
李博杰 BA16011029 

本学期在科研方面，进行了数据中心系统加速方面的研究，撰写了两篇学术论文（在投），申请

了三项国际专利。 

一、用户态套接字通信技术 

为了尽可能降低操作系统内核中的通信开销，我们把同一个内核上运行的诸进程看作一个分布式

系统，进程之间采用基于消息传递的共享内存通信。为了解决多进程并发同步的协调问题，以及

进行特权操作，我们引入一个用户态的管程来处理多进程并发同步。通过完全绕过内核，我们消

除了系统调用的开销。为了保持原有的接口抽象，我们设计实现了一个用户态的网络协议栈，应

用程序不再调用标准运行库，而是调用用户态网络协议栈。多进程并发同步中的一部分操作也可

以在用户态网络协议栈中完成，只有不可划分的操作和特权操作放在管程中完成。最后，为了消

除可靠传输协议的开销，我们利用 RDMA网卡来实现可靠传输协议。 

二、可靠有序消息散播技术 

在分布式系统中，应用程序需要解决并发数据访问的一致性问题。传统方案一般使用加锁或乐观

并发控制的方法，在强竞争情况下可扩放性不佳。为了解决远程键值访问的并发控制问题，我们

提出了可靠有序消息散射。发送端给数据包打上递增的时间戳，接收端保证按照时间戳递增的顺

序投递来自所有发送端的数据包。我们利用可编程交换机的数据包处理功能，设计了一个终端主

机和可编程交换机相结合的可靠有序消息散射方案，实现网络规模增加的情况下每台主机的处理

开销、每条链路的网络带宽开销保持恒定，数据包投递的延迟也只随网络层数线性增长。 

 

主要收获与思考 

两篇在投论文都被顶级会议分别拒稿两次，目前正在修改，重新投稿。第一篇论文的主要问题是

应用场景不够明确，假设不够合理（假设两个应用之间建立多个连接，但实际系统中一般只建立

一个连接），导致系统设计过于复杂。最近咨询了一些工业界的大佬，了解了更多实际系统对套

接字的用法和挑战。目前正在从实际应用场景出发，简化系统设计。 

第二篇论文的主要问题是设计过于复杂，正确性难以保证。第二篇论文第一次投稿只解决了有序

传输的问题，但缺少应用场景，从而被拒稿；第二次投稿加入了可靠传输的保证，但同时做到有

序和可靠传输的系统设计过于复杂，审稿人认为正确性没有保证。目前我们发现一些应用场景只

需要有序传输而不需要可靠传输；而且发现一些现有的成熟方案可以解决可靠传输问题，可以添

加到有序传输的基础上。因此我们仍然专注于解决有序传输问题，采用现有的其他方案解决可靠

传输问题，从而简化系统设计。 

 

附件 

两篇在投论文（为保护知识产权，分别截取了前 5页） 



SocksDirect: Push-Button Socket Acceleration in User Space

NSDI’19 submission #171

Abstract
Linux socket is implemented in the kernel space with

shared data structures that needs concurrency protection,
which incurs significant overhead. Communication inten-
sive applications in hosts with multi-core CPU and high-
speed networking hardware often put considerable stress on
the socket system. Recent work on user-space sockets ei-
ther does not support intra-host communication among con-
tainers and applications, or has limitations on compatibility,
isolation and multi-thread scalability.

In this paper, we describe SOCKSDIRECT, a high perfor-
mance socket system. SOCKSDIRECT is implemented in
user space to avoid kernel crossing cost. It achieves secu-
rity and isolation by employing a trusted monitor daemon
to handle control plane operations such as connection estab-
lishment and access control. SOCKSDIRECT is fully com-
patible with Linux socket and can be used as a drop-in re-
placement with no modification to existing applications. The
design fully handles Linux fork semantics, and can han-
dle both intra- and inter-host communications with hosts
equipped with SOCKSDIRECT as well as those without. Last
but not least, SOCKSDIRECT is performant. SOCKSDIRECT
uses shared memory queue and modern RDMA transport
for intra- and inter-host communication. It removes multi-
thread synchronization in common cases and improves mem-
ory efficiency with many concurrent connections. It lever-
ages techniques such as cooperative multitasking and page-
remapping based zero-copy to remove many overheads of
existing socket systems. Experiment shows that SOCKSDI-
RECT achieves 7 to 20x better message throughput, 17 to 35x
better latency, and 20x connection setup throughput com-
pared with Linux socket.

1 Introduction
Socket API is the most widely used communication primi-

tive in modern OS. It is used universally for communications
between processes, containers and hosts. Traditional Linux
socket implementation is not optimal. It can only achieve la-
tency and throughput numbers an order of magnitude worse
than what the raw hardware is capable of. Communication
intensive applications such as distributed key-value stores
and web servers could spend 50%∼90% of CPU time in the
OS kernel, mostly processing socket operations.

There has been extensive work aiming at reducing the
socket overhead, but existing approaches are not satisfactory.
First, many user-space sockets are not fully compatible with

native socket in areas such as when a process forks, when
multiple processes listen to the same port, and when com-
munication is intra-host. Second, some user-space sockets
have security issues because applications can directly access
shared NIC queues, thus violating process isolation and ac-
cess control policies. Those solutions that do preserve se-
curity often incur the overhead of kernel crossing or virtual
switch. Third, even in the performance front, there are still
much room for improvement. For example, none of exist-
ing works can achieve performance close to raw RDMA,
because they fail to remove some important overheads such
as multi-thread synchronization, memory copy and TCP/IP
packet processing.

We design SOCKSDIRECT, a user-space socket architec-
ture with compatibility, security and performance in mind.
• Compatibility. Existing applications can use SOCKS-

DIRECT as a drop-in replacement with no modification.
It supports both intra-host and inter-host communication,
and behaves correctly during process fork and thread cre-
ation. If a remote peer does not support SOCKSDIRECT,
the system falls back to TCP transparently.

• Security. SOCKSDIRECT preserves isolation among ap-
plications and containers, and it enforces firewall rules
and access control policies.

• High Performance. SOCKSDIRECT delivers consistent
high throughput and low latency that is scalable with num-
ber of CPU cores, and the performance does not degrade
significantly with vast number of concurrent connections.
At its heart, SOCKSDIRECT follows the principle of sep-

arating control and data plane to achieve both security and
performance. We treat processes as a shared-nothing dis-
tributed system that communicates via peer-to-peer message
queues. We design a per-host monitor daemon as the con-
trol plane to enforce access control policies, dispatch new
connections, perform address translation for overlay net-
works and establish transport channel between communi-
cation peers. The data plane is handled by a dynamically
loaded user-space library LIBSD, which implements data
transmission and event polling in a peer-to-peer fashion be-
tween processes while delegates connection creation to the
local monitor. LIBSD intercepts Linux glibc, implements all
socket-related functions in user space and forwards the other
APIs to the kernel.

We face several challenges designing SOCKSDIRECT to
achieve high performance while maintaining compatibility.
One challenge is to share a socket among threads and pro-

1



cesses without locking. A socket connection is a FIFO chan-
nel. The most straight-forward approach is to implement
each connection as a single queue. However, a socket may
be shared by multiple senders and receivers, locking is thus
needed to protect the shared queue, which significantly slows
down the system. To avoid locking overhead, we treat each
thread as a separate process and create peer-to-peer queues
between each pair of communicating threads. In our de-
sign, a single socket connection may correspond to multiple
queues, and we take special care to preserve FIFO seman-
tics during fork and thread creation. Another challenge is to
maintain performance with vast number of concurrent con-
nections. To handle many concurrent connections efficiently,
we need to reduce memory footprint and improve memory
access locality. Rather than maintaining a separate queue for
each connection, SOCKSDIRECT multiplexes socket connec-
tions through a single queue for each pair of communicating
threads. We design the queue carefully to enable fetching
from the middle of a queue and solve the head-of-line block-
ing problem.

We exploit multiple techniques to effectively utilize hard-
ware and improve system efficiency. For communication
within a same host, we design a high performance user space
shared memory queue. For communication among hosts in
an RDMA enabled data center, we use RDMA NIC hard-
ware for transport. To remove memory copy cost for large
messages, we take advantage of page remapping to achieve
transparent zero copy. To share a CPU core efficiently among
multiple active threads without thread wakeup overhead, we
leverage cooperative multitasking.

SOCKSDIRECT achieves latency and throughput close to
the raw performance achievable from the underlying shared
memory queue and RDMA. On the latency side, SOCKS-
DIRECT achieves 0.3µs RTT for intra-host socket, 35x
lower than Linux and only 0.05µs higher than a bare-metal
shared memory queue. For inter-host socket, SOCKSDI-
RECT achieves 1.7µs RTT between RDMA hosts, almost
the same as raw RDMA verbs and 17x lower than Linux.
On the throughput side, a single thread can send 23 M intra-
host messages per second (20x Linux) or 8 M inter-host (7x
Linux). For large messages, with zero copy, a single con-
nection saturates NIC bandwidth. Each thread can establish
1.4 M new connections per second (20x Linux). The perfor-
mance above is scalable with number of cores, and do not de-
grade significantly with millions of concurrent connections.

2 Background
2.1 Socket

Socket is the standard communication primitive among
applications and containers. Modern data center networks
have microsecond-level base latency and tens of Gbps
throughput. However, traditional Linux socket is imple-
mented in the OS kernel space with shared data structures,
making socket a well-known bottleneck for communication

intensive applications running on multiple hosts [9]. In ad-
dition to inter-host communications, cloud applications and
containers at the same host often communicate with each
other, making intra-host socket communication increasingly
important in the cloud era. Under stress tests, we observe
applications such as Nginx [55], memcached [24] and Re-
dis [13] consume 50% to 90% CPU time in the kernel,
mostly dealing with TCP socket operations. This agrees with
previous results [31].

TCP socket in a modern OS typically has three functions:
• Address, locate and connect to another application;
• Provide a reliable and ordered communication channel,

identified by an integer file descriptor (FD);
• Multiplex events from multiple channels e.g., poll and

epoll. Most Linux applications use a readiness-driven I/O
multiplexing model. The OS tells application which FDs
are ready to receive or send, then the application may pre-
pare buffers and issue receive or send operations.

2.2 High Performance Socket Systems
Many high performance socket systems have been pro-

posed from both academia and industry. Table 1 compares
several of them from three aspects: compatibility, security
and performance.

Kernel network stack optimization: The first line of
work optimizes the kernel TCP/IP stack. FastSocket [39],
Affinity-Accept [49], FlexSC [59] and zero-copy socket [60,
14, 18] achieve good compatibility and security, but leave
some performance optimizations on the table.

MegaPipe [26] and StackMap [61] propose new interfaces
to achieve zero copy and improve I/O multiplexing, at the
cost of requiring application modifications.

User-level network stack: The second line of work
completely bypasses kernel TCP/IP stack and implements
TCP/IP in user space. In this category, IX [10] and Ar-
rakis [50] are new OS architectures that uses virtualization
to ensure security and isolation. IX leverages user space net-
work stack [22] while using kernel to forward every packet
for performance isolation and QoS. In contrast, Arrakis of-
floads QoS to NIC, therefore bypasses kernel for data plane.

Apart from these new OS architectures, many recent ef-
forts use high performance packet I/O frameworks on Linux,
e.g., Netmap [56], Intel DPDK [29] and PF RING [5]), to
directly access NIC queues in user space. SandStorm [43],
mTCP [31], Seastar [7] and F-Stack [2] propose new inter-
faces and thus need to modify applications. LibVMA [45],
OpenOnload [54], DBL [4] and LOS [27] are designed to be
compatible with existing applications. These designs often
sacrifice security, because multiple applications of a packet
I/O framework share a NIC. To receive packets of listen-
ing ports and established connections from the NIC directly,
each application inserts flow steering rules to the NIC in-
dependently, which is insecure and leads to conflicts when

2



FastSocket MegaPipe /
StackMap

IX Arrakis SandStorm
/ mTCP

LibVMA OpenOnload Rsocket /
SDP

FreeFlow SocksDirect

Reliable transport location Kernel User space NIC hardware
Wire protocol TCP/IP RDMA
Changes needed for deployment New kernel New kernel New kernel New kernel Lib+driver Lib+driver Lib+driver Lib+driver Lib+driver

+daemon
Lib+driver
+daemon

Compatibility
Transparent to existing applications 3 3 3 3 3 3 3 3

Intra-host communication 3 3 3 3 3

Container overlay network 3 3

Multiple applications listen a port 3 3 3 3 3

Full fork support 3 3 3 3

Compatible with regular TCP peers 3 3 3 3 3 3 3 3

Security and Isolation
Access control policy Kernel Kernel Kernel Kernel Daemon Daemon
Isolation among containers / VMs 3 3 3 3 3 3

QoS (performance isolation) Kernel Kernel Kernel NIC NIC NIC NIC NIC Daemon NIC
Performance

Offload transport to RDMA NIC 3 3 3

Many concurrent connections 3 3 3 3 3 3

Kernel bypass 3 3 3 3 Partial 3 3

Scale to multiple cores 3 3 3 3 3 3 3 3 3

Multiple threads share a connection 3

Multiple threads share a CPU core 3

Socket-compatible zero copy 3

Table 1: Comparison of high performance socket systems.

multiple applications listen on a same port. An application
may send arbitrary packets that violate access control policy.
Moreover, most user-space stacks are not designed to accel-
erate intra-host connections and have limited fork support.

RDMA offloading: The third line of research utilizes
RDMA NICs [3] that are widely available in production data
centers [25] and translate socket operations to RDMA verbs.
RDMA uses hardware offloading to provide ultra low latency
and near zero CPU utilization compared to software-based
TCP/IP network stacks. RSocket [6] and SDP [53] convert
each socket connection to an RDMA connection (RC QP).
However, such simple translations suffer from throughput
degradation with a large number of concurrent connections.
This is because RDMA NIC keeps per-connection states us-
ing a ≈2 MB [33] on-NIC memory as cache. With hun-
dreds of concurrent connections, we will suffer from fre-
quent cache misses, resulting in serious throughput degra-
dation [41, 34]. FreeFlow [62, 36] is a software switch to
virtualize an RDMA NIC for container overlay network and
enables intra-host RDMA communication. It uses RSocket
to translate socket to RDMA, thus also suffering from cache
miss problem.

2.3 Performance Challenges
We aim to deliver persistent high throughput and low la-

tency regardless of the number of concurrent connections.
In addition, the performance should scale linearly with the
number of CPU cores. This subsection analyzes challenges
to achieve above goals.

Intra-host communication. Most existing approaches for
intra-host socket either use kernel network stack or NIC
loopback. The kernel network stack has evolved to become
quite complicated over the years [61], which is an overkill

for intra-host communication.
Arrakis uses the NIC to forward packets from one appli-

cation to another. As shown in Table 2, the hairpin latency
from CPU to NIC is still 25x higher than inter-core cache
migration delay (∼30 ns). The throughput is also limited
by Memory-Mapped I/O (MMIO) doorbell latency and PCIe
bandwidth [47, 37].

We aim to leverage user-space shared memory for intra-
host socket communication.

Container overlay network. Many container deployments
use isolated network namespaces for containers, which com-
municate via a virtual overlay network. In Linux, a virtual
switch [51] forwards packets among host NIC and virtual
NICs in containers. This architecture incurs the overhead
of multiple context switches and memory copies on each
packet, and the virtual switch becomes the bottleneck [52].

We aim to use the virtual switch for only control plane and
implement peer-to-peer data plane operations.

RDMA offloading. The main challenge for leverage RDMA
for inter-host socket communication is to bridge the se-
mantics of socket and RDMA [21]. For example, RDMA
preserves messages boundaries while TCP does not. For
I/O multiplexing, RDMA provides a completion notification
model while event polling in Linux socket requires a readi-
ness model [26]. Further, one-sided and two-sided RDMA
verbs have different efficiency and overheads [32, 34].

We aim to use RDMA efficiently for inter-host socket
communication, while falling back to TCP transparently in
case of non-RDMA peers.

Many concurrent connections. Internet facing applications
often need to serve millions of concurrent connections effi-
ciently [31, 39, 10]. Moreover, it is also common for two
backend applications to create large number of connections

3



between them, where each connection handles a concurrent
task [28, 30, 48]. In Linux, a socket connection has ded-
icated send and receive buffers, each is at least one page
(4 KB) in size [20]. With millions of concurrent connections,
the socket buffers can consume gigabytes of memory, most
of which is empty. Random accesses to a large number of
buffers also cause CPU cache misses and TLB misses. Simi-
lar issue exists in RDMA NICs with limited on-chip memory
for caching connection states [41, 34].

We aim to minimize memory cache misses per data trans-
mission by multiplexing socket connections.

Kernel bypassing. Traditionally, socket APIs are imple-
mented in kernel, thus requiring kernel crossing for each
socket operation. To make it worse, the Kernel Page-
Table Isolation (KPTI) patches [17] to protect against Melt-
down [40] attacks make kernel crossings 4x expensive.

We aim to bypass kernel without compromising security.

Scaling to multiple cores. Linux kernel acquires sev-
eral global locks during connection creation [11, 12].
MegaPipe [26] and FastSocket [39] remove these bottle-
necks, but leave other kernel overheads on the table [31].
Several efforts [44, 57, 27, 62] delegate all operations to a
virtual switch running as a daemon process, which is a scal-
ability bottleneck in modern servers with tens of cores.

We aim to minimize centralized coordinations while pre-
serving isolation among applications and containers.

Multiple threads sharing a connection. Multiple threads
in a process share socket connections. For example, after a
process forks, both parent and child processes share exist-
ing sockets. Sockets can also be passed to another process
through Unix domain socket. To protect concurrent opera-
tions, Linux kernel acquires a per-socket lock for each socket
operation [12, 26, 39]. Table 2 shows that a shared mem-
ory queue protected by atomic operations has 4x latency and
22% throughput of a lockless queue, even if there is no con-
tention. Previous work [12, 15] suggests that many socket
operations are not commutable and synchronizations cannot
always be avoided.

We aim to minimize synchronization overhead in two
ways. First, we optimize for the common cases and remove
synchronizations in frequently used socket operations. Sec-
ond, we leverage the fact that shared memory message pass-
ing is much cheaper than locking [57], and use message pass-
ing as the exclusive synchronization mechanism.

Multiple threads sharing a CPU core. Most user-space
network stacks use polling to avoid the overhead of interrupt
and thread wakeup in the kernel. However, polling does not
work when multiple threads have to share a core. To switch
thread contexts, as Table 2 shows, using semaphore, mutex
or futex to wake up a sleeping thread is 5x∼10x slower
than cooperative context switch via sched yield.

We aim to use cooperative multitasking instead of kernel
thread wakeup mechanisms.

Operation Latency Throughput
(µs) (M op/s)

Inter-core cache migration 0.03 50
Poll 32 empty queues 0.04 24
System call (before KPTI) 0.05 21
CPU L3 cache miss 0.07 14
Spinlock (atomic instruction) 0.10 5∼10
Lockless shared memory queue 0.25 27
Intra-host SOCKSDIRECT 0.30 22
System call (after KPTI) 0.20 5.0
Copy one page (4 KiB) 0.40 5.0
NIC cache miss 0.45 2.2
Cooperative context switch 0.52 2.0
Map 1 page (4 KiB) 0.78 1.3
CPU to NIC hairpin RDMA 1.0 14
Atomic shared memory queue 1.0 6.1
Map 32 pages (128 KiB) 1.2 0.8
Two-sided inter-host RDMA 1.6 8
One-sided inter-host RDMA 1.6 13
SOCKSDIRECT via RDMA 1.7 8
Semaphore, mutex, futex 2.8∼5.5 0.2∼0.4
Intra-host Linux TCP 11 0.9
Copy 32 pages (128 KiB) 13 0.08
Inter-host Linux TCP 30 0.3

Table 2: Round-trip latency and per-core throughput of op-
erations (testbed settings in Sec. 5.1). Message size is 8 bytes
if not specified.

Zero copy. The semantics of send and recv cause mem-
ory copies between application and network stack. For non-
blocking send, the system needs to copy data out of the
buffer because the application may overwrite the buffer right
after send returns. For recv, application provides a buffer
as the data destination. System needs to copy data received
into the buffer. Many user-space TCP/IP stacks and socket-
to-RDMA libraries provide both standard socket API and an
alternative zero-copy API, but none of them achieves zero
copy for the standard API on both send and receive paths.

We aim to allow transparent zero copy for large transfers.

3 Design
3.1 Architecture Overview

Figure 1 gives the architecture of SOCKSDIRECT. To use
SOCKSDIRECT, an application loads a user-space library
LIBSD by setting the LD PRELOAD environment variable.
LIBSD intercepts all Linux APIs in glibc that are related
to file descriptor operations. It implements socket APIs in
user space and forwards the other APIs to the kernel. From a
security point of view, because LIBSD resides in the applica-
tion address space, we cannot trust its behavior. Therefore,
we need a trusted component outside LIBSD to enforce ac-
cess control and support overlay networks.

To this end, we design a monitor daemon at each host
to coordinate control plane operations, e.g., connection cre-
ation. The monitor daemon is started at OS initialization
time. In each host, all the applications loading LIBSD must
establish a shared memory queue with the host’s monitor
daemon, forming the control plane. On the data plane, appli-

4



Host 3

Application

libsd
Monitor

Application

libsd
shm queue shm queue

Application

libsd

Host 1

Host 2

R
D

M
A

 q
u

e
u

e

Application

Kernel TCP

TCP

TC
P/IP

shm queue

Monitor

R
D

M
A

 q
u

e
u

e

shm queue

Figure 1: Architecture of SOCKSDIRECT. Host 1 and 2 are
RDMA capable, while host 3 is RDMA incapable.

cations build peer-to-peer queues to communicate directly,
thus relieving the burden of the monitor daemon.

To achieve low latency and high throughput, SOCKSDI-
RECT uses shared memory for intra-host and RDMA for
inter-host communication. We now describe the procedure
of intra-host communication. The communication initiator
first sends a request to the local monitor, then the monitor
establishes a shared memory queue between the two applica-
tions (possibly in different containers). Afterwards the two
applications can communicate directly.

For inter-host communication, the monitors of two hosts
are both involved. When an application connects to a remote
host, its local monitor establishes a regular TCP connec-
tion and detects whether the remote host supports SOCKS-
DIRECT. If so, it establishes an RDMA queue between the
two monitors, so that future connections between the two
hosts can be created faster. The monitor at the remote side
dispatches the connection to the target and helps the two ap-
plications establish an RDMA queue, as between host 1 and
2 in Figure 1. If the remote host does not support SOCKS-
DIRECT, it keeps using the TCP connection, as between host
1 and 3 in Figure 1. The detailed connection management
protocol is presented in Sec. 3.2.

In order to remove synchronization overhead for multi-
threaded applications, we treat each thread as a separate pro-
cess. For two communicating applications, we create peer-
to-peer queues between each pair of sender and receiver
threads to avoid synchronization cost of contending on the
same queue. In Sec. 3.3, we present the peer-to-peer queue
design that preserves FIFO ordering semantics and avoids
starvation, especially when a process forks or creates a new
thread. To maintain performance with many concurrent con-
nections, rather than creating separate queues for each con-
nection, we multiplex data from all connections through one
queue. In Sec. 3.4, we present the design of multiplexed
queue that avoids head-of-line blocking and supports fetch-
ing data from any multiplexed connections.

3.2 Connection Management
Before designing the connection management protocol,

we keep the following requirements in mind: 1) The applica-

tions and LIBSD are not trusted because they are in the same
memory address space. We must enforce access control poli-
cies outside LIBSD to prevent access to restricted resources.
2) Each address and port may be listened by multiple pro-
cesses, which needs load balancing while avoid starvation.
3) The applications may be in an overlay network and thus
needs address translation. 4) A client should be able to con-
nect to SOCKSDIRECT and regular TCP/IP hosts transpar-
ently, and a server should accept connections from all hosts.

These design requirements lead to a monitor service run-
ning as a daemon process in each host. Rather than delegat-
ing all operations to the monitor, we only delegate connec-
tion creation, which forms the control plane. From the appli-
cation’s perspective, connection creation is similar to TCP
handshake. Monitor(s) on the path between client and server
applications proxy the handshake commands and help them
establish a peer-to-peer queue via shared memory or RDMA.
If the remote peer does not support SOCKSDIRECT, all fu-
ture operations with it will be delegated to the local monitor.
The detailed procedure is as follows.

Initialization. During initialization, LIBSD connects to the
monitor in local host via bootstrap socket (a Unix domain
socket or kernel TCP socket on localhost or overlay network)
and establishes a shared memory queue between them. Af-
ter that, communication between the application and monitor
goes through the shared memory queue.

Socket creation. An application first creates a socket identi-
fied by an integer file descriptor (FD). Socket FDs and other
FDs (e.g. disk files) share a namespace and Linux always
allocates the lowest available FD. To preserve this seman-
tics without allocating dummy FDs in the kernel, LIBSD
intercepts all FD-related Linux APIs and maintains a FD
translation table to map each application FD to a user-space
socket FD or a kernel FD. When an FD is closed, LIBSD
put it to a FD recycle pool. Upon FD allocation, LIBSD first
tries to obtain an FD from the recycle pool. If the pool is
empty, it allocates a new FD by incrementing a FD alloca-
tion counter. The FD recycle pool and allocation counter are
shared among all threads in a process.

Bind. After socket creation, the application calls bind to
allocate address and port. Because addresses and ports are
global resources with permission protection, the allocation
is coordinated by the monitor. As shown in Figure 2, LIBSD
sends the request to monitor and the monitor sets up an ad-
dress translation rule between physical and overlay network.
LIBSD employs an optimization to return success specula-
tively if the bind request would not fail, e.g., when port is
not specified for client-side sockets.

Listen. When a server application is ready to accept connec-
tions from clients, it calls listen and notifies the monitor.
The monitor maintains a list of listening processes on each
address and port to dispatch new connections. The moni-
tor also uses a user-space networking stack (modified Lib-

5



Scalable and Efficient Reliable Ordered Message
Scattering in Data Center Networks

Eurosys’19 submission #23

Abstract
The ability to have reliable and ordered delivery of a group

of messages can facilitate and simplify many distributed

applications. Existing approaches either employ centralized

sequencers or tokens, thus suffering from limited scalability,

or use distributed consensus protocols, which incurs high

overhead in bandwidth and delay, as well being faulty with

malicious hosts.

This paper proposes Reliable Ordered Message Scattering

(ROMS), a scalable and efficient method to deliver groups of

messages reliably in order inside data centers. To achieve

ordered delivery in a scalable manner, ROMS separates the

bookkeeping of order information from message forward-

ing, and distributes the work to each switch and host. ROMS

aggregates order information using in-network computation

at switches. This forms the “control plane” of the system.

On the “data plane”, ROMS forwards messages in the net-

work as usual and reorders them at the receiver based on

the order information. To achieve reliability, switches detect

packet losses and senders recover losses. To achieve atomic-

ity, switches detect and notify Byzantine host failures and

the SDN controller handles network partition.

We build two ROMS prototypes using Barefoot and Arista

switches. Our evaluation shows that ROMS achieves high

performance and fault tolerance with low CPU and network

overheads. As a case study, ROMS achieves externally con-

sistent independent transactions with latency and through-

put close to a non-transactional, non-replicated system in

YCSB+T and TPC-C benchmarks.

1 Introduction
In a network with arbitrary network delays, packet losses

and failures, it is challenging to guarantee the reliability

and ordering of message delivery. For example, multiple

clients updates an object simultaneously in a distributed

storage, where each client needs to update both metadata

and data on different shards. The shards storing metadata

and data may receive the updates in different orders, and

some shards may fail to receive the updates, thus violating

data consistency. Solutions that mitigate this problem often

introduce synchronization overhead, and often complicate

distributed system design.

Ordered communication provides an abstraction where

different receivers process messages from senders in a consis-

tent order. This abstraction, sometimes called Causally and

Totally Ordered Communication Support (CATOCS) [19],

is an important building block for both strongly consistent

and eventually consistent systems. Ordered communication

provides the guarantee that messages are delivered obeying

the causal order in the Lamport logic clock sense [49]. This

also imply FIFO, i.e., if a message is sent before the other

from a same sender, it will also be delivered before the other.

Moreover, messages are total order, ensuring that they are

delivered in the same order to all participants.

Besides ordering, another desirable property is reliability

in the presence of failure: either all the messages in a group

are delivered to the desired targets, or none is delivered if

any of them fails. Many efforts have been made to achieve

reliable ordered group communication, e.g., atomic broad-

cast [27] and consensus [51]. Most approaches are designed

for a small-to-medium group of trusted hosts, where a client

sends the same message to every participant. However, dis-

tributed systems in data centers scale to thousands of hosts,

where each client communicate with a different and non-

predetermined subset of hosts [69]. Existing solutions suffer

from scalability, efficiency and security limitations.

In this work, we propose Reliable Ordered Message Scat-

tering (ROMS), an efficient and scalable method to scatter

groups of messages. We generalize multicast tomessage scat-
tering [48], a communication pattern where a host sends a

group of (potentially different) messages to multiple hosts

simultaneously. ROMS strictly preserves the following two

properties in an efficient and scalable manner:

• Ordering: Each receiver delivers messages from different

senders in the ascending wall clock order of message sent

time. Wall clock is a clock on each host that obeys mono-

tonicity and causality, that is (not strictly) synchronized.

This implies CATOCS.

• Reliability: It means both (1) atomicity, i.e., either all
or none receivers deliver messages in a scattering group,

and (2) exactly once, i.e., a scattering is guaranteed to be

delivered exactly once if both the sender and all receivers

of the scattering are not faulty, and the network is not

partitioned. ROMS is fault tolerant under Byzantine failure

of hosts and crash failure of network components.

We aim to implement ROMS in a data center network,

where the topology is loop-free [35, 55], switches have gen-

erally good programmability, and switches are managed by

a logically centralized SDN controller. We also rely on rea-

sonable synchrony among the host and switch clocks, i.e.

clock skew, drift and jitter on non-faulty hosts and switches

are bounded. The ROMS primitive can facilitate the design

and implementation of many canonical distributed systems

in a data center, such as externally consistent distributed

1



transactions [40, 74], log replication in eventually consistent

systems [84], state machine replication [50, 83] and improve

consistency in distributed shared memory.

To achieve ordering in network with variable delay, we

aggregate wall clock timestamps in network. The sender

attaches a non-decreasing timestamp to each message. Mes-

sages sent by a host with the same timestamp are considered

to form a scattering. Each receiver delivers messages in non-

decreasing timestamp order.

Our principle is to co-design end hosts with underly-

ing data center networks. At its core, ROMS separates the

bookkeeping of order information from message forward-

ing. ROMS forwards timestamped messages as usual in the

network, and buffers them at the receiver side. The switch ag-

gregates timestamp information of all messages to derive the

loss-free barrier for each receiver. The barrier is essentially

the lower bound of the timestamps of all future arrival pack-

ets. With this information, the receiver can ordered deliver
the messages with timestamps below the loss-free barrier

in order. Ordered delivered messages may be recalled if a

failure occurs.

In order to derive the loss-free barrier, we generalize times-

tamp barriers from end hosts to every link in the network.

Each switch keeps per-link barrier information and updates it

for each packet. We merge barriers hierarchically at switches

to reduce communication overhead. If some hosts or links are

temporarily idle, we periodically generate beacons carrying

barrier information.

To achieve reliability in case of packet loss and failure,

rather than quorum-based voting, ROMS detects packet loss

and failure in network, and relies on end hosts to retransmit

lost packets and recall failed scatterings. To minimize the

delay from scattering to delivery, we take advantage of the

fact that data centers typically have very low packet loss

rates [74]. When packet loss does not occur, a host can re-
liably deliver a message when it knows that all hosts have

received messages with lower timestamps. The top-of-rack

switches detect crash and Byzantine host failures with little

overhead. Failure of network components are handled by a

logically centralized SDN controller.

We implement three incarnations of ROMS on network

devices with different programming capabilities: reconfig-

urable switching chips [3, 5] that can support flexible stateful

per-packet processing, processors on the switches, and host

CPUs if the switches are not programmable or the vendors

do not expose accesses to switch CPUs.

We evaluate the performance of ROMS using both small-

scale testbed experiments and large-scale simulation. De-

fine network diameter D as the maximum one-way delay

between two hosts. In normal cases, ROMS can deliver mes-

sages ordered inD and reliably in 2D. ROMS also achieves low

network bandwidth and CPU processing overhead in both

small and large system scales. As a case study, ROMS supports

externally consistent [21] independent transactions in one

A B

O

send

write read

(a)Write after write.

A B

write

read

O1

O2
write

read

(b) Independent read, in-
dependent write.

A

B
write

O1

O2

write

write

write

(c) Independent
multi-write.

Figure 1. Ordering hazards in a distributed system.

round-trip, close to a non-transactional, non-replicated sys-

tem. ROMS achieves 6.4 million transactions and 40 µs latency
in YCSB+T [28], which is 10x more efficient than MVCC

concurrency control and Paxos-based replication. Moreover,

the performance scales linearly with number of hosts. For

New-Order and Payment transactions in TPC-C [23] with 4

warehouses, ROMS scales to thousands of concurrent clients,

while MVCC only scales to tens.

2 Motivation and Related Work
Ordering and reliability are two fundamental problems

in distributed systems. Sec.2.1 and Sec.2.2 discuss the two

problems and existing approaches. Sec.2.3 shows how ROMS

can simplify distributed systems design.

2.1 Ordering

Ordering Hazards. Message scattering is a common com-

munication pattern in distributed systems, where one end-

host sender sends a group of messages to one or more end-

host receivers. With variable network delays, four categories

of ordering hazards [33, 76] may take place.

• Reordering. Host A writes data to O , then reads from O ,
but may not get the data due to in-network reordering.

• Write after write (WAW). As Figure 1 shows, host A writes

data to another host O , then sends a notification to host

B. Send can be considered a write operation. When B
receives the notification, it issues read command toO , but

may not get the data due to message delays.

• Independent read, independent write (IRIW). Host A writes

O1 and O2 at the same time, while B reads O1 and O2

simultaneously. B may get an inconsistent state where

only one of O1 and O2 is written.

• Independent multi-write (IMW). Host A scatters writes

to both O1 and O2. Concurrently, B also scatters writes.

The ordering of A’s and B’s writes at O1 and O2 may be

different, causing inconsistency.

Ordering hazards affect system performance. To avoid Re-

ordering andWAWhazards,A needs to wait for the first write

operation to complete (an RTT to O) before reading from

O or sending to B, thus increasing latency and degrading

throughput. To avoid IRIW and IMW hazards, application

needs locks, centralized sequencers [44] or explicit coordi-

nation via logical timestamps [49].

2



ROMS removes all four hazards above. ROMS ensures a

group of messages to be delivered in causal, FIFO and total

order. The FIFO property removes Reordering hazard. In

WAWhazard, the three messagesA→ O ,A→ B and B → O
are three message scatterings. By FIFO order, A → O is

ordered before A → B. By causality, A → B is ordered

before B → O . Consequently, A → O is before B → O .
Therefore, the write operation is delivered before the read

operation, thus avoiding WAW hazard.

In IRIW and IMW hazards, messagesA→ O1 andA→ O2

belong to scattering S1, and B → O1 and B → O2 belong to

scattering S2. By total order property, O1 delivers A → O1

before B → O1 if and only if O2 delivers A → O2 before

B → O2. Therefore, ROMS ensures consistency betweenmeta-

data and data (IRIW hazard) and consistent history among

replicas (IMW hazard).

Total-Order Multicast. Since the dawn of distributed sys-

tem research [49], there has been extensive research in or-

dered communication, mostly providing a multicast or broad-

cast primitive [27]. One line of work leverages logically cen-

tralized coordination, e.g., centralized sequencers [40] or a

token passed among senders or receivers [30, 46, 75]. As

a result, it is challenging to scale the system. Another line

of work uses fully distributed coordination, e.g., exchange
timestamps among receivers before they start to process

messages [49], or aggregate history during message deliv-

ery [17]. This causes extra network communication overhead

and delay, thus degrading system efficiency. A third line of

work assumes a synchronous network, e.g., the block gen-

eration interval in Bitcoin blockchain [68] is designed to be

higher than the maximum delay among hosts. However, in

data center systems, waiting for worst-case delay leads to

unacceptable latency.

Critics and proponents of causal and totally ordered com-

munication (CATOCS) have long discussed the pros and

cons of such a primitive [10, 19, 81]. ROMS achieves scalabil-

ity with in-network computation and incurs little overhead,

thus removing one of the biggest criticisms of this primitive.

2.2 Reliability

AtomicMulticast andConsensus. The presence of packet
loss and failure adds complexity. In Figure 1a, if thewritemes-

sage to O is lost, B will not get the data. In Figure 1b and 1c,

ifO2 fails for a short period, updates toO1 may cause data in-

consistency. A fault-tolerant distributed database uses atomic

commitment for failure atomicity among shards and con-

sensus for consistency among replicas. 2PC [9] is blocking

on coordinator failure, while 3PC [77] cannot recover from

network partition. Atomic multicast [11, 42] provides an all-

or-nothing guarantee under failures, which is equivalent to

consensus [16]. Although atomic multicast and consensus

imply total order, they are orthogonal to FIFO and causal or-

der. For example, Zab [42] is stronger than Multi-Paxos [51]

because Zab ensures FIFO ordering when coordinator fails,

thus removes Reordering hazards. Causal ordering in Fig-

ure 1a is also desirable.

Due to the lack of a reliable failure detector [17], most

atomic multicast and consensus protocols use voting to guar-

antee that a quorum of receivers agree on the sequence of

messages to be delivered. The votes need to be broadcast

to and collected from all hosts, incurring significant com-

munication overhead for hundreds of thousands of hosts in

a data center. In addition, Paxos does not allow Byzantine

failure of hosts, which is insecure for a multi-tenant data

center service with potentially malicious hosts. Achieving

Byzantine fault tolerance [15, 47, 53] in an asynchronous

network is notably complicated and inefficient [65].

Fast Consensus with Improved Ordering. Recent years

witness a trend of co-designing consensus protocols with

data center network. The key idea is to provide FIFO and total

ordering in the network, going a step further than best-effort

ordering in Fast Paxos [45, 52, 66, 71]. Speculative Paxos [74]

and NOPaxos [57] use a switch as a centralized sequencer

or serialization point. NetPaxos [25, 26] and [24] implement

Paxos in switches. Eris [40] proposes in-network concur-

rency control using switch as a centralized sequencer, which

is a scalability bottleneck. To enable cross-shard packet loss

recovery, Eris multicasts all operations to all participant

shards, introducing network overhead. In addition, when all

hosts are correct, an Eris transaction may fail due to packet

loss, while subsequent transactions from the same client

may succeed, violating exactly once or FIFO property of

ROMS. Further, none of these works tolerate Byzantine host

failure. NetChain [41] is a strongly-consistent fault-tolerant

key-value store in switches, but the switch has very limited

storage capacity.

2.3 Use Cases
In this section, we discuss three use cases of ROMS. These

cases are used to illustrate how ROMS can help simplify dis-

tributed systems construction, and they are by no means the

only usage scenarios where ROMS can be useful.

Distributed Independent Transactions. We consider in-
dependent transactions or one-shot transactions [43], in which

the transaction involves multiple shards but the input of each

shard does not depend on output of other shards. For exam-

ple, YCSB+T workload for transactional key-value store [28]

and the two most frequent transactions in TPC-C benchmark

(New-Order and Payment) [23] are independent transactions.

General transactions can be divided into independent trans-

actions exactly as in Eris [40]. ROMS enables us to use active

replication [82] and implement each independent transac-

tion as a message scattering to involved shards and replicas.

Independent transactions can complete in a single round-trip,

close to a non-transactional, non-replicated system.

Serializable Log Replication. A canonical application of

ROMS is log replication [7, 12, 73]. In both strongly [21, 43, 56]

3



DownlinkUplink

Senders Receivers

Figure 2. Routing topology of a typical data center network.
Each physical switch is split into two logical switches, one for
uplink and one for downlink. The dashed virtual link between
corresponding uplink and downlink switch indicates “hairpin”
traffic from a lower-layer switch or host to another one.

and eventually [58, 59, 79] consistent systems, whenmultiple

replicas process write operations in parallel, the consistency

among replicas is a paramount challenge due to scalability

problem of log serialization [84].

ROMS ensures that each replica receives an identical se-

quence of write operations from all other replicas. If write

operations are blocked until receiving potentially conflicting

writes, i.e. insert a memory barrier after each write, the sys-

tem is sequentially consistent because each operation can

be serialized at its beginning time [61]. If write operations

are returned immediately while changes propagate, because

local read operations may occur during propagation, the

system is not sequentially consistent, but causality is pre-

served [79]. Further, applying the Thomas write rule [80]

on the timestamps of local and remote updates achieves

eventual consistency.

Total Store Ordering in DSM. Recent x86 processors pro-
vides a total store ordering (TSO) memory model [76] in

which each core observes a consistent ordering of writes

from all other cores, thus being causally and eventually con-

sistent. TSO reduces synchronization in concurrent program-

ming [67, 78]. Obviously, a distributed shared memory (DSM)

system built upon ROMS achieves TSO.

In addition, ROMS enables an efficient and scalable imple-

mentation of memory barrier. The caller blocks itself and

sends a null message to itself via ROMS with timestamp T .
Then it unblocks upon receiving the message at timeT ′. The
causality property of ROMS ensures that all messages sent

before T are received at T ′.

3 Background
3.1 Data Center Network
Modern data centers typically adopt multi-rooted tree

topologies [35, 55] to interconnect hundreds of thousands

of hosts. In a multi-rooted tree topology, the shortest path

between two hosts first goes up to one of the lowest com-

mon ancestor switches, then goes down to the destination.

Therefore, the routing topology form a directed acyclic graph

Switching chip

Ingress Queue Egress

vNIC

Switch CPU

Ctrl

Figure 3. Architecture of a typical network switch.

(DAG), as shown in Figure 2. This loop-free topology enables

hierarchical aggregation of barrier timestamps.

Apart from the production network, data centers have an

isolated management network that interconnects switches.

A logically centralized SDN controller [39] runs on the man-

agement network to detect failures of switches and links,

then reconfigure routing tables on failure [85]. The SDN

controller is replicated using Zookeeper [37].

Recent years saw progress in zero queue [20, 31, 72] and

lossless [14, 18, 36] data center networks, making packet loss

a rare case [74].

3.2 Programmable Switches
A switch is consisted of a switching chip [3, 4] and a

CPU (Figure 3). The switch operating system [2] runs on the

CPU to control the switching chip (e.g. configure chip regis-

ters). The switching chip forwards selected traffic (typically

control plane traffic, e.g., DHCP and BGP) to the CPU for

processing via a virtual NIC.

The switching chip is composed of an ingress pipeline,

multiple FIFO queues and an egress pipeline. When a packet

is received from an input link, it first goes through the ingress
pipeline to determine the output link and queueing prior-

ity, then get buffered into the corresponding FIFO queue.

The egress pipeline pulls packets from queues according

to priority, applies header modifications and sends them to

output links. One key property of the switch is that the queu-

ing model ensures FIFO property for packets with the same

ingress and egress port, if the packets have the same prior-

ity. In addition, packet corruption on input links and buffer

overflow inside switches can be detected, and a packet loss

counter is incremented per lost packet.

Data center switches can provide good programmability.

Often, the CPU can be used to process (a small amount of)

data plane packets [60]. Moreover, the switching chip is

becoming more and more reconfigurable in recent years. For

example, Tofino chip from Barefoot networks [3] supports

flexible packet parsers, reconfigurable pipelines and stateful

memory. Users can program Tofino using P4 [13] to achieve

customized per-packet processing.
Despite good programmability, the data center switch

typically has limited buffer memory. The average per-port

on-chip buffer is typically hundreds of kilobytes [6] in size.

As a result, it is challenging to buffer many packets at the

switches in a data center.

4



B := 
min(B1

,B2,B3)

B1

B2

B3

B

B

B

Figure 4. Illustration of barrier timestamp aggregation.

4 Reliable Ordering under No Failures
In this section, we introduce how ROMS achieves reliable

ordered message scattering in the absence of packet losses

and failures. We will introduce how ROMS achieves reliability

under packet losses and failures in Sec.5.

To achieve ordered message scattering in an efficient and

scalable manner, ROMS exploits the power of programmable

switches and separates control plane and data plane. ROMS

leverages every switch to aggregate order information and

attach this information into packets, thus forming a scalable
control plane. On the data plane, ROMS forwards messages

in the network as usual and reorders them at the receiver,

thus efficiently achieving ordered message delivery.

4.1 Message and Barrier Timestamp

Message timestamp. The ROMS sender
1
assigns a non-

decreasing timestamp for each message. A group of mes-

sages with an identical timestamp forms a scattering, while

different scattering are assigned with different timestamps.

Message timestamp determines the delivery order at the re-

ceiver. Notice that we distinguish receiving a message from

delivering a message. A message is received by a host and

held in a reordering buffer. It is delivered to the application

only when ROMS can be sure of the ordering and reliability

properties discussed in Sec.1 are satisfied. To achieve ordered

message scattering, the receivers should deliver arrival mes-

sages in the ascending order of their timestamps (ties are

broken through host ID).

Loss-free Barrier timestamp. When a receiver wants to

deliver a message with timestamp t , it must be sure that it has

received and delivered all the messages whose timestamps

are smaller than t . This is challenging since different network
paths have different propagation and queuing delays.

To address this issue, we introduce the concept of loss-
free barrier timestamp. For a link in the routing graph, its

barrier timestamp is the lower bound of message timestamps

of all possible future arrival messages from the link. We also

generalize the barrier timestamp notion to a node (i.e. a host

or a switch), which is just the minimum value of all the

barrier timestamps of its incoming links. A receiver should

maintain its barrier timestamp and only deliver the messages

whose timestamps are smaller than the barrier timestamp.

Due to the non-decreasing timestamp assignment, in a

FIFO network (such as by using TCP transport), a receiver

can easily figure out the loss-free barrier if it has received

messages from all the possible senders. The loss-free barrier

1
The sender/receiver is an application running on a host.

of the receiver is the minimum timestamp of the latest mes-

sages from each sender to the receiver. Therefore, a naïve

solution would be for every sender to send periodic beacons

to every receiver so that the receivers can figure out the

loss-free barrier and deliver messages. Unfortunately, such a

solution requires quadratic beacons, thus introducing high

bandwidth overhead in production data centers.

Hierarchical barrier timestamp aggregation. To scale

in production data centers, ROMS leverages programmable

switches to aggregate the loss-free barrier timestamp infor-

mation. Given the limited switch buffer resource, ROMS does

not buffer and reorder messages in the network. Instead,

ROMS forwards messages in the network as usual, but re-

orders them at the receiver side based on the loss-free barrier

provided by the switch.

In ROMS, we attach two timestamp fields to each message

packet. The first is message timestamp field, which is set by

the sender and will not be modified. The second field is loss-
free barrier timestamp, which is initialized by the sender but

will be modified by switches along the network path. The

property of the loss-free barrier field is:

When a switch or a host receives a packet with loss-free bar-
rier timestamp B from a network link L, this indicates that the
message timestamp and loss-free barrier timestamp of future
arrival packets from link L will be larger than B.

A sender initializes both fields of all packets in a message

with the non-decreasing wall clock timestamp. To derive loss-

free barrier timestamps, a switch maintains a register Ri for
each input link i ∈ I, where I is the set of all input links. After
forwarding a packet with barrier timestamp B from input

link i to output link o, the switch performs two updates. First,

it updates register Ri := B. Second, it modifies the barrier

timestamp of the packet to Bnew := min{Ri |i ∈ I}.
Each switch independently derives the loss-free barrier

timestamp based on its input links, as Figure 4 shows. Barrier

timestamps are aggregated hierarchically through layers of

switches hop-by-hop, and finally the receiver gets the barrier

of all reachable hosts and links in the network. This algo-

rithm maintains the property of barrier timestamps, given

the FIFO property of each network link and switch.

The receiver buffers received packets in a priority queue

that sorts packets based on the message timestamp. When a

receiver receives a packet with loss-free barrier B, it knows
that the message timestamp of all future arrival packets will

be larger than B. Hence, it delivers all buffered packets with

message timestamp below B for processing.

4.2 Beacons on Idle Links
As shown before, at each hop, the per-packet loss-free

barrier is updated to the minimum loss-free barrier value of

all possible input links. As a result, an idle link can keep the

per-packet loss-free barrier stalled, thus throttling the whole

system. To avoid idle links, we send beacons periodically on

every link.

5


