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Postulations of quantum mechanics

The state of a quantum state at time t is totally described by a vector |ψ(t)⟩ in the
Hilbert space H.
The observables correspond to Hermitian operators in H. The first quantization
condition is given by

[x̂, p̂] = iℏ. (1)

The eigenvalues of an observable Â determine the possible results of measuring A.
The probability of obtaining an is given by

P(|ψ⟩ → |an⟩) = |⟨ψ|an⟩|2. (2)

After the measurement, the system will collapse to the eigenstate |an⟩.
Time evolution is determined via the Schrödinger equation

iℏ d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩. (3)

Particles are classified as Bosons and Fermions.
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Postulations of quantum mechanics

Note:
For a mixed state, the system is described by the density operator,

ρ̂(t) ≡
∑
j

pj |ψj(t)⟩⟨ψj(t)|, (4)

where pj is the probability of the system being in the state |ψj(t)⟩.
For the system described by the generalized coordinates qi and momenta pi, one
can construct the observables as A(q, p) → Â(q̂, p̂) ≡ Â†(q̂, p̂), with the canonical
quantization condition satisfying.
Bosons are particles with integer spin and the total wave function symmetric with
respect to the exchange of two particles, while fermions are particles with half–integer
spin and the total wave function antisymmetric. The commutation relations of spin
operators are given by

[Ŝi, Ŝj ] = iℏϵijkŜk. (5)
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More on the density operator

The density operator is a Hermitian operator, and it satisfies Trρ̂ = 1 and

Trρ̂2 ≤ Trρ̂, (6)

where the equality holds iff ρ̂ is a pure state.
The introduction of the density operator is due to our innocence of the total system’s
information.
A truly isolate system is described by a pure state. But if we focus on a subpart of
the isolate total system, the state of the subsystem is described by a mixed state.
Specifically, the reduced density operator,

ρsub(x, x
′) ≡

∫
dqΨ∗(x, q)Ψ(x′, q) (7)

is a mixed state. The above equation can be recast as

ρ̂sub = trenv(|Ψ⟩⟨Ψ|). (8)
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Postulations of quantum mechanics

Possible questions:

Measurement vs. Time evolution

Why do we need boson and fermion?
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Time evolution

Propagator: |ψ(t)⟩ ≡ U(t, t0)|ψ(t0)⟩.
Equation of propagator:

∂

∂t
U(t, t0) = −iH(t)U(t, t0). (9)

Formal solution:

U(t, t0) = T+ exp

[
− i

∫ t

t0

dτ H(τ)

]
. (10)

If H is independent of time, then U(t, t0) ≡ G(t− t0) = e−iH(t−t0).
If ∀t, t′, [H(t), H(t′)] = 0, then U(t, t0) ≡ e

−i
∫ t
t0

dτ H(τ).
Isomorphically, for density matrix, we have

ρ(t) = U(t, t0)ρ(t0) (11)

with
∂

∂t
U(t, t0) = −iL(t)U(t, t0). (12)

Here L(t)(·) ≡ [H(t), (·)].
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Pictures

Schrödinger picture: ρ(t0) → ρ(t), Â→ Â;
Heisenberg picture: ρ(t0) → ρ(t0), Â→ Â(t) = U†(t, t0)ÂU(t, t0) and

˙̂
A(t) = −i[Â(t), H(t)]. (13)

Interaction picture (Dirac picture): ρ(t0) → ρI(t) = UI(t, t0)ρ(t0)U
†
I (t, t0), ÂI(t) ≡

U†(t, t0)Â(t)U(t, t0).
Note that: no matter what picture you take, the average of one observable remains the
same.
However, different picture has different convenience. For example,

⟨Â(t1)B̂(t2)⟩ = Tr[U†(t1, t0)ÂU(t1, t0)U
†(t2, t0)B̂U(t2, t0)ρ(t0)]. (14)

How to express it in the Schrödinger picture?
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Steady state

Consider the Liouville–von Neumann equation

ρ̇(t) = −i[H, ρ(t)], (15)

then the steady state is given by

ρst ≡ ρ(∞) (16)

satisfying

ρ̇st = [H, ρst] = 0. (17)

With respect to the steady state, we have

⟨Â(t)⟩ = ⟨Â⟩, (18)
⟨Â(t)B̂(t0)⟩ = ⟨Â(t− t0)B̂⟩. (19)

The steady state can take the form of

ρst = ρst(H). (20)

For example, the density operator for a canonical ensemble is given by

ρeq =
e−βH

Tr e−βH
= ρeq(H). (21)
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Thermal equilibrium state

The partition function is defined by

Z ≡ Tr e−βH =
∑
n

e−βEn . (22)

Therefore the energy average is given by

⟨H⟩ =
∑
n

Ene
−βEn/Z = − ∂

∂β
lnZ. (23)

If the Hamiltonian satisfies

H|n⟩ = ω(n+ 1/2)|n⟩ (24)

with n ∈ N+,

Z =
∑
n

e−βω/2e−nβω =
e−βω/2

1− e−βω
=

1

2 sinh(βω/2)
. (25)
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Solve the Schrödinger equation numerically

In matrix form, the Schrödinger equation can be recast into

d

dt

c1(t)c2(t)
...

 = −iH(t)

c1(t)c2(t)
...

 . (26)

Or the Liouville–von Neumann equation,

d

dt


ρ11 ρ12 · · · ρ1n
ρ21 ρ22 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · ρnn

 = −iH(t)(ρ)mn + i(ρ)mnH(t). (27)

To solve them, you can use the methods you learn in the computational mathematics. The
most prevalent algorithm is the Runge–Kutta 4 (RK4).
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Split–operator method

But how to solve equations expressed by momenta and coordinates?
Consider the Hamiltonian

H =
p̂2

2m
+ V (x̂) ≡ T + V. (28)

We have

e−iH∆t = e−iV ∆t/2e−iT∆te−iV ∆t/2 +O(∆t3). (29)

Then

e−iHt = lim
N→∞

[e−iH∆t]N = lim
N→∞

[
e−iV ∆t/2e−iT∆te−iV ∆t/2

]N
(30)

with ∆t ≡ t/N .
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Split–operator method

Given Ψ(x, 0) ≡ ⟨x|Ψ(t = 0)⟩, we have

Ψ(x,∆t) = ⟨x|e−iH∆t|Ψ(0)⟩

=

∫
dx′

∫
dp

∫
dx′′⟨x|e−iV ∆t/2|x′⟩⟨x′|e−iT∆t|p⟩⟨p|e−iV ∆t/2|x′′⟩⟨x′′|Ψ(0)⟩

=
1

2π

∫
dp

∫
dx′′e−iV (x)∆t/2e−ip2∆t/(2m)eipxe−iV (x′′)∆t/2e−ipx′′

Ψ(x′′, 0)

= e−iV (x)∆t/2F−1[e−ip2∆t/(2m)F [e−iV (x′′)∆t/2Ψ(x′′, 0)]] (31)

Do the iteration step by step, and you can obtain Ψ(x, t).Here the Fourier transformation
can be realized via the Fast Fourier Transformation algorithm (FFT), that is

x̃k =

N−1∑
n=0

xne
−i2πkn/N , (32)

xn =
1

N

N−1∑
k=0

x̃ke
i2πkn/N . (33)
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Path integral formalism

Open question: The canonical quantization is based on the Hamilton mechanics, and how
can we quantize the system via the Lagrange?

Main result (R. Feynman in his PhD thesis):

⟨q|e−iH(t−t0)|q0⟩ =
q(t)=q∫

q(t0)=q0

D[q(t)] eiS[q(t)], (34)

where the functional integral is defined via∫
Dq ≡ lim

∆t→0

∏
j

∫ ∏
a

dqja[det(2πiA)]−1/2, (35)

being the summation of all the possible paths from q0 to q and the action is given by

S[q(t)] =

∫ t

t0

dt L[q, q̇], (36)

with
L[q, q̇] ≡

∑
a

paq̇a −H[p, q] (37)

and
H[p, q] =

1

2

∑
ab

Aab(q)papb +
∑
a

Ba(q)pa + C(q). (38)
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Path integral formalism

The classical path is given by

δS[q(t)] = 0 ⇒ ∂L

∂qa
− d

dt

∂L

∂q̇a
= 0. (39)

in the limit of ℏ → 0.
The quantum effect can be viewed as fluctuations around the classical path.
From the Lagrangian, one can easily analyze the symmetry of the system, that is,
obtaining the conserved quantities based on the Noether’s theorem.
Path integral is widely used in the quantum field theory as a useful tool to perform
the perturbation expansion.
Recent some chemical dynamics theories utilize the path integral formalism to study
the quantum effect in the chemical reactions by only performing classical evolutions.
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Homework

To be...
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