ARG B S BT

o5 % 15——CS structures

i 2
R AR K LR

December 20, 2009

Fe4

Computer System Operation
A modern computer system
Start a computer system
Interrupt

[/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection

General System Architecture
General System Architecture

Computing Environments

NEEREN,

Outline
Computer System Operation

A modern computer system

A modern computer system |

disk disk printer tape drives

disk
controller

printer
controller

tape-drive
controller

system bus

memory controller

A modern computer system |l

monit
CPU diot USB controller Ol
controller adapter

| I |

Outline
Computer System Operation

Start a computer system

Start a computer system

» Bootstrap program, a initial program

» Loaded at power-up or reboot

» Typically stored in ROM or EPROM, generally known as
firmware

> initializes hardware
> CPU registers, device controllers, memory content

> Load at least a part of the OS into main memory & start
executing it

» Platform dependent

Example: Linux system startup

Linux (Intel i386)

Refer to appendix A of {Understanding Linux Kernel)
» —RESET pin of the CPU
» cs:ip= OxFFFF FFFO
» ROM BIOS

Example: Linux system startup (cont.)

BIOS
Basic 1/O System: A set of programs stored in ROM, including

» Several interrupt-driven low-level procedures
» A bootstrap procedure, who

» POST (Power On Self-Test)

> Initializes hardware device

» Searches for an OS to boot

» Copies the first sector of the OS into RAM 0x0000 7C00, and
jumps & executes

77?77 After starts up

» Executes prearranged process, or

» Waits for interrupt

Outline
Computer System Operation

Interrupt

Interrupt |

Interrupt represents an event to be handled

For hardware: Device interrupt
» The completion of an 1/O operation, a key stroke or a mouse
move, ***
For error (also hardware): exception

» Trap for debug

» Fault, example: page fault, division by zero, invalid memory
access

» Abort, a serious error

For software: System call

Interrupt Il

» To request for some operating-system service
» Int 0x80, 0x13, 0x21

Modern OSs are interrupt-driven

Interrupt handling |

When the CPU is interrupted

» Stops what it is doing
» Incoming interrupts are disabled to prevent a lost interrupt
» Transfers control to the ISR (Interrupt Service Routine)

> A generic routine in fixed location and then call the
interrupt-specific handler

» Polling
> interrupt vector table

When the ISR completed,
Back to interrupted program

Interrupt handling I

» HOW ?
— OS preserves the state of the CPU by storing
registers and the program counter
» Old: Fixed location, or a location indexed by the device

number
» Recent: system stack

Interrupt time line for a single process doing output

CPU

Lo

User process

executing _

/O intemupt

processing __

idle _

device

Transferring__ |

/O request

Transfer done

TOrequest Transfer done

Example: interrupts in 1386

» protect mode (fR#FHH)

» IDT (Interrupt Descriptor Table)
» OSH'SIDTHR, AFHAEAS Pk AL BLAIRE AN 1 k4545 5
> TR IR, CPURGHR A FH I 25 3RAS 1) wh W 1) 5
FEIDTR AR G| 2% L WAL BEBIRE (N sty JFBkss
%izfr
> fRAF LR
> KERL
» E LT

Outline

[/O Structure
I/O Structure

|/O structure

disk disk printer tape drives
> fan V.
1
disk printer tape-drive
CPU controller controller controller

i N o L
))) system bus

memory controller

Py

0bus

I 1/0Part I

110 Interface

110 Controller

1/0 Device

|/O structure

v

Each device controller is in charge of a particular device type

Each device controller has

v

> a local buffer & a set of special-purpose registers

» Data transfer, two phrase

» Main memory «(CPU)— local buffer of controller
» device «(device controller)— local buffer

v

1/O devices & CPU can execute concurrently

» Share/compete memory cycle
» Memory controller

(11}

o

¢
¢

»

L
e

»

Outline

[/O Structure

I/O operation

|/O operation

» CPU start an I/O operation by

» Loading the appropriate registers within the device controller
» When complete, device controller informs CPU by

» Triggering an interrupt, or
> Simply set a flag in one of their registers

» Two |/O methods

» synchronous VS. asynchronous

|/O method analysis
Synchronous
» Waiting User R:““i‘:‘jﬂ"g‘“ﬁu
» Wait instruction Device driver
» Dead loop like - \ Interrupt handler
L Lo L Hardware
OOp. -/mp Oop L Data transfer __|
timer

» At most one |/O request is outstanding at a time
> 777
» Advantage: always knows exactly which device is interrupting

» Disadvantage: excludes concurrent 1/O operations & the
possibility of overlapping useful computation with 1/0

|/O method analysis (cont.)

Requesting process
Asynchronous N A

Device driver

User

\ /7 Interrupt handler —

» Start & cont.
Hardware

» with a wait system call | {.. Data transfer __|

timer N
» Need to keep track of many 1/0 request
» Device-status table
» Each entry: Device type, address, state
» A wait queue for each device
» When an interrupt occurs, OS indexes into 1/O device table to
determine device status and to modify table entry to reflect

the occurrence of interrupt
» Main advantage: system efficiency

device status table

device: card reader 1
status: idle

device: line printer 3
status: busy

request for

device: disk unit 1
status: idle

device: disk unit 2
status: idle

line printer
address: 38546
length: 1372

device: disk unit 3
status: busy

request for
disk unit 3

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 3

file: yyy
operation: write
address: 03458
length: 500

Outline

[/O Structure

DMA

Direct Memory Access (DMA)

Examplel: 9600-baud terminal
» 2us(ISR) per 1000us
> It's ok!

Example2: hard disk

> 2us(ISR) per 4us
» The overhead (per byte) is relatively costly!

DMA (Direct Memory Access)

» Used for high-speed /O devices able to transmit information
at close to memory speeds.

DMA structure

A DMA controller

CPU:

One interrupt / fetch instruction

—_—
block of data decode
fetch operand
operate —

CPU |

Device controller

» transfers between buffer and main memory directly, without
CPU intervention.

» Memory cycle stealing

Outline

Storage Structure and Storage Hierarchy
Storage Structure

Storage structure

» Von Neumann architecture VS. Harvard architecture

> Separated data & code in different memory???

» Main memory (RAM) is the only large storage media that the
CPU can access directly

» Small, Volatile

» Secondary storage is an extension of main memory that
provides large nonvolatile storage capacity

» Magnetic disk !
» Optical disk o

opey aick
(st @ mite)

» Magnetic tape

Von Neumann architecture

> TR

> AW, SRER], FRL
> AYRRER, R

> ROGESE, BT MRS

ikt R L
> TUKEE: defds .
fe fEEAR . 1/OBes
> {rfifi s 5 CPUA > B
> TR S A L
AN

Storage structure (cont.)

Memory VS. register

» Same: Access directly for CPU

> Register name
» Memory address

» Different: access speed

> Register, one cycle of the CPU clock
» Memory, Many cycles (2 or more)

» Disadvantage:

» CPU needs to stall frequently & this is intolerable

» Remedy

» cache

Magnetic disks

» Magnetic disks — rigid metal or glass platters covered with
magnetic recording material

» Disk surface is logically divided into tracks, which are

subdivided into sectors.
» The disk controller determines the logical interaction between

the device and the computer.

» Position time >

» Transfer time : .‘

» Transfer time Tt

» Tt = datasize x Transferrate
Transfer rate ~ (n M/s)™*
~ (n Byte/us)™"
~ 1/n us/Byte

» Positioning time T,

» Seek time T
» Rotational latency Tgr
> Tox= Ts+ Tr~=mms

> TrVS. T,

> Please Store data closely

Outline

Storage Structure and Storage Hierarchy

Storage hierarchy

Storage hierarchy

Storage hierarchy

» Storage systems in a computer
system can be organized in a
hierarchy

» Speed, access time
» Cost per bit
» Volatility

Caching

> Caching (FIEZEAEHIA)
» Copying information into faster storage system
» When accessing, first check in the cache,

> if In: use it directly
> Not in: get from upper storage system, and leave a copy in
the cache

» Using of caching

> Registers provide a high-speed cache for main memory

» Instruction cache & data cache

» Main memory can be viewed as a fast cache for secondary
storage

Cache management

» Design problem

» Hardware or software?
» Cache size & Replacement policy is important
» Hit rate 80%799% is OK!

Coherency and consistency

» Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

» Migration of Integer A from Disk to Register

magnetic main hardware
disk 3{ memory I’{ e 3{ register

» The same data may appear in different level of the
storage system

» When

» Simple batch system, no problem

» Multitasking, always obtain the most recently updated value
» Multiprocessor, cache coherency (always implicit to OS)

» Distributed system?

Performance of Various Levels of Storage

» Movement between levels of storage hierarchy can be explicit

or implicit
Level 1 2 3 4
Name registers cache main memory disk storage
Typical size <1KB > 16 MB > 16 GB > 100 GB
Implementation custom memory with | en-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMCS | CMOS SRAM
Access fime (ns) 025-05 05-25 80 - 250 5,000.000
Bandwidth (MB/sec) | 20,000 - 100,000 5000 - 10,000 1000 - 5000 20-150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

Hardware protection

» A properly designed OS must ensure that an incorrect (or
malicious) program cannot cause other programs to execute
incorrectly.

» When in dead loop

» When sharing recourses

» When one erroneous program might modify the program or
data of another program, or even the OS

» Hardware must provide protection

Dual-Mode Operation
1/0O protection
Memory protection
CPU protection

vV vy VvVYyy

Dual-Mode Operation

» Using mode bit to provide different modes of execution

» User mode: execution done on behalf of user
» privileged mode: execution done on behalf of OS

> Privileged instructions

» User program VS. OS (or Kernel)

» Switch between user mode (1) and privileged mode(0)

» Boot

> Interrupt (include system call)

execute system call

user process
user mode
user process execuling H calls system call | ‘ return from system call (mode bit = 1)
\ /
4 z
1 rd
Kernel trap return
Sine mode bit = 0 modle bit = 1
kernel mode
(mode bit = 0)

» Example: i386

» 4 modes (2 mode bits)

» Linux uses 2 mode (00b & 11b)

User
program

User
program

08 System mpde
System call & interrupt switch)
User mode

|/O protection

» Preventing the users from issuing illegal 1/O instructions
» All 1/0 instructions are privileged instructions

» instead of performing |/O operation directly, user program
must make a system call
» OS, executing in monitor mode, checks validity of request and

does the I/O
> input is returned to the program by the OS

» Smart hacker may---

» Stores in the interrupt vector a new address, which points to a
malicious routine

» The I/O protection is compromised

» We need some more protection***

Memory protection

> At least for interrupt vector and the
ISR

» Base register protection scheme

Base register+Limit register
Memory outside is protected
OS has unrestricted access to both
monitor and user’ s memory

> Load instructions for the base/limit
registers are privileged

0
[0

256000

Jobl
300040

Job2
420940

Job3

880000

Tob4
1024000 ——

Trap to oper:

monitor-addressing error

Base register

300040

120900

i

Limit register

ating system

memory

CPU protection

» OS should be always take control of everything

» What if a user program is in dead loop?

» Timer

> Interrupts computer after specified period
» Periodically or one-shot
> Load-timer is also a privileged instruction

» Usage

» Time sharing
» Compute current time
> Alarm or timer

Timer to prevent infinite loop / process hogging resources

» Set interrupt after specific period
» Operating system decrements counter
» When counter zero generate an interrupt

» Set up before scheduling process to regain control or
terminate program that exceeds allotted time

Outline

General System Architecture
General System Architecture

General system architecture

» multiprogramming

» time sharing

» OS: in kernel (privileged) mode

» control hardware & software resource

» execute privileged instruction
» system call

system call

System call—like a common function call, but totally different!

» Trap to a specific location in interrupt vector

> int (i386)
» trap (SUN SPARC)
» syscall (MIPS R2000)

» Control passes to a service routine in the OS, and the mode
bit is set to monitor mode

» The kernel

> Verifies that the parameters are correct and legal
» Executes the request
» Returns control to the instruction following the system call

Use of a system all to perform 1/0

resident
monitor

casen

&) : @
trap to perdorm /O

4 read
monitor

return
o user

user
system call n — program

Computing Environments

—. Traditional computer
> FETHEHLT AR AR AL
» Office environment

» PCs connected to a network, terminals attached to mainframe
or minicomputers providing batch and timesharing

» Now portals allowing networked and remote systems access to
same resources

» Home networks

» Used to be single system, then modems
» Now firewalled, networked

» Client-Server Computing

» Dumb terminals supplanted by smart PCs
» Many systems now servers, responding to requests generated
by clients

» Compute-server provides an interface to client to request
services (i.e. database)

> File-server provides interface for clients to store and retrieve
files

client ‘ ‘ client ‘ ‘ client ‘ ‘ client ‘

| | | | network|

server

> Stk

Peer-to-Peer Computing
Web-Based Computing
Grid Computing

Cloud Computing

vV vy VvVYyy

» & 115 Pervasive/Ubiquitous Computing

NS

Computer System Operation
A modern computer system
Start a computer system
Interrupt

[/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection

General System Architecture
General System Architecture

Computing Environments

NEEREN,

({1

1.10 What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?

113 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

» 1.8
Which of the following instructions should be privileged?

. Set value of timer.
. Read the clock.
. Clear memory.
. Issue a trap instruction.
. Turn off interrupts.
Modify entries in device-status table.
. Switch from user to kernel mode.
. Access |/0 device.

vV VY VY VY VY VY VY

>0 SO o0 T W

e S HLEA D

111 Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU's execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are
complete?

Ie)

. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

g !
NRERAZA R

	Computer System Operation
	A modern computer system
	Start a computer system
	Interrupt

	I/O Structure
	I/O Structure
	I/O operation
	DMA

	Storage Structure and Storage Hierarchy
	Storage Structure
	Storage hierarchy

	Hardware Protection
	General System Architecture
	General System Architecture

	Computing Environments
	小结和作业

