kJThYfat tree , 4FAE: 1 foreach pod = in [0,k — 1] do  X}Fr&podfEIf
. FETHRYEBFKNEDO foreach swirch z in [(k/2), E — 1] do 3 TERZE/switchfEEf

2
- OENTR, —#A(5) DR
. —#HHkMpod, FpodBKAEAAR, TEEMENEE L3

- . og — oo ()2
© BEANESNRBA TR 2GRS, Ktfattree— Ak Npod, F i podBM(5) MRS

>

2
3 foreach subnet i in [0, (k/2) — 1] do 305 EKIswitch{EFR
4 addPrefix(10.z.2.1, 10.2.7.0/24, i)

5 end BENMLEEswitchEZETZR G Eswitchfy%tporti
6 addPrefix(10.x.z.1, 0.0.0.0/0, 0);

7 foreach host ID i in [2, (k/2) + 1] do

8 addSuffix(10.z.z.1. 0.0.0.4/8,

B} N 2 . | — 2L 2 d(k/2 k/2)).
%, FihpodRuk (3) MRS ,, end(l + z)mod(k/2) + (k/2))
© R podZ [BITFTE k KR 10 end ..
switch */]_K’% . 11 end %ﬁ%ﬁﬁﬁﬂ%%
) W%‘:PE’\]ﬂﬂiJﬂ0.0.0.0/S 1 foreach j in [1, (k/2)] do
. p(_)dEPE’\]iﬂﬂ,i_lJ:: 10.pod.switch.1, pod € [0,k — 1] 2 foreach iin [1. (k/2)] do
switch € [0,k — 1] A\ET /0, E|A Efk1 (portli%mSEHE) 3 foreach destination pod x in [0, (k/2) — 1] do
e Corefy#hit: 10.k.j.i, kAkic, BEEE. i, AXEYELER, j,i€ [1,2], ME s 4 Enduddplenx(10.1:.3_1_103.0.0/1(1_ x):
_/]\J:HZSE Preﬁ; Output port 6 end
BRERER:  (AURILECESER, ERIEEAR) aron 1 7 end
* Ei'fiﬁﬁ ?@_%E‘%EE ) ﬁ—ltﬁﬁﬁ—)%ﬁﬁ%%lﬁ@ﬂﬂ%m 0.0.0.0/0 > Suffix [ Output port Algorithm 2: Generating core switch routing tables.
RERHEIL 0.00.2/8 2 Fat-Tree (k=4) 10.0.0.0/8
* 357 H—NMA%EswitchfIBE &R 0.0.0.3/8 3

« 60917 BEREIMaEEIRZOE, RIE(-2+z)mod(k/2)+(k/2)iTE H A% O
o g EpodiEliEE EHMEEMNERMNK O A%, EEENENE
RIEREIYE

WS EEHAEE:
*  switch zASEREIBN[0,k/2-1], L£FHE THEH (BH3~517)
B EEHEX:

« 3547 XIEEMpod, MIEEMIE QLY E
* Core switchfyE&H 3% (10.pod.0.0/16, pod)
PCESaYE B aYiteit

addPrefix(switch, address, port)%;switch7s jladdressfjouput port i port
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10.4.1.2 t0 10.2.2.1: HEIRERARICEAIZIPodE2, KIEXFIFE2MNPod;HHTFj=1, tAIXLEPod25h
Z1/1\Switch 10.2.2.1

10.2.2.1 to 10.2.0.1: HEIEBRRIAE R (LFB3~5174hi=0) , #EM5E0EdgeESwitch 10.2.0.1
10.2.0.1 to 10.2.0. 3 FRERHRZA

Core MPod0f910.0.1.2 % 3% £ %10.2.0.3

= GIEL:spaubily
15 _E A prefixFlsuffixZx
Aggregation [ T prefixif B 3R
. : Edge
NESPA [
S S889
@ _F R HsuffixFk
Fod1 Pod 3 ) A B
*=
iullYi
10.0.1.2to0 10.0.1.1: HEfNERETEM, F/910.0.1.12EMNE. 10.00.0/16 -
10.0.1.1 to 10.0.2.1: BERIZRIEHAZFRIFHAN0.0.0.0/00 _FKEREEHAZFEFI0.0.0.3/87EPort 2H (H{tHS e
6~9(758,i=3,2=1, Hitport=2 0, 1METFEEN, W2, MGIRARSwitch, NERER2 101.0.0/16 )
%*m510.0.21) ,
10.0.2.1 to 10.4.1.2: EFIZIEHEZFRFAN0.0.0.0/00y _KasiEH%x=E%0.0.0.3/87EPort 3 (H{LHS 10.2.0.0/16 2
6~917%88,i=3,z=2, HElitport=3,ixM0. 18L& THEedgeISwitch, imM2, 3B&ICore SwitchZ50
17580, 11, WEFB3ERSR104.1.2) , 10.3.0.0/16 3
Core Switchf9E& A3k




MPTCPHIZER 4B B4R (Multipath TCP) ALGORITHM: EWTCP

HIRMPTCPRIS I ARSI RE N REE ™ E (A FHE) e For each ACK on path r, increase window w, by
RETRHRIES B a/wr.

IEREWTCPFICoupled X o For each loss on path », decrease window w, by
MPTCPIM AR R IEA— MERBENFEA RN, ENTEENZR/— 1 wy /2.

ERUDEIZ R . — N TCPEREIEL Psubflow, &subflowa] )Y : : .
FERE T E BT, A MsubflowBE P EEFECH— A amEs  |Here w, is the window size on path r. and a = 1/y/n
EHOWr, TIMPTCPHYAIXE N FEEI— Psubflow K IXH O FREREEIES  |where n 1s the number of paths.

RBeMEEH, U EZXMPTCPH—MEEME A ORI CoOUPLED
AT —MEEAENBEREAE MR TURENSERLT RS, # | S o
ﬁﬁ%lHjTEWTCP(EquaIIy -Weighted TCP)#fi 321541 & 5% = e For each ACK on path r, increase window w, by

R E BB RIGAITCPHIZEIEH EMPTCPiZ R F, ABAMPTCPAYE— subflow 1/ twiotat.
DU T FE SO MG RIRETCRRHITRE S, XHERANRRE R \ . , : rindow w.. bv
PRI B AR AR E LT — A/ subflow For each loss on path r, decrease window w, by

EIMPTCP, HBARIMH TGS 2 BIRETCPAING, RAHIRE T WL Wotal / 2-

i, FRIMEMBTCPREBNFIEILTE, Here 1wiotq 15 the total window size across all subflows.

ﬁﬂ%ﬁla—ﬁ, HEBRERTTERIESE, AESFEF/RESHn subflowfIMPTCP{E

— NEERE] IZE I TGRS LIRS R — D BBR R TCPRIM ML 38, MsasT 2 Db

WIS T R LA AT, o

Ln =1, EWTCPLIR{LE|Regular TCPIZEIRFIE L, oM, EWTCPELHD flow A 12 Mb/s 11\,;13 ; Mb/s

R E| IMPTCPE— A subflow i Itk 2 8148 B Ik 7 (F S 242 BWr SR F T4 EE 54 :

89), FrIABN{EH —%Ksubflow#fHE T, HAhbfsubflowth A& REILEBEMNH

BEEME, XRIE T MPTCPSLRTR I BE7E /2 (5 AR B b B3 B BRIZTCP, 1 10
flow B 10 Mb/s b/ Mb/s

10

flow O s b/

30Ih(s ib/s



ABEHTHEERE N BT XE BN ERIE, X ECOUPLEDE X!

© Hb Wit B—PMPTCPAR N BRI T A subflowk R IXE O K/N M. BIRFEX MAUFEEDWAER:

1. BMERAERERASNER
F—subflowfi’k SR8 OIBKMA XE O E D, MKIZKRE-EBZHEHRE REB TARX NI EEEEEER, 1p@INEEM
TR REIL Wes = V20 00 ~ /0 X BRI T BIM—NEELIL: FECOUPLEDE AT, —/MMPTCPEE N subflow o INFE1SHY
EHRZMASHBERRAX, XL T COUPLEDIA RAMNHRZF AN, XEXH#EEBRARNAER

wy 1 Wy Wiota
(m1-n)—= ()=

2. BIMUBRAEEEAENER
BB COUPLEDE AR It g —Ksubflown s, & XIEINSUR DI E D{EX FrBsubflowl % —r, REBPMH AW B <. AP
LR ERESNEERAVNEIEEN—RINENSBIESZHNES, KEXERZREISEEMEEREFHEKIPESEERLE, M
MW TEWTCPR B LI BHIEN IRE.

EWTCPHYITE:
EaiE TAFMME— N REEREFHNENE. FUELBAERS, 12Mb/s8EEEF110Mb/sHEER SRS ETH .

PrIAA=5+6=11, B=6+5=11, C=5+3=8

COUPLEDHYITE :
BEIMPTCPL USSR GHEFN /TR, FINE(RESREBNTREE—EMN, BRAFE—Mx. BIATRNE:
BATEA:
10— X 5+y1=10
y2+y3=10

y4+3=10

CSDN @Zheyuan Zou



B 5cBBRIYE FFZ (Bottleneck Bandwidth and Round-trip propagation time), 5%
PR AT IR B4R FE A IR EITY . BBRIGHEBE X BW): —ERIEBDPR TS
FEESFinflightfRE, “EREMMEERHRXETNHEEAETE, FHAMEN
BtIBWHYZT 4k,

MERE, MBEX, ENEAEENBEGEHR OB Ra/ B —E R, B2
XBEHEETRE-BEHENREHER, MRLEHE, TRIEBXERRLELR
S HEONEF, T8 5 M MRS 5L (BtIBW)

IR (LB R EE (RTprop)iE HYE M ST 2R E (X H HEBART [8) 25 B AT IR (BB IR Z .o
X E R FRFAMEE X g Bor = Busw « RTpop ] |Y A8 JLBDPHY & X kB FE MR A = ZER
BT, FRE(inflight) EENERPHNEIBENTEKE.

N ASZBRIER . f&HidelayARZE, bandwidthig{, HZ(iAZ|BDP

 ENFAXRNER, WEERLTEIRES, AZREENABAZ®R, WHAFIRERS
IEFETFRTprop % B HERARS (8], EA%E). MARFMREIR(EARN B RNBRINAENDEEE)N
R i Mg R EAMinfight AEZERXM, REHD mm

S PRIER . packet starts to queue, bandwidthRZ%, {Z#jjdelaytE{<

« MEERNEABIEREREAREINR, MEMAHRMNYBZRMNEHFAND T RZRMNE. T2
MBI E R Binflight RE2I55FEB0P, XB— NN iZFR#THERFNRMEIES (BBR
works) . it [ ZEEHNTRZRIME, XMMEBEEFREEEHE P ERIERD
bufferdr , X PEEX YA AT IR R MG A& HBR H 4 BtIBW, 2[R E X EMINGERE ., LLAFIR
SER IR HFF A HOARTE)), SRR RRREE 1

ZIZPRIYER . packet starts to be dropped
AR R ZRIMNEREIZFZIRM AT E =, Hinflight)i £:2BDP+BtIBufSize, =T ZULLAT
IR ENEAXELTH, FREIANFTHRERSAEZAX EEMEE. rE#
ANEHEZRNEBZE, AABEENTREE, EXHRENMTRNEEHESATHET

Loss-based congestion control
Operate at the right edge of bandwidth limited region
KNESTERFMEEE

app limited

FIGURE 1: DELIVERY RATE AND ROUND-TRIP TIME VS. INFLEGHT

bandwidth limited

buffer
limited

RTprop
BtlBw
é§l \ V
<&
QQ_ optimum loss-basad
o operating congestion
.5/ BBRworks POINt control
K is here operates here

loss-based cong
control works

estion




Elastic Sketch: & T sketch (#fiR) FIMZEME: M5F K. CM. bloom filter Heavy part vote™ positive votes | Light part

Sketches (key, vote™, flag, vote™) vote : negative votes | freg Jreq
*Hash table +1
*Count-min (CM) — f1.6L1S
Elastic - L 41
Heavy part (‘PERJARE) {FH hash table, lightpart (KEH/IVEE) F \f _.fs’l’F’O 7 il
BARNERSRPRE: 0
S8 = HIEmA — ,1,1,0 —{ fi E |+
f77E, H bucket B35 —3 = vote+ B 1 128 55413 7 % J
7, BRAA—, Hvote HHIHS: vote- B, 7 CM FHEA (f, 1) e CM sketch
FE, RA—E, vote- BILHE: vote- BiE, € bUCke'C Emm /)luL:I:IJ cm B
H, $530hi% = bucket BTE flag=T (flag = light part BEEREFXMRE 4\
SZITHER)
&1 + On receiving a packet of flow f
of R7E heavy part 2. A CM {41t +  Hash to H[h(f)%B], suppose the bucket is
f 7£ heavy part BT flag = F = jR[5] vote+; flag=T = iR [ vote+ 5 CM ¢ (f;, vote*, flag,, vote)
Ry F0 « Case 1: the bucket is empty, insert (f, 1, F, 0) into it.
KRR « Case 2: f=f;, increment vote* by 1
« Case 3: f£f,, and vote/ vote*< A, increment vote- by 1, and

* Heavy part for elephant flows insert (f,1) to CM by incrementing the counters by 1.

* Ahashtable H « Case 4: f£f;, and vote/ vote*> A after incrementing vote- by 1.

«  Each hash bucket contains: Evict f by setting the bucket as (f, 1, T, 1), and evict f; by
incrementing the mapped counter in CM by vote*

* flowID, e.g., 5-tuple
8 >7p =¥

* Positive votes (vote*): number of packets belong to the flow

. *  Flow f not in heavy part, estimate its size with the CM sketch
* Negative votes (vote’): number of other packets f yP

*  Flow fin heavy part,
*  Flagis F: return vote*
* Light part for mouse flows *  Flagis T: return sum of vote* and the query result of CM

* A CM sketch

* flag: whether light part contains positive votes for this flow.



Algorithm 1: FlowRadar packet processing
vifdie [Lkgl st FlowFilter[Hf(pﬂow)]::G then
2 FlowFilter.add(p.flow),

Encode flowset data structure 3 | forj= 1.k do
4 1= Hf(p.ﬂow);

; CountTable[1].FlowXOR =

and k; hash functions CountTable[1].FlowXOR & p.flow;

* A flow filter: A standard Bloom filter of a bit array, m; bits

i

e A counting table: store flow counters, an extended Bloom ¢ CountTable[l].FlowCount ++;
filter with m_ cells and k_ hash functions, each cell has three ; ond end
fields o for j= I..k. do
» FlowXOR: XOR of all the IDs of the flows mapped to this cell 10 ‘ COHHtTable[Hf(p-ﬂOW)]-PaCKEtCOUllt ++
» FlowCount: number of flows mapped to this cell 1 end
e PacketCount: number of packets of the flows mapped to this cell .
SingleDecode
Flow filter 1 Packets Switch reports flowset to collector every a few

milliseconds
[0lolo1lolololilald] - « - - [o1lololo]

First look for cells with just one flow.
Packets

Counting y FlowXOR e FlowCount==1
e | | L[] E';’;’;’(ﬁfgg‘jm Perform hash functions on a decoded flow to locate other
cells, remove it from the cell, decode more flows
Packet Processing (Encode) Example
o Cell[h,(f,)]: f,, 1, 10
Receiving a pacekt, first check whether the flow has been o Cell[h,(f,)]=Cell[h,(f,)]: f, XOR f,, 2, 25]

fffffffffffffffffffffffffffffffff * Remove f, from Cell[h,(f,)], then decode f,, f, has 15
If new flow, update the counting table packets.
¢ XOR the flow ID to FlowXOR
* Increment FlowCount and PacketCount

If existing flow
* |Increment PacketCount



PIFO

*  Only needs two components

*  The push-in first-out (PIFO) queue: a priority queue that allows elements to be

SP-FIFO (Strict priority)

* A port has multiple FIFO queues, each queue is associated with a priority
* A queue starts to transmit packets only when all the queues with higher

priorities are empty

St s

enqueued into an arbitrary position based on the element’s rank, but dequeues =

elements from the head.

* Elements with a lower rank are dequeued first.

*  Packet transaction: the computation of an element’s rank before it is enqueued

into a PIFO.

*  Scheduling transaction, scheduling tree

. Receive a packet p with rank r(p)

*  Push-up: The mapping process scans the queues bottom-up and enqueue
the packet in the first queue that satisfies r(p)2qi. It then increases qi to

the rank of the enqueued packet, i.e., gi=r(p).

*  Push-down: When detecting inversion, decrease all queue bounds by q1-

r(p) no queue to join

Packet enqueue Add to the tail

Insert to arbitrary position

based on packet’s rank

Packet arrive to a Drop the packet

Drop the largest ranked

full queue packet its rank is larger than
the arriving packet
Packet dequeue Remove from head Remove from head

STFQ(Start-time Fair queueing)

* Before a packet is enqueued

* When a packet is dequeued
virtual_time += p.length

; N-S=§
if f in last_finish: Fweight 7 E1LE
p.start = max(virtual_time, last_finish[f])
else:
p.start = virtual_time

last_finish[f] = p.start + p.length / f.weight
p.rank = p.start

Algorithm 1 SP-PIFO adaptation algorithm

Require: An incoming packet with rank r.
1. procedure PUSH-UP
2: for g;: g1 to g,, g, € g do

> Scan bottom-up

3 ifr > g, ori =1 then

4: g; — ¥ - Update queue bound
5 ENQUEUE(r,) > Select queue
6: procedure PUSH-DOWN

7: if » < g1 then - Detect inversion
8: cost «——qi—r| q;r Compute cost inversion
9: forg;c g, jF77ao
10: q; < q; — cost - Adapt queue bounds

Incoming packets

(2ls1{e]eks:

,,,,,,,,,,,,,,,,,

i@]]]]]] [ T
g T Py T

o T o0 mu
T 2 [ T

.j@ LTTTTH .j. TT T

[a] L[ 1af3 [5] L Is[4]4[3]
| [ ][] | [ [1]2[1]
[ [ [1ef3] [5-t=4] TIs[4[4]3]

Reacting 1o inversions



* A PCQ has a fixed number of buckets or FIFO queues, say N, each of which stores

packets scheduled for next N periods *  Physical Calendar Queue: the CQ moves onto the next queue
after a fixed time interval periodically
* APCQsupports three methods * Logical Calendar Queue: the CQ advances to the next queue
* CQ.enqueue(n): Used by the ingress pipeline to schedule the current packet n whenever the current queue is empty

periods into the future.

* CQ.dequeue(): Used by the egress pipeline to obtain a buffered packet, if any,
for the current period.

* CQ.rotate(): Used by the pipelines to advance the CQ so that it can start
transmitting packets for the next period.

WFQ: Weighted fair queueing

*  WFQ: n flows, flow fi has a weight wi, and is assigned with a bandwidth of Bx wi /Zwj
*  Weighted Fair Queueing (WFQ) scheduling achieves max-min fair allocation

* Apply logical calendar queues

' ™
Packet State
weight : Packet flow's weight

Switch State
bytes[f] : Number of bytes sent by flow f
round : Current round number
BpR : Bytes sent per round for each flow BpR:size of aqueue

Rank Computation & Enqueueing
bytes[f] = max(bytes[f], round = BpR * weight)

n = (bytes[f] + pkt.size) / (BpR #* weight) - round Example:
€Q.engueue (n) bytes[f]=bytes[f]+pkt.size Flow 1, weight=0.3;

Queue Rotation 1/1.2=0.83>queue  1/1.6=0.626>queue 1/1.2=0.83>queue 1 Flow 2, weight=0.4;
if CQ.dequeue() is null £ - Flow 3, weight=0.3
CQ. rotate() 2/1.2=1.67>queue  2/1.6=1.25>queue 2  2/1.2=1.67->queue 2 Two queues, BpR=4
round = round + 1 2 At time 0, 3 packets of

flow1, 4 packets of flow2,
3 packets of flow3 arrives

3/1.2=2.5>drop 3/1.6>1.875>queue  3/1.2=2.5->drop
2

4/1.6>2.5>drop



B4 TE %

TE server operates on:

* Network Topology: a graph represents sites as vertices and site to site connectivity as edges.
*  Flow Group (FG): a {source site, dest site, QoS} tuple

* ATunnel (T) represents a site-level path

* ATunnel Group (TG) maps FGs to a set of tunnels and corresponding weights.

Output Tunnel Groups to SDN gateway, gateway forwards Tunnels and Flow Groups to OFC and install on Switch

using OpenFlow

Bandwidth Function
* Application’s bandwidth function

* bandwidth allocation to an application given the flow’s relative priority (called fair share)
*  FG’s bandwidth function

* Piecewise linear additive composition of per-application bandwidth functions.

A greedy algorithm

* allocates edge capacity among FGs according to their bandwidth function such that all competing FGs
on an edge either receive equal fair share or fully satisfy their demand.

* iterates by finding the bottleneck edge when filling all FGs together by increasing their fair share on
their preferred tunnel.

* freeze all tunnels cross the bottleneck edge, move to the next preferred tunnel.

Bandwidth | "% e fimnels || TED
»| Optimization >
Enforcer || gandwidth Elgorithm TGs Manager
functions
, { SffeLeve.'“ L TEO
\ \.\ Topology Trunk ] ps
\ Level
\ Topology | Topolagy| SDN
L Aggregation | Gateway
Traffic B
TEO Port Ch

SDN WAN
(N Sites)

T1,3=A->D > C—-> B, T2,2=A > D > C, at share 10, A
- D and D = C become bottleneck.

At fair share 10, FG2 is allocated 5G, while FG1 is
allocated 20G and its requirement is fully satisfied

30— ‘ _ Tx,y: yth most preferred tunnel for FGx. T1,2=A->C->B, at share 3.33,
o FGy(A->B) = App, + ::’)::II T1,1=A->B, T2,1=A->C, at share 0.90. A->C becomes bottleneck
. App2=©- | A>B becomes bottleneck _ FG1 has 18.33G, FG2 has 1.67G

FG,(A-=>C) = Appy -

4 FG1has 10G, FG2 has 0456~

" Appl demands 15G A->B 0.456
App2 demands 5G A->B 106
% | App3 demands 10G A->C e

e FG1=App1+App2
o 8 10| FG2=App3




Shallow queue:
gueue size is 4

PIFO: packets ranked
4 and 5 are evicted
by packets ranked 2

FIFO: two packets
ranked 2 are dropped

AIFO: an oracle

212115 41 E—— 2 2 11—
PIFO
(a) Push-In First-Out (PIFO).
2 1 5 4 1 —_— 1 5 4 1 —
FIFO

(b) First-In First-Out (FIFO).

yes
2 21 5 4 1 —> rank<3? — 2 2 1 1 [—

Admission Control FIFO
(c) Admission-In First-Out (AIFO).

admission control proactively drop all packets with ranks

no smaller than 3

¢ Given fast-converging congestion control, dropped packets
will be quickly retransmitted

Algorithm 1 AIFO

Example: C=6, k=1/6

1: function INGrRESs(pkt) C—c 6—2
// Admission Control threshold = A r = —5— = 80%
2: Update sliding window W with pkt admit
3 ¢ « Queue.length - 5
4: C « Queue.size
5. if ¢ < k- C|| W.quantile(pkt) < {1 €2¢ then pktquantile = 50% k=1/6, C=6, c=2
// Admit packet (a) Admit packet when current queue length ¢ = 2.
6: Queue.enqueue(pkt) C—c 6-5
T: else threshold = T-foc- 5 - 20%
// Drop packet drop
8 Drop pkt ’
9. function EGRrEss
10: if Queue is not empty then pkt.quantile = 50% k=1/6, C=6, c=5
11: pkt «— Queue.deque()

12: Send pkt

(b) Drop packet when current queue length ¢ = 5.

AIFOE %!

At the ingress

* Decide whether to enqueue or drop a packet.

e The threshold is dynamically determined by queue length (c)
and queue size (C), and use quantile estimation
(W.quantile(pkt)) to estimate the relative rank of current
packet.

* The queue is a FIFO queue which enqueues the packet to the
end of the queue.

At the egress

*  When the queue is not empty, AIFO dequeues a packet from the
head of the queue, and sends the packet out.

. . 1 C—c
¢ < k-C| W.quantile(pkt) < ;= =5

*  W.quantile(pkt) estimates the quantile of pkt

* AIFO maintains a sliding window W of recently received packets
and uses the quantile of the rank of the arrival packet
(W.quantile(pkt )) as the criteria.

*+ Iflargerthan 1 <¢drop; other wise admit

1

More packet admitted (c increases), more difficult to admit
packets ((C-c) decreases).



HCSFQ

Hierarchical Fair Queueing

* Flows are grouped into flow aggregates in multiple layers. The root of
the tree includes all the flows.

¢ Each node in the tree includes a subset of the flows, called a flow
aggregate, and fairly allocates its bandwidth to its child nodes.

* This is done recursively until leaf nodes, each of which contains one
flow.

* The key benefit of hierarchical fair queueing is that it allows unused
share of a flow to be allocated to other flows in the same flow
aggregate, instead of being shared by all the flows.

H5E
* Update r(v) with exponential averaging each time a new packet of v arrives
* A packet carries
* pkt.ris the arrival rate of the flow the packet belongs to
* pkt.node is a list of node IDs indicating the flow aggregates the flow
belongs to, e.g., pkt.node=[L,A_1]

After receiving a packet, update () for all the nodes the packet

belongs to

At the root node v, c(v) = C,

a) Ifr(v) > c(v), compute the fair share rate a(v) by solving
c(v) = Yy min(r(w), a(v))

b) Else, compute the fair share rate a(v) as a(v) = max, (r(u))

For each child node u of v, c(u) = min(r(u), a(v)).

Repeat 1-3 until reach to leaf nodes

Compute packet dropping probability as
a(v.parent)

)

max(0,1 —

Example

r(L)=15, r(A1)=5, r(A2)=10, r(f1)=1, r(f2)=4, r(f3)=r(f4)=5

At root, obtain a(L) by solving

€fL) = 10 = min{5.a(L)) + min{10,a(L)) afl) =5 C(A) =
min(5,5) =5, C(4,) = min(5,10) = 5

At A1, obtain a(4;) by @(4,) = max(1,4) = 4

At A2, obtain a(4,) by solving

5 = min(5, a(4;)) + min(5, a(4;)), a(4,) = 2.5

f1 and f2 have drop prob. of 0; f3 and f4 have drop prob. Of 0.5

link capacity=10

A)=5
fid T
ftatute| | )= 10 / a(A) = 4
fik)=10 r(A2) =10
al)=5 c(Az)= 5
sfe | fan) =5
a(Ay) =2.5
switch
Weighted HCSFQ
Flows have weights
' Two changes
e Change c(v) = X, min(r(w), a(v)) to
=" waw) min(C o)
c(v) = w(u) - min(——=, a(v
u w(u)
e Change the drop prob. as
0,1 - a( 0 -2
max(0,1 — a(v.parent) - ——
( P )



Water filling algorithm
- Max-min fairness can be achieved by iterative water-filling
algorithm
e Intuitively, the algorithm initializes all flows as ‘unconstrained’
with a rate of 0.

¢ In every iteration, the algorithm adds an equal amount to all
unconstrained flows until at least one link in the network
becomes saturated.

o All flows that traverse the saturated link are now considered
‘constrained.”

e The algorithm iterates until all flows are constrained.

First iteration, flow A=flow B=flow C=2, flow C is
bottlenecked by I, stop increasing rate

Second iteration, flow A=flow B=8, flow C=2, flow B is
bottlenecked by |,, stop increasing rate

Third iteration, flow A=10, flow A is bottlenecked by I,

(b) Multiple bottlenecks

Max-min fairness

Definition 1. Let R be the set of all possible flow-rate

allocations that satisfy the capacity constraints of the network.
An allocation of rates ¥ = {ry, ..., ;,} in R is “max-min fair” if

and only if, for all other allocations § € R and all flows i:
s; > ;¥ 3j: (1} = rand s < rj)

In other words, there exists in the other allocations, §, a
smaller flow, j, that loses capacity.

Traditional TCP congestion avoidance share many

similarities to the water-filling algorithm, but later
diverges in numerous and significant ways.
® Flows are not simultaneously initialized with zero rates,
e Rate increments are not simultaneous nor uniform
(depends on RTTs)

e Heterogeneous congestion detection methods (e.g., loss,
delay, ECN, hybrid, etc.) and increase/decrease algorithms

Cebinae Approach
Definition 2. An allocation of rates ¥ = {ry, ..., 1, } in R is
“max-min fair” if and only if, for all flows r; , there exists
at least one bottleneck link for 1; , [, that satisfies both
the following properties:
e [ is saturated. Specifically, capacity; = ZjeL 1; , where L is
the set of all flows utilizing [.

* 1; is the largest flow. Specifically, Vj € L : (r; 2 17).



Definition 2 lends itself to an efficient and distributed
verification of the max-min fairness of a network.

If the link is not saturated, it is not a bottleneck for any flow
currently using the link.
If the link is saturated, then for each flow i on the link:

a) If i has the largest rate among the locally competing flows,
then this link is i’s bottleneck. i can only capture more
bandwidth at the cost of other flows. Nate that multiple flows
can be bottlenecked by the same link if their rates are equal.

b) If i does not have the largest rate on the link, then the link is
not i's bottleneck. i may or may not have a bottleneck link
elsewhere in the network.

Limitations of Strawman Solution

® Limitation 1: Cannot make an already-unfair allocation fair.
e Converged allocation of {1,1,6,1,1} A\

N

e Correctly limit flow C’s bandwidth B~
because it has already achieved c
its fair share.

E/

C=6x{A B, D, E}

e Other flows do not have a
mechanism to claim their own fair share.
® Limitation 2: Flow C dose not responsive to a simple
token-bucket filter, if it’s congestion control is based on
delay.

A
.4
oA

R

Example

Cebinae will rate-limit flow C to a rate of 6(1-1).
The other flows are then allowed
to reclaim the taxed capacity.
the network will converge to
1
Inz)
In(1-1)

max-min fairness in

timesteps

¢ Initially, flow A takes 18 bandwidth, A

flow B takes 1.8, flow C takes 0.18
* Ataxof 1%

* Flow A takes 18*%0.99=17.84,
flow B takes 1.8+0.18*10/11=1.97
flow C takes 0.18+0.18*1/11=0.197

* Repeat until flow B and flow C takes 10, flow A is bottlenecked
atl,

* Flow B is repeatedly taxed to redistribute bandwidth to flow C
as it is the maximum flow at link |,, until flow C saturates I

* Eventually, flow A is bottlenecked at |;, flow B is bottlenecked
at l,, flow Cis bottlenecked at ¢

C A=10x

=100xC



