian. The operator S+, acting on the spin-down ket
|−〉, turns |−〉 into the spin-up ket |+〉 multiplied by h̄. On the other hand, the spin-up ket
|+〉, when acted upon by S+, becomes a null ket. So the physical interpretation of S+ is that
it raises the spin component by one unit of h̄; if the spin component cannot be raised any
further, we automatically get a null state. Likewise, S− can be interpreted as an operator
that lowers the spin component by one unit of h̄. Later we will show that S± can be written
as Sx ± iSy.

In constructing the matrix representations of the angular-momentum operators, it is
customary to label the column (row) indices in descending order of angular-momentum
components, that is, the first entry corresponds to the maximum angular-momentum
component, the second, the next highest, and so forth. In our particular case of spin 1

2
systems, we have

|+〉 .
=

(
1
0

)
, |−〉 .

=

(
0
1

)
, (1.93a)

Sz
.
=

h̄
2

(
1 0
0 −1

)
, S+

.
= h̄

(
0 1
0 0

)
, S−

.
= h̄

(
0 0
1 0

)
. (1.93b)

We will come back to these explicit expressions when we discuss the Pauli two-component
formalism in Chapter 3.
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1.4 Measurements, Observables, and the Uncertainty Relations

1.4.1 Measurements

Having developed the mathematics of ket spaces, we are now in a position to discuss
the quantum theory of measurement processes. This is not a particularly easy subject for
beginners, so we first turn to the words of the great master, P. A. M. Dirac, for guidance
(Dirac (1958), p. 36): “A measurement always causes the system to jump into an eigenstate
of the dynamical variable that is being measured.” What does all this mean? We interpret
Dirac’s words as follows: Before a measurement of observable A is made, the system is
assumed to be represented by some linear combination

|α〉= ∑
a′

ca′ |a′〉= ∑
a′
|a′〉〈a′|α〉. (1.94)

When the measurement is performed, the system is “thrown into” one of the eigenstates,
say |a′〉 of observable A. In other words,

|α〉 A measurement−−−−−−−→|a′〉. (1.95)

For example, a silver atom with an arbitrary spin orientation will change into either |Sz;+〉
or |Sz;−〉 when subjected to an SG apparatus of type SGẑ. Thus a measurement usually
changes the state. The only exception is when the state is already in one of the eigenstates
of the observable being measured, in which case

|a′〉 A measurement−−−−−−−→|a′〉 (1.96)

with certainty, as will be discussed further. When the measurement causes |α〉 to change
into |a′〉, it is said that A is measured to be a′. It is in this sense that the result of a
measurement yields one of the eigenvalues of the observable being measured.

Given (1.94), which is the state ket of a physical system before the measurement, we do
not know in advance into which of the various |a′〉 the system will be thrown as the result
of the measurement. We do postulate, however, that the probability for jumping into some
particular |a′〉 is given by

Probability fora′ = |〈a′|α〉|2, (1.97)

provided that |α〉 is normalized.
Although we have been talking about a single physical system, to determine probability

(1.97) empirically, we must consider a great number of measurements performed on an
ensemble, that is, a collection, of identically prepared physical systems, all characterized
by the same ket |α〉. Such an ensemble is known as a pure ensemble. (We will say more
about ensembles in Chapter 3.) As an example, a beam of silver atoms which survive the
first SGẑ apparatus of Figure 1.3 with the Sz− component blocked is an example of a pure
ensemble because every member atom of the ensemble is characterized by |Sz;+〉.

The probabilistic interpretation (1.97) for the squared inner product |〈a′|α〉|2 is one of
the fundamental postulates of quantum mechanics, so it cannot be proven. Let us note,
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however, that it makes good sense in extreme cases. Suppose the state ket is |a′〉 itself even
before a measurement is made; then according to (1.97), the probability for getting a′, or,
more precisely, for being thrown into |a′〉, as the result of the measurement is predicted
to be 1, which is just what we expect. By measuring A once again, we, of course, get |a′〉
only; quite generally, repeated measurements of the same observable in succession yield
the same result.13 If, on the other hand, we are interested in the probability for the system
initially characterized by |a′〉 to be thrown into some other eigenket |a′′〉 with a′′ 	= a′, then
(1.97) gives zero because of the orthogonality between |a′〉 and |a′′〉. From the point of view
of measurement theory, orthogonal kets correspond to mutually exclusive alternatives; for
example, if a spin 1

2 system is in |Sz;+〉, it is not in |Sz;−〉 with certainty.
Quite generally, the probability for anything must be nonnegative. Furthermore, the

probabilities for the various alternative possibilities must add up to unity. Both of these
expectations are met by our probability postulate (1.97).

We define the expectation value of A taken with respect to state |α〉 as

〈A〉 ≡ 〈α|A|α〉. (1.98)

To make sure that we are referring to state |α〉, the notation 〈A〉α is sometimes used.
Equation (1.98) is a definition; however, it agrees with our intuitive notion of average
measured value because it can be written as

〈A〉= ∑
a′

∑
a′′
〈α|a′′〉〈a′′|A|a′〉〈a′|α〉

= ∑
a′

a′
↑

measured value a′

|〈a′|α〉|2︸ ︷︷ ︸ .
probability for obtaining a′

(1.99)

It is very important not to confuse eigenvalues with expectation values. For example, the
expectation value of Sz for spin 1

2 systems can assume any real value between −h̄/2 and
+h̄/2, say 0.273h̄; in contrast, the eigenvalue of Sz assumes only two values, h̄/2 and −h̄/2.

To clarify further the meaning of measurements in quantum mechanics, we introduce
the notion of a selective measurement, or filtration. In Section 1.1 we considered a
Stern–Gerlach arrangement where we let only one of the spin components pass out of the
apparatus while we completely blocked the other component. More generally, we imagine
a measurement process with a device that selects only one of the eigenkets of A, say |a′〉,
and rejects all others; see Figure 1.7. This is what we mean by a selective measurement;
it is also called filtration because only one of the A eigenkets filters through the ordeal.
Mathematically we can say that such a selective measurement amounts to applying the
projection operator Λa′ to |α〉:

Λa′ |α〉= |a′〉〈a′|α〉. (1.100)

J. Schwinger has developed a formalism of quantum mechanics based on a thorough
examination of selective measurements. He introduces a measurement symbol M(a′) in
the beginning, which is identical to Λa′ or |a′〉〈a′| in our notation, and deduces a number

13 Here successive measurements must be carried out immediately afterward. This point will become clear when
we discuss the time evolution of a state ket in Chapter 2.
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Fig. 1.7 Selective measurement.

of properties of M(a′) (and also of M(b′,a′) which amount to |b′〉〈a′|) by studying the
outcome of various Stern–Gerlach type experiments. In this way he motivates the entire
mathematics of kets, bras, and operators. In this book we do not follow Schwinger’s path;
the interested reader may consult Gottfried (1966).

1.4.2 Spin 1
2 Systems, Once Again

Before proceeding with a general discussion of observables, we once again consider spin
1
2 systems. This time we show that the results of sequential Stern–Gerlach experiments,
when combined with the postulates of quantum mechanics discussed so far, are sufficient
to determine not only the Sx,y eigenkets, |Sx;±〉 and |Sy;±〉, but also the operators Sx and
Sy themselves.

First, we recall that when the Sx+ beam is subjected to an apparatus of type SGẑ, the
beam splits into two components with equal intensities. This means that the probability for
the Sx+ state to be thrown into |Sz;±〉, simply denoted as |±〉, is 1

2 each; hence,

|〈+|Sx;+〉|= |〈−|Sx;+〉|= 1√
2

. (1.101)

We can therefore construct the Sx+ ket as follows:

|Sx;+〉= 1√
2
|+〉+ 1√

2
eiδ1 |−〉, (1.102)

with δ1 real. In writing (1.102) we have used the fact that the overall phase (common to
both |+〉 and |−〉) of a state ket is immaterial; the coefficient of |+〉 can be chosen to be
real and positive by convention. The Sx− ket must be orthogonal to the Sx+ ket because the
Sx+ alternative and Sx− alternative are mutually exclusive. This orthogonality requirement
leads to

|Sx;−〉= 1√
2
|+〉− 1√

2
eiδ1 |−〉, (1.103)

where we have, again, chosen the coefficient of |+〉 to be real and positive by convention.
We can now construct the operator Sx using (1.88) as follows:

Sx =
h̄
2
[(|Sx;+〉〈Sx;+|)− (|Sx;−〉〈Sx;−|)]

=
h̄
2
[e−iδ1(|+〉〈−|)+ eiδ1(|−〉〈+|)]. (1.104)
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Notice that the Sx we have constructed is Hermitian, just as it must be. A similar argument
with Sx replaced by Sy leads to

|Sy;±〉= 1√
2
|+〉± 1√

2
eiδ2 |−〉, (1.105)

Sy =
h̄
2
[e−iδ2(|+〉〈−|)+ eiδ2(|−〉〈+|)]. (1.106)

Is there any way of determining δ1 and δ2? Actually there is one piece of information
we have not yet used. Suppose we have a beam of spin 1

2 atoms moving in the z-direction.
We can consider a sequential Stern–Gerlach experiment with SGx̂ followed by SGŷ. The
results of such an experiment are completely analogous to the earlier case leading to
(1.101):

|〈Sy;±|Sx;+〉|= |〈Sy;±|Sx;−〉|= 1√
2

, (1.107)

which is not surprising in view of the invariance of physical systems under rotations.
Inserting (1.103) and (1.105) into (1.107), we obtain

1
2
|1± ei(δ1−δ2)|= 1√

2
, (1.108)

which is satisfied only if

δ2 − δ1 =
π
2

or − π
2

. (1.109)

We thus see that the matrix elements of Sx and Sy cannot all be real. If the Sx matrix elements
are real, the Sy matrix elements must be purely imaginary (and vice versa). Just from this
extremely simple example, the introduction of complex numbers is seen to be an essential
feature in quantum mechanics. It is convenient to take the Sx matrix elements to be real14

and set δ1 = 0; if we were to choose δ1 = π, the positive x-axis would be oriented in the
opposite direction. The second phase angle δ2 must then be −π/2 or π/2. The fact that
there is still an ambiguity of this kind is not surprising. We have not yet specified whether
the coordinate system we are using is right-handed or left-handed; given the x- and the
z-axes there is still a twofold ambiguity in the choice of the positive y-axis. Later we will
discuss angular momentum as a generator of rotations using the right-handed coordinate
system; it can then be shown that δ2 = π/2 is the correct choice.

To summarize, we have

|Sx;±〉= 1√
2
|+〉± 1√

2
|−〉, (1.110a)

|Sy;±〉= 1√
2
|+〉± i√

2
|−〉, (1.110b)

14 This can always be done by adjusting arbitrary phase factors in the definition of |+〉 and |−〉. This point will
become clearer in Chapter 3, where the behavior of |±〉 under rotations will be discussed.



26 Fundamental Concepts

and

Sx =
h̄
2
[(|+〉〈−|)+(|−〉〈+|)], (1.111a)

Sy =
h̄
2
[−i(|+〉〈−|)+ i(|−〉〈+|)]. (1.111b)

The Sx± and Sy± eigenkets given here are seen to be in agreement with our earlier guesses
(1.9) and (1.14) based on an analogy with linearly and circularly polarized light. (Note, in
this comparison, that only the relative phase between the |+〉 and 〈−| components is of
physical significance.) Furthermore, the non-Hermitian S± operators defined by (1.92) can
now be written as

S± = Sx ± iSy. (1.112)

The operators Sx and Sy, together with Sz given earlier, can be readily shown to satisfy
the commutation relations

[Si,Sj] = iεijkh̄Sk, (1.113)

and the anticommutation relations

{Si,Sj}=
1
2

h̄2δij, (1.114)

where the commutator [ , ] and the anticommutator { , } are defined by

[A,B]≡ AB−BA, (1.115a)

{A,B} ≡ AB+BA. (1.115b)

(We make use of the totally antisymmetric symbol εijk which has the value +1 for ε123

and any cyclic permutation of indices, the value −1 for ε213 and any cyclic permutation
of indices, and the value 0 when any two indices are the same. We also make use of the
implied summation convention, that is the assumption that we perform a summation over
any pair of repeated indices.) The commutation relations in (1.113) will be recognized
as the simplest realization of the angular-momentum commutation relations, whose
significance will be discussed in detail in Chapter 3. In contrast, the anticommutation
relations in (1.114) turn out to be a special property of spin 1

2 systems.
We can also define the operator S ·S, or S2 for short, as follows:

S2 ≡ S2
x +S2

y +S2
z . (1.116)

Because of (1.114), this operator turns out to be just a constant multiple of the identity
operator

S2 =

(
3
4

)
h̄2. (1.117)

We obviously have

[S2,Si] = 0. (1.118)

As will be shown in Chapter 3, for spins higher than 1
2 , S2 is no longer a multiple of the

identity operator; however, (1.118) still holds.
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1.4.3 Compatible Observables

Returning now to the general formalism, we will discuss compatible versus incompatible
observables. Observables A and B are defined to be compatible when the corresponding
operators commute,

[A,B] = 0, (1.119)

and incompatible when

[A,B] 	= 0. (1.120)

For example, S2 and Sz are compatible observables, while Sx and Sz are incompatible
observables.

Let us first consider the case of compatible observables A and B. As usual, we assume
that the ket space is spanned by the eigenkets of A. We may also regard the same ket space
as being spanned by the eigenkets of B. We now ask: How are the A eigenkets related to
the B eigenkets when A and B are compatible observables?

Before answering this question we must touch upon a very important point we have
bypassed earlier, the concept of degeneracy. Suppose there are two (or more) linearly
independent eigenkets of A having the same eigenvalue; then the eigenvalues of the two
eigenkets are said to be degenerate. In such a case the notation |a′〉 that labels the eigenket
by its eigenvalue alone does not give a complete description; furthermore, we may recall
that our earlier theorem on the orthogonality of different eigenkets was proved under
the assumption of no degeneracy. Even worse, the whole concept that the ket space is
spanned by {|a′〉} appears to run into difficulty when the dimensionality of the ket space is
larger than the number of distinct eigenvalues of A. Fortunately, in practical applications in
quantum mechanics, it is usually the case that in such a situation the eigenvalues of some
other commuting observable, say B, can be used to label the degenerate eigenkets.

Now we are ready to state an important theorem.

Theorem 2 Suppose that A and B are compatible observables, and the eigenvalues of A
are nondegenerate. Then the matrix elements 〈a′′|B|a′〉 are all diagonal. (Recall here that
the matrix elements of A are already diagonal if {|a′〉} are used as the base kets.)

Proof The proof of this important theorem is extremely simple. Using the definition
(1.119) of compatible observables, we observe that

〈a′′|[A,B]|a′〉= (a′′ −a′)〈a′′|B|a′〉= 0. (1.121)

So 〈a′′|B|a′〉 must vanish unless a′ = a′′, which proves our assertion. �

We can write the matrix elements of B as

〈a′′|B|a′〉= δa′a′′ 〈a′|B|a′〉. (1.122)

So both A and B can be represented by diagonal matrices with the same set of base kets.
Using (1.71) and (1.122) we can write B as

B = ∑
a′′
|a′′〉〈a′′|B|a′′〉〈a′′|. (1.123)
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Suppose that this operator acts on an eigenket of A:

B|a′〉= ∑
a′′
|a′′〉〈a′′|B|a′′〉〈a′′|a′〉= (〈a′|B|a′〉)|a′〉. (1.124)

But this is nothing other than the eigenvalue equation for the operator B with eigenvalue

b′ ≡ 〈a′|B|a′〉. (1.125)

The ket |a′〉 is therefore a simultaneous eigenket of A and B. Just to be impartial to both
operators, we may use |a′,b′〉 to characterize this simultaneous eigenket.

We have seen that compatible observables have simultaneous eigenkets. Even though
the proof given is for the case where the A eigenkets are nondegenerate, the statement
holds even if there is an n-fold degeneracy, that is,

A|a′(i)〉= a′|a′(i)〉 for i = 1,2,. . . ,n (1.126)

where |a′(i)〉 are n mutually orthonormal eigenkets of A, all with the same eigenvalue a′.
To see this, all we need to do is construct appropriate linear combinations of |a′(i)〉 that
diagonalize the B operator by following the diagonalization procedure to be discussed in
Section 1.5.

A simultaneous eigenket of A and B, denoted by |a′,b′〉, has the property

A|a′,b′〉= a′|a′,b′〉, (1.127a)

B|a′,b′〉= b′|a′,b′〉. (1.127b)

When there is no degeneracy, this notation is somewhat superfluous because it is clear
from (1.125) that if we specify a′, we necessarily know the b′ that appears in |a′,b′〉. The
notation |a′,b′〉 is much more powerful when there are degeneracies. A simple example
may be used to illustrate this point.

Even though a complete discussion of orbital angular momentum will not appear in
this book until Chapter 3, the reader may be familiar from his or her earlier training
in elementary wave mechanics that the eigenvalues of L2 (orbital angular momentum
squared) and Lz (the z-component of orbital angular momentum) are h̄2l(l+ 1) and mlh̄,
respectively, with l an integer and ml =−l,−l+1,. . . ,+l. To characterize an orbital angular
momentum state completely, it is necessary to specify both l and ml. For example, if we
just say l = 1, the ml value can still be 0, +1, or −1; if we just say ml = 1, l can be 1, 2, 3,
4, and so on. Only by specifying both l and ml do we succeed in uniquely characterizing
the orbital angular momentum state in question. Quite often a collective index K′ is used
to stand for (a′,b′), so that

|K′〉= |a′,b′〉. (1.128)

We can obviously generalize our considerations to a situation where there are several
(more than two) mutually compatible observables, namely,

[A,B] = [B,C] = [A,C] = · · ·= 0. (1.129)

Assume that we have found a maximal set of commuting observables; that is, we
cannot add any more observables to our list without violating (1.129). The eigenvalues
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of individual operators A, B, C,. . . may have degeneracies, but if we specify a combination
(a′,b′,c′,. . .), then the corresponding simultaneous eigenket of A, B, C,. . . is uniquely spec-
ified. We can again use a collective index K′ to stand for (a′,b′,c′,. . .). The orthonormality
relation for

|K′〉= |a′,b′,c′,. . .〉 (1.130)

reads

〈K′′|K′〉= δK′K′′ = δaa′δbb′δcc′ . . . , (1.131)

while the completeness relation, or closure, can be written as

∑
K′
|K′〉〈K′|= ∑

a′
∑
b′

∑
c′
. . . |a′,b′,c′,. . .〉〈a′,b′,c′,. . . |= 1. (1.132)

We now consider measurements of A and B when they are compatible observables.
Suppose we measure A first and obtain result a′. Subsequently, we may measure B and
get result b′. Finally we measure A again. It follows from our measurement formalism that
the third measurement always gives a′ with certainty, that is, the second (B) measurement
does not destroy the previous information obtained in the first (A) measurement. This is
rather obvious when the eigenvalues of A are nondegenerate:

|α〉 A measurement−−−−−−−→|a′,b′〉 B measurement−−−−−−−→|a′,b′〉 A measurement−−−−−−−→|a′,b′〉. (1.133)

When there is degeneracy, the argument goes as follows: After the first (A) measurement,
which yields a′, the system is thrown into some linear combination

n

∑
i

c(i)a′ |a
′,b(i)〉, (1.134)

where n is the degree of degeneracy and the kets |a′,b(i)〉 all have the same eigenvalue
a′ as far as operator A is concerned. The second (B) measurement may select just one of
the terms in the linear combination (1.134), say, |a′,b( j)〉, but the third (A) measurement
applied to it still yields a′. Whether or not there is degeneracy, A measurements and B
measurements do not interfere. The term compatible is indeed deemed appropriate.

1.4.4 Incompatible Observables

We now turn to incompatible observables, which are more nontrivial. The first point to be
emphasized is that incompatible observables do not have a complete set of simultaneous
eigenkets. To show this let us assume the converse to be true. There would then exist a set
of simultaneous eigenkets with property (1.127a) and (1.127b). Clearly,

AB|a′,b′〉= Ab′|a′,b′〉= a′b′|a′,b′〉. (1.135)

Likewise,

BA|a′,b′〉= Ba′|a′,b′〉= a′b′|a′,b′〉; (1.136)
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Fig. 1.8 Sequential selective measurements.

hence,

AB|a′,b′〉= BA|a′,b′〉, (1.137)

and thus [A,B] = 0 in contradiction to the assumption. So in general, |a′,b′〉 does not make
sense for incompatible observables. There is, however, an interesting exception; it may
happen that there exists a subspace of the ket space such that (1.137) holds for all elements
of this subspace, even though A and B are incompatible. An example from the theory
of orbital angular momentum may be helpful here. Suppose we consider an l = 0 state
(s-state). Even though Lx and Lz do not commute, this state is a simultaneous eigenstate
of Lx and Lz (with eigenvalue zero for both operators). The subspace in this case is one
dimensional.

We already encountered some of the peculiarities associated with incompatible observ-
ables when we discussed sequential Stern–Gerlach experiments in Section 1.1. We now
give a more general discussion of experiments of that type. Consider the sequence of
selective measurements shown in Figure 1.8a. The first (A) filter selects some particular
|a′〉 and rejects all others, the second (B) filter selects some particular |b′〉 and rejects all
others, and the third (C) filter selects some particular |c′〉 and rejects all others. We are
interested in the probability of obtaining |c′〉 when the beam coming out of the first filter is
normalized to unity. Because the probabilities are multiplicative, we obviously have

|〈c′|b′〉|2|〈b′|a′〉|2. (1.138)

Now let us sum over b′ to consider the total probability for going through all possible b′

routes. Operationally this means that we first record the probability of obtaining c′ with
all but the first b′ route blocked, then we repeat the procedure with all but the second b′

blocked, and so on; then we sum the probabilities at the end and obtain

∑
b′
|〈c′|b′〉|2|〈b′|a′〉|2 = ∑

b′
〈c′|b′〉〈b′|a′〉〈a′|b′〉〈b′|c′〉. (1.139)
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We now compare this with a different arrangement, where the B filter is absent (or not
operative); see Figure 1.8b. Clearly, the probability is just |〈c′|a′〉|2, which can also be
written as follows:

|〈c′|a′〉|2 = |∑
b′
〈c′|b′〉〈b′|a′〉|2 = ∑

b′
∑
b′′
〈c′|b′〉〈b′|a′〉〈a′|b′′〉〈b′′|c′〉. (1.140)

Notice that expressions (1.139) and (1.140) are different! This is remarkable because in
both cases the pure |a′〉 beam coming out of the first (A) filter can be regarded as being
made up of the B eigenkets

|a′〉= ∑
b′
|b′〉〈b′|a′〉, (1.141)

where the sum is over all possible values of b′. The crucial point to be noted is that the
result coming out of the C filter depends on whether or not B measurements have actually
been carried out. In the first case we experimentally ascertain which of the B eigenvalues
are actually realized; in the second case, we merely imagine |a′〉 to be built up of the
various |b′〉 in the sense of (1.141). Put in another way, actually recording the probabilities
of going through the various b′ routes makes all the difference even though we sum over
b′ afterwards. Here lies the heart of quantum mechanics.

Under what conditions do the two expressions become equal? It is left as an exercise for
the reader to show that for this to happen, in the absence of degeneracy, it is sufficient that

[A,B] = 0 or [B,C] = 0. (1.142)

In other words, the peculiarity we have illustrated is characteristic of incompatible
observables.

1.4.5 The Uncertainty Relation

The last topic to be discussed in this section is the uncertainty relation. Given an observable
A, we define an operator

ΔA ≡ A−〈A〉, (1.143)

where the expectation value is to be taken for a certain physical state under consideration.
The expectation value of (ΔA)2 is known as the dispersion of A. Because we have

〈(ΔA)2〉= 〈(A2 −2A〈A〉+ 〈A〉2)〉= 〈A2〉−〈A〉2, (1.144)

the last equality of (1.144) may be taken as an alternative definition of dispersion.
Sometimes the terms variance and mean square deviation are used for the same quantity.
Clearly, the dispersion vanishes when the state in question is an eigenstate of A. Roughly
speaking, the dispersion of an observable characterizes “fuzziness.” For example, for the
Sz+ state of a spin 1

2 system, the dispersion of Sx can be computed to be

〈S2
x〉−〈Sx〉2 = h̄2/4. (1.145)

In contrast the dispersion 〈(ΔSz)
2〉 obviously vanishes for the Sz+ state. So, for the Sz+

state, Sz is “sharp,” a vanishing dispersion for Sz, while Sx is fuzzy.
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We now state the uncertainty relation, which is the generalization of the well-known x-p
uncertainty relation to be discussed in Section 1.6. Let A and B be observables. Then for
any state we must have the following inequality:

〈(ΔA)2〉〈(ΔB)2〉 ≥ 1
4
|〈[A,B]〉|2. (1.146)

To prove this we first state three lemmas.

Lemma 1 The Schwarz inequality

〈α|α〉〈β|β〉 ≥ |〈α|β〉|2, (1.147)

which is analogous to

|a|2|b|2 ≥ |a ·b|2 (1.148)

in real Euclidian space.

Proof First note

(〈α|+λ∗〈β|) · (|α〉+λ|β〉)≥ 0, (1.149)

where λ can be any complex number. This inequality must hold when λ is set equal to
−〈β|α〉/〈β|β〉:

〈α|α〉〈β|β〉− |〈α|β〉|2 ≥ 0, (1.150)

which is the same as (1.147). �

Lemma 2 The expectation value of a Hermitian operator is purely real.

Proof The proof is trivial, just use (1.75). �

Lemma 3 The expectation value of an anti-Hermitian operator, defined by C = −C†, is
purely imaginary.

Proof The proof is also trivial. �

Armed with these lemmas, we are in a position to prove the uncertainty relation (1.146).
Using Lemma 1 with

|α〉= ΔA|〉,
|β〉= ΔB|〉,

(1.151)

where the blank ket | 〉 emphasizes the fact that our consideration may be applied to any
ket, we obtain

〈(ΔA)2〉〈(ΔB)2〉 ≥ |〈ΔAΔB〉|2, (1.152)
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where the Hermiticity of ΔA and ΔB has been used. To evaluate the right-hand side of
(1.152), we note

ΔAΔB =
1
2
[ΔA,ΔB]+

1
2
{ΔA,ΔB}, (1.153)

where the commutator [ΔA,ΔB], which is equal to [A, B], is clearly anti-Hermitian

([A,B])† = (AB−BA)† = BA−AB =− [A,B] . (1.154)

In contrast, the anticommutator {ΔA,ΔB} is obviously Hermitian, so

〈ΔAΔB〉= 1
2

〈[A,B]〉
purely imaginary

+
1
2
〈{ΔA,ΔB}〉

purely real
, (1.155)

where Lemmas 2 and 3 have been used. The right-hand side of (1.152) now becomes

|〈ΔAΔB〉|2 = 1
4
|〈[A,B]〉|2 + 1

4
|〈{ΔA,ΔB}〉|2. (1.156)

The proof of (1.146) is now complete because the omission of the second (the anticommu-
tator) term of (1.156) can only make the inequality relation stronger.15

Applications of the uncertainty relation to spin 1
2 systems will be left as exercises. We

come back to this topic when we discuss the fundamental x-p commutation relation, that
is, the Heisenberg uncertainty principle, in Section 1.6.

1.5 Change of Basis

1.5.1 Transformation Operator

Suppose we have two incompatible observables A and B. The ket space in question can
be viewed as being spanned either by the set {|a′〉} or by the set {|b′〉}. For example, for
spin 1

2 systems |Sx̂±〉 may be used as our base kets; alternatively, |Sz±〉 may be used as
our base kets. The two different sets of base kets, of course, span the same ket space. We
are interested in finding out how the two descriptions are related. Changing the set of base
kets is referred to as a change of basis or a change of representation. The basis in which
the base eigenkets are given by {|a′〉} is called the A representation or, sometimes, the A
diagonal representation because the square matrix corresponding to A is diagonal in this
basis.

Our basic task is to construct a transformation operator that connects the old orthonormal
set {|a′〉} and the new orthonormal set {|b′〉}. To this end, we first show the following.

Theorem 3 Given two sets of base kets, both satisfying orthonormality and completeness,
there exists a unitary operator U such that

|b(1)〉= U|a(1)〉, |b(2)〉= U|a(2)〉,. . . , |b(N)〉= U|a(N)〉. (1.157)

15 In the literature most authors use ΔA for our
√
〈(ΔA)2〉 so the uncertainty relation is written as ΔAΔB ≥

1
2 |〈[A,B]〉|. In this book, however, ΔA and ΔB are to be understood as operators [see (1.143)], not numbers.
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By a unitary operator we mean an operator fulfilling the conditions

U†U = 1 (1.158)

as well as

UU† = 1. (1.159)

Proof We prove this theorem by explicit construction. We assert that the operator

U = ∑
k
|b(k)〉〈a(k)| (1.160)

will do the job and we apply this U to |a( l)〉. Clearly,

U|a( l)〉= |b( l)〉 (1.161)

is guaranteed by the orthonormality of {|a′〉}. Furthermore, U is unitary:

U†U = ∑
k

∑
l
|a( l)〉〈b( l)|b(k)〉〈a(k)|= ∑

k
|a(k)〉〈a(k)|= 1, (1.162)

where we have used the orthonormality of {|b′〉} and the completeness of {|a′〉}. We obtain
relation (1.159) in an analogous manner. �

1.5.2 Transformation Matrix

It is instructive to study the matrix representation of the U operator in the old {|a′〉} basis.
We have

〈a(k)|U|a( l)〉= 〈a(k)|b( l)〉, (1.163)

which is obvious from (1.161). In other words, the matrix elements of the U operator are
built up of the inner products of old base bras and new base kets. We recall that the rotation
matrix in three dimensions that changes one set of unit base vectors (x̂, ŷ, ẑ) into another
set (x̂′, ŷ′, ẑ′) can be written as (Goldstein et al. (2002), pp. 134–144 for example)

R =

⎛⎝ x̂ · x̂′ x̂ · ŷ′ x̂ · ẑ′
ŷ · x̂′ ŷ · ŷ′ ŷ · ẑ′
ẑ · x̂′ ẑ · ŷ′ ẑ · ẑ′

⎞⎠ . (1.164)

The square matrix made up of 〈a(k)|U|a( l)〉 is referred to as the transformation matrix
from the {|a′〉} basis to the {|b′〉} basis.

Given an arbitrary ket |α〉 whose expansion coefficients 〈a′|α〉 are known in the old
basis,

|α〉= ∑
a′
|a′〉〈a′|α〉, (1.165)

how can we obtain 〈b′|α〉, the expansion coefficients in the new basis? The answer is very
simple: Just multiply (1.165) (with a′ replaced by a( l) to avoid confusion) by 〈b(k)|

〈b(k)|α〉= ∑
l
〈b(k)|a( l)〉〈a( l)|α〉= ∑

l
〈a(k)|U†|a( l)〉〈a( l)|α〉. (1.166)
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In matrix notation, (1.166) states that the column matrix for |α〉 in the new basis can be
obtained just by applying the square matrix U† to the column matrix in the old basis:

(new) = (U†)(old). (1.167)

The relationships between the old matrix elements and the new matrix elements are also
easy to obtain:

〈b(k)|X |b( l)〉= ∑
m

∑
n
〈b(k)|a(m)〉〈a(m)|X |a(n)〉〈a(n)|b( l)〉

= ∑
m

∑
n
〈a(k)|U†|a(m)〉〈a(m)|X |a(n)〉〈a(n)|U|a( l)〉. (1.168)

This is simply the well-known formula for a similarity transformation in matrix algebra,

X ′ = U†XU. (1.169)

The trace of an operator X is defined as the sum of diagonal elements:

tr(X) = ∑
a′
〈a′|X |a′〉. (1.170)

Even though a particular set of base kets is used in the definition, tr(X) turns out to be
independent of representation, as shown:

∑
a′
〈a′|X |a′〉= ∑

a′
∑
b′

∑
b′′
〈a′|b′〉〈b′|X |b′′〉〈b′′|a′〉

= ∑
b′

∑
b′′
〈b′′|b′〉〈b′|X |b′′〉

= ∑
b′
〈b′|X |b′〉. (1.171)

We can also prove

tr(XY) = tr(YX), (1.172a)

tr(U†XU) = tr(X), (1.172b)

tr(|a′〉〈a′′|) = δa′ a′′ , (1.172c)

tr(|b′〉〈a′|) = 〈a′|b′〉. (1.172d)

1.5.3 Diagonalization

So far we have not discussed how to find the eigenvalues and eigenkets of an operator B
whose matrix elements in the old {|a′〉} basis are assumed to be known. This problem turns
out to be equivalent to that of finding the unitary matrix that diagonalizes B. Even though
the reader may already be familiar with the diagonalization procedure in matrix algebra, it
is worth working out this problem using the Dirac bra-ket notation.

We are interested in obtaining the eigenvalue b′ and the eigenket |b′〉 with the property

B|b′〉= b′|b′〉. (1.173)
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First, we rewrite this as

∑
a′
〈a′′|B|a′〉〈a′|b′〉= b′〈a′′|b′〉. (1.174)

When |b′〉 in (1.173) stands for the lth eigenket of operator B, we can write (1.174) in
matrix notation as follows:⎛⎜⎝ B11 B12 B13 . . .

B21 B22 B23 . . .
...

...
...

. . .

⎞⎟⎠
⎛⎜⎜⎝

C( l)
1

C( l)
2
...

⎞⎟⎟⎠ = b( l)

⎛⎜⎜⎝
C( l)

1

C( l)
2
...

⎞⎟⎟⎠ , (1.175)

with

Bij = 〈a(i)|B|a( j)〉, (1.176a)

and

C( l)
k = 〈a(k)|b( l)〉, (1.176b)

where i, j, k run up to N, the dimensionality of the ket space. As we know from linear
algebra, nontrivial solutions for C( l)

k are possible only if the characteristic equation

det(B−λ1) = 0 (1.177)

is satisfied. This is an Nth order algebraic equation for λ, and the N roots obtained are to be
identified with the various b( l) we are trying to determine. Knowing b( l) we can solve for
the corresponding C( l)

k up to an overall constant to be determined from the normalization
condition. Comparing (1.176b) with (1.163), we see that the C( l)

k are just the elements of
the unitary matrix involved in the change of basis {|a′〉} → {|b′〉}.

For this procedure the Hermiticity of B is important. For example, consider S+ defined
by (1.92) or (1.112). This operator is obviously non-Hermitian. The corresponding matrix,
which reads in the Sz basis as

S+
.
= h̄

(
0 1
0 0

)
, (1.178)

cannot be diagonalized by any unitary matrix. In Chapter 2 we will encounter eigenkets
of a non-Hermitian operator in connection with a coherent state of a simple harmonic
oscillator. Such eigenkets, however, are known not to form a complete orthonormal set,
and the formalism we have developed in this section cannot be immediately applied.

1.5.4 Unitary Equivalent Observables

We conclude this section by discussing a remarkable theorem on the unitary transform of
an observable.

Theorem 4 Consider again two sets of orthonormal basis {|a′〉} and {|b′〉} connected
by the U operator (1.160). Knowing U, we may construct a unitary transform of A,
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UAU−1; then A and UAU−1 are said to be unitary equivalent observables. The eigenvalue
equation for A,

A|a( l)〉= a( l)|a( l)〉, (1.179)

clearly implies that

UAU−1U|a( l)〉= a( l)U|a( l)〉. (1.180)

But this can be rewritten as

(UAU−1)|b( l)〉= a( l)|b( l)〉. (1.181)

This deceptively simple result is quite profound. It tells us that the |b′〉 are eigenkets of
UAU−1 with exactly the same eigenvalues as the A eigenvalues. In other words, unitary
equivalent observables have identical spectra.

The eigenket |b( l)〉, by definition, satisfies the relationship

B|b( l)〉= b( l)|b( l)〉. (1.182)

Comparing (1.181) and (1.182), we infer that B and UAU−1 are simultaneously diagonal-
izable. A natural question is, is UAU−1 the same as B itself? The answer quite often is yes
in cases of physical interest. Take, for example, Sx and Sz. They are related by a unitary
operator, which, as we will discuss in Chapter 3, is actually the rotation operator around
the y-axis by angle π/2. In this case Sx itself is the unitary transform of Sz. Because we
know that Sx and Sz exhibit the same set of eigenvalues, namely, +h̄/2 and −h̄/2, we see
that our theorem holds in this particular example.

1.6 Position, Momentum, and Translation

1.6.1 Continuous Spectra

The observables considered so far have all been assumed to exhibit discrete eigenvalue
spectra. In quantum mechanics, however, there are observables with continuous eigenval-
ues. Take, for instance, pz, the z-component of momentum. In quantum mechanics this is
again represented by a Hermitian operator. In contrast to Sz, however, the eigenvalues of
pz (in appropriate units) can assume any real value between −∞ and ∞.

The rigorous mathematics of a vector space spanned by eigenkets that exhibit a continu-
ous spectrum is rather treacherous. The dimensionality of such a space is obviously infinite.
Fortunately, many of the results we worked out for a finite-dimensional vector space
with discrete eigenvalues can immediately be generalized. In places where straightforward
generalizations do not hold, we indicate danger signals.

We start with the analogue of eigenvalue equation (1.19), which, in the continuous
spectrum case, is written as

ξ|ξ′〉= ξ′|ξ′〉, (1.183)
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where ξ is an operator and ξ′ is simply a number. The ket |ξ′〉 is, in other words, an
eigenket of operator ξ with eigenvalue ξ′, just as |a′〉 is an eigenket of operator A with
eigenvalue a′.

In pursuing this analogy we replace the Kronecker symbol by Dirac’s δ-function, a
discrete sum over the eigenvalues {a′} by an integral over the continuous variable ξ′, so

〈a′|a′′〉= δa′ a′′ → 〈ξ′|ξ′′〉= δ(ξ′ − ξ′′), (1.184a)

∑
a′
|a′〉〈a′|= 1 →

∫
dξ′|ξ′〉〈ξ′|= 1, (1.184b)

|α〉= ∑
a′
|a′〉〈a′|α〉 → |α〉=

∫
dξ′|ξ′〉〈ξ′|α〉, (1.184c)

∑
a′
|〈a′|α〉|2 = 1 →

∫
dξ′|〈ξ′|α〉|2 = 1, (1.184d)

〈β|α〉= ∑
a′
〈β|a′〉〈a′|α〉 → 〈β|α〉=

∫
dξ′〈β|ξ′〉〈ξ′|α〉, (1.184e)

〈a′′|A|a′〉= a′δa′ a′′ → 〈ξ′′|ξ|ξ′〉= ξ′δ(ξ′′ − ξ′). (1.184f)

Notice in particular how the completeness relation (1.184b) is used to obtain (1.184c) and
(1.184e).

1.6.2 Position Eigenkets and Position Measurements

In Section 1.4 we emphasized that a measurement in quantum mechanics is essentially a
filtering process. To extend this idea to measurements of observables exhibiting continuous
spectra it is best to work with a specific example. To this end we consider the position (or
coordinate) operator in one dimension.

The eigenkets |x′〉 of the position operator x satisfying

x|x′〉= x′|x′〉 (1.185)

are postulated to form a complete set. Here x′ is just a number with the dimension of length
0.23 cm, for example, while x is an operator. The state ket for an arbitrary physical state
can be expanded in terms of {|x′〉}:

|α〉=
∫ ∞

−∞
dx′|x′〉〈x′|α〉. (1.186)

We now consider a highly idealized selective measurement of the position observable.
Suppose we place a very tiny detector that clicks only when the particle is precisely at x′ and
nowhere else. Immediately after the detector clicks, we can say that the state in question
is represented by |x′〉. In other words, when the detector clicks, |α〉 abruptly “jumps into”
|x′〉 in much the same way as an arbitrary spin state jumps into the Sz+ (or Sz−) state when
subjected to an SG apparatus of the Sz type.

In practice the best the detector can do is to locate the particle within a narrow interval
around x′. A realistic detector clicks when a particle is observed to be located within some
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narrow range (x′ −Δ/2,x′+Δ/2). When a count is registered in such a detector, the state
ket changes abruptly as follows:

|α〉=
∫ ∞

−∞
dx′′|x′′〉〈x′′|α〉 measurement−−−−−−−→

∫ x′+Δ/2

x′−Δ/2
dx′′|x′′〉〈x′′|α〉. (1.187)

Assuming that 〈x′′|α〉 does not change appreciably within the narrow interval, the
probability for the detector to click is given by

|〈x′|α〉|2dx′, (1.188)

where we have written dx′ for Δ. This is analogous to |〈a′|α〉|2 for the probability for
|α〉 to be thrown into |a′〉 when A is measured. The probability of recording the particle
somewhere between −∞ and ∞ is given by∫ ∞

−∞
dx′|〈x′|α〉|2, (1.189)

which is normalized to unity if |α〉 is normalized:

〈α|α〉= 1 ⇒
∫ ∞

−∞
dx′〈α|x′〉〈x′|α〉= 1. (1.190)

The reader familiar with wave mechanics may have recognized by this time that 〈x′|α〉
is the wave function for the physical state represented by |α〉. We will say more about this
identification of the expansion coefficient with the x-representation of the wave function in
Section 1.7.

The notion of a position eigenket can be extended to three dimensions. It is assumed in
nonrelativistic quantum mechanics that the position eigenkets |x′〉 are complete. The state
ket for a particle with internal degrees of freedom, such as spin, ignored can therefore be
expanded in terms of {|x′〉} as follows:

|α〉=
∫

d3x′|x′〉〈x′|α〉, (1.191)

where x′ stands for x′, y′, and z′; in other words, |x′〉 is a simultaneous eigenket of the
observables x, y, and z in the sense of Section 1.4:

|x′〉 ≡ |x′,y′,z′〉, (1.192a)

x|x′〉= x′|x′〉, y|x′〉= y′|x′〉, z|x′〉= z′|x′〉. (1.192b)

To be able to consider such a simultaneous eigenket at all, we are implicitly assuming that
the three components of the position vector can be measured simultaneously to arbitrary
degrees of accuracy; hence, we must have

[xi,xj] = 0, (1.193)

where x1, x2, and x3 stand for x, y, and z, respectively.
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1.6.3 Translation

We now introduce the very important concept of translation, or spatial displacement.
Suppose we start with a state that is well localized around x′. Let us consider an operation
that changes this state into another well-localized state, this time around x′ + dx′ with
everything else (for example, the spin direction) unchanged. Such an operation is defined
to be an infinitesimal translation by dx′, and the operator that does the job is denoted by
J (dx′):

J (dx′)|x′〉= |x′+dx′〉, (1.194)

where a possible arbitrary phase factor is set to unity by convention. Notice that the right-
hand side of (1.194) is again a position eigenket, but this time with eigenvalue x′ + dx′.
Obviously |x′〉 is not an eigenket of the infinitesimal translation operator.

By expanding an arbitrary state ket |α〉 in terms of the position eigenkets we can examine
the effect of infinitesimal translation on |α〉:

|α〉 → J (dx′)|α〉= J (dx′)
∫

d3x′|x′〉〈x′|α〉=
∫

d3x′|x′+dx′〉〈x′|α〉. (1.195)

We also write the right-hand side of (1.195) as∫
d3x′|x′+dx′〉〈x′|α〉=

∫
d3x′|x′〉〈x′ −dx′|α〉 (1.196)

because the integration is over all space and x′ is just an integration variable. This shows
that the wave function of the translated state J (dx′)|α〉 is obtained by substituting x′ −dx′

for x′ in 〈x′|α〉.
There is an equivalent approach to translation that is often treated in the literature.

Instead of considering an infinitesimal translation of the physical system itself, we consider
a change in the coordinate system being used such that the origin is shifted in the opposite
direction, −dx′. Physically, in this alternative approach we are asking how the same state
ket would look to another observer whose coordinate system is shifted by −dx′. In this
book we try not to use this approach. Obviously it is important that we do not mix the two
approaches!

We now list the properties of the infinitesimal translation operator J (−dx′). The first
property we demand is the unitarity property imposed by probability conservation. It is
reasonable to require that if the ket |α〉 is normalized to unity, the translated ket J (dx′)|α〉
also be normalized to unity, so

〈α|α〉= 〈α|J †(dx′)J (dx′)|α〉. (1.197)

This condition is guaranteed by demanding that the infinitesimal translation be unitary:

J †(dx′)J (dx′) = 1. (1.198)

Quite generally, the norm of a ket is preserved under unitary transformations. For the
second property, suppose we consider two successive infinitesimal translations, first by dx′

and subsequently by dx′′, where dx′ and dx′′ need not be in the same direction. We expect
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the net result to be just a single translation operation by the vector sum dx′+ dx′′, so we
demand that

J (dx′′)J (dx′) = J (dx′+dx′′). (1.199)

For the third property, suppose we consider a translation in the opposite direction; we
expect the opposite-direction translation to be the same as the inverse of the original
translation:

J (−dx′) = J −1(dx′). (1.200)

For the fourth property, we demand that as dx′ → 0, the translation operation reduce to the
identity operation

lim
dx′→0

J (dx′) = 1 (1.201)

and that the difference between J (dx′) and the identity operator be of first order in dx′.
We now demonstrate that if we take the infinitesimal translation operator to be

J (dx′) = 1− iK ·dx′, (1.202)

where the components of K, Kx, Ky, and Kz, are Hermitian operators, then all the
properties listed are satisfied. The first property, the unitarity of J (dx′), is checked as
follows:

J †(dx′)J (dx′) = (1+ iK† ·dx′)(1− iK ·dx′)

= 1− i(K−K†) ·dx′+0[(dx′)2]

� 1, (1.203)

where terms of second order in dx′ have been ignored for an infinitesimal translation. The
second property (1.199) can also be proved as follows:

J (dx′′)J (dx′) = (1− iK ·dx′′)(1− iK ·dx′)

� 1− iK ·(dx′+dx′′)

= J (dx′+dx′′). (1.204)

The third and fourth properties are obviously satisfied by (1.202).
Accepting (1.202) to be the correct form for J (dx′), we are in a position to derive an

extremely fundamental relation between the K operator and the x operator. First, note that

xJ (dx′)|x′〉= x|x′+dx′〉= (x′+dx′)|x′+dx′〉 (1.205a)

and

J (dx′)x|x′〉= x′J (dx′)|x′〉= x′|x′+dx′〉; (1.205b)

hence,

[x,J (dx′)] |x′〉= dx′|x′+dx′〉 � dx′|x′〉, (1.206)
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where the error made in writing the last part of (1.206) is of second order in dx′. Now |x′〉
can be any position eigenket, and the position eigenkets are known to form a complete set.
We must therefore have an operator identity

[x,J (dx′)] = dx′, (1.207)

or

−ixK ·dx′+ iK ·dx′x = dx′, (1.208)

where on the right-hand sides of (1.207) and (1.208) dx′ is understood to be the number
dx′ multiplied by the identity operator in the ket space spanned by |x′〉. By choosing dx′ in
the direction of x̂j and forming the scalar product with x̂i, we obtain

[xi,Kj] = iδij, (1.209)

where again δij is understood to be multiplied by the identity operator.

1.6.4 Momentum as a Generator of Translation

Equation (1.209) is the fundamental commutation relation between the position operators
x, y, z and the K operators Kx,Ky,Kz. Remember that so far the K operator is defined in
terms of the infinitesimal translation operator by (1.202). What is the physical significance
we can attach to K?

J. Schwinger, lecturing on quantum mechanics, once remarked, “. . . for fundamental
properties we will borrow only names from classical physics.” In the present case we would
like to borrow from classical mechanics the notion that momentum is the generator of an
infinitesimal translation. An infinitesimal translation in classical mechanics can be regarded
as a canonical transformation,

xnew ≡ X = x+dx, pnew ≡ P = p, (1.210)

obtainable from the generating function (Goldstein et al. (2002), pp. 386 and 403)

F(x,P) = x ·P+p ·dx, (1.211)

where p and P refer to the corresponding momenta.
This equation has a striking similarity to the infinitesimal translation operator (1.202) in

quantum mechanics, particularly if we recall that x ·P in (1.211) is the generating function
for the identity transformation (X = x,P = p). We are therefore led to speculate that the
operator K is in some sense related to the momentum operator in quantum mechanics.

Can the K operator be identified with the momentum operator itself ? Unfortunately the
dimension is all wrong; the K operator has the dimension of 1/length because K ·dx′ must
be dimensionless. But it appears legitimate to set

K =
p

universal constant with the dimension of action
. (1.212)

From the fundamental postulates of quantum mechanics there is no way to determine
the actual numerical value of the universal constant. Rather, this constant is needed here
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because, historically, classical physics was developed before quantum mechanics using
units convenient for describing macroscopic quantities – the circumference of the Earth,
the mass of 1 cm3 of water, the duration of a mean solar day, and so forth. Had microscopic
physics been formulated before macroscopic physics, the physicists would have almost
certainly chosen the basic units in such a way that the universal constant appearing in
(1.212) would be unity.

An analogy from electrostatics may be helpful here. The interaction energy between
two particles of charge e separated at a distance r is proportional to e2/r; in unrationalized
Gaussian units, the proportionality factor is just 1, but in rationalized mks units, which
may be more convenient for electrical engineers, the proportionality factor is 1/4πε0. (See
Appendix A.)

The universal constant that appears in (1.212) turns out to be the same as the constant h̄
that appears in L. de Broglie’s relation, written in 1924,

2π
λ

=
p
h̄

, (1.213)

where λ is the wavelength of a “particle wave.” In other words, the K operator is the
quantum-mechanical operator that corresponds to the wave number, that is, 2π times
the reciprocal wavelength, usually denoted by k. With this identification the infinitesimal
translation operator J (dx′) reads

J (dx′) = 1− ip ·dx′/h̄, (1.214)

where p is the momentum operator. The commutation relation (1.209) now becomes

[xi,pj] = ih̄δij. (1.215)

The commutation relations (1.215) imply, for example, that x and px (but not x and py)
are incompatible observables. It is therefore impossible to find simultaneous eigenkets of
x and px. The general formalism of Section 1.4 can be applied here to obtain the position-
momentum uncertainty relation of W. Heisenberg:

〈(Δx)2〉〈(Δpx)
2〉 ≥ h̄2/4. (1.216)

Some applications of (1.216) will appear in Section 1.7.
So far we have concerned ourselves with infinitesimal translations. A finite translation,

that is, a spatial displacement by a finite amount, can be obtained by successively
compounding infinitesimal translations. Let us consider a finite translation in the x-
direction by an amount Δx′:

J (Δx′x̂)|x′〉= |x′+Δx′x̂〉. (1.217)

By compounding N infinitesimal translations, each of which is characterized by a spatial
displacement Δx′/N in the x-direction, and letting N → ∞, we obtain

J (Δx′x̂) = lim
N→∞

(
1− ipxΔx′

Nh̄

)N

= exp

(
− ipxΔx′

h̄

)
. (1.218)
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CA

BD

Δy ŷ

Δx x̂

Fig. 1.9 Successive translations in different directions.

Here exp(−ipxΔx′/h̄) is understood to be a function of the operator px; generally, for any
operator X we have

exp(X)≡ 1+X+
X2

2!
+ · · · . (1.219)

A fundamental property of translations is that successive translations in different
directions, say in the x- and y-directions, commute. We see this clearly in Figure 1.9; in
shifting from A and B it does not matter whether we go via C or via D. Mathematically,

J (Δy′ŷ)J (Δx′x̂) = J (Δx′x̂+Δy′ŷ),
J (Δx′x̂)J (Δy′ŷ) = J (Δx′x̂+Δy′ŷ).

(1.220)

This point is not so trivial as it may appear; we will show in Chapter 3 that rotations about
different axes do not commute. Treating Δx′ and Δy′ up to second order, we obtain

[J (Δy′ŷ),J (Δx′x̂)] =

[(
1− ipyΔy′

h̄
−

p2
y(Δy′)2

2h̄2 + · · ·
)

,

(
1− ipxΔx′

h̄
− p2

x(Δx′)2

2h̄2 + · · ·
)]

�− (Δx′)(Δy′)[py,px]

h̄2 . (1.221)

Because Δx′ and Δy′ are arbitrary, requirement (1.220), or

[J (Δy′ŷ),J (Δx′x̂)] = 0, (1.222)

immediately leads to

[px,py] = 0, (1.223)

or, more generally,

[pi,pj] = 0. (1.224)



45 1.6 Position, Momentum, and Translation

This commutation relation is a direct consequence of the fact that translations in different
directions commute. Whenever the generators of transformations commute, the corre-
sponding group is said to be Abelian. The translation group in three dimensions is Abelian.

Equation (1.224) implies that px, py, and pz are mutually compatible observables. We
can therefore conceive of a simultaneous eigenket of px, py, pz, namely,

|p′〉 ≡ |p′x,p′y,p′z〉, (1.225a)

px|p′〉= p′x|p′〉, py|p′〉= p′y|p′〉, pz|p′〉= p′z|p′〉. (1.225b)

It is instructive to work out the effect of J (dx′) on such a momentum eigenket:

J (dx′)|p′〉=
(

1− ip ·dx′

h̄

)
|p′〉=

(
1− ip′ ·dx′

h̄

)
|p′〉. (1.226)

We see that the momentum eigenket remains the same even though it suffers a slight phase
change, so unlike |x′〉, |p′〉 is an eigenket of J (dx′), which we anticipated because

[p,J (dx′)] = 0. (1.227)

Notice, however, that the eigenvalue of J (dx′) is complex; we do not expect a real
eigenvalue here because J (dx′), though unitary, is not Hermitian.

1.6.5 The Canonical Commutation Relations

We summarize the commutator relations we inferred by studying the properties of
translation:

[xi, xj] = 0, [pi, pj] = 0, [xi, pj] = ih̄δij. (1.228)

These relations form the cornerstone of quantum mechanics; in his book, P. A. M.
Dirac (1958) calls them the “fundamental quantum conditions.” More often they are
known as the canonical commutation relations, or the fundamental commutation
relations.

Historically it was W. Heisenberg who, in 1925, showed that the combination rule for
atomic transition lines known at that time could best be understood if one associated
arrays of numbers obeying certain multiplication rules with these frequencies. Immediately
afterward M. Born and P. Jordan pointed out that Heisenberg’s multiplication rules are
essentially those of matrix algebra, and a theory was developed based on the matrix
analogues of (1.228), which is now known as matrix mechanics.16

Also in 1925, P. A. M. Dirac observed that the various quantum-mechanical relations can
be obtained from the corresponding classical relations just by replacing classical Poisson
brackets by commutators, as follows:

[ , ]classical →
[ , ]

ih̄
, (1.229)

16 Appropriately, pq−qp = h/2πi is inscribed on the gravestone of M. Born in Göttingen.
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where we may recall that the classical Poisson brackets are defined for functions of q
and p as

[A(q, p), B(q, p)]classical ≡ ∑
s

(
∂A
∂qs

∂B
∂ps

− ∂A
∂ps

∂B
∂qs

)
. (1.230)

For example, in classical mechanics, we have

[xi, pj]classical = δij, (1.231)

which in quantum mechanics turns into (1.215).
Dirac’s rule (1.229) is plausible because the classical Poisson brackets and quantum-

mechanical commutators satisfy similar algebraic properties. In particular, the following
relations can be proved regardless of whether [ , ] is understood as a classical Poisson
bracket or as a quantum-mechanical commutator:

[A,A] = 0 (1.232a)

[A,B] =− [B, A] (1.232b)

[A,c] = 0 (c is just a number) (1.232c)

[A+B,C] = [A,C]+ [B,C] (1.232d)

[A,BC] = [A,B]C+B [A,C] (1.232e)

[A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0, (1.232f)

where the last relation is known as the Jacobi identity.17 However, there are important
differences. First, the dimension of the classical Poisson bracket differs from that of the
quantum-mechanical commutator because of the differentiations with respect to q and p
appearing in (1.230). Second, the Poisson bracket of real functions of q and p is purely
real, while the commutator of two Hermitian operators is anti-Hermitian (see Lemma 3 of
Section 1.4). To take care of these differences the factor ih̄ is inserted in (1.229).

We have deliberately avoided exploiting Dirac’s analogy in obtaining the canonical
commutation relations. Our approach to the commutation relations is based solely on (1)
the properties of translations and (2) the identification of the generator of translation with
the momentum operator modulo a universal constant with the dimension of action. We
believe that this approach is more powerful because it can be generalized to situations
where observables have no classical analogues. For example, the spin angular-momentum
components we encountered in Section 1.4 have nothing to do with the p and q of classical
mechanics; yet, as we will show in Chapter 3, the spin angular-momentum commutation
relations can be derived using the properties of rotations just as we derived the canonical
commutation relations using the properties of translations.

17 It is amusing that the Jacobi identity in quantum mechanics is much easier to prove than its classical analogue.
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1.7 Wave Functions in Position and Momentum Space

1.7.1 Position-Space Wave Function

In this section we present a systematic study of the properties of wave functions in both
position and momentum space. For simplicity let us return to the one-dimensional case.
The base kets used are the position kets satisfying

x|x′〉= x′|x′〉, (1.233)

normalized in such a way that the orthogonality condition reads

〈x′′|x′〉= δ(x′′ − x′). (1.234)

We have already remarked that the ket representing a physical state can be expanded in
terms of |x′〉,

|α〉=
∫

dx′|x′〉〈x′|α〉, (1.235)

and that the expansion coefficient 〈x′|α〉 is interpreted in such a way that

|〈x′|α〉|2 dx′ (1.236)

is the probability for the particle to be found in a narrow interval dx′ around x′. In our
formalism the inner product 〈x′|α〉 is what is usually referred to as the wave function
ψα(x′) for state |α〉:

〈x′|α〉= ψα(x′). (1.237)

In elementary wave mechanics the probabilistic interpretations for the expansion
coefficient ca′( = 〈a′|α〉) and for the wave function ψα(x′)(= 〈x′|α〉) are often presented as
separate postulates. One of the major advantages of our formalism, originally due to Dirac,
is that the two kinds of probabilistic interpretations are unified; ψα(x′) is an expansion
coefficient [see (1.235)] in much the same way as ca′ is. By following the footsteps of
Dirac we come to appreciate the unity of quantum mechanics.

Consider the inner product 〈β|α〉. Using the completeness of |x′〉, we have

〈β|α〉=
∫

dx′〈β|x′〉〈x′|α〉

=
∫

dx′ψ∗
β(x′)ψα(x′), (1.238)

so 〈β|α〉 characterizes the overlap between the two wave functions. Note that we are not
defining 〈β|α〉 as the overlap integral; the identification of 〈β|α〉 with the overlap integral
follows from our completeness postulate for |x′〉. The more general interpretation of 〈β|α〉,
independent of representations, is that it represents the probability amplitude for state |α〉
to be found in state |β〉.
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This time let us interpret the expansion

|α〉= ∑
a′
|a′〉〈a′|α〉 (1.239)

using the language of wave functions. We just multiply both sides of (1.239) by the position
eigenbra 〈x′| on the left. Thus

〈x′|α〉= ∑
a′
〈x′|a′〉〈a′|α〉. (1.240)

In the usual notation of wave mechanics this is recognized as

ψα(x′) = ∑
a′

ca′ua′(x′),

where we have introduced an eigenfunction of operator A with eigenvalue a′:

ua′(x′) = 〈x′|a′〉. (1.241)

Let us now examine how 〈β|A|α〉 can be written using the wave functions for |α〉 and
|β〉. Clearly, we have

〈β|A|α〉=
∫

dx′
∫

dx′′〈β|x′〉〈x′|A|x′′〉〈x′′|α〉

=
∫

dx′
∫

dx′′ψ∗
β(x′)〈x′|A|x′′〉ψα(x′′). (1.242)

So to be able to evaluate 〈β|A|α〉, we must know the matrix element 〈x′|A|x′′〉, which is, in
general, a function of the two variables x′ and x′′.

An enormous simplification takes place if observable A is a function of the position
operator x. In particular, consider

A = x2, (1.243)

which actually appears in the Hamiltonian for the simple harmonic oscillator problem to
be discussed in Chapter 2. We have

〈x′|x2|x′′〉= (〈x′|) · (x′′2|x′′〉) = x′2δ(x′ − x′′), (1.244)

where we have used (1.233) and (1.234). The double integral (1.242) is now reduced to a
single integral:

〈β|x2|α〉=
∫

dx′〈β|x′〉x′2〈x′|α〉

=

∫
dx′ψ∗

β(x′)x′2ψα(x′). (1.245)

In general,

〈β| f(x)|α〉=
∫

dx′ψ∗
β(x′)f(x′)ψα(x′). (1.246)

Note that the f (x) on the left-hand side of (1.246) is an operator, while the f(x′) on the
right-hand side is not an operator.
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1.7.2 Momentum Operator in the Position Basis

We now examine how the momentum operator may look in the x-basis, that is, in the
representation where the position eigenkets are used as base kets. Our starting point is the
definition of momentum as the generator of infinitesimal translations:(

1− ipΔx′

h̄

)
|α〉=

∫
dx′J (Δx′)|x′〉〈x′|α〉

=
∫

dx′|x′+Δx′〉〈x′|α〉

=
∫

dx′|x′〉〈x′ −Δx′|α〉

=
∫

dx′|x′〉
(
〈x′|α〉−Δx′

∂
∂x′

〈x′|α〉
)

. (1.247)

Comparison of both sides yields

p|α〉=
∫

dx′|x′〉
(
−ih̄

∂
∂x′

〈x′|α〉
)

(1.248)

or

〈x′|p|α〉=−ih̄
∂

∂x′
〈x′|α〉, (1.249)

where we have used the orthogonality property (1.234). For the matrix element p in the
x-representation, we obtain

〈x′|p|x′′〉=−ih̄
∂

∂x′
δ(x′ − x′′). (1.250)

From (1.248) we get a very important identity:

〈β|p|α〉=
∫

dx′〈β|x′〉
(
−ih̄

∂
∂x′

〈x′|α〉
)

=

∫
dx′ψ∗

β(x′)
(
−ih̄

∂
∂x′

)
ψα(x′). (1.251)

In our formalism (1.251) is not a postulate; rather, it has been derived using the basic
properties of momentum. By repeatedly applying (1.249), we can also obtain

〈x′|pn|α〉= (−ih̄)n ∂ n

∂x′n
〈x′|α〉, (1.252)

〈β|pn|α〉=
∫

dx′ψ∗
β(x′)(−ih̄)n ∂ n

∂x′n
ψα(x′). (1.253)

1.7.3 Momentum-Space Wave Function

So far we have worked exclusively in the x-basis. There is actually a complete symmetry
between x and p, apart from occasional minus signs, which we can infer from the
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canonical commutation relations. Let us now work in the p-basis, that is, in the momentum
representation.

For simplicity we continue working in one-space. The base eigenkets in the p-basis
specify

p|p′〉= p′|p′〉 (1.254)

and

〈p′|p′′〉= δ(p′ −p′′). (1.255)

The momentum eigenkets {|p′〉} span the ket space in much the same way as the position
eigenkets {|x′〉}. An arbitrary state ket |α〉 can therefore be expanded as follows:

|α〉=
∫

dp′|p′〉〈p′|α〉. (1.256)

We can give a probabilistic interpretation for the expansion coefficient 〈p′|α〉; the
probability that a measurement of p gives eigenvalue p′ within a narrow interval dp′
is |〈p′|α〉|2dp′. It is customary to call 〈p′|α〉 the momentum-space wave function; the
notation φα(p′) is often used:

〈p′|α〉= φα(p′). (1.257)

If |α〉 is normalized, we obtain∫
dp′〈α|p′〉〈p′|α〉=

∫
dp′|φα(p′)|2 = 1. (1.258)

Let us now establish the connection between the x-representation and the p-
representation. We recall that in the case of the discrete spectra, the change of basis
from the old set {|a′〉} to the new set {|b′〉} is characterized by the transformation matrix
(1.163). Likewise, we expect that the desired information is contained in 〈x′|p′〉, which is a
function of x′ and p′, usually called the transformation function from the x-representation
to the p-representation. To derive the explicit form of 〈x′|p′〉, first recall (1.249); letting |α〉
be the momentum eigenket |p′〉, we obtain

〈x′|p|p′〉=−ih̄
∂

∂x′
〈x′|p′〉 (1.259)

or

p′〈x′|p′〉=−ih̄
∂

∂x′
〈x′|p′〉. (1.260)

The solution to this differential equation for 〈x′|p′〉 is

〈x′|p′〉= N exp

(
ip′x′

h̄

)
, (1.261)

where N is the normalization constant to be determined in a moment. Even though the
transformation function 〈x′|p′〉 is a function of two variables, x′ and p′, we can temporarily
regard it as a function of x′ with p′ fixed. It can then be viewed as the probability amplitude
for the momentum eigenstate specified by p′ to be found at position x′; in other words, it is
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just the wave function for the momentum eigenstate |p′〉, often referred to as the momentum
eigenfunction (still in the x-space). So (1.261) simply says that the wave function of a
momentum eigenstate is a plane wave. It is amusing that we have obtained this plane wave
solution without solving the Schrödinger equation (which we have not yet written down).

To get the normalization constant N let us first consider

〈x′|x′′〉=
∫

dp′〈x′|p′〉〈p′|x′′〉. (1.262)

The left-hand side is just δ(x′ −x′′); the right-hand side can be evaluated using the explicit
form of 〈x′|p′〉:

δ(x′ − x′′) = |N|2
∫

dp′ exp

[
ip′(x′ − x′′)

h̄

]
= 2πh̄|N|2δ(x′ − x′′). (1.263)

Choosing N to be purely real and positive by convention, we finally have

〈x′|p′〉= 1√
2πh̄

exp

(
ip′x′

h̄

)
. (1.264)

We can now demonstrate how the position-space wave function is related to the
momentum-space wave function. All we have to do is rewrite

〈x′|α〉=
∫

dp′〈x′|p′〉〈p′|α〉 (1.265a)

and

〈p′|α〉=
∫

dx′〈p′|x′〉〈x′|α〉 (1.265b)

as

ψα(x′) =
[

1√
2πh̄

]∫
dp′ exp

(
ip′x′

h̄

)
φα(p′) (1.266a)

and

φα(p′) =

[
1√
2πh̄

]∫
dx′ exp

(
−ip′x′

h̄

)
ψα(x′). (1.266b)

The pair of equations is just what one expects from Fourier’s inversion theorem. Appar-
ently the mathematics we have developed somehow “knows” Fourier’s work on integral
transforms.

1.7.4 Gaussian Wave Packets

It is instructive to look at a physical example to illustrate our basic formalism. We consider
what is known as a Gaussian wave packet, whose x-space wave function is given by

〈x′|α〉=
[

1
π1/4

√
d

]
exp

[
ikx′ − x′2

2d2

]
. (1.267)
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This is a plane wave with wave number k modulated by a Gaussian profile centered on the
origin. The probability of observing the particle vanishes very rapidly for |x′| > d; more
quantitatively, the probability density |〈x′|α〉|2 has a Gaussian shape with width d.

We now compute the expectation values of x, x2, p, and p2. The expectation value of x
is clearly zero by symmetry:

〈x〉=
∫ ∞

−∞
dx′〈α|x′〉x′〈x′|α〉=

∫ ∞

−∞
dx′|〈x′|α〉|2x′ = 0. (1.268)

For x2 we obtain

〈x2〉=
∫ ∞

−∞
dx′x′2|〈x′|α〉|2

=

(
1√
πd

)∫ ∞

−∞
dx′ x′2 exp

[
−x′2

d2

]
=

d2

2
, (1.269)

which leads to 〈
(Δx)2〉 = 〈x2〉−〈x〉2 =

d2

2
(1.270)

for the dispersion of the position operator. The expectation values of p and p2 can also be
computed as follows:

〈p〉= h̄k (1.271a)

〈p2〉= h̄2

2d2 + h̄2k2, (1.271b)

which is left as an exercise. The momentum dispersion is therefore given by〈
(Δp)2〉 = 〈p2〉−〈p〉2 =

h̄2

2d2 . (1.272)

Armed with (1.270) and (1.272), we can check the Heisenberg uncertainty relation (1.216);
in this case the uncertainty product is given by〈

(Δx)2〉〈
(Δp)2〉 = h̄2

4
, (1.273)

independent of d, so for a Gaussian wave packet we actually have an equality relation
rather than the more general inequality relation (1.216). For this reason a Gaussian wave
packet is often called a minimum uncertainty wave packet.

We now go to momentum space. By a straightforward integration, just completing the
square in the exponent, we obtain

〈p′|α〉=
(

1√
2πh̄

)(
1

π1/4
√

d

)∫ ∞

−∞
dx′ exp

(
−ip′x′

h̄
+ ikx′ − x′2

2d2

)

=

√
d

h̄
√
π

exp

[
−(p′ − h̄k)2d2

2h̄2

]
. (1.274)
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This momentum-space wave function provides an alternative method for obtaining 〈p〉 and
〈p2〉, which is also left as an exercise.

The probability of finding the particle with momentum p′ is Gaussian (in momentum
space) centered on h̄k, just as the probability of finding the particle at x′ is Gaussian
(in position space) centered on zero. Furthermore, the widths of the two Gaussians are
inversely proportional to each other, which is just another way of expressing the constancy
of the uncertainty product 〈(Δx)2〉〈Δp)2〉 explicitly computed in (1.273). The wider the
spread in the p-space, the narrower the spread in the x-space, and vice versa.

As an extreme example, suppose we let d → ∞. The position-space wave function
(1.267) then becomes a plane wave extending over all space; the probability of finding
the particle is just constant, independent of x′. In contrast, the momentum-space wave
function is δ-function-like and is sharply peaked at h̄k. In the opposite extreme, by letting
d → 0, we obtain a position-space wave function localized like the δ-function, but the
momentum-space wave function (1.274) is just constant, independent of p′.

We have seen that an extremely well-localized (in the x-space) state is to be regarded as
a superposition of momentum eigenstates with all possible values of momenta. Even those
momentum eigenstates whose momenta are comparable to or exceed mc must be included
in the superposition. However, at such high values of momentum, a description based
on nonrelativistic quantum mechanics is bound to break down.18 Despite this limitation
our formalism, based on the existence of the position eigenket |x′〉, has a wide domain of
applicability.

1.7.5 Generalization to Three Dimensions

So far in this section we have worked exclusively in one-space for simplicity, but
everything we have done can be generalized to three-space, if the necessary changes are
made. The base kets to be used can be taken as either the position eigenkets satisfying

x|x′〉= x′|x′〉 (1.275)

or the momentum eigenkets satisfying

p|p′〉= p′|p′〉. (1.276)

They obey the normalization conditions

〈x′|x′′〉= δ3(x′ −x′′) (1.277a)

and

〈p′|p′′〉= δ3(p′ −p′′), (1.277b)

where δ3 stands for the three-dimensional δ-function

δ3(x′ −x′′) = δ(x′ − x′′)δ(y′ − y′′)δ(z′ − z′′). (1.278)

18 It turns out that the concept of a localized state in relativistic quantum mechanics is far more intricate because
of the possibility of “negative energy states,” or pair creation. See Chapter 8 of this textbook.
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The completeness relations read ∫
d3x′|x′〉〈x′|= 1 (1.279a)

and ∫
d3p′|p′〉〈p′|= 1, (1.279b)

which can be used to expand an arbitrary state ket:

|α〉=
∫

d3x′|x′〉〈x′|α〉, (1.280a)

|α〉=
∫

d3p′|p′〉〈p′|α〉. (1.280b)

The expansion coefficients 〈x′|α〉 and 〈p′|α〉 are identified with the wave functions ψα(x′)
and φα(p′) in position and momentum space, respectively.

The momentum operator, when taken between |β〉 and |α〉, becomes

〈β|p|α〉=
∫

d3x′ψ∗
β(x

′)(−ih̄∇′)ψα(x′). (1.281)

The transformation function analogous to (1.264) is

〈x′|p′〉=
[

1
(2πh̄)3/2

]
exp

(
ip′ ·x′

h̄

)
, (1.282)

so that

ψα(x′) =
[

1
(2πh̄)3/2

]∫
d3p′ exp

(
ip′ ·x′

h̄

)
φα(p′) (1.283a)

and

φα(p′) =

[
1

(2πh̄)3/2

]∫
d3x′ exp

(
−ip′ ·x′

h̄

)
ψα(x′). (1.283b)

It is interesting to check the dimension of the wave functions. In one-dimensional
problems the normalization requirement (1.190) implies that |〈x′|α〉|2 has the dimension
of inverse length, so the wave function itself must have the dimension of (length)−1/2.
In contrast, the wave function in three-dimensional problems must have the dimen-
sion of (length)−3/2 because |〈x′|α〉|2 integrated over all spatial volume must be unity
(dimensionless).

Problems

1.1 A beam of silver atoms is created by heating a vapor in an oven to 1000◦C, and
selecting atoms with a velocity close to the mean of the thermal distribution. The
beam moves through a one-meter long magnetic field with a vertical gradient 10 T/m,
and impinges a screen one meter downstream of the end of the magnet. Assuming
the silver atom has spin 1

2 with a magnetic moment of one Bohr magneton, find the
separation distance in millimeters of the two states on the screen.
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1.2 Prove

[AB,CD] =−AC{D,B}+A{C,B}D−C{D,A}B+{C,A}DB.

1.3 For the spin 1
2 state |Sx;+〉, evaluate both sides of the inequality (1.146), that is〈

(ΔA)2
〉〈

(ΔB)2
〉
≥ 1

4
|〈[A,B]〉|2

for the operators A = Sx and B = Sy, and show that the inequality is satisfied. Repeat
for the operators A = Sz and B = Sy.

1.4 Suppose a 2×2 matrix X (not necessarily Hermitian, nor unitary) is written as

X = a0 +σ ·a,

where the matrices σ are given in (3.50) and a0 and a1,2,3 are numbers.
a. How are a0 and ak(k = 1,2,3) related to tr(X) and tr(σkX)?
b. Obtain a0 and ak in terms of the matrix elements Xij.

1.5 Show that the determinant of a 2×2 matrix σ ·a is invariant under

σ ·a → σ ·a′ ≡ exp

(
iσ · n̂φ

2

)
σ ·aexp

(
−iσ · n̂φ

2

)
,

where the matrices σ are given in (3.50). Find a′
k in terms of ak when n̂ is in the

positive z-direction and interpret your result.

1.6 Using the rules of bra-ket algebra, prove or evaluate the following:
a. tr(XY) = tr(YX), where X and Y are operators;
b. (XY)† = Y †X †, where X and Y are operators;
c. exp[if(A)] =? in ket-bra form, where A is a Hermitian operator whose eigenvalues

are known;
d. ∑a′ ψ

∗
a′(x

′)ψa′(x′′), where ψa′(x′) = 〈x′|a′〉.

1.7 a. Consider two kets |α〉 and |β〉. Suppose 〈a′|α〉,〈a′′|α〉,. . . and 〈a′|β〉, 〈a′′|β〉,. . .
are all known, where |a′〉, |a′′〉,. . . form a complete set of base kets. Find the matrix
representation of the operator |α〉〈β| in that basis.

b. We now consider a spin 1
2 system and let |α〉 and |β〉 be |Sz;+〉 and |Sx;+〉,

respectively. Write down explicitly the square matrix that corresponds to |α〉〈β|
in the usual (sz diagonal) basis.

1.8 Suppose |i〉 and | j〉 are eigenkets of some Hermitian operator A. Under what
condition can we conclude that |i〉+ | j〉 is also an eigenket of A? Justify your answer.

1.9 Consider a ket space spanned by the eigenkets {|a′〉} of a Hermitian operator A.
There is no degeneracy.
a. Prove that

∏
a′
(A−a′)

is the null operator.
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b. What is the significance of

∏
a′′ 	= a′

(A−a′′)
(a′ −a′′)

?

c. Illustrate (a) and (b) using A set equal to Sz of a spin 1
2 system.

1.10 Using the orthonormality of |+〉 and |−〉, prove

[Si,Sj] = iεijkh̄Sk, {Si,Sj}=
(

h̄2

2

)
δij,

where

Sx =
h̄
2
(|+〉〈−|+ |−〉〈+|), Sy =

ih̄
2
(−|+〉〈−|+ |−〉〈+|),

Sz =
h̄
2
(|+〉〈+|− |−〉〈−|).

1.11 Construct |S · n̂;+〉 such that

S · n̂|S · n̂;+〉=
(

h̄
2

)
|S · n̂;+〉

where n̂ is characterized by the angles shown in the figure. Express your answer as a
linear combination of |+〉 and |−〉. [Note: The answer is

cos

(
β
2

)
|+〉+ sin

(
β
2

)
eiα|−〉.

But do not just verify that this answer satisfies the above eigenvalue equation. Rather,
treat the problem as a straightforward eigenvalue problem. Also do not use rotation
operators, which we will introduce later in this book.]

y

x

z

β

α

n̂

1.12 The Hamiltonian operator for a two-state system is given by

H = a(|1〉〈1|− |2〉〈2|+ |1〉〈2|+ |2〉〈1|),

where a is a number with the dimension of energy. Find the energy eigenvalues and
the corresponding energy eigenkets (as linear combinations of |1〉 and |2〉).
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1.13 A two-state system is characterized by the Hamiltonian

H = H11|1〉〈1|+H22|2〉〈2|+H12[|1〉〈2|+ |2〉〈1|]

where H11,H22, and H12 are real numbers with the dimension of energy, and |1〉
and |2〉 are eigenkets of some observable ( 	= H). Find the energy eigenkets and
corresponding energy eigenvalues. Make sure that your answer makes good sense
for H12 = 0.

1.14 A spin 1
2 system is known to be in an eigenstate of S · n̂ with eigenvalue h̄/2, where

n̂ is a unit vector lying in the xz-plane that makes an angle γ with the positive z-axis.
a. Suppose Sx is measured. What is the probability of getting + h̄/2?
b. Evaluate the dispersion in Sx, that is,

〈(Sx −〈Sx〉)2〉.

(For your own peace of mind check your answers for the special cases γ= 0,π/2,
and π.)

1.15 A beam of spin 1
2 atoms goes through a series of Stern–Gerlach type measurements

as follows.
a. The first measurement accepts sz = h̄/2 atoms and rejects sz =−h̄/2 atoms.
b. The second measurement accepts sn = h̄/2 atoms and rejects sn = −h̄/2 atoms,

where sn is the eigenvalue of the operator S · n̂, with n̂ making an angle β in the
xz-plane with respect to the z-axis.

c. The third measurement accepts sz =−h̄/2 atoms and rejects sz = h̄/2 atoms.
What is the intensity of the final sz = −h̄/2 beam when the sz = h̄/2 beam surviving
the first measurement is normalized to unity? How must we orient the second
measuring apparatus if we are to maximize the intensity of the final sz =−h̄/2 beam?

1.16 A certain observable in quantum mechanics has a 3 × 3 matrix representation as
follows:

1√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ .

a. Find the normalized eigenvectors of this observable and the corresponding
eigenvalues. Is there any degeneracy?

b. Give a physical example where all this is relevant.

1.17 Let A and B be observables. Suppose the simultaneous eigenkets of A and B {|a′,b′〉}
form a complete orthonormal set of base kets. Can we always conclude that

[A,B] = 0?

If your answer is yes, prove the assertion. If your answer is no, give a
counterexample.
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1.18 Two Hermitian operators anticommute:

{A,B}= AB+BA = 0.

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove
or illustrate your assertion.

1.19 Two observables A1 and A2, which do not involve time explicitly, are known not to
commute,

[A1,A2] 	= 0,

yet we also know that A1 and A2 both commute with the Hamiltonian:

[A1,H] = 0, [A2,H] = 0.

Prove that the energy eigenstates are, in general, degenerate. Are there exceptions?
As an example, you may think of the central-force problem H = p2/2m+V(r), with
A1 → Lz, A2 → Lx.

1.20 a. The simplest way to derive the Schwarz inequality goes as follows. First, observe

(〈α|+λ∗〈β|) · (|α〉+λ|β〉)≥ 0

for any complex number λ; then choose λ in such a way that the preceding
inequality reduces to the Schwarz inequality.

b. Show that the equality sign in the generalized uncertainty relation holds if the
state in question satisfies

ΔA|α〉= λΔB|α〉

with λ purely imaginary.
c. Explicit calculations using the usual rules of wave mechanics show that the wave

function for a Gaussian wave packet given by

〈x′|α〉= (2πd2)−1/4 exp

[
i〈p〉x′

h̄
− (x′ − 〈x〉)2

4d2

]
satisfies the minimum uncertainty relation√

〈(Δx)2〉
√

〈(Δp)2〉= h̄
2

.

Prove that the requirement

〈x′|Δx|α〉= (imaginary number)〈x′|Δp|α〉

is indeed satisfied for such a Gaussian wave packet, in agreement with (b).

1.21 a. Compute

〈(ΔSx)
2〉 ≡ 〈S2

x〉−〈Sx〉2,
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where the expectation value is taken for the Sz+ state. Using your result, check
the generalized uncertainty relation

〈(ΔA)2〉〈(ΔB)2〉 ≥ 1
4
|〈[A,B]〉|2,

with A → Sx, B → Sy.
b. Check the uncertainty relation with A → Sx, B → Sy for the Sx+ state.

1.22 Find the linear combination of |+〉 and |−〉 kets that maximizes the uncertainty
product

〈(ΔSx)
2〉〈(ΔSy)

2〉.

Verify explicitly that for the linear combination you found, the uncertainty relation
for Sx and Sy is not violated.

1.23 Evaluate the x-p uncertainty product 〈(Δx)2〉〈(Δp)2〉 for a one-dimensional particle
confined between two rigid walls

V =

{
0 for 0 < x < a,
∞ otherwise.

Do this for both the ground and excited states.

1.24 Estimate the rough order of magnitude of the length of time that an ice pick can be
balanced on its point if the only limitation is that set by the Heisenberg uncertainty
principle. Assume that the point is sharp and that the point and the surface on which
it rests are hard. You may make approximations which do not alter the general order
of magnitude of the result. Assume reasonable values for the dimensions and weight
of the ice pick. Obtain an approximate numerical result and express it in seconds.

1.25 Consider a three-dimensional ket space. If a certain set of orthonormal kets, say, |1〉,
|2〉, and |3〉, are used as the base kets, the operators A and B are represented by

A .
=

⎛⎝ a 0 0
0 −a 0
0 0 −a

⎞⎠ , B .
=

⎛⎝ b 0 0
0 0 −ib
0 ib 0

⎞⎠
with a and b both real.
a. Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate

spectrum?
b. Show that A and B commute.
c. Find a new set of orthonormal kets which are simultaneous eigenkets of both A

and B. Specify the eigenvalues of A and B for each of the three eigenkets. Does
your specification of eigenvalues completely characterize each eigenket?

1.26 a. Prove that (1/
√

2)(1 + iσx), where the matrix σx is given in (3.50), acting on
a two-component spinor can be regarded as the matrix representation of the
rotation operator about the x-axis by angle −π/2. (The minus sign signifies that
the rotation is clockwise.)
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b. Construct the matrix representation of Sz when the eigenkets of Sy are used as base
vectors.

1.27 Some authors define an operator to be real when every member of its matrix elements
〈b′|A|b′′〉 is real in some representation ({|b′〉} basis in this case). Is this concept
representation independent, that is, do the matrix elements remain real even if some
basis other than {|b′〉} is used? Check your assertion using familiar operators such
as Sy and Sz (see Problem 1.26) or x and px.

1.28 Construct the transformation matrix that connects the Sz diagonal basis to the Sx
diagonal basis. Show that your result is consistent with the general relation

U = ∑
r
|b(r)〉〈a(r)|.

1.29 a. Suppose that f(A) is a function of a Hermitian operator A with the property A|a′〉=
a′|a′〉. Evaluate 〈b′′| f(A)|b′〉 when the transformation matrix from the a′ basis to
the b′ basis is known.

b. Using the continuum analogue of the result obtained in (a), evaluate

〈p′′|F(r)|p′〉.

Simplify your expression as far as you can. Note that r is
√

x2 + y2 + z2, where x,
y, and z are operators.

1.30 a. Let x and px be the coordinate and linear momentum in one dimension. Evaluate
the classical Poisson bracket

[x,F(px)]classical.

b. Let x and px be the corresponding quantum-mechanical operators this time.
Evaluate the commutator [

x,exp

(
ipxa

h̄

)]
.

c. Using the result obtained in (b), prove that

exp

(
ipxa

h̄

)
|x′〉 (x|x′〉= x′|x′〉)

is an eigenstate of the coordinate operator x. What is the corresponding eigen-
value?

1.31 a. On p. 247, Gottfried (1966) states that

[xi,G(p)] = ih̄
∂G
∂pi

, [pi,F(x)] =−ih̄
∂F
∂xi

can be “easily derived” from the fundamental commutation relations for all
functions of F and G that can be expressed as power series in their arguments.
Verify this statement.

b. Evaluate [x2,p2]. Compare your result with the classical Poisson bracket
[x2,p2]classical.
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1.32 The translation operator for a finite (spatial) displacement is given by

J (l) = exp

(
−ip · l

h̄

)
,

where p is the momentum operator.
a. Evaluate

[xi,J (l)].

b. Using (a) (or otherwise), demonstrate how the expectation value 〈x〉 changes
under translation.

1.33 In the main text we discussed the effect of J (dx′) on the position and momentum
eigenkets and on a more general state ket |α〉. We can also study the behavior of
expectation values 〈x〉 and 〈p〉 under infinitesimal translation. Using (1.207), (1.227),
and |α〉 → J (dx′)|α〉 only, prove 〈x〉 → 〈x〉+ dx′,〈p〉 → 〈p〉 under infinitesimal
translation.

1.34 Starting with a momentum operator p having eigenstates |p′〉, define an infinitesimal
boost operator B(dp′) that changes one momentum eigenstate into another, that is

B(dp′)|p′〉= |p′+dp′〉.

Show that the form B(dp′) = 1 + iW · dp′, where W is Hermitian, satisfies the
unitary, associative, and inverse properties that are appropriate for B(dp′). Use
dimensional analysis to express W in terms of the position operator x, and show
that the result satisfies the canonical commutation relations [xi,pj] = ih̄δij. Derive an
expression for the matrix element 〈p′|x|α〉 in terms of a derivative with respect to p′

of 〈p′|α〉.

1.35 a. Verify (1.271a) and (1.271b) for the expectation value of p and p2 from the
Gaussian wave packet (1.267).

b. Evaluate the expectation value of p and p2 using the momentum-space wave
function (1.274).

1.36 a. Prove the following:

(i) 〈p′|x|α〉= ih̄
∂

∂p′
〈p′|α〉,

(ii) 〈β|x|α〉=
∫

dp′φ∗
β(p′)ih̄

∂
∂p′

φα(p′),

where φα(p′) = 〈p′|α〉 and φβ(p′) = 〈p′|β〉 are momentum-space wave functions.
b. What is the physical significance of

exp

(
ixΞ
h̄

)
,

where x is the position operator and Ξ is some number with the dimension of
momentum? Justify your answer.



2 Quantum Dynamics

So far we have not discussed how physical systems change with time. This chapter is
devoted exclusively to the dynamic development of state kets and/or observables. In
other words, we are concerned here with the quantum-mechanical analogue of Newton’s
(or Lagrange’s or Hamilton’s) equations of motion.

2.1 Time Evolution and the Schrödinger Equation

The first important point we should keep in mind is that time is just a parameter in quantum
mechanics, not an operator. In particular, time is not an observable in the language of
the previous chapter. It is nonsensical to talk about the time operator in the same sense
as we talk about the position operator. Ironically, in the historical development of wave
mechanics both L. de Broglie and E. Schrödinger were guided by a kind of covariant
analogy between energy and time on the one hand and momentum and position (spatial
coordinate) on the other. Yet when we now look at quantum mechanics in its finished
form, there is no trace of a symmetrical treatment between time and space. The relativistic
quantum theory of fields does treat the time and space coordinates on the same footing, but
it does so only at the expense of demoting position from the status of being an observable
to that of being just a parameter.

2.1.1 Time-Evolution Operator

Our basic concern in this section is, How does a state ket change with time? Suppose we
have a physical system whose state ket at t0 is represented by |α〉. At later times, we do
not, in general, expect the system to remain in the same state |α〉. Let us denote the ket
corresponding to the state at some later time by

|α, t0; t〉 (t > t0), (2.1)

where we have written α, t0 to remind ourselves that the system used to be in state |α〉 at
some earlier reference time t0. Because time is assumed to be a continuous parameter, we
expect

lim
t→t0

|α, t0; t〉= |α〉 (2.2)

62
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and we may as well use a shorthand notation,

|α, t0; t0〉= |α, t0〉, (2.3)

for this. Our basic task is to study the time evolution of a state ket:

|α, t0〉= |α〉 time evolution−−−−−−−→|α, t0; t〉. (2.4)

Put in another way, we are interested in asking how the state ket changes under a time
displacement t0 → t.

As in the case of translation, the two kets are related by an operator which we call the
time-evolution operator U (t, t0):

|α, t0; t〉= U (t, t0)|α, t0〉. (2.5)

What are some of the properties we would like to ascribe to the time-evolution operator?
The first important property is the unitary requirement for U (t, t0) that follows from
probability conservation. Suppose that at t0 the state ket is expanded in terms of the
eigenkets of some observable A:

|α, t0〉= ∑
a′

ca′(t0)|a′〉. (2.6)

Likewise, at some later time, we have

|α, t0; t〉= ∑
a′

ca′(t)|a′〉. (2.7)

In general, we do not expect the modulus of the individual expansion coefficient to remain
the same:1

|ca′(t)| 	= |ca′(t0)|. (2.8)

For instance, consider a spin 1
2 system with its spin magnetic moment subjected to a

uniform magnetic field in the z-direction. To be specific, suppose that at t0 the spin is
in the positive x-direction; that is, the system is prepared in an eigenstate of Sx with
eigenvalue h̄/2. As time goes on, the spin precesses in the xy-plane, as will be quantitatively
demonstrated later in this section. This means that the probability for observing Sx+ is no
longer unity at t > t0; there is a finite probability for observing Sx− as well. Yet the sum of
the probabilities for Sx+ and Sx− remains unity at all times. Generally, in the notation of
(2.6) and (2.7), we must have

∑
a′
|ca′(t0)|2 = ∑

a′
|ca′(t)|2 (2.9)

despite (2.8) for the individual expansion coefficients. Stated another way, if the state
ket is initially normalized to unity, it must remain normalized to unity at all later
times:

〈α, t0|α, t0〉= 1 ⇒ 〈α, t0; t|α, t0; t〉= 1. (2.10)

1 We later show, however, that if the Hamiltonian commutes with A, then |ca′ (t)| is indeed equal to |ca′ (t0)|.
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As in the translation case, this property is guaranteed if the time-evolution operator is taken
to be unitary. For this reason we take unitarity,

U †(t, t0)U (t, t0) = 1, (2.11)

to be one of the fundamental properties of the U operator. It is no coincidence that many
authors regard unitarity as being synonymous with probability conservation.

Another feature we require of the U operator is the composition property:

U (t2, t0) = U (t2, t1)U (t1, t0) (t2 > t1 > t0). (2.12)

This equation says that if we are interested in obtaining time evolution from t0 to t2, then
we can obtain the same result by first considering time evolution from t0 to t1, then from t1
to t2, a reasonable requirement. Note that we read (2.12) from right to left!

It also turns out to be advantageous to consider an infinitesimal time-evolution operator
U (t0 +dt, t0):

|α, t0; t0 +dt〉= U (t0 +dt, t0)|α, t0〉. (2.13)

Because of continuity [see (2.2)], the infinitesimal time-evolution operator must reduce to
the identity operator as dt goes to zero,

lim
dt→0

U (t0 +dt, t0) = 1, (2.14)

and as in the translation case, we expect the difference between U (t0 +dt, t0) and 1 to be
of first order in dt.

We assert that all these requirements are satisfied by

U (t0 +dt, t0) = 1− iΩdt, (2.15)

where Ω is a Hermitian operator,2

Ω† =Ω. (2.16)

With (2.15) the infinitesimal time-displacement operator satisfies the composition property

U (t0 +dt1 +dt2, t0) = U (t0 +dt1 +dt2, t0 +dt1)U (t0 +dt1, t0); (2.17)

it differs from the identity operator by a term of order dt. The unitarity property can also
be checked as follows:

U †(t0 +dt, t0)U (t0 +dt, t0) = (1+ iΩ†dt)(1− iΩdt)� 1, (2.18)

to the extent that terms of order (dt)2 or higher can be ignored.
The operator Ω has the dimension of frequency or inverse time. Is there any familiar

observable with the dimension of frequency? We recall that in the old quantum theory,
angular frequency ω is postulated to be related to energy by the Planck–Einstein relation

E = h̄ω. (2.19)

2 If the Ω operator depends on time explicitly, it must be evaluated at t0.



65 2.1 Time Evolution and the Schrödinger Equation

Let us now borrow from classical mechanics the idea that the Hamiltonian is the generator
of time evolution (Goldstein et al. (2002), pp. 401–402). It is then natural to relateΩ to the
Hamiltonian operator H:

Ω=
H
h̄

. (2.20)

To sum up, the infinitesimal time-evolution operator is written as

U (t0 +dt, t0) = 1− iHdt
h̄

, (2.21)

where H, the Hamiltonian operator, is assumed to be Hermitian. The reader may ask
whether the h̄ introduced here is the same as the h̄ that appears in the expression for the
translation operator (1.214). This question can be answered by comparing the quantum-
mechanical equation of motion we derive later with the classical equation of motion.
It turns out that unless the two h̄ are taken to be the same, we are unable to obtain a
relation like

dx
dt

=
p
m

(2.22)

as the classical limit of the corresponding quantum-mechanical relation.

2.1.2 The Schrödinger Equation

We are now in a position to derive the fundamental differential equation for the time-
evolution operator U (t, t0). We exploit the composition property of the time-evolution
operator by letting t1 → t, t2 → t+dt in (2.12):

U (t+dt, t0) = U (t+dt, t)U (t, t0) =
(

1− iHdt
h̄

)
U (t, t0), (2.23)

where the time difference t− t0 need not be infinitesimal. We have

U (t+dt, t0)−U (t, t0) =−i
(

H
h̄

)
dtU (t, t0), (2.24)

which can be written in differential equation form:

ih̄
∂
∂ t

U (t, t0) = HU (t, t0). (2.25)

This is the Schrödinger equation for the time-evolution operator. Everything that has
to do with time development follows from this fundamental equation.

Equation (2.25) immediately leads to the Schrödinger equation for a state ket. Multiply-
ing both sides of (2.25) by |α, t0〉 on the right, we obtain

ih̄
∂
∂ t

U (t, t0)|α, t0〉= HU (t, t0)|α, t0〉. (2.26)

But |α, t0〉 does not depend on t, so this is the same as

ih̄
∂
∂ t

|α, t0; t〉= H|α, t0; t〉, (2.27)

where (2.5) has been used.
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If we are given U (t, t0) and, in addition, know how U (t, t0) acts on the initial state ket
|α, t0〉, it is not necessary to bother with the Schrödinger equation for the state ket (2.27).
All we have to do is apply U (t, t0) to |α, t0〉; in this manner we can obtain a state ket at
any t. Our first task is therefore to derive formal solutions to the Schrödinger equation for
the time-evolution operator (2.25). There are three cases to be treated separately.

Case 1. The Hamiltonian operator is independent of time. By this we mean that even
when the parameter t is changed, the H operator remains unchanged. The Hamiltonian for
a spin-magnetic moment interacting with a time-independent magnetic field is an example
of this. The solution to (2.25) in such a case is given by

U (t, t0) = exp

[
−iH(t− t0)

h̄

]
. (2.28)

To prove this let us expand the exponential as follows:

exp

[
−iH(t− t0)

h̄

]
= 1+

−iH(t− t0)
h̄

+

[
(−i)2

2

][
H(t− t0)

h̄

]2

+ · · · . (2.29)

Because the time derivative of this expansion is given by

∂
∂ t

exp

[
−iH(t− t0)

h̄

]
=

−iH
h̄

+

[
(−i)2

2

]
2
(

H
h̄

)2

(t− t0)+ · · · , (2.30)

expression (2.28) obviously satisfies differential equation (2.25). The boundary condition
is also satisfied because as t → t0, (2.28) reduces to the identity operator. An alternative
way to obtain (2.28) is to compound successively infinitesimal time-evolution operators
just as we did to obtain (1.218) for finite translation:

lim
N→∞

[
1− (iH/h̄)(t− t0)

N

]N

= exp

[
−iH(t− t0)

h̄

]
. (2.31)

Case 2. The Hamiltonian operator H is time dependent but the H at different times
commute. As an example, let us consider the spin-magnetic moment subjected to a
magnetic field whose strength varies with time but whose direction is always unchanged.
The formal solution to (2.25) in this case is

U (t, t0) = exp

[
−

(
i
h̄

)∫ t

t0
dt′H(t′)

]
. (2.32)

This can be proved in a similar way. We simply replace H(t− t0) in (2.29) and (2.30) by∫ t
t0 dt′H(t′).

Case 3. The H at different times do not commute. Continuing with the example involving
spin-magnetic moment, we suppose, this time, that the magnetic field direction also
changes with time: at t = t1 in the x-direction, at t = t2 in the y-direction, and so forth.
Because Sx and Sy do not commute, H(t1) and H(t2), which go like S ·B, do not commute
either. The formal solution in such a situation is given by

U (t, t0) = 1+
∞

∑
n=1

(
−i
h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn H(t1)H(t2) · · ·H(tn), (2.33)
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which is sometimes known as the Dyson series, after F. J. Dyson, who developed a
perturbation expansion of this form in quantum field theory. We do not prove (2.33) now
because the proof is very similar to the one presented in Chapter 5 for the time-evolution
operator in the interaction picture.

In elementary applications, only case 1 is of practical interest. In the remaining part of
this chapter we assume that the H operator is time independent. We will encounter time-
dependent Hamiltonians in Chapter 5.

2.1.3 Energy Eigenkets

To be able to evaluate the effect of the time-evolution operator (2.28) on a general initial
ket |α〉, we must first know how it acts on the base kets used in expanding |α〉. This is
particularly straightforward if the base kets used are eigenkets of A such that

[A,H] = 0; (2.34)

then the eigenkets of A are also eigenkets of H, called energy eigenkets, whose eigenvalues
are denoted by Ea′ :

H|a′〉= Ea′ |a′〉. (2.35)

We can now expand the time-evolution operator in terms of |a′〉〈a′|. Taking t0 = 0 for
simplicity, we obtain

exp

(
−iHt

h̄

)
= ∑

a′
∑
a′′
|a′′〉〈a′′|exp

(
−iHt

h̄

)
|a′〉〈a′|

= ∑
a′
|a′〉exp

(
−iEa′ t

h̄

)
〈a′|. (2.36)

The time-evolution operator written in this form enables us to solve any initial-value
problem once the expansion of the initial ket in terms of {|a′〉} is known. As an example,
suppose that the initial ket expansion reads

|α, t0 = 0〉= ∑
a′
|a′〉〈a′|α〉= ∑

a′
ca′ |a′〉. (2.37)

We then have

|α, t0 = 0; t〉= exp

(
−iHt

h̄

)
|α, t0 = 0〉= ∑

a′
|a′〉〈a′|α〉exp

(
−iEa′ t

h̄

)
. (2.38)

In other words, the expansion coefficient changes with time as

ca′(t = 0)→ ca′(t) = ca′(t = 0)exp

(
−iEa′ t

h̄

)
(2.39)

with its modulus unchanged. Notice that the relative phases among various components do
vary with time because the oscillation frequencies are different.

A special case of interest is where the initial state happens to be one of {|a′〉} itself.
We have

|α, t0 = 0〉= |a′〉 (2.40)
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initially, and at a later time

|a, t0 = 0; t〉= |a′〉exp

(
−iEa′ t

h̄

)
, (2.41)

so if the system is initially a simultaneous eigenstate of A and H, it remains so at all times.
The most that can happen is the phase modulation, exp(−iEa′ t/h̄). It is in this sense that an
observable compatible with H [see (2.34)] is a constant of the motion. We will encounter
this connection once again in a different form when we discuss the Heisenberg equation of
motion.

In the foregoing discussion the basic task in quantum dynamics is reduced to finding an
observable that commutes with H and evaluating its eigenvalues. Once that is done, we
expand the initial ket in terms of the eigenkets of that observable and just apply the time-
evolution operator. This last step merely amounts to changing the phase of each expansion
coefficient, as indicated by (2.39).

Even though we worked out the case where there is just one observable A that commutes
with H, our considerations can easily be generalized when there are several mutually
compatible observables all also commuting with H:

[A,B] = [B,C] = [A,C] = · · ·= 0,
[A,H] = [B,H] = [C,H] = · · ·= 0.

(2.42)

Using the collective index notation of Section 1.4 [see (1.130)], we have

exp

(
−iHt

h̄

)
= ∑

K′
|K′〉exp

(
−iEK′ t

h̄

)
〈K′|, (2.43)

where EK′ is uniquely specified once a′,b′,c′,. . . are specified. It is therefore of fundamental
importance to find a complete set of mutually compatible observables that also commute
with H. Once such a set is found, we express the initial ket as a superposition of the
simultaneous eigenkets of A, B, C, . . . and H. The final step is just to apply the time-
evolution operator, written as (2.43). In this manner we can solve the most general initial-
value problem with a time-independent H.

2.1.4 Time Dependence of Expectation Values

It is instructive to study how the expectation value of an observable changes as a function
of time. Suppose that at t = 0 the initial state is one of the eigenstates of an observable A
that commutes with H, as in (2.40). We now look at the expectation value of some other
observable B, which need not commute with A nor with H. Because at a later time we have

|a′, t0 = 0; t〉= U (t,0)|a′〉 (2.44)

for the state ket, 〈B〉 is given by

〈B〉= (〈a′|U †(t,0)) ·B · (U (t,0)|a′〉)

= 〈a′|exp

(
iEa′ t

h̄

)
B exp

(
−iEa′ t

h̄

)
|a′〉

= 〈a′|B|a′〉, (2.45)
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which is independent of t. So the expectation value of an observable taken with respect
to an energy eigenstate does not change with time. For this reason an energy eigenstate is
often referred to as a stationary state.

The situation is more interesting when the expectation value is taken with respect to
a superposition of energy eigenstates, or a nonstationary state. Suppose that initially
we have

|α, t0 = 0〉= ∑
a′

ca′ |a′〉. (2.46)

We easily compute the expectation value of B to be

〈B〉=
[
∑
a′

c∗a′ 〈a′|exp

(
iEa′ t

h̄

)]
·B ·

[
∑
a′′

ca′′ exp

(
−iEa′′ t

h̄

)
|a′′〉

]

= ∑
a′

∑
a′′

c∗a′ca′′ 〈a′|B|a′′〉exp

[
−i(Ea′′ −Ea′)t

h̄

]
. (2.47)

So this time the expectation value consists of oscillating terms whose angular frequencies
are determined by N. Bohr’s frequency condition

ωa′′a′ =
(Ea′′ −Ea′)

h̄
. (2.48)

2.1.5 Spin Precession

It is appropriate to treat an example here. We consider an extremely simple system which,
however, illustrates the basic formalism we have developed.

We start with a Hamiltonian of a spin 1
2 system with magnetic moment eh̄/2mec subjected

to an external magnetic field B:

H =−
(

e
mec

)
S ·B (2.49)

(e < 0 for the electron). Furthermore, we take B to be a static, uniform magnetic field in
the z-direction. We can then write H as

H =−
(

eB
mec

)
Sz. (2.50)

Because Sz and H differ just by a multiplicative constant, they obviously commute. The Sz
eigenstates are also energy eigenstates, and the corresponding energy eigenvalues are

E± =∓ eh̄B
2mec

, for Sz ± . (2.51)

It is convenient to define ω in such a way that the difference in the two energy eigenvalues
is h̄ω:

ω ≡ |e|B
mec

. (2.52)
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We can then rewrite the H operator simply as

H = ωSz. (2.53)

All the information on time development is contained in the time-evolution operator

U (t,0) = exp

(
−iωSzt

h̄

)
. (2.54)

We apply this to the initial state. The base kets we must use in expanding the initial ket are
obviously the Sz eigenkets, |+〉 and |−〉, which are also energy eigenkets. Suppose that at
t = 0 the system is characterized by

|α〉= c+|+〉+ c−|−〉. (2.55)

Upon applying (2.54), we see that the state ket at some later time is

|α, t0 = 0; t〉= c+ exp

(
−iωt

2

)
|+〉+ c− exp

(
+iωt

2

)
|−〉, (2.56)

where we have used

H|±〉=
(
±h̄ω

2

)
|±〉. (2.57)

Specifically, let us suppose that the initial ket |α〉 represents the spin-up (or, more
precisely, Sz+) state |+〉, which means that

c+ = 1, c− = 0. (2.58)

At a later time, (2.56) tells us that it is still in the spin-up state, which is no surprise because
this is a stationary state.

Next, let us suppose that initially the system is in the Sx+ state. Comparing (1.110a)
with (2.55), we see that

c+ = c− =
1√
2

. (2.59)

It is straightforward to work out the probabilities for the system to be found in the Sx±
state at some later time t:

|〈Sx;±|α, t0 = 0; t〉|2 =
∣∣∣∣[(

1√
2

)
〈+|±

(
1√
2

)
〈−|

]
·
[(

1√
2

)
exp

(
−iωt

2

)
|+〉

+

(
1√
2

)
exp

(
+iωt

2

)
|−〉

]∣∣∣∣2

=

∣∣∣∣1
2

exp

(
−iωt

2

)
± 1

2
exp

(
+iωt

2

)∣∣∣∣2

= cos2 ωt
2

for Sx+, (2.60a)

= sin2 ωt
2

for Sx − . (2.60b)

Even though the spin is initially in the positive x-direction, the magnetic field in the
z-direction causes it to rotate; as a result, we obtain a finite probability for finding



71 2.1 Time Evolution and the Schrödinger Equation

Sx− at some later time. The sum of the two probabilities is seen to be unity at all times, in
agreement with the unitarity property of the time-evolution operator.

Using (1.99), we can write the expectation value of Sx as

〈Sx〉=
(

h̄
2

)
cos2

(ωt
2

)
+

(
−h̄
2

)
sin2

(ωt
2

)
=

(
h̄
2

)
cosωt, (2.61)

so this quantity oscillates with an angular frequency corresponding to the difference of
the two energy eigenvalues divided by h̄, in agreement with our general formula (2.47).
Similar exercises with Sy and Sz show that

〈Sy〉=
(

h̄
2

)
sinωt (2.62a)

and

〈Sz〉= 0. (2.62b)

Physically this means that the spin precesses in the xy-plane. We will comment further on
spin precession when we discuss rotation operators in Chapter 3.

Experimentally, spin precession is well established. In fact, it is used as a tool for other
investigations of fundamental quantum-mechanical phenomena. For example, the form of
the Hamiltonian (2.49) can be derived for pointlike particles, such as electrons or muons,
which obey the Dirac equation, for which the gyromagnetic ratio g = 2. (See Section 8.2.)
However, higher-order corrections from quantum field theory predict a small but precisely
calculable deviation from this, and it is a high priority to produce competitively precise
measurements of g−2.

Such an experiment has been recently completed. See Bennett et al., Phys. Rev. D,
73 (2006) 072003. Muons are injected into a “storage ring” designed so that their spins
would precess in lock step with their momentum vector only if g ≡ 2. Consequently,
observation of their precession measures g− 2 directly, facilitating a very precise result.
Figure 2.1 shows the experimenters’ observation of the muon spin rotation over more than
one hundred periods. They determine a value for g−2 to a precision smaller than one part
per million, which agrees reasonably well with the theoretical value.

2.1.6 Neutrino Oscillations

A lovely example of quantum-mechanical dynamics leading to interference in a two-state
system, based on current physics research, is provided by the phenomenon known as
neutrino oscillations.3

Neutrinos are elementary particles with no charge, and very small mass, much smaller
than that of an electron. They are known to occur in nature in three distinct “flavors,”

3 The treatment here is the straightforward approach usually covered in the literature, but it has shortcomings.
See, for example, Cohen et al., Phys. Lett. B, 678 (2009) 191 and Akhmedov (2018) arXiv:1901.05232
[hep-ph].
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Fig. 2.1 Observations of the precession of muon spin by Bennett et al., Phys. Rev. D, 73 (2006) 072003. Data points are
wrapped around every 100 μs. The size of the signal decreases with time because the muons decay.

although for this discussion it suffices to only consider two of them. These two flavors are
identified by their interactions which may be either with electrons, in which case we write
νe, or with muons, that is νμ. These are in fact eigenstates of a Hamiltonian which controls
those interactions.

On the other hand, it is possible (and, in fact, now known to be true) that neutrinos may
have some other interactions, in which case their energy eigenvalues correspond to states
that have a well-defined mass. These “mass eigenstates” would have eigenvalues E1 and
E2, say, corresponding to masses m1 and m2, and might be denoted as |ν1〉 and |ν2〉. The
“flavor eigenstates” are related to these through a simple unitary transformation, specified
by some mixing angle θ , as follows:

|νe〉= cosθ |ν1〉− sinθ |ν2〉 (2.63a)

|νμ〉= sinθ |ν1〉+ cosθ |ν2〉. (2.63b)

If the mixing angle were zero, then |νe〉 and |νμ〉 would respectively be the same as |ν1〉
and |ν2〉. However, we know of no reason why this should be the case. Indeed, there is no
strong theoretical bias for any particular value of θ , and it is a free parameter which, today,
can only be determined through experiment.

Neutrino oscillation is the phenomenon by which we can measure the mixing angle.
Suppose we prepare, at time t = 0, a momentum eigenstate of one flavor of neutrino,
say |νe〉. Then according to (2.63a) the two different mass eigenstate components will
evolve with different frequencies, and therefore develop a relative phase difference. If the
difference in the masses is small enough, then this phase difference can build up over a
macroscopic distance. In fact, by measuring the interference as a function of difference,
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one can observe oscillations with a period that depends on the difference of masses, and an
amplitude that depends on the mixing angle.

It is straightforward (see Problem 2.4 at the end of this chapter) to use (2.63) along
with (2.28) and our quantum-mechanical postulates, and find a measurable quantity that
exhibits neutrino oscillations. In this case, the Hamiltonian is just that for a free particle,
but we need to take some care. Neutrinos are very low mass, so they are highly relativistic
for any practical experimental conditions. Therefore, for a fixed momentum p, the energy
eigenvalue for a neutrino of mass m is given to an extremely good approximation as

E =
[

p2c2 +m2c4]1/2 ≈ pc
(

1+
m2c2

2p2

)
. (2.64)

If we then allow our state |νe〉 to evolve, and then at some later time t ask what is the
probability that it still appears as a |νe〉 (as opposed to a |νμ〉), we find

P(νe → νe) = 1− sin2 2θ sin2
(
Δm2c4 L

4Eh̄c

)
(2.65)

where Δm2 ≡ m2
1 −m2

2, L = ct is the flight distance of the neutrino, and E = pc is the
nominal neutrino energy.

The oscillations predicted by (2.65) have been dramatically observed by the KamLAND
experiment. See Figure 2.2. Neutrinos from a series of nuclear reactors are detected at a
distance of ∼150km, and the rate is compared to that expected from reactor power and
properties. The curve is not a perfect sine wave because the reactors are not all at the same
distance from the detector.
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Fig. 2.2 Neutrino oscillations as observed by the KamLAND experiment, taken from Abe et al., Phys. Rev. Lett., 100 (2008)
221803. The oscillations as a function of L/E demonstrate interference between different mass eigenstates of
neutrinos.
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2.1.7 Correlation Amplitude and the Energy-Time Uncertainty Relation

We conclude this section by asking how state kets at different times are correlated with
each other. Suppose the initial state ket at t = 0 of a physical system is given by |α〉. With
time it changes into |α, t0 = 0; t〉, which we obtain by applying the time-evolution operator.
We are concerned with the extent to which the state ket at a later time t is similar to the
state ket at t = 0; we therefore construct the inner product between the two state kets at
different times:

C(t)≡ 〈α|α, t0 = 0; t〉

= 〈α|U (t,0)|α〉, (2.66)

which is known as the correlation amplitude. The modulus of C(t) provides a quantitative
measure of the “resemblance” between the state kets at different times.

As an extreme example, consider the very special case where the initial ket |α〉 is an
eigenket of H; we then have

C(t) = 〈a′|a′, t0 = 0; t〉= exp

(
−iEa′ t

h̄

)
, (2.67)

so the modulus of the correlation amplitude is unity at all times, which is not surprising
for a stationary state. In the more general situation where the initial ket is represented by a
superposition of {|a′〉}, as in (2.37), we have

C(t) =

(
∑
a′

c∗a′ 〈a′|
)[

∑
a′′

ca′′ exp

(
−iEa′′ t

h̄

)
|a′′〉

]

= ∑
a′
|ca′ |2 exp

(
−iEa′ t

h̄

)
. (2.68)

As we sum over many terms with oscillating time dependence of different frequencies, a
strong cancellation is possible for moderately large values of t. We expect the correlation
amplitude that starts with unity at t = 0 to decrease in magnitude with time.

To estimate (2.68) in a more concrete manner, let us suppose that the state ket can be
regarded as a superposition of so many energy eigenkets with similar energies that we can
regard them as exhibiting essentially a quasi-continuous spectrum. It is then legitimate to
replace the sum by the integral

∑
a′

→
∫

dEρ(E), ca′ → g(E)
∣∣∣∣
E�Ea′

, (2.69)

where ρ(E) characterizes the density of energy eigenstates. Expression (2.68) now becomes

C(t) =
∫

dE|g(E)|2ρ(E)exp

(
−iEt

h̄

)
, (2.70)

subject to the normalization condition∫
dE|g(E)|2ρ(E) = 1. (2.71)



75 2.2 The Schrödinger Versus the Heisenberg Picture

In a realistic physical situation |g(E)|2ρ(E) may be peaked around E = E0 with width ΔE.
Writing (2.70) as

C(t) = exp

(
−iE0t

h̄

)∫
dE|g(E)|2ρ(E)exp

[
−i(E−E0)t

h̄

]
, (2.72)

we see that as t becomes large, the integrand oscillates very rapidly unless the energy
interval |E−E0| is small compared with h̄/t. If the interval for which |E−E0| � h̄/t holds
is much narrower than ΔE, the width of |g(E)|2ρ(E), we get essentially no contribution to
C(t) because of strong cancellations. The characteristic time at which the modulus of the
correlation amplitude starts becoming appreciably different from 1 is given by

t � h̄
ΔE

. (2.73)

Even though this equation is obtained for a superposition state with a quasi-continuous
energy spectrum, it also makes sense for a two-level system; in the spin-precession problem
considered earlier, the state ket, which is initially |Sx+〉, starts losing its identity after
∼ 1/ω = h̄/(E+−E−), as is evident from (2.60).

To summarize, as a result of time evolution the state ket of a physical system ceases to
retain its original form after a time interval of order h̄/ΔE. In the literature this point is
often said to illustrate the energy-time uncertainty relation

ΔtΔE � h̄. (2.74)

However, it is to be clearly understood that this energy-time uncertainty relation is of a
very different nature from the uncertainty relation between two incompatible observables
discussed in Section 1.4. In Chapter 5 we will come back to (2.74) in connection with
time-dependent perturbation theory.

2.2 The Schrödinger Versus the Heisenberg Picture

2.2.1 Unitary Operators

In the previous section we introduced the concept of time development by considering
the time-evolution operator that affects state kets; that approach to quantum dynamics is
known as the Schrödinger picture. There is another formulation of quantum dynamics
where observables, rather than state kets, vary with time; this second approach is known
as the Heisenberg picture. Before discussing the differences between the two approaches
in detail, we digress to make some general comments on unitary operators.

Unitary operators are used for many different purposes in quantum mechanics. In this
book we introduced (Section 1.5) an operator satisfying the unitarity property. In that
section we were concerned with the question of how the base kets in one representation
are related to those in some other representations. The state kets themselves are assumed
not to change as we switch to a different set of base kets even though the numerical values
of the expansion coefficients for |α〉 are, of course, different in different representations.
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Subsequently we introduced two unitary operators that actually change the state kets, the
translation operator of Section 1.6 and the time-evolution operator of Section 2.1. We have

|α〉 → U|α〉, (2.75)

where U may stand for T (dx) or U (t, t0). Here U|α〉 is the state ket corresponding to a
physical system that actually has undergone translation or time evolution.

It is important to keep in mind that under a unitary transformation that changes the state
kets, the inner product of a state bra and a state ket remains unchanged:

〈β|α〉 → 〈β|U†U|α〉= 〈β|α〉. (2.76)

Using the fact that these transformations affect the state kets but not operators, we can infer
how 〈β|X |α〉 must change:

〈β|X |α〉 → (〈β|U†) ·X · (U|α〉) = 〈β|U†XU|α〉. (2.77)

We now make a very simple mathematical observation that follows from the associative
axiom of multiplication.

(〈β|U†) ·X · (U|α〉) = 〈β| · (U†XU) · |α〉. (2.78)

Is there any physics in this observation? This mathematical identity suggests two
approaches to unitary transformations.

Approach 1:

|α〉 → U|α〉, with operators unchanged. (2.79a)

Approach 2:

X → U†XU, with state kets unchanged. (2.79b)

In classical physics we do not introduce state kets, yet we talk about translation, time
evolution, and the like. This is possible because these operations actually change quantities
such as x and L, which are observables of classical mechanics. We therefore conjecture that
a closer connection with classical physics may be established if we follow approach 2.

A simple example may be helpful here. We go back to the infinitesimal translation
operator T (dx′). The formalism presented in Section 1.6 is based on approach 1; T (dx′)
affects the state kets, not the position operator:

|α〉 →
(

1− ip ·dx′

h̄

)
|α〉.

x → x.
(2.80)

In contrast, if we follow approach 2, we obtain

|α〉 → |α〉,

x →
(

1+
ip ·dx′

h̄

)
x
(

1− ip ·dx′

h̄

)
= x+

(
i
h̄

)
[p ·dx′,x]

= x+dx′. (2.81)
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We leave it as an exercise for the reader to show that both approaches lead to the same
result for the expectation value of x:

〈x〉 → 〈x〉+ 〈dx′〉. (2.82)

2.2.2 State Kets and Observables in the Schrödinger and the Heisenberg Pictures

We now return to the time-evolution operator U (t, t0). In the previous section we examined
how state kets evolve with time. This means that we were following approach 1, known
as the Schrödinger picture when applied to time evolution. Alternatively we may follow
approach 2, known as the Heisenberg picture when applied to time evolution.

In the Schrödinger picture the operators corresponding to observables like x, py, and Sz
are fixed in time, while state kets vary with time, as indicated in the previous section. In
contrast, in the Heisenberg picture the operators corresponding to observables vary with
time; the state kets are fixed, frozen so to speak, at what they were at t0. It is convenient to
set t0 in U (t, t0) to zero for simplicity and work with U (t), which is defined by

U (t, t0 = 0)≡ U (t) = exp

(
−iHt

h̄

)
. (2.83)

Motivated by (2.79b) of approach 2, we define the Heisenberg picture observable by

A(H)(t)≡ U †(t)A(S)U (t), (2.84)

where the superscripts H and S stand for Heisenberg and Schrödinger, respectively.
At t = 0, the Heisenberg picture observable and the corresponding Schrödinger picture
observable coincide:

A(H)(0) = A(S). (2.85)

The state kets also coincide between the two pictures at t = 0; at later t the Heisenberg
picture state ket is frozen to what it was at t = 0:

|α, t0 = 0; t〉H = |α, t0 = 0〉, (2.86)

independent of t. This is in dramatic contrast with the Schrödinger picture state ket,

|α, t0 = 0; t〉S = U (t)|α, t0 = 0〉. (2.87)

The expectation value 〈A〉 is obviously the same in both pictures:

S〈α, t0 = 0; t|A(S)|α, t0 = 0; t〉S = 〈α, t0 = 0|U †A(S)U |α, t0 = 0〉
= H〈α, t0 = 0; t|A(H)(t)|α, t0 = 0; t〉H. (2.88)
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2.2.3 The Heisenberg Equation of Motion

We now derive the fundamental equation of motion in the Heisenberg picture. Assuming
that A(S) does not depend explicitly on time, which is the case in most physical situations
of interest, we obtain [by differentiating (2.84)]

dA(H)

dt
=

∂U †

∂ t
A(S)U +U †A(S) ∂U

∂ t

=− 1
ih̄

U †HU U †A(S)U +
1
ih̄

U †A(S)U U †HU

=
1
ih̄
[A(H),U †HU ], (2.89)

where we have used [see (2.25)]

∂U

∂ t
=

1
ih̄

HU , (2.90a)

∂U †

∂ t
=− 1

ih̄
U †H. (2.90b)

Because H was originally introduced in the Schrödinger picture, we may be tempted to
define

H(H) = U †HU (2.91)

in accordance with (2.84). But in elementary applications where U is given by (2.83), U

and H obviously commute; as a result,

U †HU = H, (2.92)

so it is all right to write (2.89) as

dA(H)

dt
=

1
ih̄

[
A(H),H

]
. (2.93)

This equation is known as the Heisenberg equation of motion. Notice that we have
derived it using the properties of the time-evolution operator and the defining equation
for A(H).

It is instructive to compare (2.93) with the classical equation of motion in Poisson
bracket form. In classical physics, for a function A of q and p that does not involve time
explicitly, we have (Goldstein et al. (2002), pp. 396–397)

dA
dt

= [A,H]classical . (2.94)

Again, we see that Dirac’s quantization rule (1.6.47) leads to the correct equation in
quantum mechanics. Indeed, historically (2.93) was first written by P. A. M. Dirac, who,
with his characteristic modesty, called it the Heisenberg equation of motion. It is worth
noting, however, that (2.93) makes sense whether or not A(H) has a classical analogue. For
example, the spin operator in the Heisenberg picture satisfies
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dS(H)
i

dt
=

1
ih̄

[
S(H)

i ,H
]

, (2.95)

which can be used to discuss spin precession, but this equation has no classical counterpart
because Sz cannot be written as a function of q and p. Rather than insisting on Dirac’s rule,
(1.229), we may argue that for quantities possessing classical counterparts, the correct
classical equation can be obtained from the corresponding quantum-mechanical equation
via the ansatz,

[ , ]
ih̄

→ [ , ]classical . (2.96)

Classical mechanics can be derived from quantum mechanics, but the opposite is not true.4

2.2.4 Free Particles: Ehrenfest’s Theorem

Whether we work in the Schrödinger picture or in the Heisenberg picture, to be able
to use the equations of motion we must first learn how to construct the appropriate
Hamiltonian operator. For a physical system with classical analogues, we assume the
Hamiltonian to be of the same form as in classical physics; we merely replace the classical
xi and pi by the corresponding operators in quantum mechanics. With this assumption
we can reproduce the correct classical equations in the classical limit. Whenever an
ambiguity arises because of noncommuting observables, we attempt to resolve it by
requiring H to be Hermitian; for instance, we write the quantum-mechanical analogue
of the classical product xp as 1

2 (xp+ px). When the physical system in question has no
classical analogues, we can only guess the structure of the Hamiltonian operator. We try
various forms until we get the Hamiltonian that leads to results agreeing with empirical
observation.

In practical applications it is often necessary to evaluate the commutator of xi (or pi)
with functions of xj and pj. To this end the following formulas are found to be useful:

[xi,F(p)] = ih̄
∂F
∂pi

(2.97a)

and

[pi,G(x)] =−ih̄
∂G
∂xi

, (2.97b)

where F and G are functions that can be expanded in powers of pj and xj, respectively. We
can easily prove both formulas by repeatedly applying (1.232e).

We are now in a position to apply the Heisenberg equation of motion to a free particle
of mass m. The Hamiltonian is taken to be of the same form as in classical mechanics:

H =
p2

2m
=

(
p2

x +p2
y +p2

z
)

2m
. (2.98)

4 In this book we follow the order: the Schrödinger picture → the Heisenberg picture → classical. For an
enlightening treatment of the same subject in opposite order, classical → the Heisenberg picture → the
Schrödinger picture, see Finkelstein (1973), pp. 68–70 and 109.



80 Quantum Dynamics

We look at the observables pi and xi, which are understood to be the momentum and
the position operator in the Heisenberg picture even though we omit the superscript (H).
Because pi commutes with any function of pj, we have

dpi

dt
=

1
ih̄

[pi,H] = 0. (2.99)

Thus for a free particle, the momentum operator is a constant of the motion, which means
that pi(t) is the same as pi(0) at all times. Quite generally, it is evident from the Heisenberg
equation of motion (2.93) that whenever A(H) commutes with the Hamiltonian, A(H) is a
constant of the motion. Next,

dxi

dt
=

1
ih̄
[xi,H] =

1
ih̄

1
2m

ih̄
∂

∂pi

(
3

∑
j=1

p2
j

)

=
pi

m
=

pi(0)
m

, (2.100)

where we have taken advantage of (2.97a), so we have the solution

xi(t) = xi(0)+
(

pi(0)
m

)
t, (2.101)

which is reminiscent of the classical trajectory equation for a uniform rectilinear motion.
It is important to note that even though we have

[xi(0),xj(0)] = 0 (2.102)

at equal times, the commutator of the xi at different times does not vanish; specifically,

[xi(t),xi(0)] =
[

pi(0)t
m

,xi(0)
]
=

−ih̄t
m

. (2.103)

Applying the uncertainty relation (1.146) to this commutator, we obtain

〈(Δxi)
2〉t〈(Δxi)

2〉t=0 ≥
h̄2t2

4m2 . (2.104)

Among other things, this relation implies that even if the particle is well localized at t = 0,
its position becomes more and more uncertain with time, a conclusion which can also be
obtained by studying the time-evolution behavior of free-particle wave packets in wave
mechanics.

We now add a potential V(x) to our earlier free-particle Hamiltonian:

H =
p2

2m
+V(x). (2.105)

Here V(x) is to be understood as a function of the x-, y-, and z-operators. Using (2.97b)
this time, we obtain

dpi

dt
=

1
ih̄

[pi,V(x)] =− ∂
∂xi

V(x). (2.106)

On the other hand, we see that
dxi

dt
=

pi

m
(2.107)
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still holds because xi commutes with the newly added term V(x). We can use the Heisenberg
equation of motion once again to deduce

d2xi

dt2
=

1
ih̄

[
dxi

dt
,H

]
=

1
ih̄

[pi

m
,H

]
=

1
m

dpi

dt
. (2.108)

Combining this with (2.32), we finally obtain in vectorial form

m
d2x
dt2

=−∇V(x). (2.109)

This is the quantum-mechanical analogue of Newton’s second law. By taking the expec-
tation values of both sides with respect to a Heisenberg state ket that does not move with
time, we obtain

m
d2

dt2
〈x〉= d〈p〉

dt
=−〈∇V(x)〉. (2.110)

This is known as the Ehrenfest theorem after P. Ehrenfest, who derived it in 1927 using
the formalism of wave mechanics. When written in this expectation form, its validity is
independent of whether we are using the Heisenberg or the Schrödinger picture; after all,
the expectation values are the same in the two pictures. In contrast, the operator form
(2.109) is meaningful only if we understand x and p to be Heisenberg picture operators.

We note that in (2.110) the h̄ have completely disappeared. It is therefore not surprising
that the center of a wave packet moves like a classical particle subjected to V(x).

2.2.5 Base Kets and Transition Amplitudes

So far we have avoided asking how the base kets evolve in time. A common misconception
is that as time goes on, all kets move in the Schrödinger picture and are stationary in the
Heisenberg picture. This is not the case, as we will make clear shortly. The important point
is to distinguish the behavior of state kets from that of base kets.

We started our discussion of ket spaces in Section 1.2 by remarking that the eigenkets of
observables are to be used as base kets. What happens to the defining eigenvalue equation

A|a′〉= a′|a′〉 (2.111)

with time? In the Schrödinger picture, A does not change, so the base kets, obtained as the
solutions to this eigenvalue equation at t = 0, for instance, must remain unchanged. Unlike
state kets, the base kets do not change in the Schrödinger picture.

The whole situation is very different in the Heisenberg picture, where the eigenvalue
equation we must study is for the time-dependent operator

A(H)(t) = U †A(0)U . (2.112)

From (2.111) evaluated at t = 0, when the two pictures coincide, we deduce

U †A(0)U U †|a′〉= a′U †|a′〉, (2.113)
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which implies an eigenvalue equation for A(H):

A(H)(U †|a′〉) = a′(U †|a′〉). (2.114)

If we continue to maintain the view that the eigenkets of observables form the base kets,
then {U †|a′〉} must be used as the base kets in the Heisenberg picture. As time goes on,
the Heisenberg picture base kets, denoted by |a′, t〉H, move as follows:

|a′, t〉H = U †|a′〉. (2.115)

Because of the appearance of U † rather than U in (2.115), the Heisenberg picture base
kets are seen to rotate oppositely when compared with the Schrödinger picture state kets;
specifically, |a′, t〉H satisfies the “wrong-sign Schrödinger equation”

ih̄
∂
∂ t

|a′, t〉H =−H|a′, t〉H. (2.116)

As for the eigenvalues themselves, we see from (2.114) that they are unchanged with
time. This is consistent with the theorem on unitary equivalent observables discussed in
Section 1.5. Notice also the following expansion for A(H)(t) in terms of the base kets and
bras of the Heisenberg picture:

A(H)(t) = ∑
a′
|a′, t〉Ha′H〈a′, t|

= ∑
a′

U †|a′〉a′〈a′|U

= U †A(S)U , (2.117)

which shows that everything is quite consistent provided that the Heisenberg base kets
change as in (2.115).

We see that the expansion coefficients of a state ket in terms of base kets are the same in
both pictures:

ca′(t) = 〈a′|︸︷︷︸
base bra

· (U |α, t0 = 0〉)︸ ︷︷ ︸
state ket

(the Schrödinger picture) (2.118a)

ca′(t) = (〈a′|U )︸ ︷︷ ︸
base bra

· |α, t0 = 0〉︸ ︷︷ ︸
state ket

(the Heisenberg picture). (2.118b)

Pictorially, we may say that the cosine of the angle between the state ket and the base ket
is the same whether we rotate the state ket counterclockwise or the base ket clockwise.
These considerations apply equally well to base kets that exhibit a continuous spectrum; in
particular, the wave function 〈x′|α〉 can be regarded either as (1) the inner product of the
stationary position eigenbra with the moving state ket (the Schrödinger picture) or as (2) the
inner product of the moving position eigenbra with the stationary state ket (the Heisenberg
picture). We will discuss the time dependence of the wave function in Section 2.4, where
we will derive the celebrated wave equation of Schrödinger.

To illustrate further the equivalence between the two pictures, we study transition
amplitudes, which will play a fundamental role in Section 2.6. Suppose there is a physical
system prepared at t = 0 to be in an eigenstate of observable A with eigenvalue a′. At some
later time t we may ask: What is the probability amplitude, known as the transition
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Table 2.1 The Schrödinger Picture Versus the Heisenberg Picture

Schrödinger picture Heisenberg picture

State ket Moving: (2.5), (2.27) Stationary
Observable Stationary Moving: (2.84), (2.93)
Base ket Stationary Moving oppositely: (2.115), (2.116)

amplitude, for the system to be found in an eigenstate of observable B with eigenvalue
b′? Here A and B can be the same or different. In the Schrödinger picture the state ket at t
is given by U |a′〉, while the base kets |a′〉 and |b′〉 do not vary with time; so we have

〈b′|︸︷︷︸
base bra

· (U |a′〉)︸ ︷︷ ︸
state ket

(2.119)

for this transition amplitude. In contrast, in the Heisenberg picture the state ket is stationary,
that is, it remains as |a′〉 at all times, but the base kets evolve oppositely. So the transition
amplitude is

(〈b′|U )︸ ︷︷ ︸
base bra

· |a′〉︸︷︷︸
state ket

. (2.120)

Obviously (2.119) and (2.120) are the same. They can both be written as

〈b′|U (t,0)|a′〉. (2.121)

In some loose sense this is the transition amplitude for “going” from state |a′〉 to state |b′〉.
To conclude this section let us summarize the differences between the Schrödinger

picture and the Heisenberg picture; see Table 2.1.

2.3 Simple Harmonic Oscillator

The simple harmonic oscillator is one of the most important problems in quantum mechan-
ics. It not only illustrates many of the basic concepts and methods of quantum mechanics,
it also has much practical value. Essentially any potential well can be approximated by
a simple harmonic oscillator, so it describes phenomena from molecular vibrations to
nuclear structure. Furthermore, since the Hamiltonian is basically the sum of squares of two
canonically conjugate variables, it is also an important starting point for much of quantum
field theory.

2.3.1 Energy Eigenkets and Energy Eigenvalues

We begin our discussion with Dirac’s elegant operator method, which is based on the earlier
work of M. Born and N. Wiener, to obtain the energy eigenkets and energy eigenvalues of
the simple harmonic oscillator. The basic Hamiltonian is
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H =
p2

2m
+

mω2x2

2
, (2.122)

where ω is the angular frequency of the classical oscillator related to the spring constant
k in Hooke’s law via ω =

√
k/m. The operators x and p are, of course, Hermitian. It is

convenient to define two non-Hermitian operators,

a =

√
mω
2h̄

(
x+

ip
mω

)
, a† =

√
mω
2h̄

(
x− ip

mω

)
, (2.123)

known as the annihilation operator and the creation operator, respectively, for reasons
that will become evident shortly. Using the canonical commutation relations, we readily
obtain [

a,a†
]
=

(
1
2h̄

)
(−i[x,p]+ i[p,x]) = 1. (2.124)

We also define the number operator

N = a†a, (2.125)

which is obviously Hermitian. It is straightforward to show that

a†a =
(mω

2h̄

)(
x2 +

p2

m2ω2

)
+

(
i

2h̄

)
[x,p]

=
H

h̄ω
− 1

2
, (2.126)

so we have an important relation between the number operator and the Hamiltonian
operator:

H = h̄ω(N+ 1
2 ). (2.127)

Because H is just a linear function of N, N can be diagonalized simultaneously with H. We
denote an energy eigenket of N by its eigenvalue n, so

N|n〉= n|n〉. (2.128)

We will later show that n must be a nonnegative integer. Because of (2.127) we also have

H|n〉= (n+ 1
2 )h̄ω|n〉, (2.129)

which means that the energy eigenvalues are given by

En = (n+ 1
2 )h̄ω. (2.130)

To appreciate the physical significance of a, a†, and N, let us first note that

[N,a] =
[
a†a,a

]
= a† [a,a]+

[
a†,a

]
a =−a, (2.131)

where we have used (2.124). Likewise, we can derive[
N,a†

]
= a†. (2.132)
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As a result, we have

Na†|n〉= ([N,a†]+a†N)|n〉= (n + 1)a†|n〉 (2.133a)

and

Na|n〉= ([N,a]+aN)|n〉= (n−1)a|n〉. (2.133b)

These relations imply that a†|n〉(a|n〉) is also an eigenket of N with eigenvalue increased
(decreased) by one. Because the increase (decrease) of n by one amounts to the creation
(annihilation) of one quantum unit of energy h̄ω, the term creation operator (annihilation
operator) for a† (a) is deemed appropriate.

Equation (2.133b) implies that a|n〉 and |n − 1〉 are the same up to a multiplicative
constant. We write

a|n〉= c|n−1〉, (2.134)

where c is a numerical constant to be determined from the requirement that both |n〉 and
|n−1〉 be normalized. First, note that

〈n|a†a|n〉= |c|2. (2.135)

We can evaluate the left-hand side of (2.135) by noting that a†a is just the number
operator, so

n = |c|2. (2.136)

Taking c to be real and positive by convention, we finally obtain

a|n〉=
√

n|n−1〉. (2.137)

Similarly, it is easy to show that

a†|n〉=
√

n+1|n+1〉. (2.138)

Suppose that we keep on applying the annihilation operator a to both sides of (2.137):

a2|n〉=
√

n(n−1)|n−2〉,

a3|n〉=
√

n(n−1)(n−2)|n−3〉,
...

(2.139)

We can obtain numerical operator eigenkets with smaller and smaller n until the sequence
terminates, which is bound to happen whenever we start with a positive integer n. One
may argue that if we start with a noninteger n, the sequence will not terminate, leading to
eigenkets with a negative value of n. But we also have the positivity requirement for the
norm of a|n〉:

n = 〈n|N|n〉= (〈n|a†) · (a|n〉)≥ 0, (2.140)

which implies that n can never be negative! So we conclude that the sequence must
terminate with n = 0 and that the allowed values of n are nonnegative integers.
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Because the smallest possible value of n is zero, the ground state of the harmonic
oscillator has

E0 =
1
2

h̄ω. (2.141)

We can now successively apply the creation operator a† to the ground state |0〉. Using
(2.138), we obtain

|1〉= a†|0〉,

|2〉=
(

a†

√
2

)
|1〉=

[
(a†)2
√

2

]
|0〉,

|3〉=
(

a†

√
3

)
|2〉=

[
(a†)3
√

3!

]
|0〉,

...

|n〉=
[
(a†)n
√

n!

]
|0〉.

(2.142)

In this way we have succeeded in constructing simultaneous eigenkets of N and H with
energy eigenvalues

En =
(
n+ 1

2

)
h̄ω (n = 0,1,2,3,. . .). (2.143)

From (2.137), (2.138), and the orthonormality requirement for {|n〉}, we obtain the
matrix elements

〈n′|a|n〉=
√

nδn′,n−1, 〈n′|a†|n〉=
√

n+1δn′,n+1. (2.144)

Using these together with

x =
√

h̄
2mω

(a+a†), p = i
√

mh̄ω
2

(−a+a†), (2.145)

we derive the matrix elements of the x and p operators:

〈n′|x|n〉=
√

h̄
2mω

(
√

nδn′,n−1 +
√

n+1δn′,n+1), (2.146a)

〈n′|p|n〉= i
√

mh̄ω
2

(−
√

nδn′,n−1 +
√

n+1δn′,n+1). (2.146b)

Notice that neither x nor p is diagonal in the N-representation we are using. This is not
surprising because x and p, like a and a†, do not commute with N.

The operator method can also be used to obtain the energy eigenfunctions in position
space. Let us start with the ground state defined by

a|0〉= 0, (2.147)

which, in the x-representation, reads

〈x′|a|0〉=
√

mω
2h̄

〈x′|
(

x+
ip

mω

)
|0〉= 0. (2.148)
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Recalling (1.249), we can regard this as a differential equation for the ground-state wave
function 〈x′|0〉: (

x′+ x2
0

d
dx′

)
〈x′|0〉= 0, (2.149)

where we have introduced

x0 ≡
√

h̄
mω

, (2.150)

which sets the length scale of the oscillator. We see that the normalized solution to
(2.149) is

〈x′|0〉=
(

1
π1/4√x0

)
exp

[
−1

2

(
x′

x0

)2
]

. (2.151)

We can also obtain the energy eigenfunctions for excited states by evaluating

〈x′|1〉= 〈x′|a†|0〉=
(

1√
2x0

)(
x′ − x2

0
d

dx′

)
〈x′|0〉,

〈x′|2〉=
(

1√
2

)
〈x′|(a†)2|0〉=

(
1√
2!

)(
1√
2x0

)2 (
x′ − x2

0
d

dx′

)2

〈x′|0〉,. . . .
(2.152)

In general, we obtain

〈x′|n〉=
(

1
π1/4

√
2nn!

)(
1

xn+1/2
0

)(
x′ − x2

0
d

dx′

)n

exp

[
−1

2

(
x′

x0

)2
]

. (2.153)

It is instructive to look at the expectation values of x2 and p2 for the ground state. First,
note that

x2 =

(
h̄

2mω

)
(a2 +a†2 +a†a+aa†). (2.154)

When we take the expectation value of x2, only the last term in (2.154) yields a
nonvanishing contribution:

〈x2〉= h̄
2mω

=
x2

0
2

. (2.155)

Likewise,

〈p2〉= h̄mω
2

. (2.156)

It follows that the expectation values of the kinetic and the potential energies are,
respectively, 〈

p2

2m

〉
=

h̄ω
4

=
〈H〉

2
and

〈
mω2x2

2

〉
=

h̄ω
4

=
〈H〉
2

, (2.157)

as expected from the virial theorem. From (2.146a) and (2.146b), it follows that

〈x〉= 〈p〉= 0, (2.158)
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which also holds for the excited states. We therefore have

〈(Δx)2〉= 〈x2〉= h̄
2mω

and 〈(Δp)2〉= 〈p2〉= h̄mω
2

, (2.159)

and we see that the uncertainty relation is satisfied in the minimum uncertainty product
form:

〈(Δx)2〉〈(Δp)2〉= h̄2

4
. (2.160)

This is not surprising because the ground-state wave function has a Gaussian shape. In
contrast, the uncertainty products for the excited states are larger:

〈(Δx)2〉〈(Δp)2〉=
(

n+
1
2

)2

h̄2, (2.161)

as the reader may easily verify.

2.3.2 Time Development of the Oscillator

So far we have not discussed the time evolution of oscillator state kets nor of observables
like x and p. Everything we have done is supposed to hold at some instant of time, say at
t= 0; the operators x, p, a, and a† are to be regarded either as Schrödinger picture operators
(at all t) or as Heisenberg picture operators at t = 0. In the remaining part of this section,
we work exclusively in the Heisenberg picture, which means that x, p, a, and a† are all time
dependent even though we do not explicitly write x(H)(t), and so forth.

The Heisenberg equations of motion for p and x are, from (2.106) and (2.107),

dp
dt

=−mω2x (2.162a)

and
dx
dt

=
p
m

. (2.162b)

This pair of coupled differential equations is equivalent to two uncoupled differential
equations for a and a†, namely,

da
dt

=

√
mω
2h̄

( p
m
− iωx

)
=−iωa (2.163a)

and
da†

dt
= iωa†, (2.163b)

whose solutions are

a(t) = a(0)exp(−iωt) and a†(t) = a†(0)exp(iωt). (2.164)

Incidentally, these relations explicitly show that N and H are time-independent operators
even in the Heisenberg picture, as they must be. In terms of x and p, we can rewrite
(2.164) as
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x(t)+
ip(t)
mω

= x(0)exp(−iω t)+ i
[

p(0)
mω

]
exp(−iω t),

x(t)− ip(t)
mω

= x(0)exp(iω t)− i
[

p(0)
mω

]
exp(iω t).

(2.165)

Equating the Hermitian and anti-Hermitian parts of both sides separately, we deduce

x(t) = x(0)cosωt+
[

p(0)
mω

]
sinω t (2.166a)

and

p(t) =−mωx(0)sinωt+p(0)cosωt. (2.166b)

These look the same as the classical equations of motion. We see that the x and p operators
“oscillate” just like their classical analogues.

For pedagogical reasons we now present an alternative derivation of (2.166a). Instead
of solving the Heisenberg equation of motion, we attempt to evaluate

x(t) = exp

(
iHt
h̄

)
x(0)exp

(
−iHt

h̄

)
. (2.167)

To this end we record a very useful formula:

exp(iGλ)Aexp(−iGλ) = A + iλ [G,A] +
(

i2λ2

2!

)
[G, [G, A]]+

· · · +
(

inλn

n!

)
[G, [G, [G,. . . [G,A]]]. . .] + · · · , (2.168)

where G is a Hermitian operator and λ is a real parameter. We leave the proof of this
formula, known as the Baker–Hausdorff lemma as an exercise. Applying this formula to
(2.167), we obtain

exp

(
iHt
h̄

)
x(0)exp

(
−iHt

h̄

)

= x(0)+
(

it
h̄

)
[H,x(0)]+

(
i2t2

2! h̄2

)
[H, [H, x(0)]]+ · · · . (2.169)

Each term on the right-hand side can be reduced to either x or p by repeatedly using

[H,x(0)] =
−ih̄p(0)

m
(2.170a)

and

[H,p(0)] = ih̄mω2x(0). (2.170b)
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Thus

exp

(
iHt
h̄

)
x(0)exp

(
−iHt

h̄

)
= x(0)+

[
p(0)

m

]
t−

(
1
2!

)
t2ω2x(0)

−
(

1
3!

)
t3ω2p(0)

m
+ · · ·

= x(0)cosωt+
[

p(0)
mω

]
sinωt, (2.171)

in agreement with (2.166a).
From (2.166a) and (2.166b), one may be tempted to conclude that 〈x〉 and 〈p〉 always

oscillate with angular frequency ω. However, this inference is not correct. Take any energy
eigenstate characterized by a definite value of n; the expectation value 〈n|x(t)|n〉 vanishes
because the operators x(0) and p(0) change n by ±1 and |n〉 and |n± 1〉 are orthogonal.
This point is also obvious from our earlier conclusion (see Section 2.1) that the expectation
value of an observable taken with respect to a stationary state does not vary with time. To
observe oscillations reminiscent of the classical oscillator, we must look at a superposition
of energy eigenstates such as

|α〉= c0|0〉 + c1|1〉. (2.172)

The expectation value of x(t) taken with respect to (2.172) does oscillate, as the reader may
readily verify.

We have seen that an energy eigenstate does not behave like the classical oscillator – in
the sense of oscillating expectation values for x and p – no matter how large n may be. We
may logically ask: How can we construct a superposition of energy eigenstates that most
closely imitates the classical oscillator? In wave function language, we want a wave packet
that bounces back and forth without spreading in shape. It turns out that a coherent state
defined by the eigenvalue equation for the non-Hermitian annihilation operator a,

a|λ〉= λ|λ〉, (2.173)

with, in general, a complex eigenvalue λ does the desired job. The coherent state has many
other remarkable properties.

1. When expressed as a superposition of energy (or N) eigenstates,

|λ〉=
∞

∑
n=0

f(n)|n〉, (2.174)

the distribution of | f(n)|2 with respect to n is of the Poisson type about some mean
value n̄:

| f(n)|2 =
(

n̄n

n!

)
exp(−n̄). (2.175)

2. It can be obtained by translating the oscillator ground state by some finite distance.
3. It satisfies the minimum uncertainty product relation at all times.
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A systematic study of coherent states, pioneered by R. Glauber, is very rewarding; the
reader is urged to work out Exercise 2.21 on this subject at the end of this chapter.5

2.4 Schrödinger’s Wave Equation

2.4.1 Time-Dependent Wave Equation

We now turn to the Schrödinger picture and examine the time evolution of |α, t0; t〉 in the
x-representation. In other words, our task is to study the behavior of the wave function

ψ(x′, t) = 〈x′|α, t0; t〉 (2.176)

as a function of time, where |α, t0; t〉 is a state ket in the Schrödinger picture at time t, and
〈x′| is a time-independent position eigenbra with eigenvalue x′. The Hamiltonian operator
is taken to be

H =
p2

2m
+ V(x). (2.177)

The potential V(x) is a Hermitian operator; it is also local in the sense that in the x-
representation we have

〈x′′|V(x)|x′〉= V(x′)δ3(x′ −x′′), (2.178)

where V(x′) is a real function of x′. Later in this book we will consider more complicated
Hamiltonians: a time-dependent potential V(x, t); a nonlocal but separable potential
where the right-hand side of (2.178) is replaced by v1(x′′)v2(x′); a momentum-dependent
interaction of the form p ·A + A ·p, where A is the vector potential in electrodynamics,
and so on.

We now derive Schrödinger’s time-dependent wave equation. We first write the
Schrödinger equation for a state ket (2.27) in the x-representation:

ih̄
∂
∂ t

〈x′|α, t0; t〉= 〈x′|H|α, t0; t〉, (2.179)

where we have used the fact that the position eigenbras in the Schrödinger picture do not
change with time. Using (1.252), we can write the kinetic-energy contribution to the right-
hand side of (2.179) as〈

x′
∣∣∣∣ p2

2m

∣∣∣∣α, t0; t
〉
=−

(
h̄2

2m

)
∇′2〈x′|α, t0; t〉. (2.180)

As for V(x), we simply use

〈x′|V(x) = 〈x′|V(x′), (2.181)

5 For applications to laser physics, see Sargent, et al. (1974) and Loudon (2000). See also the discussion on
squeezed light at the end of Section 7.8 of this book.
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where V(x′) is no longer an operator. Combining everything, we deduce

ih̄
∂
∂ t

〈x′|α, t0; t〉=−
(

h̄2

2m

)
∇′2〈x′|α, t0; t〉+V(x′)〈x′|α, t0; t〉, (2.182)

which we recognize to be the celebrated time-dependent wave equation of E. Schrödinger,
usually written as

ih̄
∂
∂ t
ψ(x′, t) =−

(
h̄2

2m

)
∇′2ψ(x′, t)+V(x′)ψ(x′, t). (2.183)

The quantum mechanics based on wave equation (2.183) is known as wave mechanics.
This equation is, in fact, the starting point of many textbooks on quantum mechanics. In our
formalism, however, this is just the Schrödinger equation for a state ket written explicitly
in the x-basis when the Hamiltonian operator is taken to be (2.177).

2.4.2 The Time-Independent Wave Equation

We now derive the partial differential equation satisfied by energy eigenfunctions.
We showed in Section 2.1 that the time dependence of a stationary state is given by
exp(−iEa′ t/h̄). This enables us to write its wave function as

〈x′|a′, t0; t〉= 〈x′|a′〉exp

(
−iEa′ t

h̄

)
, (2.184)

where it is understood that initially the system is prepared in a simultaneous eigenstate of
A and H with eigenvalues a′ and Ea′ , respectively. Let us now substitute (2.184) into the
time-dependent Schrödinger equation (2.182). We are then led to

−
(

h̄2

2m

)
∇′2〈x′|a′〉+V(x′)〈x′|a′〉= Ea′ 〈x′|a′〉. (2.185)

This partial differential equation is satisfied by the energy eigenfunction 〈x′|a′〉 with energy
eigenvalue Ea′ . Actually, in wave mechanics where the Hamiltonian operator is given as a
function of x and p, as in (2.177), it is not necessary to refer explicitly to observable A that
commutes with H because we can always choose A to be that function of the observables
x and p which coincides with H itself. We may therefore omit reference to a′ and simply
write (2.185) as the partial differential equation to be satisfied by the energy eigenfunction
uE(x′):

−
(

h̄2

2m

)
∇′2uE(x′)+V(x′)uE(x′) = EuE(x′). (2.186)

This is the time-independent wave equation of E. Schrödinger, announced in the first of
four monumental papers, all written in the first half of 1926, that laid the foundations of
wave mechanics. In the same paper, Schrödinger immediately applied (2.186) to derive the
energy spectrum of the hydrogen atom.
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To solve (2.186) some boundary condition has to be imposed. Suppose we seek a
solution to (2.186) with

E < lim
|x′|→∞

V(x′), (2.187)

where the inequality relation is to hold for |x′| → ∞ in any direction. The appropriate
boundary condition to be used in this case is

uE(x′)→ 0 as |x′| → ∞. (2.188)

Physically this means that the particle is bound or confined within a finite region of space.
We know from the theory of partial differential equations that (2.186) subject to boundary
condition (2.188) allows nontrivial solutions only for a discrete set of values of E. It is in
this sense that the time-independent Schrödinger equation (2.186) yields the quantization
of energy levels.6 Once the partial differential equation (2.186) is written, the problem of
finding the energy levels of microscopic physical systems is as straightforward as that of
finding the characteristic frequencies of vibrating strings or membranes. In both cases we
solve boundary-value problems in mathematical physics.

A short digression on the history of quantum mechanics is in order here. The fact that
exactly soluble eigenvalue problems in the theory of partial differential equations can also
be treated using matrix methods was already known to mathematicians in the first quarter
of the twentieth century. Furthermore, theoretical physicists like M. Born frequently
consulted great mathematicians of the day – D. Hilbert and H. Weyl, in particular. Yet
when matrix mechanics was born in the summer of 1925, it did not immediately occur to
the theoretical physicists or to the mathematicians to reformulate it using the language
of partial differential equations. Six months after Heisenberg’s pioneering paper, wave
mechanics was proposed by Schrödinger. However, a close inspection of his papers shows
that he was not at all influenced by the earlier works of Heisenberg, Born, and Jordan.
Instead, the train of reasoning that led Schrödinger to formulate wave mechanics has
its roots in W. R. Hamilton’s analogy between optics and mechanics, on which we will
comment later, and the particle-wave hypothesis of L. de Broglie. Once wave mechanics
was formulated, many people, including Schrödinger himself, showed the equivalence
between wave mechanics and matrix mechanics.

It is assumed that the reader of this book has some experience in solving the time-
dependent and time-independent wave equations. He or she should be familiar with the
time evolution of a Gaussian wave packet in a force-free region; should be able to solve
one-dimensional transmission-reflection problems involving a rectangular potential barrier,
and the like; should have seen derived some simple solutions of the time-independent wave
equation – a particle in a box, a particle in a square well, the simple harmonic oscillator,
the hydrogen atom, and so on – and should also be familiar with some general properties
of the energy eigenfunctions and energy eigenvalues, such as (1) the fact that the energy
levels exhibit a discrete or continuous spectrum depending on whether or not (2.187) is

6 Schrödinger’s paper that announced (2.186) is appropriately entitled Quantisierung als Eigenwertproblem
(Quantization as an Eigenvalue Problem).
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satisfied and (2) the property that the energy eigenfunction in one dimension is sinusoidal
or damped depending on whether E−V(x′) is positive or negative.

In this book, we do not thoroughly cover these more elementary topics and solutions.
Some of these are pursued, for example the harmonic oscillator and hydrogen atom, but at a
mathematical level somewhat higher than what is usually seen in undergraduate courses. In
any case, a brief summary of elementary solutions to Schrödinger’s equations is presented
in Appendix B.

2.4.3 Interpretations of the Wave Function

We now turn to discussions of the physical interpretations of the wave function. In
Section 1.7 we commented on the probabilistic interpretation of |ψ|2 that follows from
the fact that 〈x′|α, t0; t〉 is to be regarded as an expansion coefficient of |α, t0; t〉 in terms of
the position eigenkets {|x′〉}. The quantity ρ(x′, t) defined by

ρ(x′, t) = |ψ(x′, t)|2 = |〈x′|α, t0; t〉|2 (2.189)

is therefore regarded as the probability density in wave mechanics. Specifically, when we
use a detector that ascertains the presence of the particle within a small volume element
d3x′ around x′, the probability of recording a positive result at time t is given by ρ(x′, t)d3x′.

In the remainder of this section we use x for x′ because the position operator will not
appear. Using Schrödinger’s time-dependent wave equation, it is straightforward to derive
the continuity equation

∂ρ
∂ t

+∇ · j = 0, (2.190)

where ρ(x, t) stands for |ψ|2 as before, and j(x, t), known as the probability flux, is
given by

j(x, t) =−
(

ih̄
2m

)
[ψ∗∇ψ− (∇ψ∗)ψ]

=

(
h̄
m

)
Im(ψ∗∇ψ). (2.191)

The reality of the potential V (or the Hermiticity of the V operator) has played a crucial
role in our obtaining this result. Conversely, a complex potential can phenomenologically
account for the disappearance of a particle; such a potential is often used for nuclear
reactions where incident particles get absorbed by nuclei.

We may intuitively expect that the probability flux j is related to momentum. This is
indeed the case for j integrated over all space. From (2.191) we obtain∫

d3xj(x, t) =
〈p〉t

m
, (2.192)

where 〈p〉t is the expectation value of the momentum operator at time t.
Equation (2.190) is reminiscent of the continuity equation in fluid dynamics that

characterizes a hydrodynamic flow of a fluid in a source-free, sink-free region. Indeed,
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historically Schrödinger was first led to interpret |ψ|2 as the actual matter density, or e|ψ|2

as the actual electric charge density. If we adopt such a view, we are led to face some
bizarre consequences.

A typical argument for a position measurement might go as follows. An atomic electron
is to be regarded as a continuous distribution of matter filling up a finite region of space
around the nucleus; yet, when a measurement is made to make sure that the electron is at
some particular point, this continuous distribution of matter suddenly shrinks to a pointlike
particle with no spatial extension. The more satisfactory statistical interpretation of |ψ|2

as the probability density was first given by M. Born.
To understand the physical significance of the wave function, let us write it as

ψ(x, t) =
√
ρ(x, t)exp

[
iS(x, t)

h̄

]
, (2.193)

with S real and ρ > 0, which can always be done for any complex function of x and t. The
meaning of ρ has already been given. What is the physical interpretation of S? Noting

ψ∗∇ψ =
√
ρ∇(

√
ρ)+

(
i
h̄

)
ρ∇S, (2.194)

we can write the probability flux as [see (2.191)]

j =
ρ∇S

m
. (2.195)

We now see that there is more to the wave function than the fact that |ψ|2 is the probability
density; the gradient of the phase S contains a vital piece of information. From (2.195) we
see that the spatial variation of the phase of the wave function characterizes the probability
flux; the stronger the phase variation, the more intense the flux. The direction of j at some
point x is seen to be normal to the surface of a constant phase that goes through that point.
In the particularly simple example of a plane wave (a momentum eigenfunction)

ψ(x, t) ∝ exp

(
ip ·x

h̄
− iEt

h̄

)
, (2.196)

where p stands for the eigenvalue of the momentum operator. All this is evident because

∇S = p. (2.197)

More generally, it is tempting to regard ∇S/m as some kind of “velocity,”

“v” =
∇S
m

, (2.198)

and to write the continuity equation (2.190) as

∂ρ
∂ t

+∇ ·(ρ “v”) = 0, (2.199)

just as in fluid dynamics. However, we would like to caution the reader against a too
literal interpretation of j as ρ times the velocity defined at every point in space, because
a simultaneous precision measurement of position and velocity would necessarily violate
the uncertainty principle.
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2.4.4 The Classical Limit

We now discuss the classical limit of wave mechanics. First, we substitute ψ written
in form (2.193) into both sides of the time-dependent wave equation. Straightforward
differentiations lead to

−
(

h̄2

2m

)[
∇2√ρ+

(
2i
h̄

)
(∇√

ρ) · (∇S)−
(

1
h̄2

)
√
ρ|∇S|2 +

(
i
h̄

)
√
ρ∇2S

]
+
√
ρV

= ih̄
[∂√ρ

∂ t
+

(
i
h̄

)
√
ρ

∂S
∂ t

]
. (2.200)

So far everything has been exact. Let us suppose now that h̄ can, in some sense, be regarded
as a small quantity. The precise physical meaning of this approximation, to which we will
come back later, is not evident now, but let us assume

h̄|∇2S| � |∇S|2, (2.201)

and so forth. We can then collect terms in (2.200) that do not explicitly contain h̄ to obtain
a nonlinear partial differential equation for S:

1
2m

|∇S(x, t)|2 +V(x)+
∂S(x, t)

∂ t
= 0. (2.202)

We recognize this to be the Hamilton–Jacobi equation in classical mechanics, first written
in 1836, where S(x, t) stands for Hamilton’s principal function. So, not surprisingly, in the
h̄ → 0 limit, classical mechanics is contained in Schrödinger’s wave mechanics. We have
a semiclassical interpretation of the phase of the wave function: h̄ times the phase is equal
to Hamilton’s principal function provided that h̄ can be regarded as a small quantity.

Let us now look at a stationary state with time dependence exp(−iEt/h̄). This time
dependence is anticipated from the fact that for a classical system with a constant
Hamiltonian, Hamilton’s principal function S is separable:

S(x, t) = W(x)−Et, (2.203)

where W(x) is called Hamilton’s characteristic function (Goldstein et al. (2002),
pp. 440–444). As time goes on, a surface of a constant S advances in much the same way
as a surface of a constant phase in wave optics, a “wave front,” advances. The momentum
in the classical Hamilton–Jacobi theory is given by

Pclass = ∇S = ∇W, (2.204)

which is consistent with our earlier identification of ∇S/m with some kind of velocity.
In classical mechanics the velocity vector is tangential to the particle trajectory, and as a
result we can trace the trajectory by following continuously the direction of the velocity
vector. The particle trajectory is like a ray in geometric optics because the ∇S that traces
the trajectory is normal to the wave front defined by a constant S. In this sense geometrical
optics is to wave optics what classical mechanics is to wave mechanics.

One might wonder, in hindsight, why this optical-mechanical analogy was not fully
exploited in the nineteenth century. The reason is that there was no motivation for regarding
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Hamilton’s principal function as the phase of some traveling wave; the wave nature of a
material particle did not become apparent until the 1920s. Besides, the basic unit of action
h̄, which must enter into (2.193) for dimensional reasons, was missing in the physics of the
nineteenth century.

2.5 Elementary Solutions to Schrödinger’s Wave Equation

It is both instructive and useful to look at some relatively elementary solutions to (2.186)
for particular choices of the potential energy function V(x). In this section we choose some
particular examples to illustrate contemporary physics and/or which will be useful in later
chapters of this textbook.

2.5.1 Free Particle in Three Dimensions

The case V(x) = 0 has fundamental significance. We will consider the solution to
Schrödinger’s equation here in three dimensions using Cartesian coordinates. The solution
in spherical coordinates will be left until our treatment of angular momentum is presented
in the next chapter. Equation (2.186) becomes

∇2uE(x) =−2mE
h̄2 uE(x). (2.205)

Define a vector k where

k2 = k2
x + k2

y + k2
z ≡

2mE
h̄2 =

p2

h̄2 (2.206)

that is, p = h̄k. Differential equation (2.205) is easily solved using the technique known as
“separation of variables.” Writing

uE(x) = ux(x)uy(y)uz(z) (2.207)

we arrive at [
1
ux

d2ux

dx2 + k2
x

]
+

[
1
uy

d2uy

dy2 + k2
y

]
+

[
1
uz

d2uz

dz2 + k2
z

]
= 0. (2.208)

This leads to individual plane wave solutions uw(w) = cweikww for w = x,y,z. Note that one
gets the same energy E for values ±kw.

Collecting these solutions, and combining the normalization constants, we obtain

uE(x) = cxcyczeikxx+ikyy+ikzz = Ceik·x. (2.209)

The normalization constant C presents the usual difficulties, which are generally handled
by using a δ-function normalization condition. It is convenient in many case, however,
to use a “big box” normalization, where all space is contained within a cube of side
length L. We impose periodic boundary conditions on the box, and thereby obtain a finite
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normalization constant C. For any real calculation, we simply let the size L → ∞ at the end
of the calculation.

Imposing the condition ux(x+L) = ux(x) we have kxL = 2πnx where nx is an integer.
That is

kx =
2π
L

nx ky =
2π
L

ny kz =
2π
L

nz (2.210)

and the normalization criterion becomes

1 =
∫ L

0
dx

∫ L

0
dy

∫ L

0
dzu∗E(x)uE(x) = L3|C|2 (2.211)

in which case C = 1/L3/2 and

uE(x) =
1

L3/2 eik·x. (2.212)

The energy eigenvalue is

E =
p2

2m
=

h̄2k2

2m
=

h̄2

2m

(
2π
L

)2 (
n2

x +n2
y +n2

z
)

. (2.213)

The sixfold degeneracy we mentioned earlier corresponds to the six combinations of
(±nx,±ny,±nz), but the degeneracy can actually be much larger since, in some cases,
there are various combinations of nx, ny, and nz which can give the same E. In fact, in the
(realistic) limit where L is very large, there can be a large number of states N which have
an energy between E and E+ dE. This “density of states” dN/dE is an important quantity
for calculations of processes which include free particles. See, for example, the discussion
of the photoelectric effect in Section 5.8.

To calculate the density of states, imagine a spherical shell in k space with radius
|k| = 2π|n|/L and thickness d|k| = 2πd|n|/L. All states within this shell have energy
E = h̄2k2/2m. The number of states dN within this shell is 4πn2d|n|. Therefore

dN
dE

=
4πn2d|n|

h̄2|k|d|k|/m
=

4π
h̄2 m

(
L

2π

)2

|k| L
2π

=
m3/2E1/2L3
√

2π2h̄3 . (2.214)

In a typical “real” calculation, the density of states will be multiplied by some probability
that involves u∗E(x)uE(x). In this case, the factors of L3 will cancel explicitly, so the limit
L → ∞ is trivial. This “big box” normalization also yields the correct answer for the
probability flux. Rewriting (2.196) with this normalization, we have

ψ(x, t) =
1

L3/2 exp

(
ip ·x

h̄
− iEt

h̄

)
(2.215)

in which case we find

j(x, t) =
h̄
m

Im(ψ∗∇ψ) =
h̄k
m

1
L3 = vρ (2.216)

where ρ = 1/L3 is indeed the probability density.
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2.5.2 The Simple Harmonic Oscillator

We saw an elegant solution for the case V(x) = mω2x2/2 in Section 2.3, which yielded
the energy eigenvalues, eigenstates, and wave functions. Here, we demonstrate a different
approach which solves the differential equation

− h̄2

2m
d2

dx2 uE(x)+
1
2

mω2x2uE(x) = EuE(x). (2.217)

Our approach will introduce the concept of generating functions, a generally useful
technique which arises in many treatments of differential eigenvalue problems.

First, transform (2.217) using the dimensionless position y ≡ x/x0 where x0 ≡
√

h̄/mω.
Also introduce a dimensionless energy variable ε ≡ 2E/h̄ω. The differential equation we
need to solve becomes therefore

d2

dy2 u(y)+(ε− y2)u(y) = 0. (2.218)

For y → ±∞, the solution must tend to zero, otherwise the wave function will not be
normalizable and hence unphysical. The differential equation w′′(y)− y2w(y) = 0 has
solutions w(y) ∝ exp(±y2/2), so we would have to choose the minus sign. We then
“remove” the asymptotic behavior of the wave function by writing

u(y) = h(y)e−y2/2 (2.219)

where the function h(y) satisfies the differential equation

d2h
dy2 −2y

dh
dy

+(ε−1)h(y) = 0. (2.220)

To this point, we have followed the traditional solution of the simple harmonic oscillator
as found in many textbooks. Typically, one would now look for a series solution for h(y)
and discover that a normalizable solution is only possible if the series terminates. (In fact,
we use this approach for the three-dimensional isotropic harmonic oscillator in this book.
See Section 3.7.) One forces this termination by imposing the condition that ε− 1 be
an even, nonnegative integer 2n, n = 0,1,2,. . .. The solutions are then written using the
resulting polynomials hn(y). Of course, ε− 1 = 2n is equivalent to E = (n+ 1

2 )h̄ω, the
quantization relation (2.143).

Let us take a different approach. Consider the “Hermite polynomials” Hn(x) defined by
the “generating function” g(x, t) through

g(x, t)≡ e−t2+2tx (2.221a)

≡
∞

∑
n=0

Hn(x)
tn

n!
. (2.221b)

Some properties of the Hn(x) are immediately obvious. For example, H0(x) = 1. Also,
since

g(0, t) = e−t2 =
∞

∑
n=0

(−1)n

n!
t2n (2.222)
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it is clear that Hn(0) = 0 if n is odd, since this series only involves even powers of t. On
the other hand, if we restrict ourselves to even values of n, we have

g(0, t) = e−t2 =
∞

∑
n=0

(−1)(n/2)

(n/2)!
tn =

∞

∑
n=0

(−1)(n/2)

(n/2)!
n!
n!

tn (2.223)

and so Hn(0) = (−1)n/2n! /(n/2)!. Also, since g(−x, t) reverses the sign only on terms with
odd powers of t, Hn(−x) = (−1)nHn(x).

We can take derivatives of g(x, t) to build the Hermite polynomials using recursion
relations between them and their derivatives. The trick is that we can differentiate the
analytic form of the generating function (2.221a) or the series form (2.221b) and then
compare results. For example, if we take the derivative using (2.221a), then

∂g
∂x

= 2tg(x, t) =
∞

∑
n=0

2Hn(x)
tn+1

n!
=

∞

∑
n=0

2(n+1)Hn(x)
tn+1

(n+1)!
(2.224)

where we insert the series definition of the generating function after taking the derivative.
On the other hand, we can take the derivative of (2.221b) directly, in which case

∂g
∂x

=
∞

∑
n=0

H′
n(x)

tn

n!
. (2.225)

Comparing (2.224) and (2.225) shows that

H′
n(x) = 2nHn−1(x) (2.226)

This is enough information for us build the Hermite polynomials:

H0(x) = 1

so H′
1(x) = 2, therefore H1(x) = 2x

so H′
2(x) = 8x, therefore H2(x) = 4x2 −2

so H′
3(x) = 24x2 −12, therefore H3(x) = 8x3 −12x

. . .

So far, this is just a curious mathematical exercise. To see why it is relevant to the
simple harmonic oscillator, consider the derivative of the generating function with respect
to t. If we start with (2.221a) then

∂g
∂ t

=−2tg(x, t)+2xg(x, t)

=−
∞

∑
n=0

2Hn(x)
tn+1

n!
+

∞

∑
n=0

2xHn(x)
tn

n!

=−
∞

∑
n=0

2nHn−1(x)
tn

n!
+

∞

∑
n=0

2xHn(x)
tn

n!
. (2.227)

Or, if we differentiate (2.221b) then we have

∂g
∂ t

=
∞

∑
n=0

nHn(x)
tn−1

n!
=

∞

∑
n=0

Hn+1(x)
tn

n!
. (2.228)
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Comparing (2.227) and (2.228) gives us the recursion relation

Hn+1(x) = 2xHn(x)−2nHn−1(x) (2.229)

which we combine with (2.226) to find

H′′
n(x) = 2n ·2(n−1)Hn−2(x)

= 2n [2xHn−1(x)−Hn(x)]
= 2xH′

n(x)−2nHn(x). (2.230)

In other words, the Hermite polynomials satisfy the differential equation

H′′
n(x)−2xH′

n(x)+2nHn(x) = 0 (2.231)

where n is a nonnegative integer. This, however, is the same as the Schrödinger equation
written as (2.220) since ε− 1 = 2n. That is, the wave functions for the simple harmonic
oscillator are given by

un(x) = cnHn

(
x
√

mω
h̄

)
e−mωx2/2h̄ (2.232)

up to some normalization constant cn. This constant can be determined from the orthogo-
nality relationship ∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = π1/22nn!δnm (2.233)

which is easily proved using the generating function. See Problem 2.25 at the end of this
chapter.

Generating functions have a usefulness that far outreaches our limited application here.
Among other things, many of the orthogonal polynomials which arise from solving the
Schrödinger equation for different potentials, can be derived from generating functions.
See, for example, Problem 3.30 in Chapter 3. The interested reader is encouraged to pursue
this further, probably best from any one of the many excellent texts on mathematical
physics.

2.5.3 The Linear Potential

Perhaps the first potential energy function, with bound states, to come to mind is the linear
potential, namely

V(x) = k|x| (2.234)

where k is an arbitrary positive constant. Given a total energy E, this potential has a
classical turning point at a value x = a where E = ka. This point will be important for
understanding the quantum behavior of a particle of mass m bound by this potential.

The Schrödinger equation becomes

− h̄2

2m
d2uE

dx2 + k|x|uE(x) = EuE(x). (2.235)
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It is easiest to deal with the absolute value by restricting our attention to x ≥ 0. We can do
this because V(−x) = V(x), so there are two types of solutions, namely uE(−x) =±uE(x).
In either case, we need uE(x) to tend towards zero as x → ∞. If uE(−x) =−uE(x), then we
need uE(0) = 0. On the other hand, if uE(−x) = +uE(x), then we have u′E(0) = 0, since
uE(ε)− uE(−ε) ≡ 0, even for ε→ 0. (As we will discuss in Chapter 4, we refer to these
solutions as “odd” and “even” parity.)

Once again, we write the differential equation in terms of dimensionless variables, based
on appropriate scales for length and energy. In this case, the dimensionless length scale
is x0 = (h̄2/mk)1/3 and the dimensionless enery scale is E0 = kx0 = (h̄2k2/m)1/3. Defining
y ≡ x/x0 and ε ≡ E/E0 allows us to rewrite (2.235) as

d2uE

dy2 −2(y− ε)uE(y) = 0, y ≥ 0. (2.236)

Notice that y = ε when x = E/k, i.e. the classical turning point x = a. In fact, defining a
translated position variable z ≡ 21/3(y− ε), (2.236) becomes

d2uE

dz2 − zuE(z) = 0. (2.237)

This is the Airy equation, and the solution is the Airy function Ai(z), plotted in Figure 2.3.
The Airy function has a peculiar behavior, oscillatory for negative values of the argument,
and decreasing rapidly towards zero for positive values. Of course, this is exactly the
behavior we expect for the wave function, since z = 0 is the classical turning point.

Note that the boundary conditions at x = 0 translate into zeros for either Ai′(z) or Ai(z)
where z =−21/3ε. In other words, the zeros of the Airy function or its derivative determine
the quantized energies. One finds that

Ai′(z) = 0 for z =−1.019, −3.249, −4.820,. . . (even) (2.238)
Ai(z) = 0 for z =−2.338, −4.088, −5.521,. . . (odd). (2.239)

For example, the ground-state energy is E = (1.019/21/3)(h̄2k2/m)1/3.

−10 100

z

0

0.5

−0.5

A
i(
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Fig. 2.3 The Airy function.
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Fig. 2.4 Experimental observation of the quantum-mechanical states of a bouncing neutron, from Nesvizhevsky et al.,
Phys. Rev. D, 67 (2003) 102002. The solid curve is a fit to the data based on classical physics. Note that the vertical
scale is logarithmic.

The quantum-theoretical treatment of the linear potential may appear to have little to
do with the real world. It turns out, however, that a potential of type (2.234) is actually
of practical interest in studying the energy spectrum of a quark-antiquark bound system,
called quarkonium. In this case, the x in (2.234) is replaced by the quark-antiquark
separation distance r. This constant k is empirically estimated to be in the neighborhood of

1 GeV/fm � 1.6×105 N, (2.240)

which corresponds to a gravitational force of about 16 tons.
Indeed, another real world example of the linear potential is the “bouncing ball.” One

interprets (2.234) as the potential energy of a ball of mass m at a height x above the floor,
and k = mg where g is the local acceleration due to gravity. Of course, this is the potential
energy only for x ≥ 0 as there is an infinite potential barrier which causes the ball to
“bounce.” Quantum mechanically, this means that only the odd parity solutions (2.239)
are allowed.

The bouncing ball happens to be one of those rare cases where quantum-mechanical
effects can be observed macroscopically. The trick is to have a very low mass “ball,” which
has been achieved with neutrons by a group7 working at the Institut Laue-Langevin (ILL)
in Grenoble, France. For neutrons with m = 1.68×10−27 kg, the characteristic length scale
is x0 = (h̄2/m2g)1/3 = 7.40 μm. The “allowed heights” to which a neutron can bounce
are (2.338/21/3)x0 = 14 μm, (4.088/21/3)x0 = 24 μm, (5.521/21/3)x0 = 32 μm, and so on.
These are small, but measurable with precision mechanical devices and very low energy,
aka “ultracold,” neutrons. The experimenters’ results are shown in Figure 2.4. Plotted is
the detected neutron rate as a function of the height of a slit which only allows neutrons

7 See Nesvizhevsky et al., Phys. Rev. D, 67 (2003) 102002, and Eur. Phys. J., C40 (2005) 479. See also Jenke
et al., Nature Phys., 7 (2011) 468.
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to pass if they exceed this height. No neutrons are observed unless the height is at least
≈ 14 μm, and clear breaks are observed at ≈ 24 μm and ≈ 32 μm, in excellent agreement
with the predictions of quantum mechanics.

2.5.4 The WKB (Semiclassical) Approximation

Having solved the problem of a linear potential, it is worthwhile to introduce an important
approximation technique known as the WKB solution, after G. Wentzel, A. Kramers, and
L. Brillouin.8 This technique is based on making use of regions where the wavelength is
much shorter than the typical distance over which the potential energy varies. Such is never
the case near classical turning points, but this is where the linear potential solution can be
used to join the solutions on either side of them.

Again restricting ourselves to one dimension, we write Schrödinger’s wave equation as

d2uE

dx2 +
2m
h̄2 (E−V(x))uE(x) = 0. (2.241)

Define the quantities

k(x)≡
[

2m
h̄2 (E−V(x))

]1/2

for E > V(x) (2.242a)

k(x)≡−iκ(x)≡−i
[

2m
h̄2 (V(x)−E)

]1/2

for E < V(x) (2.242b)

and so (2.241) becomes

d2uE

dx2 +[k(x)]2 uE(x) = 0. (2.243)

Now, if V(x) were not changing with x, then k(x) would be a constant, and u(x)∝ exp(±ikx)
would solve (2.243). Consequently, if we assume that V(x) varies only “slowly” with x,
then we are tempted to try a solution of the form

uE(x)≡ exp [iW(x)/h̄] . (2.244)

(The reason for including the h̄ will become apparent at the end of this section, when
we discuss the physical interpretation of the WKB approximation.) In this case, (2.243)
becomes

ih̄
d2W
dx2 −

(
dW
dx

)2

+ h̄2 [k(x)]2 = 0 (2.245)

which is completely equivalent to Schrödinger’s equation, although rewritten in what
appears to be a nasty form. However, we consider a solution to this equation under the
condition that

h̄
∣∣∣∣d2W

dx2

∣∣∣∣ � ∣∣∣∣dW
dx

∣∣∣∣2

. (2.246)

8 A similar technique was used earlier by H. Jeffreys; this solution is referred to as the JWKB solution in some
English books.
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This quantifies our notion of a “slowly varying” potential V(x), and we will return soon to
the physical significance of this condition.

Forging ahead for now, we use the condition (2.246) with our differential equation
(2.245) to write a lowest-order approximation for W(x), namely

W′
0(x) =±h̄k(x) (2.247)

leading to a first-order approximation for W(x), based on(
dW1

dx

)2

= h̄2 [k(x)]2 + ih̄W′′
0(x)

= h̄2 [k(x)]2 ± ih̄2k′(x) (2.248)

where the second term in (2.248) is much smaller than the first, so that

W(x)≈ W1(x) =±h̄
∫ x

dx′
[
k2(x′)± ik′(x′)

]1/2

≈±h̄
∫ x

dx′k(x′)
[

1± i
2

k′(x′)
k2(x′)

]
=±h̄

∫ x
dx′k(x′)+

i
2

h̄ ln [k(x)] . (2.249)

The WKB approximation for the wave function is given by (2.244) and the first-order
approximation for (2.249) for W(x), namely

uE(x)≈ exp [iW(x)/h̄] =
1

[k(x)]1/2 exp

[
±i

∫ x
dx′k(x′)

]
. (2.250)

Note that this specifies a choice of two solutions (±) either in the region where E > V(x),
with k(x) from (2.242a), or in the region where E < V(x), with k(x) from (2.242b). Joining
these two solutions across the classical turning point is the next task.

We do not discuss this joining procedure in detail, as it is discussed in many places
(Schiff (1968), pp. 268–276, or Merzbacher (1998), Chapter 7, for example). Instead,
we content ourselves with presenting the results of such an analysis for a potential well,
schematically shown in Figure 2.5, with two turning points, x1 and x2. The wave function
must behave like (2.250), with k(x) given by (2.242a) in region II, and by (2.242b)
in regions I and III. The solutions in the neighborhood of the turning points, shown
as a dashed line in Figure 2.5, are given by Airy functions, since we assume a linear
approximation to the potential in these regions. Note that the asymptotic dependences of
the Airy function9 are

Ai(z)→ 1
2
√
π

z−1/4 exp

(
−2

3
z3/2

)
z →+∞ (2.251a)

Ai(z)→ 1√
π
|z|−1/4 cos

(
2
3
|z|3/2 − π

4

)
z →−∞. (2.251b)

9 There is actually a second Airy function, Bi(z), which is very similar to Ai(z) but which is singular at the origin.
It is relevant for this discussion, but we are glossing over the details.
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Fig. 2.5 Schematic diagram for behavior of the wave function uE (x) in a potential well V(x) with turning points x1 and x2.
Note the similarity with Figure 2.3 near the turning points.

For connecting regions I and II, the correct linear combination of the two solutions
(2.250) is determined by choosing the integration constants in such a way that{

1
[V(x)−E]1/4

}
exp

[
−

(
1
h̄

)∫ x1

x
dx′

√
2m [V(x′)−E]

]

→
{

2
[E−V(x)]1/4

}
cos

[(
1
h̄

)∫ x

x1

dx′
√

2m [E−V(x′)]− π
4

]
. (2.252)

Likewise, from region III into region II we have{
1

[V(x)−E]1/4

}
exp

[
−

(
1
h̄

)∫ x

x2

dx′
√

2m [V(x′)−E]
]

→
{

2
[E−V(x)]1/4

}
cos

[
−

(
1
h̄

)∫ x2

x
dx′

√
2m [E−V(x′)] +

π
4

]
. (2.253)

Of course, we must obtain the same form for the wave function in region II, regardless of
which turning point is analyzed. This implies that the arguments of the cosine in (2.252)
and (2.253) must differ at most by an integer multiple of π [not of 2π, because the signs of
both sides of (2.253) can be reversed]. In this way we obtain a very interesting consistency
condition, ∫ x2

x1

dx
√

2m [E−V(x)] = (n+ 1
2 )πh̄ (n = 0,1,2,3,. . .). (2.254)

Apart from the difference between n + 1
2 and n, this equation is simply the quantization

condition of the old quantum theory due to A. Sommerfeld and W. Wilson, originally
written in 1915 as ∮

pdq = nh, (2.255)

where h is Planck’s h, not Dirac’s h̄, and the integral is evaluated over one whole period of
classical motion, from x1 to x2 and back.
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Equation (2.254) can be used to obtain approximate expressions for the energy levels of
a particle confined in a potential well. As an example, we consider the energy spectrum of
a ball bouncing up and down over a hard surface, that is the “bouncing neutrons” discussed
earlier in this section, namely

V =

{
mgx for x > 0
∞ for x < 0,

(2.256)

where x stands for the height of the ball measured from the hard surface. One might be
tempted to use (2.254) directly with

x1 = 0, x2 =
E

mg
, (2.257)

which are the classical turning points of this problem. We note, however, that (2.254) was
derived under the assumption that the WKB wave function “leaks into” the x < x1 region,
while in our problem the wave function must strictly vanish for x ≤ x1 = 0. A much more
satisfactory approach to this problem is to consider the odd-parity solutions, guaranteed to
vanish at x = 0, of a modified problem defined by

V(x) = mg|x| (−∞ < x < ∞) (2.258)

whose turning points are

x1 =− E
mg

, x2 =
E

mg
. (2.259)

The energy spectrum of the odd-parity states for this modified problem must clearly be the
same as that of the original problem. The quantization condition then becomes∫ E/mg

−E/mg
dx

√
2m(E−mg|x|) = (nodd +

1
2 )πh̄ (nodd = 1,3,5,. . .) (2.260)

or, equivalently,∫ E/mg

0
dx

√
2m(E−mgx) = (n− 1

4 )πh̄ (n = 1,2,3,4,. . .). (2.261)

This integral is elementary, and we obtain

En =

{[
3
(
n− 1

4

)
π

]2/3

2

}
(mg2h̄2)1/3 (2.262)

for the quantized energy levels of the bouncing ball.
Table 2.2 compares the WKB approximation to the exact solution, using zeros of the

Airy function, for the first 10 energy levels. We see that agreement is excellent even for
small values of n and essentially exact for n � 10.

Before concluding, let us return to the interpretation of the condition (2.246). It is exact
in the case h̄ → 0, suggesting a connection between the WKB approximation and the
classical limit. In fact, using (2.244) the time-dependent wave function becomes

ψ(x, t) ∝ uE(x)exp(−iEt/h̄) = exp(iW(x)/h̄− iEt/h̄) . (2.263)
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Table 2.2 The Quantized Energies of a Bouncing Ball in
Units of (mg2h̄2/2)1/3

n WKB Exact

1 2.320 2.338
2 4.082 4.088
3 5.517 5.521
4 6.784 6.787
5 7.942 7.944
6 9.021 9.023
7 10.039 10.040
8 11.008 11.009
9 11.935 11.936

10 12.828 12.829

Comparing this to (2.193) and (2.203) we see that W(x) corresponds directly to Hamilton’s
characteristic function. Indeed, condition (2.246) is the same as (2.201), the condition
for reaching the classical limit. For these reasons, the WKB approximation is frequently
referred to as a “semiclassical” approximation.

We also note that condition (2.246) is equivalent to |k′(x)| � |k2(x)|. In terms of the de
Broglie wavelength divided by 2π, this condition amounts to

λ =
h̄√

2m [E−V(x)]
� 2 [E−V(x)]

|dV/dx| . (2.264)

In other words, λ must be small compared with the characteristic distance over which the
potential varies appreciably. Roughly speaking, the potential must be essentially constant
over many wavelengths. Thus we see that the semiclassical picture is reliable in the short-
wavelength limit.

2.6 Propagators and Feynman Path Integrals

2.6.1 Propagators in Wave Mechanics

In Section 2.1 we showed how the most general time-evolution problem with a time-
independent Hamiltonian can be solved once we expand the initial ket in terms of the
eigenkets of an observable that commutes with H. Let us translate this statement into the
language of wave mechanics. We start with

|α, t0; t〉= exp

[
−iH(t− t0)

h̄

]
|α, t0〉

= ∑
a′
|a′〉〈a′|α, t0〉exp

[
−iEa′(t− t0)

h̄

]
. (2.265)
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Multiplying both sides by 〈x′| on the left, we have

〈x′|α, t0; t〉= ∑
a′
〈x′|a′〉〈a′|α, t0〉exp

[
−iEa′(t− t0)

h̄

]
, (2.266)

which is of the form

ψ(x′, t) = ∑
a′

ca′(t0)ua′(x′)exp

[
−iEa′(t− t0)

h̄

]
, (2.267)

with

ua′(x′) = 〈x′|a′〉 (2.268)

standing for the eigenfunction of operator A with eigenvalue a′. Note also that

〈a′|α, t0〉=
∫

d3x′〈a′|x′〉〈x′|α, t0〉, (2.269)

which we recognize as the usual rule in wave mechanics for getting the expansion
coefficients of the initial state:

ca′(t0) =
∫

d3x′u∗a′(x′)ψ(x′, t0). (2.270)

All this should be straightforward and familiar. Now (2.266) together with (2.269) can
also be visualized as some kind of integral operator acting on the initial wave function to
yield the final wave function:

ψ(x′′, t) =
∫

d3x′K(x′′, t; x′, t0)ψ(x′, t0). (2.271)

Here the kernel of the integral operator, known as the propagator in wave mechanics, is
given by

K(x′′, t; x′, t0) = ∑
a′
〈x′′|a′〉〈a′|x′〉exp

[
−iEa′(t− t0)

h̄

]
. (2.272)

In any given problem the propagator depends only on the potential and is independent of
the initial wave function. It can be constructed once the energy eigenfunctions and their
eigenvalues are given.

Clearly, the time evolution of the wave function is completely predicted if K(x′′, t; x′, t0)
is known and ψ(x′, t0) is given initially. In this sense Schrödinger’s wave mechanics is
a perfectly causal theory. The time development of a wave function subjected to some
potential is as “deterministic” as anything else in classical mechanics provided that the
system is left undisturbed. The only peculiar feature, if any, is that when a measurement
intervenes, the wave function changes abruptly, in an uncontrollable way, into one of the
eigenfunctions of the observable being measured.

There are two properties of the propagator worth recording here. First, for t > t0,
K(x′′, t; x′, t0) satisfies Schrödinger’s time-dependent wave equation in the variables x′′ and
t, with x′ and t0 fixed. This is evident from (2.272) because 〈x′′|a′〉exp[−iEa′(t− t0)/h̄],
being the wave function corresponding to U (t, t0)|a′〉, satisfies the wave equation. Second,

lim
t→t0

K(x′′, t; x′, t0) = δ3(x′′ −x′), (2.273)
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which is also obvious; as t → t0, because of the completeness of {|a′〉}, sum (2.272) just
reduces to 〈x′′|x′〉.

Because of these two properties, the propagator (2.272), regarded as a function of x′′,
is simply the wave function at t of a particle which was localized precisely at x′ at some
earlier time t0. Indeed, this interpretation follows, perhaps more elegantly, from noting that
(2.272) can also be written as

K(x′′, t; x′, t0) = 〈x′′|exp

[
−iH(t− t0)

h̄

]
|x′〉, (2.274)

where the time-evolution operator acting on |x′〉 is just the state ket at t of a system that was
localized precisely at x′ at time t0 (< t). If we wish to solve a more general problem where
the initial wave function extends over a finite region of space, all we have to do is multiply
ψ(x′, t0) by the propagator K(x′′, t; x′, t0) and integrate over all space (that is, over x′).
In this manner we can add the various contributions from different positions (x′). This
situation is analogous to one in electrostatics; if we wish to find the electrostatic potential
due to a general charge distribution ρ(x′), we first solve the point-charge problem, multiply
the point-charge solution with the charge distribution, and integrate:

φ(x) =
∫

d3x′
ρ(x′)
|x−x′| . (2.275)

The reader familiar with the theory of the Green functions must have recognized by this
time that the propagator is simply the Green function for the time-dependent wave equation
satisfying[

−
(

h̄2

2m

)
∇′′2 +V(x′′)− ih̄

∂
∂ t

]
K(x′′, t; x′, t0) =−ih̄δ3(x′′ −x′)δ(t− t0) (2.276)

with the boundary condition

K(x′′, t; x′, t0) = 0, for t < t0. (2.277)

The delta function δ(t− t0) is needed on the right-hand side of (2.276) because K varies
discontinuously at t = t0.

The particular form of the propagator is, of course, dependent on the particular potential
to which the particle is subjected. Consider, as an example, a free particle in one dimension.
The obvious observable that commutes with H is momentum; |p′〉 is a simultaneous
eigenket of the operators p and H:

p|p′〉= p′|p′〉 H|p′〉=
(

p′2

2m

)
|p′〉. (2.278)

The momentum eigenfunction is just the transformation function of Section 1.7 [see
(1.264)] which is of the plane wave form. Combining everything, we have

K(x′′, t; x′, t0) =
(

1
2πh̄

)∫ ∞

−∞
dp′ exp

[
ip′(x′′ − x′)

h̄
− ip′2(t− t0)

2mh̄

]
. (2.279)
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The integral can be evaluated by completing the square in the exponent. Here we simply
record the result:

K(x′′, t; x′, t0) =
√

m
2πih̄(t− t0)

exp

[
im(x′′ − x′)2

2h̄(t− t0)

]
. (2.280)

This expression may be used, for example, to study how a Gaussian wave packet spreads
out as a function of time.

For the simple harmonic oscillator, where the wave function of an energy eigenstate is
given by

un(x)exp

(
−iEnt

h̄

)
=

(
1

2n/2
√

n!

)(mω
πh̄

)1/4
exp

(
−mωx2

2h̄

)
×Hn

(√
mω
h̄

x
)

exp

[
−iω

(
n+

1
2

)
t
]

, (2.281)

the propagator is given by

K(x′′, t; x′, t0) =
√

mω
2πih̄sin[ω(t− t0)]

exp

[{
imω

2h̄sin[ω(t− t0)]

}
×{(x′′2 + x′2)cos[ω(t− t0)]−2x′′x′}

]
. (2.282)

One way to prove this is to use(
1√

1− ζ2

)
exp

[
−(ξ2 + η2 −2ξηζ)

(1− ζ2)

]
= exp

[
−(ξ2 + η2)

]
∑
n=0

(
ζn

2nn!

)
Hn(ξ)Hn(η), (2.283)

which is found in books on special functions (Morse and Feshbach (1953), p. 786). It
can also be obtained using the a, a† operator method (Saxon (1968), pp. 144–145) or,
alternatively, the path-integral method to be described later. Notice that (2.282) is a periodic
function of t with angular frequency ω, the classical oscillator frequency. This means,
among other things, that a particle initially localized precisely at x′ will return to its original
position with certainty at 2π/ω (4π/ω, and so forth) later.

Certain space and time integrals derivable from K(x′′, t; x′, t0) are of considerable
interest. Without loss of generality we set t0 = 0 in the following. The first integral we
consider is obtained by setting x′′ = x′ and integrating over all space. We have

G(t)≡
∫

d3x′K(x′, t; x′,0)

=
∫

d3x′∑
a′
|〈x′|a′〉|2 exp

(
−iEa′ t

h̄

)
= ∑

a′
exp

(
−iEa′ t

h̄

)
. (2.284)

This result is anticipated; recalling (2.274), we observe that setting x′ = x′′ and integrating
are equivalent to taking the trace of the time-evolution operator in the x-representation.
But the trace is independent of representations; it can be evaluated more readily using the
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{|a′〉} basis where the time-evolution operator is diagonal, which immediately leads to the
last line of (2.284). Now we see that (2.284) is just the “sum over states,” reminiscent of
the partition function in statistical mechanics. In fact, if we analytically continue in the t
variable and make t purely imaginary, with β defined by

β =
it
h̄

(2.285)

real and positive, we can identify (2.284) with the partition function itself:

Z = ∑
a′

exp(−βEa′). (2.286)

For this reason some of the techniques encountered in studying propagators in quantum
mechanics are also useful in statistical mechanics.

Next, let us consider the Laplace–Fourier transform of G(t):

G̃(E)≡ −i
∫ ∞

0
dtG(t)exp(iEt/h̄)/h̄

= −i
∫ ∞

0
dt∑

a′
exp(−iEa′ t/h̄)exp(iEt/h̄)/h̄. (2.287)

The integrand here oscillates indefinitely. But we can make the integral meaningful by
letting E acquire a small positive imaginary part:

E → E+ iε. (2.288)

We then obtain, in the limit ε→ 0,

G̃(E) = ∑
a′

1
E−Ea′

. (2.289)

Observe now that the complete energy spectrum is exhibited as simple poles of G̃(E) in
the complex E-plane. If we wish to know the energy spectrum of a physical system, it is
sufficient to study the analytic properties of G̃(E).

2.6.2 Propagator as a Transition Amplitude

To gain further insight into the physical meaning of the propagator, we wish to relate it
to the concept of transition amplitudes introduced in Section 2.2. But first, recall that the
wave function which is the inner product of the fixed position bra 〈x′| with the moving state
ket |α, t0; t〉 can also be regarded as the inner product of the Heisenberg picture position bra
〈x′, t|, which moves “oppositely” with time, with the Heisenberg picture state ket |α, t0〉,
which is fixed in time. Likewise, the propagator can also be written as

K(x′′, t; x′, t0) = ∑
a′
〈x′′|a′〉〈a′|x′〉exp

[
−iEa′(t− t0)

h̄

]
= ∑

a′
〈x′′|exp

(
−iHt

h̄

)
|a′〉〈a′|exp

(
iHt0

h̄

)
|x′〉

= 〈x′′, t|x′, t0〉, (2.290)
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where |x′, t0〉 and 〈x′′, t| are to be understood as an eigenket and an eigenbra of the
position operator in the Heisenberg picture. In Section 2.2 we showed that 〈b′, t|a′〉, in the
Heisenberg picture notation, is the probability amplitude for a system originally prepared
to be an eigenstate of A with eigenvalue a′ at some initial time t0 = 0 to be found at a later
time t in an eigenstate of B with eigenvalue b′, and we called it the transition amplitude
for going from state |a′〉 to state |b′〉. Because there is nothing special about the choice of
t0, only the time difference t− t0 is relevant, we can identify 〈x′′, t|x′, t0〉 as the probability
amplitude for the particle prepared at t0 with position eigenvalue x′ to be found at a later
time t at x′′. Roughly speaking, 〈x′′, t|x′, t0〉 is the amplitude for the particle to go from a
space-time point (x′, t0) to another space-time point (x′′, t), so the term transition amplitude
for this expression is quite appropriate. This interpretation is, of course, in complete accord
with the interpretation we gave earlier for K(x′′, t; x′, t0).

Yet another way to interpret 〈x′′, t|x′, t0〉 is as follows. As we emphasized earlier, |x′, t0〉
is the position eigenket at t0 with the eigenvalue x′ in the Heisenberg picture. Because at
any given time the Heisenberg picture eigenkets of an observable can be chosen as base
kets, we can regard 〈x′′, t|x′, t0〉 as the transformation function that connects the two sets of
base kets at different times. So in the Heisenberg picture, time evolution can be viewed as
a unitary transformation, in the sense of changing bases, that connects one set of base kets
formed by {|x′, t0〉} to another formed by {|x′′, t〉}. This is reminiscent of classical physics,
in which the time development of a classical dynamic variable such as x(t) is viewed as
a canonical (or contact) transformation generated by the classical Hamiltonian (Goldstein
et al. (2002), pp. 401–402).

It turns out to be convenient to use a notation that treats the space and time coordinates
more symmetrically. To this end we write 〈x′′, t′′|x′, t′〉 in place of 〈x′′, t|x′, t0〉. Because
at any given time the position kets in the Heisenberg picture form a complete set, it is
legitimate to insert the identity operator written as∫

d3x′′|x′′, t′′〉〈x′′, t′′|= 1 (2.291)

at any place we desire. For example, consider the time evolution from t′ to t′′′; by dividing
the time interval (t′, t′′′) into two parts, (t′, t′′) and (t′′, t′′′), we have

〈x′′′, t′′′|x′, t′〉=
∫

d3x′′〈x′′′, t′′′|x′′, t′′〉〈x′′, t′′|x′, t′〉

(t′′′ > t′′ > t′). (2.292)

We call this the composition property of the transition amplitude.10 Clearly, we can divide
the time interval into as many smaller subintervals as we wish. We have

〈x′′′′, t′′′′|x′, t′〉=
∫

d3x′′′
∫

d3x′′〈x′′′′, t′′′′|x′′′, t′′′〉〈x′′′, t′′′|x′′, t′′〉

× 〈x′′, t′′|x′, t′〉 (t′′′′ > t′′′ > t′′ > t′), (2.293)

and so on. If we somehow guess the form of 〈x′′, t′′|x′, t′〉 for an infinitesimal time interval
(between t′ and t′′ = t′+ dt), we should be able to obtain the amplitude 〈x′′, t′′|x′, t′〉 for a

10 The analogue of (2.292) in probability theory is known as the Chapman–Kolmogoroff equation, and in
diffusion theory, the Smoluchowsky equation.
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finite time interval by compounding the appropriate transition amplitudes for infinitesimal
time intervals in a manner analogous to (2.293). This kind of reasoning leads to an
independent formulation of quantum mechanics due to R. P. Feynman, published in 1948,
to which we now turn our attention Feynman, Rev. Mod. Phys., 20 (1948) 367.

2.6.3 Path Integrals as the Sum over Paths

Without loss of generality we restrict ourselves to one-dimensional problems. Also, we
avoid awkward expressions like

x′′′′··· (N times)

by using notation such as xN. With this notation we consider the transition amplitude for a
particle going from the initial space-time point (x1, t1) to the final space-time point (xN, tN).
The entire time interval between t1 and tN is divided into N−1 equal parts:

tj − tj−1 = Δt =
(tN − t1)
(N−1)

. (2.294)

Exploiting the composition property, we obtain

〈xN, tN|x1, t1〉=
∫

dxN−1

∫
dxN−2 · · ·

∫
dx2〈xN, tN|xN−1, tN−1〉

× 〈xN−1, tN−1|xN−2, tN−2〉 · · · 〈x2, t2|x1, t1〉. (2.295)

To visualize this pictorially, we consider a space-time plane, as shown in Figure 2.6. The
initial and final space-time points are fixed to be (x1, t1) and (xN, tN), respectively. For each
time segment, say between tn−1 and tn, we are instructed to consider the transition ampli-
tude to go from (xn−1, tn−1) to (xn, tn); we then integrate over x2,x3,. . . ,xN−1. This means
that we must sum over all possible paths in the space-time plane with the end points fixed.

Before proceeding further, it is profitable to review here how paths appear in classical
mechanics. Suppose we have a particle subjected to a force field derivable from a potential
V(x). The classical Lagrangian is written as

(xN, tN)

(x1, t1)

tN

tN−1

t3

t2
t1

x

tr

t

Fig. 2.6 Paths in the xt-plane.
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Lclassical(x, ẋ) =
mẋ2

2
−V(x). (2.296)

Given this Lagrangian with the end points (x1, t1) and (xN, tN) specified, we do not consider
just any path joining (x1, t1) and (xN, tN) in classical mechanics. On the contrary, there exists
a unique path that corresponds to the actual motion of the classical particle. For example,
given

V(x) = mgx, (x1, t1) = (h,0), (xN, tN) =

(
0,

√
2h
g

)
, (2.297)

where h may stand for the height of the Leaning Tower of Pisa, the classical path in the
xt-plane can only be

x = h− gt2

2
. (2.298)

More generally, according to Hamilton’s principle, the unique path is that which minimizes
the action, defined as the time integral of the classical Lagrangian:

δ
∫ t2

t1
dtLclassical(x, ẋ) = 0, (2.299)

from which Lagrange’s equation of motion can be obtained.

2.6.4 Feynman’s Formulation

The basic difference between classical mechanics and quantum mechanics should now
be apparent. In classical mechanics a definite path in the xt-plane is associated with the
particle’s motion; in contrast, in quantum mechanics all possible paths must play roles
including those which do not bear any resemblance to the classical path. Yet we must
somehow be able to reproduce classical mechanics in a smooth manner in the limit h̄ → 0.
How are we to accomplish this?

As a young graduate student at Princeton University, R. P. Feynman tried to attack this
problem. In looking for a possible clue, he was said to be intrigued by a mysterious remark
in Dirac’s book which, in our notation, amounts to the following statement:

exp

[
i
∫ t2

t1

dtLclassical(x, ẋ)
h̄

]
corresponds to 〈x2, t2|x1, t1〉.

Feynman attempted to make sense out of this remark. Is “corresponds to” the same thing
as “is equal to” or “is proportional to”? In so doing he was led to formulate a space-time
approach to quantum mechanics based on path integrals.

In Feynman’s formulation the classical action plays a very important role. For compact-
ness, we introduce a new notation:

S(n,n−1)≡
∫ tn

tn−1

dtLclassical(x, ẋ). (2.300)

Because Lclassical is a function of x and ẋ, S(n,n − 1) is defined only after a definite
path is specified along which the integration is to be carried out. So even though the
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path dependence is not explicit in this notation, it is understood that we are considering
a particular path in evaluating the integral. Imagine now that we are following some
prescribed path. We concentrate our attention on a small segment along that path, say
between (xn−1, tn−1) and (xn, tn). According to Dirac, we are instructed to associate
exp[iS(n,n− 1)/h̄] with that segment. Going along the definite path we are set to follow,
we successively multiply expressions of this type to obtain

N

∏
n=2

exp

[
iS(n,n−1)

h̄

]
= exp

[(
i
h̄

) N

∑
n=2

S(n,n−1)

]
= exp

[
iS(N,1)

h̄

]
. (2.301)

This does not yet give 〈xN, tN|x1, t1〉; rather, this equation is the contribution to 〈xN, tN|x1, t1〉
arising from the particular path we have considered. We must still integrate over
x2,x3,. . . ,xN−1. At the same time, exploiting the composition property, we let the time
interval between tn−1 and tn be infinitesimally small. Thus our candidate expression for
〈xN, tN|x1, t1〉 may be written, in some loose sense, as

〈xN, tN|x1, t1〉 ∼ ∑
all paths

exp

[
iS(N,1)

h̄

]
, (2.302)

where the sum is to be taken over an innumerably infinite set of paths!
Before presenting a more precise formulation, let us see whether considerations along

this line make sense in the classical limit. As h̄ → 0, the exponential in (2.302) oscillates
very violently, so there is a tendency for cancellation among various contributions from
neighboring paths. This is because exp[iS/h̄] for some definite path and exp[iS/h̄] for a
slightly different path have very different phases because of the smallness of h̄. So most
paths do not contribute when h̄ is regarded as a small quantity. However, there is an
important exception.

Suppose that we consider a path that satisfies

δS(N,1) = 0, (2.303)

where the change in S is due to a slight deformation of the path with the end points
fixed. This is precisely the classical path by virtue of Hamilton’s principle. We denote
the S that satisfies (2.303) by Smin. We now attempt to deform the path a little bit from
the classical path. The resulting S is still equal to Smin to first order in deformation. This
means that the phase of exp[iS/h̄] does not vary very much as we deviate slightly from
the classical path even if h̄ is small. As a result, as long as we stay near the classical
path, constructive interference between neighboring paths is possible. In the h̄ → 0 limit,
the major contributions must then arise from a very narrow strip (or a tube in higher
dimensions) containing the classical path, as shown in Figure 2.7. Our (or Feynman’s)
guess based on Dirac’s mysterious remark makes good sense because the classical path
is singled out in the h̄ → 0 limit. To formulate Feynman’s conjecture more precisely,
let us go back to 〈xn, tn|xn−1, tn−1〉, where the time difference tn − tn−1 is assumed to be
infinitesimally small. We write

〈xn, tn|xn−1, tn−1〉=
[

1
w(Δt)

]
exp

[
iS(n,n−1)

h̄

]
, (2.304)
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(xN, tN)

(x1, t1)

Fig. 2.7 Paths important in the h̄ → 0 limit.

where we evaluate S(n,n−1) in a moment in the Δt→ 0 limit. Notice that we have inserted
a weight factor, 1/w(Δt), which is assumed to depend only on the time interval tn − tn−1

and not on V(x). That such a factor is needed is clear from dimensional considerations;
according to the way we normalized our position eigenkets, 〈xn, tn|xn−1, tn−1〉 must have
the dimension of 1/length.

We now look at the exponential in (2.304). Our task is to evaluate the Δt → 0 limit of
S(n,n− 1). Because the time interval is so small, it is legitimate to make a straight-line
approximation to the path joining (xn−1, tn−1) and (xn, tn) as follows:

S(n,n−1) =
∫ tn

tn−1

dt
[

mẋ2

2
−V(x)

]

= Δt

{(m
2

)[
(xn − xn−1)

Δt

]2

−V
(
(xn + xn−1)

2

)}
. (2.305)

As an example, we consider specifically the free-particle case, V = 0. Equation (2.304)
now becomes

〈xn, tn|xn−1, tn−1〉=
[

1
w(Δt)

]
exp

[
im(xn − xn−1)

2

2h̄Δt

]
. (2.306)

We see that the exponent appearing here is completely identical to the one in the expression
for the free-particle propagator (2.280). The reader may work out a similar comparison for
the simple harmonic oscillator.

We remarked earlier that the weight factor 1/w(Δt) appearing in (2.304) is assumed
to be independent of V(x), so we may as well evaluate it for the free particle. Noting the
orthonormality, in the sense of δ-function, of Heisenberg picture position eigenkets at equal
times,

〈xn, tn|xn−1, tn−1〉|tn=tn−1 = δ(xn − xn−1), (2.307)

we obtain

1
w(Δt)

=

√
m

2πih̄Δt
, (2.308)
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where we have used ∫ ∞

−∞
dξ exp

(
imξ2

2h̄Δt

)
=

√
2πih̄Δt

m
(2.309a)

and

lim
Δt→0

√
m

2πih̄Δt
exp

(
imξ2

2h̄Δt

)
= δ(ξ). (2.309b)

This weight factor is, of course, anticipated from the expression for the free-particle
propagator (2.280).

To summarize, as Δt → 0, we are led to

〈xn, tn|xn−1, tn−1〉=
√

m
2πih̄Δt

exp

[
iS(n,n−1)

h̄

]
. (2.310)

The final expression for the transition amplitude with tN − t1 finite is

〈xN, tN|x1, t1〉= lim
N→∞

( m
2πih̄Δt

)(N−1)/2

×
∫

dxN−1

∫
dxN−2 · · ·

∫
dx2

N

∏
n=2

exp

[
iS(n,n−1)

h̄

]
, (2.311)

where the N → ∞ limit is taken with xN and tN fixed. It is customary here to define a new
kind of multidimensional (in fact, infinite-dimensional) integral operator∫ xN

x1

D [x(t)]≡ lim
N→∞

( m
2πih̄Δt

)(N−1)/2 ∫
dxN−1

∫
dxN−2 · · ·

∫
dx2 (2.312)

and write (2.311) as

〈xN, tN|x1, t1〉=
∫ xN

x1

D [x(t)]exp

[
i
∫ tN

t1
dt

Lclassical(x, ẋ)
h̄

]
. (2.313)

This expression is known as Feynman’s path integral. Its meaning as the sum over all
possible paths should be apparent from (2.311).

Our steps leading to (2.313) are not meant to be a derivation. Rather, we (or Feynman)
have attempted a new formulation of quantum mechanics based on the concept of
paths, motivated by Dirac’s mysterious remark. The only ideas we borrowed from the
conventional form of quantum mechanics are (1) the superposition principle (used in
summing the contributions from various alternate paths), (2) the composition property of
the transition amplitude, and (3) classical correspondence in the h̄ → 0 limit.

Even though we obtained the same result as the conventional theory for the free-particle
case, it is now obvious, from what we have done so far, that Feynman’s formulation is
completely equivalent to Schrödinger’s wave mechanics. We conclude this section by
proving that Feynman’s expression for 〈xN, tN|x1, t1〉 indeed satisfies Schrödinger’s time-
dependent wave equation in the variables xN, tN, just as the propagator defined by (2.272).
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We start with

〈xN, tN|x1, t1〉=
∫

dxN−1〈xN, tN|xN−1, tN−1〉〈xN−1, tN−1|x1, t1〉

=
∫ ∞

−∞
dxN−1

√
m

2πih̄Δt
exp

[(
im
2h̄

)
(xN − xN−1)

2

Δt
− iVΔt

h̄

]
×〈xN−1, tN−1|x1, t1〉, (2.314)

where we have assumed tN − tN−1 to be infinitesimal. Introducing

ξ = xN − xN−1 (2.315)

and letting xN → x and tN → t+Δt, we obtain

〈x, t+Δt|x1, t1〉=
√

m
2πih̄Δt

∫ (∞)

−∞
dξ exp

(
imξ2

2h̄Δt
− iVΔt

h̄

)
〈x− ξ, t|x1, t1〉. (2.316)

As is evident from (2.309b), in the limit Δt → 0, the major contribution to this integral
comes from the ξ � 0 region. It is therefore legitimate to expand 〈x− ξ, t|x1, t1〉 in powers
of ξ. We also expand 〈x, t+Δt|x1, t1〉 and exp(−iVΔt/h̄) in powers of Δt, so

〈x, t|x1, t1〉+Δt
∂
∂ t

〈x, t|x1, t1〉=
√

m
2πih̄Δt

∫ ∞

−∞
dξ exp

(
imξ2

2h̄Δt

)(
1− iVΔt

h̄
+ · · ·

)
×

[
〈x, t|x1, t1〉+

(
ξ2

2

)
∂ 2

∂x2 〈x, t|x1, t1〉+ · · ·
]

, (2.317)

where we have dropped a term linear in ξ because it vanishes when integrated with respect
to ξ. The 〈x, t|x1, t1〉 term on the left-hand side just matches the leading term on the right-
hand side because of (2.309a). Collecting terms first order in Δt, we obtain

Δt
∂
∂ t

〈x, t|x1, t1〉=
(√

m
2πih̄Δt

)
(
√

2π)
(

ih̄Δt
m

)3/2 1
2

∂ 2

∂x2 〈x, t|x1, t1〉

−
(

i
h̄

)
ΔtV〈x, t|x1, t1〉, (2.318)

where we have used ∫ ∞

−∞
dξξ2 exp

(
imξ2

2h̄Δt

)
=
√

2π
(

ih̄Δt
m

)3/2

, (2.319)

obtained by differentiating (2.309a) with respect toΔt. In this manner we see that 〈x, t|x1, t1〉
satisfies Schrödinger’s time-dependent wave equation:

ih̄
∂
∂ t

〈x, t|x1, t1〉=−
(

h̄2

2m

)
∂ 2

∂x2 〈x, t|x1, t1〉+V〈x, t|x1, t1〉. (2.320)

Thus we can conclude that 〈x, t|x1, t1〉 constructed according to Feynman’s prescription is
the same as the propagator in Schrödinger’s wave mechanics.

Feynman’s space-time approach based on path integrals is not too convenient for
attacking practical problems in nonrelativistic quantum mechanics. Even for the simple
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harmonic oscillator it is rather cumbersome to evaluate explicitly the relevant path
integral.11 However, his approach is extremely gratifying from a conceptual point of view.
By imposing a certain set of sensible requirements on a physical theory, we are inevitably
led to a formalism equivalent to the usual formulation of quantum mechanics. It makes us
wonder whether it is at all possible to construct a sensible alternative theory that is equally
successful in accounting for microscopic phenomena.

Methods based on path integrals have been found to be very powerful in other branches
of modern physics, such as quantum field theory and statistical mechanics. In this book the
path-integral method will appear again when we discuss the Aharonov–Bohm effect.12

2.7 Potentials and Gauge Transformations

2.7.1 Constant Potentials

In classical mechanics it is well known that the zero point of the potential energy is of
no physical significance. The time development of dynamic variables such as x(t) and
L(t) is independent of whether we use V(x) or V(x)+V0 with V0 constant in both space
and time. The force that appears in Newton’s second law depends only on the gradient of
the potential; an additive constant is clearly irrelevant. What is the analogous situation in
quantum mechanics?

We look at the time evolution of a Schrödinger picture state ket subject to some potential.
Let |α, t0; t〉 be a state ket in the presence of V(x), and ˜|α, t0; t〉, the corresponding state ket
appropriate for

Ṽ(x) = V(x)+V0. (2.321)

To be precise, let us agree that the initial conditions are such that both kets coincide with
|α〉 at t = t0. If they represent the same physical situation, this can always be done by a
suitable choice of the phase. Recalling that the state ket at t can be obtained by applying
the time-evolution operator U (t, t0) to the state ket at t0, we obtain

|α̃, t0; t〉= exp

[
−i

(
p2

2m
+V(x)+V0

)
(t− t0)

h̄

]
|α〉

= exp

[
−iV0(t− t0)

h̄

]
|α, t0; t〉. (2.322)

In other words, the ket computed under the influence of Ṽ has a time dependence different
only by a phase factor exp[−iV0(t − t0)/h̄]. For stationary states, this means that if the
time dependence computed with V(x) is exp[−iE(t− t0)/h̄], then the corresponding time

11 The reader is challenged to solve the simple harmonic oscillator problem using the Feynman path-integral
method in Problem 2.44 of this chapter.

12 The reader who is interested in the fundamentals and applications of path integrals may consult Feynman and
Hibbs (1965) and also Zee (2010).
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dependence computed with V(x)+V0 is exp[−i(E+V0)(t− t0)/h̄]. In other words, the use
of Ṽ in place of V just amounts to the following change:

E → E+V0, (2.323)

which the reader probably guessed immediately. Observable effects such as the time
evolution of expectation values of 〈x〉 and 〈S〉 always depend on energy differences
[see (2.47)]; the Bohr frequencies that characterize the sinusoidal time dependence of
expectation values are the same whether we use V(x) or V(x)+V0. In general, there can
be no difference in the expectation values of observables if every state ket in the world is
multiplied by a common factor exp[−iV0(t− t0)/h̄].

Trivial as it may seem, we see here the first example of a class of transformations known
as gauge transformations. The change in our convention for the zero point energy of the
potential

V(x)→ V(x)+V0 (2.324)

must be accompanied by a change in the state ket

|α, t0; t〉 → exp

[
−iV0(t− t0)

h̄

]
|α, t0; t〉. (2.325)

Of course, this change implies the following change in the wave function:

ψ(x′, t)→ exp

[
−iV0(t− t0)

h̄

]
ψ(x′, t). (2.326)

Next we consider V0 that is spatially uniform but dependent on time. We then easily see
that the analogue of (2.325) is

|α, t0; t〉 → exp

[
−i

∫ t

t0
dt′

V0(t′)
h̄

]
|α, t0; t〉. (2.327)

Physically, the use of V(x)+V0(t) in place of V(x) simply means that we are choosing a
new zero point of the energy scale at each instant of time.

Even though the choice of the absolute scale of the potential is arbitrary, potential
differences are of nontrivial physical significance and, in fact, can be detected in a very
striking way. To illustrate this point, let us consider the arrangement shown in Figure 2.8.
A beam of charged particles is split into two parts, each of which enters a metallic cage. If
we so desire, we can maintain a finite potential difference between the two cages by turning
on a switch, as shown. A particle in the beam can be visualized as a wave packet whose
dimension is much smaller than the dimension of the cage. Suppose we switch on the
potential difference only after the wave packets enter the cages and switch it off before the
wave packets leave the cages. The particle in the cage experiences no force because inside
the cage the potential is spatially uniform; hence no electric field is present. Now let us
recombine the two beam components in such a way that they meet in the interference region
of Figure 2.8. Because of the existence of the potential, each beam component suffers a
phase change, as indicated by (2.327). As a result, there is an observable interference term
in the beam intensity in the interference region, namely,

cos(φ1 −φ2), sin(φ1 −φ2), (2.328)
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Interference
region

Fig. 2.8 Quantum-mechanical interference to detect a potential difference.

where

φ1 −φ2 =

(
1
h̄

)∫ tf

ti
dt[V2(t)−V1(t)]. (2.329)

So despite the fact that the particle experiences no force, there is an observable effect
that depends on whether V2(t)−V1(t) has been applied. Notice that this effect is purely
quantum mechanical; in the limit h̄ → 0, the interesting interference effect is washed out
because the oscillation of the cosine becomes infinitely rapid.13

2.7.2 Gravity in Quantum Mechanics

There is an experiment that exhibits in a striking manner how a gravitational effect appears
in quantum mechanics. Before describing it, we first comment on the role of gravity in both
classical and quantum mechanics.

Consider the classical equation of motion for a purely falling body:

mẍ =−m∇Φgrav =−mgẑ. (2.330)

The mass term drops out; so in the absence of air resistance, a feather and a stone would
behave in the same way – à la Galileo – under the influence of gravity. This is, of course, a
direct consequence of the equality of the gravitational and the inertial masses. Because the
mass does not appear in the equation of a particle trajectory, gravity in classical mechanics
is often said to be a purely geometric theory.

The situation is rather different in quantum mechanics. In the wave-mechanical formu-
lation, the analogue of (2.330) is[

−
(

h̄2

2m

)
∇2 +mΦgrav

]
ψ = ih̄

∂ψ
∂ t

. (2.331)

The mass no longer cancels; instead it appears in the combination h̄/m, so in a problem
where h̄ appears, m is also expected to appear. We can see this point also using the Feynman
path-integral formulation of a falling body based on

13 This gedanken experiment is the Minkowski-rotated form of the Aharonov–Bohm experiment to be discussed
later in this section.
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〈xn, tn|xn−1, tn−1〉=
√

m
2πih̄Δt

exp

[
i
∫ tn

tn−1

dt
( 1

2 mẋ2 −mgz)
h̄

]
(tn − tn−1 = Δt → 0). (2.332)

Here again we see that m appears in the combination m/h̄. This is in sharp contrast with
Hamilton’s classical approach, based on

δ
∫ t2

t1
dt

(
mẋ2

2
−mgz

)
= 0, (2.333)

where m can be eliminated in the very beginning.
Starting with the Schrödinger equation (2.331), we may derive the Ehrenfest theorem

d2

dt2
〈x〉=−gẑ. (2.334)

However, h̄ does not appear here, nor does m. To see a nontrivial quantum-mechanical
effect of gravity, we must study effects in which h̄ appears explicitly – and consequently
where we expect the mass to appear – in contrast with purely gravitational phenomena in
classical mechanics.

Until 1975, there had been no direct experiment that established the presence of the
mΦgrav term in (2.331). To be sure, a free fall of an elementary particle had been observed,
but the classical equation of motion, or the Ehrenfest theorem (2.334), where h̄ does not
appear, sufficed to account for this. The famous “weight of photon” experiment of V.
Pound and collaborators did not test gravity in the quantum domain either because they
measured a frequency shift where h̄ does not explicitly appear.

On the microscopic scale, gravitational forces are too weak to be readily observable. To
appreciate the difficulty involved in seeing gravity in bound-state problems, let us consider
the ground state of an electron and a neutron bound by gravitational forces. This is the
gravitational analogue of the hydrogen atom, where an electron and a proton are bound by
Coulomb forces. At the same distance, the gravitational force between the electron and the
neutron is weaker than the Coulomb force between the electron and the proton by a factor
of ∼ 2×1039. The Bohr radius involved here can be obtained simply:

a0 =
h̄2

e2me
→ h̄2

GNm2
emn

, (2.335)

where GN is Newton’s gravitational constant. If we substitute numbers in the equation,
the Bohr radius of this gravitationally bound system turns out to be ∼ 1031, or ∼ 1013

light years, which is larger than the estimated radius of the universe by a few orders of
magnitude!

We now discuss a remarkable phenomenon known as gravity-induced quantum
interference. A nearly monoenergetic beam of particles, in practice, thermal neutrons, is
split into two parts and then brought together as shown in Figure 2.9. In actual experiments
the neutron beam is split and bent by silicon crystals, but the details of this beautiful art of
neutron interferometry do not concern us here. Because the size of the wave packet can be
assumed to be much smaller than the macroscopic dimension of the loop formed by the two
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Fig. 2.9 Experiment to detect gravity-induced quantum interference.

alternate paths, we can apply the concept of a classical trajectory. Let us first suppose that
path A → B → D and path A → C → D lie in a horizontal plane. Because the absolute zero
of the potential due to gravity is of no significance, we can set V = 0 for any phenomenon
that takes place in this plane; in other words, it is legitimate to ignore gravity altogether.
The situation is very different if the plane formed by the two alternate paths is rotated
around segment AC by δ. This time the potential at level BD is higher than that at level
AC by mgl2 sinδ, which means that the state ket associated with path BD “rotates faster.”
This leads to a gravity-induced phase difference between the amplitudes for the two wave
packets arriving at D. Actually there is also a gravity-induced phase change associated with
AB and also with CD, but the effects cancel as we compare the two alternate paths. The net
result is that the wave packet arriving at D via path ABD suffers a phase change

exp

[
−imngl2 (sinδ)T

h̄

]
(2.336)

relative to that of the wave packet arriving at D via path ACD, where T is the time spent
for the wave packet to go from B to D (or from A to C) and mn is the neutron mass. We
can control this phase difference by rotating the plane of Figure 2.9; δ can change from
0 to π/2, or from 0 to −π/2. Expressing the time spent T, or l1/νwavepacket, in terms of λ,
the de Broglie wavelength of the neutron, we obtain the following expression for the phase
difference:

φABD −φACD =− (m2
ngl1l2λ sin δ)

h̄2 . (2.337)

In this manner we predict an observable interference effect that depends on angle δ, which
is reminiscent of fringes in Michelson-type interferometers in optics.

An alternative, more wave-mechanical way to understand (2.337) follows. Because we
are concerned with a time-independent potential, the sum of the kinetic energy and the
potential energy is constant:

p2

2m
+mgz = E. (2.338)
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Fig. 2.10 Dependence of gravity-induced phase on the angle of rotation δ. From Colella et al. Phys. Rev. Lett., 34 (1975) 1472.

The difference in height between level BD and level AC implies a slight difference
in p, or λ. As a result, there is an accumulation of phase differences due to the λ
difference. It is left as an exercise to show that this wave-mechanical approach also leads to
result (2.337).

What is interesting about expression (2.337) is that its magnitude is neither too small
nor too large; it is just right for this interesting effect to be detected with thermal
neutrons traveling through paths of “table-top” dimensions. For λ = 1.42 Å (comparable
to interatomic spacing in silicon) and l1l2 = 10 cm2, we obtain 55.6 for m2

ngl1l2λ/h̄2.
As we rotate the loop plane gradually by 90◦, we predict the intensity in the inter-
ference region to exhibit a series of maxima and minima; quantitatively we should
see 55.6/2π � 9 oscillations. It is extraordinary that such an effect has indeed been
observed experimentally; see Figure 2.10 taken from a 1975 experiment of R. Colella, A.
Overhauser, and S. A. Werner. The phase shift due to gravity is seen to be verified to well
within 1%.

We emphasize that this effect is purely quantum mechanical because as h̄ → 0, the
interference pattern gets washed out. The gravitational potential has been shown to
enter into the Schrödinger equation just as expected. This experiment also shows that
gravity is not purely geometric at the quantum level because the effect depends on
(m/h̄)2.14

14 However, this does not imply that the equivalence principle is unimportant in understanding an effect of this
sort. If the gravitational mass (mgrav) and inertial mass (minert) were unequal, (m/h̄)2 would have to be replaced
by mgravminert/h̄2. The fact that we could correctly predict the interference pattern without making a distinction
between mgrav and minert shows some support for the equivalence principle at the quantum level.
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2.7.3 Gauge Transformations in Electromagnetism

Let us now turn to potentials that appear in electromagnetism. We consider an electric
and a magnetic field derivable from the time-independent scalar and vector potential, φ(x)
and A(x):

E =−∇φ, B = ∇×A. (2.339)

The Hamiltonian for a particle of electric charge e (e < 0 for the electron) subjected to the
electromagnetic field is taken from classical physics to be

H =
1

2m

(
p− eA

c

)2

+ eφ. (2.340)

In quantum mechanics φ and A are understood to be functions of the position operator x of
the charged particle. Because p and A do not commute, some care is needed in interpreting
(2.340). The safest procedure is to write(

p− eA
c

)2

→ p2 −
(e

c

)
(p ·A+A ·p)+

(e
c

)2
A2. (2.341)

In this form the Hamiltonian is obviously Hermitian.
To study the dynamics of a charged particle subjected to φ and A, let us first proceed

in the Heisenberg picture. We can evaluate the time derivative of x in a straightforward
manner as

dxi

dt
=

[xi,H]

ih̄
=

(pi − eAi/c)
m

, (2.342)

which shows that the operator p, defined in this book to be the generator of translation, is
not the same as mdx/dt. Quite often p is called canonical momentum, as distinguished
from kinematical (or mechanical) momentum, denoted by Π:

Π≡ m
dx
dt

= p− eA
c

. (2.343)

Even though we have

[pi,pj] = 0 (2.344)

for canonical momentum, the analogous commutator does not vanish for mechanical
momentum. Instead we have

[Πi,Πj] =

(
ih̄e
c

)
εijkBk, (2.345)

as the reader may easily verify. Rewriting the Hamiltonian as

H =
Π2

2m
+ eφ (2.346)

and using the fundamental commutation relation, we can derive the quantum-mechanical
version of the Lorentz force, namely,

m
d2x
dt2

=
dΠ
dt

= e
[
E+

1
2c

(
dx
dt

×B−B× dx
dt

)]
. (2.347)
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This then is Ehrenfest’s theorem, written in the Heisenberg picture, for the charged particle
in the presence of E and B.

We now study Schrödinger’s wave equation with φ and A. Our first task is to sandwich
H between 〈x′| and |α, t0; t〉. The only term with which we have to be careful is

〈x′|
[
p− eA(x)

c

]2

|α, t0; t〉=
[
−ih̄∇′ − eA(x′)

c

]
〈x′|

[
p− eA(x)

c

]
|α, t0; t〉

=

[
−ih̄∇′ − eA(x′)

c

]
·
[
−ih̄∇′ − eA(x′)

c

]
〈x′|α, t0; t〉.

(2.348)

It is important to emphasize that the first ∇′ in the last line can differentiate both 〈x′|α, t0; t〉
and A(x′). Combining everything, we have

1
2m

[
−ih̄∇′ − eA(x′)

c

]
·
[
−ih̄∇′ − eA(x′)

c

]
〈x′|α, t0; t〉

+ eφ(x′)〈x′|α, t0; t〉= ih̄
∂
∂ t

〈x′|α, t0; t〉. (2.349)

From this expression we readily obtain the continuity equation

∂ρ
∂ t

+∇′· j = 0, (2.350)

where ρ is |ψ|2 as before, with 〈x′|α, t0; t〉 written as ψ, but for the probability flux j we
have

j =
(

h̄
m

)
Im(ψ∗∇′ψ)−

( e
mc

)
A|ψ|2, (2.351)

which is just what we expect from the substitution

∇′ → ∇′ −
(

ie
h̄c

)
A. (2.352)

Writing the wave function of √ρ exp(iS/h̄) [see (2.193)], we obtain an alternative form for
j, namely,

j =
( ρ

m

)(
∇S− eA

c

)
, (2.353)

which is to be compared with (2.195). We will find this form to be convenient in discussing
superconductivity, flux quantization, and so on. We also note that the space integral of
j is the expectation value of kinematical momentum (not canonical momentum) apart
from 1/m: ∫

d3x′j =
〈p− eA/c〉

m
= 〈Π〉/m. (2.354)

We are now in a position to discuss the subject of gauge transformations in electro-
magnetism. First, consider

φ→ φ+λ, A → A, (2.355)
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with λ constant, that is, independent of x and t. Both E and B obviously remain unchanged.
This transformation just amounts to a change in the zero point of the energy scale, a
possibility treated in the beginning of this section; we just replace V by eφ. We have
already discussed the accompanying change needed for the state ket [see (2.325)], so we
do not dwell on this transformation any further.

Much more interesting is the transformation

φ→ φ, A → A+∇Λ, (2.356)

where Λ is a function of x. The static electromagnetic fields E and B are unchanged under
(2.356). Both (2.355) and (2.356) are special cases of

φ→ φ− 1
c

∂Λ
∂ t

, A → A+∇Λ, (2.357)

which leave E and B, given by

E =−∇φ− 1
c

∂A
∂ t

, B = ∇×A, (2.358)

unchanged, but in the following we do not consider time-dependent fields and potentials.
In the remaining part of this section the term gauge transformation refers to (2.356).

In classical physics observable effects such as the trajectory of a charged particle are
independent of the gauge used, that is, of the particular choice of Λ we happen to adopt.
Consider a charged particle in a uniform magnetic field in the z-direction

B = Bẑ. (2.359)

This magnetic field may be derived from

Ax =
−By

2
, Ay =

Bx
2

, Az = 0 (2.360)

or also from

Ax =−By, Ay = 0, Az = 0. (2.361)

The second form is obtained from the first by

A → A−∇
(

Bxy
2

)
, (2.362)

which is indeed of the form of (2.356). Regardless of which A we may use, the trajectory
of the charged particle with a given set of initial conditions is the same; it is just a helix –
a uniform circular motion when projected in the xy-plane, superposed with a uniform
rectilinear motion in the z-direction. Yet if we look at px and py, the results are very
different. For one thing, px is a constant of the motion when (2.361) is used but not when
(2.360) is used.

Recall Hamilton’s equations of motion:

dpx

dt
=−∂H

∂x
,

dpy

dt
=−∂H

∂y
,. . . . (2.363)

In general, the canonical momentum p is not a gauge-invariant quantity; its numerical value
depends on the particular gauge used even when we are referring to the same physical
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situation. In contrast, the kinematic momentum Π, or mdx/dt, that traces the trajectory
of the particle is a gauge-invariant quantity, as one may explicitly verify. Because p and
mdx/dt are related via (2.343), p must change to compensate for the change in A given by
(2.362).

We now return to quantum mechanics. We believe that it is reasonable to demand that the
expectation values in quantum mechanics behave in a manner similar to the corresponding
classical quantities under gauge transformations, so 〈x〉 and 〈Π〉 are not to change under
gauge transformations, while 〈p〉 is expected to change.

Let us denote by |α〉 the state ket in the presence of A; the state ket for the same physical
situation when

Ã = A+∇Λ (2.364)

is used in place of A is denoted by |α̃〉. Here Λ, as well as A, is a function of the position
operator x. Our basic requirements are

〈α|x|α〉= 〈α̃|x|α̃〉 (2.365a)

and

〈α|
(

p− eA
c

)
|α〉= 〈α̃|

(
p− eÃ

c

)
|α̃〉. (2.365b)

In addition, we require, as usual, the norm of the state ket to be preserved:

〈α|α〉= 〈α̃|α̃〉. (2.366)

We must construct an operator G that relates |α̃〉 to |α〉:

|α̃〉= G |α〉. (2.367)

Invariance properties (2.365a) and (2.365b) are guaranteed if

G †xG = x (2.368a)

and

G †

(
p− eA

c
− e∇Λ

c

)
G = p− eA

c
. (2.368b)

We assert that

G = exp

[
ieΛ(x)

h̄c

]
(2.369)

will do the job. First, G is unitary, so (2.366) is all right. Second, (2.368a) is obviously
satisfied because x commutes with any function of x. As for (2.368b), just note that

exp

(
−ieΛ

h̄c

)
pexp

(
ieΛ
h̄c

)
= exp

(
−ieΛ

h̄c

)[
p, exp

(
ieΛ
h̄c

)]
+p

=−exp

(
−ieΛ

h̄c

)
ih̄∇

[
exp

(
ieΛ
h̄c

)]
+p

= p+
e∇Λ

c
, (2.370)

where we have used (2.97b).
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The invariance of quantum mechanics under gauge transformations can also be demon-
strated by looking directly at the Schrödinger equation. Let |α, t0; t〉 be a solution to the
Schrödinger equation in the presence of A:[

(p− eA/c)2

2m
+ eφ

]
|α, t0; t〉= ih̄

∂
∂ t

|α, t0; t〉. (2.371)

The corresponding solution in the presence of Ã must satisfy[
(p− eA/c− e∇Λ/c)2

2m
+ eφ

]
| ˜α, t0; t〉= ih̄

∂
∂ t

| ˜α, t0; t〉. (2.372)

We see that if the new ket is taken to be

| ˜α, t0; t〉= exp

(
ieΛ
h̄c

)
|α, t0; t〉 (2.373)

in accordance with (2.369), then the new Schrödinger equation (2.372) will be satisfied; all
we have to note is that

exp

(
−ieΛ

h̄c

)(
p− eA

c
− e∇Λ

c

)2

exp

(
ieΛ
h̄c

)
=

(
p− eA

c

)2

, (2.374)

which follows from applying (2.370) twice.
Equation (2.373) also implies that the corresponding wave equations are related via

ψ̃(x′, t) = exp

[
ieΛ(x′)

h̄c

]
ψ(x′, t), (2.375)

whereΛ(x′) is now a real function of the position vector eigenvalue x′. This can, of course,
be verified also by directly substituting (2.375) into Schrödinger’s wave equation with A
replaced by A+∇Λ. In terms of ρ and S, we see that ρ is unchanged but S is modified as
follows:

S → S+
eΛ
c

. (2.376)

This is highly satisfactory because we see that the probability flux given by (2.353) is then
gauge invariant.

To summarize, when vector potentials in different gauges are used for the same physical
situation, the corresponding state kets (or wave functions) must necessarily be different.
However, only a simple change is needed; we can go from a gauge specified by A to
another specified by A+∇Λ by merely multiplying the old ket (the old wave function) by
exp[ieΛ(x)/h̄c] (exp[ieΛ(x′)/h̄c]). The canonical momentum, defined as the generator of
translation, is manifestly gauge dependent in the sense that its expectation value depends
on the particular gauge chosen, while the kinematic momentum and the probability flux
are gauge invariant.

The reader may wonder why invariance under (2.369) is called gauge invariance. This
word is the translation of the German Eichinvarianz, where Eich means gauge. There is a
historical anecdote that goes with the origin of this term.

Consider some function of position at x: F(x). At a neighboring point we obviously have

F(x+dx)� F(x)+(∇F) ·dx. (2.377)
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But suppose we apply a scale change as we go from x to x+dx as follows:

1|atx → [1+Σ(x) ·dx]|at x+dx. (2.378)

We must then rescale F(x) as follows:

F(x+dx)|rescaled � F(x)+ [(∇+Σ)F] ·dx (2.379)

instead of (2.377). The combination ∇+Σ is similar to the gauge-invariant combination

∇−
(

ie
h̄c

)
A (2.380)

encountered in (2.352) except for the absence of i. Historically, H. Weyl unsuccessfully
attempted to construct a geometric theory of electromagnetism based on Eichinvarianz by
identifying the scale function Σ(x) in (2.378) and (2.379) with the vector potential A itself.
With the birth of quantum mechanics, V. Fock and F. London realized the importance of the
gauge-invariant combination (2.380), and they recalled Weyl’s earlier work by comparing
Σ with i times A. We are stuck with the term gauge invariance even though the quantum-
mechanical analogue of (2.378)

1
∣∣∣∣at x →

[
1−

(
ie
h̄c

)
A ·dx

]∣∣∣∣
at x+dx

(2.381)

would actually correspond to “phase change” rather than to “scale change.”

2.7.4 The Aharonov–Bohm Effect

The use of vector potential in quantum mechanics has many far-reaching consequences,
some of which we are now ready to discuss. We start with a relatively innocuous-looking
problem. For filling in the details, plus an extension into a discussion of quantized flux, see
Problem 2.37 at the end of this chapter.

Consider a hollow cylindrical shell, as shown in Figure 2.11a. We assume that a particle
of charge e can be completely confined to the interior of the shell with rigid walls. The wave
function is required to vanish on the inner (ρ = ρa) and outer (ρ = ρb) walls as well as
at the top and the bottom. It is a straightforward boundary-value problem in mathematical
physics to obtain the energy eigenvalues.

Let us now consider a modified arrangement where the cylindrical shell encloses a
uniform magnetic field, as shown in Figure 2.11b. Specifically, you may imagine fitting
a very long solenoid into the hole in the middle in such a way that no magnetic field leaks
into the region ρ ≥ ρa. The boundary conditions for the wave function are taken to be the
same as before; the walls are assumed to be just as rigid. Intuitively we may conjecture that
the energy spectrum is unchanged because the region with B 	= 0 is completely inaccessible
to the charged particle trapped inside the shell. However, quantum mechanics tells us that
this conjecture is not correct.

Even though the magnetic field vanishes in the interior, the vector potential A is
nonvanishing. We need A 	= 0 for ρ < ρa, but we cannot set A = 0 for ρ > ρa because
the discontinuity leads to an unphysical magnetic field. However, we can use a gauge
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Fig. 2.11 Hollow cylindrical shell (a) without a magnetic field, (b) with a uniform magnetic field.

transformation to set B = 0, and then apply (2.375) so that the wave function gains
the appropriate phase factor. The correspondingly modified Schrödinger equation is then
solved for the energy eigenvalues in the region ρa ≤ ρ ≤ ρb.

Using Stokes’s theorem we can infer that the vector potential needed to produce the
magnetic field B(= Bẑ) is

A =

(
Bρ2

a
2ρ

)
φ̂, (2.382)

where φ̂ is the unit vector in the direction of increasing azimuthal angle. In attempting to
solve the Schrödinger equation to find the energy eigenvalues for this new problem, we
need only to replace the gradient ∇ by ∇− (ie/h̄c)A; we can accomplish this in cylindrical
coordinates by replacing the partial derivative with respect to φ as follows:

∂
∂φ

→ ∂
∂φ

−
(

ie
h̄c

)
Bρ2

a
2

; (2.383)

recall the expression for gradient in cylindrical coordinates:

∇ = ρ̂
∂

∂ρ
+ ẑ

∂
∂ z

+ φ̂
1
ρ

∂
∂φ

. (2.384)

The replacement (2.383) results in an observable change in the energy spectrum, as the
reader may verify explicitly. This is quite remarkable because the particle never “touches”
the magnetic field; the Lorentz force the particle experiences is identically zero in this
problem, yet the energy levels depend on whether or not the magnetic field is finite in the
hole region inaccessible to the particle.
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Fig. 2.12 The Aharonov–Bohm effect.

The problem we have just treated is the bound-state version of what is commonly
referred to as the Aharonov–Bohm effect.15 We are now in a position to discuss the original
form of the Aharonov–Bohm effect itself. Consider a particle of charge e going above or
below a very long impenetrable cylinder, as shown in Figure 2.12. Inside the cylinder is a
magnetic field parallel to the cylinder axis, taken to be normal to the plane of Figure 2.12.
So the particle paths above and below enclose a magnetic flux. Our object is to study
how the probability of finding the particle in the interference region B depends on the
magnetic flux.

Even though this problem can be attacked by comparing the solutions to the Schrödinger
equation in the presence and absence of B, for pedagogical reasons we prefer to use the
Feynman path-integral method. Let x1 and xN be typical points in source region A and
interference region B, respectively. We recall from classical mechanics that the Lagrangian
in the presence of the magnetic field can be obtained from that in the absence of the
magnetic field, denoted by L(0)

classical, as follows:

L(0)
classical =

m
2

(
dx
dt

)2

→ L(0)
classical +

e
c

dx
dt

·A. (2.385)

The corresponding change in the action for some definite path segment going from
(xn−1, tn−1) to (xn, tn) is then given by

S(0)(n, n−1)→ S(0)(n, n−1)+
e
c

∫ tn

tn−1

dt
(

dx
dt

)
·A. (2.386)

But this last integral can be written as

e
c

∫ tn

tn−1

dt
(

dx
dt

)
·A =

e
c

∫ xn

xn−1

A ·ds, (2.387)

where ds is the differential line element along the path segment, so when we consider the
entire contribution from x1 to xN, we have the following change:

∏exp

[
iS(0)(n, n−1)

h̄

]
→

{
∏exp

[
iS(0)(n, n−1)

h̄

]}
exp

(
ie
h̄c

∫ xN

x1

A ·ds
)

. (2.388)

All this is for a particular path, such as going above the cylinder. We must still sum over all
possible paths, which may appear to be a formidable task. Fortunately, we know from the

15 After a 1959 paper by Y. Aharonov and D. Bohm (Phys. Rev., 115 (1959) 485). Essentially the same effect
was discussed 10 years earlier by W. Ehrenberg and R. E. Siday.
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theory of electromagnetism that the line integral
∫

A ·ds is independent of paths, that is, it
is dependent only on the end points, as long as the loop formed by a pair of different paths
does not enclose a magnetic flux. As a result, the contributions due to A 	= 0 to all paths
going above the cylinder are given by a common phase factor; similarly, the contributions
from all paths going below the cylinder are multiplied by another common phase factor. In
the path-integral notation we have, for the entire transition amplitude,∫

above
D [x(t)]exp

[
iS(0)(N,1)

h̄

]
+

∫
below

D [x(t)]exp

[
iS(0)(N,1)

h̄

]

→
∫

above
D [x(t)]exp

[
iS(0)(N,1)

h̄

]{
exp

[(
ie
h̄c

)∫ xN

x1

A·ds
]

above

}

+
∫

below
D [x(t)]exp

[
iS(0)(N,1)

h̄

]{
exp

[(
ie
h̄c

)∫ xN

x1

A·ds
]

below

}
. (2.389)

The probability for finding the particle in the interference region B depends on the modulus
squared of the entire transition amplitude and hence on the phase difference between
the contribution from the paths going above and below. The phase difference due to the
presence of B is just[( e

h̄c

)∫ xN

x1

A ·ds
]

above

−
[( e

h̄c

)∫ xN

x1

A ·ds
]

below

=
( e

h̄c

)∮
A ·ds

=
( e

h̄c

)
ΦB, (2.390)

where ΦB stands for the magnetic flux inside the impenetrable cylinder. This means that as
we change the magnetic field strength, there is a sinusoidal component in the probability
for observing the particle in region B with a period given by a fundamental unit of magnetic
flux, namely,

2πh̄c
|e| = 4.135×10−7 Gauss-cm2. (2.391)

We emphasize that the interference effect discussed here is purely quantum mechanical.
Classically, the motion of a charged particle is determined solely by Newton’s second law
supplemented by the force law of Lorentz. Here, as in the previous bound-state problem,
the particle can never enter the region in which B is finite; the Lorentz force is identically
zero in all regions where the particle wave function is finite. Yet there is a striking
interference pattern that depends on the presence or absence of a magnetic field inside
the impenetrable cylinder. This point has led some people to conclude that in quantum
mechanics it is A rather than B that is fundamental. It is to be noted, however, that the
observable effects in both examples depend only on ΦB, which is directly expressible in
terms of B. Experiments to verify the Aharonov–Bohm effect have been performed using
a thin magnetized iron filament called a whisker.16

16 One such recent experiment is that of Tonomura et al., Phys. Rev. Lett., 48 (1982) 1443.
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2.7.5 Magnetic Monopole

We conclude this section with one of the most remarkable predictions of quantum physics,
which has yet to be verified experimentally. An astute student of classical electrodynamics
may be struck by the fact that there is a strong symmetry between E and B, yet a magnetic
charge, commonly referred to as a magnetic monopole, analogous to electric charge is
peculiarly absent in Maxwell’s equations. The source of a magnetic field observed in nature
is either a moving electric charge or a static magnetic dipole, never a static magnetic charge.
Instead of

∇ ·B = 4πρM (2.392)

analogous to

∇ ·E = 4πρ, (2.393)

∇ ·B actually vanishes in the usual way of writing Maxwell’s equations. Quantum mechan-
ics does not predict that a magnetic monopole must exist. However, it unambiguously
requires that if a magnetic monopole is ever found in nature, the magnitude of magnetic
charge must be quantized in terms of e, h̄, and c, as we now demonstrate.

Suppose there is a point magnetic monopole, situated at the origin, of strength eM
analogous to a point electric charge. The static magnetic field is then given by

B =
(eM

r2

)
r̂. (2.394)

At first sight it may appear that the magnetic field (2.394) can be derived from

A =

[
eM(1− cosθ)

rsinθ

]
φ̂. (2.395)

Recall the expression for curl in spherical coordinates:

∇×A = r̂
1

rsinθ

[
∂

∂θ
(Aφ sinθ)− ∂Aθ

∂φ

]

+ θ̂
1
r

[
1

sinθ
∂Ar

∂φ
− ∂

∂ r
(rAφ)

]
+ φ̂

1
r

[
∂
∂ r

(rAθ )−
∂Ar

∂θ

]
. (2.396)

But vector potential (2.395) has one difficulty – it is singular on the negative z-axis
(θ = π). In fact, it turns out to be impossible to construct a singularity-free potential valid
everywhere for this problem. To see this we first note “Gauss’s law”∫

closed surface
B ·dσ = 4πeM (2.397)

for any surface boundary enclosing the origin at which the magnetic monopole is located.
On the other hand, if A were nonsingular, we would have

∇ ·(∇×A) = 0 (2.398)
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Fig. 2.13 Regions of validity for the potentials A(I) and A(II).

everywhere; hence,∫
closed surface

B ·dσ =
∫

volume inside
∇ ·(∇×A)d3x = 0, (2.399)

in contradiction with (2.397).
However, one might argue that because the vector potential is just a device for obtaining

B, we need not insist on having a single expression for A valid everywhere. Suppose we
construct a pair of potentials,

A(I) =

[
eM(1− cos θ)

r sin θ

]
φ̂ (θ < π− ε) (2.400a)

A(II) =−
[

eM(1+ cos θ)
r sin θ

]
φ̂ (θ > ε), (2.400b)

such that the potential A(I) can be used everywhere except inside the cone defined by
θ = π− ε around the negative z-axis; likewise, the potential A(II) can be used everywhere
except inside the cone θ = ε around the positive z-axis; see Figure 2.13. Together they lead
to the correct expression for B everywhere.17

Consider now what happens in the overlap region ε < θ < π− ε, where we may use
either A(I) or A(II). Because the two potentials lead to the same magnetic field, they must
be related to each other by a gauge transformation. To find Λ appropriate for this problem
we first note that

A(II)−A(I) =−
(

2eM

r sin θ

)
φ̂. (2.401)

17 An alternative approach to this problem uses A(I) everywhere, but taking special care of the string of
singularities, known as a Dirac string, along the negative z-axis.
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Recalling the expression for gradient in spherical coordinates,

∇Λ= r̂
∂Λ
∂ r

+ θ̂
1
r

∂Λ
∂θ

+ φ̂
1

rsin θ
∂Λ
∂φ

, (2.402)

we deduce that

Λ=−2eMφ (2.403)

will do the job.
Next, we consider the wave function of an electrically charged particle of charge e

subjected to magnetic field (2.394). As we emphasized earlier, the particular form of the
wave function depends on the particular gauge used. In the overlap region where we may
use either A(I) or A(II), the corresponding wave functions are, according to (2.375), related
to each other by

ψ(II) = exp

(
−2ieeMφ

h̄c

)
ψ(I). (2.404)

Wave functions ψ(I) and ψ(II) must each be single valued because once we choose a
particular gauge, the expansion of the state ket in terms of the position eigenkets must
be unique. After all, as we have repeatedly emphasized, the wave function is simply an
expansion coefficient for the state ket in terms of the position eigenkets.

Let us now examine the behavior of wave function ψ(II) on the equator θ = π/2 with
some definite radius r, which is a constant. When we increase the azimuthal angle φ along
the equator and go around once, say from φ = 0 to φ = 2π, ψ(II), as well as ψ(I), must
return to its original value because each is single valued. According to (2.404), this is
possible only if

2eeM

h̄c
=±N, N = 0,±1,±2,. . . . (2.405)

So we reach a very far-reaching conclusion: The magnetic charges must be quantized in
units of

h̄c
2|e| �

(
137
2

)
|e|. (2.406)

The smallest magnetic charge possible is h̄c/2|e|, where e is the electronic charge. It is
amusing that once a magnetic monopole is assumed to exist, we can use (2.405) backward,
so to speak, to explain why the electric charges are quantized, for example, why the proton
charge cannot be 0.999972 times |e|.18

We repeat once again that quantum mechanics does not require magnetic monopoles
to exist. However, it unambiguously predicts that a magnetic charge, if it is ever found
in nature, must be quantized in units of h̄c/2|e|. The quantization of magnetic charges
in quantum mechanics was first shown in 1931 by P. A. M. Dirac. The derivation
given here is due to T. T. Wu and C. N. Yang. A different solution, which connects

18 Empirically the equality in magnitude between the electron charge and the proton charge is established to an
accuracy of four parts in 1019.
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the Dirac quantization condition to the quantization of angular momentum, is dis-
cussed by Lipkin et al., Ann. Phys., 53 (1969) 203. Finally, we will revisit this subject
again in Section 5.6 when we discuss Berry’s phase in conjunction with the adiabatic
approximation.

Problems

2.1 Consider the spin-precession problem discussed in the text. It can also be solved in
the Heisenberg picture. Using the Hamiltonian

H =−
(

eB
mc

)
Sz = ωSz,

write the Heisenberg equations of motion for the time-dependent operators Sx(t),
Sy(t), and Sz(t). Solve them to obtain Sx,y,z as functions of time.

2.2 Look again at the Hamiltonian of Chapter 1, Problem 1.13. Suppose the typist made
an error and wrote H as

H = H11|1〉〈1|+H22|2〉〈2|+H12|1〉〈2|.

What principle is now violated? Illustrate your point explicitly by attempting to solve
the most general time-dependent problem using an illegal Hamiltonian of this kind.
(You may assume H11 = H22 = 0 for simplicity.)

2.3 An electron is subject to a uniform, time-independent magnetic field of strength B in
the positive z-direction. At t = 0 the electron is known to be in an eigenstate of S · n̂
with eigenvalue h̄/2, where n̂ is a unit vector, lying in the xz-plane, that makes an
angle β with the z-axis.
a. Obtain the probability for finding the electron in the Sx = h̄/2 state as a function

of time.
b. Find the expectation value of Sx as a function of time.
c. For your own peace of mind show that your answers make good sense in the

extreme cases (i) β→ 0 and (ii) β→ π/2.

2.4 Derive the neutrino oscillation probability (2.65) and use it, along with the data in
Figure 2.2, to estimate the values of Δm2c4 (in units of eV2) and θ .

2.5 Let x(t) be the coordinate operator for a free particle in one dimension in the
Heisenberg picture. Evaluate

[x(t),x(0)].

2.6 Consider a particle in one dimension whose Hamiltonian is given by

H =
p2

2m
+V(x).
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By calculating [[H,x],x] prove

∑
a′
|〈a′′|x|a′〉|2(Ea′ −Ea′′) =

h̄2

2m
,

where |a′〉 is an energy eigenket with eigenvalue Ea′ .

2.7 Consider a particle in three dimensions whose Hamiltonian is given by

H =
p2

2m
+V(x).

By calculating [x ·p,H] obtain

d
dt
〈x ·p〉=

〈
p2

m

〉
−〈x ·∇V〉.

To identify the preceding relation with the quantum-mechanical analogue of the virial
theorem it is essential that the left-hand side vanish. Under what condition would this
happen?

2.8 Consider a free-particle wave packet in one dimension. At t = 0 it satisfies the
minimum uncertainty relation

〈(Δx)2〉〈(Δp)2〉= h̄2

4
(t = 0).

In addition, we know

〈x〉= 〈p〉= 0 (t = 0).

Using the Heisenberg picture, obtain 〈(Δx)2〉t as a function of t(t ≥ 0) when
〈(Δx)2〉t=0 is given. (Hint: Take advantage of the property of the minimum-
uncertainty wave packet you worked out in Chapter 1, Problem 1.20.)

2.9 For a wave function 〈x′|α〉 = A(x′ − a)2(x′ + a)2eikx′ for −a ≤ x′ ≤ a and zero
otherwise, carry out the following.
a. Find the constant A.
b. Find the expectation values 〈x〉, 〈p〉, 〈x2〉, and 〈p2〉.
c. Find the expectation values 〈(Δx)2〉 and 〈(Δp)2〉, and compare their product to

that for a Gaussian wave packet.

2.10 Let |a′〉 and |a′′〉 be eigenstates of a Hermitian operator A with eigenvalues a′ and a′′,
respectively (a′ 	= a′′). The Hamiltonian operator is given by

H = |a′〉δ〈a′′|+ |a′′〉δ〈a′|,

where δ is just a real number.
a. Clearly, |a′〉 and |a′′〉 are not eigenstates of the Hamiltonian. Write down the

eigenstates of the Hamiltonian. What are their energy eigenvalues?
b. Suppose the system is known to be in state |a′〉 at t = 0. Write down the state

vector in the Schrödinger picture for t > 0.
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c. What is the probability for finding the system in |a′′〉 for t > 0 if the system is
known to be in state |a′〉 at t = 0?

d. Can you think of a physical situation corresponding to this problem?

2.11 A box containing a particle is divided into a right and a left compartment by a thin
partition. If the particle is known to be on the right (left) side with certainty, the state
is represented by the position eigenket |R〉 (|L〉), where we have neglected spatial
variations within each half of the box. The most general state vector can then be
written as

|α〉= |R〉〈R|α〉+ |L〉〈L|α〉,

where 〈R|α〉 and 〈L|α〉 can be regarded as “wave functions.” The particle can tunnel
through the partition; this tunneling effect is characterized by the Hamiltonian

H = Δ(|L〉〈R|+ |R〉〈L|),

where Δ is a real number with the dimension of energy.
a. Find the normalized energy eigenkets. What are the corresponding energy

eigenvalues?
b. In the Schrödinger picture the base kets |R〉 and |L〉 are fixed, and the state vector

moves with time. Suppose the system is represented by |α〉 as given above at
t = 0. Find the state vector |α, t0 = 0; t〉 for t > 0 by applying the appropriate
time-evolution operator to |α〉.

c. Suppose at t = 0 the particle is on the right side with certainty. What is the
probability for observing the particle on the left side as a function of time?

d. Write down the coupled Schrödinger equations for the wave functions 〈R|α, t0 =
0; t〉 and 〈L|α, t0 = 0; t〉. Show that the solutions to the coupled Schrödinger
equations are just what you expect from (b).

e. Suppose the printer made an error and wrote H as

H = Δ|L〉〈R|.

By explicitly solving the most general time-evolution problem with this Hamilto-
nian, show that probability conservation is violated.

2.12 A one-dimensional simple harmonic oscillator with natural frequency ω is in initial
state

|α〉= 1√
2
|0〉+ eiδ

√
2
|1〉

where δ is a real number.
a. Find the time-dependent wave function 〈x′|α; t〉 and evaluate the (time-dependent)

expectation values 〈x〉 and 〈p〉 in the state |α; t〉, i.e. in the Schrödinger picture.
b. Now calculate 〈x〉 and 〈p〉 in the Heisenberg picture and compare the results.

2.13 A particle with mass m moves in one dimension and is acted on by a constant force F.
Find the operators x(t) and p(t) in the Heisenberg picture, and find their expectation
values for an arbitrary state |α〉. Use 〈x(0)〉= x0 and 〈p(0)〉= p0. The result should
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be obvious. Comment on how to do this problem in the Schrödinger picture, but do
not try to work it through.

2.14 Consider a particle subject to a one-dimensional simple harmonic oscillator potential.
Suppose at t = 0 the state vector is given by

exp

(
−ipa

h̄

)
|0〉,

where p is the momentum operator, a is some number with dimension of length,
and the state |0〉 is the one for which 〈x〉 = 0 = 〈p〉. Using the Heisenberg picture,
evaluate the expectation value 〈x〉 for t ≥ 0.

2.15 a. Write down the wave function (in coordinate space) for the state specified in
Problem 2.14 at t = 0. You may use

〈x′|0〉= π−1/4x−1/2
0 exp

[
−1

2

(
x′

x0

)2
]

, x0 ≡
(

h̄
mω

)1/2

.

b. Obtain a simple expression for the probability that the state is found in the ground
state at t = 0. Does this probability change for t > 0?

2.16 Consider a one-dimensional simple harmonic oscillator.
a. Using

a
a†

}
=

√
mω
2h̄

(
x± ip

mω

)
, a|n〉

a†|n〉

}
=

{√
n|n−1〉√
n+1|n+1〉,

evaluate 〈m|x|n〉, 〈m|p|n〉, 〈m|{x,p}|n〉, 〈m|x2|n〉, and 〈m|p2|n〉.
b. Translated from classical physics, the virial theorem states that〈

p2

m

〉
= 〈x ·∇V〉 (3D) or

〈
p2

m

〉
= 〈xdV

dx
〉 (1D)

Check that the virial theorem holds for the expectation values of the kinetic and
the potential energy taken with respect to an energy eigenstate.

2.17 a. Using

〈x′|p′〉= (2πh̄)−1/2eip′ x′/h̄ (one dimension)

prove

〈p′|x|α〉= ih̄
∂

∂p′
〈p′|α〉.

b. Consider a one-dimensional simple harmonic oscillator. Starting with the
Schrödinger equation for the state vector, derive the Schrödinger equation for
the momentum-space wave function. (Make sure to distinguish the operator p
from the eigenvalue p′.) Can you guess the energy eigenfunctions in momentum
space?
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2.18 Consider a function, known as the correlation function, defined by

C(t) = 〈x(t)x(0)〉,

where x(t) is the position operator in the Heisenberg picture. Evaluate the correlation
function explicitly for the ground state of a one-dimensional simple harmonic
oscillator.

2.19 Consider again a one-dimensional simple harmonic oscillator. Do the following
algebraically, that is, without using wave functions.
a. Construct a linear combination of |0〉 and |1〉 such that 〈x〉 is as large as possible.
b. Suppose the oscillator is in the state constructed in (a) at t = 0. What is the state

vector for t> 0 in the Schrödinger picture? Evaluate the expectation value 〈x〉 as a
function of time for t > 0 using (i) the Schrödinger picture and (ii) the Heisenberg
picture.

c. Evaluate 〈(Δx)2〉 as a function of time using either picture.

2.20 Show for the one-dimensional simple harmonic oscillator

〈0|eikx|0〉= exp[−k2〈0|x2|0〉/2],

where x is the position operator.

2.21 The problem covers some fundamental concepts in quantum optics. See Glauber,
Phys. Rev., 84 (1951) 395 and his Nobel lecture, Rev. Mod. Phys., 78 (2006) 1267;
Gottfried (1966), Section 31; Merzbacher (1998), Section 10.7; and Gottfried and
Yan (2003), Section 4.2.

A coherent state of a one-dimensional simple harmonic oscillator is defined to be
an eigenstate of the (non-Hermitian) annihilation operator a:

a|λ〉= λ|λ〉,

where λ is, in general, a complex number.
a. Prove that

|λ〉= e−|λ|2/2eλa† |0〉

is a normalized coherent state.
b. Prove the minimum uncertainty relation for such a state.
c. Write |λ〉 as

|λ〉=
∞

∑
n=0

f(n)|n〉.

Show that the distribution of | f(n)|2 with respect to n is in the form of a Poisson
distribution, that is Pn(μ) = e−μμn/n! where μ is the mean of the distribution.
Find the most probable (integer) value of n, hence of E.

d. Show that a coherent state can also be obtained by applying the translation (finite
displacement) operator e−ipl/h̄ (where p is the momentum operator, and l is the
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displacement distance) to the ground state. (See also Gottfried (1966), pp. 262–
264; Problem 2.13 in Gottfried and Yan (2003), and Eq. 39 in Glauber’s 1951
paper.)

2.22 Write a computer program to animate the time dependence of an arbitrary linear
combination of stationary states for the simple harmonic oscillator in one dimension.
The animation should display the time dependence of both the wave function and the
probability density distribution for finding the particle, both as a function of position.
Check your animation by using pure eigenstates as input, and consider combinations
that would approximate classical motion. Also animate the coherent state |λ〉 in
Problem 2.21 above, for different mean values of the Poisson distribution.

2.23 Make the definitions

J± ≡ h̄a†
±a∓, Jz ≡

h̄
2
(a†

+a+−a†
−a−), N ≡ a†

+a++a†
−a−

where a± and a†
± are the annihilation and creation operators of two independent sim-

ple harmonic oscillators satisfying the usual simple harmonic oscillator commutation
relations. Also make the definition

J2 ≡ J2
z +

1
2
(J+J−+ J−J+).

Prove

[Jz,J±] =±h̄J±, [J2,Jz] = 0, J2 =

(
h̄2

2

)
N

[(
N
2

)
+1

]
.

2.24 This exercise has to do with proving conservation laws in classical and quantum
physics.
a. Show that if a quantity Q with a density ρ(x, t) in some region R can only be

changed by a flux density j(x, t) through the surface bordering R, then

∂ρ
∂ t

+∇ · j = 0.

b. Prove that Maxwell’s equations imply that electric charge is conserved
c. Prove that Schrödinger’s equation implies that probability is conserved, i.e.

(2.190)

2.25 Derive the normalization constant cn in (2.232) by deriving the orthogonality
relationship (2.233) using generating functions. Start by working out the integral

I =
∫ ∞

−∞
g(x, t)g(x,s)e−x2

dx

and then consider the integral again with the generating functions in terms of series
with Hermite polynomials.

2.26 Derive an expression for the action of the position operator on an arbitrary state in
the momentum representation. That is, find 〈p′|x|α〉 in terms of 〈p′|α〉. Use this to
solve the linear potential (2.234) problem in momentum space, and show that the
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Fourier transform of your solution is indeed the appropriate Airy function. Note that
an alternative form of the Airy function (see http://dlmf.nist.gov/9.5) is

Ai(x) =
1
π

∫ ∞

0
cos

(
1
3

t3 + xt
)

dt.

You need not be concerned with normalizing the wave function.

2.27 Consider a particle of mass m subject to a one-dimensional potential of the following
form:

V =

⎧⎨⎩
1
2

kx2 for x > 0
∞ for x < 0.

a. What is the ground-state energy?
b. What is the expectation value 〈x2〉 for the ground state?

2.28 A particle in one dimension is trapped between two rigid walls:

V(x) =
{

0 for 0 < x < L
∞ for x < 0, x > L.

At t = 0 it is known to be exactly at x = L/2 with certainty. What are the relative
probabilities for the particle to be found in various energy eigenstates? Write down
the wave function for t ≥ 0. (You need not worry about absolute normalization,
convergence, and other mathematical subtleties.)

2.29 Consider a particle in one dimension bound to a fixed center by a δ-function potential
of the form

V(x) =−ν0δ(x)

where ν0 is real and positive. Find the wave function and the binding energy of the
ground state. Are there excited bound states?

2.30 A particle of mass m in one dimension is bound to a fixed center by an attractive
δ-function potential:

V(x) =−λδ(x) (λ > 0).

At t = 0, the potential is suddenly switched off (that is, V = 0 for t > 0). Find the
wave function for t > 0. (Be quantitative! But you need not attempt to evaluate an
integral that may appear.)

2.31 A particle in one dimension (−∞ < x < ∞) is subjected to a constant force derivable
from

V = λx (λ > 0).

a. Is the energy spectrum continuous or discrete? Write down an approximate
expression for the energy eigenfunction specified by E. Also sketch it crudely.

b. Discuss briefly what changes are needed if V is replaced by

V = λ|x|.
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2.32 A particle of mass m is confined to a one-dimensional square well with finite
walls. That is, a potential V(x) = 0 for −a ≤ x ≤ +a, and V(x) = V0 = η(h̄2/2ma2)

otherwise. You are to find the bound-state energy eigenvalues as E = εV0 along with
their wave functions.
a. Set the problem up with a wave function Aeαx for x ≤−a, De−αx for x ≥+a, and

Beikx +Ce−ikx inside the well. Match the boundary conditions at x =±a and show
that k and α must satisfy z =±z∗ where z ≡ eiak(k− iα). Proceed to find a purely
real or purely imaginary expression for z in terms of k and α.

b. Find the wave functions for the two choices of z and show that the purely real
(imaginary) choice leads to a wave function that is even (odd) under the exchange
x →−x.

c. Find a transcendental equation for each of the two wave functions relating η and
ε. Show that even a very shallow well (η→ 0) has at least one solution for the
even wave function, but you are not guaranteed any solution for an odd wave
function.

d. For η = 10, find all the energy eigenvalues and plot their normalized wave
functions.

2.33 Consider a particle of mass m moving in one dimension x under the influence of a
potential energy function V(x).
a. Show that if V(−x) = V(x), then a solution u(x) to the time-independent

Schrödinger equation must have the property u(−x) = ±u(x). (This is a sim-
ple example of parity symmetry, which will be discussed in more detail in
Section 4.2.)

b. Consider a potential that is an infinite square well but with a rectangular barrier in
the middle. That is V(x) = V0 > 0 for −b ≤ x ≤ b, infinity for |x|> a, and zero for
b ≤ |x| ≤ a. For b/a = 1/3 and V0 = 20(h̄2/2ma2), find the two energy eigenvalues
along with their normalized eigenfunctions. (Plots of the eigenfunctions are
shown in Figure 4.3.)

c. For V0 = 10(h̄2/2ma2) show that there is only one energy eigenstate, and find the
eigenvalue.

You will need to write a computer program to calculate the eigenvalues and plot
the wave functions. It is easiest to scale the eigenvalues by h̄2/2ma2 and find
transcendental equations to solve (numerically) for the eigenvalues in the positive
and negative parity cases.

2.34 A particle of mass m moves in one dimension x under a potential energy V(x).
a. For V(x) =−V0 b δ(x), V0 > 0, b > 0, find the bound-state energy eigenvalue E.
b. Generalize this to the “double delta function” potential

V(x) =−V0
b
2

[
δ
(

x+
a
2

)
+ δ

(
x− a

2

)]
and find the bound-state energy eigenvalues and plot the corresponding eigen-
functions. Also show that you get the expected results as a → 0.
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2.35 Derive an expression for the density of free-particle states in two dimensions,
normalized with periodic boundary conditions inside a box of side length L.

2.36 Use the WKB method to find the (approximate) energy eigenvalues for the one-
dimensional simple harmonic oscillator potential V(x) = mω2x2/2.

2.37 Consider an electron confined to the interior of a hollow cylindrical shell whose axis
coincides with the z-axis. The wave function is required to vanish on the inner and
outer walls, ρ = ρa and ρb, and also at the top and bottom, z = 0 and L.
a. Find the energy eigenfunctions. (Do not bother with normalization.) Show that

the energy eigenvalues are given by

Elmn =

(
h̄2

2me

)[
k2

mn +

(
lπ
L

)2
]

(l = 1,2,3,. . . ,m = 0,1,2,. . .),

where kmn is the nth root of the transcendental equation

Jm(kmnρb)Nm(kmnρa)−Nm(kmnρb)Jm(kmnρa) = 0.

b. Repeat the same problem when there is a uniform magnetic field B = Bẑ for 0 <

ρ < ρa. Note that the energy eigenvalues are influenced by the magnetic field
even though the electron never “touches” the magnetic field.

c. Compare, in particular, the ground state of the B = 0 problem with that of the
B 	= 0 problem. Show that if we require the ground-state energy to be unchanged
in the presence of B, we obtain “flux quantization”

πρ2
aB =

2πNh̄c
e

(N = 0,±1,±2,. . .).

2.38 Consider a particle moving in one dimension under the influence of a potential V(x).
Suppose its wave function can be written as exp[iS(x, t)/h̄]. Prove that S(x, t) satisfies
the classical Hamilton–Jacobi equation to the extent that h̄ can be regarded as small
in some sense. Show how one may obtain the correct wave function for a plane wave
by starting with the solution of the classical Hamilton–Jacobi equation with V(x) set
equal to zero. Why do we get the exact wave function in this particular case?

2.39 Using spherical coordinates, obtain an expression for j for the ground and excited
states of the hydrogen atom. Show, in particular, that for ml 	= 0 states, there is a
circulating flux in the sense that j is in the direction of increasing or decreasing φ,
depending on whether ml is positive or negative.

2.40 Derive (2.280) and obtain the three-dimensional generalization of (2.280).

2.41 A particle of mass m moves along one of two “paths” through space and time
connecting the points (x, t) = (0,0) and (x, t) = (D,T). One path is quadratic in time,
i.e. x1(t) = 1

2 at2 where a is a constant. The second path is linear in time, i.e. x2(t) = vt
where v is a constant. The correct classical path is the quadratic path, that is x1(t).
a. Find the acceleration a for the correct classical path. Use freshman physics to find

the force F = ma = −dV/dx and then the potential energy function V(x) in terms
of m, D, and T. Also find the velocity v for the linear (i.e. incorrect classical) path.
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b. Calculate the classical action S[x(t)] =
∫ T

0
[ 1

2 mẋ2 −V(x)
]

dt for each of the two
paths x1(t) and x2(t). Confirm that S1 ≡ S[x1(t)] < S2 ≡ S[x2(t)], and find ΔS =

S2 −S1.
c. Calculate ΔS/h̄ for a particle which moves 1 mm in 1 ms for two cases. The

particle is a nanoparticle made up of 100 carbon atoms in one case. The other
case is an electron. For which of these would you consider the motion “quantum
mechanical” and why?

2.42 Define the partition function as

Z =
∫

d3x′K(x′, t; x′,0)|β=it/h̄,

as in (2.284)–(2.286). Show that the ground-state energy is obtained by taking

−1
Z

∂Z
∂β

(β→ ∞).

Illustrate this for a particle in a one-dimensional box.

2.43 The propagator in momentum space analogous to (2.290) is given by 〈p′′, t|p′, t0〉.
Derive an explicit expression for 〈p′′, t|p′, t0〉 for the free-particle case.

2.44 a. Write down an expression for the classical action for a simple harmonic oscillator
for a finite time interval.

b. Construct 〈xn, tn|xn−1, tn−1〉 for a simple harmonic oscillator using Feynman’s
prescription for tn − tn−1 = Δt small. Keeping only terms up to order (Δt)2, show
that it is in complete agreement with the t− t0 → 0 limit of the propagator given
by (2.290).

2.45 State the Schwinger action principle (see Finkelstein (1973), p. 155). Obtain the
solution for 〈x2t2|x1t1〉 by integrating the Schwinger principle and compare it with
the corresponding Feynman expression for 〈x2t2|x1t1〉. Describe the classical limits
of these two expressions.

2.46 Show that the wave-mechanical approach to the gravity-induced problem discussed
in Section 2.7 also leads to phase-difference expression (2.337).

2.47 a. Verify (2.345) and (2.347).
b. Verify continuity equation (2.350) with j given by (2.351).

2.48 Consider the Hamiltonian of a spinless particle of charge e. In the presence of a static
magnetic field, the interaction terms can be generated by

poperator → poperator −
eA
c

,

where A is the appropriate vector potential. Suppose, for simplicity, that the magnetic
field B is uniform in the positive z-direction. Prove that the above prescription indeed
leads to the correct expression for the interaction of the orbital magnetic moment
(e/2mc)L with the magnetic field B. Show that there is also an extra term proportional
to B2(x2 + y2), and comment briefly on its physical significance.
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2.49 An electron moves in the presence of a uniform magnetic field in the z-direction
(B = Bẑ).
a. Evaluate

[Πx,Πy],

where

Πx ≡ px −
eAx

c
, Πy ≡ py −

eAy

c
.

b. By comparing the Hamiltonian and the commutation relation obtained in (a) with
those of the one-dimensional oscillator problem, show how we can immediately
write the energy eigenvalues as

Ek,n =
h̄2k2

2m
+

(
|eB|h̄
mc

)(
n+

1
2

)
,

where h̄k is the continuous eigenvalue of the pz operator and n is a nonnegative
integer including zero.

2.50 Consider the neutron interferometer.

 = hp /λ
B Interference region

l

Prove that the difference in the magnetic fields that produce two successive maxima
in the counting rates is given by

B =
4πh̄c
|e|gnλl

,

where gn(=−1.91) is the neutron magnetic moment in units of −eh̄/2mnc, and λ ≡
λ/2π. This problem was in fact analyzed in the paper by Bernstein, Phys. Rev. Lett.,
18 (1967) 1102.



3 Theory of Angular Momentum

This chapter is concerned with a systematic treatment of angular momentum and related
topics. The importance of angular momentum in modern physics can hardly be overempha-
sized. A thorough understanding of angular momentum is essential in molecular, atomic,
and nuclear spectroscopy; angular momentum considerations play an important role in
scattering and collision problems as well as in bound-state problems. Furthermore, angular-
momentum concepts have important generalizations – isospin in nuclear physics, SU(3),
SU(2)⊗U(1) in particle physics, and so forth.

3.1 Rotations and Angular Momentum Commutation Relations

3.1.1 Finite Versus Infinitesimal Rotations

We recall from elementary physics that rotations about the same axis commute, whereas
rotations about different axes do not. For instance, a 30◦ rotation about the z-axis followed
by a 60◦ rotation about the same z-axis is obviously equivalent to a 60◦ rotation followed
by a 30◦ rotation, both about the same axis. However, let us consider a 90◦ rotation about
the z-axis, denoted by Rz(π/2), followed by a 90◦ rotation about the x-axis, denoted by
Rx(π/2); compare this with a 90◦ rotation about the x-axis followed by a 90◦ rotation about
the z-axis. The net results are different, as we can see from Figure 3.1.

Our first basic task is to work out quantitatively the manner in which rotations about
different axes fail to commute. To this end, we first recall how to represent rotations in
three dimensions by 3×3 real, orthogonal matrices. Consider a vector V with components
Vx,Vy, and Vz. When we rotate, the three components become some other set of numbers,
V ′

x,V ′
y, and V′

z. The old and new components are related via a 3×3 orthogonal matrix R:⎛⎝V ′
x

V ′
y

V ′
z

⎞⎠ =

⎛⎝R

⎞⎠⎛⎝Vx
Vy
Vz

⎞⎠ , (3.1a)

RRT = RTR = 1, (3.1b)

where the superscript T stands for a transpose of a matrix. It is a property of orthogonal
matrices that √

V 2
x +V 2

y +V 2
z =

√
V ′2

x +V ′2
y +V ′2

z (3.2)

is automatically satisfied.
149
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x

z

x

z

x

z

Rz(π/2)

x

z

Rx(π/2)

x

z

x

z

Rz(π/2)

Rx(π/2)

Fig. 3.1 Example to illustrate the noncommutativity of finite rotations.

To be definite, we consider a rotation about the z-axis by angle φ. The convention we
follow throughout this book is that a rotation operation affects a physical system itself,
as in Figure 3.1, while the coordinate axes remain unchanged. The angle φ is taken to be
positive when the rotation in question is counterclockwise in the xy-plane, as viewed from
the positive z-side. If we associate a right-handed screw with such a rotation, a positive
φ rotation around the z-axis means that the screw is advancing in the positive z-direction.
With this convention, we easily verify that

Rz(φ) =

⎛⎝cosφ −sinφ 0
sinφ cosφ 0

0 0 1

⎞⎠ . (3.3)

Had we adopted a different convention, in which a physical system remained fixed but
the coordinate axes rotated, this same matrix with a positive φ would have represented
a clockwise rotation of the x- and y-axes, when viewed from the positive z-side. It is
obviously important not to mix the two conventions! Some authors distinguish the two
approaches by using “active rotations” for physical systems rotated and “passive rotations”
for the coordinate axes rotated.

We are particularly interested in an infinitesimal form of Rz:

Rz(ε) =

⎛⎜⎜⎜⎝
1− ε2

2
−ε 0

ε 1− ε2

2
0

0 0 1

⎞⎟⎟⎟⎠ , (3.4)
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where terms of order ε3 and higher are ignored. Likewise, we have

Rx(ε) =

⎛⎜⎜⎜⎝
1 0 0

0 1− ε2

2
−ε

0 ε 1− ε2

2

⎞⎟⎟⎟⎠ (3.5a)

and

Ry(ε) =

⎛⎜⎜⎜⎝
1− ε2

2
0 ε

0 1 0

−ε 0 1− ε2

2

⎞⎟⎟⎟⎠ , (3.5b)

which may be read from (3.4) by cyclic permutations of x, y, z, that is, x → y, y → z, z → x.
Compare now the effect of a y-axis rotation followed by an x-axis rotation with that of an
x-axis rotation followed by a y-axis rotation. Elementary matrix manipulations lead to

Rx(ε)Ry(ε) =

⎛⎜⎜⎜⎝
1− ε2

2
0 ε

ε2 1− ε2

2
−ε

−ε ε 1− ε2

⎞⎟⎟⎟⎠ (3.6a)

and

Ry(ε)Rx(ε) =

⎛⎜⎜⎜⎝
1− ε2

2
ε2 ε

0 1− ε2

2
−ε

−ε ε 1− ε2

⎞⎟⎟⎟⎠ . (3.6b)

From (3.6a) and (3.6b) we have the first important result: Infinitesimal rotations about
different axes do commute if terms of order ε2 and higher are ignored.1 The second and
even more important result concerns the manner in which rotations about different axes
fail to commute when terms of order ε2 are kept:

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) =

⎛⎝ 0 −ε2 0
ε2 0 0
0 0 0

⎞⎠
= Rz(ε

2)−1, (3.7)

where all terms of order higher than ε2 have been ignored throughout this derivation. We
also have

1 = Rany(0) (3.8)

1 Actually there is a familiar example of this in elementary mechanics. The angular velocity vector ω that
characterizes an infinitesimal change in rotation angle during an infinitesimal time interval follows the usual
rule of vector addition, including commutativity of vector addition. However, we cannot ascribe a vectorial
property to a finite angular change.
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where any stands for any rotation axis. Thus the final result can be written as

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) = Rz(ε
2)−Rany(0). (3.9)

This is an example of the commutation relations between rotation operations about
different axes, which we will use later in deducing the angular-momentum commutation
relations in quantum mechanics.

3.1.2 Infinitesimal Rotations in Quantum Mechanics

So far we have not used quantum-mechanical concepts. The matrix R is just a 3 × 3
orthogonal matrix acting on a vector V written in column matrix form. We must now
understand how to characterize rotations in quantum mechanics.

Because rotations affect physical systems, the state ket corresponding to a rotated system
is expected to look different from the state ket corresponding to the original unrotated
system. Given a rotation operation R, characterized by a 3× 3 orthogonal matrix R, we
associate an operator D(R) in the appropriate ket space such that

|α〉R = D(R)|α〉, (3.10)

where |α〉R and |α〉 stand for the kets of the rotated and original system, respectively.2

Note that the 3× 3 orthogonal matrix R acts on a column matrix made up of the three
components of a classical vector, while the operator D(R) acts on state vectors in ket space.
The matrix representation of D(R), which we will study in great detail in the subsequent
sections, depends on the dimensionality N of the particular ket space in question. For N= 2,
appropriate for describing a spin 1

2 system with no other degrees of freedom, D(R) is
represented by a 2×2 matrix; for a spin 1 system, the appropriate representation is a 3×3
unitary matrix, and so on.

To construct the rotation operator D(R), it is again fruitful to examine first its properties
under an infinitesimal rotation. We can almost guess how we must proceed by analogy.
In both translations and time evolution, which we studied in Sections 1.6 and 2.1,
respectively, the appropriate infinitesimal operators could be written as

Uε = 1− iGε (3.11)

with a Hermitian operator G. Specifically,

G → px

h̄
, ε→ dx′ (3.12)

for an infinitesimal translation by a displacement dx′ in the x-direction, and

G → H
h̄

, ε→ dt (3.13)

for an infinitesimal time evolution with time displacement dt. We know from classical
mechanics that angular momentum is the generator of rotation in much the same way
as momentum and Hamiltonian are the generators of translation and time evolution,

2 The symbol D stems from the German word Drehung, meaning rotation.
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respectively. We therefore define the angular-momentum operator Jk in such a way that
the operator for an infinitesimal rotation around the kth axis by angle dφ can be obtained
by letting

G → Jk

h̄
, ε→ dφ (3.14)

in (3.11). With Jk taken to be Hermitian, the infinitesimal rotation operator is guaranteed
to be unitary and reduces to the identity operator in the limit dφ → 0. More generally,
we have

D(n̂,dφ) = 1− i
(

J·n̂
h̄

)
dφ (3.15)

for a rotation about the direction characterized by a unit vector n̂ by an infinitesimal
angle dφ.

We stress that in this book we do not define the angular-momentum operator to be x×p.
This is important because spin angular momentum, to which our general formalism also
applies, has nothing to do with xi and pj. Put in another way, in classical mechanics one
can prove that the angular momentum defined to be x×p is the generator of a rotation; in
contrast, in quantum mechanics we define J so that the operator for an infinitesimal rotation
takes the form (3.15).

3.1.3 Finite Rotations in Quantum Mechanics

A finite rotation can be obtained by compounding successively infinitesimal rotations about
the same axis. For instance, if we are interested in a finite rotation about the z-axis by angle
φ, we consider

Dz(φ) = lim
N→∞

[
1− i

(
Jz

h̄

)(
φ

N

)]N

= exp

(
−iJzφ

h̄

)

= 1− iJzφ

h̄
− J2

z φ
2

2h̄2 + · · · . (3.16)

In order to obtain the angular-momentum commutation relations, we need one more
concept. As we remarked earlier, for every rotation R represented by a 3× 3 orthogonal
matrix R there exists a rotation operator D(R) in the appropriate ket space. We further
postulate that D(R) has the same group properties as R:

Identity: R ·1 = R ⇒ D(R) ·1 = D(R) (3.17a)

Closure: R1R2 = R3 ⇒ D(R1)D(R2) = D(R3) (3.17b)

Inverses: RR−1 = 1 ⇒ D(R)D−1(R) = 1
R−1R = 1 ⇒ D−1(R)D(R) = 1

(3.17c)
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Associativity: R1(R2R3) = (R1R2)R3 = R1R2R3

⇒ D(R1)[D(R2)D(R3)]

= [D(R1)D(R2)]D(R3)

= D(R1)D(R2)D(R3). (3.17d)

3.1.4 Commutation Relations for Angular Momentum

Let us now return to the fundamental commutation relations for rotation operations (3.9)
written in terms of the R matrices. Its rotation operator analogue would read(

1− iJxε
h̄

− J2
xε

2

2h̄2

)(
1− iJyε

h̄
−

J2
y ε

2

2h̄2

)

−
(

1− iJyε

h̄
−

J2
y ε

2

2h̄2

)(
1− iJxε

h̄
− J2

x ε
2

2h̄2

)
= 1− iJzε2

h̄
−1. (3.18)

Terms of order ε automatically drop out. Equating terms of order ε2 on both sides of (3.18),
we obtain

[Jx,Jy] = ih̄Jz. (3.19)

Repeating this kind of argument with rotations about other axes, we obtain

[Ji,Jj] = ih̄εijkJk, (3.20)

known as the fundamental commutation relations of angular momentum.
In general, when the generators of infinitesimal transformations do not commute, the

corresponding group of operations is said to be non-Abelian. Because of (3.20), the
rotation group in three dimensions is non-Abelian. In contrast, the translation group in
three dimensions is Abelian because pi and pj commute even with i 	= j.

We emphasize that in obtaining the commutation relations (3.20) we have used the
following two concepts.

1. Jk is the generator of rotation about the kth axis.
2. Rotations about different axes fail to commute.

It is no exaggeration to say that commutation relations (3.20) summarize in a compact
manner all the basic properties of rotations in three dimensions.

The fundamental commutation relations make it possible to show that the angular-
momentum operators themselves transform as expected under rotations. Consider a
rotation by a finite angle φ about the z-axis. If the ket of the system before rotation is
given by |α〉, the ket after rotation is given by

|α〉R = Dz(φ)|α〉 (3.21)
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where Dz(φ) is given by (3.16). To see that this operator really rotates the physical system,
let us look at its effect on 〈Jx〉. Under rotation this expectation value changes as follows:

〈Jx〉 → R〈α|Jx|α〉R = 〈α|D†
z (φ)JxDz(φ)|α〉. (3.22)

We must therefore compute

exp

(
iJzφ

h̄

)
Jx exp

(
−iJzφ

h̄

)
. (3.23)

Using (2.168) to evaluate (3.23), we have

exp

(
iJzφ

h̄

)
Jx exp

(
−iJzφ

h̄

)
= Jx +

(
iφ
h̄

)
[Jz,Jx]︸ ︷︷ ︸

ih̄Jy

+

(
1
2!

)(
iφ
h̄

)2

[Jz, [Jz,Jx]]︸ ︷︷ ︸
ih̄Jy︸ ︷︷ ︸

h̄2Jx

+

(
1
3!

)(
iφ
h̄

)3

[Jz, [Jz, [Jz,Jx]]]︸ ︷︷ ︸
h̄2Jx︸ ︷︷ ︸

ih̄3Jy

+ · · ·

= Jx

[
1− φ2

2!
+ · · ·

]
− Jy

[
φ− φ3

3!
+ · · ·

]
= Jx cosφ− Jy sinφ. (3.24)

We will return to transformations of this sort when we discuss symmetry operations in
Chapter 4.

3.2 Spin 1
2 Systems and Finite Rotations

3.2.1 Rotation Operator for Spin 1
2

The lowest number, N, of dimensions in which the angular-momentum commutation
relations (3.20) are realized is N = 2. The reader has already checked in Problem 1.10
of Chapter 1 that the operators defined by

Sx =

(
h̄
2

)
{(|+〉〈−|)+(|−〉〈+|)} ,

Sy =

(
ih̄
2

)
{−(|+〉〈−|)+(|−〉〈+|)} ,

Sz =

(
h̄
2

)
{(|+〉〈+|)− (|−〉〈−|)} ,

(3.25)

satisfy commutation relations (3.20) with Jk replaced by Sk. It is not a priori obvious
that nature takes advantage of the lowest dimensional realization of (3.20), but numerous
experiments – from atomic spectroscopy to nuclear magnetic resonance – suffice to
convince us that this is in fact the case.
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We showed in (3.24) that components of the general angular-momentum operator behave
as expected under finite rotations. This is of course also true for spin 1

2 , that is

〈Sx〉 → R〈α|Sx|α〉R = 〈Sx〉cosφ−〈Sy〉sinφ, (3.26)

where the expectation value without subscripts is understood to be taken with respect to
the (old) unrotated system. Similarly,

〈Sy〉 → 〈Sy〉cosφ+ 〈Sx〉sinφ. (3.27)

As for the expectation value of Sz, there is no change because Sz commutes with Dz(φ):

〈Sz〉 → 〈Sz〉. (3.28)

Relations (3.26), (3.27), and (3.28) are quite reasonable. They show that rotation
operator (3.16), when applied to the state ket, does rotate the expectation value of S around
the z-axis by angle φ. In other words, the expectation value of the spin operator behaves
as though it were a classical vector under rotation:

〈Sk〉 → ∑
l

Rkl〈Sl〉, (3.29)

where Rkl are the elements of the 3× 3 orthogonal matrix R that specifies the rotation in
question. It should be clear from our derivation that this property is not restricted to the
spin operator of spin 1

2 systems. In general, we have

〈Jk〉 → ∑
l

Rkl〈Jl〉 (3.30)

under rotation, where Jk are the generators of rotations satisfying the angular-momentum
commutation relations (3.20). Later we will show that relations of this kind can be further
generalized to any vector operator.

So far everything has been as expected. But now, be prepared for a surprise! We examine
the effect of rotation operator (3.16) on a general ket,

|α〉= |+〉〈+|α〉+ |−〉〈−|α〉, (3.31)

a little more closely. We see that

exp

(
−iSzφ

h̄

)
|α〉= e−iφ/2|+〉〈+|α〉+ eiφ/2|−〉〈−|α〉. (3.32)

The appearance of the half-angle φ/2 here has an extremely interesting consequence.
Let us consider a rotation by 2π. We then have

|α〉Rz(2π) →−|α〉. (3.33)

So the ket for the 360◦ rotated state differs from the original ket by a minus sign. We would
need a 720◦ (φ = 4π) rotation to get back to the same ket with a plus sign. Notice that this
minus sign disappears for the expectation value of S because S is sandwiched by |α〉 and
〈α|, both of which change sign. Will this minus sign ever be observable? We will give the
answer to this interesting question after we discuss spin precession once again.
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3.2.2 Spin Precession Revisited

We now treat the problem of spin precession, already discussed in Section 2.1, from a new
point of view. We recall that the basic Hamiltonian of the problem is given by

H =−
(

e
mec

)
S·B = ωSz, (3.34)

where

ω ≡ |e|B
mec

. (3.35)

The time-evolution operator based on this Hamiltonian is given by

U (t,0) = exp

(
−iHt

h̄

)
= exp

(
−iSzωt

h̄

)
. (3.36)

Comparing this equation with (3.16), we see that the time-evolution operator here is
precisely the same as the rotation operator in (3.16) with φ set equal to ωt. In this manner
we see immediately why this Hamiltonian causes spin precession. Paraphrasing (3.26),
(3.27), and (3.28), we obtain

〈Sx〉t = 〈Sx〉t=0 cosωt−〈Sy〉t=0 sinωt, (3.37a)
〈Sy〉t = 〈Sy〉t=0 cosωt+ 〈Sx〉t=0 sinωt, (3.37b)
〈Sz〉t = 〈Sz〉t=0. (3.37c)

After t = 2π/ω, the spin returns to its original direction.
This set of equations can be used to discuss the spin precession of a muon, an

electronlike particle which, however, is 210 times as heavy. The muon magnetic moment
can be determined from other experiments – for example, the hyperfine splitting in
muonium, a bound state of a positive muon and an electron – to be eh̄/2mμc, just as
expected from Dirac’s relativistic theory of spin 1

2 particles. (We will here neglect very
small corrections that arise from quantum field theory effects.) Knowing the magnetic
moment we can predict the angular frequency of precession. So (3.37) can be and, in fact,
has been checked experimentally (see Figure 2.1). In practice, as the external magnetic
field causes spin precession, the spin direction is analyzed by taking advantage of the fact
that electrons from muon decay tend to be emitted preferentially in the direction opposite
to the muon spin.

Let us now look at the time evolution of the state ket itself. Assuming that the initial
(t = 0) ket is given by (3.31), we obtain after time t

|α, t0 = 0; t〉= e−iωt/2|+〉〈+|α〉+ e+iωt/2|−〉〈−|α〉. (3.38)

Expression (3.38) acquires a minus sign at t = 2π/ω, and we must wait until t = 4π/ω to
get back to the original state ket with the same sign. To sum up, the period for the state ket
is twice as long as the period for spin precession



158 Theory of Angular Momentum

τprecession =
2π
ω

, (3.39a)

τstateket =
4π
ω

. (3.39b)

3.2.3 Neutron Interferometry Experiment to Study 2π Rotations

We now describe an experiment performed to detect the minus sign in (3.33). Quite clearly,
if every state ket in the universe is multiplied by a minus sign, there will be no observable
effect. The only way to detect the predicted minus sign is to make a comparison between an
unrotated state and a rotated state. As in gravity-induced quantum interference, discussed
in Section 2.7, we rely on the art of neutron interferometry to verify this extraordinary
prediction of quantum mechanics.

A nearly monoenergetic beam of thermal neutrons is split into two parts, path A and path
B; see Figure 3.2. Path A always goes through a magnetic-field-free region; in contrast, path
B enters a small region where a static magnetic field is present. As a result, the neutron state
ket going via path B suffers a phase change e∓ iωT/2, where T is the time spent in the B 	= 0
region and ω is the spin-precession frequency

ω =
gneB
mpc

(gn �−1.91) (3.40)

for the neutron with a magnetic moment of gneh̄/2mpc, as we can see if we compare this
with (3.35), which is appropriate for the electron with magnetic moment eh̄/2mec. When
path A and path B meet again in the interference region of Figure 3.2, the amplitude of the
neutron arriving via path B is

c2 = c2(B = 0)e∓ iωT/2, (3.41)

while the amplitude of the neutron arriving via path A is c1, independent of B. So the
intensity observable in the interference region must exhibit a sinusoidal variation

cos

(
∓ωT

2
+ δ

)
, (3.42)

where δ is the phase difference between c1 and c2 (B = 0). In practice, T, the time spent
in the B 	= 0 region, is fixed but the precession frequency ω is varied by changing the

A

B

A

B

B Interference
region

Fig. 3.2 Experiment to study the predicted minus sign under a 2π rotation.
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strength of the magnetic field. The intensity in the interference region as a function of B is
predicted to have a sinusoidal variation. If we call ΔB the difference in B needed to produce
successive maxima, we can easily show that

ΔB =
4πh̄c
egnλl

, (3.43)

where l is the path length.
In deriving this formula we used the fact that a 4π rotation is needed for the state ket

to return to the original ket with the same sign, as required by our formalism. If, on the
other hand, our description of spin 1

2 systems were incorrect and the ket were to return to
its original ket with the same sign under a 2π rotation, the predicted value for ΔB would
be just one-half of (3.43).

Two different groups have conclusively demonstrated experimentally that prediction
(3.43) is correct to an accuracy of a fraction of a percent.3 This is another triumph of
quantum mechanics. The nontrivial prediction (3.33) has been experimentally established
in a direct manner.

3.2.4 Pauli Two-Component Formalism

Manipulations with the state kets of spin 1
2 systems can be conveniently carried out using

the two-component spinor formalism introduced by W. Pauli in 1926. In Section 1.3 we
learned how a ket (bra) can be represented by a column (row) matrix; all we have to do
is arrange the expansion coefficients in terms of a certain specified set of base kets into a
column (row) matrix. In the spin 1

2 case we have

|+〉=̇
(

1
0

)
≡ χ+ |−〉=̇

(
0
1

)
≡ χ−

〈+|=̇(1,0) = χ†
+ 〈−|=̇(0,1) = χ†

−

(3.44)

for the base kets and bras and

|α〉 = |+〉〈+|α〉+ |−〉〈−|α〉=̇
(
〈+|α〉
〈−|α〉

)
(3.45a)

and

〈α|= 〈α|+〉〈+|+ 〈α|−〉〈−|=̇(〈α|+〉,〈α|−〉) (3.45b)

for an arbitrary state ket and the corresponding state bra. Column matrix (3.45a) is referred
to as a two-component spinor and is written as

χ =

(
〈+|α〉
〈−|α〉

)
≡

(
c+
c−

)
= c+χ++ c−χ−, (3.46)

3 Rauch et al., Phys. Lett. A, 54 (1975) 425; Werner et al., Phys. Rev. Lett., 35 (1975) 1053.
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where c+ and c− are, in general, complex numbers. For χ† we have

χ† = (〈α|+〉,〈α|−〉) = (c∗+,c∗−) . (3.47)

The matrix elements 〈±|Sk|+〉 and 〈±|Sk|−〉, apart from h̄/2, are to be set equal to those
of 2×2 matrices σk, known as the Pauli matrices. We identify

〈±|Sk|+〉 ≡
(

h̄
2

)
(σk)±,+, 〈±|Sk|−〉 ≡

(
h̄
2

)
(σk)±,−. (3.48)

We can now write the expectation value 〈Sk〉 in terms of χ and σk:

〈Sk〉= 〈α|Sk|α〉= ∑
a′=+,−

∑
a′′=+,−

〈α|a′〉〈a′|Sk|a′′〉〈a′′|α〉

=

(
h̄
2

)
χ†σkχ, (3.49)

where the usual rule of matrix multiplication is used in the last line. Explicitly, we see from
(3.25) together with (3.48) that

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.50)

where the subscripts 1, 2, and 3 refer to x, y, and z, respectively.
We record some properties of the Pauli matrices. First,

σ2
i = 1 (3.51a)

σiσj + σjσi = 0, for i 	= j, (3.51b)

where the right-hand side of (3.51a) is to be understood as the 2×2 identity matrix. These
two relations are, of course, equivalent to the anticommutation relations

{σi,σj}= 2δij. (3.52)

We also have the commutation relations

[σi,σj] = 2iεijkσk, (3.53)

which we see to be the explicit 2 × 2 matrix realizations of the angular-momentum
commutation relations (3.20). Combining (3.52) and (3.53), we can obtain

σ1σ2 =−σ2σ1 = iσ3 . . . . (3.54)

Notice also that

σ†
i = σi, (3.55a)

det(σi) =−1, (3.55b)

Tr(σi) = 0. (3.55c)
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We now consider σ·a, where a is a vector in three dimensions. This is actually to be
understood as a 2×2 matrix. Thus

σ·a ≡ ∑
k

akσk

=

(
+a3 a1 − ia2

a1 + ia2 −a3

)
. (3.56)

There is also a very important identity,

(σ·a)(σ·b) = a·b+ iσ·(a×b). (3.57)

To prove this all we need are the anticommutation and commutation relations, (3.52) and
(3.53), respectively:

∑
j
σjaj ∑

k
σkbk = ∑

j
∑

k

(
1
2
{σj,σk}+

1
2
[σj,σk]

)
ajbk

= ∑
j

∑
k
(δjk + iεjklσl)ajbk

= a·b+ iσ·(a×b). (3.58)

If the components of a are real, we have

(σ·a)2 = |a|2, (3.59)

where |a| is the magnitude of the vector a.

3.2.5 Rotations in the Two-Component Formalism

Let us now study the 2×2 matrix representation of the rotation operator D(n̂, φ). We have

exp

(
−iS·n̂φ

h̄

)
=̇ exp

(
−iσ·n̂φ

2

)
. (3.60)

Using

(σ·n̂)n =

{
1 for n even
σ·n̂ for n odd,

(3.61)

which follows from (3.59), we can write

exp

(
−iσ·n̂φ

2

)
=

[
1− (σ·n̂)2

2!

(
φ

2

)2

+
(σ·n̂)4

4!

(
φ

2

)4

−·· ·
]

− i

[
(σ·n̂)φ

2
− (σ·n̂)3

3!

(
φ

2

)3

+ · · ·
]

= 1cos

(
φ

2

)
− iσ·n̂sin

(
φ

2

)
. (3.62)
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Explicitly, in 2×2 form we have

exp

(
−iσ·n̂φ

2

)
=

⎛⎜⎜⎝ cos

(
φ

2

)
− inz sin

(
φ

2

)
(−inx −ny)sin

(
φ

2

)
(−inx +ny)sin

(
φ
2

)
cos

(
φ

2

)
+ inz sin

(
φ
2

)
⎞⎟⎟⎠ . (3.63)

Just as the operator exp(−iS·n̂φ/h̄) acts on a state ket |α〉, the 2×2 matrix exp(−iσ·n̂φ/2)
acts on a two-component spinor χ. Under rotations we change χ as follows:

χ→ exp

(
−iσ·n̂φ

2

)
χ. (3.64)

On the other hand, the σk themselves are to remain unchanged under rotations. So strictly
speaking, despite its appearance, σ is not to be regarded as a vector; rather, it is χ†σχ
which obeys the transformation property of a vector:

χ†σkχ→ ∑
l

Rklχ
†σlχ. (3.65)

An explicit proof of this may be given using

exp

(
iσ3φ

2

)
σ1 exp

(
−iσ3φ

2

)
= σ1 cosφ− σ2 sinφ (3.66)

and so on, which is the 2×2 matrix analogue of (3.16).
In discussing a 2π rotation using the ket formalism, we have seen that a spin 1

2 ket |α〉
goes into −|α〉. The 2 × 2 analogue of this statement is

exp

(
−iσ·n̂φ

2

)∣∣∣∣
φ=2π

=−1, for any n̂, (3.67)

which is evident from (3.62).
As an instructive application of rotation matrix (3.63), let us see how we can construct

an eigenspinor of σ·n̂ with eigenvalue +1, where n̂ is a unit vector in some specified
direction. Our object is to construct χ satisfying

σ·n̂χ = χ. (3.68)

In other words, we look for the two-component column matrix representation of |S·n̂;+〉
defined by

S·n̂|S·n̂;+〉=
(

h̄
2

)
|S·n̂;+〉. (3.69)

Actually this can be solved as a straightforward eigenvalue problem (see Problem 1.11 in
Chapter 1), but here we present an alternative method based on rotation matrix (3.63).

Let the polar and the azimuthal angles that characterize n̂ be β and α, respectively. We
start with

(
1
0

)
, the two-component spinor that represents the spin-up state. Given this,

we first rotate about the y-axis by angle β; we subsequently rotate by angle α about the
z-axis. We see that the desired spin state is then obtained; see Figure 3.3. In the Pauli
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β

α

Second
rotation

First
rotation

Fig. 3.3 Construction of the σ·n̂ eigenspinor.

spinor language this sequence of operations is equivalent to applying exp(−iσ2β/2) to(
1
0

)
followed by an application of exp(−iσ3α/2). The net result is

χ =
[
cos

(α
2

)
− iσ3 sin

(α
2

)][
cos

(
β

2

)
− iσ2 sin

(
β
2

)](
1
0

)

=

(
cos

(
α
2

)
− isin

(
α
2

)
0

0 cos
(
α
2

)
+ isin

(
α
2

))(
cos

(
β
2

)
−sin

(
β
2

)
sin

(
β
2

)
cos

(
β
2

))(
1
0

)

=

(
cos

(
β
2

)
e−iα/2

sin
(
β
2

)
eiα/2

)
, (3.70)

in complete agreement with Problem 1.11 of Chapter 1 if we realize that a phase common
to both the upper and lower components is devoid of physical significance.

3.3 SO(3), SU(2), and Euler Rotations

3.3.1 Orthogonal Group

We will now study a little more systematically the group properties of the operations with
which we have been concerned in the previous two sections.

The most elementary approach to rotations is based on specifying the axis of rotation and
the angle of rotation. It is clear that we need three real numbers to characterize a general
rotation: the polar and the azimuthal angles of the unit vector n̂ taken in the direction of
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the rotation axis and the rotation angle φ itself. Equivalently, the same rotation can be
specified by the three Cartesian components of the vector n̂φ. However, these ways of
characterizing rotation are not so convenient from the point of view of studying the group
properties of rotations. For one thing, unless φ is infinitesimal or n̂ is always in the same
direction, we cannot add vectors of the form n̂φ to characterize a succession of rotations.
It is much easier to work with a 3 × 3 orthogonal matrix R because the effect of successive
rotations can be obtained just by multiplying the appropriate orthogonal matrices.

How many independent parameters are there in a 3 × 3 orthogonal matrix? A real 3 × 3
matrix has 9 entries, but we have the orthogonality constraint

RRT = 1 (3.71)

which corresponds to 6 independent equations because the product RRT, being the same as
RTR, is a symmetrical matrix with 6 independent entries. As a result, there are 3 (that is,
9–6) independent numbers in R, the same number previously obtained by a more
elementary method.

The set of all multiplication operations with orthogonal matrices forms a group. By this
we mean that the following four requirements are satisfied.

1. The product of any two orthogonal matrices is another orthogonal matrix, which is
satisfied because

(R1R2)(R1R2)
T = R1R2RT

2RT
1 = 1. (3.72)

2. The associative law holds:

R1(R2R3) = (R1R2)R3. (3.73)

3. The identity matrix 1, physically corresponding to no rotation, defined by

R1 = 1R = R (3.74)

is a member of the class of all orthogonal matrices.
4. The inverse matrix R−1, physically corresponding to rotation in the opposite sense,

defined by

RR−1 = R−1R = 1 (3.75)

is also a member.

This group has the name SO(3), where S stands for special, O stands for orthogonal, 3
for three dimensions. Note only rotational operations are considered here, hence we have
SO(3) rather than O(3) (which can include the inversion operation of Chapter 4 later).

3.3.2 Unitary Unimodular Group

In the previous section we learned yet another way to characterize an arbitrary rotation,
that is, to look at the 2 × 2 matrix (3.63) that acts on the two-component spinor χ. Clearly,
(3.63) is unitary. As a result, for the c+ and c−, defined in (3.46),

|c+|2 + |c−|2 = 1 (3.76)
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is left invariant. Furthermore, matrix (3.63) is unimodular; that is, its determinant is 1, as
will be shown explicitly below.

We can write the most general unitary unimodular matrix as

U(a,b) =
(

a b
−b∗ a∗

)
, (3.77)

where a and b are complex numbers satisfying the unimodular condition

|a|2 + |b|2 = 1. (3.78)

We can easily establish the unitary property of (3.77) as follows:

U(a,b)†U(a,b) =
(

a∗ −b
b∗ a

)(
a b
−b∗ a∗

)
= 1. (3.79)

We can readily see that the 2× 2 matrix (3.63) that characterizes a rotation of a spin 1
2

system can be written as U(a,b). Comparing (3.63) with (3.77), we identify

Re(a) = cos

(
φ

2

)
, Im(a) =−nzsin

(
φ

2

)
,

Re(b) =−nysin

(
φ

2

)
, Im(b) =−nxsin

(
φ

2

)
,

(3.80)

from which the unimodular property of (3.78) is immediate. Conversely, it is clear that the
most general unitary unimodular matrix of form (3.77) can be interpreted as representing
a rotation.

The two complex numbers a and b are known as Cayley–Klein parameters. Histori-
cally the connection between a unitary unimodular matrix and a rotation was known long
before the birth of quantum mechanics. In fact, the Cayley–Klein parameters were used to
characterize complicated motions of gyroscopes in rigid-body kinematics.

Without appealing to the interpretations of unitary unimodular matrices in terms of
rotations, we can directly check the group properties of multiplication operations with
unitary unimodular matrices. Note in particular that

U(a1,b1)U(a2,b2) = U(a1a2 −b1b∗2,a1b2 +a∗2b1), (3.81)

where the unimodular condition for the product matrix is

|a1a2 −b1b∗2|2 + |a1b2 +a∗2b1|2 = 1. (3.82)

For the inverse of U we have

U−1(a,b) = U(a∗,−b). (3.83)

This group is known as SU(2), where S stands for special, U for unitary, and 2 for
dimensionality 2. In contrast, the group defined by multiplication operations with general
2× 2 unitary matrices (not necessarily constrained to be unimodular) is known as U(2).
The most general unitary matrix in two dimensions has four independent parameters and
can be written as eiγ (with γ real) times a unitary unimodular matrix:

U = eiγ
(

a b
−b∗ a∗

)
, |a|2 + |b|2 = 1, γ∗ = γ. (3.84)

SU(2) is called a subgroup of U(2).
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Because we can characterize rotations using both the SO(3) language and the SU(2)
language, we may be tempted to conclude that the groups SO(3) and SU(2) are isomorphic,
that is, that there is a one-to-one correspondence between an element of SO(3) and an
element of SU(2). This inference is not correct. Consider a rotation by 2π and another one
by 4π. In the SO(3) language, the matrices representing a 2π rotation and a 4π rotation are
both 3× 3 identity matrices; however, in the SU(2) language the corresponding matrices
are −1 times the 2× 2 identity matrix and the identity matrix itself, respectively. More
generally, U(a, b) and U(−a,−b) both correspond to a single 3× 3 matrix in the SO(3)
language. The correspondence therefore is two-to-one; for a given R, the corresponding U
is double valued. One can say, however, that the two groups are locally isomorphic.

3.3.3 Euler Rotations

From classical mechanics the reader may be familiar with the fact that an arbitrary rotation
of a rigid body can be accomplished in three steps, known as Euler rotations. The Euler
rotation language, specified by three Euler angles, provides yet another way to characterize
the most general rotation in three dimensions.

The three steps of Euler rotations are as follows. First, rotate the rigid body counter-
clockwise (as seen from the positive z-side) about the z-axis by angle α. Imagine now that
there is a body y-axis embedded, so to speak, in the rigid body such that before the z-axis
rotation is carried out, the body y-axis coincides with the usual y-axis, referred to as the
space-fixed y-axis. Obviously, after the rotation about the z-axis, the body y-axis no longer
coincides with the space-fixed y-axis; let us call the former the y′-axis. To see how all this
may appear for a thin disk, refer to Figure 3.4a. We now perform a second rotation, this
time about the y′-axis by angle β. As a result, the body z-axis no longer points in the space-
fixed z-axis direction. We call the body-fixed z-axis after the second rotation the z′-axis; see
Figure 3.4b. The third and final rotation is about the z′-axis by angle γ. The body y-axis
now becomes the y′′-axis of Figure 3.4c. In terms of 3×3 orthogonal matrices the product
of the three operations can be written as

R(α,β,γ)≡ Rz′(γ)Ry′(β)Rz(α). (3.85)

A cautionary remark is in order here. Most textbooks in classical mechanics prefer to
perform the second rotation (the middle rotation) about the body x-axis rather than about
the body y-axis (see, for example, Goldstein et al. (2002)). This convention is to be avoided
in quantum mechanics for a reason that will become apparent in a moment.

In (3.85) there appear Ry′ and Rz′ , which are matrices for rotations about body axes.
This approach to Euler rotations is rather inconvenient in quantum mechanics because we
earlier obtained simple expressions for the space-fixed (unprimed) axis components of the
S operator, but not for the body-axis components. It is therefore desirable to express the
body-axis rotations we considered in terms of space-fixed axis rotations. Fortunately there
is a very simple relation, namely,

Ry′(β) = Rz(α)Ry(β)R−1
z (α). (3.86)
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Fig. 3.4 Euler rotations.

The meaning of the right-hand side is as follows. First, bring the body y-axis of Figure 3.4a
(that is, the y′-axis) back to the original fixed-space y-direction by rotating clockwise
(as seen from the positive z-side) about the z-axis by angle α then rotate about the y-axis
by angle β. Finally, return the body y-axis to the direction of the y′-axis by rotating about
the fixed-space z-axis (not about the z′-axis!) by angle α. Equation (3.86) tells us that the
net effect of these rotations is a single rotation about the y′-axis by angle β.

To prove this assertion, let us look more closely at the effect of both sides of (3.86) on
the circular disk of Figure 3.4a. Clearly, the orientation of the body y-axis is unchanged in
both cases, namely, in the y′-direction. Furthermore, the orientation of the final body z-axis
is the same whether we apply Ry′(β) or Rz(α)Ry(β)R−1

z (α). In both cases the final body
z-axis makes a polar angle β with the fixed z-axis (the same as the initial z-axis), and its
azimuthal angle, as measured in the fixed-coordinate system, is just α. In other words, the
final body z-axis is the same as the z′-axis of Figure 3.4b. Similarly, we can prove

Rz′(γ) = Ry′(β)Rz(γ)R−1
y′ (β). (3.87)
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Using (3.86) and (3.87), we can now rewrite (3.85). We obtain

Rz′(γ)Ry′(β)Rz(α) = Ry′(β)Rz(γ)R−1
y′ (β)Ry′(β)Rz(α)

= Rz(α)Ry(β)R−1
z (α)Rz(γ)Rz(α)

= Rz(α)Ry(β)Rz(γ), (3.88)

where in the final step we used the fact that Rz(γ) and Rz(α) commute. To summarize,

R(α,β,γ) = Rz(α)Ry(β)Rz(γ), (3.89)

where all three matrices on the right-hand side refer to fixed-axis rotations.
Now let us apply this set of operations to spin 1

2 systems in quantum mechanics.
Corresponding to the product of orthogonal matrices in (3.89) there exists a product of
rotation operators in the ket space of the spin 1

2 system under consideration:

D(α,β,γ) = Dz(α)Dy(β)Dz(γ). (3.90)

The 2×2 matrix representation of this product is

exp

(
−iσ3α

2

)
exp

(
−iσ2β

2

)
exp

(
−iσ3γ

2

)

=

(
e−iα/2 0
0 eiα/2

)(
cos(β/2) −sin(β/2)
sin(β/2) cos(β/2)

)(
e−iγ/2 0
0 eiγ/2

)
=

(
e−i(α+γ)/2 cos(β/2) −e−i(α−γ)/2 sin(β/2)
ei(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2)

)
, (3.91)

where (3.62) was used. This matrix is clearly of the unitary unimodular form. Conversely,
the most general 2×2 unitary unimodular matrix can be written in this Euler angle
form.

Notice that the matrix elements of the second (middle) rotation exp(−iσyφ/2) are purely
real. This would not have been the case had we chosen to rotate about the x-axis rather
than the y-axis, as done in most textbooks in classical mechanics. In quantum mechanics
it pays to stick to our convention because we prefer the matrix elements of the second
rotation, which is the only rotation matrix containing off-diagonal elements, to be purely
real.4

The 2× 2 matrix in (3.91) is called the j = 1
2 irreducible representation of the rotation

operator D(α,β,γ). Its matrix elements are denoted by D
(1/2)
m′m (α,β,γ). In terms of the

angular-momentum operators we have

D
(1/2)
m′m (α,β,γ) =

〈
j =

1
2

,m′
∣∣∣∣exp

(
−iJzα

h̄

)
× exp

(−iJyβ

h̄

)
exp

(
−iJzγ

h̄

)∣∣∣∣ j =
1
2

,m
〉

.

(3.92)

In Section 3.5 we will extensively study higher j-analogues of (3.91).

4 This, of course, depends on our convention that the matrix elements of Sy (or, more generally, Jy) are taken to
be purely imaginary.
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3.4 Density Operators and Pure Versus Mixed Ensembles

3.4.1 Polarized Versus Unpolarized Beams

The formalism of quantum mechanics developed so far makes statistical predictions on an
ensemble, that is, a collection, of identically prepared physical systems. More precisely, in
such an ensemble all members are supposed to be characterized by the same state ket
|α〉. A good example of this is a beam of silver atoms coming out of an SG filtering
apparatus. Every atom in the beam has its spin pointing in the same direction, namely, the
direction determined by the inhomogeneity of the magnetic field of the filtering apparatus.
We have not yet discussed how to describe quantum mechanically an ensemble of physical
systems for which some, say 60%, are characterized by |α〉, and the remaining 40% are
characterized by some other ket |β〉.

To illustrate vividly the incompleteness of the formalism developed so far, let us consider
silver atoms coming directly out of a hot oven, yet to be subjected to a filtering apparatus
of the Stern–Gerlach type. On symmetry grounds we expect that such atoms have random
spin orientations; in other words, there should be no preferred direction associated with
such an ensemble of atoms. According to the formalism developed so far, the most general
state ket of a spin 1

2 system is given by

|α〉= c+|+〉+ c−|−〉. (3.93)

Is this equation capable of describing a collection of atoms with random spin orientations?
The answer is clearly no; (3.93) characterizes a state ket whose spin is pointing in some
definite direction, namely, in the direction of n̂, whose polar and azimuthal angles, β and
α, respectively, are obtained by solving

c+
c−

=
cos(β/2)

eiα sin(β/2)
; (3.94)

see (3.70).
To cope with a situation of this kind we introduce the concept of fractional population,

or probability weight. An ensemble of silver atoms with completely random spin orien-
tation can be viewed as a collection of silver atoms in which 50% of the members of the
ensemble are characterized by |+〉 and the remaining 50% by |−〉. We specify such an
ensemble by assigning

w+ = 0.5, w− = 0.5, (3.95)

where w+ and w− are the fractional population for spin-up and spin-down, respectively.
Because there is no preferred direction for such a beam, it is reasonable to expect that this
same ensemble can be regarded equally well as a 50:50 mixture of |Sx;+〉 and |Sx;−〉. The
mathematical formalism needed to accomplish this will appear shortly.

It is very important to note that we are simply introducing two real numbers w+ and
w−. There is no information on the relative phase between the spin-up and the spin-down



170 Theory of Angular Momentum

ket. Quite often we refer to such a situation as an incoherent mixture of spin-up and spin-
down states. What we are doing here is to be clearly distinguished from what we did with
a coherent linear superposition, for example,(

1√
2

)
|+〉+

(
1√
2

)
|−〉, (3.96)

where the phase relation between |+〉 and |−〉 contains vital information on the spin
orientation in the xy-plane, in this case in the positive x-direction. In general, we should
not confuse w+ and w− with |c+|2 and |c−|2. The probability concept associated with w+

and w− is much closer to that encountered in classical probability theory. The situation
encountered in dealing with silver atoms directly from the hot oven may be compared with
that of a graduating class in which 50% of the graduating seniors are male, the remaining
50% female. When we pick a student at random, the probability that the particular student
is male (or female) is 0.5. Whoever heard of a student referred to as a coherent linear
superposition of male and female with a particular phase relation?

The beam of silver atoms coming directly out of the oven is an example of a completely
random ensemble; the beam is said to be unpolarized because there is no preferred
direction for spin orientation. In contrast, the beam that has gone through a selective Stern–
Gerlach type measurement is an example of a pure ensemble; the beam is said to be polar-
ized because all members of the ensemble are characterized by a single common ket that
describes a state with spin pointing in some definite direction. To appreciate the difference
between a completely random ensemble and a pure ensemble, let us consider a rotatable
SG apparatus where we can vary the direction of the inhomogeneous B just by rotating
the apparatus. When a completely unpolarized beam directly out of the oven is subjected
to such an apparatus, we always obtain two emerging beams of equal intensity no matter
what the orientation of the apparatus may be. In contrast, if a polarized beam is subjected to
such an apparatus, the relative intensities of the two emerging beams vary as the apparatus
is rotated. For some particular orientation the ratio of the intensities actually becomes one
to zero. In fact, the formalism we developed in Chapter 1 tells us that the relative intensities
are simply cos2(β/2) and sin2(β/2), where β is the angle between the spin direction of the
atoms and the direction of the inhomogeneous magnetic field in the SG apparatus.

A complete random ensemble and a pure ensemble can be regarded as the extremes of
what is known as a mixed ensemble. In a mixed ensemble a certain fraction, for example,
70%, of the members are characterized by a state ket |α〉, the remaining 30% by |β〉. In
such a case the beam is said to be partially polarized. Here |α〉 and |β〉 need not even be
orthogonal; we can, for example, have 70% with spin in the positive x-direction and 30%
with spin in the negative z-direction.5

3.4.2 Ensemble Averages and Density Operator

We now present the density operator formalism, pioneered by J. von Neumann in 1927,
that quantitatively describes physical situations with mixed as well as pure ensembles. Our

5 In the literature what we call pure and mixed ensembles are often referred to as pure and mixed states. In this
book, however, we use state to mean a physical system described by a definite state ket |α〉.
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general discussion here is not restricted to spin 1
2 systems, but for illustrative purposes we

return repeatedly to spin 1
2 systems.

A pure ensemble by definition is a collection of physical systems such that every member
is characterized by the same ket |α〉. In contrast, in a mixed ensemble, a fraction of
the members with relative population w1 is characterized by |α(1)〉, some other fraction
with relative population w2, by |α(2)〉, and so on. Roughly speaking, a mixed ensemble
can be viewed as a mixture of pure ensembles, just as the name suggests. The fractional
populations are constrained to satisfy the normalization condition

∑
i

wi = 1. (3.97)

As we mentioned previously, |α(1)〉 and |α(2)〉 need not be orthogonal. Furthermore, the
number of terms in the i sum of (3.97) need not coincide with the dimensionality N of
the ket space; it can easily exceed N. For example, for spin 1

2 systems with N = 2, we
may consider 40% with spin in the positive z-direction, 30% with spin in the positive x-
direction, and the remaining 30% with spin in the negative y-direction.

Suppose we make a measurement on a mixed ensemble of some observable A. We may
ask what is the average measured value of A when a large number of measurements are
carried out. The answer is given by the ensemble average of A, which is defined by

[A]≡ ∑
i

wi〈α(i)|A|α(i)〉

= ∑
i
∑
a′

wi|〈a′|α(i)〉|2a′, (3.98)

where |a′〉 is an eigenket of A. Recall that 〈α(i)|A|α(i)〉 is the usual quantum-mechanical
expectation value of A taken with respect to state |α(i)〉. Equation (3.98) tells us that these
expectation values must further be weighted by the corresponding fractional populations
wi. Notice how probabilistic concepts enter twice; first in |〈a′|α(i)〉|2 for the quantum-
mechanical probability for state |α(i)〉 to be found in an A eigenstate |a′〉; second, in the
probability factor wi for finding in the ensemble a quantum-mechanical state characterized
by |α(i)〉.6

We can now rewrite ensemble average (3.98) using a more general basis, {|b′〉}:

[A] = ∑
i

wi∑
b′

∑
b′′
〈α(i)|b′〉〈b′|A|b′′〉〈b′′|α(i)〉

= ∑
b′

∑
b′′

(
∑

i
wi〈b′′|α(i)〉〈α(i)|b′〉

)
〈b′|A|b′′〉. (3.99)

The number of terms in the sum of the b′ (b′′) is just the dimensionality of the ket space,
while the number of terms in the sum of the i depends on how the mixed ensemble is viewed
as a mixture of pure ensembles. Notice that in this form the basic property of the ensemble

6 Quite often in the literature the ensemble average is also called the expectation value. However, in this book,
the term expectation value is reserved for the average measured value when measurements are carried out on a
pure ensemble.
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which does not depend on the particular observable A is factored out. This motivates us to
define the density operator ρ as follows:

ρ ≡ ∑
i

wi|α(i)〉〈α(i)|. (3.100)

The elements of the corresponding density matrix have the following form:

〈b′′|ρ|b′〉= ∑
i

wi〈b′′|α(i)〉〈α(i)|b′〉. (3.101)

The density operator contains all the physically significant information we can possibly
obtain about the ensemble in question. Returning to (3.99), we see that the ensemble
average can be written as

[A] = ∑
b′

∑
b′′
〈b′′|ρ|b′〉〈b′|A|b′′〉

= tr(ρA). (3.102)

Because the trace is independent of representations, tr(ρA) can be evaluated using any
convenient basis. As a result, (3.102) is an extremely powerful relation.

There are two properties of the density operator worth recording. First, the density
operator is Hermitian, as is evident from (3.100). Second, the density operator satisfies
the normalization condition

tr(ρ) = ∑
i
∑
b′

wi〈b′|α(i)〉〈α(i)|b′〉

= ∑
i

wi〈α(i)|α(i)〉

= 1. (3.103)

Because of the Hermiticity and the normalization condition, for spin 1
2 systems with

dimensionality 2, the density operator, or the corresponding density matrix, is characterized
by three independent real parameters. Four real numbers characterize a 2× 2 Hermitian
matrix. However, only three are independent because of the normalization condition. The
three numbers needed are [Sx], [Sy], and [Sz]; the reader may verify that knowledge of these
three ensemble averages is sufficient to reconstruct the density operator. The manner in
which a mixed ensemble is formed can be rather involved. We may mix pure ensembles
characterized by all kinds of |α(i)〉 with appropriate wi; yet for spin 1

2 systems three real
numbers completely characterize the ensemble in question. This strongly suggests that
a mixed ensemble can be decomposed into pure ensembles in many different ways. A
problem to illustrate this point appears at the end of this chapter.

A pure ensemble is specified by wi = 1 for some |α(i)〉, with i = n, for instance,
and wi = 0 for all other conceivable state kets, so the corresponding density operator is
written as

ρ = |α(n)〉〈α(n)| (3.104)

with no summation. Clearly, the density operator for a pure ensemble is idempotent, that is,

ρ2 = ρ (3.105)
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or, equivalently,

ρ(ρ−1) = 0. (3.106)

Thus, for a pure ensemble only, we have

tr(ρ2) = 1 (3.107)

in addition to (3.103). The eigenvalues of the density operator for a pure ensemble are
zero or one, as can be seen by inserting a complete set of base kets that diagonalize the
Hermitian operator ρ between ρ and (ρ− 1) of (3.106). When diagonalized, the density
matrix for a pure ensemble must therefore look like

ρ
.
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0

. . .
0

1
0

0
0

. . .
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(diagonal form). (3.108)

It can be shown that tr(ρ2) is maximal when the ensemble is pure; for a mixed ensemble
tr(ρ2) is a positive number less than one.

Given a density operator, let us see how we can construct the corresponding density
matrix in some specified basis. To this end we first recall that

|α〉〈α|= ∑
b′

∑
b′′
|b′〉〈b′|α〉〈α|b′′〉〈b′′|. (3.109)

This shows that we can form the square matrix corresponding to |α(i)〉〈α(i)| by combining,
in the sense of outer product, the column matrix formed by 〈b′|α(i)〉 with the row matrix
formed by 〈α(i)|b′′〉, which, of course, is equal to 〈b′′|α(i)〉∗. The final step is to sum such
square matrices with weighting factors wi, as indicated in (3.100). The final form agrees
with (3.101), as expected.

It is instructive to study several examples, all referring to spin 1
2 systems.

Example 1 A completely polarized beam with Sz+:

ρ = |+〉〈+| .
=

(
1
0

)
(1,0)

=

(
1 0
0 0

)
. (3.110)



174 Theory of Angular Momentum

Example 2 A completely polarized beam with Sx±:

ρ = |Sx;±〉〈Sx;±|=
(

1√
2

)
(|+〉± |−〉)

(
1√
2

)
(〈+|± 〈−|)

.
=

⎛⎜⎜⎝
1
2

±1
2

±1
2

1
2

⎞⎟⎟⎠ . (3.111)

The ensembles of Examples 1 and 2 are both pure.

Example 3 An unpolarized beam. This can be regarded as an incoherent mixture of a spin-
up ensemble and a spin-down ensemble with equal weights (50% each):

ρ = ( 1
2 )|+〉〈+|+( 1

2 )|−〉〈−|

.
=

( 1
2 0
0 1

2

)
, (3.112)

which is just the identity matrix divided by 2. As we remarked earlier, the same
ensemble can also be regarded as an incoherent mixture of an Sx+ ensemble and an Sx−
ensemble with equal weights. It is gratifying that our formalism automatically satisfies the
expectation (

1
2 0
0 1

2

)
= 1

2

(
1
2

1
2

1
2

1
2

)
+ 1

2

(
1
2 − 1

2

− 1
2

1
2

)
, (3.113)

where we see from Example 2 that the two terms on the right-hand side are the density
matrices for pure ensemble with Sx+ and Sx−. Because ρ in this case is just the identity
operator divided by 2 (the dimensionality), we have

tr(ρSx) = tr(ρSy) = tr(ρSz) = 0, (3.114)

where we used the fact that Sk is traceless. Thus for the ensemble average of S we have

[S] = 0. (3.115)

This is reasonable because there should be no preferred spin direction in a completely
random ensemble of spin 1

2 systems.

Example 4 As an example of a partially polarized beam, let us consider a 75:25 mixture of
two pure ensembles, one with Sz+ and the other with Sx+:

w(Sz+) = 0.75, w(Sx+) = 0.25. (3.116)

The corresponding ρ can be represented by

ρ
.
= 3

4

(
1 0
0 0

)
+ 1

4

(
1
2

1
2

1
2

1
2

)

=

(
7
8

1
8

1
8

1
8

)
, (3.117)
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from which follows

[Sx] =
h̄
8

, [Sy] = 0, [Sz] =
3h̄
8

. (3.118)

We leave as an exercise for the reader the task of showing that this ensemble can be
decomposed in ways other than (3.116).

3.4.3 Time Evolution of Ensembles

How does the density operator ρ change as a function of time? Let us suppose that at some
time t0 the density operator is given by

ρ(t0) = ∑
i

wi|α(i)〉〈α(i)|. (3.119)

If the ensemble is to be left undisturbed, we cannot change the fractional population wi. So
the change in ρ is governed solely by the time evolution of state ket |α(i)〉:

|α(i)〉 at t0 → |α(i), t0; t〉. (3.120)

From the fact that |α(i), t0; t〉 satisfies the Schrödinger equation we obtain

ih̄
∂ρ
∂ t

= ∑
i

wi(H|α(i), t0; t〉〈α(i), t0; t|− |α(i), t0; t〉〈α(i), t0; t|H)

=−[ρ,H]. (3.121)

This looks like the Heisenberg equation of motion except that the sign is wrong! This is
not disturbing because ρ is not a dynamic observable in the Heisenberg picture. On the
contrary, ρ is built up of Schrödinger picture state kets and state bras which evolve in time
according to the Schrödinger equation.

It is amusing that (3.121) can be regarded as the quantum-mechanical analogue of
Liouville’s theorem in classical statistical mechanics,

∂ρclassical

∂ t
=−[ρclassical,H]classical, (3.122)

where ρclassical stands for the density of representative points in phase space.7 Thus
the name density operator for the ρ appearing in (3.121) is indeed appropriate.
The classical analogue of (3.102) for the ensemble average of some observable A is
given by

Aaverage =

∫
ρclassicalA(q,p)dΓq,p∫
ρclassicaldΓq,p

, (3.123)

where dΓq,p stands for a volume element in phase space.

7 Remember, a pure classical state is one represented by a single moving point in phase space (q1,. . . ,qf,
p1,. . . ,pf) at each instant of time. A classical statistical state, on the other hand, is described by our nonnegative
density function ρclassical(q1,. . . ,qf,p1,. . . ,pf, t) such that the probability that a system is found in the interval
dq1,. . . ,dpf at time t is ρclassicaldq1,. . . ,dpf.
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3.4.4 Continuum Generalizations

So far we have considered density operators in ket space where the base kets are labeled
by the discrete eigenvalues of some observable. The concept of density matrix can be
generalized to cases where the base kets used are labeled by continuous eigenvalues. In
particular, let us consider the ket space spanned by the position eigenkets |x′〉. The analogue
of (3.102) is given by

[A] =
∫

d3x′
∫

d3x′′〈x′′|ρ|x′〉〈x′|A|x′′〉. (3.124)

The density matrix here is actually a function of x′ and x′′, namely,

〈x′′|ρ|x′〉= 〈x′′|
(

∑
i

wi|α(i)〉〈α(i)|
)
|x′〉

= ∑
i

wiψi(x′′)ψ∗
i (x

′), (3.125)

where ψi is the wave function corresponding to the state ket |α(i)〉. Notice that the diagonal
element (that is, x′ = x′′) of this is just the weighted sum of the probability densities. Once
again, the term density matrix is indeed appropriate.

In continuum cases, too, it is important to keep in mind that the same mixed ensemble
can be decomposed in different ways into pure ensembles. For instance, it is possible
to regard a “realistic” beam of particles either as a mixture of plane wave states
(monoenergetic free-particle states) or as a mixture of wave packet states.

3.4.5 Quantum Statistical Mechanics

We conclude this section with a brief discussion on the connection between the density
operator formalism and statistical mechanics. Let us first record some properties of
completely random and of pure ensembles. The density matrix of a completely random
ensemble looks like

ρ
.
=

1
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1

1
. . .

1
1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.126)

in any representation [compare Example 3 with (3.112)]. This follows from the fact that
all states corresponding to the base kets with respect to which the density matrix is written
are equally populated. In contrast, in the basis where ρ is diagonalized, we have (3.108)
for the matrix representation of the density operator for a pure ensemble. The two diagonal
matrices (3.126) and (3.108), both satisfying the normalization requirement (3.103), cannot
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look more different. It would be desirable if we could somehow construct a quantity that
characterizes this dramatic difference.

Thus we define a quantity called σ by

σ =−tr(ρ lnρ). (3.127)

The logarithm of the operator ρ may appear rather formidable, but the meaning of (3.127)
is quite unambiguous if we use the basis in which ρ is diagonal:

σ =−∑
k
ρ(diag)

kk lnρ(diag)
kk . (3.128)

Because each element ρ(diag)
kk is a real number between 0 and 1, σ is necessarily positive

semidefinite. For a completely random ensemble (3.126), we have

σ =−
N

∑
k=1

1
N

ln

(
1
N

)
= lnN. (3.129)

In contrast, for a pure ensemble (3.108) we have

σ = 0 (3.130)

where we have used

ρ(diag)
kk = 0 or lnρ(diag)

kk = 0 (3.131)

for each term in (3.128).
We now argue that physically σ can be regarded as a quantitative measure of disorder.

A pure ensemble is an ensemble with a maximum amount of order because all members
are characterized by the same quantum-mechanical state ket; it may be likened to marching
soldiers in a well-regimented army. According to (3.130), σ vanishes for such an ensemble.
On the other extreme, a completely random ensemble, in which all quantum-mechanical
states are equally likely, may be likened to drunken soldiers wandering around in random
directions. According to (3.129), σ is large; indeed, we will show later that ln N is the
maximum possible value for σ subject to the normalization condition

∑
k
ρkk = 1. (3.132)

In thermodynamics we learn that a quantity called entropy measures disorder. It turns
out that our σ is related to the entropy per constituent member, denoted by S, of the
ensemble via

S = kσ, (3.133)

where k is a universal constant identifiable with the Boltzmann constant. In fact, (3.133)
may be taken as the definition of entropy in quantum statistical mechanics.

We now show how the density operator ρ can be obtained for an ensemble in thermal
equilibrium. The basic assumption we make is that nature tends to maximize σ subject to
the constraint that the ensemble average of the Hamiltonian has a certain prescribed value.
To justify this assumption would involve us in a delicate discussion of how equilibrium is



178 Theory of Angular Momentum

established as a result of interactions with the environment, which is beyond the scope of
this book. In any case, once thermal equilibrium is established, we expect

∂ρ
∂ t

= 0. (3.134)

Because of (3.121), this means that ρ and H can be simultaneously diagonalized. So the
kets used in writing (3.128) may be taken to be energy eigenkets. With this choice ρkk
stands for the fractional population for an energy eigenstate with energy eigenvalue Ek.

Let us maximize σ by requiring that

δσ = 0. (3.135)

However, we must take into account the constraint that the ensemble average of H has a
certain prescribed value. In the language of statistical mechanics, [H] is identified with the
internal energy per constituent denoted by U:

[H] = tr(ρH) = U. (3.136)

In addition, we should not forget the normalization constraint (3.132). So our basic task is
to require (3.135) subject to the constraints

δ[H] = ∑
k
δρkkEk = 0 (3.137a)

and

δ(trρ) = ∑
k
δρkk = 0. (3.137b)

We can most readily accomplish this by using Lagrange multipliers. We obtain

∑
k
δρkk[(lnρkk +1)+ βEk +γ] = 0, (3.138)

which for an arbitrary variation is possibly only if

ρkk = exp(−βEk −γ−1). (3.139)

The constant γ can be eliminated using the normalization condition (3.132), and our final
result is

ρkk =
exp(−βEk)

N

∑
l

exp(−βEl)

, (3.140)

which directly gives the fractional population for an energy eigenstate with eigenvalue Ek.
It is to be understood throughout that the sum is over distinct energy eigenstates; if there is
degeneracy we must sum over states with the same energy eigenvalue.

The density matrix element (3.140) is appropriate for what is known in statistical
mechanics as a canonical ensemble. Had we attempted to maximize σ without the internal-
energy constraint (3.137a), we would have obtained instead

ρkk =
1
N

(independent of k), (3.141)
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which is the density matrix element appropriate for a completely random ensemble.
Comparing (3.140) with (3.141), we infer that a completely random ensemble can be
regarded as the β→ 0 limit (physically the high-temperature limit) of a canonical ensemble.

We recognize the denominator of (3.140) as the partition function

Z =
N

∑
k

exp(−βEk) (3.142)

in statistical mechanics. It can also be written as

Z = tr(e−βH). (3.143)

Knowing ρkk given in the energy basis, we can write the density operator as

ρ =
e−βH

Z
. (3.144)

This is the most basic equation from which everything follows. We can immediately
evaluate the ensemble average of any observable A:

[A] =
tr(e−βHA)

Z

=

[
N

∑
k
〈A〉k exp(−βEk)

]
N

∑
k

exp(−βEk)

. (3.145)

In particular, for the internal energy per constituent we obtain

U =

[
N

∑
k

Ek exp(−βEk)

]
N

∑
k

exp(−βEk)

=− ∂
∂β

(lnZ), (3.146)

a formula well known to every student of statistical mechanics.
The parameter β is related to the temperature T as follows:

β =
1
kT

(3.147)

where k is the Boltzmann constant. It is instructive to convince ourselves of this
identification by comparing the ensemble average [H] of simple harmonic oscillators with
the kT expected for the internal energy in the classical limit, which is left as an exercise. We
have already commented that in the high-temperature limit, a canonical ensemble becomes
a completely random ensemble in which all energy eigenstates are equally populated. In
the opposite low-temperature limit (β → ∞), (3.140) tells us that a canonical ensemble
becomes a pure ensemble where only the ground state is populated.
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As a simple illustrative example, consider a canonical ensemble made up of spin 1
2

systems, each with a magnetic moment eh̄/2mec subjected to a uniform magnetic field in the
z-direction. The Hamiltonian relevant to this problem has already been given [see (3.34)].
Because H and Sz commute, the density matrix for this canonical ensemble is diagonal in
the Sz basis. Thus

ρ
.
=

(
e−βh̄ω/2 0

0 eβh̄ω/2

)
Z

, (3.148)

where the partition function is just

Z = e−βh̄ω/2 + eβh̄ω/2. (3.149)

From this we compute

[Sx] = [Sy] = 0, [Sz] =−
(

h̄
2

)
tanh

(
βh̄ω

2

)
. (3.150)

The ensemble average of the magnetic moment component is just e/mec times [Sz]. The
paramagnetic susceptibility χ may be computed from(

e
mec

)
[Sz] = χB. (3.151)

In this way we arrive at Brillouin’s formula for χ:

χ =

(
|e|h̄

2mecB

)
tanh

(
βh̄ω

2

)
. (3.152)

3.5 Eigenvalues and Eigenstates of Angular Momentum

Up to now our discussion of angular momentum has been confined exclusively to spin 1
2

systems with dimensionality N = 2. In this and subsequent sections we study more general
angular-momentum states. To this end we first work out the eigenvalues and eigenkets of
J2 and Jz and derive the expressions for matrix elements of angular-momentum operators,
first obtained in a 1926 paper by M. Born, W. Heisenberg, and P. Jordan.

3.5.1 Commutation Relations and the Ladder Operators

Everything we will do follows from the angular-momentum commutation relations (3.20),
where we may recall that Ji is defined as the generator of infinitesimal rotation. The first
important property we derive from the basic commutation relations is the existence of a
new operator J2, defined by

J2 ≡ JxJx + JyJy + JzJz, (3.153)
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that commutes with every one of Jk:

[J2,Jk] = 0 (k = 1,2,3). (3.154)

To prove this let us look at the k = 3 case:

[JxJx + JyJy + JzJz,Jz] = Jx[Jx,Jz]+ [Jx,Jz]Jx + Jy[Jy,Jz]+ [Jy,Jz]Jy

= Jx(−ih̄Jy)+(−ih̄Jy)Jx + Jy(ih̄Jx)+(ih̄Jx)Jy

= 0. (3.155)

The proofs for the cases where k = 1 and 2 follow by cyclic permutation (1 → 2 → 3 → 1)
of the indices. Because Jx, Jy, and Jz do not commute with each other, we can choose only
one of them to be the observable to be diagonalized simultaneously with J2. By convention
we choose Jz for this purpose.

We now look for the simultaneous eigenkets of J2 and Jz. We denote the eigenvalues of
J2 and Jz by a and b, respectively:

J2|a,b〉= a|a,b〉 (3.156a)

Jz|a,b〉= b|a,b〉. (3.156b)

To determine the allowed values for a and b, it is convenient to work with the non-
Hermitian operators

J± ≡ Jx ± iJy, (3.157)

called the ladder operators, rather than with Jx and Jy. They satisfy the commutation
relations

[J+,J−] = 2h̄Jz (3.158a)

and

[Jz,J±] =±h̄J±, (3.158b)

which can easily be obtained from (3.20). Note also that

[J2,J±] = 0, (3.159)

which is an obvious consequence of (3.154).
What is the physical meaning of J±? To answer this we examine how Jz acts on J±|a,b〉:

Jz(J±|a,b〉) = ([Jz,J±]+ J±Jz)|a,b〉
= (b± h̄)(J±|a,b〉) (3.160)

where we have used (3.158b). In other words, if we apply J+(J−) to a Jz eigenket, the
resulting ket is still a Jz eigenket except that its eigenvalue is now increased (decreased) by
one unit of h̄. So now we see why J±, which step one step up (down) on the “ladder” of Jz
eigenvalues, are known as the ladder operators.
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We now digress to recall that the commutation relations in (3.158b) are reminiscent
of some commutation relations we encountered in the earlier chapters. In discussing the
translation operator T (l) we had

[xi,T (l)] = liT (l); (3.161)

also, in discussing the simple harmonic oscillator we had

[N,a†] = a†, [N,a] =−a. (3.162)

We see that both (3.161) and (3.162) have a structure similar to (3.158b). The physical
interpretation of the translation operator is that it changes the eigenvalue of the position
operator x by l in much the same way as the ladder operator J+ changes the eigenvalue of
Jz by one unit of h̄. Likewise, the oscillator creation operator a† increases the eigenvalue
of the number operator N by unity.

Even though J± changes the eigenvalue of Jz by one unit of h̄, it does not change the
eigenvalue of J2:

J2(J±|a,b〉) = J±J2|a,b〉
= a(J±|a,b〉), (3.163)

where we have used (3.159). To summarize, J±|a,b〉 are simultaneous eigenkets of J2 and
Jz with eigenvalues a and b± h̄. We may write

J±|a,b〉= c±|a,b± h̄〉, (3.164)

where the proportionality constant c± will be determined later from the normalization
requirement of the angular-momentum eigenkets.

3.5.2 Eigenvalues of J2 and Jz

We now have the machinery needed to construct angular-momentum eigenkets and to
study their eigenvalue spectrum. Suppose we apply J+ successively, say n times, to a
simultaneous eigenket of J2 and Jz. We then obtain another eigenket of J2 and Jz with
the Jz eigenvalue increased by nh̄, while its J2 eigenvalue is unchanged. However, this
process cannot go on indefinitely. It turns out that there exists an upper limit to b (the Jz
eigenvalue) for a given a (the J2 eigenvalue):

a ≥ b2. (3.165)

To prove this assertion we first note that

J2 − J2
z = 1

2 (J+J−+ J−J+)

= 1
2 (J+J†

++ J†
+J+). (3.166)

Now J+J†
+ and J†

+J+ must have nonnegative expectation values because

J†
+|a,b〉DC↔〈a,b|J+, J+|a,b〉DC↔〈a,b|J†

+; (3.167)
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thus

〈a,b|(J2 − J2
z )|a,b〉 ≥ 0, (3.168)

which, in turn, implies (3.165). It therefore follows that there must be a bmax such that

J+|a,bmax〉= 0. (3.169)

Stated another way, the eigenvalue of b cannot be increased beyond bmax. Now (3.169) also
implies

J−J+|a,bmax〉= 0. (3.170)

But

J−J+ = J2
x + J2

y − i(JyJx − JxJy)

= J2 − J2
z − h̄Jz. (3.171)

So

(J2 − J2
z − h̄Jz)|a,bmax〉= 0. (3.172)

Because |a,bmax〉 itself is not a null ket, this relationship is possible only if

a−b2
max −bmaxh̄ = 0 (3.173)

or

a = bmax(bmax + h̄). (3.174)

In a similar manner we argue from (3.165) that there must also exist a bmin such that

J−|a,bmin〉= 0. (3.175)

By writing J+J− as

J+J− = J2 − J2
z + h̄Jz (3.176)

in analogy with (3.171), we conclude that

a = bmin(bmin − h̄). (3.177)

By comparing (3.174) with (3.177) we infer that

bmax =−bmin, (3.178)

with bmax positive, and that the allowed values of b lie within

−bmax ≤ b ≤ bmax. (3.179)

Clearly, we must be able to reach |a,bmax〉 by applying J+ successively to |a,bmin〉 a finite
number of times. We must therefore have

bmax = bmin +nh̄, (3.180)
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where n is some integer. As a result, we get

bmax =
nh̄
2

. (3.181)

It is more conventional to work with j, defined to be bmax/h̄, instead of with bmax so that

j =
n
2

. (3.182)

The maximum value of the Jz eigenvalue is jh̄, where j is either an integer or a half-integer.
Equation (3.174) implies that the eigenvalue of J2 is given by

a = h̄2j( j+1). (3.183)

Let us also define m so that

b ≡ mh̄. (3.184)

If j is an integer, all m values are integers; if j is a half-integer, all m values are half-integers.
The allowed m-values for a given j are

m =−j,−j+1,. . . , j−1, j︸ ︷︷ ︸
2j+1states

. (3.185)

Instead of |a,b〉 it is more convenient to denote a simultaneous eigenket of J2 and Jz by
| j,m〉. The basic eigenvalue equations now read

J2| j,m〉= j( j+1)h̄2| j,m〉 (3.186a)

and

Jz| j,m〉= mh̄| j,m〉, (3.186b)

with j either an integer or a half-integer and m given by (3.185). It is very important to
recall here that we have used only the commutation relations (3.20) to obtain these results.
The quantization of angular momentum, manifested in (3.186), is a direct consequence of
the angular-momentum commutation relations, which, in turn, follow from the properties
of rotations together with the definition of Jk as the generator of rotation.

3.5.3 Matrix Elements of Angular-Momentum Operators

Let us work out the matrix elements of the various angular-momentum operators.
Assuming | j,m〉 to be normalized, we obviously have from (3.186)

〈 j′,m′|J2| j,m〉= j( j+1)h̄2δj′jδm′m (3.187a)

and

〈 j′,m′|Jz| j,m〉= mh̄δj′jδm′m. (3.187b)

To obtain the matrix elements of J±, we first consider

〈 j,m|J†
+J+| j,m〉= 〈 j,m|(J2 − J2

z − h̄Jz)| j,m〉
= h̄2[ j( j+1)−m2 −m]. (3.188)
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Now J+| j,m〉 must be the same as | j,m+ 1〉 (normalized) up to a multiplicative constant
[see (3.164)]. Thus

J+| j,m〉= c+jm| j,m+1〉. (3.189)

Comparison with (3.188) leads to

|c+jm|2 = h̄2[ j( j+1)−m(m+1)]

= h̄2( j−m)( j+m+1). (3.190)

So we have determined c+jm up to an arbitrary phase factor. It is customary to choose c+jm to
be real and positive by convention. So

J+| j,m〉=
√
( j−m)( j+m+1)h̄| j,m+1〉. (3.191)

Similarly, we can derive

J−| j,m〉=
√
( j+m)( j−m+1)h̄| j,m−1〉. (3.192)

Finally, we determine the matrix elements of J± to be

〈 j′,m′|J±| j,m〉=
√
( j∓m)( j±m+1)h̄δj′jδm′,m±1. (3.193)

3.5.4 Representations of the Rotation Operator

Having obtained the matrix elements of Jz and J±, we are now in a position to study the
matrix elements of the rotation operator D(R). If a rotation R is specified by n̂ and φ, we
can define its matrix elements by

D
( j)
m′m(R) = 〈 j,m′|exp

(
−iJ·n̂φ

h̄

)
| j,m〉. (3.194)

These matrix elements are sometimes called Wigner functions after E. P. Wigner, who
made pioneering contributions to the group-theoretical properties of rotations in quantum
mechanics. Notice here that the same j-value appears in the ket and bra of (3.194); we
need not consider matrix elements of D(R) between states with different j-values because
they all vanish trivially. This is because D(R)| j,m〉 is still an eigenket of J2 with the same
eigenvalue j( j+1)h̄2:

J2D(R)| j,m〉= D(R)J2| j,m〉
= j( j+1)h̄2[D(R)| j,m〉], (3.195)

which follows directly from the fact that J2 commutes with Jk (hence with any function
of Jk). Simply stated, rotations cannot change the j-value, which is an eminently sensible
result.

Often in the literature the (2j+ 1)× (2j+ 1) matrix formed by D
( j)
m′m(R) is referred to

as the (2j+1)-dimensional irreducible representation of the rotation operator D(R). This
means that the matrix which corresponds to an arbitrary rotation operator in ket space not
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necessarily characterized by a single j-value can, with a suitable choice of basis, be brought
to block-diagonal form:

(3.196)

where each shaded square is a (2j+1)× (2j+1) square matrix formed by D
( j)
m′m with some

definite value of j. Furthermore, each square matrix itself cannot be broken into smaller
blocks

2 j + 1

2j + 1

2j + 1 − k

2j + 1 − k

k

k

(3.197)

with any choice of basis.
The rotation matrices characterized by definite j form a group. First, the identity

is a member because the rotation matrix corresponding to no rotation (φ = 0) is the
(2j+1)×(2j+1) identity matrix. Second, the inverse is also a member; we simply reverse
the rotation angle φ→−φ without changing the rotation axis n̂. Third, the product of any
two members is also a member; explicitly we have

∑
m′

D
( j)
m′′m′(R1)D

( j)
m′m(R2) = D

( j)
m′′m(R1R2), (3.198)

where the product R1R2 represents a single rotation. We also note that the rotation matrix
is unitary because the corresponding rotation operator is unitary; explicitly we have

Dm′m(R−1) = D∗
mm′(R). (3.199)
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To appreciate the physical significance of the rotation matrix let us start with a state
represented by | j,m〉. We now rotate it:

| j,m〉 → D(R)| j,m〉. (3.200)

Even though this rotation operation does not change j, we generally obtain states with m-
values other than the original m. To find the amplitude for being found in | j,m′〉, we simply
expand the rotated state as follows:

D(R)| j,m〉= ∑
m′
| j,m′〉〈 j,m′|D(R)| j,m〉

= ∑
m′
| j,m′〉D ( j)

m′m(R), (3.201)

where, in using the completeness relation, we took advantage of the fact that D(R) connects
only states with the same j. So the matrix element D

( j)
m′m(R) is simply the amplitude for the

rotated state to be found in | j,m′〉 when the original unrotated state is given by | j,m〉.
In Section 3.3 we saw how Euler angles may be used to characterize the most

general rotation. We now consider the matrix realization of (3.90) for an arbitrary j (not
necessarily 1

2 ):

D
( j)
m′m(α,β,γ) = 〈 j,m′|exp

(
−iJzα

h̄

)
exp

(−iJyβ

h̄

)
exp

(
−iJzγ

h̄

)
| j,m〉

= e−i(m′α+mγ)〈 j,m′|exp

(−iJyβ

h̄

)
| j,m〉. (3.202)

Notice that the only nontrivial part is the middle rotation about the y-axis, which mixes
different m-values. It is convenient to define a new matrix d ( j)(β) as

d ( j)
m′m(β)≡ 〈 j,m′|exp

(−iJyβ

h̄

)
| j,m〉. (3.203)

Finally, let us turn to some examples. The j = 1
2 case has already been worked out in

Section 3.3. See the middle matrix of (3.91),

d 1/2 =

⎛⎜⎜⎝cos

(
β
2

)
−sin

(
β

2

)
sin

(
β
2

)
cos

(
β
2

)
⎞⎟⎟⎠ . (3.204)

The next simplest case is j = 1, which we consider in some detail. Clearly, we must first
obtain the 3×3 matrix representation of Jy. Because

Jy =
(J+− J−)

2i
(3.205)

from the defining equation (3.157) for J±, we can use (3.193) to obtain

m = 1, m = 0, m =−1,
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J( j=1)
y =

(
h̄
2

) ⎛⎝ 0 −
√

2i 0√
2i 0 −

√
2i

0
√

2i 0

⎞⎠ m′ = 1
m′ = 0
m′ =−1.

(3.206)

Our next task is to work out the Taylor expansion of exp(−iJyβ/h̄). Unlike the case j =
1
2 , [J( j=1)

y ]2 is independent of 1 and J( j=1)
y . However, it is easy to work out(
J( j=1)

y

h̄

)3

=
J( j=1)

y

h̄
. (3.207)

Consequently, for j = 1 only, it is legitimate to replace

exp

(−iJyβ

h̄

)
→ 1−

(
Jy

h̄

)2

(1− cosβ)− i
(

Jy

h̄

)
sinβ, (3.208)

as the reader may verify in detail. Explicitly we have

d(1)(β) =

⎛⎜⎜⎜⎝
( 1

2

)
(1+ cosβ) −

(
1√
2

)
sinβ

( 1
2

)
(1− cosβ)(

1√
2

)
sinβ cosβ −

(
1√
2

)
sinβ( 1

2

)
(1− cosβ)

(
1√
2

)
sinβ

( 1
2

)
(1+ cosβ)

⎞⎟⎟⎟⎠ . (3.209)

Clearly, this method becomes time consuming for large j. Other, much easier methods
are possible, but we will not pursue them in this book.

3.6 Orbital Angular Momentum

We introduced the concept of angular momentum by defining it to be the generator of an
infinitesimal rotation. There is another way to approach the subject of angular momentum
when spin-angular momentum is zero or can be ignored. The angular momentum J for a
single particle is then the same as orbital angular momentum, which is defined as

L = x×p. (3.210)

In this section we explore the connection between the two approaches.

3.6.1 Orbital Angular Momentum as Rotation Generator

We first note that the orbital angular-momentum operator defined as (3.210) satisfies the
angular-momentum commutation relations

[Li,Lj] = iεijkh̄Lk (3.211)
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by virtue of the commutation relations among the components of x and p. This can easily
be proved as follows:

[Lx,Ly] = [ypz − zpy,zpx − xpz]

= [ypz,zpx]+ [zpy,xpz]

= ypx[pz,z]+pyx[z,pz]

= ih̄(xpy − ypx)

= ih̄Lz

... (3.212)

Next we let

1− i
(
δφ

h̄

)
Lz = 1− i

(
δφ

h̄

)
(xpy − ypx) (3.213)

act on an arbitrary position eigenket |x′,y′,z′〉 to examine whether it can be interpreted
as the infinitesimal rotation operator about the z-axis by angle δφ. Using the fact that
momentum is the generator of translation, we obtain [see (1.214)][

1− i
(
δφ

h̄

)
Lz

]
|x′,y′,z′〉=

[
1− i

(py

h̄

)
(δφx′)+ i

(px

h̄

)
(δφy′)

]
|x′,y′,z′〉

= |x′ − y′δφ, y′+ x′δφ,z′〉. (3.214)

This is precisely what we expect if Lz generates an infinitesimal rotation about the z-axis.
So we have demonstrated that if p generates translation, then L generates rotation.

Suppose the wave function for an arbitrary physical state of a spinless particle is given by
〈x′,y′,z′|α〉. After an infinitesimal rotation about the z-axis is performed, the wave function
for the rotated state is

〈x′,y′,z′|
[

1− i
(
δφ

h̄

)
Lz

]
|α〉= 〈x′+ y′δφ, y′ − x′δφ,z′|α〉. (3.215)

It is actually more transparent to change the coordinate basis

〈x′,y′,z′|α〉 → 〈r,θ ,φ|α〉. (3.216)

For the rotated state we have, according to (3.215),

〈r,θ ,φ|
[

1− i
(
δφ

h̄

)
Lz

]
|α〉= 〈r,θ ,φ− δφ|α〉

= 〈r,θ ,φ|α〉− δφ ∂
∂φ

〈r,θ ,φ|α〉. (3.217)

Because 〈r,θ ,φ| is an arbitrary position eigenket, we can identify

〈x′|Lz|α〉=−ih̄
∂

∂φ
〈x′|α〉, (3.218)

which is a well-known result from wave mechanics. Even though this relation can also
be obtained just as easily using the position representation of the momentum operator, the
derivation given here emphasizes the role of Lz as the generator of rotation.
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We next consider a rotation about the x-axis by angle δφx. In analogy with (3.215) we
have

〈x′,y′,z′|
[

1− i
(
δφx

h̄

)
Lx

]
|α〉= 〈x′,y′+ z′δφx,z′ − y′δφx|α〉. (3.219)

By expressing x′, y′, and z′ in spherical coordinates, we can show that

〈x′|Lx|α〉=−ih̄
(
−sinφ

∂
∂θ

− cotθ cosφ
∂

∂φ

)
〈x′|α〉. (3.220)

Likewise,

〈x′|Ly|α〉=−ih̄
(

cosφ
∂

∂θ
− cotθ sinφ

∂
∂φ

)
〈x′|α〉. (3.221)

Using (3.220) and (3.221), for the ladder operator L± defined as in (3.157), we have

〈x′|L±|α〉=−ih̄e±iφ
(
±i

∂
∂θ

− cotθ
∂

∂φ

)
〈x′|α〉. (3.222)

Finally, it is possible to write 〈x′|L2|α〉 using

L2 = L2
z +

(
1
2

)
(L+L−+L−L+), (3.223)

(3.218), and (3.222), as follows:

〈x′|L2|α〉=−h̄2
[

1
sin2 θ

∂ 2

∂φ2 +
1

sinθ
∂

∂θ

(
sinθ

∂
∂θ

)]
〈x′|α〉. (3.224)

Apart from 1/r2, we recognize the differential operator that appears here to be just the
angular part of the Laplacian in spherical coordinates.

It is instructive to establish this connection between the L2 operator and the angular part
of the Laplacian in another way by looking directly at the kinetic-energy operator. We first
record an important operator identity,

L2 = x2p2 − (x·p)2 + ih̄x·p, (3.225)

where x2 is understood to be the operator x·x, just as p2 stands for the operator p·p. The
proof of this is straightforward:

L2 = ∑
ijlmk

εijkxipjεlmkxlpm

= ∑
ijlm

(δilδjm − δimδjl)xipjxlpm

= ∑
ijlm

[δilδjmxi(xlpj − ih̄δjl)pm − δimδjlxipj(pmxl + ih̄δlm)]

= x2p2 − ih̄x ·p−∑
ijlm
δimδjl[xipm(xlpj − ih̄δjl)+ ih̄δlmxipj]

= x2p2 − (x·p)2 + ih̄x·p. (3.226)
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Before taking the preceding expression between 〈x′| and |α〉, first note that

〈x′|x·p|α〉= x′·(−ih̄∇′〈x′|α〉)

=−ih̄r
∂
∂ r

〈x′|α〉. (3.227)

Likewise,

〈x′|(x·p)2|α〉=−h̄2r
∂
∂ r

(
r

∂
∂ r

〈x′|α〉
)

=−h̄2
(

r2 ∂ 2

∂ r2 〈x
′|α〉+ r

∂
∂ r

〈x′|α〉
)

. (3.228)

Thus

〈x′|L2|α〉= r2〈x′|p2|α〉+ h̄2
(

r2 ∂ 2

∂ r2 〈x
′|α〉+2r

∂
∂ r

〈x′|α〉
)

. (3.229)

In terms of the kinetic energy p2/2m, we have

1
2m

〈x′|p2|α〉=−
(

h̄2

2m

)
∇′2〈x′|α〉

=−
(

h̄2

2m

)(
∂ 2

∂ r2 〈x
′|α〉+ 2

r
∂
∂ r

〈x′|α〉− 1
h̄2r2

〈x′|L2|α〉
)

. (3.230)

The first two terms in the last line are just the radial part of the Laplacian acting on 〈x′|α〉.
The last term must then be the angular part of the Laplacian acting on 〈x′|α〉, in complete
agreement with (3.224).

3.6.2 Spherical Harmonics

Consider a spinless particle subjected to a spherical symmetrical potential. The wave
equation is known to be separable in spherical coordinates and the energy eigenfunctions
can be written as

〈x′|n, l,m〉= Rnl(r)Ym
l (θ ,φ), (3.231)

where the position vector x′ is specified by the spherical coordinates r, θ , and φ, and n
stands for some quantum number other than l and m, for example, the radial quantum
number for bound-state problems or the energy for a free-particle spherical wave. As will
be made clearer in Section 3.11, this form can be regarded as a direct consequence of the
rotational invariance of the problem. When the Hamiltonian is spherically symmetrical,
H commutes with Lz and L2, and the energy eigenkets are expected to be eigenkets of
L2 and Lz also. Because Lk with k = 1,2,3 satisfy the angular-momentum commutation
relations, the eigenvalues of L2 and Lz are expected to be l(l+1)h̄2, and mh̄= [−lh̄,(−l+1)
h̄,. . . ,(l−1)h̄, lh̄].

Because the angular dependence is common to all problems with spherical symmetry,
we can isolate it and consider

〈n̂|l,m〉= Ym
l (θ ,φ) = Ym

l (n̂), (3.232)
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where we have defined a direction eigenket |n̂〉 . From this point of view, Ym
l (θ ,φ) is the

amplitude for a state characterized by l, m to be found in the direction n̂ specified by θ
and φ.

Suppose we have relations involving orbital angular-momentum eigenkets. We can
immediately write the corresponding relations involving the spherical harmonics. For
example, take the eigenvalue equation

Lz|l,m〉= mh̄|l,m〉. (3.233)

Multiplying 〈n̂| on the left and using (3.218), we obtain

−ih̄
∂

∂φ
〈n̂|l,m〉= mh̄〈n̂|l,m〉. (3.234)

We recognize this equation to be

−ih̄
∂

∂φ
Ym

l (θ ,φ) = mh̄Ym
l (θ ,φ), (3.235)

which implies that the φ-dependence Ym
l (θ ,φ) must behave like eimφ. Likewise, corre-

sponding to

L2|l,m〉= l(l+1)h̄2|l,m〉, (3.236)

we have [see (3.224)][
1

sinθ
∂

∂θ

(
sinθ

∂
∂θ

)
+

1
sin2 θ

∂ 2

∂φ2 + l(l+1)
]

Ym
l = 0, (3.237)

which is simply the partial differential equation satisfied by Ym
l itself. The orthogonality

relation

〈l′,m′|l,m〉= δll′δmm′ (3.238)

leads to ∫ 2π

0
dφ

∫ 1

−1
d(cosθ)Ym′∗

l′ (θ ,φ)Ym
l (θ ,φ) = δll′δmm′ , (3.239)

where we have used the completeness relation for the direction eigenkets,∫
dΩn̂|n̂〉〈n̂|= 1. (3.240)

To obtain the Ym
l themselves, we may start with the m = l case. We have

L+|l, l〉= 0, (3.241)

which, because of (3.222), leads to

−ih̄eiφ
[

i
∂

∂θ
− cotθ

∂
∂φ

]
〈n̂|l, l〉= 0. (3.242)

Remembering that the φ-dependence must behave like eilφ, we can easily show that this
partial differential equation is satisfied by

〈n̂|l, l〉= Yl
l(θ ,φ) = cleilφ sinl θ , (3.243)
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where cl is the normalization constant determined from (3.239) to be8

cl =

[
(−1)l

2ll!

]√
[(2l+1)(2l)! ]

4π
. (3.244)

Starting with (3.243) we can use

〈n̂|l,m−1〉= 〈n̂|L−|l,m〉√
(l+m)(l−m+1)h̄

=
1√

(l+m)(l−m+1)
e−iφ

(
− ∂

∂θ
+ icotθ

∂
∂φ

)
〈n̂|l,m〉 (3.245)

successively to obtain all Ym
l with l fixed. Because this is done in many textbooks on

elementary quantum mechanics, for example Townsend (2000), we will not work out the
details here. The result for m ≥ 0 is

Ym
l (θ ,φ) =

(−1)l

2ll!

√
(2l+1)

4π
(l+m)!
(l−m)!

eimφ 1
sinm θ

dl−m

d(cosθ)l−m (sinθ)2l, (3.246)

and we define Y−m
l by

Y−m
l (θ ,φ) = (−1)m[Ym

l (θ ,φ)]∗. (3.247)

Regardless of whether m is positive or negative, the θ -dependent part of Ym
l (θ ,φ) is

[sinθ ]|m| times a polynomial in cosθ with a highest power of l−|m|. For m = 0, we obtain

Y0
l (θ ,φ) =

√
2 l+1

4π
Pl(cos θ). (3.248)

From the point of view of the angular-momentum commutation relations alone, it might
not appear obvious why l cannot be a half-integer. It turns out that several arguments can be
advanced against half-integer l-values. First, for half-integer l, and hence for half-integer
m, the wave function would acquire a minus sign,

eim(2π) =−1, (3.249)

under a 2π rotation. As a result, the wave function would not be single valued; we pointed
out in Section 2.4 that the wave function must be single valued because of the requirement
that the expansion of a state ket in terms of position eigenkets be unique. We can prove
that if L, defined to be x×p, is to be identified as the generator of rotation, then the wave
function must acquire a plus sign under a 2π rotation. This follows from the fact that
the wave function for a 2π-rotated state is the original wave function itself with no sign
change:

〈x′|exp

(
−iLz2π

h̄

)
|α〉= 〈x′ cos2π + y′ sin2π,y′ cos2π − x′ sin2π,z′|α〉

= 〈x′|α〉, (3.250)

8 Normalization condition (3.239), of course, does not determine the phase of cl. The factor (−1)l is inserted so
that when we use the L− operator successively to reach the state m = 0, we obtain Y0

l with the same sign as the
Legendre polynomial Pl(cosθ) whose phase is fixed by Pl(1) = 1 [see (3.248)].
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where we have used the finite-angle version of (3.215). Next, let us suppose Ym
l (θ ,φ) with

a half-integer l were possible. To be specific, we choose the simplest case, l = m = 1
2 .

According to (3.243) we would have

Y1/2
1/2(θ ,φ) = c1/2eiφ/2

√
sin θ . (3.251)

From the property of L− [see (3.245)] we would then obtain

Y−1/2
1/2 (θ ,φ) = e−iφ

(
− ∂

∂ θ
+ icotθ

∂
∂ φ

)(
c1/2eiφ/2

√
sinθ

)
=−c1/2e−iφ/2 cotθ

√
sinθ . (3.252)

This expression is not permissible because it is singular at θ = 0, π. What is worse, from
the partial differential equation〈

n̂|L−|
1
2

,−1
2

〉
=−ih̄e−iφ

(
−i

∂
∂ θ

− cot θ
∂

∂ φ

)〈
n̂|1

2
,−1

2

〉
= 0 (3.253)

we directly obtain

Y−1/2
1/2 = c′1/2e−iφ/2

√
sinθ , (3.254)

in sharp contradiction with (3.252). Finally, we know from the Sturm–Liouville theory of
differential equations that the solutions of (3.237) with l integer form a complete set. An
arbitrary function of θ and φ can be expanded in terms of Ym

l with integer l and m only.
For all these reasons it is futile to contemplate orbital angular momentum with half-integer
l-values.

3.6.3 Spherical Harmonics as Rotation Matrices

We conclude this section on orbital angular momentum by discussing the spherical
harmonics from the point of view of the rotation matrices introduced in the last section. We
can readily establish the desired connection between the two approaches by constructing
the most general direction eigenket |n̂〉 by applying appropriate rotation operators to |ẑ〉,
the direction eigenket in the positive z-direction. We wish to find D(R) such that

|n̂〉= D(R)|ẑ〉. (3.255)

We can rely on the technique used in constructing the eigenspinor of σ·n̂ in Section 3.2. We
first rotate about the y-axis by angle θ , then around the z-axis by angle φ; see Figure 3.3
with β→ θ , α→ φ. In the notation of Euler angles we have

D(R) = D(α = φ,β = θ ,γ = 0). (3.256)

Writing (3.255) as

|n̂〉= ∑
l

∑
m

D(R)|l,m〉〈l,m|ẑ〉, (3.257)
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we see that |n̂〉, when expanded in terms of |l,m〉, contains all possible l-values. However,
when this equation is multiplied by 〈l,m′| on the left, only one term in the l-sum contributes,
namely,

〈l,m′|n̂〉= ∑
m

D
(l)
m′m(α = φ,β = θ ,γ = 0)〈l,m|ẑ〉. (3.258)

Now 〈l,m|ẑ〉 is just a number; in fact, it is precisely Ym∗
l (θ ,φ) evaluated at θ = 0 with φ

undetermined. At θ = 0, Ym
l is known to vanish for m 	= 0, which can also be seen directly

from the fact that |ẑ〉 is an eigenket of Lz (which equals xpy − ypx) with eigenvalue zero.
So we can write

〈l,m|ẑ〉= Ym∗
l (θ = 0,φundetermined)δm0

=

√
(2 l+1)

4π
Pl(cos θ)

∣∣∣∣∣
cos θ =1

δm0

=

√
(2 l+1)

4π
δm0. (3.259)

Returning to (3.258), we have

Ym′∗
l (θ ,φ) =

√
(2 l+1)

4π
D

(l)
m′0(α = φ,β = θ ,γ = 0) (3.260)

or

D
(l)
m0(α,β,γ = 0) =

√
4π

(2 l+1)
Ym∗

l (θ ,φ)

∣∣∣∣∣
θ =β,φ=α

. (3.261)

Notice the m = 0 case, which is of particular importance:

d( l)
00 (β)

∣∣∣
β=θ

= Pl(cos θ). (3.262)

3.7 Schrödinger’s Equation for Central Potentials

Problems described by Hamiltonians of the form

H =
p2

2m
+V(r) r2 = x2 (3.263)

form the basis for very many situations in the physical world. The fundamental importance
of this Hamiltonian lies in the fact that it is spherically symmetric. Classically, we expect
orbital angular momentum to be conserved in such a system. This is also true quantum
mechanically, since it is easy to show that

[L,p2] = [L,x2] = 0 (3.264)

and therefore

[L,H] = [L2,H] = 0 (3.265)
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if H is given by (3.263). We refer to such problems as “central potential” or “central force”
problems. Even if the Hamiltonian is not strictly of this form, it is often the case that this
is a good starting point when we consider approximation schemes that build on “small”
corrections to central potential problems.

In this section we will discuss some general properties of bound-state eigenfunctions
generated by (3.263), and a few representative central potential problems. (Scattering
solutions will be discussed in Chapter 6.) For more detail, the reader is referred to any
number of excellent texts which explore such problems in greater depth.

3.7.1 The Radial Equation

Equation (3.265) makes it clear that we should search for energy eigenstates |α〉 = |Elm〉
where

H|Elm〉= E|Elm〉 (3.266)
L2|Elm〉= l(l+1)h̄2|Elm〉 (3.267)
Lz|Elm〉= mh̄|Elm〉. (3.268)

It is easiest to work in the coordinate representation, and solve the appropriate differential
equation for eigenfunctions in terms of a radial function REl(r) and spherical harmonics,
as shown in (3.231). Combining (3.263), (3.266), and (3.267) with (3.230) and (3.231) we
arrive at the radial equation9[

− h̄2

2mr2
d
dr

(
r2 d

dr

)
+

l(l+1)h̄2

2mr2 +V(r)
]

REl(r) = EREl(r). (3.269)

Depending on the specific form of V(r), we may work with this equation or some variant
of it, to identify the radial part REl(r) of the eigenfunction and/or the energy eigenvalues E.

In fact, we can immediately gain some insight to the effects of angular momentum on
the eigenfunctions by making the substitution

REl(r) =
uEl(r)

r
(3.270)

which reduces (3.269) to

− h̄2

2m
d2uEl

dr2 +

[
l(l+1)h̄2

2mr2 +V(r)
]

uEl(r) = EuEl(r). (3.271)

Coupled with the fact that the spherical harmonics are separately normalized, so that the
overall normalization condition becomes

1 =
∫

r2dr R∗
El(r)REl(r) =

∫
dr u∗El(r)uEl(r), (3.272)

we see that uEl(r) can be interpreted as a wave function in one dimension for a particle
moving in an “effective potential”

9 We apologize for using m for both “mass” and the quantum number for angular momentum. However, in this
section, it should be clear from the context which is which.
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Fig. 3.5 The “effective potential” which governs the behavior of the “radial wave function” uEl (r). If the potential energy
V(r) (shown as a dashed line) is not too singular at the origin, then there is an angular momentum barrier for all
states with l �= 0, which makes it very improbable for a particle to located near the origin.

Veff(r) = V(r)+
l(l+1)h̄2

2mr2 . (3.273)

Equation (3.273) demonstrates the existence of an “angular momentum barrier” if l 	= 0, as
shown in Figure 3.5. Quantum mechanically, this means that the amplitude (and therefore
the probability) is small for locating the particle near the origin, except for s-states. As we
will see later on, this fact has important physical consequences in atoms, for example.

We can be more quantitative about this interpretation. Let us assume that the potential
energy function V(r) is not so singular so that limr→0 r2V(r) = 0. Then, for small values of
r, (3.271) becomes

d2uEl

dr2 =
l(l+1)

r2 uEl(r) (r → 0) (3.274)

which has the general solution

uEl(r) = Arl+1 +
B
rl . (3.275)

It is tempting to set B = 0 out of hand, because 1/rl produces severe singularities as r → 0,
especially for large l. However, there are better reasons for setting B = 0, that are rooted
in the foundations of quantum mechanics. For example, under certain conditions, one can
show that the interference between the two terms leads to nonconservation of probability.
(See Problem 3.27 at the end of this chapter.) Other rather sophisticated explanations are
given in some textbooks, but we give a relatively simple approach here.

If B 	= 0 in (3.275), then the radial wave function REl(r)→ 1/rl+1 as r→ 0, and this is not
normalizable for l ≥ 1. The wave function can be normalized for l = 0, but in this case the
Schrödinger equation involves ∇2(1/r) =−4πδ(x) and solutions cannot be found (unless
the potential is a δ-function).

Consequently, we are left with

REl(r)→ rl as r → 0. (3.276)
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This relation has profound consequences. Firstly, it embodies the “angular-momentum
barrier” shown in Figure 3.5, since the wave function goes to zero except for s-states.
More practically, it means that the probability of finding, say, an electron in an atom in the
region of the nucleus, goes like (R/a0)

2l where R � a0 is the size of the nucleus and a0 is
the Bohr radius. These concepts will become explicit when we come to the study of atomic
structure.

When considering bound states of potential energy functions V(r) which tend to zero
at large r, there is another form of the radial equation which we can consider. For r → ∞,
(3.271) becomes

d2uE

dr2 = κ2u κ2 ≡−2mE/h̄2 > 0 r → ∞ (3.277)

since E < 0 for bound states. The solution to this equation is simply uE(r) ∝ e−κr. Also, it
makes it clear that the dimensionless variable ρ ≡ κr would be useful to recast the radial
equation. Consequently, we remove both the short and long distance behavior of the wave
function and write10

uEl(ρ) = ρl+1e−ρw(ρ) (3.278)

where the function w(ρ) is “well behaved” and satisfies

d2w
dρ2 +2

(
l+1
ρ

−1
)

dw
dρ

+

[
V
E
− 2(l+1)

ρ

]
w = 0. (3.279)

(The manipulations which lead to this equation are left to the reader.) One then attacks the
solution w(ρ) of (3.279) for the particular function V(r = ρ/κ).

3.7.2 The Free Particle and Infinite Spherical Well

In Section 2.5.1 we saw the solution to the free-particle problem in three dimensions, using
Cartesian coordinates. We can of course approach the same problem by exploiting spherical
symmetry and angular momentum. Starting from (3.269) we write

E ≡ h̄2k2

2m
and ρ ≡ kr (3.280)

and arrive at the modified radial equation

d2R
dρ2 +

2
ρ

dR
dρ

+

[
1− l(l+1)

ρ2

]
R = 0. (3.281)

This is a well-known differential equation whose solutions are called spherical Bessel
functions jl(ρ) and nl(ρ), where

10 We are being a bit careless with notation when switching arguments from r to ρ, as is typical in these kinds
of treatments. For example, going from (3.277) to (3.278) and ignoring subscripts, we should define the
dimensionless function ũ(ρ) ≡ κ−1/2u(ρ/κ) in which case

∫ ∞
0 ũ2(ρ)dρ = 1. We can otherwise ignore the

factor κ−1/2 which gets absorbed into the normalization, and then drop the “tilde,” that is ũ(ρ)→ u(ρ).
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jl(ρ) = (−ρ)l
[

1
ρ

d
dρ

]l ( sinρ
ρ

)
(3.282a)

nl(ρ) =−(−ρ)l
[

1
ρ

d
dρ

]l (cosρ
ρ

)
. (3.282b)

It is easy to show that as ρ→ 0, jl(ρ)→ ρl and nl(ρ)→ ρ−l−1. Hence, jl(ρ) corresponds
to (3.276) and these are the only solutions we consider here.11 It is also useful to point out
that the spherical Bessel functions are defined over the entire complex plane, and it can be
shown that

jl(z) =
1

2il
∫ 1

−1
ds eizsPl(s). (3.283)

The first few spherical Bessel functions are

j0(ρ) =
sinρ
ρ

(3.284)

j1(ρ) =
sinρ
ρ2 − cosρ

ρ
(3.285)

j2(ρ) =
[

3
ρ3 −

1
ρ

]
sinρ− 3cosρ

ρ2 . (3.286)

This result can be immediately applied to the case of a particle confined to an infinite
spherical well, that is, a potential energy function V(r) = 0 within r < a, but with the
wave function constrained to be zero at r = a. For any given value of l, this leads to the
“quantization condition” jl(ka) = 0, that is, ka equals the set of zeros of the spherical Bessel
function. For l = 0 these are obviously ka = π,2π,3π,. . .. For other values of l, computer
programs are readily available which can compute the zeros. We find that

El=0 =
h̄2

2ma2

[
π2,(2π)2,(3π)2,. . .

]
(3.287)

El=1 =
h̄2

2ma2

[
4.492,7.732,10.902,. . .

]
(3.288)

El=2 =
h̄2

2ma2

[
5.762,9.102,12.322,. . .

]
. (3.289)

It should be noted that this series of energy levels shows no degeneracies in l. Indeed, such
degenerate energy levels are impossible, except for any accidental equality between zeros
of spherical Bessel functions of different orders.

3.7.3 The Isotropic Harmonic Oscillator

Energy eigenvalues for the Hamiltonian

H =
p2

2m
+

1
2

mω2r2 (3.290)

11 In a treatment of “hard sphere scattering” problems, the origin is explicitly excluded, and the solutions nl(ρ)
are also kept. The relative phase between the two solutions for a given l is called the “phase shift.”
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are straightforward to determine. Introducing dimensionless energy λ and radial coordinate
ρ through

E =
1
2

h̄ωλ and r =
[

h̄
mω

]1/2

ρ (3.291)

we transform (3.271) into

d2u
dρ2 −

l(l+1)
ρ2 u(ρ)+(λ−ρ2)u(ρ) = 0. (3.292)

It is again worthwhile to explicitly remove the behavior for large (and small) ρ, although
we cannot use (3.278) because V(r) does not tend to zero for large r. Instead, we write

u(ρ) = ρl+1e−ρ
2/2f(ρ). (3.293)

This yields the following differential equation for the function f(ρ):

ρ
d2f
dρ2 +2[(l+1)−ρ2]

df
dρ

+[λ− (2l+3)]ρf(ρ) = 0. (3.294)

We solve (3.294) by writing f(ρ) as an infinite series, namely

f(ρ) =
∞

∑
n=0

anρ
n. (3.295)

We insert this into the differential equation, and set each term to zero by powers of ρ. The
only surviving term in ρ0 is 2(l+1)a1, so

a1 = 0. (3.296)

The terms proportional to ρ1 allow us to relate a2 to a0, which in turn can be set through
the normalization condition. Continuing, (3.294) becomes

∞

∑
n=2

{(n+2)(n+1)an+2 +2(l+1)(n+2)an+2 −2nan +[λ− (2l+3]an}ρn+1 = 0

(3.297)

which leads, finally, to the recursion relation

an+2 =
2n+2l+3−λ

(n+2)(n+2l+3)
an. (3.298)

Immediately we see that f(ρ) involves only even powers of ρ, since (3.296) and (3.298)
imply that an = 0 for odd n. Also, as n → ∞, we have

an+2

an
→ 2

n
=

1
q

(3.299)

where q= n/2 includes both odd and even integers. Therefore, for large values of ρ, (3.295)
becomes

f(ρ)→ constant×∑
q

1
q!

(
ρ2)q ∝ eρ

2
. (3.300)
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In other words, u(ρ) from (3.293) would grow exponentially for large ρ (and therefore be
unable to meet the normalization condition) unless the series terminates. Therefore

2n+2l+3−λ = 0 (3.301)

for some even value of n = 2q, and the energy eigenvalues are

Eql =

(
2q+ l+

3
2

)
h̄ω ≡

(
N+

3
2

)
h̄ω (3.302)

for q = 0,1,2,. . . and l = 0,1,2,. . ., and N ≡ 2q + l. One frequently refers to N as the
“principal” quantum number. It can be shown that q counts the number of nodes in the
radial function.

Quite unlike the square well, the three-dimensional isotropic harmonic oscillator has
degenerate energy eigenvalues in the l quantum number. There are three states (all l = 1)
for N = 1. For N = 2 there are five states with l = 2, plus one state with q = 1 and l = 0,
giving a total of six. Notice that for even (odd) values of N, only even (odd) values of l are
allowed. Therefore, the parity of the wave function is even or odd with the value of N.

These wave functions are popular basis states for calculations of various natural
phenomena, when the potential energy function is a “well” of some finite size. One of
the greatest successes of such an approach is the nuclear shell model, where individual
protons and neutrons are pictured to move independently in a potential energy function
generated by the cumulative effect of all nucleons in the nucleus. Figure 3.6 compares the
energy levels observed in nuclei with those obtained for the isotropic harmonic oscillator
and for the infinite spherical well.

It is natural to label the eigenstates of the Hamiltonian (3.290) as |qlm〉 or |Nlm〉.
However, this Hamiltonian may also be written as

H = Hx +Hy +Hz (3.303)

where Hi = a†
i ai+

1
2 is an independent one-dimensional harmonic oscillator in direction i=

x,y,z. In this way, we would label the eigenstates |nx,ny,nz〉 and the energy eigenvalues are

E =

(
nx +

1
2
+nx +

1
2
+nx +

1
2

)
h̄ω

=

(
N+

3
2

)
h̄ω (3.304)

where, now, N = nx + ny + nz. It is simple to show numerically for the first few energy
levels, that the degeneracy is the same regardless of which basis is used. It is an interesting
exercise to show this in general, and also to derive the unitary transformation matrix
〈nx,ny,nz|qlm〉 which changes from one basis to the other. (See Problem 3.29 at the end
of this chapter.)

3.7.4 The Coulomb Potential

Perhaps the most important potential energy function in physics is

V(x) =−Ze2

r
(3.305)
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Fig. 3.6 Energy levels in the nuclear shell model, adapted from Haxel et al., Z. Phys., 128 (1950) 295. Energy levels of the
three-dimensional isotropic harmonic oscillator are on the left, followed by the infinite spherical well.
Modifications of the infinite square well, for finite walls and then for “rounded corners” follow. The rightmost plot
of energy levels shows those obtained by including the interaction between the nucleon spin and the orbital
angular momentum. The final column indicates the total angular-momentum quantum number.
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where the constant Ze2 is obviously chosen so that (3.305) represents the potential for a
one-electron atom with atomic number Z. In addition to Coulomb forces, and classical
gravity, it is widely used in models applied to very many physical systems.12 We consider
here the radial equation based on such a function and the resulting energy eigenvalues.

The 1/r potential satisfies all the requirements that led us to (3.279). We therefore search
for solutions of the form (3.278) by determining the function w(ρ). Making the definition

ρ0 =

[
2m
−E

]1/2 Ze2

h̄
=

[
2mc2

−E

]1/2

Zα (3.306)

where α ≡ e2/h̄c ≈ 1/137 is the fine-structure constant, (3.279) becomes

ρ
d2w
dρ2 +2(l+1−ρ)dw

dρ
+[ρ0 −2(l+1)]w(ρ) = 0. (3.307)

We could of course proceed to solve (3.307) using a series approach and derive a recursion
relation for the coefficients, just as we did with (3.294). However, it turns out that the
solution is in fact already well known.

Equation (3.307) can be written as Kummer’s equation

x
d2F
dx2 +(c− x)

dF
dx

−aF = 0 (3.308)

where

x = 2ρ
c = 2(l+1) (3.309)

2a = 2(l+1)−ρ0.

The solution to (3.308) is called the confluent hypergeometric function, written as the series

F(a; c; x) = 1+
a
c

x
1!

+
a(a+1)
c(c+1)

x2

2!
+ · · · (3.310)

and so

w(ρ) = F
(

l+1− ρ0

2
; 2(l+1) ; 2ρ

)
. (3.311)

Note that for large ρ, we have

w(ρ)≈ ∑
Large N

a(a+1) · · ·
c(c+1) · · ·

(2ρ)N

N!

≈ ∑
Large N

(N/2)N

NN
(2ρ)N

N!
≈ ∑

Large N

(ρ)N

N!
≈ eρ.

12 Indeed, 1/r potential energy functions result from any quantum field theory in three spatial dimensions with
massless intermediate exchange particles. See Chapter I.6 in Zee (2010).
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Therefore, once again, (3.278) gives a radial wave function which would grow without
bound unless the series (3.310) terminates. So, for some integer N we must have a+N = 0
which leads to

ρ0 = 2(N+ l+1)
where N = 0,1,2. . . , and l = 0,1,2,. . . . (3.312)

It is customary (and, as we shall soon see, instructive) to define the principal quantum
number n as

n ≡ N+ l+1 = 1,2,3,. . .
where l = 0,1,. . . ,n−1. (3.313)

We point out that it is possible to solve the radial equation for the Coulomb problem using
the generating function techniques described in Section 2.5. See Problem 3.30 at the end
of this chapter.

Energy eigenvalues arise by combining (3.306) and (3.312) in terms of the principal
quantum number, that is

ρ0 =

[
2mc2

−E

]1/2

Zα = 2n (3.314)

which leads to

E =−1
2

mc2 Z2α2

n2 =−13.6 eV
Z2

n2 (3.315)

where the numerical result is for a one-electron atom, i.e. mc2 = 511 keV. Equation (3.315)
is of course the familiar Balmer formula.

It is time to make various points. First, there is a stark disagreement between the
energy level properties predicted by modern quantum mechanics, and those of the old
Bohr model of the atom. The Bohr model had a one-to-one correspondence between
angular-momentum eigenvalues l and principal quantum number n. In fact the ground state
corresponded to n = l = 1. We see instead that only l = 0 is allowed for n = 1, and that
different values of l are allowed for higher energy levels.

Second, a natural length scale a0 has emerged. Since ρ= κr where κ=
√
−2mE/h̄2 (see

(3.277) we have

1
κ
=

h̄
mcα

n
Z
≡ a0

n
Z

(3.316)

where

a0 =
h̄

mcα
=

h̄2

me2 (3.317)

is called the Bohr radius. For an electron, a0 = 0.53× 10−8 cm = 0.53 Å. This is indeed
the typical size of an atom.

Finally, the energy eigenvalues (3.315) demonstrate an interesting degeneracy. The
eigenvalues depend only on n, and not on l or m. The level of degeneracy for a state |nlm〉
is therefore given by
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Degeneracy =
n−1

∑
l=0

(2l+1) = n2. (3.318)

This degeneracy is in fact not accidental, but reflects a subtle symmetry of the Coulomb
potential. We will return to this question in Chapter 4.

We can now write down the hydrogen atom wave functions explicitly. Going back to
(3.231) and putting in the appropriate normalization (see Problem 3.30), we have

ψnlm(x) = 〈x|nlm〉= Rnl(r)Ym
l (θ ,φ) (3.319)

where

Rnl(r) =
1

(2l+1)!

(
2Zr
na0

)l

e−Zr/na0

[(
2Z
na0

)3
(n+ l)!

2n(n− l−1)!

]1/2

×F(−n+ l+1; 2l+2; 2Zr/na0). (3.320)

Figure 3.7 plots these radial wave functions for n = 1 and n = 2. As we have discussed,
only the l = 0 wave functions are nonzero at the origin. Also note that there are n−1 nodes
in the wave function for l = 0, and no nodes for the wave function with l = n−1.

3.8 Addition of Angular Momenta

Angular-momentum addition has important applications in all areas of modern physics –
from atomic spectroscopy to nuclear and particle collisions. Furthermore, a study of
angular-momentum addition provides an excellent opportunity to illustrate the concept of
change of basis, which we discussed extensively in Chapter 1.

3.8.1 Simple Examples of Angular-Momentum Addition

Before studying a formal theory of angular-momentum addition, it is worth looking at two
simple examples with which the reader may be familiar: (1) how to add orbital angular
momentum and spin-angular momentum and (2) how to add the spin-angular momenta of
two spin 1

2 particles.
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Previously we studied both spin 1
2 systems with all quantum-mechanical degrees

of freedom other than spin, such as position and momentum, ignored and quantum-
mechanical particles with the space degrees of freedom (such as position or momentum)
taken into account but the internal degrees of freedom (such as spin) ignored. A realistic
description of a particle with spin must of course take into account both the space degree
of freedom and the internal degrees of freedom. The base ket for a spin 1

2 particle may be
visualized to be in the direct-product space of the infinite-dimensional ket space spanned
by the position eigenkets {|x′〉} and the two-dimensional spin space spanned by |+〉 and
|−〉. Explicitly, we have for the base ket

|x′,±〉= |x′〉⊗ |±〉, (3.321)

where any operator in the space spanned by {|x′〉} commutes with any operator in the
two-dimensional space spanned by |±〉.

The rotation operator still takes the form exp(−iJ·n̂φ/h̄) but J, the generator of rotations,
is now made up of two parts, namely,

J = L+S. (3.322)

It is actually more obvious to write (3.322) as

J = L⊗1+1⊗S, (3.323)

where the 1 in L⊗1 stands for the identity operator in the spin space, while the 1 in 1⊗S
stands for the identity operator in the infinite-dimensional ket space spanned by the position
eigenkets. Because L and S commute, we can write

D(R) = D (orb)(R)⊗D (spin)(R) = exp

(
−iL·n̂φ

h̄

)
⊗ exp

(
−iS·n̂φ

h̄

)
. (3.324)

The wave function for a particle with spin is written as

〈x′,±|α〉= ψ±(x′). (3.325)

The two components ψ± are often arranged in column matrix form as follows:(
ψ+(x′)
ψ−(x′)

)
, (3.326)

where |ψ±(x′)|2 stands for the probability density for the particle to be found at x′ with
spin up and spin down, respectively. Instead of |x′〉 as the base kets for the space part, we
may use |n, l,m〉, which are eigenkets of L2 and Lz with eigenvalues h̄2l(l+ 1) and mlh̄,
respectively. For the spin part, |±〉 are eigenkets of S2 and Sz with eigenvalues 3h̄2/4 and
±h̄/2, respectively. However, as we will show later, we can also use base kets which are
eigenkets of J2, Jz, L2, and S2. In other words, we can expand a state ket of a particle with
spin in terms of simultaneous eigenkets of L2, S2, Lz, and Sz or in terms of simultaneous
eigenkets of J2, Jz, L2, and S2. We will study in detail how the two descriptions are related.

As a second example, we study two spin 1
2 particles, say two electrons, with the orbital

degree of freedom suppressed. The total spin operator is usually written as

S = S1 +S2, (3.327)
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but again it is to be understood as

S1 ⊗1+1⊗S2, (3.328)

where the 1 in the first (second) term stands for the identity operator in the spin space of
electron 2 (1). We, of course, have

[S1x,S2y] = 0 (3.329)

and so forth. Within the space of electron 1(2) we have the usual commutation relations

[S1x,S1y] = ih̄S1z, [S2x,S2y] = ih̄S2z,. . . . (3.330)

As a direct consequence of (3.329) and (3.330), we have

[Sx,Sy] = ih̄Sz (3.331)

and so on for the total spin operator.
The eigenvalues of the various spin operators are denoted as follows:

S2 = (S1 + S2)
2 : s(s + 1)h̄2

Sz = S1z + S2z : mh̄
S1z : m1h̄
S2z : m2h̄.

(3.332)

Again, we can expand the ket corresponding to an arbitrary spin state of two electrons
in terms of either the eigenkets of S2 and Sz or the eigenkets of S1z and S2z. The two
possibilities are as follows.

1. The {m1,m2} representation based on the eigenkets of S1z and S2z:

|++〉, |+−〉, |−+〉, and |−−〉, (3.333)

where |+−〉 stands for m1 =
1
2 ,m2 =− 1

2 , and so forth.
2. The {s,m} representation (or the triplet-singlet representation) based on the eigenkets

of S2 and Sz:

|s = 1,m =±1,0〉, |s = 0,m = 0〉, (3.334)

where s = 1 (s = 0) is referred to as the spin triplet (spin singlet).

Notice that in each set there are four base kets. The relationship between the two sets of
base kets is as follows:

|s = 1,m = 1〉 = |++〉, (3.335a)

|s = 1,m = 0〉=
(

1√
2

)
(|+−〉+ |−+〉), (3.335b)

|s = 1,m = −1〉= |−−〉, (3.335c)

|s = 0,m = 0〉 =
(

1√
2

)
(|+−〉−|−+〉). (3.335d)
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The right-hand side of (3.335a) tells us that we have both electrons with spin up; this
situation can correspond only to s = 1, m = 1. We can obtain (3.335b) from (3.335a) by
applying the ladder operator

S− ≡ S1−+S2−

= (S1x − iS1y) + (S2x − iS2y) (3.336)

to both sides of (3.335a). In doing so we must remember that an electron 1 operator like
S1− affects just the first entry of |++〉, and so on. We can write

S−|s = 1,m = 1〉 = (S1−+S2−)|++〉 (3.337)

as √
(1+1)(1−1+1)|s = 1,m = 0〉=

√( 1
2 +

1
2

)( 1
2 −

1
2 +1

)
×|−+〉

+
√( 1

2 +
1
2

)( 1
2 −

1
2 +1

)
|+−〉, (3.338)

which immediately leads to (3.335b). Likewise, we can obtain |s= 1, m=−1〉 by applying
(3.336) once again to (3.335b). Finally, we can obtain (3.335d) by requiring it to be
orthogonal to the other three kets, in particular to (3.335b).

The coefficients that appear on the right-hand side of (3.335) are the simplest example
of Clebsch–Gordan coefficients to be discussed further at a later time. They are simply
the elements of the transformation matrix that connects the {m1,m2} basis to the {s,m}
basis. It is instructive to derive these coefficients in another way. Suppose we write the
4×4 matrix corresponding to

S2 = S2
1 +S2

2 +2S1·S2

= S2
1 +S2

2 +2S1zS2z +S1+S2−+S1−S2+ (3.339)

using the (m1,m2) basis. The square matrix is obviously not diagonal because an operator
like S1+ connects | −+〉 with |++〉. The unitary matrix that diagonalizes this matrix
carries the |m1,m2〉 base kets into the |s,m〉 base kets. The elements of this unitary matrix
are precisely the Clebsch–Gordan coefficients for this problem. The reader is encouraged
to work out all this in detail. See Problem 3.33 at the end of this chapter.

3.8.2 Formal Theory of Angular-Momentum Addition

Having gained some physical insight by considering simple examples, we are now
in a position to study more systematically the formal theory of angular-momentum
addition. Consider two angular-momentum operators J1 and J2 in different subspaces. The
components of J1(J2) satisfy the usual angular-momentum commutation relations:

[J1i,J1j] = ih̄εijkJ1k (3.340a)

and

[J2i,J2j] = ih̄εijkJ2k. (3.340b)
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However, we have

[J1k,J2l] = 0 (3.341)

between any pair of operators from different subspaces.
The infinitesimal rotation operator that affects both subspace 1 and subspace 2 is

written as(
1− iJ1· n̂δφ

h̄

)
⊗

(
1− iJ2· n̂δφ

h̄

)
= 1− i(J1 ⊗1+1⊗J2) · n̂δφ

h̄
. (3.342)

We define the total angular momentum by

J ≡ J1 ⊗1+1⊗J2, (3.343)

which is more commonly written as

J = J1 +J2. (3.344)

The finite-angle version of (3.342) is

D1(R)⊗D2(R) = exp

(
−iJ1·n̂φ

h̄

)
⊗ exp

(
−iJ2·n̂φ

h̄

)
. (3.345)

Notice the appearance of the same axis of rotation and the same angle of rotation.
It is very important to note that the total J satisfies the angular-momentum commutation

relations

[Ji,Jj] = ih̄εijkJk (3.346)

as a direct consequence of (3.340) and (3.341). In other words, J is an angular momentum
in the sense of Section 3.1. Physically this is reasonable because J is the generator for the
entire system. Everything we learned in Section 3.5, for example, the eigenvalue spectrum
of J2 and Jz and the matrix elements of the ladder operators, also holds for the total J.

As for the choice of base kets we have two options.
Option A: Simultaneous eigenkets of J2

1, J2
2, J1z, and J2z, denoted by | j1 j2; m1m2〉.

Obviously the four operators commute with each other. The defining equations are

J2
1| j1 j2; m1m2〉 = j1( j1 +1)h̄2| j1 j2; m1m2〉, (3.347a)

J1z| j1 j2; m1m2〉 = m1h̄| j1 j2; m1m2〉, (3.347b)

J2
2| j1 j2; m1m2〉 = j2( j2 +1)h̄2| j1 j2; m1m2〉, (3.347c)

J2z| j1 j2; m1m2〉 = m2h̄| j1 j2; m1m2〉. (3.347d)

Option B: Simultaneous eigenkets of J2, J2
1, J2

2, and Jz. First, note that this set of
operators mutually commute. In particular, we have

[J2,J2
1] = 0, (3.348)

which can readily be seen by writing J2 as

J2 = J2
1 +J2

2 +2J1zJ2z + J1+J2−+ J1−J2+. (3.349)
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We use | j1, j2; jm〉 to denote the base kets of option B:

J2
1| j1 j2; jm〉 = j1( j1 +1)h̄2| j1 j2; jm〉, (3.350a)

J2
2| j1 j2; jm〉 = j2( j2 +1)h̄2| j1 j2; jm〉, (3.350b)

J2| j1 j2; jm〉 = j( j+1)h̄2| j1 j2; jm〉, (3.350c)

Jz| j1 j2; jm〉 = mh̄| j1 j2; jm〉. (3.350d)

Quite often j1, j2 are understood, and the base kets are written simply as | j,m〉.
It is very important to note that even though

[J2,Jz] = 0, (3.351)

we have

[J2,J1z] 	= 0, [J2,J2z] 	= 0, (3.352)

as the reader may easily verify using (3.349). This means that we cannot add J2 to the set
of operators of option A. Likewise, we cannot add J1z and/or J2z to the set of operators of
option B. We have two possible sets of base kets corresponding to the two maximal sets of
mutually compatible observables we have constructed.

Let us consider the unitary transformation in the sense of Section 1.5 that connects the
two bases:

| j1 j2; jm〉= ∑
m1

∑
m2

| j1 j2; m1m2〉〈 j1 j2; m1m2| j1 j2; jm〉, (3.353)

where we have used

∑
m1

∑
m2

| j1 j2; m1m2〉〈 j1 j2; m1m2|= 1 (3.354)

and where the right-hand side is the identity operator in the ket space of given j1 and
j2. The elements of this transformation matrix 〈 j1 j2; m1m2| j1 j2; jm〉 are Clebsch–Gordan
coefficients.

There are many important properties of Clebsch–Gordan coefficients that we are now
ready to study. First, the coefficients vanish unless

m = m1 +m2. (3.355)

To prove this, first note that

(Jz − J1z − J2z)| j1 j2; jm〉= 0. (3.356)

Multiplying 〈 j1 j2; m1m2| on the left, we obtain

(m − m1 − m2)〈 j1 j2; m1m2| j1 j2; jm〉= 0, (3.357)

which proves our assertion. Admire the power of the Dirac notation! It really pays to write
the Clebsch–Gordan coefficients in Dirac’s bracket form, as we have done.
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Second, the coefficients vanish unless

| j1 − j2| ≤ j ≤ j1 + j2. (3.358)

This property may appear obvious from the vector model of angular-momentum addition,
where we visualize J to be the vectorial sum of J1 and J2. However, it is worth checking
this point by showing that if (3.358) holds, then the dimensionality of the space spanned
by {| j1 j2; m1m2〉} is the same as that of the space spanned by {| j1 j2; jm〉}. For the (m1,m2)

way of counting we obtain

N = (2j1 +1)(2j2 +1) (3.359)

because for given j1 there are 2j1 + 1 possible values of m1; a similar statement is true
for the other angular momentum j2. As for the ( j,m) way of counting, we note that
for each j, there are 2j+ 1 states, and according to (3.358), j itself runs from j1 − j2 to
j1 + j2, where we have assumed, without loss of generality, that j1 ≥ j2. We therefore
obtain

N =
j1+j2

∑
j=j1−j2

(2j+1)

= 1
2 [{2( j1 − j2)+1}+{2( j1 + j2)+1}](2j2 +1)

= (2j1 +1)(2j2 +1). (3.360)

Because both ways of counting give the same N-value, we see that (3.358) is quite
consistent.13

The Clebsch–Gordan coefficients form a unitary matrix. Furthermore, the matrix
elements are taken to be real by convention. An immediate consequence of this is that
the inverse coefficient 〈 j1 j2; jm| j1 j2; m1m2〉 is the same as 〈 j1 j2; m1m2| j1 j2; jm〉 itself. A
real unitary matrix is orthogonal, so we have the orthogonality condition

∑
j

∑
m
〈 j1 j2; m1m2| j1 j2; jm〉〈 j1 j2; m′

1m′
2| j1 j2; jm〉= δm1m′

1
δm2m′

2
, (3.361)

which is obvious from the orthonormality of {| j1 j2; m1m2〉} together with the reality of the
Clebsch–Gordan coefficients. Likewise, we also have

∑
m1

∑
m2

〈 j1 j2; m1m2| j1 j2; jm〉〈 j1 j2; m1m2| j1 j2; j ′m′〉= δjj′δmm′ . (3.362)

As a special case of this we may set j ′ = j,m′ = m = m1 +m2. We then obtain

∑
m1,m2=m−m1

|〈 j1 j2; m1m2| j1 j2; jm〉|2 = 1, (3.363)

which is just the normalization condition for | j1 j2; jm〉.
Some authors use somewhat different notations for the Clebsch–Gordan coefficients.

Instead of 〈 j1 j2; m1m2| j1 j2; jm〉 we sometimes see 〈 j1m1 j2m2| j1 j2 jm〉, C( j1 j2 j; m1m2m),

13 A complete proof of (3.358) is given in Gottfried (1966), p. 215, and also in Appendix D of this book.
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Cj1 j2( jm; m1m2), and so on. They can also be written in terms of Wigner’s 3-j symbol,
which is occasionally found in the literature:

〈 j1 j2; m1m2| j1 j2; jm〉= (−1)j1−j2+m
√

2j+1
(

j1 j2 j
m1 m2 −m

)
. (3.364)

3.8.3 Recursion Relations for the Clebsch–Gordan Coefficients14

With j1, j2, and j fixed, the coefficients with different m1 and m2 are related to each other
by recursion relations. We start with

J±| j1 j2; jm〉= (J1±+ J2±)∑
m1

∑
m2

| j1 j2; m1m2〉〈 j1 j2; m1m2| j1 j2; jm〉. (3.365)

Using (3.191) and (3.192) we obtain (with m1 → m′
1,m2 → m′

2)√
( j∓m)( j±m+1)| j1 j2; j,m±1〉

= ∑
m′

1

∑
m′

2

(√
( j1 ∓ m′

1)( j1 ± m′
1 +1) | j1 j2; m′

1 ±1,m′
2〉

+
√
( j2 ∓ m′

2)( j2 ± m′
2 +1)| j1 j2; m′

1,m′
2 ±1〉

)
×〈 j1 j2; m′

1m′
2| j1 j2; jm〉. (3.366)

Our next step is to multiply by 〈 j1 j2; m1m2| on the left and use orthonormality, which
means that nonvanishing contributions from the right-hand side are possible only with

m1 = m′
1 ±1, m2 = m′

2 (3.367)

for the first term and

m1 = m′
1, m2 = m′

2 ±1 (3.368)

for the second term. In this manner we obtain the desired recursion relations:√
( j∓m)( j±m+1)〈 j1 j2; m1m2| j1 j2; j,m±1〉

=
√

( j1 ∓ m1 +1)( j1 ± m1)〈 j1 j2; m1 ∓1,m2| j1 j2; jm〉
+

√
( j2 ∓ m2 +1)( j2 ± m2)〈 j1 j2; m1,m2 ∓1| j1 j2; jm〉. (3.369)

It is important to note that because the J± operators have shifted the m-values, the
nonvanishing condition (3.355) for the Clebsch–Gordan coefficients has now become
[when applied to (3.369)]

m1 +m2 = m±1. (3.370)

We can appreciate the significance of the recursion relations by looking at (3.369) in an
m1m2-plane. The J+ recursion relation (upper sign) tells us that the coefficient at (m1,m2)

14 More detailed discussion of Clebsch–Gordan and Racah coefficients, recoupling, and the like is given in
Edmonds (1974), for instance.
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Fig. 3.8 m1m2-plane showing the Clebsch–Gordan coefficients related by the recursion relations ( 3.369).
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Fig. 3.9 Use of the recursion relations to obtain the Clebsch–Gordan coefficients.

is related to the coefficients at (m1 − 1,m2) and (m1,m2 − 1), as shown in Figure 3.8a.
Likewise, the J− recursion relation (lower sign) relates the three coefficients whose m1,m2

values are given in Figure 3.8b.
Recursion relations (3.369), together with normalization condition (3.363), almost

uniquely determine all Clebsch–Gordan coefficients. (We say “almost uniquely” because
certain sign conventions have yet to be specified.) Our strategy is as follows. We go back
to the m1m2-plane, again for fixed j1, j2, and j, and plot the boundary of the allowed region
determined by

|m1| ≤ j1, |m2| ≤ j2, −j ≤ m1 +m2 ≤ j; (3.371)

see Figure 3.9a. We may start with the upper right-hand corner, denoted by A. Because we
work near A at the start, a more detailed “map” is in order; see Figure 3.6b. We apply the
J− recursion relation (3.369) (lower sign), with (m1,m2 +1) corresponding to A. Observe
now that the recursion relation connects A with only B because the site corresponding
to (m1 + 1,m2) is forbidden by m1 ≤ j1. As a result, we can obtain the Clebsch–Gordan
coefficient of B in terms of the coefficient of A. Next, we form a J+ triangle made up of A,
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x
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j−

x

j−

x

j−

Fig. 3.10 Recursion relations used to obtain the Clebsch–Gordan coefficients for ji = l and j2 = s = 1
2 .

B, and D. This enables us to obtain the coefficient of D once the coefficient of A is specified.
We can continue in this fashion: Knowing B and D, we can get to E; knowing B and E we
can get to C, and so on. With enough patience we can obtain the Clebsch-Gordan coefficient
of every site in terms of the coefficient of starting site, A. For overall normalization we use
(3.363). The final overall sign is fixed by convention. (See the following example.)

As an important practical example we consider the problem of adding the orbital and
spin-angular momenta of a single spin 1

2 particle. We have

j1 = l (integer), m1 = ml,
j2 = s = 1

2 , m2 = ms =± 1
2 .

(3.372)

The allowed values of j are given by

j = l± 1
2 , l > 0; j = 1

2 , l = 0. (3.373)

So for each l there are two possible j-values; for example, for l = 1 (p state) we get, in
spectroscopic notation, p3/2 and p1/2, where the subscript refers to j. The m1m2-plane, or
better the mlms-plane, of this problem is particularly simple. The allowed sites form only
two rows: the upper row for ms =

1
2 and the lower row for ms = − 1

2 (see Figure 3.10).
Specifically, we work out the case j = l+ 1

2 . Because ms cannot exceed 1
2 , we can use the

J− recursion in such a way that we always stay in the upper row (m2 = ms =
1
2 ), while

the ml-value changes by one unit each time we consider a new J− triangle. Suppressing
j1 = l, j2 = 1

2 , in writing the Clebsch–Gordan coefficient, we obtain from (3.369) (lower
sign) √(

l+ 1
2 +m+1

)(
l+ 1

2 −m
)〈

m− 1
2 , 1

2 |l+
1
2 ,m

〉
=

√(
l+m+ 1

2

)(
l−m+ 1

2

)〈
m+ 1

2 , 1
2 |l+

1
2 ,m+1

〉
, (3.374)

where we have used

m1 = ml = m− 1
2 , m2 = ms =

1
2 . (3.375)

In this way we can move horizontally by one unit:〈
m− 1

2
,
1
2

∣∣∣∣l+ 1
2

,m
〉
=

√
l+m+ 1

2
l+m+ 3

2

〈
m+

1
2

,
1
2

∣∣∣∣l+ 1
2

,m+1
〉

. (3.376)
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We can in turn express 〈m+ 1
2 , 1

2 |l+
1
2 , m+1〉 in terms of 〈m+ 3

2 , 1
2 |l+

1
2 , m+2〉, and so

forth. Clearly, this procedure can be continued until ml reaches l, the maximum possible
value: 〈

m− 1
2

,
1
2

∣∣∣∣l+ 1
2

,m
〉
=

√
l+m+ 1

2
l+m+ 3

2

√
l+m+ 3

2
l+m+ 5

2

〈
m+

3
2

,
1
2

∣∣∣∣l+ 1
2

,m+2
〉

=

√
l+m+ 1

2
l+m+ 3

2

√
l+m+ 3

2
l+m+ 5

2

√
l+m+ 5

2
l+m+ 7

2

×
〈

m+
5
2

,
1
2

∣∣∣∣l+ 1
2

,m+3
〉

...

=

√
l+m+ 1

2
2l+1

〈
l,

1
2

∣∣∣∣l+ 1
2

, l+
1
2

〉
. (3.377)

Consider the angular-momentum configuration in which ml and ms are both maximal,
that is, l and 1

2 , respectively. The total m = ml +ms is l+ 1
2 , which is possible only for

j = l+ 1
2 and not for j = l− 1

2 . So |ml = l,ms =
1
2 〉 must be equal to | j = l+ 1

2 ,m = l+ 1
2 〉,

up to a phase factor. We take this phase factor to be real and positive by convention. With
this choice we have 〈

l,
1
2

∣∣∣∣l+ 1
2

, l+
1
2

〉
= 1. (3.378)

Returning to (3.377), we finally obtain

〈
m− 1

2
,
1
2

∣∣∣∣l+ 1
2

,m
〉
=

√
l+m+ 1

2
2l+1

. (3.379)

But this is only about one-fourth of the story. We must still determine the value of the
question marks that appear in the following:∣∣∣∣∣∣ j = l+

1
2

,m
〉
=

√
l+m+ 1

2
2l+1

∣∣∣∣∣∣ ml = m− 1
2

,ms =
1
2

〉

+?

∣∣∣∣ml = m+
1
2

,ms =−1
2

〉
,∣∣∣∣ j = l− 1

2
,m

〉
=?

∣∣∣∣ml = m− 1
2

,ms =
1
2

〉
+? |ml = m+

1
2

,ms = −1
2

〉
. (3.380)

We note that the transformation matrix with fixed m from the (ml,ms) basis to the ( j,m)

basis is, because of orthogonality, expected to have the form(
cosα sinα

−sinα cosα

)
. (3.381)
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Comparison with (3.380) shows that cosα is (3.379) itself; so we can readily determine
sinα up to a sign ambiguity:

sin2 α = 1−
(
l+m+ 1

2

)
(2l+1)

=

(
l−m+ 1

2

)
(2l+1)

. (3.382)

We claim that 〈ml = m+ 1
2 ,ms = − 1

2 | j = l+ 1
2 ,m〉 must be positive because all j = l+ 1

2
states are reachable by applying the J− operator successively to | j = l+ 1

2 ,m = l+ 1
2 〉, and

the matrix elements of J− are always positive by convention. So the 2× 2 transformation
matrix (3.381) can be only⎛⎜⎜⎜⎜⎝

√
l+m+ 1

2
2l+1

√
l−m+ 1

2
2l+1

−

√
l−m+ 1

2
2l+1

√
l+m+ 1

2
2l+1

⎞⎟⎟⎟⎟⎠ . (3.383)

We define spin-angular functions in two-component form as follows:

Y j=l±1/2,m
l =±

√
l±m+ 1

2
2l+1

Ym−1/2
l (θ ,φ)χ+

+

√
l∓m+ 1

2
2l+1

Ym+1/2
l (θ ,φ)χ−

=
1√

2l+1

⎛⎝ ±
√

l±m+ 1
2 Ym−1/2

l (θ ,φ)√
l∓m+ 1

2 Ym+1/2
l (θ ,φ)

⎞⎠ . (3.384)

They are, by construction, simultaneous eigenfunctions of L2, S2, J2, and Jz. They are also
eigenfunctions of L·S but L·S, being just

L·S =

(
1
2

)(
J2 −L2 −S2) , (3.385)

is not independent. Indeed, its eigenvalue can easily be computed as follows:

(
h̄2

2

)[
j( j+1)− l(l+1)− 3

4

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lh̄2

2
for j = l+ 1

2 ,

− (l+1)h̄2

2
for j = l− 1

2 .

(3.386)

3.8.4 Clebsch–Gordan Coefficients and Rotation Matrices

Angular-momentum addition may be discussed from the point of view of rotation matrices.
Consider the rotation operator D ( j1)(R) in the ket space spanned by the angular-momentum
eigenkets with eigenvalue j1. Likewise, consider D ( j2)(R). The product D ( j1) ⊗D ( j2) is
reducible in the sense that after suitable choice of base kets, its matrix representation can
take the following form:
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( j1 + 

.

j2)

( j1 + j2 − 1)

( j1 + j2 − 2)

(| j1 − j2|)

(3.387)

In the notation of group theory this is written as

D ( j1)⊗D ( j2) = D ( j1+j2)⊕D ( j1+j2−1)⊕·· ·⊕D (| j1−j2|). (3.388)

In terms of the elements of rotation matrices, we have an important expansion known as
the Clebsch–Gordan series:

D
( j1)
m1m′

1
(R)D ( j2)

m2m′
2
(R) = ∑

j
∑
m

∑
m′
〈 j1 j2; m1m2| j1 j2; jm〉

×〈 j1 j2; m′
1m′

2| j1 j2; jm′〉D ( j)
mm′(R), (3.389)

where the j-sum runs from | j1− j2| to j1+ j2 . The proof of this equation follows. First, note
that the left-hand side of (3.389) is the same as

〈 j1j2; m1m2|D(R)| j1j2; m′
1m′

2〉= 〈 j1m1|D(R)| j1m′
1〉〈 j2m2|D(R)| j2m′

2〉

= D
( j1)
m1m′

1
(R)D ( j2)

m2m′
2
(R). (3.390)

But the same matrix element is also computable by inserting a complete set of states in the
( j,m) basis. Thus

〈 j1 j2; m1m2|D(R)| j1 j2; m′
1m′

2〉
= ∑

j
∑
m

∑
j ′

∑
m′
〈 j1 j2; m1m2| j1 j2; jm〉〈 j1 j2; jm|D(R)| j1 j2; j ′m′〉

× 〈 j1 j2; j ′m′| j1 j2; m′
1m′

2〉

= ∑
j

∑
m

∑
j ′

∑
m′
〈 j1 j2; m1m2| j1 j2; jm〉D ( j)

mm′(R)δjj ′

× 〈 j1 j2; m′
1m′

2| j1 j2; j ′m′〉, (3.391)

which is just the right-hand side of (3.389).
As an interesting application of (3.389), we derive an important formula for an integral

involving three spherical harmonics. First, recall the connection between D
( l)
m0 and Ym∗

l
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given by (3.261). Letting j1 → l1, j2 → l2,m′
1 → 0,m′

2 → 0 (hence m′ → 0) in (3.389), we
obtain, after complex conjugation,

Ym1
l1 (θ ,φ)Ym2

l2 (θ ,φ) =
√
(2l1 +1)(2l2 +1)

4π ∑
l′

∑
m′
〈l1l2; m1m2|l1l2; l′m′〉

× 〈l1l2; 00|l1l2; l′0〉
√

4π
2l′+1

Ym′
l′ (θ ,φ). (3.392)

We multiply both sides by Ym∗
l (θ ,φ) and integrate over solid angles. The summations drop

out because of the orthogonality of spherical harmonics, and we are left with∫
dΩYm∗

l (θ ,φ)Ym1
l1 (θ ,φ)Ym2

l2 (θ ,φ)

=

√
(2l1 +1)(2l2 +1)

4π(2l+1)
〈l1l2; 00|l1l2; l0〉〈l1l2; m1m2|l1l2; lm〉. (3.393)

The square root factor times the first Clebsch–Gordan coefficient is independent of
orientations, that is, of m1 and m2. The second Clebsch–Gordan coefficient is the one
appropriate for adding l1 and l2 to obtain total l . Equation (3.393) turns out to be a special
case of the Wigner–Eckart theorem to be derived in Section 3.11. This formula is extremely
useful in evaluating multipole matrix elements in atomic and nuclear spectroscopy.

3.9 Schwinger’s Oscillator Model of Angular Momentum

3.9.1 Angular Momentum and Uncoupled Oscillators

There exists a very interesting connection between the algebra of angular momentum and
the algebra of two independent (that is, uncoupled) oscillators, which was worked out in
J. Schwinger’s notes. See Biedenharn and Van Dam (1965), p. 229. Let us consider two
simple harmonic oscillators, which we call the plus type and the minus type. We have
the annihilation and creation operators, denoted by a+ and a†

+ for the plus-type oscillator;
likewise, we have a− and a†

− for the minus-type oscillator. We also define the number
operators N+ and N− as follows:

N+ ≡ a†
+a+, N− ≡ a†

−a−. (3.394)

We assume that the usual commutation relations among a, a†, and N hold for oscillators of
the same type (see Section 2.3):

[a+,a†
+] = 1, [a−,a†

−] = 1, (3.395a)

[N+,a+] =−a+, [N−,a−] =−a−, (3.395b)

[N+,a†
+] = a†

+, [N−,a†
−] = a†

−. (3.395c)
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However, we assume that any pair of operators between different oscillators commute:

[a+,a†
−] = [a−,a†

+] = 0 (3.396)

and so forth. So it is in this sense that we say the two oscillators are uncoupled.
Because N+ and N− commute by virtue of (3.396), we can build up simultaneous

eigenkets of N+ and N− with eigenvalues n+ and n−, respectively. So we have the
following eigenvalue equations for N±:

N+|n+,n−〉= n+|n+,n−〉, N−|n+,n−〉= n−|n+,n−〉. (3.397)

In complete analogy with (2.137) and (2.138), the creation and annihilation operators, a†
±

and a±, act on |n+,n−〉 as follows:

a†
+|n+,n−〉=

√
n++1|n++1,n−〉, a†

−|n+,n−〉=
√

n−+1|n+,n−+1〉, (3.398a)

a+|n+,n−〉=
√

n+|n+−1,n−〉, a−|n+,n−〉=
√

n−|n+,n−−1〉. (3.398b)

We can obtain the most general eigenkets of N+ and N− by applying a†
+ and a†

−
successively to the vacuum ket defined by

a+|0,0〉= 0, a−|0,0〉= 0. (3.399)

In this way we obtain

|n+,n−〉=
(a†

+)
n+
(a†

−)
n−

√
n+!

√
n−!

|0,0〉. (3.400)

Next, we define

J+ ≡ h̄a†
+a−, J− ≡ h̄a†

−a+, (3.401a)

and

Jz ≡
(

h̄
2

)(
a†
+a+−a†

−a−
)
=

(
h̄
2

)
(N+−N−) . (3.401b)

We can readily prove that these operators satisfy the angular-momentum commutation
relations of the usual form

[Jz,J±] =±h̄J±, (3.402a)

[J+,J−] = 2h̄Jz. (3.402b)

For example, we prove (3.402) as follows:

h̄2[a†
+a−,a†

−a+] = h̄2a†
+a−a†

−a+− h̄2a†
−a+a†

+a−
= h̄2a†

+(a
†
−a−+1)a+− h̄2a†

−(a
†
+a++1)a−

= h̄2(a†
+a+−a†

−a−) = 2h̄Jz. (3.403)

Defining the total N to be

N ≡ N++N− = a†
+a++a†

−a−, (3.404)
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we can also prove

J2 ≡ J2
z +

(
1
2

)
(J+J−+ J−J+)

=

(
h̄2

2

)
N

(
N
2
+1

)
, (3.405)

which is left as an exercise.
What are the physical interpretations of all this? We associate spin up (m = 1

2 ) with one
quantum unit of the plus-type oscillator and spin down (m = − 1

2 ) with one quantum unit
of the minus-type oscillator. If you like, you may imagine one spin 1

2 “particle” with spin
up (down) with each quantum unit of the plus- (minus-) type oscillator. The eigenvalues
n+ and n− are just the number of spins up and spins down, respectively. The meaning of J+
is that it destroys one unit of spin down with the z-component of spin-angular momentum
−h̄/2 and creates one unit of spin up with the z-component of spin-angular momentum
+h̄/2; the z-component of angular momentum is therefore increased by h̄. Likewise J−
destroys one unit of spin up and creates one unit of spin down; the z-component of angular
momentum is therefore decreased by h̄. As for the Jz operator, it simply counts h̄/2 times
the difference of n+ and n−, just the z-component of the total angular momentum. With
(3.398) at our disposal we can easily examine how J± and Jz act on |n+,n−〉 as follows:

J+|n+,n−〉= h̄a†
+a−|n+,n−〉=

√
n−(n++1)h̄|n++1,n−−1〉, (3.406a)

J−|n+,n−〉= h̄a†
−a+|n+,n−〉=

√
n+(n−+1)h̄|n+−1,n−+1〉, (3.406b)

Jz|n+,n−〉=
(

h̄
2

)
(N+−N−)|n+,n−〉=

(
1
2

)
(n+−n−)h̄|n+,n−〉. (3.406c)

Notice that in all these operations, the sum n++n−, which corresponds to the total number
of spin 1

2 particles, remains unchanged.
Observe now that (3.406a), (3.406b), and (3.406c) reduce to the familiar expressions for

the J± and Jz operators we derived in Section 3.5, provided we substitute

n+ → j+m, n− → j−m. (3.407)

The square root factors in (3.406a) and (3.406b) change to√
n−(n++1)→

√
( j−m)( j+m+1),√

n+(n−+1)→
√

( j+m)( j−m+1),
(3.408)

which are exactly the square root factors appearing in (3.191) and (3.193).
Notice also that the eigenvalue of the J2 operator defined by (3.405) changes as follows:(

h̄2

2

)
(n++n−)

[
(n++n−)

2
+1

]
→ h̄2j( j+1). (3.409)

All this may not be too surprising because we have already proved that J± and
J2 operators we constructed out of the oscillator operators satisfy the usual angular-
momentum commutation relations. But it is instructive to see in an explicit manner
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the connection between the oscillator matrix elements and angular-momentum matrix
elements. In any case, it is now natural to use

j ≡ (n++n−)
2

, m ≡ (n+−n−)
2

(3.410)

in place of n+ and n− to characterize simultaneous eigenkets of J2 and Jz. According to
(3.406a) the action of J+ changes n+ into n+ + 1, n− into n− − 1, which means that j is
unchanged and m goes into m+ 1. Likewise, we see that the J− operator that changes n+
into n+−1 and n− into n+−1 lowers m by one unit without changing j . We can now write
as (3.400) for the most general N+, N− eigenket

| j,m〉= (a†
+)

j+m
(a†

−)
j−m√

( j+m)!( j−m)!
|0〉, (3.411)

where we have used |0〉 for the vacuum ket, earlier denoted by |0,0〉.
A special case of (3.411) is of interest. Let us set m = j, which physically means that the

eigenvalue of Jz is as large as possible for a given j . We have

| j, j〉= (a†
+)

2j√
(2j)!

|0〉. (3.412)

We can imagine this state to be built up of 2j spin 1
2 particles with their spins all pointing

in the positive z-direction.
In general, we note that a complicated object of high j can be visualized as being made

up of primitive spin 1
2 particles, j+m of them with spin up and the remaining j−m of them

with spin down. This picture is extremely convenient even though we obviously cannot
always regard an object of angular momentum j literally as a composite system of spin 1

2
particles. All we are saying is that, as far as the transformation properties under rotations
are concerned, we can visualize any object of angular momentum j as a composite system
of 2j spin 1

2 particles formed in the manner indicated by (3.411).
From the point of view of angular-momentum addition developed in the previous

section, we can add the spins of 2j spin 1
2 particles to obtain states with angular momentum

j, j− 1, j− 2,. . . . As a simple example, we can add the spin-angular momenta of two spin
1
2 particles to obtain a total angular momentum of zero as well as one. In Schwinger’s
oscillator scheme, however, we obtain only states with angular momentum j when we
start with 2j spin 1

2 particles. In the language of permutation symmetry to be developed
in Chapter 7, only totally symmetrical states are constructed by this method. The primitive
spin 1

2 particles appearing here are actually bosons! This method is quite adequate if our
purpose is to examine the properties under rotations of states characterized by j and m
without asking how such states are built up initially.

The reader who is familiar with isospin in nuclear and particle physics may note that
what we are doing here provides a new insight into the isospin (or isotopic spin) formalism.
The operator J+ that destroys one unit of the minus type and creates one unit of the plus
type is completely analogous to the isospin ladder operator T+ (sometimes denoted by I+)
that annihilates a neutron (isospin down) and creates a proton (isospin up), thus raising the
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z-component of isospin by one unit. In contrast, Jz is analogous to Tz, which simply counts
the difference between the number of protons and neutrons in nuclei.

3.9.2 Explicit Formula for Rotation Matrices

Schwinger’s scheme can be used to derive, in a very simple way, a closed formula for
rotation matrices, first obtained by E. P. Wigner using a similar (but not identical) method.
We apply the rotation operator D(R ) to | j,m〉, written as (3.411). In the Euler angle notation
the only nontrivial rotation is the second one about the y -axis, so we direct our attention to

D(R) = D(α,β,γ)|α=γ=0 = exp

(−iJyβ

h̄

)
. (3.413)

We have

D(R)| j,m〉= [D(R)a†
+D−1(R)]j+m

[D(R)a†
−D−1(R)]j−m√

( j+m)!( j−m)!
D(R)|0〉. (3.414)

Now, D(R) acting on |0〉 just reproduces |0〉 because, by virtue of (3.399), only the leading
term, 1, in the expansion of exponential (3.413) contributes. So

D(R)a†
±D−1(R) = exp

(−iJyβ

h̄

)
a†
±exp

(
iJyβ

h̄

)
. (3.415)

Thus we may use formula (2.168). Letting

G → −Jy

h̄
, λ→ β (3.416)

in (2.168), we realize that we must look at various commutators, namely,[−Jy

h̄
,a†

+

]
=

(
1
2i

)
[a†

−a+,a†
+] =

(
1
2i

)
a†
−,[−Jy

h̄
,
[−Jy

h̄
,a†

+

]]
=

[
−Jy

h̄
,
a†
−

2i

]
=

(
1
4

)
a†
+

(3.417)

and so forth. Clearly, we always obtain either a†
+ or a†

−. Collecting terms, we get

D(R)a†
+D−1(R) = a†

+ cos

(
β
2

)
+a†

− sin

(
β
2

)
. (3.418)

Likewise,

D(R)a†
−D−1(R) = a†

− cos

(
β
2

)
−a†

+ sin

(
β
2

)
. (3.419)

Actually this result is not surprising. After all, the basic spin-up state is supposed to
transform as

a†
+|0〉 → cos

(
β
2

)
a†
+|0〉+ sin

(
β
2

)
a†
−|0〉 (3.420)
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under a rotation about the y-axis. Substituting (3.418) and (3.419) into (3.414) and recalling
the binomial theorem

(x+ y)N = ∑
k

N!xN−kyk

(N− k)!k!
, (3.421)

we obtain

D(α = 0,β,γ = 0| j,m〉= ∑
k

∑
l

( j+m)!( j−m)!
( j+m− k)!k!( j−m− l)! l!

× [a†
+ cos(β/2)]j+m−k[a†

− sin(β/2)]k√
( j+m)!( j−m)!

× [−a†
+ sin(β/2)]j−m−l[a†

− cos(β/2)]l|0〉. (3.422)

We may compare (3.422) with

D(α = 0,β,γ = 0)| j,m〉= ∑
m′
| j,m′〉d( j)

m′m(β)

= ∑
m′

d( j)
m′m(β)

(a†
+)

j+m′
(a†

−)
j−m′√

( j+m′)!( j−m′)!
|0〉. (3.423)

We can obtain an explicit form for d( j)
m′m(β) by equating the coefficients of powers of a†

+ in
(3.422) and (3.423). Specifically, we want to compare a†

+ raised to j+m′ in (3.423) with
a†
+ raised to 2j− k− l, so we identify

l = j− k−m′. (3.424)

We are seeking dm′m(β) with m′ fixed. The k-sum and the l-sum in (3.422) are not
independent of each other; we eliminate l in favor of k by taking advantage of (3.424).
As for the powers of a†

−, we note that a†
− raised to j−m′ in (3.423) automatically matches

with a†
− raised to k+ l in (3.422) when (3.424) is imposed. The last step is to identify the

exponents of cos(β/2), sin(β/2), and (−1), which are, respectively,

j+m− k+ l = 2j−2k+m−m′, (3.425a)
k+ j−m− l = 2k−m+m′, (3.425b)

j−m− l = k−m+m′, (3.425c)

where we have used (3.424) to eliminate l. In this way we obtain Wigner’s formula for
d( j)

m′m(β):

d( j)
m′m(β) = ∑

k
(−1)k−m+m′

√
( j+m)!( j−m)!( j+m′)!( j−m′)!

( j+m− k)!k!( j− k−m′)!(k−m+m′)!

×
(

cos
β

2

)2j−2k+m−m′ (
sin

β

2

)2k−m+m′

, (3.426)

where we take the sum over k whenever none of the arguments of factorials in the
denominator is negative.
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3.10 Spin Correlation Measurements and Bell’s Inequality

3.10.1 Correlations in Spin-Singlet States

The simplest example of angular-momentum addition we encountered in Section 3.8 was
concerned with a composite system made up of spin 1

2 particles. In this section we use such
a system to illustrate one of the most astonishing consequences of quantum mechanics.

Consider a two-electron system in a spin-singlet state, that is, with a total spin of zero.
We have already seen that the state ket can be written as [see (3.335d)]

|spin singlet〉=
(

1√
2

)
(|ẑ+; ẑ−〉−|ẑ−; ẑ+〉), (3.427)

where we have explicitly indicated the quantization direction. Recall that |ẑ+; ẑ−〉 means
that electron 1 is in the spin-up state and electron 2 is in the spin-down state. The same is
true for |ẑ−; ẑ+〉.

Suppose we make a measurement on the spin component of one of the electrons. Clearly,
there is a 50% chance of getting either up or down because the composite system may be in
|ẑ+; ẑ−〉 or |ẑ−; ẑ+〉 with equal probabilities. But if one of the components is shown to be
in the spin-up state, the other is necessarily in the spin-down state, and vice versa. When the
spin component of electron 1 is shown to be up, the measurement apparatus has selected
the first term, |ẑ+; ẑ−〉 of (3.427); a subsequent measurement of the spin component of
electron 2 must ascertain that the state ket of the composite system is given by |ẑ+; ẑ−〉.

It is remarkable that this kind of correlation can persist even if the two particles are well
separated and have ceased to interact provided that as they fly apart, there is no change in
their spin states. This is certainly the case for a J = 0 system disintegrating spontaneously
into two spin 1

2 particles with no relative orbital angular momentum, because angular-
momentum conservation must hold in the disintegration process. An example of this would
be a rare decay of the η meson (mass 549 MeV/c2) into a muon pair

η→ μ++μ− (3.428)

which, unfortunately, has a branching ratio of only approximately 6×10−6. More realisti-
cally, in proton-proton scattering at low kinetic energies, the Pauli principle to be discussed
in Chapter 7 forces the interacting protons to be in 1S0 (orbital angular momentum 0, spin-
singlet state), and the spin states of the scattered protons must be correlated in the manner
indicated by (3.427) even after they become separated by a macroscopic distance.

To be more pictorial we consider a system of two spin 1
2 particles moving in opposite

directions, as in Figure 3.11. Observer A specializes in measuring Sz of particle 1 (flying

B A
Particle 2

Particle 1

Fig. 3.11 Spin correlation in a spin-singlet state.
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to the right), while observer B specializes in measuring Sz of particle 2 (flying to the
left). To be specific, let us assume that observer A finds Sz to be positive for particle 1.
Then he or she can predict, even before B performs any measurement, the outcome of B’s
measurement with certainty: B must find Sz to be negative for particle 2. On the other hand,
if A makes no measurement, B has a 50% chance of getting Sz+ or Sz−.

This by itself might not be so peculiar. One may say, “It is just like an urn known to
contain one black ball and one white ball. When we blindly pick one of them, there is a
50% chance of getting black or white. But if the first ball we pick is black, then we can
predict with certainty that the second ball will be white.”

It turns out that this analogy is too simple. The actual quantum-mechanical situation is
far more sophisticated than that! This is because observers may choose to measure Sx in
place of Sz. The same pair of “quantum-mechanical balls” can be analyzed either in terms
of black and white or in terms of blue and red!

Recall now that for a single spin 1
2 system the Sx eigenkets and Sz eigenkets are related

as follows:

|x̂±〉=
(

1√
2

)
(|ẑ+〉± |ẑ−〉), |ẑ±〉=

(
1√
2

)
(|x̂+〉± |x̂−〉). (3.429)

Returning now to our composite system, we can rewrite spin-singlet ket (3.427) by
choosing the x-direction as the axis of quantization:

|spin singlet〉=
(

1√
2

)
(|x̂−; x̂+〉− |x̂+; x̂−〉). (3.430)

Apart from the overall sign, which in any case is a matter of convention, we could have
guessed this form directly from (3.427) because spin-singlet states have no preferred
direction in space. Let us now suppose that observer A can choose to measure Sz or Sx of
particle 1 by changing the orientation of his or her spin analyzer, while observer B always
specializes in measuring Sx of particle 2. If A determines Sz of particle 1 to be positive, B
clearly has a 50% chance for getting Sx+ or Sx−; even though Sz of particle 2 is known
to be negative with certainty, its Sx is completely undetermined. On the other hand, let us
suppose that A also chooses to measure Sx; if observer A determines Sx of particle 1 to be
positive, then without fail, observer B will measure Sx of particle 2 to be negative. Finally,
if A chooses to make no measurement, B, of course, will have a 50% chance of getting
Sx+ or Sx−. To sum up, we have the following.

1. If A measures Sz and B measures Sx, there is a completely random correlation between
the two measurements.

2. If A measures Sx and B measures Sx, there is a 100% (opposite sign) correlation between
the two measurements.

3. If A makes no measurement, B’s measurements show random results.

Table 3.1 shows all possible results of such measurements when B and A are allowed
to choose to measure Sx or Sz. These considerations show that the outcome of B’s
measurement appears to depend on what kind of measurement A decides to perform: an Sx
measurement, an Sz measurement, or no measurement. Notice again that A and B can be
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Table 3.1 Spin-Correlation Measurements

Spin component Spin component
measured by A A’s result measured by B B’s result

z + z −
z − x +

x − z −
x − z +

z + x −
x + x −
z + x +

x − x +

z − z +

z − x −
x + z +

x + z −

miles apart with no possibility of communications or mutual interactions. Observer A can
decide how to orient his or her spin-analyzer apparatus long after the two particles have
separated. It is as though particle 2 “knows” which spin component of particle 1 is being
measured.

The orthodox quantum-mechanical interpretation of this situation is as follows. A
measurement is a selection (or filtration) process. When Sz of particle 1 is measured to
be positive, then component |ẑ+; ẑ−〉 is selected. A subsequent measurement of the other
particle’s Sz merely ascertains that the system is still in |ẑ+; ẑ−〉. We must accept that a
measurement on what appears to be a part of the system is to be regarded as a measurement
on the whole system.

3.10.2 Einstein’s Locality Principle and Bell’s Inequality

Many physicists have felt uncomfortable with the preceding orthodox interpretation of
spin-correlation measurements. Their feelings are typified in the following frequently
quoted remarks by A. Einstein, which we call Einstein’s locality principle: “But on
one supposition we should, in my opinion, absolutely hold fast: The real factual situation
of the system S2 is independent of what is done with the system S1, which is spatially
separated from the former.” Because this problem was first discussed in a 1935 paper of
A. Einstein, B. Podolsky, and N. Rosen, it is sometimes known as the Einstein–Podolsky–
Rosen paradox.15

Some have argued that the difficulties encountered here are inherent in the probabilistic
interpretations of quantum mechanics and that the dynamic behavior at the microscopic
level appears probabilistic only because some yet unknown parameters, so-called hidden

15 To be historically accurate, the original Einstein–Podolsky–Rosen paper dealt with measurements of x and p.
The use of composite spin 1

2 systems to illustrate the Einstein–Podolsky–Rosen paradox started with D. Bohm.
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variables, have not been specified. It is not our purpose here to discuss various alternatives
to quantum mechanics based on hidden-variable or other considerations. Rather, let us
ask: Do such theories make predictions different from those of quantum mechanics? Until
1964, it could be thought that the alternative theories could be concocted in such a way
that they would give no predictions, other than the usual quantum-mechanical predictions,
that could be verified experimentally. The whole debate would have belonged to the realm
of metaphysics rather than physics. It was then pointed out by J. S. Bell that the alternative
theories based on Einstein’s locality principle actually predict a testable inequality relation
among the observables of spin-correlation experiments that disagrees with the predictions
of quantum mechanics.

We derive Bell’s inequality within the framework of a simple model, conceived by
E. P. Wigner, that incorporates the essential features of the various alternative theories.
Proponents of this model agree that it is impossible to determine Sx and Sz simultaneously.
However, when we have a large number of spin 1

2 particles, we assign a certain fraction of
them to have the following property.

If Sz is measured, we obtain a plus sign with certainty.
If Sx is measured, we obtain a minus sign with certainty.

A particle satisfying this property is said to belong to type (ẑ+, x̂−). Notice that we are
not asserting that we can simultaneously measure Sz and Sx to be + and −, respectively.
When we measure Sz, we do not measure Sx, and vice versa. We are assigning definite
values of spin components in more than one direction with the understanding that
only one or the other of the components can actually be measured. Even though this
approach is fundamentally different from that of quantum mechanics, the quantum-
mechanical predictions for Sz and Sx measurements performed on the spin-up (Sz+) state
are reproduced provided there are as many particles belonging to type (ẑ+, x̂+) as to type
(ẑ+, x̂−).

Let us now examine how this model can account for the results of spin-correlation
measurements made on composite spin-singlet systems. Clearly, for a particular pair,
there must be a perfect matching between particle 1 and particle 2 to ensure zero total
angular momentum: If particle 1 is of type (ẑ+, x̂−), then particle 2 must belong to type
(ẑ−, x̂+), and so forth. The results of correlation measurements, such as in Table 3.1, can
be reproduced if particle 1 and particle 2 are matched as follows:

particle 1 particle 2
(ẑ+, x̂−)↔ (ẑ−, x̂+),

(3.431a)

(ẑ+, x̂+)↔ (ẑ−, x̂−), (3.431b)

(ẑ−, x̂+)↔ (ẑ+, x̂−), (3.431c)

(ẑ−, x̂−)↔ (ẑ+, x̂+), (3.431d)

with equal populations, that is, 25% each. A very important assumption is implied here.
Suppose a particular pair belongs to type (3.431a) and observer A decides to measure Sz of
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Table 3.2 Spin-Component Matching in the Alternative Theories

Population Particle 1 Particle 2

N1 (â+, b̂+, ĉ+) (â−, b̂−, ĉ−)

N2 (â+, b̂+, ĉ−) (â−, b̂−, ĉ+)

N3 (â+, b̂−, ĉ+) (â−, b̂+, ĉ−)

N4 (â+, b̂−, ĉ−) (â−, b̂+, ĉ+)

N5 (â−, b̂+, ĉ+) (â+, b̂−, ĉ−)

N6 (â−, b̂+, ĉ−) (â+, b̂−, ĉ+)

N7 (â−, b̂−, ĉ+) (â+, b̂+, ĉ−)

N8 (â−, b̂−, ĉ−) (â+, b̂+, ĉ+)

particle 1; then he or she necessarily obtains a plus sign regardless of whether B decides to
measure Sz or Sx. It is in this sense that Einstein’s locality principle is incorporated in this
model: A’s result is predetermined independently of B’s choice as to what to measure.

In the examples considered so far, this model has been successful in reproducing the
predictions of quantum mechanics. We now consider more complicated situations where
the model leads to predictions different from the usual quantum-mechanical predictions.
This time we start with three unit vectors â, b̂, and ĉ, which are, in general, not mutually
orthogonal. We imagine that one of the particles belongs to some definite type, say
(â−, b̂+, ĉ+), which means that if S · â is measured, we obtain a minus sign with certainty;
if S · b̂ is measured, we obtain a plus sign with certainty; if S · ĉ is measured, we obtain a
plus sign with certainty. Again there must be a perfect matching in the sense that the other
particle necessarily belongs to type (â+, b̂−, ĉ−) to ensure zero total angular momentum.
In any given event, the particle pair in question must be a member of one of the eight
types shown in Table 3.2. These eight possibilities are mutually exclusive and disjoint.
The population of each type is indicated in the first column.

Let us suppose that observer A finds S1 · â to be plus and observer B finds S2 · b̂ to
be plus also. It is clear from Table 3.2 that the pair belong to either type 3 or type 4, so
the number of particle pairs for which this situation is realized is N3 +N4. Because Ni is
positive semidefinite, we must have inequality relations like

N3 +N4 ≤ (N2 +N4)+(N3 +N7). (3.432)

Let P(â+; b̂+) be the probability that, in a random selection, observer A measures S1 · â to
be + and observer B measures S2 · b̂ to be +, and so on.

Clearly, we have

P(â+; b̂+) =
(N3 +N4)

∑8
i Ni

. (3.433)

In a similar manner, we obtain

P(â+; ĉ+) =
(N2 +N4)

∑8
i Ni

and P(ĉ+; b̂+) =
(N3 +N7)

∑8
i Ni

. (3.434)
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The positivity condition (3.432) now becomes

P(â+; b̂+)≤ P(â+; ĉ+)+P(ĉ+; b̂+). (3.435)

This is Bell’s inequality, which follows from Einstein’s locality principle.

3.10.3 Quantum Mechanics and Bell’s Inequality

We now return to the world of quantum mechanics. In quantum mechanics we do not talk
about a certain fraction of particle pairs, say N3/∑8

i Ni, belonging to type 3. Instead, we
characterize all spin-singlet systems by the same ket (3.427); in the language of Section 3.4
we are concerned here with a pure ensemble. Using this ket and the rules of quantum
mechanics we have developed, we can unambiguously calculate each of the three terms in
inequality (3.435).

We first evaluate P(â+; b̂+). Suppose observer A finds S1 · â to be positive; because
of the 100% (opposite sign) correlation we discussed earlier, B’s measurement of S2 · â
will yield a minus sign with certainty. But to calculate P(â+; b̂+) we must consider a
new quantization axis b̂ that makes an angle θab with â; see Figure 3.12. According to
the formalism of Section 3.2, the probability that the S2 · b̂ measurement yields + when
particle 2 is known to be in an eigenket of S2 · â with negative eigenvalue is given by

cos2
[
(π−θab)

2

]
= sin2

(
θab

2

)
. (3.436)

As a result, we obtain

P(â+; b̂+) =

(
1
2

)
sin2

(
θab

2

)
, (3.437)

where the factor 1
2 arises from the probability of initially obtaining S1 · â with +. Using

(3.437) and its generalization to the other two terms of (3.435), we can write Bell’s
inequality as

a-directionˆ

b-directionˆ

S2

S1

θab

Fig. 3.12 Evaluation of P(â+; b̂+).
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sin2
(

θab

2

)
≤ sin2

(
θac

2

)
+ sin2

(
θcb

2

)
. (3.438)

We now show that inequality (3.438) is not always possible from a geometric point of
view. For simplicity let us choose â, b̂, and ĉ to lie in a plane, and let ĉ bisect the two
directions defined by â and b̂:

θab = 2θ , θac = θcb = θ . (3.439)

Inequality (3.438) is then violated for

0 < θ <
π
2

. (3.440)

For example, take θ = π/4; we then obtain

0.500 ≤ 0.292 ?? (3.441)

So the quantum-mechanical predictions are not compatible with Bell’s inequality. There
is a real observable, in the sense of being experimentally verifiable, difference between
quantum mechanics and the alternative theories satisfying Einstein’s locality principle.

Several experiments have been performed to test Bell’s inequality. For a review, see
“Bell’s inequality test: more ideal than ever” by Aspect, Nature, 398 (1999) 189. In
one of the experiments spin correlations between the final protons in low-energy proton-
proton scattering were measured. In all other experiments photon polarization correlations
between a pair of photons in a cascade transition of an excited atom (Ca, Hg,...),

( j = 0)
γ→( j = 1)

γ→( j = 0), (3.442)

or in the decay of a positronium (an e+e− bound state in 1S0) were measured; studying
photon polarization correlations should be just as good in view of the analogy developed
in Section 1.1

Sz+→ ε̂ in x-direction, (3.443a)

Sz−→ ε̂ in y-direction, (3.443b)

Sx+→ ε̂ in 45◦ diagonal direction, (3.443c)

Sx−→ ε̂ in 135◦ diagonal direction. (3.443d)

The results of all recent precision experiments have conclusively established that Bell’s
inequality was violated, in one case by more than nine standard deviations. Furthermore,
in all these experiments the inequality relation was violated in such a way that the quantum-
mechanical predictions were fulfilled within error limits. In this controversy, quantum
mechanics has triumphed with flying colors.

The fact that the quantum-mechanical predictions have been verified does not mean
that the whole subject is now a triviality. Despite the experimental verdict we may still
feel psychologically uncomfortable about many aspects of measurements of this kind.
Consider in particular the following point: Right after observer A performs a measurement
on particle 1, how does particle 2 – which may, in principle, be many light years away from
particle 1 – get to “know” how to orient its spin so that the remarkable correlations apparent
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in Table 3.1 are realized? In one of the experiments to test Bell’s inequality (performed
by A. Aspect and collaborators) the analyzer settings were changed so rapidly that A’s
decision as to what to measure could not be made until it was too late for any kind of
influence, traveling slower than light, to reach B.

We conclude this section by showing that despite these peculiarities, we cannot use
spin-correlation measurements to transmit any useful information between two macroscop-
ically separated points. In particular, superluminal (faster than light) communications are
impossible.

Suppose A and B both agree in advance to measure Sz; then, without asking A, B knows
precisely what A is getting. But this does not mean that A and B are communicating; B just
observes a random sequence of positive and negative signs. There is obviously no useful
information contained in it. B verifies the remarkable correlations predicted by quantum
mechanics only after he or she gets together with A and compares the notes (or computer
sheets).

It might be thought that A and B can communicate if one of them suddenly changes
the orientation of his or her analyzing apparatus. Let us suppose that A agrees initially to
measure Sz, and B, Sx. The results of A’s measurements are completely uncorrelated with
the results of B’s measurements, so there is no information transferred. But then, suppose
A suddenly breaks his or her promise and without telling B starts measuring Sx. There are
now complete correlations between A’s results and B’s results. However, B has no way of
inferring that A has changed the orientation of his or her analyzer. B continues to see just
a random sequence of + and − by looking at his or her own notebook only. So again there
is no information transferred.

3.11 Tensor Operators

3.11.1 Vector Operator

We have been using notations such as x, p, S, and L, but as yet we have not systematically
discussed their rotational properties. They are vector operators, but what are their
properties under rotations? In this section we give a precise quantum-mechanical definition
of vector operators based on their commutation relations with the angular-momentum
operator. We then generalize to tensor operators with more complicated transformation
properties and derive an important theorem on the matrix elements of vector and tensor
operators.

We all know that a vector in classical physics is a quantity with three components that
transforms by definition like Vi → ΣjRijVj under a rotation. It is reasonable to demand that
the expectation value of a vector operator V in quantum mechanics be transformed like
a classical vector under rotation. Specifically, as the state ket is changed under rotation
according to

|α〉 → D(R)|α〉, (3.444)
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the expectation value of V is assumed to change as follows:

〈α|Vi|α〉 → 〈α|D†(R)ViD(R)|α〉= ∑
j

Rij〈α|Vj|α〉. (3.445)

This must be true for an arbitrary ket |α〉. Therefore,

D†(R)ViD(R) = ∑
j

RijVj (3.446)

must hold as an operator equation, where Rij is the 3 × 3 matrix that corresponds to
rotation R.

Let us now consider a specific case, an infinitesimal rotation. When the rotation is
infinitesimal, we have

D(R) = 1− iεJ · n̂
h̄

. (3.447)

We can now write (3.446) as

Vi +
ε
ih̄
[Vi,J · n̂] = ∑

j
Rij(n̂; ε)Vj. (3.448)

In particular, for n̂ along the z-axis, we have

R(ẑ; ε) =

⎛⎝ 1 −ε 0
ε 1 0
0 0 1

⎞⎠ , (3.449)

so

i = 1, Vx +
ε
ih̄
[Vx,Jz] = Vx − εVy (3.450a)

i = 2, Vy +
ε
ih̄
[Vy,Jz] = εVx +Vy (3.450b)

i = 3, Vz +
ε
ih̄
[Vz,Jz] = Vz. (3.450c)

This means that V must satisfy the commutation relations

[Vi,Jj] = iεijkh̄Vk. (3.451)

Clearly, the behavior of V under a finite rotation is completely determined by the
preceding commutation relations; we just apply the by now familiar formula (2.168) to

exp

(
iJjφ

h̄

)
Vi exp

(−iJjφ

h̄

)
. (3.452)

We simply need to calculate

[Jj, [Jj, [· · · [Jj,Vi] · · · ]]]. (3.453)

Multiple commutators keep on giving back to us Vi or Vk (k 	= i, j) as in spin case (3.24).
We can use (3.451) as the defining property of a vector operator. Notice that the angular-

momentum commutation relations are a special case of (3.451) in which we let Vi →
Ji,Vk → Jk. Other special cases are [y,Lz] = ih̄x, [x,Lz] = −ih̄y, [px,Lz] = −ih̄py, [py,Lz] =

ih̄px; these can be proved explicitly.
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3.11.2 Cartesian Tensors Versus Irreducible Tensors

In classical physics it is customary to define a tensor Tijk··· by generalizing Vi → ΣjRijVj as
follows:

Tijk··· → ∑
i′

∑
j′

∑
k′
· · ·Rii′Rjj′···Ti′j′k′··· (3.454)

under a rotation specified by the 3×3 orthogonal matrix R. The number of indices is called
the rank of a tensor. Such a tensor is known as a Cartesian tensor.

The simplest example of a Cartesian tensor of rank 2 is a dyadic formed out of two
vectors U and V. One simply takes a Cartesian component of U and a Cartesian component
of V and puts them together:

Tij ≡ UiVj. (3.455)

Notice that we have nine components altogether. They obviously transform like (3.454)
under rotation.

The trouble with a Cartesian tensor like (3.455) is that it is reducible, that is, it can be
decomposed into objects that transform differently under rotations. Specifically, for the
dyadic in (3.455) we have

UiVj =
U ·V

3
δij +

(UiVj −UjVi)

2
+

(
UiVj +UjVi

2
− U ·V

3
δij

)
. (3.456)

The first term on the right-hand side, U ·V, is a scalar product invariant under rotation. The
second is an antisymmetric tensor which can be written as a vector product εijk(U×V)k.
There are altogether 3 independent components. The last is a 3× 3 symmetric traceless
tensor with 5 (= 6 − 1, where 1 comes from the traceless condition) independent
components. The number of independent components checks:

3×3 = 1+3+5. (3.457)

We note that the numbers appearing on the right-hand side of (3.457) are precisely the
multiplicities of objects with angular momentum l = 0, l = 1, and l = 2, respectively.
This suggests that the dyadic has been decomposed into tensors that can transform like
spherical harmonics with l = 0, 1, and 2. In fact, (3.456) is the simplest nontrivial example
to illustrate the reduction of a Cartesian tensor into irreducible spherical tensors.

Before presenting the precise definition of a spherical tensor, we first give an example
of a spherical tensor of rank k. Suppose we take a spherical harmonic Ym

l (θ ,φ). We have
already seen that it can be written as Ym

l (n̂), where the orientation of n̂ is characterized by
θ and φ. We now replace n̂ by some vector V. The result is that we have a spherical tensor
of rank k (in place of l) with magnetic quantum number q (in place of m), namely

T(k)
q = Ym=q

l=k (V). (3.458)
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Specifically, in the case k = 1 we take spherical harmonics with l = 1 and replace (z/r) =
(n̂)z by Vz, and so on.

Y0
1 =

√
3

4π
cosθ =

√
3

4π
z
r
→ T(1)

0 =

√
3

4π
Vz,

Y±1
1 =∓

√
3

4π
x± iy√

2r
→ T(1)

±1 =

√
3

4π

(
∓Vx ± iVy√

2

)
.

(3.459)

Obviously this can be generalized for higher k , for example,

Y±2
2 =

√
15

32π
(x± iy)2

r2 → T(2)
±2 =

√
15

32π
(Vx ± iVy)

2 (3.460)

T(k)
q are irreducible, just as Y(m)

l are. For this reason, working with spherical tensors is more
satisfactory than working with Cartesian tensors.

To see the transformation of spherical tensors constructed in this manner, let us first
review how Ym

l transform under rotations. First, we have for the direction eigenket;

|n̂〉 → D(R)|n̂〉 ≡ |n̂′〉, (3.461)

which defines the rotated eigenket |n̂′〉 . We wish to examine how Ym
l (n̂

′) = 〈n̂′|l,m〉 would
look in terms of Ym

l (n̂). We can easily see this by starting with

D(R−1)|l,m〉= ∑
m′
|l,m′〉D ( l)

m′m(R
−1) (3.462)

and contracting with 〈n̂| on the left, using (3.461):

Ym
l (n̂

′) = ∑
m′

Ym′
l (n̂)D ( l)

m′m(R
−1). (3.463)

If there is an operator that acts like Ym
l (V), it is then reasonable to expect

D†(R)Ym
l (V)D(R) = ∑

m′
Ym′

l (V)D
(l)∗
mm′(R), (3.464)

where we have used the unitarity of the rotation operator to rewrite D
( l)
m′m(R

−1).
All this work is just to motivate the definition of a spherical tensor. We now consider

spherical tensors in quantum mechanics. Motivated by (3.464) we define a spherical tensor
operator of rank k with (2k+1) components as

D†(R)T(k)
q D(R) =

k

∑
q′=−k

D
(k)∗
qq′ (R)T

(k)
q′ (3.465a)

or, equivalently,

D(R)T(k)
q D†(R) =

k

∑
q′=−k

D
(k)
q′q(R)T

(k)
q′ . (3.465b)

This definition holds regardless of whether T(k)
q can be written as Ym=q

l=k (V); for example,
(Ux + iUy)(Vx + iVy) is the q =+2 component of a spherical tensor of rank 2 even though,
unlike (Vx + iVy)

2, it cannot be written as Yq
k(V).
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A more convenient definition of a spherical tensor is obtained by considering the
infinitesimal form of (3.465b), namely,(

1− iJ · n̂ε
h̄

)
T(k)

q

(
1+

iJ · n̂ε
h̄

)
=

k

∑
q′=−k

T(k)
q′ 〈kq′|

(
1− iJ · n̂ε

h̄

)
|kq〉 (3.466)

or

[J · n̂,T(k)
q ] = ∑

q′
T(k)

q′ 〈kq′|J · n̂|kq〉. (3.467)

By taking n̂ in the ẑ- and in the (x̂± iŷ) directions and using the nonvanishing matrix
elements of Jz and J± [see (3.187b) and (3.193)], we obtain

[Jz,T(k)
q ] = h̄qT(k)

q (3.468a)

and

[J±,T(k)
q ] = h̄

√
(k∓q)(k±q+1)T(k)

q±1. (3.468b)

These commutation relations can be considered as a definition of spherical tensors in place
of (3.465).

3.11.3 Product of Tensors

We have seen how to form a scalar, vector (or antisymmetric tensor), and a traceless
symmetric tensor out of two vectors using the Cartesian tensor language. Of course,
spherical tensor language can also be used (Baym (1969), Chapter 17), for example,

T(0)
0 =

−U ·V
3

=
(U+1V−1 +U−1V+1 −U0V0)

3
,

T(1)
q =

(U×V)q

i
√

2
,

T(2)
±2 = U±1V±1,

T(2)
±1 =

U±1V0 +U0V±1√
2

,

T(2)
0 =

U+1V−1 +2U0V0 +U−1V+1√
6

,

(3.469)

where Uq(Vq) is the qth component of a spherical tensor of rank 1, corresponding to vector
U(V). The preceding transformation properties can be checked by comparing with Ym

l and
remembering that U+1 =−(Ux+ iUy)/

√
2,U−1 = (Ux− iUy)/

√
2,U0 =Uz. A similar check

can be made for V±1,0. For instance,

Y0
2 =

√
5

16π
3z2 − r2

r2 ,

where 3z2 − r2 can be written as

2z2 +2
[
− (x+ iy)√

2
(x− iy)√

2

]
;

hence, Y0
2 is just a special case of T(2)

0 for U = V = r.
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A more systematic way of forming tensor products goes as follows. We start by stating
a theorem.

Theorem 5 Let X(k1)
q1 and Z(k2)

q2 be irreducible spherical tensors of rank k1 and k2,
respectively. Then

T(k)
q = ∑

q1
∑
q2

〈k1k2; q1q2|k1k2; kq〉X(k1)
q1

Z(k2)
q2

(3.470)

is a spherical (irreducible) tensor of rank k.

Proof We must show that under rotation T(k)
q must transform according to (3.465)

D†(R)T(k)
q D(R) = ∑

q1
∑
q2

〈k1k2; q1q2|k1k2; kq〉

×D†(R)X(k1)
q1 D(R)D†(R)Z(k2)

q2 D(R)
= ∑

q1
∑
q2

∑
q′1

∑
q′2

〈k1k2; q1q2|k1k2; kq〉

×X(k1)
q′1

D
(k1)
q′1q1

(R−1)Z(k2)
q′2

D
(k2)
q′2q2

(R−1)

= ∑
k′′

∑
q1

∑
q2

∑
q′1

∑
q′2

∑
q′′

∑
q′
〈k1k2; q1q2|k1k2; kq〉

×〈k1k2; q′1q′2|k1k2; k′′q′〉
×〈k1k2; q1q2|k1k2; k′′q′′〉D (k′′)

q′q′′ (R
−1)X(k1)

q′1
Z(k2)

q′2
,

where we have used the Clebsch–Gordan series formula (3.389). The preceding expression
becomes

= ∑
k′′

∑
q′1

∑
q′2

∑
q′′

∑
q′
δkk′′δqq′′ 〈k1k2; q′1q′2|k1k2; k′′q′〉D (k′′)

q′q′′ (R
−1)X(k1)

q′1
Z(k2)

q′2
,

where we have used the orthogonality of Clebsch–Gordan coefficients (3.362). Finally, this
expression reduces to

= ∑
q′

⎛⎝∑
q′1

∑
q′2

〈k1k2; q′1q′2|k1k2; kq′〉X(k1)
q′1

Z(k2)
q′2

⎞⎠D
(k)
q′q(R

−1)

= ∑
q′

T(k)
q′ D

(k)
q′q(R

−1) = ∑
q′

D
(k)∗
qq′ (R)T

(k)
q′ .

The foregoing shows how we can construct tensor operators of higher or lower ranks by
multiplying two tensor operators. Furthermore, the manner in which we construct tensor
products out of two tensors is completely analogous to the manner in which we construct an
angular-momentum eigenstate by adding two angular momenta; exactly the same Clebsch–
Gordan coefficients appear if we let k1,2 → j1,2 and q1,2 → m1,2.

3.11.4 Matrix Elements of Tensor Operators; the Wigner–Eckart Theorem

In considering the interactions of an electromagnetic field with atoms and nuclei, it
is often necessary to evaluate matrix elements of tensor operators with respect to
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angular-momentum eigenstates. Examples of this will be given in Chapter 5. In general,
it is a formidable dynamic task to calculate such matrix elements. However, there are
certain properties of these matrix elements that follow purely from kinematic or geometric
considerations, which we now discuss.

First, there is a very simple m-selection rule:

〈α′, j′m′|T(k)
q |α, jm〉= 0, unless m′ = q+m. (3.471)

Proof. Using (3.468a), we have

〈α′, j′m′|
([

Jz,T(k)
q

]
− h̄qT(k)

q

)
|α, jm〉= [(m′ −m)h̄− h̄q]

×〈α′, j′m′|T(k)
q |α, jm〉= 0;

hence,

〈α′, j′m′|T(k)
q |α, jm〉= 0, unless m′ = q+m.

Another way to see this is to note the transformation property of T(k)
q |α, jm〉 under rotation,

namely,

DT(k)
q |α, jm〉= DT(k)

q D†D |α, jm〉. (3.472)

If we now let D stand for a rotation operator around the z-axis, we get [see (3.465b) and
(3.16)]

D(ẑ,φ)T(k)
q |α, jm〉= e−iqφe−imφT(k)

q |α, jm〉, (3.473)

which is orthogonal to |α′, j′m′〉 unless q+m = m′.
We are going to prove one of the most important theorems in quantum mechanics, the

Wigner–Eckart theorem.

The Wigner–Eckart Theorem The matrix elements of tensor operators with respect to
angular-momentum eigenstates satisfy

〈α′, j′m′|T(k)
q |α, jm〉= 〈 jk; mq| jk; j′m′〉 〈α

′j′||T(k)||αj〉√
2j ′+1

, (3.474)

where the double-bar matrix element is independent of m and m′, and q.
Before we present a proof of this theorem, let us look at its significance. First, we

see that the matrix element is written as the product of two factors. The first factor
is a Clebsch–Gordan coefficient for adding j and k to get j′. It depends only on the
geometry, that is, the way the system is oriented with respect to the z-axis. There is no
reference whatsoever to the particular nature of the tensor operator. The second factor
does depend on the dynamics, for instance, α may stand for the radial quantum number
and its evaluation may evolve, for example, evaluation of radial integrals. On the other
hand, it is completely independent of the magnetic quantum numbers m, m′, and q, which
specify the orientation of the physical system. To evaluate 〈α′, j′m′|T(k)

q |α, jm〉 with various
combinations of m, m′, and q′ it is sufficient to know just one of them; all others can be
related geometrically because they are proportional to Clebsch–Gordan coefficients, which
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are known. The common proportionality factor is 〈α′j′||T(k)||αj〉, which makes no reference
whatsoever to the geometric features.

The selection rules for the tensor operator matrix element can be immediately read off
from the selection rules for adding angular momentum. Indeed, from the requirement that
the Clebsch–Gordan coefficient be nonvanishing, we immediately obtain the m-selection
rule (3.471) derived before and also the triangular relation

| j− k| ≤ j′ ≤ j+ k. (3.475)

Now we prove the theorem.

Proof Using (3.468b) we have

〈α′, j′m′|[J±,T(k)
q ]|α, jm〉= h̄

√
(k∓q)(k±q+1)〈α′, j′m′|T(k)

q±1|α, jm〉, (3.476)

or using (3.191) and (3.192) we have√
( j′ ±m′)( j′ ∓m′+1)〈α′, j′,m′ ∓1|T(k)

q |α, jm〉

=
√

( j∓m)( j±m+1)〈α′, j′m′|T(k)
q |α, j,m±1〉

+
√
(k∓q)(k±q+1)〈α′, j′m′|T(k)

q±1|α, jm〉. (3.477)

Compare this with the recursion relation for the Clebsch–Gordan coefficient (3.369). Note
the striking similarity if we substitute j′ → j, m′ → m, j → j1, m → m1, k → j2, and q → m2.
Both recursion relations are of the form ∑j aijxj = 0, that is, first-order linear homogeneous
equations with the same coefficients aij. Whenever we have

∑
j

aijxj = 0, ∑
j

aijyj = 0, (3.478)

we cannot solve for the xj (or yj) individually but we can solve for the ratios; so

xj

xk
=

yj

yk
or xj = cyj, (3.479)

where c is a universal proportionality factor. Noting that 〈 j1 j2; m1,m2 ±1| j1 j2; jm〉 in the
Clebsch–Gordan recursion relation (3.369) corresponds to 〈α′, j′m′|T(k)

q±1|α, jm〉, we see that

〈α′, j′m′|T(k)
q±1|α, jm〉= (universal proportionality constant independent of

m,q, andm′)〈 jk; mq±1| jk; j′m′〉, (3.480)

which proves the theorem. �

There are several conventions for the “universal proportionality constant.” Our choice
(3.474) is consistent with Gottfried and Yan (2003). Edmonds (1974) uses a different,
popular convention, and also includes a guide to other choices.

Let us now look at two simple examples of the Wigner–Eckart theorem.
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Example 6 Tensor of rank 0, that is, scalar T(0)
0 = S. The matrix element of a scalar operator

satisfies

〈α′, j′m′|S|α, jm〉= δjj′δmm′
〈α′j′||S||αj〉√

2j ′+1
(3.481)

because S acting on |α, jm〉 is like adding an angular momentum of zero. Thus the scalar
operator cannot change j,m values.

Example 7 Vector operator which in the spherical tensor language is a rank 1 tensor. The
spherical component of V can be written as Vq=±1,0, so we have the selection rule

Δm ≡ m′ −m =±1,0, Δj ≡ j′ − j =
{

±1
0.

(3.482)

In addition, the 0 → 0 transition is forbidden. This selection rule is of fundamental
importance in the theory of radiation; it is the dipole selection rule obtained in the long-
wavelength limit of emitted photons.

For j = j′ the Wigner–Eckart theorem, when applied to the vector operator, takes a
particularly simple form, often known as the projection theorem for obvious reasons.

The Projection Theorem This theorem states that

〈α′, jm′|Vq|α, jm〉= 〈α′, jm|J ·V|α, jm〉
h̄2j( j+1)

〈 jm′|Jq| jm〉, (3.483)

where analogous to our discussion after (3.469) we choose

J±1 =∓ 1√
2
(Jx ± iJy) =∓ 1√

2
J±, J0 = Jz. (3.484)

Proof Noting (3.469) we have

〈α′, jm|J ·V|α, jm〉= 〈α′, jm|(J0V0 − J+1V−1 − J−1V+1)|α, jm〉

= mh̄〈α′, jm|V0|α, jm〉+ h̄√
2

√
( j+m)( j−m+1)

×〈α′, jm−1|V−1|α, jm〉

− h̄√
2

√
( j−m)( j+m+1)〈α′, jm+1|V+1|α, jm〉

= cjm〈α′j||V||αj〉 (3.485)

by the Wigner–Eckart theorem (3.474), where cjm is independent of α, α′, and V, and the
matrix elements of V0,±1 are all proportional to the double-bar matrix element (sometimes
also called the reduced matrix element). Furthermore, cjm is independent of m because
J ·V is a scalar operator, so we may as well write it as cj. Because cj does not depend on V,
(3.485) holds even if we let V → J and α′ → α, that is,

〈α, jm|J2|α, jm〉= cj〈αj||J||αj〉. (3.486)
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Returning to the Wigner–Eckart theorem applied to Vq and Jq, we have

〈α′, jm′|Vq|α, jm〉
〈α, jm′|Jq|α, jm〉 =

〈α′j||V||αj〉
〈αj||J||αj〉 . (3.487)

But the right-hand side of (3.487) is the same as 〈α′, jm|J ·V|α, jm〉/〈α, jm|J2|α, jm〉 by
(3.485) and (3.486). Moreover, the left-hand side of (3.486) is just j( j+1)h̄2. So

〈α′, jm′|Vq|α, jm〉= 〈α′, jm|J ·V|α, jm〉
h̄2j( j+1)

〈 jm′|Jq| jm〉, (3.488)

which proves the projection theorem. �

We will give applications of the theorem in subsequent sections.

Problems

3.1 Use the specific form of Sx given by (3.25) to evaluate (3.23) and show that Sx rotates
as expected through an angle φ about the z-axis.

3.2 Find the eigenvalues and eigenvectors of σy =

(
0 −i
i 0

)
. Suppose an electron is

in the spin state
(
α
β

)
. If sy is measured, what is the probability of the result h̄/2?

3.3 Find, by explicit construction using Pauli matrices, the eigenvalues for the
Hamiltonian

H =−2μ
h̄

S ·B

for a spin 1
2 particle in the presence of a magnetic field B = Bxx̂+Byŷ+Bzẑ.

3.4 Consider the 2×2 matrix defined by

U =
a0 + iσ ·a
a0 − iσ ·a ,

where a0 is a real number and a is a three-dimensional vector with real components.
a. Prove that U is unitary and unimodular.
b. In general, a 2 × 2 unitary unimodular matrix represents a rotation in three

dimensions. Find the axis and angle of rotation appropriate for U in terms of
a0,a1,a2, and a3.

3.5 The spin-dependent Hamiltonian of an electron-positron system in the presence of a
uniform magnetic field in the z-direction can be written as

H = AS(e−) ·S(e+) +

(
eB
mc

)(
S(e

−)
z −S(e

+)
z

)
.

Suppose the spin function of the system is given by χ(e−)
+ χ(e+)

− .
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a. Is this an eigenfunction of H in the limit A → 0, eB/mc 	= 0? If it is, what is the
energy eigenvalue? If it is not, what is the expectation value of H?

b. Same problem when eB/mc → 0, A 	= 0.

3.6 Consider a spin 1 particle. Evaluate the matrix elements of

Sz(Sz + h̄)(Sz − h̄) and Sx(Sx + h̄)(Sx − h̄).

3.7 Let the Hamiltonian of a rigid body be

H =
1
2

(
K2

1
I1

+
K2

2
I2

+
K2

3
I3

)
,

where K is the angular momentum in the body frame. From this expression obtain
the Heisenberg equation of motion for K and then find Euler’s equation of motion in
the correspondence limit.

3.8 Let U = eiG3αeiG2βeiG3γ, where (α,β,γ) are the Eulerian angles. In order that U
represent a rotation (α,β,γ), what are the commutation rules satisfied by the Gk?
Relate G to the angular-momentum operators.

3.9 What is the meaning of the following equation:

U−1AkU = ∑RklAl,

where the three components of A are matrices? From this equation show that matrix
elements 〈m|Ak|n〉 transform like vectors.

3.10 Consider a sequence of Euler rotations represented by

D (1/2)(α,β,γ) = exp

(
−iσ3α

2

)
exp

(
−iσ2β

2

)
exp

(
−iσ3γ

2

)

=

⎛⎜⎝ e−i(α+γ)/2 cos
β
2

−e−i(α−γ)/2 sin
β
2

ei(α−γ)/2 sin
β
2

ei(α+γ)/2 cos
β
2

⎞⎟⎠ .

Because of the group properties of rotations, we expect that this sequence of
operations is equivalent to a single rotation about some axis by an angle θ . Find θ .

3.11 Use the triangle inequality (1.147) and the definition (3.100) of the density operator
ρ to prove that 0 ≤ Tr(ρ2)≤ 1.

3.12 A large collection of spin 1
2 particles is in a mixture of the two states |Sz;+〉 and

|Sy;−〉. The fraction of particles in the state |Sz;+〉 is a. Find the ensemble averages
[Sx], [Sy], and [Sz] in terms of a. Confirm that your expression gives the answers you
expect for a = 0 and a = 1.

3.13 a. Consider a pure ensemble of identically prepared spin 1
2 systems. Suppose the

expectation values 〈Sx〉 and 〈Sz〉 and the sign of 〈Sy〉 are known. Show how we
may determine the state vector. Why is it unnecessary to know the magnitude
of 〈Sy〉?
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b. Consider a mixed ensemble of spin 1
2 systems. Suppose the ensemble averages

[Sx], [Sy], and [Sz] are all known. Show how we may construct the 2× 2 density
matrix that characterizes the ensemble.

3.14 Consider a one-dimensional simple harmonic oscillator with frequency ω and
eigenstates |0〉, |1〉, |2〉,. . . . A mixed ensemble is formed with equal parts of each
of the three states

|α〉 ≡ 1√
2
[|0〉+ |1〉] , |β〉 ≡ 1√

2
[|1〉+ |2〉] , and |2〉.

Find the density operator ρ and calculate the ensemble average of the energy.

3.15 a. Prove that the time evolution of the density operator ρ (in the Schrödinger picture)
is given by

ρ(t) = U (t, t0)ρ(t0)U †(t, t0).

b. Suppose we have a pure ensemble at t = 0. Prove that it cannot evolve into a
mixed ensemble as long as the time evolution is governed by the Schrödinger
equation.

3.16 Consider an ensemble of spin 1 systems. The density matrix is now a 3× 3 matrix.
How many independent (real) parameters are needed to characterize the density
matrix? What must we know in addition to [Sx], [Sy], and [Sz] to characterize the
ensemble completely?

3.17 An angular-momentum eigenstate | j,m = mmax = j〉 is rotated by an infinitesimal
angle ε about the y-axis. Without using the explicit form of the d( j)

m′m function, obtain
an expression for the probability for the new rotated state to be found in the original
state up to terms of order ε2.

3.18 Show that the 3×3 matrices Gi(i = 1,2,3) whose elements are given by

(Gi)jk =−ih̄εijk,

where j and k are the row and column indices, satisfy the angular-momentum
commutation relations. What is the physical (or geometric) significance of the
transformation matrix that connects Gi to the more usual 3×3 representations of the
angular-momentum operator Ji with J3 taken to be diagonal? Relate your result to

V → V+ n̂δφ×V

under infinitesimal rotations. (Note: This problem may be helpful in understanding
the photon spin.)

3.19 a. Using the fact that Jx, Jy, Jz, and J± ≡ Jx± iJy satisfy the usual angular-momentum
commutation relations, prove that

J2 = J2
z + J+J−− h̄Jz.
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b. Using this result, or otherwise, derive the coefficient c− that appears in

J−| jm〉= c−| j,m−1〉.

3.20 Construct the matrix representations of the operators Jx and Jy for a spin 1 system,
in the Jz basis, spanned by the kets |+〉 ≡ |1,1〉, |0〉 ≡ |1,0〉, and |−〉 ≡ |1,−1〉. Use
these matrices to find the three analogous eigenstates for each of the two operators
Jx and Jy in terms of |+〉, |0〉, and |−〉.

3.21 Show that the orbital angular-momentum operator L commutes both with the
operators p2 and x2, that is prove (3.264).

3.22 For the orbital angular-momentum operator L = x×p, derive (3.218), that is

〈x′|Lz|α〉=−ih̄
∂

∂φ
〈x′|α〉

by using the standard spherical coordinate transformation

x′ = rcosφ sinθ , y′ = rsinφ sinθ , z′ = rcosθ .

3.23 The wave function of a particle subjected to a spherically symmetrical potential V(r)
is given by

ψ(x) = (x+ y+3z)f(r).

a. Is ψ an eigenfunction of L2? If so, what is the l-value? If not, what are the possible
values of l we may obtain when L2 is measured?

b. What are the probabilities for the particle to be found in various ml states?
c. Suppose it is known somehow that ψ(x) is an energy eigenfunction with

eigenvalue E. Indicate how we may find V(r).

3.24 A particle in a spherically symmetrical potential is known to be in an eigenstate of L2

and Lz with eigenvalues h̄2l(l+ 1) and mh̄, respectively. Prove that the expectation
values between |lm〉 states satisfy

〈Lx〉= 〈Ly〉= 0, 〈L2
x〉= 〈L2

y〉=
[l(l+1)h̄2 −m2h̄2]

2
.

Interpret this result semiclassically.

3.25 Suppose a half-integer l-value, say 1
2 , were allowed for orbital angular momentum.

From

L+Y1/2
1/2(θ ,φ) = 0,

we may deduce, as usual,

Y1/2
1/2(θ ,φ) ∝ eiφ/2

√
sinθ .

Now try to construct Y−1/2
1/2 (θ ,φ) (a) by applying L− to Y1/2

1/2(θ ,φ) and (b) using
L−Y−1/2

1/2 (θ ,φ) = 0. Show that the two procedures lead to contradictory results. (This
gives an argument against half-integer l-values for orbital angular momentum.)
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3.26 Consider an orbital angular-momentum eigenstate |l = 2,m = 0〉. Suppose this state
is rotated by an angle β about the y-axis. Find the probability for the new state to be
found in m = 0,±1, and ±2. (The spherical harmonics for l = 0,1, and 2 given in
Section B.5 in Appendix B may be useful.)

3.27 Show that by keeping both terms in (3.275), the origin becomes a source of
probability, provided that there is a relative phase between the constants A and B.

3.28 Consider the energy eigenvalues for a spherically symmetric “box” of radius a.
a. For the box with infinite walls, check the eigenvalues for the l= 0, l= 1, and l= 2

states, given in (3.287), (3.288), and (3.289).
b. Find the lowest energy eigenvalues with l = 0 for a finite spherical box with

potential wall height V0 = h̄2β2/2ma2 where β = 4, 10, 25, and 100, and show
that your numerical results approach the appropriate value given in (a).

3.29 The goal of this problem is to determine degenerate eigenstates of the three-
dimensional isotropic harmonic oscillator written as eigenstates of L2 and Lz, in
terms of the Cartesian eigenstates |nxnynz〉.
a. Show that the angular-momentum operators are given by

Li = ih̄εijkaja†
k

L2 = h̄2
[
N(N+1)−a†

ka†
kajaj

]
where summation is implied over repeated indices, εijk is the totally antisymmetric
symbol, and N ≡ a†

j aj counts the total number of quanta.
b. Use these relations to express the states |qlm〉 = |01m〉, m = 0,±1, in terms

of the three eigenstates |nxnynz〉 that are degenerate in energy. Write down the
representation of your answer in coordinate space, and check that the angular and
radial dependences are correct.

c. Repeat for |qlm〉= |100〉.
d. Repeat for |qlm〉= |02m〉, with m = 0, 1, and 2.

3.30 By considering the associated Laguerre polynomials Lq
p(x), which are also solutions

to Kummer’s equation (3.308), we can derive the normalization constant in (3.320).
a. First consider the Laguerre polynomials Lp(x), which are defined according to a

generating function as

g(x, t) =
e−xt/(1−t)

1− t
=

∞

∑
p=0

Lp(x)
tp

p!

where 0 < t < 1. Prove that Ln(0) = n! and L0(x) = 1. Differentiate g(x, t) with
respect to x to show that

L′
p(x)−pL′

p−1(x) =−pLp−1(x).

Then differentiate g(x, t) with respect to t to show that

Lp+1(x)− (2p+1− x)Lp(x)+p2Lp−1(x) = 0.
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Combine these equations to derive the differential equation for the Lp(x), namely

xL′′
p(x)+(1− x)L′

p(x)+pLp(x) = 0.

b. The associated laguerre Polynomials Lq
p(x) are defined from the Lp(x) as

Lq
p(x) = (−1)q dq

dxq [Lp+q(x)] .

Use this to show that the Lq
p(x) satisfy the differential equation

xLq ′′
p (x)+(q+1− x)Lq ′

p (x)+pLq
p(x) = 0

which is the same as (3.308) where q = c−1 and p =−a. Also show that

h(x, t) =
(−1)q

(1− t)q+1 e−xt/(1−t) =
∞

∑
p=0

Lq
p(x)

tp

(p+q)!

which gives Lq
p(0) = (−1)q[(p+q)! ]2/p!q! through a generating function h(x, t).

c. Now find the normalization constant in (3.320). Start with the relationship∫ ∞

0
xq+1e−xh(x, t)h(x,s)dx =

∞

∑
p=0

∞

∑
p′=0

tp

(p+q)!
sp′

(p′+q)!
Iq
pp′

where Iq
pp′ ≡

∫ ∞
0 xq+1e−xLq

p(x)Lq
p′(x)dx, and determine Iq

pp by isolating the terms
with the same powers of s and t. Make use of the generalized binomial expansion

1
(1− x)n =

∞

∑
p=0

(
n+p−1

p

)
xp =

∞

∑
p=0

(n+p−1)!
p!(n−1)!

xp .

3.31 Consider the Coulomb potential V(x) =−Ze2/r and define the (quantum-mechanical
operator analogue of the) Runge–Lenz vector

M =
1

2m
(p×L−L×p)− Ze2

r
x.

Prove that M is Hermitian and that it commutes with the Hamiltonian. We will
return to M when we go through Pauli’s algebraic solution for this Hamiltonian in
Section 4.1.4.

3.32 What is the physical significance of the operators

K+ ≡ a†
+a†

− and K− ≡ a+a−

in Schwinger’s scheme for angular momentum? Give the nonvanishing matrix
elements of K±.

3.33 Carry through the argument outlined on p. 208 for adding two spin 1
2 particles by

diagonalizing the 4× 4 matrix corresponding to the operator S2 given in (3.339).
That is, construct the matrix representation of S2 in the | ±±〉 basis, and find the
eigenvalues and eigenvectors. Your result should agree with (3.335).
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3.34 Find all nine states | j,m〉 for j = 2, 1, and 0 formed by adding j1 = 1 and j2 = 1.
Use a simplified notation, where | j,m〉 is explicit and ±,0 stand for m1,2 = ±1,0,
respectively, for example

|1,1〉= 1√
2
|+0〉− 1√

2
|0+〉.

You may also want to make use of the ladder operators J±, or recursion relations, as
well as orthonormality. Check your answers by finding a table of Clebsch–Gordan
coefficients for comparison; see Appendix E.

3.35 A spin 1
2 particle is in an orbital angular momentum l = 1 state.

a. Starting with the total angular momentum state | j,m〉 = | j, j〉 for j = 3/2, use the
operator J = L+ S to construct all the states | j,mj〉 in terms of the eigenstates
|l,ml〉 for L2 and Lz, and the eigenstates |1/2,±1/2〉 for S2 and Sz. Check
your answers against any available table of Clebsch–Gordan coefficients; see
Appendix E.

b. If the particle is in a total angular-momentum eigenstate with z-component +h̄/2,
calculate the probability of finding the z-component of the spin of the particle to
have the value ms =+1/2.

3.36 The “spin-angular functions” (aka “spinor spherical harmonics”) are defined as

Y j=l±1/2,m
l =

1√
2l+1

⎡⎣ ±
√

l±m+ 1
2 Ym−1/2

l (θ ,φ)√
l∓m+ 1

2 Ym+1/2
l (θ ,φ)

⎤⎦ .

See (3.384). These were constructed to be properly normalized eigenfunctions of L2,
S2, J2, and Jz, where J ≡ L+S. Use explicit calculations to prove the following:
a. The Y j=l±1/2,m

l are normalized, that is∫ 2π

0
dφ

∫ π

0
sinθdθ

(
Y j=l±1/2,m

l

)†
Y j=l±1/2,m

l = 1.

b. The Y j=l±1/2,m
l have the correct eigenvalues for J2 = L2 +S2 + 2LzSz +L+S−+

L−S+, that is see (3.349), and Jz.

3.37 a. Evaluate
j

∑
m=−j

|d( j)
mm′(β)|2m

for any j (integer or half-integer); then check your answer for j = 1
2 .

b. Prove, for any j,
j

∑
m=−j

m2|d( j)
m′m(β)|

2 =
1
2

j( j+1)sin2 β+m′2 1
2
(3 cos2 β−1).

[Hint: This can be proved in many ways. You may, for instance, examine the
rotational properties of J2

z using the spherical (irreducible) tensor language.]
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3.38 a. Consider a system with j = 1. Explicitly write

〈 j = 1,m′|Jy| j = 1,m〉

in 3×3 matrix form.
b. Show that for j = 1 only, it is legitimate to replace e−iJyβ/h̄ by

1− i
(

Jy

h̄

)
sinβ−

(
Jy

h̄

)2

(1− cos β).

c. Using (b), prove

d( j=1)(β) =

⎛⎜⎜⎜⎝
( 1

2

)
(1+ cos β) −

(
1√
2

)
sin β

( 1
2

)
(1− cos β)(

1√
2

)
sin β cos β −

(
1√
2

)
sin β( 1

2

)
(1− cos β)

(
1√
2

)
sin β

( 1
2

)
(1+ cos β)

⎞⎟⎟⎟⎠ .

3.39 Express the matrix element 〈α2β2γ2|J2
3 |α1β1γ1〉 in terms of a series in

D j
mn(αβγ) = 〈αβγ| jmn〉.

3.40 Consider a system made up of two spin 1
2 particles. Observer A specializes in

measuring the spin components of one of the particles (s1z,s1x and so on), while
observer B measures the spin components of the other particle. Suppose the system
is known to be in a spin-singlet state, that is, Stotal = 0.
a. What is the probability for observer A to obtain s1z = h̄/2 when observer B makes

no measurement? Same problem for s1x = h̄/2.
b. Observer B determines the spin of particle 2 to be in the s2z = h̄/2 state

with certainty. What can we then conclude about the outcome of observer A’s
measurement if (i) A measures s1z and (ii) A measures s1x? Justify your answer.

3.41 Using the defining property (3.451) for a vector operator, prove that the momentum
operator p is a vector, based on its commutation relations with angular momentum L.

3.42 Consider a spherical tensor of rank 1 (that is, a vector)

V(1)
±1 =∓Vx ± iVy√

2
, V(1)

0 = Vz.

Using the expression for d( j=1) given in Problem 3.38, evaluate

∑
q′

d(1)qq′(β)V
(1)
q′

and show that your results are just what you expect from the transformation
properties of Vx,y,z under rotations about the y-axis.

3.43 a. Construct a spherical tensor of rank 1 out of two different vectors U= (Ux,Uy,Uz)

and V = (Vx,Vy,Vz). Explicitly write T(1)
±1,0 in terms of Ux,y,z and Vx,y,z.

b. Construct a spherical tensor of rank 2 out of two different vectors U and V. Write
down explicitly T(2)

±2,±1,0 in terms of Ux,y,z and Vx,y,z.



248 Theory of Angular Momentum

3.44 Consider a spinless particle bound to a fixed center by a central force potential.
a. Relate, as much as possible, the matrix elements

〈n′, l′,m′|∓ 1√
2
(x± iy)|n, l,m〉 and 〈n′, l′,m′|z|n, l,m〉

using only the Wigner–Eckart theorem. Make sure to state under what conditions
the matrix elements are nonvanishing.

b. Do the same problem using wave functions ψ(x) = Rnl(r)Ym
l (θ ,φ).

3.45 a. Write xy, xz, and (x2 − y2) as components of the components of a spherical
(irreducible) tensor of rank 2.

b. The expectation value

Q ≡ e〈α, j,m = j|(3z2 − r2)|α, j,m = j〉

is known as the quadrupole moment. Evaluate

e〈α, j,m′|(x2 − y2)|α, j,m = j〉,

(where m′ = j, j− 1, j− 2,. . .) in terms of Q and appropriate Clebsch–Gordan
coefficients.

3.46 A spin 3
2 nucleus situated at the origin is subjected to an external inhomogeneous

electric field. The basic electric quadrupole interaction may by taken to be

Hint =
eQ

2s(s−1)h̄2

[(
∂ 2φ

∂x2

)
0

S2
x +

(
∂ 2φ

∂y2

)
0

S2
y +

(
∂ 2φ

∂ z2

)
0

S2
z

]
,

where φ is the electrostatic potential satisfying Laplace’s equation and the coordinate
axes are so chosen that(

∂ 2φ

∂x∂y

)
0
=

(
∂ 2φ

∂y∂ z

)
0
=

(
∂ 2φ

∂x∂ z

)
0
= 0.

Show that the interaction energy can be written as

A(3S2
z −S2)+B(S2

++S2
−),

and express A and B in terms of (∂ 2φ/∂x2)0 and so on. Determine the energy
eigenkets (in terms of |m〉, where m = ± 3

2 ,± 1
2 ) and the corresponding energy

eigenvalues. Is there any degeneracy?



4 Symmetry in Quantum Mechanics

Having studied the theory of rotation in detail, we are in a position to discuss, in more
general terms, the connection between symmetries, degeneracies, and conservation laws.
We have deliberately postponed this very important topic until now so that we can discuss
it using the rotation symmetry of Chapter 3 as an example.

4.1 Symmetries, Conservation Laws, and Degeneracies

4.1.1 Symmetries in Classical Physics

We begin with an elementary review of the concepts of symmetry and conservation law
in classical physics. In the Lagrangian formulation of quantum mechanics, we start with
the Lagrangian L, which is a function of a generalized coordinate qi and the corresponding
generalized velocity q̇i. If L is unchanged under displacement,

qi → qi + δqi, (4.1)

then we must have

∂L
∂qi

= 0. (4.2)

It then follows, by virtue of the Lagrange equation, d/dt(∂L/∂ q̇i)−∂L/∂qi = 0, that

dpi

dt
= 0, (4.3)

where the canonical momentum is defined as

pi =
∂L
∂ q̇i

. (4.4)

So if L is unchanged under displacement (4.1), then we have a conserved quantity, the
canonical momentum conjugate to qi.

Likewise, in the Hamiltonian formulation based on H regarded as a function of qi and
pi, we have

dpi

dt
= 0 (4.5)

249
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whenever

∂H
∂qi

= 0. (4.6)

So if the Hamiltonian does not explicitly depend on qi, which is another way of saying H
has a symmetry under qi → qi + δqi, we have a conserved quantity.

4.1.2 Symmetry in Quantum Mechanics

In quantum mechanics we have learned to associate a unitary operator, say S , with
an operation like translation or rotation. It has become customary to call S a symme-
try operator regardless of whether the physical system itself possesses the symmetry
corresponding to S . Further, we have learned that for symmetry operations that differ
infinitesimally from the identity transformation, we can write

S = 1− iε
h̄

G, (4.7)

where G is the Hermitian generator of the symmetry operator in question. Let us now
suppose that H is invariant under S . We then have

S †HS = H. (4.8)

But this is equivalent to

[G, H] = 0. (4.9)

By virtue of the Heisenberg equation of motion, we have

dG
dt

= 0; (4.10)

hence, G is a constant of the motion. For instance, if H is invariant under translation,
then momentum is a constant of the motion; if H is invariant under rotation, then angular
momentum is a constant of the motion.

It is instructive to look at the connection between (4.9) and conservation of G from the
point of view of an eigenket of G when G commutes with H. Suppose at t0 the system is
in an eigenstate of G. Then the ket at a later time obtained by applying the time-evolution
operator

|g′, t0; t〉= U(t, t0)|g′〉 (4.11)

is also an eigenket of G with the same eigenvalue g′. In other words, once a ket is a G
eigenket, it is always a G eigenket with the same eigenvalue. The proof of this is extremely
simple once we realize that (4.9) and (4.10) also imply that G commutes with the time-
evolution operator, namely,

G[U(t, t0)|g′〉] = U(t, t0)G|g′〉= g′[U(t, t0)|g′〉]. (4.12)
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4.1.3 Degeneracies

Let us now turn to the concept of degeneracies. Even though degeneracies may be
discussed at the level of classical mechanics – for instance in discussing closed (non-
precessing) orbits in the Kepler problem (Goldstein et al. (2002)) – this concept plays a
far more important role in quantum mechanics. Let us suppose that

[H, S ] = 0 (4.13)

for some symmetry operator and |n〉 is an energy eigenket with eigenvalue En. Then S |n〉
is also an energy eigenket with the same energy, because

H(S |n〉) = S H|n〉= En(S |n〉). (4.14)

Suppose |n〉 and S |n〉 represent different states. Then these are two states with the
same energy, that is, they are degenerate. Quite often S is characterized by continuous
parameters, say λ, in which case all states of the form S (λ)|n〉 have the same energy.

We now consider rotation specifically. Suppose the Hamiltonian is rotationally invari-
ant, so

[D(R),H] = 0, (4.15)

which necessarily implies that

[J,H] = 0, [J2,H] = 0. (4.16)

We can then form simultaneous eigenkets of H, J2, and Jz, denoted by |n; j,m〉. The
argument just given implies that all states of the form

D(R)|n; j,m〉 (4.17)

have the same energy. We saw in Chapter 3 that under rotation different m-values are mixed
up. In general, D(R)|n; j,m〉 is a linear combination of 2j+1 independent states. Explicitly,

D(R)|n; j,m〉= ∑
m′
|n; j,m′〉D ( j)

m′m(R), (4.18)

and by changing the continuous parameter that characterizes the rotation operator D(R),
we can get different linear combinations of |n; j,m′〉. If all states of form D(R)|n; j,m〉 with
arbitrary D(R) are to have the same energy, it is then essential that each of |n; j,m〉 with
different m must have the same energy. So the degeneracy here is (2j+1)-fold, just equal
to the number of possible m-values. This point is also evident from the fact that all states
obtained by successively applying J±, which commutes with H, to |n; jm〉 have the same
energy.

As an application, consider an atomic electron whose potential is written as V(r) +
VLS(r)L ·S. Because r and L ·S are both rotationally invariant, we expect a (2j+ 1)-fold
degeneracy for each atomic level. On the other hand, suppose there is an external electric or
magnetic field, say in the z-direction. The rotational symmetry is now manifestly broken;
as a result, the (2j+ 1)-fold degeneracy is no longer expected and states characterized by
different m-values no longer have the same energy. We will examine how this splitting
arises in Chapter 5.
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4.1.4 SO(4) Symmetry in the Coulomb Potential

A fine example of continuous symmetry in quantum mechanics is afforded by the hydrogen
atom problem and the solution for the Coulomb potential. We carried out the solution to
this problem in Section 3.7 where we discovered that the energy eigenvalues in (3.315)
show the striking degeneracy summarized in (3.318). It would be even more striking if this
degeneracy were just an accident, but indeed, it is the result of an additional symmetry that
is particular to the problem of bound states of 1/r potentials.

The classical problem of orbits in such potentials, the Kepler problem, was of course
well studied long prior to quantum mechanics. The fact that the solution leads to elliptical
orbits that are closed means that there should be some (vector) constant of the motion
which maintains the orientation of the major axis of the ellipse. We know that even a small
deviation from a 1/r potential leads to precession of this axis, so we expect that the constant
of the motion we seek is in fact particular to 1/r potentials.

Classically, this new constant of the motion is

M =
p×L

m
− Ze2

r
x (4.19)

where we refer back to the notation used in Section 3.7. This quantity is generally known
as the Lenz vector or sometimes the Runge–Lenz vector. Rather than belabor the classical
treatment here, we will move on to the quantum-mechanical treatment in terms of the
symmetry responsible for this constant of the motion.

This new symmetry is called SO(4), completely analogous to the symmetry SO(3)
studied in Section 3.3. That is, SO(4) is the group of rotation operators in four spatial
dimensions. Equivalently, it is the group of orthogonal 4×4 matrices with unit determinant.
Let us build up the properties of the symmetry that leads to the Lenz vector as a constant
of the motion, and then we will see that these properties of those we expect from SO(4).

Our approach1 closely follows that given by Schiff (1968), pp. 235–239. We first need
to modify (4.19) to construct a Hermitian operator. For two Hermitian vector operators A
and B, it is easy to show that (A×B)† = −B×A. Therefore a Hermitian version of the
Lenz vector is

M =
1

2m
(p×L−L×p)− Ze2

r
x. (4.20)

It can be shown that M commutes with the Hamiltonian

H =
p2

2m
− Ze2

r
(4.21)

that is,

[M,H] = 0, (4.22)

1 A classical treatment of the Runge–Lenz vector is given in Section 3.9 of Goldstein et al. (2002). The
quantum-mechanical treatment was first done by Pauli, Z. Phys., 33 (1925) 879, and an English translation
“On the hydrogen spectrum from the standpoint of the new quantum mechanics” is published in Van der
Waerden (1967).
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so that indeed M is a (quantum mechanical) constant of the motion. (See Problem 3.31 in
Chapter 3.) Other useful relations can be proven, namely

L ·M = 0 = M ·L (4.23)

M2 =
2
m

H
(
L2 + h̄2)+Z2e4. (4.24)

In order to identify the symmetry responsible for this constant of the motion, it is
instructive to review the algebra of the generators of this symmetry. We already know
part of this algebra, namely

[Li,Lj] = ih̄εijkLk (4.25)

which we wrote earlier as (3.211) in a notation where repeated indices (k in this case) are
automatically summed over components. One can also show that

[Mi,Lj] = ih̄εijkMk (4.26)

which in fact establish M as a vector operator in the sense of (3.451). Finally, it is possible
to derive

[Mi,Mj] =−ih̄εijk
2
m

HLk. (4.27)

To be sure, (4.25), (4.26), and (4.27) do not form a closed algebra, due to the presence
of H in (4.27), and that makes it difficult to identify these operators as generators of a
continuous symmetry. However, we can consider the problem of specific bound states.
In this case, the vector space is truncated only to those that are eigenstates of H, with
eigenvalue E < 0. In that case, we replace H with E in (4.27) and the algebra is closed. It
is instructive to replace M with the scaled vector operator

N ≡
(
− m

2E

)1/2
M. (4.28)

In this case we have the closed algebra

[Li,Lj] = ih̄εijkLk (4.29a)

[Ni,Lj] = ih̄εijkNk (4.29b)

[Ni,Nj] = ih̄εijkLk. (4.29c)

So what is the symmetry operation generated by the operators L and N in (4.29)?
Although it is far from obvious, the answer is “rotation in four spatial dimensions.” The
first clue is in the number of generators, namely six, each of which should correspond to
rotation about some axis. Think of a rotation as an operation which mixes two orthogonal
axes. Then, the number of generators for rotations in n spatial dimensions should be the
number of combinations of n things taken two at a time, namely n(n−1)/2. Consequently,
rotations in two dimensions require one generator, that is Lz. Rotations in three dimensions
require three, namely L, and four-dimensional rotations require six generators.

It is harder to see that (4.29) is the appropriate algebra for this kind of rotation, but we
proceed as follows. In three spatial dimensions, the orbital angular-momentum operator
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(3.210) generates rotations. We saw this clearly in (3.215) where an infinitesimal z-axis
rotation on a state |α〉 is represented in a rotated version of the |x,y,z〉 basis. This was
just a consequence of the momentum operator being the generator of translations in space.
In fact, a combination like Lz = xpy − ypx indeed mixes the x-axis and y-axis, just as one
would expect from the generator of rotations about the z-axis.

To generalize this to four spatial dimensions, we first associate (x,y,z) and (px,py,pz)

with (x1,x2,x3) and (p1,p2,p3). We are led to rewrite the generators as L3 = L̃12 = x1p2 −
x2p1, L1 = L̃23, and L2 = L̃31. If we then invent a new spatial dimension x4 and its conjugate
momentum p4 (with the usual commutation relations) we can define

L̃14 = x1p4 − x4p1 ≡ N1 (4.30a)

L̃24 = x2p4 − x4p2 ≡ N2 (4.30b)

L̃34 = x3p4 − x4p3 ≡ N3. (4.30c)

It is easy to show that these operators Ni obey the algebra (4.29). For example

[N1,L2] = [x1p4 − x4p1,x3p1 − x1p3]

= p4[x1,p1]x3 + x4[p1,x1]p3]

= ih̄(x3p4 − x4p3) = ih̄N3. (4.31)

In other words, this is the algebra of four spatial dimensions. We will return to this notion
in a moment, but for now we will press on with the degeneracies in the Coulomb potential
that are implied by (4.14).

Defining the operators

I ≡ (L+N)/2 (4.32)

K ≡ (L−N)/2 (4.33)

we easily can prove the following algebra:

[Ii, Ij] = ih̄εijkIk (4.34a)

[Ki,Kj] = ih̄εijkKk (4.34b)

[Ii,Kj] = 0. (4.34c)

Therefore, these operators obey independent angular momentum algebras. It is also evident
that [I,H] = [K,H] = 0. Thus, these “angular momenta” are conserved quantities, and we
denote the eigenvalues of the operators I2 and K2 by i(i+1)h̄2 and k(k+1)h̄2 respectively,
with i,k = 0, 1

2 ,1, 3
2 ,. . ..

Since I2 −K2 = L ·N = 0 by (4.23) and (4.28), we must have i = k. On the other hand,
the operator

I2 +K2 =
1
2

(
L2 +N2) = 1

2

(
L2 − m

2E
M2

)
(4.35)

leads, with (4.24), to the numerical relation

2k(k+1)h̄2 =
1
2

(
−h̄2 − m

2E
Z2e4

)
. (4.36)
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Solving for E we find

E =−mZ2e4

2h̄2
1

(2k+1)2 . (4.37)

This is the same as (3.315) with the principal quantum number n replaced by 2k+ 1. We
now see that the degeneracy in the Coulomb problem arises from the two “rotational”
symmetries represented by the operators I and K. The degree of degeneracy, in fact, is
(2i+1)(2k+1) = (2k+1)2 = n2. This is exactly what we arrived at in (3.318) except it is
now clear that the degeneracy is no accident.

It is worth noting that we have just solved for the eigenvalues of the hydrogen atom
without ever resorting to solving the Schrödinger equation. Instead, we exploited the
inherent symmetries to arrive at the same answer. This solution was apparently first carried
out by Pauli.

In the language of the theory of continuous groups, which we started to develop in
Section 3.3, we see that the algebra (4.29) corresponds to the group SO(4). Furthermore,
rewriting this algebra as (4.34) shows that this can also be thought of as two independent
groups SU(2), that is SU(2)×SU(2). Although it is not the purpose of this book to include
an introduction to group theory, we will carry this a little further to show how one formally
carries out rotations in n spatial dimensions, that is, the group SO(n).

Generalizing the discussion in Section 3.3, consider the group of n × n orthogonal
matrices R which carry out rotations in n dimensions. They can be parameterized as

R = exp

(
i

n(n−1)/2

∑
q=1

φqτq

)
(4.38)

where the τq are purely imaginary, antisymmetric n × n matrices, that is (τq)T = −τq

and the φq are generalized rotation angles. The antisymmetry condition ensures that R
is orthogonal. The overall factor of i implies that the imaginary matrices τq are also
Hermitian.

The τq are obviously related to the generators of the rotation operator. In fact, it is their
commutation relations which should be parroted by the commutation relations of these
generators. Following along as in Section 3.1, we compare the action of performing an
infinitesimal rotation first about axis q and then about axis p with the rotation carried out
in reverse order. Then,

(1+ iφpτp)(1+ iφqτq)− (1+ iφqτq)(1+ iφpτp)

=−φpφq [τp,τq]

= 1−
(

1+ iφpφq ∑
r

f pq
r τr

)
(4.39)

where the last line of (4.39) recognizes that the result must be a second-order rotation
about the two axes with some linear combination of generators. The f pq

r are called structure
constants for this group of rotations. This gives us the commutation relations

[τp,τq] = i∑
r

f pq
r τr. (4.40)
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New z

New y 

LHRH

Fig. 4.1 Right-handed (RH) and left-handed (LH) systems.

To go further, one would need to determine the structure constants f pq
r , and we leave these

details to textbooks devoted to group theory. It is not hard to show, however, that in three
dimensions, f pq

r = εpqr as expected.

4.2 Discrete Symmetries, Parity, or Space Inversion

So far we have considered continuous symmetry operators, that is, operations that can
be obtained by applying successively infinitesimal symmetry operations. All symmetry
operations useful in quantum mechanics are not necessarily of this form. In this chapter
we consider three symmetry operations that can be considered to be discrete, as opposed
to continuous – parity, lattice translation, and time reversal.

The first operation we consider is parity, or space inversion. The parity operation, as
applied to transformation on the coordinate system, changes a right-handed (RH) system
into a left-handed (LH) system, as shown in Figure 4.1. However, in this book we consider
a transformation on state kets rather than on the coordinate system. Given |α〉, we consider
a space-inverted state, assumed to be obtained by applying a unitary operator π known as
the parity operator, as follows:

|α〉 → π|α〉. (4.41)

We require the expectation value of x taken with respect to the space-inverted state to be
opposite in sign:

〈α|π†xπ|α〉=−〈α|x|α〉, (4.42)

a very reasonable requirement. This is accomplished if

π†xπ =−x (4.43)

or

xπ =−πx, (4.44)

where we have used the fact that π is unitary. In other words, x and π must anticommute.
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How does an eigenket of the position operator transform under parity? We claim that

π|x′〉= eiδ|−x′〉 (4.45)

where eiδ is a phase factor (δ real). To prove this assertion let us note that

xπ|x′〉=−πx|x′〉= (−x′)π|x′〉. (4.46)

This equation says that π|x′〉 is an eigenket of x with eigenvalue −x′, so it must be the
same as a position eigenket |−x′〉 up to a phase factor.

It is customary to take eiδ = 1 by convention. Substituting this in (4.45), we have
π2|x′〉 = |x′〉; hence, π2 = 1. That is, we come back to the same state by applying π
twice. We easily see from (4.45) that π is now not only unitary but also Hermitian:

π−1 = π† = π. (4.47)

Its eigenvalue can be only +1 or −1.
What about the momentum operator? The momentum p is like mdx/dt, so it is natural

to expect it to be odd under parity, like x. A more satisfactory argument considers the
momentum operator as the generator of translation. Since translation followed by parity is
equivalent to parity followed by translation in the opposite direction, as can be seen from
Figure 4.2, then

πT (dx′) = T (−dx′)π (4.48)

π

(
1− ip ·dx′

h̄

)
π† = 1+

ip ·dx′

h̄
, (4.49)

from which follows

{π,p}= 0 or π†pπ =−p. (4.50)

−dx

dx

Fig. 4.2 Translation followed by parity, and vice versa.
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We can now discuss the behavior of J under parity. First, for orbital angular momentum
we clearly have

[π,L] = 0 (4.51)

because

L = x×p, (4.52)

and both x and p are odd under parity. However, to show that this property also holds
for spin, it is best to use the fact that J is the generator of rotation. For 3× 3 orthogonal
matrices, we have

R(parity)R(rotation) = R(rotation)R(parity), (4.53)

where explicitly

R(parity) =

⎛⎝−1 0
−1

0 −1

⎞⎠ ; (4.54)

that is, the parity and rotation operations commute. In quantum mechanics, it is natural to
postulate the corresponding relation for the unitary operators, so

πD(R) = D(R)π, (4.55)

where D(R) = 1− iJ · n̂ε/h̄. From (4.55) it follows that

[π,J] = 0 or π†Jπ = J. (4.56)

This together with (4.51) means that the spin operator S (leading to the total angular
momentum J = L+S) also transforms in the same way as L.

Under rotations, x and J transform in the same way, so they are both vectors, or spherical
tensors, of rank 1. However, x (or p) is odd under parity [see (4.43) and (4.50)], while J is
even under parity [see (4.56)]. Vectors that are odd under parity are called polar vectors,
while vectors that are even under parity are called axial vectors, or pseudovectors.

Let us now consider operators like S ·x. Under rotations they transform like ordinary
scalars, such as S ·L or x ·p. Yet under space inversion we have

π−1S ·xπ =−S ·x, (4.57)

while for ordinary scalars we have

π−1L ·Sπ = L ·S (4.58)

and so on. The operator S ·x is an example of a pseudoscalar.

4.2.1 Wave Functions under Parity

Let us now look at the parity property of wave functions. First, let ψ be the wave function
of a spinless particle whose state ket is |α〉:

ψ(x′) = 〈x′|α〉. (4.59)
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The wave function of the space-inverted state, represented by the state ket π|α〉, is

〈x′|π|α〉= 〈−x′|α〉= ψ(−x′). (4.60)

Suppose |α〉 is an eigenket of parity. We have already seen that the eigenvalue of parity
must be ±1, so

π|α〉=±|α〉. (4.61)

Let us look at its corresponding wave function,

〈x′|π|α〉=±〈x′|α〉. (4.62)

But we also have

〈x′|π|α〉= 〈−x′|α〉, (4.63)

so the state |α〉 is even or odd under parity depending on whether the corresponding wave
function satisfies

ψ(−x′) =±ψ(x′)
{

evenparity
oddparity.

(4.64)

Not all wave functions of physical interest have definite parities in the sense of (4.64).
Consider, for instance, the momentum eigenket. The momentum operator anticommutes
with the parity operator, so the momentum eigenket is not expected to be a parity eigenket.
Indeed, it is easy to see that the plane wave, which is the wave function for a momentum
eigenket, does not satisfy (4.64).

An eigenket of orbital angular momentum is expected to be a parity eigenket because L
and π commute [see (4.51)]. To see how an eigenket of L2 and Lz behaves under parity, let
us examine the properties of its wave function under space inversion,

〈x′|α, lm〉= Rα(r)Ym
l (θ ,φ). (4.65)

The transformation x′ → −x′ is accomplished by letting

r → r
θ → π−θ (cosθ →−cosθ)

φ→ φ+π (eimφ → (−1)meimφ).
(4.66)

Using the explicit form of

Ym
l = (−1)m

√
(2l+1)(l−m)!

4π(l+m)!
Pm

l (cosθ)eimφ (4.67)

for positive m, with (3.247), where

P|m|
l (cosθ) =

(−1)m+l

2ll!
(l+ |m|)!
(l−|m|)! sin−|m| θ

(
d

d(cosθ)

)l−|m|
sin2l θ , (4.68)

we can readily show that

Ym
l → (−1)lYm

l (4.69)
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as θ and φ are changed, as in (4.66). Therefore, we can conclude that

π|α, lm〉= (−1)l|α, lm〉. (4.70)

It is actually not necessary to look at Ym
l ; an easier way to obtain the same result is to work

with m = 0 and note that Lr
±|l,m = 0〉(r = 0,1,. . . , l) must have the same parity because π

and (L±)
r commute.

Let us now look at the parity properties of energy eigenstates. We begin by stating a very
important theorem.

Theorem 6 Suppose

[H,π] = 0 (4.71)

and |n〉is a nondegenerate eigenket of H with eigenvalue En:

H|n〉= En|n〉; (4.72)

then |n〉 is also a parity eigenket.

Proof We prove this theorem by first considering the state

|α〉 ≡ 1
2
(1±π)|n〉. (4.73)

Since π2 = 1, it is simple to show that π|α〉=±|α〉, so |α〉 is a parity eigenket. Also, since
Hπ = πH, it is simple to show that H|α〉 = En|α〉, so |α〉 is also an energy eigenket with
eigenvalue En. However, we assumed that |n〉 was nondegenerate. Therefore |n〉 and |α〉
must be the same, to within a multiplicative constant, and |n〉 must be a parity eigenket with
parity ±1, that is π|n〉 = ±|n〉. (It is worth noting that |α〉 = 0 if we choose the “wrong”
sign in (4.73). That is, despite the ±, (4.73) defines just one state.) �

As an example, let us look at the simple harmonic oscillator. The ground state |0〉 has
even parity because its wave function, being Gaussian, is even under x′ → −x′. The first
excited state,

|1〉= a†|0〉, (4.74)

must have odd parity because a† is linear in x and p, which are both odd [see (2.123)].
In general, the parity of the nth excited state of the simple harmonic operator is given by
(−1)n.

It is important to note that the nondegenerate assumption is essential here. For instance,
consider the hydrogen atom in nonrelativistic quantum mechanics. As is well known, the
energy eigenvalues depend only on the principal quantum number n (for example, 2p and
2s states are degenerate) – the Coulomb potential is obviously invariant under parity – yet
an energy eigenket

cp|2p〉+ cs|2s〉 (4.75)

is obviously not a parity eigenket.
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As another example, consider a momentum eigenket. Momentum anticommutes with
parity, so – even though the free-particle Hamiltonian H is invariant under parity – the
momentum eigenket (though obviously an energy eigenket) is not a parity eigenket. Our
theorem remains intact because we have here a degeneracy between |p′〉 and |−p′〉, which
have the same energy. In fact, we can easily construct linear combinations (1/

√
2)(|p′〉±

| − p′〉), which are parity eigenkets with eigenvalues ±1. In terms of wave function
language, eip′·x′/h̄ does not have a definite parity, but cosp′ ·x′/h̄ and sinp′ ·x′/h̄ do.

4.2.2 Symmetrical Double-Well Potential

As an elementary but instructive example, we consider a symmetrical double-well
potential; see Figure 4.3. The Hamiltonian is obviously invariant under parity. In fact,
the two lowest-lying states are as shown in Figure 4.3, as we can see by working out the
explicit solutions involving sine and cosine in classically allowed regions and sinh and
cosh in the classically forbidden region. The solutions are matched where the potential is
discontinuous; we call them the symmetrical state |S〉 and the antisymmetrical state |A〉.
Of course, they are simultaneous eigenkets of H and π. Calculation also shows that

EA > ES, (4.76)

which we can infer from Figure 4.3 by noting that the wave function of the antisymmetrical
state has a greater curvature. The energy difference is very tiny if the middle barrier is high,
a point which we will discuss later.

We can form

|R〉= 1√
2
(|S〉+ |A〉) (4.77a)

and

|L〉= 1√
2
(|S〉− |A〉). (4.77b)

The wave functions of (4.77a) and (4.77b) are largely concentrated in the right-hand side
and the left-hand side, respectively. They are obviously not parity eigenstates; in fact, under
parity |R〉 and |L〉 are interchanged. Note that they are not energy eigenstates either. Indeed,
they are typical examples of nonstationary states. To be precise, let us assume that the
system is represented by |R〉 at t = 0. At a later time, we have

Symmetrical S Antisymmetrical A

Fig. 4.3 The symmetrical double well with the two lowest-lying states |S〉 (symmetrical) and |A〉 (antisymmetrical) shown.
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Fig. 4.4 The symmetrical double well with an infinitely high middle barrier.

|R, t0 = 0; t〉= 1√
2

(
e−iESt/h̄|S〉+ eiEAt/h̄|A〉

)
=

1√
2

e−iESt/h̄
(
|S〉+ ei(EA−ES)t/h̄|A〉

)
. (4.78)

At time t = T/2 ≡ 2πh̄/2(EA −ES), the system is found in pure |L〉. At t = T, we are back
to pure |R〉, and so forth. Thus, in general, we have an oscillation between |R〉 and |L〉 with
angular frequency

ω =
(EA −ES)

h̄
. (4.79)

This oscillatory behavior can also be considered from the viewpoint of tunneling in
quantum mechanics. A particle initially confined to the right-hand side can tunnel through
the classically forbidden region (the middle barrier) into the left-hand side, then back to
the right-hand side, and so on. But now let the middle barrier become infinitely high; see
Figure 4.4. The |S〉 and |A〉 states are now degenerate, so (4.77a) and (4.77b) are also
energy eigenkets even though they are not parity eigenkets. Once the system is found in
|R〉, it remains so forever (oscillation time between |S〉 and |A〉 is now ∞). Because the
middle barrier is infinitely high, there is no possibility for tunneling. Thus when there
is degeneracy, the physically realizable energy eigenkets need not be parity eigenkets.
We have a ground state which is asymmetrical despite the fact that the Hamiltonian
itself is symmetrical under space inversion, so with degeneracy the symmetry of H is not
necessarily obeyed by energy eigenstates |S〉 and |A〉.

This is a very simple example of broken symmetry and degeneracy. Nature is full of
situations analogous to this. Consider a ferromagnet. The basic Hamiltonian for iron atoms
is rotationally invariant, but the ferromagnet clearly has a definite direction in space; hence,
the (infinite) number of ground states is not rotationally invariant, since the spins are all
aligned along some definite (but arbitrary) direction.

A textbook example of a system that illustrates the actual importance of the symmetrical
double well is an ammonia molecule, NH3; see Figure 4.5. We imagine that the three H
atoms form the three corners of an equilateral triangle. The N atom can be up or down,
where the directions up and down are defined because the molecule is rotating around the
axis as shown in Figure 4.5. The up and down positions for the N atom are analogous to
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Fig. 4.5 An ammonia molecule, NH3, where the three H atoms form the three corners of an equilateral triangle.

R and L of the double-well potential. The parity and energy eigenstates are superpositions
of Figure 4.5a and Figure 4.5b in the sense of (4.77a) and (4.77b), respectively, and the
energy difference between the simultaneous eigenstates of energy and parity corresponds
to an oscillation frequency of 24,000 MHz, a wavelength of about 1 cm, which is in the
microwave region. In fact, NH3 is of fundamental importance in maser physics.

There are naturally occurring organic molecules, such as sugars or amino acids, which
are of the R-type (or L-type) only. Such molecules which have definite handedness are
called optical isomers. In many cases the oscillation time is practically infinite – on
the order of 104–106 years – so R-type molecules remain right-handed for all practical
purposes. It is amusing that if we attempt to synthesize such organic molecules in the
laboratory, we find equal mixtures of R and L. Why we have a preponderance of one type
is nature’s deepest mystery. Is it due to a genetic accident, like the spiral shell of a snail or
the fact that our hearts are on the left-hand side?2

4.2.3 Parity-Selection Rule

Suppose |α〉 and |β〉 are parity eigenstates:

π|α〉= εα|α〉 (4.80a)

and

π|β〉= εβ|β〉, (4.80b)

2 It has been suggested that parity violation in nuclear processes active during the formation of life, may have
contributed to this handedness. See Bonner, Chirality, 12 (2000) 114.
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where εα, εβ are the parity eigenvalues (±1). We can show that

〈β|x|α〉= 0 (4.81)

unless εα = −εβ. In other words, the parity-odd operator x connects states of opposite
parity. The proof of this follows:

〈β|x|α〉= 〈β|π−1πxπ−1π|α〉= εαεβ(−〈β|x|α〉), (4.82)

which is impossible for a finite nonzero 〈β|x|α〉 unless εα and εβ are opposite in sign.
Perhaps the reader is familiar with this argument from∫

ψ∗
βxψαdτ = 0 (4.83)

if ψβ and ψα have the same parity. This selection rule, due to Wigner, is of importance in
discussing radiative transitions between atomic states. As we will discuss in greater detail
later, radiative transitions take place between states of opposite parity as a consequence of
multipole expansion formalism. This rule was known phenomenologically from analysis
of spectral lines, before the birth of quantum mechanics, as Laporte’s rule. It was Wigner
who showed that Laporte’s rule is a consequence of the parity-selection rule.

If the basic Hamiltonian H is invariant under parity, nondegenerate energy eigenstates
[as a corollary of (4.83)] cannot possess a permanent electric dipole moment:

〈n|x|n〉= 0. (4.84)

This follows trivially from (4.83), because with the nondegenerate assumption, energy
eigenstates are also parity eigenstates [see (4.72) and (4.73)]. For a degenerate state, it is
perfectly all right to have an electric dipole moment. We will see an example of this when
we discuss the linear Stark effect in Chapter 5.

Our considerations can be generalized: Operators that are odd under parity, like p or
S·x, have nonvanishing matrix elements only between states of opposite parity. In contrast,
operators that are even under parity connect states of the same parity.

4.2.4 Parity Nonconservation

The basic Hamiltonian responsible for the so-called weak interaction of elementary
particles is not invariant under parity. In decay processes we can have final states which are
superpositions of opposite parity states. Observable quantities like the angular distribution
of decay products can depend on pseudoscalars such as 〈S〉 ·p. It is remarkable that
parity conservation was believed to be a sacred principle until 1956, when Lee and
Yang speculated that parity is not conserved in weak interactions and proposed crucial
experiments to test the validity of parity conservation. Subsequent experiments indeed
showed that observable effects do depend on pseudoscalar quantities such as correlation
between 〈S〉 and p.

To this day, one of the clearest demonstrations of parity nonconservation is the exper-
iment which first discovered it. This result, from Wu et al., Phys. Rev., 105 (1957) 1413,
shows a decay rate that depends on 〈S〉 ·p. The decay observed is 60Co →60 Ni+ e−+ ν̄e
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Fig. 4.6 Experimental demonstration of parity nonconservation. The key observation, shown on the left, is that radioactive
cobalt nuclei, oriented according to their nuclear spin, emit “beta rays” (i.e. electrons) preferentially in the the
opposite direction. The experiment data, shown on the right, show how the “up/down” beta decay asymmetry
(bottom panel) correlates perfectly with the signal which indicates the degree of nuclear polarization (upper
panel). As time goes on, the sample warms up and the cobalt nuclei depolarize.

where S is the spin of the 60Co nucleus and the momentum of the emitted e− is p. A sample
of spin-polarized radioactive 60Co nuclei is prepared at low temperature, and the decay e−

are detected in the direction parallel or antiparallel to the spin, depending on the sign of
the polarizing magnetic field. The polarization of the sample is monitored by observing
the anisotropy of the γ-rays in the decay of the excited 60Ni daughter nuclei, a parity
conserving effect. The results are shown in Figure 4.6. Over a period of several minutes,
the sample warms up, and the β-decay asymmetry disappears at exactly the same rate as
the γ-ray anisotropy.

Because parity is not conserved in weak interactions, previously thought “pure” nuclear
and atomic states are, in fact, parity mixtures. These subtle effects have also been found
experimentally.

4.3 Lattice Translation as a Discrete Symmetry

We now consider another kind of discrete symmetry operation, namely, lattice translation.
This subject has extremely important applications in solid-state physics.
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Fig. 4.7 (a) Periodic potential in one dimension with periodicity a. (b) The periodic potential when the barrier height
between two adjacent lattice sites becomes infinite.

Consider a periodic potential in one dimension, where V(x± a) = V(x), as depicted in
Figure 4.7. Realistically, we may consider the motion of an electron in a chain of regularly
spaced positive ions. In general, the Hamiltonian is not invariant under a translation
represented by τ(l) with l arbitrary, where τ(l) has the property (see Section 1.6)

τ†(l)xτ(l) = x+ l, τ(l)|x′〉= |x′+ l〉. (4.85)

However, when l coincides with the lattice spacing a, we do have

τ†(a)V(x)τ(a) = V(x+a) = V(x). (4.86)

Because the kinetic-energy part of the Hamiltonian H is invariant under the translation with
any displacement, the entire Hamiltonian satisfies

τ†(a)Hτ(a) = H. (4.87)

Because τ(a) is unitary, we have [from (4.87)]

[H,τ(a)] = 0, (4.88)

so the Hamiltonian and τ(a) can be simultaneously diagonalized. Although τ(a) is unitary,
it is not Hermitian, so we expect the eigenvalue to be a complex number of modulus 1.

Before we determine the eigenkets and eigenvalues of τ(a) and examine their physical
significance, it is instructive to look at a special case of periodic potential when the barrier
height between two adjacent lattice sites is made to go to infinity, as in Figure 4.7b. What
is the ground state for the potential of Figure 4.7b? Clearly, a state in which the particle
is completely localized in one of the lattice sites can be a candidate for the ground state.
To be specific let us assume that the particle is localized at the nth site and denote the
corresponding ket by |n〉. This is an energy eigenket with energy eigenvalue E0, namely,
H|n〉= E0|n〉. Its wave function 〈x′|n〉 is finite only in the nth site. However, we note that a
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similar state localized at some other site also has the same energy E0, so actually there are
denumerably infinite ground states n, where n runs from −∞ to +∞.

Now |n〉 is obviously not an eigenket of the lattice translation operator, because when
the lattice translation operator is applied to it, we obtain |n+1〉:

τ(a)|n〉= |n+1〉. (4.89)

So despite the fact that τ(a) commutes with H, |n〉 – which is an eigenket of H – is not an
eigenket of τ(a). This is quite consistent with our earlier theorem on symmetry because
we have an infinitefold degeneracy. When there is such degeneracy, the symmetry of the
world need not be the symmetry of energy eigenkets. Our task is to find a simultaneous
eigenket of H and τ(a).

Here we may recall how we handled a somewhat similar situation with the symmetrical
double-well potential of the previous section. We noted that even though neither |R〉 nor
|L〉 is an eigenket of π, we could easily form a symmetrical and an antisymmetrical
combination of |R〉 and |L〉 that are parity eigenkets. The case is analogous here. Let us
specifically form a linear combination3

|θ〉 ≡
∞

∑
n=−∞

einθ |n〉, (4.90)

where θ is a real parameter with −π≤ θ ≤ π. We assert that |θ〉 is a simultaneous eigenket
of H and τ(a). That it is an H eigenket is obvious because |n〉 is an energy eigenket with
eigenvalue E0, independent of n. To show that it is also an eigenket of the lattice translation
operator we apply τ(a) as follows:

τ(a)|θ〉=
∞

∑
n=−∞

einθ |n+1〉=
∞

∑
n=−∞

ei(n−1)θ |n〉

= e−iθ |θ〉. (4.91)

Note that this simultaneous eigenket of H and τ(a) is parameterized by a continuous
parameter θ . Furthermore, the energy eigenvalue E0 is independent of θ .

Let us now return to the more realistic situation of Figure 4.7a, where the barrier between
two adjacent lattice sites is not infinitely high. We can construct a localized ket |n〉 just
as before with the property τ(a)|n〉= |n+1〉. However, this time we expect that there is
some leakage possible into neighboring lattice sites due to quantum-mechanical tunneling.
In other words, the wave function 〈x′|n〉 has a tail extending to sites other than the nth
site. The diagonal elements of H in the {|n〉} basis are all equal because of translation
invariance, that is,

〈n|H|n〉= E0, (4.92)

independent of n, as before. However we suspect that H is not completely diagonal in
the {|n〉} basis due to leakage. Now, suppose the barriers between adjacent sites are
high (but not infinite). We then expect matrix elements of H between distant sites to be

3 Beware that the states |θ〉 are not orthonormal. That is, the inner product 〈θ ′|θ〉 is infinite when θ = θ ′, but is
not necessarily zero otherwise.
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completely negligible. Let us assume that the only nondiagonal elements of importance
connect immediate neighbors. That is,

〈n′|H|n〉 	= 0 only if n′ = n or n′ = n±1. (4.93)

In solid-state physics this assumption is known as the tight-binding approximation. Let
us define

〈n±1|H|n〉=−Δ. (4.94)

Clearly, Δ is again independent of n due to translation invariance of the Hamiltonian. To
the extent that |n〉 and |n′〉 are orthogonal when n 	= n′, we obtain

H|n〉= E0|n〉−Δ|n+1〉−Δ|n−1〉. (4.95)

Note that |n〉 is no longer an energy eigenket.
As we have done with the potential of Figure 4.7b, let us form a linear combination

|θ〉=
∞

∑
n=−∞

einθ |n〉. (4.96)

Clearly, |θ〉 is an eigenket of translation operator τ(a) because the steps in (4.91) still hold.
A natural question is, is |θ〉 an energy eigenket? To answer this question, we apply H:

H∑einθ |n〉= E0 ∑einθ |n〉−Δ∑einθ |n+1〉−Δ∑einθ |n−1〉

= E0 ∑einθ |n〉−Δ∑(einθ−iθ + einθ+iθ )|n〉

= (E0 −2Δcosθ)∑einθ |n〉. (4.97)

The big difference between this and the previous situation is that the energy eigenvalue now
depends on the continuous real parameter θ . The degeneracy is lifted as Δ becomes finite,
and we have a continuous distribution of energy eigenvalues between E0−2Δ and E0+2Δ.
See Figure 4.8, where we visualize how the energy levels start forming a continuous energy
band as Δ is increased from zero.

To see the physical meaning of the parameter θ let us study the wave function 〈x′|θ〉.
For the wave function of the lattice translated state τ(a)|θ〉, we obtain

〈x′|τ(a)|θ〉= 〈x′ −a|θ〉 (4.98)

by letting τ(a) act on 〈x′|. But we can also let τ(a) operate on |θ〉 and use (4.91). Thus

〈x′|τ(a)|θ〉= e−iθ 〈x′|θ〉, (4.99)

so

〈x′ −a|θ〉= 〈x′|θ〉e−iθ . (4.100)

We solve this equation by setting

〈x′|θ〉= eikx′uk(x′), (4.101)
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Fig. 4.8 Energy levels forming a continuous energy band asΔ is increased from zero.

with θ = ka, where uk(x′) is a periodic function with period a, as we can easily verify by
explicit substitutions, namely,

eik(x′−a)uk(x′ −a) = eikx′uk(x′)e−ika. (4.102)

Thus we get the important condition known as Bloch’s theorem: The wave function of |θ〉,
which is an eigenket of τ(a), can be written as a plane wave eikx′ times a periodic function
with periodicity a. Notice that the only fact we used was that |θ〉 is an eigenket of τ(a)
with eigenvalue e−iθ [see (4.91)]. In particular, the theorem holds even if the tight-binding
approximation (4.93) breaks down.

We are now in a position to interpret our earlier result (4.97) for |θ〉 given by (4.96).
We know that the wave function is a plane wave characterized by the propagation wave
vector k modulated by a periodic function uk(x′) [see (4.101)]. As θ varies from −π to π,
the wave vector k varies from −π/a to π/a. The energy eigenvalue E now depends on k as
follows:

E(k) = E0 −2Δcoska. (4.103)

Notice that this energy eigenvalue equation is independent of the detailed shape of the
potential as long as the tight-binding approximation is valid. Note also that there is a cutoff
in the wave vector k of the Bloch wave function (4.101) given by |k| = π/a. Equation
(4.103) defines a dispersion curve, as shown in Figure 4.9. As a result of tunneling, the
denumerably infinitefold degeneracy is now completely lifted, and the allowed energy
values form a continuous band between E0 − 2Δ and E0 + 2Δ, known as the Brillouin
zone.
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Fig. 4.9 Dispersion curve for E(k) versus k in the Brillouin zone |k| ≤ π/a.

So far we have considered only one particle moving in a periodic potential. In a more
realistic situation we must look at many electrons moving in such a potential. Actually
the electrons satisfy the Pauli exclusion principle, as we will discuss more systematically
in Chapter 7, and they start filling the band. In this way, the main qualitative features of
metals, semiconductors, and the like can be understood as a consequence of translation
invariance supplemented by the exclusion principle.

The reader may have noted the similarity between the symmetrical double-well problem
of Section 4.2 and the periodic potential of this section. Comparing Figures 4.3 and 4.7,
we note that they can be regarded as opposite extremes (two versus infinite) of potentials
with a finite number of troughs.

4.4 The Time-Reversal Discrete Symmetry

In this section we study another discrete symmetry operator, called time reversal. This
is a difficult topic for the novice, partly because the term time reversal is a misnomer; it
reminds us of science fiction. Actually what we do in this section can be more appropriately
characterized by the term reversal of motion. Indeed, that is the terminology used by E.
Wigner, who formulated time reversal in a very fundamental paper written in 1932.

For orientation purposes let us look at classical mechanics. Suppose there is a trajectory
of a particle subject to a certain force field; see Figure 4.10. At t = 0, let the particle stop
and reverse its motion: p|t=0 → −p|t=0. The particle traverses backward along the same
trajectory. If you run the motion picture of trajectory (a) backward as in (b), you may have
a hard time telling whether this is the correct sequence.

More formally, if x(t) is a solution to

mẍ =−∇V(x), (4.104)

then x(−t) is also a possible solution in the same force field derivable from V. It is, of
course, important to note that we do not have a dissipative force here. A block sliding on a
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At t = 0 
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Fig. 4.10 Classical trajectory which (a) stops at t = 0 and (b) reverses its motion p|t=0 → −p|t=0.

table decelerates (due to friction) and eventually stops. But have you ever seen a block on
a table spontaneously start to move and accelerate?

With a magnetic field you may be able to tell the difference. Imagine that you are taking
the motion picture of a spiraling electron trajectory in a magnetic field. You may be able
to tell whether the motion picture is run forward or backward by comparing the sense
of rotation with the magnetic pole labeling N and S. However, from a microscopic point
of view, B is produced by moving charges via an electric current; if you could reverse the
current that causes B, then the situation would be quite symmetrical. In terms of the picture
shown in Figure 4.11, you may have figured out that N and S are mislabeled! Another more
formal way of saying all this is that the Maxwell equations, for example,

∇ ·E = 4πρ, ∇×B− 1
c

∂E
∂ t

=
4πj

c
, ∇×E =−1

c
∂B
∂ t

, (4.105)

and the Lorentz force equation F= e[E+(1/c)(v×B)] are invariant under t→−t provided
we also let

E → E, B →−B, ρ→ ρ, j →−j, v →−v. (4.106)

Let us now look at wave mechanics, where the basic equation of the Schrödinger wave
equation is

ih̄
∂ψ
∂ t

=

(
− h̄2

2m
∇2 +V

)
ψ. (4.107)

Suppose ψ(x, t) is a solution. We can easily verify that ψ(x,−t) is not a solution, because
of the appearance of the first-order time derivative. However, ψ∗(x,−t) is a solution, as
you may verify by complex conjugation of (4.107). It is instructive to convince ourselves
of this point for an energy eigenstate, that is, by substituting

ψ(x, t) = un(x)e−iEnt/h̄, ψ∗(x,−t) = u∗n(x)e−iEnt/h̄ (4.108)

into the Schrödinger equation (4.107). Thus we conjecture that time reversal must have
something to do with complex conjugation. If at t = 0 the wave function is given by

ψ = 〈x|α〉, (4.109)



272 Symmetry in Quantum Mechanics

B

S

N

Electron trajectory

Fig. 4.11 Electron trajectory between the north and south poles of a magnet.

then the wave function for the corresponding time-reversed state is given by 〈x|α〉∗.
We will later show that this is indeed the case for the wave function of a spinless system.
As an example, you may easily check this point for the wave function of a plane wave; see
Problem 4.8 of this chapter.

4.4.1 Digression on Symmetry Operations

Before we begin a systematic treatment of the time-reversal operator, some general remarks
on symmetry operations are in order. Consider a symmetry operation

|α〉 → |α̃〉, |β〉 → |β̃〉. (4.110)

One may argue that it is natural to require the inner product 〈β|α〉 to be preserved, that is,

〈β̃|α̃〉= 〈β|α〉. (4.111)

Indeed, for symmetry operations such as rotations, translations, and even parity, this is the
case. If |α〉 is rotated and |β〉 is also rotated in the same manner, 〈β|α〉 is unchanged.
Formally this arises from the fact that, for the symmetry operations considered in the
previous sections, the corresponding symmetry operator is unitary, so
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〈β|α〉 → 〈β|U†U|α〉= 〈β|α〉. (4.112)

However, in discussing time reversal, we see that requirement (4.111) turns out to be too
restrictive. Instead, we merely impose the weaker requirement that

|〈β̃|α̃〉|= |〈β|α〉|. (4.113)

Requirement (4.111) obviously satisfies (4.113). But this is not the only way;

〈β̃|α̃〉= 〈β|α〉∗ = 〈α|β〉 (4.114)

works equally well. We pursue the latter possibility in this section because from our earlier
discussion based on the Schrödinger equation we inferred that time reversal has something
to do with complex conjugation.

Definition 1 The transformation

|α〉 → |α̃〉= θ |α〉, |β〉 → |β̃〉= θ |β〉 (4.115)

is said to be antiunitary if

〈β̃|α̃〉= 〈β|α〉∗, (4.116a)

θ(c1|α〉+ c2|β〉) = c∗1θ |α〉+ c∗2θ |β〉. (4.116b)

In such a case the operator θ is an antiunitary operator. Relation (4.116b) alone defines
an antilinear operator.

We now claim that an antiunitary operator can be written as

θ = UK, (4.117)

where U is a unitary operator and K is the complex conjugate operator that forms the
complex conjugate of any coefficient that multiplies a ket (and stands on the right of K).
Before checking (4.116) let us examine the property of the K operator. Suppose we have a
ket multiplied by a complex number c. We then have

Kc|α〉= c∗K|α〉. (4.118)

One may further ask: What happens if |α〉 is expanded in terms of base kets {|a′〉}? Under
the action K we have

|α〉= ∑
a′
|a′〉〈a′|α〉 K→|α̃〉= ∑

a′
〈a′|α〉∗K|a′〉

= ∑
a′
〈a′|α〉∗|a′〉. (4.119)

Notice that K acting on the base ket does not change the base ket. The explicit
representation of |a′〉 is
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|a′〉=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.120)

and there is nothing to be changed by K. The reader may wonder, for instance, whether the
Sy eigenkets for a spin 1

2 system change under K. The answer is that if the Sz eigenkets are
used as base kets, we must change the Sy eigenkets because the Sy eigenkets (1.14) undergo
under K

K
(

1√
2
|+〉± i√

2
|−〉

)
→ 1√

2
|+〉∓ i√

2
|−〉. (4.121)

On the other hand, if the Sy eigenkets themselves are used as the base kets, we do not
change the Sy eigenkets under the action of K. Thus the effect of K changes with the basis.
As a result, the form of U in (4.117) also depends on the particular representation (that is,
the choice of base kets) used.

Returning to θ = UK and (4.116), let us first check property (4.116b). We have

θ(c1|α〉+ c2|β〉) = UK(c1|α〉+ c2|β〉)
= c∗1UK|α〉+ c∗2UK|β〉
= c∗1θ |α〉+ c∗2θ |β〉, (4.122)

so (4.116b) indeed holds. Before checking (4.116a), we assert that it is always safer to work
with the action of θ on kets only. We can figure out how the bras change just by looking at
the corresponding kets. In particular, it is not necessary to consider θ acting on bras from
the right, nor is it necessary to define θ †. We have

|α〉 θ→|α̃〉= ∑
a′
〈a′|α〉∗UK|a′〉

= ∑
a′
〈a′|α〉∗U|a′〉

= ∑
a′
〈α|a′〉U|a′〉. (4.123)

As for |β〉, we have

|β̃〉= ∑
a′
〈a′|β〉∗U|a′〉DC↔〈β̃|= ∑

a′
〈a′|β〉〈a′|U†

〈β̃|α̃〉= ∑
a′′

∑
a′
〈a′′|β〉〈a′′|U†U|a′〉〈α|a′〉

= ∑
a′
〈α|a′〉〈a′|β〉= 〈α|β〉

= 〈β|α〉∗, (4.124)

so this checks. (Recall the notion of dual correspondence, or DC, from Section 1.2.)
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In order for (4.113) to be satisfied, it is of physical interest to consider just two types
of transformation, unitary and antiunitary. Other possibilities are related to either of the
preceding via trivial phase changes. The proof of this assertion is actually very difficult and
will not be discussed further here. See, however, Gottfried and Yan (2003), Section 7.1.

4.4.2 Time-Reversal Operator

We are finally in a position to present a formal theory of time reversal. Let us denote the
time-reversal operator by Θ, to be distinguished from θ , a general antiunitary operator.
Consider

|α〉 →Θ|α〉, (4.125)

where Θ|α〉 is the time-reversed state. More appropriately, Θ|α〉 should be called the
motion-reversed state. If |α〉 is a momentum eigenstate |p′〉, we expect Θ|α〉 to be |−p′〉
up to a possible phase. Likewise, J is to be reversed under time reversal.

We now deduce the fundamental property of the time-reversal operator by looking at the
time evolution of the time-reversed state. Consider a physical system represented by a ket
|α〉, say at t = 0. Then at a slightly later time t = δt, the system is found in

|α, t0 = 0; t = δt〉=
(

1− iH
h̄
δt

)
|α〉, (4.126)

where H is the Hamiltonian that characterizes the time evolution. Instead of the preceding
equation, suppose we first apply Θ, say at t = 0, and then let the system evolve under the
influence of the Hamiltonian H. We then have at δt(

1− iHδt
h̄

)
Θ|α〉. (4.127a)

If motion obeys symmetry under time reversal, we expect the preceding state ket to be the
same as

Θ|α, t0 = 0; t =−δt〉 (4.127b)

that is, first consider a state ket at earlier time t = −δt, and then reverse p and J; see
Figure 4.12. Mathematically,(

1− iH
h̄
δt

)
Θ|α〉=Θ

(
1− iH

h̄
(−δt)

)
|α〉. (4.128)

If the preceding relation is to be true for any ket, we must have

−iHΘ|〉=ΘiH|〉, (4.129)

where the blank ket | 〉 emphasizes that (4.129) is to be true for any ket.
We now argue that Θ cannot be unitary if the motion of time reversal is to make sense.

Suppose Θ were unitary. It would then be legitimate to cancel the i in (4.129), and we
would have the operator equation

−HΘ=ΘH. (4.130)
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Fig. 4.12 Momentum before and after time reversal at time t = 0 and t = ±δt.

Consider an energy eigenket |n〉 with energy eigenvalue En. The corresponding time-
reversed state would be Θ|n〉, and we would have, because of (4.130),

HΘ|n〉=−ΘH|n〉= (−En)Θ|n〉. (4.131)

This equation says that Θ|n〉 is an eigenket of the Hamiltonian with energy eigenvalues
−En. But this is nonsensical even in the very elementary case of a free particle. We know
that the energy spectrum of the free particle is positive semidefinite, from 0 to +∞. There
is no state lower than a particle at rest (momentum eigenstate with momentum eigenvalue
zero); the energy spectrum ranging from −∞ to 0 would be completely unacceptable. We
can also see this by looking at the structure of the free-particle Hamiltonian. We expect p
to change sign but not p2; yet (4.130) would imply that

Θ−1 p2

2m
Θ=

−p2

2m
. (4.132)

All these arguments strongly suggest that if time reversal is to be a useful symmetry at
all, we are not allowed to cancel the i in (4.129); hence, Θ had better be antiunitary. In this
case the right-hand side of (4.129) becomes

ΘiH|〉=−iΘH|〉 (4.133)

by antilinear property (4.116b). Now at last we can cancel the i in (4.129) leading, finally,
via (4.133) to

ΘH = HΘ. (4.134)

Equation (4.134) expresses the fundamental property of the Hamiltonian under time
reversal. With this equation the difficulties mentioned earlier [see (4.130) to (4.132)] are
absent, and we obtain physically sensible results. From now on we will always take Θ to
be antiunitary.
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We mentioned earlier that it is best to avoid an antiunitary operator acting on bras from
the right. Nevertheless, we may use

〈β|Θ|α〉, (4.135)

which is always to be understood as

(〈β|) · (Θ|α〉) (4.136)

and never as

(〈β|Θ) · |α〉. (4.137)

In fact, we do not even attempt to define 〈β|Θ. This is one place where the Dirac bra-ket
notation is a little confusing. After all, that notation was invented to handle linear operators,
not antilinear operators.

With this cautionary remark, we are in a position to discuss the behavior of operators
under time reversal. We continue to take the point of view that the Θ operator is to act
on kets

|α̃〉=Θ|α〉, |β̃〉=Θ|β〉, (4.138)

yet it is often convenient to talk about operators – in particular, observables – which are
odd or even under time reversal. We start with an important identity, namely,

〈β|X |α〉= 〈α̃|ΘX †Θ−1|β̃〉, (4.139)

where X is a linear operator. This identity follows solely from the antiunitary nature of Θ.
To prove this let us define

|γ〉 ≡ X †|β〉. (4.140)

By dual correspondence we have

|γ〉DC↔〈β|X = 〈γ|. (4.141)

Hence,

〈β|X |α〉= 〈γ|α〉= 〈α̃|γ̃〉
= 〈α̃|ΘX †|β〉= 〈α̃|ΘX †Θ−1Θ|β〉
= 〈α̃|ΘX †Θ−1|β̃〉, (4.142)

which proves the identity. In particular, for Hermitian observables A we get

〈β|A|α〉= 〈α̃|ΘAΘ−1|β̃〉. (4.143)

We say that observables are even or odd under time reversal according to whether we have
the upper or lower sign in

ΘAΘ−1 =±A. (4.144)
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Note that this equation, together with (4.143), gives a phase restriction on the matrix
elements of A taken with respect to time reversed states as follows:

〈β|A|α〉=±〈β̃|A|α̃〉∗. (4.145)

If |β〉 is identical to |α〉, so that we are talking about expectation values, we have

〈α|A|α〉=±〈α̃|A|α̃〉, (4.146)

where 〈α̃|A|α̃〉 is the expectation value taken with respect to the time-reversed state.
As an example, let us look at the expectation value of p. It is reasonable to expect that

the expectation value of p taken with respect to the time-reversed state be of opposite sign.
Thus

〈α|p|α〉=−〈α̃|p|α̃〉, (4.147)

so we take p to be an odd operator, namely,

ΘpΘ−1 =−p. (4.148)

This implies that

pΘ|p′〉=−ΘpΘ−1Θ|p′〉
= (−p′)Θ|p′〉. (4.149)

Equation (4.149) agrees with our earlier assertion that Θ|p′〉 is a momentum eigenket with
eigenvalue −p′. It can be identified with | − p′〉 itself with a suitable choice of phase.
Likewise, we obtain

ΘxΘ−1 = x
Θ|x′〉= |x′〉 (up to a phase)

(4.150)

from the (eminently reasonable) requirement

〈α|x|α〉= 〈α̃|x|α̃〉. (4.151)

We can now check the invariance of the fundamental commutation relation

[xi,pj]|〉= ih̄δij|〉, (4.152)

where the blank ket |〉 stands for any ket. Applying Θ to both sides of (4.152), we have

Θ [xi,pj]Θ
−1Θ|〉=Θih̄δij|〉, (4.153)

which leads to, after passing Θ through ih̄,

[xi,(−pj)]Θ|〉=−ih̄δijΘ|〉. (4.154)

Note that the fundamental commutation relation [xi,pj] = ih̄δij is preserved by virtue of
the fact that Θ is antiunitary. This can be given as yet another reason for taking Θ to be
antiunitary; otherwise, we will be forced to abandon either (4.148) or (4.150)! Similarly,
to preserve

[Ji,Jj] = ih̄εijkJk, (4.155)
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the angular-momentum operator must be odd under time reversal, that is,

ΘJΘ−1 =−J. (4.156)

This is consistent for a spinless system where J is just x×p. Alternatively, we could have
deduced this relation by noting that the rotational operator and the time-reversal operator
commute (note the extra i!).

4.4.3 Wave Function

Suppose at some given time, say at t = 0, a spinless single-particle system is found in a
state represented by |α〉. Its wave function 〈x′|α〉 appears as the expansion coefficient in
the position representation

|α〉=
∫

d3x′|x′〉〈x′|α〉. (4.157)

Applying the time-reversal operator

Θ|α〉=
∫

d3x′Θ|x′〉〈x′|α〉∗

=

∫
d3x′|x′〉〈x′|α〉∗, (4.158)

where we have chosen the phase convention so that Θ|x′〉 is |x′〉 itself. We then recover
the rule

ψ (x′)→ ψ∗(x′) (4.159)

inferred earlier by looking at the Schrödinger wave equation [see (4.108)]. The angular part
of the wave function is given by a spherical harmonic Ym

l . With the usual phase convention
we have

Ym
l (θ ,φ)→ Ym∗

l (θ ,φ) = (−1) mY−m
l (θ ,φ). (4.160)

Now Ym
l (θ ,φ) is the wave function for |l,m〉 [see (3.232)]; therefore, from (4.159) we

deduce

Θ|l,m〉= (−1)m|l,−m〉. (4.161)

If we study the probability current density (2.191) for a wave function of type (3.231) going
like R(r)Ym

l , we shall conclude that for m > 0 the current flows in the counterclockwise
direction, as seen from the positive z-axis. The wave function for the corresponding time-
reversed state has its probability current flowing in the opposite direction because the sign
of m is reversed. All this is very reasonable.

As a nontrivial consequence of time-reversal invariance, we state an important theorem
on the reality of the energy eigenfunction of a spinless particle.

Theorem 7 Suppose the Hamiltonian is invariant under time reversal and the energy
eigenket |n〉 is nondegenerate; then the corresponding energy eigenfunction is real (or,
more generally, a real function times a phase factor independent of x).
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Proof To prove this, first note that

HΘ|n〉=ΘH|n〉= EnΘ|n〉, (4.162)

so |n〉 and Θ|n〉 have the same energy. The nondegeneracy assumption prompts us to
conclude that |n〉 and Θ|n〉 must represent the same state; otherwise there would be two
different states with the same energy En, an obvious contradiction! Let us recall that the
wave functions for |n〉 andΘ|n〉 are 〈x′|n〉 and 〈x′|n〉∗, respectively. They must be the same,
that is,

〈x′|n〉= 〈x′|n〉∗ (4.163)

for all practical purposes, or, more precisely, they can differ at most by a phase factor
independent of x. �

Thus if we have, for instance, a nondegenerate bound state, its wave function is always
real. On the other hand, in the hydrogen atom with l 	= 0, m 	= 0, the energy eigenfunction
characterized by definite (n, l,m) quantum numbers is complex because Ym

l is complex; this
does not contradict the theorem because |n, l,m〉 and |n, l,−m〉 are degenerate. Similarly,
the wave function of a plane wave eip·x/h̄ is complex, but it is degenerate with e−ip·x/h̄.

We see that for a spinless system, the wave function for the time-reversed state, say at
t = 0, is simply obtained by complex conjugation. In terms of ket |α〉 written as in (4.119)
or in (4.157), the Θ operator is the complex conjugate operator K itself because K and Θ
have the same effect when acting on the base ket |a′〉 (or |x′〉). We may note, however,
that the situation is quite different when the ket |α〉 is expanded in terms of the momentum
eigenket because Θ must change |p′〉 into |−p′〉 as follows:

Θ|α〉=
∫

d3p′|−p′〉〈p′|α〉∗ =
∫

d3p′|p′〉〈−p′|α〉∗. (4.164)

It is apparent that the momentum-space wave function of the time-reversed state is not just
the complex conjugate of the original momentum-space wave function; rather, we must
identify φ∗(−p′) as the momentum-space wave function for the time-reversed state. This
situation once again illustrates the basic point that the particular form of Θ depends on the
particular representation used.

4.4.4 Time Reversal for a Spin 1
2 System

The situation is even more interesting for a particle with spin, and for spin 1
2 , in particular.

We recall from Section 3.2 that the eigenket of S·n̂ with eigenvalue h̄/2 can be written as

|n̂;+〉= e−iSzα/h̄e−iSyβ/h̄|+〉, (4.165)

where n̂ is characterized by the polar and azimuthal angles β and α, respectively. Noting
(4.156) we have

Θ|n̂;+〉= e−iSzα/h̄e−iSyβ/h̄Θ|+〉= η|n̂;−〉. (4.166)

On the other hand, we can easily verify that

|n̂;−〉= e−iαSz/h̄e−i(π+β)Sy/h̄|+〉. (4.167)
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In general, we saw earlier that the product UK is an antiunitary operator. Comparing (4.166)
and (4.167) with Θ set equal to UK, and noting that K acting on the base ket |+〉 gives just
|+〉, we see that

Θ= ηe−iπSy/h̄K =−iη
(

2Sy

h̄

)
K, (4.168)

where η stands for an arbitrary phase (a complex number of modulus unity). Another way
to be convinced of (4.168) is to verify that if χ(n̂;+) is the two-component eigenspinor
corresponding to |n̂;+〉 [in the sense that σ·n̂χ(n̂;+) = χ(n̂;+)], then

−iσyχ
∗(n̂;+) (4.169)

(note the complex conjugation!) is the eigenspinor corresponding to |n̂;−〉, again up to an
arbitrary phase, see Problem 4.7 of this chapter. The appearance of Sy or σy can be traced to
the fact that we are using the representation in which Sz is diagonal and the nonvanishing
matrix elements of Sy are purely imaginary.

Let us now note

e−iπSy/h̄|+〉=+|−〉, e−iπSy/h̄|−〉=−|+〉. (4.170)

Using (4.170), we are in a position to work out the effect of Θ, written as (4.168), on the
most general spin 1

2 ket:

Θ(c+|+〉+ c−|−〉) = +ηc∗+|−〉− ηc∗−|+〉. (4.171)

Let us apply Θ once again:

Θ2(c+|+〉+ c−|−〉) =−|η|2c+|+〉− |η|2c−|−〉
=−(c+|+〉+ c−|−〉) (4.172)

or

Θ2 =−1 (4.173)

(where −1 is to be understood as −1 times the identity operator), for any spin orientation.
This is an extraordinary result. It is crucial to note here that our conclusion is completely
independent of the choice of phase; (4.173) holds no matter what phase convention we
may use for η. In contrast, we may note that two successive applications of Θ to a spinless
state give

Θ2 =+1 (4.174)

as is evident from, say, (4.161).
More generally, we now prove

Θ2| jhalf-integer〉=−| jhalf-integer〉 (4.175a)

Θ2| j integer〉=+| j integer〉. (4.175b)
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Thus the eigenvalue of Θ2 is given by (−1)2j. We first note that (4.168) generalizes for
arbitrary j to

Θ= ηe−iπJy/h̄K. (4.176)

For a ket |α〉 expanded in terms of | j,m〉 base eigenkets, we have

Θ(Θ∑ | jm〉〈jm|α〉) =Θ
(
η∑e−iπJy/h̄| jm〉〈jm|α〉∗

)
= |η|2e−2iπJy/h̄ ∑ | jm〉〈jm|α〉. (4.177)

But

e−2iπJy/h̄|jm〉= (−1)2j| jm〉, (4.178)

as is evident from the properties of angular-momentum eigenstates under rotation by 2π.
In (4.175b), | j integer〉 may stand for the spin state

1√
2
(|+−〉±|−+〉) (4.179)

of a two-electron system or the orbital state |l,m〉 of a spinless particle. It is important only
that j is an integer. Likewise, | jhalf-integer〉 may stand, for example, for a three-electron
system in any configuration. Actually, for a system made up exclusively of electrons, any
system with an odd (even) number of electrons – regardless of their spatial orientation (for
example, relative orbital angular momentum) – is odd (even) underΘ2; they need not even
be J2 eigenstates!

We make a parenthetical remark on the phase convention. In our earlier discussion
based on the position representation, we saw that with the usual convention for spherical
harmonics it is natural to choose the arbitrary phase for |l,m〉 under time reversal so that

Θ|l,m〉= (−1)m|l,−m〉. (4.180)

Some authors find it attractive to generalize this to obtain

Θ|j,m〉= (−1)m| j,−m〉 ( j an integer) (4.181)

regardless of whether j refers to l or s (for an integer spin system). We may naturally ask
whether this is compatible with (4.175a) for a spin 1

2 system when we visualize | j,m〉 as
being built up of “primitive” spin 1

2 objects according to Wigner and Schwinger. It is easy
to see that (4.175a) is indeed consistent provided we choose η in (4.176) to be +i. In fact,
in general, we can take

Θ| j,m〉= i2m| j,−m〉 (4.182)

for any j, either a half-integer j or an integer j; see Problem 4.10 of this chapter. The
reader should be warned, however, that this is not the only convention found in the
literature. See, for instance, Henley and Garcia (2007). For some physical applications,
it is more convenient to use other choices; for instance, the phase convention that makes
the J± operator matrix elements simple is not the phase convention that makes the time-
reversal operator properties simple. We emphasize once again that (4.175) is completely
independent of phase convention.
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Having worked out the behavior of angular-momentum eigenstates under time reversal,
we are in a position to study once again the expectation values of a Hermitian operator.
Recalling (4.146), we obtain under time reversal (canceling the i2m factors)

〈α, j,m|A|α, j,m〉=±〈α, j,−m|A|α, j,−m〉. (4.183)

Now suppose A is a component of a spherical tensor T(k)
q . Because of the Wigner–Eckart

theorem, it is sufficient to examine just the matrix element of the q = 0 component. In
general, T(k) (assumed to be Hermitian) is said to be even or odd under time reversal
depending on how its q = 0 component satisfies the upper or lower sign in

ΘT(k)
q=0Θ

−1 =±T(k)
q=0. (4.184)

Equation (4.183) for A = T(k)
0 becomes

〈α, j,m|T(k)
0 |α, j,m〉=±〈α, j,−m|T(k)

0 |α, j,−m〉. (4.185)

Due to (3.255)–(3.258), we expect |α, j,−m〉 = D(0,π,0)|α, j,m〉 up to a phase. We next
use (3.465) for T(k)

0 , which leads to

D†(0,π,0)T(k)
0 D(0,π,0) = (−1)kT(k)

0 +(q 	= 0 components), (4.186)

where we have used D
(k)
00 (0,π,0) = Pk(cosπ) = (−1)k, and the q 	= 0 components give

vanishing contributions when sandwiched between 〈α, j,m| and |α, j,m〉. The net result is

〈α, j,m|T(k)
0 |α, j,m〉=±(−1)k〈α, j,m|T(k)

0 |α, j,m〉. (4.187)

As an example, taking k = 1, the expectation value 〈x〉 taken with respect to eigenstates
of j, m vanishes. We may argue that we already know 〈x〉 = 0 from parity inversion if the
expectation value is taken with respect to parity eigenstates [see (4.81)]. But note that here
|α, j,m〉 need not be parity eigenkets! For example, the | j,m〉 for spin 1

2 particles could be
cs|s1/2〉+ cp|p1/2〉.

4.4.5 Interactions with Electric and Magnetic Fields; Kramers Degeneracy

Consider charged particles in an external electric or magnetic field. If we have only a static
electric field interacting with the electric charge, the interaction part of the Hamiltonian
is just

V(x) = eφ(x), (4.188)

where φ(x) is the electrostatic potential. Because φ(x) is a real function of the time-
reversal even operator x, we have

[Θ,H] = 0. (4.189)

Unlike the parity case, (4.189) does not lead to an interesting conservation law. The
reason is that

ΘU(t, t0) 	= U(t, t0)Θ (4.190)
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even if (4.189) holds, so our discussion following (4.9) of Section 4.1 breaks down. As
a result, there is no such thing as the “conservation of time-reversal quantum number.”
As we already mentioned, requirement (4.189) does, however, lead to a nontrivial phase
restriction – the reality of a nondegenerate wave function for a spinless system [see (4.162)
and (4.163)].

Another far-reaching consequence of time-reversal invariance is the Kramers degen-
eracy. Suppose H and Θ commute, and let |n〉 and Θ|n〉 be the energy eigenket and its
time-reversed state, respectively. It is evident from (4.189) that |n〉 and Θ|n〉 belong to the
same energy eigenvalue En(HΘ|n〉=ΘH|n〉=EnΘ|n〉). The question is, does |n〉 represent
the same state as Θ|n〉? If it does, |n〉 and Θ|n〉 can differ at most by a phase factor. Hence,

Θ|n〉= eiδ|n〉. (4.191)

Applying Θ again to (4.191), we have Θ2|n〉=Θeiδ|n〉= e−iδΘ|n〉= e−iδe+iδ|n〉; hence,

Θ2|n〉=+|n〉. (4.192)

But this relation is impossible for half-integer j systems, for which Θ2 is always −1, so
we are led to conclude that |n〉 and Θ|n〉, which have the same energy, must correspond
to distinct states, that is, there must be a degeneracy. This means, for instance, that for
a system composed of an odd number of electrons in an external electric field E, each
energy level must be at least twofold degenerate no matter how complicated E may be.
Considerations along this line have interesting applications to electrons in crystals where
odd-electron and even-electron systems exhibit very different behaviors. Historically,
Kramers inferred degeneracy of this kind by looking at explicit solutions of the Schrödinger
equation; subsequently, Wigner pointed out that Kramers degeneracy is a consequence of
time-reversal invariance.

Let us now turn to interactions with an external magnetic field. The Hamiltonian H may
then contain terms like

S·B, p·A+A·p (B = ∇×A), (4.193)

where the magnetic field is to be regarded as external. The operators S and p are odd under
time reversal; these interaction terms therefore do lead to

ΘH 	= HΘ. (4.194)

As a trivial example, for a spin 1
2 system the spin-up state |+〉 and its time-reversed state

|−〉 no longer have the same energy in the presence of an external magnetic field. In
general, Kramers degeneracy in a system containing an odd number of electrons can be
lifted by applying an external magnetic field.

Notice that when we treat B as external, we do not change B under time reversal; this
is because the atomic electron is viewed as a closed quantum-mechanical system to which
we apply the time-reversal operator. This should not be confused with our earlier remarks
concerning the invariance of the Maxwell equations (4.105) and the Lorentz force equation
under t → −t and (4.106). There we were to apply time reversal to the whole world, for
example, even to the currents in the wire that produces the B field!
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Problems

4.1 Calculate the three lowest energy levels, together with their degeneracies, for the
following systems (assume equal mass distinguishable particles).
a. Three noninteracting spin 1

2 particles in a cubic box of side length L.
b. Four noninteracting spin 1

2 particles in a cubic box of side length L.

4.2 Let Td denote the translation operator (displacement vector d), D(n̂,φ) the rotation
operator (n̂ and φ are the axis and angle of rotation, respectively), and π the parity
operator. Which, if any, of the following pairs commute? Why?
a. Td and Td′ (d and d′ in different directions).
b. D(n̂,φ) and D(n̂′,φ′)(n̂ and n̂′ in different directions).
c. Td and π.
d. D(n̂,φ) and π.

4.3 A quantum-mechanical state |Ψ〉 is known to be a simultaneous eigenstate of two
Hermitian operators A and B which anticommute,

AB+BA = 0.

What can you say about the eigenvalues of A and B for state |Ψ〉? Illustrate your
point using the parity operator (which can be chosen to satisfy π = π−1 = π†) and
the momentum operator.

4.4 A spin 1
2 particle is bound to a fixed center by a spherically symmetrical potential.

a. Write down the spin angular function Y j=1/2,m=1/2
l=0 .

b. Express (σ·x) Y j=1/2,m=1/2
l=0 in terms of some other Y j,m

l .
c. Show that your result in (b) is understandable in view of the transformation

properties of the operator S·x under rotations and under space inversion (parity).

4.5 Because of weak (neutral-current) interactions there is a parity-violating potential
between the atomic electron and the nucleus as follows:

V = λ[δ(3)(x)S·p+S·pδ(3)(x)],

where S and p are the spin and momentum operators of the electron, and the nucleus
is assumed to be situated at the origin. As a result, the ground state of an alkali
atom, usually characterized by |n, l, j,m〉, actually contains very tiny contributions
from other eigenstates as follows:

|n, l, j,m〉 → |n, l, j,m〉+ ∑
n′l′j′m′

Cn′l′j′m′ |n′, l′, j′,m′〉.

On the basis of symmetry considerations alone, what can you say about (n′, l′, j′,m′),
which give rise to nonvanishing contributions? Suppose the radial wave functions
and the energy levels are all known. Indicate how you may calculate Cn′l′j′m′ . Do we
get further restrictions on (n′, l′, j′,m′)?
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4.6 Consider a symmetric rectangular double-well potential:

V =

⎧⎨⎩
∞ for |x|> a+b,
0 for a < |x|< a+b,
V0 > 0 for |x|< a.

Assuming that V0 is very high compared to the quantized energies of low-lying states,
obtain an approximate expression for the energy splitting between the two lowest-
lying states.

4.7 a. Let ψ(x, t) be the wave function of a spinless particle corresponding to a plane
wave in three dimensions. Show that ψ∗(x,−t) is the wave function for the plane
wave with the momentum direction reversed.

b. Let χ(n̂) be the two-component eigenspinor of σ · n̂ with eigenvalue +1. Using
the explicit form of χ(n̂) (in terms of the polar and azimuthal angles β and γ that
characterize n̂) verify that −iσ2χ∗(n̂) is the two-component eigenspinor with the
spin direction reversed.

4.8 a. Assuming that the Hamiltonian is invariant under time reversal, prove that the
wave function for a spinless nondegenerate system at any given instant of time
can always be chosen to be real.

b. The wave function for a plane wave state at t = 0 is given by a complex function
eip·x/h̄. Why does this not violate time-reversal invariance?

4.9 Let φ(p′) be the momentum-space wave function for state |α〉, that is, φ(p′) =

〈p′|α〉. Is the momentum-space wave function for the time-reversed stateΘ|α〉 given
by φ(p′), φ(−p′), φ∗(p′), or φ∗(−p′)? Justify your answer.

4.10 a. For the time-reversal operatorΘ, use (4.156) to show thatΘ| jm〉 equals | j,−m〉 up
to some phase that includes the factor (−1)m. In other words, show that Θ| jm〉=
eiδ(−1)m| j,−m〉, where δ is independent of m.

b. Using the same phase convention, find the time-reversed state corresponding to
D(R)| jm〉. Consider using the infinitesimal form D(n̂,dφ) and then generalize to
finite rotations.

c. From these results, prove that, independent of δ, one finds

D
( j)∗
m′m(R) = (−1)m−m′

D
( j)
−m′,−m(R).

d. Conclude that we are free to choose δ = 0, and Θ| jm〉 = (−1)m| j,−m〉 =

i2m| j,−m〉.

4.11 Suppose a spinless particle is bound to a fixed center by a potential V(x) so
asymmetrical that no energy level is degenerate. Using time-reversal invariance
prove

〈L〉= 0
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for any energy eigenstate. (This is known as quenching of orbital angular momen-
tum.) If the wave function of such a nondegenerate eigenstate is expanded as

∑
l

∑
m

Flm(r)Ym
l (θ ,φ),

what kind of phase restrictions do we obtain on Flm(r)? It is useful to review
Theorem 7 on p. 279.

4.12 The Hamiltonian for a spin 1 system is given by

H = AS2
z +B(S2

x −S2
y).

Solve this problem exactly to find the normalized energy eigenstates and eigenvalues.
(A spin-dependent Hamiltonian of this kind actually appears in crystal physics.) Is
this Hamiltonian invariant under time reversal? How do the normalized eigenstates
you obtained transform under time reversal?



5 Approximation Methods

Few problems in quantum mechanics – with either time-independent or time-dependent
Hamiltonians – can be solved exactly. Inevitably we are forced to resort to some form
of approximation method. One may argue that with the advent of high-speed computers
it is always possible to obtain the desired solution numerically to the requisite degree
of accuracy; nevertheless, it remains important to understand the basic physics of the
approximate solutions even before we embark on ambitious computer calculations. This
chapter is devoted to a fairly systematic discussion of approximate solutions to bound-state
problems.

5.1 Time-Independent Perturbation Theory:
Nondegenerate Case

5.1.1 Statement of the Problem

The approximation method we consider here is time-independent perturbation theory,
sometimes known as the Rayleigh–Schrödinger perturbation theory. We consider a time-
independent Hamiltonian H such that it can be split into two parts, namely,

H = H0 +V, (5.1)

where the V = 0 problem is assumed to have been solved in the sense that both the exact
energy eigenkets |n(0)〉 and the exact energy eigenvalues E(0)

n are known:

H0|n(0)〉= E(0)
n |n(0)〉. (5.2)

We are required to find approximate eigenkets and eigenvalues for the full Hamiltonian
problem

(H0 +V)|n〉= En|n〉, (5.3)

where V is known as the perturbation; it is not, in general, the full-potential operator. For
example, suppose we consider the hydrogen atom in an external electric or magnetic field.
The unperturbed Hamiltonian H0 is taken to be the kinetic energy p2/2m and the Coulomb
potential due to the presence of the proton nucleus −e2/r. Only that part of the potential
due to the interaction with the external E or B field is represented by the perturbation V.

288
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Instead of (5.3) it is customary to solve

(H0 +λV)|n〉= En|n〉, (5.4)

where λ is a continuous real parameter. This parameter is introduced to keep track
of the number of times the perturbation enters. At the end of the calculation we may
set λ → 1 to get back to the full-strength case. In other words, we assume that the
strength of the perturbation can be controlled. The parameter λ can be visualized to vary
continuously from 0 to 1, the λ = 0 case corresponding to the unperturbed problem and
λ = 1 corresponding to the full-strength problem of (5.3). In physical situations where this
approximation method is applicable, we expect to see a smooth transition of |n0〉 into |n〉
and E(0)

n into En as λ is “dialed” from 0 to 1.
The method rests on the expansion of the energy eigenvalues and energy eigenkets

in powers of λ. This means that we implicitly assume the analyticity of the energy
eigenvalues and eigenkets in a complex λ-plane around λ = 0. Of course, if our method is
to be of practical interest, good approximations can better be obtained by taking only one
or two terms in the expansion.

5.1.2 The Two-State Problem

Before we embark on a systematic presentation of the basic method, let us see how the
expansion in λ might indeed be valid in the exactly soluble two-state problem we have
encountered many times already. Suppose we have a Hamiltonian that can be written as

H = E(0)
1 |1(0)〉〈1(0)|+E(0)

2 |2(0)〉〈2(0)|+λV12|1(0)〉〈2(0)|+λV21|2(0)〉〈1(0)|, (5.5)

where |1(0)〉 and |2(0)〉 are the energy eigenkets for the λ = 0 problem, and we consider the
case V11 = V22 = 0. In this representation the H may be represented by a square matrix as
follows:

H =

(
E(0)

1 λV12

λV21 E(0)
2

)
, (5.6)

where we have used the basis formed by the unperturbed energy eigenkets. The V matrix
must, of course, be Hermitian; let us solve the case when V12 and V21 are real:

V12 = V∗
12, V21 = V∗

21; (5.7)

hence, by Hermiticity

V12 = V21. (5.8)

This can always be done by adjusting the phase of |2(0)〉 relative to that of |1(0)〉. The
problem of obtaining the energy eigenvalues here is completely analogous to that of solving
the spin-orientation problem, where the analogue of (5.6) is

H = a0 +σ·a =

(
a0 +a3 a1

a1 a0 −a3

)
, (5.9)
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where we assume a = (a1,0,a3) is small and a0, a1, a3 are all real. The eigenvalues for this
problem are known to be just

E = a0 ±
√

a2
1 +a2

3. (5.10)

By analogy the corresponding eigenvalues for (5.6) are

{
E1

E2

}
=

(
E(0)

1 +E(0)
2

)
2

±

√√√√√√
⎡⎢⎣

(
E(0)

1 −E(0)
2

)2

4
+λ2|V12|2

⎤⎥⎦. (5.11)

Let us suppose λ|V12| is small compared with the relevant energy scale, the difference of
the energy eigenvalues of the unperturbed problem:

λ|V12| � |E(0)
1 −E(0)

2 |. (5.12)

We can then use
√

1+ ε = 1+
1
2
ε− ε2

8
+ · · · (5.13)

to obtain the expansion of the energy eigenvalues in the presence of perturbation λ|V12|,
namely,

E1 = E(0)
1 +

λ2|V12|2(
E(0)

1 −E(0)
2

) + · · ·

E2 = E(0)
2 +

λ2|V12|2(
E(0)

2 −E(0)
1

) + · · · .
(5.14)

These are expressions that we can readily obtain using the general formalism to be
developed shortly. It is also possible to write down the energy eigenkets in analogy with
the spin-orientation problem.

The reader might be led to believe that a perturbation expansion always exists for
a sufficiently weak perturbation. Unfortunately this is not necessarily the case. As an
elementary example, consider a one-dimensional problem involving a particle of mass m
in a very weak square-well potential of depth V0 (i.e. V = −V0 for −a < x < a and V = 0
for |x|> a). This problem admits one bound state of energy,

E =−(2ma2/h̄2)|λV|2, λ > 0 for attraction. (5.15)

We might regard the square well as a very weak perturbation to be added to the free-particle
Hamiltonian and interpret result (5.15) as the energy shift in the ground state from zero to
|λV|2. Specifically, because (5.15) is quadratic in V, we might be tempted to associate this
as the energy shift of the ground state computed according to second-order perturbation
theory. However, this view is false because if this were the case, the system would also
admit an E < 0 state for a repulsive potential case with λ negative, which would be sheer
nonsense.
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Let us now examine the radius of convergence of series expansion (5.14). If we go back
to the exact expression of (5.11) and regard it as a function of a complex variable λ, we see
that as |λ| is increased from zero, branch points are encountered at

λ|V12|=
±i(E(0)

1 −E(0)
2 )

2
. (5.16)

The condition for the convergence of the series expansion for the λ= 1 full-strength case is

|V12|<
|E(0)

1 −E(0)
2 |

2
. (5.17)

If this condition is not met, perturbation expansion (5.14) is meaningless.1

5.1.3 Formal Development of Perturbation Expansion

We now state in more precise terms the basic problem we wish to solve. Suppose we know
completely and exactly the energy eigenkets and energy eigenvalues of the unperturbed
Hamiltonian H0, that is

H0|n(0)〉= E(0)
n |n(0)〉. (5.18)

The set {|n(0)〉} is complete in the sense that the closure relation 1 = ∑n |n(0)〉〈n(0)| holds.
Furthermore, we assume here that the energy spectrum is nondegenerate; in the next section
we will relax this assumption. We are interested in obtaining the energy eigenvalues and
eigenkets for the problem defined by (5.4). To be consistent with (5.18) we should write
(5.4) as

(H0 +λV)|n〉λ = E(λ)
n |n〉λ (5.19)

to denote the fact that the energy eigenvalues E(λ)
n and energy eigenkets |n〉λ are functions

of the continuous parameter λ; however, we will usually dispense with this correct but
more cumbersome notation.

As the continuous parameter λ is increased from zero, we expect the energy eigenvalue
En for the nth eigenket to depart from its unperturbed value E(0)

n , so we define the energy
shift for the nth level as follows:

Δn ≡ En −E(0)
n . (5.20)

The basic Schrödinger equation to be solved (approximately) is

(E(0)
n −H0)|n〉= (λV−Δn)|n〉. (5.21)

We may be tempted to invert the operator E(0)
n − H0; however, in general, the inverse

operator 1/(E(0)
n −H0) is ill defined because it may act on |n(0)〉. Fortunately in our case

(λV−Δn)|n〉 has no component along |n(0)〉, as can easily be seen by multiplying both
sides of (5.21) by 〈n(0)| on the left:

〈n(0)|(λV−Δn)|n〉= 0. (5.22)

1 See the discussion on convergence following (5.44), under general remarks.
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Suppose we define the complementary projection operator

φn ≡ 1−|n(0)〉〈n(0)|= ∑
k	=n

|k(0)〉〈k(0)|. (5.23)

The inverse operator 1/(E(0)
n − H0) is well defined when it multiplies φn on the right.

Explicitly,
1

E(0)
n −H0

φn = ∑
k	=n

1
E(0)

n −E(0)
k

|k(0)〉〈k(0)|. (5.24)

Also from (5.22) and (5.23), it is evident that

(λV−Δn)|n〉= φn(λV−Δn)|n〉. (5.25)

We may therefore be tempted to rewrite (5.21) as

|n〉 ?
=

1
E(0)

n −H0
φn(λV−Δn)|n〉. (5.26)

However, this cannot be correct because as λ→ 0, we must have |n〉 → |n(0)〉 and Δn → 0.
Nevertheless, even for λ 	= 0, we can always add to |n〉 a solution to the homogeneous
equation (5.18), namely, cn|n(0)〉, so a suitable final form is

|n〉= cn(λ)|n(0)〉+ 1
E(0)

n −H0
φn(λV−Δn)|n〉, (5.27)

where

lim
λ→0

cn(λ) = 1. (5.28)

Note that

cn(λ) = 〈n(0)|n〉. (5.29)

For reasons we will see later, it is convenient to depart from the usual normalization
convention

〈n|n〉= 1. (5.30)

Rather, we set

〈n(0)|n〉= cn(λ) = 1, (5.31)

even for λ 	= 0. We can always do this if we are not worried about the overall normalization
because the only effect of setting cn 	= 1 is to introduce a common multiplicative factor.
Thus, if desired, we can always normalize the ket at the very end of the calculation. It is
also customary to write

1
E(0)

n −H0
φn →

φn

E(0)
n −H0

(5.32)

and similarly
1

E(0)
n −H0

φn = φn
1

E(0)
n −H0

= φn
1

E(0)
n −H0

φn, (5.33)



293 5.1 Time-Independent Perturbation Theory: Nondegenerate Case

so we have

|n〉= |n(0)〉+ φn

E(0)
n −H0

(λV−Δn)|n〉. (5.34)

We also note from (5.22) and (5.31) that

Δn = λ〈n(0)|V|n〉. (5.35)

Everything depends on the two equations in (5.34) and (5.35). Our basic strategy is to
expand |n〉 and Δn in the powers of λ and then match the appropriate coefficients. This is
justified because (5.34) and (5.35) are identities which hold for all values of λ between 0
and 1. We begin by writing

|n〉= |n(0)〉+λ|n(1)〉+λ2|n(2)〉+ · · ·

Δn = λΔ(1)
n +λ2Δ

(2)
n + · · · .

(5.36)

Substituting (5.36) into (5.35) and equating the coefficient of various powers of λ, we
obtain

O(λ1) : Δ
(1)
n = 〈n(0)|V|n(0)〉

O(λ2) : Δ
(2)
n = 〈n(0)|V|n(1)〉

...
...

O(λN) : Δ
(N)
n = 〈n(0)|V|n(N−1)〉

...
...

(5.37)

so to evaluate the energy shift up to order λN it is sufficient to know |n〉 only up to order
λN−1. We now look at (5.34); when it is expanded using (5.36), we get

|n(0)〉+λ|n(1)〉+λ2|n(2)〉+ · · ·

= |n(0)〉+ φn

E(0)
n −H0

(λV−λΔ(1)
n −λ2Δ2

n −·· ·)

× (|n(0)〉+λ|n(1)〉+ · · ·). (5.38)

Equating the coefficient of powers of λ, we have

O(λ) : |n(1)〉= φn

E(0)
n −H0

V|n(0)〉, (5.39)

where we have used φnΔ
(1)
n |n(0)〉 = 0. Armed with |n(1)〉, it is now profitable for us to go

back to our earlier expression for Δ(2)
n [see (5.37)]:

Δ(2)
n = 〈n(0)|V φn

E(0)
n −H0

V|n(0)〉. (5.40)
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Knowing Δ(2)
n , we can work out the λ2-term in ket equation (5.38) also using (5.39) as

follows:

O(λ2) : |n(2)〉= φn

E(0)
n −H0

V
φn

E(0)
n −H0

V|n(0)〉

− φn

E(0)
n −H0

〈n(0)|V|n(0)〉 φn

E(0)
n −H0

V|n(0)〉. (5.41)

Clearly, we can continue in this fashion as long as we wish. Our operator method is very
compact; it is not necessary to write down the indices each time. Of course, to do practical
calculations we must use at the end the explicit form of φn as given by (5.23).

To see how all this works, we write down the explicit expansion for the energy shift

Δn ≡ En −E(0)
n

= λVnn +λ
2 ∑

k	=n

|Vnk|2

E(0)
n −E(0)

k

+ · · · , (5.42)

where

Vnk ≡ 〈n(0)|V|k(0)〉 	= 〈n|V|k〉, (5.43)

that is, the matrix elements are taken with respect to unperturbed kets. Notice that when
we apply the expansion to the two-state problem we recover the earlier expression (5.14).
The expansion for the perturbed ket goes as follows:

|n〉= |n(0)〉+λ∑
k	=n

|k(0)〉 Vkn

E(0)
n −E(0)

k

+ λ2

(
∑
k	=n

∑
l	=n

|k(0)〉VklVln

(E(0)
n −E(0)

k )(E(0)
n −E(0)

l )
− ∑

k	=n

|k(0)〉VnnVkn

(E(0)
n −E(0)

k )2

)
+ · · · . (5.44)

Equation (5.44) says that the nth level is no longer proportional to the unperturbed ket
|n(0)〉 but acquires components along other unperturbed energy kets; stated another way,
the perturbation V mixes various unperturbed energy eigenkets.

A few general remarks are in order. First, to obtain the first-order energy shift it is
sufficient to evaluate the expectation value of V with respect to the unperturbed kets.
Second, it is evident from the expression of the second-order energy shift (5.42) that two
energy levels, say the ith level and the jth level, when connected by Vij tend to repel each
other; the lower one, say the ith level, tends to get depressed as a result of mixing with the
higher jth level by |Vij|2/(E(0)

j −E(0)
i ), while the energy of the jth level goes up by the same

amount. This is a special case of the no-level crossing theorem, which states that a pair
of energy levels connected by perturbation do not cross as the strength of the perturbation
is varied.

Suppose there is more than one pair of levels with appreciable matrix elements but the
ket |n〉, whose energy we are concerned with, refers to the ground state; then each term
in (5.42) for the second-order energy shift is negative. This means that the second-order
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energy shift is always negative for the ground state; the lowest state tends to get even lower
as a result of mixing.

It is clear that perturbation expansions (5.42) and (5.44) will converge if |Vil/(E
(0)
i −

E(0)
l )| is sufficiently “small.” A more specific criterion can be given for the case in which

H0 is simply the kinetic-energy operator (then this Rayleigh–Schrödinger perturbation
expansion is just the Born series): At an energy E0 < 0, the Born series converges if and
only if neither H0 +V nor H0 −V has bound states of energy E ≤ E0. See Newton (1982),
p. 233.

5.1.4 Wave Function Renormalization

We are in a position to look at the normalization of the perturbed ket. Recalling the
normalization convention we use, (5.31), we see that the perturbed ket |n〉 is not normalized
in the usual manner. We can renormalize the perturbed ket by defining

|n〉N = Z1/2
n |n〉, (5.45)

where Zn is simply a constant with N〈n|n〉N = 1. Multiplying 〈n(0)| on the left we obtain
[because of (5.31)]

Z1/2
n = 〈n0|n〉N. (5.46)

What is the physical meaning of Zn? Because |n〉N satisfies the usual normalization
requirement (5.30), Zn can be regarded as the probability for the perturbed energy
eigenstate to be found in the corresponding unperturbed energy eigenstate. Noting

N〈n|n〉N = Zn〈n|n〉= 1, (5.47)

we have

Z−1
n = 〈n|n〉= (〈n(0)|+λ〈n(1)|+λ2〈n(2)|+ · · ·)

× (|n(0)〉+λ|n(1)〉+λ2|n(2)〉+ · · ·)

= 1+λ2〈n(1)|n(1)〉+0(λ3)

= 1+λ2 ∑
k	=n

|Vkn|2

(E(0)
n −E(0)

k )2
+0(λ3), (5.48a)

so up to order λ2, we get for the probability of the perturbed state to be found in the
corresponding unperturbed state

Zn � 1−λ2 ∑
k	=n

|Vkn|2
(E0

n −E0
k)

2 . (5.48b)

The second term in (5.48b) is to be understood as the probability for “leakage” to states
other than |n(0)〉. Notice that Zn is less than 1, as expected on the basis of the probability
interpretation for Z.
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It is also amusing to note from (5.42) that to order λ2, Z is related to the derivative of En
with respect to E(0)

n as follows:

Zn =
∂En

∂E(0)
n

. (5.49)

We understand, of course, that in taking the partial derivative of En with respect to E(0)
n ,

we must regard the matrix elements of V as fixed quantities. Result (5.49) is actually quite
general and not restricted to second-order perturbation theory.

5.1.5 Elementary Examples

To illustrate the perturbation method we have developed, let us look at two examples.
The first one concerns a simple harmonic oscillator whose unperturbed Hamiltonian is the
usual one:

H0 =
p2

2m
+

1
2

mω2x2. (5.50)

Suppose the spring constant k = mω2 is changed slightly. We may represent the modifica-
tion by adding an extra potential

V =
1
2
εmω2x2, (5.51)

where ε is a dimensionless parameter such that ε� 1. From a certain point of view this is
the silliest problem in the world to which to apply perturbation theory; the exact solution
is immediately obtained just by changing ω as follows

ω→
√

1+ ε ω, (5.52)

yet this is an instructive example because it affords a comparison between the perturbation
approximation and the exact approach.

We are concerned here with the new ground-state ket |0〉 in the presence of V and the
ground-state energy shift Δ0:

|0〉= |0(0)〉+ ∑
k	=0

|k(0)〉 Vk0

E(0)
0 −E(0)

k

+ · · · (5.53a)

and

Δ0 = V00 + ∑
k	=0

|Vk0|2

E(0)
0 −E(0)

k

+ · · · . (5.53b)

The relevant matrix elements are (see Problem 5.8 in this chapter)

V00 =

(
εmω2

2

)
〈0(0)|x2|0(0)〉= εh̄ω

4

V20 =

(
εmω2

2

)
〈2(0)|x2|0(0)〉= εh̄ω

2
√

2
.

(5.54)
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All other matrix elements of form Vk0 vanish. Noting that the nonvanishing energy
denominators in (5.53a) and (5.53b) are −2h̄ω, we can combine everything to obtain

|0〉= |0(0)〉− ε

4
√

2
|2(0)〉+0(ε2) (5.55a)

and

Δ0 = E0 −E(0)
0 = h̄ω

[
ε
4
− ε2

16
+0(ε3)

]
. (5.55b)

Notice that as a result of perturbation, the ground-state ket, when expanded in terms of
original unperturbed energy eigenkets {|n(0)〉}, acquires a component along the second
excited state. The absence of a component along the first excited state is not surprising
because our total H is invariant under parity; hence, an energy eigenstate is expected to be
a parity eigenstate.

A comparison with the exact method can easily be made for the energy shift as follows:

h̄ω
2

→
(

h̄ω
2

)√
1+ ε =

(
h̄ω
2

)[
1+

ε
2
− ε2

8
+ · · ·

]
, (5.56)

in complete agreement with (5.55b). As for the perturbed ket, we look at the change in the
wave function. In the absence of V the ground-state wave function is

〈x|0(0)〉= 1
π1/4

1√x0
e−x2/2x2

0 , (5.57)

where

x0 ≡
√

h̄
mω

. (5.58)

Substitution (5.52) leads to

x0 →
x0

(1+ ε)1/4 ; (5.59)

hence,

〈x|0(0)〉 → 1
π1/4√x0

(1+ ε)1/8 exp

[
−

(
x2

2x2
0

)
(1+ ε)1/2

]
� 1
π1/4

1√x0
e−x2/2x2

0 +
ε

π1/4√x0
e−x2/2x2

0

[
1
8
− 1

4
x2

x2
0

]
= 〈x|0(0)〉− ε

4
√

2
〈x|2(0)〉, (5.60)

where we have used

〈x|2(0)〉= 1
2
√

2
〈x|0(0)〉H2

(
x
x0

)

=
1

2
√

2
1
π1/4

1√x0
e−x2/2x2

0

[
−2+4

(
x
x0

)2
]

, (5.61)

and H2(x/x0) is a Hermite polynomial of order 2.
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As another illustration of nondegenerate perturbation theory, we discuss the quadratic
Stark effect. A one-electron atom – the hydrogen atom or a hydrogenlike atom with
one valence electron outside the closed (spherically symmetrical) shell – is subjected
to a uniform electric field in the positive z-direction. The Hamiltonian H is split into
two parts,

H0 =
p2

2m
+V0(r) and V =−e|E|z (e < 0 for the electron). (5.62)

[Editor’s Note: Since the perturbation V →−∞ as z →−∞, particles bound by H0 can, of
course, escape now, and all formerly bound states acquire a finite lifetime. However, we
can still formally use perturbation theory to calculate the shift in the energy. (The imaginary
part of this shift, which we shall ignore here, would give us the lifetime of the state or the
width of the corresponding resonance.)]

It is assumed that the energy eigenkets and the energy spectrum for the unperturbed
problem (H0 only) are completely known. The electron spin turns out to be irrelevant in
this problem, and we assume that with spin degrees of freedom ignored, no energy level is
degenerate. This assumption does not hold for n 	= 1 levels of the hydrogen atoms, where
V0 is the pure Coulomb potential; we will treat such cases later. The energy shift is given by

Δk =−e|E|zkk + e2|E|2∑
j	=k

|zkj|2

E(0)
k −E(0)

j

+ · · · , (5.63)

where we have used k rather than n to avoid confusion with the principal quantum number
n. With no degeneracy, |k(0)〉 is expected to be a parity eigenstate; hence,

zkk = 0, (5.64)

as we saw in Section 4.2. Physically speaking, there can be no linear Stark effect, that
is, there is no term in the energy shift proportional to |E| because the atom possesses a
vanishing permanent electric dipole, so the energy shift is quadratic in |E| if terms of order
e3|E|3 or higher are ignored.

Let us now look at zkj, which appears in (5.63), where k (or j) is the collective index that
stands for (n, l, m) and (n′, l′,m′). First, we recall the selection rule [see (3.482)]

〈n′, l′m′|z|n, lm〉= 0, unless

{
l′ = l±1
m′ = m (5.65)

that follows from angular momentum (the Wigner–Eckart theorem with T(1)
q=0) and parity

considerations.
There is another way to look at the m-selection rule. In the presence of V, the full

spherical symmetry of the Hamiltonian is destroyed by the external electric field that selects
the positive z-direction, but V (hence the total H) is still invariant under rotation around the
z-axis; in other words, we still have a cylindrical symmetry. Formally this is reflected by
the fact that

[V,Lz] = 0. (5.66)
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This means that Lz is still a good quantum number even in the presence of V. As a result,
the perturbation can be written as a superposition of eigenkets of Lz with the same m, where
m = 0 in our case. This statement is true for all orders, in particular, for the first-order ket.
Also, because the second-order energy shift is obtained from the first-order ket [see (5.40)],
we can understand why only the m = 0 terms contribute to the sum.

The polarizability α of an atom is defined in terms of the energy shift of the atomic state
as follows:

Δ=−1
2
α|E|2. (5.67)

Let us consider the special case of the ground state of the hydrogen atom. Even though the
spectrum of the hydrogen atom is degenerate for excited states, the ground state (with spin
ignored) is nondegenerate, so the formalism of nondegenerate perturbation theory can be
applied. The ground state |0(0)〉 is denoted in the (n, l, m) notation by (1,0,0), so

α =−2e2
∞

∑
k	=0

|〈k(0)|z|1,0,0〉|2[
E(0)

0 −E(0)
k

] , (5.68)

where the sum over k includes not only all bound states |n, l,m〉 (for n > 1) but also the
positive-energy continuum states of hydrogen.

There are many ways to estimate approximately or evaluate exactly the sum in (5.68)
with various degrees of sophistication. We present here the simplest of all the approaches.
Suppose the denominator in (5.68) were constant. Then we could obtain the sum by
considering

∑
k	=0

|〈k(0)|z|1,0,0〉|2 = ∑
all k

|〈k(0)|z|1,0,0〉|2

= 〈1,0,0|z2|1,0,0〉, (5.69)

where we have used the completeness relation in the last step. But we can easily evaluate
〈z2〉 for the ground state as follows:

〈z2〉= 〈x2〉= 〈y2〉= 1
3
〈r2〉, (5.70)

and using the explicit form for the wave function we obtain

〈r2〉= 3a2
0,

where a0 stands for the Bohr radius. Unfortunately the expression for polarizability α
involves the energy denominator that depends on E(0)

k , but we know that the inequality

−E(0)
0 +E(0)

k ≥−E(0)
0 +E(0)

1 =
e2

2a0

[
1− 1

4

]
(5.71)

holds for every energy denominator in (5.68). As a result, we can obtain an upper limit for
the polarizability of the ground state of the hydrogen atom, namely,

α <
16a3

0
3

� 5.3a3
0. (5.72)
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It turns out that we can evaluate exactly the sum in (5.68) using a method due to A.
Dalgarno and J. T. Lewis (Merzbacher (1970), p. 424, for example), which also agrees
with the experimentally measured value. This gives

α =
9a3

0
2

= 4.5a3
0. (5.73)

We obtain the same result (without using perturbation theory) by solving the Schrödinger
equation exactly using parabolic coordinates.

5.2 Time-Independent Perturbation Theory: The Degenerate Case

The perturbation method we developed in the previous section fails when the unperturbed
energy eigenkets are degenerate. The method of the previous section assumes that there is a
unique and well-defined unperturbed ket of energy E(0)

n which the perturbed ket approaches
as λ→ 0. With degeneracy present, however, any linear combination of unperturbed kets
has the same unperturbed energy; in such a case it is not a priori obvious to what linear
combination of the unperturbed kets the perturbed ket is reduced in the limit λ→ 0. Here
specifying just the energy eigenvalue is not enough; some other observable is needed to
complete the picture. To be more specific, with degeneracy we can take as our base kets
simultaneous eigenkets of H0 and some other observable A, and we can continue labeling
the unperturbed energy eigenket by |k(0)〉, where k now symbolizes a collective index that
stands for both the energy eigenvalue and the A eigenvalue. When the perturbation operator
V does not commute with A, the zeroth-order eigenkets for H (including the perturbation)
are in fact not A eigenkets.

From a more practical point of view, a blind application of formulas like (5.42) and
(5.44) obviously runs into difficulty because

Vnk

E(0)
n −E(0)

k

(5.74)

becomes singular if Vnk is nonvanishing and E(0)
n and E(0)

k are equal. We must modify the
method of the previous section to accommodate such a situation.

Whenever there is degeneracy we are free to choose our base set of unperturbed kets.
We should, by all means, exploit this freedom. Intuitively we suspect that the catastrophe
of vanishing denominators may be avoided by choosing our base kets in such a way that V
has no off-diagonal matrix elements [such as Vnk = 0 in (5.74)]. In other words, we should
use the linear combinations of the degenerate unperturbed kets that diagonalize H in the
subspace spanned by the degenerate unperturbed kets. This is indeed the correct procedure
to use.

Suppose there is a g-fold degeneracy before the perturbation V is switched on. This
means that there are g different eigenkets all with the same unperturbed energy E(0)

D . Let us
denote these kets by {|m(0)〉}. In general, the perturbation removes the degeneracy in the
sense that there will be g perturbed eigenkets all with different energies. Let them form a
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set {|l〉}. As λ goes to zero |l〉 → |l(0)〉, and various |l(0)〉 are eigenkets of H0 all with the
same energy E(0)

m . However, the set |l(0)〉 need not coincide with {|m(0)〉} even though the
two sets of unperturbed eigenkets span the same degenerate subspace, which we call D.
We can write

|l(0)〉= ∑
m∈D

〈m(0)|l(0)〉|m(0)〉,

where the sum is over the energy eigenkets in the degenerate subspace.
Before expanding in λ, there is a rearrangement of the Schrödinger equation that will

make it much easier to carry out the expansion. Let P0 be a projection operator onto the
space defined by {|m(0)〉}. (Recall the discussion of projection operators in Section 1.3.)
We define P1 = 1−P0 to be the projection onto the remaining states. We shall then write
the Schrödinger equation for the states |l〉 as

0 = (E−H0 −λV)|l〉

= (E−E(0)
D −λV)P0|l〉+(E−H0 −λV)P1|l〉. (5.75)

We next separate (5.75) into two equations by projecting from the left on (5.75) with
P0 and P1,

(E−E(0)
D −λP0V)P0|l〉−λP0VP1|l〉= 0 (5.76)

−λP1VP0|l〉+(E−H0 −λP1V)P1|l〉= 0. (5.77)

We can solve (5.77) in the P1 subspace because P1(E−H0 − λP1VP1) is not singular in
this subspace since E is close to E(0)

D and the eigenvalues of P1H0P1 are all different from
E(0)

D . Hence we can write

P1|l〉= P1
λ

E−H0 −λP1VP1
P1VP0|l〉 (5.78)

or written out explicitly to order λ when |l〉 is expanded as |l〉= |l(0)〉+λ|l(1)〉+ · · ·

P1|l(1)〉= ∑
k /∈D

|k(0)〉Vkl

E(0)
D −E(0)

k

. (5.79)

To calculate P0|l〉, we substitute (5.78) into (5.76) to obtain(
E−E(0)

D −λP0VP0 −λ2P0VP1
1

E−H0 −λV
P1VP0

)
P0|l〉= 0. (5.80)

Although there is a term of order λ2 in (5.80) that results from the substitution, we shall
find that it produces a term of order λ in the state P0|l〉. So we obtain the equation for the
energies to order λ and eigenfunctions to order zero,

(E−E(0)
D −λP0VP0)(P0|l(0)〉) = 0. (5.81)

This is an equation in the g-dimensional degenerate subspace and clearly means that the
eigenvectors are just the eigenvectors of the g× g matrix P0VP0 and the eigenvalues E(1)

are just the roots of the secular equation

det[V− (E−E(0)
D )] = 0 (5.82)
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where V = matrix of P0VP0 with matrix elements 〈m(0)|V|m′(0)〉. Explicitly in matrix form
we have ⎛⎜⎝V11 V12 · · ·

V21 V22 · · ·
...

...
. . .

⎞⎟⎠
⎛⎜⎝〈1(0)|l(0)〉
〈2(0)|l(0)〉

...

⎞⎟⎠ = Δ
(1)
l

⎛⎜⎝〈1(0)|l(0)〉
〈2(0)|l(0)〉

...

⎞⎟⎠ . (5.83)

The roots determine the eigenvalues Δ(1)
l , there are g altogether, and by substituting them

into (5.83), we can solve for 〈m(0)|l(0)〉 for each l up to an overall normalization constant.
Thus by solving the eigenvalue problem, we obtain in one stroke both the first-order
energy shifts and the correct zeroth-order eigenkets. Notice that the zeroth-order kets we
obtain as λ→ 0 are just the linear combinations of the various |m(0)〉 that diagonalize the
perturbation V, the diagonal elements immediately giving the first-order shift

Δ
(1)
l = 〈l(0)|V|l(0)〉. (5.84)

Note also that if the degenerate subspace were the whole space, we would have solved
the problem exactly in this manner. The presence of unperturbed “distant” eigenkets not
belonging to the degenerate subspace will show up only in higher orders – first order and
higher for the energy eigenkets and second order and higher for the energy eigenvalues.

Expression (5.84) looks just like the first-order energy shift [see (5.37)] in the nonde-
generate case except that here we have to make sure that the base kets used are such that
V does not have nonvanishing off-diagonal matrix elements in the subspace spanned by
the degenerate unperturbed eigenkets. If the V operator is already diagonal in the base ket
representation we are using, we can immediately write down the first-order shift by taking
the expectation value of V, just as in the nondegenerate case.

Let us now look at (5.80). To be safe we keep all terms in the g×g effective Hamiltonian
that appears in (5.80) to order λ2 although we want P0|l〉 only to order λ. We find(

E−E(0)
D −λP0VP0 −λ2P0VP1

1
E(0)

D −H0
P1VP0

)
P0|l〉= 0. (5.85)

For the g× g matrix P0VP0, let us call the eigenvalues vi and the eigenvectors P0|l(0)i 〉.
The eigen energies to first order are E(1)

i = E(0)
D + λvi. We assume that the degeneracy

is completely resolved so that E(1)
i −E(1)

j = λ(vi − vj) are all nonzero. We can now apply
nondegenerate perturbation theory (5.39) to the g×g dimensional Hamiltonian that appears
in (5.85). The resulting correction to the eigenvectors P0|l(0)i 〉 is

P0|l(1)i 〉= ∑
j	=i

P0|l(0)j 〉
vi − vj

〈l(0)j |VP1
1

E(0)
D −H0

P1V|l(0)i 〉 (5.86)

or more explicitly

P0|l(1)i 〉= ∑
j	=i

P0|l(0)j 〉
vi − vj

∑
k	∈D

〈l(0)j |V|k〉 1
E(0)

D −E(0)
k

〈k|V|l(0)i 〉. (5.87)
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Thus, although the third term in the effective Hamiltonian that appears in (5.85) is of
order λ2, it is divided by energy denominators of order λ in forming the correction to
the eigenvector, which then gives terms of order λ in the vector. If we add together (5.79)
and (5.87), we get the eigenvector accurate to order λ.

As in the nondegenerate case, it is convenient to adopt the normalization convention
〈l(0)|l〉= 1. We then have, from (5.76) and (5.77), λ〈l(0)|V|l〉= Δl = λΔ(1)

l +λ2Δ
(2)
l + · · · .

The λ-term just reproduces (5.84). As for the λ2-term, we obtain Δ(2)
l = 〈l(0)|V|l(1)〉 =

〈l(0)|V|P1l(1)〉+ 〈l(0)|V|P0l(1)i 〉. Since the vectors P0|l(0)j 〉 are eigenvectors of V, the correc-
tion to the vector, (5.87), gives no contribution to the second-order energy shift, so we find
using (5.79)

Δ
(2)
l = ∑

k /∈D

|Vkl|2

E(0)
D −E(0)

k

. (5.88)

Our procedure works provided that there is no degeneracy in the roots of secular
equation (5.82). Otherwise we still have an ambiguity as to which linear combination of
the degenerate unperturbed kets the perturbed kets are reduced in the limit λ → 0. Put
in another way, if our method is to work, the degeneracy should be removed completely
in first order. A challenge for the experts: How must we proceed if the degeneracy is not
removed in first order, that is, if some of the roots of the secular equation are equal? (See
Problem 5.15 of this chapter.)

Let us now summarize the basic procedure of degenerate perturbation theory.

1. Identify degenerate unperturbed eigenkets and construct the perturbation matrix V, a
g×g matrix if the degeneracy is g-fold.

2. Diagonalize the perturbation matrix by solving, as usual, the appropriate secular
equation.

3. Identify the roots of the secular equation with the first-order energy shifts; the base kets
that diagonalize the V matrix are the correct zeroth-order kets to which the perturbed
kets approach in the limit λ→ 0.

4. For higher orders use the formulas of the corresponding nondegenerate perturbation the-
ory except in the summations, where we exclude all contributions from the unperturbed
kets in the degenerate subspace D.

5.2.1 Linear Stark Effect

As an example of degenerate perturbation theory, let us study the effect of a uniform
electric field on excited states of the hydrogen atom. As is well known, in the Schrödinger
theory with a pure Coulomb potential with no spin dependence, the bound-state
energy of the hydrogen atom depends only on the principal quantum number n. This
leads to degeneracy for all but the ground state because the allowed values of l for a given
n satisfy

0 ≤ l < n. (5.89)
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To be specific, for the n= 2 level, there is an l= 0 state called 2s and three l= 1(m=±1,0)
states called 2p, all with the same energy, −e2/8a0. As we apply a uniform electric field in
the z-direction, the appropriate perturbation operator is given by

V =−ez|E|, (5.90)

which we must now diagonalize. Before we evaluate the matrix elements in detail using
the usual (nlm) basis, let us note that the perturbation (5.90) has nonvanishing matrix
elements only between states of opposite parity, that is, between l = 1 and l = 0 in our
case. Furthermore, in order for the matrix element to be nonvanishing, the m-values must
be the same because z behaves like a spherical tensor of rank one with spherical component
(magnetic quantum number) zero. So the only nonvanishing matrix elements are between
2s (m = 0 necessarily) and 2p with m = 0. Thus

V =

2s 2p m = 0 2p m = 1 2p m =−1⎛⎜⎜⎝
0 〈2s|V|2p, m = 0〉 0 0

〈2p, m = 0|V|2s〉 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (5.91)

Explicitly,

〈2s|V|2p, m = 0〉= 〈2p, m = 0|V|2s〉

= 3ea0|E|. (5.92)

It is sufficient to concentrate our attention on the upper left-hand corner of the square
matrix. It then looks very much like the σx matrix, and we can immediately write down the
answer. For the energy shifts we get

Δ
(1)
± =±3ea0|E|, (5.93)

where the subscripts ± refer to the zeroth-order kets that diagonalize V:

|±〉= 1√
2
(|2s,m = 0〉± |2p,m = 0〉). (5.94)

Schematically the energy levels are as shown in Figure 5.1.

3ea0 E

3ea0 E

( 2s, m  = 0  − 2p, m  = 0 )

2

( 2s, m  = 0  + 2p, m  = 0 )

No change for 2p, m  = ±1

2

Fig. 5.1 Schematic energy-level diagram for the linear Stark effect as an example of degenerate perturbation theory.
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Notice that the shift is linear in the applied electric field strength, hence the term the
linear Stark effect. One way we can visualize the existence of this effect is to note
that the energy eigenkets (5.94) are not parity eigenstates and are therefore allowed to
have nonvanishing electric permanent dipole moments, as we can easily see by explicitly
evaluating 〈z〉. Quite generally, for an energy state that we can write as a superposition of
opposite parity states, it is permissible to have a nonvanishing permanent electric dipole
moment, which gives rise to the linear Stark effect.

An interesting question can now be asked. If we look at the “real” hydrogen atom, the 2s
level and 2p level are not really degenerate. Due to the spin-orbit force, 2p3/2 is separated
from 2p1/2, as we will show in the next section, and even the degeneracy between the 2s1/2

and 2p1/2 levels that persists in the single-particle Dirac theory is removed by quantum
electrodynamics effects (the Lamb shift). We might therefore ask: Is it realistic to apply
degenerate perturbation theory to this problem? A comparison with the exact result shows
that if the perturbation matrix elements are much larger when compared to the Lamb shift
splitting, then the energy shift is linear in |E| for all practical purposes and the formalism of
degenerate perturbation theory is applicable. On the opposite extreme, if the perturbation
matrix elements are small compared to the Lamb shift splitting, then the energy shift is
quadratic and we can apply nondegenerate perturbation theory; see Problem 5.19 of this
chapter. This incidentally shows that the formalism of degenerate perturbation theory is
still useful when the energy levels are almost degenerate compared to the energy scale
defined by the perturbation matrix element. In intermediate cases we must work harder; it
is safer to attempt to diagonalize the Hamiltonian exactly in the space spanned by all the
nearby levels.

5.3 Hydrogenlike Atoms: Fine Structure and the Zeeman Effect

5.3.1 The Relativistic Correction to the Kinetic Energy

A hydrogen like atom with a single electron has the potential energy function (3.305)
giving the Hamiltonian

H0 =
p2

2me
− Ze2

r
(5.95)

where the first term is the nonrelativistic kinetic-energy operator. However, the relativisti-
cally correct kinetic energy is

K =
√

p2c2 +m2
ec4 −mec2

≈ p2

2me
− (p2)2

8m3
ec2 . (5.96)



306 Approximation Methods

Therefore, following the notation in (5.1), we can treat this problem in perturbation theory
where H0 is given by (5.95) and the perturbation is

V =− (p2)2

8m3
ec2 . (5.97)

Now in principle, this is a complicated problem because of the highly degenerate
eigenstates |nlm〉 of the hydrogen atom. However, since L commutes with p2 as we noted
in (3.264), we also have

[L,V] = 0. (5.98)

In other words, V is rotationally symmetric, and is therefore already diagonal in the |nlm〉
basis. Therefore the first-order energy shifts due to V are just equal to the expectation values
in these basis states. Following (5.37) we write

Δ
(1)
nl = 〈nlm|V|nlm〉=−〈nlm| (p

2)2

8m3
ec2 |nlm〉 (5.99)

where the rotational symmetry assures us that the first-order energy shifts cannot depend
on m.

In principle, (5.99) could be evaluated by brute force, but there is a more elegant way.
Since

(p2)2

8m3
ec2 =

1
2mec2

(
p2

2me

)2

=
1

2mec2

(
H0 +

Ze2

r

)2

(5.100)

we immediately see that

Δ
(1)
nl =− 1

2mec2

[(
E(0)

n

)2
+2E(0)

n 〈nlm|Ze2

r
|nlm〉+ 〈nlm| (Ze2)2

r2 |nlm〉
]

. (5.101)

The problem is therefore reduced to calculating the expectation values for Ze2/r and
(Ze2)2/r2. In fact, both of these expectation values can be evaluated using some clever
tricks. We simply outline the approach here, but the interested reader is referred to
Shankar (1994) or Townsend (2000) for more details.

If one imagines a hydrogen atom with a “perturbation” Vγ = γ/r, then the expectation
value in the second term of (5.101) is simply the first-order correction to the energy with
γ = Ze2. On the other hand, it is simple to solve this problem exactly since it corresponds
to the hydrogen atom with Ze2 → Ze2 − γ, and it is straightforward to find the first-order
correction from the exact solution. One finds that

〈nlm|Ze2

r
|nlm〉=−2E(0)

n . (5.102)

Indeed, this is actually a statement of the virial theorem for the Coulomb potential.
A similar approach can be taken for the third term in (5.101). In this case, imagine

a perturbation Vγ = γ/r2 which modifies the centrifugal barrier term in the effective
potential. That is, it takes l to a form that includes γ, which can again be used to write
down the first-order correction. One finds that

〈nlm| (Ze2)2

r2 |nlm〉= 4n
l+ 1

2

(
E(0)

n

)2
. (5.103)
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So, using (5.102) and (5.103), along with E(0)
n from (3.315), we rewrite (5.101) as

Δ
(1)
nl = E(0)

n

[
Z2α2

n2

(
−3

4
+

n
l+ 1

2

)]
(5.104a)

=−1
2

mec2Z4α4

[
− 3

4n4 +
1

n3
(
l+ 1

2

)]
. (5.104b)

Not unexpectedly, the relative size of the first-order correction is proportional to Z2α2, the
square of the classical electron orbital velocity (in units of c).

5.3.2 Spin-Orbit Interaction and Fine Structure

Now let us move on to the study of the atomic levels of general hydrogenlike atoms, that
is, atoms with one valence electron outside the closed shell. Alkali atoms such as sodium
(Na) and potassium (K) belong to this category.

The central (spin-independent) potential Vc(r) appropriate for the valence electron is
no longer of the pure Coulomb form. This is because the electrostatic potential φ(r) that
appears in

Vc(r) = eφ(r) (5.105)

is no longer due just to the nucleus of electric charge |e|Z; we must take into account
the cloud of negatively charged electrons in the inner shells. A precise form of φ(r) does
not concern us here. We simply remark that the degeneracy characteristics of the pure
Coulomb potential are now removed in such a way that the higher l states lie higher for a
given n. Physically this arises from the fact that the higher l states are more susceptible to
the repulsion due to the electron cloud.

Instead of studying the details of Vc(r), which determines the gross structure of
hydrogenlike atoms, we discuss the effect of the spin-orbit (L ·S) interaction that gives rise
to fine structure. We can understand the existence of this interaction in a qualitative fashion
as follows. Because of the central force part (5.105), the valence electron experiences the
electric field

E =−
(

1
e

)
∇Vc(r). (5.106)

But whenever a moving charge is subjected to an electric field, it “feels” an effective
magnetic field given by

Beff =−
(v

c

)
×E. (5.107)

Because the electron has a magnetic moment μ given by

μ =
eS

mec
, (5.108)
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we suspect a spin-orbit potential VLS contribution to H as follows:

HLS
?
= −μ · Beff

= μ ·
(v

c
×E

)
=

(
eS

mec

)
·
[

p
mec

×
(x

r

) 1
(−e)

dVc

dr

]

=
1

m2
ec2

1
r

dVc

dr
(L · S). (5.109)

When this expression is compared with the observed spin-orbit interaction, it is seen to
have the correct sign, but the magnitude turns out to be too large by a factor of two.2 There
is a classical explanation for this due to spin precession (Thomas precession after L. H.
Thomas), but we shall not bother with that. See Jackson (1975), for example. We simply
treat the spin-orbit interaction phenomenologically and take VLS to be one-half of (5.109).
The correct quantum-mechanical explanation for this discrepancy must await the Dirac
(relativistic) theory of the electron discussed in the last chapter of this textbook.

We are now in a position to apply perturbation theory to hydrogen like atoms using VLS
as the perturbation (V of Sections 5.1 and 5.2). The unperturbed Hamiltonian H0 is taken
to be

H0 =
p2

2m
+Vc(r), (5.110)

where the central potential Vc is no longer of the pure Coulomb form for alkali atoms. With
just H0 we have freedom in choosing the base kets.

Set 1: The eigenkets of L2, Lz, S2, Sz.

Set 2: The eigenkets of L2, S2, J2, Jz.
(5.111)

Without VLS (or HLS) either set is satisfactory in the sense that the base kets are also energy
eigenkets. With HLS added it is far superior to use set 2 of (5.111) because L · S does not
commute with Lz and Sz, while it does commute with J2 and Jz. Remember the cardinal
rule: choose unperturbed kets that diagonalize the perturbation. You have to be either a
fool or a masochist to use the Lz, Sz eigenkets [set 1 of (5.111)] as the base kets for this
problem; if we proceeded to apply blindly the method of degenerate perturbation theory
starting with set 1 as our base kets, we would be forced to diagonalize the VLS(HLS) matrix
written in the Lz, Sz representation. The results of this, after a lot of hard algebra, give us
just the J2, Jz eigenkets as the zeroth-order unperturbed kets to be used!

In degenerate perturbation theory, if the perturbation is already diagonal in the repre-
sentation we are using, all we need to do for the first-order energy shift is to take the
expectation value. The wave function in the two-component form is explicitly written as

ψnlm = Rnl(r)Y j=l±1/2,m
l (5.112)

2 Indeed, this is a misleading statement, although it appears often in physics textbooks. See Haar and Curtis, Am.
J. Phys., 55 (1987) 1044.



309 5.3 Hydrogenlike Atoms: Fine Structure and the Zeeman Effect

Doublet or “fine”
structure

λ = 5,890 Å λ = 5,896 Å 

3s1/2

3p1/2

3p3/2

Fig. 5.2 Schematic diagram of 3s and 3p lines. The 3s and 3p degeneracy is lifted because Vc(r) is now the screened
Coulomb potential due to core electrons rather than pure Coulombic potential; VLS then removes the 3p1/2

and3p3/2 degeneracy.

where Y j=l±1/2,m
l is the spin-angular function of Section 3.8 [see (3.384)]. For the first-

order shift, we obtain

Δnlj =
1

2m2
ec2

〈
1
r

dVc

dr

〉
nl

h̄2

2

{
l

−(l+1)

} j = l+
1
2

j = l− 1
2〈

1
r

dVc

dr

〉
nl
≡

∫ ∞

0
Rnl

1
r

dVc

dr
Rnlr2dr

(5.113)

where we have used the m-independent identity [see (3.386)]

∫
Y † S ·LY dΩ=

1
2

[
j( j+1)− l(l+1)− 3

4

]
h̄2 =

h̄2

2

{
l

−(l+1)

} j = l+
1
2

j = l− 1
2

.
(5.114)

Equation (5.113) is known as Lande’s interval rule.
To be specific, consider a sodium atom. From standard atomic spectroscopy notation,

the ground-state configuration is

(1s)2(2s)2(2p)6(3s). (5.115)

The inner 10 electrons can be visualized to form a spherically symmetrical electron cloud.
We are interested in the excitation of the eleventh electron from 3s to a possible higher
state. The nearest possibility is excitation to 3p. Because the central potential is no longer
of the pure Coulomb form, 3s and 3p are now split. The fine structure brought about by VLS
refers to an even finer split within 3p, between 3p1/2 and 3p3/2, where the subscript refers
to j. Experimentally, we observe two closely separated yellow lines, known as the sodium
D lines, one at 5896 Å and the other at 5890 Å; see Figure 5.2. Notice that 3p3/2 lies higher
because the radial integral in (5.113) is positive.
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To appreciate the order of magnitude of the fine-structure splitting, let us note that for
Z � 1, 〈

1
r

dVc

dr

〉
nl
∼ e2

a3
0

(5.116)

just on the basis of dimensional considerations. So the fine-structure splitting is of order
(e2/a3

0)(h̄/mec)2, which is to be compared with Balmer splittings of order e2/a0. It is useful
to recall here that the classical radius of the electron, the Compton wavelength of the
electron, and the Bohr radius are related in the following way:

e2

mec2 :
h̄

mec
: a0 : : 1 : 137 : (137)2, (5.117)

where we have used

e2

h̄c
=

1
137

. (5.118)

Typically, fine-structure splittings are then related to typical Balmer splittings via(
e2

a3
0

h̄2

m2
ec2

)
:
(

e2

a0

)
: :

(
1

137

)2

: 1, (5.119)

which explains the origin of the term fine structure. There are other effects of similar orders
of magnitude, for example, the relativistic correction to kinetic energy discussed earlier in
this section.

Before leaving this discussion, let us calculate out (5.113) for the case of the Coulomb
potential, that is, a hydrogen atom or one-electron ion with Z protons. In this case〈

1
r

dVc

dr

〉
nl
=

〈
Ze2

r3

〉
nl

. (5.120)

We can evaluate this expectation value with the help of yet another trick. First we note that
with H0 given by (5.95) we have

〈nlm|[H0,A]|nlm〉= 0 (5.121)

for any operator A, since H0 acting to the right or left just gives E(0)
n . If we let A = pr, the

radial momentum operator, then it obviously commutes with the radial part of the kinetic-
energy term in H0. Hence we are left with

〈nlm|
[

l(l+1)h̄2

2mer2 − Ze2

r
,pr

]
|nlm〉= 0. (5.122)

Now in coordinate space, pr does not commute with functions of the coordinate r
because of the presence of the derivative ∂ /∂ r. Therefore we can explicitly carry out the
commutator in (5.122) to arrive at

〈nlm|
[
− l(l+1)h̄2

mer3 +
Ze2

r2

]
|nlm〉= 0. (5.123)
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Finally, then, we make use of (5.103) and (3.315) to write〈
Ze2

r3

〉
nl
=

me

l(l+1)h̄2

〈
(Ze2)2

r2

〉
nl

=− 2m2
ec2Z2α2

nl(l+1)(l+1/2)h̄2 E(0)
n . (5.124)

We therefore have the spin-orbit correction to the energy eigenstates of the hydrogen atom
from (5.113) as

Δnlj =− Z2α2

2nl(l+1)(l+1/2)
E(0)

n

{
l

−(l+1)

} j = l+
1
2

j = l− 1
2

.
(5.125)

Interestingly, this expression is nonzero for l = 0. Nevertheless, it gives the correct answer
for the energy eigenvalues of the Dirac equation, as we shall see later in this textbook. The
origin of this shift, attributed to something called the Darwin term, is discussed elsewhere.
See, for example, Townsend (2000).

5.3.3 The Zeeman Effect

We now discuss hydrogen or hydrogenlike (one-electron) atoms in a uniform magnetic
field – the Zeeman effect, sometimes called the anomalous Zeeman effect with the electron
spin taken into account. Recall that a uniform magnetic field B is derivable from a vector
potential

A = 1
2 (B×x). (5.126)

For B in the positive z-direction, that is B = Bẑ, this becomes

A =− 1
2 (Byx̂−Bxŷ). (5.127)

Apart from the spin term, the interaction Hamiltonian is generated by the substitution

p → p− eA
c

. (5.128)

We therefore have

H =
p2

2me
+Vc(r)−

e
2mec

(p · A+A · p)+
e2A2

2mec2 . (5.129)

Because

〈x′|p · A(x)|〉=−ih̄∇′ · [A(x′)〈x′|〉]

= 〈x′|A(�x) · p|〉+ 〈x′|〉[−ih̄∇′ · A(x′)], (5.130)

it is legitimate to replace p · A by A · p whenever

∇ · A(x) = 0, (5.131)
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which is the case for the vector potential of (5.127). Noting

A · p = B(− 1
2 ypx +

1
2 xpy)

= 1
2 BLz (5.132)

and

A2 = 1
4 B2(x2 + y2), (5.133)

we obtain for (5.129)

H =
p2

2me
+Vc(r)−

e
2mec

BLz +
e2

8mec2 B2(x2 + y2). (5.134)

To this we may add the spin magnetic-moment interaction

−μ · B =
−e
mec

S · B =
−e
mec

BSz. (5.135)

The quadratic B2(x2 + y2) is unimportant for a one-electron atom; the analogous term
is important for the ground state of the helium atom where L(tot)

z and S(tot)
z both vanish.

The reader may come back to this problem when he or she computes diamagnetic
susceptibilities in Problems 5.25 and 5.26 of this chapter.

To summarize, omitting the quadratic term, the total Hamiltonian is made up of the
following three terms:

H0 =
p2

2me
+Vc(r) (5.136a)

HLS =
1

2m2
ec2

1
r

dVc(r)
dr

L · S (5.136b)

HB =
−eB
2mec

(Lz +2Sz). (5.136c)

Notice the factor 2 in front of Sz; this reflects the fact that the g-factor of the electron is 2.
Suppose HB is treated as a small perturbation. We can study the effect of HB using the

eigenkets of H0 +HLS, that is, the J2, Jz eigenkets, as our base kets. Noting

Lz +2Sz = Jz +Sz, (5.137)

the first-order shift can be written as
−eB
2mec

〈Jz +Sz〉j=l±1/2,m. (5.138)

The expectation value of Jz immediately gives mh̄. As for 〈Sz〉, we first recall∣∣∣∣ j = l± 1
2

,m
〉
=±

√
l±m+ 1

2
2l+1

×
∣∣∣∣ml = m− 1

2
, ms =

1
2

〉

+

√
l∓m+ 1

2
2l+1

∣∣∣∣ml = m+
1
2

, ms =−1
2

〉
. (5.139)
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The expectation value of Sz can then easily be computed:

〈Sz〉j=l±1/2,m =
h̄
2
(|c+|2 −|c−|2)

=
h̄
2

1
(2l+1)

[(
l±m+

1
2

)
−

(
l∓m+

1
2

)]
=± mh̄

(2l+1)
. (5.140)

In this manner we obtain Lande’s formula for the energy shift (due to B field),

ΔEB =
−eh̄B
2mec

m
[

1± 1
(2l+1)

]
. (5.141)

We see that the energy shift of (5.141) is proportional to m. To understand the physical
origin for this, we present another method for deriving (5.140). We recall that the
expectation value of Sz can also be obtained using the projection theorem of Section 3.11.
We get [see (3.488)]

〈Sz〉j=l±1/2,m = [〈S ·J〉j=l±1/2]
mh̄

h̄2j( j+1)

=
m〈J2 +S2 −L2〉j=l±1/2

2h̄j( j+1)

= mh̄

[(
l± 1

2

)(
l± 1

2 +1
)
+ 3

4 − l(l+1)
2
(
l± 1

2

)(
l± 1

2 +1
) ]

=± mh̄
(2l+1)

, (5.142)

which is in complete agreement with (5.140).
In the foregoing discussion the magnetic field is treated as a small perturbation. We now

consider the opposite extreme – the Paschen–Back limit – with a magnetic field so intense
that the effect of HB is far more important than that of HLS, which we later add as a small
perturbation. With H0 +HB only, the good quantum numbers are Lz and Sz. Even J2 is no
good because spherical symmetry is completely destroyed by the strong B field that selects
a particular direction in space, the z-direction. We are left with cylindrical symmetry only,
that is, invariance under rotation around the z-axis. So the Lz,Sz eigenkets |l,s = 1

2 ,ml,ms〉
are to be used as our base kets. The effect of the main term HB can easily be computed:

〈HB〉mlms =
−eBh̄
2mec

(ml +2ms). (5.143)

The 2(2l+ 1) degeneracy in ml and ms we originally had with H0 [see (5.136a)] is now
reduced by HB to states with the same (ml)+(2ms), namely, (ml)+(1) and (ml+2)+(−1).
Clearly we must evaluate the expectation value of L ·S with respect to |ml,ms〉:

〈L ·S〉= 〈LzSz +
1
2
(L+S−+L−S+)〉mlms

= h̄2mlms, (5.144)
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Table 5.1 Quantum Numbers in Weak and Strong Magnetic Fields

Dominant interaction Almost good No good Always good

Weak B HLS J2 (orL·S) Lz,Sz
∗

L2,S2,Jz

Strong B HB Lz,Sz J2 (orL·S)

∗The exception is the stretched configuration, e.g., p3/2 with m = ± 3
2 . Here Lz and Sz

are both good; this is because the magnetic quantum number of Jz, m = ml +ms can
be satisfied in only one way.

where we have used

〈L±〉ml = 0, 〈S±〉ms = 0. (5.145)

Hence,

〈HLS〉mlms =
h̄2mlms

2m2
ec2

〈
1
r

dVc

dr

〉
. (5.146)

We summarize our results in Table 5.1, where weak and strong B fields are “calibrated”
by comparing their magnitudes eh̄B/2mec with (1/137)2e2/a0. In this table almost good
simply means good to the extent that the less dominant interaction could be ignored.

Specifically, let us look at the level scheme of a p electron l = 1(p3/2,p1/2). In the weak
B case the energy shifts are linear in B, with slopes determined by

m
[

1±
(

1
2l+1

)]
.

As we now increase B, mixing becomes possible between states with the same m-value,
for example, p3/2 with m =± 1

2 and p1/2 with m =± 1
2 ; in this connection note the operator

Lz + 2Sz that appears in HB [(5.136c)] is a rank 1 tensor operator T(k=1)
q=0 with spherical

component q = 0.
It is instructive to solve the full problem, including fine structure along with the Zeeman

effect for arbitrary field strength, and see how the behavior transitions from weak to strong
magnetic fields. For the n = 2 states, one diagonalizes the 8×8 matrix of the perturbations
in the degenerate subspace. This is not as difficult as it sounds, and is the object of
Problem 5.24 at the end of this chapter. The resulting behavior is plotted in Figure 5.3.

5.3.4 Van der Waals’ Interaction

An important, nice application of the Rayleigh–Schrödinger perturbation theory is to
calculate the long range interaction, or van der Waals’ force, between two hydrogen atoms
in their ground states. It is easy to show that the energy between the two atoms for large
separation r is attractive and varies as r−6.
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Fig. 5.3 First-order energy shifts for the n = 2 states in hydrogen, as a function of the applied magnetic field strength. See
Problem 5.24 at the end of this chapter. Note that there is a horizontal line at zero, in addition to the eight curves
for the 2s and 2p states. The evolution from eight states at low field to five states at high field is evident.
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Fig. 5.4 Two hydrogen atoms with their protons (+) separated by a fixed distance r and their electrons (−) at
displacements ri from them.

Consider the two protons of the hydrogen atoms to be fixed at a distance r (along the
z-axis) with r1 the vector from the first proton to its electron and r2 the vector from the
second proton to its electron; see Figure 5.4. Then the Hamiltonian H can be written as

H = H0 +V

H0 =− h̄2

2m
(∇2

1 +∇2
2)−

e2

r1
− e2

r2

V =
e2

r
+

e2

|r+ r2 − r1|
− e2

|r+ r2|
− e2

|r− r1|
. (5.147)

The lowest-energy solution of H0 is simply the product of the ground-state wave functions
of the noninteracting hydrogen atoms

U(0)
0 = U(0)

100(r1)U
(0)
100(r2). (5.148)
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Now for large r (� the Bohr radius a0) expand the perturbation V in powers of ri/r to
obtain

V =
e2

r3 (x1x2 + y1y2 −2z1z2)+0
(

1
r4

)
+ · · · . (5.149)

The lowest-order r−3 term in (5.149) corresponds to the interaction of two electric dipoles
er1 and er2 separated by r. The higher-order terms represent higher-order multipole
interactions, and thus every term in V involves spherical harmonics Ym

l with li > 0 for
each hydrogen atom. Hence, for each term in (5.149) the first-order perturbation energy
matrix element V00 � 0, since the ground-state U(0)

0 wave function (5.148) has li = 0 and∫
dΩYm

l (Ω) = 0 for l and m 	= 0. The second-order perturbation

E(2)(r) =
e4

r6 ∑
k	=0

|〈k(0)|x1x2 + y1y2 −2z1z2|0(0)〉|2

E(0)
0 −E(0)

k

(5.150)

will be nonvanishing. We immediately see that this interaction varies as 1/r6; since E(0)
k >

E(0)
0 , it is negative. This 1/r6 long range attractive van der Waals’ potential is a general

property of the interaction between two atoms in their ground state.3

5.4 Variational Methods

The perturbation theory developed in the previous sections is, of course, of no help unless
we already know exact solutions to a problem whose Hamiltonian is sufficiently similar.
The variational method we now discuss is very useful for estimating the ground-state
energy E0 when such exact solutions are not available.

We attempt to guess the ground-state energy E0 by considering a “trial ket” |0̃〉, which
tries to imitate the true ground-state ket |0〉. To this end we first obtain a theorem of great
practical importance. We define H such that

H ≡ 〈0̃|H|0̃〉
〈0̃|0̃〉

, (5.151)

where we have accommodated the possibility that |0̃〉 might not be normalized. We can
then prove the following.

Theorem 8

H ≥ E0. (5.152)

This means that we can obtain an upper bound to E0 by considering various kinds of |0̃〉.
The proof of this is very straightforward.

3 See the treatment in Schiff (1968), pp. 261–263, which gives a lower and upper bound on the magnitude of the
van der Waals’ potential from (5.150) and from a variational calculation. Also note the first footnote on p. 263
of Schiff concerning retardation effects.
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Proof Even though we do not know the energy eigenket of the Hamiltonian H, we can
imagine that |0̃〉 can be expanded as

|0̃〉=
∞

∑
k=0

|k〉〈k|0̃〉 (5.153)

where |k〉 is an exact energy eigenket of H:

H|k〉= Ek|k〉. (5.154)

The theorem (5.152) follows when we use Ek = Ek −E0 +E0 to evaluate H in (5.151). We
have

H =

∑
k=0

|〈k|0̃〉|2Ek

∑
k=0

|〈k|0̃〉|2
(5.155a)

=

∞

∑
k=1

|〈k|0̃〉|2(Ek −E0)

∑
k=0

|〈k|0̃〉|2
+E0 (5.155b)

≥ E0, (5.155c)

where we have used the fact that Ek−E0 in the first sum of (5.155b) is necessarily positive.
It is also obvious from this proof that the equality sign in (5.152) holds only if |0̃〉 coincides
exactly with |0〉, that is, if the coefficients 〈k|0̃〉 all vanish for k 	= 0. �

The theorem (5.152) is quite powerful because H provides an upper bound to the true
ground-state energy. Furthermore, a relatively poor trial ket can give a fairly good energy
estimate for the ground state because if

〈k|0̃〉 ∼ 0(ε) for k 	= 0, (5.156)

then from (5.155) we have

H−E0 ∼ 0(ε2). (5.157)

We see an example of this in a moment. Of course, the method does not say anything about
the discrepancy between H and E0; all we know is that H is larger than (or equal to) E0.

Another way to state the theorem is to assert that H is stationary with respect to the
variation

|0̃〉 → |0̃〉+ δ|0̃〉; (5.158)

that is, δH = 0 when |0̃〉 coincides with |0〉. By this we mean that if |0〉+ δ|0̃〉 is used in
place of |0̃〉 in (5.155) and we calculate H, then the error we commit in estimating the true
ground-state energy involves |0̃〉 to order (δ|0̃〉)2.

The variational method per se does not tell us what kind of trial kets are to be used
to estimate the ground-state energy. Quite often we must appeal to physical intuition, for
example, the asymptotic behavior of a wave function at large distances. What we do in
practice is to characterize trial kets by one or more parameters λ1,λ2,. . ., and compute H
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as a function of λ1,λ2,. . .. We then minimize H by (1) setting the derivative with respect
to the parameters all zero, namely,

∂H
∂λ1

= 0,
∂H
∂λ2

= 0,. . . , (5.159)

(2) determining the optimum values of λ1,λ2,. . ., and (3) substituting them back to the
expression for H.

If the wave function for the trial ket already has a functional form of the exact ground-
state energy eigenfunction, we of course obtain the true ground-state energy function by
this method. For example, suppose somebody has the foresight to guess that the wave
function for the ground state of the hydrogen atom must be of the form

〈x|0〉 ∝ e−r/a, (5.160)

where a is regarded as a parameter to be varied. We then find, upon minimizing H
with (5.160), the correct ground-state energy −e2/2a0. Not surprisingly, the minimum is
achieved when a coincides with the Bohr radius a0.

As a second example, we attempt to estimate the ground state of the infinite-well (one-
dimensional box) problem defined by

V =

{
0 for |x|< a
∞ for |x|> a.

(5.161)

The exact solutions are, of course, well known:

〈x|0〉= 1√
a

cos
(πx

2a

)
,

E0 =

(
h̄2

2m

)(
π2

4a2

)
.

(5.162)

But suppose we did not know these. Evidently the wave function must vanish at x = ±a;
furthermore, for the ground state the wave function cannot have any wiggles. The simplest
analytic function that satisfies both requirements is just a parabola going through x =±a:

〈x|0̃〉= a2 − x2, (5.163)

where we have not bothered to normalize |0̃〉. Here there is no variational parameter. We
can compute H as follows:

H =

(
−h̄2

2m

)∫ a

−a
(a2 − x2)

d2

dx2 (a
2 − x2)dx∫ a

−a
(a2 − x2)2 dx

=

(
10
π2

)(
π2h̄2

8a2m

)
� 1.0132E0. (5.164)

It is remarkable that with such a simple trial function we can come within 1.3% of the true
ground-state energy.
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A much better result can be obtained if we use a more sophisticated trial function.
We try

〈x|0̃〉= |a|λ−|x|λ, (5.165)

where λ is now regarded as a variational parameter. Straightforward algebra gives

H =

[
(λ+1)(2λ+1)

(2λ−1)

](
h̄2

4ma2

)
, (5.166)

which has a minimum at

λ =
(1+

√
6)

2
� 1.72, (5.167)

not far from λ = 2 (a parabola) considered earlier. This gives

Hmin =

(
5+2

√
6

π2

)
E0 � 1.00298E0. (5.168)

So the variational method with (5.165) gives the correct ground-state energy within
0.3% – a fantastic result considering the simplicity of the trial function used.

How well does this trial function imitate the true ground-state wave function? It is
amusing that we can answer this question without explicitly evaluating the overlap integral
〈0|0̃〉. Assuming that |0̃〉 is normalized, we have [from (5.151)–(5.154)]

Hmin =
∞

∑
k=0

|〈k|0̃〉|2Ek

≥ |〈0|0̃〉|2E0 +9E0(1−|〈0|0̃〉|2) (5.169)

where 9E0 is the energy of the second excited state; the first excited state (k = 1) gives no
contribution by parity conservation. Solving for |〈0|0̃〉| and using (5.168), we have

|〈0|0̃〉|2 ≥ 9E0 −Hmin

8E0
= 0.99963. (5.170)

Departure from unity characterizes a component of |0̃〉 in a direction orthogonal to |0〉. If
we are talking about the “angle” θ defined by

〈0|0̃〉= cosθ , (5.171)

then (5.170) corresponds to

θ <
∼

1.1◦, (5.172)

so |0〉 and |0̃〉 are nearly “parallel.”
One of the earliest applications of the variational method involved the ground-state

energy of the helium atom, which we will discuss in Section 7.4. We can also use the
variational method to estimate the energies of first excited states; all we need to do is work
with a trial ket orthogonal to the ground-state wave function, either exact, if known, or an
approximate one obtained by the variational method.
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5.5 Time-Dependent Potentials: The Interaction Picture

5.5.1 Statement of the Problem

So far in this book we have been concerned with Hamiltonians that do not contain time
explicitly. In nature, however, there are many quantum-mechanical systems of importance
with time dependence. In the remaining part of this chapter we show how to deal with
situations with time-dependent potentials.

We consider a Hamiltonian H such that it can be split into two parts,

H = H0 +V(t), (5.173)

where H0 does not contain time explicitly. The problem V(t) = 0 is assumed to be solved
in the sense that the energy eigenkets |n〉 and the energy eigenvalues En defined by

H0|n〉= En|n〉 (5.174)

are completely known.4 We may be interested in situations where initially only one of
the energy eigenstates of H0, for example, |i〉 is populated. As time goes on, however,
states other than |i〉 are populated because with V(t) 	= 0 we are no longer dealing with
“stationary” problems; the time-evolution operator is no longer as simple as e−iHt/h̄ when H
itself involves time. Quite generally the time-dependent potential V(t) can cause transitions
to states other than |i〉. The basic question we address is, what is the probability as a
function of time for the system to be found in |n〉, with n 	= i?

More generally, we may be interested in how an arbitrary state ket changes as time goes
on, where the total Hamiltonian is the sum of H0 and V(t). Suppose at t = 0, the state ket
of a physical system is given by

|α〉= ∑
n

cn(0)|n〉. (5.175)

We wish to find cn(t) for t > 0 such that

|α, t0 = 0; t〉= ∑
n

cn(t)e−iEnt/h̄|n〉 (5.176)

where the ket on the left side stands for the state ket in the Schrödinger picture at t of a
physical system whose state ket at t = 0 was found to be |α〉.

The astute reader may have noticed the manner in which we have separated the time
dependence of the coefficient of |n〉 in (5.176). The factor e−iEnt/h̄ is present even if V is
absent. This way of writing the time dependence makes it clear that the time evolution of
cn(t) is due solely to the presence of V(t); cn(t) would be identically equal to cn(0) and
hence independent of t if V were zero. As we shall see in a moment, this separation is
convenient because cn(t) satisfies a relatively simple differential equation. The probability
of finding |n〉 is found by evaluating |cn(t)|2.

4 In (5.174) we no longer use the notation |n(0)〉, E(0)
n .
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5.5.2 The Interaction Picture

Before we discuss the differential equation for cn(t), we discuss the interaction picture.
Suppose we have a physical system such that its state ket coincides with |α〉 at t = t0,
where t0 is often taken to be zero. At a later time, we denote the state ket in the Schrödinger
picture by |α, t0; t〉S, where the subscript S reminds us that we are dealing with the state ket
of the Schrödinger picture.

We now define

|α, t0; t〉I = eiH0t/h̄|α, t0; t〉S, (5.177)

where | 〉I stands for a state ket that represents the same physical situation in the interaction
picture. At t = 0, | 〉I evidently coincides with | 〉S. For operators (representing observables)
we define observables in the interaction picture as

AI ≡ eiH0 t / h̄AS e−iH0t / h̄. (5.178)

In particular,

VI = eiH0t / h̄Ve−iH0t / h̄ (5.179)

where V without a subscript is understood to be the time-dependent potential in the
Schrödinger picture. The reader may recall here the connection between the Schrödinger
picture and the Heisenberg picture:

|α〉H = e+iHt/h̄|α, t0 = 0; t〉S (5.180)

AH = eiHt/h̄ASe−iHt/h̄. (5.181)

The basic difference between (5.180) and (5.181) on the one hand and (5.177) and (5.178)
on the other is that H rather than H0 appears in the exponential.

We now derive the fundamental differential equation that characterizes the time
evolution of a state ket in the interaction picture. Let us take the time derivative of (5.177)
with the full H given by (5.173):

ih̄
∂
∂ t

|α, t0; t〉I = ih̄
∂
∂ t

(eiH0t/h̄|α, t0; t〉S)

=−H0eiH0t/h̄|α, t0; t〉S + eiH0t/h̄(H0 +V)|α, t0; t〉S

= eiH0t/h̄Ve−iH0t/h̄eiH0t/h̄|α, t0; t〉S. (5.182)

We thus see

ih̄
∂
∂ t

|α, t0; t〉I = VI|α, t0; t〉I, (5.183)

which is a Schrödinger-like equation with the total H replaced by VI. In other words
|α, t0; t〉I would be a ket fixed in time if VI were absent. We can also show for an observable
A (that does not contain time t explicitly in the Schrödinger picture) that

dAI

dt
=

1
ih̄
[AI,H0], (5.184)

which is a Heisenberg-like equation with H replaced by H0.
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Table 5.2 Heisenberg, Interaction, and Schrödinger Pictures

Heisenberg picture Interaction picture Schrödinger picture

State ket No change Evolution determined Evolution determined
by VI by H

Observable Evolution determined Evolution determined No change
by H by H0

In many respects, the interaction picture, or Dirac picture, is intermediate between the
Schrödinger picture and the Heisenberg picture. This should be evident from Table 5.2.

In the interaction picture we continue using |n〉 as our base ket. Thus we expand | 〉I as
follows:

|α, t0; t〉I = ∑
n

cn(t)|n〉. (5.185)

With t0 set equal to 0, we see that the cn(t) appearing here are the same as the cn(t)
introduced earlier in (5.176), as can easily be verified by multiplying both sides of (5.176)
by eiH0t/h̄ using (5.174).

We are finally in a position to write the differential equation for cn(t). Multiplying both
sides of (5.183) by 〈n| from the left, we obtain

ih̄
∂
∂ t

〈n|α, t0; t〉I = ∑
m
〈n|VI|m〉〈m|α, t0; t〉I. (5.186)

This can also be written using

〈n|eiH0t/h̄V(t)e−iH0t/h̄|m〉= Vnm(t)ei(En−Em)t/h̄

and
cn(t) = 〈n|α, t0; t〉I

[from (5.185)] as

ih̄
d
dt

cn(t) = ∑
m

Vnmeiωnmtcm(t), (5.187)

where

ωnm ≡ (En −Em)

h̄
=−ωmn. (5.188)

Explicitly,

ih̄

⎛⎜⎜⎜⎝
ċ1

ċ2

ċ3
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
V11 V12eiω12t · · ·

V21eiω21t V22 · · ·
V33 · · ·

...
...

. . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c1

c2

c3
...

⎞⎟⎟⎟⎠ . (5.189)

This is the basic coupled differential equation that must be solved to obtain the probability
of finding |n〉 as a function of t.
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5.5.3 Time-Dependent Two-State Problems: Nuclear Magnetic Resonance,
Masers, and So Forth

Exact soluble problems with time-dependent potentials are rather rare. In most cases we
have to resort to perturbation expansion to solve the coupled differential equations (5.189),
as we will discuss in the next section. There is, however, a problem of enormous practical
importance, which can be solved exactly – a two-state problem with a sinusoidal oscillating
potential.

The problem is defined by

H0 = E1|1〉〈1|+E2|2〉〈2| (E2 > E1)

V(t) = γeiωt|1〉〈2|+γe−iωt|2〉〈1|,
(5.190)

where γ and ω are real and positive. In the language of (5.186) and (5.187), we have

V12 = V∗
21 = γeiωt

V11 = V22 = 0.
(5.191)

We thus have a time-dependent potential that connects the two energy eigenstates of H0. In
other words, we can have a transition between the two states |1〉→←|2〉.

An exact solution to this problem is available. If initially, at t = 0, only the lower level
is populated so that [see (5.175)]

c1(0) = 1, c2(0) = 0, (5.192)

then the probability for being found in each of the two states is given by Rabi’s formula
(after I. I. Rabi, who is the father of molecular beam techniques)

|c2(t)|2 =
γ2/h̄2

γ2/h̄2 +(ω−ω21)2/4
sin2

{[
γ2

h̄2 +
(ω−ω21)

2

4

]1/2

t

}
(5.193a)

|c1(t)|2 = 1−|c2(t)|2, (5.193b)

where

ω21 ≡
(E2 −E1)

h̄
, (5.194)

as the reader may verify by working out Problem 5.37 of this chapter.
Let us now look at |c2|2 a little more closely. We see that the probability for finding the

upper state E2 exhibits an oscillatory time dependence with angular frequency, two times
that of

Ω=

√(
γ2

h̄2

)
+

(ω−ω21)2

4
. (5.195)

The amplitude of oscillation is very large when

ω � ω21 =
(E2 −E1)

h̄
, (5.196)
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1

0

Absorption Emission Absorption

|c1(t)|2 |c2(t)|2

πh/2γ πh/γ 3πh/2γ t

Fig. 5.5 Plot of |c1(t)|2 and |c2(t)|2 against time t exactly at resonanceω = ω21 andΩ = γ/h̄. The graph also illustrates
the back-and-forth behavior between |1〉 and |2〉.

Full width at half maximum = 4γ /h

|c2(t)|2max

1

1/2

ω21 ω

Fig. 5.6 Graph of |c2(t)|2
max as a function ofω, whereω = ω21 corresponds to the resonant frequency.

that is, when the angular frequency of the potential, usually due to an externally applied
electric or magnetic field, is nearly equal to the angular frequency characteristic of the
two-state system. Equation (5.196) is therefore known as the resonance condition.

It is instructive to look at (5.193a) and (5.193b) a little closely exactly at resonance:

ω = ω21, Ω=
γ
h̄

. (5.197)

We can plot |c1(t)|2 and |c2(t)|2 as a function of t; see Figure 5.5. From t = 0 to t = πh̄/2γ,
the two-level system absorbs energy from the time-dependent potential V(t); |c1(t)|2
decreases from unity as |c2(t)|2 grows. At t = πh̄/2γ, only the upper state is populated.
From t = πh̄/2γ to t = πh̄/γ, the system gives up its excess energy [of the excited (upper)
state] to V(t); |c2|2 decreases and |c1|2 increases. This absorption-emission cycle is repeated
indefinitely, as is also shown in Figure 5.5, so V(t) can be regarded as a source or sink of
energy; put in another way, V(t) can cause a transition from |1〉 to |2〉 (absorption) or from
|2〉 to |1〉 (emission). We will come back to this point of view when we discuss emission
and absorption of radiation.

The absorption-emission cycle takes place even away from resonance. However, the
amplitude of oscillation for |2〉 is now reduced; |c2(t)|2max is no longer 1 and |c1(t)|2 does
not go down all the way to 0. In Figure 5.6 we plot |c2(t)|2max as a function of ω. This curve
has a resonance peak centered around ω = ω21, and the full width at half maximum is
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given by 4γ/h̄. It is worth noting that the weaker the time-dependent potential (γ small),
the narrower the resonance peak.

5.5.4 Spin Magnetic Resonance

The two-state problem defined by (5.190) has many physical applications. As a first
example, consider a spin 1

2 system, say a bound electron, subjected to a t-independent
uniform magnetic field in the z-direction and, in addition, a t-dependent magnetic field
rotating in the xy-plane:

B = B0ẑ+B1(x̂cosωt+ ŷsinωt) (5.198)

with B0 and B1 constant. We can treat the effect of the uniform t-independent field as H0

and the effect of the rotating field as V. For

μ =
e

mec
S (5.199)

we have

H0 =−
(

eh̄B0

2mec

)
(|+〉〈+|− |−〉〈−|)

V(t) =−
(

eh̄B1

2mec

)
[cosωt(|+〉〈−|+ |−〉〈+|)

+ sinωt(−i|+〉〈−|+ i|−〉〈+|)],

(5.200)

where we have used the ket-bra forms of 2Sj/h̄ [see (3.25)]. With e < 0, E+ has a higher
energy than E−, and we can identify

|+〉 → |2〉 (upper level)
|−〉 → |1〉 (lower level)

(5.201)

to make correspondence with the notation of (5.190). The angular frequency characteristic
of the two-state system is

ω21 =
|e|B0

mec
, (5.202)

which is just the spin-precession frequency for the B0 	= 0, B1 = 0 problem already treated
in Section 2.1. Even though the expectation values of 〈Sx,y〉 change due to spin precession
in the counterclockwise direction (seen from the positive z-side), |c+|2 and |c−|2 remain
unchanged in the absence of the rotating field. We now add a new feature as a result of
the rotating field: |c+|2 and |c−|2 do change as a function of time. This can be seen by
identifying

−eh̄B1

2mec
→ γ, ω→ ω (5.203)

to make correspondence with the notation of (5.190); our time-dependent interaction
(5.200) is precisely of form (5.190). The fact that |c+(t)|2 and |c−(t)|2 vary in the manner
indicated by Figure 5.5 for ω = ω21 and the correspondence (5.201), for example, implies
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that the spin 1
2 system undergoes a succession of spin-flips, |+〉→←|−〉, in addition to spin

precession. Semiclassically, spin-flips of this kind can be interpreted as being due to the
driving torque exerted by rotating B.

The resonance condition is satisfied whenever the frequency of the rotating magnetic
field coincides with the frequency of spin precession determined by the strength of the
uniform magnetic field. We see that the probability of spin-flips is particularly large.

In practice, a rotating magnetic field may be difficult to produce experimentally.
Fortunately, a horizontally oscillating magnetic field, for instance, in the x-direction, is
just as good. To see this, we first note that such an oscillating field can be decomposed into
a counterclockwise component and a clockwise component as follows:

2B1x̂cosωt = B1(x̂cosωt+ ŷsinωt)+B1(x̂cosωt− ŷsinωt). (5.204)

We can obtain the effect of the counterclockwise component simply by reversing the sign
of ω. Suppose the resonance condition is met for the counterclockwise component

ω � ω21. (5.205)

Under a typical experimental condition,
B1

B0
� 1, (5.206)

which implies from (5.202) and (5.203) that
γ
h̄
� ω21; (5.207)

as a result, whenever the resonance condition is met for the counterclockwise component,
the effect of the clockwise component becomes completely negligible, since it amounts
to ω → −ω, and the amplitude becomes small in magnitude as well as very rapidly
oscillating.

The resonance problem we have solved is of fundamental importance in interpreting
atomic molecular beam and nuclear magnetic resonance experiments. By varying the
frequency of oscillating field, it is possible to make a very precise measurement of magnetic
moment. We have based our discussion on the solution to differential equations (5.189);
this problem can also be solved, perhaps more elegantly, by introducing the rotating axis
representation of Rabi, Schwinger, and Van Vleck.

5.5.5 Maser

As another application of the time-dependent two-state problem, let us consider a maser.
Specifically, we consider an ammonia molecule NH3, which – as we may recall from
Section 4.2 – has two parity eigenstates |S〉 and |A〉 lying close together such that |A〉 is
slightly higher. Let μel be the electric dipole operator of the molecule. From symmetry
considerations we expect that μel is proportional to x, the position operator for the N atom.
The basic interaction is like −μel · E, where for a maser E is a time-dependent electric field
in a microwave cavity:

E = |E|maxẑcosωt. (5.208)
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It is legitimate to ignore the spatial variation of E because the wavelength in the microwave
region is far larger than the molecular dimension. The frequency ω is tuned to the energy
difference between |A〉 and |S〉:

ω � (EA −ES)

h̄
. (5.209)

The diagonal matrix elements of the dipole operator vanish by parity,

〈A|μel|A〉= 〈S|μel|S〉= 0, (5.210)

but the off-diagonal elements are, in general, nonvanishing:

〈S|x|A〉= 〈A|x|S〉 	= 0. (5.211)

This means that there is a time-dependent potential that connects |S〉 and |A〉, and the
general two-state problem we discussed earlier is now applicable.

We are now in a position to discuss how masers work. Given a molecular beam of NH3

containing both |S〉 and |A〉, we first eliminate the |S〉 component by letting the beam go
through a region of time-independent inhomogeneous electric field. Such an electric field
separates |S〉 from |A〉 in much the same way as the inhomogeneous magnetic field in
the Stern–Gerlach experiment separates |+〉 from |−〉. A pure beam of |A〉 then enters a
microwave cavity tuned to the energy difference EA −ES. The dimension of the cavity is
such that the time spent by the molecule is just (π/2)h̄/γ. As a result we stay in the first
emission phase of Figure 5.5; we have |A〉 in and |S〉 out. The excess energy of |A〉 is given
up to the time-dependent potential as |A〉 turns into |S〉 and the radiation (microwave) field
gains energy. In this way we obtain Microwave Amplification by Stimulated Emission of
Radiation, or MASER.

There are many other applications of the general time-dependent two-state problem,
such as the atomic clock and optical pumping. In fact, it is amusing to see that as many
as four Nobel Prizes in physics have been awarded to those who exploited time-dependent
two-state systems of some form.5

5.6 Hamiltonians with Extreme Time Dependence

This section is devoted to time-dependent Hamiltonians, with some “obvious” approxima-
tions in the case of very fast or very slow time dependence. A careful look, though, points
out some interesting phenomena, one of which did not come to light until very late in the
twentieth century.

Our treatment here is limited to a discussion of the basics, followed by some specific
examples. An instructive example which we do not discuss is that of the square well with

5 Nobel Prize winners who took advantage of resonance in the two-level systems are Rabi (1944) on molecular
beams and nuclear magnetic resonance; Bloch and Purecell (1952) on B field in atomic nuclei and nuclear
magnetic moments; Townes, Basov, and Prochorov (1964) on masers, lasers, and quantum optics; and
Kastler (1966) on optical pumping.
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contracting or expanding walls, where the walls may move quickly or slowly. For these
cases, we refer the interested reader to Pinder, Am. J. Phys., 58 (1990) 54, and D. W.
Schlitt and Stutz, Am. J. Phys., 38 (1970) 70.

5.6.1 Sudden Approximation

If a Hamiltonian changes very quickly, then the system “doesn’t have time” to adjust to
the change. This leaves the system in the same state it was before the change, and is the
essence of the so-called “sudden approximation.”

Of course, even though it may have been in an eigenstate beforehand, there is no
reason to believe that this is an eigenstate of the transformed Hamiltonian. Therein
lie opportunities for interesting physics. One classic example is the calculation of the
population of electronic final states in the 3He+ ion following beta decay of the tritium
atom.6 See Problem 5.42 at the end of this chapter.

Let us consider a more precise statement of the sudden approximation, and work through
some of the consequences. Rewrite the Schrödinger equation for the time-evolution
operator (2.25) as

i
∂
∂ s

U (t, t0) =
H

h̄/T
U (t, t0) =

H
h̄Ω

U (t, t0), (5.212)

where we have written time t = sT in terms of a dimensionless parameter s and a time scale
T, and defined Ω ≡ 1/T. In the sudden approximation, the time scale T → 0 which means
that h̄Ω will be much larger than the energy scale represented by H. Assuming we can
redefine H by adding or subtracting an arbitrary constant, introducing some overall phase
factor in the state vectors, we see that

U (t, t0)→ 1 as T → 0. (5.213)

This proves the validity of the sudden approximation. It should be appropriate if T is
small compared to times 2π/ωab where Eab = h̄ωab is the difference between two relevant
eigenvalues of the Hamiltonian H.

5.6.2 Adiabatic Approximation

We tend to take the adiabatic approximation for granted. Given a Hamiltonian which
depends on some set of parameters, we will find energy eigenvalues which depend on
the values of those parameters. If the parameters vary “slowly” with time, then the
energy eigenvalues should just follow the values one gets as the parameters themselves
change. The key is what we mean by “slowly.” Quantum mechanically or otherwise,
presumably we mean that the parameters change on a time scale T that is much larger
than 2π/ωab = 2πh̄/Eab for some difference Eab in energy eigenvalues.

6 This has important implications for modern experiments which try to infer a nonzero neutrino mass from beta
decay measurements. The Karlsruhe Tritium Neutrino Experiment (KATRIN), for example, has just published
first results at the time of this writing. See Aker et al., Phys. Rev. Lett., 123 (2019) 221802.



329 5.6 Hamiltonians with Extreme Time Dependence

An obvious classical example is a pendulum which is transported around near the surface
of the Earth. The pendulum will behave normally as you climb a mountain, with only the
period slowly lengthening as the force of gravity decreases, so long as the time over which
the height is changed is long compared to pendulum period. If one slowly changes the
electric field which permeates a hydrogen atom, the energy levels will change in pace
according to the Stark effect calculation in Section 5.2.

Let us consider the mathematics of adiabatic change from a quantum-mechanical point
of view. We follow the treatment given in Griffiths (2005), and pay particular attention to
the phase change as a function of time. We number the states in order using the index n
and assume no degeneracy7 so there is no confusion with the ordering of states crossing as
time changes. Our starting point is essentially (2.27) but we will take t0 = 0 and suppress
the initial time in our notation.

Begin with the eigenvalue equation using the notation

H(t)|n; t〉= En(t)|n; t〉, (5.214)

simply noting that at any particular time t, the states and eigenvalues may change. If we
now look for general solutions to the Schrödinger equation of the form

ih̄
∂
∂ t

|α; t〉= H(t)|α; t〉 (5.215)

then we can write

|α; t〉= ∑
n

cn(t)eiθn(t)|n; t〉 (5.216)

where

θn(t)≡−1
h̄

∫ t

0
En(t′)dt′. (5.217)

The separation of the expansion coefficient into the factors cn(t) and exp(iθn(t)) will prove
useful in a moment. Substituting (5.216) into (5.215) and using (5.214) we find

∑
n

eiθn(t)
[

ċn(t)|n; t〉+ cn(t)
∂
∂ t

|n; t〉
]
= 0. (5.218)

Now, taking the inner product with 〈m; t| and invoking orthonormality of the eigenstates at
equal times, we arrive at a differential equation for the cn(t), namely

ċm(t) =−∑
n

cn(t)ei[θn(t)−θm(t)]〈m; t|
[

∂
∂ t

|n; t〉
]

. (5.219)

The inner product 〈m; t|(∂ /∂ t)|n; t〉 is a new feature. If H were not time dependent, then
the |n; t〉 would be stationary states, and the usual exponential time dependence would
emerge. In order to treat this in the general case, we can go back to (5.214) and take the
time derivative of both sides. For the case where m 	= n we find

〈m; t|Ḣ|n; t〉= [En(t)−Em(t)]〈m; t|
[

∂
∂ t

|n; t〉
]

. (5.220)

7 This is not a significant constraint. If the degeneracy is broken by H(t) after some time, we can just “start”
there. If the degeneracy is never broken by H(t) then it is irrelevant.
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This finally allows us to rewrite (5.219) as

ċm(t) =−cm(t)〈m; t|
[

∂
∂ t

|m; t〉
]
−∑

n
cn(t)ei(θn−θm)

〈m; t|Ḣ|n; t〉
En −Em

(5.221)

which is a formal solution to the general time-dependent problem. Equation (5.221)
demonstrates that as time goes on, states with n 	= m will mix with |m; t〉 due to the time
dependence of the Hamiltonian H, by virtue of the second term.

Now we can apply the adiabatic approximation, which amounts to neglecting the second
term in (5.221). Roughly, this means that

|〈m; t|Ḣ|n; t〉|
Enm

≡ 1
τ
� 〈m; t|

[
∂
∂ t

|m; t〉
]
∼ Em

h̄
. (5.222)

In other words, the time scale τ for changes in the Hamiltonian must be very large
compared to the inverse natural frequency of the state phase factor. That is, just as for
the pendulum being carried around the Earth, the Hamiltonian changes much more slowly
than the oscillation frequency of the system. Consequently, we have

cn(t) = eiγn(t)cn(0) (5.223)

where

γn(t)≡ i
∫ t

0
〈n; t′|

[
∂

∂ t′
|n; t′〉

]
dt′. (5.224)

Note that by this definition, γn(t) is real, since

0 =
∂
∂ t

〈n; t|n; t〉=
[

∂
∂ t

〈n; t|
]
|n; t〉+ 〈n; t|

[
∂
∂ t

|n; t〉
]

(5.225)

or, in other words, (
〈n; t|

[
∂
∂ t

|n; t〉
])∗

=−〈n; t|
[

∂
∂ t

|n; t〉
]

(5.226)

in which case the integrand in (5.224) is purely imaginary.
Therefore, in the adiabatic approximation, if a system starts out in an eigenstate |n〉 of

H(0), then it remains in the eigenstate |n; t〉 of H(t), since ci(0) = 0 unless i = n in which
case cn(0) = 1. Using (5.216) with (5.223) we have, in an obvious notation,

|α(n); t〉= eiγn(t)eiθn(t)|n; t〉. (5.227)

It would appear that (5.227) is difficult to use, since the definition (5.224) assumes the time
dependence of the state is given, but we will find ways to make good use of this result. In
any case, it is easy to see that the result is self consistent. We know that for the case when
H is not time dependent, we expect

|n; t〉= e−iEnt/h̄|n〉 (5.228)

and so

〈n; t|
[

∂
∂ t

|n; t〉
]
=−i

En

h̄
(5.229)



331 5.6 Hamiltonians with Extreme Time Dependence

which, by (5.224) gives γn(t) = +Ent/h̄. On the other hand, (5.217) says that θn(t) =
−Ent/h̄. So, the two exponential factors in (5.227) cancel each other, and we find

|α(n); t〉= |n; t〉 for H 	= H(t) (5.230)

as we should expect.
The addition of this new phase γn(t) is the only result of the adiabatic approximation

that is less than obvious. It was not considered worth pursuing for many years, until it was
discovered that it is in fact measurable. Indeed, it turns out to be the quantum-mechanical
manifestation of very many physical phenomena that involve systems that are cyclic
in time.

5.6.3 Berry’s Phase

Excitement in the implications of (5.224) grew dramatically with the publication of
“Quantal phase factors accompanying adiabatic changes”, by M. V. Berry (Proc. R. Soc.
London, Ser. A, 392 (1984) 45). Indeed, the accumulated phase for systems which travel in
a closed loop is generally called “Berry’s phase,” although Berry himself refers to this as a
“geometric phase.”

Berry’s paper is widely cited, and the interested reader will have no difficulty finding
many references. One particular paper that provides a succinct summary and interesting
implications is “The adiabatic theorem and Berry’s phase” by Holstein (Am. J. Phys., 57
(1989) 1079). Berry, in fact, gives a lovely history of work prior to his own publication, in
“Anticipations of the geometric phase” (Phys. Today, 43 (1990) 34).

Assume that the time dependence of the Hamiltonian is represented by a “vector of
parameters” R(t). That is, there exists some space in which the components of a vector
R(t) specify the Hamiltonian, and change as a function of time. (In an example below,
R(t) will be the magnetic field.) Therefore, we have En(t)=En(R(t)) and |n; t〉= |n(R(t))〉,
and also

〈n; t|
[

∂
∂ t

|n; t〉
]
= 〈n; t| [∇R|n; t〉] · dR

dt
(5.231)

where ∇R is simply a gradient operator in the space and direction of R. The geometric
phase (5.224) then becomes

γn(T) = i
∫ T

0
〈n; t| [∇R|n; t〉] · dR

dt
dt

= i
∫ R(T)

R(0)
〈n; t| [∇R|n; t〉] ·dR. (5.232)

In the case where T represents the period for one full cycle, so that R(T) = R(0) where the
vector R traces a curve C, we have

γn(C) = i
∮
〈n; t| [∇R|n; t〉] ·dR. (5.233)
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With a notation that shows a bias of how we can proceed, define

An(R)≡ i〈n; t| [∇R|n; t〉] (5.234)

in which case

γn(C) =
∮

C
An(R) ·dR =

∫
[∇R ×An(R)] ·da (5.235)

using Stokes’s theorem, generalized8 for the dimensionality of R. (The measure da is a
small area element on some surface bounded by the closed path.) Thus, Berry’s phase is
determined by the “flux” of a generalized field

Bn(R)≡ ∇R ×An(R) (5.236)

through a surface S bounded by the circuit followed by R(t) over one complete cycle. One
obtains the same phase γn so long as one encounters the same total flux, regardless of
the actual path followed by R(t). Note that, quite similarly to our derivation of the result
(5.226), both An(R) and Bn(R) are purely real quantities. Soon we will be concerning
ourselves with sources of the field Bn(R).

Equation (5.235) has a remarkable property that betrays the notation we have chosen
using An(R). Suppose that we multiply |n; t〉 by an arbitrary phase factor that changes
through R-space. That is

|n; t〉 −→ eiδ(R)|n; t〉. (5.237)

Then by (5.234) we have

An(R)−→ An(R)−∇Rδ(R) (5.238)

which leaves (5.235) unchanged. In other words, the value of γn(C) does not depend on
the details of the phase behavior along the path, despite our starting point (5.227). Indeed,
γn(C) depends only on the geometry of the path traced out by R(t), hence the name
“geometric” phase. Of course, it remains for us to show that γn(C) is nonzero, at least
under certain conditions. Note also, that (5.237) and (5.238) have exactly the same form as
that for gauge transformations in electromagnetism. See (2.356) and (2.369). This analogy
will be exploited more fully before we conclude this section.

We now turn to an evaluation of γn(C). Noting first that since the curl of a gradient
vanishes, we can combine (5.234) and (5.236) to get

Bn(R) = i [∇R〈n; t|]× [∇R|n; t〉] . (5.239)

Now insert a complete set of states |m; t〉 to find

Bn(R) = i ∑
m	=n

[∇R〈n; t|] |m; t〉×〈m; t| [∇R|n; t〉] . (5.240)

8 To be sure, generalizing Stokes’s theorem for higher dimensionality, is not trivial. See a discussion of this in
Berry’s original paper. In our case, however, all of our examples will involve only three-dimensional parameter
vectors R.
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We explicitly discard the term with m = n, but it is easily shown to be zero, since
〈n; t|n; t〉=1 implies that [∇R〈n; t|] |n; t〉 = −〈n; t| [∇R|n; t〉] and so the cross product in
(5.240) must be zero. Now, by taking the R-gradient of (5.214) and taking the inner product
with 〈m; t| we determine

〈m; t| [∇R|n; t〉] = 〈m; t| [∇RH] |n; t〉
En −Em

m 	= n. (5.241)

This allows us to write, finally,

γn(C) =
∫

Bn(R) ·da (5.242)

where

Bn(R) = i ∑
m	=n

〈n; t| [∇RH] |m; t〉×〈m; t| [∇RH] |n; t〉
(Em −En)2 . (5.243)

As Berry states in his original paper, these last two equations “embody the central results”
of his work. Points in R-space where Em(R) = En(R) will contribute to the surface integral
(5.242) even though the path enclosing that surface does not include those points.

It was realized early on that Berry’s phase could be observed using photons moving
through a twisted optical fiber, and that the geometric character of this phase could be
tested experimentally. See Tomita and Chiao, Phys. Rev. Lett., 57 (1986) 937. Indeed, this
experiment can be carried out in the student laboratory. A description of the setup can be
found in Melissinos and Napolitano (2003).

The next section carries through an example strongly connected to concepts already
developed in this textbook, and compared to measurement. However, there are many
examples that can be experimentally verified. One is the precise demonstration of Berry’s
phase in chemical kinetics, described in Yuan et al., Science, 362 (2018) 1289.

5.6.4 Example: Berry’s Phase for Spin 1
2

Let us now turn to a specific example, and carry through a calculation of γn(C) from
(5.242). We will study the phase motion for a spin 1

2 particle manipulated slowly
through a time varying magnetic field. This particular example has in fact been studied
experimentally.

We return to (2.49), our familiar Hamiltonian for a spin 1
2 particle in a magnetic field,

but with some modification for a particle with arbitrary magnetic moment. Since in this
case, it is the magnetic field which changes slowly in time, let the magnetic field be given
by the three-dimensional vector9 R(t). That is, R(t) is the vector of parameters that we will
change slowly. For a magnetic moment μ, our Hamiltonian is written as

H(t) = H(R(t)) =−2μ
h̄

S ·R(t) (5.244)

where S is the spin 1
2 angular-momentum operator. Written in this way, the expectation

value for the magnetic moment in the spin-up state is simply μ.

9 We do not use B to represent the magnetic field, so that we avoid confusions with (5.243).
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Now on to the evaluation of B(R) using (5.243). First, it is simple enough to show,
either explicitly (see Problem 3.3 in Chapter 3) or using rotational symmetry to fix R in
the ẑ-direction, that the two energy eigenvalues for (5.244) are

E±(t) =∓μR(t) (5.245)

where R(t) is the magnitude of the magnetic field vector, and the spin-up(down) eigenstates
(with respect to the direction of R(t)) are |±; t〉. The summation in (5.243) consists of only
one term, with denominator

(E±−E∓)
2 = 4μ2R2. (5.246)

It is also clear that

∇RH =−2μ
h̄

S (5.247)

leaving us with the need to evaluate the cross product

〈±; t|S|∓; t〉×〈∓; t|S|±; t〉= 〈±; t|S|∓; t〉×〈±; t|S|∓; t〉∗. (5.248)

Evaluating this matrix element would be tedious, except that we can invoke rotational
symmetry and define the components of S relative to the direction of R. That is, |±; t〉 can
be taken to be eigenstates of Sz. So, using (3.157) to write

S =
1
2
(S++S−) x̂+

1
2i

(S+−S−) ŷ+Szẑ, (5.249)

we invoke (3.191) and (3.192) to find

〈±; t|S|∓; t〉= h̄
2
(x̂∓ iŷ) . (5.250)

Combining (5.246), (5.248), and (5.250), we have

B±(R) =∓ 1
2R2(t)

ẑ. (5.251)

Of course, this result was derived by taking |±; t〉 to be eigenstates of Sz, when in fact they
are in the direction of R. Therefore, we actually have

B±(R) =∓ 1
2R2(t)

R̂. (5.252)

Finally, we calculate Berry’s phase (5.242) to be

γ±(C) =∓1
2

∫ R̂ ·da
R2 =∓1

2
Ω (5.253)

where Ω is the “solid angle” subtended by the path through which the parameter vector
R(t) travels, relative to an origin R = 0 which is the source point for the field B. This
emphasizes the “geometric” character of Berry’s phase. Specifics of the path do not matter,
so long as the solid angle subtended by the path is the same. The result is also independent
of the magnetic moment μ.

Soon after Berry’s prediction for this effect in spin 1
2 systems, two groups carried out

measurements using neutrons at the Institut Laue-Langevin in Grenoble, France. One of
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Fig. 5.7 Observation of Berry’s phase for spin 1
2 particles using ultra cold neutrons, from Richardson et al., Phys. Rev. Lett.,

61 (1988) 2030. Data are taken from Table 1 of their paper, and show Berry’s phase as a function of “solid angle” for
the rotating magnetic field. Both spin-up and spin-down phases were measured. Uncertainties on the data points
are about the same size as, or smaller than, the points themselves. The solid lines are taken from (5.253).

these, Bitter and Dubbers, Phys. Rev. Lett., 59 (1987) 251, used a slow (500 m/sec) neutron
beam passing through a twisted magnetic field. The second, Richardson et al., Phys. Rev.
Lett., 61 (1988) 2030, made use of ultra cold neutrons (UCN) and is more precise. UCN
can be stored for long periods of time, so a cycle period T = 7.387 sec was used, ensuring
the validity of the adiabatic theorem. Initially polarized in the z-direction, the neutrons are
subjected to a rotating magnetic field component that is switched on at t = 0 and switched
off at t= T. The magnetic field vector traces out a circle (or ellipse, depending on adjustable
parameters) in the yz-plane, depolarizing the neutrons by an amount depending on the
integrated phase. Measuring the final polarization determines the integrated phase, and the
dynamical phase (5.217) is subtracted off, leaving Berry’s phase.

Figure 5.7 shows the results obtained by Richardson et al. Both spin-up and spin-down
phases are measured, and both agree extremely well with Berry’s analysis. Even though
the value of the magnetic moment does not enter the calculation, its sign determines the
direction of rotation, and this experiment confirms that the neutron magnetic moment is
indeed negative.

5.6.5 Aharonov–Bohm and Magnetic Monopoles Revisited

We have seen that Berry’s phase uses a formalism that is closely tied to the formalism of
gauge transformations. See (5.237) and (5.238). Let us now makes this connection closer
to some physics we have already seen in our study of gauge transformation in Section 2.7.

First we can show that the Aharonov–Bohm effect due to the magnetic field can be
shown to be just a consequence of a geometrical phase factor. Let a small box confining an
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Magnetic flux line

Fig. 5.8 The Aharonov–Bohm effect as a manifestation of Berry’s phase. An electron in a box takes one turn around a
magnetic flux line.

electron (charge e < 0) make one turn along a closed loop C, which surrounds a magnetic
flux line ΦB, as shown in Figure 5.8. Let R be the vector connecting the origin fixed in the
space and a reference point in the box. In this case the vector R is an external parameter in
the real space itself. By using the vector-potential A to describe the magnetic field B, the
nth wave function of the electron in the box (with position vector r) is written as

〈r|n(R)〉= exp

{
ie
h̄c

∫ r

R
A(r′) ·dr′

}
ψn(r−R) (5.254)

where ψn(r′) is the wave function of the electron at the r′ position coordinates of the box
in the absence of magnetic field.

Now let R travel around the loop C and calculate Berry’s phase. We can easily calculate
the derivative of the wave function with respect to the external parameter to obtain

〈n(R) | [∇R|n(R)〉] =
∫

d3xψ∗
n(r−R)

×
{
− ie

h̄c
A(R)ψn(r−R)+∇Rψn(r−R)

}
=− ieA(R)

h̄c
. (5.255)

The second term under the integral vanishes for the electron in the box. From (5.232)
and (5.255) we see that the geometrical phase is given by

γn(C) =
e
h̄c

∮
C

A ·dR =
e

h̄c

∫∫
S(C)

B(R) ·dS =
e
h̄c
ΦB. (5.256)

This result is just the expression (2.390) of the Aharonov–Bohm effect obtained earlier in
Section 2.7.
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A second example10 of the physical connection between gauge invariance and Berry’s
phase, is the Dirac quantization condition (2.405) for magnetic monopoles. Consider two
surfaces a1 and a2 in R-space, each bounded by the same curve C. Since the Berry’s phase
that results from following C is physically measurable, the surface integral (5.242) must
be the same for a1 and a2 to within a multiple of 2π. That is∫

a1

B ·da =

∫
a2

B ·da+2Nπ N = 0,±1,±2,. . . . (5.257)

Now construct a closed surface by putting a1 “above” C and a2 below. Assuming that we
use something like the right-hand rule to consistently determine the orientation of da for
each of the two integrals in (5.257), then da points inward for one of them. So, reverse the
sign of da for that integral, and rewrite (5.257) as∮

B ·da = 2Nπ. (5.258)

Of course, inserting (5.252) into (5.258) yields ±2π, i.e. N = ±1, but that is an artifact
of our choosing a spin 1

2 system for deriving (5.252). If we carried through that example
for a system with arbitrary spin, then n works out to be equal to twice the spin projection
quantum number.

Now (5.252) looks suspiciously like the magnetic field from a monopole with charge
1/2, but recall that it is in fact a Berry field. How can we relate this to an actual magnetic
field for a monopole? It is easiest to see this when we express Berry’s phase in terms of the
line integral in (5.235) of the vector potential around the curve C. The gauge transformation
(2.403) gives the form of the vector potential, and the line integral is just an integral over φ
leading to a factor of 2π. We can then use this to evaluate the left side of (5.258), including
the interaction with an single electric charge e to complete the phase, leading to the factor
e/h̄c as in (2.404). Thus, (5.258) becomes

e
h̄c

(2eM)2π = 2Nπ

or
2eeM

h̄c
= N (5.259)

which is the same result (2.405) as we obtained earlier in Section 2.7.

5.7 Time-Dependent Perturbation Theory

5.7.1 Dyson Series

With the exception of a few problems like the two-level time-dependent problem of
the previous section, exact solutions to the differential equation for cn(t) are usually

10 Our discussion here closely follows that given by Holstein, Am. J. Phys., 57 (1989) 1079.
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not available. We must be content with approximate solutions to (5.189) obtained by
perturbation expansion:

cn(t) = c(0)n + c(1)n + c(2)n + · · · , (5.260)

where c(1)n ,c(2)n ,. . . signify amplitudes of first order, second order, and so on in the strength
parameter of the time-dependent potential. The iteration method used to solve this problem
is similar to what we did in time-independent perturbation theory. If initially only the state
i is populated, we approximate cn on the right-hand side of differential equation (5.189)
by c(0)n = δni (independent of t) and relate it to the time derivative of c(1)n , integrate the
differential equation to obtain c(1)n , plug c(1)n into the right-hand side [of (5.189)] again
to obtain the differential equation for c(2)n , and so on. This is how Dirac developed time-
dependent perturbation theory in 1927.

Instead of working with cn(t), we propose to look at the time-evolution operator UI(t, t0)
in the interaction picture, which we will define later. We obtain a perturbation expansion
for UI(t, t0), and at the very end we relate the matrix elements of UI to cn(t). If we are
interested only in solving simple problems in nonrelativistic quantum mechanics, all this
might look superfluous; however, the operator formalism we develop is very powerful
because it can immediately be applied to more advanced problems, such as relativistic
quantum field theory and many-body theory.

The time-evolution operator in the interaction picture is defined by

|α, t0; t〉I = UI(t, t0)|α, t0; t0〉I. (5.261)

Differential equation (5.183) for the state ket of the interaction picture is equivalent to

ih̄
d
dt

UI(t, t0) = VI(t)UI(t, t0). (5.262)

We must solve this operator differential equation subject to the initial condition

UI(t, t0)|t=t0 = 1. (5.263)

First, let us note that the differential equation together with the initial condition is
equivalent to the following integral equation:

UI(t, t0) = 1− i
h̄

∫ t

t0
VI(t′)UI(t′, t0)dt′. (5.264)

We can obtain an approximate solution to this equation by iteration:

UI(t, t0) =1− i
h̄

∫ t

t0
VI(t′)

[
1− i

h̄

∫ t′

t0
VI(t′′)UI(t′′, t0)dt′′

]
dt′

=1− i
h̄

∫ t

t0
dt′VI(t′)+

(
−i
h̄

)2 ∫ t

t0
dt′

∫ t′

t0
dt′′VI(t′)VI(t′′)
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+ · · ·+
(
−i
h̄

)n ∫ t

t0
dt′

∫ t′

t0
dt′′ · · ·

×
∫ t(n−1)

t0
dt(n)VI(t′)VI(t′′) · · ·VI(t(n))

+ · · · . (5.265)

This series is known as the Dyson series after Freeman J. Dyson, who applied this method
to covariant quantum electrodynamics (QED).11 Setting aside the difficult question of
convergence, we can compute UI(t, t0) to any finite order of perturbation theory.

5.7.2 Transition Probability

Once UI(t, t0) is given, we can predict the time development of any state ket. For example,
if the initial state at t = 0 is one of the energy eigenstates of H0, then to obtain the initial
state ket at a later time, all we need to do is multiply by UI(t,0):

|i, t0 = 0; t〉I = UI(t,0)|i〉

= ∑
n
|n〉〈n|UI(t,0)|i〉. (5.266)

In fact, 〈n|UI(t,0)|i〉 is nothing more than what we called cn(t) earlier [see (5.185)]. We
will say more about this later.

We earlier introduced the time-evolution operator U(t, t0) in the Schrödinger picture (see
Section 2.2). Let us now explore the connection between U(t, t0) and UI(t, t0). We note from
(2.87) and (5.177) that

|α, t0; t〉I = eiH0t/h̄|α, t0; t〉S

= eiH0t/h̄U(t, t0)|α, t0; t0〉S

= eiH0t/h̄U(t, t0)e−iH0t0/h̄|α, t0; t0〉I. (5.267)

So we have

UI(t, t0) = eiH0t/h̄U(t, t0)e−iH0t0/h̄. (5.268)

Let us now look at the matrix element of UI(t, t0) between energy eigenstates of H0:

〈n|UI(t, t0)|i〉= ei(Ent−Eit0)/h̄〈n|U(t, t0)|i〉. (5.269)

We recall from Section 2.2 that 〈n|U(t, t0)|i〉 is defined to be the transition amplitude. Hence
our 〈n|UI(t, t0)|i〉 here is not quite the same as the transition amplitude defined earlier.
However, the transition probability defined as the square of the modulus of 〈n|U(t, t0)|i〉 is
the same as the analogous quantity in the interaction picture

|〈n|UI(t, t0)|i〉|2 = |〈n|U(t, t0)|i〉|2. (5.270)

11 Note that in QED, the time-ordered product (t′ > t′′ > · · ·) is introduced, and then this perturbation series
can be summed into an exponential form. This exponential form immediately gives U(t, t0) = U(t, t1)U(t1, t0)
(Bjorken and Drell (1965), pp. 175–178).
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Parenthetically, we may remark that if the matrix elements of UI are taken between initial
and final states that are not energy eigenstates, for example, between |a′〉 and |b′〉 (eigenkets
of A and B, respectively), where [H0,A] 	= 0 and/or [H0,B] 	= 0, then we have, in general,

|〈b′|UI(t, t0)|a′〉| 	= |〈b′|U(t, t0)|a′〉|,

as the reader may easily verify. Fortunately, in problems where the interaction picture
is found to be useful, the initial and final states are usually taken to be H0 eigenstates.
Otherwise, all that is needed is to expand |a′〉, |b′〉, and so on in terms of the energy
eigenkets of H0.

Coming back to 〈n|UI(t, t0)|i〉, we illustrate by considering a physical situation where
at t = t0, the system is known to be in state |i〉. The state ket in the Schrödinger picture
|i, t0; t〉S is then equal to |i〉 up to a phase factor. In applying the interaction picture, it is
convenient to choose the phase factor at t = t0 so that

|i, t0; t0〉S = e−iEit0/h̄|i〉, (5.271)

which means that in the interaction picture we have the simple equation

|i, t0; t0〉I = |i〉. (5.272)

At a later time we have

|i, t0; t〉I = UI(t, t0)|i〉. (5.273)

Comparing this with the expansion

|i, t0; t〉I = ∑
n

cn(t)|n〉, (5.274)

we see

cn(t) = 〈n|UI(t, t0)|i〉. (5.275)

We now go back to the perturbation expansion for UI(t, t0) [see (5.265)]. We can also
expand cn(t) as in (5.260), where c(1)n is first order in VI(t), c(2)n is second order in VI(t),
and so on. Comparing the expansion of both sides of (5.275), we obtain [using (5.179)]

c(0)n (t) = δni (independent of t)

c(1)n (t) =
−i
h̄

∫ t

t0
〈n|VI(t′)|i〉dt′

=
−i
h̄

∫ t

t0
eiωnit′Vni(t′)dt′

c(2)n (t) =
(
−i
h̄

)2

∑
m

∫ t

t0
dt′

∫ t′

t0
dt′′eiωnmt′Vnm(t′)eiωmit′′Vmi(t′′),

(5.276)

where we have used

ei(En−Ei)t/h̄ = eiωnit. (5.277)

The transition probability for |i〉 → |n〉 with n 	= i is obtained by

P(i → n) = |c(1)n (t)+ c(2)n (t)+ · · · |2. (5.278)
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5.7.3 Constant Perturbation

As an application of (5.276), let us consider a constant perturbation turned on at t = 0:

V(t) =
{

0 for t < 0
V (independent of t) for t ≥ 0.

(5.279)

Even though the operator V has no explicit dependence on time, it is, in general, made up
of operators like x, p, and s. Now suppose at t = 0, we have only |i〉. With t0 taken to be
zero, we obtain

c(0)n = c(0)n (0) = δni,

c(1)n =
−i
h̄

Vni

∫ t

0
eiωnit′dt′

=
Vni

En −Ei
(1− eiωnit),

(5.280)

or

|c(1)n |2 = |Vni|2
|En −Ei|2

(2−2cosωnit)

=
4|Vni|2

|En −Ei|2
sin2

[
(En −Ei)t

2h̄

]
. (5.281)

The probability of finding |n〉 depends not only on |Vni|2 but also on the energy difference
En −Ei, so let us try to see how (5.281) looks as a function of En. In practice, we are
interested in this way of looking at (5.281) when there are many states with E ∼ En so
that we can talk about a continuum of final states with nearly the same energy. To this end
we define

ω ≡ En −Ei

h̄
(5.282)

and plot 4sin2(ωt/2)/ω2 as a function of ω for fixed t, the time interval during which
the perturbation has been on; see Figure 5.9. We see that the height of the middle peak,
centered around ω = 0, is t2 and the width is proportional to 1/t. As t becomes large,
|c(1)n (t)|2 is appreciable only for those final states that satisfy

t ∼ 2π
|ω| =

2πh̄
|En −Ei|

. (5.283)

If we callΔt the time interval during which the perturbation has been turned on, a transition
with appreciable probability is possible only if

ΔtΔE ∼ h̄, (5.284)

where by ΔE we mean the energy change involved in a transition with appreciable
probability. If Δt is small, we have a broader peak in Figure 5.9, and as a result we can
tolerate a fair amount of energy nonconservation. On the other hand, if the perturbation
has been on for a very long time, we have a very narrow peak, and approximate energy
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t2

4 sin2(ωt/2)/ω2

−4π/t −2π/t ω = 0 2π/t 4π/t ω

Fig. 5.9 Plot of 4 sin2(ωt/2)/ω2 versusω for a fixed t, where inω = (En − Ei )/h̄ we have regarded En as a continuous
variable.

Nearly the

same energy

+ z-direction

Fig. 5.10 Elastic scattering of plane wave by some finite range potential.

conservation is required for a transition with appreciable probability. Note that this
“uncertainty relation” is fundamentally different from the x − p uncertainty relation of
Section 1.6. There x and p are both observables. In contrast, time in nonrelativistic quantum
mechanics is a parameter, not an observable.

For those transitions with exact energy conservation En = Ei, we have

|c(1)n (t)|2 = 1
h̄2 |Vni|2t2. (5.285)

The probability of finding |n〉 after a time interval t is quadratic, not linear, in the time
interval during which V has been on. This may appear intuitively unreasonable. There is
no cause for alarm, however. In a realistic situation where our formalism is applicable,
there is usually a group of final states, all with nearly the same energy as the energy of
the initial state |i〉. In other words, a final state forms a continuous energy spectrum in the
neighborhood of Ei. We give two examples along this line. Consider for instance, elastic
scattering by some finite range potential (see Figure 5.10), which we will consider in detail
in Chapter 6. The initial state is taken to be a plane wave state with its propagation direction
oriented in the positive z-direction; the final state may also be a plane wave state of the same
energy but with its propagation direction, in general, in a direction other than the positive
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One of the electrons is in
1s state and the other is
in free state(2s)2

(1s)(2s)

(1s)2

1s

Fig. 5.11 Schematic diagram of two electron energy levels of a helium atom.

z-direction. Another example of interest is the de-excitation of an excited atomic state via
the emission of an Auger electron. The simplest example is a helium atom. The initial state
may be (2s)2, where both the electrons are excited; the final state may be (1s) (that is, one
of the electrons is still bound) of the He+ ion, while the second electron escapes with a
positive energy E; see Figure 5.11. In such a case we are interested in the total probability,
that is, the transition probabilities summed over final states with En � Ei:

∑
n,En�Ei

|c(1)n |2. (5.286)

It is customary to define the density of final states as the number of states within energy
interval (E,E+dE) as

ρ(E)dE. (5.287)

We can then write (5.286) as

∑
n,En�Ei

|c(1)n |2 ⇒
∫

dEnρ(En)|c(1)n |2

= 4
∫

sin2
[
(En −Ei)t

2h̄

]
|Vni|2

|En −Ei|2
ρ(En)dEn. (5.288)

As t → ∞, we can take advantage of

lim
t→∞

1
|En −Ei|2

sin2
[
(En −Ei)t

2h̄

]
=
πt
2h̄
δ(En −Ei), (5.289)

which follows from

lim
α→∞

1
π

sin2 αx
αx2 = δ(x). (5.290)

It is now possible to take the average of |Vni|2 outside the integral sign and perform the
integration with the δ-function:

lim
t→∞

∫
dEnρ(En)|c(1)n (t)|2 =

(
2π
h̄

)
|Vni|2ρ(En)t

∣∣∣∣
En�Ei

. (5.291)
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Thus the total transition probability is proportional to t for large values of t, which is quite
reasonable. Notice that this linearity in t is a consequence of the fact that the total transition
probability is proportional to the area under the peak of Figure 5.9, where the height varies
as t2 and the width varies as 1/t.

It is conventional to consider the transition rate, that is, the transition probability per
unit time. Expression (5.291) tells us that the total transition rate, defined by

d
dt

(
∑
n
|c(1)n |2

)
, (5.292)

is constant in t for large t. Calling (5.292) wi→[n], where [n] stands for a group of final states
with energy similar to i, we obtain

wi→[n] =
2π
h̄
|Vni|2ρ(En)En�Ei (5.293)

independent of t, provided the first-order time-dependent perturbation theory is valid. This
formula is of great practical importance; it is called Fermi’s golden rule even though the
basic formalism of t-dependent perturbation theory is due to Dirac.12 We sometimes write
(5.293) as

wi→n =

(
2π
h̄

)
|Vni|2δ(En −Ei), (5.294)

where it must be understood that this expression is integrated with
∫

dEnρ(En).
We should also understand what is meant by |Vni|2. If the final states |n〉 form a quasi-

continuum, the matrix elements Vni are often similar if |n〉 are similar. However, it may
happen that all energy eigenstates with the same En do not necessarily have similar matrix
elements. Consider, for example, elastic scattering. The |Vni|2 that determines the scattering
cross section may depend on the final momentum direction. In such a case the group of final
states we should consider must not only have approximately the same energy, but they must
also have approximately the same momentum direction. This point becomes clearer when
we discuss the photoelectric effect.

Let us now look at the second-order term, still with the constant perturbation of (5.279).
From (5.276) we have

c(2)n =

(
−i
h̄

)2

∑
m

VnmVmi

∫ t

0
dt′eiωnmt′

∫ t′

0
dt′′eiωmit′′

=
i
h̄ ∑

m

VnmVmi

Em −Ei

∫ t

0
(eiωnit′ − eiωnmt′)dt′. (5.295)

The first term on the right-hand side has the same t-dependence as c(1)n [see (5.280)]. If this
were the only term, we could then repeat the same argument as before and conclude that as
t → ∞, the only important contribution arises from En � Ei. Indeed, when Em differs from
En and Ei, the second contribution gives rise to a rapid oscillation, which does not give a
contribution to the transition probability that grows with t.

12 For an interesting discussion on the history of Fermi’s golden rule, see Visser, “Whose golden rule is it
anyway?”, Am. J. Phys., 77 (2009) 487.
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With c(1) and c(2) together, we have

wi→[n] =
2π
h̄

∣∣∣∣Vni +∑
m

VnmVmi

Ei −Em

∣∣∣∣2

ρ(En)

∣∣∣∣∣
En�Ei

. (5.296)

The formula has the following physical interpretation. We visualize that the transition due
to the second-order term takes place in two steps. First, |i〉 makes an energy nonconserving
transition to |m〉; subsequently, |m〉 makes an energy nonconserving transition to |n〉, where
between |n〉 and |i〉 there is overall energy conservation. Such energy nonconserving
transitions are often called virtual transitions. Energy need not be conserved for those
virtual transitions into (or from) virtual intermediate states. In contrast, the first-order
term Vni is often said to represent a direct energy-conserving “real” transition. A special
treatment is needed if VnmVmi 	= 0 with Em � Ei. The best way to treat this is to use the
slow-turn-on method V → eηtV, which we will discuss in Section 5.9 and Problem 5.38 of
this chapter. The net result is to change the energy denominator in (5.296) as follows:

Ei −Em → Ei −Em + iε. (5.297)

5.7.4 Harmonic Perturbation

We now consider a sinusoidally varying time-dependent potential, commonly referred to
as harmonic perturbation:

V(t) = V eiωt +V †e−iωt, (5.298)

where V may still depend on x, p, s, and so on. Actually, we have already encountered
a time-dependent potential of this kind in Section 5.5 in discussing t-dependent two-level
problems.

Again assume that only one of the eigenstates of H0 is populated initially. Perturbation
(5.298) is assumed to be turned on at t = 0, so

c(1)n =
−i
h̄

∫ t

0
(Vnieiωt′ +V †

ni e−iωt′)eiωnit′dt′

=
1
h̄

[
1− ei(ω+ωni)t

ω+ωni
Vni +

1− ei(ωni−ω)t

−ω+ωni
V †

ni

]
(5.299)

where V †
ni actually stands for (V †)ni. We see that this formula is similar to the constant

perturbation case. The only change needed is

ωni =
En −Ei

h̄
→ ωni ±ω. (5.300)

So as t → ∞, |c(1)n |2 is appreciable only if

ωni +ω � 0 or En � Ei − h̄ω (5.301a)
ωni −ω � 0 or En � Ei + h̄ω. (5.301b)

Clearly, whenever the first term is important because of (5.301a), the second term is
unimportant, and vice versa. We see that we have no energy-conservation condition
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(a) (b)

hω hω

En

En

Ei

Ei

Fig. 5.12 (a) Stimulated emission: Quantum-mechanical system gives up h̄ω to V (possible only if the initial state is
excited). (b) Absorption: Quantum-mechanical system receives h̄ω from V and ends up as an excited state.

satisfied by the quantum-mechanical system alone; rather the apparent lack of energy
conservation is compensated by the energy given out to, or energy taken away from,
the “external” potential V(t). Pictorially, we have Figure 5.12. In the first case (stimulated
emission), the quantum-mechanical system gives up energy h̄ω to V; this is clearly possible
only if the initial state is excited. In the second case (absorption), the quantum-mechanical
system receives energy h̄ω from V and ends up as an excited state. Thus a time-dependent
perturbation can be regarded as an inexhaustible source or sink of energy.

In complete analogy with (5.293), we have

wi→[n] =
2π
h̄

|Vni|2ρ(En)
∣∣∣
En∼=Ei−h̄ω

(5.302a)

wi→[n] =
2π
h̄

|V †
ni |2ρ(En)

∣∣∣
En∼=Ei+h̄ω

(5.302b)

or, more commonly,

wi→n =
2π
h̄

{
|Vni|2
|V †

ni |2
}
δ(En −Ei ± h̄ω). (5.303)

Note also that

|Vni|2 = |V †
in |2, (5.304)

which is a consequence of

〈i|V †|n〉= 〈n|V |i〉∗ (5.305)

(remember V †|n〉DC↔〈n|V ). Combining (5.302) and (5.304), we have

emission rate for i → [n]
density of final states for [n]

=
absorption rate forn → [i]

density of final states for [i]
, (5.306)

where in the absorption case we let i stand for final states. Equation (5.306), which
expresses symmetry between emission and absorption, is known as detailed balancing.

To summarize, for constant perturbation, we obtain appreciable transition probability
for |i〉 → |n〉 only if En � Ei. In contrast, for harmonic perturbation we have appreciable
transition probability only if En � Ei − h̄ω (stimulated emission) or En � Ei + h̄ω
(absorption).
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5.8 Applications to Interactions with the Classical Radiation Field

5.8.1 Absorption and Stimulated Emission

We apply the formalism of time-dependent perturbation theory to the interactions of
atomic electrons with the classical radiation field. By a classical radiation field we mean
the electric or magnetic field derivable from a classical (as opposed to quantized)
radiation field.

For an electron with charge e in an electromagnetic field specified by a vector potential
A(x) and scalar potential φ(x), the basic Hamiltonian, with |A|2 omitted, is

H =
p2

2me
+ eφ(x)− e

mec
A · p, (5.307)

which is justified if

∇ · A = 0; (5.308)

specifically, we work with a monochromatic field of the plane wave for

A = 2A0 ε̂ cos
(ω

c
n̂ ·x−ωt

)
(5.309)

where ε̂ and n̂ are the (linear) polarization and propagation direction. Equation (5.309)
obviously satisfies (5.308) because ε̂ is perpendicular to the propagation direction n̂. We
write

cos
(ω

c
n̂ ·x−ωt

)
=

1
2
[ei(ω/c)n̂·x−iωt + e−i(ω/c)n̂·x+iωt] (5.310)

and treat −(e/mec)A · p as a time-dependent potential, where we express A in (5.309) as

A = A0 ε̂[ei(ω/c)n̂·x−iωt + e−i(ω/c)n̂·x+iωt]. (5.311)

Comparing this result with (5.298), we see that the e−iωt-term in

−
(

e
mec

)
A · p =−

(
e

mec

)
A0 ε̂ ·p[ei(ω/c)n̂·x−iωt + e−i(ω/c)n̂ ·x+iωt] (5.312)

is responsible for absorption, while the e+iωt-term is responsible for stimulated emission.
Let us now treat the absorption case in detail. We have

V †
ni =− eA0

mec
(ei(ω/c)(n̂·x) ε̂ ·p)ni (5.313)

and

wi→n =
2π
h̄

e2

m2
ec2 |A0|2|〈n|ei(ω/c)(n̂·x) ε̂ ·p|i〉|2δ(En −Ei − h̄ω). (5.314)

The meaning of the δ-function is clear. If |n〉 forms a continuum, we simply integrate with
ρ(En). But even if |n〉 is discrete, because |n〉 cannot be a ground state (albeit a bound-state
energy level), its energy is not infinitely sharp; there may be a natural broadening due to
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a finite lifetime (see Section 5.9); there can also be a mechanism for broadening due to
collisions. In such cases, we regard δ(ω−ωni) as

δ(ω−ωni) = lim
γ→0

( γ
2π

) 1
([ω−ωni)2 +γ2/4]

. (5.315)

Finally, the incident electromagnetic wave itself is not perfectly monochromatic; in fact,
there is always a finite frequency width.

We derive an absorption cross section as

(Energy/unit time) absorbed by the atom(i → n)
Energy flux of the radiation field

. (5.316)

For the energy flux (energy per area per unit time), classical electromagnetic theory gives us

cU =
1

2π
ω2

c
|A0|2, (5.317)

where we have used

U =
1
2

(
E2

max

8π
+

B2
max

8π

)
(5.318)

for energy density (energy per unit volume) with

E =−1
c

∂
∂ t

A, B = ∇×A. (5.319)

Putting everything together, we get (remembering that h̄ω is the energy absorbed by the
atom for each absorption process)

σabs =
h̄ω(2π/h̄)(e2/m2

ec2)|A0|2|〈n|ei(ω/c)(n̂·x) ε̂ ·p|i〉|2δ(En −Ei − h̄ω)
(1/2π)(ω2/c)|A0|2

=
4π2h̄
m2

eω

(
e2

h̄c

)
|〈n|ei(ω/c)(n̂·x) ε̂ ·p|i〉|2δ(En −Ei − h̄ω). (5.320)

Equation (5.320) has the correct dimension [1/(M2/T)](M2L2/T2)T = L2 if we recognize
that α = e2/h̄c � 1/137 (dimensionless) and δ(En −Ei − h̄ω) = (1/h̄)δ(ωni −ω), where
δ(ωni −ω) has time dimension T.

5.8.2 Electric Dipole Approximation

The electric dipole approximation (E1 approximation) is based on the fact that the
wavelength of the radiation field is far longer than the atomic dimension, so that the series
(remember ω/c = 1/λ)

ei(ω/c)n̂·x = 1+ i
ω
c

n̂ ·x+ · · · (5.321)

can be approximated by its leading term, 1. The validity of this for a light atom is as
follows. First, the h̄ω of the radiation field must be of order of atomic level spacing, so

h̄ω ∼ Ze2

(a0/Z)
� Ze2

Ratom
. (5.322)
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This leads to
c
ω

= λ ∼ ch̄Ratom

Ze2 � 137Ratom

Z
. (5.323)

In other words,
1
λ

Ratom ∼ Z
137

� 1 (5.324)

for light atoms (small Z). Because the matrix element of x is of order Ratom, that of x2, of
order R2

atom, and so on, we see that the approximation of replacing (5.321) by its leading
term is an excellent one.

Now we have

〈n|ei(ω/c)(n̂·x) ε̂ ·p|i〉 → ε̂ · 〈n|p|i〉. (5.325)

In particular, we take ε̂ along the x-axis (and n̂ along the z-axis). We must calculate 〈n|px|i〉.
Using

[x,H0] =
ih̄px

m
, (5.326)

we have

〈n|px|i〉=
m
ih̄
〈n|[x,H0]|i〉

= imωni〈n|x|i〉. (5.327)

Because of the approximation of the dipole operator, this approximation scheme is called
the electric dipole approximation. We may here recall [see (3.482)] the selection rule for
the dipole matrix element. Since x is a spherical tensor of rank 1 with q = ±1, we must
have m′ −m = ±1, | j′ − j| = 0,1 (no 0 → 0 transition). If ε̂ is along the y-axis, the same
selection rule applies. On the other hand, if ε̂ is in the z-direction, q = 0; hence, m′ = m.

With the electric dipole approximation, the absorption cross section (5.320) now takes a
simpler form upon using (5.325) and (5.327) as

σabs = 4π2αωni|〈n|x|i〉|2δ(ω−ωni). (5.328)

In other words, σabs treated as a function of ω exhibits a sharp δ-function-like peak
whenever h̄ω corresponds to the energy-level spacing at ω � (En − Ei)/h̄. Suppose |i〉
is the ground state, then ωni is necessarily positive; integrating (5.328), we get∫

σabs(ω)dω = ∑
n

4π2αωni|〈n|x|i〉|2. (5.329)

In atomic physics we define oscillator strength, fni, as

fni ≡
2mωni

h̄
|〈n|x|i〉|2. (5.330)

It is then straightforward (consider [x, [x,H0]]) to establish the Thomas–Reiche–Kuhn sum
rule,

∑
n

fni = 1. (5.331)
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In terms of the integration over the absorption cross section, we have∫
σabs(ω) dω =

4π2αh̄
2me

= 2π2c
(

e2

mec2

)
. (5.332)

Notice how h̄ has disappeared. Indeed, this is just the oscillation sum rule already known
in classical electrodynamics (Jackson (1975), for instance). Historically, this was one of
the first examples of how “new quantum mechanics” led to the correct classical result.
This sum rule is quite remarkable because we did not specify in detail the form of the
Hamiltonian.

5.8.3 Photoelectric Effect

We now consider the photoelectric effect, that is, the ejection of an electron when an atom
is placed in the radiation field. The basic process is considered to be the transition from
an atomic (bound) state to a continuum state E > 0. Therefore, |i〉 is the ket for an atomic
state, while |n〉 is the ket for a continuum state, which can be taken to be a plane wave state
|kf〉, an approximation that is valid if the final electron is not too slow. Our earlier formula
for σabs(ω) can still be used, except that we must now integrate δ(ωni −ω) together with
the density of final states ρ(En).

In fact, we calculated the density of states for a free particle in Section 2.5.1. To review,
our basic task is to calculate the number of final states per unit energy interval. As we will
see in a moment, this is an example where the matrix element depends not only on the final
state energy but also on the momentum direction. We must therefore consider a group of
final states with both similar momentum directions and similar energies.

To count the number of states it is convenient to use the box normalization convention
for plane wave states. We consider a plane wave state to be normalized if, when we
integrate the square modulus of its wave function for a cubic box of side L, we obtain
unity. Furthermore, the state is assumed to satisfy the periodic boundary condition with
periodicity of the side of the box. The wave function must then be of form

〈x|kf〉=
eikf ·x

L3/2 , (5.333)

where the allowed values of kx must satisfy

kx =
2πnx

L
,. . . , (5.334)

with nx a positive or negative integer. Similar restrictions hold for ky and kz. Notice that as
L → ∞,kx,ky, and kz become continuous variables.

The problem of counting the number of states is reduced to that of counting the number
of dots in three-dimensional lattice space. We define n such that

n2 = n2
x +n2

y +n2
z . (5.335)

As L → ∞, it is a good approximation to treat n as a continuous variable; in fact it is just the
magnitude of the radial vector in the lattice space. Let us consider a small-volume element
such that the radial vector falls within n and n+dn and the solid angle element dΩ; clearly,
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it is of volume n2 dn dΩ. The energy of the final state plane wave is related to kf and hence
to n; we have

E =
h̄2k2

f

2me
=

h̄2

2me

n2(2π)2

L2 . (5.336)

Furthermore, the direction of the radial vector in the lattice space is just the momentum
direction of the final state, so the number of states in the interval between E and E+ dE
with direction into dΩ being kf is (remember dE = (h̄2kf /me)dkf) given by13

n2 dΩ
dn
dE

dE =

(
L

2π

)3

(k2
f )

dkf

dE
dΩ dE

=

(
L

2π

)3 me

h̄2 kf dE dΩ. (5.337)

We can now put everything together to obtain an expression for the differential cross
section for the photoelectric effect:

dσ
dΩ

=
4π2αh̄
m2

eω
|〈kf|ei(ω/c)(n̂·x) ε̂ ·p|i〉|2 mekfL3

h̄2(2π)3
. (5.338)

To be specific, let us consider the ejection of a K shell (the innermost shell) electron
caused by absorption of light. The initial state wave function is essentially the same as the
ground-state hydrogen atom wave function except that the Bohr radius a0 is replaced by
a0/Z. Thus

〈kf|ei(ω/c)(n̂·x) ε̂ ·p|i〉= ε̂ ·
∫

d3x
e−ikf·x

L3/2 ei(ω/c)(n̂·x)

× (−ih̄∇)

[
1√
π

e−Zr/a0

(
Z
a0

)3/2
]

. (5.339)

Integrating by parts, we can pass ∇ to the left side. Furthermore,

ε̂ · [∇ei(ω/c)(n̂·x)] = 0 (5.340)

because ε̂ is perpendicular to n̂. On the other hand, ∇ acting on e−ikf ·x brings down −ikf,
which can be taken outside the integral. Thus to evaluate (5.339), all we need to do is take
the Fourier transform of the atomic wave function with respect to

q ≡ kf −
(ω

c

)
n̂. (5.341)

The final answer is (see Problem 5.48 of this chapter for the Fourier transform of the
hydrogen atom wave function)

dσ
dΩ

= 32e2kf
(ε̂ ·kf)

2

mecω
Z5

a5
0

1
[(Z2/a2

0)+q2]4
. (5.342)

13 This is equivalent to taking one state per cube d3x d3p/(2πh̄)3 in phase space.
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φ

ˆ

n̂

θ

0

e

z
k f

x

y

Fig. 5.13 Polar coordinate system with ε̂ and n̂ along the x- and z-axes, respectively, and
kf = (kf sinθ cosφ, kf sinθ sinφ, kf cosθ ).

If we introduce the coordinate system shown in Figure 5.13, we can write the differential
cross section in terms of θ and φ using

(ε̂ ·kf)
2 = k2

f sin2 θ cos2φ

q2 = k2
f −2kf

ω
c

cosθ +
(ω

c

)2
. (5.343)

5.8.4 Spontaneous Emission

An atom in an excited state will spontaneously emit a photon, making a transition to
a lower energy state. We now understand the underlying source of these photons to be
electromagnetic energy in the so-called vacuum, but it is possible to accurately calculate
this phenomenon using the classical electromagnetic field and the techniques discussed in
this section.

Most of the formalism has already been worked out. The Hamiltonian H = H0 +V(t)
is taken to be (5.307) where H0 = p2

e /2me + eφ(x) describes the atomic system. We
are considering transitions between eigenstates of H0, and the perturbation V(t) =

−(e/mec)A · p where A(x, t) is a plane wave. Thus we once again have a harmonic
perturbation, and the transition rate for emission is given by (5.302a). As in (5.309) we
write A(x, t) as

A = 2A0 ε̂ cos(k ·x−ωt) (5.344)

where k ≡ (ω/c)n̂ and ε̂ is the polarization unit vector. We contain this field inside a “big
box” of side length L, large enough to include the frequency ω that corresponds to the
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atomic transition, applying periodic boundary conditions, similar to the way we describe
the ejected photoelectron in (5.333). This means that the wave vector k can be written as

k =
2π
L

(nxx̂+nyŷ+nzẑ) (5.345)

where nx, ny, and nz are integers.
In order to determine the amplitude A0, we require that the time-averaged electromag-

netic energy in the box equal the transition energy h̄ω. From Maxwell’s equations in free
space, the electric and magnetic fields are

E =−1
c

∂A
∂ t

= 2A0kε̂ sin(k ·x−ωt) (5.346a)

B = ∇×A = 2A0(ε̂×k)sin(k ·x−ωt) . (5.346b)

The energy density is u = (E2 +B2)/8π, so the time-averaged energy is∫
L3

d3x〈u〉= ω2

2πc2 A2
0L3 = h̄ω. (5.347)

Therefore, the amplitude of the classical14 electromagnetic wave is

A0 =

√
2πh̄c2

ωL3 . (5.348)

Referring back to (5.302a), we need to find the density of states ρ(En) = ρ(E ) where
E = h̄ω is the energy of the emitted radiation. Writing E = 2πh̄cn/L where n ≡ (n2

x +n2
y +

n2
z )

1/2, we integrate over all directions in n-space while keeping n constant to find

ρ(E )dE = 4πn2dn = 4π
(
ωL
2πc

)2 L
2πh̄c

dE =
ω2

2π2h̄c3 L3dE . (5.349)

We also need to calculate the transition matrix element

Vni =− eA0

mec
〈n|ε̂ · e−ik·xp|i〉. (5.350)

The wavelength of emitted radiation in atomic transitions is on the order of 100 nm or
longer, three orders of magnitude larger than a typical atom. Therefore the long wavelength
approximation (5.321) is valid. In fact, let us go further, and assume the transition is
between states that satisfy the electric dipole transition rules (see p. 349). Therefore

Vni =− eA0

mec
〈n|ε̂ ·p|i〉=−i

eωA0

c
〈n|ε̂ ·x|i〉. (5.351)

The rate w of a spontaneous transition is usually expressed terms of its inverse τ, called
the “lifetime” of the initial state. Then (5.302a) becomes

1
τi→n

=
2π
h̄

(
eωA0

c

)2

|〈n|ε̂ ·x|i〉|2 ω2

2π2h̄c3 L3

= 2α
ω3

c2 |〈n|ε̂ ·x|i〉|2 (5.352)

14 See Section 7.8 for a quantum-mechanical treatment of the free electromagnetic field. Note that (5.348) is the
same result as (7.180).
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where again we make use of α ≡ e2/h̄c ≈ 1/137. Note that this result is free of the box
dimension L.

Given initial and final state atomic wave functions, we could calculate the rate, perhaps
numerically for a complicated system. The rate will depend on the polarization direction ε̂
if the atom itself is somehow polarized. It is useful to write the dipole operator in terms of
circular and linear polarization directions as

ε̂ ·x =
εx − iεy√

2
x+ iy√

2
+
εx + iεy√

2
x− iy√

2
+ εzz

=

√
4π
3

(
−ε−Y+1

1 r+ ε−Y−1
1 r+ ε0Y0

1r
)

(5.353)

where ε± ≡ (εx − iεy)
√

2 and ε0 ≡ εz. Then recall that the Ym
l are spherical tensors, whose

matrix elements are subject to the Wigner–Eckart theorem (3.474).
Let us illustrate using a p → s transition, where the initial state is unpolarized. That is,

the initial atomic p-state is an equal mixture of the m = 0,±1 states. Now, from (3.471),
the matrix element 〈s|Yq

1 |p,m〉 = 0 unless m = −q. Therefore, each of the three terms in
(5.353) gives a nonzero transition matrix element for exactly one m value for the initial
p-state. Furthermore, by (3.474),

〈α′; s|Yq
1 r|α; p,m〉= 〈11;−q,q|11; 00〉 〈α

′; s||Y1r||α; p〉√
3

(5.354)

where α and α′ represent other information needed to specify the state (perhaps a radial
quantum number). The reduced matrix element 〈α; s||Y1r||α; p〉 is the same for all three
terms in (5.353), so we just need to calculate the matrix element 〈α′; s|Yq

1r|α; p,m〉 for one
of them. Choosing the m = 0 term for this calculation, we find

〈α′; s|Y0
1 r|α; p,m = 0〉= 1√

4π
Rα′α (5.355)

where

Rα′α ≡
∫ ∞

0
r2dr R∗

α′(r)rRα(r) (5.356)

and so

〈α′; s||Y1r||α; p〉=− 3√
4π

Rα′α. (5.357)

We can then write down the matrix element of (5.353) as

〈α′; s|ε̂ ·x|α; p,m〉=− 1√
3
(−ε−δm,−1 + ε−δm,1 − ε0δm,0)Rα′α. (5.358)

We do not know the value of m for the initial state. However, (5.358) shows that each
of the three m states gives the same result in (5.352). The initial state is unpolarized, and
we are integrating over all directions of the emitted radiation, so we average over the
contributions from the three initial states. Since |ε+|2 + |ε−|2 + |ε0|2 = 1, this average
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introduces an additional factor of 1/3. Realizing that we must also multiply (5.352) by two
to account for the two orthogonal polarization directions, we have, finally,

1
τp→s

=
4
9
α
ω3

c2 |Rα′α|2 . (5.359)

Before concluding, we note that if the electric dipole selection rules are not satisfied
by the initial and final atomic states, we can still use the long wavelength approximation
to evaluate (5.350). However, the matrix element will contain higher powers of x and is
therefore smaller by additional powers of atomic size divided by the wavelength. That is,
the lifetimes will be much longer, so if there are final states available which do satisfy the
selection rules, these will dominate.

5.9 Energy Shift and Decay Width

Our considerations so far have been restricted to the question of how states other than
the initial state become populated. In other words, we have been concerned with the time
development of the coefficient cn(t) with n 	= i. The question naturally arises, What happens
to ci(t) itself ?

To avoid the effect of a sudden change in the Hamiltonian, we propose to increase
the perturbation very slowly. In the remote past (t → −∞) the time-dependent potential
is assumed to be zero. We then gradually turn on the perturbation to its full value;
specifically,

V(t) = eηtV (5.360)

where V is assumed to be constant and η is small and positive. At the end of the calculation,
we let η→ 0 (see Figure 5.14), and the potential then becomes constant at all times.

In the remote past, we take this time to be −∞, so the state ket in the interaction picture
is assumed to be |i〉. Our basic aim is to evaluate ci(t). However, before we do that, let us
make sure that the old formula of the golden rule (see Section 5.7) can be reproduced using
this slow-turn-on method. For cn(t) with n 	= i, we have [using (5.276)]

V(t) = V as η → 0

t

V(t)

η > 0

Fig. 5.14 Plot of V(t) versus t in the adiabatic (slow-turn-on) picture.
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c(0)n (t) = 0

c(1)n (t) =
−i
h̄

Vni lim
t0→−∞

∫ t

t0
eηt′eiωnit′dt′

=
−i
h̄

Vni
eηt+iωnit

η+ iωni
.

(5.361)

To lowest nonvanishing order, the transition probability is therefore given by

|cn(t)|2 �
|Vni|2

h̄2
e2ηt

η2 +ω2
ni

, (5.362)

or
d
dt
|cn(t)|2 �

2|Vni|2

h̄2

(
ηe2ηt

η2 +ω2
ni

)
. (5.363)

We now let η→ 0. Clearly, it is all right to replace eηt by unity, but note

lim
η→0

η

η2 +ω2
ni
= πδ(ωni) = πh̄δ(En −Ei). (5.364)

This leads to the golden rule,

wi→n �
(

2π
h̄

)
|Vni|2δ(En −Ei). (5.365)

Encouraged by this result, let us calculate c(0)i , c(1)i , and c(2)i , again using (5.276). We have

c(0)i = 1

c(1)i =
−i
h̄

Vii lim
t0→−∞

∫ t

t0
eηt′dt′ =

−i
h̄η

Viieηt

c(2)i =

(
−i
h̄

)2

∑
m
|Vmi|2 lim

t0→−∞

∫ t

t0
dt′eiωimt′+ηt′ eiωmit′+ηt′

i(ωmi − iη)

=

(
−i
h̄

)2

|Vii|2
e2ηt

2η2 +

(
−i
h̄

)
∑
m	=i

|Vmi|2e2ηt

2η(Ei −Em + ih̄η)
.

(5.366)

Thus up to second order we have

ci(t)� 1− i
h̄η

Viieηt +

(
−i
h̄

)2

|Vii|2
e2ηt

2η2 +

(
−i
h̄

)
∑
m	=i

|Vmi|2e2ηt

2η(Ei −Em + ih̄η)
. (5.367)

Now consider the time derivative of ci[dci(t)/dt ≡ ċi], which we have from (5.367). Upon
dividing by ci and letting η→ 0 (thus replacing eηt and e2ηt by unity), we get

ċi

ci
�

−i
h̄

Vii +

(
−i
h̄

)2 |Vii|2
η

+

(
−i
h̄

)
∑
m	=i

|Vmi|2
(Ei −Em + ih̄η)

1− i
h̄

Vii
η

� −i
h̄

Vii +

(
−i
h̄

)
∑
m	=i

|Vmi|2
Ei −Em + ih̄η

. (5.368)
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Expansion (5.368) is formally correct up to second order in V. Note here that ċi(t)/ci(t)
is now independent of t. Equation (5.368) is a differential equation that is to hold at all
times. Having obtained this, it is convenient to renormalize ci so that ci(0) = 1. We now try
the ansatz

ci(t) = e−iΔit/h̄,
ċi(t)
ci(t)

=
−i
h̄
Δi (5.369)

withΔi constant (in time) but not necessarily real. Clearly (5.369) is consistent with (5.368)
because the right-hand side of (5.369) is constant. We can see the physical meaning of Δi
by noting that e−iΔit/h̄|i〉 in the interaction picture implies e−iΔit/h̄−iEit/h̄|i〉 in the Schrödinger
picture. In other words,

Ei → Ei +Δi (5.370)

as a result of perturbation. That is, we have calculated the level shift using time-dependent
perturbation theory. Now expand, as usual,

Δi = Δ
(1)
i +Δ

(2)
i + · · · , (5.371)

and compare (5.369) with (5.368); we get to first order

Δ
(1)
i = Vii. (5.372)

But this is just what we expect from t-independent perturbation theory. Before we look at
Δ
(2)
i , recall

lim
ε→0

1
x+ iε

= Pr
1
x
− iπδ(x). (5.373)

Thus

Re(Δ(2)
i ) = Pr∑

m	=i

|Vmi|2
Ei −Em

(5.374a)

Im(Δ
(2)
i ) =−π∑

m	=i
|Vmi|2δ(Ei −Em). (5.374b)

But the right-hand side of (5.374b) is familiar from the golden rule, so we can identify

∑
m	=i

wi→m =
2π
h̄ ∑

m	=i
|Vmi|2δ(Ei −Em) =−2

h̄
Im[Δ

(2)
i ]. (5.375)

Coming back to ci(t), we can write (5.369) as

ci(t) = e−(i/h̄)[Re(Δi)t]+(1/h̄)[Im(Δi)t]. (5.376)

If we define
Γi

h̄
≡−2

h̄
Im(Δi), (5.377)

then

|ci|2 = e2Im(Δi)t/h̄ = e−Γit/h̄. (5.378)

Therefore, Γi characterizes the rate at which state |i〉 disappears.
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It is worth checking the probability conservation up to second order in V for small t:

|ci|2 + ∑
m	=i

|cm|2 = (1−Γit/h̄)+ ∑
m	=i

wi→mt = 1, (5.379)

where (5.375) has been used. Thus the probabilities for finding the initial state and all
other states add up to 1. Put in another way, the depletion of state |i〉 is compensated by the
growth of states other than |i〉.

To summarize, the real part of the energy shift is what we usually associate with the
level shift. The imaginary part of the energy shift is, apart from −2 [see (5.377)], the
decay width. Note also

h̄
Γi

= τi (5.380)

where τi is the mean lifetime of state |i〉 because

|ci|2 = e−t/τi . (5.381)

To see why Γi is called width, we look at the Fourier decomposition∫
f(E)e−iEt/h̄dE = e−i[Ei+Re(Δi)]t/h̄−Γit/2h̄. (5.382)

Using the Fourier inversion formula, we get

| f(E)|2 ∝
1

{E− [Ei +Re(Δi)]}2 +Γ2
i /4

. (5.383)

Therefore, Γi has the usual meaning of full width at half maximum. Notice that we get the
energy-time uncertainty relation from (5.380)

ΔtΔE ∼ h̄, (5.384)

where we identify the uncertainty in the energy with Γi and the mean lifetime with Δt.
Even though we discussed the subject of energy shift and decay width using the constant

perturbation V obtained as the limit of (5.360) when η→ 0, we can easily generalize our
considerations to the harmonic perturbation case discussed in Section 5.7. All we must do
is to let

En(m)−Ei → En(m)−Ei ± h̄ω (5.385)

in (5.361), (5.367), and (5.374), and so on. The quantum-mechanical description of
unstable states we have developed here is originally due to Wigner and Weisskopf in 1930.

Problems

5.1 A simple harmonic oscillator (in one dimension) is subjected to a perturbation

H1 = bx

where b is a real constant.
a. Calculate the energy shift of the ground state to lowest nonvanishing order.
b. Solve this problem exactly and compare with your result obtained in (a).
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5.2 A one-dimensional potential well has infinite walls at x = 0 and x = L. The bottom
of the well is not flat, but rather increases linearly from 0 at x = 0 to V at x = L.
Find the first-order shift in the energy levels as a function of principal quantum
number n.

5.3 A particle of mass m moves in a potential well V(x) = mω2x2/2. Treating relativistic
effects to order β2 = (p/mc)2, find the ground-state energy shift.

5.4 A diatomic molecule can be modeled as a rigid rotor with moment of inertia I and an
electric dipole moment d along the axis of the rotor. The rotor is constrained to rotate
in a plane, and a weak uniform electric field E lies in the plane. Write the classical
Hamiltonian for the rotor, and find the unperturbed energy levels by quantizing the
angular-momentum operator. Then treat the electric field as a perturbation, and find
the first nonvanishing corrections to the energy levels.

5.5 In nondegenerate time-independent perturbation theory, what is the probability
of finding in a perturbed energy eigenstate (|k〉) the corresponding unperturbed
eigenstate (|k(0)〉)? Solve this up to terms of order λ2.

5.6 Consider a particle in a two-dimensional potential

V0 =

{
0 for 0 ≤ x ≤ L, 0 ≤ y ≤ L
∞ otherwise.

Write the energy eigenfunctions for the ground and first excited states. We now add
a time-independent perturbation of the form

V1 =

{
λxy for 0 ≤ x ≤ L, 0 ≤ y ≤ L
0 otherwise.

Obtain the zeroth-order energy eigenfunctions and the first-order energy shifts for
the ground and first excited states.

5.7 Consider an isotropic harmonic oscillator in two dimensions. The Hamiltonian is

H0 =
p2

x
2m

+
p2

y

2m
+

mω2

2
(x2 + y2).

a. What are the energies of the three lowest-lying states? Is there any degeneracy?
b. We now apply a perturbation

V = δmω2xy,

where δ is a dimensionless real number much smaller than unity. Find the zeroth-
order energy eigenket and the corresponding energy to first order [that is, the
unperturbed energy obtained in (a) plus the first-order energy shift] for each of
the three lowest-lying states.

c. Solve the H0+V problem exactly. Compare with the perturbation results obtained
in (b).
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5.8 Establish (5.54) for the one-dimensional harmonic oscillator given by (5.50) with
an additional perturbation V = 1

2 εmω2x2. Show that all other matrix elements Vk0

vanish.

5.9 A slightly anisotropic three-dimensional harmonic oscillator has ωx = ωy ≡ ω
and ωz = (1+ ε)ω where ε � 1. (See Section 3.7.3 for nomenclature and wave
functions.) A charged particle moves in the field of this oscillator and is at the
same time exposed to a uniform magnetic field in the x-direction. Assuming that
the Zeeman splitting is comparable to the splitting produced by the anisotropy, but
small compared to h̄ω, calculate to first order the energies of the components of the
first excited state. Discuss various limiting cases. (This is taken from Problem 17.7
in Merzbacher (1970). You might find it useful to consult Problem 2.16 in Chapter 2
and Problem 3.29 in Chapter 3.)

5.10 A one-electron atom whose ground state is nondegenerate is placed in a uniform
electric field in the z-direction. Obtain an approximate expression for the induced
electric dipole moment of the ground state by considering the expectation value of ez
with respect to the perturbed state vector computed to first order. Show that the same
expression can also be obtained from the energy shift Δ = −α|E|2/2 of the ground
state computed to second order. (Note: α stands for the polarizability.) Ignore spin.

5.11 Evaluate the matrix elements (or expectation values) given below. If any vanishes,
explain why it vanishes using simple symmetry (or other) arguments.
a. 〈n = 2, l = 1,m = 0|x|n = 2, l = 0,m = 0〉.
b. 〈n = 2, l = 1,m = 0|pz|n = 2, l = 0,m = 0〉.

[In (a) and (b), |nlm〉 stands for the energy eigenket of a nonrelativistic hydrogen
atom with spin ignored.]

c. 〈Lz〉 for an electron in a central field with j = 9
2 , m = 7

2 , l = 4.
d. 〈singlet,ms = 0|S(e−)

z −S(e+)
z |triplet,ms = 0〉 for an s-state positronium.

e. 〈S(1) ·S(2)〉 for the ground state of a hydrogen molecule.

5.12 A p-orbital electron characterized by |n, l = 1,m = ±1,0〉 (ignore spin) is subjected
to a potential

V = λ(x2 − y2) (λ = constant).

a. Obtain the “correct” zeroth-order energy eigenstates that diagonalize the pertur-
bation. You need not evaluate the energy shifts in detail, but show that the original
threefold degeneracy is now completely removed.

b. Because V is invariant under time reversal and because there is no longer any
degeneracy, we expect each of the energy eigenstates obtained in (a) to go into
itself (up to a phase factor or sign) under time reversal. Check this point explicitly.

5.13 Consider a spinless particle in a two-dimensional infinite square well:

V =

{
0 for 0 ≤ x ≤ a, 0 ≤ y ≤ a
∞ otherwise.
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a. What are the energy eigenvalues for the three lowest states? Is there any
degeneracy?

b. We now add a potential

V1 = λxy, 0 ≤ x ≤ a, 0 ≤ y ≤ a.

Taking this as a weak perturbation, answer the following.
(i) Is the energy shift due to the perturbation linear or quadratic in λ for each of

the three states?
(ii) Obtain expressions for the energy shifts of the three lowest states accurate to

order λ. (You need not evaluate integrals that may appear.)
(iii) Draw an energy diagram with and without the perturbation for the three

energy states. Make sure to specify which unperturbed state is connected
to which perturbed state.

5.14 The Hamiltonian matrix for a two-state system can be written as

H =

(
E0

1 λΔ
λΔ E0

2

)
.

Clearly the energy eigenfunctions for the unperturbed problems (λ= 0) are given by

φ(0)
1 =

(
1
0

)
, φ(0)

2 =

(
0
1

)
.

a. Solve this problem exactly to find the energy eigenfunctions ψ1 and ψ2 and the
energy eigenvalues E1 and E2.

b. Assuming that λ|Δ| � |E0
1 −E0

2|, solve the same problem using time-independent
perturbation theory up to first order in the energy eigenfunctions and up to second
order in the energy eigenvalues. Compare with the exact results obtained in (a).

c. Suppose the two unperturbed energies are “almost degenerate,” that is,

|E0
1 −E0

2| � λ|Δ|.

Show that the exact results obtained in (a) closely resemble what you would
expect by applying degenerate perturbation theory to this problem with E0

1 set
exactly equal to E0

2.

5.15 (This is a tricky problem because the degeneracy between the first and the second
state is not removed in first order. See also Gottfried (1966), p. 397, Problem 1.)
This problem is from Schiff (1968), p. 295, Problem 4. A system that has three
unperturbed states can be represented by the perturbed Hamiltonian matrix⎛⎝E1 0 a

0 E1 b
a∗ b∗ E2

⎞⎠
where E2 > E1. The quantities a and b are to be regarded as perturbations that
are of the same order and are small compared with E2 −E1. Use the second-order
nondegenerate perturbation theory to calculate the perturbed eigenvalues. (Is this
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procedure correct?) Then diagonalize the matrix to find the exact eigenvalues.
Finally, use the second-order degenerate perturbation theory. Compare the three
results obtained.

5.16 Use perturbation theory to calculate the effect of the proton’s finite size on the n = 1
and n = 2 energy levels of the hydrogen atom. Assume the proton is a uniformly
charged sphere of radius R. Give a physical explanation for why the �= 1 shifts are
so much smaller than for �= 0.

5.17 This chapter derived two of the three relativistic corrections to the one-electron
atom, namely Δ(1)

K from “relativistic kinetic energy,” and Δ(1)
LS from the spin-orbit

interaction. A third term comes from the spread of the electron wave function in the
region of changing electric field. The perturbation for this “Darwin term” is

VD =− 1
8m2c2

3

∑
i=1

[pi, [pi,eφ(r)]]

where φ(r) is the Coulomb potential. Find Δ(1)
D and show that

Δ
(1)
nj ≡ Δ(1)

K +Δ
(1)
LS +Δ

(1)
D =

mc2(Zα)4

2n3

[
3

4n
− 1

j+1/2

]
.

In Section 8.4 we will compare this expression to the result of solving the Dirac
equation in the presence of the Coulomb potential.

5.18 These questions are meant to associate numbers with atomic hydrogen phenomena.
a. The red n = 3 → 2 Balmer transition has a wavelength λ ≈ 656 nm. Calculate the

wavelength difference Δλ (in nm) between the 3p3/2 → 2s1/2 and 3p1/2 → 2s1/2

transitions due to the spin-orbit interaction. Comment on how you might measure
this splitting.

b. How large an electric field E is needed so that the Stark splitting in the n = 2 level
is the same as the correction from relativistic kinetic energy between the 2s and
2p levels? How easy or difficult is it to achieve an electric field of this magnitude
in the laboratory?

c. The Zeeman effect can be calculated with a “weak” or “strong” magnetic field,
depending on the size of the energy shift relative to the spin-orbit splitting. Give
examples of a weak and a strong field. How easy or difficult is it to achieve such
a magnetic field?

5.19 Compute the Stark effect for the 2s1/2 and 2p1/2 levels of hydrogen for a field E

sufficiently weak so that eE a0 is small compared to the fine structure, but take the
Lamb shift δ (δ = 1057 MHz) into account (that is, ignore 2p3/2 in this calculation).
Show that for eE a0 � δ, the energy shifts are quadratic in E , whereas for eE a0 � δ
they are linear in E . Briefly discuss the consequences (if any) of time reversal for
this problem. This problem is from Gottfried (1966), Problem 7-3.

5.20 Work out the Stark effect to lowest nonvanishing order for the n = 3 level of
the hydrogen atom. Ignoring the spin-orbit force and relativistic correction (Lamb
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shift), obtain not only the energy shifts to lowest nonvanishing order but also the
corresponding zeroth-order eigenket.

5.21 Suppose the electron had a very small intrinsic electric dipole moment analogous to
the spin magnetic moment (that is, μel proportional to σ). Treating the hypothetical
−μel · E interaction as a small perturbation, discuss qualitatively how the energy
levels of the Na atom (Z = 11) would be altered in the absence of any external
electromagnetic field. Are the level shifts first order or second order? State explicitly
which states get mixed with each other. Obtain an expression for the energy shift of
the lowest level that is affected by the perturbation. Assume throughout that only the
valence electron is subjected to the hypothetical interaction.

5.22 Consider a particle bound to a fixed center by a spherically symmetric potential V(r).
a. Prove

|ψ(0)|2 =
(

m
2πh̄2

)〈
dV
dr

〉
for all s states, ground and excited.

b. Check this relation for the ground state of a three-dimensional isotropic oscillator,
the hydrogen atom, and so on. (Note: This relation has actually been found to be
useful in guessing the form of the potential between a quark and an antiquark. See
Moxhay and Rosner, J. Math. Phys., 21 (1980) 1688.)

5.23 a. Suppose the Hamiltonian of a rigid rotator in a magnetic field perpendicular to the
axis is of the form (Merzbacher 1970, Problem 17-1)

AL2 +BLz +CLy

if terms quadratic in the field are neglected. Assuming B � C, use perturbation
theory to lowest nonvanishing order to get approximate energy eigenvalues.

b. Consider the matrix elements

〈n′l′m′
lm′

s|(3z2 − r2)|nlmlms〉,
〈n′l′m′

lm′
s|xy|nlmlms〉

of a one-electron (for example, alkali) atom. Write the selection rules for Δl, Δml,
and Δms. Justify your answer.

5.24 The n = 2 state of hydrogen is eightfold degenerate, accounting for both spin and
orbital angular momentum. This degeneracy is broken by a perturbation

V =
A
h̄2 L ·S+

B
h̄
(Lz +2Sz)

where L and S are the orbital and spin angular-momentum operators, A is a constant,
and B is proportional (but not equal) to an applied magnetic field in the z-direction.
a. Write V in terms of J2, L2, S2, Jz, and Sz, where J = L+S.
b. Find all nonzero matrix elements of V in the basis |l,s = 1/2, j = l± 1/2,m〉 for

the eight n = 2 states. Hint: Show that the 8×8 matrix decouples into four 2×2
matrices, two of which are diagonal.
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c. Use degenerate perturbation theory to find the first-order energy shifts Δ. For
all eight states, plot Δ/A as a function of B/A. See Figure 5.3. Explain why the
resulting spectrum looks qualitatively different for B/A � 1 and B/A � 1.

5.25 Work out the quadratic Zeeman effect for the ground-state hydrogen atom due to the
usually neglected e2A2/2mec2-term in the Hamiltonian taken to first order. Write the
energy shift as

Δ=− 1
2χB2

and obtain an expression for diamagnetic susceptibility, χ.

5.26 (Merzbacher (1970), p. 448, Problem 11.) For the He wave function, use

ψ(x1,x2) = (Z3
eff/πa3

0)exp
[
−Zeff(r1 + r2)

a0

]
with Zeff = 2− 5

16 , as obtained by the variational method. The measured value of the
diamagnetic susceptibility is 1.88×10−6 cm3/mole.
a. Using the Hamiltonian for an atomic electron in a magnetic field, determine, for

a state of zero angular momentum, the energy change to order B2 if the system is
in a uniform magnetic field represented by the vector potential A = 1

2 B×x.
b. Defining the atomic diamagnetic susceptibility χ by E =− 1

2χB2, calculate χ for
a helium atom in the ground state and compare the result with the measured value.

5.27 Estimate the ground-state energy of a one-dimensional simple harmonic oscillator
using

〈x|0̃〉= e−β|x|

as a trial function with β to be varied.

5.28 Estimate the lowest eigenvalue (λ) of the differential equation

d2ψ
dx2 +(λ−|x|)ψ = 0

where ψ→ 0 as |x| → ∞ using the variational method with

ψ =

{
c(α−|x|) for |x|< α
0 for |x|> α

(α to be varied)

as a trial function. (Caution: dψ/dx is discontinuous at x = 0.) The exact value of the
lowest eigenvalue can be shown to be 1.019.

5.29 Consider a one-dimensional simple harmonic oscillator whose classical angular
frequency is ω0. For t < 0 it is known to be in the ground state. For t > 0 there
is also a time-dependent potential

V(t) = F0xcosωt

where F0 is constant in both space and time. Obtain an expression for the expectation
value 〈x〉 as a function of time using time-dependent perturbation theory to lowest
nonvanishing order. Is this procedure valid for ω � ω0?
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5.30 A one-dimensional harmonic oscillator is in its ground state for t < 0. For t ≥ 0 it
is subjected to a time-dependent but spatially uniform force (not potential!) in the
x-direction,

F(t) = F0e−t/τ.

a. Using time-dependent perturbation theory to first order, obtain the probability
of finding the oscillator in its first excited state for t > 0. Show that the t → ∞
(τ finite) limit of your expression is independent of time. Is this reasonable or
surprising?

b. Can we find higher excited states?

5.31 Consider a particle bound in a simple harmonic oscillator potential. Initially (t < 0),
it is in the ground state. At t = 0 a perturbation of the form

H′(x, t) = Ax2e−t/τ

is switched on. Using time-dependent perturbation theory, calculate the probability
that, after a sufficiently long time (t � τ), the system will have made a transition to
a given excited state. Consider all final states.

5.32 The unperturbed Hamiltonian of a two-state system is represented by

H0 =

(
E0

1 0
0 E0

2

)
.

There is, in addition, a time-dependent perturbation

V(t) =
(

0 λ cosωt
λ cosωt 0

)
(λ real).

a. At t = 0 the system is known to be in the first state, represented by(
1
0

)
.

Using time-dependent perturbation theory and assuming that E0
1 −E0

2 is not close
to ±h̄ω, derive an expression for the probability that the system be found in the
second state represented by (

0
1

)
as a function of t(t > 0).

b. Why is this procedure not valid when E0
1 −E0

2 is close to ±h̄ω?

5.33 A one-dimensional simple harmonic oscillator of angular frequency ω is acted upon
by a spatially uniform but time-dependent force (not potential)

F(t) =
(F0τ/ω)
(τ2 + t2)

, −∞ < t < ∞.
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At t=−∞, the oscillator is known to be in the ground state. Using the time-dependent
perturbation theory to first order, calculate the probability that the oscillator is found
in the first excited state at t =+∞.

Challenge for experts: F(t) is so normalized that the impulse∫
F(t)dt

imparted to the oscillator is always the same, that is, independent of τ; yet for τ�
1/ω, the probability for excitation is essentially negligible. Is this reasonable?

5.34 Consider a particle in one dimension moving under the influence of some time-
independent potential. The energy levels and the corresponding eigenfunctions for
this problem are assumed to be known. We now subject the particle to a traveling
pulse represented by a time-dependent potential,

V(t) = Aδ(x− ct).

a. Suppose at t = −∞ the particle is known to be in the ground state whose energy
eigenfunction is 〈x|i〉 = ui(x). Obtain the probability for finding the system in
some excited state with energy eigenfunction 〈x| f〉= uf(x) at t =+∞.

b. Interpret your result in (a) physically by regarding the δ-function pulse as a
superposition of harmonic perturbations; recall

δ(x− ct) =
1

2πc

∫ ∞

−∞
dωeiω[(x/c)−t].

Emphasize the role played by energy conservation, which holds even quantum
mechanically as long as the perturbation has been on for a very long time.

5.35 A hydrogen atom in its ground state [(n, l,m) = (1,0,0)] is placed between the plates
of a capacitor. A time-dependent but spatial uniform electric field (not potential!) is
applied as follows:

E =

{
0 for t < 0
E0e−t/τ for t > 0

(E0 in the positive z-direction).

Using first-order time-dependent perturbation theory, compute the probability for the
atom to be found at t � τ in each of the three 2p states: (n, l,m) = (2,1,±1or 0).
Repeat the problem for the 2s state: (n, l,m) = (2,0,0). Consider the limit τ→ ∞.

5.36 Consider a composite system made up of two spin 1
2 objects. For t < 0, the

Hamiltonian does not depend on spin and can be taken to be zero by suitably
adjusting the energy scale. For t > 0, the Hamiltonian is given by

H =

(
4Δ
h̄2

)
S1 ·S2.

Suppose the system is in |+−〉 for t ≤ 0. Find, as a function of time, the probability
for being found in each of the following states |++〉, |+−〉, |−+〉, and |−−〉.
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a. By solving the problem exactly.
b. By solving the problem assuming the validity of first-order time-dependent

perturbation theory with H as a perturbation switched on at t = 0. Under what
condition does (b) give the correct results?

5.37 Consider a two-level system with E1 < E2. There is a time-dependent potential that
connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt (γ real).

At t = 0, it is known that only the lower level is populated, that is, c1(0) = 1,
c2(0) = 0.
a. Find |c1(t)|2 and |c2(t)|2 for t > 0 by exactly solving the coupled differential

equation

ih̄ċk =
2

∑
n=1

Vkn(t)eiωkntcn (k = 1,2).

b. Do the same problem using time-dependent perturbation theory to lowest non-
vanishing order. Compare the two approaches for small values of γ. Treat the
following two cases separately: (i) ω very different from ω21 and (ii) ω close
to ω21.
Answer for (a): (Rabi’s formula)

|c2(t)|2 =
γ2/h̄2

γ2/h̄2 +(ω−ω21)2/4
sin2

{[
γ2

h̄2 +
(ω−ω21)

2

4

]1/2

t

}
,

|c1(t)|2 = 1−|c2(t)|2.

5.38 Show that the slow-turn-on of perturbation V → Veηt (see Baym (1969), p. 257) can
generate contribution from the second term in (5.295).

5.39 a. Consider the positronium problem solved in Chapter 3, Problem 3.5. In the
presence of a uniform and static magnetic field B along the z-axis, the Hamiltonian
is given by

H = AS1 · S2 +

(
eB
mec

)
(S1z −S2z).

Solve this problem to obtain the energy levels of all four states using degenerate
time-independent perturbation theory (instead of diagonalizing the Hamiltonian
matrix). Regard the first and the second terms in the expression for H as H0 and
V, respectively. Compare your results with the exact expressions

E =−
(

h̄2A
4

)⎡⎣1±2

√
1+4

(
eB

mech̄A

)2
⎤⎦ for

{
singlet m = 0
triplet m = 0

E =
h̄2A

4
for triplet m =±1,

where triplet (singlet) m = 0 stands for the state that becomes a pure triplet
(singlet) with m = 0 as B → 0.
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b. We now attempt to cause transitions (via stimulated emission and absorption)
between the two m = 0 states by introducing an oscillating magnetic field of the
“right” frequency. Should we orient the magnetic field along the z-axis or along
the x- (or y-) axis? Justify your choice. (The original static field is assumed to be
along the z-axis throughout.)

c. Calculate the eigenvectors to first order.

5.40 Repeat Problem 5.39 above, but with the atomic hydrogen Hamiltonian

H = AS1 ·S2 +

(
eB
mec

)
S1 ·B

where in the hyperfine term AS1 ·S2, S1 is the electron spin, while S2 is the proton
spin. (Note the problem here has less symmetry than that of the positronium case.)

5.41 Consider the spontaneous emission of a photon by an excited atom. The process
is known to be an E1 transition. Suppose the magnetic quantum number of the
atom decreases by one unit. What is the angular distribution of the emitted photon?
Also discuss the polarization of the photon with attention to angular-momentum
conservation for the whole (atom plus photon) system.

5.42 Consider an atom made up of an electron and a singly charged (Z = 1) triton (3H).
Initially the system is in its ground state (n= 1, l= 0). Suppose the system undergoes
beta decay, in which the nuclear charge suddenly increases by one unit (realistically
by emitting an electron and an antineutrino). This means that the tritium nucleus
(called a “triton”) turns into a helium (Z = 2) nucleus of mass 3 (3He).
a. Obtain the probability for the system to be found in the ground state of the

resulting helium ion.
b. The available energy in tritium beta decay is about 18 keV and the size of the 3He

atom is about 1 Å. Check that the time scale T for the transformation satisfies the
criterion of validity for the sudden approximation.

5.43 Show that An(R) defined in (5.234) is a purely real quantity.

5.44 Consider a neutron in a magnetic field, fixed at an angle θ with respect to the z-axis,
but rotating slowly in the φ direction. That is, the tip of the magnetic field traces out a
circle on the surface of the sphere, at “latitude” π−θ . Explicitly calculate the Berry
potential A for the spin-up state from (5.234), take its curl, and determine Berry’s
phase γ+. Thus, verify (5.253) for this particular example of a curve C. (For hints,
see “The adiabatic theorem and Berry’s phase” by Holstein, Am. J. Phys., 57 (1989)
1079.)

5.45 The ground state of a hydrogen atom (n = 1, l = 0) is subjected to a time-dependent
potential as follows:

V(x, t) = V0 cos(kz−ωt).

Using time-dependent perturbation theory, obtain an expression for the transition
rate at which the electron is emitted with momentum p. Show, in particular, how you
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may compute the angular distribution of the ejected electron (in terms of θ and φ
defined with respect to the z-axis). Discuss briefly the similarities and the differences
between this problem and the (more realistic) photoelectric effect. (Note: For the
initial wave function see Problem 5.42. If you have a normalization problem, the
final wave function may be taken to be

ψf(x) =
(

1
L3/2

)
eip ·x/h̄

with L very large, but you should be able to show that the observable effects are
independent of L.)

5.46 A particle of mass m constrained to move in one dimension is confined within
0 < x < L by an infinite-wall potential

V = ∞ for x < 0, x > L,
V = 0 for 0 ≤ x ≤ L.

Obtain an expression for the density of states (that is, the number of states per unit
energy interval) for high energies as a function of E. (Check your dimension!)

5.47 Linearly polarized light of angular frequency ω is incident on a one-electron “atom”
whose wave function can be approximated by the ground state of a three-dimensional
isotropic harmonic oscillator of angular frequency ω0. Show that the differential
cross section for the ejection of a photoelectron is given by

dσ
dΩ

=
4αh̄2k3

f

m2ωω0

√
πh̄

mω0
exp

{
− h̄

mω0

[
k2

f +
(ω

c

)2
]}

×sin2 θ cos2φ exp

[(
2h̄kfω

mω0c

)
cosθ

]
provided the ejected electron of momentum h̄kf can be regarded as being in a plane
wave state. (The coordinate system used is shown in Figure 5.13.)

5.48 Find the probability |φ(p′)|2d3p′ of the particular momentum p′ for the ground-state
hydrogen atom. (This is a nice exercise in three-dimensional Fourier transforms. To
perform the angular integration choose the z-axis in the direction of p.)

5.49 Calculate the lifetimes for the 2p → 1s and 3p → 1s transitions in the hydrogen atom.
You can find measurements of these lifetimes in Bickel and Goodman, Phys. Rev.,
148 (1966) 1.

5.50 A hydrogen atom is prepared in the 2p,m = +1 state. Find the rate for the 2p → 1s
transition as a function of polar angle θ with respect to the z-axis. Describe the
polarization of the emitted radiation as a function of θ and use this to qualitatively
explain the intensity pattern.

5.51 This problem highlights anomalies in the “exponential” decay of a state. It is inspired
by Winter, Phys. Rev., 123 (1961) 1503, but modern computer applications make it
straightforward to directly evaluate the integrals numerically.
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Consider a particle of mass m that is initially inside a “well” bounded by an
infinite wall to the left and a δ-function potential on the right:

�(x,0)
U d (x)

–a x0

The infinite wall is located at x = −a, and the potential at x = 0 is Uδ(x) where U
is a positive constant. The figure also shows a plausible “ground state” initial wave
functionΨ(x, t = 0) = (2/a)1/2 sin(nπx/a) with n = 1.
a. Show that the wave function at all times can be written as

Ψ(x, t) = 2n
(

2
a

)1/2 ∫ ∞

0
dq

e−iTq2 qsinq [qsin(l+1)q+ f ]
(q2 −n2π2)(q2 +Gqsin2q+G2 sin2 q)

where q ≡ [a(2mE)1/2]/h̄ for a particle with energy E, T ≡ h̄t/2ma2, l ≡ x/a, and
G ≡ 2maU/h̄2 are all dimensionless quantities, and f = 0 for −a ≤ x ≤ 0 and
f=Gsinqsin lq for x≥ 0. This is most easily done by expanding the wave function
in energy eigenstates |E〉, as

Ψ(x, t) =
∫ ∞

0
dEφE(x)e−iEt/h̄

where φE(x) is an energy eigenfunction and 〈E|E′〉= δ(E−E′).
b. Write a computer program to (numerically) integrate the probability of finding

the particle inside the well. Carry out the integration for a series of values of T
between zero and 12, using the same parameters as Winter, namely n = 1 and
G = 6. Plotting these probabilities as a function of T should resemble Figure 2 of
Winter’s paper. Fit the points for 2 ≤ T ≤ 8 to an exponential, and compare the
decay time to Winter’s value of 0.644.

c. Examine the behavior for T≥ 8, and compare to the behavior Winter found for the
current at x = 0. This suggests an experimental measurement. See Norman et al.,
Phys. Rev. Lett., 60 (1988) 2246.



6 Scattering Theory

This chapter is devoted to the theory of scattering processes. These are processes in which
a continuum initial state is transformed into a continuum final state, through the action of
some potential which we will treat as a time-dependent perturbation. Such processes are of
enormous significance. They are the primary way in which we learn experimentally about
distributions in mass, charge, and, in general, potential energy for molecular, atomic, and
subatomic systems.

6.1 Scattering as a Time-Dependent Perturbation

We assume that the Hamiltonian can be written as

H = H0 +V(x) (6.1)

where

H0 =
p2

2m
(6.2)

stands for the kinetic-energy operator, with eigenvalues

Ek =
h̄2k2

2m
. (6.3)

We denote the plane wave eigenvectors of H0 by |k〉 and we assume that the scattering
potential V(r) is time independent.

Our treatment realizes that an incoming particle will “see” the scattering potential
as a perturbation which is “turned on” only during the time that the particle is in the
vicinity of the scatterer. Therefore, we can analyze the problem in terms of time-dependent
perturbation theory in the interaction picture.

To review (see Section 5.7), the state |α, t0; t0〉I evolves into the state |α, t0; t〉I
according to

|α, t0; t〉I = UI(t, t0)|α, t0; t0〉I (6.4)

where UI(t, t0) satisfies the equation

ih̄
∂
∂ t

UI(t, t0) = VI(t)UI(t, t0) (6.5)

371
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with UI(t0, t0) = 1 and VI(t) = exp(iH0t/h̄)Vexp(−iH0t/h̄). The solution of this equation
can be formally written as

UI(t, t0) = 1− i
h̄

∫ t

t0
VI(t′)UI(t′, t0)dt′. (6.6)

Therefore, the “transition amplitude” for an initial state |i〉 to transform into a final state
|n〉, where both are eigenstates of H0, is given by

〈n|UI(t, t0)|i〉= δni −
i
h̄ ∑

m
〈n|V|m〉

∫ t

t0
eiωnmt′ 〈m|UI(t′, t0)|i〉dt′ (6.7)

where 〈n|i〉= δni and h̄ωnm = En −Em.
To apply this formalism to scattering theory, we need to make some adjustments. First,

there is the normalization of the initial and final states. Equation (6.7) assumes discrete
states, but our scattering states are in the continuum. We deal with this by quantizing our
scattering states in a “big box,” i.e. a cube of side L. In the coordinate representation,
this gives

〈x|k〉= 1
L3/2 eik·x (6.8)

in which case 〈k′|k〉= δkk′ where the k take on discrete values. We will take L → ∞ at the
end of any calculation.

We also need to deal with the fact that both the initial and final states exist only
asymptotically. That is, we need to work with both t → ∞ and t0 → −∞. We can take a
hint from a first-order treatment of (6.7) in which case we set 〈m|UI(t′, t0)|i〉 = δmi inside
the integral, that is

〈n|UI(t, t0)|i〉= δni −
i
h̄
〈n|V|i〉

∫ t

t0
eiωnit ′dt ′. (6.9)

In this case, as t → ∞ we saw a “transition rate” emerge as Fermi’s golden rule. So, in order
to also accommodate t0 →−∞, we define a matrix T as follows:

〈n|UI(t, t0)|i〉= δni −
i
h̄

Tni

∫ t

t0
eiωnit ′+εt ′dt ′ (6.10)

where ε > 0 and t � (1/ε). These conditions ensure that eεt ′ is close to unity as t → ∞,
and that the integrand goes to zero as t0 →−∞. We just need to make sure that we take the
limit ε→ 0 first, before we take t →+∞.

We can now define the scattering (or S) matrix in terms of the T matrix:

Sni ≡ lim
t→∞

[
lim
ε→0

〈n|UI(t,−∞)|i〉
]
= δni −

i
h̄

Tni

∫ ∞

−∞
eiωnit ′dt ′

= δni −2πiδ(En −Ei)Tni. (6.11)

Clearly, the S matrix consists of two parts. One part is that in which the final state is the
same as the initial state. The second part, governed by the T matrix, is one in which some
sort of scattering occurs.
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6.1.1 Transition Rates and Cross Sections

Proceeding as in Section 5.7, we define the transition rate as

w(i → n) =
d
dt

|〈n|UI(t,−∞)|i〉|2 (6.12)

where for |i〉 	= |n〉 we have

〈n|UI(t,−∞)|i〉=− i
h̄

Tni

∫ t

−∞
eiωnit ′+εt ′dt ′ =− i

h̄
Tni

eiωnit+εt

iωni + ε
(6.13)

and therefore

w(i → n) =
d
dt

[
1
h̄2 |Tni|2

e2εt

ω2
ni + ε

2

]
=

1
h̄2 |Tni|2

2ε e2εt

ω2
ni + ε

2 .

We need to take ε→ 0 for finite values of t, and then t → ∞. Clearly, this will send w → 0
if ωni 	= 0 so we see something like δ(ωni) emerging, which is not unexpected based on
(6.11). In fact, since ∫ ∞

−∞

1
ω2 + ε2 dω =

π
ε

(6.14)

for ε > 0, we have, for finite t,

lim
ε→0

ε e2εt

ω2
ni + ε

2 = πδ(ωni) = πh̄δ(En −Ei). (6.15)

Therefore, the transition rate is

w(i → n) =
2π
h̄

|Tni|2 δ(En −Ei) (6.16)

which is independent of time, so the limit as t → ∞ is trivial. This expression is strikingly
similar to Fermi’s golden rule (5.294), except that Vni has been replaced by the more
general Tni. We will see below how to determine the matrix elements Tni in general. First,
however, let us continue with this discussion and use the transition rate to express the
scattering cross section.

As with Fermi’s golden rule, in order to integrate over the final state energy En, we need
to determine the density of final states ρ(En) = Δn/ΔEn. We will determine the density of
states for elastic scattering, where |i〉 = |k〉 and |n〉 = |k ′〉 and |k| = |k ′| ≡ k. (Recall our
discussion of “The Free Particle in Three Dimensions” in Section 2.5.1.) For our “big box”
normalization, we write

En =
h̄2k ′2

2m
=

h̄2

2m

(
2π
L

)2

|n|2 so ΔEn =
h̄2

m

(
2π
L

)2

|n|Δ|n| (6.17)

where n = nx î+nyĵ+nzk̂ and nx,y,z are integers. Since n = (L/2π)|k ′|= (L/2π)k and L is
large, we can think of |n| as nearly continuous, and the number of states within a spherical
shell of radius |n| and thickness Δ|n| is

Δn = 4π|n|2Δ|n|× dΩ
4π

(6.18)
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taking into account the fraction of solid angle represented by the final state wave vector k.
Therefore

ρ(En) =
Δn
ΔEn

=
m
h̄2

(
L

2π

)2

|n|dΩ=
mk
h̄2

(
L

2π

)3

dΩ (6.19)

and after integrating over final states, the transition rate is given by

w(i → n) =
mkL3

(2π)2h̄3 |Tni|2 dΩ. (6.20)

We use the concept of cross section to interpret the transition rate in scattering
experiments. That is, we determine the rate at which particles are scattered into a solid
angle dΩ from a “beam” of particles with momentum h̄k. The speed of these particles is
v = h̄k/m so the time it takes for a particle to cross the “big box” is L/v. Therefore the flux
in the particle beam is (1/L2)÷ (L/v) = v/L3. Indeed, the probability flux (2.191) for the
wave function (6.8) becomes

j(x, t) =
(

h̄
m

)
k
L3 =

v
L3 . (6.21)

The cross section dσ is simply defined as the transition rate divided by the flux. Putting
this all together, we have

dσ
dΩ

=

(
mL3

2πh̄2

)2

|Tni|2 . (6.22)

The job now before us is to relate the matrix elements Tni to the scattering potential
distribution V(r).

6.1.2 Solving for the T Matrix

We return to the definition of the T matrix. From (6.10) and (6.13) we have

〈n|UI(t,−∞)|i〉= δni +
1
h̄

Tni
eiωnit+εt

−ωni + iε
. (6.23)

We can also return to (6.7). Writing Vnm = 〈n|V|m〉, we have

〈n|UI(t,−∞)|i〉= δni −
i
h̄ ∑

m
Vnm

∫ t

−∞
eiωnmt ′ 〈m|UI(t ′,−∞)|i〉dt ′. (6.24)

Now insert (6.23) into the integrand of (6.24). This results in three terms, the first of
which is δni and the second looks just like (6.23) but with Tni replaced with Vni. The third
term is

− i
h̄

1
h̄ ∑

m
Vnm

Tmi

−ωmi + iε

∫ t

−∞
eiωnmt ′+iωmit ′+εt ′dt ′. (6.25)

The integral is then carried out, and since ωnm + ωmi = ωni, the result can be taken
outside the summation. Gathering terms and comparing the result to (6.23), we discover
the following relation:
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Tni = Vni +
1
h̄ ∑

m
Vnm

Tmi

−ωmi + iε
= Vni +∑

m
Vnm

Tmi

Ei −Em + ih̄ε
. (6.26)

This is an inhomogeneous system of linear equations which can be solved for the values
Tni, in terms of the known matrix elements Vnm. It is convenient to define a set of vectors
|ψ(+)〉 in terms of components in some basis | j〉, so that

Tni = ∑
j
〈n|V| j〉〈j|ψ(+)〉= 〈n|V|ψ(+)〉. (6.27)

(The choice of notation will be become apparent shortly.) Therefore (6.26) becomes

〈n|V|ψ(+)〉= 〈n|V|i〉+∑
m
〈n|V|m〉 〈m|V|ψ(+)〉

Ei −Em + ih̄ε
. (6.28)

Since this must be true for all |n〉, we have an expression for the |ψ(+)〉, namely

|ψ(+)〉= |i〉+∑
m
|m〉 〈m|V|ψ(+)〉

Ei −Em + ih̄ε

= |i〉+∑
m

1
Ei −H0 + ih̄ε

|m〉〈m|V|ψ(+)〉

or

|ψ(+)〉= |i〉+ 1
Ei −H0 + ih̄ε

V|ψ(+)〉. (6.29)

This is known as the Lippmann–Schwinger equation. The physical meaning of (+) is
to be discussed in a moment by looking at 〈x|ψ(+)〉 at large distances. Clearly, the states
|ψ(+)〉 have a fundamental importance, allowing us to rewrite (6.22) as

dσ
dΩ

=

(
mL3

2πh̄2

)2 ∣∣∣〈n|V|ψ(+)〉
∣∣∣2

. (6.30)

We have introduced the matrix elements Tni simply as complex numbers, defined by
(6.10). However, we can also define an operator T with matrix elements 〈n|T|i〉 = Tni by
writing T|i〉= V|ψ(+)〉. We can then operate on (6.29) from the left with V which leads to
the succinct operator equation

T = V+V
1

Ei −H0 + ih̄ε
T. (6.31)

To the extent that the scattering potential V is “weak”, an order-by-order approximation
scheme presents itself for the transition operator T, namely

T = V+V
1

Ei −H0 + ih̄ε
V+V

1
Ei −H0 + ih̄ε

V
1

Ei −H0 + ih̄ε
V+ · · · . (6.32)

We will return to this approximation scheme in Section 6.3.



376 Scattering Theory

6.1.3 Scattering from the Future to the Past

We can also picture the scattering process as evolving backwards in time from a plane
wave state |i〉 in the far future, to a state |n〉 in the distant past. In this case, we would write
the formal solution (6.6) as

UI(t, t0) = 1+
i
h̄

∫ t0

t
VI(t ′)UI(t ′, t0)dt ′ (6.33)

which is a form suitable for taking t0 →+∞. Our T matrix is then defined by regularizing
the integral with the opposite sign exponential, namely

〈n|UI(t, t0)|i〉= δni +
i
h̄

Tni

∫ t0

t
eiωnit ′−εt ′dt ′. (6.34)

In this case, the T operator is defined through a different set of states |ψ(−)〉 through T|i〉=
V|ψ(−)〉. We are now prepared to study practical solutions to the scattering problem, and
gain insight as to the different scattering states |ψ(+)〉 and |ψ(−)〉.

6.2 The Scattering Amplitude

Let us replace h̄ε in the Lippman–Schwinger equation with ε; this will be handy and
presents no difficulties since the only constraints on ε are that it be positive and arbitrarily
small. We will also continue to anticipate application to elastic scattering, and use E for the
initial (and final) energy. We therefore rewrite (6.29) as

|ψ(±)〉= |i〉+ 1
E−H0 ± iε

V|ψ(±)〉. (6.35)

We now confine ourselves to the position basis by multiplying 〈x| from the left, and
inserting a complete set of position basis states. Thus

〈x|ψ(±)〉= 〈x|i〉+
∫

d3x ′
〈

x

∣∣∣∣ 1
E−H0 ± iε

∣∣∣∣x ′
〉
〈x ′|V|ψ(±)〉. (6.36)

This is an integral equation for scattering because the unknown ket |ψ(±)〉 appears under
an integral sign. To make progress we must first evaluate the function

G±(x,x ′)≡ h̄2

2m

〈
x

∣∣∣∣ 1
E−H0 ± iε

∣∣∣∣x ′
〉

. (6.37)

Since the eigenstates of H0 are most easily evaluated in the momentum basis, we proceed
by inserting complete sets of states |k〉. (Recall that these are discrete states in our
normalization scheme.) We then write

G±(x,x ′) =
h̄2

2m ∑
k ′

∑
k′′
〈x|k ′〉

〈
k ′

∣∣∣∣ 1
E−H0 ± iε

∣∣∣∣k′′
〉
〈k′′|x ′〉. (6.38)
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Now let H0 act on 〈k ′|, and use〈
k ′

∣∣∣∣ 1
E− (h̄2k′2/2m) ± iε

∣∣∣∣k′′
〉
=

δk ′k′′

E− (h̄2k′2/2m)± iε
(6.39)

〈x|k ′〉= eik ′·x

L3/2 (6.40)

〈k′′|x ′〉= e−ik′′·x ′

L3/2 (6.41)

and put E = h̄2k2/2m. Equation (6.37) then becomes

G±(x,x ′) =
1
L3 ∑

k ′

eik ′·(x−x ′)

k2 − k′2 ± iε
(6.42)

where we have once again redefined ε.
This sum is actually easiest to do if we take L → ∞ and convert it to an integral. Since

ki = 2πni/L (i = x,y,z), the integral measure becomes d3k ′ = (2π)3/L3 and we have

G±(x,x ′) =
1

(2π)3

∫
d3k ′ eik ′·(x−x ′)

k2 − k′2 ± iε
. (6.43)

This integral can be done analytically. First, convert to spherical coordinates, with angles
measured relative to the k ′ direction. The integral over φk ′ just gives a factor of 2π. For
the integral over sinθk ′dθk ′ , put μ ≡ cosθk ′ to find

G±(x,x ′) =
1

(2π)2

∫ ∞

0
k′2dk ′

∫ +1

−1
dμ

eik ′ |x−x ′|μ

k2 − k′2 ± iε

=
1

8π2
1

i|x−x ′|

∫ ∞

−∞
k ′dk ′

[
eik ′ |x−x ′| − e−ik ′ |x−x ′|

k2 − k′2 ± iε

]
(6.44)

where we made use of the fact that the integrand is even in k ′, allowing us to extend the
integration lower limit to −∞ while dividing by two.

We complete the calculation using complex contour integration.1 This procedure will
in fact demonstrate the importance of ε and its sign. Treating k ′ as a complex variable,
imagine an integration contour running along the Re(k ′) axis, and then closed with a semi-
circle in either the upper or lower plane. See Figure 6.1.

Now make use of the Cauchy integral formula (F.5), which we rewrite as∮
C

f(z)
z− z0

dz = 2πif(z0) (6.45)

where the contour C is followed counter-clockwise. The denominator of the integrand of
(6.44) can be written as −(k ′ −k0)(k ′+k0) where k0 ≡ k± iε. (Once again, ε is redefined,
keeping its sign intact, since k is real and positive.) Therefore, the integral over the complex
k ′ plane has poles at ±k0, and we can apply (6.45).

1 Integration over the complex plane arises naturally in many subjects, including scattering theory. For a brief
summary of the mathematics, see Appendix F of this book. Complex analysis is also covered in just about any
textbook on mathematical physics, for example Arfken et al. (2013) or Byron and Fuller (1992).
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Re( k )

Im ( )k

Fig. 6.1 Integrating the two terms in (6.44) using complex contours. The dots (crosses) mark the positions of the two poles
for the + (−) form of G±(x, x ′). We replace the integral over a real-valued k ′ in (6.44) with one of the two
contours in the figure, choosing the one on which the factor e±ik ′ |x−x ′| tends to zero along the semicircle at large
Im(k ′). Thus, the only contribution to the contour integral is along the real axis.

Consider separately the two terms in the integrand of (6.44). For the first term, close
the contour in the upper plane. In this case, the contribution to the integrand along the
semicircle goes to zero exponentially with eik ′ |x−x ′| as Im(k ′)→+∞. Closing in the upper
plane encloses the pole at k ′ = +k + iε (k ′ = −k + iε) in the calculation of G+ (G−).
Applying (6.45), the integral of the first term in brackets of (6.44) becomes

2πi(±k)
ei(±k) |x−x ′|

(−)(±2k)
=−πie±ik |x−x ′| (6.46)

where we have let ε→ 0. The second term is treated the same way, except that the contour
is closed in the lower plane, with another overall minus sign because the contour is traced
clockwise. The contribution to the integral turns out to be the same as the first-term. We
therefore get our final result, namely

G±(x,x ′) =− 1
4π

e±ik|x−x ′|

|x−x ′| . (6.47)
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The reader may recognize that G± is nothing more than Green’s function for the Helmholtz
equation,

(∇2 + k2)G± (x,x ′) = δ(3)(x−x ′). (6.48)

That is, for x 	= x ′, G±(x,x ′) solves the eigenvalue equation H0G± = EG±.
We can now rewrite (6.36) in a more explicit form, using (6.47), namely

〈x|ψ(±)〉= 〈x|i〉− 2m
h̄2

∫
d3x ′ e± ik |x−x ′|

4π|x−x ′| 〈x
′|V|ψ(±)〉. (6.49)

Notice that the wave function 〈x|ψ(±)〉 in the presence of the scatterer is written as the
sum of the wave function for the incident wave 〈x|i〉 and a term that represents the effect
of scattering. As we will see explicitly later, at sufficiently large distances r, the spatial
dependence of the second term is e± ikr/r provided that the potential is of finite range. This
means that the positive solution (negative solution) corresponds to the plane wave plus an
outgoing (incoming) spherical wave. This is in keeping with the origin of the sign in terms
of scattering forward (backward) in time. In most physical problems we are interested in
the positive solution because it is difficult to prepare a system satisfying the boundary
condition appropriate for the negative solution.

To see the behavior of 〈x|ψ(±)〉 more explicitly, let us consider the specific case where
V is a local potential, that is, a potential diagonal in the x-representation. Potentials that are
functions only of the position operator x belong to this category. In precise terms V is said
to be local if it can be written as

〈x ′|V|x′′〉= V(x ′)δ(3)(x ′ −x′′). (6.50)

As a result, we obtain

〈x ′|V|ψ(±)〉=
∫

d3x′′〈x ′|V|x′′〉〈x′′|ψ(±)〉= V(x ′)〈x ′|ψ(±)〉. (6.51)

The integral equation (6.49) now simplifies as

〈x|ψ(±)〉= 〈x|i〉− 2m
h̄2

∫
d3x ′ e± ik |x−x ′|

4π|x−x ′|V(x
′)〈x ′|ψ(±)〉. (6.52)

Let us attempt to understand the physics contained in this equation. The vector x is
understood to be directed towards the observation point at which the wave function
is evaluated. For a finite range potential, the region that gives rise to a nonvanishing
contribution is limited in space. In scattering processes we are interested in studying the
effect of the scatterer (that is, the finite range potential) at a point far outside the range
of the potential. This is quite relevant from a practical point of view because we cannot
put a detector at short distance near the scattering center. Observation is always made by
a detector placed very far away from the scatterer at r greatly larger than the range of the
potential. In other words, we can safely set

|x| � |x ′|, (6.53)

as depicted in Figure 6.2.



380 Scattering Theory

Observation point
P

x − x

k = pl /h

0
α

x

x

Fig. 6.2 Finite-range scattering potential. The observation point P is where the wave function 〈x|ψ (±) 〉 is to be evaluated,
while the contribution to the integral in (6.52) is for |x ′| less than the range of the potential, as depicted by the
shaded region of the figure.

Introducing r = |x|, r ′ = |x ′|, and α = 	 (x,x ′), we have for r � r ′,

|x−x ′|=
√

r2 −2rr ′ cosα+ r′2

= r
(

1− 2r ′

r
cosα+

r′2

r2

)1/2

≈ r− r̂·x ′ (6.54)

where

r̂ ≡ x
|x| (6.55)

in which case k ′ ≡ kr̂. We then obtain

e± ik |x−x ′| ≈ e± ikre∓ ik ′·x ′
(6.56)

for large r. It is also legitimate to replace 1/|x−x ′| by just 1/r.
At this point, we specify the initial state as an eigenstate of the free-particle Hamiltonian

H0, that is |i〉= |k〉. Putting this all together, we have, finally,

〈x|ψ(+)〉 r large−→ 〈x|k〉− 1
4π

2m
h̄2

eikr

r

∫
d3x ′e−ik ′·x ′

V(x ′)〈x ′|ψ(+)〉

=
1

L3/2

[
eik·x +

eikr

r
f(k ′,k)

]
. (6.57)

This form makes it very clear that we have the original plane wave in propagation direction
k plus an outgoing spherical wave with amplitude f(k ′,k) given by

f(k ′,k)≡− 1
4π

2m
h̄2 L3

∫
d3x ′ e−ik ′·x ′

L3/2 V(x ′)〈x ′|ψ(+)〉

=− mL3

2πh̄2 〈k
′|V|ψ(+)〉. (6.58)

We can also show from (6.52) and (6.56) that 〈x|ψ(−)〉 corresponds to the original plane
wave in propagation direction k plus an incoming spherical wave with spatial dependence
e−ikr/r and amplitude −(mL3/2πh̄2)〈−k ′|V|ψ(−)〉.
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(a) (b)

Fig. 6.3 (a) Incident wave packet approaching scattering center initially. (b) Incident wave packet continuing to move in
the original direction plus spherical outgoing wave front (after a long time duration).

We refer to f(k ′,k) as the scattering amplitude. By comparing (6.58) with (6.30), we
see that the differential cross section can be written as

dσ
dΩ

= | f(k ′,k)|2. (6.59)

6.2.1 Wave Packet Description

The reader may wonder here whether our formulation of scattering has anything to do with
the motion of a particle being bounced by a scattering center. The incident plane wave
we have used is infinite in extent in both space and time. In a more realistic situation, we
consider a wave packet (a difficult subject!) that approaches the scattering center.2 After
a long time we have both the original wave packet moving in the original direction plus
a spherical wave front that moves outward, as in Figure 6.3. Actually the use of a plane
wave is satisfactory as long as the dimension of the wave packet is much larger than the
size of the scatterer (or range of V).

6.2.2 The Optical Theorem

There is a fundamental and useful relationship popularly attributed to Bohr, Peierls, and
Placzek3 called the optical theorem, which relates the imaginary part of the forward
scattering amplitude f(θ = 0) ≡ f(k,k) to the total cross section σtot ≡

∫
dΩ(dσ/dΩ),

as follows:

Im f(θ = 0) =
kσtot

4π
. (6.60)

2 For a fuller account of the wave packet approach, see Chapter 3 in Goldberger and Watson (1964), and
Chapter 6 in Newton (1982).

3 This relationship is in fact due to Eugene Feenberg, Phys. Rev., 40 (1932) 40. See Newton, Am. J. Phys., 44
(1976) 639 for the historical background.
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y

x

x0

Fig. 6.4 Contour used to integrate around a singularity located at z0 = x0 + iε.

To prove this, start with the Lippman–Schwinger Equation (6.35) with |i〉= |k〉 to write

〈k|V|ψ(+)〉=
[
〈ψ(+)|− 〈ψ(+)|V 1

E−H0 − iε

]
V|ψ(+)〉

= 〈ψ(+)|V|ψ(+)〉−〈ψ(+)|V 1
E−H0 − iε

V|ψ(+)〉. (6.61)

Comparing (6.58) and (6.60) we see that we want to take the imaginary part of both
sides of (6.61). The first term on the right side of (6.61) is a real number, since it is the
expectation value of a Hermitian operator. Finding the imaginary part of the second term
is more difficult, because of singularities along the real axis as ε→ 0. To do this, we use a
trick borrowed from the concept of the Cauchy principal value in complex integration.

Figure 6.4 shows a complex integration contour which follows the real axis except for
a small semicircle which jumps over a singularity near the real axis. The singularity is
located at z0 = x0 + iε, with ε > 0, which is always above the x-axis. So, let the semicircle
be centered on the real axis at x0, and extend into the lower half of the complex plane with
a radius δ. The semicircle is described by z− x0 = δeiφ with φ running from −π to zero.

Next consider a complex function f(z), with z = x+ iy. We can write∫ ∞

−∞

f(x)
x− x0

dx =
∫ x0−δ

−∞

f(x)
x− x0

dx+
∫

c

f(z)
z− z0

dz+
∫ +∞

x0+δ

f(x)
x− x0

dx = 0

= P
∫ +∞

−∞

f(x)
x− x0

dx+
∫

c

f(z)
z− z0

dz (6.62)

where c denotes the small semicircular contour around the singularity. The Cauchy
principal value is defined as

P
∫ +∞

−∞

f(x)
x− x0

dx = lim
δ→0

{∫ x0−δ

−∞

f(x)
x− x0

dx+
∫ +∞

x0+δ

f(x)
x− x0

dx
}

. (6.63)

We can evaluate the second term in (6.62) as∫
c

f(z)
z− z0

dz =
∫ 0

−π

f(x0)

δeiφ

(
iφδeiφdφ

)
→ iπf(x0) as δ→ 0. (6.64)

Consequently, we rewrite (6.62) as∫ ∞

−∞

f(x)
x− x0

dx = P
∫ +∞

−∞

f(x)
x− x0

dx+ iπf(x0). (6.65)
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Now we can return to finding the imaginary part of the right side of (6.61). We have

lim
ε→0

(
1

E−H0 − iε

)
= lim

ε→0

∫ +∞

−∞

δ(E−E ′)

E ′ −H0 − iε
dE ′

= iπδ(E−H0) (6.66)

where we have made use of (6.65). Therefore

Im〈k|V|ψ(+)〉=−π〈ψ(+)|Vδ(E−H0)V|ψ(+)〉
=−π〈k|T†δ(E−H0)T|k〉 (6.67)

where we recall that T is defined through T|k〉= V|ψ(+)〉. Consequently, using (6.58),

Im f(k,k) =− mL3

2πh̄2 Im〈k|V|ψ(+)〉

=
mL3

2h̄2 〈k|T
†δ(E−H0)T|k〉

=
mL3

2h̄2 ∑
k ′
〈k|T†δ(E−H0)|k ′〉〈k ′|T|k〉

=
mL3

2h̄2 ∑
k ′
|〈k ′|T|k〉|2 δE,h̄2k ′2/2m (6.68)

where E = h̄2k2/2m.
The optical theorem (6.60) now begins to appear. The factor |〈k ′|T|k〉|2 is proportional to

the differential cross section (6.59). The sum, including the δ function, is over all scattered
momenta which conserve energy; in other words it is over all directions in space. Therefore,
the right-hand side of (6.68) is an integral of the differential cross section over all directions
and so is proportional to the total cross section.

To carry (6.68) through to the end, we make use of 〈k ′|T|k〉= 〈k ′|V|ψ(+)〉 with (6.58),
and converting the sum to an integral as we did to go from (6.42) to (6.44). This gives

Im f(k,k) =
mL3

2h̄2

(
2πh̄2

mL3

)2

∑
k ′
| f(k ′,k)|2 δE,h̄2k ′2/2m

−→ 2π2h̄2

m(2π)3

∫
d3k ′ | f(k ′,k)|2 δ

(
E− h̄2k ′2

2m

)

=
h̄2

4πm
1

h̄2k/m
k2

∫
dΩk ′

dσ
dΩk ′

=
k

4π
σtot (6.69)

thus proving (6.60).
Section 6.5 will provide some insights as to the physical significance of the optical

theorem.
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6.3 The Born Approximation

Our task now is to calculate the scattering amplitude f(k ′,k) for some given potential
energy function V(x). This amounts to calculating the matrix element

〈k ′|V|ψ(+)〉= 〈k ′|T|k〉. (6.70)

This task is not straightforward, however, since we do not have closed analytic expressions
for either 〈x ′|ψ(+)〉 or T. Consequently, one typically resorts to approximations at this
point.

We have already alluded to a useful approximation scheme in (6.32). Again replacing
h̄ε with ε, this is

T = V+V
1

E−H0 + iε
V+V

1
E−H0 + iε

V
1

E−H0 + iε
V+ · · · (6.71)

which is an expansion in powers of V. We will shortly examine the conditions under which
truncations of this expansion should be valid. First, however, we will make use of this
scheme and see where it leads us.

Taking the first term in the expansion, i.e. T = V or, equivalently, |ψ(+)〉= |k〉, is called
the first-order Born approximation. In this case, the scattering amplitude is denoted by
f (1), where

f (1)(k ′,k) =− m
2πh̄2

∫
d3x ′ei(k−k ′)·x ′

V(x ′) (6.72)

after inserting a complete set of states |x ′〉 into (6.58). In other words, apart from an
overall factor, the first-order amplitude is just the three-dimensional Fourier transform of
the potential V with respect to q ≡ k−k ′.

An important special case is when V is a spherically symmetric potential. This implies
that f (1)(k ′,k) is a function of q≡ |q|, which is simply related to kinematic variables easily
accessible by experiment. See Figure 6.5. Since |k ′|= k by energy conservation, we have

k

k
q

θ

Fig. 6.5 Scattering through angle θ , where q = k − k ′.
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q = |k−k ′|= 2k sin
θ
2

. (6.73)

We can perform the angular integration in (6.72) explicitly to obtain

f (1)(θ) =−1
2

2m
h̄2

1
iq

∫ ∞

0

r2

r
V(r)(eiqr − e−iqr)dr

=−2m
h̄2

1
q

∫ ∞

0
rV(r)sin qrdr. (6.74)

A simple but important example is scattering by a finite square well, that is

V(r) =
{

V0 r ≤ a
0 r > a.

(6.75)

The integral in (6.74) is readily done, and yields

f (1)(θ) =−2m
h̄2

V0a3

(qa)2

[
sinqa

qa
− cosqa

]
. (6.76)

This function has zeros at qa = 4.49,7.73,10.9. . . and the position of these zeros, along
with (6.73), can be used to determine the well radius a. Figure 6.6 shows elastic proton
scattering from several nuclei, each of which is an isotope of calcium. The nuclear potential
is approximated rather nicely by a finite square well, and the differential cross section
shows the characteristic minima predicted by (6.76). Furthermore, the data indicate that as
neutrons are added to the calcium nucleus, the minima appear at smaller angles, showing
that the nuclear radius in fact increases.

Proton elastic scattering
800 MeV

48Ca

44Ca × 0.1

42Ca × 0.01

40Ca × 0.001

104

103

102

101

100

10–1

10–2

10–3

10–4

dσ
/d

 (
m

b/
sr

)

2 4 6 8 10 12 14 16 18 20 22 24

θc.m. (deg)

Fig. 6.6 Data on elastic scattering of protons from the nuclei of four different isotopes of calcium. The angles at which the
cross sections show minima, decrease consistently with increasing neutron number. Therefore, the radius of the
calcium nucleus increases as more neutrons are added, as one expects. From Ray et al., Phys. Rev. C, 23 (1981) 828.
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Another important example is scattering by a Yukawa potential

V(r) =
V0e−μr

μr
(6.77)

where V0 is independent of r, and 1/μ corresponds, in a certain sense, to the range of the
potential. Notice that V goes to zero very rapidly for r � 1/μ. For this potential we obtain,
from (6.74),

f (1)(θ) =−
(

2mV0

μh̄2

)
1

q2 +μ2 , (6.78)

where we note that sinqr = Im(eiqr) and have used

Im

[∫ ∞

0
e−μreiqrdr

]
=−Im

(
1

−μ+ iq

)
=

q
μ2 +q2 . (6.79)

Notice also that

q2 = 4k2 sin2 θ
2
= 2k2(1− cosθ). (6.80)

So, in the first Born approximation, the differential cross section for scattering by a Yukawa
potential is given by (

dσ
dΩ

)
�

(
2mV0

μh̄2

)2 1
[2k2(1− cosθ)+μ2]2

. (6.81)

It is amusing to observe here that as μ→ 0, the Yukawa potential is reduced to the
Coulomb potential, provided the ratio V0/μ is fixed, for example, to be ZZ ′e2, in the
limiting process. We see that the first Born differential cross section obtained in this manner
becomes (

dσ
dΩ

)
� (2m)2(ZZ ′e2)2

h̄4
1

16k4 sin4(θ /2)
. (6.82)

Even the h̄ disappears if h̄k is identified as |p|, so(
dσ
dΩ

)
=

1
16

(
ZZ ′e2

EKE

)2 1
sin4(θ /2)

, (6.83)

where EKE = |p|2/2m; this is precisely the Rutherford scattering cross section that can be
obtained classically.

Coming back to (6.74), the Born amplitude with a spherically symmetric potential,
there are several general remarks we can make if f(k ′,k) can be approximated by the
corresponding first Born amplitude, f (1).

1. dσ/dΩ, or f(θ), is a function of q only; that is, f(θ) depends on the energy (h̄2k2/2m)

and θ only through the combination 2k2(1− cosθ).
2. f(θ) is always real.
3. dσ/dΩ is independent of the sign of V.
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4. For small k (q necessarily small),

f (1)(θ) =− 1
4π

2m
h̄2

∫
V(r)d3x

involving a volume integral independent of θ .
5. f(θ) is small for large q due to rapid oscillation of the integrand.

In order to study the conditions under which the Born approximation should be valid,
let us return to (6.52), slightly rewritten as

〈x|ψ(+)〉= 〈x|k〉− 2m
h̄2

∫
d3x ′ eik |x−x ′|

4π|x−x ′|V(x
′)〈x ′|ψ(+)〉.

The approximation is that T ≈ V, which means that |ψ(+)〉 can be replaced by |k〉.
Therefore, the second term on the right-hand side in this equation must be much smaller
than the first. Let us assume that a “typical” value for the potential energy V(x) is V0,
and that it acts within some “range” a. Writing r ′ = |x− x ′| and carrying out a rough
approximation on the integral, our validity condition becomes∣∣∣∣∣2m

h̄2

(
4π
3

a3
)

eikr ′

4πa
V0

eik·x ′

L3/2

∣∣∣∣∣ �
∣∣∣∣eik·x

L3/2

∣∣∣∣ .

Now for low energies (i.e. ka � 1), the exponential factors can be replaced by unity. Then,
ignoring numerical factors of order unity, the following succinct criterion emerges:

m|V0|a2

h̄2 � 1. (6.84)

Consider the special case of the Yukawa potential in (6.77), in which the range a = 1/μ.
The validity criterion becomes m|V0|/h̄2μ2 � 1. This requirement may be compared with
the condition for the Yukawa potential to develop a bound state, which we can show to be
2m|V0|/h̄2μ2 ≥ 2.7, with V0 negative. In other words, if the potential is strong enough to
develop a bound state, the Born approximation will probably give a misleading result.

At high energies (i.e. ka � 1), the factors eikr ′ and eik·x ′ oscillate strongly over the region
of integration, so they cannot be set equal to unity. Instead, it can be shown that

2m
h̄2

|V0|a
k

ln(ka)� 1. (6.85)

As k becomes larger, this inequality is more easily satisfied. Quite generally, the Born
approximation tends to get better at higher energies.

6.3.1 The Higher-Order Born Approximation

Now, write T to second order in V, using (6.71), namely

T = V+V
1

E−H0 + iε
V.

It is natural to continue our Born approximation approach and write

f(k ′,k)≈ f (1)(k ′,k)+ f (2)(k ′,k)
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k

x

x

k

Fig. 6.7 Physical interpretation of the higher-order Born term f (2)(k ′, k).

where f (1)(k ′,k) is given by (6.72) and

f (2) =− 1
4π

2m
h̄2 (2π)3

∫
d3x ′

∫
d3x′′〈k ′|x ′〉V(x ′)

×
〈

x ′
∣∣∣∣ 1
E−H0 + iε

∣∣∣∣x′′
〉

V(x′′)(x′′|k)

=− 1
4π

2m
h̄2

∫
d3x ′

∫
d3x′′e−ik ′·x ′

V(x ′)

×
[

2m
h̄2 G+(x ′,x′′)

]
V(x′′)eik·x′′ . (6.86)

This scheme can obviously be continued to higher orders
A physical interpretation of (6.86) is given in Figure 6.7, where the incident wave

interacts at x′′, which explains the appearance of V(x′′), and then propagates from x′′ to x ′

via Green’s function for the Helmholtz equation (6.48). Subsequently, a second interaction
occurs at x ′, thus the appearance of V(x ′), and, finally, the wave is scattered into the
direction k ′. In other words, f (2) corresponds to scattering viewed as a two-step process.
Likewise, f (3) can be viewed as a three-step process, and so on.

6.4 Phase Shifts and Partial Waves

In considering scattering by a spherically symmetric potential, we often examine how states
with definite angular momenta are affected by the scatterer. Such considerations lead to the
method of partial waves, which we will discuss shortly. However, before discussing the
angular momentum decomposition of scattering states, let us first talk about free-particle
states, which are also eigenstates of angular momentum.

6.4.1 Free-Particle States

For a free particle the Hamiltonian is just the kinetic-energy operator, which obvi-
ously commutes with the momentum operator. We note, however, that the free-particle
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Hamiltonian also commutes with L2 and Lz. Thus it is possible to consider a simultaneous
eigenket of H0,L2, and Lz. Ignoring spin, such a state is denoted by |E, l,m〉, often called a
spherical wave state.

More generally, the most general free-particle state can be regarded as a superposition
of |E, l,m〉 with various E, l, and m in much the same way as the most general free-particle
state can be regarded as a superposition of |k〉 with different k, different in both magnitude
and direction. Put in another way, a free-particle state can be analyzed using either the
plane wave basis {|k〉} or the spherical wave basis {|E, l,m〉}.

We now derive the transformation function 〈k|E, l,m〉 that connects the plane wave
basis with the spherical wave basis. We can also regard this quantity as the momentum-
space wave function for the spherical wave characterized by E, l, and m. We adopt the
normalization convention for the spherical wave eigenket as follows:

〈E′, l′,m′|E, l,m〉= δll′δmm′δ(E−E′). (6.87)

In analogy with the position-space wave function, we may guess the angular dependence
to be

〈k|E, l,m〉= glE(k)Ym
l (k̂), (6.88)

where the function glE(k) will be considered later. To prove this rigorously, we proceed
as follows. First, consider the momentum eigenket |kẑ〉, that is, a plane wave state whose
propagation direction is along the positive z-axis. An important property of this state is that
it has no orbital angular-momentum component in the z-direction:

Lz|kẑ〉= (xpy − ypx)|kx = 0,ky = 0,kz = k〉= 0. (6.89)

Actually this is plausible from classical considerations: The angular-momentum compo-
nent must vanish in the direction of propagation because L ·p = (x×p) ·p = 0. Because of
(6.89), and since 〈E′, l′,m′|kẑ〉= 0 for m′ 	= 0, we must be able to expand |kẑ〉 as follows:

|kẑ〉= ∑
l′

∫
dE′|E′, l′,m′ = 0〉〈E′, l′,m′ = 0|kẑ〉. (6.90)

Notice that there is no m′ sum; m′ is always zero. We can obtain the most general
momentum eigenket, with the direction of k specified by θ and φ, from |kẑ〉 by just
applying the appropriate rotation operator as follows [see Figure 3.3 and (3.256)]:

|k〉= D(α = φ,β = θ ,γ = 0)|kẑ〉. (6.91)

Multiplying this equation by 〈E, l,m| on the left, we obtain

〈E, l,m|k〉= ∑
l′

∫
dE′〈E, l,m|D(α = φ,β = θ ,γ = 0)|E′, l′,m′ = 0〉

×〈E′, l′,m′ = 0|kẑ〉

= ∑
l′

∫
dE′D

(l′)
m0 (α = φ,β = θ ,γ = 0)

× δll′δ(E−E′)〈E′, l′,m′ = 0|kẑ〉

= D
( l)
m0 (α = φ,β = θ ,γ = 0)〈E, l,m = 0|kẑ〉. (6.92)
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Now 〈E, l,m = 0|kẑ〉 is independent of the orientation of k, that is, independent of θ and
φ, and we may as well call it

√
2l+1
4π g∗lE(k). So we can write, using (3.260),

〈k|E, l,m〉= glE (k) Ym
l (k̂). (6.93)

Let us determine glE(k). First, we note that

(H0 −E)|E, l,m〉= 0. (6.94)

But we also let H0 −E operate on a momentum eigenbra 〈k| as follows:

〈k|(H0 −E) =
(

h̄2k2

2m
−E

)
〈k|. (6.95)

Multiplying (6.95) with |E, l,m〉 on the right, we obtain(
h̄2k2

2m
−E

)
〈k|E, l,m〉= 0. (6.96)

This means that 〈k|E, l,m〉 can be nonvanishing only if E = h̄2k2/2m; so we must be able
to write glE(k) as

glE(k) = Nδ
(

h̄2k2

2m
−E

)
. (6.97)

To determine N we go back to our normalization convention (6.87). We obtain

〈E′, l′m′|E, l,m〉=
∫

d3k′′〈E′, l′,m′|k′′〉〈k′′|E, l,m〉

=
∫

k′′2dk′′
∫

dΩk′′ |N|2δ
(

h̄2k′′2

2m
−E′

)

× δ
(

h̄2k′′2

2m
−E

)
Ym′∗

l′ (k̂′′)Ym
l (k̂

′′)

=
∫ k′′2dE′′

dE′′/dk′′
∫

dΩk′′ |N|2δ
(

h̄2k′′2

2m
−E′

)
δ

(
h̄2k′′2

2m
−E

)
×Ym′∗

l′ (k̂′′)Ym
l (k̂

′′)

= |N|2 mk′

h̄2 δ(E−E′)δll′δmm′ , (6.98)

where we have defined E′′ = h̄2k′′2/2m to change k′′-integration into E′′-integration.
Comparing this with (6.87), we see that N = h̄/

√
mk will suffice. Therefore, we can

finally write

glE(k) =
h̄√
mk
δ

(
h̄2k2

2m
−E

)
; (6.99)

hence

〈k|E, l,m〉= h̄√
mk
δ

(
h̄2k2

2m
−E

)
Ym

l (k̂). (6.100)



391 6.4 Phase Shifts and Partial Waves

From (6.100) we infer that the plane wave state |k〉 can be expressed as a superposition of
free spherical wave states with all possible l-values; in particular,

|k〉= ∑
l

∑
m

∫
dE|E, l,m〉〈E, l,m|k〉

=
∞

∑
l=0

l

∑
m=−1

|E, l,m〉
∣∣∣∣∣
E=h̄2k2/2m

(
h̄√
mk

Ym∗
l (k̂)

)
. (6.101)

Because the transverse dimension of the plane wave is infinite, we expect that the plane
wave must contain all possible values of impact parameter b (semiclassically, the impact
parameter b� lh̄/p). From this point of view it is no surprise that the momentum eigenstates
|k〉, when analyzed in terms of spherical wave states, contain all possible values of l.

We have derived the wave function for |E, l,m〉 in momentum space. Next, we consider
the corresponding wave function in position space. From wave mechanics, the reader
should be familiar with the fact that the wave function for a free spherical wave
isjl(kr)Ym

l (r̂), where jl(kr) is the spherical Bessel function of order l (see (3.282a) and also
Appendix B). The second solution nl(kr), although it satisfies the appropriate differential
equation, is inadmissible because it is singular at the origin. So we can write

〈x|E, l,m〉= cljl(kr)Ym
l (r̂). (6.102)

To determine cl, all we have to do is compare

〈x|k〉= eik·x

(2π)3/2 = ∑
l

∑
m

∫
dE〈x|E, l,m〉〈E, l,m|k〉

= ∑
l

∑
m

∫
dE cljl(kr)Ym

l (r̂)
h̄√
mk
δ

(
E− h̄2k2

2m

)
Ym∗

l (k̂)

= ∑
l

(2l+1)
4π

Pl(k̂·r̂)
h̄√
mk

cljl(kr), (6.103)

where we have used the addition theorem

ΣmYm
l (r̂)Ym∗

l (k̂) = [(2l+1)/4π]Pl(k̂·r̂)

in the last step. Now 〈x|k〉= eik·x/(2π)3/2 can also be written as

eik·x

(2π)3/2 =
1

(2π)3/2 ∑
l
(2l+1)iljl(kr)Pl(k̂·r̂), (6.104)

which can be proved by using the following integral representation for jl(kr):

jl(kr) =
1

2il
∫ +1

−1
eikrcosθ Pl(cosθ)d(cosθ). (6.105)

Comparing (6.103) with (6.104), we have

cl =
il

h̄

√
2mk
π

. (6.106)
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To summarize, we have

〈k|E, l,m〉= h̄√
mk
δ

(
E− h̄2k2

2m

)
Ym

l (k̂) (6.107a)

〈x|E, l,m〉= il

h̄

√
2mk
π

jl(kr)Ym
l (r̂). (6.107b)

These expressions are extremely useful in developing the partial-wave expansion.
We conclude this section by applying (6.107a) to a decay process. Suppose a parent

particle of spin j disintegrates into two spin zero particles A(spin j) → B(spin 0) +
C(spin 0). The basic Hamiltonian responsible for such a decay process is, in general, very
complicated. However, we do know that angular momentum is conserved because the basic
Hamiltonian must be rotationally invariant. So the momentum-space wave function for
the final state must be of the form (6.107a), with l identified with the spin of the parent
particle. This immediately enables us to compute the angular distribution of the decay
product because the momentum-space wave function is nothing more than the probability
amplitude for finding the decay product with relative momentum direction k.

As a concrete example from nuclear physics, let us consider the decay of an excited
nucleus, Ne20∗:

Ne20∗ → O16 +He4. (6.108)

Both O16 and He4 are known to be spinless particles. Suppose the magnetic quantum
number of the parent nucleus is ±1, relative to some direction z. Then the angular
distribution of the decay product is proportional to |Y±1

1 (θ ,φ)|2 = (3/8π)sin2 θ , where
(θ ,φ) are the polar angles defining the relative direction k of the decay product. On the
other hand, if the magnetic quantum number is 0 for a parent nucleus with spin 1, the decay
angular distribution varies as |Y0

1(θ ,φ)|2 = (3/4π)cos2 θ .
For a general spin orientation we obtain

1

∑
m=−l

w(m)|Ym
l=1|2. (6.109)

For an unpolarized nucleus the various w(m) are all equal, and we obtain an isotropic
distribution; this is not surprising because there is no preferred direction if the parent
particle is unpolarized.

For a higher spin object, the angular distribution of the decay is more involved;
the higher the spin of the parent decaying system, the greater the complexity of the
angular distribution of the decay products. Quite generally, through a study of the angular
distribution of the decay products, it is possible to determine the spin of the parent nucleus.

6.4.2 Partial-Wave Expansion

Let us now come back to the case V 	= 0. We assume that the potential is spherically
symmetric, that is, invariant under rotations in three dimensions. It then follows that the
transition operator T, which is given by (6.71), commutes with L2 and L. In other words,
T is a scalar operator.
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It is now useful to use the spherical wave basis because the Wigner–Eckart theorem [see
(3.481)], applied to a scalar operator, immediately gives

〈E′, l′,m′|T|E, l,m〉= Tl(E)δll′δmm′ . (6.110)

In other words, T is diagonal both in l and in m; furthermore, the (nonvanishing) diagonal
element depends on E and l but not on m. This leads to an enormous simplification, as we
will see shortly.

Let us now look at the scattering amplitude (6.58):

f(k′,k) =− 1
4π

2m
h̄2 L3〈k′|T|k〉

−→− 1
4π

2m
h̄2 (2π)3 ∑

l
∑
m

∑
l′

∑
m′

∫
dE

∫
dE′〈k′|E′l′m′〉

× 〈E′l′m′|T|Elm〉〈Elm|k〉

=− 1
4π

2m
h̄2 (2π)3 h̄2

mk ∑
l

∑
m

Tl(E)
∣∣∣∣
E=h̄2k2/2m

Ym
l (k̂

′)Ym∗
l (k̂)

=−4π2

k ∑
l

∑
m

Tl(E)
∣∣∣∣
E=h̄2k2/2m

Ym
l (k̂

′)Ym∗
l (k̂). (6.111)

To obtain the angular dependence of the scattering amplitude, let us choose the coordinate
system in such a way that k, as usual, is in the positive z-direction. We then have [see
(3.259)]

Ym
l (k̂) =

√
2l+1

4π
δm0, (6.112)

where we have used Pl(1) = 1; hence only the terms m = 0 contribute. Taking θ to be the
angle between k′ and k, we can write

Y0
l (k̂

′) =

√
2l+1

4π
Pl(cosθ). (6.113)

It is customary here to define the partial-wave amplitude fl(k) as follows:

fl(k)≡−πTl(E)
k

. (6.114)

For (6.111) we then have

f(k′,k) = f(θ) =
∞

∑
l=0

(2l+1)fl(k)Pl(cosθ), (6.115)

where f(θ) still depends on k (or the incident energy) even though k is suppressed.
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To appreciate the physical significance of fl(k), let us study the large-distance behavior
of the wave function 〈x|ψ(+)〉 given by (6.57). Using the expansion of a plane wave in
terms of spherical waves [(6.104)] and noting that (Appendix B)

jl(kr) large r−−−→ ei(kr−(lπ/2))− e−i(kr−(lπ/2))

2ikr
(il = ei(π/2)l) (6.116)

and that f(θ) is given by (6.115), we have

〈x|ψ(+)〉 large r−−−→ 1
(2π)3/2

[
eikz + f(θ)

eikr

r

]

=
1

(2π)3/2

[
∑

l
(2l+1)Pl(cosθ)

(
eikr − e−i(kr−lπ)

2ikr

)

+ ∑
l
(2l+1)fl(k)Pl(cosθ)

eikr

r

]

=
1

(2π)3/2 ∑
l
(2l+1)

Pl

2ik

[
[1+2ikfl(k)]

eikr

r
− e−i(kr−lπ)

r

]
. (6.117)

The physics of scattering is now clear. When the scatterer is absent, we can analyze the
plane wave as the sum of a spherically outgoing wave behaving like eikr/r and a spherically
incoming wave behaving like −e−i(kr−lπ)/r for each l. The presence of the scatterer changes
only the coefficient of the outgoing wave, as follows:

1 → 1+2ikfl(k). (6.118)

The incoming wave is completely unaffected.

6.4.3 Unitarity and Phase Shifts

We now examine the consequences of probability conservation, or unitarity. In a
time-independent formulation, the flux current density j must satisfy

∇·j =−∂ |ψ|2
∂ t

= 0. (6.119)

Let us now consider a spherical surface of very large radius. By Gauss’s theorem, we
must have ∫

spherical surface
j·dS = 0. (6.120)

Physically (6.119) and (6.120) mean that there is no source or sink of particles. The
outgoing flux must equal the incoming flux. Furthermore, because of angular-momentum
conservation, this must hold for each partial wave separately. In other words, the coefficient
of eikr/r must be the same in magnitude as the coefficient of e−ikr/r. Defining Sl(k) to be

Sl(k)≡ 1+2ikfl(k), (6.121)
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this means [from (6.118)] that

|Sl(k)|= 1, (6.122)

that is, the most that can happen is a change in the phase of the outgoing wave. Equation
(6.122) is known as the unitarity relation for the lth partial wave. In a more advanced
treatment of scattering, Sl(k) can be regarded as the lth diagonal element of the S operator,
which is required to be unitary as a consequence of probability conservation.

We thus see that the only change in the wave function at a large distance as a result of
scattering is to change the phase of the outgoing wave. Calling this phase 2δl (the factor
of 2 here is conventional), we can write

Sl = e2iδl , (6.123)

with δl real. It is understood here that δl is a function of k even though we do not explicitly
write δl as δl(k). Returning to fl, we can write [from (6.121)]

fl =
(Sl −1)

2ik
(6.124)

or, explicitly in terms of δl,

fl =
e2iδl −1

2ik
=

eiδl sinδl

k
=

1
kcotδl − ik

, (6.125)

whichever is convenient. For the full scattering amplitude we have

f(θ) = ∑
l=0

(2l+1)
(

e2iδl −1
2ik

)
Pl(cosθ)

=
1
k ∑

l=0
(2l+1)eiδl sinδlPl(cosθ) (6.126)

with δl real. This expression for f(θ) rests on the twin principles of rotational invariance
and probability conservation. In many books on wave mechanics, (6.126) is obtained by
explicitly solving the Schrödinger equation with a real, spherically symmetric potential;
our derivation of (6.126) may be of interest because it can be generalized to situations
when the potential described in the context of nonrelativistic quantum mechanics may fail.

The differential cross section dσ/dΩ can be obtained by just taking the modulus squared
of (6.126). To obtain the total cross section we have

σtot =
∫

| f(θ)|2dΩ

=
1
k2

∫ 2π

0
dφ

∫ +1

−1
d(cosθ)∑

l
∑
l′
(2l+1)(2l′+1)

× eiδl sinδle−iδl′ sinδl′PlPl′

=
4π
k2 ∑

l
(2l+1)sin2 δl. (6.127)

We can check the optical theorem (6.60), which we obtained earlier using a more general
argument. All we need to do is note from (6.126) that
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Imf(θ = 0) = ∑
l

(2l+1)Im[eiδl sinδl]

k
Pl(cosθ)

∣∣∣∣∣
θ=0

= ∑
l

(2l+1)
k

sin2 δl, (6.128)

which is the same as (6.127) except for 4π/k.
As a function of energy, δl changes; hence fl(k) changes also. The unitarity relation of

(6.122) is a restriction on the manner in which fl can vary. This can be most conveniently
seen by drawing an Argand diagram for kfl. We plot kfl in a complex plane, as shown in
Figure 6.8, which is self-explanatory if we note from (6.125) that

kfl =
i
2
+

1
2

e−(iπ/2)+2iδl . (6.129)

Notice that there is a circle of radius 1
2 , known as the unitary circle, on which kfl must lie.

We can see many important features from Figure 6.8. Suppose δl is small. Then fl
must stay near the bottom of the circle. It may be positive or negative, but fl is almost
purely real:

fl =
eiδl sinδl

k
� (1+ iδl)δl

k
� δl

k
. (6.130)

2δl

C

O

P

Im(k f l)

Re(k f l)

1
2

Fig. 6.8 Argand diagram for kfl . OP is the magnitude of kfl , while CO and CP are each radii of length 1
2 on the unitary circle;

angle OCP = 2δl .
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On the other hand, if δl is near π/2, kfl is almost purely imaginary, and the magnitude of
kfl is maximal. Under such a condition the lth partial wave may be in resonance, a concept
to be discussed in some detail in Section 6.7. Note that the maximum partial cross section

σ( l)
max =

4π
k2 (2l+1) (6.131)

is achieved [see (6.127)] when sin2 δl = 1.

6.4.4 Determination of Phase Shifts

Let us now consider how we may actually determine the phase shifts given a potential V.
We assume that V vanishes for r > R, R being the range of the potential. Outside (that is,
for r > R) the wave function must be that of a free spherical wave. This time, however,
there is no reason to exclude nl(r) because the origin is excluded from our consideration.
The wave function is therefore a linear combination of jl(kr)Pl(cosθ) and nl(kr)Pl(cosθ)
or, equivalently, h(1)l Pl and h(2)l Pl, where h(1)

l and h(2)l are the spherical Hankel functions
defined by

h(1)l = jl + inl, h(2)
l = jl − inl; (6.132)

these have the asymptotic behavior (see Appendix B)

h(1)l
r large−→ ei(kr−(lπ/2))

ikr
, h(2)l

r large−→ − e−i(kr−(lπ/2))

ikr
. (6.133)

The full-wave function at any r can then be written as:

〈x|ψ(+)〉= 1
(2π)3/2 ∑ il(2l+1)Al(r)Pl(cosθ) (r > R). (6.134)

For r > R we have (for the radial wave function)

Al = c(1)l h(1)l (kr)+ c(2)l h(2)l (kr), (6.135)

where the coefficient that multiplies Al in (6.134) is chosen so that, for V = 0, Al(r)
coincides with jl(kr) everywhere [see (6.104)]. Using (6.133), we can compare the behavior
of the wave function for large r given by (6.134) and (6.135) with

1
(2π)3/2 ∑

l
(2l+1)Pl

[
e2iδl eikr

2ikr
− e−i(kr−lπ)

2ikr

]
. (6.136)

Clearly, we must have

c(1)l = 1
2 e2iδl , c(2)l = 1

2 . (6.137)

So the radial wave function for r > R is now written as

Al(r) = eiδl [cosδljl(kr)− sinδlnl(kr)] . (6.138)
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Using this, we can evaluate the logarithmic derivative at r = R, that is, just outside the
range of the potential, as follows:

βl ≡
(

r
Al

dAl

dr

)
r=R

= kR
[

j′l(kR)cosδl −n′l(kR)sinδl

jl(kR)cosδl −nl(kR)sinδl

]
, (6.139)

where j′l(kR) stands for the derivative of jl with respect to kr evaluated at kr = kR.
Conversely, knowing the logarithmic derivative at R, we can obtain the phase shift as
follows:

tanδl =
kRj′l(kR)− βljl(kR)
kRn′l(kR)− βlnl(kR)

. (6.140)

The problem of determining the phase shift is thus reduced to that of obtaining βl.
We now look at the solution to the Schrödinger equation for r < R, that is, inside the

range of the potential. For a spherically symmetric potential, we can solve the Schrödinger
equation in three dimensions by looking at the equivalent one-dimensional equation

d2ul

dr2 +

(
k2 − 2m

h̄2 V− l(l+1)
r2

)
ul = 0, (6.141)

where

ul = rAl(r) (6.142)

subject to the boundary condition

ul|r=0 = 0. (6.143)

We integrate this one-dimensional Schrödinger equation, if necessary numerically, up to
r = R, starting at r = 0. In this way we obtain the logarithmic derivative at R. By continuity
we must be able to match the logarithmic derivative for the inside and outside solutions at
r = R:

βl|insidesolution = βl|outsidesolution, (6.144)

where the left-hand side is obtained by integrating the Schrödinger equation up to r = R,
while the right-hand side is expressible in terms of the phase shifts that characterize the
large-distance behavior of the wave function. This means that the phase shifts are obtained
simply by substituting βl for the inside solution into tanδl [(6.140)]. For an alternative
approach it is possible to derive an integral equation for Al(r), from which we can obtain
phase shifts (see Problem 6.9 of this chapter).

6.4.5 Hard-Sphere Scattering

Let us work out a specific example. We consider scattering by a hard, or rigid, sphere

V =

{
∞ for r < R
0 for r > R.

(6.145)
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In this problem we need not even evaluate βl (which is actually ∞). All we need to know is
that the wave function must vanish at r = R because the sphere is impenetrable. Therefore,

Al(r)|r=R = 0 (6.146)

or, from (6.138),

jl(kR)cosδl −nl(kR)sinδl = 0 (6.147)

or

tanδl =
jl(kR)
nl(kR)

. (6.148)

Thus the phase shifts are now known for any l. Notice that no approximations have been
made so far.

To appreciate the physical significance of the phase shifts, let us consider the l = 0 case
(S-wave scattering) specifically. Equation (6.148) becomes, for l = 0

tanδ0 =
sinkR/kR

−coskR/kR
=− tankR, (6.149)

or δ0 =−kR. The radial wave function (6.138) with eiδ0 omitted varies as

Al=0(r) ∝
sinkr

kr
cosδ0 +

coskr
kr

sinδ0 =
1
kr

sin(kr+ δ0). (6.150)

Therefore, if we plot rAl=0(r) as a function of distance r, we obtain a sinusoidal wave,
which is shifted when compared to the free sinusoidal wave by amount R; see Figure 6.9.

r
R = –δ0/k

rAl = 0(r)

Fig. 6.9 Plot of rAl=0(r) versus r (with the eiδ0 factor removed). The dashed curve for V = 0 behaves like sin kr, while the
solid curve is for S-wave hard-sphere scattering, shifted by R = −δ0/k from the case V = 0.
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Let us now study the low and high-energy limits of tanδl. Low energy means kR small,
kR � 1. We can then use4

jl(kr)� (kr)l

(2l+1)! !

nl(kr)�− (2l−1)! !
(kr)l+1

(6.151)

to obtain

tanδl =
−(kR)2l+1

{(2l+1)[(2l−1)! ! ]2} . (6.152)

It is therefore all right to ignore δl with l 	= 0. In other words, we have S-wave scattering
only, which is actually expected for almost any finite-range potential at low energy.
Because δ0 =−kR regardless of whether k is large or small, we obtain

dσ
dΩ

=
sin2 δ0

k2 � R2 for kR � 1. (6.153)

It is interesting that the total cross section, given by

σtot =

∫ dσ
dΩ

dΩ= 4πR2, (6.154)

is four times the geometric cross section πR2. By geometric cross section we mean the
area of the disc of radius R that blocks the propagation of the plane wave (and has the same
cross section area as that of a hard sphere). Low-energy scattering, of course, means a
very large wavelength scattering, and we do not necessarily expect a classically reasonable
result. We will consider what happens in the high-energy limit when we discuss the eikonal
approximation in the next section.

6.5 Eikonal Approximation

This approximation covers a situation in which V(x) varies very little over a distance of
order of wavelength λ̄ (which can be regarded as “small”). Note that V itself need not
be weak as long as E � |V|; hence the domain of validity here is different from the Born
approximation. Under these conditions, the semiclassical path concept becomes applicable,
and we replace the exact wave function ψ(+) by the semiclassical wave function [see
(2.193) and (2.197)], namely,

ψ(+) ∼ eiS(x)/h̄. (6.155)

This leads to the Hamilton–Jacobi equation for S,

(∇S)2

2m
+V = E =

h̄2k2

2m
, (6.156)

4 Note that (2n+1)! !≡ (2n+1)(2n−1)(2n−3) · · ·1.
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b

z

z-direction

Scattering region

b x

Fig. 6.10 Schematic diagram of eikonal approximation scattering where the classical straight-line trajectory is along the
z-direction, |x| = r, and b = |b| is the impact parameter.

as discussed in Section 2.4. We propose to compute S from (6.156) by making the
further approximation that the classical trajectory is a straight-line path, which should
be satisfactory for small deflection at high energy.5 Consider the situation depicted in
Figure 6.10, where the straight-line trajectory is along the z-direction. Integrating (6.156)
we have

S
h̄
=

∫ z

−∞

[
k2 − 2m

h̄2 V
(√

b2 + z′2
)]1/2

dz ′+ constant. (6.157)

The additive constant is to be chosen in such a way that
S
h̄
→ kz as V → 0 (6.158)

so that the plane wave form for (6.155) is reproduced in this zero-potential limit. We can
then write (6.157) as

S
h̄
= kz+

∫ z

−∞

[√
k2 − 2m

h̄2 V
(√

b2 + z′2
)
− k

]
dz ′

∼= kz− m
h̄2k

∫ z

−∞
V

(√
b2 + z′2

)
dz ′ (6.159)

where for E � V, we have used√
k2 − 2m

h̄2 V
(√

b2 + z′2
)
∼ k− mV

h̄2k

at high E = h̄2k2/2m. So

ψ(+)(x) = ψ(+)(b+ zẑ)� 1
(2π)3/2 eikz exp

[
−im
h̄2k

∫ z

−∞
V

(√
b2 + z′2

)
dz ′

]
. (6.160)

Though (6.160) does not have the correct asymptotic form appropriate for an incident plus
spherical outgoing wave (that is, it is not of form ei�k·�x + f(θ)(eikr/r) and indeed refers only

5 Needless to say, solution of (6.156) to determine the classical trajectory would be a forbidding task in general.
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to motion along the original direction), it can nevertheless still be used in (6.58) to obtain
an approximate expression for f(k ′,k), to wit,6

f(k ′,k) =− 1
4π

2m
h̄2

∫
d3x ′e−ik ′·x ′

V
(√

b2 + z′2
)

eik·x ′

×exp

[
− im

h̄2k

∫ z ′

−∞
V

(√
b2 + z′′2

)
dz′′

]
. (6.161)

Note that without the last factor, exp [. . .], (6.161) is just like the first-order Born amplitude
in (6.72). We perform the three-dimensional (d3x ′) integration in (6.161) by introducing
cylindrical coordinates d3x ′ = bdbdφb dz ′ (see Figure 6.10) and noting that

(k−k′)·x′ = (k−k′)·(b+ z′ẑ)�−k′·b, (6.162)

where we have used k ⊥ b and (k − k′) · ẑ ∼ 0(θ 2), which can be ignored for small
deflection θ . Without loss of generality we choose scattering to be in the xz-plane and
write

k′·b = (k sinθ x̂+ kcosθ ẑ) · (bcosφbx̂+bsinφbŷ)� kbθ cosφb. (6.163)

The expression for f(k′,k) becomes

f(k′,k) =− 1
4π

2m
h̄2

∫ ∞

0
b db

∫ 2π

0
dφbe−ikbθ cosφb

×
∫ +∞

−∞
dzVexp

[
−im
h̄2k

∫ z

−∞
V dz′

]
. (6.164)

We next use the following identities:∫ 2π

0
dφbe−ikbθ cosφb = 2πJ0(kbθ) (6.165)

and ∫ +∞

−∞
dzVexp

[
−im
h̄2k

∫ z

−∞
V dz′

]
=

ih̄2k
m

exp

[
−im
h̄2k

∫ z

−∞
V dz′

]∣∣∣∣z=+∞

z=−∞
(6.166)

where, of course, the contribution from z =−∞ on the right-hand side of (6.166) vanishes
in the exponent. So, finally

f(k′,k) =−ik
∫ ∞

0
db bJ0(kbθ)[e2iΔ(b)−1], (6.167)

where

Δ(b)≡ −m
2kh̄2

∫ +∞

−∞
V

(√
b2 + z2

)
dz. (6.168)

In (6.168) we fix the impact parameter b and integrate along the straight-line path z, shown
in Figure 6.10. There is no contribution from [e2iΔ(b)−1] in (6.167) if b is greater than the
range of V.

6 We leave behind the “big box,” and write f(k ′,k) assuming a continuum normalization.
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It can be shown in a straightforward manner that the eikonal approximation satisfies the
optical theorem (6.60). This proof plus some interesting applications, for example, when V
is a Gaussian potential Δ(b) becomes Gaussian in b-space, are discussed in the literature
(Gottfried, 1966). See also Problem 6.8 at the end of this chapter, which includes the case
where V is a Yukawa potential.

6.5.1 Partial Waves and the Eikonal Approximation

The eikonal approximation is valid at high energies (λ � range R); hence many partial
waves contribute. We may regard l as a continuous variable. As an aside we note the
semiclassical argument that l = bk (because angular momentum lh̄ = bp, where b is the
impact parameter and momentum p = h̄k). We take

lmax = kR; (6.169)

then we make the following substitutions in expression (6.126):
lmax=kR

∑
l

→ k
∫

db, Pl(cosθ)
large l

smallθ� J0(lθ) = J0(kbθ),

δl → Δ(b)|b=l/k, (6.170)

where lmax = kR implies that

e2iδl −1 = e2iΔ(b)−1 = 0 for l > lmax. (6.171)

We have

f(θ)→ k
∫

db
2kb
2ik

(e2iΔ(b)−1)J0(kbθ)

=−ik
∫

dbbJ0(kbθ)[e2iΔ(b)−1]. (6.172)

The computation of δl can be done by using the explicit form for Δ(b) given by (6.168)
(see Problem 6.8 in this chapter).

Recall now our discussion of partial waves and the “hard sphere” example, from the last
section. There, we found that the total cross section was four times the geometric cross
section in the low-energy (long wavelength) limit. However, one might conjecture that the
geometric cross section is reasonable to expect for high-energy scattering because at high
energies the situation might look similar to the semiclassical situation.

At high energies many l-values contribute, up to lmax � kR, a reasonable assumption.
The total cross section is therefore given by

σtot =
4π
k2

l�kR

∑
l=0

(2l+1)sin2 δl. (6.173)

But using (6.148), we have

sin2 δl =
tan2 δl

1+ tan2 δl
=

[jl(kR)]2

[jl(kR)]2 +[nl(kR)]2
� sin2

(
kR− πl

2

)
, (6.174)
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where we have used

jl(kr)∼ 1
kr

sin

(
kr− lπ

2

)
nl(kr)∼− 1

kr
cos

(
kr− lπ

2

)
.

(6.175)

We see that δl decreases by 90◦ each time l increases by one unit. Thus, for an adjacent
pair of partial waves, sin2 δl + sin2 δl+1 = sin2 δl + sin2(δl −π/2) = sin2 δl + cos2 δl = 1,
and with so many l-values contributing to (6.173), it is legitimate to replace sin2 δl by its
average value, 1

2 . The number of terms in the l-sum is roughly kR, as is the average of
2l+1. Putting all the ingredients together, (6.173) becomes

σtot =
4π
k2 (kR)2 1

2
= 2πR2, (6.176)

which is not the geometric cross section πR2 either! To see the origin of the factor of 2, we
may split (6.126) into two parts:

f(θ) =
1

2ik

kR

∑
l=0

(2l+1)e2iδl Pl(cosθ)+
i

2k

kR

∑
l=0

(2l+1)Pl(cosθ)

= freflection + fshadow. (6.177)

In evaluating
∫
| frefl|2dΩ, the orthogonality of the Pl(cosθ) ensures that there is no

interference amongst contributions from different l, and we obtain the sum of the square of
partial-wave contributions:∫

| frefl|2dΩ=
2π
4k2

lmax

∑
l=0

∫ +1

−1
(2l+1)2[Pl(cosθ)]2d(cosθ) =

πl2max

k2 = πR2. (6.178)

Turning our attention to fshad, we note that it is pure imaginary. It is particularly strong in
the forward direction because Pl(cosθ) = 1 for θ = 0, and the contributions from various
l-values all add up coherently, that is, with the same phase, pure imaginary and positive in
our case. We can use the small-angle approximation for Pl to obtain

fshad �
i

2k ∑(2l+1)J0(lθ)

� ik
∫ R

0
bdbJ0(kbθ)

=
iRJ1(kRθ)

θ
. (6.179)

But this is just the formula for Fraunhofer diffraction in optics with a strong peaking near
θ � 0. Letting ξ = kRθ and dξ/ξ = dθ /θ , we can evaluate∫

| fshad|2dΩ= 2π
∫ +1

−1

R2[J1(kRθ)]2

θ 2 d(cosθ)

� 2πR2
∫ ∞

0

[J1(ξ)]2

ξ
dξ

� πR2. (6.180)
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Finally, the interference between fshad and frefl vanishes:

Re( f ∗
shad frefl)� 0 (6.181)

because the phase of frefl oscillates (2δl+1 = 2δl − π), approximately averaging to zero,
while fshad is pure imaginary. Thus

σtot = πR2

↑
σrefl

+ πR2.
↑
σshad

(6.182)

The second term (coherent contribution in the forward direction) is called a shadow
because for hard-sphere scattering at high energies, waves with impact parameter less than
R must be deflected. So, just behind the scatterer there must be zero probability for finding
the particle and a shadow must be created. In terms of wave mechanics, this shadow is
due to destructive interference between the original wave (which would be there even if
the scatterer were absent) and the newly scattered wave. Thus we need scattering in order
to create a shadow. That this shadow amplitude must be pure imaginary may be seen by
recalling from (6.117) that the coefficient of eikr/2ikr for the lth partial wave behaves like
1+2ikfl(k), where the 1 would be present even without the scatterer; hence there must be a
positive imaginary term in fl to get cancellation. In fact, this gives a physical interpretation
of the optical theorem, which can be checked explicitly. First note that

4π
k

Imf(0)� 4π
k

Im[fshad(0)] (6.183)

because Im[frefl(0)] averages to zero due to oscillating phase. Using (6.177), we obtain

4π
k

Imfshad(0) =
4π
k

Im

[
i

2k

kR

∑
l=0

(2l+1)Pl(1)

]
= 2πR2 (6.184)

which is indeed equal to σtot.

6.6 Low-Energy Scattering and Bound States

At low energies – or, more precisely, when λ= 1/k is comparable to or larger than the range
R – partial waves for higher l are, in general, unimportant. This point may be obvious
classically because the particle cannot penetrate the centrifugal barrier; as a result the
potential inside has no effect. In terms of quantum mechanics, the effective potential for
the lth partial wave is given by

Veff = V(r)+
h̄2

2m
l(l+1)

r2 ; (6.185)

unless the potential is strong enough to accommodate l 	= 0 bound states near E � 0, the
behavior of the radial wave function is largely determined by the centrifugal barrier term,
which means that it must resemble jl(kr). More quantitatively, it is possible to estimate the
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behavior of the phase shift using the integral equation for the partial wave (see Problem 6.9
of this chapter):

eiδl sinδl

k
=−2m

h̄2

∫ ∞

0
jl(kr)V(r)Al(r)r2dr. (6.186)

If Al(r) is not too different from jl(kr) and 1/k is much larger than the range of the potential,
the right-hand side would vary as k2l; for small δl, the left-hand side must vary as δl/k.
Hence, the phase shift k goes to zero as

δl ∼ k2l+1 (6.187)

for small k. This is known as threshold behavior.
It is therefore clear that at low energies with a finite range potential, S-wave scattering

is important.

6.6.1 Rectangular Well or Barrier

To be specific let us consider S-wave scattering by

V =

{
V0 = constant for r < R
0 otherwise

{
V0 > 0 repulsive
V0 < 0 attractive.

(6.188)

Many of the features we obtain here are common to more complicated finite range
potentials.

We have already seen that the outside wave function [see (6.138) and (6.150)] must
behave like

eiδ0 [j0(kr)cosδ0 −n0(kr)sinδ0]�
eiδ0 sin(kr+ δ0)

kr
. (6.189)

The inside solution can also easily be obtained for V0 a constant:

u ≡ rAl=0(r) ∝ sink′r, (6.190)

with k′ determined by

E−V0 =
h̄2k′2

2m
, (6.191)

where we have used the boundary condition u = 0 at r = 0. In other words, the inside
wave function is also sinusoidal as long as E > V0. The curvature of the sinusoidal wave
is different than in the free-particle case; as a result the wave function can be pushed in
(δ0 > 0) or pulled out (δ0 < 0) depending on whether V0 < 0 (attractive) or V0 > 0
(repulsive), as shown in Figure 6.11. Notice also that (6.190) and (6.191) hold even if
V0 > E, provided we understand sin to mean sinh, that is, the wave function behaves like

u(r)∝ sinh[κr], (6.190′)

where

h̄2κ2

2m
= (V0−E). (6.191′)



407 6.6 Low-Energy Scattering and Bound States

u(r)

u(r)

R

R

u(r)

0

0

0

Larger
curvature

No potential

r

r

r

δ0/k

δ0/k

V0 < 0

V0 > 0

sinh function
if V0 > E

(a)

(c)

(b)

Fig. 6.11 Plot of u(r) versus r. (a) For V = 0 (dashed line). (b) For V0 < 0, δ0 > 0 with the wave function (solid line)
pushed in. (c) For V0 > 0, δ0 < 0 with the wave function (solid line) pulled out.

We now concentrate on the attractive case and imagine that the magnitude of V0 is
increased. Increased attraction will result in a wave function with a larger curvature.
Suppose the attraction is such that the interval [0, R] just accommodates one-fourth cycle
of the sinusoidal wave. Working in the low-energy kR � 1 limit, the phase shift is now
δ0 = π/2, and this results in a maximal S-wave cross section for a given k because sin2 δ0

is unity. Now increase the well depth V0 even further. Eventually the attraction is so strong
that one-half cycle of the sinusoidal wave can be fitted within the range of the potential.
The phase shift δ0 is now π; in other words, the wave function outside R is 180◦ out of
phase compared to the free-particle wave function. What is remarkable is that the partial
cross section vanishes (sin2 δ0 = 0),

σl=0 = 0, (6.192)
despite the very strong attraction of the potential. In addition, if the energy is low enough
for l 	= 0 waves still to be unimportant, we then have an almost perfect transmission of
the incident wave. This kind of situation, known as the Ramsauer–Townsend effect, is
actually observed experimentally for scattering of electrons by such rare gases as argon,
krypton, and xenon. This effect was first observed in 1923 prior to the birth of wave
mechanics and was considered to be a great mystery. Note the typical parameters here
are R ∼ 2×10−8 cm for electron kinetic energy of order 0.1 eV, leading to kR ∼ 0.324.
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6.6.2 Zero-Energy Scattering and Bound States

Let us consider scattering at extremely low energies (k � 0). For r > R and for l = 0, the
outside radial wave function satisfies

d2u
dr2 = 0. (6.193)

The obvious solution to this equation is

u(r) = constant(r−a), (6.194)

just a straight line! This can be understood as an infinitely long wavelength limit of the
usual expression for the outside wave function [see (6.142) and (6.150)],

lim
k→0

sin(kr+ δ0) = lim
k→0

sin

[
k
(

r+
δ0

k

)]
, (6.195)

which looks like (6.194). We have

u′

u
= kcot

[
k
(

r+
δ0

k

)]
k→0→ 1

r−a
. (6.196)

Setting r = 0 [even though at r = 0, (6.194) is not the true wave function], we obtain

lim
k→0

kcotδ0
k→0→ −1

a
. (6.197)

The quantity a is known as the scattering length. The limit of the total cross section as
k → 0 is given by [see (6.125)]

σtot = σl=0 = 4π lim
k→0

∣∣∣∣ 1
kcotδ0 − ik

∣∣∣∣2

= 4πa2. (6.198)

Even though a has the same dimension as the range of the potential R, a and R can
differ by orders of magnitude. In particular, for an attractive potential, it is possible for
the magnitude of the scattering length to be far greater than the range of the potential. To
see the physical meaning of a, we note that a is nothing more than the intercept of the
outside wave function. For a repulsive potential, a > 0 and is roughly of order of R, as seen
in Figure 6.12a. However, for an attractive potential, the intercept is on the negative side
(Figure 6.12b). If we increase the attraction, the outside wave function can again cross the
r-axis on the positive side (Figure 6.12c).

The sign change resulting from increased attraction is related to the development of a
bound state. To see this point quantitatively, we note from Figure 6.12c that for a very
large and positive, the wave function is essentially flat for r > R. But (6.194) with a very
large is not too different from e−κr with κ essentially zero. Now e−κr with κ � 0 is just
a bound-state wave function for r > R with energy E infinitesimally negative. The inside
wave functions (r < R) for the E = 0+ case (scattering with zero kinetic energy) and the
E = 0− case (bound state with infinitesimally small binding energy) are essentially the
same because in both cases k′ in sin k′r [(6.190)] is determined by

h̄2k′2

2m
= E−V0 � |V0| (6.199)

with E infinitesimal (positive or negative).
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Fig. 6.12 Plot of u(r) versus r for (a) repulsive potential, (b) attractive potential, and (c) deeper attraction. The intercept a of
the zero-energy outside wave function with the r-axis is shown for each of three cases.

Because the inside wave functions are the same for the two physical situations (E = 0+
and E = 0−), we can equate the logarithmic derivative of the bound-state wave function
with that of the solution involving zero kinetic-energy scattering,

−κe−κr

e−κr

∣∣∣∣
r=R

=

(
1

r−a

)∣∣∣∣
r=R

, (6.200)

or, if R � a,

κ � 1
a

. (6.201)

The binding energy satisfies

EBE =−Eboundstate =
h̄2κ2

2m
� h̄2

2ma2 , (6.202)
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and we have a relation between scattering length and bound-state energy. This is a
remarkable result. To wit, if there is a loosely bound state, we can infer its binding energy
by performing scattering experiments near zero kinetic energy, provided a is measured to
be large compared with the range R of the potential. This connection between the scattering
length and the bound-state energy was first pointed out by Wigner, who attempted to apply
(6.202) to np-scattering.

Experimentally, the 3S1-state of the np-system has a bound state, that is, the
deuteron with

EBE = 2.22 MeV. (6.203)

The scattering length is measured to be

atriplet = 5.4×10−13 cm, (6.204)

leading to the binding-energy prediction

h̄2

2μa2 =
h̄2

mNa2 = mNc2
(

h̄
mNca

)2

= (938 MeV)

(
2.1×10−14 cm
5.4×10−13 cm

)2

= 1.4 MeV (6.205)

where μ is the reduced mass approximated by mn,p/2. The agreement between experiment
and prediction is not too satisfactory. The discrepancy is due to the fact that the inside
wave functions are not exactly the same and that atriplet � R is not really such a good
approximation for the deuteron. A better result can be obtained by keeping the next term
in the expansion of k cot δ as a function of k,

k cot δ0 =−1
a
+

1
2

r0k2, (6.206)

where r0 is known as the effective range (see, for example, Preston (1962), p. 23).

6.6.3 Bound States as Poles of Sl ( k)

We conclude this section by studying the analytic properties of the amplitude Sl(k) for
l = 0. Let us go back to (6.117) and (6.121), where the radial wave function for l = 0 at
large distance was found to be proportional to

Sl=0(k)
eikr

r
− e−ikr

r
. (6.207)

Compare this with the wave function for a bound state at large distance,

e−κr

r
. (6.208)

The existence of a bound state implies that a nontrivial solution to the Schrödinger equation
with E< 0 exists only for a particular (discrete) value of κ. We may argue that e−κr/r is like
eikr/r, except that k is now purely imaginary. Apart from k being imaginary, the important
difference between (6.207) and (6.208) is that in the bound-state case, e−κr/r is present even
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Fig. 6.13 The complex k-plane with bound-state pole at k = +iκ.

without the analogue of the incident wave. Quite generally only the ratio of the coefficient
of eikr/r to that of e−ikr/r is of physical interest, and this is given by Sl(k). In the bound-state
case we can sustain the outgoing wave (with imaginary k) even without an incident wave.
So the ratio is ∞, which means that Sl=0(k), regarded as a function of a complex variable k,
has a pole at k = iκ. Thus a bound state implies a pole (which can be shown to be a simple
pole) on the positive imaginary axis of the complex k-plane; see Figure 6.13. For k real
and positive, we have the region of physical scattering. Here we must require [compare
with (6.123)]

Sl=0 = e2iδ0 (6.209)

with δ0 real. Furthermore, as k → 0, k cot δ0 has a limiting value −1/a (6.197), which is
finite, so δ0 must behave as follows:

δ0 → 0, ±π, . . . . (6.210)

Hence Sl=0 = e2iδ0 → 1 as k → 0.
Now let us attempt to construct a simple function satisfying:

1. Pole at k = iκ (existence of bound state)
2. |Sl=0|= 1 for k > 0 real (unitarity)
3. Sl=0 = 1 at k = 0 (threshold behavior).

(6.211)

The simplest function that satisfies all three conditions of (6.211) is

Sl=0(k) =
−k− iκ
k− iκ

. (6.212)

[Editor’s Note: Equation (6.212) is chosen for simplicity rather than as a physically realistic
example. For reasonable potentials (not hard spheres!) the phase shift vanishes as k → ∞.]

An assumption implicit in choosing this form is that there is no other singularity that is
important apart from the bound-state pole. We can then use (6.124) to obtain, for fl=0(k),

fl=0 =
Sl=0 −1

2ik
=

1
−κ− ik

. (6.213)

Comparing this with (6.125),

fl=0 =
1

k cot δ0 − ik
, (6.214)
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we see that

lim
k→0

kcot δ0 =−1
a
=−κ, (6.215)

precisely the relation between bound state and scattering length (6.201).
It thus appears that by exploiting unitarity and analyticity of Sl(k) in the k-plane, we may

obtain the kind of information that can be secured by solving the Schrödinger equation
explicitly. This kind of technique can be very useful in problems where the details of the
potential are not known.

6.7 Resonance Scattering

In atomic, nuclear, and particle physics, we often encounter a situation where the scattering
cross section for a given partial wave exhibits a pronounced peak. This section is concerned
with the dynamics of such a resonance.

We continue to consider a finite-ranged potential V(r). The effective potential appropriate
for the radial wave function of the lth partial wave is V(r) plus the centrifugal barrier term
as given by (6.185). Suppose V(r) itself is attractive. Because the second term,

h̄2

2m
l(l+1)

r2

is repulsive, we have a situation where the effective potential has an attractive well
followed by a repulsive barrier at larger distances, as shown in Figure 6.14.

Suppose the barrier were infinitely high. It would then be possible for particles to be
trapped inside, which is another way of saying that we expect bound states, with energy
E > 0. They are genuine bound states in the sense that they are eigenstates of the
Hamiltonian with definite values of E. In other words, they are stationary states with
infinite lifetime.

Quasi-bound state

Barrier

r

Veff

(or V  for l = 0)

Fig. 6.14 Veff = V(r) + (h̄2/2m)[l(l + 1)/r2] versus r. For l �= 0 the barrier can be due to (h̄2/2m)[l(l + 1)/r2]; for l = 0
barrier must be due to V itself.
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In the more realistic case of a finite barrier, the particle can be trapped inside, but it
cannot be trapped forever. Such a trapped state has a finite lifetime due to quantum-
mechanical tunneling. In other words, a particle leaks through the barrier to the outside
region. Let us call such a state a quasi-bound state because it would be an honest bound
state if the barrier were infinitely high.

The corresponding scattering phase shift δl rises through the value π/2 as the incident
energy rises through that of the quasi-bound state, and at the same time the corresponding
partial-wave cross section passes through its maximum possible value (6.131) 4π(2l+
1)/k2. [Editor’s Note: Such a sharp rise in the phase shift is, in the time-dependent
Schrödinger equation, associated with a delay of the emergence of the trapped particles,
rather than an unphysical advance, as would be the case for a sharp decrease through π/2.]

It is instructive to verify this point with explicit calculations for some known potential.
The result of a numerical calculation shows that a resonance behavior is in fact possible for
l 	= 0 with a spherical-well potential. To be specific we show the results for a spherical well
with 2mV0R2/h̄2 = 5.52 and l = 3 in Figure 6.15. The phase shift (Figure 6.15b), which is
small at extremely low energies, starts increasing rapidly past k ≈ 1/R, and goes through
π/2 at k = 1.41/R.

Another very instructive example is provided by a repulsive δ-shell potential that is
exactly soluble (see Problem 6.10 in this chapter):

2m
h̄2 V(r) = γδ(r−R). (6.216)

Here resonances are possible for l = 0 because the δ-shell potential itself can trap the
particle in the region 0 < r < R. For the case γ = ∞, we expect a series of bound states in
the region r < R with

kR = π,2π,. . . ; (6.217)

this is because the radial wave function for l = 0 must vanish not only at r = 0 but also at
r = R− in this case. For the region r > R, we simply have hard-sphere scattering with the
S-wave phase shift, given by

δ0 =−kR. (6.218)

With γ = ∞, there is no connection between the two problems because the wall at r = R
cannot be penetrated.

The situation is more interesting with a finite barrier, as we can show explicitly. The
scattering phase shift exhibits a resonance behavior whenever

Eincident � Equasi-bound state. (6.219)

Moreover, the larger the γ, the sharper the resonance peak. However, away from the
resonance δ0 looks very much like the hard-sphere phase shift. Thus we have a situation
in which a resonance behavior is superimposed on a smoothly behaving background
scattering. This serves as a model for neutron-nucleus scattering, where a series of sharp
resonance peaks are observed on top of a smoothly varying cross section.
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Fig. 6.15 Plots of (a) σl=3 versus k, where at resonance δ3(kres) = π/2, along with the unitarity limit 4π(7)/k2 from
(6.131); and (b) δ3(k) versus k. The curves are for a spherical well with 2 mV0R2/h̄2 = 5.52.

Coming back to our general discussion of resonance scattering, we ask how the
scattering amplitudes vary in the vicinity of the resonance energy. If we are to have any
connection between σl being large and the quasi-bound states, δl must go through π/2 (or
3π/2,. . .) from below, as discussed above. In other words δl must go through zero from
above. Assuming that cotδl is smoothly varying near the vicinity of resonance, that is,

E � Er, (6.220)

we may attempt to expand δl as follows:

cot δl = cot δl|E=Er︸ ︷︷ ︸
0

−c(E−Er)+O
[
(E−Er)

2] . (6.221)
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This leads to

fl(k) =
1

k cot δl − ik
=

1
k

1
[−c(E−Er)− i]

=− Γ/2

k
[
(E−Er)+

iΓ
2

] , (6.222)

where we have defined the width Γ by

d(cot δl)

dE

∣∣∣∣
E=Er

=−c ≡−2
Γ

. (6.223)

Notice that Γ is very small if cot δl varies rapidly. If a simple resonance dominates the
lth partial-wave cross section, we obtain a one-level resonance formula (the Breit–Wigner
formula):

σl =
4π
k2

(2l+1)(Γ/2)2

(E−Er)2 +Γ2/4
. (6.224)

So it is legitimate to regard Γ as the full width at half maximum, provided the resonance is
reasonably narrow so that variation in 1/k2 can be ignored.

It is worthwhile to demonstrate these concepts with actual scattering measurements, but
that is typically difficult. For one thing, real world interaction potentials are complicated
and not well modeled by something as simple as a δ-function shell or a hard wall spherical
well. Furthermore, it usually happens that many different partial waves overlap, so that a
sophisticated data analysis is required to separate them.

One good example, however, of an isolated partial wave giving a narrow resonance
for an interaction that is reasonably well modeled by a spherical well, is the scattering
of positive π-mesons from protons. Pions and protons are strongly interacting elementary
particles, with “sizes” on the order of 1 fm ≡ 10−15 m. The force between them is attractive,
and roughly constant when the particles overlap, but falls off rapidly outside this range. It
is therefore perhaps not unreasonable that one might observe a relatively narrow resonance
in certain partial waves.

Figure 6.16 plots the data7 with π+p elastic scattering, for π+ center-of-mass momenta
in the region of a few hundred MeV/c. There is a clear peak in the cross section, wider
than, but otherwise similar to, Figure 6.15. One indication that this is in fact a resonance,
is the comparison to the unitary limit, but first we need to reconsider the case when the
scattering particles are not spinless.

The factor 2l+ 1 in (6.131) comes from summing over the final states with the same l
but different m. If the scattering particles have spin, then we would replace this factor with
2j+ 1, where j is the total angular-momentum quantum number of the appropriate partial
wave. However, we also need to consider the spins s1 and s2 of the scattering particles

7 The data are available from http://pdg.lbl.gov. In fact, this figure plots both the elastic and total cross
sections on the same plot. There are many more total cross section data points, but as there are no reactions
other than π+p → π+p in this energy range, the cross sections agree.
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Fig. 6.16 Elastic cross section data for the elastic scattering reactionπ+p → π+p, as a function of momentum in the
center-of-mass. Also plotted are the unitary limits for different possibilities of the dominant partial wave.
Compare to the calculated cross section for a hard walled square well in Figure 6.15. There is a clear suggestion that
this is a resonance with total angular momentum j = 3/2.

when considering the initial scattering state. Averaging over all the possibilities gives an
additional factor of 1/[(2s1 +1)(2s2 +1)]. Therefore (6.131) becomes

σ( l)
max =

4π
k2 g where g ≡ 2j+1

(2s1 +1)(2s2 +1)
(6.225)

is usually called the “statistical factor.” More detailed treatments can be found in nearly
any textbook on nuclear physics, for example Section VIII.10 in the classic text Blatt and
Weisskopf (1952).

For π+p scattering, the π+ is spinless and the proton has spin 1
2 , so g = (2j+ 1)/2 and

j can take on any positive half-integer value. Figure 6.16 includes curves using (6.225) for
different values of j. The agreement with the maximum cross section for j = 3/2 strongly
suggests that this is a spin 3

2 resonance. Indeed, a detailed analysis of the data including
relative l = 0 and l = 1 phase differences shows that j = 3/2. This resonances is known as
the Δ(1232), where 1232 MeV/c2 is the invariant mass of the π+p system at the peak of
the cross section.

6.8 Symmetry Considerations in Scattering

Let us consider the scattering of two identical spinless charged particles via some central
potential, such as the Coulomb potential.8 The spatial part of the wave function must now
be symmetric, so the asymptotic wave function must look like

8 For the student unfamiliar with the elements of permutation symmetry with identical particles, see Chapter 7
of this textbook.
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eik·x + e−ik·x +[ f(θ)+ f(π−θ)]
eikr

r
, (6.226)

where x = x1 − x2 is the relative position vector between the two particles 1 and 2. This
results in a differential cross section,

dσ
dΩ

= | f(θ)+ f(π−θ)|2

= | f(θ)|2 + | f(π−θ)|2 +2Re[ f(θ)f∗(π−θ)]. (6.227)

The cross section is enhanced through constructive interference at θ � π/2.
In contrast, for spin 1

2− spin 1
2 scattering with unpolarized beam and V independent of

spin, we have the spin-singlet scattering going with space-symmetrical function and the
spin-triplet scattering going with space-antisymmetrical wave function (see Section 7.3).
If the initial beam is unpolarized, we have the statistical contribution 1

4 for spin singlet and
3
4 for spin triplet; hence

dσ
dΩ

=
1
4
| f(θ)+ f(π−θ)|2 + 3

4
| f(θ)− f(π−θ)|2

= | f(θ)|2 + | f(π−θ)|2 −Re[f(θ)f∗(π−θ)]. (6.228)

In other words, we expect destructive interference at θ � π/2. This has, in fact, been
observed.

Now consider symmetries other than exchange symmetry. Suppose V and H0 are both
invariant under some symmetry operation. We may ask what this implies for the matrix
element of T or for the scattering amplitude f(k′,k).

If the symmetry operator is unitary (for example, rotation and parity), everything is quite
straightforward. Using the explicit form of T as given by (6.32), we see that

UH0U† = H0, UVU† = V (6.229)

implies that T is also invariant under U, that is,

UTU† = T. (6.230)

We define

|k̃〉 ≡ U|k〉, |k̃′〉 ≡ U|k′〉. (6.231)

Then

〈k̃′|T|k̃〉= 〈k′|U†UTU†U|k〉
= 〈k′|T|k〉. (6.232)

As an example, we consider the specific case where U stands for the parity operator

π|k〉= |−k〉, π|−k〉= |k〉. (6.233)

Thus invariance of H0 and V under parity would mean

〈−k′|T|−k〉= 〈k′|T|k〉. (6.234)

Pictorially, we have the situation illustrated in Figure 6.17a.
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Fig. 6.17 (a) Equality of T matrix elements between k → k′ and −k → −k′. (b) Equality of T matrix elements under
rotation.

We exploited the consequence of angular-momentum conservation when we developed
the method of partial waves. The fact that T is diagonal in the |Elm〉 representation is a
direct consequence of T being invariant under rotation. Notice also that 〈k′|T|k〉 depends
only on the relative orientation of k and k′, as depicted in Figure 6.17b.

When the symmetry operation is antiunitary (as in time reversal), we must be more
careful. First, we note that the requirement that V as well as H0 be invariant under time
reversal invariance requires that

ΘTΘ−1 = T†. (6.235)

This is because the antiunitary operator changes

1
E−H0 + iε

into
1

E−H0 − iε
(6.236)

in (6.32). We also recall that for an antiunitary operator [see (4.114)],

〈β|α〉= 〈α̃|β̃〉, (6.237)

where

|α̃〉 ≡Θ|α〉 and |β̃〉 ≡Θ|β〉. (6.238)

Let us consider

|α〉= T|k〉, 〈β|= 〈k′|; (6.239)

then

|α̃〉=ΘT|k〉=ΘTΘ−1Θ|k〉= T†|−k〉
|β̃〉=Θ|k〉= |−k′〉.

(6.240)

As a result (6.237) becomes

〈k′|T|k〉= 〈−k|T|−k′〉. (6.241)

Notice that the initial and final momenta are interchanged, in addition to the fact that the
directions of the momenta have been reversed.
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It is also interesting to combine the requirements of time reversal [(6.241)] and parity
[(6.234)]:

〈k′|T|k〉 underΘ
= 〈−k|T|−k′〉 underπ

= 〈k|T|k′〉; (6.242)

that is, from (6.58) and (6.70) we have

f(k,k′) = f(k′,k), (6.243)

which results in
dσ
dΩ

(k → k′) =
dσ
dΩ

(k′ → k). (6.244)

Equation (6.244) is known as detailed balance.
It is more interesting to look at the analogue of (6.242) when we have spin. Here we

may characterize the initial free-particle ket by |k,ms〉, and we exploit (4.182) for the time
reversal portion:

〈k′,m′
s|T|k,ms〉= i−2ms+2ms′ 〈−k,−ms|T|−k′,−m′

s〉

= i−2ms+2ms′ 〈k,−ms|T|k′,−m′
s〉. (6.245)

For unpolarized initial states, we sum over the initial spin states and divide by (2s+ 1);
if the final polarization is not observed, we must sum over final states. We then obtain
detailed balance in the form

dσ
dΩ

(k → k′) =
dσ
dΩ

(k′ → k), (6.246)

where we understand the bar on the top of dσ/dΩ in (6.246) to mean that we average over
the initial spin states and sum over the final spin states.

6.9 Inelastic Electron-Atom Scattering

Let us consider the interactions of electron beams with atoms assumed to be in their ground
states. The incident electron may be scattered elastically with final atoms unexcited:

e−+ atom (ground state)→ e−+ atom (ground state). (6.247)

This is an example of elastic scattering. To the extent that the atom can be regarded as
infinitely heavy, the kinetic energy of the electron does not change. It is also possible for
the target atom to be excited:

e−+ atom (ground state)→ e−+ atom (excited state). (6.248)

In this case we talk about inelastic scattering because the kinetic energy of the final
outgoing electron is now less than that of the initial incoming electron, the difference being
used to excite the target atom.
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The initial ket of the electron plus the atomic system is written as

|k,0〉 (6.249)

where k refers to the wave vector of the incident electron and 0 stands for the atomic ground
state. Strictly speaking (6.249) should be understood as the direct product of the incident
electron ket |k〉 and the ground-state atomic ket |0〉. The corresponding wave function is

1
L3/2 eik·xψ0(x1,x2,. . . ,xz) (6.250)

where we use the box normalization for the plane wave.
We may be interested in a final state electron with a definite wave vector k′. The final

state ket and the corresponding wave function are

|k′,n〉 and
1

L3/2 eik′·xψn(x1,. . . ,xz), (6.251)

where n = 0 for elastic scattering and n 	= 0 for inelastic scattering.
Assuming that time-dependent perturbation theory is applicable, we can immediately

write the differential cross section, as in the previous section:

dσ
dΩ

(0 → n) =
1

(h̄k/meL3)

2π
h̄
|〈k′n|V|k0〉|2

(
L

2π

)3 (
k′me

h̄2

)

=

(
k′

k

)
L6

∣∣∣∣ 1
4π

2me

h̄2 〈k′,n|V|k,0〉
∣∣∣∣2

. (6.252)

Everything is similar, including the cancellation of terms such as L3, with one important
exception: k′ ≡ |k′| is not, in general, equal to k ≡ |k| for inelastic scattering.

The next question is, what V is appropriate for this problem? The incident electron can
interact with the nucleus, assumed to be situated at the origin; it can also interact with each
of the atomic electrons. So V is to be written as

V =−Ze2

r
+∑

i

e2

|x−xi|
. (6.253)

Here complications may arise because of the identity of the incident electron with one of
the atomic electrons; to treat this rigorously is a nontrivial task. Fortunately, for a relatively
fast electron we can legitimately ignore the question of identity; this is because there is little
overlap between the bound-state electron and the incident electron in momentum space. We
must evaluate the matrix element 〈k′,n|V|k0〉, which, when explicitly written, is

〈k′n|V|k0〉= 1
L3

∫
d3xeiq·x〈n|− Ze2

r
+∑

i

e2

|x−xi|
|0〉

=
1
L3

∫
d3xeiq·x

z

∏
i

∫
d3xiψ

∗
n(x1,. . . ,xz)

[
−Ze2

r
+∑

i

e2

|x−xi|

]

×ψ0(x1,. . . ,xz) (6.254)

with q ≡ k−k′.
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Let us see how to evaluate the matrix element of the first term, −Ze2/r, where r actually
means |x|. First we note that this is a potential between the incident electron and the
nucleus, which is independent of the atomic electron coordinates. So it can be taken outside
the integration

z

∏
i

∫
d3xi

in (6.254); we simply obtain

〈n|0〉= δn0 (6.255)

for the remainder. In other words, this term contributes only to the elastic scattering case,
where the target atom remains unexcited. In the elastic case we must still integrate eiq·x/r
with respect to x, which amounts to taking the Fourier transform of the Coulomb potential.
This can readily be done because we already evaluated the Fourier transform of the Yukawa
potential; see (6.78). Hence∫

d3x
eiq·x

r
= lim

μ→0

∫ d3xeiq·x−μr

r
=

4π
q2 . (6.256)

As for the second term in (6.254), we can evaluate the Fourier transform of 1/|x−xi|. We
can accomplish this by shifting the coordinate variables x → x+xi:

∑
i

∫ d3xeiq·x

|x−xi|
= ∑

i

∫ d3xeiq·(x+xi)

|x| =
4π
q2 ∑

i
eiq·xi . (6.257)

Notice that this is just the Fourier transform of the Coulomb potential multiplied by the
Fourier transform of the electron density due to the atomic electrons situated at xi:

ρatom(x) = ∑
i
δ(3)(x−xi). (6.258)

We customarily define the form factor Fn(q) for excitation |0〉 to |n〉 as follows:

ZFn(q)≡ 〈n|∑
i

eiq·xi |0〉, (6.259)

which is made of coherent, in the sense of definite phase relationships, contribu-
tions from the various electrons. Notice that as q → 0, we have

1
Z
〈n|∑

i
eiq·xi |0〉 → 1

for n = 0; hence the form factor approaches unity in the elastic scattering case. For n 	= 0
(inelastic scattering), Fn(q) → 0 as q → 0 by orthogonality between |n〉 and |0〉. We can
then write the matrix element in (6.254) as

∫
d3xeiq·x〈n|

(
−Ze2

r
+∑

i

e2

|x−xi|

)
|0〉= 4πZe2

q2 [−δn0 +Fn(q)]. (6.260)
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We are finally in a position to write the differential cross section for inelastic (or elastic)
scattering of electrons by atoms:

dσ
dΩ

(0 → n) =
(

k′

k

)∣∣∣∣ 1
4π

2me

h̄2
4πZe2

q2 [−δn0 +Fn(q)]

∣∣∣∣2

=
4m2

e

h̄4
(Ze2)2

q4

(
k′

k

)
|− δn0 +Fn(q)|2. (6.261)

For inelastic scattering the δn0-term does not contribute, and it is customary to write the
differential cross section in terms of the Bohr radius,

a0 =
h̄2

e2me
, (6.262)

as follows:
dσ
dΩ

(0 → n) = 4Z2a2
0

(
k′

k

)
1

(qa0)4 |Fn(q)|2. (6.263)

Quite often dσ/dq is used in place of dσ/dΩ; using

q2 = |k−k′|2 = k2 + k′2 −2kk′ cosθ (6.264)

and dq =−d(cosθ)kk′/q, we can write
dσ
dq

=
2πq
kk′

dσ
dΩ

. (6.265)

The inelastic cross section we have obtained can be used to discuss stopping power – the
energy loss of a charged particle as it goes through matter. A number of people, including
H. A. Bethe and F. Bloch, have discussed the quantum-mechanical derivation of stopping
power from the point of view of the inelastic scattering cross section. We are interested
in the energy loss of a charged particle per unit length traversed by the incident charged
particle. The collision rate per unit length is Nσ, where N is the number of atoms per unit
volume; at each collision process the energy lost by the charged particle is En −E0. So
dE/dx is written as

dE
dx

= N∑
n
(En −E0)

∫ dσ
dq

(0 → n)dq

= N∑
n
(En −E0)

4Z2

a2
0

∫ qmax

qmin

k′

k
1
q4

2πq
kk′

|Fn(q)|2dq

=
8πN
k2a2

0
∑
n
(En −E0)

∫ qmax

qmin

∣∣∣∣∣〈n| z

∑
i=1

eiq·xi |0〉
∣∣∣∣∣
2

dq
q3 . (6.266)

There are many papers written on how to evaluate the sum in (6.266).9 The upshot of all
this is to justify quantum mechanically Bohr’s 1913 formula for stopping power,

dE
dx

=
4πNZe4

mev2 ln

(
2mev2

I

)
, (6.267)

9 For a relatively elementary discussion, see Gottfried (1966) and Bethe and Jackiw (1968).
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where I is a semiempirical parameter related to the average excitation energy 〈En −E0〉.
If the charged particle has electric charge ±ze, we just replace Ze4 by z2Ze4. It is also
important to note that even if the projectile is not an electron, the me that appears in
(6.267) is still the electron mass, not the mass of the charged particle. So the energy loss is
dependent on the charge and the velocity of the projectile but is independent of the mass
of the projectile. This has an important application to the detection of charged particles.

Quantum mechanically, we view the energy loss of a charged particle as a series of
inelastic scattering processes. At each interaction between the charged particle and an atom,
we may imagine that a “measurement” of the position of the charged particle is made. We
may wonder why particle tracks in such media as cloud chambers and nuclear emulsions
are nearly straight. The reason is that the differential cross section (6.263) is sharply peaked
at small q; in an overwhelming number of collisions, the final direction of momentum is
nearly the same as the incident electron due to the rapid falloff of q−4 and Fn(q) for large q.

6.9.1 Nuclear Form Factor

The excitation of atoms due to inelastic scattering is important for q ∼ 109 cm−1 to
1010 cm−1. If q is too large, the contributions due to F0(q) or Fn(q) drop off very rapidly.
At extremely high q, where q is now of order 1/Rnucleus ∼ 1012 cm−1, the structure of the
nucleus becomes important. The Coulomb potential due to the point nucleus must now be
replaced by a Coulomb potential due to an extended object,

−Ze2

r
→−Ze2

∫ d3x′N(r′)
|x−x′| , (6.268)

where N(r) is a nuclear charge distribution, normalized so that∫
d3x′N(r′) = 1. (6.269)

The pointlike nucleus can now be regarded as a special case, with

N(r′) = δ(3)(r′). (6.270)

We can evaluate the Fourier transform of the right-hand side of (6.268) in analogy with
(6.256) as follows:

Ze2
∫

d3x
∫ d3x′eiq·xN(r′)

|x−x′| = Ze2
∫

d3x′eiq·x′N(r′)
∫ d3xeiq·x

r

= Ze2 4π
q2 Fnucleus(q) (6.271)

where we have shifted the coordinates x → x+x′ in the first step and

Fnucleus ≡
∫

d3xeiq·xN(r). (6.272)
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We thus obtain the deviation from the Rutherford formula due to the finite size of the
nucleus,

dσ
dΩ

=

(
dσ
dΩ

)
Rutherford

|F(q)|2, (6.273)

where (dσ/dΩ)Rutherford is the differential cross section for the electric scattering of
electrons by a pointlike nucleus of charge Z|e|. For small q we have

Fnucleus(q) =
∫

d3x
(

1+ iq·x− 1
2

q2r2(q̂·r̂)2 + · · ·
)

N(r)

= 1− 1
6

q2〈r2〉nucleus + · · · . (6.274)

The q ·x-term vanishes because of spherical symmetry, and in the q2-term we have used
the fact that the angular average of cos2 θ (where θ is the angle between q̂ and r̂) is just 1

3 :

1
2

∫ +1

−1
d(cosθ)cos2 θ =

1
3

. (6.275)

The quantity 〈r2〉nucleus is known as the mean square radius of the nucleus. In this way
it is possible to “measure” the size of the nucleus and also of the proton, as done by R.
Hofstadter and coworkers. In the proton case the spin (magnetic moment) effect is also
important.

Problems

6.1 Consider scattering in one dimension x from a potential V(x) localized near x = 0.
The initial state is a plane wave coming from the left, that is φ(x)≡ 〈x|i〉= eikx/

√
2π.

a. Find the scattering Green’s function G(x,x ′), defined in one dimension analo-
gously with (6.37), for G+(x,x ′).

b. For the case of an attractive δ-function potential V(x) = −γh̄2δ(x)/2m, with
γ > 0, use the Lippman–Schwinger equation to find the outgoing wave function
ψ(x)≡ 〈x|ψ(+)〉.

c. Determine the transmission and reflection coefficients T(k) and R(k), defined as

ψ(x) = T(k)φ(x) for x > 0 and ψ(x) = φ(x)+R(k)
e−ikx
√

2π
for x < 0.

Show that |T|2 + |R|2 = 1, as must be the case.
d. Confirm that you get the same result by matching right and left going waves on

the left with a right going wave on the right at x = 0.
e. We showed in Problem 2.29 that this potential has one, and only one, bound state.

Show that your results for T(k) and R(k) have bound-state poles at the expected
positions when k is treated as a complex variable.
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6.2 Prove

σtot �
m2

πh̄4

∫
d3x

∫
d3x′V(r)V(r′)

sin2 k|x−x′|
k2|x−x′|2

in each of the following ways.
a. By integrating the differential cross section computed using the first-order Born

approximation.
b. By applying the optical theorem to the forward-scattering amplitude in the

second-order Born approximation. [Note that f(0) is real if the first-order Born
approximation is used.]

6.3 Estimate the radius of the 40Ca nucleus from the data in Figure 6.6 and compare to
that expected from the empirical value ≈1.4A1/3 fm, where A is the nuclear mass
number. Check the validity of using the first-order Born approximation for these
data.

6.4 Consider a potential

V = 0 for r > R, V = V0 = constant for r < R,

where V0 may be positive or negative. Using the method of partial waves, show that
for |V0| � E = h̄2k2/2m and kR � 1 the differential cross section is isotropic and that
the total cross section is given by

σtot =

(
16π

9

)
m2V2

0R6

h̄4 .

Suppose the energy is raised slightly. Show that the angular distribution can then be
written as

dσ
dΩ

= A+Bcosθ .

Obtain an approximate expression for B/A.

6.5 A spinless particle is scattered by a weak Yukawa potential

V =
V0e−μr

μr

where μ > 0 but V0 can be positive or negative. It was shown in the text that the
first-order Born amplitude is given by

f (1)(θ) =−2mV0

h̄2μ

1
[2k2(1− cosθ)+μ2]

.

a. Using f (1)(θ) and assuming |δl| � 1, obtain an expression for δl in terms of a
Legendre function of the second kind,

Ql(ζ) =
1
2

∫ 1

−1

Pl(ζ′)
ζ− ζ′ dζ

′.
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b. Use the expansion formula

Ql(ζ) =
l!

1 ·3 ·5 · · ·(2l+1)

×
{

1
ζl+1 +

(l+1)(l+2)
2(2l+3)

1
ζl+3

+
(l+1)(l+2)(l+3)(l+4)

2 ·4 · (2l+3)(2l+5)
1
ζl+5 + · · ·

}
(|ζ|> 1)

to prove each assertion.
(i) δl is negative (positive) when the potential is repulsive (attractive).

(ii) When the de Broglie wavelength is much longer than the range of the
potential, δl is proportional to k2l+1. Find the proportionality constant.

6.6 Check explicitly the x − px uncertainty relation for the ground state of a particle
confined inside a hard sphere: V=∞ for r> a, V= 0 for r< a. (Hint: Take advantage
of spherical symmetry.)

6.7 Consider the scattering of a particle by an impenetrable sphere

V(r) =
{

0 for r > a
∞ for r < a.

a. Derive an expression for the s-wave (l = 0) phase shift. (You need not know the
detailed properties of the spherical Bessel functions to be able to do this simple
problem!)

b. What is the total cross section σ[σ =
∫
(dσ/dΩ)dΩ] in the extreme low-energy

limit k → 0? Compare your answer with the geometric cross section πa2. You
may assume without proof:

dσ
dΩ

= | f(θ)|2,

f(θ) =
(

1
k

) ∞

∑
l=0

(2l+1)eiδl sinδlPl(cosθ).

6.8 Use δl = Δ(b)|b=l/k to obtain the phase shift δl for scattering at high energies by
(a) the Gaussian potential, V = V0 exp(−r2/a2), and (b) the Yukawa potential, V =

V0 exp(−μr)/μr. Verify the assertion that δl goes to zero very rapidly with increasing
l (k fixed) for l � kR, where R is the “range” of the potential. [The formula for Δ(b)
is given in (6.168).] It is useful to realize that∫ ∞

1

e−ax

(x2 −1)1/2 dx = K0(x)

where K0(x) is the modified Bessel function of the second kind, of order zero.

6.9 a. Prove
h̄2

2m
〈x| 1

E−H0 + iε
|x′〉=−ik∑

l
∑
m

Ym
l (r̂)Ym∗

l (r̂′)jl(kr<)h
(1)
l (kr>)

where r< (r>) stands for the smaller (larger) of r and r′.
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b. For spherically symmetric potentials, the Lippmann–Schwinger equation can be
written for spherical waves:

|Elm(+)〉= |Elm〉+ 1
E−H0 + iε

V|Elm(+)〉.

Using (a), show that this equation, written in the x-representation, leads to an
equation for the radial function, Al(k; r), as follows:

Al(k; r) = jl(kr)− 2mik
h̄2

×
∫ ∞

0
jl(kr<)h

(1)
l (kr>)V(r′)Al(k; r′)r′2dr′.

By taking r very large, also obtain

fl(k) = eiδl
sinδl

k

=−
(

2m
h̄2

)∫ ∞

0
jl(kr)Al(k; r)V(r)r2dr.

6.10 Consider scattering by a repulsive δ-shell potential:(
2m
h̄2

)
V(r) = γδ(r−R) (γ > 0).

a. Set up an equation that determines the s-wave phase shift δ0 as a function of
k(E = h̄2k2/2m).

b. Assume now that γ is very large,

γ� 1
R

,k.

Show that if tan kR is not close to zero, the s-wave phase shift resembles the hard-
sphere result discussed in the text. Show also that for tan kR close to (but not
exactly equal to) zero, resonance behavior is possible; that is, cotδ0 goes through
zero from the positive side as k increases. Determine approximately the positions
of the resonances keeping terms of order 1/γ; compare them with the bound-state
energies for a particle confined inside a spherical wall of the same radius,

V = 0, r < R; V = ∞, r > R.

Also obtain an approximate expression for the resonance width Γ defined by

Γ=
−2

[d(cot δ0)/dE]|E=Er

and notice, in particular, that the resonances become extremely sharp as γ
becomes large. (Note: For a different, more sophisticated approach to this problem
see Gottfried (1966), pp. 131–141, who discusses the analytic properties of the
Dl-function defined by Al = jl/Dl.)
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6.11 A spinless particle is scattered by a time-dependent potential

V (r, t) = V(r)cosωt.

Show that if the potential is treated to first order in the transition amplitude, the
energy of the scattered particle is increased or decreased by h̄ω. Obtain dσ/dΩ.
Discuss qualitatively what happens if the higher-order terms are taken into account.

6.12 Show that the differential cross section for the elastic scattering of a fast positron by
the ground state of the hydrogen atom is given by

dσ
dΩ

=

(
4m2e4

h̄4q4

){
1− 16

[4+(qa0)2]2

}2

.

6.13 Write a computer program to reproduce Figure 6.15. Also include a plot showing the
relative sizes of the energy, well depth, and effective potential, that is, the analogue
of Figure 6.14 for this problem.

6.14 Let the energy of a particle moving in a central field be E(J1J2J3), where (J1,J2,J3)

are the three action variables. How does the functional form of E specialize for the
Coulomb potential? Using the recipe of the action-angle method, compare the degen-
eracy of the central field and the Coulomb problems and relate it to the vector A.

If the Hamiltonian is

H =
p2

2μ
+V(r)+F(A2),

how are these statements changed?
Describe the corresponding degeneracies of the central field and Coulomb

problems in quantum theory in terms of the usual quantum numbers (n, l, m)
and also in terms of the quantum numbers (k, m, n). Here the second set, (k, m, n),
labels the wave functions D k

mn(αβγ).
How are the wave functions D k

mn(αβγ) related to Laguerre times spherical
harmonics?



7 Identical Particles

This chapter is devoted to a discussion of some striking quantum-mechanical effects arising
from the identity of particles. First we present a suitable formalism and the way that nature
deals with what appears to be an arbitrary choice. We then consider some applications to
atoms more complex than hydrogen like atoms. Next we generalize to systems with many
identical particles, and discuss two different formalisms for calculations. Lastly, we will
cover one concrete example of a many-particle quantum-mechanical field theory, namely
quantizing the electromagnetic field.

7.1 Permutation Symmetry

In classical physics it is possible to keep track of individual particles even though they
may look alike. When we have particle 1 and particle 2 considered as a system, we can, in
principle, follow the trajectory of particle 1 and that of particle 2 separately at each instant
of time. For bookkeeping purposes, you may color one of them blue and the other red and
then examine how the red particle moves and how the blue particle moves as time passes.

In quantum mechanics, however, identical particles are truly indistinguishable. This is
because we cannot specify more than a complete set of commuting observables for each
of the particles; in particular, we cannot label the particle by coloring it blue. Nor can we
follow the trajectory because that would entail a position measurement at each instant of
time, which necessarily disturbs the system; in particular the two situations (a) and (b)
shown in Figure 7.1 cannot be distinguished – not even in principle.

For simplicity consider just two particles. Suppose one of the particles, which we call
particle 1, is characterized by |k′〉, where k′ is a collective index for a complete set of
observables. Likewise, we call the ket of the remaining particle |k′′〉. The state ket for the
two particles can be written in product form,

|k′〉|k′′〉, (7.1)

where it is understood that the first ket refers to particle 1 and the second ket to particle 2.
We can also consider

|k′′〉|k′〉, (7.2)

where particle 1 is characterized by |k′′〉 and particle 2 by |k′〉. Even though the two particles
are indistinguishable, it is worth noting that mathematically (7.1) and (7.2) are distinct kets
for k′ 	= k′′. In fact, with k′ 	= k′′, they are orthogonal to each other.

429
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(a) (b)

Fig. 7.1 Two different paths, (a) and (b), of a two-electron system, for example, in which we cannot assert even in principle
through which of the paths the electrons pass.

Suppose we make a measurement on the two-particle system. We may obtain k′ for one
particle and k′′ for the other. However, we do not know a priori whether the state ket is
|k′〉|k′′〉, |k′′〉|k′〉, or, for that matter, any linear combination of the two. Put in another way,
all kets of form

c1|k′〉|k′′〉 + c2|k′′〉|k′〉 (7.3)

lead to an identical set of eigenvalues when measurement is performed. This is known
as exchange degeneracy. Exchange degeneracy presents a difficulty because, unlike the
single-particle case, a specification of the eigenvalue of a complete set of observables
does not completely determine the state ket. The way nature avoids this difficulty is quite
ingenious. But before proceeding further, let us develop the mathematics of permutation
symmetry.

We define the permutation operator P12 by

P12|k′〉|k′′〉 = |k′′〉|k′〉. (7.4)

Clearly,

P21 = P12 and P2
12 = 1. (7.5)

Under P12, particle 1 having k′ becomes particle 1 having k′′; particle 2 having k′′ becomes
particle 2 having k′. In other words, it has the effect of interchanging 1 and 2.

In practice we often encounter an observable that has particle labels. For example in
S1 ·S2 for a two-electron system, S1 (S2) stands for the spin operator of particle 1 (2).
For simplicity we consider a specific case where the two-particle state ket is completely
specified by the eigenvalues of a single observable A for each of the particles:

A1|a′〉|a′′〉= a′|a′〉|a′′〉 (7.6a)

and

A2|a′〉|a′′〉= a′′|a′〉|a′′〉, (7.6b)

where the subscripts on A denote the particle labels, and A1 and A2 are thus the observables
A for particles 1 and 2, respectively. Applying P12 to both sides of (7.6a), and inserting
1 = P−1

12 P12, we have
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P12A1P−1
12 P12|a′〉|a′′〉= a′P12|a′〉|a′′〉

P12A1P−1
12 |a′′〉|a′〉= a′|a′′〉|a′〉. (7.7)

This is consistent with (7.6b) only if

P12A1P−1
12 = A2. (7.8)

It follows that P12 must change the particle labels of observables.
Let us now consider the Hamiltonian of a system of two identical particles. The observ-

ables, such as momentum and position operators, must necessarily appear symmetrically
in the Hamiltonian, for example,

H =
p2

1
2m

+
p2

2
2m

+Vpair (|x1 −x2|)+Vext(x1)+Vext(x2). (7.9)

Here we have separated the mutual interaction between the two particles from their
interaction with some other external potential. Clearly, we have

P12HP−1
12 = H (7.10)

for H made up of observables for two identical particles. Because P12 commutes with H,
we can say that P12 is a constant of the motion. The eigenvalues of P12 allowed are +1
and −1 because of (7.5). It therefore follows that if the two-particle state ket is symmetric
(antisymmetric) to start with, it remains so at all times.

If we insist on eigenkets of P12, two particular linear combinations are selected:

|k′k′′〉+ ≡ 1√
2
(|k′〉|k′′〉 + |k′′〉|k′〉) , (7.11a)

and

|k′k′′〉− ≡ 1√
2
(|k′〉|k′′〉 − |k′′〉|k′〉) . (7.11b)

We can define the symmetrizer and antisymmetrizer as follows:

S12 ≡ 1
2 (1 + P12), A12 ≡ 1

2 (1−P12). (7.12)

We can extend this formalism to include states with more than two identical particles. From
(7.12), if we apply S12(A12) to an arbitrary linear combination of |k′〉|k′′〉 and |k′′〉|k′〉, the
resulting ket is necessarily symmetric (antisymmetric). This can easily be seen as follows:{

S12

A12

}
[c1|k′〉|k′′〉+ c2|k′′〉|k′〉]

= 1
2 (c1|k′〉|k′′〉+ c2|k′′〉|k′〉)± 1

2 (c1|k′′〉|k′〉+ c2|k′〉|k′′〉)

=
c1 ± c2

2
(|k′〉|k′′〉± |k′′〉|k′〉) . (7.13)

In Section 7.5 we will build on this approach.
Before closing this section, we pause to point out that the consequences can be dramatic

when permutation symmetry is ignored. Figure 7.2 shows a result which compares two
experiments, before and after an error was corrected which ignored permutation symmetry
in the analysis.
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Fig. 7.2 Dramatic consequences arise when permutation symmetry is neglected. The data points are from McKeown et al.,
Phys. Rev. C, 22 (1980) 738, who tested a prediction of the CVC hypothesis. The β± −α correlation δ− is plotted
against the β± energy. The prediction comes from a different, previous experiment, which at first neglected
permutation symmetry. The corrected plot is on the right, from McKeown et al., Phys. Rev. C, 26 (1982) 2336, where
the CVC prediction is smaller by a factor of

√
2.

The object of this set of experiments was to test something called the Conserved
Vector Current (CVC) hypothesis, based on the assumption of an intimate connection1

between the electromagnetic and weak interactions. Confirmation, or refutation, of the
CVC hypothesis was a high priority, and this experiment was one of the most precise
tests. The initial result, shown on the left in Figure 7.2, was less than clear. The corrected
result, on the right, was finally a decisive confirmation of CVC.

The data points in Figure 7.2, which are identical for the left-hand and right-hand plots,
are from a measurement of the beta decays of 8Li and 8B, each of which leads to a final
state with two (identical) α particles, through an excited state of 8Be. That is

8Li →8 Be∗+ e−+ ν̄e (7.14a)
8B →8 Be∗+ e++ νe (7.14b)

followed by
8Be∗ → α+α. (7.14c)

The experiment determines δ−, the correlation in direction between the e± and α directions
for the two beta decays, as a function of e± energy. The result of this measurement is
published as McKeown et al., Phys. Rev. C, 22 (1980) 738.

The hatched area shows the CVC prediction derived from an earlier experiment,
published as Bowles and Garvey Phys. Rev. C, 18 (1978) 1447. This work measured the
reaction

α+α→8 Be∗ (7.15a)

followed by
8Be∗ →8 Be+γ. (7.15b)

1 The CVC hypothesis predates the unification of electromagnetic and weak interactions in what today is referred
to as the “Standard Model.”
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That is, a process which is rather the inverse of that in (7.14) and which proceeds
through an electromagnetic interaction instead of the weak interaction. Deriving the CVC
prediction from this result requires that the αα wave function be symmetrized, but this
was neglected at first, for the plot shown on the left of Figure 7.2. Some time later, this
error was corrected for the missing factor of

√
2, and the plot on the right was published,

showing much better agreement between prediction and measurement.

7.2 Symmetrization Postulate

So far we have not discussed whether nature takes advantage of totally symmetrical or
totally antisymmetrical states. It turns out2 that systems containing N identical particles
are either totally symmetrical under the interchange of any pair, in which case the
particles are said to satisfy Bose–Einstein (B-E) statistics, hence known as bosons, or
totally antisymmetrical, in which case the particles are said to satisfy Fermi–Dirac (F-D)
statistics, hence known as fermions. Thus

Pij|N identical bosons〉=+|N identical bosons〉 (7.16a)

Pij|N identical fermions〉=−|N identical fermions〉, (7.16b)

where Pij is the permutation operator that interchanges the ith and the jth particle, with i
and j arbitrary. It is an empirical fact that a mixed symmetry does not occur.

Even more remarkable is that there is a connection between the spin of a particle and the
statistics obeyed by it:

Half-integer spin particles are fermions; (7.17a)
Integerspinparticlesarebosons. (7.17b)

Here particles can be composite; for example, a 3He nucleus is a fermion just as the e− or
the proton; a 4He nucleus is a boson just as the π meson or Z0 gauge boson.

This spin-statistics connection is, as far as we can tell, an exact law of nature with no
known exceptions. In the framework of nonrelativistic quantum mechanics, this principle
must be accepted as an empirical postulate. In the relativistic quantum theory, however, it
can be proved that half-integer spin particles cannot be bosons and integer spin particles
cannot be fermions.

An immediate consequence of the electron being a fermion is that the electron must
satisfy the Pauli exclusion principle, which states that no two electrons can occupy the
same state. This follows because a state like |k′〉|k′〉 is necessarily symmetrical, which is not

2 To be sure, there is an important subtlety that relies on our living in three-dimensional space. It is possible
to have objects, called anyons, which have a continuum of statistical properties spanning the range between
fermions and bosons, if they are constrained to two spatial dimensions. The literature on this subject is
fascinating, but scattered. The reader is referred to two early papers, namely “Quantum mechanics of fractional-
spin particles,” Wilczek, Phys. Rev. Lett., 49 (1982) 957 and “Quantum spectrum of three anyons in an oscillator
potential,” Murthy et al., Phys. Rev. Lett., 67 (1991) 817.
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possible for a fermion. As is well known, the Pauli exclusion principle is the cornerstone of
atomic and molecular physics as well as the whole of chemistry. To illustrate the dramatic
differences between fermions and bosons, let us consider two particles, each of which can
occupy only two states, characterized by k′ and k′′. For a system of two fermions, we have
no choice; there is only one possibility:

1√
2
(|k′〉|k′′〉− |k′′〉|k′〉) . (7.18)

For bosons there are three states possible:

|k′〉|k′〉, |k′′〉|k′′〉, 1√
2
(|k′〉|k′′〉+ |k′′〉|k′〉) . (7.19)

In contrast, for “classical” particles satisfying Maxwell–Boltzmann (M-B) statistics with
no restriction on symmetry, we have altogether four independent states:

|k′〉|k′′〉, |k′′〉|k′〉, |k′〉|k′〉, |k′′〉|k′′〉. (7.20)

We see that in the fermion case it is impossible for both particles to occupy the same
state. In the boson case, for two out of the three allowed kets, both particles occupy the
same state. In the classical (M-B) statistics case, both particles occupy the same state for
two out of the four allowed kets. In this sense fermions are the least sociable; they avoid
each other to make sure that they are not in the same state; in contrast, bosons are the
most sociable, they really love to be in the same state, even more so than classical particles
obeying M-B statistics.

The difference between fermions and bosons shows up most dramatically at low
temperatures; a system made up of bosons, such as liquid 4He, exhibits a tendency for
all particles to get down to the same ground state at extremely low temperatures.3 This
is known as Bose–Einstein condensation, a feature not shared by a system made up of
fermions.

7.3 Two-Electron System

Let us now consider specifically a two-electron system. The eigenvalue of the permutation
operator is necessarily −1. Suppose the base kets we use may be specified by x1, x2, ms1,
and ms2, where ms1 and ms2 stand for the spin-magnetic quantum numbers of electron 1
and electron 2, respectively.

We can express the wave function for a two-electron system as a linear combination of
the state ket with eigenbras of x1, x2, ms1, and ms2 as follows:

ψ = ∑
ms1

∑
ms2

C(ms1,ms2)〈x1,ms1; x2,ms2|α〉. (7.21)

3 The visual behavior of liquid helium, as it is cooled past the critical temperature, is striking. Various video
examples can be seen at www.youtube.com/ including a classic physics demonstration movie, “Liquid
Helium II: The Superfluid” by A. Leitner, from 1963. See also the site http://alfredleitner.com/.
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If the Hamiltonian commutes with S2
tot,[

S2
tot,H

]
= 0, (7.22)

then the energy eigenfunction is expected to be an eigenfunction of S2
tot, and if ψ is

written as

ψ = φ(x1,x2)χ, (7.23)

then the spin function χ is expected to be one of the following:

χ(ms1,ms2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ++

1√
2 (χ+−+χ−+)

χ−−

⎫⎪⎪⎬⎪⎪⎭ triplet (symmetrical)

1√
2 (χ+−−χ−+) singlet (antisymmetrical),

(7.24)

where χ+− corresponds to χ(ms1 =
1
2 ,ms2 = − 1

2 ). Notice that the triplet spin functions are
all symmetrical; this is reasonable because the ladder operator S1−+ S2− commutes with
P12 and the |+〉|+〉 state is even under P12.

We note

〈x1,ms1; x2,ms2|P12|α〉= 〈x2,ms2; x1,ms1|α〉. (7.25)

Fermi–Dirac statistics thus requires

〈x1,ms1; x2,ms2|α〉=−〈x2,ms2; x1,ms1|α〉. (7.26)

Clearly, P12 can be written as

P12 = P(space)
12 P(spin)

12 (7.27)

where P(space)
12 just interchanges the position coordinate, while P(spin)

12 just interchanges the
spin states. It is amusing that we can express P(spin)

12 as

P(spin)
12 =

1
2

(
1+

4
h̄2 S1 ·S2

)
, (7.28)

which follows because

S1 ·S2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h̄2

4
(triplet)

−3h̄2

4
(singlet).

(7.29)

It follows from (7.23) that letting

|α〉 → P12|α〉 (7.30)

amounts to

φ(x1,x2)→ φ(x2,x1), χ(ms1,ms2)→ χ(ms2,ms1). (7.31)

This together with (7.26) implies that if the space part of the wave function is symmetrical
(antisymmetrical) the spin part must be antisymmetrical (symmetrical). As a result, the spin
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triplet state has to be combined with an antisymmetrical space function and the spin-singlet
state has to be combined with a space symmetrical function.

The space part of the wave function φ(x1,x2) provides the usual probabilistic interpre-
tation. The probability for finding electron 1 in a volume element d3x1 centered around x1

and electron 2 in a volume element d3x2 is

|φ(x1,x2)|2d3x1d3x2. (7.32)

To see the meaning of this more closely, let us consider the specific case where the
mutual interaction between the two electrons [for example, Vpair(|x1 − x2|),S1·S2] can be
ignored. If there is no spin dependence, the wave equation for the energy eigenfunction ψ
[see (7.9)], [

−h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 +Vext(x1)+Vext(x2)

]
ψ = Eψ, (7.33)

is now separable. We have a solution of the form ωA(x1)ωB(x2) times the spin function.
With no spin dependence S2

tot necessarily (and trivially) commutes with H, so the spin
part must be a triplet or a singlet, which have definite symmetry properties under P(spin)

12 .
The space part must then be written as a symmetrical and antisymmetrical combination of
ωA(x1)ωB(x2) and ωA(x2)ωB(x1):

φ(x1,x2) =
1√
2
[ωA(x1)ωB(x2)±ωA(x2)ωB(x1)] (7.34)

where the upper sign is for a spin singlet and the lower is for a spin triplet. The probability
of observing electron 1 in d3x1 around x1 and electron 2 in d3x2 around x2 is given by

1
2

{
|ωA(x1)|2|ωB(x2)|2 + |ωA(x2)|2|ωB(x1)|2

±2Re [ωA(x1)ωB(x2)ω∗
A(x2)ω∗

B(x1)]}d3x1d3x2.
(7.35)

The last term in the curly bracket is known as the exchange density.
We immediately see that when the electrons are in a spin-triplet state, the probability

of finding the second electron at the same point in space vanishes. Put another way, the
electrons tend to avoid each other when their spins are in a triplet state. In contrast, when
their spins are in a singlet state, there is enhanced probability of finding them at the same
point in space because of the presence of the exchange density.

Clearly, the question of identity is important only when the exchange density is
nonnegligible or when there is substantial overlap between function ωA and function ωB.
To see this point clearly, let us take the extreme case where |ωA(x)|2 (where x may refer
to x1 or x2) is big only in region A and |ωB(x)|2 is big only in region B such that the
two regions are widely separated. Now choose d3x1 in region A and d3x2 in region B; see
Figure 7.3. The only important term then is just the first term in (7.35),

|ωA(x1)|2|ωB(x2)|2, (7.36)

which is nothing more than the joint probability density expected for classical particles.
In this connection, recall that classical particles are necessarily well localized and the
question of identity simply does not arise. Thus the exchange density term is unimportant
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d3x1
d3x2

Fig. 7.3 Two widely separated regions A and B; |ωA(x)|2 is large in region A while |ωB(x)|2 is large in region B.

if regions A and B do not overlap. There is no need to antisymmetrize if the electrons are
far apart and the overlap is negligible. This is quite gratifying. We never have to worry
about the question of antisymmetrization with 10 billion electrons, nor is it necessary to
take into account the antisymmetrization requirement between an electron in New York
and an electron in Beijing.

7.4 The Helium Atom

A study of the helium atom is rewarding for several reasons. First of all, it is the simplest
realistic problem where the question of identity, which we encountered in Section 7.3,
plays an important role. Second, even though it is a simple system, the two-particle
Schrödinger equation cannot be solved analytically; therefore, this is a nice place to
illustrate the use of perturbation theory and also the use of the variational method.

The basic Hamiltonian is given by

H =
p2

1
2m

+
p2

2
2m

− 2e2

r1
− 2e2

r2
+

e2

r12
, (7.37)

where r1 ≡ |x1|, r2 ≡ |x2|, and r12 ≡ |x1 − x2|; see Figure 7.4. Suppose the e2/r12-term
were absent. Then, with the identity question ignored, the wave function would be just the
product of two hydrogen atom wave functions with Z = 1 changed into Z = 2. The total
spin is a constant of the motion, so the spin state is either singlet or triplet. The space part
of the wave function for the important case where one of the electrons is in the ground state
and the other in an excited state characterized by (nlm) is

φ(x1,x2) =
1√
2
[ψ100(x1)ψnlm(x2) ± ψ100(x2)ψnlm(x1)] (7.38)

where the upper (lower) sign is for the spin singlet (triplet). We will come back to this
general form for an excited state later.
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Fig. 7.4 Schematic diagram of the helium atom.

For the ground state, we need a special treatment. Here the configuration is characterized
by (1s)2, that is, both electrons in n = 1, l = 0.

The space function must then necessarily be symmetric and only the spin-singlet
function is allowed. So we have

ψ100(x1)ψ100(x2)χsinglet =
Z3

πa3
0

e−Z(r1 +r2)/a0χ (7.39)

with Z = 2. Not surprisingly, this “unperturbed” wave function gives

E = 2×4
(
− e2

2a0

)
=−108.8 eV (7.40)

for the ground-state energy, which is about 30% larger than the experimental value.
This is just the starting point of our investigation because in obtaining the above form

(7.39), we have completely ignored the last term in (7.37) that describes the interaction
between the two electrons. One way to approach the problem of obtaining a better energy
value is to apply first-order perturbation theory using (7.39) as the unperturbed wave
function and e2/r12 as the perturbation. We obtain

Δ(1s)2 =

〈
e2

r12

〉
(1s)2

=
∫∫ Z6

π2a6
0

e−2Z(r1 +r2)/a0
e2

r12
d3x1d3x2. (7.41)

To carry out the indicated integration we first note

1
r12

=
1√

r2
1 + r2

2 −2r1r2 cosγ
=

∞

∑
l=0

rl
<

rl+1
>

Pl(cosγ), (7.42)

where r> (r<) is the larger (smaller) of r1 and r2 and γ is the angle between x1 and x2. The
angular integration is easily performed by expressing Pl(cosγ) in terms of Ym

l (θ1,φ1) and
Ym

l (θ2,φ2) using the addition theorem of spherical harmonics. (See, for example, Section
12.8 of Arfken and Weber (1995).) We have

Pl(cosγ) =
4π

2 l+1

l

∑
m=−1

Ym∗
l (θ1,φ1)Ym

l (θ2,φ2). (7.43)
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The angular integration is now trivial:∫
Ym

l (θi,φi) dΩi =
1√
4π

(4π)δl0δm0. (7.44)

The radial integration is elementary (but involves tedious algebra!); it leads to∫ ∞

0

[∫ r1

0

1
r1

e−(2Z/a0)(r1 +r2)r2
2 dr2 +

∫ ∞

r1

1
r2

e−(2Z/a0)(r1 +r2 )r2
2 dr2

]
r2

1 dr1

=
5

128
a5

0
Z5 .

(7.45)

Combining everything, we have (for Z = 2)

Δ(1s)2 =

(
Z6e2

π2a6
0

)
4π(

√
4π)2

(
5

128

)(
a5

0
Z5

)
=

(
5
2

)(
e2

2a0

)
. (7.46)

Adding this energy shift to (7.40), we have

Ecal =

(
−8+

5
2

)(
e2

2a0

)
�−74.8 eV. (7.47)

Compare this with the experimental value,

Eexp =−79.005151042(40) eV, (7.48)

as determined from the NIST Atomic Spectra Database.
This is not bad, but we can do better! We propose to use the variational method with Z,

which we call Zeff, as a variational parameter. The physical reason for this choice is that
the effective Z seen by one of the electrons is smaller than 2 because the positive charge of
2 units at the origin (see Figure 7.4) is “screened” by the negatively charged cloud of the
other electron; in other words, the other electron tends to neutralize the positive charge due
to the helium nucleus at the center. For the normalized trial function we use

〈x1,x2|0̃〉=
(

Z3
eff

πa3
0

)
e−Zeff(r1 +r2)/a0 . (7.49)

From this we obtain

H =

〈
0̃
∣∣∣∣ p2

1
2m

+
p2

2
2m

∣∣∣∣ 0̃
〉
−

〈
0̃
∣∣∣∣Ze2

r1
+

Ze2

r2

∣∣∣∣ 0̃
〉
+

〈
0̃
∣∣∣∣ e2

r12

∣∣∣∣ 0̃
〉

=

(
2

Z2
eff

2
−2ZZeff +

5
8

Zeff

)(
e2

a0

)
. (7.50)

We easily see that the minimization of H is at

Zeff = 2− 5
16 = 1.6875. (7.51)

This is smaller than 2, as anticipated. Using this value for Zeff we get

Ecal =−77.5 eV, (7.52)

which is already very close considering the crudeness of the trial wave function.
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Fig. 7.5 Schematic diagram for the energy-level splittings of (1s)(nl) for the helium atom.

Historically, this achievement was considered to be one of the earliest signs that
Schrödinger’s wave mechanics was on the right track. We cannot get this kind of number
by the purely algebraic (operator) method. The helium calculation was first done by A.
Unsöld in 1927.4

Let us briefly consider excited states. This is more interesting from the point of view
of illustrating quantum-mechanical effects due to identity. We consider just (1s)(nl). We
write the energy of this state as

E = E100 +Enlm +ΔE. (7.53)

In first-order perturbation theory, ΔE is obtained by evaluating the expectation value of
e2/r12. We can write 〈

e2

r12

〉
= I ± J, (7.54)

where I and J, known respectively as the direct integral and the exchange integral, are
given by

I =
∫

d3x1

∫
d3x2|ψ100(x1)|2|ψnlm(x2)|2 e2

r12
, (7.55a)

J =
∫

d3x1

∫
d3x2ψ100(x1)ψnlm(x2)

e2

r12
ψ∗

100(x2)ψ
∗
nlm(x1). (7.55b)

The upper (lower) sign goes with the spin-singlet (spin-triplet) state. Obviously, I is
positive; we can also show that J is positive. So the net result is such that for the same
configuration, the spin-singlet state lies higher, as shown in Figure 7.5.

The physical interpretation for this is as follows: In the singlet case the space function
is symmetric and the electrons have a tendency to come close to each other. Therefore, the
effect of the electrostatic repulsion is more serious; hence, a higher energy results. In the
triplet case, the space function is antisymmetric and the electrons tend to avoid each other.
Helium in spin-singlet states is known as parahelium, while helium in spin-triplet states
is known as orthohelium. Each configuration splits into the para state and the ortho state,
the para state lying higher. For the ground state only parahelium is possible. See Figure 7.6
for a schematic energy-level diagram of the helium atom.

It is very important to recall that the original Hamiltonian is spin independent because
the potential is made up of just three Coulomb terms. There was no S1·S2-term whatsoever.
Yet there is a spin-dependent effect – the electrons with parallel spins have a lower energy
– that arises from Fermi–Dirac statistics.

4 Unsöld, Ann. Phys., 82 (1927) 355.
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Spin singlet, necessarily “para”

Fig. 7.6 Schematic energy-level diagram for low-lying configurations of the helium atom.

This explanation of the apparent spin dependence of the helium atom energy levels is
due to Heisenberg. The physical origin of ferromagnetism – alignment of the electron spins
extended over microscopic distances – is also believed to be essentially the same, but the
properties of ferromagnets are much harder to calculate quantitatively from first principles.

7.5 Multiparticle States

It is not difficult to extend the symmetrization of Section 7.2 to a system made up of many
identical particles. Recalling (7.13) we define

Pij|k′〉|k′′〉 · · · |ki〉|ki+1〉 · · · |kj〉 · · ·= |k′〉|k′′〉 · · · |kj〉|ki+1〉 · · · |ki〉 · · · . (7.56)

Clearly,

P2
ij = 1 (7.57)

just as before, and the allowed eigenvalues of Pij are +1 and −1. It is important to note,
however, that in general

[Pij,Pkl] 	= 0. (7.58)

It is worth explicitly working out a system of three identical particles. First, there are
3!= 6 possible kets of form

|k′〉|k′′〉|k′′′〉 (7.59)
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where k′, k′′, and k′′′ are all different. Thus there is sixfold exchange degeneracy. Yet if we
insist that the state be totally symmetrical or totally antisymmetrical, we can form only one
linear combination each. Explicitly, we have

|k′k′′k′′′〉± ≡ 1√
6
{|k′〉|k′′〉|k′′′〉± |k′′〉|k′〉|k′′′〉

+ |k′′〉|k′′′〉|k′〉± |k′′′〉|k′′〉|k′〉

+ |k′′′〉|k′〉|k′′〉± |k′〉|k′′′〉|k′′〉} . (7.60)

These are both simultaneous eigenkets of P12, P23, and P13. We remarked that there are
altogether six independent state kets. It therefore follows that there are four independent
kets that are neither totally symmetrical nor totally antisymmetrical. We could also
introduce the operator P123 by defining

P123 (|k′〉|k′′〉|k′′′〉) = |k′′〉|k′′′〉|k′〉. (7.61)

Note that P123 = P12P13 because

P12P13 (|k′〉|k′′〉|k′′′〉) = P12 (|k′′′〉|k′′〉|k′〉) = |k′′〉|k′′′〉|k′〉. (7.62)

In writing (7.60) we assumed that k′, k′′, and k′′′ are all different. If two of the three
indices coincide, it is impossible to have a totally antisymmetrical state. The totally
symmetrical state is given by

|k′k′k′′〉+ =
1√
3
(|k′〉|k′〉|k′′〉+ |k′〉|k′′〉|k′〉+ |k′′〉|k′〉|k′〉) , (7.63)

where the normalization factor is understood to be
√

2! /3!. For more general cases we have
a normalization factor √

N1!N2! · · ·Nn!
N!

, (7.64)

where N is the total number of particles and Ni the number of times |k(i)〉 occurs.
For more general cases of the totally antisymmetrical state, it is helpful to write the

antisymmetric case of (7.60) as

|k′k′′k′′′〉− =
1√
3!

∣∣∣∣∣∣
|k′〉 |k′′〉 |k′′′〉
|k′〉 |k′′〉 |k′′′〉
|k′〉 |k′′〉 |k′′′〉

∣∣∣∣∣∣ (7.65)

where the ordering of kets in the determinant is set by the row from which they originate.
This construction is known as a Slater determinant. Its generalization to the N-particle case
is straightforward.

In principle, we can follow along the lines of Section 7.4 to apply this formalism to
N-particle systems, but it can quickly become unwieldy, even with modern computational
resources. If N is on the order of Avogadro’s number, as it is for problems in condensed
matter physics or materials chemistry, then this approach is intractable. Other techniques
of calculation needed to be invented in order to handle these cases.
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The remainder of this chapter develops two such techniques. Section 7.6 covers the
basics of density functional theory, a coordinate representation-based approach that reduces
the problem to one with only three (spatial) degrees of freedom. Section 7.7 introduces the
foundations of quantum field theory using the formalism known as “second quantization.”
Each of these techniques is both powerful and widely used. Finally, Section 7.8 applies
second quantization to the electromagnetic field in free space. (Second quantization is
applied to the relativistic Klein–Gordon field in Section 8.1, see p. 485.)

7.6 Density Functional Theory

The problem of having many identical particles, interacting with each other and with
some external potential, can be written down as an N-body Schrödinger equation for
a wave function in coordinate space. This equation cannot be solved exactly, however,
so approximation schemes must be developed. One particular approach has emerged in
the most recent decades as a popular choice, especially for the electronic structure of
condensed matter systems.

This approach, known as density functional theory (DFT), is based on two seminal
papers, namely Hohenberg and Kohn, Phys. Rev., 136 (1964) B864 and Kohn and Sham,
Phys. Rev., 140 (1965) A1133. DFT has found wide application in condensed matter and
materials physics and chemistry. In fact, the 1998 Nobel Prize in Chemistry was awarded
to physicist Walter Kohn and chemist John Pople for the development and application of
this formalism.

Our treatment here is strictly an introduction. See Jones and Gunnarsson, Rev. Mod.
Phys., 61 (1989) 689 for a thorough review after DFT had matured. Today DFT is used
widely in condensed matter physics, and described in modern textbooks on the subject, for
example Cohen and Louie (2016). For interesting historical and contextual reading, see
Walter Kohn’s Nobel Prize lecture, Rev. Mod. Phys., 71 (1999) 1253 and also Perdew et
al., J. Chem. Theory Comput., 5 (2009) 902.

7.6.1 The Energy Functional for a Single Particle

In Section 5.4 we proved a theorem that was the basis of the variational approximation to
the ground-state energy. Cast in terms of wave mechanics, we found that

E[ψ̃]≡
∫
ψ̃∗Hψ̃d3x

=
∫
ψ̃∗

[
− h̄2

2m
∇2 +V(x)

]
ψ̃d3x ≥ E0 (7.66)

for the Hamiltonian H and a (properly normalized) trial wave function ψ̃(x), where E0 is
the true ground-state energy. The notation E[ψ̃] means that the energy is a functional of the
trial wave function. That is, given some function ψ̃(x), we can calculate a value for E[ψ̃].
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We made use of this in the variational approximation by giving ψ̃ free parameters, which
we varied to minimize E[ψ̃], thereby providing an approximation to E0.

The key idea behind DFT is that the energy can be considered a functional of the density
instead of the wave function. Hohenberg, Kohn, and Sham proved rigorously that this
converts the quantum many-body problem into an effective one-body problem, a tractable
calculation. Before describing their work, though, let us see how this works for the single-
particle case.

We will find it convenient to rewrite (7.66) using the divergence theorem, and the fact
that the wave function tends to zero at infinity for bound states. That is∫

ψ̃∗∇2ψ̃d3x =
∫ [
∇ · (ψ̃∗∇ψ̃)−∇ψ̃∗ ·∇ψ̃

]
d3x =−

∫
∇ψ̃∗ ·∇ψ̃d3x (7.67)

since the term with the divergence converts to a surface integral at infinity. This transfor-
mation is sometimes called a “choice of gauge,” for its similarity to the transformations
discussed in Section 2.7. The energy functional (7.66) then becomes

E[ψ̃] =
∫ [

h̄2

2m
∇ψ̃∗ ·∇ψ̃+V(x)ψ̃∗ψ̃

]
d3x. (7.68)

Now, the single-particle density for a wave function ψ(x) is ρ(x) = ψ∗ψ. We can
take the ground-state trial wave function ψ̃(x) to be real, and then write the energy as
a functional of the density ρ̃(x). Using ψ̃ =

√
ρ̃ we find

E[ρ̃] =
∫ [

h̄2

2m
(
∇ρ̃1/2)2

+V(x)ρ̃
]

d3x =
∫ [

h̄2

8m
(∇ρ̃)2

ρ̃
+V(x)ρ̃

]
d3x (7.69)

for the ground-state energy as a functional of density.
At this point, we could make a guess for the function ρ̃(x), including one or more free

parameters, calculate E[ρ̃], and minimize the result with respect to those parameters. This
is directly analogous to the approach we took in Section 5.4.

However, we can take a different approach. Equation (7.69) shows that the energy E[ρ̃]
is a functional of ρ̃ and its first derivatives. Minimizing E[ρ̃] is equivalent to finding a
stationary value of the energy, that is δE[ρ̃] = 0, a well-known problem in the calculus of
variations.5 First we write (7.69) as

E[ρ̃] =
∫
ε(ρ̃,∇ρ̃)d3x =

∫
ε(ρ̃, ρ̃x, ρ̃y, ρ̃z)d3x (7.70)

where ρ̃x ≡ ∂ ρ̃/∂x, ρ̃y ≡ ∂ ρ̃/∂y, and ρ̃z ≡ ∂ ρ̃/∂ z, so that

ε(ρ̃,∇ρ̃) = h̄2

8m
(∇ρ̃)2

ρ̃
+V(x)ρ̃ =

h̄2

8m
ρ̃2

x + ρ̃
2
y + ρ̃

2
z

ρ̃
+V(x)ρ̃. (7.71)

5 The calculus of variations is covered in every textbook on classical mechanics, treating the action as a functional
of the spatial coordinates and their derivatives, with time as the independent variable. Here we make use of
the case of several independent variables, typically covered in textbooks on mathematical physics. See, for
example, Arfken, Weber, and Harris (2013), Chapter 22, or Byron and Fuller (1992), Chapter 2.
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Before imposing δE[ρ̃] = 0, we must include the constraint that the density is normalized,
that is ∫

ρ̃d3x = 1. (7.72)

This is most easily done by multiplying (7.72) by a constant, which we take to be −μ,
and adding it to (7.70), creating a new functional E(μ)[ρ̃]. (This is formally referred to as
the method of Lagrange multipliers.) Because of the constraint (7.72), minimizing E[ρ̃] is
equivalent to minimizing E(μ)[ρ̃], that is setting δE(μ)[ρ̃] = 0. We have

δE(μ)[ρ̃] = δ

[∫
ε(ρ̃,∇ρ̃)d3x−μ

∫
ρ̃d3x

]
=

∫ [
∂ ε
∂ ρ̃

δρ̃+
∂ ε
∂ ρ̃x

δρ̃x +
∂ ε
∂ ρ̃y

δρ̃y +
∂ ε
∂ ρ̃z

δρ̃z −μδρ̃
]

d3x = 0. (7.73)

Recognizing that δρ̃x = ∂ (δρ̃)/∂x, and similarly for ρ̃y and ρ̃z, we integrate those terms
by parts with δρ̃ fixed to zero at infinity. Then factor out δρ̃ and set the integrand to zero.
The result is

∂ ε
∂ ρ̃

− ∂
∂x

∂ ε
∂ ρ̃x

− ∂
∂y

∂ ε
∂ ρ̃y

− ∂
∂ z

∂ ε
∂ ρ̃z

= μ. (7.74)

Noting that

∂
∂x

∂ ε
∂ ρ̃x

=
h̄2

4m
∂
∂x
ρ̃x

ρ̃
=

h̄2

4m

(
ρ̃xx

ρ̃
− ρ̃2

x
ρ̃2

)
(7.75)

we insert (7.71) into (7.74) to find

h̄2

8m
(∇ρ̃)2

ρ̃
+V(x)ρ̃− h̄2

4m
∇2ρ̃ = μρ̃. (7.76)

This is a differential equation that could be solved for ρ̃(x), similar to the way the
Schrödinger equation could be solved for the wave function.

Note that integrating both sides of (7.76) proves that μ equals the ground-state energy,
for the exact solution ρ̃. This is because the first two terms on the left are ε(ρ̃,∇ρ̃), we
have the constraint (7.72), and (similar to the way we dealt with the kinetic-energy term
(7.67)) the integral of ∇2ρ̃ becomes a surface integral at infinity and vanishes.

Problem 7.12 at the end of this chapter gives an example of applying these ideas to
a single particle in a one-dimensional harmonic oscillator potential. In three dimensions,
this could also be demonstrated with the nonisotropic harmonic oscillator or the hydrogen
atom.

7.6.2 The Hohenberg–Kohn Theorem

Now consider the ground state of a system with N identical particles, with wave function
Ψ(x1,x2,. . . ,xN), where the argument position identifies the particle number. (We will
abandon the notation Ψ̃.) The wave function must be appropriately symmetrized, that is

Ψ(x1,x2,. . . ,xi,. . . ,xj,. . . ,xN) =±Ψ(x1,x2,. . . ,xj,. . . ,xi,. . . ,xN). (7.77)
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Other than acknowledging the symmetry of the wave function, we will not be considering
spin degrees of freedom in our discussion.

The number density n(x) in this case will be the expectation value of the operator that
locates a particular particle at position x, summed over all the particles. That is

n(x) =
N

∑
i=1

〈Ψ|δ3(x−xi)|Ψ〉

=
N

∑
i=1

∫
Ψ∗(x1,x2,. . . ,xi = x,. . . ,xN)

×Ψ(x1,x2,. . . ,xi = x,. . . ,xN)d3x1 d3x2 · · · d3xN (7.78)

where the measure of the integral does not include the factor d3xi. Invoking the symmetry
(7.77), we can exchange x1 for xi for each term in (7.78) to write

n(x) = N
∫
Ψ∗(x,x2,. . . ,xN)Ψ(x,x2,. . . ,xN)d3x2 · · · d3xN. (7.79)

For a properly normalized wave functionΨ, we clearly have∫
n(x)d3x = N. (7.80)

We consider a Hamiltonian that is a straightforward generalization of (7.9), namely

H = ∑
i

p2
i

2m
+

1
2 ∑

i
∑
j	=i

Vpair(|xi −xj|)+∑
i

Vext(xi)

≡ T+Upair +Uext. (7.81)

Our goal is to write the ground-state energy E = 〈Ψ|H|Ψ〉 as a functional of the density
n(x). We will take the point of view that it is the external potential Vext(x) that defines our
problem. For example, if we are trying to find the ground state of a many-electron system,
then T+Upair is universal for all such problems. In other words, the wave function Ψ is
determined by Vext(x). The main point of the Hohenberg–Kohn theorem is that n(x) is also
determined by Vext(x). This was trivial when we wrote ρ = ψ2 for the one-particle system,
but it is more subtle for the many-particle case.

First let us find the ground-state expectation value for the Uext term in (7.81). Returning
for a moment to our formal distinction between an operator x and its eigenvalue x′, we have

〈Ψ|Uext|Ψ〉= ∑
i

∫
d3x′i 〈Ψ|Vext(xi)|x′i〉〈x′i|Ψ〉= ∑

i

∫
d3x′i Vext(x′i)〈Ψ|x′i〉〈x′i|Ψ〉

= ∑
i

∫
d3x′1d3x′2 · · ·d3x′i · · ·d3x′N Vext(x′i)

×Ψ∗(x′1,x′2,. . . ,x′i,. . . ,x
′
N)Ψ(x

′
1,x′2,. . . ,x′i,. . . ,x

′
N). (7.82)

We then again change integration variables in each term of the sum, exchanging x′i for
x′1, and realizing that each term is the same because of (7.77). Renaming the dummy
integration variable x′1 to x, we use (7.79) to write

〈Ψ|Uext|Ψ〉=
∫

Vext(x)n(x)d3x. (7.83)



447 7.6 Density Functional Theory

This shows that this expectation value is a functional of n, and is of course completely
analogous to the second term in (7.69).

Now we need to show that 〈Ψ|(T+Upair)|Ψ〉 is a functional of n(x). That is, we need to
show that the external potential Vext uniquely determines n(x), just as it does the ground-
state6 wave functionΨ.

The variational theorem of Section 5.4 provides the proof we need. Suppose there is
another external potential V′

ext, differing by more than an additive constant from Vext, which
gives a different wave function Ψ′ but the same density n(x). If we consider Ψ′ as a trial
wave function, then

〈Ψ′|H|Ψ′〉> 〈Ψ|H|Ψ〉. (7.84)

However, since the density n(x) is the same, we invoke (7.83) and write

〈Ψ′|(T+Upair)|Ψ′〉> 〈Ψ|(T+Upair)|Ψ〉. (7.85)

This result is absurd, of course. We could just have easily letΨ be the trial wave function,
and would have found the opposite result. The only way out is thatΨ′ is the same asΨ (to
within an overall phase), resulting in the same density n(x).

Using a standard notation, we write

F[n]≡ 〈Ψ|(T+Upair)|Ψ〉 (7.86)

for the “universal” function of a problem involving a specific particle species and two-body
interaction. We then have

〈Ψ|H|Ψ〉=
∫

Vext(x)n(x)d3x+F[n]≡ E[n] (7.87)

which is known as the Hohenberg–Kohn theorem. This result is, of course, a tremendous
simplification of the quantum-mechanical many-body problem, reducing it to finding a
function n(x) of a single position variable, instead of needing to find the multiparticle
wave functionΨ(x1,x2,. . . ,xN).

7.6.3 The Kohn–Sham Equations

Even though (7.87) simplifies the approach to the quantum-mechanical many-body
problem in principle, it is difficult to directly apply it to practical problems. Hohenberg
and Kohn used it to study two limiting cases of density inhomogeneities in an electron gas,
but without a prescription for F[n], detailed calculations of the many-body ground state are
not possible.

Kohn and Sham found a way to derive a self-consistent approximation scheme, based
on single-particle wave functions7 φj(x) that solve a particular, albeit fictitious, one-body
Schrödinger equation. The φj(x) form the multiparticle wave function Ψ(x1,x2,. . . ,xN)

through the N-body generalizations of (7.60), that is,

6 We are only considering nondegenerate ground states. In fact, the Hohenberg–Kohn theorem can be proved in
general, using a constrained search approach.

7 In much of the literature on DFT, particularly that aimed at chemistry, these wave functions are called “orbitals.”
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Ψ(x1,x2,. . . ,xN) = φ1(x1)φ2(x2) · · ·φN(xN)

±φ2(x1)φ1(x2) · · ·φN(xN)

±. . . . (7.88)

Note that although we labeled the φj(xi) with j = 1,2,. . . ,N, they do not necessarily have
to be distinct functions. For bosons, for example, they could all be the same function, and
for fermions, they could be pairwise the same, each with a different spin quantum number.

Next, a constraint is applied so that the φj(x) yield the correct density n(x). Since the
φj(x) solve a Schrödinger equation, they are orthonormal, so inserting (7.88) into (7.78),
this constraint takes the form

n(x) =
N

∑
j=1

|φj(x)|2 . (7.89)

The φj(x) are used to construct F[n], and then the calculus of variations is applied to
minimize the energy functional.

The Kohn–Sham wave functions φj(x) are solutions to Schrödinger equations of
the form

〈x|HKS|φj〉=− h̄2

2m
∇2φj(x)+VKS(x)φj(x) = εjφj(x) (7.90)

where the εj are the energy eigenvalues. To the extent that

〈Ψ|HKS|Ψ〉=
∫

d3x1 · · ·d3xN 〈Ψ|{|x1〉〈x1| · · · |xN〉〈xN|HKS|} |Ψ〉

=
N

∑
j=1

∫
d3xiφ

∗
j (xi)

[
− h̄2

2m
∇2

i φj(xi)+VKS(xi)φj(xi)

]
=

N

∑
j=1
εj (7.91)

approximates the true ground-state energy 〈Ψ|H|Ψ〉, we can rely on the kinetic-energy
term

〈Ψ|TKS|Ψ〉=
N

∑
j=1

∫
d3xiφ

∗
j (xi)

[
− h̄2

2m
∇2

i φj(xi)

]
(7.92)

to approximate 〈Ψ|T|Ψ〉 in (7.86). In fact, an important underlying notion for the Kohn–
Sham formalism is that the constraint (7.89) implies that (7.92) is an exceptionally good
approximation for 〈Ψ|T|Ψ〉.

Unlike the single-particle case, it is not simple to explicitly write 〈Ψ|TKS|Ψ〉 in terms
of the density n(x), but we can make use of the Hohenberg–Kohn theorem to write
〈Ψ|TKS|Ψ〉 ≡ TKS[n]. We then write

F[n] = T[n]+Upair[n] (7.93a)
= TKS[n]+Ulr[n]+Uxc[n] (7.93b)

where Ulr[n] is the long range component of the two-particle interaction, and Uxc[n], called
the “exchange-correlation energy,” is what remains. As we believe that TKS[n] is a good
approximation to the kinetic energy, and that in typical problems we expect the long
range interaction to dominate, Uxc[n] turns out to be small in many problems of interest.
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Therefore, good approximations to Uxc[n] should yield excellent approximations for E[n]
in (7.86).

We note that for the many-electron problem in atomic, molecular, or condensed
matter systems, which is by far the most common application of DFT, the long range
two-particle interaction is just the Coulomb potential between pairs of electrons. In this
case, we can use a classical approach to writing down Ulr[n] = Uee[n]. The charge density
at any point is just en(x) so the Coulomb energy is

Uee[n] =
e2

2

∫
d3x

∫
d3x′

n(x)n(x′)
|x−x′| (7.94)

where the factor of 1/2 just removes the effect of double-counting the electrons, as in (7.81).
At this point, we will proceed as we would for a many-electron problem, that is with

Ulr[n] = Uee[n]. Following (7.73) to minimize the energy functional, and using (7.87) with
(7.93b) and applying the constraint (7.80), we have

δ

[∫
Vext(x)n(x)d3x+TKS[n]+Uee[n]+Uxc[n]−μ

∫
n(x)d3x

]
= 0 (7.95)

where the variation is in terms of the density n(x). The first and last terms are simple,
becoming

∫
[Vext − μ]δnd3x. The long range electron-electron interaction is also easy,

namely

δUee[n] = e2
∫ [∫

d3x′
n(x′)
|x−x′|

]
δn(x)d3x. (7.96)

This allows us to use (7.95) to write the chemical potential μ = δE[n]/δn as

μ =
δTKS[n]
δn

+Vext(x)+ e2
∫

d3x′
n(x′)
|x−x′| +

δUxc[n]
δn

. (7.97)

Now imagine, instead, that the system is governed by a collection of noninteracting
electrons with single-particle wave functions φj(x), determined by an effective “external”
potential VKS(r). Using (7.90) we would obviously find

μ =
δTKS[n]
δn

+VKS(x) (7.98)

which means we can write down the Kohn–Sham potential of (7.90) as

VKS(x) = Vext(x)+ e2
∫

d3x′
n(x′)
|x−x′| +

δUxc[n]
δn

. (7.99)

Given some external potential Vext(x) (perhaps a screened atomic or molecular potential,
or even a periodic lattice of them) and exchange-correlation functional Uxc[n], we now
see how we might carry through a self-consistent iterative approximation. First, choose
a reasonable approximation for the density n(x). Then use (7.99) to calculate the Kohn–
Sham single-particle potential VKS(x). Solve (7.90) using this potential to find the single-
particle wave functions φj(x), and redetermine n(x) using (7.89). Then repeat this process
using the new density, comparing the function n(x) at the end with what you started out
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with, until you are satisfied that convergence is reached. When you have your final function
n(x), you then calculate the ground-state energy from

E[n] =
∫

Vext(x)n(x)d3x+TKS[n]+Uee[n]+Uxc[n] (7.100)

where we understand that the kinetic-energy functional TKS[n] is calculated from (7.92)
using the wave functions determined by the iteration procedure that found n(x). This
procedure also gives us a good approximation for the wave function (7.88), from which
other ground-state properties can be calculated.

One remaining issue is which eigenfunctions φj(x), obtained by solving (7.90), should
be used to construct n(x). Presumably, our iterative procedure will converge most quickly
if we use the lowest energy single-particle wave functions to construct the wave function
(7.88). For a system of bosons, this would be all φj(x) = φ0(x), the ground-state
eigenfunction. For fermions, we would use the lowest energy eigenfunctions consistent
with total antisymmetry, including accounting for the spin degrees of freedom.

Rarely is there an analytic solution to (7.90). However, it can be solved numerically,
or the Hamiltonian can be represented in a (truncated) basis of known eigenfunctions, for
example the hydrogen atom or harmonic oscillator, and its matrix diagonalized.

It is important to realize that the Kohn–Sham procedure yields much more than just the
ground-state energy of the system. Having determined the eigenfunctions φj(x) that give
the ground-state density, we then have an excellent approximation (7.88) to the ground-
state wave function. This wave function can be used to calculate expectation values of any
dynamical operator.

For example, in condensed matter physics where DFT finds many applications, results
of calculations include electrical and thermal resistivity, and response to electromagnetic
fields, mechanical strain, and other perturbations. See Cohen and Louie (2016), Section 7.4
for a detailed discussion.

7.6.4 Models of the Exchange-Correlation Energy

Density functional theory is widely used because it can give precise, accurate results
for many-electron systems. This is because everything in (7.100) is known from first
principles, except for the exchange-correlation energy Uxc[n], which can be approximated
well. It contains the corrections to the Kohn–Sham one-body effective potential, as well as
the effects of the correlations between identical particles, for example as in (7.35).

Several authors have derived a set of exact constraints that the exchange-correlation
functional must satisfy. Model functionals can then be produced which satisfy as many
of those constraints as possible. These models can be tested against simple systems like
the uniform electron gas, or systems that are somewhat more complicated, but exactly
calculable. In this way, different functionals have been derived for systems ranging from
single atoms to complex materials.

Functionals Uxc[n] are generally divided into two classes, namely the local density
approximation (LDA) and the generalized gradient approximation (GGA). They take the
forms

ULDA
xc [n] =

∫
d3xn(x)ε(n) (7.101a)
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UGGA
xc [n] =

∫
d3x f(n,∇n) (7.101b)

where ε(n) and f(n,∇n) can be parameterized functions. A goal is to determine those
parameters from fundamental first principles, but it is also possible to determine them by
fitting to data. In the original Kohn–Sham formalism, ε(n) in (7.101) is the exchange-
correlation energy per electron for an electron gas of uniform density, and f(n,0) = nε(n).
A particularly popular form for f(n,∇n) which otherwise includes only fundamental
constants is described in a paper8 by Perdew et al., Phys. Rev. Lett., 77 (1996) 3865.

7.6.5 Application to the Helium Atom

We conclude this section on DFT with an application to the two-electron system that is the
helium atom. It is also a good opportunity to compare to the results in Section 7.4. Our
discussion here outlines the solution, with details left to Problem 7.14 at the end of this
chapter.

As always, we want to solve differential equations written in terms of dimensionless
variables. It is common in DFT calculations to use “atomic units,” where h̄ = e = m = 1.
This means that all distances are measured in units of the Bohr radius (3.317) a0 =

h̄2/me2 = 0.53 Å, and energies are measured in units of e2/a0, called a “Hartree.” Recall
from (3.315) that the magnitude of the ground-state energy of a hydrogen atom is E0 =

e2/2a0 = 13.6 eV, so one Hartree equals 27.2 eV. The Kohn–Sham Schrödinger equation
(7.90) becomes

−1
2
∇2φj(x)+VKS(x)φj(x) = εjφj(x). (7.102)

We will take the external potential Vext(x) to be Coulomb’s law, which in atomic units
becomes

Vext(x) = Vext(r) =−Z
r

, (7.103)

where Z = 2 for helium.
We need to choose an initial approximation n(0)(x) to the density. We learned in

Section 7.4 that a good starting wave function would be proportional to e−Zeffr where Zeff =

2− 5
16 . This suggests a starting density proportional to e−2Zeffr. However, it is frequently

the case with DFT calculations, that we do not have such a good guess for n(0)(x). So, we
illustrate the convergence process by making a poor guess, leaving off the factor of two
and starting with n(0)(x) proportional to e−Zeffr. With the proper normalization, we find

n(0)(r) =
Z3

eff

4π
e−Zeffr. (7.104)

Note that for this, or any other spherically symmetric density n(r), the long range ee
interaction term in (7.99) can be written as

8 With nearly 100,000 citations, this paper lays claim to the most highly cited article ever published in Physical
Review Letters.
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∫
d3x′

n(x′)
|x−x′| = 8π

∫ ∞

0
r′

2
dr′

n(r′)√
(r− r′)2 + r+ r′

(7.105)

which is a useful expression for the numerical computations that follow.
For the exchange-correlation functional Uxc[n], we use a form of (7.101a) derived by

Sun et al., J. Chem. Phys., 144 (2016) 191101. This functional was developed specifically
for precise calculations in two-electron systems, and uses only fundamental constants.
We have

εxc(n) = εx(n)+ εc(n) (7.106)

εx(n) =−h0
x

3
4π

(
3π2n

)1/3

εc(n) =− −0.0233504
1+0.1018r1/2

s +0.102582rs

where h0
x = 1.174 and rs = (4πn/3)−1/3. From here, it is straightforward to write down

δUxc[n]/δn for use in (7.99).
Thus we have all the ingredients we need to build our Kohn–Sham potential (7.99), in

particular (7.103) and (7.106). This potential is used to solve the Schrödinger equation
(7.102). Note that for the two-electron system, the ground state is a spin-singlet. Therefore
the two-particle wave function is symmetric, and we construct it from the ground-state
wave function φ0(x) that solves (7.90). That is

Ψ(x1,x2) = φ0(x1)φ0(x2). (7.107)

Therefore, our goal now is to solve (7.102) for the ground-state wave function. We do
this first using n(r) = n(0)(r), using the result to find the next iteration of the density n(1)(r)
from (7.89). This process is repeated until the result converges, and the ground-state energy
is calculated from (7.100).

In principle we could solve (7.102) numerically, but singular potentials like (7.103) will
make this difficult. It is easier to diagonalize the Hamiltonian in some basis, and for this
we will use the one-electron atomic wave functions based on (7.103). Since the problem
has spherical symmetry, only the s-states will contribute. We proceed, therefore, using the
1s, 2s, and 3s wave functions for a one-electron atom with Z = Zeff, and check that the
contribution from the 3s state is small.

At this point, the calculation is numerical and done on a computer. (The results here
were obtained using MATHEMATICA, but there are many other options available.) A 3×3
matrix is constructed using the Hamiltonian from (7.102), and diagonalized to find the
ground-state eigenfunction. One finds

φ(1)
0 (x) =

1√
4π

[0.99851R1s(r)+0.04831R2s(r)+0.02519R3s(r)] . (7.108)

As expected, the Kohn–Sham wave function is dominated by the ground 1s state for Z =

Zeff. We use this wave function, with (7.89), to get the next iteration of the density, namely

n(1)(r) = 2
[
φ(1)

0 (x)
]2

. (7.109)

The first iteration of the energy functional (7.100) is found using n(1)(r), and also φ(1)
0 (x)

for TKS[n], and this is our first estimate of the ground-state energy.
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Table 7.1 Contributions to the Ground-State Energy (7.100) of the Helium Atom for Three Iterations of the
Kohn–Sham Equations. The values for the functionals are in Hartree, and their sum for the ground-state
energy is given in eV. The numerical calculation is accurate for all significant figures shown, including the

value used to convert Hartree to eV.

Iteration Uext[n] TKS[n] Uee[n] Uxc[n] E

1 –6.90876 2.9882 2.17546 –1.13109 –78.2649
2 –6.48303 2.6350 1.99548 –1.04472 –78.8379
3 –6.56468 2.6978 2.03054 –1.06127 –78.8478

0 1 2 3 4 5
r0.00
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0.15

r2n(3)
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r2n(0)

r2n(r)

Fig. 7.7 The initial guess for the two-electron density function for the helium atom, and the results for the first three
iterations. Plotted is the density times r2 as a function of r, with r in Bohr radii. The first iteration is already close to
the final function, and convergence is rapid.

The second iteration finds a new Kohn–Sham potential (7.99), and the process is
repeated, yielding a new Kohn–Sham wave function φ(2)

0 (x), a new density n(2)(r), and
a new calculation of the ground-state energy. This can be repeated as often as desired, to
achieve the desired precision. Of course, the ultimate accuracy of the calculation will only
be as good as the form used for the exchange-correlation energy functional.

Table 7.1 shows the results for three iterations of this procedure. Recall from (7.48) that
the experimental value is −79.0 eV, and the result (7.52) from the variational principle is
−77.5 eV. The first iteration is better than (7.52), and iterations converge rapidly to the
measured value.

Note that for this problem, typical of small systems, the exchange-correlation energy is
not a small contribution. Table 7.1 shows that here it is in fact relatively large, ≈ 40% of
the total ground-state energy.

It is instructive to examine the density functions for each iteration. See Figure 7.7.
Even though our initial guess is rather different from the function on which the procedure
converges, even one iteration gives something very close to the final answer.

We note again that in addition to calculating the ground-state energy, we also now have
a good approximation for the two-particle wave function (7.107) that can be used for other
calculations of the properties of the helium atom.



454 Identical Particles

7.7 Quantum Fields

A different approach to dealing with multiparticle states involves the introduction of
quantum-mechanical fields. One of the major attractions of quantum field theory is that
it can deal with relativistic systems, where particles can be created or destroyed. The
techniques are also very useful for nonrelativistic systems, however, so we will take a
more general approach here.

7.7.1 Second Quantization

This approach known as9 second quantization reexamines the way in which we define the
state vector. Define a multiparticle state vector as

|n1,n2,. . . ,ni,. . .〉 (7.110)

where the ni specify the number of particles with eigenvalue ki for some operator. Although
we take it as a perfectly valid nomenclature for a state vector, it is a member of a new
kind of vector space, called “Fock space,” in which we need to build in the necessary
permutation symmetry.

A word of caution is in order. Our Fock space (or “occupation number”) notation
for state vectors itself makes an important assumption, namely that there indeed exists
a basis of noninteracting states. Interactions between particles can in fact, in principle,
affect their very nature. Whether or not we can make a self-consistent theory starting
on this assumption, and which in turn accurately describes nature, can only be tested by
experiment. See the discussions in Landau (1996) and Merzbacher (1998). We will set this
question aside, however, and move ahead at full steam.

Let us now build a framework for a theory of many-particle systems using states in Fock
space. We begin this task by recognizing two special cases of states in Fock space. The
first of these is

|0,0,. . . ,0,. . .〉 ≡ |0〉 (7.111)

for which there are no particles in any single-particle states. This state is called the
“vacuum” and is, as usual, normalized to unity. The second special case is

|0,0,. . . ,ni = 1,. . .〉 ≡ |ki〉 (7.112)

which is the state in which there is exactly one particle in the state with eigenvalue ki. Of
course, this is just the single-particle state which has dominated our discussion of quantum
mechanics, prior to this chapter.

Now we need to learn how to build multiparticle states, and then make sure that this
building process respects permutation symmetry. In an obvious nod to the creation and

9 The term “second quantization” was apparently coined in the early days of trying to extend quantum mechanics
into field theory. The idea was that wave functions were to be turned into operators, which in turn were subject
to their own canonical quantization rules. Hence, quantization was enforced a “second” time. See, for example,
Section III.12.1 in Heitler (1954).
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annihilation operators that we first encountered in Section 2.3, we define a “field operator”
a†

i which increases by one the number of particles in the state with eigenvalue ki, that is

a†
i |n1,n2,. . . ,ni,. . .〉 ∝ |n1,n2,. . . ,ni +1,. . .〉 (7.113)

where a normalization criterion will be used later to determine the proportionality constant.
We postulate that the action of the particle creation operator a†

i on the vacuum is to create
a properly normalized single-particle state, namely

a†
i |0〉= |ki〉. (7.114)

This leads us to write

1 = 〈ki|ki〉= [〈0|ai]
[
a†

i |0〉
]

= 〈0|
[
aia†

i |0〉
]
= 〈0|ai|ki〉 (7.115)

which implies that

ai|ki〉= |0〉 (7.116)

so that ai acts as a particle annihilation operator. We conclude with the following postulates
for the particle annihilation operator, namely

ai|n1,n2,. . . ,ni,. . .〉 ∝ |n1,n2,. . . ,ni −1,. . .〉 (7.117)
ai|0〉= 0 (7.118)
ai|kj〉= 0 if i 	= j (7.119)

where an economy of notation lets us combine (7.116) and (7.119) into

ai|kj〉= δij|0〉. (7.120)

These are enough postulates to fully define the field operators ai, short of actually
incorporating permutation symmetry.

The act of permuting two particles, one for the other, is most easily seen by putting the
“first” particle in state |ki〉 and then the “second” particle in |kj〉, and comparing to what
happens when we reverse the order in which these states are populated. That is, we expect
that, for a two-particle state,

a†
i a†

j |0〉=±a†
j a†

i |0〉 (7.121)

where the + (−) sign is for bosons (fermions). Applying this same logic to particle
exchange in multi-particle states, we are led to

a†
i a†

j −a†
j a†

i = [a†
i ,a†

j ] = 0 Bosons (7.122a)

a†
i a†

j +a†
j a†

i = {a†
i ,a†

j }= 0 Fermions (7.122b)

where we make use of the “anticommutator” {A,B} ≡ AB+BA. Simply taking the adjoint
of these equations tells us that

[ai,aj] = 0 Bosons (7.123a)
{ai,aj}= 0 Fermions. (7.123b)



456 Identical Particles

Table 7.2 The Algebra for Identical Particles in Second Quantization

Bosons Fermions

a†
i a†

j −a†
j a†

i = [a†
i ,a†

j ] = 0 a†
i a†

j +a†
j a†

i = {a†
i ,a†

j }= 0
aiaj −ajai = [ai,aj] = 0 aiaj +ajai = {ai,aj}= 0
aia†

j −a†
j ai = [ai,a†

j ] = δij aia†
j +a†

j ai = {ai,a†
j }= δij

Note that the Pauli exclusion principle is automatically built into our formalism, since
(7.122b) implies that a†

i a†
i = 0 for some single-particle state |ki〉.

Now what about the commutation rules for ai and a†
j ? We would like to define a “number

operator” Ni = a†
i ai which would count the number of particles in the single-particle

state |ki〉. Our experience from Section 2.3 argues shows that this is possible if we have
[ai,a†

i ] = 1. In fact, a self-consistent picture of both bosons and fermions can be built in
just this way, by replacing commutators with anticommutators. The complete algebra is
summarized in Table 7.2. For both bosons and fermions, we can define the operator

N = ∑
i

a†
i ai (7.124)

which counts the total number of identical particles. (See Problem 7.9 at the end of this
chapter.)

We have taken a very ad hoc approach to coming up with the algebra in Table 7.2, rather
contrary to the general tone of this book. It is in fact possible to do a somewhat better
job in this respect, by postulating, for example, that certain quantities such as the total
number of particles be unchanged under a basis change from single-particle states |ki〉 to
different states |lj〉 which are connected by a unitary transformation.10 Nevertheless, it is
not possible to do a fully self-consistent treatment minimizing ad hoc assumptions without
developing relativistic quantum field theory, and that is not our mission here.

7.7.2 Dynamical Variables in Second Quantization

How do we build operators in second quantization which do more than simply count the
number of particles? The answer is straightforward, but once again it is necessary to make
some ad hoc assumptions with our current approach.

Suppose the single-particle states |ki〉 are eigenstates of some “additive” single-particle
operator K. Examples might be momentum or kinetic energy. In some multiparticle state

|Ψ〉= |n1,n2,. . . ,ni,. . .〉 (7.125)

we expect the eigenvalue of the multiparticle operator K to be ∑i niki. This is easy to
accomplish if we write

K = ∑
i

kiNi = ∑
i

kia†
i ai. (7.126)

10 This approach, sometimes called the Principle of Unitary Symmetry, is exploited in Merzbacher (1998).
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Now suppose that the basis for which the single-particle states are specified is different
from the basis in which it is easiest to work. After all, we are used to working with the
momentum operator in the coordinate basis, for example. If we use completeness to write

|ki〉= ∑
j
|lj〉〈lj|ki〉 (7.127)

then it makes sense to postulate that

a†
i = ∑

j
b†

j 〈lj|ki〉 (7.128a)

which implies that

ai = ∑
j
〈ki|lj〉bj (7.128b)

where the operators b†
j and bj create and annihilate particles in the single-particle states |lj〉.

With these assignments, acting on the vacuum state (7.111) with (7.128a) yields (7.127).
Equations (7.128) give us what we need to change the basis for our dynamical single

particle operator. We have

K = ∑
i

ki ∑
mn

b†
m〈lm|ki〉〈ki|ln〉bn

= ∑
mn

b†
mbn ∑

i
〈lm|ki〉ki〈ki|ln〉

= ∑
mn

b†
mbn〈lm|

[
K∑

i
|ki〉〈ki|

]
|ln〉

or

K = ∑
mn

b†
mbn〈lm|K|ln〉. (7.129)

This general form is suitable for writing down a second quantized version of any additive
single-particle operator. Examples not only include momentum and kinetic energy, but also
any “external” potential energy function which acts individually on each of the particles.
All that matters is that the particles do not interact with each other. In the case of bosons,
essentially all the particles may find themselves in the lowest energy level of such a
potential well, so long as the temperature is low enough. (Experimentally, this phenomenon
is referred to as a Bose–Einstein condensate.)

Fermions would behave differently, however. The Pauli exclusion principle will force
the particles to populate increasingly higher energy levels in the well. For a system with
a very large number of fermions, the total energy of the ground state could be enormous.
The highest populated energy level (known as the “Fermi energy”) might easily be much
larger than the thermal energy ∼kT. A classic example is a white dwarf star, a very dense
object consisting basically of carbon atoms. The electrons in a white dwarf are, to a good
approximation, bound in a potential well. The Fermi level is very high, much larger than
the thermal energy for a temperature of tens of millions of degrees Kelvin.
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Many-particle systems, however, present a new situation, namely the inevitable pos-
sibility that the particles actually interact among themselves. Once again, we postulate
an additive operator, that is, one in which the individual two-particle interactions add
up independently. Let the symmetric real matrix Vij specify the two-particle eigenvalue
for an interaction between particles in single-particle states |ki〉 and |kj〉. Then the second
quantized version of this operator becomes

V =
1
2 ∑

i	=j
VijNiNj +

1
2 ∑

i
ViiNi(Ni −1). (7.130)

The first term sums up all of the two-particle interactions, where the factor of 1/2 is
necessary because this form double-counts pairs. The second term accounts for all “self
interactions” for particles in the same state; there are n(n−1)/2 ways to take n things two
at a time. The requirement that Vij be real ensures that V is Hermitian.

The part of the self energy term in (7.130) containing N2
i exactly represents the parts of

the sum in the first term removed by specifying i 	= j. Therefore, we can combine this more
neatly as

V =
1
2 ∑

ij
Vij (NiNj −Niδij) =

1
2 ∑

ij
VijΠij (7.131)

where Πij ≡ NiNj − Niδij is called the pair distribution operator. Furthermore, we use
Table 7.2 to write

Πij = a†
i aia†

j aj −a†
i aiδij

= a†
i

(
δij ±a†

j ai

)
aj −a†

i aiδij

=±a†
i a†

j aiaj

or

Πij = (±)(±)a†
i a†

j ajai (7.132)

where we used (7.123) to reverse the order of the last two factors. This allows us to rewrite
(7.130) as

V =
1
2 ∑

ij
Vija†

i a†
j ajai. (7.133)

This sequence of creation and annihilation operators, first one particle is annihilated, then
another, and then creating them in reverse order, is called “normal ordering.” Note that
we see explicitly from (7.122b) or (7.123b) that there is no contribution from diagonal
elements of V for fermions.

We can use (7.128) to rewrite (7.133) in a different basis. We have

V =
1
2 ∑

mnpq
〈mn|V|pq〉b†

mb†
nbqbp (7.134)
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where

〈mn|V|pq〉 ≡ ∑
ij

Vij〈lm|ki〉〈ki|lp〉〈ln|kj〉〈kj|lq〉. (7.135)

This result provides some insight into the physical meaning of our formalism. Suppose,
for example, that the |ki〉 are position basis states |x〉, and that the |li〉 are momentum basis
states |p = h̄k〉. Then Vij would represent an interaction between two particles, one located
at x and the other at x′. A natural example would be for a collection of particles each with
charge q =−e in which case we would write

Vij → V(x,x′) =
e2

|x−x′| (7.136)

∑
ij
→

∫
d3x

∫
d3x′ (7.137)

but any mutual interaction between the particles would be treated in a similar way. The
quantity 〈mn|V|pq〉 therefore represents a momentum-space version of the interaction,
with m and p following one particle, and n and q following the other. (It is easy to show
that 〈mn|V|pq〉 = 〈nm|V|qp〉 but interchanging one side and not the other will depend on
whether the particles are bosons or fermions.) The four inner products in (7.135) lead to a
factor

ei(km−kp)·x+i(kn−kq)·x′

which, after the integrals (7.136) are carried out, results in a δ-function which conserves
momentum. One might diagrammatically represent the two-particle interaction as shown
in Fig. 7.8.

Clearly we are on our way towards developing a nonrelativistic version of quantum
field theory. As a specific example, we will treat the quantum-mechanical version of the

V

kp kq

km kn

Fig. 7.8 Diagrammatic representation of the “momentum-space matrix element”〈mn|V|pq〉.
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noninteracting electromagnetic field shortly. However, we will not push the general case
beyond this point, as it goes beyond the scope of this book and is treated well in any one of
several other books. See, for example, Merzbacher (1998), Landau (1996), and Fetter and
Walecka (2003).

7.7.3 Example: The Degenerate Electron Gas

An excellent example of the principles discussed in this section, is the degenerate electron
gas. This is a collection of electrons, interacting with each other through their mutual
Coulomb repulsion, bound in some positively charged background medium. Physical
examples might include a high temperature plasma, or even, to some approximation, bulk
metals.

This problem is treated thoroughly in Chapter One, Section 3 of Fetter and
Walecka (2003). We present the problem and outline its solution here, but the interested
reader is referred to the original reference to fill in the details.

Our task is to find the eigenvalues of the Hamiltonian

H = Hel +Hb +Hel-b (7.138)

for a system of N electrons. The electrons interact among themselves according to

Hel = ∑
i

p2
i

2m
+

1
2

e2 ∑
i

∑
j	=i

e−μ|xi−xj|

|xi −xj|
(7.139)

where we employ a “screened” Coulomb potential but will let μ→ 0 before we finish the
calculation. The energy of the positive background is

Hb =
1
2

e2
∫

d3x′
∫

d3x′′ρ(x′)ρ(x′′)
e−μ|x′−x′′|

|x′ −x′′| (7.140)

where ρ(x) is the number density of background particle sites. We will assume a uniform
background, with ρ(x)=N/V for a system of volume V= L3. Then, translating to a variable
x ≡ x′ −x′′ (7.140) becomes

Hb =
1
2

e2
(

N
V

)2 ∫
d3x′

∫
d3x

e−μ|x|

|x| =
1
2

e2 N2

V
4π
μ2 . (7.141)

Thus Hb contributes simply an additive constant to the energy. The fact that this constant
grows without bound as μ → 0 will not be a problem, as we shall see shortly. The
interaction of the electrons with the constant background is

Hel-b =−e2 ∑
i

∫
d3xρ(x)

e−μ|x−xi|

|x−xi|

=−e2 N
V ∑

i

∫
d3x

e−μ|x−xi|

|x−xi|
=−e2 N2

V
4π
μ2 . (7.142)

Therefore (7.138) becomes

H =−1
2

e2 N2

V
4π
μ2 +∑

i

p2
i

2m
+

1
2

e2 ∑
i

∑
j	=i

e−μ|xi−xj|

|xi −xj|
. (7.143)
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The first term in this equation is just a number. The second is a one-body operator which
we will express simply in terms of operators in second quantization in momentum space.
The third term is a two-body operator which will involve a bit more work to write in second
quantization.

Writing the kinetic-energy term in (7.143) is just a matter of rewriting (7.129) for K
being the momentum operator p and the |ln〉 being momentum basis states. Single-particle
states are denoted by i = {k,λ} where λ =± indicates electron spin. We know that

〈k′λ′|p|kλ〉= h̄kδkk′δλλ′ (7.144)

so we have

∑
i

p2
i

2m
⇒ K = ∑

kλ

h̄2k2

2m
a†

kλakλ. (7.145)

Now we write the potential energy term in (7.143) in second quantization, using (7.134)
and (7.135). Note (7.136) and (7.137). We have

V =
1
2 ∑

k1λ1

∑
k2λ2

∑
k3λ3

∑
k4λ4

〈k1λ1k2λ2|V|k3λ3k4λ4〉a†
k1λ1

a†
k2λ2

ak4λ4 ak3λ3 (7.146)

where

〈k1λ1k2λ2|V|k4λ4k3λ3〉

=
∫

d3x′
∫

d3x′′V(x′,x′′)〈k1λ1|x′〉〈x′|k3λ3〉〈k2λ2|x′′〉〈x′′|k4λ4〉

=
e2

V2

∫
d3x′

∫
d3x′′

e−μ|x′−x′′|

|x′ −x′′| e−ik1·x′χ†
λ1

eik3·x′χλ3 e−ik2·x′′χ†
λ2

eik4·x′′χλ4

=
e2

V2

∫
d3x

∫
d3y

e−μy

y
e−ik1·x′δλ1λ3 eik3·x′e−ik2·x′′δλ2λ4 eik4·x′′

=
e2

V2 δλ1λ4δλ2λ3

∫
d3xe−i(k1+k2−k3−k4)·x

∫
d3y

e−μy

y
e−i(k1−k3)·y

=
e2

V
δλ1λ4δλ2λ3δk1+k2,k3+k4

∫
d3y

e−μy

y
e−i(k1−k3)·y (7.147)

where the χλ are spinor representations, and we use a change of variables x = x′′ and
y = x′ −x′′. Finally, we define the momentum transfer q ≡ k1 −k3 and find

〈k1λ1k2λ2|V|k3λ3k4λ4〉=
e2

V
δλ1λ4δλ2λ3δk1+k2,k3+k4

4π
q2 +μ2 . (7.148)

The Kronecker deltas in the spin just insure that that no spins are flipped by this interaction,
which we expect since the interaction is spin independent. The Kronecker delta in wave
number insures that momentum is conserved. Thus (7.146) becomes

V =
e2

2V ∑
k1λ1

∑
k2λ2

∑
k3

∑
k4

δk1+k2,k3+k4

4π
q2 +μ2 a†

k1λ1
a†

k2λ2
ak4λ2 ak3λ1 (7.149)

after reducing the summations using the spin-conserving Kronecker deltas.
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An important feature of (7.149) becomes apparent if we first redefine k3 ≡ k and k4 ≡ p.
Then the terms of (7.149) for which q = 0 become

e2

2V ∑
kp

∑
λ1λ2

4π
μ2 a†

kλ1
a†

pλ2
apλ2 akλ1 =

e2

2V
4π
μ2 ∑

kλ1

∑
pλ2

a†
kλ1

akλ1

(
a†

pλ2
apλ2 − δkpδλ1λ2

)
=

e2

2V
4π
μ2 (N

2 −N) (7.150)

where we have made use of the fermion anticommutation relations, and the definition of
the number operator. The first term in this relation just cancels the first term of (7.143).
The second term represents an energy −2πe2/μ2V per particle, but this will vanish in the
limit where V = L3 → ∞ while always keeping μ� 1/L. Thus the terms with q = 0 do
not contribute, and cancel the rapidly diverging terms in the Hamiltonian. Indeed, this
finally allows us to set the screening parameter μ = 0 and write the second quantized
Hamiltonian as

H = H0 +H1 (7.151a)

H0 = ∑
kλ

h̄2k2

2m
a†

kλakλ (7.151b)

H1 =
e2

2V ∑
kpq

′ ∑
λ1λ2

4π
q2 a†

k+q,λ1
a†

p−q,λ2
apλ2 akλ1 (7.151c)

where the notation Σ′ indicates that terms with q = 0 are to be omitted. Note that in the
limit we have taken, a finite density n = N/V is implicitly assumed.

Finding the eigenvalues of (7.151) is a difficult problem, although solutions are possible.
Our approach will be to find the ground-state energy by treating the second term as a
perturbation on the first. Although reasonable arguments can be made why this should be
a good approximation (see Fetter and Walecka), those arguments only hold in a particular
range of densities. Fortunately, that range of densities is relevant to physical systems such
as metals, so our approach indeed has practical interest.

This is a good time to introduce some scaling variables. The density is determined by
the interatomic spacing r0, that is

n =
N
V
=

[
4π
3

r3
0

]−1

(7.152)

and a natural scale for r0 is the Bohr radius (3.317), i.e. a0 = h̄2/me2. We define a
dimensionless distance scale rs = r0/a0, called the Wigner–Seitz radius. Our calculation
of the ground-state energy will be as a function of rs.

As an introduction to calculating the expectation value E(0) of the operator H0 for the
ground state, we discuss the concept of Fermi energy. (Recall the discussion on p. 457.)
Because of the Pauli exclusion principle, electrons will fill the available energy levels up
to some maximum wavenumber kF. We can relate kF to the total number of electrons by
adding up all of the states with k ≤ kF, that is
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N = ∑
kλ

θ(kF − k)

→ V
(2π)3 ∑

λ

∫
d3k θ(kF − k) =

V
3π2 k3

F (7.153)

where θ(x) = 0 for x < 0 and unity otherwise. This implies that

kF =

(
3π2N

V

)1/3

=

(
9π
4

)1/3 1
r0

(7.154)

which shows that kF is about the same size as the inverse interparticle spacing.
Now use the same approach to calculate the unperturbed energy E(0). Denoting the

ground state as |F〉 we have

E(0) = 〈F|H0|F〉=
h̄2

2m ∑
kλ

k2θ(kF − k)

→ h̄2

2m
V

(2π)3 ∑
λ

∫
d3k k2θ(kF − k) =

e2

2a0
N

3
5

(
9π
4

)2/3 1
r2

s
. (7.155)

Note that e2/2a0 ≈ 13.6 eV, the ground-state energy of the hydrogen atom.
The first-order correction to the ground-state energy is

E(1) = 〈F|H1|F〉

=
e2

2V ∑
kpq

′ ∑
λ1λ2

4π
q2 〈F|a†

k+q,λ1
a†

p−q,λ2
apλ2 akλ1 |F〉. (7.156)

The summation is easy to reduce since |F〉 is a collection of single-particle states with
occupation numbers either zero or one. The only way for the matrix element in (7.156) to
be nonzero is if the annihilation and creation operators pair up appropriately. Since q 	= 0
in the sum, the only way to pair up the operators is by setting {p−q,λ2} = {k,λ1} and
{k+q,λ1}= {p,λ2}. Therefore

E(1) =
e2

2V ∑
λ1

∑
kq

′ 4π
q2 〈F|a†

k+q,λ1
a†

k,λ1
ak+q,λ1 akλ1 |F〉

=− e2

2V ∑
λ1

∑
kq

′ 4π
q2 〈F|

(
a†

k+q,λ1
ak+q,λ1

)(
a†

k,λ1
akλ1

)
|F〉

=− e2

2V
2

V2

(2π)6

∫
d3k

∫
d3q

4π
q2 θ(kF −|k+q|)θ(kF − k)

=−e2 4πV
(2π)6

∫
d3q

1
q2

∫
d3P θ

(
kF −|P+

1
2

q|
)

θ
(

kF −|P− 1
2

q|
)

. (7.157)

The integral over P is just the intersection between two spheres of radius kF but with centers
separated by q, and is easy to evaluate. The result is

E(1) =− e2

2a0
N

3
2π

(
9π
4

)1/3 1
rs

. (7.158)
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Exact result as rs → 0

0.10e2/2a0

−0.10e2/2a0

2 4 6 8 10 rs

rs = 4.83

E/N = −0.095e2/2a0

“Wigner solid”

E/N

Fig. 7.9 The ground-state energy, to first order in perturbation theory, for a system of N electrons inside a uniform,
positively charged background. The energy per electron is plotted as a function of the interparticle spacing in units
of the Bohr radius. From Fetter and Walecka (2003).

Therefore, the ground-state energy to first order is given by

E
N

=
e2

2a0

(
9π
4

)2/3 (
3
5

1
r2

s
− 3

2π
1
rs

)
. (7.159)

This is plotted in Figure 7.9. The unperturbed energy decreases monotonically as rs →
0, but the first-order correction is an attraction which falls more slowly. The result is a
minimum at a value E/N=−0.095e2/2a0 =−1.29 eV where rs = 4.83. Our model is crude,
and the solution only approximate, but the agreement with experiment is surprisingly good.
For sodium metal, one finds E/N =−1.13 eV where rs = 3.96.

7.8 Quantization of the Electromagnetic Field

Maxwell’s equations form a complete classical description of noninteracting electric and
magnetic fields in free space. It is tricky to apply quantum mechanics to that description,
but it can be done in a number of ways. In this section, we will once again take a “follow
our nose” approach to the problem, based on the many-particle formalism developed in this
chapter. The particles, of course, are photons,11 whose creation and annihilation operators
obey Bose–Einstein commutation relations.

We start with a brief summary of Maxwell’s equations to establish our notation, and their
solution in terms of electromagnetic waves. Then we derive the energy, and associate it
with the eigenvalues of a Hamiltonian constructed using bosonic creation and annihilation
operators.

11 The concept of photons is not without controversy. See “Anti-photon” by Lamb Appl. Phys. B, 60 (1995) 77.
The astute reader will note that we derived the cross section for the photoelectric effect in Section 5.8.3 using
the classical electromagnetic field.
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Including interactions with electromagnetic fields, through the inclusion of spin 1
2

charged electrons, is the subject of quantum electrodynamics. We do not pursue this subject
in this book. (See Section 5.8 for a discussion of a more ad hoc way to apply electro-
magnetic field interactions to atomic systems.) However, there is a fascinating quantum-
mechanical effect observable with free electromagnetic fields, the Casimir effect, and we
conclude this section with a description of the calculation and the experimental data.

Our treatment here more or less follows Chapter Four in Loudon (2000), although the
approach has become rather standard. See, for example, Chapter 23 in Merzbacher (1998).

7.8.1 Maxwell’s Equations in Free Space

In the absence of any charges or currents, Maxwell’s equations (in Gaussian units; see
Appendix A) take the form

∇ ·E = 0 (7.160a)
∇ ·B = 0 (7.160b)

∇×E+
1
c

∂B
∂ t

= 0 (7.160c)

∇×B− 1
c

∂E
∂ t

= 0. (7.160d)

Following standard procedure, we postulate a vector potential A(x, t) such that

B = ∇×A (7.161)

which means that (7.160b) is immediately satisfied. If we impose the further condition

∇ ·A = 0 (7.162)

(which is known as “choosing the Coulomb gauge”) then

E =−1
c

∂A
∂ t

(7.163)

means that (7.160a) and (7.160c) are also satisfied. Therefore, determining A(x, t) is
equivalent to determining E(x, t) and B(x, t). A solution for A(x, t) is evident, though, by
observing that (7.160d) leads directly to

∇2A− 1
c2

∂ 2A
∂ t2

= 0. (7.164)

That is, A(x, t) satisfies the wave equation, with wave speed c, just as we might have
guessed.

The set of solutions to (7.164) are naturally written as

A(x, t) = A(k)e±ik·xe±iωt (7.165)

where ω = ωk ≡ |k|c = kc for the solution to be valid. The Coulomb gauge condition
(7.162) implies that ±ik ·A(x, t) = 0 or

k ·A(k) = 0. (7.166)
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In other words, A(x, t) is perpendicular to the propagation direction k. For this reason, the
Coulomb gauge is frequently referred to as the “transverse gauge.” This allows us to write
the general solution to (7.164) as

A(x, t) = ∑
k,λ

êkλAk,λ(x, t) (7.167)

where êkλ are two unit vectors (corresponding to two values for λ) perpendicular to k, and
where

Ak,λ(x, t) = Ak,λe−i(ωkt−k·x) +A∗
k,λe+i(ωkt−k·x). (7.168)

Note that in (7.168) the quantities written Ak,λ on the right side of the equation are
numerical coefficients, not functions of either position or time. Note also that k and −k
represent different terms in the sum. We write the superposition (7.167) as a sum, not an
integral, because we envision quantizing the electromagnetic field inside a “big box” whose
dimensions may eventually be taken to grow without bound.

We use the form (7.168) to insure that Ak,λ(x, t) is real. When we quantize the
electromagnetic field, Ak,λ(x, t) will become a Hermitian operator. The coefficients A∗

k,λ
and Ak,λ will become creation and annihilation operators.

As we shall see later, it is useful to take the unit vectors êkλ as directions of circular
polarization as opposed to linear. That is, if ê(1)k and ê(2)k are the linear unit vectors
perpendicular to k, then

êk± =∓ 1√
2

(
ê(1)k ± iê(2)k

)
(7.169)

where λ =± denotes the polarization state. With these definitions, it is easy to show that

ê∗kλ · ê±kλ′ =±δλλ′ (7.170a)
ê∗kλ× ê±kλ′ =±iλδλλ′ k̂ (7.170b)

where k̂ is a unit vector in the direction of k. The electric field E(x, t) can now be written
down from (7.163), and similarly for the magnetic field B(x, t) using (7.161).

The energy E in the electromagnetic field is given by integrating the energy density over
all space, that is

E =
1

8π

∫
V

[
|E(x, t)|2 + |B(x, t)|2

]
d3x (7.171)

where, as discussed earlier, “all space” is a finite volume V = L3 with periodic boundary
conditions. In other words, we are working inside an electromagnetic cavity with conduct-
ing walls. This means that

k = (kx,ky,kz) =
2π
L

(nx,ny,nz) (7.172)

where nx, ny, and nz are integers.
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Consider first the term dependent on the electric field in (7.171). Using (7.163) with
(7.167) and (7.168) we have

E =
i
c ∑

k,λ
ωk

[
Ak,λe−i(ωkt−k·x)−A∗

k,λe+i(ωkt−k·x)
]

êkλ (7.173a)

and

E∗ =− i
c ∑

k′,λ′
ωk′

[
A∗

k′,λ′e+i(ωk′ t−k′·x)−Ak′,λ′e−i(ωk′ t−k′·x)
]

ê∗k′λ′ . (7.173b)

Since we have already suggested that the A∗
k,λ and Ak,λ will become creation and

annihilation operators, we need to take care and keep their order intact.
This all leads to an awkward expression for |E|2 =E∗ ·E, a summation over k, λ, k′, and

λ′, with four terms inside the summation. However, an important simplification follows
from the integral over the spatial volume. Each term inside the sum packs all of its position
dependence into an exponential so that the volume integral is of the form∫

V
ei(k∓k′)·xd3x = Vδk,±k′ . (7.174)

Combining this with (7.170a) one finds∫
V
|E(x, t)|2 d3x = ∑

k,λ

ω2
k

c2 V
[
A∗

k,λAk,λ+Ak,λA∗
k,λ + A∗

k,λA∗
−k,λe2iωkt +Ak,λA−k,λe−2iωkt] .

(7.175)

Starting with (7.161), the calculation for |B|2 = B∗ ·B is very similar. The curl brings in
factors like k× êkλ instead of the ωk/c in the calculation involving the electric field, but
since k2 = ω2

k /c2 the result is nearly identical. The key difference, though, is that under
the change k → −k terms like k× êkλ do not change sign. This means that the terms
analogous to the third and fourth terms in (7.175) appear the same way but with opposite
signs. Therefore, they cancel when evaluating (7.171). The result is

E =
1

4π
V∑

k,λ

ω2
k

c2

[
A∗

k,λAk,λ+Ak,λA∗
k,λ

]
. (7.176)

7.8.2 Photons and Energy Quantization

Our goal now is to associate (7.176) with the eigenvalues of a Hamiltonian operator. We
will do this by hypothesizing that the quantized electromagnetic field is made up of a
collection of identical particles called photons. An operator a†

λ(k) creates a photon with
polarization λ and momentum h̄k, and aλ(k) annihilates this photon. The energy of a
photon is h̄ωk = h̄ck, so we will build our Hamiltonian operator based on (7.126) and write

H = ∑
k,λ

h̄ωk a†
λ(k)aλ(k)+E0 (7.177)

where we will find it convenient to allow an arbitrary constant E0 to be added to
the Hamiltonian. We do not need to consider terms like (7.133) since, by our starting
assumption, we are building a noninteracting electromagnetic field.
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We are now faced with an important question. Are photons bosons or fermions? That is,
what is the “spin” of the photon? We need to know whether it is integer or half-integer, in
order to know which algebra is followed by the creation and annihilation operators. A fully
relativistic treatment of the photon field demonstrates that the photon has spin one and is
therefore a boson, but do we have enough preparation at this point to see that this should
be the case?

Yes, we do. We know from Chapter 3 that rotation through an angle φ about (say) the
z-axis is carried out by the operator exp(−iJzφ/h̄). The possible eigenvalues m of Jz show
up explicitly if we rotate a state which happens to be an eigenstate of Jz, introducing a
phase factor exp(−imφ). (This is what gives rise to the “famous” minus sign when a spin
1
2 state is rotated through 2π. Recall (3.33).)

So, consider what happens if we rotate about the photon direction k through an angle
φ for a right- or left-handed circularly polarized electromagnetic wave. The polarization
directions are the unit vectors êk± given by (7.169). The rotation is equivalent to the
transformation

ê(1)k → ê(1)
′

k = cosφê(1)k − sinφê(2)k (7.178a)

ê(2)k → ê(2)
′

k = sinφê(1)k + cosφê(2)k (7.178b)

which means that the rotation introduces a phase change exp(∓iφ) to the êk±. Apparently,
right- and left-handed circularly polarized photons correspond to eigenvalues ±1h̄ of Jz.
The photon seems to have spin one.

Consequently, we proceed under the assumption that photons are bosons. We therefore
rewrite (7.177) slightly as

H = ∑
k,λ

h̄ωk
1
2

[
a†
λ(k)aλ(k)+a†

λ(k)aλ(k)
]
+E0

= ∑
k,λ

h̄ωk
1
2

[
a†
λ(k)aλ(k)+aλ(k)a†

λ(k)−1
]
+E0 (7.179)

and recover the classical energy (7.176) with the definition of the operator

Ak,λ = (4πh̄c2)1/2 1√
V

1√
2ωk

aλ(k) (7.180)

along with the realization of a “zero point” energy

E0 =
1
2 ∑

k,λ
h̄ωk = ∑

k
h̄ωk. (7.181)

This is the energy in the electromagnetic field when there are zero photons present, and is
sometimes called the vacuum energy. It is an infinite number, but nevertheless a constant.
More important, it has observable consequences.

7.8.3 The Casimir Effect

The vacuum energy of the electromagnetic field has a number of physical consequences,
but probably the most dramatic is its ability to exert a macroscopic force between
conducting surfaces. This is called the Casimir effect, and it has been precisely measured
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and compared to calculations. Fine accounts by S. Lamoreaux have been published,
including a popular article in Physics Today (60 (2007) 40), and a more technical review
Rep. Prog. Phys., 68 (2005) 201. See also M. Fortun, “Fluctuating about zero, taking
nothing’s measure,” in Marcus (2000).

Casimir’s calculation relies only on the assumption of the vacuum energy (7.181). We
reproduce it here, following Lamoreaux’s technical review article,12 above. Two large,
parallel, conducting plates are separated by a distance d. Define a coordinate system where
the (x,y) plane is parallel to the surface of the conducting plates, so z measures the distance
perpendicularly away from one surface. This allows us to write down a potential energy
function

U(d) = E0(d)−E0(∞) (7.182)

which just gives the difference in the vacuum energy for plates with a finite and infinite
separation. Combining (7.181) with (7.172) (and combining positive and negative integer
values) we have

E0(d) = h̄ ∑
kx,ky,n

ωk = h̄c ∑
kx,ky,n

√
k2

x + k2
y +

(nπ
d

)2
. (7.183)

(This equation actually is missing a “lost” factor of 1/2 on the n = 0 term. This is because
only one polarization state should be counted in (7.181) for n = 0, since there is only one
purely transverse mode when kz = 0. We will recover this factor below.) Now assume
square plates with x and y lengths L � d. Since L is large, we can replace the summations
over kx and ky with integrals and write

E0(d) = h̄c
(

L
π

)2 ∫ ∞

0
dkx

∫ ∞

0
dky ∑

n

√
k2

x + k2
y +

(nπ
d

)2
. (7.184)

For the limit d → ∞ we can also replace the sum over n with an integral. This gives us all
the necessary ingredients to evaluate (7.182).

Unfortunately, however, (7.182) is the difference between two infinite numbers. It is
plausible that the difference is finite, since for any particular value of d, terms with large
enough n will give the same result for different values of d. That is, both terms in (7.182)
should tend towards infinity in the same way, and these parts will cancel when taking the
difference.

This suggests that we can handle the infinities by multiplying the integrand in (7.184) by
a function f(k) where f(k)→ 1 for k → 0 and f(k)→ 0 for k → ∞. This function “cuts off”
the integrand before it gets too large, but does so in the same way to both terms in (7.182)
so that the contributions from large k still cancel.13 It is also helpful to introduce the polar

12 We note that Lamoreaux’s derivation closely follows that of Itzykson and Zuber (1980), Section 3-2-4. See
also Holstein (1992) for a somewhat different approach, and attendant discussion, with a particularly physical
perspective.

13 We can think of many physical reasons why there should be a cutoff at very high frequencies. In general, we
expect the main contributions to come from values of k ∼ 1/d, but there are more specific examples such as the
response of electrons in metals to very high-energy photons. It remains an interesting problem, in any case, to
see whether the eventual result can be derived even if there is no cutoff frequency.
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coordinate ρ =
√

k2
x + k2

y in which case dkxdky = 2πρdρ. Note that the integration limits
in (7.184) correspond to 1/4 of the (kx,ky) plane. Then (7.182) becomes

U(d) = 2πh̄c
(

L
π

)2 1
4

∫ ∞

0
ρdρ

[
∑
n

f

(√
ρ2 +

(nπ
d

)2
)√

ρ2 +
(nπ

d

)2

− d
π

∫ ∞

0
dkzf

(√
ρ2 + k2

z

)√
ρ2 + k2

z

]
. (7.185)

Now define a function F(κ) as

F(κ) =
∫ ∞

0
dx f

(π
d

√
x+κ2

)√
x+κ2 (7.186a)

=
∫ ∞

κ
2y2f

(π
d

y
)

dy. (7.186b)

Putting ρ2 = (π/d)2x and kz = (π/d)κ allows us to write the potential energy more
succinctly, reclaiming the lost factor of two, as

U(d) =
π2h̄c
4d3 L2

[
1
2

F(0)+
∞

∑
n=1

F(n)−
∫ ∞

0
F(κ)dκ

]
. (7.187)

We are therefore left with evaluating the difference between an integral and a sum, both
of which are reasonable approximations of each other. Indeed, if a function F(x), defined
over range 0 ≤ x ≤ N, is evaluated at integer points x = i, then the approximation scheme
known as the trapezoidal rule says that∫ N

0
F(x)dx ≈ F(0)+F(N)

2
+

N

∑
i=1

F(i). (7.188)

In our case, N → ∞ with F(N)→ 0 (thanks to the cutoff function f(k)), and our job is to
find the difference between the left- and right-hand sides of (7.188).

Fortunately, there is a theorem which evaluates this difference. It is called the Euler–
Maclaurin summation formula and can be written as

F(0)
2

+
∞

∑
i=1

F(i)−
∫ ∞

0
F(x)dx =− 1

12
F′(0)+

1
720

F′′′(0)+ · · · . (7.189)

The derivatives can be calculated using (7.186b). Since F(x)→ 0 as x → ∞, we have

F′(y) =−2y2f
(π

d
y
)

(7.190)

which gives F′(0) = 0. If we make one further, but natural, assumption about the cutoff
function f(k), namely that all of its derivatives go to zero as k → 0, then we are only left
with the third derivative term in (7.189). In fact, F′′′(0) =−4 and

U(d) =
π2h̄c
4d3 L2

[
−4
720

]
=− π2h̄c

720d3 L2. (7.191)

So, finally, we derive the Casimir force (per unit area) to be

F (d) =
1
L2

(
−dU

dd

)
=− π2h̄c

240d4 . (7.192)
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Fig. 7.10 Experimental verification of the Casimir effect, from Mohideen and Anushree Phys. Rev. Lett., 81 (1998) 4549. For
experimental reasons, the force is measured between a metallic sphere and a flat plate, rather than two flat plates.
A laser precisely measures the small deflection, from which the force is deduced. The force (measured in 10−12 N)
varies as a function of separation between the sphere and the plate, in excellent agreement with the prediction,
shown by the line through the data points, based on a quantized electromagnetic field.

Thus, there is an attractive force between the plates which varies as the inverse fourth
power of the separation, due to the reconfiguration of the vacuum energy in the quantized
electromagnetic field.

This is one of the examples in nature where a purely quantum-mechanical effect
manifests itself in a macroscopic system. Indeed, the Casimir force between conductors
has been precisely measured and the result is in excellent agreement with the theory. See
Figure 7.10. This experiment makes use of the “atomic force microscope” concept, which
relies on the bending of a microscopic cantilever beam in response to a tiny force between
nearby surfaces. For this reason, an apparatus is used which suspends a small conducting
sphere from the cantilever, and measures the force between the sphere and a flat plate, given
by −(π3R/360)(h̄c/d3) where R is the sphere radius. The force deflects the cantilever, and
this motion is detected using a laser which reflects from the sphere surface. The measured
force as a function of the distance d is shown in the figure as data points, and is compared
with the theoretical prediction.

The Casimir effect has also been observed experimentally with parallel conducting
surfaces. See, for example, Bressi et al., Phys. Rev. Lett., 88 (2002) 041804.

If the Casimir Effect is due to the presence of electromagnetic fields, and these fields
interact only with charges, then why does the electric charge e not appear anywhere in
(7.192)? The answer lies in our starting point for the calculation, where we assumed the
boundary conditions for conducting plates. These arise from the relative mobility of the
electrons in the metal, with which the electromagnetic field interacts. In fact, we made use
of a cutoff frequency whose physical basis can lie in the penetrability of electromagnetic
radiation at short wavelengths. Indeed, if this penetrability existed for all wavelengths,
there would be no Casimir effect.

The Casimir effect has seen renewed interest in recent years, not only for its
potential application in nanomechanical devices, but also for its calculation and
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interpretation14 using fundamental quantum field theoretical principles. In a formulation
in terms of path integrals, the Casimir energy can be written down in terms of the free field
propagator with appropriate boundary conditions. The boundary conditions are simply
defined by the objects under consideration. The result is an elegant expression for the
Casimir energy in terms of the T-matrix scattering amplitudes for the free field from the
objects, and transformation matrices that express each object’s geometry in a natural way
with respect to the other. This approach lends itself to a number of insights. For example,
it allows one to calculate the Casimir energy for any field which can be expressed in terms
of this constrained propagator, such as scalar or fermion fields. It is also clearly amenable
to any number of geometries, far beyond simple parallel plates.

7.8.4 Concluding Remarks

Before leaving this chapter, we should point out that our treatment in this section only
scratches the surface of applications of quantizing the electromagnetic field. Now that we
have expression (7.180) (and its adjoint) which is an operator which destroys (or creates)
photons of specific wavelength and polarization, we can incorporate it in any number
of ways.

For example, we have already seen in (2.343) how we can add the electromagnetic
field into the conjugate momentum. This is built into the Hamiltonian in (2.346). Using
the quantized version for A we have an ad hoc Hamiltonian operator which can create
or destroy photons. Terms, then, proportional to A · p can be treated as time-dependent
perturbations. Thus we can let a photon be absorbed by an atom (the photoelectric effect)
or let an excited state of an atom decay spontaneously and emit a photon.

These applications, of course, can be brought to bear just as well in systems covered by
nuclear physics or condensed matter physics. These topics are covered in a wide variety
of books, some on quantum mechanics in general, but many in books which cover specific
research areas.

One particularly fascinating direction, which in fact involves noninteracting electro-
magnetic fields, is quantum optics. This is a field that has come of age in the past few
decades, spurred on partly by advances in laser technology and a growing interest in
quantum computing and quantum information. A reflective view of the field is given in
Roy Glauber’s Nobel Prize lecture, Rev. Mod. Phys., 78 (2006) 1267. In the remainder of
this section, we give a very brief overview of this large subject.

A hint to the richness of quantum optics is immediately apparent. By virtue of (7.180),
the electric field vector (7.173a) becomes an operator which creates and destroys photons.
The expectation value of this operator vanishes in any state |Ψ〉 with a definite number of
photons, that is

|Ψ〉= |. . . ,nkλ,. . .〉. (7.193)

This is simple to see, since (7.173a) changes the number of photons nkλ in which case
〈Ψ|E|Ψ〉 becomes the inner product between orthogonal states. Therefore any physical

14 There is quite a lot of recent literature. I recommend that the interested reader start with Emig and Jaffe, J.
Phys. A, 41 (2008) 164001; Emig et al., Phys. Rev. Lett., 99 (2007) 170403; and Jaffe, Phys. Rev. D, 72 (2005)
021301.
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state needs to be a superposition of states with different number of photons. A wide variety
of physical states with different properties can in principle be realized, if one can manipu-
late this superposition. It is the ability to carry out this manipulation which has given birth
to quantum optics. Problem 2.21 of Chapter 2 suggests one possible manipulation leading
to something known as a coherent state. Coherent states are eigenstates of the annihilation
operator a, and therefore serve as eigenstates of positive or negative frequency parts of E.

Let us explore one such type of manipulation of single-mode electric field operators,
following Chapter Five of Loudon (2000). For a given direction of linear polarization, the
electric field is given by

E(χ) = E+(χ)+E−(χ) =
1
2

ae−iχ+
1
2

a†eiχ (7.194)

where χ ≡ ωt− kz−π/2. (We absorb a factor of −(8πh̄ωk/V)1/2 into the definition of the
electric field.) The phase angle χ can be adjusted experimentally. Furthermore, fields with
different phase angles generally do not commute. From (2.124) it is easily shown that

[E(χ1),E(χ2)] =− i
2

sin(χ1 −χ2). (7.195)

The uncertainty relation (1.146) therefore implies that

ΔE(χ1)ΔE(χ2)≥
1
4
|sin(χ1 −χ2)| (7.196)

where the electric field variance (ΔE(χ))2 is defined in the usual way as

(ΔE(χ))2 =
〈
(E(χ))2

〉
−〈E(χ)〉2

=
〈
(E(χ))2

〉
(7.197)

since 〈E(χ)〉= 0 for a state with a single mode. A state |ζ〉 for which

0 ≤ (ΔE(χ))2 <
1
4

(7.198)

is said to be quadrature squeezed. It is possible to write |ζ〉 as the action of a unitary
operator on the vacuum, that is,

|ζ〉= exp

(
1
2
ζ∗a2 − 1

2
ζ(a†)2

)
(7.199)

where ζ = siθ is called the squeeze parameter. In this state, the electric field variance is

(ΔE(χ))2 =
1
4

{
e2s sin2

(
χ− 1

2
θ
)
+ e−2s cos2

(
χ− 1

2
θ
)}

. (7.200)

Thus one can achieve for ΔE(χ) a minimum

ΔEmin =
1
2

e−s for χ =
θ
2
+mπ (7.201)

where m is an integer, and a maximum

ΔEmax =
1
2

es for χ =
θ
2
+

(
m+

1
2

)
π. (7.202)
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Fig. 7.11 Observation of states of “squeezed light,” from Wu et al., J. Opt. Soc. Am. B, 4 (1987) 1465. (See also Chapter Five in
Loudon (2000).) Data are obtained by measuring the electric field variance, that is the noise, for different scans of
the phase angle χ. The different points correspond to different squeezed states, formed by selecting different
values of the magnitude s of the squeeze parameter ζ. The solid line through the points is given by (7.203).

The resulting uncertainty relation is

ΔEminΔEmax =
1
4

(7.203)

which satisfies (7.196) as an equality.
The observation of squeezed light is challenging, but such measurements have been

carried out. See Figure 7.11. The squeezed states are prepared using an optical technique
known as parametric down conversion which allows different magnitudes of ζ to be
selected. Each point is the result of sweeping over the phase χ and measuring the noise
spectrum of the electric field.

Problems

7.1 Liquid helium makes a transition to a macroscopic quantum fluid, called superfluid
helium, when cooled below a phase transition temperature T = 2.17 K. Calculate
the de Broglie wavelength λ = h/p for helium atoms with average energy at this
temperature, and compare it to the size of the atom itself. Use this to predict the
superfluid transition temperature for other noble gases, and explain why none of
them can form superfluids. (You will need to look up some empirical data for these
elements.)
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7.2 Three identical particles are in a one-dimensional harmonic oscillator potential well
with classical angular frequency ω.
a. Write the complete time-independent Hamiltonian for this system, and express

it in coordinate space as a differential equation whose solution is the three-body
wave functionΨ(x1,x2,x3).

b. Assume the particles have zero spin. Use the single-particle wave functions to
construct the ground-state wave function Ψ0(x1,x2,x3), and show that it satisfies
the differential equation in (a), and find the ground-state energy.

c. Assume the particles have spin 1
2 . Repeat (b), and also construct the ground state

spin state from single-particle spin eigenstates.

7.3 a. N identical spin 1
2 particles are subjected to a one-dimensional simple harmonic

oscillator potential. Ignore any mutual interactions between the particles. What is
the ground-state energy? What is the Fermi energy?

b. What are the ground-state and Fermi energies if we ignore the mutual interactions
and assume N to be very large?

7.4 It is obvious that two nonidentical spin 1 particles with no orbital angular momenta
(that is, s-states for both) can form j = 0, j = 1, and j = 2. Suppose, however, that
the two particles are identical. What restrictions do we get?

7.5 Discuss what would happen to the energy levels of a helium atom if the electron were
a spinless boson. Be as quantitative as you can.

7.6 Three spin 0 particles are situated at the corners of an equilateral triangle. Let us
define the z-axis to go through the center and in the direction normal to the plane
of the triangle. The whole system is free to rotate about the z-axis. Using statis-
tics considerations, obtain restrictions on the magnetic quantum numbers corres-
ponding to Jz.

7.7 Consider three weakly interacting, identical spin 1 particles.
a. Suppose the space part of the state vector is known to be symmetric under

interchange of any pair. Using notation |+〉|0〉|+〉 for particle 1 in ms = +1,
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particle 2 in ms = 0, particle 3 in ms = +1, and so on, construct the normalized
spin states in the following three cases.

(i) All three of them in |+〉.
(ii) Two of them in |+〉, one in |0〉.

(iii) All three in different spin states.
What is the total spin in each case?

b. Attempt to do the same problem when the space part is antisymmetric under
interchange of any pair.

7.8 A porphyrin ring is a molecule which is present in chlorophyll, hemoglobin, and
other biological compounds. It can be modeled as 18 electrons moving freely along
a one-dimensional circular path of radius R = 0.4 nm.
a. Using a polar angular coordinate θ , write down the appropriately normalized

single-particle wave functions ψ(θ), including periodic boundary conditions.
Find an expression for the single-particle energy eigenvalues.

b. Find the electron configurations and energies for the ground state and first excited
state of porphyrin.

c. Find a numerical value for the wavelength of electromagnetic radiation that would
excite the ground state into the first excited state. This is a very simple model, and
porphyrin comes in many varieties, but compare your result to an experimental
result.

7.9 Show that for an operator a which, with its adjoint, obeys the anticommutation
relation {a,a†} = aa† + a†a = 1, then the operator N = a†a has eigenstates with
the eigenvalues 0 and 1.

7.10 Suppose the electron were a spin 3
2 particle obeying Fermi–Dirac statistics. Write

the configuration of a hypothetical Ne (Z = 10) atom made up of such “electrons”
[that is, the analogue of (1s)2(2s)2(2p)6]. Show that the configuration is highly
degenerate. What is the ground state (the lowest term) of the hypothetical Ne atom
in spectroscopic notation (2S+1LJ, where S, L, and J stand for the total spin, the total
orbital angular momentum, and the total angular momentum, respectively) when
exchange splitting and spin-orbit splitting are taken into account?

7.11 Two identical spin 1
2 fermions move in one dimension under the influence of the

infinite-wall potential V = ∞ for x < 0, x > L, and V = 0 for 0 ≤ x ≤ L.
a. Write the ground-state wave function and the ground-state energy when the two

particles are constrained to a triplet spin state (ortho state).
b. Repeat (a) when they are in a singlet spin state (para state).
c. Let us now suppose that the two particles interact mutually via a very short range

attractive potential that can be approximated by

V =−λδ(x1 − x2) (λ > 0).

Assuming that perturbation theory is valid even with such a singular potential,
discuss semiquantitatively what happens to the energy levels obtained in (a)
and (b).
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7.12 Consider the case of a single particle of mass m in a one-dimensional simple
harmonic oscillator potential V(x) = mω2x2/2.
a. Using a form for ρ̃(x) proportional to exp(−ax2), calculate the energy functional

(7.69) in terms of a. Minimize the result with respect to a and show that you get
the correct ground-state energy.

b. Now show that a form proportional to exp(−ax2) is a solution to the differential
equation (7.76), for the appropriate value of a. Check that (7.69) gives you the
correct ground-state energy, and show that it equals the value of μ.

7.13 Show by explicit construction for N = 2 that the normalization condition (7.80) is
met for n(x) as defined by (7.89) with the multiparticle wave function (7.88) for the
cases when
a. φ1(x) and φ2(x) are distinct orthonormal functions,
b. φ1(x) = φ2(x).

7.14 Using whatever code or application you prefer, fill in the details of the calculation on
the helium atom in density functional theory.
a. Confirm the dimensionless forms (7.102) and (7.103).
b. Show that (7.104) is properly normalized.
c. Verify (7.105).
d. Obtain (7.108), or something very close, based on your own numerical approach.
e. Complete the calculation and reproduce Table 7.1 and Figure 7.7.
f. Try repeating the calculation using an initial density n(0)(r) that is smarter than

(7.104). In fact, (7.108) shows that the first Kohn–Sham ground-state wave
function is very close to the 1s state for Z = Zeff. What starting density does this
imply?

There are many variations to this problem you might consider, including trying
different forms for the exchange-correlation energy, a larger or smaller set of basis
states, or more iterations or different starting densities.

7.15 Prove the relations (7.170), and then carry through the calculation to derive (7.176).

7.16 A Hamiltonian for a system of bosons has the form

H = ∑
k

T(k)a†
kak +λ∑

l
∑
m

V(l+m)a†
l a†

−lama−m

where λ is a constant. Prove that the number operator

N = ∑
k

a†
kak

is a constant of the motion.
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This final chapter provides a succinct look at how one constructs single-particle wave
equations that are consistent with special relativity.

To be sure, this effort is ultimately doomed to failure. Special relativity makes it possible
to create particles out of energy, but much of our development of quantum mechanics was
based on the conservation of probability, so we cannot expect to be entirely successful. The
right way to attack this problem is by starting with the postulates of quantum mechanics
and building a many-body theory of fields that is relativistically consistent. Nevertheless,
at energies low compared to the masses involved, we can expect single-particle quantum
mechanics to be a very good approximation to nature. Furthermore, this is a natural way to
develop the nomenclature and mathematics of a relativistic field theory.

We will start with the general problem of forming a relativistic wave equation for a free
particle. This leads more or less intuitively to the Klein–Gordon equation, which we will
discuss in some detail. Along the way, we introduce and continue to use the concepts of
natural units, and of relativistically covariant notation. Then, we will go through Dirac’s
approach to finding a relativistic wave equation that is linear in space-time derivatives,
not quadratic. A study of the symmetries of the Dirac equation is presented. The chapter
concludes with the solution of the one-electron atom problem and its comparison with data.

This material is of course covered by many other authors, but one nice reference,
written at the time when relativistic field theory was emerging out of decades of relativistic
quantum mechanics, is “Elementary relativistic wave mechanics of spin 0 and spin 1/2
particles,” Feshbach and Villars, Rev. Mod. Phys., 30 (1958) 24.

8.1 Paths to Relativistic Quantum Mechanics

The early part of the twentieth century saw the more or less simultaneous developments
of both relativity and quantum theory. Therefore, it is not surprising to learn that early
attempts to develop wave mechanics produced relativistic wave equations.1 Although we
now understand the many pitfalls which confounded these early pioneers, it took many
decades to sort things out.

We begin by focussing on the Hamiltonian operator, the (Hermitian) generator of time
translations which led us to the Schrödinger equation (2.25) for the time evolution of a
state. That is, a state |ψ(t)〉 evolves in time according to the equation

1 See Volume I, Section 1.1 of Weinberg (1995).
478
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ih̄
∂
∂ t

|ψ(t)〉= H|ψ(t)〉. (8.1)

We interpret the eigenvalues of the Hamiltonian, of course, as the allowed energies of the
system. This is where we can start to incorporate special relativity.

8.1.1 Natural Units

This is a good time to graduate to the use of so-called natural units, that is, units in which
h̄ = c = 1. Most people react to this with bewilderment when they first see it, but it is in
fact very simple and useful.

First consider the consequences of setting c = 1. Then, we measure time (= distance/c)
in length units, like meters or centimeters. If you really need to know the value of time in
seconds, just divide by c = 3× 1010 cm/sec. Velocity becomes a dimensionless number,
which we typically denote by β.

Setting c = 1 means that we also measure both momentum and mass in units of energy,
like eV or MeV. Frequently, one puts in the c explicitly and writes momentum units as
MeV/c and mass as MeV/c2. Most physicists know that the electron mass, for example, is
0.511 MeV/c2, but very few know this value in kilograms without doing the conversion
arithmetic! Just don’t be surprised if someone tells you that the mass is 0.511 MeV, and
leaves off the c2.

Now consider what happens when we set h̄= 1 as well. This ties together units for length
and units for energy. For example, the canonical commutation relation for the momentum
and position operators says that their product has the same units as h̄. Therefore, we would
measure position in units of MeV−1, or some other inverse energy unit.

Remember that you can always put back the h̄ and c in the right places if you need to
go back to the old way of doing things. It is not uncommon to do this if you are trying to
evaluate the result of some experiment, for example. It is handy to keep in mind that, to a
very good approximation, h̄c = 200 MeV·fm for doing these conversions.

As a final note, we point out that in a textbook on statistical mechanics, one would also
“naturally” set Boltzmann’s constant k = 1. That is, temperature would be measured in
units of energy as well.

8.1.2 The Energy of a Free Relativistic Particle

Consider the energy of a free particle with momentum p = |p| and mass m, namely

Ep =+
√

p2 +m2. (8.2)

We need to come up with a Hamiltonian which yields this energy eigenvalue for a state |p〉
with momentum eigenvalue p. It is the square root, however, which plagued early efforts
to come up with a relativistic wave equation, and which we must figure out how to deal
with here.

We have faced transcendental functions of operators before, such as U(t) = exp(−iHt),
interpreting them in terms of their Taylor expansions. We could take the same approach
here, and write
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H =
√

p2 +m2 = m
[

1+
p2

m2

]1/2

= m+
p2

2m
− p4

8m3 +
p6

16m5 + · · · . (8.3)

In fact, this would be a viable way to proceed, but it has some serious shortcomings. For
one, it would make it impossible to formulate a “covariant” wave equation. That is, if we
formed a coordinate space (or momentum space) representation of a state vector |ψ〉, the
resulting wave equation would have one time derivative and an infinite series of increasing
spatial derivatives from the momentum operator. There would be no way to put time and
space on an “equal footing,” so to speak.

This consideration actually leads to a more important problem. Let us go ahead and try
to build this wave equation. From (8.1) we have

i
∂
∂ t

〈x|ψ(t)〉=
∫

d3p〈x|p〉〈p|H|ψ(t)〉

=
∫

d3x′
∫

d3p〈x|p〉〈p|x′〉〈x′|Ep|ψ(t)〉

=
∫

d3x′
∫

d3p
eip·(x−x′)

(2π)3 〈x′|Ep|ψ(t)〉 (8.4)

and (8.3) means that 〈x′|Ep|ψ(t)〉 becomes an infinite series of ever higher order deriva-
tives; see (1.252). This renders this wave equation nonlocal since it must reach further and
further away from the region near x′ in order to evaluate the time derivative. Eventually,
causality will be violated for any spatially localized wave function 〈x|ψ(t)〉. The loss of
covariance costs us a great deal indeed.

We abandon this approach, and instead work with the square of the Hamiltonian, instead
of the Hamiltonian itself. This removes the problem of the square root, and all of its
attendant problems, but it will introduce a different problem. There will be solutions to
the wave equation with negative energies, necessary to form a complete set of basis states,
but which have no obvious physical meaning. Nevertheless, this approach is more useful
than the one we are now leaving.

8.1.3 The Klein–Gordon Equation

Start with (8.1) and take the time derivative once more. That is

− ∂ 2

∂ t2
|ψ(t)〉= i

∂
∂ t

H|ψ(t)〉= H2|ψ(t)〉. (8.5)

We can now write down a simple wave equation for Ψ(x, t) ≡ 〈x|ψ(t)〉. Taking
H2 = p2 +m2 and using 〈x|p2|ψ(t)〉=−∇2Ψ(x, t), we obtain[

∂ 2

∂ t2
−∇2 +m2

]
Ψ(x, t) = 0. (8.6)

Equation (8.6) is known as the Klein–Gordon equation. This looks very much like a
classical wave equation, except for the m2 term. Putting back our h̄ and c, we see that
this term introduces a length scale h̄/mc, called the Compton wavelength.



481 8.1 Paths to Relativistic Quantum Mechanics

The Klein–Gordon equation has nearly all the desirable qualities of a relativistic wave
equation. Firstly, it is relativistically covariant. You can see that because a Lorentz
transformation leaves the square of the space-time interval ds2 = dt2 − dx2 invariant.
Therefore, the combination of derivatives in (8.6) is the same if one changes frames from
(x, t) to (x′, t′). In other words,Ψ(x′, t′) solves the same equation asΨ(x, t).

Relativistic covariance is easier to see if one uses relativistic covariant notation. We
will use a notation which has become standard. That is, Greek indices run 0,1,2,3 and
Latin indices run 1,2,3. If an index is ever repeated in an expression, summation over
that index is implied. A contravariant four-vector aμ ≡ (a0,a) has a dual covariant vector
aμ = ημνaν , where η00 =+1, η11 = η22 = η33 =−1, and all other elements are zero. Thus
aμ = (a0,−a). Inner products of four-vectors can only be taken between a contravariant
vector and a covariant vector, e.g. aμbμ = a0b0 −a ·b. In particular, aμaμ =

(
a0)2 −a2.

A key point of Lorentz transformations is that inner products of four-vectors are
invariant. That is aμbμ will have the same value in any reference frame. This is the reason
that covariant notation is very useful for demonstrating the covariance of a particular
expression.

The space-time position four-vector is xμ = (t,x). This gives the four-gradient

∂
∂xμ

=

(
∂
∂ t

,∇
)
≡ ∂μ (8.7)

which is a covariant vector operator, despite the positive sign in front of the spacelike part.
Now, the covariance of (8.6) is absolutely clear. The Klein–Gordon equation becomes[

∂μ∂ μ+m2]Ψ(x, t) = 0. (8.8)

Sometimes, an even further economy of notation is used by writing ∂ 2 ≡ ∂μ∂ μ.
Another desirable property of the Klein–Gordon equation is that it has solutions that

are in fact what we expect for a free relativistic particle of mass m. We expect the time
dependence to be like exp(−iEt), where E is an eigenvalue of the Hamiltonian. We also
expect the spatial dependence to be that of a plane wave, that is exp(+ip ·x) for momentum
p. In other words, our solution should be

Ψ(x, t) = Ne−i(Et−p·x) = Ne−ipμxμ (8.9)

where pμ = (E,p). Indeed (8.9) solves (8.8) so long as

−pμpμ+m2 =−E2 +p2 +m2 = 0 (8.10)

or E2 = E2
p. Thus the energy eigenvalues E =+Ep are included, as they should be. On the

other hand, the negative energy eigenvalues E =−Ep are also included. This was a serious
stumbling block in the historical development of relativistic quantum mechanics, but we
will take up a practical explanation of it shortly.

Schrödinger’s nonrelativistic wave equation has a very important property, namely that
it implies that probability is conserved. The probability density ρ(x, t) = ψ∗ψ (2.189) is
a positive definite quantity, and the probability flux (2.191) obeys a continuity equation
(2.190) which proves that the probability density can only be influenced by the flux into or
out of a particular region.
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One would like to identify analogous expressions using the Klein–Gordon equations,
so that the wave function Ψ(x, t) can be similarly interpreted. The form of the continuity
equation strongly suggests that we construct a four-vector current jμ with the property
∂μjμ = 0, with the probability density ρ ≡ j0. In fact, if we follow (2.191) to write

jμ =
i

2m
[Ψ∗∂ μΨ− (∂ μΨ)∗Ψ] (8.11)

then it is easy to show that ∂μ jμ = 0. Therefore we calculate a density

ρ(x, t) = j0(x, t) =
i

2m

[
Ψ∗ ∂Ψ

∂ t
−

(
∂Ψ
∂ t

)∗
Ψ

]
. (8.12)

Although this density is conserved, it is not positive definite! This was a tremendous
problem in the development of relativistic quantum mechanics, since it rendered the stan-
dard probabilistic interpretation of the wave function impossible. Eventually a consistent
physical interpretation was found. Before discussing this interpretation, though, we need
to consider the effect of electromagnetic interactions within the context of our relativistic
framework.

The explicitly covariant nature of the Klein–Gordon equation makes it straightforward to
add electromagnetic interactions into the Hamiltonian. See Section 2.7, especially (2.343)
and (2.346). As before, we assume that the particle has an electric charge e < 0. In a
classical Hamiltonian, one simply makes the substitutions2 E → E− eΦ and p → p− eA,
where Φ is the “scalar” electric potential and A is the vector potential. In covariant form,
this becomes

pμ → pμ− eAμ (8.13)

where Aμ = (Φ,A), so Aμ = (Φ,−A). This all amounts to rewriting (8.8) as[
DμDμ+m2]Ψ(x, t) = 0 (8.14)

where Dμ ≡ ∂μ+ ieAμ. We refer to Dμ as the covariant derivative.
Unlike the nonrelativistic Schrödinger wave equation, the Klein–Gordon equation is

second order in time derivatives, not first order. That implies that not only must one specify
Ψ(x, t)|t=0 for its solution, but also ∂Ψ(x, t)/∂ t|t=0. Consequently, more information
is necessary than one might have originally expected based on our experience from
nonrelativistic quantum mechanics. In fact, this additional “degree of freedom” shows up
as the sign of the charge of the particle. This is clear by noting that ifΨ(x, t) solves (8.14),
thenΨ∗(x, t) solves the same equation, but with e →−e.

More explicitly, we can reduce the second-order Klein–Gordon equation to two first-
order equations, and then interpret the result in terms of the sign of the electric charge.

2 It is worthwhile to take a moment and review the origin of these substitutions. A Lagrangian L is constructed
which yields the Lorentz force law, F = e [E+v×B/c]. For a coordinate xi, the canonical momentum is pi ≡
∂L/∂ ẋi =mẋi+eAi. Hence, the kinetic energy uses the “kinematic momentum” mẋi = pi−eAi. See Appendix C
of this book, or Taylor (2005), Section 7.9 for more details. Extension to relativistic kinematics is relatively
straightforward. The four-momentum pμ is replaced by pμ − eAμ; see Jackson (1998), Section 12.1A. When
working in coordinate space, the quantum-mechanical operator for the (covariant vector) pμ = (E,−p) is i∂μ =
(i∂t, i∇). Therefore, to incorporate electromagnetism, we replace i∂μ with i∂μ− eAμ = i(∂μ+ ieAμ)≡ iDμ .
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Using a rather obvious notation in which DμDμ = D2
t −D2, we can easily write (8.14) as

two equations, each first order in time, defining two new functions

φ(x, t) =
1
2

[
Ψ(x, t)+

i
m

DtΨ(x, t)
]

(8.15a)

χ(x, t) =
1
2

[
Ψ(x, t)− i

m
DtΨ(x, t)

]
(8.15b)

so that instead of specifyingΨ(x, t)|t=0 and ∂Ψ(x, t)/∂ t|t=0, we can specify φ(x, t)|t=0 and
χ(x, t)|t=0. Furthermore, φ(x, t) and χ(x, t) satisfy the coupled equations

iDtφ =− 1
2m

D2(φ+χ)+mφ (8.16a)

iDtχ =+
1

2m
D2(φ+χ)−mχ (8.16b)

which bear a striking resemblance to the nonrelativistic Schrödinger equation. We can
demonstrate this resemblance even more keenly be defining a two-component object
Υ(x, t) in terms of the two functions φ(x, t) and χ(x, t), and using the Pauli matrices (3.50).
That is, for the functions φ(x, t) and χ(x, t) which satisfy (8.16), we define a column vector
function

Υ(x, t)≡
[
φ(x, t)
χ(x, t)

]
. (8.17)

We now write the Klein–Gordon equation as

iDtΥ=

[
− 1

2m
D2(τ3 + iτ2)+mτ3

]
Υ (8.18)

(Note that we use τ rather than σ to denote the Pauli matrices, to avoid any confusion with
the concept of spin.) Equation (8.18) is completely equivalent to our formulation in (8.14),
but it is a first-order differential equation in time. We have “hidden” the additional degree
of freedom in the two-component nature of Υ(x, t).

Now let us return to the question of probability current density. Having rewritten the
Klein–Gordon equation using the covariant derivative as (8.14), the correct form of the
conserved current is now

jμ =
i

2m
[Ψ∗DμΨ− (DμΨ)∗Ψ] . (8.19)

The “probability” density (8.12) therefore becomes

ρ = j0 =
i

2m
[Ψ∗DtΨ− (DtΨ)

∗Ψ]

= φ∗φ−χ∗χ = Υ†τ3Υ. (8.20)

This is easy to see by using (8.15) to writeΨ(x, t) and DtΨ in terms of φ(x, t) and χ(x, t).
We are therefore led to interpret ρ as a probability charge density, where φ(x, t) is the

wave function of a positive particle, and χ(x, t) is the wave function of a negative particle.
That is, the Klein–Gordon equation has buried in it simultaneous degrees of freedom for
a particle of a certain charge, as well as a particle that behaves identically but with the
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opposite charge. Before going so far as to refer to these as “particle” and “antiparticle,” we
should go back and consider the interpretation of the negative energy solutions.

8.1.4 An Interpretation of Negative Energies

First consider free particles, in which case Dμ = ∂μ, and for which Υ(x, t) ∝
exp [−i(Et−p ·x)]. Inserting this into (8.18) yields the eigenvalues E = ±Ep as it, of
course, should. We find for the eigenfunctions

Υ(x, t) =
1

2(mEp)1/2

(
Ep +m
m−Ep

)
e−iEpt+ip·x for E =+Ep (8.21a)

Υ(x, t) =
1

2(mEp)1/2

(
m−Ep
Ep +m

)
e+iEpt+ip·x for E =−Ep (8.21b)

with a normalization that leads to a charge density ρ = ±1 for E = ±Ep. That is, we
impose the condition that a free particle with negative charge is to be associated with a
particle that has negative total energy. Also, for a particle at rest, Ep = m and the positive
energy solution 8.21a has only an upper component (that is, χ(x, t) = 0), while the negative
energy solution 8.21b, has only a lower component (that is, φ(x, t) = 0). This continues for
the nonrelativistic case where p � Ep and the positive energy solution is dominated by
φ(x, t) and the negative energy solution by χ(x, t).

More insight to the meaning of negative energies comes from considering the probability
current density j. Making use of (3.52), (3.53), and (8.18) we have

∂tρ = ∂t(Υ
†τ3Υ) =

(
∂tΥ

†
)
τ3Υ+Υ†τ3 (∂tΥ)

=
1

2im
[(
∇2Υ†

)
(1+ τ1)Υ−Υ†(1+ τ1)

(
∇2Υ

)]
=−∇ · j (8.22)

where

j =
1

2im
[
Υ†(1+ τ1)(∇Υ)−

(
∇Υ†

)
(1+ τ1)Υ

]
.

In the case of a free particle, for either positive or negative energies, this reduces to

j =
p
m
Υ†(1+ τ1)Υ=

p
Ep

. (8.23)

Now this would appear to be quite peculiar. With a normalization that imposes positive
and negative charges on positive and negative energy solutions, respectively, we end up
with a charge current density that is the same regardless of the sign of the charge and
energy. One way to “fix” this would be to recognize that the sign of the momentum vector
p in (8.21b) is “wrong” since we want the exponent to have the form ipμxμ in order to
be relativistically invariant. We might reverse the sign of p, therefore, for negative energy
solutions, in which case (8.23) would carry the “correct” sign to account for the charge of
the particle. Another way of “fixing” this problem would be to say that the negative energy
particles are moving “backwards in time.” This not only reverses the sign of p, but also
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lets the energy be positive in the exponent of (8.21b)! We have made some contact with
the popular lore of particles and antiparticles.

If we like, we can formally associate the positive energy solution ΨE>0(x, t) to the
Klein–Gordon equation with that for a “particle,” and the complex conjugate of the
negative energy solution Ψ∗

E<0(x, t) with an “antiparticle.” In this case (8.14) yields us
the two equations [

(∂μ− ieAμ)(∂ μ− ieAμ)+m2]Ψparticle(x, t) = 0 (8.24a)[
(∂μ+ ieAμ)(∂ μ+ ieAμ)+m2]Ψantiparticle(x, t) = 0. (8.24b)

This makes it explicitly clear how to split the solutions to the Klein–Gordon equation into
two pieces that correspond individually to particles with charge ±e.

It is possible to continue along these lines and solve the Klein–Gordon equation for an
atomic system. In fact, the results compare well with experiment, so long as the orbiting
charged particle has no spin. (See Problem 8.7 at the end of this chapter.) Nevertheless, the
interpretation of the probability density and negative energies is strictly ad hoc, and not
founded in the kind of first-principles derivations we espouse in this book.

More importantly, this formalism does not allow for expected relativistic effects, in
particular the creation and destruction of massive particles from energy. For this, we must
resort to quantum field theory. Of course, Dirac did find a way to write down a single-
particle wave equation – with a different, and more palatable interpretation of negative
energies – and we take this up in Section 8.2. First, though, we take a small detour to
show how the conceptual problems with the Klein–Gordon wave function are solved if we
interpret the solution as a quantum field.

8.1.5 The Klein–Gordon Field

We now return to finding a solutionΨ(x, t) to the Klein–Gordon equation (8.6). This time,
however, we interpretΨ(x, t) as a second-quantized field, as discussed in Section 7.7.1. We
will find it convenient to write Ψ(x, t) as a complex linear combination of two Hermitian
fields, so we start by looking for a Hermitian solution Φ(x, t) of (8.6). We write

Φ(x, t) =
1

L3/2 ∑
k

qk(t)eik·x (8.25)

where we interpret the qk(t) as operators in second quantization. Once again, we use a “big
box” normalization in which the k form a complete set of discrete wave vectors. We ensure
that Φ(x, t) is Hermitian by requiring that

q†
k(t) = q−k(t). (8.26)

Inserting (8.25) into (8.6), we find that

q̈k +ω
2
kqk = 0 (8.27)

where ω2
k ≡ k2 +m2. (Recall that we are using natural units, in which h̄ = c = 1.)

Equation (8.27) suggests how to quantize the Klein–Gordon field. If the qk(t) were
classical quantities, then (8.27) would imply that they behave just like the position
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coordinate in a simple harmonic oscillator, and we learned how to quantize the simple
harmonic oscillator in Chapter 2. However, by virtue of (8.26), unlike the position
coordinate, qk is not a Hermitian operator. Nevertheless, we can derive commutation
relations for the qk from first principles of the quantum harmonic oscillator.

Consider a two-dimensional isotropic harmonic oscillator with position coordinates x
and y and natural frequency ω. (The two degrees of freedom will correspond to qk and
q−k. Note that ωk = ω−k.) In terms of their respective creation and annihilation operators,
in natural units, the position coordinates are

x =
1√

2mω
(
ax +a†

x
)

and y =
1√

2mω
(
ay +a†

y
)

. (8.28)

Now define the (non-Hermitian) operators q± as

q± =

√
m
2
(x± iy) (8.29)

so that q†
+ = q−, which is similar to (8.26). Making the definitions a± = (ax ± iay)/

√
2, we

write

q+ =
1√
2ω

(a++a†
−). (8.30)

Note that a± each satisfy the appropriate commutation relations with their respective
creation operator a†

±, but also [a+,a†
−] = 0. That is, the a+ and a− correspond to

independent quanta.
Therefore, following (8.30), the field Φ(x, t) is given by (8.25) with

qk(t) =
1√
2ωk

[
ake−iωkt +a†

−keiωkt
]

(8.31a)

with [
ak,a†

k′

]
= δk,k′ (8.31b)

and [ak,ak′ ] = 0 = [a†
k,a†

k′ ]. Evidently, the Klein–Gordon field specifically applies to
bosons.

Of course, (8.31) are contrived. When quantizing the simple harmonic oscillator in
Chapter 2, we made use of the definition of momentum as the generator of translations, and
this provided the physical basis for deriving the properties of the creation and annihilation
operators. We simply used this as a model for building the qk, because (8.27) shows that
they behave like a classical oscillator. Therefore, we should check that implications of
(8.31) are consistent with the physical interpretation of momentum.

The momentum operator, in second quantization, should be P = ∑k Nkk = ∑k ka†
kak.

Showing that it is indeed the generator of translation, as we defined in Section 1.6, is
equivalent to showing that [Φ(x, t),P] =−i∇Φ(x, t). Writing Φ(x, t) explicitly as

Φ(x, t) =
1

L3/2 ∑
k

1√
2ωk

(
ake−iωkt +a†

−keiωkt
)

eik·x (8.32)
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we can evaluate the commutators[
ak,a†

k′ak′

]
= aka†

k′ak′ −a†
k′ak′ak =

[
ak,a†

k′

]
ak′ = δk,k′ak′ (8.33)[

a†
−k,a†

k′ak′

]
= a†

−ka†
k′ak′ −a†

k′ak′a†
−k = a†

k′

[
a†
−k,ak′

]
=−δ−k,k′a†

k′ (8.34)

to calculate the commutator

[Φ(x, t),P] =
1

L3/2 ∑
k

∑
k′

1√
2ωk

([
ak,a†

k′ak′

]
e−iωkt +

[
a†
−k,a†

k′ak′

]
eiωkt

)
k′eik·x

=
1

L3/2 ∑
k

1√
2ωk

(
akke−iωkt −a†

−k(−k)eiωkt
)

eik·x

=
1

L3/2 ∑
k

1√
2ωk

k
(

ake−iωkt +a†
−keiωkt

)
eik·x

=−i∇Φ(x, t) (8.35)

as it should be. This gives us confidence in the physical interpretation of our construction
of the Klein–Gordon field (8.32).

The Hamiltonian is simply given by the sum of the single oscillator energies, that is

H = ∑
k

(
a†

kak +
1
2

)
ωk = ∑

k
Nkωk +∑

k

1
2
ωk. (8.36)

We interpret the energy eigenvalues as the sum over the numbers of quanta, times their
respective energies, plus the zero point energy. This is similar to the situation with energy
in the electromagnetic field, in terms of photons, discussed in Section 7.8.

The energy eigenvalues are manifestly positive. There is no longer an issue with negative
energies! We have solved one of the big problems of our relativistic wave equation without
even trying. It remains, however, to see if we can resolve the problem of a probabilistic
interpretation using our construction.

We saw in (8.20) the suggestion that charge conservation might be associated with
breaking up the wave function into two complex components. To that end, let us use the
Hermitian field Φ(x, t) to form a complex (non-Hermitian) fieldΨ(x, t) as

Ψ(x, t)≡ 1√
2
[Φ1(x, t)+ iΦ2(x, t)] (8.37)

which now contains two independent sets of field operators ajk with j = 1,2. That is

Φj(x, t) =
1

L3/2 ∑
k

1√
2ωk

[
ajkei(k·x−ωkt) +a†

jke−i(k·x−ωkt)
]

(8.38a)[
ajk,a†

j ′k′

]
= δjj ′δk,k′ (8.38b)[

ajk,aj ′k′
]
= 0. (8.38c)

Note that in deriving (8.38a) from (8.32), we switched the dummy summation index in the
second term from −k to k. Now writeΨ(x, t) in terms of its own field operators bk and ck
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as

Ψ(x, t) =
1

L3/2 ∑
k

1√
2ωk

[
bkei(k·x−ωkt) + c†

ke−i(k·x−ωkt)
]

(8.39a)

bk ≡
1√
2
[a1k + ia2k] (8.39b)

ck ≡
1√
2
[a1k − ia2k] . (8.39c)

Note that bk and ck act as an alternative set of field operators, with respect to a1k and a2k.
That is, for example, [

bk,b†
k

]
=

1
2

[
a1k + ia2k,a†

1k − ia†
2k

]
=

1
2

[
a1k,a†

1k

]
+

1
2

[
a2k,a†

2k

]
= 1, (8.40a)[

bk,c†
k

]
=

1
2

[
a1k + ia2k,a†

1k + ia†
2k

]
=

1
2

[
a1k,a†

1k

]
− 1

2

[
a2k,a†

2k

]
= 0, (8.40b)

b†
kbk + c†

kck = a†
1ka1k +a†

2ka2k. (8.40c)

In terms of bk and ck, the Hamiltonian and momentum operators become

H = ∑
k
ωk

(
b†

kbk + c†
kck +1

)
(8.41a)

P = ∑
k

k
(

b†
kbk + c†

kck

)
. (8.41b)

It begs the question, why convert to the fields bk and ck from a1k and a2k if the energy
and momentum are equivalently expressed in terms of either sets of quanta? The answer is
that, as we will see in a moment, bk and ck will naturally take on the role of “particle” and
“antiparticle” operators.

In fact, we are now ready to consider the conservation of charge3 with our free Klein–
Gordon field. The field Ψ(x, t) satisfies the Klein–Gordon equation because Φ1(x, t) and
Φ2(x, t) are solutions. Therefore, following (8.11), we know that ∂μjμ = 0 for the field

jμ(x, t) = C×
[
Ψ(∂ μΨ†)−Ψ†(∂ μΨ)

]
(8.42)

where C is an arbitrary constant, so the quantity represented by the field

Q =
∫

d3x j0(x, t) = C
∫

V=L3
d3x

[
Ψ

∂Ψ†

∂ t
−Ψ† ∂Ψ

∂ t

]
(8.43)

is conserved. (It is worth noting that (8.37) implies that Ψ(x, t) and Ψ†(x, t) commute,
since Φ1(x, t) and Φ2(x, t) are Hermitian and commute with each other.) Inserting (8.39a),
we find

3 Since we are in a multiparticle field theory now, the concept of conservation of probability for a single particle
is irrelevant.
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Q = C
1
L3

∫
V=L3

d3x∑
k

∑
k′

1√
2ωk

1√
2ωk′

×
[(

bkei(k·x−ωkt) + c†
ke−i(k·x−ωkt)

)(
iωk′b†

k′e
−i(k′·x−ωk′ t)− iωk′ck′ei(k′·x−ωk′ t)

)
−

(
b†

ke−i(k·x−ωkt) + ckei(k·x−ωkt)
)(

−iωk′bk′ei(k′·x−ωk′ t) + iωk′c†
k′e

−i(k′·x−ωk′ t)
)]

.

(8.44)

In the next step, we carry through the volume integrals. The procedure is reminiscent of
our work with the electromagnetic field, and in fact invokes the same result as in (7.174).
The two sums in (8.44) collapse to one, with k′ = ±k, so ωk′ = ωk, and an overall factor
of L3 appears. We find

Q = C
i
2 ∑

k

[
bkb†

k −bkc−ke−2iωk′ t + c†
kb†

−ke2iωk′ t − c†
kck

+b†
kbk −b†

kc†
−ke2iωk′ t + ckb−ke−2iωk′ t − ckc†

k

]
= C

i
2 ∑

k

[
bkb†

k − c†
kck +b†

kbk − ckc†
k

]
where the cross terms cancel because the bk and ck commute, and we switch dummy indices
k for −k in the second pair of terms. Finally, since bkb†

k = b†
kbk +1 and ckc†

k = c†
kck +1,

we have

Q = C̃∑
k

[
b†

kbk − c†
kck

]
(8.45)

where C̃ ≡ iC is still an arbitrary constant.
Equation (8.45) is quite a triumph. It says that a conserved quantity Q, based on the

conserved current (8.42), is proportional to the total number of “b” quanta, minus the total
number of “c” quanta. Of course, the physical meaning of Q depends on the particular
current in question, but electric charge is a good example if we incorporate Maxwell’s
equations. It is natural, therefore, to interpret the “b” quanta as “particles” and the “c”
quanta as “antiparticles.”

8.1.6 Summary: The Klein–Gordon Equation and the Scalar Field

A straightforward pursuit of a relativistic wave equation led us to (8.6), which gives
the correct wave function for a free relativistic particle. One big problem, though, is
that it implied a full complement of negative total energies, for which there is no good
physical interpretation. Another big problem is that we were unable to come up with
a conserved current that would provide a (necessarily positive) probability density. By
adding electromagnetism in the appropriately covariant fashion, we developed some
insight about these problems, but no good answers. It also allows a solution for one-
electron atoms (Problem 8.7 at the end of this chapter) but that solution gives fine structure
that does not agree with experiment.

We then discovered that interpreting the solution to (8.6) as a field in second quantiza-
tion, rather than a wave function, led to the implication that the energies of free particles are
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all positive. We also found a perfectly consistent way to interpret the conserved current, in
terms of “particles and antiparticles.” The creation and annihilation operators are bosonic,
and they have no additional degrees of freedom, so the Klein–Gordon field is necessarily
spin zero, that is, a scalar field.

It would seem, then, that we have found our way out of the woods. The downside,
though, is that we have traded a problem with a single degree of freedom in the one-
particle wave function, to one with an infinite number of degrees of freedom. This presents
a major hurdle to solving problems that include realistic interactions. Perturbation theory
is generally a viable technique for arriving at a solution, covered in any textbook devoted
to quantum field theory.

The problem of getting the wrong fine structure for one-electron atoms remains,
however. For this, it took Dirac’s insight to find a solution, and we cover that next.

8.2 The Dirac Equation

Many of the difficulties with interpreting the results from the Klein–Gordon equation stem
from the fact that it is a second-order differential equation in time. These include a nonpos-
itive definite probability density, and additional degrees of freedom, although both of these
can be identified to some extent with particles and their oppositely charged antiparticles.
Nevertheless, Dirac looked for a way to write a wave equation that is first order in time,
and along the way discovered the need for j = 1/2 angular momentum states in nature. This
also lent itself to a particularly useful interpretation of the negative energy states.

The linear differential equation we seek can be written as

(iγμ∂μ−m)Ψ(x, t) = 0 (8.46)

where the γμ have yet to be determined. (Of course, the constant m is also yet to be
determined, but it will turn out to be the mass.) We must still insist that the correct energy
eigenvalues (8.10) are obtained for a free particle (8.9), as does (8.8). We can turn (8.46)
into (8.8) simply by operating on it with −iγν∂ν−m to get

(γν∂νγμ∂μ+m2)Ψ(x, t) = 0 (8.47)

and then imposing the condition that γνγμ∂ν∂μ = ∂ μ∂μ = ημν∂ν∂μ. This condition can be
written succinctly, by reversing dummy indices to symmetrize, as

1
2
(γμγν+γνγμ)≡ 1

2
{γμ,γν}= ημν . (8.48)

Thus the four quantities γμ, μ = 0,1,2,3, are not simply complex numbers, but rather
entities that obey something called a Clifford algebra. Clearly this algebra implies that(

γ0)2
= 1 (8.49a)(

γi)2
=−1 i = 1,2,3 (8.49b)

γμγν =−γνγμ if μ 	= ν. (8.49c)
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Note that the anticommutation property of the γμ means that each of these matrices (as
well as α and β, as defined below) are traceless.

Now substitute the free-particle solution (8.9) into (8.46) to find

γμpμ−m = 0 (8.50)

from which we can recover the free-particle energy eigenvalues E. Writing (8.50) out in
terms of timelike and spacelike parts, and then multiplying through by γ0, we obtain

E = γ0γ ·p+γ0m. (8.51)

This leads to the Dirac Hamiltonian, written in a traditional form. Making the definitions

αi ≡ γ0γi and β ≡ γ0 (8.52)

we arrive at

H = α ·p+ βm. (8.53)

Note that if we add electromagnetism by making the substitution (8.13) into (8.50), and
then setting A = 0 and A0 =Φ, we have

H = α ·p+ βm+ eΦ (8.54)

which controls the motion of a charged particle in an electrostatic potential Φ. We will
make use of this when we solve the relativistic one-electron atom in Section 8.4.1.

Which form of the Dirac equation we use, whether it be (8.1) with (8.53) or (8.54),
or the covariant form (8.46) perhaps with the substituion (8.13), depends on the specific
problem at hand. For example, sometimes it is easiest to use (8.53) when solving problems
involving dynamics and the Dirac equation, whereas it is easier to discuss symmetries of
the Dirac equation in covariant forms using γμ.

The algebra (8.49) can be realized with square matrices, so long as they are at least 4×4.
We know that 2× 2 matrices are not large enough, for example, since the Pauli matrices
σ form a complete set along with the identity matrix. However {σk,1} = 2σk, so this set
is not large enough to realize the Clifford algebra. Therefore Ψ(x, t) in (8.46) would be a
four-dimensional column vector. In order to keep a convention consistent with our matrix
representation of states and operators, we insist that α and β are Hermitian matrices. Note
that this implies that γ0 is Hermitian, while γ is anti-Hermitian.

We choose to make use of the 2×2 Pauli spin matrices σ (3.50) and we write

α =

[
0 σ
σ 0

]
and β =

[
1 0
0 −1

]
. (8.55)

That is, we write these 4×4 matrices as 2×2 matrices of 2×2 matrices.

8.2.1 The Conserved Current

The Dirac equation immediately solves the problem of the positive definite nature of the
probability density. DefiningΨ† in the usual way, namely as the complex conjugate of the
row vector corresponding to the column vectorΨ, we can show that the quantity ρ=Ψ†Ψ
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is in fact interpretable as a probability density. First, as the sum of the squared magnitudes
of all four components ofΨ(x, t), it is positive definite.

Historically, the ability of the Dirac equation to provide a positive definite probability
current was one of the main reasons it was adopted as the correct direction for relativistic
quantum mechanics. An examination of its free-particle solutions led to an attractive
interpretation of negative energies, and in fact to the discovery of the positron.

Second, it satisfies the continuity equation

∂ρ
∂ t

+∇ · j = 0 (8.56)

for j =Ψ†αΨ. (This is simple to prove. Just use the Schrödinger equation and its adjoint.
See Problem 8.10 at the end of this chapter.) This means that ρ can only change on the
basis of a flow into or out of the immediate region of interest, and is therefore a conserved
quantity.

Instead ofΨ† one usually usesΨ≡Ψ†β=Ψ†γ0 in forming the probability density and
current. In this case ρ = Ψ†Ψ = Ψ†γ0γ0Ψ = Ψγ0Ψ and j = Ψ†γ0γ0αΨ = Ψγ0αΨ.
Since γ0α = γ by (8.52) we have

∂
∂ t

(
Ψγ0Ψ

)
+∇ ·

(
ΨγΨ

)
= ∂μjμ = 0 (8.57)

where

jμ =ΨγμΨ (8.58)

is a four-vector current. Rewriting (8.46) in terms of four-momentum as

(γμpμ−m)Ψ(x, t) = 0, (8.59)

and also taking the adjoint of this equation and using (8.49) to insert a factor of γ0,

Ψ(x, t)(γμpμ−m) = 0, (8.60)

we come to an insightful interpretation of the conserved current for a free particle. We write

jμ =
1
2

{[
Ψγμ

]
Ψ+Ψ [γμΨ]

}
=

1
2m

{[
Ψγμ

]
γνpνΨ+Ψγνpν [γμΨ]

}
=

1
2m
Ψ [γμγν+γνγμ]pνΨ

=
pμ

m
ΨΨ. (8.61)

Thus, writing the usual Lorentz contraction factor as γ,

j0 =
E
m
ΨΨ= γ

[
Ψ†

upΨup −Ψ†
downΨdown

]
(8.62)

j =
p
m
ΨΨ= γv

[
Ψ†

upΨup −Ψ†
downΨdown

]
. (8.63)
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The factor of γ is expected because of the Lorentz contraction of the volume element d3x
in the direction of motion. (See Holstein (1992) for an extended discussion.) The meaning
of the relative negative sign of the upper and lower components becomes clearer after we
study the specific solutions for the free particle.

8.2.2 Free-Particle Solutions

We are now in a position to study solutions of the Dirac equation and their symmetry prop-
erties. Already we notice, however, that the wave function Ψ(x, t) has four components,
whereas the Klein–Gordon wave function Υ(x, t) has two. We will see that the additional
degree of freedom in the Dirac equation is the same quantity we called “spin 1

2 ” at the very
beginning of this book. The four-component objectΨ(x, t) is called a “spinor.”

We get immediate insight as to the nature of the solutions of the Dirac equation, just by
considering free particles at rest (p = 0). In this case the Dirac equation is simply i∂tΨ =

βmΨ. Given the diagonal form of β (8.55) we see that there are four independent solutions
forΨ(x, t). These are

Ψ1 = e−imt

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ , Ψ2 = e−imt

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , Ψ3 = e+imt

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ , Ψ4 = e+imt

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ .

(8.64)

Just as in the case of the Klein–Gordon equation, the lower half of the wave function
corresponds to negative energy, and we will need to deal with its interpretation later. Both
the upper and lower halves of the Dirac wave function, however, have one component that
it is tempting to call “spin up” and the other we would call “spin down.” This interpretation
is in fact correct, but we need to be somewhat more ambitious before we can state this with
confidence.

Let us go on and consider free-particle solutions with nonzero momentum p = pẑ, that
is, a particle moving freely in the z-direction. In this case, we want to solve the eigenvalue
problem HΨ = EΨ for H = αzp+ βm, which is no longer diagonal in spinor space. The
eigenvalue equation becomes⎡⎢⎢⎣

m 0 p 0
0 m 0 −p
p 0 −m 0
0 −p 0 −m

⎤⎥⎥⎦
⎡⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎦ = E

⎡⎢⎢⎣
u1

u2

u3

u4

⎤⎥⎥⎦ . (8.65)

Notice that the equations for u1 and u3 are coupled together, as are the equations for
components u2 and u4, but these components are otherwise independent of each other. This
makes it simple to find the eigenvalues and eigenfunctions. Details are left as an exercise.
(See Problem 8.11 at the end of this chapter.) From the two equations coupling u1 and
u3, we find E = ±Ep. We find the same for the two equations coupling u2 and u4. Once
again, we find the expected “correct” positive energy eigenvalue, and also the “spurious”
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negative energy solution. In the case of the Dirac equation, however, a relatively palatable
interpretation is forthcoming, as we shall see shortly.

First, however, let us return to the question of spin. Continue to construct the free-particle
spinors. For E = +Ep we can either set u1 = 1 (and u2 = u4 = 0) in which case u3 =

+p/(Ep+m) or u2 = 1 (and u1 = u3 = 0) in which case u4 =−p/(Ep+m). In both cases, as
for the Klein–Gordon equation, the upper components dominate in the nonrelativistic case.
Similarly, for E =−Ep the nonzero components are either u3 = 1 and u1 =−p/(Ep +m) or
u4 = 1 and u2 = p/(Ep +m) and the lower components dominate nonrelativistically.

Now consider the behavior of the operator Σ · p̂ = Σz where Σ is the 4×4 matrix

Σ≡
[
σ 0
0 σ

]
. (8.66)

We expect this operator to project out components of spin in the direction of momentum.
Indeed, it is simple to see that the spin operator S = h̄

2Σ projects out positive (negative)
helicity for the positive energy solution with u1 	= 0 (u2 	= 0). We find the analogous results
for the negative energy solutions. In other words, the free-particle solutions do indeed
behave appropriately according to the spin-up/down assignment that we have conjectured.

Putting this together, we write the positive energy solutions as

u(+)
R (p) =

⎡⎢⎢⎢⎣
1
0
p

Ep+m
0

⎤⎥⎥⎥⎦ , u(+)
L (p) =

⎡⎢⎢⎢⎣
0
1
0
−p

Ep+m

⎤⎥⎥⎥⎦ for E =+Ep (8.67a)

where the subscript R (L) stands for right (left) handedness, i.e. positive (negative) helicity.
For the negative energy solutions, we have

u(−)
R (p) =

⎡⎢⎢⎢⎣
−p

Ep+m
0
1
0

⎤⎥⎥⎥⎦ , u(−)
L (p) =

⎡⎢⎢⎢⎣
0
p

Ep+m
0
1

⎤⎥⎥⎥⎦ for E =−Ep. (8.67b)

These spinors are normalized to the factor 2Ep/(Ep +m). The free-particle wave functions
are formed by including the normalization, and also the factor exp(−ipμxμ).

8.2.3 Interpretation of Negative Energies

Dirac made use of the Pauli exclusion principle in order to interpret the negative energy
solutions. One conjectures a “negative energy sea” that is filled with electrons, as shown in
Figure 8.1. (This represents a “background” of infinite energy and infinite charge, but it is
possible to imagine that we would be insensitive to both of these.) Since this fills all of the
negative energy states, it is not possible for positive energy electrons to fall into negative
energies. It would be possible, however, for a high-energy photon to promote electrons
out of the sea into positive energies, where it would be observable. The “hole” left in the
sea would also be observable, as an object will all the properties of an electron, but with
positive charge.
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Electron

Hole (positron)

Energy

0
γ

m0c2

−m0c2

Fig. 8.1 The figure on the left shows Dirac’s interpretation of negative energy states, including the possibility that a
negative energy electron can be promoted to positive energy, leaving a positively charge hole, or a “positron.”
The figure on the right shows the discovery of the positron, Anderson, Phys. Rev., 43 (1933) 491. This cloud chamber
photograph shows a particle track moving upward, bending in a known magnetic field. The direction is
determined because the curvature above the lead plate is larger than below, since the particle lost energy while
traversing it. The amount of energy loss is not consistent with a proton of this momentum, but is consistent with a
particle having the mass of an electron.

Figure 8.1 also shows the original discovery of the positron, by Carl Anderson in 1933.
After this discovery, the Dirac equation became the standard treatment of relativistic
quantum mechanics, explaining the spin 1

2 electron and (as we will see) its electromagnetic
interactions.

8.2.4 Electromagnetic Interactions

We introduce electromagnetic interactions in the Dirac equation in the same way that we
did for the Klein–Gordon equation, that is through

p̃ ≡ p− eA (8.68)

and the Dirac equation becomes, in 2×2 matrix form,[
m σ · p̃
σ · p̃ −m

][
u
v

]
= E

[
u
v

]
where Ψ=

[
u
v

]
. (8.69)

At nonrelativistic (positive) energies E = K+m, the kinetic energy K � m and the lower
equation becomes

σ · p̃u = (E+m)v ≈ 2mv (8.70)

which lets us write the upper equation as

(σ · p̃)(σ · p̃)
2m

u =

[
p̃2

2m
+

iσ
2m

· (p̃× p̃)
]

u = Ku (8.71)
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where we have used (3.57). Now in the coordinate representation

p̃× p̃u = (i∇+ eA)× (i∇u+ eAu)
= ie [∇× (Au)+A×∇u]
= ie(∇×A)u = ieBu (8.72)

where B is the magnetic field associated with the vector potential A. Therefore (8.71)
becomes [

p̃2

2m
−μ ·B

]
u = Ku (8.73)

where

μ = g
e

2m
S (8.74)

with

S =
h̄
2
σ (8.75)

and

g = 2. (8.76)

In other words, the Dirac equation in the presence of an electromagnetic field, reduces
nonrelativistically to (8.73), which is just the time-independent Schrödinger equation
(with energy eigenvalue K) for a particle with magnetic moment μ in the presence of
an external magnetic field. The magnetic moment is derived from the spin operator with a
gyromagnetic ratio g = 2.

This brings us full circle. We began this book by discussing the behavior of particles with
magnetic moments in the presence of inhomogeneous magnetic fields, where it appears that
they behaved as if they had spin projections quantized in one of two states. We now see
that this stems from a consideration of relativity and quantum mechanics, for particles that
obey the Dirac equation.

8.3 Symmetries of the Dirac Equation

Let us now examine some symmetries inherent in the Dirac equation. We will consider
situations where a spin 1

2 particle sits in some external potential, that is, solutions to the
equation

i
∂
∂ t
Ψ(x, t) = HΨ(x, t) = EΨ(x, t) (8.77)

where

H = α ·p+ βm+V(x) (8.78)
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for some potential energy function V(x). This form, of course, ruins our ability to write
a covariant equation, but that is a necessary penalty if we want to talk about potential
energy. We note, though, that in the case of electromagnetic interactions, we can end up
with exactly this form from the covariant equation if we choose a frame in which the vector
potential A = 0.

8.3.1 Angular Momentum

Our discussion of rotational invariance for wave mechanics in three dimensions centered
on the fact that the orbital angular momentum operator L = x × p commuted with
Hamiltonians with “central potentials.” This in turn hinges on the fact that L commutes
with p2, and so the kinetic-energy operator, and also x2 (see (3.264)).

Let us now consider the commutator [H,L] first for the free Dirac Hamiltonian (8.53). It
is obvious that [β,L] = 0 so, we need to consider the commutator

[α ·p,Li] = [α�p�,εijkxjpk]

= εijkα�[p�,xj]pk

=−iεijkαjpk 	= 0. (8.79)

(Recall our convention of summing over repeated indices.) In other words, the orbital
angular momentum operator does not commute with the Dirac Hamiltonian! Therefore L
will not be a conserved quantity for spin 1

2 particles that are either free or bound in central
potentials.

Consider, however, the spin operator (8.66) and its commutator with the Hamiltonian. It
is simple to show that βΣi =Σiβ. It is also easy to use (3.53) to show that [αi,Σj] = 2iεijkαk.
So, we need to evaluate

[α ·p,Σj] = [αi,Σj]pi = 2iεijkαkpi. (8.80)

Thus we see that (putting back in h̄ momentarily) even though neither L nor Σ commutes
with the free Dirac Hamiltonian, the combined vector operator

J ≡ L+
h̄
2
Σ= L+S (8.81)

does commute. That is, the Dirac Hamiltonian conserves total angular momentum, but not
orbital or spin angular momenta separately.

8.3.2 Parity

In the case where V(x) = V(|x|) we expect solutions to be parity symmetric. That is, we
should have Ψ(−x) = ±Ψ(x). It does not appear that this is the case, however, since if
x →−x, then p →−p in (8.78) and the Hamiltonian changes form. However, this simple
look does not take into account the parity transformation on spinors.

Indeed, the parity transformation operator π, discussed in Section 4.2, only concerns
coordinate reflection. That is, π is a unitary (and also Hermitian) operator with the
properties
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π†xπ =−x (8.82a)
π†pπ =−p (8.82b)

(See equations (4.43) and (4.50).) The full parity operator, let us call it P , needs to be
augmented with a unitary operator UP, which is a 4×4 matrix in spinor space, and which
renders the Hamiltonian (8.78) invariant under a parity transformation. That is

P ≡ πUP (8.83)

where the matrix UP must have the properties

U†
PαUP =−α (8.84a)

U†
PβUP = β (8.84b)

as well as

U2
P = 1. (8.84c)

Obviously UP = β = β† is consistent with these requirements. Consequently, a parity
transformation on a Dirac Hamiltonian consists of taking x →−x and multiplying on both
the left and the right by β. The transformation of a spinorΨ(x) yields βΨ(−x).

Therefore, in cases where V(x) = V(|x|), we expect to find eigenstates of the Dirac
Hamiltonian which are simultaneously eigenstates of parity, J2 and Jz. Luckily, we have
already constructed angular and spinor parts of these eigenfunctions. These are the two-
component spin-angular functions Y j=l±1/2,m

l (θ ,φ) defined in (3.384). We will make use
of these as we proceed to solve the Dirac equation for a particular potential energy function
of this form in Section 8.4.

8.3.3 Charge Conjugation

We saw in (8.24) that for the Klein–Gordon equation, we could split the positive and
negative energy solutions into “particle” and “antiparticle” solutions on the basis of the
association

Ψparticle(x, t)≡ΨE>0(x, t) (8.85a)
Ψantiparticle(x, t)≡Ψ∗

E<0(x, t). (8.85b)

Let us work towards a similar association for the Dirac equation, and then explore a
symmetry operation that connects the two solutions.

For our purposes, an “antiparticle” is an object whose wave function behaves just as
that for a “particle” but with opposite electric charge. So, let us return to the covariant
form (8.46) of the Dirac equation, and add an electromagnetic field according to our usual
prescription (8.13). We have(

iγμ∂μ− eγμAμ−m
)
Ψ(x, t) = 0. (8.86)

We seek an equation where e →−e, and which relates the new wave function to Ψ(x, t).
The key is that the operator in (8.86) has three terms, only two of which contain γμ, and
only one of those two contains i. So, take the complex conjugate of this equation to find
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[
−i(γμ)∗ ∂μ− e(γμ)∗ Aμ−m

]
Ψ∗(x, t) = 0 (8.87)

and the relative sign between the first two terms is reversed. If we can now identify a matrix
C̃ such that

C̃(γμ)∗ C̃−1 =−γμ (8.88)

we just insert 1 = C̃−1C̃ before the wave function in (8.87), and multiply on the left by C̃.
The result is [

iγμ∂μ+ eγμAμ−m
]

C̃Ψ∗(x, t) = 0. (8.89)

Therefore, the wave function C̃Ψ∗(x, t) satisfies the “positron” equation (8.89) where
Ψ(x, t) satisfies the “electron” equation (8.86).

We need to identify the matrix C̃. From (8.52) and (8.55) we see that γ0, γ1, and γ3 are
real matrices, but

(
γ2)∗ =−γ2. This makes it possible to realize (8.88) with

C̃ = iγ2. (8.90)

Therefore, the “positron wave” function corresponding toΨ(x, t) is iγ2Ψ∗(x, t). It is more
convenient, in turns out, to write this wave function in terms of Ψ = Ψ†γ0 = (Ψ∗)T γ0.
(The superscript T indicates “transpose.”) This means that the “positron” wave function
can be written as

C̃Ψ∗(x, t) = iγ2 (
Ψγ0)T

= UC
(
Ψ

)T (8.91)

where

UC ≡ iγ2γ0. (8.92)

Therefore, the charge conjugation operator is C where

CΨ(x, t) = UC
(
Ψ

)T . (8.93)

Note that the change in the space-time part of the free-particle wave function Ψ(x, t) ∝
exp(−ipμxμ) due to C is to, effectively, take x →−x and t →−t.

8.3.4 Time Reversal

Let us now apply the ideas of Section 4.4 to the Dirac equation. First, a brief review. This
discussion hinged on the definition (4.117) of an antiunitary operator θ

θ = UK (8.94)

where U is a unitary operator and K is an operator which takes the complex conjugate of
any complex numbers which follow it. Clearly, K does not affect the kets to the right, and
K2 = 1.

Based on this, we defined an antiunitary operator Θ which takes an arbitrary state |α〉 to
a time-reversed (or, more properly, a motion-reversed) state |α̃〉, that is

Θ|α〉= |α̃〉. (8.95)
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We imposed two reasonable requirements on Θ, namely (4.148) and (4.150), that is

ΘpΘ−1 =−p (8.96a)
ΘxΘ−1 = x (8.96b)

and so

ΘJΘ−1 =−J. (8.96c)

For Hamiltonians that commute with Θ, we made the important observation (4.162) that
an energy eigenstate |n〉 has the same energy eigenvalue as its time-reversed counterpart
state Θ|n〉. We further learned that acting twice on a spin 1

2 state yields Θ2 =−1, since the
two-component spinor form of (4.168) shows that

Θ=−iσyK. (8.97)

In other words, U =−iσy in (8.94). Indeed, in this case

Θ2 =−iσyK(−iσyK) = σyσ
∗
y K2 =−1. (8.98)

We will see something similar when we apply time reversal to the Dirac equation, which
we now take up.

Returning to the Schrödinger equation (8.1) with the Dirac Hamiltonian (8.52), but using
the γ matrices instead of α and β, we have

i∂tΨ(x, t) =
[
−iγ0γ ·∇+γ0m

]
Ψ(x, t). (8.99)

We write our time-reversal operator, following the scheme earlier in this Section, as T

instead of Θ, where

T = UTK (8.100)

and UT is a unitary matrix which we need to identify. As before, insert T −1T before the
wave function on the left and right sides, and multiply through from the left by T . The left
side of (8.99) becomes

T (i∂t)T
−1T Ψ(x, t) = UTK(i∂t)KU−1

T UTΨ
∗(x, t)

=−i∂tUTΨ
∗(x, t) = i∂−t [UTΨ

∗(x, t)] (8.101)

reversing the sign of t in the derivative, as we need. In order for [UTΨ
∗(x, t)] to satisfy the

time-reversed form of (8.99), we must insist that

T
(
iγ0γ

)
T −1 = iγ0γ (8.102a)

T
(
γ0)T −1 = γ0. (8.102b)

These are easily converted to a more convenient form so that we can identify UT. First, do
T −1 on the left and T on the right. Then, do K on the left and right. Finally, insert UTU−1

T
in between the γ matrices in (8.102a) and then use the result from (8.102b). Both results
then become

U−1
T (γ)UT =−(γ)∗ (8.103a)

U−1
T

(
γ0)UT =

(
γ0)∗ . (8.103b)
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We now specialize to our choice (8.55), with (8.52), for the γ matrices. Only γ2 is
imaginary in this representation. Therefore, if we want to build UT out of γ matrices, then
(8.103) says that we need a combination that does not change the sign when commuted with
γ0 and γ2, but does change sign with γ1 and γ3. Rather obviously, this is accomplished by

UT = γ1γ3 (8.104)

up to some arbitrary phase factor. Indeed, this works out to be equivalent to the result
U = iσy in (8.97). See Problem 8.13 at the end of this chapter.

8.3.5 CPT

We conclude with a brief look of the operator combination C PT . Its action on a Dirac
wave functionΨ(x, t) is straightforward to work out, given the above discussion. That is

C PT Ψ(x, t) = iγ2 [PT Ψ(x, t)]∗

= iγ2γ0 [T Ψ(−x, t)]∗

= iγ2γ0γ1γ3Ψ(−x, t) = iγ0γ1γ2γ3Ψ(−x, t). (8.105)

This combination of γ matrices is well known, and in fact given a special name. We define

γ5 ≡ iγ0γ1γ2γ3. (8.106)

In our basis (8.55), again writing 4× 4 matrices as 2× 2 matrices of 2× 2 matrices, we
find that

γ5 =

[
0 1
1 0

]
. (8.107)

That is, γ5, and therefore also C PT , reverses the up and down two-component spinors in
the Dirac wave function. The net effect of C PT on a free-particle electron wave function
is in fact to convert it into the “positron” wave function. See Problem 8.14 at the end of
this chapter.

This is a “tip of the iceberg” observation of a profound concept in relativistic quantum
field theory. The notion of C PT invariance is equivalent to a total symmetry between
matter and antimatter, so long as one integrates over all potential final states. For example,
it predicts that the mass of any particle must equal the mass of the corresponding
antiparticle.

Indeed, one can show, although it is far from straightforward, that any Lorentz invariant
quantum field theory is invariant under C PT . The implications are far reaching,
particularly in this day and age when string theories offer the possibility that Lorentz
invariance is broken at distances approaching the Planck mass. The reader is referred to
any one of a number of advanced textbooks, and also the current literature, for more details.
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8.4 Solving with a Central Potential

Our goal is to solve the eigenvalue problem

HΨ(x) = EΨ(x) (8.108)

where

H = α ·p+ βm+V(r) (8.109)

and we write the four-component wave function Ψ(x) in terms of two two-component
wave functions ψ1(x) and ψ2(x) as

Ψ(x) =
[
ψ1(x)
ψ2(x)

]
. (8.110)

Based on the symmetries of the Dirac equation that we have already discussed, we expect
Ψ(x) to be an eigenfunction of parity, J2 and Jz.

Parity conservation implies that βΨ(−x) = ±Ψ(x). Given the form (8.55) of β, this
implies that [

ψ1(−x)
−ψ2(−x)

]
=±

[
ψ1(x)
ψ2(x)

]
. (8.111)

This leaves us with two choices, namely

ψ1(−x) = +ψ1(x) and ψ2(−x) =−ψ2(x) (8.112a)
ψ1(−x) =−ψ1(x) and ψ2(−x) = +ψ2(x). (8.112b)

These conditions are neatly realized by the spinor functions Y jm
l (θ ,φ) defined in (3.384),

where l = j± (1/2). For a given value of j, one possible value of l is even and the other
is odd. Since the parity of any particular Ym

l is just (−1)l, then we are presented with two
natural choices for the angular and spinor dependences for the conditions (8.112). We write

Ψ(x) =ΨA(x)≡
[

uA(r)Y jm
j−1/2(θ ,φ)

−ivA(r)Y jm
j+1/2(θ ,φ)

]
(8.113a)

which is an even (odd) parity solution if j−1/2 is even (odd), or

Ψ(x) =ΨB(x)≡
[

uB(r)Y jm
j+1/2(θ ,φ)

−ivB(r)Y jm
j−1/2(θ ,φ)

]
(8.113b)

which is an odd (even) parity solution if j− 1/2 is even (odd). (The factor of −i on the
lower spinors is included for later convenience.) Note that although bothΨA(x) andΨB(x)
have definite parity and quantum numbers j and m, they mix values of l. Orbital angular
momentum is no longer a good quantum number when considering central potentials in the
Dirac equation.
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We are now ready to turn (8.108) into a differential equation in r for the functions
uA(B)(r) and vA(B)(r). First, rewrite the Dirac equation as two coupled equations for the
spinors ψ1(x) and ψ2(x). Thus

[E−m−V(r)]ψ1(x)− (σ ·p)ψ2(x) = 0 (8.114a)
[E+m−V(r)]ψ2(x)− (σ ·p)ψ1(x) = 0. (8.114b)

Now make use of (3.57) and (3.59) to write

σ ·p =
1
r2 (σ ·x)(σ ·x)(σ ·p)

=
1
r2 (σ ·x)[x ·p+ iσ · (x×p)]

= (σ · r̂)
[
r̂ ·p+ iσ · L

r

]
. (8.115)

Working in coordinate space, we have

r̂ ·p → r̂ · (−i∇) =−i
∂
∂ r

(8.116)

which will act on the radial part of the wave function only. We also know that

σ ·L = 2S ·L = J2 −L2 −S2 (8.117)

so that we can write

(σ ·L)Y jm
l =

[
j( j+1)− l(l+1)− 3

4

]
Y jm

l

≡ κ( j, l)Y jm
l (8.118)

where

κ =−j− 3
2
=−(λ+1) for l = j+

1
2

(8.119a)

κ = j− 1
2
=+(λ−1) for l = j− 1

2
(8.119b)

where

λ ≡ j+
1
2

. (8.120)

It is trickier to calculate the effect of the matrix factor

σ · r̂ =
[

cosθ e−iφ sinθ
eiφ sinθ −cosθ

]
(8.121)

on the spinor wave functions. In principle, we can carry out the multiplication on the Y jm
l

as defined in (3.384) and then use the definition (3.246) to evaluate the result. There is an
easier way, however.

We expect σ · r̂ to behave as a (pseudo)-scalar under rotations, so if we evaluate its effect
at one particular r̂ then it should behave this way for all r̂. Choose r̂ = ẑ, that is, θ = 0.
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Since the θ -dependent part of any Ym
l (θ ,φ) contains a factor [sinθ ]|m| we use (3.248) to

write

Ym
l (θ = 0,φ) =

√
2l+1

4π
δm0 (8.122)

in which case

Y j=l±1/2,m
l (θ = 0,φ) =

1√
2l+1

[
±
√

l±m+1/2 Ym−1/2
l (0,φ)√

l∓m+1/2 Ym+1/2
l (0,φ)

]
=

1√
4π

[
±
√

l±m+1/2 δm,1/2√
l∓m+1/2 δm,−1/2

]
or

Y j,m
l=j∓1/2(θ = 0,φ) =

√
j+1/2

4π

[
±δm,1/2

δm,−1/2

]
. (8.123)

Therefore

(σ · ẑ)Y j,m
l=j∓1/2(θ = 0,φ) =−

√
j+1/2

4π

[
∓δm,1/2

δm,−1/2

]
=−Y j,m

l=j±1/2(θ = 0,φ) (8.124)

and so, as we have argued that this result is independent of θ and φ, we have

(σ · r̂)Y j,m
l=j±1/2(θ ,φ) =−Y j,m

l=j∓1/2(θ ,φ) (8.125)

where we have used the fact that (σ · r̂)2 = 1. In other words, for a given j and m,
Y j,m

l=j±1/2(θ ,φ) is an eigenstate of σ · r̂ with eigenvalue −1 (a consequence of the pseudo-
scalar nature of the operator) and changes l to the other allowed value, which naturally has
opposite parity.

Now we return to the coupled equations (8.114) with solutions in the form (8.113). We
have two choices for ψ1(x) and ψ2(x), namely “Choice A”

ψ1(x) = uA(r)Y jm
j−1/2(θ ,φ) and ψ2(x) =−ivA(r)Y jm

j+1/2(θ ,φ) (8.126)

or “Choice B”

ψ1(x) = uB(r)Y jm
j+1/2(θ ,φ) and ψ2(x) =−ivB(r)Y jm

j−1/2(θ ,φ). (8.127)

Note that for whichever of these two choices we pick, the effect of the factor (σ · r̂), which
is part of (σ ·p) in (8.114) is to exchange l = j± 1/2 for l = j∓ 1/2 in the angular spinor
Y jm

l , that is, switching the angular spinor factor of the second term in each of (8.114) so
that it is the same as the first term. In other words, the angular factors drop out, and we are
left with just the radial equations.

Putting this all together, finally, (8.114) becomes for “Choice A”

[E−m−V(r)]uA(r)−
[

d
dr

+
λ+1

r

]
vA(r) = 0 (8.128a)

[E+m−V(r)]vA(r)+
[

d
dr

− λ−1
r

]
uA(r) = 0 (8.128b)
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and, for “Choice B”

[E−m−V(r)]uB(r)−
[

d
dr

− λ−1
r

]
vB(r) = 0 (8.129a)

[E+m−V(r)]vB(r)+
[

d
dr

+
λ+1

r

]
uB(r) = 0. (8.129b)

However, formally, equations (8.128) become (8.129) with the exchange λ ↔ −λ.
Therefore, we can focus on the solution to (8.128) and drop the subscript A.

Equations (8.128) are coupled, first-order ordinary differential equations to be solved for
the u(r) and v(r), subject to certain boundary conditions (i.e. normalizability) which will
yield eigenvalues E. This solution can at least be carried out numerically, which is practical
in many situations. We conclude this section, however, with one case that can be solved
analytically.

8.4.1 The One-Electron Atom

We can now consider atoms with one electron, with the potential energy function

V(r) =−Ze2

r
. (8.130)

We expect that the “fine structure” of the hydrogen atom, which we studied using
perturbation theory in Section 5.3, should emerge naturally with our solution using the
Dirac equation.

Start by writing (8.128) in terms of scaled variables. That is

ε ≡ E
m

(8.131)

x ≡ mr (8.132)

and recall that we write α ≡ e2(/h̄c)≈ 1/137. This gives[
ε−1+

Zα
x

]
u(x)−

[
d
dx

+
λ+1

x

]
v(x) = 0 (8.133a)[

ε+1+
Zα
x

]
v(x)+

[
d
dx

− λ−1
x

]
u(x) = 0. (8.133b)

Next consider the behavior of the solutions as x → ∞. Equation (8.133a) becomes

(ε−1)u− dv
dx

= 0 (8.134)

and so (8.133b) implies that

(ε+1)v+
du
dx

= (ε+1)v+
1

ε−1
d2v
dx2 = 0 (8.135)

which leads to
d2v
dx2 = (1− ε2)v. (8.136)
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Note that, classically, bound states require that the kinetic energy E−m−V(r) = 0 at some
distance r, and V(r) < 0 everywhere, so E−m < 0 and ε = E/m < 1. Therefore 1− ε2 is
guaranteed to be positive, and (8.136) implies that

v(x) = exp
[
−(1− ε2)1/2x

]
for x → ∞ (8.137)

where we require that v(x) be normalizable as x→∞, but ignore the normalization constant
for now. Similarly, (8.134) then implies that

u(x) = exp
[
−(1− ε2)1/2x

]
for x → ∞ (8.138)

as well.
Now write u(x) and v(x) as power series with their own expansion coefficients, and look

for relationships consistent with the differential equations. Using

u(x) = e−(1−ε2)1/2xxγ
∞

∑
i=0

aixi (8.139)

v(x) = e−(1−ε2)1/2xxγ
∞

∑
i=0

bixi (8.140)

we tacitly assume that we can find series solutions making use of the same overall power γ
for both u(x) and v(x). Indeed, inserting these expressions into (8.133) and first considering
terms proportional to xγ−1, we find, after a little rearrangement,

(Zα)a0 − (γ+λ+1)b0 = 0 (8.141a)
(γ−λ+1)a0 +(Zα)b0 = 0. (8.141b)

Our approach will soon yield recursion relations for the coefficients ai and bi. This means
that we need to avoid a0 = 0 and b0 = 0, and the only way to do this is to require that the
determinant of (8.141) vanish. That is

(Zα)2 +(γ+1+λ)(γ+1−λ) = 0 (8.142)

or, solving for γ,

γ =−1±
[
λ2 − (Zα)2]1/2 . (8.143)

Notice first λ = j+ 1/2 is of order unity, so that things will break down if Zα ∼ 1. In the
strong Coulomb fields for Z ≈ 137, spontaneous e+e− production would occur, and the
single-particle nature of the Dirac equation cannot be expected to prevail. Indeed, we have
Zα� 1 in cases of interest here. This also means that the expression within the brackets
in (8.143) is of order unity. For the − sign, this gives γ ∼−2 which would be too singular
at the origin. As a result, we choose the + sign and have

γ =−1+

[(
j+

1
2

)2

− (Zα)2

]1/2

. (8.144)

Note that for j= 1/2 we still have a singularity at the origin, since γ< 0, but this singularity
is very weak, and integrable over space.
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Starting with a value for a0 which is determined by normalization, and b0 = a0(Zα)/
(γ+ λ+ 1), we can find the remaining ai and bi by going back to the result of inserting
(8.139) and (8.140) into (8.133). Collecting powers of xγ and higher, we find

(1− ε)ai−1 −Zαai − (1− ε2)1/2bi−1 +(λ+1+γ+ i)bi = 0 (8.145a)

(1+ ε)bi−1 +Zαbi − (1− ε2)1/2ai−1 − (λ−1−γ− i)ai = 0. (8.145b)

Multiply (8.145a) by (1+ ε)1/2 and (8.145b) by (1− ε)1/2 and then add them. This leads
to a relationship between the coefficients ai and bi, namely

bi

ai
=

Zα(1+ ε)1/2 +(λ−1−γ− i)(1− ε)1/2

Zα(1− ε)1/2 +(λ+1+γ+ i)(1+ ε)1/2 . (8.146)

This relation shows that for large values of x, where terms with large i dominate, ai and
bi are proportional to each other. Furthermore (8.145) also implies that ai/ai−1 ∼ 1/i for
large i. (See Problem 8.15 at the end of this chapter.) In other words, the series (8.139)
and (8.140) will grow exponentially, and not be normalizable, unless we force the series to
terminate.

If we then assume that ai = bi = 0 for i = n′+1 then

(1− ε)an′ − (1− ε2)1/2bn′ = 0 (8.147a)

(1+ ε)bn′ − (1− ε2)1/2an′ = 0. (8.147b)

Either of these leads to the same condition on the ratio of these terminating coefficients,
namely

bn′

an′
=

[
1− ε
1+ ε

]1/2

. (8.148)

Combining (8.146) and (8.147) we have

(1+γ+n′)(1− ε2)1/2 = Zαε (8.149)

which, finally, can be solved for ε. Putting c back in, we determine the energy eigenvalues

E =
mc2[

1+ (Zα)2[√
( j+1/2)2−(Zα)2+n′

]2

]1/2 . (8.150)

We emphasize that, for any given quantum number n′, the energy eigenvalues depend on
the total angular momentum j. That is, for example, the energy will be the same for j = 1/2,
regardless of whether or not it comes from coupling l = 0 or l = 1 with spin 1

2 .
To lowest order in Zα, (8.150) becomes

E = mc2 − 1
2

mc2(Zα)2

n2 (8.151)

where n ≡ j+1/2+n′. Comparison to (3.315) shows that this is simply the familiar Balmer
formula, with the addition of rest mass energy, with n being the principal quantum number.
Including higher orders of Zα leads to the well-known expressions for the relativistic
correction to kinetic energy (5.104) and the spin-orbit interaction (5.125).
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Fig. 8.2 The energy levels of the hydrogen atom, with reference to the many high precision experiments which have
measured electromagnetic transitions between them. Taken from Cagnac, Phys. Scr., T70 (1997) 24. (a) The full
energy-level diagram, (b) with energy scale multiplied by four, and (c) fine structure of the n = 2 and n = 3 levels,
detailing behavior on the quantum numbers l and j.

Figure 8.2 shows the energy levels of the hydrogen atom, and the experiments which
made these measurements. A number of ingenious techniques were devised, including two-
photon absorption for connecting “forbidden” transitions, in order to obtain these results.
The so-called “fine structure” is clear, that is, the relativistic effects that lead to splitting
between the S and P levels for the n = 2 states, and between the S, P, and D levels for the
n = 3 states. Problem 8.16 at the end of this chapter shows that the full relativistic energy
levels give the same splittings as obtained using perturbation theory.

There is, of course, a profound discrepancy between the energy levels in Figure 8.2 and
the result (8.150) we derived for the energy eigenvalues. According to (8.150) the energy
can only depend on n and j. However, we see that there is a small splitting between, for
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example, the 2P1/2 and 2S1/2 states. This splitting, called the Lamb shift after its discoverer,
played a central role in recognizing the importance of relativistic quantum field theory in
atomic structure. See Holstein (1992) for a discussion of the history, as well as both formal
and “physically intuitive” derivations of the size of the Lamb shift.

Problem 8.17 at the end of this chapter compares energy levels predicted by (8.150) to
available high precision data.

8.5 Relativistic Quantum Field Theory

We now conclude our coverage of “Modern Quantum Mechanics.” The framework
outlined in this book continues to be the most fundamental basis by which we understand
the physical world. Although the probabilistic interpretation of the concept of measurement
is disturbing in some ways, it always prevails when confronted with experiment.

The deficiencies that remain, for example in the Lamb shift, are not the result of
problems in the underlying axioms of quantum mechanics. Instead, they are the result
of a necessary approximation we make when we try to develop quantum-mechanical wave
equations that are consistent with relativity. The ability to create and destroy particles is
inconsistent with our “single-particle” approach to writing down dynamics in quantum
mechanics. Instead, we would need to re-examine the Hamiltonian formalism, on which
much of this book is based, in order address these issues.

Quantum field theory is the correct framework for addressing relativistic quantum
mechanics, and multiparticle quantum mechanics in general. There are essentially two
ways to approach quantum field theory, neither of which is developed here. We only
mention them for the reader interested in going on to the next steps.

One approach is through the method of “second quantization” where operators are
introduced which create and destroy particles. These operators commute with each other
if they have integer spin, and anticommute for half-integer spin. Work needs to be done
in order to build in relativistic covariance, but it is relatively straightforward. It is also,
however, not necessary if the problem does not warrant it. This is the case, for example, in
a vast number of fascinating problems in condensed matter physics.

Second quantization is discussed in Section 7.5 of this book. For other examples,
see Quantum Mechanics, by Eugen Merzbacher (1998), and Quantum Theory of Many-
Particle Systems, by Alexander L. Fetter and John Dirk Walecka (2003).

The second approach is through the path-integral approach to quantum mechanics,
famously pioneered by Richard Feynman in his Ph.D. thesis. This conceptually appealing
formalism is straightforward to extend from particle quantum mechanics to quantum fields.
However, it is not straightforward to use this formalism for calculation of typical problems,
until one makes the connection onto the “canonical” formalism that eventually becomes
second quantization. Nevertheless, it is a worthwhile subject for students who would like to
have a better understanding of the principles that lead to the quantum many-body problem.

Path integrals are not the basis for many books on quantum field theory, but they are
beautifully exploited in Zee (2010).
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Problems

8.1 These exercises are to give you some practice with natural units.
a. Express the proton mass mp = 1.67262158×10−27 kg in units of GeV.
b. Assume that a particle with negligible mass is confined to a box the size of the

proton, around 1 fm = 10−15 m. Use the uncertainty principle to estimate the
energy of the confined particle. You might be interested to know that the mass,
in natural units, of the pion, the lightest strongly interacting particle, is mπ =

135 MeV.
c. String theory concerns the physics at a scale which combines gravity, relativity,

and quantum mechanics. Use dimensional analysis to find the “Planck mass” MP
which is formed from G, h̄, and c, and express the result in GeV.

8.2 Show that a matrix ημν with the same elements as the metric tensor ημν used in this
chapter, has the property that ημληλν = δμν , the identity matrix. Thus, show that the
natural relationship ημν = ημληνσηλσ in fact holds with this definition. Show also
that aμbμ = aμbμ for two four-vectors aμ and bμ.

8.3 Show that (8.11) is in fact a conserved current, when Ψ(x, t) satisfies the Klein–
Gordon equation.

8.4 Show that (8.14) follows from (8.8).

8.5 Derive (8.16a), (8.16b), and (8.18).

8.6 Show that the free-particle energy eigenvalues of (8.18) are E = ±Ep and that the
eigenfunctions are indeed given by (8.21), subject to the normalization thatΥ†τ3Υ=

±1 for E =±Ep.

8.7 This problem is taken from Landau (1996). A spinless electron is bound by the
Coulomb potential V(r) =−Ze2/r in a stationary state of total energy E ≤ m. You can
incorporate this interaction into the Klein–Gordon equation by using the covariant
derivative with V =−eΦ and A = 0.
a. Assume that the radial and angular parts of the equation separate, and that the

wave function can be written as e−iEt[ul(r)/r]Ylm(θ ,φ) and show that the radial
equation becomes

d2u
dρ2 +

[
2EZα
γρ

− 1
4
− l(l+1)− (Zα)2

ρ2

]
ul(ρ) = 0

where α = e2, γ2 = 4(m2 −E2), and ρ = γr.
b. Assume that this equation has a solution of the usual form of a power series times

the ρ→ ∞ and ρ→ 0 solutions, that is

ul(ρ) = ρk(1+ c1ρ+ c2ρ
2 + · · ·)e−ρ/2
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and show that

k = k± =
1
2
±

√(
l+

1
2

)2

− (Zα)2

and that only for k+ is the expectation value of the kinetic energy finite and that
this solution has a nonrelativistic limit which agrees with the solution found for
the Schrödinger equation.

c. Determine the recurrence relation among the ci for this to be a solution of the
Klein–Gordon equation, and show that unless the power series terminates, the
wave function will have an incorrect asymptotic form.

d. In the case where the series terminates, show that the energy eigenvalue for the
k+ solution is

E =
m(

1+(Zα)2
[

n− l− 1
2 +

√(
l+ 1

2

)2 − (Zα)2
]−2

)1/2

where n is the principal quantum number.
e. Expand E in powers of (Zα)2 and show that the first-order term yields the Bohr

formula. Connect the higher-order terms with relativistic corrections, and discuss
the degree to which the degeneracy in l is removed.

Jenkins and Kunselman, Phys. Rev. Lett., 17 (1966) 1148, report measurements of a
large number of transition energies for π− atoms in large Z nuclei. Compare some
of these to the calculated energies and discuss the accuracy of the prediction. (For
example, consider the 3d → 2p transition in 59Co which emits a photon with energy
384.6± 1.0 keV.) You will probably either need a computer to carry out the energy
differences with high enough precision, or else expand to higher powers of (Zα)2.

8.8 Prove that the traces of the γμ, α, and β are all zero.

8.9 a. Derive the matrices γμ from (8.55) and show that they satisfy the Clifford algebra
(8.49).

b. Show that

γ0 =

(
I 0
0 −I

)
= I⊗ τ3

γi =

(
0 σi

−σi 0

)
= σi ⊗ iτ2

where I is the 2× 2 identity matrix, and σi and τi are the Pauli matrices. (The ⊗
notation is a formal way to write our 4× 4 matrices as 2× 2 matrices of 2× 2
matrices.)

8.10 Prove the continuity equation (8.56) for the Dirac equation.

8.11 Find the eigenvalues for the free-particle Dirac equation (8.65).

8.12 Insert one of the four solutions u(±)
R,L (p) from (8.67) into the four-vector probability

current (8.58) and interpret the result.
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8.13 Make use of Problem 8.9 to show that UT as defined by (8.104) is just σ2 ⊗ I, up to a
phase factor.

8.14 Write down the positive helicity, positive energy free-particle Dirac spinor wave
functionΨ(x, t).
a. Construct the spinors PΨ, CΨ, T Ψ.
b. Construct the spinor C PT Ψ and interpret it using the discussion of negative

energy solutions to the Dirac equation.

8.15 Show that (8.145) imply that u(x) and v(x) grow like exponentials if the series
(8.139) and (8.140) do not terminate.

8.16 Expand the energy eigenvalues given by (8.150) in powers of Zα and show that the
result is equivalent to including the relativistic correction to kinetic energy (5.104)
and the spin-orbit interaction (5.125) to the nonrelativistic energy eigenvalues for the
one-electron atom (8.151).

8.17 The National Institute of Standards and Technology (NIST) maintains a website
with up-to-date high precision data on the atomic energy levels of hydrogen and
deuterium:

http://physics.nist.gov/PhysRefData/HDEL/data.html

Following is a table of data obtained from that website. These are the energies
of transitions between the (n, l, j) = (1,0,1/2) energy level and the energy level
indicated by the columns on the left:

n l j [E(n, l, j)−E(1,0,1/2)]/hc (cm−1)

2 0 1/2 82 258.954 399 2832(15)
2 1 1/2 82 258.919 113 406(80)
2 1 3/2 82 259.285 001 249(80)

3 0 1/2 97 492.221 724 658(46)
3 1 1/2 97 492.211 221 463(24)
3 1 3/2 97 492.319 632 775(24)
3 2 3/2 97 492.319 454 928(23)
3 2 5/2 97 492.355 591 167(23)

4 0 1/2 102 823.853 020 867(68)
4 1 1/2 102 823.848 581 881(58)
4 1 3/2 102 823.894 317 849(58)
4 2 3/2 102 823.894 241 542(58)
4 2 5/2 102 823.909 486 535(58)
4 3 5/2 102 823.909 459 541(58)
4 3 7/2 102 823.917 081 991(58)
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(The number in parentheses is the numerical value of the standard uncertainty
referred to the last figures of the quoted value.) Compare these values to those
predicted by (8.150) (you may want to make use of Problem 8.16, in particular the
following).
a. Compare fine-structure splitting between the n = 2, j = 1/2 and n = 2, j = 3/2

states to (8.150).
b. Compare fine-structure splitting between the n = 4, j = 5/2 and n = 4, j = 7/2

states to (8.150).
c. Compare the 1S → 2S transition energy to the first line in the table. Use as many

significant figures as necessary in the values of the fundamental constants, to
compare the results within standard uncertainty.

d. How many examples of the Lamb shift are demonstrated in this table? Identify
one example near the top and the other near the bottom of the table, and compare
their values.



A Appendix A Electromagnetic Units

Two divergent systems of units established themselves over the course of the twentieth
century. One system, known as SI (from the French Le Système International d’Unités),
is rooted in the laboratory. It gained favor in the engineering community and forms the
basis for most undergraduate curricula. The other system, called Gaussian, is aesthetically
cleaner and is much favored in the theoretical physics community. We use the Gaussian
system in this book, as do most graduate level physics texts on quantum mechanics and
other subjects.

The SI system is also known as MKSA (for meter, kilogram, second, Ampere), and the
Gaussian system is sometimes called1 CGS (for centimeter, gram, second). For problems
in mechanics, the difference is trivial, amounting only to some powers of ten. The difficulty
comes when incorporating electromagnetism. As discussed below, SI incorporates a fourth
base unit, the Ampere, which implies that charge and other electromagnetic quantities are
dimensionally distinct between the SI and Gaussian systems. This one point is the source
of all the confusion.

In other words, although we can write that a meter is equal to 100 centimeters, the SI
unit of charge, called the Coulomb, is not equal to any number of electrostatic units (esu),
the Gaussian unit of charge. The two kinds of charges literally have different physical
meanings. They should probably have different names, but historically they are both called
“charge.” Similar comments apply to electric current, electric and magnetic fields, the
electric potential, and so on. This is why you see factors like ε0 and μ0 appear in SI
formulas, whereas factors of c are common in Gaussian formulas.

This appendix gives an explanation for how these two systems of units diverge when it
comes to electromagnetism. It also shows how physical quantities such as force and energy
can be used to relate electromagnetic quantities between the two systems. For a more
detailed discussion, see “On electric and magnetic units and dimensions,” by Birge, Am.
Phys. Teach., 2 (1934) 41. (This journal is now called the American Journal of Physics.)
See also the articles in the American Journal of Physics, volume 3, 2005, pp. 90, 102,
and 171.

Electricity, Magnetism, and Electromagnetism: A Review

Electricity and magnetism are not separate phenomena. They are different manifestations
of the same phenomenon, called electromagnetism. You need to incorporate special

1 Some authors distinguish between Gaussian and CGS by including a factor of 4π in Gauss’s law.
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relativity to see how electricity and magnetism are united, and there were some decades
between Maxwell and Einstein. Consequently, it was quite some time after they were
separately established, that electricity and magnetism were realized to be just different
ways that electromagnetism can exert a force.

The starting place for an “electric” force is Coulomb’s law. If some number of electrons
is added to, or removed from, an object, then it acquires a “charge” q. A force appears
between two charged objects separated by some distance. This force is proportional to the
product of the charges, and inversely proportional to the square of the distance between
them, that is,

F = kE
q1q2

d2 . (A.1)

Here kE is an arbitrary constant of proportionality; without describing what we mean by
“charge,” we can say no more about it.

A “magnetic” force appears between two wires, each of which carries something called
a “current.” For two long, parallel wires, the force per unit length is proportional to the
product of the currents and inversely proportional to the perpendicular separation of the
wires, that is,

F
L
= kM

I1I2

d
. (A.2)

As with the electric force, kM is a generic constant of proportionality which depends on
what we mean by “current.”

Today we understand that (A.1) and (A.2) are two different manifestations of “electro-
magnetism.” A “current” is in fact a flow of “charge,” and the theory of electromagnetism
tells us that

2kE = c2kM. (A.3)

In other words, if we make a choice for kE, then (A.3) specifies kM and vice versa.
The essential point is that the SI and Gaussian systems make different choices for kE or

kM. Other choices will lead to other systems of units, but we will not be discussing them
here. There are also variations on whether or not to combine factors of 4π into various
quantities, but we are not going to distinguish between them in this appendix.

The SI System: Inventing a Unit for Current

The SI system is based on (A.2). People learned how to make current, well before we
understood it in terms of charge. Perhaps for these reasons, a new base unit, the Ampere
(A), was created. One Ampere is the amount of current flowing in each of two long, parallel
wires, separated by one meter, such that the force between the wires is 2×10−7 N/m. We
write

kM =
μ0

2π
SI (A.4)
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where

μ0 ≡ 4π×10−7 N
A2 . (A.5)

(The factor of 4π turns out to be handy to cancel out integrations over the unit sphere.)
This quantity μ0 turns out to describe the magnetic properties of the vacuum. It shows

up, for example, in the inductance of a loop of wire surrounding empty space. This is all
forced upon us by the invention of the Ampere. Some books refer to μ0 as the “permeability
of free space.”

Equations (A.3) and (A.4) tell us how to write Coulomb’s law (A.1) in the SI system.
We have

kE =
c2

2
kM =

μ0c2

4π
SI (A.6)

= 8.99×109 N ·m2

(A · s)2 . (A.7)

This form of Coulomb’s law shows that charge, in the SI system, has units
Amperes×seconds (A · s). This is defined to be the Coulomb (C). SI furthermore defines
the quantity

ε0 ≡
1
μ0c2 (A.8)

called the “permittivity of free space.” It is another property of the vacuum, showing up,
for example, as the capacitance of parallel plates separated by empty space. It is, as with
μ0, forced upon us by choosing a new base unit for current. Thus, combining (A.1), (A.6),
and (A.8), we write Coulomb’s law in SI as

F =
1

4πε0

q1q2

d2 SI (A.9)

which is the form presented in introductory physics textbooks that use the SI convention.

The Gaussian System: No New Base Units

In the Gaussian system, we take the point of view that no new base units are necessary. We
write

kE = 1 Gaussian (A.10)

that is, a dimensionless number. In other words, Coloumb’s law (A.1) is simply

F =
q1q2

d2 Gaussian. (A.11)

The unit of charge in the Gaussian system is derived in terms of centimeters, grams,
and seconds. It is called the electrostatic unit (esu), or sometimes the statcoulomb, and
is simply2

esu ≡
√

dyne · cm2 = g1/2 · cm3/2/s. (A.12)

2 Recall that the unit of force in CGS is called the dyne ≡ g · cm/s2 = 10−5 N.
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In this case, the magnetic force between wires is just (A.2) with (A.3), namely
F
L
=

2
c2

I1I2

d
CGS. (A.13)

The Gaussian system is not without its sources of confusion. Some authors use (A.13) to
define a unit of current, the statampere, which gives 2 dyne/cm of force between two long
parallel wires separated by 1 cm. Note that this is not the same as one esu/s, something
called the “absolute ampere” or “abampere.” The statampere and abampere differ by a
factor of 2.998 × 1010, although they have the same dimensions, namely those of the
esu/s = g1/2 · cm3/2/s2.

Converting between SI and CGS

It should now be clear to you that the units of charge and current have different dimensions
between SI and Gaussian, and this is why everyone encounters confusion when converting
between one system and the other.

Of course, all of this boils down to experiment. You make a measurement, and use some
equations (whether they are Gaussian or SI) to interpret the result. We will take the point
of view of Coulomb’s law as a starting point, and the classic work by Millikan3 to measure
the charge on a single electron, a (negative) quantity that we traditionally call −e. The
modern best value for his measurement is e = 4.8032042×10−10 esu.

So let us start by giving ourselves the problem of expressing the charge on an electron
in Coulombs. This is easy. Let eesu equal the dimensionless number 4.8032042× 10−10.
The force between two electrons separated by one meter is 10−4e2

esu dyne = 10−9e2
esu N.

So, in SI

10−9e2
esu N =

1
4πε0

e2

(1 m)2 =
μ0

4π
c2e2

(1 m)2 = 10−7c2
SIe2

C N (A.14)

where eC is the electron charge in Coulombs, and cSI ≡ 2.998 × 108, is yet another
dimensionless number. Then eC = eesu/10cSI = 1.602×10−19. This procedure is obviously
valid regardless of the charge on an electron. We therefore write

qC = qesu/10cSI = qesu/2.998×109 (A.15)

as a general conversion between charge in the CGS system to that in SI. That is, one
Coulomb represents a much larger amount of charge (i.e. very many more electrons) than
one esu, by a factor of 10cSI.

The trick here was to recognize that the numerical difference between Coulombs and esu
is absorbed by the factor c2 in (A.14). This is not to say that Coulombs and esu differ by
the dimensions of velocity. One cannot equate Coulombs to esu without some conversion
factor that explicitly cancels out the base unit Amperes.

3 This experiment was a tour de force, which Millikan carried out systematically and carefully over two decades.
For a culmination of this work, see his paper “The most probable 1930 values of the electron and related
constants,” Phys. Rev., 35 (1930) 1231. He determined the value e = (4.770±0.005)×10−10 esu.
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We can extend from here. Consider the units of electric potential, defined by

1 Joule = 1 Volt ·C SI

1 erg = 1 statvolt · esu Gaussian

therefore

1 Volt ·C = 107 statvolt · esu (A.16)

since one Joule equals 107 ergs. (I like this way of writing things because it means I can
use the “=” sign. Energy is energy, whether Gaussian or SI.) Now thinking again in terms
of number of electrons, we know that one Coulomb corresponds to 10cSI times as much
charge as an esu. So we write, now having to abandon a strict equality,

1 Volt ·10cSI ⇐⇒ 107 statvolt (A.17)

or

1 statvolt ⇐⇒ 299.8 Volt. (A.18)

In other words, in practical terms, one statvolt is the same as 300 volts. Perhaps here is
a reason that SI is more popular with electricians and engineers. We always prefer to use
numbers on the order of unity when doing practical work. One volt is a reasonable potential
difference from a human perspective, but 300 volts would give you a rather significant
shock. So, if we worked in Gaussian, practical electronics would be discussed in terms of
“millistatvolts,” a somewhat unwieldy term.

The same thing works symbolically, of course. To go from Gaussian to SI we need to
insert the factor μ0c2/4π = 1/4πε0 in front of Coulomb’s law, and rederive things. So,
wherever we encounter a value of charge q in a Gaussian equation, we replace it with
q/
√

4πε0. (The trivial conversions from centimeters and grams to meters and kilograms
are irrelevant symbolically.) Similarly, any values of current I are replaced by cI

√
μ0/4π.

You can easily check that these substitutions turn (A.11) into (A.9), and (A.13) into
(A.2) w/(A.4). For a different example, the electric field E = limq0→0 F/q0 is multiplied by√

4πε0 leaving (of course) the force for a charge in an electric field F = qE unchanged.
Now let us try going the other way, namely SI to Gaussian, with the Lorentz force law,

namely

F = qE+qv×B SI. (A.19)

We know that the first term on the right is unchanged. In the second term, replace q with
q
√

4πε0 = q
√

4π/μ0/c, but what about the B field? A study of electromagnetism leads to
Ampère’s law, which relates magnetic fields and currents. Indeed, steady currents give rise
to static magnetic fields according to

∇×B =
4π
c

j Gaussian (A.20a)

∇×B = μ0 j SI (A.20b)
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where j is the current density. To go from CGS to SI, j is multiplied by c
√
μ0/4π, so

equations (A.20) tell us to multiply B by
√

4π/μ0. So, getting back to (A.19) we multiply
the second term by

√
4π/μ0/c for q and

√
μ0/4π for B. (Remember, we are going from SI

to CGS.) We therefore arrive at the Lorentz force law

F = qE+q
v
c
×B Gaussian. (A.21)

An important lesson in this last example is that in going from SI to Gaussian, the
magnetic field changes its dimensions differently than does the electric field. Indeed, (A.19)
shows that in SI, the dimensions of E are the dimensions of B multiplied by the dimensions
of velocity. On the other hand, (A.21) shows that in the Gaussian system, E and B have
the same dimensions. Pedagogically, this is an advantage that the Gaussian system has
over SI.

For a final example, let us express the magnetic moment in Gaussian units, which is the
starting point for this book. In your introductory physics class, which most likely used SI
units, you defined the magnetic moment μ = IA for a current I moving in a closed loop
that enclosed an area A . You also learned that the potential energy for such a current loop
in a magnetic field B was −μ ·B, which of course must be the same expression as in the
Gaussian system. We already know that I → c

√
μ0/4πI and B →

√
4π/μ0B. Therefore, in

order to keep the same expression for potential energy, the definition of magnetic moment
in Gaussian units must be μ = IA /c.



B Appendix B Elementary Solutions to Schrödinger’s
Wave Equation

This appendix summarizes simple solutions of Schrödinger’s wave equation corresponding
to a variety of soluble potential energy functions. Most of these are derived and discussed
in the body of the textbook, but all are included in nearly any undergraduate textbook on
quantum mechanics. For some solutions, MATHEMATICA code is given for calculating the
wave functions.

B.1 Free Particles ( V = 0)

The plane wave, or momentum, eigenfunction, from Section 1.7, is

ψk(x, t) = 〈x|k〉e−iEt/h̄ =
1

(2π)3/2 eik·x−iωt, (B.1)

where

k =
p
h̄

and ω =
E
h̄
=

p2

2mh̄
=

h̄k2

2m
. (B.2)

The normalization, as described in Section 1.6, is∫
ψ∗

k′ ψk d3x = δ(3)(k−k′). (B.3)

The superposition of plane waves leads to the wave packet description. In one dimension,

ψ(x, t) =
1√
2π

∫ ∞

−∞
dkA(k) ei(kx−ωt) where ω =

h̄k2

2m
. (B.4)

For |A(k)| sharply peaked near k � k0, the wave packet moves with a group velocity

υg �
(

dω
dk

)
k0

=
h̄k0

m
. (B.5)

The time evolution of a minimum wave packet can be described by

ψ(x, t) =
[
(Δx)2

0
2π3

]1/4 ∫ ∞

−∞
e−(Δx)2

0(k−k0)
2+ikx−iω(k)t dk where ω(k) =

h̄k2

2m
, (B.6)
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and

|ψ(x, t)|2 =
{

1
2π(Δx)2

0
[
1+(h̄2t2/4m2)(Δx)−4

0
]}1/2

× exp

{
− (x− h̄k0t/m)2

2(Δx)2
0
[
1+(h̄2t2/4m2)(Δx)−4

0
]}

. (B.7)

So the width of the wave packet expands as

(Δx)0 at t = 0 → (Δx)0

[
1+

h̄2t2

4m2 (Δx)−4
0

]1/2

at t > 0. (B.8)

B.2 Piecewise Constant Potentials in One Dimension

For a constant potential V = V0 and E > V, the solution is

ψE(x) = c+eikx + c−e−ikx where k =

√
2m(E−V0)

h̄2 . (B.9)

For E < V, that is the classically forbidden region, the solution is

ψE(x) = c+eκx + c−e−κx where κ =

√
2m(V0 −E)

h̄2 . (B.10)

Note that c± must be set equal to 0 if x =± ∞ is included in the domain under discussion.

B.2.1 Rigid-Wall Potential (One-Dimensional Box)

For a well with infinitely high walls at x = 0 and x = L, that is

V =

{
0 for 0 < x < L
∞ otherwise,

(B.11)

the wave functions and energy eigenstates are

ψE(x) =
√

2
L

sin
(nπx

L

)
, n = 1,2,3. . .,

E =
h̄2n2π2

2mL2 .

(B.12)

B.2.2 Square-Well Potential

For a well with finite walls at x =±a, that is

V =

{
0 for |x|> a
−V0 for |x|< a (V0 > 0),

(B.13)
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the bound-state (E < 0) solutions are:

ψE ∼

⎧⎪⎪⎨⎪⎪⎩
e−κ|x| for |x|> a

cos kx (evenparity)
sin kx (oddparity)

}
for |x|< a,

(B.14)

where

k =

√
2m(−|E|+V0)

h̄2 and κ =

√
2m|E|

h̄2 . (B.15)

The allowed discrete values of energy E =−h̄2κ2/2m are to be determined by solving

ka tan ka = κa (evenparity)
ka cot ka =−κa (oddparity).

(B.16)

Note also that κ and k are related by

2mV0a2

h̄2 = (k2 +κ2)a2. (B.17)

B.3 Transmission Reflection Problems

In this discussion we define the transmission coefficient T to be the ratio of the flux of the
transmitted wave to that of the incident wave. We consider these simple examples.

B.3.1 Square Well

For a wave incident on a finite square well defined by

V = 0 for |x|> a and V =−V0 for |x|< a,

with V0 > 0, the transmission coefficient is

T =
1{

1+
[
(k′2 − k2)2/4k2k′2

]
sin2 k′a

}
=

1{
1+

[
V2

0/4E(E+V0)
]

sin2 (
2a

√
2m(E+V0)/h̄2)} (B.18)

where

k =
√

2mE
h̄2 and k′ =

√
2m(E+V0)

h̄2 . (B.19)

Note that resonances occur whenever

2a

√
2m(E+V0)

h̄2 = nπ, n = 1,2,3,. . . . (B.20)
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B.3.2 Square Barrier

This potential is the same as for the square well, but with V = V0 > 0 for |x|< a. One finds
for the case E < V0,

T =
1{

1+
[
(k2 +κ2)2/4k2κ2

]
sinh2 κa

}
=

1{
1+

[
V2

0/4E(V0 −E)
]

sinh2 (
2a

√
2m(V0 −E)/h̄2)} . (B.21)

For E > V0, the result is the same as the square-well case with V0 replaced by −V0.

B.3.3 Potential Step

The potential is V = 0 for x < 0 and V = V0 for x > 0, and we take E > V0. One finds for
the transmission coefficient

T =
4kk′

(k+ k′)2 =
4
√
(E−V0)E(√

E+
√

E−V0
)2 (B.22)

with

k =
√

2mE
h̄2 and k′ =

√
2m(E−V0)

h̄2 . (B.23)

B.3.4 General Potential Barrier

For E < V(x) in the range a ≤ x ≤ b and E > V(x) elsewhere, the approximate JWKB1

solution for T is

T � exp

⎧⎨⎩−2
∫ b

a
dx

√
2m[V(x)−E]

h̄2

⎫⎬⎭ , (B.24)

where a and b are the classical turning points.

B.4 Simple Harmonic Oscillator

See Section 2.5.2. The potential energy function is

V(x) =
1
2

mω2x2. (B.25)

1 JWKB stand for Jeffreys–Wentzel–Kramers–Brillouin.
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We introduce a dimensionless variable

ξ =

√
mω
h̄

x, (B.26)

and write the energy eigenfunctions as

ψE = (2nn!)−1/2
(mω
πh̄

)1/4
e−ξ

2/2Hn(ξ) (B.27)

and the energy levels are

E = h̄ω
(

n+
1
2

)
, n = 0,1,2,. . . . (B.28)

The Hermite polynomials have the following properties:

Hn(ξ) = (−1)neξ
2 ∂ n

∂ξn e−ξ
2

∫ ∞

−∞
Hn′ (ξ)Hn (ξ) e−ξ

2
dξ = π1/22n!δnn′

d2

dξ2 Hn −2ξ
dHn

dξ
+2nHn = 0

H0(ξ) = 1, H1(ξ) = 2ξ, (B.29)
H2(ξ) = 4ξ2 −2,
H3(ξ) = 8ξ3 −12ξ,
H4(ξ) = 16ξ4 −48ξ2 +12.

The Hermite polynomials are calculated in MATHEMATICA with HermiteH[n, ξ]. The
following code produces the first few wave functions as functions of x:

\[Psi]E = (2ˆ{n} n!)ˆ(-1/2) (m \[Omega]/(Pi \[HBar]))ˆ(1/
4) Exp[-\[Xi]ˆ{2}/2] HermiteH[n, \[Xi]];

\[Psi]0 = \[Psi]E /. n -> 0 /. \[Xi] -> x Sqrt[m \[Omega]/\[HBar]];
\[Psi]1 = \[Psi]E /. n -> 1 /. \[Xi] -> x Sqrt[m \[Omega]/\[HBar]];
\[Psi]2 = \[Psi]E /. n -> 2 /. \[Xi] -> x Sqrt[m \[Omega]/\[HBar]];
\[Psi]3 = \[Psi]E /. n -> 3 /. \[Xi] -> x Sqrt[m \[Omega]/\[HBar]];

If you code these up into MATHEMATICA, or some other symbolic mathematics applica-
tion, it is worth your while to check that your wave functions are orthonormal.

B.5 The Central Force Problem

See Section 3.7. The basic time-independent Schrödinger equation is

− h̄2

2m

[
1
r2

∂
∂ r

(
r2 ∂ψE

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂ψE

∂θ

)
+

1
r2 sin2 θ

∂ 2ψE

∂φ2

]
+V(r)ψE = EψE

(B.30)
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where our spherically symmetrical potential V(r) satisfies

lim
r→0

r2V(r)→ 0. (B.31)

The method of separation of variables,

ΨE(x) = R(r)Ym
l (θ ,φ), (B.32)

leads to the angular equation

−
[

1
sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1
sin2 θ

∂ 2

∂φ2

]
Ym

l = l(l+1)Ym
l , (B.33)

where the spherical harmonics

Ym
l (θ ,φ), l = 0,1,2,. . . , m =−l,−l+1,. . . ,+l (B.34)

satisfy

−i
∂

∂φ
Ym

l = mYm
l (B.35)

and the Ym
l (θ ,φ) have the following properties:

Ym
l (θ ,φ) = (−1)m

√
2l+1

4π
(l−m)!
(l+m)!

Pm
l (cosθ) eimφ for m ≥ 0,

Ym
l (θ ,φ) = (−1)|m|Y|m|∗

l (θ ,φ) for m < 0,

Pm
l (cosθ) = (1− cos2 θ)m/2 dm

d(cosθ)m Pl(cosθ) for m ≥ 0,

Pl(cosθ) =
(−1)l

2ll!
dl(1− cos2 θ)l

d(cosθ)l ,

Y0
0 =

1√
4π

, Y0
1 =

√
3

4π
cosθ , (B.36)

Y±1
1 =∓

√
3

8π
(sinθ)e±iφ,

Y0
2 =

√
5

16π
(3cos2 θ −1),

Y±1
2 =∓

√
15
8π

(sinθ cosθ)e±iφ,

Y±2
2 =

√
15

32π
(sin2 θ)e±2iφ

∫
Ym′∗

l′ (θ ,φ)Ym
l (θ ,φ)dΩ= δll′δmm′

[∫
dΩ=

∫ 2π

0
dφ

∫ +1

−1
d(cosθ)

]
.

For the radial piece of (B.32), we define

uE(r) = rR(r) (B.37)
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and then the radial equation is reduced to an equivalent one-dimensional problem, namely,

− h̄2

2m
d2uE

dr2 +

[
V(r)+

l(l+1)h̄2

2mr2

]
uE = EuE

subject to the boundary condition

uE(r)|r=0 = 0. (B.38)

For the case of free particles, that is V(r) = 0, in our spherical coordinates:

R(r) = c1 jl(ρ)+ c2nl(ρ) (c2 = 0 if the origin is included) (B.39)

where ρ is a dimensionless variable

ρ ≡ kr, with k =
√

2mE
h̄2 . (B.40)

We need to list the commonly used properties of the Bessel functions and spherical
Bessel and Hankel functions. The spherical Bessel functions are

jl(ρ) =
(
π
2ρ

)1/2

Jl+1/2(ρ),

nl(ρ) = (−1)l+1
(
π

2ρ

)1/2

J−l−1/2(ρ),

j0(ρ) =
sin ρ
ρ

, n0(ρ) =−cos ρ
ρ

,

j1(ρ) =
sin ρ
ρ2 − cos ρ

ρ
, n1(ρ) =−cos ρ

ρ2 − sin ρ
ρ

, (B.41)

j2(ρ) =
(

3
ρ3 −

1
ρ

)
sin ρ− 3

ρ2 cos ρ,

n2(ρ) =−
(

3
ρ3 −

1
ρ

)
cos ρ− 3

ρ2 sin ρ.

For ρ→ 0, the leading terms are

jl(ρ)−→
ρ→0

ρl

(2l+1)! !
, nl(ρ)−→

ρ→0
− (2l−1)! !

ρl+1 , (B.42)

where

(2l+1)! !≡ (2l+1)(2l−1) · · ·5 ·3 ·1. (B.43)

In the large ρ-asymptotic limit, we have

jl(ρ) −→
ρ→∞

1
ρ

cos

[
ρ− (l+1)π

2

]
,

nl(ρ) −→
ρ→∞

1
ρ

sin

[
ρ− (l+1)π

2

]
.

(B.44)

Because of constraints (B.37) and (B.38), R(r) must be finite at r= 0; hence, from (B.39)
and (B.42) we see that the nl(ρ)-term must be deleted because of its singular behavior as
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ρ→ 0. Thus R(r) = cljl(ρ) [or, in the notation of Section 6.4, Al(r) = R(r) = cljl(ρ)]. For
a three-dimensional square-well potential, V = −V0 for r < R (with V0 > 0), the desired
solution is

R(r) = Al(r) = constant jl(αr), (B.45)

where

α =

[
2m(V0 −|E|)

h̄2

]1/2

for r < R. (B.46)

As discussed in (6.135), the exterior solution for r > R, where V = 0, can be written as a
linear combination of spherical Hankel functions. These are defined as follows:

h(1)l (ρ) = jl(ρ)+ inl(ρ) (B.47)

h(1)∗l (ρ) = h(2)
l (ρ) = jl(ρ)− inl(ρ) (B.48)

which, from (B.44), have the asymptotic forms for ρ→ ∞ as follows:

h(1)
l (ρ)−→

ρ→∞

1
ρ

ei[ρ−(l+1)π/2] (B.49)

h(1)∗l (ρ) = h(2)
l (ρ)−→

ρ→∞

1
ρ

e−i[ρ−(l+1)π/2]. (B.50)

If we are interested in the bound-state energy levels of the three-dimensional square-well
potential, where V(r) = 0, r > R, we have

ul(r) = rAl(r) = constant e−κrf
(

1
κr

)

κ =

(
2m|E|

h̄2

)1/2

.
(B.51)

To the extent that the asymptotic expansions, of which (B.50) give the leading terms, do
not contain terms with exponent of opposite sign to that given, we have, for r > R, the
desired solution from (B.51):

Al(r) = constant h(1)l (iκr) = constant [jl (iκr)+ inl (iκr)], (B.52)

where the first three of these functions are

h(1)0 (iκr) =− 1
κr

e−κr

h(1)1 (iκr) = i
(

1
κr

+
1
κ2r2

)
e−κr

h(1)2 (iκr) =
(

1
κr

+
3
κ2r2 +

3
κ3r3

)
e−κr.

(B.53)

Finally, we note that in considering the shift from free particles, i.e. V(r) = 0 to the
case of the constant potential V(r) = V0, we need only to replace the E in the free-particle
solution (B.39) and (B.40) by E−V0. Note, though, that if E < V0, then h(1,2)

l (iκr) is to be

used with κ =
√

2m(V0 −E)/h̄2.
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B.6 Hydrogen Atom

See Section 3.7.4. The potential energy function for this problem is given by

V(r) =−Ze2

r
(B.54)

and for bound states (E < 0) we introduce the dimensionless variable

ρ =

(
−2meE

h̄2

)1/2

r =
Zr
na0

(B.55)

for electron mass me and Bohr radius a0 = h̄2/mee2. The energy eigenfunctions and
eigenvalues (energy levels) are

ψnlm = Rnl(r)Ym
l (θ ,φ)

R(r) =
1

(2l+1)!

(
2Zr
na0

)l

e−Zr/na0

[(
2Z
na0

)3
(n+ l)!

2n(n− l−1)!

]1/2

F(l+1−n; 2l+2; 2ρ)

En =−Z2e2

2a0

1
n2 (B.56)

where n = 1,2,3,. . . with l = 0,1,. . . ,n−1, and F(a; c; x) is the confluent hypergeometric
function, which solves Kummer’s equation and is normalized as F(a; c; 0) = 1.

One can instead write the radial wave function using associated Laguerre polynomials,
but conventions and normalizations vary. Using the definition developed in Problem 3.30,

R(r) =
(

2Zr
na0

)l

e−Zr/na0

[(
2Z
na0

)3
(n− l−1)!

2n[(n+ l)! ]3

]1/2

L2l+1
n−l−1(2ρ). (B.57)

The radial functions for low n are:

R10(r) =
(

Z
a0

)3/2

2e−Zr/a0

R20(r) =
(

Z
2a0

)3/2

(2−Zr/a0)e−Zr/2a0 (B.58)

R21(r) =
(

Z
2a0

)3/2 Zr√
3a0

e−Zr/2a0 .
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Some convenient radial integrals are

〈rk〉 ≡
∫ ∞

0
dr r2+k[Rnl(r)]2,

〈r〉=
( a0

2Z

)
[3n2 − l(l+1)]

〈r2〉=
(

a2
0n2

2Z2

)
[5n2 +1−3l(l+1)] (B.59)〈

1
r

〉
=

Z
n2a0

,〈
1
r2

〉
=

Z2

n3a2
0
(
l+ 1

2

) .

The following MATHEMATICA code is useful for calculating these wave functions:

\[Psi]nlm[r_, \[Theta]_, \[Phi]_] = Nnl Rnl[r] Ylm[\[Theta], \[Phi]];
Ylm[\[Theta]_, \[Phi]_] = SphericalHarmonicY[l, m, \[Theta], \[Phi]];
Rnl[r_] = (2 Z r/(n a0))ˆ{l}

Exp[-Z r/(n a0)]
Hypergeometric1F1[-n + l + 1, 2 l + 2, 2 Z r/(n a0)];

Nnl = 1/(2 l + 1)! Sqrt[(2 Z/(n a0))ˆ{3} (n + l)!/(2 n (n - l - 1)!)];

Given these definitions, then, for example, the 1s and 2p, m =+1 wave functions are

\[Psi]100 = \[Psi]nlm[r,\[Theta],\[Phi]] /. {n -> 1, l -> 0, m -> 0}
\[Psi]211 = \[Psi]nlm[r,\[Theta],\[Phi]] /. {n -> 2, l -> 1, m -> 1}

As always, it is wise to check that your code produces proper orthonormal wave functions.



C Appendix C Hamiltonian for a Charge in an
Electromagnetic Field

We will often need to know the Hamiltonian for a particle with mass m and charge q moving
while in the presence of a static electric field E(x) and static magnetic field B(x). We will
take a very utilitarian approach, namely to write down the equation of motion and then
find the Lagrangian which, in classical physics, yields this equation. We then construct the
Hamiltonian from the Lagrangian.

We know that the equation of motion is given by the Lorentz force law, namely

mẍ = qE+
1
c

qẋ×B. (C.1)

We can derive the Hamiltonian from the Lagrangian, but it is not obvious how to build the
Lagrangian when there is no obvious “potential energy” function for a charged particle in
a magnetic field.

Our approach1 will be to start with the conjecture that the correct Lagrangian is given by

L (x, ẋ) =
1
2

mẋ2 −qφ(x)+
q
c

ẋ ·A(x) (C.2)

where φ and A are the standard electrostatic and magnetic vector potentials, that is

E(x) =−∇φ(x) and B(x) = ∇×A(x), (C.3)

and then show that Lagrange’s equations lead us to (C.1). We have

0 =
d
dt

∂L

∂ ẋi
− ∂L

∂xi

=
d
dt

[
mẋi +

q
c

Ai(x)
]
+q

∂φ
∂xi

− q
c

ẋ · ∂A
∂xi

= m(ẍ)i +q(∇φ)i +
q
c

[
d
dt

Ai(x)− ẋ · ∂A
∂xi

]
. (C.4)

The first term on the right of (C.4) is just the left-hand side of (C.1), and the second term on
the right of (C.4) is just the first term on the right-hand side of (C.1). It therefore remains
to evaluate

ẋ · ∂A
∂xi

− d
dt

Ai(x) = ∑
j

ẋj
∂Aj

∂xi
−∑

j

∂Ai

∂xj
ẋj = ∑

j
ẋj

(
∂Aj

∂xi
− ∂Ai

∂xj

)
(C.5)

1 One can derive this Lagrangian from first principles of relativity and electromagnetism, but we will leave that
approach to an advanced course on classical or quantum field theory.
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and show that it equals (ẋ×B)i = (ẋ× (∇×A))i. We can use the totally antisymmetric
symbol εijk to write the cross product of two vectors as (a×b)i = ∑j ∑k εijkakbk. Therefore

(ẋ×B)i = ∑
j

∑
k
εijkẋj

(
∑

l
∑
m
εklm

∂Al

∂xm

)
= ∑

j
ẋj ∑

l
∑
m

∑
k
εkijεklm

∂Al

∂xm
(C.6)

where εijk = εkij because the indices are rearranged by an even number of exchanges. We
then make use of the theorem ∑k εkijεklm = δilδjm − δimδjl to write

(ẋ×B)i = ∑
j

ẋj ∑
l

∑
m
(δilδjm − δimδjl)

∂Al

∂xm
= ∑

j
ẋj

(
∂Ai

∂xj
− ∂Aj

∂xi

)
(C.7)

which is the same as (C.5). This proves our conjecture that (C.2) is the correct Lagrangian.
We can now use definitions from classical mechanics to derive the Hamiltonian H (p,x)

from (C.2). First we determine the canonical momentum p from

pi ≡
∂L

∂ ẋi
= mẋi +

q
c

Ai(x). (C.8)

Then we construct the Hamiltonian using the Legendre transformation

H = ∑
i

ẋipi −L

=
1
m

(
p− q

c
A

)
·p− 1

2
m

1
m2

(
p− q

c
A

)2
+qφ− q

c
1
m

(
p− q

c
A

)
·A

=
1

2m

(
p− q

c
A

)2
+qφ. (C.9)

It is important to note that the canonical momentum p is not equal to mẋ in this case.



D Appendix D Proof of the Angular-Momentum
Rule (3.358)

It will be instructive to discuss the angular-momentum addition rule from the quantum-
mechanical point of view. Let us, for the moment, label our angular momenta, so that
j1>

=
j2. This we can always do. From (3.355), the maximum value of m, mmax, is

mmax = mmax
1 +mmax

2 = j1 + j2. (D.1)

There is only one ket that corresponds to the eigenvalue mmax, whether the description is
in terms of | j1 j2; m1m2〉 or | j1 j2; jm〉. In other words, choosing the phase factor to be 1,
we have

| j1 j2; j1 j2〉= | j1 j2; j1 + j2, j1 + j2〉. (D.2)

In the | j1 j2; m1m2〉 basis, there are two kets that correspond to the m eigenvalue mmax −1,
namely, one ket with m1 = mmax

1 − 1 and m2 = mmax
2 and one ket with m1 = mmax

1 and
m2 = mmax

2 −1. There is thus a twofold degeneracy in this basis; therefore, there must be a
twofold degeneracy in the | j1 j2; jm〉 basis as well. From where could this come? Clearly,
mmax−1 is a possible m-value for j = j1+ j2. It is also a possible m-value for j = j1+ j2−1,
in fact, the maximum m-value for this j. So j1, j2 can add to j of j1 + j2 and j1 + j2 −1.

We can continue in this way, but it is clear that the degeneracy cannot increase
indefinitely. Indeed, for mmin = −j1 − j2, there is once again a single ket. The maximum
degeneracy is (2j2 + 1)-fold, as is apparent from Table D.1 constructed for two special
examples: for j1 = 2, j2 = 1 and for j1 = 2, j2 = 1

2 . This (2j2 +1)-fold degeneracy must be
associated with the 2j2 +1 states j:

j1 + j2, j1 + j2 −1,. . . , j1 − j2. (D.3)

If we lift the restriction j1 ≥ j2, we obtain (3.358).
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Table D.1 Special Examples of Values of m, m1, and m2 for the Two Cases j1 = 2, j2 = 1 and
j1 = 2, j2 = 1

2 , Respectively

j1 = 2, j2 = 1
m 3 2 1 0 −1 −2 −3

(m1,m2) (2,1) (1,1) (0,1) (−1,1) (−2,1)
(2,0) (1,0) (0,0) (−1,0) (−2,0)

(2,−1) (1,−1) (0,−1) (−1,−1) (−2,−1)

Numbers of States 1 2 3 3 3 2 1

j1 = 2, j2 =
1
2

m 5
2

3
2

1
2 − 1

2 − 3
2 − 5

2

(m1,m2) (2, 1
2 ) (1, 1

2 ) (0, 1
2 ) (−1, 1

2 ) (−2, 1
2 )

(2,− 1
2 ) (1,− 1

2 ) (0,− 1
2 ) (−1,− 1

2 ) (−2,− 1
2 )

Numbers of States 1 2 2 2 2 1



E Appendix E Finding Clebsch–Gordan Coefficients

Section 3.8 includes a discussion of how one goes about calculating Clebsch–Gordan
coefficients. However, in practice, we generally use tables to look them up, or computer
applications that carry out the calculation for us.

Of the many tables available, I am partial to the one available online from the Particle
Data Group (PDG) (http://pdg.lbl.gov). A concise table for all of the Clebsch–Gordan
coefficients is posted at

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-clebsch-gordan-coefs.pdf

This page also lists the first several spherical harmonics and d-functions.
Programming languages such as PYTHON include libraries for calculating Clebsch–

Gordan coefficients, as do symbolic manipulation applications such as MATHEMATICA.
For example, in MATHEMATICA, the syntax is

ClebschGordan[{j1, m1}, {j2, m2}, {j, m}]

which returns the coefficient for adding j1 and j2 to get j, with m1+m2 =m. If an unphysical
combination of quantum numbers is given, then MATHEMATICA returns the value zero,
along with a warning that the request was not physical. Purely symbolic function calls are
of course possible, and return the conditions under which a nonzero answer is returned.

As a trivial example that compares the result from the PDG table with the output from
MATHEMATICA, executing the cell

ClebschGordan[{2, 1}, {3/2, -1/2}, {7/2, 1/2}] == Sqrt[12/35]

returns the value True.
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F Appendix F Notes on Complex Variables

These notes are meant to accompany a graduate level physics course, to provide a
basic introduction to the necessary concepts in complex analysis. They are not complete,
nor are any of the proofs considered rigorous. The immediate goal is to carry through
enough of the work needed to explain the Cauchy residue theorem.

F.1 Complex Numbers and Complex Functions

A complex number z can be written as

z = x+ iy or z = reiφ with r ≥ 0

where i =
√
−1, and x, y, r, and φ are real numbers. Clearly, x = rcosφ and y = rsinφ,

leading to a description in terms of the “complex plane.” The complex conjugate of z is

z∗ = x− iy or z∗ = re−iφ.

The “modulus” of z is |z| ≡
√

z∗z = r =
√

x2 + y2, and φ is often called the “phase” of z.
A complex function f(z) typically returns a complex number. Generically, we write

f(z) = u(x,y)+ iv(x,y) (F.1)

for purposes of proofs or illustrations. The behavior of the (real) functions u(x,y) and
v(x,y) are critical for classifying complex functions, as seen when we consider taking
derivatives.

F.2 Differentiation and Analyticity

We define the derivative f ′(z) = df/dz of a complex function f(z) in the same way as we do
for the derivatives of real functions. That is, for z0 ≡ x0 + iy0,

f ′(z0) =
df
dz

∣∣∣∣
z=z0

= lim
z→z0

f(z)− f(z0)

z− z0
.
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However, there is clearly an ambiguity, depending on whether we approach z0 along the
line y = y0 or along x = x0. (Of course, we could also say the ambiguity is along any line
of constant φ = φ0, but it is sufficient to consider just two orthogonal directions.) That is,

f ′(z0) = lim
x→x0

u(x,y0)−u(x0,y0)

x− x0
+ i lim

x→x0

v(x,y0)− v(x0,y0)

x− x0
=

∂u
∂x

+ i
∂v
∂x

or

f ′(z0) = lim
y→y0

u(x0,y)−u(x0,y0)

iy− iy0
+ i lim

y→y0

v(x0,y)− v(x0,y0)

iy− iy0
=−i

∂u
∂y

+
∂v
∂y

.

Therefore, in order to remove the ambiguity and have a consistent definition of the
derivative,

∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

. (F.2)

These are called the Cauchy–Riemann conditions. A function f(z) which satisfies these
rather restrictive conditions is called analytic. Indeed, analytic functions have very many
applications in physics, and we will merely scratch the surface here.

For example, the function f(z) = ez = ex(cosy+ isiny) is analytic. This is easy to prove.
Putting u(x,y) = ex cosy and v(x,y) = ex siny,

∂u
∂x

= ex cosy =
∂v
∂y

and
∂u
∂y

=−ex siny =−∂v
∂x

so the Cauchy–Riemann conditions (F.2) are satisfied.
It is simple to show that f(z) = az is analytic, where a is a complex constant. It is also

not hard to show that the product of two analytic functions is analytic, so any function of
the form f(z) = anzn, where n is a nonnegative integer, is also analytic. Of course, any sum
of analytic functions is analytic, so we see that any polynomial in z is analytic in the entire
complex plane.

These examples beg the question: If a function f(z) can be written explicitly in terms of
z, is it analytic? The answer is “Yes.” To see this, realize that instead of x and y, we could
always write a complex function in terms of z and z∗ using x= (z+z∗)/2 and y= (z−z∗)/2i.
Now consider

∂ f
∂ z∗

=
∂ f
∂x

∂x
∂ z∗

+
∂ f
∂y

∂y
∂ z∗

=

(
∂u
∂x

+ i
∂v
∂x

)(
1
2

)
+

(
∂u
∂y

+ i
∂v
∂y

)(
− 1

2i

)

=
1
2

(
∂u
∂x

− ∂v
∂y

)
+

i
2

(
∂u
∂y

+
∂v
∂x

)
= 0

so long as the Cauchy–Riemann conditions (F.2) are satisfied. That is, if the expression for
f(z) contains only z (and not z∗) then the function is analytic.

There is some common terminology. A function f(z) need not be analytic in the entire
complex plane. (If it is, we called the function “entire.”) If it is analytic at a point z0 then
we call that a “regular point.” Otherwise, z0 is called a “singular point.” Much of our
discussion of complex integration will focus on the notion of singular points.
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F.3 Integration and Series Expansion

Similarly to differentiation, we approach integration of complex functions the same way as
with real functions, but we need to be aware that there is now an arbitrariness of the “path”
of integration. With dz = dx+ idy and using using (F.1), we have∫ z2

z1

f(z)dz =
∫ z2

z1

(u dx− v dy)+ i
∫ z2

z1

(v dx+u dy) =
∫ z2

z1

A ·dx+ i
∫ z2

z1

B ·dx (F.3)

where A = ux̂−vŷ and B = vx̂+uŷ. So, we can now think of the two integrals on the right
as real integrals of vector functions over curves in the xy plane. However, if we invoke
Stokes’s theorem, these become integrals of the curls, and using (F.2), we find

∇×A =

(
−∂v

∂x
− ∂u

∂y

)
= 0 and ∇×B =

(
∂u
∂x

− ∂v
∂y

)
= 0 (F.4)

and each of the two integrals on the right in (F.3) is path independent. Hence, the integral of
an analytic complex function f(z) is path independent and can be unambiguously defined.

From here on, we assume all functions to be analytic unless explicitly noted
otherwise. It is obvious from (F.3) that, when integrating around a closed path C,∮

C
f(z)dz = 0

which is known as the Cauchy–Goursat theorem. We will be exploring circumstances
where the integrand is explicitly singular at one or more points.

For the first example, we prove the Cauchy integral formula, namely

f(z0) =
1

2πi

∮
C

f(z)
z− z0

dz (F.5)

where C is a closed contour in the complex plane that contains the point z0 and traversed
in the counterclockwise direction. We can break up a contour C into something that looks
like Figure F.1. Notice that C0 is a tiny circular contour around the singular point, but in
the clockwise direction. That is, we replace C with limC0→0(C+C0). However, for C0 	= 0,
the new contour C does not include the singular point, so by (F.4) we write (F.5) as

f(z0) =− 1
2πi

∮
C0

f(z)
z− z0

dz. (F.6)

The shrinking contour C0 is parameterized as z− z0 = reiφ for r → 0 and φ = 2π→ 0, so

− 1
2πi

∮
C0

f(z)
z− z0

dz =− 1
2πi

f(z0)
∫ 0

2π

1
reiφ ireiφdφ =− 1

2πi
f(z0)i(−2π) = f(z0)

proving the Cauchy integral formula (F.5). A trivial, but suggestive, rewriting of (F.5) gives

f(z) =
1

2πi

∮
C

f(ξ)
ξ− z

dξ (F.7)
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Fig. F.1 A contour in the complex plane for proving the Cauchy integral formula.

which leads to a convenient way to write the derivatives of a complex function, namely

f(n)(z) =
dnf
dzn =

n!
2πi

∮
C

f(ξ)
(ξ− z)n+1 dξ. (F.8)

Now consider the series expansion of an analytic function f(z). We would naturally write

f(z) = f(z0)+ f ′(z0)(z− z0)+ · · ·=
∞

∑
n=0

an(z− z0)
n (F.9)

where

an ≡
1
n!

f(n)(z0) =
1

2πi

∮
C

f(ξ)
(ξ− z0)n+1 dξ. (F.10)

Such a Taylor series expansion works out as expected, but the curve C specifies regions in
which the series converges.

This idea can be expanded to include −∞ ≤ n ≤ ∞, still using the right side of (F.10) to
define an, and with modified regions of convergence. Such an expansion is called a Laurent
series. It clearly is not, in general, an analytic function because of poles that appear for
n < 0. These, however, lead us to one of the most important theorems of complex analysis,
so far as mathematical physics is concerned.

F.4 The Cauchy Residue Theorem

Let g(z) have an isolated singularity at z = z0. If the Laurent expansion can be written as

g(z) =
∞

∑
n=−∞

an(z− z0)
n =

b1

z− z0
+

∞

∑
n=0

an(z− z0)
n (F.11)
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then we say that g(z) has a “simple pole” at z = z0. Higher-order poles are possible, but we
are not going to consider them here.

Consider a contour C within the radius of convergence of g(z). Separate the integral of
g(z) around this contour into two terms, one for each of the two terms on the right in (F.11).
The second term is a polynomial in z; therefore it is analytic and the integral is zero. Recall
that we reduced the contour to a small circle around the pole in order to prove the Cauchy
integral formula. We can do the same thing here, and

∮
C

g(z)dz = b1

∮
C

1
z− z0

= 2πi b1. (F.12)

We refer to b1 as the “residue” of g(z0), sometimes written as Res[g(z0)]. We have

Res[g(z0)] = lim
z→z0

(z− z0)g(z)

for a simple pole at z0.
If there is more than one simple pole within the contour C, this result is easy to

generalize. Instead of redrawing the contour with a small loop about the single pole, do
it for all N poles within the contour. The result is clearly

∮
C

g(z)dz = 2πi
N

∑
k=1

Res[g(zk)]. (F.13)

We refer to this as the Cauchy residue theorem. It is widely used in mathematical physics.
The usefulness of the residue theorem can be illustrated in many ways, but here is one

important example. It is a warm-up to evaluating the integral in (6.44). The exercise is to
evaluate the integral

I =
∫ ∞

−∞

eika

q2 − k2 k dk = lim
ε→0

∫ ∞

−∞

eika

q2 − k2 + iε
k dk (F.14)

where k, a, q, and ε > 0 are all real variables. We use the second version above because
this moves the singularities at k = ±q off the real axis. To be sure, we could have moved
off the real axis by using −iε instead of +iε, and in fact, this would give us a different
answer. A physical rationale is needed to justify one sign or the other. Leave that for a
physics course.

We can evaluate (F.14) using contour integration by first allowing k to be complex and
then noting that eikx → 0 as Im(k)→+∞. Therefore (F.14) can be rewritten as an integral
over a semicircular contour C that runs (counterclockwise) along the Re(k) axis and closes
as a semicircle in the Im(k)> 0 plane. Then for ε→ 0, the integrand in (F.14) has poles at

k =±
√

q2 − iε =±q
(

1− i
ε
q2

)
⇒±q∓ iε

where we redefine ε (with q > 0) so that it is still small and has the same sign.
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The pole at k = k0 ≡ +q− iε does not matter to us, since it is outside the integration
contour. However, the pole at k =−k0 =−q+ iε is inside, so we use the residue theorem
to write

I = lim
ε→0

∮
C

eika

(k− k0)(k+ k0)
k dk

= lim
ε→0

2πi
eika

k− k0
k
∣∣∣∣
k=−k0

= πi lim
ε→0

e−ik0a = πie−iqa.
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