Mathematical Background

Outline

Sets

Relations

Functions

Products

Sums

Outline

Sets

Relations

Functions

Products

Sums

Sets – Basic Notations

$x \in S$	membership
$S \subseteq T$	subset
$S \subset T$	proper subset
$S \subseteq^{fin} T$	finite subset
S = T	equivalence
Ø	the empty set
Ν	natural numbers
Z	integers
В	$\{\textbf{true}, \textbf{false}\}$

Sets – Basic Notations

$S \cap T$	intersection	$\stackrel{def}{=} \{x \mid x \in S \text{ and } x \in T\}$
$S \cup T$	union	$\stackrel{def}{=} \{x \mid x \in S \text{ or } x \in T\}$
S - T	difference	$\stackrel{def}{=} \{x \mid x \in S \text{ and } x \notin T\}$
$\mathcal{P}(S)$	powerset	$\stackrel{def}{=} \{ T \mid T \subseteq S \}$
[<i>m</i> , <i>n</i>]	integer range	$\stackrel{def}{=} \{x \mid m \le x \le n\}$

Generalized Unions of Sets

$$\bigcup S \stackrel{\text{def}}{=} \{x \mid \exists T \in S. \ x \in T\}$$
$$\bigcup_{i \in I} S(i) \stackrel{\text{def}}{=} \bigcup \{S(i) \mid i \in I\}$$
$$\bigcup_{i=m}^{n} S(i) \stackrel{\text{def}}{=} \bigcup_{i \in [m,n]} S(i)$$

Here S is a set of sets. S(i) is a set whose definition depends on i. For instance, we may have

$$S(i) = \{x \mid x > i + 3\}$$

Given i = 1, 2, ..., n, we know the corresponding S(i).

Generalized Unions of Sets

Example (1)

$$A\cup B = \bigcup\{A,B\}$$

Proof?

Example (2)
Let
$$S(i) = [i, i+1]$$
 and $I = \{j^2 \mid j \in [1, 3]\}$, then
$$\bigcup_{i \in I} S(i) = \{1, 2, 4, 5, 9, 10\}$$

Generalized Intersections of Sets

$$\bigcap S \stackrel{\text{def}}{=} \{x \mid \forall T \in S. \ x \in T\}$$

$$\bigcap_{i \in I} S(i) \stackrel{\text{def}}{=} \bigcap \{S(i) \mid i \in I\}$$

$$\bigcap_{i=m}^{n} S(i) \stackrel{\text{def}}{=} \bigcap_{i \in [m,n]} S(i)$$

Generalized Unions and Intersections of Empty Sets

From

$$\bigcup \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \exists T \in \mathcal{S}. x \in T\}$$
$$\bigcap \mathcal{S} \stackrel{\text{def}}{=} \{x \mid \forall T \in \mathcal{S}. x \in T\}$$

we know

$$\bigcup \emptyset = \emptyset$$

$$\bigcap \emptyset$$
 meaningless

 $\bigcap \emptyset$ is meaningless, since it denotes the paradoxical "set of everything".

Outline

Sets

Relations

Functions

Products

Sums

Relations

We need to first define the *Cartesian product* of two sets A and B: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$ Here (x, y) is called a *pair*.

Projections over pairs: $\pi_0(x, y) = x$ and $\pi_1(x, y) = y$.

Then, ρ is a relation from A to B if $\rho \subseteq A \times B$, or $\rho \in \mathcal{P}(A \times B)$.

Relations

 ρ is a relation from A to B if $\rho \subseteq A \times B$, or $\rho \in \mathcal{P}(A \times B)$.

 ρ is a relation on S if $\rho \subseteq S \times S$.

We say ρ relates x and y if $(x, y) \in \rho$. Sometimes we write it as $x \rho y$.

 ρ is an *identity relation* if $\forall (x, y) \in \rho$. x = y.

Relations – Basic Notations

the *identity on*
$$S$$
 $Id_S \stackrel{\text{def}}{=} \{(x,x) \mid x \in S\}$

the domain of ρ dom $(\rho) \stackrel{\text{def}}{=} \{x \mid \exists y. (x, y) \in \rho\}$ the range of ρ ran $(\rho) \stackrel{\text{def}}{=} \{y \mid \exists x. (x, y) \in \rho\}$

composition of
$$\rho$$
 and ρ' $\rho' \circ \rho \stackrel{\text{def}}{=} \{(x, z) \mid \exists y. (x, y) \in \rho \land (y, z) \in \rho'\}$
inverse of ρ $\rho^{-1} \stackrel{\text{def}}{=} \{(y, x) \mid (x, y) \in \rho\}$

Relations – Properties and Examples

$$(\rho_{3} \circ \rho_{2}) \circ \rho_{1} = \rho_{3} \circ (\rho_{2} \circ \rho_{1})$$
$$\rho \circ \mathsf{Id}_{S} \subseteq \rho \supseteq \mathsf{Id}_{T} \circ \rho$$
$$\mathsf{dom}(\mathsf{Id}_{S}) = S = \mathsf{ran}(\mathsf{Id}_{S})$$
$$\mathsf{Id}_{T} \circ \mathsf{Id}_{S} = \mathsf{Id}_{T\cap S}$$
$$\mathsf{Id}_{S}^{-1} = \mathsf{Id}_{S}$$
$$(\rho^{-1})^{-1} = \rho$$
$$(\rho_{2} \circ \rho_{1})^{-1} = \rho_{1}^{-1} \circ \rho_{2}^{-1}$$
$$\rho \circ \emptyset = \emptyset = \emptyset \circ \rho$$
$$\mathsf{Id}_{\emptyset} = \emptyset = \emptyset^{-1}$$
$$\mathsf{dom}(\rho) = \emptyset \Longleftrightarrow \rho = \emptyset$$

Relations – Properties and Examples

 $< \subseteq \leq$ $< \cup Id_{N} = \leq$ $\leq \cap \geq = Id_{N}$ $< \cap \geq = \emptyset$ $< \circ \leq = <$ $\leq \circ \leq = \leq$ $\geq = \leq^{-1}$

 ρ is an equivalence relation on S if it is reflexive, symmetric and transitive.

Reflexivity: $Id_S \subseteq \rho$

Symmetry: $\rho^{-1}=\rho$

Transitivity: $\rho \circ \rho \subseteq \rho$

Outline

Sets

Relations

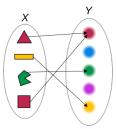
Functions

Products

Sums

Functions

A function f from A to B is a special relation from A to B. A relation ρ is a function if, for all x, y and y', $(x, y) \in \rho$ and $(x, y') \in \rho$ imply y = y'.



Function application f(x) can also be written as f x.

Functions

 \emptyset and Id_S are functions.

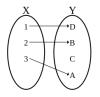
If f and g are functions, then $g \circ f$ is a function.

$$(g \circ f) x = g(f x)$$

If f is a function, f^{-1} is not necessarily a function. (f^{-1} is a function if f is an injection.)

Functions - Injection, Surjection and Bijection

Injective and non-surjective:



Surjective and non-injective:

Bijective:

Non-injective and non-surjective:

Functions – Denoted by Typed Lambda Expressions

 $\lambda x \in S$. *E* denotes the function *f* with domain *S* such that f(x) = E for all $x \in S$.

Example

 $\lambda x \in \mathbf{N}. x + 3$ denotes the function $\{(x, x + 3) \mid x \in \mathbf{N}\}.$

Functions – Variation

Variation of a function at a single argument:

$$f\{x \rightsquigarrow n\} \stackrel{\text{def}}{=} \lambda z. \begin{cases} fz & \text{if } z \neq x \\ n & \text{if } z = x \end{cases}$$

Note that x does not have to be in dom(f).

$$dom(f\{x \rightsquigarrow n\}) = dom(f) \cup \{x\}$$

ran(f{x \leftarrow n}) = ran(f - {(x, n') | (x, n') \in f}) \cup {n}

Example

$$\{\lambda x \in [0..2]. x + 1\} \{2 \rightsquigarrow 7\} = \{(0, 1), (1, 2), (2, 7)\}\$$

 $\{\lambda x \in [0..1]. x + 1\} \{2 \rightsquigarrow 7\} = \{(0, 1), (1, 2), (2, 7)\}$

We use $A \rightarrow B$ to represent the set of all functions from A to B.

 \rightarrow is right associative. That is,

$$A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$$
.

If $f \in A \rightarrow B \rightarrow C$, $a \in A$ and $b \in B$, then $f a b = (f(a))b \in C$.

Functions with multiple arguments

$$f \in A_1 \times A_2 \times \cdots \times A_n \to A$$
$$f = \lambda x \in A_1 \times A_2 \times \cdots \times A_n. E$$
$$f(a_1, a_2, \dots, a_n)$$

Currying it gives us a function

$$g \in A_1 \to A_2 \to \cdots \to A_n \to A$$
$$g = \lambda x_1 \in A_1. \ \lambda x_2 \in A_2. \ \dots \lambda x_n \in A_n. E$$
$$g a_1 a_2 \ \dots a_n$$

Outline

Sets

Relations

Functions

Products

Sums

Cartesian Products

Recall $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Projections over pairs: $\pi_0(x, y) = x$ and $\pi_1(x, y) = y$.

Generalize to *n* sets: $S_0 \times S_1 \times \cdots \times S_{n-1} = \{(x_0, \dots, x_{n-1}) \mid \forall i \in [0, n-1]. x_i \in S_i\}$ We say (x_0, \dots, x_{n-1}) is an *n*-tuple.

Then we have $\pi_i(x_0,\ldots,x_{n-1}) = x_i$.

Tuples as Functions

We can view a pair (x, y) as a function

$$\lambda i \in \mathbf{2}. \begin{cases} x & \text{if } i = 0\\ y & \text{if } i = 1 \end{cases}$$

where $\mathbf{2} = \{0, 1\}$. $A \times B \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = \mathbf{2}, \text{ and } f \ 0 \in A \text{ and } f \ 1 \in B\}$

Tuples as Functions

Similarly, we can view an *n*-tuple (x_0, \ldots, x_{n-1}) as a function

$$\lambda i \in \mathbf{n}. \begin{cases} x_0 & \text{if } i = 0\\ \dots & \dots\\ x_{n-1} & \text{if } i = n-1 \end{cases}$$

where $n = \{0, 1, \dots, n-1\}.$

 $S_0 \times \cdots \times S_{n-1} \stackrel{\text{def}}{=} \{f \mid \operatorname{dom}(f) = \mathbf{n}, \text{ and } \forall i \in \mathbf{n}. f i \in S_i\}$

Generalized Products

From

$$S_0 \times \cdots \times S_{n-1} \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = \mathbf{n}, \text{ and } \forall i \in \mathbf{n}. f i \in S_i\}$$

we can generalize $S_0 \times \cdots \times S_{n-1}$ to an infinite number of sets.

$$\prod_{i \in I} S(i) \stackrel{\text{def}}{=} \{f \mid \text{dom}(f) = I, \text{ and } \forall i \in I. \ f \ i \in S(i)\}$$
$$\prod_{i=m}^{n} S(i) \stackrel{\text{def}}{=} \prod_{i \in [m,n]} S(i)$$

Generalized Products

We can also define $\Pi \theta$ for a function θ .

 $\Pi \theta \stackrel{\text{def}}{=} \{f \mid \operatorname{dom}(f) = \operatorname{dom}(\theta), \text{ and } \forall i \in \operatorname{dom}(\theta). f i \in \theta i\}$

Example

Let $\theta = \lambda i \in I$. S(i). That is, θ is a function from the set of indices to a set of sets, i.e., θ is an indexed family of sets. Then

$$\Pi \theta = \prod_{i \in I} S(i)$$

Generalized Products – Example

$$\Pi \theta \stackrel{\text{def}}{=} \{f \mid \operatorname{dom}(f) = \operatorname{dom}(\theta), \text{ and } \forall i \in \operatorname{dom}(\theta). f i \in \theta i\}$$

Example

Let
$$\theta = \lambda i \in \mathbf{2}.\mathbf{B}$$
. Then

$$\begin{split} \Pi \, \theta &= \{ \; \{(0, \mathsf{true}), (1, \mathsf{true})\}, \\ &\{(0, \mathsf{true}), (1, \mathsf{false})\}, \\ &\{(0, \mathsf{false}), (1, \mathsf{true})\}, \\ &\{(0, \mathsf{false}), (1, \mathsf{false})\} \; \} \end{split}$$

That is, $\Pi \theta = \mathbf{B} \times \mathbf{B}$.

Exponentiation

Recall
$$\prod_{x \in T} S(x) = \Pi \lambda x \in T. S(x).$$

We write S^T for $\prod_{x \in T} S$ if S is independent of x.

$$S^{T} = \prod_{x \in T} S = \Pi \lambda x \in T.S$$

= {f | dom(f) = T, and $\forall x \in T. f x \in S$ } = (T \rightarrow S)

Recall that $T \rightarrow S$ is the set of all functions from T to S.

Exponentiation – Example

We sometimes use 2^{S} for powerset $\mathcal{P}(S)$. Why?

Exponentiation – Example

We sometimes use 2^{S} for powerset $\mathcal{P}(S)$. Why?

$$\mathbf{2}^S = (S \rightarrow \mathbf{2})$$

For any subset T of S, we can define

$$f = \lambda x \in S. \begin{cases} 1 & \text{if } x \in T \\ 0 & \text{if } x \in S - T \end{cases}$$

Then $f \in (S \rightarrow 2)$.

On the other hand, for any $f \in (S \rightarrow 2)$, we can construct a subset of S.

Outline

Sets

Relations

Functions

Products

Sums

Sums (or Disjoint Unions)

Example

Let $A = \{1, 2, 3\}$ and $B = \{2, 3\}$. To define the disjoint union of A and B, we need to index the elements according to which set they originated in:

$$\begin{array}{rcl} A' &=& \{(0,1),(0,2),(0,3)\} \\ B' &=& \{(1,2),(1,3)\} \end{array}$$

 $A + B = A' \cup B'$

Sums (or Disjoint Unions)

$$A + B \stackrel{\text{def}}{=} \{(i, x) \mid i = 0 \text{ and } x \in A, \text{ or } i = 1 \text{ and } x \in B\}$$

Injection operations:

$$\iota^{0}_{A+B} \in A \to A+B$$

 $\iota^{1}_{A+B} \in B \to A+B$

The disjoint union can be generalized to *n* sets:

$$S_0 + S_1 + \dots + S_{n-1} \stackrel{\text{def}}{=} \{(i, x) \mid i \in \mathbf{n} \text{ and } x \in S_i\}$$

Generalized Sums (or Disjoint Unions)

It can also be generalized to an infinite number of sets. The disjoint union (sum) of θ is

$$\Sigma \, heta \, \stackrel{\mathsf{def}}{=} \, \left\{ (i,x) \, \mid \, i \in \mathsf{dom}(heta) \; \mathsf{and} \; x \in heta \, i
ight\}$$

$$\sum_{i \in I} S(i) \stackrel{\text{def}}{=} \Sigma \lambda i \in I.S(i)$$
$$\sum_{i=m}^{n} S(i) \stackrel{\text{def}}{=} \sum_{i \in [m,n]} S(i)$$

Generalized Sums (or Disjoint Unions) – Examples

$$\Sigma \theta \stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\}$$

Example (1)
$$\sum_{i \in \mathbf{n}} S(i) = \Sigma \lambda i \in \mathbf{n}. S(i) = \{(i, x) \mid i \in \mathbf{n} \text{ and } x \in S(i)\}$$

Example (2) Let $\theta = \lambda i \in \mathbf{2.B}$. Then

 $\Sigma \theta = \{ (0, true), (0, false), (1, true), (1, false) \}$

That is, $\Sigma \theta = \mathbf{2} \times \mathbf{B}$.

More on Generalized Sums (or Disjoint Unions)

$$\begin{split} \Sigma \theta &\stackrel{\text{def}}{=} \{(i, x) \mid i \in \text{dom}(\theta) \text{ and } x \in \theta i\} \\ \sum_{x \in T} S(x) &\stackrel{\text{def}}{=} \Sigma \lambda x \in T.S(x) \end{split}$$

We can prove $\sum_{x \in T} S = T \times S$ if S is independent of x.

$$\sum_{x \in T} S = \Sigma \lambda x \in T.S$$
$$= \{(x, y) \mid x \in T \text{ and } y \in S\} = (T \times S)$$