
Homework	4 	

T1 	

adapted from P177 5.1

List five addressing modes. Given instructions ADD, JMP, LEA,LDR and NOT, identify whether the
instructions are operate instructions, data movement instructions, or control instructions. For each
instruction, list the addressing modes that can be used with the instruction.

T2 	

P177 5.4

Say we have a memory consisting of 256 locations, and each location contains 16 bits.
a. How many bits are required for the address?

b. If we use the PC-relative addressing mode, and want to allow control transfer between instructions 20
locations away, how many bits of a branch instruction are needed to specify the PC-relative offset?

c. If a control instruction is in location 3, what is the PC-relative offset of address 10? Assume that the
control transfer instructions work the same way as in the LC-3.

T3 	

P178 5.6

Recall the machine busy example from Section 2.6.7. Assuming the BUSYNESS bit vector is stored in R2,
we can use the LC-3 instruction 0101 011 010 1 00001 (AND R3, R2, #1) to determine whether machine
0is busy or not. If the result of this instruction is 0, then machine 0 is busy.
a. Write an LC-3 instruction that determines whether machine 2 is busy.

b. Write an LC-3 instruction that determines whether both machines 2 and 3 are busy.

c. Write an LC-3 instruction that indicates none of the machines are busy.

d. Can you write an LC-3 instruction that determines whether machine 6 is busy? Is there a problem here?

af://n0
af://n3
af://n30
af://n34

T4 	

P178 5.9

We would like to have an instruction that does nothing. Many ISAs actually have an opcode devoted to
doing nothing. It is usually called NOP, for NO OPERATION. The instruction is fetched, decoded, and
executed. The execution phase is to do nothing! Which of the following three instructions could be used
for NOP and have the program still work correctly?
a. 0001 001 001 1 00000
b. 0000 111 000000001
c. 0000 000 000000000
What does the ADD instruction do that the others do not do?

T5 	

P179 5.13

a. How might one use a single LC-3 instruction to move the value in R2 into R3?
b. The LC-3 has no subtract instruction. How could one perform the following operation using only three
LC-3 instructions:
R1 ← R2 − R3
c. Using only one LC-3 instruction and without changing the contents of any register, how might one set
the condition codes based on the value that resides in R1?
d. Is there a sequence of LC-3 instructions that will cause the condition codes at the end of the sequence to
be N = 1, Z = 1, and P = 0? Explain.
e. Write an LC-3 instruction that clears the contents of R2.

T6 	

adapted from P179 5.14

The LC-3 does not have an opcode for the logical function XOR. That is, there is no instruction in the LC-3
ISA that performs the XOR operation. However, we can write a sequence of instructions to implement the
XOR operation. Assume	that	the	reserved	instruction	1101	is		OR	instruction，its	addressing	mode	
is	the	same	as	AND.

af://n79
af://n240
af://n239

Address Data

0011 0001 0000 0000 1110 001 000100000

0011 0001 0000 0001 0010 010 000100000

0011 0001 0000 0010 1010 011 000100000

0011 0001 0000 0011 0110 100 010 000001

0011 0001 0000 0100 1111 0000 0010 0101

： ：

0011 0001 0010 0010 0100 0101 0110 0110

0011 0001 0010 0011 0100 0101 0110 0111

： ：

0100 0101 0110 0111 1010 1011 1100 1101

0100 0101 0110 1000 1111 1110 1101 0011

The following five-instruction sequence performs the XOR of the contents of register 1 and register 2 and
puts the result in register 3.
Fill in the two missing instructions so that the five-instruction sequence will do the job.
(1): 1001 100 001 111111

(2):

(3):1001 101 010 111111

(4):

(5):1101 011 100 000 101

T7 	

P179 5.15

State the contents of R1, R2, R3, and R4 after the program starting at location x3100 halts.

af://n124

T8 	

adapted from P180 5.17

How many times does the LC-3 make a read or write request to memory during the processing of the LD
instruction?

How many times during the processing of the LDI instruction? How many times during the processing of
the LEA instruction?

Also indicate what phases the instructions don't need. Processing includes all phases of the instruction
cycle.

T9 	

P181 5.23

Suppose the following LC-3 program is loaded into memory starting at location x30FF:
x30FF 1110 0010 0000 0001
x3100 0110 0100 0100 0010
x3101 1111 0000 0010 0101
x3102 0001 0100 0100 0001
x3103 0001 0100 1000 0010
If the program is executed, what is the value in R2 at the end of execution?

T10 	

P183 5.33

If the value stored in R0 is 5 at the end of the execution of the followinginstructions, what can be inferred
about R5?
x2FFF 0101 0000 0010 0000
x3000 0101 1111 1110 0000
x3001 0001 1101 1110 0001
x3002 0101 1001 0100 0110
x3003 0000 0100 0000 0001
x3004 0001 0000 0010 0001
x3005 0001 1101 1000 0110
x3006 0001 1111 1110 0001
x3007 0001 0011 1111 1000
x3008 0000 1001 1111 1001
x3009 0101 1111 1110 0000

af://n123
af://n228
af://n280

T11 	

P185 5.42

The LC-3 macho-company has decided to use opcode 1101 to implement a new instruction. They need
your help to pick the most useful one from the following:

a. MOVE Ri, Rj; The contents of Rj are copied into Ri.
b. NAND Ri, Rj, Rk; Ri is the bit-wise NAND of Rj, Rk
c. SHFL Ri, Rj, #2; The contents of Rj are shifted left 2 bits and stored into Ri.
d. MUL Ri, Rj, Rk; Ri is the product of 2’s complement integers in Rj, Rk.
Justify your answer.

T12 	

P187 5.47

The following diagram describes a 22 by 16-bit memory. Each of the four muxes has four-bit input sources
and a four-bit output, and each four-bit source is the output of a single four-bit memory cell.

af://n318
af://n319

a. Unfortunately, the memory was wired by a student, and he got the inputs to some of the muxes mixed
up. That is, instead of the four bits from a memory cell going to the correct four-bit input of the mux, the
four bits all went to one of the other four-bit sources of that mux. The result was, as you can imagine, a
mess. To figure out the mix-up in the wiring, the following sequence of memory accesses was performed:

Note: On a write, MDR is loaded before the access. On a read, MDR is loaded as a result of the access. Your
job is to identify the mix-up in the wiring. Show which memory cells were wired to which mux inputs by
filling in their corresponding addresses in the blanks provided. Note that one address has already been
supplied for you.

b. After rewiring the muxes correctly and initializing all memory cells to xF, the following sequence of
accesses was performed. Note that some of the information about each access has been left out. Your job:
Fill in the blanks.

Show the contents of the memory cells by putting the hex digit that is stored in each after all the accesses
have been performed.

	Homework 4
	T1
	T2
	T3
	T4
	T5
	T6
	T7
	T8
	T9
	T10
	T11
	T12

