Incorporating Occupancy into Frequent Pattern Mining for High Quality Pattern Recommendation

Lei Zhang stone@mail.ustc.edu.cn

Lab. of Semantic Computing and Data Mining University of Science and Technology of China

Outline

- Problem statement
- Motivating application
 - Demo
- Problem solution
 - Upper Bound Estimation
- Experiments
- Conclusion

- Frequent pattern mining
 - Support
 - Frequent patterns

Tran. No.	Items
1	ABCDE
2	A B C
3	A B C
4	A B C
5	ACDEF

The support of $\{ABC\} = 4/5$ $\{ABC\}$ is frequent when $\alpha = 0.5$

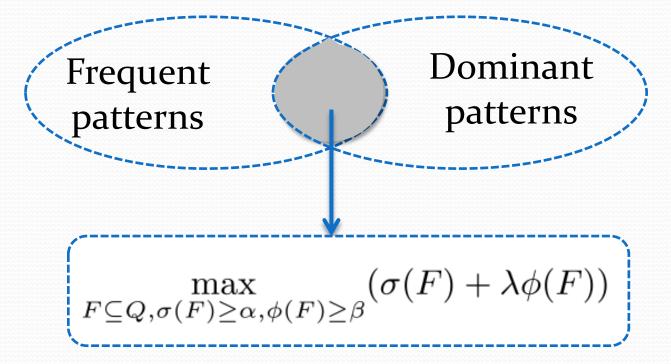
- Propose a new interestingness measure
- Occupancy

Tran. No.	Items	Occupancy in this Trans.
1	ABCDE	3/5
2	A B C	3/3
3	A B C	3/3
4	A B C	3/3
5	ACDEF	

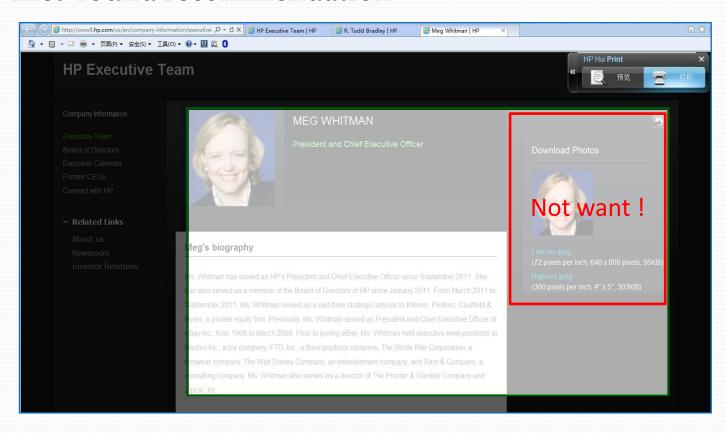
occu(ABC) =
$$\frac{1}{4} \times (\frac{3}{5} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3}) = \frac{9}{10}$$

- The property of occupancy
 - Neither monotone nor anti-monotone

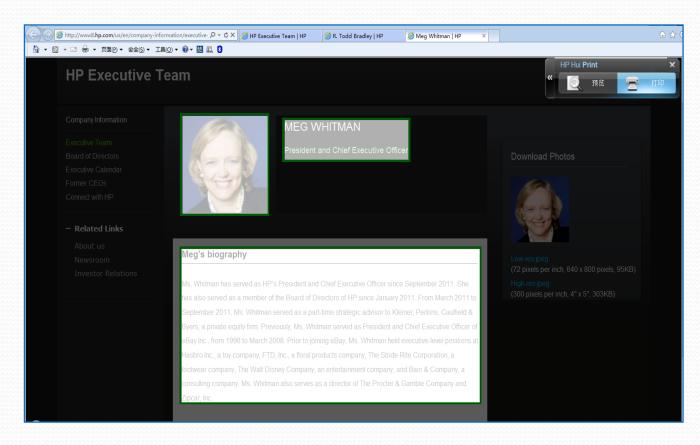
Transaction No.	Items
1	ABCDE
2	A B C
3	A B C
4	A B C
5	ACDEF

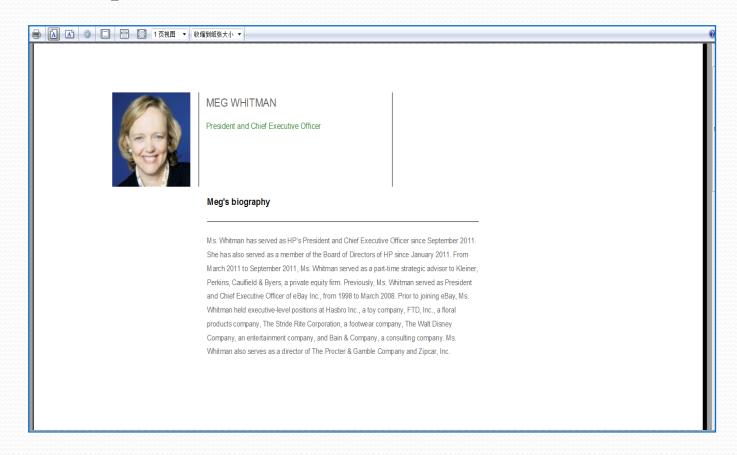

occu(ABCD) =
$$\frac{4}{5}$$
 < occu(ABC) = $\frac{9}{10}$
occu(ABCDE) = $\frac{5}{5}$ > occu(ABC) = $\frac{9}{10}$

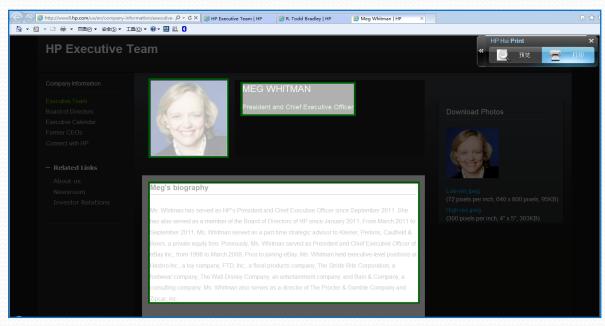
• *Dominant patterns*, whose occupancy is bigger than a parameter β

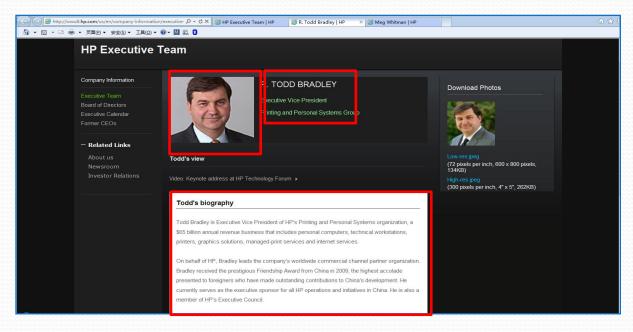

Transaction No.	Items
1	ABCDE
2	A B C
3	A B C
4	A B C
5	ACDEF

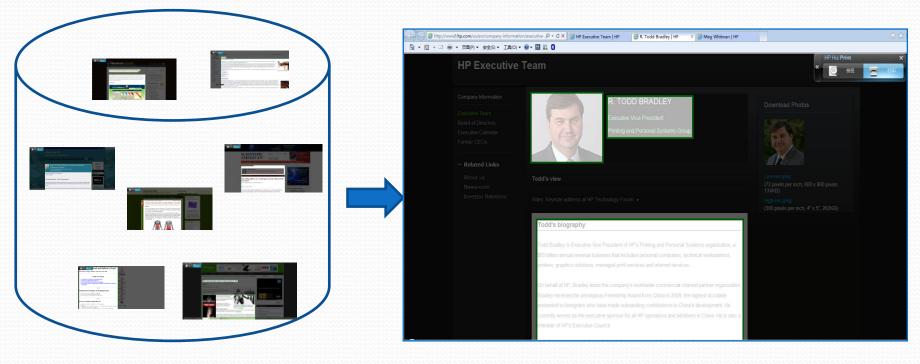
The occupancy of {ABC} ≈ 0.85 {ABC} is dominant when $\beta = 0.5$


- Task: Top qualified pattern mining for recommendation
 - · Qualified patterns, which are both frequent and dominant
 - Quality value of a pattern, $q(X) = \sigma(X) + \lambda \phi(X)$

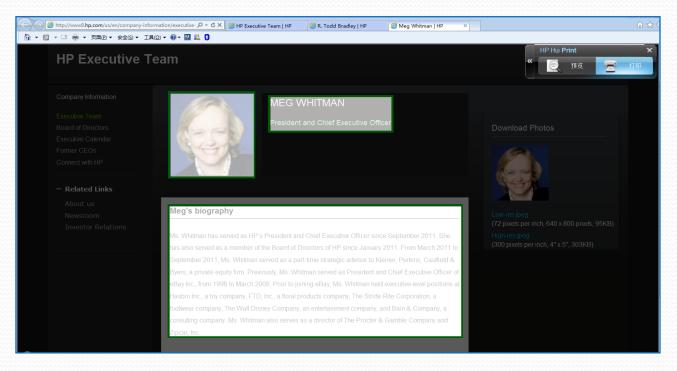

- Web page printing: Smart Print
 - Manually adjustment on the print-areas required after the first-round recommendation


- Web page printing: Smart Print
 - Tedious selections

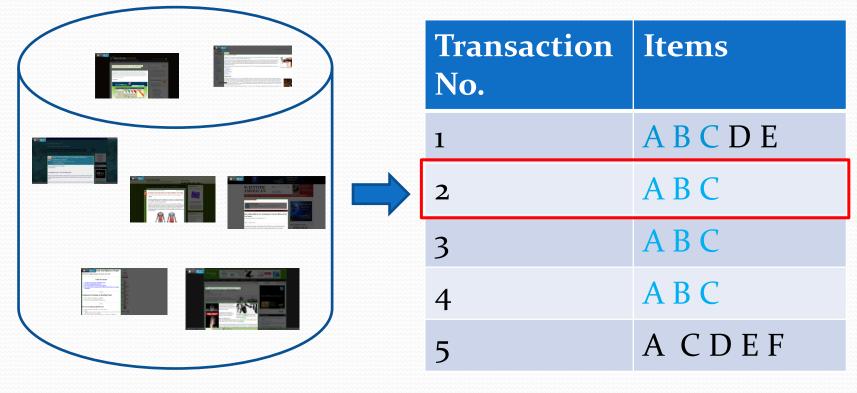

- Web page printing: Smart Print
 - Print preview


- Goal
 - Only one click to get the exact print areas by providing more accurate print-area recommendation in Smart Print
- Solution
 - Leverage the print logs from all the users for more accurate printarea recommendation

- Goal
 - Only one click to get the exact print areas by providing more accurate print-area recommendation in Smart Print
- Solution
 - Leverage the print logs from all the users for more accurate printarea recommendation



Demo


Print Log Database

One piece of print log

- A selected print-area = a clip = an item
- A piece of print log = a set of clips

Print log database

Print Log Database

Transaction Database

 Formulate the task of print-area recommendation as a pattern mining problem

Given the transaction database of print logs and a query Web page

- Identify all the candidate clips inside the query page, denoted by Q
- Find a subset of *Q* for recommendation

The interestingness measure for patterns

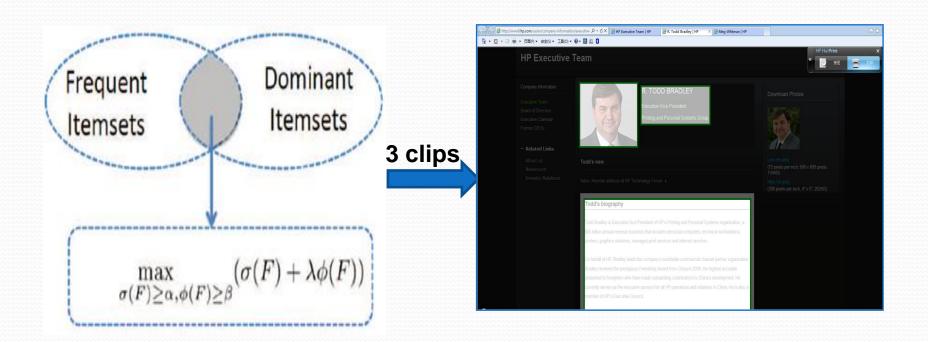
- Support
- Occupancy

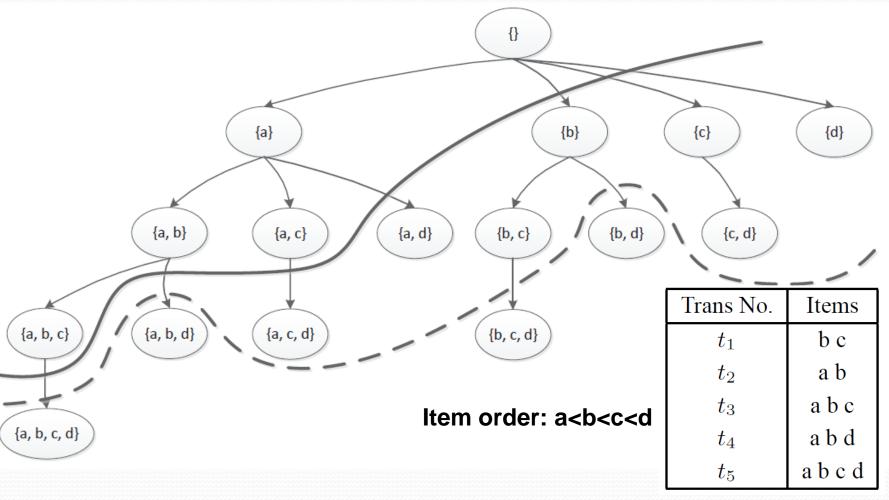
Support

Transaction No.	Items
1	ABCDE
2	A B C
3	A B C
4	A B C
5	ACDEF

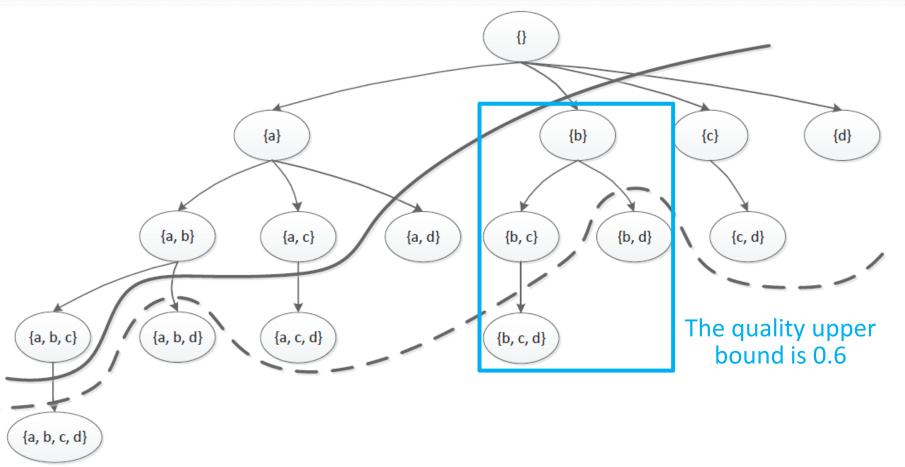
The support of $\{ABC\} = 4/5$

The more frequently a pattern appears in the database, the more number of users select this set of clips for printing.

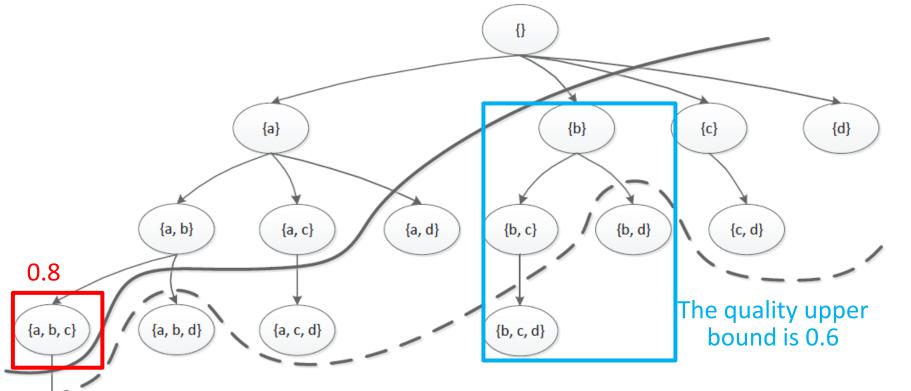

Occupancy


Transaction No.	Items
1	ABCDE
2	A B C
3	A B C
4	A B C
5	ACDEF

The occupancy of {ABC} =
$$\frac{1}{4} \times (\frac{3}{5} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3}) = \frac{9}{10}$$


The bigger the occupancy is, the more complete the recommendation is.

Mining top qualified pattern for recommendation



Set-enumeration tree

For a subtree we can give the upper bounds of the occupancy and quality values for all the nodes in this subtree.

Prune the node X if satisfying the following conditions:

- If X is not frequent,
- 2. If the upper bound on **occupany** for the subtree rooted at **X** is smaller than β
- 3. If the upper bound on **quality** for the subtree rooted at X is smaller than the current maximal quality value in the search process

{a, b, c, d}

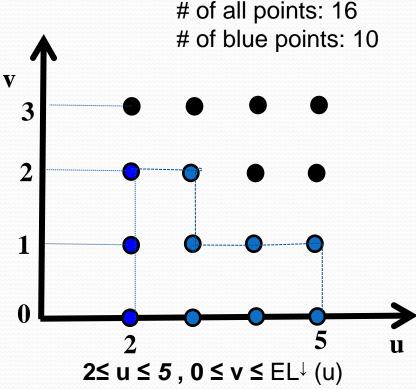
- Problem formulation
 - Input: an itemset **X** and the supporting transactions of **X**
 - The task: estimate the upper bound of occupancy for all frequent supersets of X

• EL,TL to represent the supporting transactions of X

t _{id}	Items		
$t_{_{1}}$	b c e f		
t_2	a b e		
t_3	a b c		
t_4	a b d f		
t ₅	a b c d		

t _{id}	X	Extension
$t_{_1}$	b	c e f
t_2	b	e
t ₃	b	c
t ₃	b	d f
t ₅	b	c d

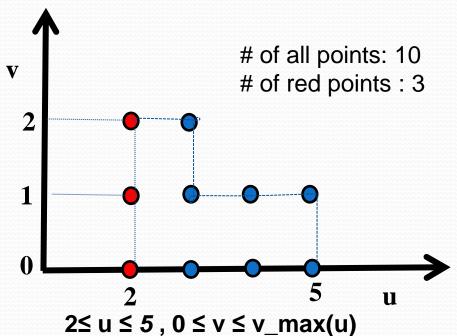
t _{id}	EL	TL
t_{1}	3	4
t_2	1	3
t_3	1	3
t ₃	2	4
t ₅	2	4


- Problem reformulation
 - Input: an itemset X and EL, TL of X,
 - The task is to estimate the upper bound of occupancy for all frequent supersets of X
- The basic idea
 - First, Let X' be any frequent superset of X, suppose |T_{X'}|=u and the extension length |X'|-|X|=v, then we will propose F(u, v, EL,TL) such that occu(X') <= F(u,v,EL,TL)
 - Next, we can enumerate all posible u,v for the above F function and then get the upper bound for any superset of X, occu(X')<= max_{u,v} F(u,v,EL,TL)

- The relationship between u and v
 - When u is fixed, the range of v is [o, EL↓ (u)]
 and u ∈ [fre_min, |T_x|]
 - $EL = \langle 3, 1, 1, 2, 2 \rangle$
 - $EL^{\downarrow} = \langle 3, 2, 2, 1, 1 \rangle$

t _{id}	EL	TL	EL↓ (1)=3
t,	3	4	EL↓ (2)=2,
t_2	1	3	EL↓ (3)=2,
t ₃	1	3	EL↓ (4)=1 ,
t ₄	2	4	EL↓ (5)=1
t ₅	2	4	f re_min=2
			T _{b} =5

$$\max_{u,v} F(u,v,EL,TL) =$$


$$\max_{fre_{\min} \le u \le |T_X|, \ 0 \le v \le EL} F(u, v, EL, TL)$$

- The property of F with respect to u
 - When the F function is monotonically decreasing with respect to u, i.e.,
 F(u+1,v, EL,TL) <= F(u,v,EL,TL), we have

$$\max_{fre_{\min} \le u \le |T_X|, 0 \le v \le EL \downarrow (fre_{\min})} F(u, v, EL, TL)$$

$$= \max_{0 \le v \le EL \downarrow (fre_{\min})} F(fre_{\min}, v, EL, TL)$$

occ(X') <= F(2,2,EL,TL)</pre>

t _{id}	TL	b	EL	Step-1	Step-2	Step-3
t,	4	1	3	\checkmark	3/4	V
t_2	3	1	1			
t ₃	3	1	1			
t ₄	4	1	2	\checkmark	3/4	V
t ₅	4	1	2	\checkmark	3/4	

$$F(u, v, EL, TL) = \frac{1}{u} \times \max_{l_1, \dots, l_u, EL(l_i) \ge v} \sum_{i=1}^{u} \frac{|X| + v}{TL(l_i)}$$

The upper bound for all frequent supersets of {b}

$$ub(\{b\}) = \max_{0 \le v \le EL \downarrow (2)} F(2, v, EL, TL)$$

$$F(2,0, EL, TL) = 1/2 \times (1/3 + 1/3) \approx 0.33$$

$$F(2,1, EL, TL) = 1/2 \times (2/3 + 2/3) \approx 0.66$$

$$F(2,2, EL, TL) = 1/2 \times (3/4 + 3/4) = 0.75$$

$$ub(\{b\}) = \max_{0 \le v \le 2} F(2, v, EL, TL)$$

$$= \max\{0.33, 0.66, 0.75\} = 0.75$$

The efficient upper bound

t _{id}	TL	b	EL	Step-1	Step-2	Step-3
t ₁	4	1	3	\checkmark	4/4	V
t_2	3	1	1	\checkmark	2/3	
t ₃	3	1	1	\checkmark	2/3	
t ₄	4	1	2	\checkmark	3/4	\checkmark
t ₅	4	1	2	\checkmark	3/4	

$$F(u,EL,TL) = \frac{1}{u} \times \max_{l1,\dots,lu} \sum_{i=1}^{u} \frac{|X| + EL(li)}{TL(li)}$$

$$ub({b}) = F(2, EL, TL) = 1/2 \times (4/4 + 3/4) = 0.875$$

 The tradeoff between bound tightness and computational efficiency

$$occ(X') \le \max_{0 \le v \le EL \downarrow (fre_{\min})} F(fre_{\min}, v, EL, TL)$$

$$F(u, v, EL, TL) = \frac{1}{u} \times \max_{l1, \dots, lu, EL(li) \ge v} \sum_{i=1}^{u} \frac{|X| + v}{TL(li)}$$

$$occ(X') \le \max_{v_1,...,v_m} F(fre_{\min}, v_k, v_{k+1}, EL, TL)$$

$$F(u, v_k, v_{k+1}, EL, TL) = \frac{1}{u} \times \max_{l1, \dots, lu, EL(li) \ge v_k} \sum_{i=1}^{u} \frac{|X| + v_{k+1}}{TL(li)}$$

Three different upper bound functions

Upper bound	Bound efficiency	Bound tightness	# of searched node
F	fast	loose	large
F'	slow	tight	small
F [^]	tradeoff	tradeoff	tradeoff

 Does the concept of occupancy help to improve the recommendation performance?

 Does our algorithm with the proposed pruning strategy can significantly reduce time complexity?

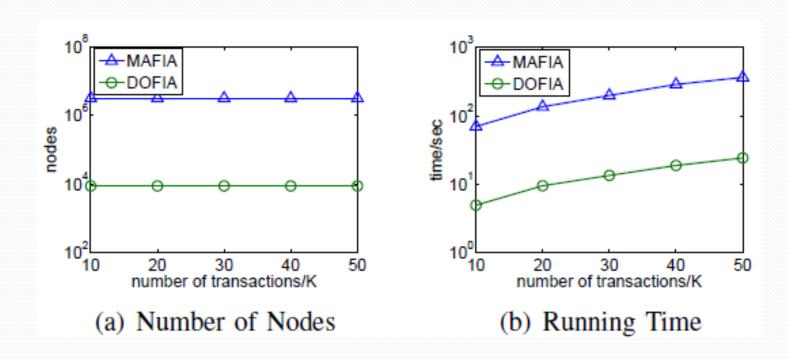
- Evaluation on effectiveness
 - Ground truth
 - 2000 Webpages from 100 printworthy Websites
 - Evaluation method
 - Leave one out cross validation for each webpage
 - Evaluation measure

$$P=\frac{|A_G\cap A_R|}{|A_R|}, R=\frac{|A_G\cap A_R|}{|A_G|}, F1=2\times\frac{P\times R}{P+R},$$

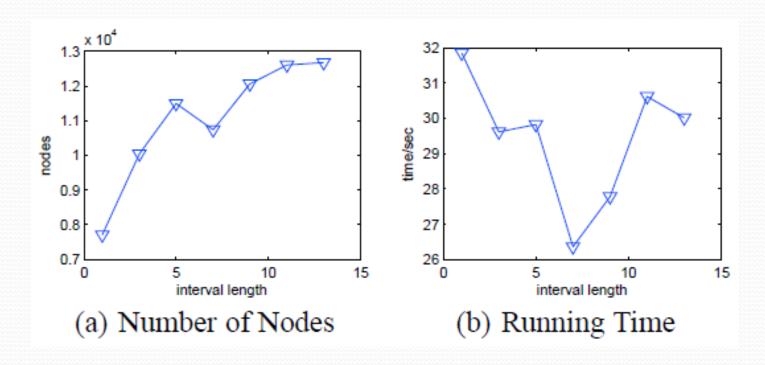
Evaluation on effectiveness

λ	P(%)	R(%)	F1(%)	
0.0	90.04	82.15	79.79	frequency
0.5	89.67	92.84	88.78	
1.0	90.77	94.74	91.3	increase by 1/1%
2.0	91.63	95.96	92.81	increase by 14%
4.0	92.65	96.31	93.6	
5.0	92.81	96.3	93.64	frequency+
6.0	93.23	96.19	93.8	Best requeriey occupancy
8.0	93.23	95.95	93.7	Occupancy
10.0	93.34	95.84	93.71	decrease
$+\infty$	91.27	91.62	89.82	decircase
Average	91.76	93.91	91.12	

The recommendation performance of our method (α =0.05 β =0.1)


Evaluation on effectiveness

α	P(%)	R(%)	F1(%)
0.0	85.85	96.02	88.74
0.05	90.28	92.2	89.81
0.1	90.6	92.84	90.56
0.2	90.65	92.12	90.05
0.3	89.5	91.02	88.88
0.4	87.11	87.57	85.48
0.5	82.0	81.75	79.06


The recommendation performance of the maximal frequent pattern

- Evaluation on efficiency
 - DOFIA
 - Dominant and Frequent Itemset Mining Algorithm
 - Baseline
 - MAFIA
 - Data sets
 - Large synthetic datasets using IBM generator

Evaluation on the number of transactions N

 Evaluation on tradeoff between bound tightness and computational efficiency

Conclusion

- Mining top qualified pattern task
- Motivation application: web print recommendation
 - *Frequency* to measure pattern popularity
 - Occupancy to measure pattern completeness
- An efficient algorithm DOFIA for this problem
 - The efficient upper bound
 - The tightest upper bound
 - Tradeoff between bound efficiency and bound tightness
- The extension work
 - We have extended this concept of occupancy in sequential pattern mining
 - We have proposed a general framework for computing the bounds of any pattern measure (e.g. occupancy+utility+block constraints)

Thanks! Q & A