Exercise 2 for 2022~2023 USTC Course

'Introduction to Quantum Information'

Jun-Hao Wei, Shu-Ming Hu and Kai Chen
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China

1. For the singlet state $\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|10\rangle-|01\rangle)$, prove that Alice and Bob's outcomes are always anti-correlated when they measure two particles respectively along the same direction.

Answer: Refer to the Box 2.7 on the page of 113 of "Quantum computation and quantum information" by Nielsen.
2. PPT(Positive Partial Transposition) criterion is a strong separability criterion for quantum state, which is very convenient and practical for entanglement detection.
(1) Describe the PPT (Positive Partial Transposition) criterion and the realignment criterion.
(2) For the 2-qubit state $\rho=p\left|\phi^{-}\right\rangle\left\langle\phi^{-}\right|+(1-p) \frac{\mathbb{I}}{4}$, where, $0 \leq p \leq 1,\left|\phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}$, calculate the p 's lower bound when ρ is entangled state using PPT criterion and realignment criterion respectively.

Answer:

(1) PPT criterion reads: If ρ is separable, then the partial transpose $\rho^{T_{A}}$ has no negative eigenvalues.

Realignment criterion reads: For any bipartite separable state $\rho,\|\tilde{\rho}\| \leq 1$, where
$\|\tilde{\rho}\|$ is the sum of all the singular values of $\tilde{\rho}, \tilde{\rho}$ is the realignment of ρ.

$$
\rho=\left(\begin{array}{cccc}
\frac{1+p}{4} & 0 & 0 & -\frac{p}{2} \tag{2}\\
0 & \frac{1-p}{4} & 0 & 0 \\
0 & 0 & \frac{1-p}{4} & 0 \\
-\frac{p}{2} & 0 & 0 & \frac{1+p}{4}
\end{array}\right)
$$

then

$$
\rho^{T_{A}}=\left(\begin{array}{cccc}
\frac{1+p}{4} & 0 & 0 & 0 \\
0 & \frac{1-p}{4} & -\frac{p}{2} & 0 \\
0 & -\frac{p}{2} & \frac{1-p}{4} & 0 \\
0 & 0 & 0 & \frac{1+p}{4}
\end{array}\right)
$$

The eigenvalues of $\rho^{T_{A}}$ are $\left\{\frac{1}{4}(1-3 p), \frac{p+1}{4}, \frac{p+1}{4}, \frac{p+1}{4}\right\}$.

If ρ is entangled, $\rho^{T_{A}}$ has negative eigenvalues, then we get $1 \geq p>\frac{1}{3}$

$$
\tilde{\rho}=\left(\begin{array}{cccc}
\frac{1+p}{4} & 0 & 0 & \frac{1-p}{4} \\
0 & -\frac{p}{2} & 0 & 0 \\
0 & 0 & -\frac{p}{2} & 0 \\
\frac{1-p}{4} & 0 & 0 & \frac{1+p}{4}
\end{array}\right)
$$

The singular values of $\tilde{\rho}$ are $\left\{\frac{1}{2}, \frac{p}{2}, \frac{p}{2}, \frac{p}{2}\right\}$, then $\|\tilde{\rho}\|=\frac{3 p+1}{2}$. If ρ is entangled, $\|\tilde{\rho}\|>1$, then we get $1 \geq p>\frac{1}{3}$.
3. (1) Calculate the amount of entanglement of the state $\rho=\lambda\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+(1-$ $\lambda)\left|\psi^{+}\right\rangle\left\langle\psi^{+}\right|,(0 \leq \lambda \leq 1)$ with negativity measure, where $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+$ $|11\rangle,\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$.
(2) Derive the value scope for λ when the state ρ is entangled using negativity measure.

Answer:

(1)

$$
\rho=\frac{1}{2}\left(\begin{array}{cccc}
\lambda & 0 & 0 & \lambda \\
0 & 1-\lambda & 1-\lambda & 0 \\
0 & 1-\lambda & 1-\lambda & 0 \\
\lambda & 0 & 0 & \lambda
\end{array}\right)
$$

then

$$
\rho^{T_{A}}=\frac{1}{2}\left(\begin{array}{cccc}
\lambda & 0 & 0 & 1-\lambda \\
0 & 1-\lambda & \lambda & 0 \\
0 & \lambda & 1-\lambda & 0 \\
1-\lambda & 0 & 0 & \lambda
\end{array}\right)
$$

The eigenvalues of $\rho^{T_{A}}$ are $\left\{\frac{1}{2}, \frac{1}{2}, \frac{2 \lambda-1}{2}, \frac{1-2 \lambda}{2}\right\}$, and the singular values are $\left\{\frac{1}{2}, \frac{1}{2},\left|\frac{2 \lambda-1}{2}\right|,\left|\frac{1-2 \lambda}{2}\right|\right\}$.

So, the amount of entanglement of ρ is:

$$
N(\rho)=\frac{\left\|\rho^{T_{A}}\right\|-1}{2}=\left|\lambda-\frac{1}{2}\right|
$$

(2) If ρ is an entanglement state,

$$
N(\rho)=\frac{\| \rho^{T_{A}}| |-1}{2}=\left|\lambda-\frac{1}{2}\right|>0
$$

when $\lambda \neq 1 / 2, \rho$ is entangled.
4. (1) Describe the definition of the Entanglement Witness (EW).
(2) For the three-qubit GHZ state,

$$
|\mathbf{G H Z}\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

prove that the entanglement witness $\mathcal{W}=\frac{1}{2} \mathbf{I}-|G H Z\rangle\langle G H Z|$ detects three-qubit entanglement around it.
(3) A mixed state $\rho=(1-p) \frac{\mathbf{I}}{8}+p|G H Z\rangle\langle G H Z|(0 \leq p \leq 1)$, calculate the p 's lower bound when ρ is entangled state using the EW given above.

Answer:

(1) An entanglement witness is a functional which distinguishes a specific entangled state from separable ones. W can be called an entanglement witness, if it satisfies that
(a). W has at least one negative eigenvalue;
(b). For any separable state $\rho_{A B}, \operatorname{Tr}\left(W \rho_{A B}\right) \geq 0$
(2) To prove that \mathcal{W} is an EW, one needs to show that $\operatorname{Tr}\left(\rho_{\text {sep }} \mathcal{W}\right) \geq 0$ for all separable states. That is, for all separable states, $\operatorname{Tr}\left(\rho_{\text {sep }}|G H Z\rangle\langle G H Z|\right) \leq \frac{1}{2}$. The maximum value of $\operatorname{Tr}\left(\rho_{\text {sep }}|G H Z\rangle\langle G H Z|\right)$ is given by the square of the Schmidt coefficient which is maximal over all possible bipartite partitions $(1|23,2| 13,3 \mid 12)$ of $|G H Z\rangle$. Then it is easy to calculate

$$
\max _{\rho_{\text {sep }}} \operatorname{Tr}\left(\rho_{\text {sep }}|G H Z\rangle\langle G H Z|\right)=1 / 2
$$

So

$$
\operatorname{Tr}\left(\rho_{\text {sep }} \mathcal{W}\right) \geq 0
$$

The entanglement witness $\mathcal{W}=\frac{1}{2} \mathbf{I}-|G H Z\rangle\langle G H Z|$ detects three-qubit entanglement around it.

Experimental Detection of Multipartite Entanglement using Witness Operators (PhysRevLett.92.087902).
(3) ρ is an entangled state, them

$$
\operatorname{Tr}(\rho \mathcal{W})=\frac{1-p}{2}-\frac{1-p}{8}-\frac{p}{2}<0
$$

$$
p>\frac{3}{7}
$$

5. (1) What conditions should a good entanglement measures meet?
(2) Describe the definition of distillable entanglement and entanglement cost and their relationship.
(3) Write down the monogamy of entanglement and describe its physical meanings.

Answer:

(1) A good entanglement measure $E(\cdot)$ should satisfy that,
(a) For any separable state $\rho, E(\rho)=0$;
(b) No increase under LOCC, i.e. $E\left(\Lambda_{L O C C}(\rho)\right) \leq E(\rho)$;
(c) Continuity, i.e. $E(\rho)-E(\sigma) \rightarrow 0$, when $\|\rho-\sigma\| \rightarrow 0$;
(d) Convexity, i.e. $E(\lambda \rho+(1-\lambda) \sigma) \leq \lambda E(\rho)+(1-\lambda) E(\sigma)$;
(e) Normalization, i.e. $E\left(P_{+}^{d}\right)=\log d$.
(2) Read the page 62, 63 in the lecture "QIP2022chapt_2_Kai Chen.pdf" for reference.
(3) Monogamy of entanglement says that:

For any tripartite state of systems A, B_{1}, B_{2} we have

$$
E\left(A \mid B_{1}\right)+E\left(A \mid B_{2}\right) \leq E\left(A \mid B_{1} B_{2}\right)
$$

If the above inequality holds in general, i.e. not only for qubits, then it can be immediately generalized by induction to the multipartite case:

$$
E\left(A \mid B_{1}\right)+E\left(A \mid B_{2}\right)+\cdots+E\left(A \mid B_{N}\right) \leq E\left(A \mid B_{1} B_{2} \cdots B_{N}\right)
$$

It means that if two qubits A and B are maximally quantumly correlated they cannot be correlated at all with a third qubit C. In general, there is a trade-off between the amount of entanglement between qubits A and B and the same qubit

A and qubit C. Note that, in some cases, entanglement is not monogamay.
6. The four Bell states have the following mathematical expressions on the basis $\{0,1\}$
(the eigenstates of σ_{z}),

$$
\begin{aligned}
& \left|\Phi^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle) \\
& \left|\Psi^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle)
\end{aligned}
$$

(1) Prove that the four Bell states can be transformed to each other using single qubit rotations $\left\{I, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$.
(2) Give the representation of the four Bell states on the basis $\{+,-\}$ (the eigenstates

$$
\text { of } \left.\sigma_{x}\right) .
$$

Answer:

(1)

$$
\begin{align*}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{1}\\
& \Phi^{+}\left\{\begin{array}{l}
\xrightarrow{\sigma_{x} \otimes I}\left|\Psi^{+}\right\rangle, \\
\xrightarrow{\sigma_{y} \otimes I}-i\left|\Psi^{-}\right\rangle, \\
\xrightarrow{\sigma_{z} \otimes I}\left|\Phi^{-}\right\rangle,
\end{array}\right. \tag{2}\\
& \Phi^{-}\left\{\begin{array}{l}
\xrightarrow{\sigma_{x} \otimes I}-\left|\Psi^{-}\right\rangle, \\
\xrightarrow{\sigma_{y} \otimes I} i\left|\Psi^{+}\right\rangle, \\
\xrightarrow{\sigma_{z} \otimes I}\left|\Phi^{+}\right\rangle,
\end{array}\right. \tag{3}\\
& \Psi^{+}\left\{\begin{array}{l}
\xrightarrow{\sigma_{x} \otimes I}\left|\Phi^{+}\right\rangle, \\
\xrightarrow{\sigma_{y} \otimes I}-i\left|\Phi^{-}\right\rangle, \\
\xrightarrow{\sigma_{z} \otimes I}\left|\Psi^{-}\right\rangle,
\end{array}\right. \tag{4}
\end{align*}
$$

$$
\Psi^{-}\left\{\begin{array}{l}
\xrightarrow{\sigma_{x} \otimes I}-\left|\Phi^{-}\right\rangle, \tag{5}\\
\xrightarrow{\sigma_{y} \otimes I} i\left|\Phi^{+}\right\rangle, \\
\xrightarrow{\sigma_{z} \otimes I}\left|\Psi^{+}\right\rangle,
\end{array}\right.
$$

(2) The single qubit transformation between the σ_{z} basis and the σ_{x} basis is

$$
\begin{align*}
& |0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle), \tag{6}\\
& |1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)
\end{align*}
$$

So,

$$
\left\{\begin{array}{l}
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|++\rangle+|--\rangle) \tag{7}\\
\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle) \\
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|++\rangle-|--\rangle) \\
\left|\Psi^{-}\right\rangle=-\frac{1}{\sqrt{2}}(|+-\rangle-|-+\rangle)
\end{array}\right.
$$

7. (1) Describe the physical meanings of von Neumann entropy.
(2) Prove that $S(\rho) \leq \log D$, where D is the number of the non-zero eigenvalues of ρ.
(3) Prove the subadditivity of the von Neumann entropy

$$
|S(A)-S(B)| \leq S(A, B) \leq S(A)+S(B)
$$

(4) Prove the concavity of the von Neumann entropy

$$
S\left(\sum_{i} p_{i} \rho_{i}\right) \geq \sum_{i} p_{i} S\left(\rho_{i}\right)
$$

(5) Prove that the two body pure state $\left|\psi_{A B}\right\rangle$ is a entangled state if and only if $S(B \mid A)<0$, in which $S(B \mid A)=S(B, A)-S(A), S(\cdot)$ is the von Neumann entropy.

Answer:

(1) The von Neumann entropy quantizes the quantum information of each character of the quantum ensemble. When the signal ρ is pure state, von Neumann entropy $S(\rho)$ is the information quantization of the quantum information source.

$$
\begin{equation*}
S(\rho)=-\operatorname{tr}(\rho \log \rho)=-\sum_{i} \lambda_{i} \log \lambda_{i}=\sum_{i=1}^{D} \lambda_{i} \log \frac{1}{\lambda_{i}} \leq \log \left(\sum_{i=1}^{D} \lambda_{i} \frac{1}{\lambda_{i}}\right) \tag{2}
\end{equation*}
$$

in which the concavity of logarithmic function

$$
\log \left(p_{1} x_{1}+p_{2} x_{2}\right) \geq p_{1} \log x_{1}+p_{2} \log x_{2}
$$

is used.
(3) Consider the relative entropy of $\rho_{A B}$ and $\rho_{A} \otimes \rho_{B}$

$$
\begin{aligned}
S\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right) & =\operatorname{tr}\left(\rho_{A B} \log \rho_{A B}\right)-\operatorname{tr}\left(\rho_{A B} \log \left(\rho_{A} \otimes \rho_{B}\right)\right) \\
& =-S\left(\rho_{A B}\right)-\operatorname{tr}\left(\rho_{A B} \log \rho_{A}\right)-\operatorname{tr}\left(\rho_{A B} \log \rho_{B}\right) \\
& =-S\left(\rho_{A B}\right)+S\left(\rho_{A}\right)+S\left(\rho_{B}\right) \\
& \geq 0
\end{aligned}
$$

So,

$$
S(A, B) \leq S(A)+S(B)
$$

Consider a purification of $\rho_{A B}=\operatorname{tr}_{C}|\phi\rangle_{A B C}\langle\phi|$, apply subadditivity to $\rho_{B C}$, we can get that

$$
S(B, C) \leq S(B)+S(C)
$$

Since $S(B, C)=S(A), S(C)=S(A, B)$, so we get that

$$
S(A, B) \geq S(A)-S(B)
$$

Similarly, $S(A, B) \geq S(B)-S(A)$.

So,

$$
|S(A)-S(B)| \leq S(A, B)
$$

(4) Apply subadditivity to

$$
\rho_{A B}=\sum_{i} p_{i} \rho_{i} \otimes|i\rangle\left\langle\left. i\right|_{B}\right.
$$

we can get that

$$
S\left(\rho_{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right)=S\left(\sum_{i} p_{i} \rho_{i}\right)+H\left(p_{i}\right)
$$

From the joint entropy theorem we can get that

$$
S\left(\rho_{A B}\right)=S\left(\sum_{i} \rho_{i} \otimes p_{i}|i\rangle\left\langle\left. i\right|_{B}\right)=\sum_{i} p_{i} S\left(\rho_{i}\right)+H\left(p_{i}\right)\right.
$$

so

$$
S\left(\sum_{i} p_{i} \rho_{i}\right) \geq \sum_{i} p_{i} S\left(\rho_{i}\right)
$$

(5) Since $\left|\psi_{A B}\right\rangle$ is a pure state, so $S(A, B)=0$.

If $\left|\psi_{A B}\right\rangle$ is an entangled state, then its Schmidt decomposition can be write as

$$
\left|\psi_{A B}\right\rangle=\sum_{i} \sqrt{p_{i}}\left|i_{A}\right\rangle\left|i_{B}\right\rangle, i \geq 2
$$

so

$$
\rho_{A}=\sum_{i} p_{i}\left|i_{A}\right\rangle\left\langle i_{A}\right|,
$$

$$
S(A)=-\sum_{i} p_{i} \log p_{i}>0
$$

so

$$
S(B \mid A)=S(A, B)-S(A)=-S(A)<0
$$

8. Prove that $\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ is invariant under transformation $U(\theta, \vec{n}) \otimes U(\theta, \vec{n})$, where $U(\theta, \vec{n})=e^{-\frac{i}{2} \theta \cdot \vec{n} \cdot \vec{\sigma}}$.

Answer:

$$
\begin{gathered}
U(\theta, \vec{n})=e^{-\frac{i}{2} \theta \cdot \vec{n} \cdot \vec{\sigma}}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} \vec{n} \cdot \vec{\sigma} \\
U(\theta, \vec{n}) \otimes U(\theta, \vec{n})=\cos ^{2} \frac{\theta}{2} I \otimes I-i \sin \frac{\theta}{2} \cos \frac{\theta}{2}\left(n \cdot \vec{\sigma}_{B}+n \cdot \vec{\sigma}_{A}\right)-\sin ^{2} \frac{\theta}{2}(\vec{n} \cdot \vec{\sigma})_{A} \otimes(\vec{n} \cdot \vec{\sigma})_{B} .
\end{gathered}
$$

then, we have

$$
\begin{gathered}
\cos ^{2} \frac{\theta}{2} I \otimes I\left|\psi^{-}\right\rangle=\cos ^{2} \frac{\theta}{2}\left|\psi^{-}\right\rangle \\
\sigma_{x} \otimes \sigma_{x}\left|\psi^{-}\right\rangle=\sigma_{y} \otimes \sigma_{y}\left|\psi^{-}\right\rangle=\sigma_{z} \otimes \sigma_{z}\left|\psi^{-}\right\rangle=-\left|\psi^{-}\right\rangle \\
\left(\vec{n} \cdot \vec{\sigma}_{A}+\vec{n} \cdot \vec{\sigma}_{B}\right)\left|\psi^{-}\right\rangle=0
\end{gathered}
$$

Hence, $U(\theta, \vec{n}) \otimes U(\theta, \vec{n})\left|\psi^{-}\right\rangle=\left|\psi^{-}\right\rangle$.
9. For the 2 -qubit state $\rho=p\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-p) \frac{\mathbb{I}}{4}$, where $0 \leq p \leq 1,\left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}$, calculate the EOF(Entanglement of Formation) of ρ.

Answer:

The square roots are $\left\{\frac{1-p}{4}, \frac{1-p}{4}, \frac{1-p}{4}, \frac{1+3 p}{4}\right\}$, so the concurrence of ρ is $C(\rho)=$ $\max \left\{0, \frac{3 p-1}{2}\right\}$.

If $p \leq \frac{1}{3}$, the EOF of state ρ is $E(C(\rho))=H(1)=0$.
If $p>\frac{1}{3}$, the EOF of state ρ is $E(C(\rho))=H\left(\frac{1+\sqrt{1-\left(\frac{3 p-1}{2}\right)^{2}}}{2}\right)$.
10. Consider the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}\right), \rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)$. Calculate the Von Neumann entropy of ρ_{A}.

Answer:

$$
\begin{gathered}
\rho_{A}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right) \\
S\left(\rho_{A}\right)=-\left(\frac{1}{2} \log \left(\frac{1}{2}\right)+\frac{1}{2} \log \left(\frac{1}{2}\right)\right)=1
\end{gathered}
$$

11. Give a noisy entanglement state with purity F for the singlet state $\left|\Psi^{-}\right\rangle$,

$$
W_{F}=F\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\frac{1-F}{3}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+\frac{1-F}{3}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1-F}{3}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right| .
$$

Supposing $F=\frac{3}{5}$, please design a two-way LOCC purification protocol that can obtain the singlet state $\left|\Psi^{-}\right\rangle$with as high fidelity as possible from the above mixed state in five steps.

Answer:

Read the page 99 in the lecture "QIP2022chapt_2_Kai Chen.pdf" for reference. An arbitrary mixed two-partite state ρ with fidelity $F=\left\langle\Psi^{-}\right| \rho\left|\Psi^{-}\right\rangle$can be transformed to the symmetric Werner state with random bilateral rotations,

$$
W_{F}=F\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\frac{1-F}{3}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+\frac{1-F}{3}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1-F}{3}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right| .
$$

where $\left|\Psi^{ \pm}\right\rangle=\frac{1}{\sqrt{(2)}}(\uparrow \downarrow \pm \downarrow \uparrow),\left|\Phi^{ \pm}\right\rangle=\frac{1}{\sqrt{(2)}}(\uparrow \uparrow \pm \downarrow \downarrow)$ and $F=\left\langle\Psi^{-}\right| W_{F}\left|\Psi^{-}\right\rangle$.
Alice and Bob share two pairs of W_{F} state, i.e. $W_{F 12}$ and $W_{F 34}$, with 1 and 3 in

Alice's side, 2 and 4 in Bob's side. The purification protocol is:
(a) Alice and Bob make unilateral transformation σ_{y} (i.e. $\sigma_{y} \otimes I$) on their two pairs
of W_{F} state. We get the new state,
$W_{F} \xrightarrow{\sigma_{y} \otimes I} W_{F}^{\prime}=F\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1-F}{3}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+\frac{1-F}{3}\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\frac{1-F}{3}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|$.
(b) Alice and Bob perform the C-NOT operations on their two pair of W_{F}^{\prime} state
with 1 and 2 as 'source' particles and 3 and 4 as 'target' particles. The trans-
formation is shown as follow, then, measure two target particles along the Z

Before			After(n.c. $=$ no change)	
Source			Target	
$\Phi^{ \pm}$	Φ^{+}	n.c.	n.c.	
$\Psi^{ \pm}$	Φ^{+}	n.c	Ψ^{+}	
$\Psi^{ \pm}$	Ψ^{+}	n.c	Φ^{+}	
$\Phi^{ \pm}$	Ψ^{+}	n.c	n.c	
$\Phi^{ \pm}$	Φ^{-}	Φ^{\mp}	n.c	
$\Psi^{ \pm}$	Φ^{-}	Ψ^{\mp}	Ψ^{-}	
$\Psi^{ \pm}$	Ψ^{-}	Ψ^{\mp}	Φ^{-}	
$\Phi^{ \pm}$	Ψ^{-}	Φ^{\mp}	n.c	

axis. If the target pair's Z spins are parallel, keep the correspond source state;
otherwise, discard the source state. As the measurements along the Z axis can
only distinguish Φ from Ψ (but can't distinguish - from +), we keep the 1, 3,

5, 7 rows' source states.
(c) For $F=\frac{3}{5}$, we get a state $\rho=0.62\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+0.26\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+0.06\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+$ $0.06\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|$, note that the main noise state is $\left|\Phi^{-}\right\rangle$now. Change the bases into $\{|+\rangle,|-\rangle\}$, denote $|+\rangle$ as $\left|0^{\prime}\right\rangle$ and $|-\rangle$ as $\left|1^{\prime}\right\rangle$. We can rewrite $\rho=$
$0.62\left|\Phi^{\prime+}\right\rangle\left\langle\Phi^{\prime+}\right|+0.26\left|\Psi^{\prime+}\right\rangle\left\langle\Psi^{\prime+}\right|+0.06\left|\Phi^{\prime-}\right\rangle\left\langle\Phi^{\prime-}\right|+0.06\left|\Psi^{\prime-}\right\rangle\left\langle\Psi^{\prime-}\right|$, repeat the step (b), ρ changes into $\rho_{1}=0.68\left|\Phi^{\prime+}\right\rangle\left\langle\Phi^{\prime+}\right|+0.13\left|\Psi^{\prime+}\right\rangle\left\langle\Psi^{\prime+}\right|+0.13\left|\Phi^{\prime-}\right\rangle\left\langle\Phi^{\prime-}\right|+$ $0.06\left|\Psi^{\prime-}\right\rangle\left\langle\Psi^{\prime-}\right|$. Go back to $\{|0\rangle,|1\rangle\}$ bases, $\rho_{1}=0.68\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+0.13\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+$ $0.13\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+0.06\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|$, for which $F_{1}=0.68$.

Repeat step (b) and (c), we can get $F_{2}=0.80, F_{3}=0.93$, etc. At last, the final state can be converted back to a mostly Ψ^{-}state by a unilateral σ_{y} rotation.

