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1. Please describe the EPR paradox introduced by Einstein, Podolsky, Rosen at 1935,

and explain the contradiction between quantum theory and local realism theory.

Answer: Assumption by local realism theory:

(a). Locality: If two measurements are performed in space-like separated locations,

their outcomes should not be causal correlated.

(b). Realism: Every element of the physical reality must have a counter part in the

physical theory.

Contraction: In quantum mechanics in the case of two physical quantities described
by non-commuting operators, the knowledge of one precludes the knowledge of the
other. Then either (1) the description of reality given by the wave function in quan-
tum mechanics is not complete or (2) these two quantities cannot have simultaneous

reality.

Consider that Alice and Bob share a singlet state ¢~ = %(HO} —]01)), once Alice
obtains a measurement outcome by measuring particle along arbitrary direction, she
could correctly predict the corresponding observable value for Bob’s particle, and all
observables can be predicted, they should have definite values. Following the real-
ism assumption, every observable corresponding Bob’s particle, such as af, 05 , af ,
is a physical realism element. While following quantum theory, only commutative
observables may have eigenvalues simultaneously, i.e. o, af, 0B can’t have definite

values simultaneously.
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2. For the singlet state |[¢p7) = \%(HO) — |01)), prove that Alice and Bob’s outcomes
are always anti-correlated when they measure two particles respectively along the

same direction.

Answer: Refer to the Box 2.7 on the page of 113 of "Quantum computation and

quantum information” by Nielsen.

3. PPT(Positive Partial Transposition) criterion is a strong separability criterion for

quantum state, which is very convenient and practical for entanglement detection.

(1) Describe the PPT (Positive Partial Transposition) criterion and the realignment

criterion.

(2) For the 2-qubit state p = p[™) (™| + (1 — p), where, 0 < p < 1, |¢7) =
|00)—]11)
V2

criterion and realignment criterion respectively.

, calculate the p’s lower bound when p is entangled state using PPT

Answer:

(1) PPT criterion reads: If p is separable, then the partial transpose p’% has no
negative eigenvalues.
Realignment criterion reads: For any bipartite separable state p, ||p|| < 1, where

||| is the sum of all the singular values of p, p is the realignment of p.

(2)
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The eigenvalues of pT4 are {i(l —3p), 1%1, ’%1, 1%1}.



If p is entangled, p’4 has negative eigenvalues, then we get 1 > p > %
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The singular values of p are {%, &5, g}, then ||p|| = %. If p is entangled,

|p|] > 1, then we get 1 > p > %

4. (1) Calculate the amount of entanglement of the state p = X|¢T) (¢T| + (1 —
A) [Ty (W], (0 < A < 1) with negativity measure, where |¢~) = \%(!00) —
1), [o*) = Z5(101) +[10)).

(2) Derive the value scope for A\ when the state p is entangled using negativity mea-

sure.
Answer:
(1)
A 0 0 =X
1 0O 1-X1—-X 0
p:_
21 0 1=x1=-X 0
- 0 0 A
then
A 0 0 1-—X\
T 0 1—-X =)\ 0

%, QAT’I, %},and the singular values are {1 1 |%\, |%|}

The eigenvalues of pT4 are {%, 5> 55
So, the amount of entanglement of p is:

S
e
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(2) If p is an entanglement state,

T S

N(p) 5 A =3

>0

when A # 1/2, p is entangled.

5. (1) Describe the definition of the Entanglement Witness (EW).
(2) For the three-qubit GHZ state,
1
V2

prove that the entanglement witness W = $1—|GH Z)(GH Z| detects three-qubit

IGHZ) = —(|000) + |111))

entanglement around it.

(3) A mixed state p = p% +(1-p)|GHZ)(GHZ| (0 < p < 1), calculate the p’s upper

bound when p is entangled state using the EW given above.

Answer:

(1) An entanglement witness is a functional which distinguishes a specific entangled
state from separable ones. W can be called an entanglement witness, if it satisfies
that
(a). W has at least one negative eigenvalue;

(b). For any separable state pap, Tr(Wpap) > 0

(2) To prove that W is an EW, one needs to show that T'r(psepVV) > 0 for all sep-
arable states. That is, for all separable states, Tr(psep| GHZ)(GHZ|) < 3. The
maximum value of Tr(psep| GHZ)(GHZ|) is given by the square of the Schmidt
coefficient which is maximal over all possible bipartite partitions(1|23, 2|13, 3|12)
of GHZ). Then it is easy to calculate

maxp,,, Tr(psep| GHZ)(GHZ|) = 1/2.

So
Tr(psepV) > 0.

The entanglement witness W = 31 — |GHZ)(GHZ| detects three-qubit entan-

glement around it.



(3) p is an entangled state, them

p p 1-p
<4
p 7

6. (1) What conditions should a good entanglement measures meet?

(2) Describe the definition of distillable entanglement and entanglement cost and

their relationship.
(3) Write down the monogamy of entanglement and describe its physical meanings.

Answer:

(1) A good entanglement measure F(-) should satisfy that,
a) For any separable state p, E(p) = 0;

b) No increase under LOCC, i.e. E(Arocc(p)) < E(p);
(c
(d

)
) Continuity, i.e. E(p) — E(c) — 0, when ||p — || — 0;

) Convexity, i.e. E(Ap+ (1 —=N)o) < AE(p)+ (1 — N E(0);

(e) Normalization, i.e. E(Pji) = log d.

(2) Read the page 62, 63 in the lecture ”QIP2019chapt_2_Kai Chen.pdf” for reference.

(3) Monogamy of entanglement says that:

For any tripartite state of systems A, By, By we have
E(A|B1) + E(A|Bz) < E(A[|B1Ba).

If the above inequality holds in general, i.e. not only for qubits, then it can be

immediately generalized by induction to the multipartite case:
E(AlBl) —+ E(A‘Bg) + 4 E(A‘BN) < E(A’BlBg <. BN)-

It means that if two qubits A and B are maximally quantumly correlated they
cannot be correlated at all with a third qubit C. In general, there is a trade-off
between the amount of entanglement between qubits A and B and the same qubit

A and qubit C. Note that, in some cases, entanglement is not monogamay.
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7. The four Bell states have the following mathematical expressions on the basis {0, 1}

(the eigenstates of o, ),
1

+y _

|® >_\/§<|00>i’11>)
1

0) = —ﬁ(l(ﬂ) +10))

(1) Prove that the four Bell states can be transformed to each other using single
qubit rotations {I,0,,0y,0.} .

(2) Give the representation of the four Bell states on the basis {+, —} (the eigenstates
of oy ).

Answer:

(1)
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\

(2) The single qubit transformation between the o, basis and the o, basis is



So,
[@+) = [2%) = S (I ++) +1 = -)),
[27) = [U*) = (1 + =) + | = +)),
Y o Ly (4)
W) = [07) = Z(++) ===,
L 127) = =) =—Z5(+ =) == +),

8. (1) Describe the physical meanings of von Neumann entropy.

(2) Prove that S(p) < log D, where D is the number of the non-zero eigenvalues of
p-

(3) Prove the subadditivity of the von Neumann entropy
1S(A) = S(B)| < S(A,B) < S(A) + 5(B)

(4) Prove the concavity of the von Neumann entropy
SO “pir) =Y piS(pi)
i i

(5) Prove that the two body pure state |4p) is a entangled state if and only if
S(B|A) < 0, in which S(B|A) = S(B,A) — S(A), S(-) is the von Neumann
entropy.

Answer:

(1) The von Neumann entropy quantizes the quantum information of each character
of the quantum ensemble. When the signal p is pure state, von Neumann entropy

S(p) is the information quantization of the quantum information source.
(2)
S(p) = —tr(plogp) = Z)\log)\ —Z)\log—<log Z)\—
in which the concavity of logarithmic function
log(p1z1 + p2x2) = p1logz1 + palog za

is used.



(3) Consider the relative entropy of p4p and p4 ® pp

S(paBllpa @ pp) =tr(paplogpan) — tr(paplog(pa ® pr))
= —S(pap) —tr(paplogpa) — tr(paplog pp)

= —S(pap) + S(pa) + S(pB)
>0

So,
S(A,B) < S(A)+ S(B)

Consider a purification of pap = trc |[¢) 4pc (@], apply subadditivity to ppc, we
can get that
S(B,C) < 5(B) +5(0).

Since S(B,C) = S(A),S(C) = S(A, B), so we get that
S(A,B) > S(A) — S(B).

Similarly, S(A, B) > S(B) — S(A).
So,
1S(A) = S(B)| < 5(A, B)

(4) Apply subadditivity to

pa =Y _pipi ® i) (il
%

we can get that

S(paB) < S(pa) + S(pB) = szpz + H (pi)
From the joint entropy theorem we can get that

pAB Zpl ®pz sz Pi +sz)

SO

SO “pir) =Y _piS(pi)



(5) Since | 4p) is a pure state, so S(A, B) = 0.

If |4 4p) is an entangled state, then its Schmidt decomposition can be write as

[ap) =Y V/bilia)lin),i > 2

SO
pa= Y pilia)(ial,
i
S(A) == pilogpi >0,
i
SO
S(B|A) =5S(A,B) - S(A)=-S(A) <0
9. Prove that |[¢p7) = \/LE(|01> —|10)) is invariant under transformation U (6, 7)®@U (0, 17),
where U(0,11) = e300
Answer:
ig.7 2 0 0
U, 7) = e 2979 = cos 5] —isin §ﬁ e
" - 90 .00, " ot Lo
Uh,n)@U(0,7) = cos §I®I—zsm§cos§(n~03 +mn-04)—sin §(n~a)A® (7i-3)B.

then, we have
cos? g[ ® I[Yp~) = cos? gw_)
Or ® 0|07 ) = Oy & Uyw_) =0, R07)=—|Y7)
(-Ga+ii-dp)lY~) =0
Hence, U(6, ) & U(0, B)~) = o).

10. The entropy of quantum state, expressed as a density matrix p, is S(p) = —tr(plogs p);
in terms of its eigenvalues g, this is S(p) = =X\ logy Ak A state p is a pure state
if and only if t7(p?) = 1. Prove that this is equivalent to S(p) = 0. You may use the
fact p is a valid density matrix if and only if ¢r(p) = 1 and p is a positive operator

(i.e. its eigenvalues are > 0).

Answer:



11.

12.

10
If tr(p?) = 1,
SN = S = 1
Therefore,
YA —1) =0

Since 0 < A\ < 1,Vk, we know that Ap(Ap — 1) < 0, and thus the only way for the
above condition to be satisfied is for A = 0,1, Vk, and thus S(p) = 0 if and only if

p has a single eigenvalue of 1 with all other eigenvalues 0.
S(p) = =gk loga A, =0

Since 0 < A\ < 1,Vk, we know that A\;logy A\, < 0,Vk. Therefore, the only way for
the above condition to be satisfied is for A\ = 0, 1, Vk, and thus tr(p?) = 1.

Therefore, for density matrices, tr(p?) = 1 and S(p) = 0 are equivalent statements.

Consider the state |¢)) = \/LE(|O)A]O>B +11)al)B), pa = tre(|t)(¢]). Calculate the

Von Neumann entropy of pg.
0
pA =
03
1

S(pa) = ~(3l00(3) + 5log(5)) = 1

Answer:

D[ —

Give a noisy entanglement state with purity F for the singlet state |U™) |

1-F
Wp = FIU™)(U™| + T|‘P+><‘1’+|

1—-F 1—-F
+ o [PTHRT] + —— 27 )(27 .
3 3
Supposing F = %, please design a two-way LOCC purification protocol that can
obtain the singlet state |U™) with as high fidelity as possible from the above mixed

state in five steps.

Answer:
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An arbitrary mixed two-partite state p with fidelity F' = (¥~ |p|¥~) can be trans-

formed to the symmetric Werner state with random bilateral rotations,

I 1-F __
Wp=FV ) (U |+ —— |‘11+><‘1’+| !‘1>+><<1>+| +—5—27)(e7].
where |[U¥) = —Ls (10 + 1), r<1>i> Sy (11 L) and = (0 W07,
Alice and Bob share two pairs of Wp state, i.e. Wg19 and Wgsy, with 1 and 3 in

Alice’s side, 2 and 4 in Bob’s side. The purification protocol is:

(a) Alice and Bob make unilateral transformation o, (i.e. oy ® I) on their two pairs

of W state. We get the new state,

1—-F 1

oy®I _ _ - F
WF—F|<1>+><<1>+|+—|q> N [+ —— [T (T |+T|‘1’+><‘P+|-

Wgp ——
(b) Alice and Bob perform the C-NOT operations on their two pair of W7, state
with 1 and 2 as ’source’ particles and 3 and 4 as 'target’ particles. The trans-

formation is shown as follow, then, measure two target particles along the Z

Before After(n.c. = no change)

Source Target Source Target
ot oF n.c. n.c.
vt ot nc vt
vt Ut onc i
ot ot n.c n.c
ot o BT n.c
VA S A v
vt v T o
ot e oF n.c

axis. If the target pair’s Z spins are parallel, keep the correspond source state;
otherwise, discard the source state. As the measurements along the Z axis can
only distinguish ® from ¥ (but can’t distinguish — from +), we keep the 1, 3,
5, 7 rows’ source states.

(c) For F = 2, we get a state p = 0.62[®F)(®F| + 0.26/0~)(®~| + 0.06|¥ ) (¥F| +
0.06/¥~)(¥~|, note that the main noise state is [#7) now. Change the bases
into {|+),|—)}, denote |+) as |0') and |—) as |1’). We can rewrite p =

0.62|®" ) (®'F| + 0.26| ") (T'*| + 0.06|D"~)(P'~| + 0.06|'~) (¥~ |, repeat the

step (b), p changes into p; = 0.68|®'") ('] +0.13| ¥/ *) (U +0.13|P'~ ) ('~ | +
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0.06|9'~){(¥'~|. Go back to {|0), |1)} bases, p1 = 0.68|®T)(®T|+0.13|D) (P~ |+
0.13| U (Ut| + 0.06|¥ ) (¥~ |, for which F} = 0.68.

Repeat step (b) and (c), we can get F» = 0.80, F3 = 0.93, etc. At last, the final state

can be converted back to a mostly U™ state by a unilateral o, rotation.



