Jonathan Katz and Yehuda Lindell

Introduction to Modern
Cryptography

(©2007 Jonathan Katz and Yehuda Lindell. All Rights Reserved

CRC PRESS
Boca Raton London New York Washington, D.C.

Preface

This book presents the basic paradigms and principles of modern cryptogra-
phy. It is designed to serve as a textbook for undergraduate- or graduate-level
courses in cryptography (in computer science or mathematics departments),
as a general introduction suitable for self-study (especially for beginning grad-
uate students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the
reader may rightly ask whether another book on the subject is needed. We
would not have written this book if the answer to that question were anything
other than an unequivocal yes. The novelty of this book — and what, in our
opinion, distinguishes it from all other books currently on the market — is
that it provides a rigorous treatment of modern cryptography in an accessible
manner appropriate for an introduction to the topic. To be sure, the material
in this book is difficult (at least in comparison to some other books in this
area). Rather than shy away from this difficulty, however, we have chosen to
face it head-on, to lead the reader through the demanding (yet enthralling!)
subject matter rather than shield the reader’s eyes from it. We hope readers
(and instructors) will respond by taking up the challenge.

As mentioned, our focus is on modern (post-1980s) cryptography, which
is distinguished from classical cryptography by its emphasis on definitions,
precise assumptions, and rigorous proofs of security. We briefly discuss each
of these in turn (these principles are explored in greater detail in Chapter 1):

e The central role of definitions: A key intellectual contribution of
modern cryptography has been the recognition that formal definitions
of security are an essential first step in the design of any cryptographic
primitive or protocol. The reason, in retrospect, is simple: if you don’t
know what it is you are trying to achieve, how can you hope to know
when you have achieved it? As we will see in this book, cryptographic
definitions of security are quite strong and — at first glance — may
appear impossible to achieve. One of the most amazing aspects of cryp-
tography is that (under mild and widely-believed assumptions) efficient
constructions satisfying such strong definitions can be proven to exist.

e The importance of formal and precise assumptions: As will
be explained in Chapter 2, many cryptographic constructions cannot
currently be proven secure in an unconditional sense. Security often
relies, instead, on some widely-believed (albeit unproven) assumption.
The modern cryptographic approach dictates that any such assumptions

iii

iv

must be clearly and unambiguously defined. This not only allows for ob-
jective evaluation of the assumption, but, more importantly, enables
rigorous proofs of security as described next.

e The possibility of rigorous proofs of security: The previous two
ideas lead naturally to the current one, which is the realization that cryp-
tographic constructions can be proven secure with respect to a given def-
inition of security and relative to a well-defined cryptographic assump-
tion. This is the essence of modern cryptography, and was responsible
for the transformation of cryptography from an art to a science.

The importance of this idea cannot be over-emphasized. Historically,
cryptographic schemes were designed in a largely ad-hoc fashion, and
were deemed to be secure if the designers themselves could not find
any attacks. In contrast, modern cryptography promotes the design
of schemes with formal, mathematical proofs of security in well-defined
models. Such schemes are guaranteed to be secure unless the underly-
ing assumption is false (or the security definition did not appropriately
model the real-world security concerns). By relying on long-standing
assumptions (e.g., the assumption that “factoring is hard”), it is thus
possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above contributions of modern cryptography are
felt not only within the “theory of cryptography” community. The importance
of precise definitions is, by now, widely understood and appreciated by those
in the security community (as well as those who use cryptographic tools to
build secure systems), and rigorous proofs of security have become one of
the requirements for cryptographic schemes to be standardized. As such, we
do not separate “applied cryptography” from “provable security”; rather, we
present practical and widely-used constructions along with precise statements
(and, most of the time, a proof) of what definition of security is achieved.

Guide to Using this Book

This guide is intended primarily for instructors seeking to adopt this book
for their course, though the student picking up this book on his or her own
may also find it useful.

Required background. This book uses definitions, proofs, and mathemat-
ical concepts, and therefore requires some mathematical maturity. In par-
ticular, the reader is assumed to have had some exposure to proofs at the
college level, say in an upper-level mathematics course or a course on discrete
mathematics, algorithms, or computability theory. Having said this, we have
made a significant effort to simplify the presentation and make it generally
accessible. It is our belief that this book is not more difficult than analogous
textbooks that are less rigorous. On the contrary, we believe that (to take one

v

example) once security goals are clearly formulated, it often becomes easier
to understand the design choices made in a particular construction.

We have structured the book so that the only formal prerequisites are a
course in algorithms and a course in discrete mathematics. Even here we rely
on very little material: specifically, we assume some familiarity with basic
probability and big-O notation, modular arithmetic, and the idea of equating
efficient algorithms with those running in polynomial time. These concepts
are reviewed in Appendix A and/or when first used in the book.

Suggestions for course organization. The core material of this book,
which we strongly recommend should be covered in any introductory course
on cryptography, consists of the following (starred sections are excluded in
what follows; see further discussion regarding starred material below):

e Chapters 1-4 (through Section 4.6), discussing classical cryptography,
modern cryptography, and the basics of private-key cryptography (both
private-key encryption and message authentication).

e Chapter 7, introducing concrete mathematical problems believed to be
“hard”, providing the number-theoretic background needed to under-
stand RSA, Diffie-Hellman, and El Gamal, and giving a flavor of how
number-theoretic assumptions are used in cryptography.

e Chapters 9 and 10, motivating the public-key setting and discussing
public-key encryption (including RSA-based schemes and El Gamal).

e Chapter 12, describing digital signature schemes.

e Sections 13.1 and 13.3, introducing the random oracle model and the
RSA-FDH signature scheme.

We believe that this core material — possibly omitting some of the more
in-depth discussion and some proofs — can be covered in a 30-35-hour under-
graduate course. Instructors with more time available could proceed at a more
leisurely pace, e.g., giving details of all proofs and going more slowly when
introducing the underlying group theory and number-theoretic background.
Alternately, additional topics could be incorporated as discussed next.
Those wishing to cover additional material, in either a longer course or a
faster-paced graduate course, will find that the book has been structured to
allow flexible incorporation of other topics as time permits (and depending on
the instructor’s interests). Specifically, some of the chapters and sections are
starred (*). These sections are not less important in any way, but arguably
do not constitute “core material” for an introductory course in cryptography.
As made evident by the course outline just given (which does not include any
starred material), starred chapters and sections may be skipped — or covered
at any point subsequent to their appearance in the book — without affecting
the flow of the course. In particular, we have taken care to ensure that none of

vi

the later un-starred material depends on any starred material. For the most
part, the starred chapters also do not depend on each other (and in the rare
cases when they do, this dependence is explicitly noted).

We suggest the following from among the starred topics for those wishing
to give their course a particular flavor:

e Theory: A more theoretically-inclined course could include material
from Sections 4.8 and 4.9 (dealing with stronger notions of security for
private-key encryption); Chapter 6 (introducing one-way functions and
hard-core bits, and constructing pseudorandom generators and pseu-
dorandom functions/permutations starting from any one-way permuta-
tion); Section 10.7 (constructing public-key encryption from trapdoor
permutations); Chapter 11 (describing the Goldwasser-Micali, Rabin,
and Paillier encryption schemes); and Section 12.6 (showing a signature
scheme that does not rely on random oracles).

e Applications: An instructor wanting to emphasize practical aspects
of cryptography is highly encouraged to cover Section 4.7 (describing
HMAC); Chapter 5 (discussing modern block ciphers and techniques
used in their design); and all of Chapter 13 (giving cryptographic con-
structions in the random oracle model).

o Mathematics: A course directed at students with a strong mathematics
background — or taught by someone who enjoys this aspect of cryp-
tography — could incorporate material from Chapter 5 (see above) as
well as Section 7.3.4 (elliptic-curve groups); Chapter 8 (algorithms for
factoring and computing discrete logarithms); and Chapter 11 (describ-
ing the Goldwasser-Micali, Rabin, and Paillier encryption schemes along
with all the necessary number-theoretic background).

Comments and Errata

Our goal in writing this book was to make modern cryptography accessible
to a wide audience outside the “theoretical computer science” community. We
hope you will let us know whether we have succeeded. In particular, we are
always more than happy to receive feedback on this book, especially construc-
tive comments telling us how the book can be improved. We hope there are
no errors or typos in the book; if you do find any, however, we would greatly
appreciate it if you let us know. (A list of known errata will be maintained
at http://www.cs.umd.edu/"jkatz/imc.html.) You can email your com-
ments and errata to jkatz@cs.umd.edu and lindell@cs.biu.ac.il; please
put “Introduction to Modern Cryptography” in the subject line.

vii
Acknowledgements

Jonathan Katz is deeply indebted to Zvi Galil, Moti Yung, and Rafail Os-
trovsky for their help, guidance, and support throughout his career. This book
would never have come to be without their contributions to his development,
and he thanks them for that. He would also like to thank his colleagues with
whom he has had numerous discussions on the “right” approach to writing a
cryptography textbook, and in particular Victor Shoup.

Yehuda Lindell wishes to first and foremost thank Oded Goldreich and Moni
Naor for introducing him to the world of cryptography. Their influence is felt
until today and will undoubtedly continue to be felt in the future. There are
many, many other people who have also had considerable influence over the
years and instead of mentioning them all, he will just say thank you — you
know who you are.

Both authors would like to extend their gratitude to those who read and
commented on earlier drafts of this book. We thank Salil Vadhan and Alon
Rosen who experimented with this text in an introductory course on cryp-
tography at Harvard and provided us with valuable feedback. We also thank
all of the following for their many comments and corrections: Adam Bender,
Yair Dombb, William Glenn, S. Dov Gordon, Carmit Hazay, Avivit Levy,
Matthew Mah, Jason Rogers, Rui Xue, Dicky Yan, and Hila Zarosim. We are
very grateful to all those who encouraged us to write this book and concurred
with our feeling that a book of this nature is badly needed.

Finally, we thank our (respective) wives and children for all their support
and understanding during the many hours, days, and months that we have
spent on this project.

Contents

Preface

I Introduction and Classical Cryptography

1 Introduction and Classical Ciphers

1.1
1.2
1.3
1.4

Cryptography and Modern Cryptography
The Setting of Private-Key Encryption
Historical Ciphers and Their Cryptanalysis
The Basic Principles of Modern Cryptography . . .
1.4.1 Principle 1 — Formulation of Exact Definitions
1.4.2 Principle 2 — Reliance on Precise Assumptions
1.4.3 Principle 3 — Rigorous Proofs of Security . .

References and Additional Reading
Exercises Lo

2 Perfectly-Secret Encryption

2.1
2.2
2.3
24
2.5

Definitions and Basic Properties
The One-Time Pad (Vernam’s Cipher)
Limitations of Perfect Secrecy
* Shannon’s Theorem
Summary

References and Additional Reading
Exercises L o o

IT Private-Key (Symmetric) Cryptography

3 Private-Key Encryption and Pseudorandomness

3.1

3.2

3.3
3.4

A Computational Approach to Cryptography
3.1.1 The Basic Idea of Computational Security . .
3.1.2 Efficient Algorithms and Negligible Success .
3.1.3 Proofs by Reduction
A Definition of Computationally-Secure Encryption

3.2.1 A Definition of Security for Encryption . . .
3.2.2 * Properties of the Definition
Pseudorandomness L oL
Constructing Secure Encryption Schemes
3.4.1 A Secure Fixed-Length Encryption Scheme .

iii

[t

29
29
34
37
38
40
41
41

45

47
47
48
54
o8
59
60
64
68
72
72

3.4.2 Handling Variable-Length Messages 75

3.4.3 Stream Ciphers and Multiple Encryptions 76

3.5 Security under Chosen-Plaintext Attacks (CPA) 81

3.6 Constructing CPA-Secure Encryption Schemes 85

3.6.1 Pseudorandom Functions 85
3.6.2 CPA-Secure Encryption Schemes from Pseudorandom

Functions L. 88

3.6.3 Pseudorandom Permutations and Block Ciphers . . . 93

3.6.4 Modes of Operation 95

3.7 Security Against Chosen-Ciphertext Attacks (CCA) 100

References and Additional Reading 102

Exercises L 103

Message Authentication Codes and Collision-Resistant Hash

Functions 107
4.1 Secure Communication and Message Integrity 107
4.2 Encryption and Message Authentication 108
4.3 Message Authentication Codes — Definitions 109
4.4 Constructing Secure Message Authentication Codes 113
4.5 CBC-MAC 119
4.6 Collision-Resistant Hash Functions 121
4.6.1 Defining Collision Resistance 122
4.6.2 Weaker Notions of Security for Hash Functions 124
4.6.3 A Generic “Birthday” Attack 125
4.6.4 The Merkle-Damgard Transform 127
4.6.5 Collision-Resistant Hash Functions in Practice 129
4.7 * NMAC and HMAC 132
4.7.1 Nested MAC (NMAC) 132
4.72 HMAC 135
4.8 * Achieving Chosen-Ciphertext Secure Encryption 137
4.9 * Obtaining Privacy and Message Authentication 141
References and Additional Reading 147
Exercises 148
Pseudorandom Objects in Practice: Block Ciphers 151
5.1 Substitution-Permutation Networks 154
5.2 Feistel Networks 160
5.3 DES — The Data Encryption Standard 162
5.3.1 The Designof DES 162
5.3.2 Attacks on Reduced-Round Variants of DES 165
5.3.3 The Security of DES 168
5.4 Increasing the Key Size for Block Ciphers 170
5.5 AES — The Advanced Encryption Standard 173
5.6 Differential and Linear Cryptanalysis — A Brief Look 176

5.7 Stream Ciphers from Block Ciphers 177

Additional Reading and References 178

Exercises 179
6 * Theoretical Constructions of Pseudorandom Objects 181
6.1 One Way Functions 182
6.1.1 Definitions 182
6.1.2 Candidates 185
6.1.3 Hard-Core Predicates 186
6.2 Overview of Constructions 188
6.3 Hard-Core Predicates from Every One-Way Function 190
6.3.1 The Most Simplistic Case 190
6.3.2 A More Involved Case 191
6.3.3 The Full Proof 194
6.4 Constructions of Pseudorandom Generators 201
6.4.1 Pseudorandom Generators with Minimal Expansion . 201
6.4.2 Increasing the Expansion Factor 203
6.5 Constructions of Pseudorandom Functions 208
6.6 Constructions of Pseudorandom Permutations 212
6.7 Private-Key Cryptography — Necessary and Sufficient Assump-
tlons 214
6.8 A Digression — Computational Indistinguishability 220
6.8.1 Pseudorandomness and Pseudorandom Generators . . 221
6.8.2 Multiple Samples oL 222
References and Additional Reading 225
Exercises 226
IIT Public-Key (Asymmetric) Cryptography 229
7 Number Theory and Cryptographic Hardness Assumptions 231
7.1 Preliminaries and Basic Group Theory 233
7.1.1 Primes and Divisibility 233
7.1.2 Modular Arithmetic 235
7.1.3 Groups 237
7.1.4 The Group Z} and the Chinese Remainder Theorem . 241
7.1.5 Using the Chinese Remainder Theorem 245
7.2 Primes, Factoring, and RSA 248
7.2.1 Generating Random Primes 249
7.2.2 * Primality Testing 252
7.2.3 The Factoring Assumption 257
7.2.4 The RSA Assumption 258
7.3 Assumptions in Cyclic Groups 260
7.3.1 Cyclic Groups and Generators 260
7.3.2 The Discrete Logarithm and Diffie-Hellman Assump-
tlons 263

7.3.3 Working in (Subgroups of) Z5 267

7.3.4 * Elliptic Curve Groups
7.4 Applications of Number-Theoretic Assumptions in Cryptogra-
phy .
7.4.1 One-Way Functions and Permutations
7.4.2 Constructing Collision-Resistant Hash Functions . . .
References and Additional Reading
Exercises

8 * Factoring and Computing Discrete Logarithms
8.1 Algorithms for Factoring
8.1.1 Pollard’sp—1Method.
8.1.2 Pollard’s Rho Method
8.1.3 The Quadratic Sieve Algorithm
8.2 Algorithms for Computing Discrete Logarithms
8.2.1 The Baby-Step/Giant-Step Algorithm
8.2.2 The Pohlig-Hellman Algorithm
8.2.3 The Discrete Logarithm Problem in Zyx
8.2.4 The Index Calculus Method
References and Additional Reading
Exercises

9 Private-Key Management and the Public-Key Revolution
9.1 Limitations of Private-Key Cryptography
9.1.1 The Key-Management Problem

9.1.2 A Partial Solution — Key Distribution Centers
9.2 The Public-Key Revolution
9.3 Diffie-Hellman Key Exchange
References and Additional Reading
Exercises

10 Public-Key Encryption
10.1 Public-Key Encryption — An Overview
10.2 Definitions Lo
10.2.1 Security against Chosen-Plaintext Attacks
10.2.2 Security for Multiple Encryptions
10.3 Hybrid Encryption oL
10.4 RSA Encryptiono
10.4.1 “Textbook RSA” and its Insecurity
10.4.2 Attackson RSA
10.4.3 Padded RSA oo
10.5 The El Gamal Encryption Scheme
10.6 Chosen-Ciphertext Attacks
10.7 * Trapdoor Permutations and Public-Key Encryption
10.7.1 Trapdoor Permutations
10.7.2 Public-Key Encryption from Trapdoor Permutations .

301

References and Additional Reading
Exercises

11 * Additional Public-Key Encryption Schemes
11.1 The Goldwasser-Micali Encryption Scheme
11.1.1 Quadratic Residues Modulo a Prime
11.1.2 Quadratic Residues Modulo a Composite
11.1.3 The Quadratic Residuosity Assumption
11.1.4 The Goldwasser-Micali Encryption Scheme
11.2 The Rabin Encryption Scheme
11.2.1 Computing Modular Square Roots
11.2.2 A Trapdoor Permutation based on Factoring
11.2.3 The Rabin Encryption Scheme
11.3 The Paillier Encryption Scheme
11.3.1 The Structure of Z3>
11.3.2 The Paillier Encryption Scheme
11.3.3 Homomorphic Encryption
References and Additional Reading
Exercises

12 Digital Signature Schemes

12.1 Digital Signatures — An Overview
12.2 Definitions Lo
12.3 RSA Signatures oL

12.3.1 “Textbook RSA” and its Insecurity

12.3.2 Hashed RSA
12.4 The “Hash-and-Sign” Paradigm
12.5 Lamport’s One-Time Signature Scheme
12.6 * Signatures from Collision-Resistant Hashing

12.6.1 “Chain-Based” Signatures

12.6.2 “Tree-Based” Signatures
12.7 Certificates and Public-Key Infrastructures
References and Additional Reading
Exercises L

13 Public-Key Cryptosystems in the Random Oracle Model
13.1 The Random Oracle Methodology
13.1.1 The Random Oracle Model in Detail

13.2 Public-Key Encryption in the Random Oracle Model .
13.2.1 Security against Chosen-Plaintext Attacks
13.2.2 Security Against Chosen-Ciphertext Attacks
13.2.3 OAEP

13.3 RSA Signatures in the Random Oracle Model

References and Additional Reading

Exercises 457

Common Notation 459
References 463
A Mathematical Background 473
A.1 Identities and Inequalities 473
A.2 Asymptotic Notation, 473
A.3 Basic Probability o oo 474
A.4 The “Birthday” Problem 476

B Supplementary Algorithmic Number Theory 479
B.1 Integer Arithmetic 481
B.1.1 Basic Operations 481

B.1.2 The Euclidean and Extended Euclidean Algorithms . 482

B.2 Modular Arithmetic 484
B.2.1 Basic Operations 484

B.2.2 Computing Modular Inverses 485

B.2.3 Modular Exponentiation 485

B.2.4 Choosing a Random Group Element 487

B.3 * Finding a Generator of a Cyclic Group 492
B.3.1 Group-Theoretic Background 492

B.3.2 Efficient Algorithms 494
References and Additional Reading 495

Exerciseso 495

Part 1

Introduction and Classical
Cryptography

Chapter 1

Introduction and Classical Ciphers

1.1 Cryptography and Modern Cryptography

The Concise Oxford Dictionary (2006) defines cryptography as the art of
writing or solving codes. This definition may be historically accurate, but it
does not capture the essence of modern cryptography. First, it focuses solely
on the problem of secret communication. This is evidenced by the fact that
the definition specifies “codes”, elsewhere defined as “a system of pre-arranged
signals, especially used to ensure secrecy in transmitting messages”. Second,
the definition refers to cryptography as an art form. Indeed, until the 20th
century (and arguably until late in that century), cryptography was an art.
Constructing good codes, or breaking existing ones, relied on creativity and
personal skill. There was very little theory that could be relied upon and
there was not even a well-defined notion of what constitutes a good code.

In the late 20th century, this picture of cryptography radically changed. A
rich theory emerged, enabling the rigorous study of cryptography as a science.
Furthermore, the field of cryptography now encompasses much more than
secret communication, including message authentication, digital signatures,
protocols for exchanging secret keys, authentication protocols, electronic auc-
tions and elections, and digital cash. In fact, modern cryptography can be said
to be concerned with problems that may arise in any distributed computation
that may come under internal or external attack. Without attempting to pro-
vide a perfect definition of modern cryptography, we would say that it is the
scientific study of techniques for securing digital information, transactions,
and distributed computations.

Another very important difference between classical cryptography (say, be-
fore the 1980s) and modern cryptography relates to who uses it. Historically,
the major consumers of cryptography were military and intelligence organi-
zations. Today, however, cryptography is everywhere! Security mechanisms
that rely on cryptography are an integral part of almost any computer sys-
tem. Users (often unknowingly) rely on cryptography every time they access
a secured website. Cryptographic methods are used to enforce access control
in multi-user operating systems, and to prevent thieves from extracting trade
secrets from stolen laptops. Software protection methods employ encryption,
authentication, and other tools to prevent copying. The list goes on and on.

4 Introduction to Modern Cryptography

In short, cryptography has gone from an art form that dealt with secret
communication for the military to a science that helps to secure systems for
ordinary people all across the globe. This also means that cryptography is
becoming a more and more central topic within computer science.

The focus of this book is modern cryptography. Yet we will begin our
study by examining the state of cryptography before the changes mentioned
above. Besides allowing us to ease in to the material, it will also provide an
understanding of where cryptography has come from so that we can later see
how much it has changed. The study of ”classical cryptography” — replete
with ad-hoc constructions of codes, and relatively simple ways to break them
— serves as good motivation for the more rigorous approach we will be taking
in the rest of the book.!

1.2 The Setting of Private-Key Encryption

As noted above, cryptography was historically concerned with secret com-
munication. Specifically, cryptography was concerned with the construction
of ciphers (now called encryption schemes) for providing secret communica-
tion between two parties sharing some information in advance. The setting in
which the communicating parties share some secret information in advance is
now known as the private-key (or the symmetric-key) setting. Before describ-
ing some historical ciphers, we discuss the private-key setting and encryption
in more general terms.

In the private-key setting, two parties share some secret information called
a key, and use this key when they wish to communicate secretly with each
other. A party sending a message uses the key to encrypt (or “scramble”)
the message before it is sent, and the receiver uses the same key to decrypt
(or “unscramble”) and recover the message upon receipt. The message itself
is often called the plaintert, and the “scrambled” information that is actually
transmitted from the sender to the receiver is called the ciphertext; see Fig-
ure 1.1. The shared key serves to distinguish the communicating parties from
any other parties who may be eavesdropping on their communication (which
is assumed to take place over a public channel).

We stress that in this setting, the same key is used to convert the plaintext
into a ciphertext and back. This explains why this setting is also known as the
symmetric-key setting, where the symmetry lies in the fact that both parties
hold the same key which is used for both encryption and decryption. This is

1Indeed, this is our primary intent in presenting this material, and, as such, this chapter
should not be taken as a representative historical account. The reader interested in the
history of cryptography should consult the references at the end of this chapter.

Introduction and Classical Ciphers 5

&S ed

‘o

FIGURE 1.1: The basic setting of private-key encryption

in contrast to the setting of asymmetric encryption (introduced in Chapter 9),
where the sender and receiver do not share any secrets and different keys are
used for encryption and decryption. The private-key setting is the classic one,
as we will see later in this chapter.

An implicit assumption in any system using private-key encryption is that
the communicating parties have some way of initially sharing a key in a secret
manner. (Note that if one party simply sends the key to the other over the
public channel, an eavesdropper obtains the key too!) In military settings, this
is not a severe problem because communicating parties are able to physically
meet in a secure location in order to agree upon a key. In many modern
settings, however, parties cannot arrange any such physical meeting. As we
will see in Chapter 9, this is a source of great concern and actually limits the
applicability of cryptographic systems that rely solely on private-key methods.
Despite this, there are still many settings where private-key methods suffice
and are in wide use; one example is disk encryption, where the same user (at
different points in time) uses a fixed secret key to both write to and read from
the disk. As we will explore further in Chapter 10, private-key encryption is
also widely used in conjunction with asymmetric methods.

The syntax of encryption. We now make the above discussion a bit more
formal. A private-key encryption scheme, or cipher, is comprised of three
algorithms: the first is a procedure for generating keys, the second a procedure
for encrypting, and the third a procedure for decrypting. These algorithms
have the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that out-
puts a key k chosen according to some distribution that is determined
by the scheme.

2. The encryption algorithm Enc takes as input a key k and a plaintext m
and outputs a ciphertext c. We denote the encryption of the plaintext
m using the key k by Encg(m).

6 Introduction to Modern Cryptography

3. The decryption algorithm Dec takes as input a key k and a ciphertext c
and outputs a plaintext m. We denote the decryption of the ciphertext
c using the key k by Decg(c).

The procedure for generating keys defines a key space K (i.e., the set of all
possible keys), and the encryption scheme is defined over some set of possible
plaintext messages denoted M and called the plaintext (or message) space.
Since any ciphertext is obtained by encrypting some plaintext under some key,
K and M define a set of all possible ciphertexts that we denote by C. Note
that an encryption scheme is fully defined by specifying the three algorithms
(Gen, Enc, Dec) and the plaintext space M.

The basic correctness requirement of any encryption scheme is that for every
key k output by Gen and every plaintext message m € M, it holds that

Decy (Enci(m)) = m.

In words, an encryption scheme must have the property that decrypting a
ciphertext (with the appropriate key) yields the original message that was
encrypted.

Recapping our earlier discussion, an encryption scheme would be used by
two parties who wish to communicate as follows. First, Gen is run to obtain a
key k that the parties share. When one party wants to send a plaintext m to
the other, he would compute ¢ := Enci(m) and send the resulting ciphertext ¢
over the public channel to the other party. Upon receiving c, the other party
computes m := Decg(c) to recover the original plaintext.

Keys and Kerckhoffs’ principle. As is clear from the above formulation,
if an eavesdropping adversary knows the algorithm Dec as well as the key k
shared by the two communicating parties, then that adversary will be able to
decrypt all communication between these parties. It is for this reason that the
communicating parties must share the key k secretly, and keep k completely
secret from everyone else. But maybe they should keep Dec a secret, too? For
that matter, perhaps all the algorithms constituting the encryption scheme
(i.e., Gen and Enc as well) should be kept secret? (Note that the plaintext
space M is typically assumed to be known, e.g., it may consist of English-
language sentences.)

In the late 19th century, Auguste Kerckhoffs gave his opinion on this matter
in a paper he published outlining important design principles for military
ciphers. One of the most important of these principles (known now simply as
Kerckhoffs’ principle) was the following:

The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.

In other words, the encryption scheme itself should not be kept secret, and
so only the key should constitute the secret information shared by the com-
municating parties.

Introduction and Classical Ciphers 7

Kerckhofls’ intention was that an encryption scheme should be designed so
as to be secure even if an adversary knows the details of all the component
algorithms of the scheme, as long as the adversary doesn’t know the key
being used. Stated differently, Kerckhoffs’ principle demands that security
rely solely on the secrecy of the key. But why?

There are two primary arguments in favor of Kerckhoffs principle. The first
is that it is much easier for the parties to maintain secrecy of a short key
than to maintain secrecy of an algorithm. It is easier to share aa short (say,
100-bit) string and store this string securely than it is to share and securely
store a program that is thousands of times larger. Furthermore, details of an
algorithm can be leaked (perhaps by an insider) or learned through reverse
engineering; this is unlikely when the secret information takes the form of a
randomly-generated string.

A second argument is that in case the key is exposed, it is much easier for
the honest parties to change the key than to replace the algorithm being used.
Actually, it is good security practice to refresh a key frequently even when it
has not been exposed, and it would be much more cumbersome to replace the
software being used instead. Finally, in case many pairs of people (within a
company, say) need to encrypt their communication, it will be significantly
easier for all parties to use the same algorithm, but different keys, than for
everyone to use a different program (which would furthermore depend on the
party with whom they are communicating).

Today, Kerckhoffs’ principle is understood as not only advocating that se-
curity should not rely on secrecy of the algorithms being used, but also de-
manding that these algorithm be made public. This stands in stark contrast
with the notion of “security by obscurity” which is the idea that higher secu-
rity can be achieved by keeping a cryptographic algorithm obscure (or hidden)
from public view. Some of the advantages of “open cryptographic design”,
where the algorithm specifications are made public, include:

1. Published designs undergo public scrutiny and are therefore likely to
be stronger. Many years of experience have demonstrated that it is
very difficult to construct good cryptographic schemes. Therefore, our
confidence in the security of a scheme is much higher after it has been
extensively studied and has withstood many attack attempts.

2. It is better that security flaws are revealed by “ethical hackers” and
made public, than having the flaws be known only to malicious parties.

3. If the security of the system relies on the secrecy of the algorithm, then
reverse engineering of the code (or leakage by industrial espionage) poses
a serious threat to security. This is in contrast to the secret key which
is not part of the code, and so is not vulnerable to reverse engineering.

4. Public design enables the establishment of standards.

8 Introduction to Modern Cryptography

As simple and obvious as it may sound, the principle of open cryptographic de-
sign (i.e., Kerckhoffs’ principle) is ignored over and over again, with disastrous
effects. We stress that it is very dangerous to use a proprietary algorithm (i.e.,
a non-standardized algorithm that was designed in secret by some company),
and only publicly tried and tested algorithms should be used. Fortunately,
there are enough good algorithms that are standardized and not patented, so
that there is no reason whatsoever today to use something else.

We remark that Kerckhoffs outlined other principles as well, and one of
them states that a system must be practically, if not mathematically, indeci-
pherable. As we will see later in this book, modern cryptography is based on
this paradigm and — with the exception of perfectly secret encryption schemes
(that are dealt with in the next chapter) — all modern cryptographic schemes
can be broken in theory given enough time (say, thousands of years). Thus,
these schemes are mathematically, but not practically, decipherable.

Attack scenarios. We wrap up our general discussion of encryption with
a brief discussion of some basic types of attacks against encryption schemes
(these will be helpful in the next section). In order of severity, these are:

e Ciphertext-only attack: This is the most basic type of attack and refers to
the scenario where the adversary just observes a ciphertext and attempts
to determine the plaintext that was encrypted.

e Known-plaintext attack: Here, the adversary learns one or more pairs of
plaintexts/ciphertexts encrypted under the same key. The aim of the
adversary is then to determine the plaintext that was encrypted to give
some other ciphertext (for which it does not know the corresponding
plaintext).

e Chosen-plaintext attack: In this attack, the adversary has the ability to
obtain the encryption of any plaintext(s) of its choice. It then attempts
to determine the plaintext that was encrypted to give some other ci-
phertext.

e Chosen-ciphertext attack: The final type of attack is one where the ad-
versary is even given the capability to obtain the decryption of any
ciphertext(s) of its choice. The adversary’s aim, once again, is then to
determine the plaintext that was encrypted to give some other cipher-
text (whose decryption the adversary is unable to obtain directly).

Note that the first two types of attacks are passive in that the adversary
just receives some ciphertexts (and possibly some corresponding plaintexts as
well) and then launches its attack. In contrast, the last two types of attacks
are active in that the adversary can adaptively ask for encryptions and/or
decryptions of its choice.

The first two types of attacks described above are clearly realistic. A
ciphertext-only attack is the easiest to carry out in practice; the only thing

Introduction and Classical Ciphers 9

the adversary needs is to eavesdrop on the public communication line over
which encrypted messages are sent. In a known-plaintext attack it is assumed
that the adversary somehow also obtains the plaintext that was encrypted
in some of the ciphertexts that it viewed. This is often realistic because not
all encrypted messages are confidential, at least not indefinitely. As a trivial
example, two parties may always encrypt a “hello” message whenever they
begin communicating. As a more complex example, encryption may be used
to keep quarterly earnings results secret until their release date. In this case,
anyone eavesdropping and obtaining the ciphertext will later obtain the corre-
sponding plaintext. Any reasonable encryption scheme must therefore remain
secure when an adversary can launch a known-plaintext attack.

The two latter active attacks may seem somewhat strange and require jus-
tification. (When do parties encrypt and decrypt whatever an adversary
wishes?) We defer a more detailed discussion of these attacks to the place in
the text when security against these attacks is formally defined: Section 3.5
for chosen-plaintext attacks and Section 3.7 for chosen-ciphertext attacks.

We conclude by noting that different settings may require resilience to dif-
ferent types of attacks. It is not always the case that an encryption scheme se-
cure against the “strongest” type of attack should be used, especially because
it may be less efficient than an encryption scheme secure against “weaker”
attacks; the latter may be preferred if it suffices for the application at hand.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical cryptography” we will examine some historical ci-
phers and show that they are completely insecure. As stated earlier, our main
aims in presenting this material are (a) to highlight the weaknesses of an
“ad-hoc” approach to cryptography, and thus motivate the modern, rigorous
approach that will be discussed in the following section, and (b) to demon-
strate that “simple approaches” to achieving secure encryption are unlikely to
succeed and show why this is the case. Along the way, we will present some
central principles of cryptography which can be learned from the weaknesses
of these historical schemes.

In this section (and in this section only), plaintext characters are written in
lower case and ciphertext characters are written in UPPER CASE. When de-
scribing attacks on schemes, we always apply Kerckhoffs’ principle and assume
the scheme is known to the adversary (but the key being used is not).

Caesar’s cipher. One of the oldest recorded ciphers, known as Caesar’s
cipher, is described in “De Vita Caesarum, Divus Iulius” (“The Lives of the
Caesars, The Deified Julius”), written in approximately 110 C.E.:

There are also letters of his to Cicero, as well as to his intimates

10 Introduction to Modern Cryptography

on private affairs, and in the latter, if he had anything confidential
to say, he wrote it in cipher, that is, by so changing the order of
the letters of the alphabet, that not a word could be made out. If
anyone wishes to decipher these, and get at their meaning, he must
substitute the fourth letter of the alphabet, namely D, for A, and
so with the others.

That is, Julius Caesar encrypted by rotating the letters of the alphabet by 3
places: a was replaced with D, b with E, and so on. Of course, at the end of
the alphabet, the letters wrap around and so x was replaced with A, y with B
and z with C. For example, the short message begin the attack now, with
the spaces removed, would be encrypted as:

EHJLQWKHDWWDFNQRZ

making it unintelligible.

An immediate problem with this cipher is that the method is fized. Thus,
anyone learning how Caesar encrypted his messages would be able to decrypt
effortlessly. This can be seen also if one tries to fit Caesar’s cipher into the
syntax of encryption described earlier: the key-generation algorithm Gen is
trivial (that it, it does nothing) and there is no secret key to speak of.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13
places instead of 3) is widely used in various online forums. It is understood
that this does not provide any cryptographic security, and ROT-13 is used
merely to ensure that the text (say, a movie spoiler) is unintelligible unless
the reader of a message consciously chooses to decrypt it.

The shift cipher and the sufficient key space principle. Caesar’s cipher
suffers from the fact that encryption is always done the same way, and there
is no secret key. The shift cipher is similar to Caesar’s cipher, but a secret
key is introduced.? Specifically, the shift cipher uses as the key k& a number
between 0 and 25; to encrypt, letters are rotated (as in Caesar’s cipher) but
by k places. Mapping this to the syntax of encryption described earlier, this
means that algorithm Gen outputs a random number & in the set {0,...,25};
algorithm Enc takes a key k and a plaintext written using English letters and
shifts each letter of the plaintext forward k positions (wrapping around from z
to a); and algorithm Dec takes a key k and a ciphertext written using English
letters and shifts every letter of the ciphertext backward k positions (this time
wrapping around from a to z). The plaintext message space M is defined to be
all finite strings of characters from the English alphabet (note that numbers,
punctuation, or other characters are not allowed in this scheme).

A more mathematical description of this method can be obtained by viewing
the alphabet as the numbers 0,...,25 (rather than as English characters).
First, some notation: if a is an integer and N is an integer greater than 1,

2In some books, “Caesar’s cipher” and “shift cipher” are used interchangeably.

Introduction and Classical Ciphers 11

we define [a mod N] as the remainder of a upon division by N. Note that
[a mod NJ] is an integer between 0 and N — 1, inclusive. We refer to the
process mapping a to [a mod N| as reduction modulo N; we will have much
more to say about reduction modulo NV beginning in Chapter 7.

Using this notation, encryption of a plaintext character m; with the key k
gives the ciphertext character [(m;+k) mod 26], and decryption of a ciphertext
character ¢; is defined by [(¢; —k) mod 26]. In this view, the message space M
is defined to be any finite sequence of integers that lie in the range {0, ..., 25}.

Is the shift cipher secure? Before reading on, try to decrypt the following
message that was encrypted using the shift cipher and a secret key &k (whose
value we will not reveal):

OVDTHUFWVZZPISLRLFZHYLAOLYL.

Is it possible to decrypt this message without knowing k7?7 Actually, it is
completely triviall The reason is that there are only 26 possible keys. Thus,
it is easy to try every key, and see which key decrypts the ciphertext into
a plaintext that “makes sense”. Such an attack on an encryption scheme is
called a brute-force attack or exhaustive search. Clearly, any secure encryption
scheme must not be vulnerable to such a brute-force attack; otherwise, it
can be completely broken, irrespective of how sophisticated the encryption
algorithm is. This brings us to a trivial, yet important, principle called the
“sufficient key space principle”:

Any secure encryption scheme must have a key space that is not
vulnerable to exhaustive search.3

In today’s age, an exhaustive search may use very powerful computers, or
many thousands of PC’s that are distributed around the world. Thus, the
number of possible keys must be very large (at least 260 or 270).

We emphasize that the above principle gives a necessary condition for se-
curity, not a sufficient one. In fact, we will see next an encryption scheme
that has a very large key space but which is still insecure.

Mono-alphabetic substitution. The shift cipher maps each plaintext char-
acter to a different ciphertext character, but the mapping in each case is given
by the same shift (the value of which is determined by the key). The idea
behind mono-alphabetic substitution is to map each plaintext character to
a different ciphertext character in an arbitrary manner, subject only to the
fact that the mapping must one-to-one in order to enable decryption. The
key space thus consists of all permutations of the alphabet, meaning that the

3This is actually only true if the message space is larger than the key space (see Chapter 2
for an example where security is achieved when the size of the key space is equal to the size
of the message space). In practice, when very long messages are typically encrypted with
the same key, the key space must not be vulnerable to exhaustive search.

12 Introduction to Modern Cryptography

size of the key space is 26! (or approximately 2%8) if we are working with the
English alphabet. As an example, the key

abcdefghijklmnopgrstuvwxyz
XEUADNBKVMROCQFSYHWGLZIJPT

in which a maps to X, etc., would encrypt the message tellhimaboutme to
GDOOKVCXEFLGCD. A brute force attack on the key space for this cipher takes
much longer than a lifetime, even using the most powerful computer known
today. However, this does not necessarily mean that the cipher is secure. In
fact, as we will show now, it is easy to break this scheme even though it has
a very large key space.

Assume that English-language text is being encrypted (i.e., the text is
grammatically-correct English writing, not just text written using characters
of the English alphabet). It is then possible to attack the mono-alphabetic
substitution cipher by utilizing statistical patterns of the English language (of
course, the same attack works for any language). The two properties of this
cipher that are utilized in the attack are as follows:

1. In this cipher, the mapping of each letter is fixed, and so if e is mapped
to D, then every appearance of e in the plaintext will result in the ap-
pearance of D in the ciphertext.

2. The probability distribution of individual letters in the English (or any
other) language is known. That is, the average frequency counts of
the different English letters are quite invariant over different texts. Of
course, the longer the text, the closer the frequency counts will be to the
average. However, even relatively short texts (consisting of only tens of
words) have distributions that are “close enough” to the average.

The attack works by tabulating the probability distribution of the ciphertext
and then comparing it to the known probability distribution of letters in
English text (see Figure 1.2). The probability distribution being tabulated
in the attack is simply the frequency count of each letter in the ciphertext
(i.e., a table saying that A appeared 4 times, B appeared 11 times, and so on).
Then, we make an initial guess of the mapping defined by the key based on the
frequency counts. Specifically, since e is the most frequent letter in English,
we will guess that the most frequent character in the ciphertext corresponds to
the plaintext character e, and so on. Unless the ciphertext is quite long, some
of the guesses are likely to be wrong. However, even for quite short ciphertexts,
the guesses are good enough to enable relatively quick decryption (especially
utilizing knowledge of the English language, like the fact that between t and
e, the character h is likely to appear, and the fact that u always follows q).
Actually, it should not be very surprising that the mono-alphabetic substi-
tution cipher can be quickly broken, since puzzles based on this cipher appear
in newspapers (and are solved by some people before their morning coffee)!
We recommend that you try to decipher the following message — this should

Introduction and Classical Ciphers 13

English Letter Frequencies

14.0

12.0 4

10.0

Percentage

8.0 1

6.0 H e - |

L

4.0 1

N

1l

=0
<[

N/ O|P|Q|R|S|T u X

<]

‘Series1 82|15|28|42(127|/22|20|6.1|7.0

A|B|C|D]|E F |G| H | J
0.1

o
(o]
o
nN
NE

40|24|67|75[19|01]60|63|90 |28 2.0

o

°©

Letter

FIGURE 1.2: Average letter frequencies in the English language

help convince you how easy the attack is to carry out (of course, you should
use Figure 1.2 to help you):

JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJIZQQOCIBZKLFAFGQVFZFWWE
OGWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOLWJVFP
FWQVHQWFFPQOQVFPQOCFPOGFWFJIGFQVHLHLROQVFGWJVFPFOLFHGQVQVFILE
OGQILHQFQGIQVVOSFAFGBWQVHQWIJVWJVFPFWHGFIWIHZZRQGBABHZQOCGFHX

We conclude that, although the mono-alphabetic cipher has a very large
key space, it is still completely insecure. This is another important lesson.
Namely, although a large key space is necessary for any secure cipher, it is
very far from being sufficient.

An improved attack on the shift cipher. We can use character frequency
tables to give an improved attack on the shift cipher. Specifically, our previous
attack on the shift cipher required us to decrypt the ciphertext using each
possible key, and then check to see which key results in a plaintext that “makes
sense”. A drawback of this approach is that it is difficult to automate, since it
is difficult for a computer to check whether some plaintext “makes sense”. (We
do not claim this is impossible, as it can certainly be done using a dictionary
of valid English words. We only claim that it is not trivial.) Moreover, there
may be cases — we will see one below — where the plaintext characters are

14 Introduction to Modern Cryptography

distributed according to English-language text but the plaintext itself is not
valid English text.

As before, associate the letters of the English alphabet with the numbers
0,...,25. Let p;, for 0 < i < 25, denote the probability of the ith letter in
normal English text. A simple calculation using known values of the p; gives

25
> pf ~0.065. (1.1)
=0

Now, say we are given some ciphertext and let g; denote the probability of the
1th letter in this ciphertext (g; is simply the number of occurrences of the ith
letter divided by the length of the ciphertext). If the key is k, then we expect
that ¢;4r should be roughly equal to p; for every i. (We use ¢ + k instead of
the more cumbersome [i + k mod 26].) Equivalently, if we compute

25
def
LS pi-gisy
=0

for each value of j € {0,...,25}, then we expect to find that I, = 0.065
where k is again the key that is actually being used. This leads to a key-
finding attack that is easy to automate: compute I; for all j, and then output
the value k for which I} is closest to 0.065.

The Vigenére (poly-alphabetic shift) cipher. As we have described, the
statistical attack on the mono-alphabetic substitution cipher could be carried
out because the mapping of each letter was fixed. Thus, such an attack can
be thwarted by mapping different instances of the same plaintext character
to different ciphertext characters. This has the effect of “smoothing out”
the probability distribution of characters in the ciphertext. For example,
consider the case that e is sometimes mapped to G, sometimes to P, and
sometimes to Y. Then, the ciphertext letters G, P, and Y will most likely not
stand out as more frequent, because other less-frequent characters will be also
be mapped to them. Thus, counting the character frequencies will not offer
much information about the mapping.

The Vigenere cipher works by applying multiple shift ciphers in sequence.
That is, a short, secret word is chosen as the key, and then the plaintext is
encrypted by “adding” each plaintext character to the next character of the
key (as in the shift cipher), wrapping around in the key when necessary. For
example, an encryption of the message tellhimaboutme using the key cafe
would work as follows:

Plaintext: = tellhimaboutme
Key: cafecafecafeca
Ciphertext: WFRQKJSFEPAYPF

(Note that the key need not be an actual English word.) This is exactly
the same as encrypting the first, fifth, ninth, and so on characters with the

Introduction and Classical Ciphers 15

shift cipher and key & = 3, the second, sixth, tenth, and so on characters
with key k = 1, the third, seventh, and so on characters with £ = 6 and the
fourth, eighth, and so on characters with £ = 5. Thus, it is a repeated shift
cipher using different keys. Notice that in the above example 1 is mapped
once to R and once to Q. Furthermore, the ciphertext character F is sometimes
obtained from e and sometimes from a. Thus, the character frequencies in
the ciphertext are “smoothed”, as desired.

If the key is a sufficiently-long word (chosen at random), then cracking this
cipher seems to be a daunting task. Indeed, it was considered by many to
be an unbreakable cipher, and although it was invented in the 16th century a
systematic attack on the scheme was only devised hundreds of years later.

Breaking the Vigenére cipher. The first observation in attacking the
Vigenere cipher is that if the length of the key is known, then the task is
relatively easy. Specifically, say the length of the key is ¢ (this is sometimes
called the period). Then the ciphertext can be divided up into ¢ parts where
each part can be viewed as being encrypted using a single instance of the
shift cipher. That is, let k = kq,..., k be the key (each k; is a letter of the
alphabet) and let ¢1,ca,... be the ciphertext characters. Then, for every j
(1 <j <t) we know that the set of characters

Cjs Cj+t, Cj42t5 - - -

were all encrypted by a shift cipher using key k;. All that remains is therefore
to check which of the 26 possible keys is the correct one, for each j. This is not
as trivial as in the case of the shift cipher, because by guessing a single letter
of the key it is not possible to determine if the decryption “makes sense”.
Furthermore, checking all possible keys would require a brute force search
through 26° different possible keys (which is infeasible for ¢ greater than, say,
15). Nevertheless, we can still use the statistical attack method described
earlier. That is, for every set of the ciphertext characters relating to a given
key (that is, a given value of j), it is possible to build the frequency table of
the characters and then check which of the 26 possible shifts gives the “right”
probability distribution. Since this can be carried out separately for each key,
the attack can be carried out very quickly; all that is required is to build ¢
frequency tables (one for each of the subsets of the characters) and compare
them to the real probability distribution.

An alternate, somewhat easier approach, is to use the improved method for
attacking the shift cipher that we showed earlier. Recall that this improved
attack does not rely on checking for a plaintext that “makes sense”, but only
relies on the underlying probability distribution of characters in the plaintext.

Either of the above approaches give successful attacks when the key length
is known. It remains to show how to determine the length of the key.

One approach is to use Kasiski’s method for solving this problem (this
attack was published in the mid 19th century). The first step in the attack
is to identify repeated patterns of length 2 or 3 in the ciphertext. These are

16 Introduction to Modern Cryptography

likely to be due to certain bigrams or trigrams that appear very often in the
English language. For example, consider the word “the” that appears very
often in English text. Clearly, “the” will be mapped to different ciphertext
characters, depending on its position in the text. However, if it appears twice
in the same relative position, then it will be mapped to the same ciphertext
characters. That is, if it appears in positions ¢t+j and 2¢+14 (where ¢ # j) then
it will be mapped to different characters each time. However, if it appears
in positions t + j and 2t 4 j, then it will be mapped to the same ciphertext
characters. In a long enough text, there is a good chance that “the” will be
mapped repeatedly to the same ciphertext.

Consider the following concrete example with the password beads (spaces
have been added for clarity):

Plaintext: the man and the woman retrieved the letter from the post office
Key: bea dsb ead sbe adsbe adsbeadsb ean sdeads bead sbe adsb eadbea
Ciphertext: VMF QTP FOH MJJ XSFCS SIMINFZXF YIS EIYUIK HWPQ MJJ QSLV TGJKGF

Note that the word the is mapped sometimes to VMF, sometimes to MJJ and
sometimes to YIS. However, it is mapped twice to MJJ, and in a long enough
text it is likely that it would be mapped multiple times to each of the pos-
sibilities. The main observation of Kasiski is that the distance between such
multiple appearances (except for some coincidental ones) should be a multi-
ple of the period length. In the above example, the period length is 5 and
the distance between the two appearances of MJJ is 40 (8 times the period
length). Therefore, the greatest common divisor of all the distances between
the repeated sequences should yield the period length ¢.

An alternate approach called the index of coincidence method, is a bit more
algorithmic and hence easier to automate. Recall that if the key-length is ¢,
then the ciphertext characters

C1, Cl4t, C14-2t5 -« -

are encrypted using the same shift. This means that the frequencies of the
characters in this sequence are expected to be identical to the character fre-
quencies of standard English text except in some shifted order. In more detail:
let g; denote the frequency of the ith English letter in the sequence above (once
again, this is simply the number of occurrences of the ith letter divided by the
total number of letters in the sequence). If the shift used here is k; (this is
just the first character of the key), then we expect ¢;1x, to be roughly equal
to p; for all i, where p; is again the frequency of the ith letter in standard
English text. But this means that the sequence po, ..., pos is just the sequence
qo, - - -, qos shifted by ki places. As a consequence, we expect that Z?io q?
should be roughly equal to (see Equation (1.1))

25
> pf ~0.065.
=0

Introduction and Classical Ciphers 17

This leads to a nice way to determine the key length ¢t. For 7 = 1,2,...,
look at the sequence of ciphertext characters ¢y, ¢14+, 1427, ... and tabulate
qo, - - -, qos5 for this sequence. Then compute

25
def 2
I, = E q; -
=0

When 7 = t we expect to see I, =~ 0.065 as discussed above. On the other
hand, for 7 # ¢t we expect (roughly speaking) that all characters will occur
roughly as often in the sequence ¢y, ¢14+, €142+, . . ., and so we expect ¢; =~ 1/26
for all 4. In this case we will obtain

25 1
I,.zg%%().(BS,

which is sufficiently different from 0.065 for this technique to work.

Ciphertext length and cryptanalytic attacks. Notice that the above
attacks on the Vigenere cipher requires a longer ciphertext than for previous
schemes. For example, a large ciphertext is needed for determining the period
if Kasiski’s method is used. Furthermore, statistics are needed for ¢ different
parts of the ciphertext, and the frequency table of a message converges to
the average as its length grows (and so the ciphertext needs to be approxi-
mately ¢ times longer than in the case of the mono-alphabetic substitution
cipher). Similarly, the attack that we use for mono-alphabetic substitution
also requires a longer ciphertext than for the shift cipher (which can work for
messages consisting of just a single word). This phenomenon is not coinciden-
tal, and the reason for it will become more apparent after we study perfect
secrecy in the next chapter.

Ciphertext-only vs. known-plaintext attacks. The attacks described
above are all ciphertext-only attacks (recall that this is the easiest type of
attack to carry out in practice). An important observation is that all the
above ciphers are trivially broken if the adversary is able to carry out a known-
plaintext attack. We leave the demonstration of this as an exercise.

Conclusions and discussion. We have presented only a few historical ci-
phers. Beyond their general historical interest, our aim in presenting them
is to learn some important lessons regarding cryptographic design. Stated
briefly, these lessons are:

1. Sufficient key space principle: Assuming sufficiently-long messages are
being encrypted, a secure encryption scheme must have a key space
that cannot be searched exhaustively in a reasonable amount of time.
However, a large key space does not imply security (e.g., the mono-
alphabetic substitution cipher has a large key space but is trivial to
break). Thus, a large key space is a necessary requirement, but not a
sufficient one.

18 Introduction to Modern Cryptography

2. Designing secure ciphers is a hard task: The Vigenere cipher remained
unbroken for a very long time, partially due to its presumed complexity
(essentially combining a number of keys together). Of course, far more
complex schemes were also used, like the German Enigma. Nevertheless,
this complexity does not imply security and all of these historical ciphers
can be completely broken. In general, it is very hard to design a secure
encryption scheme, and such design should be left to experts.

The history of classical encryption schemes is fascinating, both with respect to
the methods used as well as the influence of cryptography and cryptanalysis
on world history (in World War II, for example). Here, we have only tried to
give a taste of some of the more basic methods, with a focus on what modern
cryptography can learn from this history.

1.4 The Basic Principles of Modern Cryptography

In this book, we emphasize the scientific nature of modern cryptography.
In this section we will outline the main principles and paradigms that distin-
guish modern cryptography from the classical cryptography we studied in the
previous section. We identify three main principles:

1. Principle 1 — the first step in solving any cryptographic problem is the
formulation of a rigorous and precise definition of security.

2. Principle 2 — when the security of a cryptographic construction relies
on an unproven assumption, this assumption must be precisely stated.
Furthermore, the assumption should be as minimal as possible.

3. Principle 3 — cryptographic constructions should be accompanied with
a rigorous proof of security with respect to a definition formulated ac-
cording to principle 1, and relative to an assumption stated as in prin-
ciple 2 (if an assumption is needed at all).

We now discuss each of these principles in greater depth.

1.4.1 Principle 1 — Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has been
the realization that formal definitions of security are essential prerequisites
for the design, usage, or study of any cryptographic primitive or protocol. Let
us explain each of these in turn:

1. Importance for design: Say we are interested in constructing a secure
encryption scheme. If we do not have a firm understanding of what it

Introduction and Classical Ciphers 19

is we want to achieve, how can we possibly know whether (or when)
we have achieved it? Having a definition in mind allows us to evaluate
the quality of what we build and leads us toward building the right
thing. In particular, it is much better to define what is needed first and
then begin the design phase, rather than to come up with a post facto
definition of what has been achieved once the design is complete. The
latter approach risks having the design phase end when the designers’
patience is tried (rather than when the goal has been met), or may
result in a construction that achieves more than is needed and is thus
less efficient than a better solution.

2. Importance for usage: Say we want to use an encryption scheme within
some larger system. How do we know which encryption scheme to use?
If given an encryption scheme, how can we tell whether it suffices for our
application? Having a precise definition of the security achieved by a
given scheme (coupled with a security proof relative to a formally-stated
assumption as discussed in principles 2 and 3) allows us to answer these
questions. Specifically, we can define the security that we desire in our
system (see point 1, above), and then verify whether the definition satis-
fied by a given encryption scheme suffices for our purposes. Alternately,
we can specify the definition that we need the encryption scheme to sat-
isfy, and look for an encryption scheme satisfying this definition. Note
that it may not be wise to choose the “most secure” scheme, since a
weaker notion of security may suffice for our application and we may
then be able to use a more efficient scheme.

3. Importance for study: Given two encryption schemes, how can we com-
pare them? Without any definition of security, the only point of com-
parison is efficiency; but efficiency alone is a poor criterion since a highly
efficient scheme that is completely insecure is of no use. Precise specifi-
cation of the level of security achieved by a scheme offers another point
of comparison. If two schemes are equally efficient but the first one
satisfies a stronger definition of security than the second, then the first
is preferable.* Alternately, there may be a trade-off between security
and efficiency (see the previous two points), but at least with precise
definitions we can understand what this trade-off entails.

Perhaps most importantly, precise definitions enable rigorous proofs (as we
will discuss when we come to principle 3), but the above reasons stand irre-
spective of this.

It is a mistake to think that formal definitions are not needed since “we
have an intuitive idea of what security means” and it is trivial to turn such
intuition into a formal definition. For one thing, two people may each have

4 Actually, we are simplifying a bit since things are rarely this simple.

20 Introduction to Modern Cryptography

a different intuition of what security means. Even one person might have
multiple intuitive ideas of what security means, depending on the context.
(In Chapter 3 we will study four different definitions of security for private-
key encryption, each of which is useful in a different scenario.) Finally, it
turns out that it is mot easy, in general, to turn our intuition into a “good”
definition. For example, when it comes to encryption we know that we want
the encryption scheme to have the effect that only those who know the secret
key can read the encrypted message. How would you formalize such a thing?
The reader may want to pause to think about this before reading on.

In fact, we have asked students many times how security of encryption
should be defined, and have received the following answers (often in the fol-
lowing order):

1. Answer 1 — an encryption scheme is secure if no adversary can find
the secret key when given a ciphertext. Such a definition of encryption
completely misses the point. The aim of encryption is to protect the
message being encrypted and the secret key is just the means of achiev-
ing this. To take this to an absurd level, consider an encryption scheme
that ignores the secret key and just outputs the plaintext. Clearly, no
adversary can find the secret key. However, it is also clear that no
secrecy whatsoever is provided.®

2. Answer 2 — an encryption scheme is secure if no adversary can find
the plaintext that corresponds to the ciphertext. This definition already
looks better and can even be found in some texts on cryptography.
However, after some more thought, it is also far from satisfactory. For
example, an encryption scheme that reveals 90% of the plaintext would
still be considered secure under this definition, as long as it is hard
to find the remaining 10%. But this is clearly unacceptable in most
common applications of encryption. For example, employment contracts
are mostly standard text, and only the salary might need to be kept
secret; if the salary is in the 90% of the plaintext that is revealed then
nothing is gained by encrypting.

If you find the above counterexample silly, refer again to footnote 5.
The point once again is that if the definition as stated isn’t what was
meant, then a scheme could be proven secure without actually providing
the necessary level of protection. (This is a good example of why ezact
definitions are important.)

3. Answer 8 — an encryption scheme is secure if no adversary can find any
of the plaintext that corresponds to the ciphertext. This already looks
like an excellent definition. However, other subtleties can arise. Going

5And lest you respond: “But that’s not what I meant!”, well, that’s exactly the point: it is
often not so trivial to formalize what one means.

Introduction and Classical Ciphers 21

back to the example of the employment contract, it may be impossible
to determine the actual salary. However, should the encryption scheme
be considered secure if it were somehow possible to learn whether the
encrypted salary is greater than or less than $100,000 per year? Clearly
not. This leads us to the next suggestion.

4. Answer 4 — an encryption scheme is secure if no adversary can de-
rive any meaningful information about the plaintext from the ciphertext.
This is already close to the actual definition. However, it is lacking
in one respect: it does not define what it means for information to be
“meaningful”. Different information may be meaningful in different ap-
plications. This leads to a very important principle regarding definitions
of security for cryptographic primitives: definitions of security should
suffice for all potential applications. This is essential because one can
never know what applications may arise in the future. Furthermore, im-
plementations typically become part of general cryptographic libraries
which are then used in may different contexts and for many different
applications. Security should ideally be guaranteed for all possible uses.

5. The final answer — an encryption scheme is secure if no adversary can
compute any function of the plaintext from the ciphertext. This provides
a very strong guarantee and, when formulated properly, is considered
today to be the “right” definition of security for encryption.

Of course, even though we have now hit upon the correct requirement for
secure encryption, conceptually speaking, it remains to state this requirement
mathematically and formally and this is in itself a non-trivial task. (One that
we will address in detail in Chapters 2 and 3.)

Moreover, our formal definition must also specify the attack model; i.e.,
whether we assume a ciphertext-only attack or a chosen-plaintext attack.
This illustrates another general principle that is used when formulating cryp-
tographic definitions. Specifically, in order to fully define security of some
cryptographic task, there are two distinct issues that must be explicitly ad-
dressed. The first is what is considered to be a break, and the second is what
is assumed regarding the power of the adversary. Regarding the break, this is
exactly what we have discussed above; i.e., an encryption scheme is consid-
ered broken if an adversary can learn some function of the plaintext from a
ciphertext. The power of the adversary relates to assumptions regarding the
the actions the adversary is assumed able to take, as well as the adversary’s
computational power. The former refers to considerations such as whether
the adversary is assumed only to be able to eavesdrop on encrypted messages
(i.e., a ciphertext-only attack), or whether we assume that the adversary
can also actively request encryptions of any plaintext that it likes. (i.e., a
chosen-plaintext attack). A second issue that must be considered is the com-
putational power of the adversary. For all of this book, except Chapter 2,
we will want to ensure security against any efficient adversary, by which we

22 Introduction to Modern Cryptography

mean any adversary running in polynomial time. (A full discussion of this
point appears in Section 3.1.2.) When translating this into concrete terms,
we might require security against any adversary utilizes decades of computing
time on a supercomputer.

In summary, any definition of security will take the following general form:

A cryptographic scheme for a given task is secure if no adversary
of a specified power can achieve a specified break.

We stress that the definition never assumes anything about the adversary’s
strategy. This is an important distinction: we are willing to assume some-
thing about what the adversary’s abilities are (e.g., that it is able to mount
a chosen-plaintext attack but not a chosen-ciphertext attack), but we are not
willing to assume anything about how it uses its abilities. We call this the
“arbitrary adversary principle”: security must be guaranteed for any adver-
sary within the class of adversaries with the specified power. This principle
is important because it is impossible to foresee what strategies might be used
in an adversarial attack (and history has proven that attempts to do so are
doomed to failure).

Mathematics and the real world. An important issue to note is that a
definition of security essentially means providing a mathematical formulation
of a real-world problem. If the mathematical definition does not appropriately
model the real world, then the definition may be meaningless. For example, if
the adversarial power that is defined is too weak (and in practice adversaries
have more power) or the break is such that it allows real attacks that were
not foreseen (like one of the early answers regarding encryption), then “real
security” is not obtained, even if a “mathematically secure” construction is
used. In short, a definition of security must accurately model the real world
security needs in order for it to deliver on its mathematical promise of security.

Examples of this occur in practice all the time. As an example, an encryp-
tion scheme that has been proven secure (relative to some definition like the
ones we have discussed above) might be implemented on a smart-card. It may
then be possible for an adversary to monitor the power usage of the smart-
card (e.g. how this power usage fluctuates over time) and use this information
to determine the key. There was nothing wrong with the security definition
or the proof that the scheme satisfies this definition; the problem was simply
that the definition did not accurately model a real-world implementation of
the scheme on a smart-card.

This should not be taken to mean that definitions (or proofs, for that mat-
ter) are useless! The definition — and the scheme that satisfies it — may
still be appropriate for other settings, such as when encryption is performed
on an end-host whose power usage cannot be monitored by an adversary.
Furthermore, one way to achieve secure encryption on a smart-card would
be to further refine the definition so that it takes power analysis into ac-
count. Alternately, perhaps hardware countermeasures for power analysis can

Introduction and Classical Ciphers 23

be developed, with the effect of making the original definition (and hence the
original scheme) appropriate for smart-cards. The point is that with a def-
inition you at least know where you stand, even if the definition turns out
not to accurately model the particular setting in which a scheme is used. In
contrast, with no definition it is not even clear what went wrong.

This possibility of a disconnect between a mathematical model and the
reality it is supposed to be modeling is not unique to cryptography but is
something pervasive throughout science. To take another example from the
field of computer science, consider the meaning of a mathematical proof that
there exist well-defined problems that computers cannot solve. On the one
hand, such a proof is of great interest. However, the immediate question that
arises is “what is a computer”? Specifically, a mathematical proof can only
be provided when there is some mathematical definition of what a computer
is (or to be more exact, what the process of computation is). The problem is
that computation is a real-world process, and there are many different ways
of computing. In order for us to be really convinced that the “unsolvable
problem” is really unsolvable, we must be convinced that our mathemati-
cal definition of computation captures the real-world process of computation.
How do we know when it does?

This inherent difficulty was noted by Alan Turing who studied questions of
what can and cannot be solved by a computer. We quote from his original
paper (the text in square brackets replaces original text in order to make it
more reader friendly):

No attempt has yet been made to show [that the problems that we
have proven can be solved by a computer] include [exactly those
problems] which would naturally be regarded as computable. All
arquments which can be given are bound to be, fundamentally, ap-
peals to intuition, and for this reason rather unsatisfactory math-
ematically. The real question at issue is “What are the possible
processes which can be carried out in [computation]?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of [problems that can be
solved using a given definition of computation)].

6Such a proof indeed exists and it relates to the question of whether or not it is possible
to check a computer program and decide whether it halts on a given input. This problem
is called the Halting problem and, loosely speaking, was proven by Alan Turing to be
unsolvable by computers. Those who have taken a course in Computability will be familiar
with this problem and its ramifications.

24 Introduction to Modern Cryptography

In some sense, Turing faced the exact same problem as us. He developed a
mathematical model of computation but needed to somehow be convinced that
the model was a good one. Likewise in cryptography, we can define security
and need to convinced of the fact that this implies real-world security. As
with Turing, we employ the following tools to become convinced of this fact:

1. Appeals to intuition: the first tool when contemplating a new definition
of security is to see whether it implies security properties that we in-
tuitively expect to hold. This is a minimum requirement, since (as we
have seen in our discussion of encryption) our initial intuition usually
results in a notion of security that is too weak.

2. Proofs of equivalence: it is often the case that a new definition of secu-
rity is justified by showing that it is equivalent to (or stronger than) a
definition that is older, more familiar, or more intuitively-appealing.

3. Examples: a useful way of being convinced that a definition of secu-
rity suffices is to show that the different real-world attacks that we are
familiar with are covered by the definition.

In addition to all of the above, and perhaps most importantly, we rely on the
test of time and the fact that with time, the scrutiny and investigation of both
researchers and practitioners testifies to the soundness of a definition.

1.4.2 Principle 2 — Reliance on Precise Assumptions

Most modern cryptographic constructions cannot be unconditionally proven
secure. This is due to the fact that their existence relies on questions in the
theory of computational complexity that seem far from being answered today.
The result of this unfortunate state of affairs is that security typically relies
upon some assumption. The second principle of modern cryptography states
that assumptions must be precisely stated. This is for two main reasons:

1. Validation of the assumption: By their very nature, assumptions are
statements that are not proven but are rather conjectured to be true.
In order to strengthen this conjecture, it is necessary for the assumption
to be studied. The basic understanding is that the more the assumption
is looked at without being successfully refuted, the more confident we
are that the assumption is true. Furthermore, study of an assumption
can provide positive evidence of its validity by showing that it is implied
by some other assumption that is also widely believed.

If the assumption being relied upon is not precisely stated and presented,
it cannot be studied and (potentially) refuted. Thus, a pre-condition to
raising our confidence in an assumption is having a precise statement of
what exactly is assumed.

Introduction and Classical Ciphers 25

2. Comparison of schemes: Often in cryptography, we may be presented
with two schemes that can both be proven to satisfy some definition but
each with respect to a different assumption. Assuming both schemes are
equally efficient, which scheme should be preferred? If the assumption
that one scheme is based on is weaker than the assumption the second
scheme is based on (i.e., the second assumption implies the first), then
the first scheme is to be preferred since it may turn out that the second
assumption is false while the first assumption is true. If the assumptions
used by the two schemes are incomparable, then the general rule is to
prefer the scheme that is based on the better-studied assumption (for
the reasons highlighted in the previous paragraphs).

3. Facilitation of a proof of security: As we have stated, and will discuss
in more depth in principle 3, modern cryptographic constructions are
presented together with proofs of security. If the security of the scheme
cannot be proven unconditionally and must rely on some assumption,
then a mathematical proof that “the construction is secure if the as-
sumption is true” can only be provided if there is a precise statement of
what the assumption is.

One observation is that it is always possible to just assume that a construc-
tion dtself is secure. If security is well defined, this is also a precise assumption
(and the proof of security for the construction is trivial)! Of course, this is
not accepted practice in cryptography (for the most part) for a number of
reasons. First of all, as noted above, an assumption that has been tested
over the years is preferable to a new assumption that is introduced just to
prove a given construction secure. Second, there is a general preference for
assumptions that are simpler to state, since such assumptions are easier to
study and to refute. So, for example, an assumption of the type that some
mathematical problem is hard to solve is simpler to study and work with than
an assumption that an encryption schemes satisfies a complex (and possibly
unnatural) security definition. When a simple assumption is studied at length
and still no refutation is found, we have greater confidence in its being correct.
Another advantage of relying on “lower-level” assumptions (rather than just
assuming a scheme is secure) is that these low-level assumptions can typically
be shared amongst a number of constructions. If a specific instantiation of the
assumption turns out to be false, it can be replaced within the higher-level
constructions by another instantiation of that assumption.

The above methodology is used throughout this book. For example, Chap-
ters 3 and 4 show how to achieve secure communication (in a number of ways),
assuming that a primitive called a “pseudorandom function” exists. In these
chapters nothing is said at all about how such a primitive can be constructed.
In Chapter 5, we then show how pseudorandom functions are constructed
in practice, and in Chapter 6 we show that pseudorandom functions can be
constructed from even lower-level primitives.

26 Introduction to Modern Cryptography

1.4.3 Principle 3 — Rigorous Proofs of Security

The first two principles discussed above lead naturally to the current one.
Modern cryptography stresses the importance of rigorous proofs of security for
proposed schemes. The fact that exact definitions and precise assumptions are
used means that such a proof of security is possible. However, why is a proof
necessary? The main reason is that the security of a construction or protocol
cannot be checked in the same way that software is typically checked. For
example, the fact that encryption and decryption “work” and the ciphertext
looks garbled, does not mean that a sophisticated adversary is unable to break
the scheme. Without a proof that no adversary of the specified power can
break the scheme, we must rely on our intuition that this is the case. Of
course, intuition is in general very problematic. In fact, experience has shown
that intuition in cryptography and computer security is disastrous. There
are countless examples of unproven schemes that were broken (sometimes
immediately and sometimes years after being presented or even deployed).

Another reason why proofs of security are so important is related to the
potential damage that can result if an insecure system is used. Although
software bugs can sometimes be very costly, the potential damage to someone
breaking the encryption scheme or authentication mechanism of a bank is
huge. Finally, we note that although many bugs exist in software, things
basically work due to the fact that typical users do not try to get their software
to fail. In contrast, attackers use amazingly complex and intricate means
(utilizing specific properties of the construction) in order to attack security
mechanisms with the clear aim of breaking them. Thus, although proofs
of correctness are always desirable in computer science, they are absolutely
essential in the realm of cryptography and computer security. We stress that
the above observations are not just hypothetical, but are conclusions that
have been reached after years of empirical evidence and experience that teach
us that intuition in this field must not be trusted.

The reductionist approach. We conclude by noting that most proofs in
modern cryptography use what may be called the reductionist approach. Given
a theorem of the form

Given that Assumption X is true, Construction Y is secure ac-
cording to the given definition,

a proof typically shows how to reduce the problem given by Assumption X
to the problem of breaking Construction Y. More to the point, the proof
will typically show (via a constructive argument) how any adversary breaking
Construction Y can be used as a sub-routine to violate Assumption X. We
will have more to say about this in Section 3.1.3.

Introduction and Classical Ciphers 27

Summary — Rigorous vs. Ad-Hoc Approaches to Security

The combination of the above three principles constitutes a rigorous ap-
proach to cryptography and is distinct from the ad-hoc approach that is ex-
emplified in our study of classical cryptography and that is (unfortunately)
sometimes still employed. The ad-hoc approach may fail on any one of the
above three principles, but often ignores them all. Fortunately, as time goes
on, a higher awareness of the necessity of a rigorous approach can be seen.
Nevertheless, ad hoc implementations can still be found, especially by those
who wish to obtain a “quick and dirty” solution to a problem (or by those
who are just simply unaware). We hope that this book will contribute to
an awareness of the importance of the rigorous approach, and its success in
modern cryptography.

References and Additional Reading

In this chapter, we have studied just a few of the historical ciphers. There
are many others of both historical and mathematical interest, and we refer
to reader to textbooks by Stinson [124] or Trappe and Washington [125] for
further details. The role of these schemes in history (and specifically in the
history of war) is a fascinating subject that is covered in the book by Kahn [79].

We discussed the differences between the historical, non-rigorous approach
to cryptography (as exemplified by historical ciphers) and a rigorous approach
based on precise definitions and proofs. Shannon [113] was the first to take
the latter approach. Modern cryptography, which relies on (computational)
assumptions in addition to definitions and proofs, was begun in the seminal
paper by Goldwasser and Micali [70]; we will have more to say about this
approach in Chapter 3.

Exercises

1.1 Decrypt the ciphertext provided at the end of the section on mono-
alphabetic substitution.

1.2 Provide a formal definition of the Gen, Enc, and Dec algorithms for both
the mono-alphabetic substitution and Vigenere ciphers.

1.3 Consider an improved version of the Vigenere cipher, where instead
of using multiple shift ciphers, multiple mono-alphabetic substitution
ciphers are used. That is, the key consists of ¢ random permutations of

28

1.4

1.5

1.6

Introduction to Modern Cryptography

the alphabet, and the plaintext characters in positions ¢, ¢+, 2t 414, and
so on are encrypted using the i*® permutation. Show how to break this
version of the cipher.

In an attempt to prevent Kasiski’s attack on the Vigenere cipher, the
following modification has been proposed. Given the period t of the
cipher, the plaintext is broken up into blocks of size t. Recall that within
each block, the Vigenere cipher works by encrypting the ¢th character
with the ith key (using a basic cipher). Letting the key be kq,..., &,
this means the ith character in each block is encrypted by adding k; to
it, modulo 26. The proposed modification is to encrypt the ith character
in the jth block by adding k; + 7 modulo 26.

(a) Show that decryption can be carried out.
(b) Describe the effect of the above modification on Kasiski’s attack.

(¢) Devise an alternate attack that works better than Kasiski’s attack.

Show that the shift, substitution, and Vigenere ciphers are all trivial to
break using a known-plaintext attack. (Assuming normal English text
is being encrypted in each case.) How much known plaintext is needed
to completely recover the key for each of the ciphers (without resorting
to any statistics)?

Show that the shift, substitution, and Vigenere ciphers are all trivial
to break using a chosen-plaintext attack. How much plaintext must
be encrypted in order for the adversary to completely recover the key?
Compare to the previous question.

Chapter 2

Perfectly-Secret Encryption

In the previous chapter, we presented historical encryption schemes (ciphers)
and showed how they can be completely broken with very little computa-
tional effort. In this chapter, we look at the other extreme and study en-
cryption schemes that are provably secure even against an adversary who has
unbounded computational power. Such schemes are called perfectly secret. We
will see under what conditions perfect secrecy can and cannot be achieved,
and why this is the case.

The material in this chapter belongs, in some sense, more to the world of
“classical cryptography” than to the world of “modern cryptography”. Be-
sides the fact that all the material introduced here was developed before the
revolution in cryptography that took place in the mid-"70s and early-"80s, the
constructions we study in this chapter rely only on the first and third prin-
ciples outlined in Section 1.4. That is, precise mathematical definitions will
be given and rigorous proofs will be shown, but it will not be necessary to
rely on any unproven assumptions. This is clearly advantageous. We will see,
however, that such an approach has inherent limitations. Thus, in addition
to serving as a good basis for understanding the principles underlying modern
cryptography, the results of this chapter also justify our later adoption of all
three of the aforementioned principles.

In this chapter, we assume a familiarity with basic probability. The relevant
notions are reviewed in Section A.3 of Appendix A.

2.1 Definitions and Basic Properties

We begin by briefly recalling some of the syntax that was introduced in
the previous chapter. An encryption scheme is defined by three algorithms
Gen, Enc, and Dec, as well as a specification of a message space M with
M| > 1.} The key-generation algorithm Gen is a probabilistic algorithm that
outputs a key k chosen according to some distribution. We denote by X the

Lf |M| = 1 there is only one message and there is no point in communicating, let alone
encrypting.

29

30 Introduction to Modern Cryptography

key space, i.e., the set of all possible keys that can be output by Gen, and
require K to be finite. The encryption algorithm Enc takes as input a key
k € K and a message m € M, and outputs a ciphertext ¢; we denote this
by Encg(m). The encryption algorithm may be probabilistic, so that Encg(m)
might output a different ciphertext when run multiple times. To emphasize
this, we write ¢ < Encg(m) to denote the (possibly probabilistic) process by
which message m is encrypted using key k to give ciphertext ¢. (In case Enc
is deterministic, we may emphasize this by writing ¢ := Encg(m).) We let C
denote the set of all possible ciphertexts that can be output by Ency(m), for
all possible choices of k € IC and m € M (and for all random choices of Enc
in case it is randomized). The decryption algorithm Dec takes as input a key
k € K and a ciphertext ¢ € C and outputs a message m € M. Throughout
the book, we assume encryption schemes are perfectly correct; that is, that
for all k € K, m € M, and any ciphertext ¢ output by Encg(m), it holds
that Decy(c) = m with probability 1. This implies that we may assume Dec
is deterministic without loss of generality (since Decy(c) must give the same
output every time it is run). We will thus write m := Decg(c) to denote the
process of decrypting ciphertext ¢ using key k.

In the definitions and theorems below, we refer to probability distributions
over IC, M, and C. The distribution over K is simply the one that is defined
by running Gen and taking the output. For k € K, we let Pr[K = k] denote
the probability that the key output by Gen is equal to k. (Formally, K is a
random variable denoting the value of the key.) Similarly, for m € M we let
Pr[M = m] denote the probability that the message that is sent is equal to m.
That the message is being chosen according to some distribution (rather than
being fixed) is meant to model the fact that, at least from the point of view
of the adversary, different messages may have different probabilities of being
sent. (If the adversary knows what message is being sent, then it doesn’t need
to decrypt anything and there is no need for the parties to use encryption!)
As an example, the adversary may know that the encrypted message is ei-
ther attack tomorrow or don’t attack. Furthermore, the adversary may
even know (by other means) that with probability 0.7 the message will be a
command to attack and with probability 0.3 the message will be a command
not to attack. In this case, we have Pr[M = attack tomorrow] = 0.7 and
Pr[M = don’t attack] =0.3.

We assume that the distributions over I and M are independent, i.e., that
the key and message are chosen independently. This is required because the
key is chosen and fixed (i.e., shared by the communicating parties) before the
message is known. Actually, recall that the distribution over K is fixed by the
encryption scheme itself (since it is defined by Gen) while the distribution over
M may vary depending on the parties who are using the encryption scheme.

For ¢ € C, we write Pr[C = ¢] to denote the probability that the ciphertext
is ¢. Note that, given Enc, the distribution over C is fixed by the distributions
over K and M.

Perfectly-Secret Encryption 31

The actual definition. We are now ready to define the notion of perfect
secrecy. Intuitively, we imagine an adversary who knows the probability dis-
tribution over M; that is, the adversary knows the likelihood that different
messages will be sent (as in the example given above). Then the adversary ob-
serves some ciphertext being sent by one party to the other. Ideally, observing
this ciphertext should have no effect on the knowledge of the adversary; in
other words, the a posteriori likelihood that some message m was sent (even
given the ciphertext that was seen) should be no different from the a priori
probability that m would be sent. This should hold for any m € M. Further-
more, this should hold even if the adversary has unbounded computational
power. This means that a ciphertext reveals nothing about the underlying
plaintext, and thus an adversary who intercepts a ciphertext learns absolutely
nothing about the plaintext that was encrypted.
Formally:

DEFINITION 2.1 An encryption scheme (Gen, Enc, Dec) over a message
space M is perfectly secret if for every probability distribution over M, every
message m € M, and every ciphertext ¢ € C for which Pr[C = ¢] > 0:

Pr[M =m | C = ¢] =Pr[M = m)].

(The requirement that Pr[C' = ¢] > 0 is a technical one needed to prevent
conditioning on a zero-probability event.) Another way of interpreting Defi-
nition 2.1 is that a scheme is perfectly secret if the distributions over messages
and ciphertexts are independent.

A simplifying convention. In this chapter, we are going to consider only
probability distributions over M and C that assign non-zero probabilities to
all m € M and ¢ € C.2 This significantly simplifies the presentation because
we often need to divide by Pr[M = m] or Pr[C = ¢, which is a problem if
they may equal zero. Likewise, as in Definition 2.1 we sometimes need to
condition on the event C = ¢ or M = m. This too is problematic if those
events have zero probability.

We stress that this convention is only meant to simplify the exposition and
is not a fundamental limitation. In particular all the theorems we prove can
be appropriately adapted to the case of arbitrary distributions over M and
C (that may assign some messages or ciphertexts probability 0). See also
Exercise 2.6.

An equivalent formulation. The following lemma gives an equivalent for-
mulation of Definition 2.1.

2We remark that this holds always for k € K because the distribution is defined by Gen and
so only keys that can be output by Gen are included in the set K to start with.

32 Introduction to Modern Cryptography
LEMMA 2.2 An encryption scheme (Gen, Enc, Dec) over a message space
M is perfectly secret if and only if for every probability distribution over M,

every message m € M, and every ciphertext ¢ € C:

Pr[C=c| M =m]="Pr[C = (.

PROOF Fix a distribution over M and arbitrary m € M and ¢ € C. Say
Pr[C =c| M =m]="Pr[C = (.
Multiplying both sides of the equation by Pr[M = m]/ Pr[C =] gives

Pr[C =c| M =m]-Pr[M =m)|
Pr[C =]

=Pr[M =m].

Using Bayes’ theorem (see Theorem A.8), the left-hand-side is exactly equal
to PriM =m | C = ¢]. Thus, Prf]M = m | C = ¢] = Pr[M = m] and the
scheme is perfectly secret.

The other direction of the proof is left as an exercise. [|

We emphasize that in the above proof, we used the fact that both m € M
and ¢ € C are assigned non-zero probabilities (and thus Pr[M = m] > 0 and
Pr[C = ¢] > 0, enabling us to divide by Pr[C' = ¢] and condition on the event
M = m). This explains our convention stated earlier, by which M and C only
contain messages/ciphertexts that occur with non-zero probability.

Perfect indistinguishability. We now use Lemma 2.2 to obtain another
equivalent and useful formulation of perfect secrecy. This formulation states
that the probability distribution over C is independent of the plaintext. That
is, let C(m) denote the distribution over the ciphertext when the message be-
ing encrypted is m € M (this distribution depends on the choice of key, as
well as the randomness of the encryption algorithm in case it is probabilistic).
Then the claim is that for every mg, m; € M, the distributions C(mg) and
C(mq) are identical. This is just another way of saying that the ciphertext
contains no information about the plaintext. We refer to this formulation as
perfect indistinguishability because it implies that it is impossible to distin-
guish an encryption of mg from an encryption of m; (due to the fact that the
distribution over the ciphertext is the same in each case).

LEMMA 2.3 An encryption scheme (Gen, Enc, Dec) over a message space
M is perfectly secret if and only if for every probability distribution over M,
every mo,m; € M, and every c € C:

PriC=c|M=mo]=Pr[C=c| M =m].

Perfectly-Secret Encryption 33

PROOF Assume that the encryption scheme is perfectly secret and fix
mo, m1 € M and ¢ € C. By Lemma 2.2 we have that Pr[C = c | M = myg| =
Pr[C = ¢] and Pr[C = ¢ | M = m4] = Pr[C = ¢|. Thus,

Pr[C=c| M =mg] =Pr[C =] =Pr[C =c| M =my],

completing the proof of the first direction.

Assume next that for every distribution over M, every mg, m; € M, and
every ¢ € C it holds that Pr[C = ¢ | M = mg] = Pr[C = ¢ | M = m;]. Fix
some distribution over M, and arbitrary mg € M and ¢ € C. Define def
Pr[C' =c| M = mg]. Since Pr[C =c| M =m]=Pr[C =c| M =mg] =7~
for all m, we have

Pr[C =¢] = Z Pr[C =c| M =m]-Pr[M = m)|

meM
= Z v -Pr[M = m)|
meM
=n- Z Pr[M = m)]
meM
=7

=Pr[C=c|M=m],

where the final equality holds for all m € M. So we have shown that Pr[C =
] =Pr[C =c| M =m]forall c € Cand m € M. Applying Lemma 2.2, we
conclude that the encryption scheme is perfectly secret. [|

Adversarial indistinguishability. We conclude this section by presenting
an additional equivalent definition of perfect secrecy. This definition is based
on an experiment involving an adversary A and its inability to distinguish the
encryption of one plaintext from the encryption of another, and we thus call it
adversarial indistinguishability. This definition will serve as our starting point
when we introduce the notion of computational security in the next chapter.

We define an experiment that we call PrivK®" since it considers the setting
of private-key encryption and an eavesdropping adversary (the adversary is
eavesdropping because it only receives a ciphertext ¢ and then tries to de-
termine something about the plaintext). The experiment is defined for any
encryption scheme IT = (Gen, Enc, Dec) over message space M and for any
adversary A. We let PrivK$}; denote an execution of the experiment for a
given I and A. The experiment is defined as follows:

The adversarial indistinguishability experiment PrivaZ:’H:

1. The adversary A outputs a pair of messages mg, m; € M.

34 Introduction to Modern Cryptography

2. A random key k is generated by running Gen, and a random
bit b — {0,1} is chosen. (These are chosen by some imag-
inary entity that is running the experiment with A.) Then,
the ciphertext ¢ — Encg(my) is computed and given to A.

3. A outputs a bit b'.

4. The output of the experiment is defined to be 1 if b’ = b, and
0 otherwise. We write PrivK{"y = 1 if the output is 1 and in
this case we say that A succeeded.

One should think of A as trying to guess the value of b that is chosen in the
experiment, and A succeeds when its guess b’ is correct. Observe that it is
always possible for A to succeed in the experiment with probability one half
by just guessing b’ randomly. The question is whether it is possible for A
to do any better than this. The alternate definition we now give states that
an encryption scheme is perfectly secret if no adversary A can succeed with
probability any better than one half. We stress that, as is the case throughout
this chapter, there is no limitation whatsoever on the computational power

of A.

DEFINITION 2.4 (perfect secrecy — alternative definition): An encryp-
tion scheme (Gen, Enc, Dec) over a message space M is perfectly secret if for
every adversary A it holds that

Pr [PrivKR' = 1] :%.

The following proposition states that Definition 2.4 is equivalent to Defini-
tion 2.1. We leave the proof of the proposition as an exercise.

PROPOSITION 2.5 Let (Gen, Enc,Dec) be an encryption scheme over
a message space M. Then, (Gen, Enc, Dec) is perfectly secret with respect to
Definition 2.1 if and only if it is perfectly secret with respect to Definition 2.4.

2.2 The One-Time Pad (Vernam’s Cipher)

In 1917, Vernam patented a cipher that obtains perfect secrecy. There
was no proof of this fact at the time (in fact, there was not yet a notion of
what perfect secrecy was). Rather, approximately 25 years later, Shannon
introduced the notion of perfect secrecy and demonstrated that the one-time
pad (sometimes known as Vernam'’s cipher) achieves this level of security.

Perfectly-Secret Encryption 35

Let a @b denote the bitwise exclusive-or (XOR) of two binary strings a and
b (ie.,ifa=ay,...,ap and b =10bq,...,bs, then a® b= a1 ® b1,...,ap D by).
The one-time pad encryption scheme is defined as follows:

1. Fix an integer ¢ > 0. Then the message space M, key space K, and
ciphertext space C are all equal to {0,1}¢ (i.e., the set of all binary
strings of length /).

2. The key-generation algorithm Gen works by choosing a string from I =
{0,1}* according to the uniform distribution (i.e., each of the 2° strings
in the space is chosen as the key with probability exactly 27¢).

3. Encryption Enc works as follows: given a key k € {0,1}¢ and a message
m € {0,1}¢, output ¢ := k & m.

4. Decryption Dec works as follows: given akey k € {0, 1}* and a ciphertext
c € {0,1}*, output m :=k @ c.

Before discussing the security of the one-time pad, we note that for every
k and every m it holds that Decy(Enciy(m)) = k & k @& m = m and so the
one-time pad constitutes a legal encryption scheme.

Intuitively, the one-time pad is perfectly secret because given a ciphertext
¢, there is no way an adversary can know which plaintext m it originated
from. In order to see why this is true, notice that for every possible m there
exists a key k such that ¢ = Encg(m); namely, take k = m @ c. Furthermore,
each key is chosen with uniform probability and so no key is more likely than
any other. Combining the above, we obtain that ¢ reveals nothing whatsoever
about which plaintext m was encrypted, because every plaintext is equally
likely to have been encrypted (of course, this is true as long as k is completely
hidden from the adversary). We now prove this intuition formally:

THEOREM 2.6 The one-time pad is a perfectly-secret encryption scheme.

PROOF We work directly with the original definition of perfect secrecy
(Definition 2.1), though with our convention that all messages occur with
non-zero probability. (For the one-time pad, this implies that all ciphertexts
occur with non-zero probability.) Fix some distribution over M and arbitrary
mo € M and ¢ € C. The key observation is that, for every m € M,

PrlC=c|M=m]|=Pr[M®K =c| M =m]
=Prm@®K=c=Pr[K=m&d=2"

36 Introduction to Modern Cryptography

A simple calculation (using Bayes’ theorem for the first equality) then gives

Pr[M =moAC =]
Pr[C = ¢
_ Pr[C=c| M =mg]-Pr[M = mj]
Y omem Pr[C =c| M = m]-Pr[M = m]
274 Pr[M = my]
T e 2 CPr[M = m]
Pr[M = my]

N > e Pr[M =m] = Pr[M = mo],

PI'[M:m0|C:C]:

as required by Definition 2.1. [|

We conclude that perfect secrecy is attainable. Unfortunately, the one-time
pad encryption scheme has a number of drawbacks. Most prominent is that
the key is required to be as long as the message. This limits applicability of
the scheme if we want to send very long messages (as it may be difficult to
securely store a very long key) or if we don’t know in advance an upper bound
on how long the message will be (since we can’t share a key of unbounded
length). Moreover, the one-time pad scheme — as the name indicates — is
only “secure” if used once (with the same key). Although we did not yet define
a notion of security when multiple messages are encrypted, it is easy to see
informally that encrypting more than one message leaks a lot of information.
In particular, say two messages m,m’ are encrypted using the same key k.
An adversary who obtains ¢ = m @ k and ¢/ = m’ @ k can compute

/ /
chc =m>dPm

and thus learn something about the exclusive-or of the two messages. While
this may not seem very significant, it is enough to rule out any claims of perfect
secrecy when encrypting two messages. Furthermore, if the messages corre-
spond to English-language text, then given the exclusive-or of sufficiently-
many message pairs it is possible to perform frequency analysis (as in the
previous chapter, though more complex) and recover the messages themselves.

Finally, the one-time pad encryption scheme is only secure against a ciphertext-

only attack. Although we have again not yet defined security against stronger
attacks, it is easy to see that the one-time pad scheme is insecure against,
e.g., a known-message attack. An adversary who obtains the encryption ¢ of
a known message m can compute the key £ = ¢ ® m and then decrypt any
subsequent ciphertexts computed using this same key.

Perfectly-Secret Encryption 37

2.3 Limitations of Perfect Secrecy

In this section, we show that one of the aforementioned limitations of the
one-time pad encryption scheme is inherent. Specifically, we prove that any
perfectly-secret encryption scheme must have a key space that is at least as
large as the message space. If the key space consists of fixed-length keys, and
the message space consists of all messages of some fixed length, this implies
that the key must be at least as long as the message. Thus, the problem of
a large key length is not specific to the one-time pad, but is inherent to any
scheme achieving perfect secrecy. (The other limitations mentioned above are
also inherent in the context of perfect secrecy; see, e.g., Exercise 2.9.)

THEOREM 2.7 Let (Gen, Enc, Dec) be a perfectly-secret encryption scheme
over a message space M, and let K be the key space as determined by Gen.
Then |K| > |M].

PROOF We show that if | K| < | M| then the scheme is not perfectly secret.
Assume |K| < |[M|. Take the uniform distribution over M and let m € M
be arbitrary. Let ¢ be a ciphertext that corresponds to a possible encryption
of m; i.e., there exists a k € K such that Enci(m) = ¢. (If Enc is randomized,
this means there is some non-zero probability that Enci(m) outputs c.) By
correctness, we know that Decy(c) = m.

Consider the set M (c) of all possible messages that correspond to ¢; that is

M(e) def {m | m = Dec; (c) for some kek).

We know that m € M(c). Furthermore, |[M(c)| < |K| since for each message
m € M(c) we can identify at least one key k& € K for which 7 = Dec;(c).

(Recall that we assume Dec is deterministic.) This means there is some m’ €
M with m’ # m such that m’ € M(c). But then

Pr[M =m' | C =c] =0# Pr[M = m],

and so the scheme is not perfectly secret. [|

Perfect secrecy at a lower price? The above theorem shows an inherent
limitation of schemes that achieve perfect secrecy. Even so, it is often claimed
by individuals and/or companies that they have developed a radically new
encryption scheme that is unbreakable and achieves the security level of the
one-time pad without using long keys. The above proof demonstrates that
such claims cannot be true; the person claiming them either knows very little
about cryptography or is blatantly lying.

38 Introduction to Modern Cryptography

2.4 * Shannon’s Theorem

In his breakthrough work on perfect secrecy, Shannon also provided a char-
acterization of perfectly-secret encryption schemes. As we shall see below,
this characterization says that, assuming |K| = |[M| = |C|, the key-generation
algorithm Gen must choose a secret key uniformly from the set of all possi-
ble keys (as in the one-time pad), and that for every plaintext message and
ciphertext there exists a single key mapping the plaintext to the ciphertext
(again, as in the one-time pad). Beyond being interesting in its own right, this
theorem is a powerful tool for proving (or contradicting) the perfect secrecy
of suggested schemes. We discuss this further below after the proof.

As before, we assume that the probability distributions over M and C are
such that all m € M and ¢ € C are assigned non-zero probabilities. The
theorem here considers the special case when | M| = |K| = |C|, meaning that
the sets of plaintexts, keys, and ciphertexts are all of the same size. We have
already seen that || > |M]. It is easy to see that |C| must also be at least
the size of | M| (because otherwise for every key, there must be two plaintexts
that are mapped to a single ciphertext, making it impossible to unambiguously
decrypt). Therefore, in some sense, the case of |[M| = |K| = |C| is the “most
efficient”. We are now ready to state the theorem:

THEOREM 2.8 (Shannon’s theorem) Let (Gen, Enc,Dec) be an en-
cryption scheme over a message space M for which (M| = |K| = |C|. This
scheme is perfectly secret if and only if:

1. Every key k € K is chosen with equal probability 1/|K| by algorithm Gen.

2. For every m € M and every c € C, there exists a single key k € KC such
that Encg(m) outputs c.

PROOF The intuition behind the proof of this theorem is as follows. First,
if a scheme fulfills item (2) then a given ciphertext ¢ could be the result of
encrypting any possible plaintext m (this holds because for every m there
exists a key k mapping it to ¢). Combining this with the fact that exactly
one key maps each m to ¢, and by item (1) each key is chosen with the same
probability, perfect secrecy can be shown as in the case of the one-time pad.
For the other direction, the intuition is that if |[M| = |K| = |C| then there
must be exactly one key mapping each m to each c. (Otherwise, either some m
is not mapped to a given ¢ contradicting perfect secrecy, or some m is mapped
by more than one key to ¢, resulting in another m’ not being mapped to ¢
again contradicting perfect secrecy.) Once this fact is given, it must hold that
each key is chosen with equal probability or some plaintexts would be more
likely than others, contradicting perfect secrecy. The formal proof follows.

Perfectly-Secret Encryption 39

Let (Gen, Enc,Dec) be an encryption scheme over M where |M| = |K| =
IC]. For simplicity, we assume Enc is deterministic. We first prove that if
(Gen, Enc, Dec) is perfectly secret, then items (1) and (2) hold. As in the
proof of Theorem 2.7, it is not hard to see that for every m € M and ¢ € C,
there exists at least one key k € K such that Ency(m) = ¢. (Otherwise,
Pr[M =m | C =] =0 # Pr[M = m)].) For a fixed m, consider now the set
{Encg(m)}rex. By the above, |{Enci(m)}rex| > |C| (because for every ¢ € C
there exists a k € K such that Enci(m) = ¢). In addition, since Ency(m) € C
we trivially have |{Encg(m)}rex| < |C|. We conclude that

{Enck(m) }rex| = [C].

Since |K| = [C|, it follows that [{Enck(m)}rex| = |K]. This implies that for
every m and ¢, there do not exist distinct keys ki, ko € K with Encg, (m) =
Enck,(m) = c¢. That is, for every m and ¢, there exists at most one key k € K
such that Encg(m) = ¢. Combining the above (i.e., the existence of at least
one key and at most one key), we obtain item (2).

We proceed to show that for every k € K, Pr[K = k] = 1/|K|. Let n = |K|
and M = {my,...,my} (recall, IM| = |K| = n), and fiz a ciphertext c.
Then, we can label the keys kq,..., k&, such that for every ¢ (1 < i < n) it
holds that Ency,(m;) = ¢. This labeling can be carried out because (as just
shown) for every ¢ and m; there exists a unique k such that Ency(m;) = ¢, and
furthermore these keys are distinct for distinct m;, m;. By perfect secrecy we
have that for every i:

Pr[M =m;] =Pr[M =m,; | C =
_ Pr[C=c| M =m Pr[M = m,
B Pr[C =]
_ Pr[K = k] - Pr[M = m,]
Pr[C =] ’

where the second equality is by Bayes’ theorem and the third equality holds
by the labelling above (i.e., k; is the unique key that maps m; to ¢). From
the above, it follows that for every i,

Pr[K = k;] = Pr[C = ¢].

Therefore, for every i and j, Pr[K = k;] = Pr[C = ¢] = Pr[K = k;] and so all
keys are chosen with the same probability. We conclude that keys are chosen
according to the uniform distribution, and Pr[K = k;] = 1/|K]| as required.

We now prove the other direction of the theorem. Assume that every key
is obtained with probability 1/|K| and that for every m € M and ¢ € C there
exists a single key k € K such that Enciy(m) = ¢. This immediately implies
that for every m and c,

Pr[C:c|M:m]:%

40 Introduction to Modern Cryptography

irrespective of the probability distribution over M. Thus, for every probability
distribution over M, every m, m’ € M, and every c € C we have

1
Pr[C=c|M:m]:W:Pr[C:c\M:m’]
and so by Lemma 2.3, the encryption scheme is perfectly secret. [|

Uses of Shannon’s theorem. Theorem 2.8 is of interest in its own right in
that it essentially gives a complete characterization of perfectly-secret encryp-
tion schemes. In addition, since items (1) and (2) have nothing to do with the
probability distribution over the set of plaintexts M, the theorem implies that
if there exists an encryption scheme that provides perfect secrecy for a spe-
cific probability distribution over M then it actually provides perfect secrecy
in general (i.e., for all probability distributions over M). Finally, Shannon’s
theorem is extremely useful for proving whether a given scheme is or is not
perfectly secret. Item (1) is easy to confirm and item (2) can be demonstrated
(or contradicted) without analyzing any probabilities (in contrast to working
with, say, Definition 2.1). For example, the perfect secrecy of the one-time
pad (Theorem 2.6) is trivial to prove using Shannon’s theorem. We warn,
however, that Theorem 2.8 only holds if |[M| = |K| = |C|, and so one must
careful to apply it only in this case.

2.5 Summary

This completes our treatment of perfectly-secret encryption. The main les-
son of this chapter is that perfect secrecy is attainable, meaning that there exist
encryption schemes with the property that the ciphertext reveals absolutely
nothing about the plaintext even to an adversary with unlimited computa-
tional power. However, all such schemes have the limitation that the key
must be at least as long as the message. In practice, therefore perfectly-secret
encryption is rarely used. We remark that it is rumored that the “red phone”
linking the White House and the Kremlin during the Cold War was protected
using one-time pad encryption. Of course, the governments of the US and
USSR could exchange extremely long random keys without great difficulty,
and therefore practically use the one-time pad. However, in most settings
(especially commercial ones), the limitation regarding the key length makes
the one-time pad or any other perfectly-secret scheme unusable.

Perfectly-Secret Encryption 41

References and Additional Reading

The notion of perfectly-secret encryption was introduced and studied in
ground-breaking work by Shannon [113]. In addition to introducing the no-
tion, he proved that the one-time pad (originally introduced by Vernam [126])
is perfectly secret, and also proved the theorems characterizing perfectly-secret
schemes (and their implied limitations). Stinson [124] contains further dis-
cussion of perfect secrecy.

In this chapter we have briefly studied perfectly-secure encryption. There
are other cryptographic problems that can also be solved with “perfect secu-
rity”. A notable example is the problem of message authentication where the
aim is to prevent an adversary from modifying a message (in an undetectable
manner) en route from one party to another; we study this problem in depth
in Chapter 4. The reader interested in learning about perfectly-secure mes-
sage authentication is referred to the paper by Stinson [122], the survey by
Simmons [120], or the first edition of Stinson’s textbook [123, Chapter 10] for
further information.

Exercises

2.1 Prove the second direction of Lemma 2.2.

2.2 Prove or refute: For every encryption scheme that is perfectly secret
it holds that for every distribution over the message space M, every
m,m’ € M, and every c € C:

PrfM=m|C=c =PrM=m' | C=.

2.3 When using the one-time pad (Vernam’s cipher) with the key k = 0, it
follows that Encg(m) = k @ m = m and the message is effectively sent
in the clear! It has therefore been suggested to improve the one-time
pad by only encrypting with a key k # 0° (i.e., to have Gen choose k
uniformly at random from the set of non-zero keys of length ¢). Is this
an improvement? In particular, is it still perfectly secret? Prove your
answer. If your answer is positive, explain why the one-time pad is not
described in this way. If your answer is negative, reconcile this fact with
the fact that encrypting with 0° doesn’t change the plaintext.

2.4 In this exercise, we study conditions under which the shift, mono-alphabetic
substitution, and Vigenére ciphers are perfectly secret:

42

2.5

2.6

2.7

2.8

2.9

Introduction to Modern Cryptography

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) Describe the largest plaintext space M for which the mono-alphabetic
substitution cipher provides perfect secrecy. (Note: this space does
not need to contain words that “make sense”.)

(¢) Show how to use the Vigenére cipher to encrypt any word of length
n so that perfect secrecy is obtained (note: you can choose the
length of the key). Prove your answer.

Reconcile the above with the attacks that were shown in the previous
chapter.

Prove or refute: Every encryption scheme for which the size of the key
space equals the size of the message space, and for which the key is
chosen uniformly from the key space, is perfectly secret.

Prove that if an encryption scheme (Gen, Enc, Dec) is perfectly secret for
a message space M assuming all messages in M are assigned non-zero
probability, then it is perfectly secret for any message space M’ C M.

Hint: Use Shannon’s theorem.

Prove the first direction of Proposition 2.5. That is, prove that Defini-
tion 2.1 implies Definition 2.4.

Hint: Use Exercise 2.6 to argue that perfect secrecy holds for the uniform
distribution over any two plaintexts (and in particular, the two messages

output by A in the experiment). Then apply Lemma 2.3.

Prove the second direction of Proposition 2.5. That is, prove that Defi-
nition 2.4 implies Definition 2.1.

Hint: If a scheme II is not perfectly secret with respect to Definition 2.1,
then Lemma 2.3 shows that there exist messages mg,m; € M and ¢ € C
for which Pr[C = ¢ | M = mg] # Pr[C = ¢ | M = m1]. Use these mg
and my to construct an A for which Pr[PrivK$"y = 1] > %

Consider the following definition of perfect secrecy for the encryption
of two messages. An encryption scheme (Gen, Enc, Dec) over a message
space M is perfectly-secret for two messages if for all distributions over
M, all m,m’ € M, and all ¢,¢’ € C with Pr[C =cAC’' =¢] > 0:

PriM=mAM =m'|C=cANC"=]=Pr[M =mAM =m],

where m and m’ are sampled independently from the same distribution
over M. Prove that no encryption scheme satisfies this definition.

Hint: Take m # m’ but c=¢’.

2.10

2.11

2.12

Perfectly-Secret Encryption 43

Consider the following definition of perfect secrecy for the encryption
of two messages. Encryption scheme (Gen,Enc,Dec) over a message
space M is perfectly-secret for two messages if for all distributions over
M, all m,m’ € M with m # m/, and all ¢,/ € C with ¢ # ¢ and
PriC=cAC' =¢] > 0:

PrM=mAM =m'|C=cAC" ={]
=Pr[M=mAM =m'| M # M,

where m and m’ are sampled independently from the same distribu-
tion over M. Show an encryption scheme that provably satisfies this
definition. How long are the keys compared to the length of a message?

Say we require only that an encryption scheme (Gen, Enc, Dec) over a
message space M satisfy the following: for all m € M, the probability
that Decg(Enci(m)) = m is at least 2. (This probability is taken over
choice of k as well as any randomness that may be used during encryp-
tion or decryption.) Show that perfect secrecy (as in Definition 2.1) can
be achieved with |K| < |[M].

Prove an analogue of Theorem 2.7 for the case of “almost perfect” se-
crecy. That is, let € < 1 be a constant and say we only require that for
any distribution over M, any m € M, and any ¢ € C;

|Pr[M =m | C =] —Pr[M =m]| <e.
Prove a lower bound on the size of the key space K relative to M for

any encryption scheme that meets this definition.

Hint: Consider the uniform distribution over M and fix a ciphertext c.
Then show that for a (1 —¢) fraction of the messages m € M, there must

exist a key mapping m to c.

Part 11

Private-Key (Symmetric)
Cryptography

45

Chapter 3

Private-Key Encryption and
Pseudorandomness

In this chapter, we will study the notion of pseudorandomness — the idea
that things can “look” completely random (in a sense we precisely define)
even though they are not — and see how this can be used to achieve secure
encryption beating the bounds of the previous chapter. Specifically, we will
see encryption schemes whereby a short key (say, some hundreds of bits long)
can be used to securely encrypt many long messages (say, gigabytes in total);
such schemes are able to bypass the inherent limitations of perfect secrecy
because they achieve the weaker (but sufficient) notion of computational se-
crecy. Before commencing our discussion of private-key encryption, then, we
examine the computational approach to cryptography more generally in Sec-
tion 3.1. The computational approach will be used in the rest of the book,
and forms the basis of modern cryptography.

3.1 A Computational Approach to Cryptography

In the previous two chapters we have studied what can be called classical
cryptography. We began with a brief look at some historical ciphers, with
a focus on how they can be broken and what can be learned from these
attacks. In Chapter 2, we then proceeded to present cryptographic schemes
that can be mathematically proven secure (with respect to some particular
definition of security), even when the adversary has unlimited computational
power. Such schemes are called information-theoretically secure, or perfectly
secure, because their security is due to the fact that the adversary simply
does not have enough! “information” to succeed in its attack, regardless of
the adversary’s computational power. In particular, as we have discussed,
the ciphertext in a perfectly-secret encryption scheme does not contain any
information about the plaintext (assuming the key is unknown).

IThe term “information” has a rigorous, mathematical meaning. However, we use it here
in an informal manner.

47

48 Introduction to Modern Cryptography

Information-theoretic security stands in stark contrast to computational se-
curity that is the aim of most modern cryptographic constructions. Restrict-
ing ourselves to the case of private-key encryption (though everything we say
applies more generally), modern encryption schemes have the property that
they can be broken given enough time and computation, and so they do not
satisfy Definition 2.1. Nevertheless, under certain assumptions, the amount of
computation needed to break these encryption schemes would take more than
many lifetimes to carry out even using the fastest available supercomputers.
For all practical purposes, this level of security suffices.

Computational security is weaker than information-theoretic security. It
also currently? relies on assumptions whereas no assumptions are needed to
achieve the latter (as we have seen in the case of encryption). Even granting
the fact that computational security suffices for all practical purposes, why do
we give up on the idea of achieving perfect security? The results of Section 2.3
give one reason why modern cryptography has taken this route. In that
section, we showed that perfectly-secret encryption schemes suffer from severe
lower bounds on the key length; namely, that the key must be as long as
the combined length of all messages ever encrypted using this key. Similar
negative results hold for other cryptographic tasks when information-theoretic
security is required. Thus, despite its mathematical appeal, it is necessary to
compromise on perfect security in order to obtain practical cryptographic
schemes. We stress that although we cannot obtain perfect security, this
does not mean that we do away with the rigorous mathematical approach;
definitions and proofs are still essential, and it is only that we now consider
weaker (but still meaningful) definitions of security.

3.1.1 The Basic Idea of Computational Security

Kerckhoffs is best known for his principle that cryptographic designs should
be made public. However, he actually spelled out six principles, the following
of which is very relevant to our discussion here:

A [cipher] must be practically, if not mathematically, indecipherable.

Although he could not have stated it in this way at the time, this principle
of Kerckhoffs essentially says that it is not necessary to use a perfectly-secret
encryption scheme, but instead it suffices to use a scheme that cannot be
broken in “reasonable time” with any “reasonable probability of success” (in
Kerckhoffs’ language, a scheme that is “practically indecipherable”). In more
concrete terms, it suffices to use an encryption scheme that can (in theory) be
broken, but that cannot be broken with probability better than 1073 in 200

2In theory, it is possible that these assumptions might one day be removed (though this will
require, in particular, proving that P # NP). Unfortunately, however, our current state
of knowledge requires us to make assumptions in order to prove computational security of
any cryptographic construction.

Private-Key Encryption and Pseudorandomness 49

years using the fastest available supercomputer. In this section we present a
framework for making formal statements about cryptographic schemes that
are “practically unbreakable”.

The computational approach incorporates two relaxations of the notion of
perfect security:

1. Security is only preserved against efficient adversaries, and

2. Adversaries can potentially succeed with some very small probability (small
enough so that we are not concerned that it will ever really happen).

To obtain a meaningful theory, we need to precisely define what is meant
by the above. There are two common approaches for doing so: the concrete
approach and the asymptotic approach. We explain these now.

The concrete approach. The concrete approach quantifies the security of
a given cryptographic scheme by bounding the maximum success probability
of any adversary running for at most some specified amount of time. That is,
let t, e be positive constants with € < 1. Then, roughly speaking:

A scheme is (t,e)-secure if every adversary running for time at
most t succeeds in breaking the scheme with probability at most €.

(Of course, the above serves only as a general template, and for the above
statement to make sense we need to define exactly what it means to “break”
the scheme.) As an example, one might want to use a scheme with the guaran-
tee that no adversary running for at most 200 years using the fastest available
supercomputer can succeed in breaking the scheme with probability better
than 1073°, Or, it may be more convenient to measure running time in terms
of CPU cycles, and to use a scheme such that no adversary running for at
most 280 cycles can break the scheme with probability better than 2764,

It is instructive to get a feel for values of ¢,e that are typical of modern
cryptographic schemes.

Example 3.1
Modern private-key encryption schemes are generally assumed to give almost
optimal security in the following sense: when the key has length n, an ad-
versary running in time ¢ (measured in, say, computer cycles) can succeed in
breaking the scheme with probability ¢/2". (We will see later why this is in-
deed optimal.) Computation on the order of t = 29 is barely in reach today.
Running on a 1GHz computer, 26° CPU cycles require 2%°/10% seconds, or
about 35 years. Using many supercomputers in parallel may bring this down
to a few years.

A typical value for the key length, however, might be n = 128. The differ-
ence between 260 and 2128 is a multiplicative factor of 2% which is a number
containing about 21 decimal digits. To get a feeling for how big this is, note

50 Introduction to Modern Cryptography

that according to physicists’ estimates the number of seconds since the big
bang is on the order of 2°8.

An event that occurs once every hundred years can be roughly estimated
to occur with probability 2730 in any given second. Something that occurs
with probability 2769 in any given second is 230 times less likely, and might
be expected to occur roughly once every 100 billion years. O

The concrete approach can be useful in practice, since concrete guarantees
of the above type are typically what users of a cryptographic scheme are
ultimately interested in. However, one must be careful in interpreting concrete
security guarantees. As one example, if it is claimed that no adversary running
for 5 years can break a given scheme with probability better than e, we still
must ask: what type of computing power (e.g., desktop PC, supercomputer,
network of 100s of computers) does this assume? Does this take into account
future advances in computing power (which, by Moore’s Law, roughly doubles
every 18 months)? Does this assume “off-the-shelf” algorithms will be used or
dedicated software optimized for the attack? Furthermore, such a guarantee
says little about the success probability of an adversary running for 2 years
(other than the fact that it can be at most €) and says nothing about the
success probability of an adversary running for 10 years.

From a theoretical standpoint, the concrete security approach is disadvan-
tageous since schemes can be (¢,¢)-secure but never just secure. More to
the point, for what ranges of ¢,e should we say that a (t,&)-secure scheme
is “secure”? There is no clear answer to this, as a security guarantee that
may suffice for the average user may not suffice when encrypting classified
government documents.

The asymptotic approach. The asymptotic approach is the one we will
take in this book. This approach, rooted in complexity theory, views the
running time of the adversary as well as its success probability as functions
of some parameter rather than as concrete numbers. Specifically, a crypto-
graphic scheme will incorporate a security parameter which is an integer n.
When honest parties initialize the scheme (e.g., when they generate keys),
they choose some value n for the security parameter; this value is assumed to
be known to any adversary attacking the scheme. The running time of the ad-
versary (and the running time of the honest parties) as well as the adversary’s
success probability are all viewed as functions of n. Then:

1. We equate the notion of “efficient algorithms” with (probabilistic) algo-
rithms running in time polynomial in n, meaning that for some constants
a, ¢ the algorithm runs in time a-n° on security parameter n. We require
that honest parties run in polynomial time, and will only be concerned
with achieving security against polynomial-time adversaries. We stress
that the adversary, though required to run in polynomial time, may be
much more powerful (and run much longer) than the honest parties.

Private-Key Encryption and Pseudorandomness 51

2. We equate the notion of “small probability of success” with success
probabilities smaller than any inverse-polynomial in n, meaning that
for every constant ¢ the adversary’s success probability is smaller than
n~¢ for large enough values of n (see Definition 3.5). A function that
grows slower than any inverse polynomial is called negligible.

We sometimes use PPT to stand for probabilistic, polynomial-time. A definition
of asymptotic security thus takes the following general form:

A scheme is secure if every PPT adversary succeeds in breaking the
scheme with only negligible probability.

Although very clean from a theoretical point of view (since we can actually
speak of a scheme being secure or not), it is important to understand that the
asymptotic approach only “guarantees security” for large enough values of n,
as the following example should make clear.

Example 3.2
Say we have a scheme that is secure. Then it may be the case that an adversary
running for n® minutes can succeed in “breaking the scheme” with probability
240.27" (which is a negligible function of n). When n < 40 this means that
an adversary running for 40% minutes (about 6 weeks) can break the scheme
with probability 1, so such values of n are not going to be very useful in
practice. Even for n = 50 an adversary running for 50° minutes (about 3
months) can break the scheme with probability roughly 1/1000, which may
not be acceptable. On the other hand, when n = 500 an adversary running for
more than 200 years breaks the scheme only with probability roughly 275,
¢

As indicated by the previous example, we can view a larger security param-
eter as providing a “greater” level of security. For the most part, the security
parameter determines the length of the key used by the honest parties, and we
thus have the familiar concept that the longer the key, the higher the security.
The ability to “increase security” by taking a larger value for the security
parameter has important practical ramifications, since it enables honest par-
ties to defend against increases in computing power as well as algorithmic
advances. The following gives a sense for how this might play out in practice.

Example 3.3

Let us see the effect that the availability of faster computers might have on
security in practice. Say we have a cryptographic scheme where honest parties
are required to run for 10%-n? cycles, and for which an adversary running for
108-n* cycles can succeed in “breaking” the scheme with probability 220.2-".
(The numbers in this example are designed to make calculations easier, and
are not meant to correspond to any existing cryptographic scheme.)

52 Introduction to Modern Cryptography

Say all parties are using a 1Ghz computer (that executes 10? cycles per
second) and n = 50. Then honest parties run for 10¢ - 2500 cycles, or 2.5
seconds, and an adversary running for 10% - (50)* cycles, or roughly 1 week,
can break the scheme with probability only 273°.

Now say a 16Ghz computer becomes available, and all parties upgrade.
Honest parties can increase n to 100 (which requires generating a fresh key)
and still improve their running time to 0.625 seconds (i.e., 105 - 100? cycles
at 16 - 10° cycles/second). In contrast, the adversary now has to run for 107
seconds, or more than 16 weeks, to achieve success probability 278%. The
effect of a faster computer has been to make the adversary’s job harder. <

The asymptotic approach has the advantage of not depending on any spe-
cific assumptions regarding, e.g., the type of computer an adversary will use
(this is a consequence of the Church-Turing thesis from complexity theory,
which basically states that the relative speeds of all sufficiently-powerful com-
puting devices are polynomially related). On the other hand, as the above
examples demonstrate, it is necessary in practice to understand exactly what
level of concrete security is implied by a particular asymptotically-secure
scheme. This is because the honest parties must pick a concrete value of n
to use, and so cannot rely on assurances of what happens “for large enough
values of n”. The task of determining the value of the security parameter to
use is complex and depends on the scheme in question as well as other con-
siderations. Fortunately, it is usually relatively easy to translate a guarantee
of asymptotic security into a concrete security guarantee.

Example 3.4

A typical proof of security for a cryptographic scheme might show that any
adversary running in time p(n) succeeds with probability at most p(n)/2".
This implies that the scheme is (asymptotically) secure, since for any polyno-
mial p, the function p(n)/2" is eventually smaller than any inverse-polynomial
in n. Moreover, it immediately gives a concrete security result for any desired
value of n; e.g., the scheme with n fixed to 50 is (502, 50%/25°)-secure (note
that for this to be meaningful we need to know the units of time with respect
to which p is being measured). O

From here on, we use the asymptotic approach only. Nevertheless, as the
above example shows, all the results in this book can be cast as concrete
security results as well.

A technical remark. As we have mentioned, we view the running time of
the adversary and the honest parties as a function of n. To be consistent
with the standard convention in algorithms and complexity theory, where the
running time of an algorithm is measured as a function of the length of its
input, we will thus provide the adversary and the honest parties with the
security parameter in unary as 1™ (i.e., a string of n 1’s) when necessary.

Private-Key Encryption and Pseudorandomness 53

Necessity of the Relaxations

As we have seen, computational security introduces two relaxations of the
notion of perfect security: first, security is guaranteed only against efficient
(i.e., polynomial-time) adversaries; second, a small (i.e., negligible) probability
of success is allowed. Both of these relaxations are essential for achieving
practical cryptographic schemes, and in particular for bypassing the negative
results for perfectly-secret encryption. Let us see why, somewhat informally.
Assume we have an encryption scheme where the size of the key space K is
much smaller than the size of the message space M (which, as we saw in the
previous chapter, means that the scheme cannot be perfectly secret). There
are two attacks, lying at opposite extremes, that apply regardless of how the
encryption scheme is constructed:

e Given a ciphertext ¢, the adversary can decrypt ¢ using all keys k € K.
This gives a list of all possible messages to which ¢ can possibly corre-
spond. Since this list cannot contain all of M (because || < |M]), this
leaks some information about the message that was encrypted.

Moreover, say the adversary carries out a known-plaintext attack and
learns that ciphertexts c1, . . ., ¢¢ correspond to the messages mq, ..., my,
respectively. The adversary can again try decrypting each of these ci-
phertexts with all possible keys until it finds a key k for which Decg(¢;) =
m; for all 5. This key will be unique with high® probability, in which
case the adversary has found the key that the honest parties are using
(and so subsequent usage of this key will be insecure).

The type of attack is known as brute-force search and allows the adver-
sary to succeed with probability essentially 1 in time linear in |K|.

e Consider again the case where the adversary learns that ciphertexts
c1,...,ce correspond to the messages my,...,my. The adversary can
guess a key k € K at random and check to see whether Decy(c;) = m;
for all 4. If so, we again expect that with high probability & is the key
that the honest parties are using.

Here the adversary runs in polynomial time and succeeds with non-zero
(though very small) probability roughly 1/|K]|.

It follows that if we wish to encrypt many messages using a single short key,
security can only be achieved if we limit the running time of the adversary (so
that the adversary does not have time to carry out a brute-force search) and
also allow a very small probability of success (without considering it a break).

An immediate consequence of the above attacks is that asymptotic security
is not possible if the key space is fized, but rather the key space must depend

3Technically speaking, this need not be true; if it is not, however, then the scheme can be
broken using a modification of this attack.

54 Introduction to Modern Cryptography

on n. That is, a private-key encryption scheme will now be associated with
a sequence {C,} such that the key is chosen from K, when the security
parameter is n. The above attacks imply that if we want polynomial-time
adversaries to achieve only negligible success probability then the size of),
must grow super-polynomially in the security parameter n. Otherwise, brute-
force search could be carried out in polynomial time, and randomly guessing
the key would succeed with non-negligible probability.

3.1.2 Efficient Algorithms and Negligible Success

In the previous section we have outlined the asymptotic security approach
that we will be taking in this book. Students who have not had significant
prior exposure to algorithms or complexity theory may not be comfortable
with the notions of “polynomial-time algorithms”, “probabilistic (or random-
ized) algorithms”, or “negligible probabilities”, and often find the asymptotic
approach confusing. In this section we revisit the asymptotic approach in
more detail, and slightly more formally. Students who are already comfort-
able with what was described in the previous section are welcome to skip
ahead to Section 3.1.3 and refer back here as needed.

Efficient Computation

We have define efficient computation as that which can be carried out in
probabilistic polynomial time (sometimes abbreviated PPT). An algorithm A
is said to run in polynomial time if there exists a polynomial p(-) such that,
for every input x € {0,1}*, the computation of A(z) terminates within at
most p(||z||) steps (here, ||z|| denotes the length of the string x). A prob-
abilistic algorithm is one that has the capability of “tossing coins”; this is
a metaphorical way of saying that the algorithm has access to a source of
randomness that yields unbiased random bits that are each independently
equal to 1 with probability % and 0 with probability % Equivalently, we can
view a randomized algorithm as one which is given, in addition to its input,
a uniformly-distributed bit-string of “adequate length” on a special random
tape. When considering a probabilistic polynomial-time algorithm with run-
ning time p and an input of length n, a random string of length p(n) will
certainly be adequate as the algorithm can only use p(n) random bits within
the allotted time.

Those familiar with complexity theory or algorithms will recognize that the
idea of equating efficient computation with (probabilistic) polynomial-time
computation is not unique to cryptography. The primary advantage of work-
ing with (probabilistic) polynomial-time algorithms is that this gives a class of
algorithms that is closed under composition, meaning that a polynomial-time
algorithm A that runs another polynomial-time algorithm A’ as a sub-routine
will also run in polynomial-time overall. Other than this useful fact, there is
nothing inherently special about restricting adversaries to run in polynomial

Private-Key Encryption and Pseudorandomness 55

time, and essentially all the results we will see in this book could also be
formulated in terms of adversaries running in, say, time n©{°gn) (with honest
parties still running in polynomial time).

Before proceeding we address the question of why we consider probabilistic
polynomial-time algorithms rather than just deterministic polynomial-time
ones. There are two main answers for this. First, randomness is essential to
cryptography (e.g., in order to choose random keys and so on) and so honest
parties must be probabilistic. Given that this is the case, it is natural to
consider adversaries that are probabilistic as well. A second reason for con-
sidering probabilistic algorithms is that the ability to toss coins may provide
additional power. Since we use the notion of efficient computation to model
realistic adversaries, it is important to make this class as large as possible
(while still being realistic).

As an aside, we mention that the question of whether or not probabilistic
polynomial-time adversaries are more powerful than deterministic polynomial-
time adversaries is unresolved. In fact, recent results in complexity the-
ory indicate that randomness does not help. Nevertheless, it does not hurt
to model adversaries as probabilistic algorithms, and this can only provide
stronger guarantees — that is, any scheme that is secure against proba-
bilistic polynomial-time adversaries is certainly secure against deterministic
polynomial-time adversaries as well.

Generating randomness. We have modeled all parties as probabilistic
polynomial-time algorithms because, as we have mentioned, cryptography is
only possible if randomness is available. (If secret keys cannot be generated
at random, then an adversary automatically knows the secret keys used by
the honest parties.) Given this fact, one may wonder whether it is possible to
actually “toss coins” on a computer and achieve probabilistic computation.

There are a number of ways “random bits” are obtained in practice. One
solution is to use a hardware random number generator that generates random
bit-streams based on certain physical phenomena like thermal/electrical noise
or radioactive decay. Another possibility is to use software random number
generators which generate random bit-streams based on unpredictable be-
havior such as the time between key-strokes, movement of the mouse, hard
disk access times, and so on. Some modern operating systems provide func-
tions of this sort. Note that, in either of these cases, the underlying un-
predictable event (whether natural or user-dependent) is unlikely to directly
yield uniformly-distributed bits, and so further processing of the initial bit-
stream is needed. Techniques for doing this are complex yet generally poorly
understood, and are outside the scope of this text.

One must careful in how random bits are chosen, and the use of badly-
designed or inappropriate random number generators can often leave a good
cryptosystem vulnerable to attack. Particular care must be taken to use a
random number generator that is designed for cryptographic use, rather than
a “general-purpose” random number generator which may be fine for some

56 Introduction to Modern Cryptography

applications but not cryptographic ones. As one specific example, using the
random() function in C is a bad idea since it is not very random at all.
Likewise, the current time (even to the millisecond) is not very random and
cannot serve as the basis for a secret key.

Negligible Success Probability

Modern cryptography allows schemes that can be broken with very small
probability to still be considered “secure”. In the same way that we consider
polynomial running times to be feasible, we consider inverse-polynomial prob-
abilities to be significant. Thus, if an adversary could succeed in breaking a
scheme with probability 1/p(n) for some (positive) polynomial p, then the
scheme would not be considered secure. However, if the probability that the
scheme can be broken is asymptotically smaller than 1/p(n) for every poly-
nomial p, then we consider the scheme to be secure. This is due to the fact
that the probability of adversarial success is so small that it is considered
uninteresting. We call such probabilities of success negligible, and have the
following definition.

DEFINITION 3.5 A function f is negligible if for every polynomial p(-)
there exists an N such that for all integers n > N it holds that f(n) < ﬁ.

An equivalent formulation of the above is to require that for all constants
¢ there exists an N such that for all n > N it holds that f(n) < n~¢. For
shorthand, the above is also stated as follows: for every polynomial p(-) and
all sufficiently large values of n it holds that f(n) < Tln)' This is, of course,
the same. We typically denote an arbitrary negligible function by negl.

Example 3.6

The functions 27", 27V™ n=1987 are all negligible. However, they approach
zero at very different rates. In order to see this, we will show for what values
of n each function is smaller than 10~6:

1. 220 = 1048576 and thus for n > 20 we have that 2= " < 1076.
2. 2V400 — 1048576 and thus for n > 400 we have that 2=V <1076,

3. 32° = 33554432 and thus for n > 32 we have that n=1°8" < 1076,
From the above you may have the impression that n~1°8™ approaches zero
more quickly than 2~V". However this is incorrect; for all n > 65536 it holds
that 27V < n=187 Nevertheless, this does show that for values of n in
the hundreds or thousands, an adversarial success probability of n~ 198" ig
preferable to an adversarial success probability of 27V™. %

Private-Key Encryption and Pseudorandomness 57

A technical advantage of working with negligible success probabilities is that
they are also closed under composition. The following is an easy exercise.

PROPOSITION 3.7 Let negl; and negly be negligible functions.
1. The function negly defined by negls(n) = negly (n)+negly(n) is negligible.

2. For any positive polynomial p, the function negl, defined by negly(n) =
p(n) - negly(n) is negligible.

The second part of the above proposition implies that if a certain event
occurs with only negligible probability in a certain experiment, then the
event occurs with negligible probability even if the experiment is repeated
polynomially-many times. For example, the probability that n coin flips
all come up “heads” is negligible. This means that even if we flip n coins
polynomially-many times, the probability that any of these times resulted in
n heads is still negligible. (Using the union bound, Proposition A.7.)

It is important to understand that events that occur with negligible proba-
bility can be safely ignored for all practical purposes (at least for large enough
values of n). This is important enough to repeat and highlight:

Events that occur with negligible probability are so unlikely to oc-
cur that they can be ignored for all practical purposes. Therefore,
a break of a cryptographic scheme that occurs with negligible prob-
ability is not considered a break.

Lest you feel uncomfortable with the fact that an adversary can break a given
scheme with some tiny (but non-zero) probability, note that with some tiny
(but non-zero) probability the honest parties will be hit by an asteroid while
executing the scheme! (More benign, but making the same point: with some
non-zero probability the hard drive of one of the honest parties will fail, thus
erasing the secret key.) See also Example 3.1. So it simply does not make
sense to worry about events that occur with sufficiently-small probability.

Asymptotic Security: A Summary

Recall that any security definition consists of two parts: a definition of
what is considered a “break” of the scheme, and a specification of the power
of the adversary. The power of the adversary can relate to many issues (e.g.,
in the case of encryption, whether we assume a ciphertext-only attack or a
chosen-plaintext attack); however, when it comes to the computational power
of the adversary, we will from now on model the adversary as efficient and thus
probabilistic polynomial-time. The definition is always formulated so that a
break that occurs with negligible probability is not considered a significant
break. Thus, the general framework of any security definition is as follows:

58 Introduction to Modern Cryptography

A scheme is secure if for every probabilistic polynomial-time ad-
versary A carrying out an attack of some specified type, the prob-
ability that A succeeds in this attack (where success is also well-
defined) is negligible.

Such a definition is asymptotic because it is possible that for small values of n
an adversary can succeed with high probability. In order to see this in more
detail, we will use the full definition of “negligible” in the above statement:

A scheme is secure if for every probabilistic polynomial-time adver-
sary A carrying out an attack of some specified type, and for every
polynomial p(+), there exists an integer N such that the probability
that A succeeds in this attack (where success is also well-defined)
is less than ﬁ for every n > N.

Note that nothing is guaranteed for values n < N.

3.1.3 Proofs by Reduction

As we have seen, a cryptographic scheme that is computationally secure
(but not perfectly secure) can always be broken given enough time. To prove
unconditionally that some scheme is computationally secure would thus re-
quire proving a lower bound on the time needed to break the scheme; specif-
ically, it would be necessary to prove that the scheme cannot be broken by
any polynomial-time algorithm. Unfortunately, the current state of affairs
is such that we are unable to prove lower bounds of this type. In fact, an
unconditional proof of security for any modern encryption scheme would re-
quire breakthrough results in complexity theory that seem far out of reach
today. This might seem to leave us with no choice but to simply assume that
a given scheme is secure. As discussed in Section 1.4, however, this is a very
undesirable approach and one that history has taught us is very dangerous.

Instead of blithely assuming that a given cryptographic construction is se-
cure, our strategy instead will be to assume that some low-level problem is
hard to solve, and to then prove that the construction in question is secure
given this assumption. In Section 1.4.2 we have already explained in great
detail why this approach is preferable so we do not repeat those arguments
here.

The proof that a given construction is secure as long as some underlying
problem is hard generally proceeds by presenting an explicit reduction showing
how to convert any efficient adversary A that succeeds in “breaking” the
construction with non-negligible probability into an efficient algorithm A’ that

4For those familiar with basic complexity theory, and in particular the P versus NP ques-
tion, we remark that an unconditional proof of security for any encryption scheme in which
messages are longer than the key would imply a proof that P # NP, something that seems
far beyond reach today.

Private-Key Encryption and Pseudorandomness 59

succeeds in solving the problem that was assumed to be hard. (In fact, this
is the only sort of proof we use in this book.) Since this is so important,
we walk through a high-level outline of the steps of such a proof in detail.
We begin with an assumption that some problem X cannot be solved (in
some precisely-defined sense) by any polynomial-time algorithm except with
negligible probability. We want to prove that some cryptographic construction
IT is secure (again, in some sense that is precisely defined). To do this:

1. Fix some efficient (i.e., probabilistic polynomial-time) adversary A at-
tacking II. Denote this adversary’s success probability by e(n).

2. Construct an efficient adversary A’ that attempts to solve problem X
using adversary A as a sub-routine. An important point here is that A’
knows nothing about “how” A works; the only thing A’ knows is that
A is expecting to attack II. So, given some input instance x of problem
X, our algorithm A’ will simulate for A an execution of II such that:

(a) As far as A can tell, it is interacting with II. More formally, the
view of A when it is run as a sub-routine by A’ should be dis-
tributed identically to (or at least close to) the view of A when it
interacts with II itself.

(b) Furthermore, if A succeeds in “breaking” the execution of II that
is being simulated by A’, this should allow A’ to solve the instance
x it was given, at least with inverse polynomial probability 1/p(n).

3. Taken together, 2(a) and 2(b) imply that if e(n) is not negligible, then
A’ solves problem X with non-negligible probability (n)/p(n). Since
A’ is efficient, and runs the PPT adversary A as a sub-routine, this
implies an efficient algorithm solving X with non-negligible probability,
contradicting the initial assumption.

4. We conclude that, given the assumption regarding X, no efficient algo-
rithm A can succeed with probability € that is not negligible. Ie., IT is
computationally secure.

This will become more clear when we see examples of such proofs in the
sections that follow.

3.2 A Definition of Computationally-Secure Encryption

Given the background of the previous section, we are ready to present a
definition of computational security for private-key encryption. First, we re-
define the syntax of a private-key encryption scheme; this will essentially be

60 Introduction to Modern Cryptography

the same as the syntax introduced in Chapter 2 except that we will now
explicitly take into account the security parameter. We will also now let
the message space be, by default, the set {0,1}* of all (finite-length) binary
strings.

DEFINITION 3.8 A private-key encryption scheme is a tuple of proba-
bilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1™ and outputs a key k; we write this as k <+ Gen(1™) (thus emphasizing
the fact that Gen is a randomized algorithm). We will assume without
loss of generality that any key k output by Gen(1™) satisfies |k| > n.

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m € {0,1}*, and outputs a ciphertext c.> Since Enc may be
randomized, we write this as ¢ < Encg(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c,
and outputs a message m. We assume without loss of generality that
Dec is deterministic, and so write this as m := Decy(c).

It is required that for every n, every key k output by Gen(1™), and every
m € {0,1}*, it holds that Decy(Enci(m)) = m.

If (Gen, Enc, Dec) is such that for & output by Gen(1™), algorithm Ency is
only defined for messages m € {0,1}*(") then we say that (Gen, Enc, Dec) is
a fixed-length private-key encryption scheme with length parameter £.

3.2.1 A Definition of Security for Encryption

There are actually a number of different ways of defining security for private-
key encryption, with the main differences being with respect to the assumed
power of the adversary in its attack. We begin by presenting the most basic
notion of security — security against a weak form of ciphertext-only attack
where the adversary only observes a single ciphertext — and will consider
stronger definitions of security later in the chapter.

Motivating the definition. As discussed in Chapter 1, any definition of
security consists of two distinct components: a specification of the assumed
power of the adversary, and a description of what constitutes a “break” of
the scheme. We begin our definitional treatment by considering the case of
an eavesdropping adversary who observes the encryption of a single message

5As a technical condition, note that Enc is allowed to run in time polynomial in n + |m)|
(i.e., the total length of its inputs). We will generally only be concerned with encrypting
messages of length polynomial in n, in which case this is irrelevant.

Private-Key Encryption and Pseudorandomness 61

or, equivalently, is given a single ciphertext that it wishes to “crack”. This
is a rather weak class of adversaries (and we will encounter stronger adver-
saries soon), but is exactly the type of adversary that was considered in the
previous chapter. Of course, as explained in the previous section, we are now
interested only in adversaries that are computationally bounded to running
in (probabilistic) polynomial time.

An important point to stress here is that although we have made two
substantial assumptions about the adversary’s capabilities (i.e., that it only
eavesdrops, and that it runs in polynomial time), we will make no assump-
tion whatsoever about the adversary’s strategy. This is crucial for obtaining
meaningful notions of security because it is impossible to predict all possible
strategies. We therefore protect against all strategies that can be carried out
by adversaries within the class we have defined.

Defining the “break” for encryption is not trivial, but we have already dis-
cussed this issue at length in Section 1.4.1 and the previous chapter. We
therefore just recall that the idea behind the definition is that the adver-
sary should be unable to learn any partial information about the plaintext
from the ciphertext. The definition of semantic security directly formalizes
exactly this notion, and was the first definition of security for encryption to
be proposed. Unfortunately, the definition of semantic security is complex
and difficult to work with, and we will not present it in this book. Fortu-
nately, there is an equivalent definition in terms of indistinguishability which
is somewhat simpler. Since the definitions are equivalent, we can work with
the simpler definition of indistinguishability while being convinced that the
security guarantees we obtain are those we expect from semantic security.

The definition of indistinguishability is syntactically almost identical to the
alternate definition of perfect secrecy given as Definition 2.4. (This serves
as further motivation that the definition of indistinguishability is a “good”
one.) Recall that Definition 2.4 considers an experiment PrivK"y in which
an adversary A outputs two messages mg and m, and is given an encryption
of one of these messages, chosen at random, using a randomly-generated key.
The definition then states that a scheme II is secure if, in experiment PrivK’fj{’:’H,
no adversary A can determine which message is encrypted with probability
any different from 1/2.

Here, we keep the experiment PrivaZ:'H almost exactly the same (except for
some technical differences discussed below), but introduce two key modifica-
tions in the definition itself:

1. We now consider only adversaries running in polynomial time, whereas
Definition 2.4 considered even all-powerful adversaries.

2. We now concede that the adversary might determine the encrypted mes-
sage with probability negligibly better than 1/2.

As discussed extensively in the previous section, the above relaxations consti-
tute the core elements of computational security.

62 Introduction to Modern Cryptography
As for the differences in experiment PrivK}"}; itself, one is purely syntactic
while the other is introduced for technical reasons. The most prominent dif-
ference is that we now parameterize the experiment by a security parameter n;
we then measure both the running time of adversary A as well as its success
€eav

probability as functions of n. We write PrivK{;(n) to denote the experiment
being run with the given value of the security parameter, and write

Pr[PrivK$ " (n) = 1] (3.1)
to denote the probability that A outputs 1 in experiment PrivK{";(n). Tt is
important to note that, fixing A and II, Equation (3.1) is a function of n.

The second difference in experiment PrivaZ:’H is that we now require the
adversary to output two messages mg, mi1 of equal length. From a theoretical
point of view, this restriction is necessary because of our requirement that an
encryption scheme should be able to encrypt arbitrary-length messages (and
the restriction could be removed if we were willing to forego this requirement,
as we did in the case of perfect secrecy); see Exercise 3.3. This restriction,
however, also turns out to be very appropriate for most encryption schemes
used in practice, where different-length messages result in different-length
ciphertexts, and so an adversary could trivially distinguish which message
was encrypted if it were allowed to output messages of different lengths.

We emphasize that most encryption schemes used in practice do not hide
the length of messages that are encrypted. In cases when the length of a
message might itself represent sensitive information (e.g., when it indicates
the number of digits in an employee’s salary), care should be taken to pad the
input to some fixed length before encrypting. We do not discuss this further.

Indistinguishability in the presence of an eavesdropper. We now give
the formal definition, beginning with the experiment outlined above. The ex-
periment is defined for any private-key encryption scheme IT = (Gen, Enc, Dec),
any adversary A, and any value n for the security parameter:

The adversarial indistinguishability experiment PrivK%'};(n):

1. The adversary A is given input 1™, and outputs a pair of
messages mg, m1 of the same length.

2. A random key k is generated by running Gen(1™), and a ran-
dom bit b — {0,1} is chosen. The ciphertext ¢ < Ency(my)
is computed and given to A.

3. A outputs a bit b'.

4. The output of the experiment is defined to be 1 if b’ = b, and
0 otherwise. If PrivK3'p(n) = 1, we say that A succeeded.

If IT is a fixed-length scheme with length parameter £, the above experiment
is modified by requiring mg, m; € {0, 1},

Private-Key Encryption and Pseudorandomness 63

The definition of indistinguishability states that an encryption scheme is
secure if the success probability of any PPT adversary in the above experiment
is at most negligibly greater than 1/2. (Note that it is easy to succeed with
probability 1/2 by just outputting a random bit . The challenge is to do
better than this.) We are now ready for the definition.

DEFINITION 3.9 A private-key encryption scheme II = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that

1
Pr [PrivKG'(n) = 1] < 3 negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment (for choosing the key, the random bit b,
and any random coins used in the encryption process).

The definition quantifies over all probabilistic polynomial-time adversaries,
meaning that security is required for all “feasible” strategies (where we equate
feasible strategies with those that can be carried out in polynomial time). The
fact that the adversary has only eavesdropping capabilities is implicit in the
fact that its input is limited to a (single) ciphertext, and the adversary does
not have any further interaction with the sender or the receiver. (As we will
see later, allowing additional interaction results in a significantly stronger ad-
versary.) Now, the definition states simply that any adversary A will succeed
in guessing which message was encrypted with at most negligibly better than
a naive guess (which is correct with probability 1/2).

An important point to notice is that the adversary is allowed to choose the
messages mg and mi; thus, even though it knows these plaintext messages,
and knows that c is an encryption of one of them, it still (essentially) cannot
determine which one was encrypted. This is a very strong guarantee, and
one that has great practical importance. Consider, for example, a scenario
whereby the adversary knows that the message being encrypted is either “at-
tack today” or “don’t attack.” Clearly, we do not want the adversary to know
which message was encrypted, even though it already knows that it is one of
these two possibilities. There is no limitation on the length of the messages
mgp and m; to be encrypted, as long as they are the same. Of course, since
the adversary is restricted to run in polynomial time, my and m; have length
polynomial in n.

An equivalent formulation. Definition 3.9 states that an eavesdropping
adversary cannot detect which plaintext was encrypted with advantage signif-
icantly better than taking a random guess. An equivalent way of formalizing
the definition is to state that every adversary behaves the same way when it
receives an encryption of mg and when it receives an encryption of m4 (for any
mg, my of the same length). Since A outputs a single bit, “behaving the same

64 Introduction to Modern Cryptography

way” means that it outputs 1 with almost the same probability in each case.
To formalize this, define PrivK;;(n,) to be as above, except that the fixed
bit b is used (rather than being chosen at random). In addition, denote the
output bit b of A in PrivK’{";(n, b) by output(PrivK{'1(n,b)). The following
definition essentially states that A cannot determine whether it is running in

experiment PrivK’{";(n, 0) or experiment PrivK%};(n,1).

DEFINITION 3.10 A private-key encryption scheme II = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that

Prloutput(PrivK’{';(n, 0)) = 1] — Prloutput(PrivK{'}1(n, 1)) = 1]| < negl(n).

The fact that this definition is equivalent to Definition 3.9 is left as an exercise.

3.2.2 * Properties of the Definition

We motivated the definition of secure encryption by saying that it should
be infeasible to learn any partial information about the plaintext from the
ciphertext. However, the actual definition of indistinguishability looks very
different. As we mentioned above, Definition 3.9 is indeed equivalent to se-
mantic security that formalizes the notion that partial information cannot be
learned. The actual definition of semantic security is quite involved. Rather
than presenting it in full and proving equivalence, we will prove two claims
that demonstrate that indistinguishability implies weaker versions of seman-
tic security. We will then present the essence of the definition of semantic
security (while sweeping some details under the rug). The reader is referred
to [66, Chapter 5.2] for a full definition and a full proof of equivalence.

We begin by showing that security under indistinguishability implies that
no single bit of a randomly chosen plaintext can be guessed with probability
that is significantly better than 1/2. Below, we denote by m! the ‘" bit of
m. For technical reasons in what follows, we set m® = 0 if i > ||m)||.

CLAIM 3.11 Let (Gen, Enc,Dec) be a private-key encryption scheme that
has indistinguishable encryptions in the presence of an eavesdropper. Then
for all probabilistic polynomial-time adversaries A and all i, there exists a
negligible function negl such that:

» 1
Pr [A(1",Ency(m)) = m'] < 3 + negl(n),
where is chosen uniformly at random and the probability is taken over the

random coins of A, the choice of m and the key k, and any random coins
used in the encryption process.

Private-Key Encryption and Pseudorandomness 65

PROOF The idea behind the proof of this claim is that if it is possible to
guess the i™ bit of m given Ency(m), then it is also possible to distinguish
between encryptions of plaintext messages mg and m; where the i*" bit of
mo equals 0 and the i*® bit of m; equals 1. Specifically, given a ciphertext
¢ try to compute the i*" bit of the underlying plaintext. If this computa-
tion indicates that the i*" bit is 0, then guess that mg was encrypted; if it
indicates that the 7" bit is 1, then guess that m; was encrypted. Formally,
we show that if there exists an adversary A that can guess the i*" bit of m
given Enci(m) with probability at least 1/2 + e(n) for some function £(-),
then there exists an adversary that succeeds in the indistinguishability exper-
iment for (Gen, Enc, Dec) with probability 1/2+e(n). By the assumption that
(Gen, Enc, Dec) has indistinguishable encryptions, () must be negligible.
That is, let A be a probabilistic polynomial-time adversary and define €(+)

as follows:
def

) 1
e(n) = Pr [A(1",Enck(m)) = m'] — 3
where m is chosen uniformly from {0,1}"™. From now on, for visual clarity, we
no longer explicitly indicate the input 1™ to A. Take n > i, let I} be the set
of all strings of length n whose i'" bit is 0, and let I be the set of all strings
of length n whose i*" bit is 1. It follows that:

Pr [A(Enc(m)) = mi] = % - Pr[A(Encg(mg)) = 0] + % - [A(Encg(mq)) = 1],

where my is chosen uniformly from I} and m; is chosen uniformly from I7.
(The above equality holds because I and I each contain exactly half the
strings of {0,1}". Therefore, the probability of falling in each set is ex-
actly 1/2.)
Consider now the following adversary A’ who will eavesdrop on the encryp-
tion of a single message:
Adversary A':
1. On input 1", choose mgy « I} and m; « I{* uniformly at
random from the indicated sets. Output mg, m;.
2. Upon receiving a ciphertext ¢, invoke A on input ¢. Output

b =0 if A outputs 0, and o' =1 if A outputs 1.

Note that A’ runs in polynomial time since A does.
Using the definition of experiment PrivK’yY 1;(n) (for n > i), note that b’ = b
if and only if A outputs b upon receiving Ency(ms). So

Pr [PrivK%) 11 (n) = 1] = Pr[A(Enci(my)) = b]

= 2 [A(Enci(mo)) = 0] + 1 - [A(Enc(mn)) = 1]
=Pr [A(Enck(m)) = mq

1
=3 +e(n).

66 Introduction to Modern Cryptography

By the assumption that (Gen, Enc, Dec) has indistinguishable encryptions in
the presence of an eavesdropper, it follows that (-) must be negligible. (Note
that it does not matter what happens when n < i, since we are concerned
with asymptotic behavior only.) This completes the proof. []

We now proceed to show that no PPT adversary can learn any function of
the plaintext, given the ciphertext. However, this is problematic to define. In
particular, let us consider the function f(m) = m® (i.e., f computes the ‘"
bit). We have already shown that if m is chosen uniformly at random, then
no adversary can predict m! with probability better than 1/2 given Ency(m).
The first step towards generalizing this result is to show that m® cannot be
predicted for any distribution over the plaintext messages. However, if m is
not uniformly distributed, then it may be possible to easily compute the i*®
bit of m. For example, the distribution on m may be such that the i* bit of m
is fixed, in which case the i*® bit is trivial to compute. Thus, what we actually
want to say is that if an adversary receiving ¢ = Ency(m) can compute f(m)
for some function f, then there exists an adversary that can compute f(m)
with the same probability of being correct, without being given the ciphertext
(but only given the a priori distribution on m).

In the next claim we show the above when m is chosen uniformly at ran-
domly from some set S C {0,1}". Thus, if the plaintext is an email message,
we can take S to be the set of English-language messages with correct email
headers. Actually, since we are considering an asymptotic setting, we will ac-
tually work with an infinite set S C {0,1}*. Then for security parameter n, a

plaintext message is chosen uniformly from S, df on {0,1}™ (i.e., the subset
of strings of S having length n), which is assumed to never be empty. As a
technical condition, we also need to assume that it is possible to efficiently
sample strings uniformly from S,,; that is, that there exists some probabilistic
polynomial-time algorithm that, on input 1™, outputs a uniform element of
Sn. We refer to this by saying that the set S is efficiently sampleable. We also
restrict to functions f that can be computed in polynomial time.

CLAIM 3.12 Let (Gen, Enc,Dec) be a private-key encryption scheme that
has indistinguishable encryptions in the presence of an eavesdropper. Then
for every probabilistic polynomial-time adversary A there exists a probabilistic
polynomial-time algorithm A’ such that for every polynomial-time computable
function f and every efficiently-sampleable set S, there exists a negligible func-
tion negl such that:

Pr[A(1", Encg(m)) = f(m)] — Pr[A'(1") = f(m)]| < negl(n),

where m s chosen uniformly at random from S, e 5n {0,1}™, and the
probabilities are taken over the choice of m and the key k, and any random
coins used by A, A’, and the encryption process.

Private-Key Encryption and Pseudorandomness 67

PROOF (Sketch) We present only an informal sketch of the proof of this
claim. Assume that (Gen, Enc, Dec) has indistinguishable encryptions. This
implies that no probabilistic polynomial-time adversary A can distinguish
between Enci(m) and Encg(1™), for any m € {0,1}". Consider now the
probability that A successfully computes f(m) given Ency(m). We claim that
A should successfully compute f(m) given Ency(1™) with almost the same
probability. Otherwise, A could be used to distinguish between Ency(m) and
Enci(1™). (The distinguisher is easily constructed: choose m € S,, uniformly
at random and output my = m, m; = 1. When given a ciphertext c¢ that is
either an encryption of m or 1™, invoke A on ¢, and output 0 if and only if
A outputs f(m). If A outputs f(m) with probability that is non-negligibly
different depending on whether it is given an encryption of m or an encryption
of 1™, the described distinguisher violates Definition 3.10.)

The above observation yields the following algorithm A’ that does not re-
ceive ¢ = Encg(m), but instead receives only 1™, yet computes f(m) equally
well: A’ chooses a random key k, invokes A on ¢ «— Encg(1"™), and outputs
whatever A outputs. By the above, we have that A outputs f(m) when run
as a sub-routine by A’ with almost the same probability as when it receives
Enci(m). Thus, A’ fulfills the property required by the claim. [|

** Semantic security. The full definition of semantic security is consid-
erably more general than the property proven in Claim 3.12. In particular,
arbitrary distributions over plaintext messages and arbitrary “external” in-
formation about the chosen plaintext are also taken into consideration. As
above, we will denote by f the function of the plaintext that the adversary is
attempting to compute. In addition, “external” knowledge the adversary may
have regarding the plaintext is represented by a function h, and we model this
“external” information by giving the adversary h(m) in addition to an encryp-
tion of m. Finally, rather than considering a specific set S (and a uniform
distribution over subsets of S), we consider arbitrary distributions. Specif-
ically, we will consider a distribution X = (X1, Xa,...), where, for security
parameter n, the plaintext is chosen according to distribution X,,. We require
that X be efficiently sampleable, so that there is a PPT algorithm that, on
input 1™, outputs an element chosen according to distribution X,. We also
require that, for all n, all strings in X,, have the same length.

DEFINITION 3.13 A private-key encryption scheme (Gen, Enc, Dec) is
semantically secure in the presence of an eavesdropper if for every probabilistic
polynomial-time algorithm A there exists a probabilistic polynomial-time algo-
rithm A" such that for every efficiently-sampleable distribution X = (X1,...)
and all polynomial-time computable functions f and h, there exists a negligible

68 Introduction to Modern Cryptography

function negl such that
Pr[A(1", Enck(m), h(m)) = f(m)] — Pr[A'(1", h(m)) = f(m)]| < negl(n),

where m is chosen according to distribution X,,, and the probabilities are taken
over the choice of m and the key k, and any random coins used by A, A’, and
the encryption process.

Notice that the algorithm A (representing the real adversary) is given the
ciphertext Ency(m) as well as the history function h(m), where this latter
function represents whatever “external” knowledge of the plaintext m the ad-
versary may have (for example, this may represent information that is leaked
about m through other means). The adversary A then attempts to guess the
value of f(m). Algorithm A’ also attempts to guess the value of f(m), but is
given only h(m). The security requirement states that A’s success in guessing
f(m), when given the ciphertext, can be essentially matched by some algo-
rithm 4’ who is not given the ciphertext. Thus, the ciphertext Encg(m) does
not reveal anything new about the value of f(m).

Definition 3.13 constitutes a very strong and convincing formulation of the
security guarantees that should be provided by an encryption scheme. Ar-
guably, it is much more convincing than indistinguishability (that only con-
siders two plaintexts, and does not mention external knowledge or arbitrary
distributions). However, it is technically easier to work with the definition of
indistinguishability (e.g., for proving that a given scheme is secure). Fortu-
nately, it has been shown that the definitions are equivalent:

THEOREM 3.14 A private-key encryption scheme has indistinguishable
encryptions in the presence of an eavesdropper if and only if it is semantically
secure in the presence of an eavesdropper.

(Looking ahead, we remark that a similar equivalence is known for all the
definitions of indistinguishability that we present in this chapter.) We can
therefore use indistinguishability as our working definition, while being as-
sured that the security guarantees achieved are those of semantic security.

3.3 Pseudorandomness

Having defined what it means for an encryption scheme to be secure, the
reader may expect us to launch directly into constructions of secure encryption
schemes. However, before doing so we introduce the notion of pseudorandom-
ness. This notion plays a fundamental role in cryptography in general, and

Private-Key Encryption and Pseudorandomness 69

private-key encryption in particular. Loosely speaking, a pseudorandom string
is a string that looks like a uniformly distributed string, as long as the entity
that is “looking” runs in polynomial time. Just as indistinguishability can be
viewed as a computational relaxation of perfect secrecy, pseudorandomness is
a computational relaxation of true randomness.

An important conceptual point is that, technically speaking, no fixed string
can be said to be “pseudorandom”. (In the same way that it does not make
much sense to refer to any fixed string as “random”.) Rather, pseudoran-
domness actually refers to a distribution on strings, and when we say that a
distribution D over strings of length ¢ is pseudorandom this means that D is
indistinguishable from the uniform distribution over strings of length ¢. (Ac-
tually, since we are in an asymptotic setting pseudorandomness really refers
to a sequence of distributions, one for each value of the security parameter.
We ignore this point in our current discussion.) More precisely, it is infeasible
for any polynomial-time algorithm to tell whether it is given a string sampled
according to D or an ¢-bit string chosen uniformly at random.

The specific types of distributions D we will be interested in here are those
defined by choosing a short random seed s « {0,1}™ uniformly at random
and then outputting G(s) € {0,1}*. The distribution D thus defined outputs
the string y € {0, 1}* with probability exactly

[{s € {0,1}" | G(s) =y}
2n

which will, in general, not be the uniform distribution. Actually, we will only
be interested in the case of ¢ > n in which case the distribution will be very
far from uniform.

Even given the above discussion, we frequently abuse notation and call a
string sampled according to the uniform distribution a “random string”, and
a string sampled according to a pseudorandom distribution D as a “pseudo-
random string”. This is only useful shorthand, and it should be noted in
particular that if y = G(s) for some s then in fact y can occur as either a
random or a pseudorandom string.

Before proceeding, we provide some intuition as to why pseudorandomness
helps in the construction of secure private-key encryption schemes. On a sim-
plistic level, if a ciphertext looks random, then it is clear that no adversary
can learn any information from it about the plaintext. To some extent, this
is the exact intuition that lies behind the perfect secrecy of the one-time pad
(see Section 2.2). In that case, the ciphertext is actually uniformly distributed
(assuming the key is unknown) and thus reveals nothing about the plaintext.
(Of course, such statements only appeal to intuition and do not constitute a
formal argument.) The one-time pad worked by computing the xor of a ran-
dom string (the key) with the plaintext. If a pseudorandom string were used
instead, this should not make any noticeable difference to a polynomial-time
observer. Thus, security should still hold for polynomial-time adversaries.

70 Introduction to Modern Cryptography

As we will see below, this idea can be implemented. The reason that it is
better to use a pseudorandom string rather than a truly random string is due
to the fact that a long pseudorandom string can be generated from a relatively
short random seed (or key). Thus, a short key can be used to encrypt a long
message, something that is impossible when perfect secrecy is required.

Pseudorandom generators. We now proceed to formally define the notion
of a pseudorandom generator. Informally, as discussed above, a distribution D
is pseudorandom if no polynomial-time distinguisher can detect if it is given a
string sampled according to D or a string chosen uniformly at random. This is
formalized by requiring that every polynomial-time algorithm outputs 1 with
almost the same probability when given a truly random string and when given
a pseudorandom one (this output bit is interpreted as the algorithm’s “guess”).
A pseudorandom generator is a deterministic algorithm that receives a short
truly random seed and stretches it into a long string that is pseudorandom.
Stated differently, a pseudorandom generator uses a small amount of true
randomness in order to generate a large amount of pseudorandomness. In the
definition that follows, we set n to be the length of the seed that is input to
the generator and ¢(n) to be the output length. Clearly, the generator is only
interesting if £(n) > n (otherwise, it doesn’t generate any new “randomness”).

DEFINITION 3.15 Let {(-) be a polynomial and let G be a deterministic
polynomial-time algorithm such that upon any input s € {0,1}", algorithm G
outputs a string of length £(n). We say that G is a pseudorandom generator if
the following two conditions hold:

1. Expansion: For every n it holds that ¢(n) > n.

2. Pseudorandomness: For all probabilistic polynomial-time distinguishers
D, there exists a negligible function negl such that:

| Pr{D(r) = 1] — Pr[D(G(s)) = 1]| < negl(n),

where r is chosen uniformly at random from {0, 1} the seed s is
chosen uniformly at random from {0,1}", and the probabilities are taken
over the random coins used by D and the choice of r and s.

The function £(-) is called the expansion factor of G.

Discussion. An important point to notice is that the output of a pseudoran-
dom generator is actually very far from random. In order to see this, consider
the case that £(n) = 2n and so G doubles the length of its input. The distin-
guisher D receives a string of length 2n and must decide whether this string
is truly random (i.e., uniformly distributed), or just pseudorandom. Now, the
uniform distribution over {0,1}2" is characterized by the fact that each of
the 22" possible strings is chosen with probability exactly 272”. In contrast,

Private-Key Encryption and Pseudorandomness 71

consider the distribution generated by G. Since G receives an input of length
n, the number of different possible strings in its range is at most 2". Thus,
the probability that a random string of length 2n is in the range of G is at
most 27 /22" = 27" (just take the total number of strings in the range of G
and divide it by the number of strings of length 2n). That is, most strings of
length 2n do not occur as outputs of G.

This in particular means that it is trivial to distinguish between a random
string and a pseudorandom string given an unlimited amount of time. Con-
sider the following exponential-time D that works as follows: upon input some
string w, distinguisher D outputs 1 if and only if there exists an s € {0,1}"
such that G(s) = w. (This computation is carried out by searching all of
{0,1}™ and computing G(s) for every s € {0,1}". This computation can be
carried out because the specification of G is known; only its random seed is
unknown.) Now, if w was generated by G, it holds that D outputs 1 with
probability 1. In contrast, if w is uniformly distributed in {0,1}?" then the
probability that there exists an s with G(s) = w is at most 27", and so D
outputs 1 in this case with probability at most 27™. Then

|Pr[D(r) = 1] — Pr[D(G(s)) = 1]| =1 - 27",

which is huge. This type of attack is called a brute force attack because it
just tries all possible seeds. The advantage of such an “attack” is that it is
applicable to all generators and irrespective of how they work.

The above discussion shows that the distribution generated by G is actually
very far from random. Nevertheless, the key point is that polynomial-time
distinguishers don’t have time to carry out the above procedure. Furthermore,
if G is indeed a pseudorandom generator, then it is guaranteed that there
do not exist any polynomial-time procedures that succeed in distinguishing
random and pseudorandom strings. This means that pseudorandom strings
are just as good as truly random ones, as long as the seed is kept secret and
we are considering only polynomial-time observers.

The seed and its length. The seed for a pseudorandom generator must
be chosen uniformly at random, and be kept entirely secret from the dis-
tinguisher. Another important point, and one that is clear from the above
discussion of brute-force attacks, is that s must be long enough so that no
“efficient algorithm” has time to traverse all possible seeds. Technically, this
is taken care of by the fact that all algorithms are assumed to run in polyno-
mial time and thus cannot search through all 2™ possible seeds when n is large
enough. (This relies on the fact that our definitions of security are asymp-
totic.) In practice, however, the seed must be taken to be of some concrete
length. Based on the above, s must be long enough so that it is impossible to
efficiently try all possible seeds.

Existence of pseudorandom generators. The first question one should
ask is whether any entity satisfying Definition 3.15 even exists. Unfortunately,

72 Introduction to Modern Cryptography

we do not know how to unequivocally prove the existence of pseudorandom
generators. Nevertheless, we believe that pseudorandom generators exist, and
this belief is based on the fact that they can be constructed (in a provable
sense) under the rather weak assumption that one-way functions exist. This
will be discussed in greater detail in Chapter 6. For now, suffices it to say that
there are certain long-studied problems that have no known efficient algorithm
and that are widely assumed to be unsolvable in polynomial-time. An example
of such a problem is integer factorization: i.e., the problem of finding the prime
factors of a given number. What is important for our discussion here is that
one-way functions, and hence pseudorandom generators, can be constructed
under the assumption that these problems really are “hard”.

In practice, various constructions believed to act as pseudorandom genera-
tors are known. In fact, as we will see later in this chapter and in Chapter 5,
constructions exist that are believed to satisfy even stronger requirements.

3.4 Constructing Secure Encryption Schemes
3.4.1 A Secure Fixed-Length Encryption Scheme

We are now ready to construct a fixed-length encryption scheme that has
indistinguishable encryptions in the presence of an eavesdropper. The en-
cryption scheme we construct is very similar to the one-time pad encryption
scheme (see Section 2.2), except that a pseudorandom string is used as the
“pad” rather than a random string. Since a pseudorandom string “looks ran-
dom” to any polynomial-time adversary, the encryption scheme can be proven
to be computationally-secure.

The encryption scheme. Let G be a pseudorandom generator with expan-
sion factor ¢ (that is, |G(s)| = £(|s])). Recall that an encryption scheme is
defined by three algorithms: a key-generation algorithm Gen, an encryption
algorithm Enc, and a decryption algorithm Dec. The scheme is described in
Construction 3.16, and is depicted graphically in Figure 77.

We now prove that the given encryption scheme has indistinguishable en-
cryptions in the presence of an eavesdropper, under the assumption that G is a
pseudorandom generator. Notice that our claim is not unconditional. Rather,
we reduce the security of the encryption scheme to the properties of G as a
pseudorandom generator. This is a very important proof technique that was
described in Section 3.1.3 and will be discussed further after the proof itself.

THEOREM 3.17 If G is a pseudorandom generator, then Construc-
tion 3.16 is a private-key encryption scheme that has indistinguishable en-
cryptions in the presence of an eavesdropper.

Private-Key Encryption and Pseudorandomness 73

CONSTRUCTION 3.16

Let G be a pseudorandom generator with expansion factor ¢. Define a
private-key encryption scheme for messages of length ¢ as follows:

e Gen: on input 1", choose k < {0,1}" uniformly at random and
output it as the key.

e Enc: on input a key k € {0,1}" and a message m € {0,1}*™,
output the ciphertext
c:=G(k)®m.

e Dec: on input a key k € {0,1}" and a ciphertext ¢ € {0,1}*™,
output the plaintext message

m = G(k) ®c.

A private-key encryption scheme from any pseudorandom generator.

PROOF Let II denote Construction 3.16. We show that if there exists a
probabilistic polynomial-time adversary A for which Definition 3.9 does not
hold, then we can construct a probabilistic polynomial-time algorithm that
distinguishes the output of G from a truly random string. The intuition behind
this claim is that if IT used a truly random string in place of the pseudorandom
string G(k), then the resulting scheme would be identical to the one-time pad
encryption scheme and A would be unable to correctly guess which message
was encrypted with probability any better than 1/2. So, if Definition 3.9 does
not hold then .4 must (implicitly) be distinguishing the output of G from a
random string. The reduction we now show makes this explicit.
Let A be a probabilistic polynomial-time adversary, and define ¢ as

£(n) % Pr [PrivKSY (n) = 1] — % . (3.2)
We use A to construct a distinguisher D for the pseudorandom generator G,
such that D “succeeds” with probability e(n). The distinguisher is given a
string w as input, and its goal is to determine whether w was chosen uni-
formly at random (i.e., w is a “random string”) or whether w was generated
by choosing a random k and computing w := G(k) (i.e., w is a “pseudoran-
dom string”). D emulates the eavesdropping experiment for A (in a manner
described below), and observes whether A succeeds or not. If A succeeds then
D guesses that w must have been a pseudorandom string, while if .4 does not
succeed then D guesses that w was a random string. In detail:

Distinguisher D:
D is given as input a string w € {0,1}*(). (We assume n can be
determined from £¢(n).)

1. Run A(1™) to obtain the pair of messages mg, m; € {0, 1},

74 Introduction to Modern Cryptography

2. Choose a random bit b < {0,1}. Set ¢ := w ® m.

3. Give c to A and obtain output &'. OQutput 1 if b’ = b, and
output 0 otherwise.

Before analyzing the behavior of D, we define a modified encryption scheme
II = (Gen Enc Dec) that is exactly the one-time pad encryption scheme, ex-
cept that we now incorporate a security ' parameter that determines the length
of messages to be encrypted. That is, Gen(1™) outputs a completely random
key k of length ¢(n), and the encryption of a message m € £(n) using the key
k€ {0,1}*™ is the ciphertext ¢ := k @ m. (Decryption can be performed
as usual, but is inessential to what follows.) By the perfect secrecy of the
one-time pad, we have that

Pr [Priij:’ﬁ(n) = 1} =-. (3.3)

The main observations are as follows:

1. If w is chosen uniformly at random from {0,1}*"") then the view of A
when run as a sub-routine by D is distributed identically to the view of
A in experiment anKea" (n). This is because A is given a ciphertext

¢ =w ®my where w € {07 1}4™) is a completely random string.

2. If w is equal to G(k) for k < {0,1}"™ chosen uniformly at random, then
the view of A when run as a sub-routine by D is distributed identically
to the view of A in experiment PrivK’{"j(n). This is because A is given
a ciphertext ¢ = w ® my where w = G() for a uniformly-distributed
value k < {0,1}"™.

It therefore follows that for w « {0,1}*(™) chosen uniformly at random,
H eav]'
Pr[D(w) =1] =Pr [PrviAyﬁ(n) = 1] =3

where the second equality follows from Equation (3.3). In contrast, when
w = G(k) for k « {0,1}" chosen uniformly at random we have

Pr[D(w) = 1] = Pr[D(G(k)) = 1] = Pr [PrivK{'y(n) = 1] = % +e(n)
(by definition of €). Therefore,

| Pr{D(w) = 1] - Pr{D(G(s)) = 1]| = e(n)

where, above, w is chosen uniformly from {0, 1}*(™) and s is chosen uniformly
from {0,1}™. Since G is a pseudorandom generator (by assumption), it must
be the case that ¢ is negligible. Because of the way ¢ was defined (see Equa-
tion (3.2)), this concludes the proof that II has indistinguishable encryptions
in the presence of an eavesdropper. []

Private-Key Encryption and Pseudorandomness 75

It is easy to get lost in the details of the proof and wonder whether anything
has been gained as compared to the one-time pad; after all, Construction 3.16
also encrypts an ¢-bit message by XORing it with an ¢-bit string! The point
of the construction, of course, is that the ¢-bit string G(k) can be much
longer than the key k. In particular, using the above encryption scheme it
is possible to encrypt a file that is megabytes long using only a 128-bit key.
This is in stark contrast with Theorem 2.7 that states that for any perfectly-
secret encryption scheme, the key must be at least as long as the message
being encrypted. Thus, we see that the computational approach enables us
to achieve much more than when perfect secrecy is required.

Reductions — a discussion. We do not prove unconditionally that Con-
struction 3.16 is secure. Rather, we prove that it is secure under the assump-
tion that G is a pseudorandom generator. This approach of reducing the
security of a construction to some underlying primitive is of great importance
for a number of reasons. First, as we have already noted, we do not know
how to prove the existence of an encryption scheme satisfying Definition 3.9
and such a proof seems far out of reach today. Given this, reducing the se-
curity of a higher-level construction to a lower-level primitive has a number
of advantages (this is discussed further in Section 1.4.2). One of these advan-
tages is the fact that, in general, it is easier to design a lower-level primitive
than a higher-level one; it is similarly easier, in general, to be convinced that
something satisfies a lower-level definition than a higher-level one. This does
not mean that constructing a pseudorandom generator is “easy”, only that it
might be easier than construction an encryption scheme (from scratch). (Of
course, in the present case the encryption scheme does almost nothing except
to XOR the output of a pseudorandom generator and so this isn’t really true.
However, we will see more complex constructions and in these cases the ability
to reduce the task to a simpler one is of great importance.)

3.4.2 Handling Variable-Length Messages

The construction of the previous section has the disadvantage of allowing
encryption only of fized-length messages. (Le., for each particular value n of
the security parameter, only messages of length ¢(n) can be encrypted.) This
deficiency is easy to address by using a variable output-length pseudorandom
generator (defined next) in Construction 3.16.

Variable output-length pseudorandom generators. In some applica-
tions, we do not know ahead of time how many bits of pseudorandomness will
be needed. Thus, what we actually want is a pseudorandom generator that
can output a pseudorandom string of any desired length. More specifically,
we would like G to receive two inputs: the seed s and the length of the output
¢ (the length of ¢ is given in unary for the same reason the security parameter
is given in unary); it should then output a pseudorandom string of length ¢.
We now present the formal definition:

76 Introduction to Modern Cryptography

DEFINITION 3.18 A deterministic polynomial-time algorithm G is a
variable output-length pseudorandom generator if the following hold:

1. Let s be a string and £ > 0 be an integer. Then G(s,1%) outputs a string
of length (.

2. For all s,0,0" with £ < 0, the string G(s, 1Y) is a prefiz of G(s,1%).
def

3. Define Go(s) = G(s,10D). Then for every polynomial £(-) it holds
that Gy is a pseudorandom generator with expansion factor €.

We remark that any standard pseudorandom generator (as in Definition 3.15)
can be converted into a variable output-length one.

Given the above definition, we now modify encryption in Construction 3.16
in the natural way: encryption of a message m using the key k is done by
computing the ciphertext ¢ := G(k, 1/™) @ m; decryption of a ciphertext ¢
using the key k is done by computing the message m = G(k,1/°l) ® c. We
leave it as an exercise to prove that this scheme also has indistinguishable
encryptions in the presence of an eavesdropper.

3.4.3 Stream Ciphers and Multiple Encryptions

In the cryptographic literature, an encryption scheme of the type presented
in the previous two sections is often called a stream cipher. This is due to
the fact that encryption is carried out by first generating a stream of pseudo-
random bits, and then encrypting by XORing this stream with the plaintext.
Unfortunately, there is a bit of confusion as to whether the term “stream
cipher” refers to the algorithm that generates the stream (i.e., the pseudo-
random generator GG) or to the entire encryption scheme. This is a crucial
issue because the way a pseudorandom generator is used determines whether
or not a given encryption scheme is secure. In our opinion, it is best to use
the term stream cipher to refer to the algorithm that generates the pseudoran-
dom stream, and thus a “secure” stream cipher should satisfy the definition
of a variable output-length pseudorandom generator. Using this terminology,
a stream cipher is not an encryption scheme per se, but rather a tool for con-
structing encryption schemes.® The importance of this discussion will become
more clear when we discuss the issue of multiple encryptions, below.

Stream ciphers in practice. There are a number of practical constructions
of stream ciphers available, and these are typically extraordinarily fast. A
popular example is the stream cipher RC4 which is widely considered to be
secure when used appropriately (see below). We remark that the security

6Soon we will introduce the notion of a block cipher. In that context, it is accepted that this
term refers to the tool itself and not how it is used in order to achieve secure encryption.
We therefore prefer to use the term “stream cipher” analogously.

Private-Key Encryption and Pseudorandomness T

of practical stream ciphers is not yet very well understood, particularly in
comparison to block ciphers (introduced later in this chapter). This is borne
out by the fact that there is no standardized, popular stream cipher that has
been used for many years and whose security has not come into question. For
example, “plain” RC4 (that was considered secure at one point and is still
widely deployed) is now known to have a number of significant weaknesses.
For one, the first few bytes of the output stream generated by RC4 have been
shown to be biased. Although this may seem benign, it was also shown that
this weakness can be used to feasibly break the WEP encryption protocol used
in 802.11 wireless networks. (WEP is a standardized protocol for protecting
wireless communications. The WEP standard has since been updated to fix
the problem.) If RC4 is to be used, the first 1024 bits or so of the output
stream should be discarded.

Linear feedback shift registers (LSFRs) have, historically, also been popular
as stream ciphers. However, they have been shown to be horribly insecure (to
the extent that the key can be completely recovered given sufficiently-many
bytes of the output) and so should never be used today.

In general, we advocate the use of block ciphers in constructing secure
encryption schemes. Block ciphers are efficient enough for all but the most
resource-constrained environments, and seem to be more “robust” than stream
ciphers. For completeness, we remark that a stream cipher can be easily
constructed from a block cipher, as described in Section 3.6.4 below. The
disadvantage of this approach as compared to a dedicated stream cipher is
that the latter is much more efficient.

Security for Multiple Encryptions

Definition 3.9, and all our discussion until now, has dealt with the case when
the adversary receives a single ciphertext. In reality, however, communicating
parties send multiple ciphertexts to each other and an eavesdropper will see
many of these. It is therefore of great importance to ensure that the encryption
scheme being used is secure even in this setting.

Let us first give a definition of security. As in the case of Definition 3.9,
we first introduce an appropriate experiment that is defined for an encryption
scheme II, and adversary A, and a security parameter n:

The multi-message indistinguishability experiment PrivKﬂt"ﬁ (n):

1. The adversary A is given input 1™, and outputs a pair of
vectors of messages g, my such that each vector contains the
same number of messages, and for all i it holds that |m}| =
|mi|, where m} denotes the i*h element of Ty,.

2. A random key k is generated by running Gen(1™), and a
random bit b «— {0,1} is chosen. For all i, the ciphertext

78 Introduction to Modern Cryptography

¢t — Enck(m};) 18 computed and the vector of ciphertexts € is
given to A.

3. A outputs a bit b'.

4. The output of the experiment is defined to be 1 if b’ = b, and
0 otherwise.

The definition itself remains unchanged, except that it now refers to the
above experiment. That is:

DEFINITION 3.19 A private-key encryption scheme II = (Gen, Enc, Dec)
has indistinguishable multiple encryptions in the presence of an eavesdropper if
for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

1
Pr [PrivKﬂ‘fﬁ(n) =1 < 3 + negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment (for choosing the key and the random bit
b, as well as for the encryption itself).

An crucial point is that security for a single encryption (as in Definition 3.9)
does not imply security under multiple encryptions.

CLAIM 3.20 There exist private-key encryption schemes that are secure
with respect to Definition 3.9 but that are not secure with respect to Defini-
tion 3.19.

PROOF We do not have to look far to find an encryption scheme fulfilling
the claim. Specifically, Construction 3.16, that was proven secure for a single
encryption in Theorem 3.17, is not secure when used for multiple encryptions.
This should not come as a surprise because we have already seen that the
one-time pad is only secure when used once, and Construction 3.16 works in
a similar way.

Concretely, consider the following adversary A attacking the encryption
scheme (in the sense defined by experiment PrivK™®): A outputs the vectors
mo = (0",0") and m; = (0™,1™). That is, the first vector contains two
plaintexts, where each plaintext is just a length-n string of zeroes. In contrast,
in the second vector the first plaintext is all zeroes and the second is all ones.
Now, let € = (¢!, ¢?) be the vector of ciphertexts that A receives. If ¢! = ¢2,
then A outputs 0; otherwise, A outputs 1.

We now analyze A’s success in guessing b. The main point is that Construc-
tion 3.16 is deterministic, so that if the same message is encrypted multiple
times then the same ciphertext results each time. Now, if b = 0 then the same

Private-Key Encryption and Pseudorandomness 79
message is encrypted each time (since m{ = m2); then ¢! = ¢ and hence A
always outputs 0 in this case. On the other hand, if b = 1 then a different
message is encrypted each time (since m1 # m?) and ¢! # ¢?; here, A always
outputs 1. We conclude that A outputs ' = b with probability 1 and so the
encryption scheme is not secure with respect to Definition 3.19. []

Necessity of probabilistic encryption. In the proof of Claim 3.20 we
have shown that Construction 3.16 is not secure for multiple encryptions.
The only feature of that construction used in the proof was that encrypting
a message always yields the same ciphertext, and so we actually obtain that
any deterministic scheme must be insecure for multiple encryptions. This is
important enough to state as a theorem.

THEOREM 3.21 Let 11 = (Gen, Enc,Dec) be an encryption scheme for
which Enc is a deterministic function of the key and the message. Then II
does not satisfy Definition 3.19.

To construct an encryption scheme secure with respect to Definition 3.19,
then, we will have to (at a minimum) ensure that even when the same message
is encrypted multiple times, we obtain a different ciphertext each time. (At
first sight this may seem like an impossible task to achieve. However, we will
see later how to achieve this.)

Multiple encryptions using a stream cipher — a common error.
Unfortunately, incorrect implementations of cryptographic constructions are
very frequent. One common error is to use a stream cipher (in its naive form
as in Construction 3.16) in order to encrypt multiple plaintexts. For just one
example, this error appears in an implementation of encryption in Microsoft
Word and Excel; see [132]. In practice, such an error can be devastating. We
emphasize that this is not just a “theoretical artefact” due to the fact that
encrypting the same message twice yields the same message. Even if the same
message is never encrypted twice, various attacks are possible.

Secure multiple encryptions using a stream cipher. There are typically
two ways in which a stream cipher/pseudorandom generator can be used in
practice to securely encrypt multiple plaintexts:

1. Synchronized mode: In this mode, the communicating parties use a dif-
ferent part of the stream output by the stream cipher in order to encrypt
each message. This mode is “synchronized” because both parties need
to know which parts of the stream have already been used in order to
prevent re-use, which (as we have already shown) is not secure.

This mode is useful in a setting where parties are communicating in a
single session. In this setting, the first party uses the first part of the
stream in order to send its first message. The second party obtains

80

Introduction to Modern Cryptography

the ciphertext, decrypts, and then uses the next part of the stream in
order to encrypt its reply. The important point to notice here is that
since each part of the stream is used only once, it is possible to view
the concatenation of all of the messages sent by the parties as a single
(long) plaintext. Security of the scheme therefore follows immediately
from Theorem 3.17.

This mode is not suitable in all applications because the parties are
required to maintain state between encryptions (in particular, to tell
them which portion of the stream to use next). For this reason, security
of this encryption method does not contradict Theorem 3.21 (as it is
technical no longer an encryption scheme as per Definition 3.8.

. Unsynchronized mode: In this mode, encryptions are carried out inde-

pendently of one another and the parties do not need to maintain state.
In order to achieve security, however, our notion of a pseudorandom gen-
erator must be significantly strengthened. Now, we view a pseudoran-
dom generator as taking two inputs: a seed s and an initial vector IV of
length n. The requirement, roughly speaking, is that G(s, I'V') is pseudo-
random even when IV is known (but s is kept secret). Furthermore, for
two randomly-chosen initial vectors I'V; and I'V;, the streams G(s, IV7)
and G(s,IVs) are pseudorandom even when viewed together and with
their respective I'Vs. We stress that the same seed s is used each time.
The above could be formalized in a similar way to Definition 3.15, by re-
quiring that no polynomial-time distinguisher D can tell the difference
between (IVy,G(s,IV1),IVa,G(s,IV3)) and (IVy,r1,IVa,r9) where rq
and 79 are independently-chosen, uniformly-distributed strings of the
appropriate length.

Given a generator as above, encryption can be defined as
Enci(m) := (IV, G(k,IV) & m)

where IV is chosen at random. (For simplicity, we focus on encrypting
fixed-length messages.) The IV is chosen fresh (i.e., uniformly at ran-
dom) for each encryption and thus each stream is pseudorandom, even
if previous streams are known. Note that the IV is sent as part of the
plaintext in order to enable the recipient to decrypt; i.e., given (IV,¢),
the recipient can compute m := c® G(k, IV).

Many stream ciphers in practice are assumed to have the augmented
pseudorandomness property sketched informally above and can thus be
used in unsynchronized mode. However, we warn that a standard pseu-
dorandom generator may not have this property, and that this assump-
tion is a strong one (in fact, such a generator is almost a pseudorandom
function; see Section 3.6.1).

These two modes are depicted in Figure 3.1.

Private-Key Encryption and Pseudorandomness 81

The Stream:
’ Part 1 Part 2 | Part 3 | Part 4 ‘
b I 1 Y
\ Message 1 ‘ ’ Message 2 ‘ ’ Message 3 ‘ ’ Message 4 ‘

KNS

: Stream 1
v,
K
~
Stream 2
v,
2

FIGURE 3.1: Synchronized mode versus unsynchronized mode

3.5 Security under Chosen-Plaintext Attacks (CPA)

Until now we have considered a relatively weak adversary who only pas-
sively eavesdrops on the communication between two honest parties. (Of
course, our actual definition of PrivK®*®" allows the adversary to choose the
plaintexts that are to be encrypted. Nevertheless, beyond this capability the
adversary is completely passive.) In this section, we formally introduce a more
powerful type of adversarial attack, called a chosen-plaintext attack (CPA). As
compared to Definition 3.9, the definition of a break remains the same but
the adversary’s capabilities are strengthened.

The basic idea behind a chosen-plaintext attack is that the adversary A is
allowed to ask for encryptions of multiple messages that it chooses “on-the-
fly” in an adaptive manner. This is formalized by allowing A to interact freely
with an encryption oracle, viewed as a “black-box” that encrypts messages of
A’s choice (these encryptions are computed using the secret key k unknown
to A). Following standard notation in computer science, we denote by A°()
the computation of A given access to an oracle O, and thus in this case we
denote the computation of A with access to an encryption oracle by AE"x ().
When A queries its oracle by providing it with a plaintext message m as
input, the oracle returns a ciphertext ¢ < Enci(m) as the reply. When Enc is
randomized, the oracle uses fresh random coins each time it answers a query.

The definition of security requires that A should not be able to distinguish
the encryption of two arbitrary messages, even when A is given access to
an encryption oracle. We present the definition and afterwards discuss what
real-world adversarial attacks the definition is meant to model.

82 Introduction to Modern Cryptography

We first define an experiment for any private-key encryption scheme II =
(Gen, Enc, Dec), any adversary A, and any value n for the security parameter:

cpa

The CPA indistinguishability experiment PrivK";(n):

1. A random key k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle access to Enc(+),
and outputs a pair of messages mg, my of the same length.

3. A random bit b — {0,1} is chosen, and then a ciphertext
¢ — Encg(my) is computed and given to A. We call ¢ the
challenge ciphertext.

4. The adversary A continues to have oracle access to Ency(-),
and outputs a bit b'.

5. The output of the experiment is defined to be 1 if b’ = b,
and 0 otherwise. (In case PrivK}(n) = 1, we say that A
succeeded.)

DEFINITION 3.22 A private-key encryption scheme II = (Gen, Enc, Dec)
has indistinguishable encryptions under a chosen-plaintext attack (or is CPA-
secure) if for all probabilistic polynomial-time adversaries A there erists a
negligible function negl such that

1
Pr [Privaj’fH(n) =1| < 3T negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment.

Before proceeding to discuss the definition, we remark that any scheme
that is secure under chosen-plaintext attacks is clearly secure in the presence
of an eavesdropping adversary. This holds because PrivK®®" is a special case
of PrivK®®® where the adversary doesn’t use its oracle at all.

At first sight, it may appear that Definition 3.22 is impossible to achieve.
In particular, consider an adversary that outputs (mg,m1) and then receives
¢ — Enci(my). Since the adversary has oracle access to Ency(+), it can request
that this oracle encrypt the messages my and m; and A can thus obtain
co «— Enci(mg) and ¢; < Encg(my). It can then compare ¢y and ¢; to its
“challenge ciphertext” ¢; if ¢ = ¢g then it knows that b = 0, and if ¢ = ¢; then
it knows that b = 1. Why doesn’t this strategy allow A to determine b with
probability 17

The answer is that indeed, as with security under multiple encryptions,
no deterministic encryption scheme can be secure against chosen-plaintext
attacks. Rather, any CPA-secure encryption scheme must be probabilistic.

Private-Key Encryption and Pseudorandomness 83

That is, it must use random coins as part of the encryption process in order
to ensure that two encryptions of the same message are different.”

Chosen-plaintext attacks in the real world. Definition 3.22 is at least
as strong as our earlier Definition 3.9, and so certainly no security is lost
by working with this newer definition. In general, however, there may be
a price for using a definition that is too strong if it causes us to use less
efficient schemes or to reject highly-efficient schemes that would suffice for
“real-world applications”. We should therefore ask ourselves whether chosen-
plaintext attacks represent a realistic adversarial threat that we should be
worried about.

In fact, chosen-plaintext attacks (in one form or another) are a realistic
threat in many scenarios. We demonstrate this by first looking at some mil-
itary history from World War II. In May 1942, US Navy cryptanalysts had
discovered that Japan was planning an attack on Midway island in the Cen-
tral Pacific. They had learned this by intercepting a communication message
containing the ciphertext fragment “AF” that they believed corresponded to
the plaintext “Midway island”. Unfortunately, their attempts to convince
Washington planners that this was indeed the case were futile; the general
belief was that Midway could not possibly be the target. The Navy crypt-
analysts then devised the following plan. They instructed the US forces at
Midway to send a plaintext message that their freshwater supplies were low.
The Japanese intercepted this message and immediately reported to their su-
periors that “AF” was low on water. The Navy cryptanalysts now had their
proof that “AF” was indeed Midway, and the US forces dispatched three air-
craft carriers to the location. The result is that Midway was saved, and the
Japanese incurred great losses. It is even said that this battle was the turning
point in the war by the US against Japan in the Pacific. (See [87, 131] for
more information.)

Coming back to the relevance of this for us here, note that the Navy crypt-
analysts here carried out exactly a chosen-plaintext attack. They essentially
were able to “request” (albeit in a roundabout way) the Japanese to encrypt
the word “Midway” in order to learn information about another ciphertext
that they had previously intercepted. If the Japanese encryption scheme had
been secure against chosen-plaintext attacks, this strategy by the US crypt-
analysts would not have worked (and history may have turned out very differ-
ently!). We stress that the Japanese never intended to act as an “encryption
oracle” for the US and thus were they to analyze the necessity for CPA se-
curity, it is unlikely that they would have concluded that it was necessary.®

7As we have seen, if the encryption process maintains state between successive encryptions
(as in the synchronized mode for stream ciphers), random coin tosses may not be necessary.
As per Definition 3.8, we typically consider only stateless schemes (which are preferable).
8]t is a worthwhile mental exercise to think whether you would have anticipated such an
attack.

84 Introduction to Modern Cryptography

We therefore strongly encourage always using encryption that is secure under
chosen plaintext attacks.

We warn against thinking that chosen-plaintext attacks are only relevant
to military applications. In fact there are many cases when an adversary can
influence what is encrypted by an honest party (even if it is more unusual for
the adversary to be in complete control over what is encrypted). Consider
the following example: many servers communicate with each other today in a
secured way (i.e., using encryption). However, the messages that these servers
send to each other are based on internal and external requests that they re-
ceive, which are in turn chosen by users that may actually be attackers. These
attackers can therefore influence the plaintext messages that the servers en-
crypt, sometimes to a great extent. Such systems must therefore be protected
by using an encryption scheme that is secure against chosen-plaintext attacks.

CPA security for multiple encryptions. The extension of Definition 3.22
to the case of multiple encryptions is straightforward and is the same as the
extension of Definition 3.9 to Definition 3.19. That is, we define an experiment
which is exactly the same as PrivK®® except that A outputs a pair of vectors
of plaintexts. Then, we require that no polynomial-time A can succeed in the
experiment with probability that is non-negligibly greater than 1/2.

Importantly, CPA security for a single encryption automatically implies
CPA security for multiple encryptions. (This stands in contrast to the case
of eavesdropping adversaries; see Claim 3.20.) We state the claim here with-
out proof (a similar claim, but in the public-key setting, is proved in Sec-
tion 10.2.2):

CLAIM 3.23 Any private-key encryption scheme that has indistinguishable
encryptions under a chosen-plaintext attack also has indistinguishable multiple
encryptions under a chosen-plaintext attack.

This is a significant technical advantage of the definition of CPA security,
since it suffices to prove that a scheme is secure for a single encryption and
we then obtain “for free” that it is secure for multiple encryptions as well.

Fixed-length vs. arbitrary-length messages. Another advantage of work-
ing with the definition of CPA-security is that it allows us to treat fixed-
length encryption schemes without much loss of generality. In particular,
we claim that given any CPA-secure fized-length encryption scheme Il =
(Gen, Enc, Dec) it is possible to construct a CPA-secure encryption scheme
I = (Gen’,Enc’, Dec’) for arbitrary-length messages quite easily. For sim-
plicity, say II has length parameter 1 so that it only encrypts messages that
are 1-bit long (though everything we say extends in the natural way for any
length parameter). Leave Gen’ the same as Gen. Define Encj, for any message
m (having some arbitrary length ¢) in the following way:

Enc,.(m) = Encr(m1),. .., Enci(my),

Private-Key Encryption and Pseudorandomness 85

where m = my---my and m; € {0,1} for all i. Decryption is done in the
natural way. We claim that II’ is CPA-secure if and only if IT is. A proof is
left as an easy exercise for the reader.

Notwithstanding the above, there may in practice be more efficient ways
to encrypt messages of arbitrary length than by adapting a fixed-length en-
cryption scheme in the above manner. We treat other ways of encrypting
arbitrary-length messages in Section 3.6.4.

3.6 Constructing CPA-Secure Encryption Schemes

In this section we will construct encryption schemes that are secure against
chosen-plaintext attacks. We begin by introducing the important notion of
pseudorandom functions.

3.6.1 Pseudorandom Functions

As we have seen, pseudorandom generators can be used to obtain security in
the presence of eavesdropping adversaries. The notion of pseudorandomness is
also instrumental in obtaining security against chosen-plaintext attacks. Now,
however, instead of considering pseudorandom strings, we consider pseudoran-
dom functions. We will specifically be interested in pseudorandom functions
mapping n-bit strings to n-bit strings. As in our earlier discussion of pseu-
dorandomness, it does not make much sense to say that any fized function
f:{0,1}"™ — {0,1}" is pseudorandom (in the same way that it makes little
sense to say that any fixed function is random). Thus, we must technically
refer to the pseudorandomness of a distribution on functions. An easy way to
do this is to consider keyed functions, defined next.

A keyed function F is a two-input function F': {0,1}* x {0,1}* — {0,1}%,
where the first input is called the key and denoted k, and the second input is
just called the input. In general the key k& will be chosen and then fized, and
we will then be interested in the (single-input) function Fj, : {0,1}* — {0,1}*
defined by F(x) def F(k,x). For simplicity, we will assume that F' is length-
preserving so that the key, input, and output lengths of F' are all the same; i.e.,
we assume that the function F' is only defined when the key k£ and the input
2 have the same length, in which case |Fy(z)| = |z| = |k|. So, by fixing a key
k € {0,1}™ we obtain a function Fj(-) mapping n-bit strings to n-bit strings.
We say F' is efficient if there is a deterministic polynomial-time algorithm
that computes F'(k,x) given k and x as input. We will only be interested in
function F that are efficient.

A keyed function F' induces a natural distribution on functions given by
choosing a random key k < {0,1}" and then considering the resulting single-

86 Introduction to Modern Cryptography

input function Fj. Intuitively, we call F' pseudorandom if the function F}
(for randomly-chosen key k) is indistinguishable from a function chosen uni-
formly at random from the set of all functions having the same domain and
range; that is, if no polynomial-time adversary can distinguish whether it is
interacting — in a sense we will more carefully define soon — with Fj (for
randomly-chosen key k) or f (where f is chosen at random from the set of all
functions mapping n-bit strings to n-bit strings).

Since the notion of choosing a function at random is less familiar than the
notion of choosing a string at random, it is worth spending a bit more time on
this idea. From a mathematical point of view, we can consider the set Func,,
of all functions mapping n-bit strings to n-bit strings; this set is finite (as we
will see in a moment), and so randomly selecting a function mapping n-bit
strings to n-bit strings corresponds exactly to choosing an element uniformly
at random from this set. How large is the set Func,,? A function f is exactly
specified by its value on each point in its domain; in fact, we can view any
function (over a finite domain) as a large look-up table that stores f(x) in
the row of the table labeled by x. For f,, € Func,, the look-up table for f,
has 2™ rows (one for each point of the domain {0,1}") and each row contains
an n-bit string (since the range of f,, is {0,1}™). Any such table can thus be
represented using exactly n - 2™ bits. Moreover, the functions in Func,, are
in one-to-one correspondence with look-up tables of this form; meaning that
they are in one-to-one correspondence with all strings of length n - 2. We
conclude that the size of Func,, is 272",

Viewing a function as a look-up table provides another useful way to think
about selecting a function f,, € Func, uniformly at random. Indeed, this is
exactly equivalent to choosing each row of the look-up table of f,, uniformly
at random. That is, the values f,(z) and f,(y) (for = # y) are completely
independent and uniformly distributed.

Coming back to our discussion of pseudorandom functions, recall that we
wish to construct a keyed function F' such that Fj (for k < {0,1}" chosen
uniformly at randomly) is indistinguishable from f,, (for f,, < Func, chosen
uniformly at random). Note that the former is chosen from a distribution over
(at most) 2™ distinct functions, whereas the latter is chosen from a distribu-
tion over all 272" functions in Func,. Despite this, the “behavior” of these
functions must look the same to any polynomial-time distinguisher.

A first attempt at formalizing the notion of a pseudorandom function would
be to proceed in the same way as in Definition 3.15. That is, we could re-
quire that every polynomial-time distinguisher D that receives a description
of the pseudorandom function Fj outputs 1 with “almost” the same proba-
bility as when it receives a description of a random function f,. However,
this definition is inappropriate since the description of a random function has
exponential length (i.e., given by its look-up table which has length n - 2™),
while D is limited to running in polynomial time. So, D would not even have
sufficient time to examine its entire input.

The actual definition therefore gives D oracle access to the function in

Private-Key Encryption and Pseudorandomness 87

question (either Fj or f,); D is allowed to query the oracle at any point z, in
response to which the oracle returns the value of the function evaluated at x.
We treat this oracle as a black-box in the same way as when we provided the
adversary with oracle access to the encryption procedure in the definition of a
chosen-plaintext attack. (Although here the oracle is computing a determin-
istic function, and so always returns the same result when queried twice on
the same input.) We are now ready to present the formal definition.

DEFINITION 3.24 Let F : {0,1}* x {0,1}* — {0,1}* be an efficient,
length-preserving, keyed function. We say F is a pseudorandom function if
for all probabilistic polynomial-time distinguishers D, there exists a negligible
function negl such that:

Pr[DF0)(17) = 1] — Pr[D) (1™) = 1]| < negl(n),

where k «— {0,1}" is chosen uniformly at random and f, is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bit strings.

Notice that D interacts freely with its oracle. Thus, it can ask queries
adaptively, choosing the next input based on the previous outputs received.
However, since D runs in polynomial time, it can only ask a polynomial
number of queries. Notice also that a pseudorandom function must inherit
any efficiently checkable property of a random function. For example, even if
x and 2’ differ in only a single bit, the outputs Fj(z) and Fj(2’) must (with
overwhelming probability over choice of k) look completely uncorrelated. This
gives a hint as to why pseudorandom functions are useful for constructing
secure encryption schemes.

An important point in the definition is that the distinguisher D is not
given the key k. It is meaningless to require that Fj be pseudorandom if &
is known, since it is trivial to distinguish an oracle for Fj from an oracle for
fn given k: simply query the oracle at the point 0™ to obtain the answer y,
and compare this to the result ¥y’ = Fj(0™) that can be computed using the
known value k. An oracle for F} will always return y = 3/, while an oracle for
a random function will have y = gy’ with probability only 27". In practice,
this means that once k is revealed then all claims to the pseudorandomness
of F) no longer hold. To take a concrete (though made-up) example: say F'
is pseudorandom. Then given oracle access to F (for random k), it will be
hard to find an input z for which Fi(x) = 0™ (since it would be hard to find
such an input for a truly random function f,). But if k is known then finding
such an input may be easy.

On the existence of pseudorandom functions. As with pseudorandom
generators, it is important to ask whether such entities exist (and under what
assumptions). For now we just note that there exist efficient primitives called
block ciphers that are believed to act as pseudorandom functions. From a

88 Introduction to Modern Cryptography

theoretical point of view, pseudorandom functions exist if and only if pseu-
dorandom generators exist, and so pseudorandom functions can in fact be
constructed based on any of the hard problems from which pseudorandom
generators can be constructed. We will discuss these issues further in Chap-
ters 5 and 6. We remark that the existence of pseudorandom functions is very
surprising, and the fact that these can be constructed based on hard problems
of a certain type represents one of the truly amazing contributions of modern

cryptography.

Using pseudorandom functions in cryptography. Pseudorandom func-
tions turn out to be a very useful building block for a number of different
cryptographic constructions. We use them below to obtain CPA-secure en-
cryption and in Chapter 4 to construct message authentication codes. One
of the reasons that they are so useful is that they enable a clean and elegant
analysis of the constructions that use them. That is, given a scheme that is
based on a pseudorandom function, a general way of analyzing the scheme is
to first prove its security under the assumption that a truly random function
is used instead. This step relies on a probabilistic analysis and has nothing to
do with computational bounds or hardness. Next, the security of the original
scheme is derived by proving that if an adversary can break the scheme when
a pseudorandom function is used, then it must implicitly be distinguishing
the function from random.

3.6.2 CPA-Secure Encryption Schemes from Pseudorandom
Functions

We focus here on constructing a fixed-length encryption scheme that is
CPA-secure. By what we have said at the end of Section 3.5, this implies the
existence of a CPA-secure encryption scheme for arbitrary-length messages.
In Section 3.6.4 we will consider more efficient ways of handling messages of
arbitrary length.

A naive attempt at constructing a secure encryption scheme from a pseudo-
random function is to define Encg(m) = Fi(m). On the one hand, we expect
that this “reveals no information about m” (since f,(m) for a random func-
tion f,, is simply a random n-bit string). However, performing encryption in
this way gives a deterministic encryption scheme and so it cannot be CPA-
secure. Concretely, given ¢ = Ency(my) it is possible to request an encryption
of Encg(mp) and Encg(mq); since Encg(-) = Fi(+) is a deterministic function,
one of the encryptions will equal ¢ and thus reveal the value of b.

Our actual construction is probabilistic. Specifically, we encrypt by apply-
ing the pseudorandom function to a random value r (rather than the plaintext
message) and XORing the result with the plaintext. (See Construction 3.25
and Figure ??.) This can again be viewed as an instance of XORing a pseu-
dorandom “pad” with a plaintext message, with the major difference being
the fact that an independent pseudorandom string is used each time (since

Private-Key Encryption and Pseudorandomness 89

the pseudorandom function is applied to a different input each time). Actu-
ally, this is not quite true since it is possible that a random value used for
encryption repeats and is used more than once; we will have to explicitly take
this into account in our proof.

CONSTRUCTION 3.25

Let F be a pseudorandom function. Define a private-key encryption
scheme for messages of length n as follows:

e Gen: on input 1™, choose k < {0,1}" uniformly at random and
output it as the key.

e Enc: oninput akey k € {0,1}"™ and a message m € {0,1}", choose
r < {0, 1}" uniformly at random and output the ciphertext

c:=(r, Fr(r) @ m).

e Dec: on input a key k € {0,1}" and a ciphertext ¢ = (r, s), output
the plaintext message

m = F(r) ® s.

A CPA-secure encryption scheme from any pseudorandom function.

Intuitively, security holds because Fj(r) looks completely random to an
adversary who observes a ciphertext (r, s) — and thus the encryption scheme
is similar to the one-time pad — as long as the value r was not used in some
previous encryption (specifically, as long as it was not used by the encryption
oracle when answering one of the adversary’s queries). Moreover, this “bad
event” (namely, a repeating value of r) occurs with only negligible probability.

THEOREM 3.26 IfF is a pseudorandom function, then Construction 3.25
is a fized-length private-key encryption scheme with length parameter £(n) = n
that has indistinguishable encryptions under a chosen-plaintezt attack.

PROOF The proof here follows a general paradigm for working with pseu-
dorandom functions. First, we analyze the security of the scheme in an ideal-
ized world where a truly random function f,, is used in place of Fj, and show
that the scheme is secure in this case. Next, we claim that if the scheme were
insecure when Fj was used then this would imply the possibility of distin-
guishing F} from a truly random function.

Let II = (é\eﬁ, Enc, DAe/c) be an encryption scheme that is exactly the same
as IT = (Gen, Enc,Dec) in Construction 3.25, except that a truly random

function f,, is used in place of F}j,. That is, 651(1") chooses a random function

90 Introduction to Modern Cryptography

fn < Func,, and Enc encrypts just like Enc except that f, is used instead
of Fi. (This is not a legal encryption scheme because it is not efficient.
Nevertheless, this is a mental experiment for the sake of the proof, and is well
defined for this purpose.) We claim that for every adversary A that makes at
most g(n) queries to its encryption oracle, we have

Laln) (3.4)

. Lecpa _
Pr [PrviA,ﬁ(n) = 1} < on

N =

(Note that we make no assumptions here regarding the computational power
of A.) To see this, recall that every time a message m is encrypted (ei-
ther by the encryption oracle or when the challenge ciphertext in experiment
PrivKi’aﬁ(n) is computed), a random r € {0,1}" is chosen and the cipher-
text is set equal to (r, f,(r) ®@m). Let r. denote the random string used
when generating the challenge ciphertext ¢ = (r., fn(re) ®myp). There are
two subcases:

1. The value 7. is used by the encryption oracle to answer at least one
of A’s queries: In this case, A may easily determine which of its mes-
sages was encrypted. This is so because whenever the encryption oracle
returns a ciphertext (r, s) in response to a request to encrypt the mes-
sage m, the adversary learns the value of f,,(r) (since f,(r) = s ® m).

However, since A makes at most g(n) queries to its oracle and each
oracle query is answered using a value r chosen uniformly at random,
the probability of this event is at most ¢(n)/2™.

2. The value 7. is never used by the encryption oracle to answer any of A’s
queries: In this case, A learns nothing about the value of f, (1) from
its interaction with the encryption oracle (since f, is a truly random
function). That means that, as far as A is concerned, the value f,(r.)
that is XORed with my is chosen uniformly at random, and so the
probability that .4 outputs b’ = b in this case is exactly 1/2 (as in the
case of the one-time pad.)

Let Repeat denote the event that r. is used by the encryption oracle to
answer at least one of A’s queries. We have

. Lecpa o _ . 1ecpa _
Pr[PrviAﬁ(n) =1]= Pr[PrviA)ﬁ(n) = 1 A Repeat]
+ P]r[PrivK‘;'l’)aﬁ (n) =1 A Repeat|
< Pr[Repeat] + Pr[Priij’aﬁ(n) =1 | Repeat]

cqn) 1

— 27’L 2)

as stated in Equation (3.4).

Private-Key Encryption and Pseudorandomness 91

Now, fix some PPT adversary A and define the function € by

(S) . Cpa 1
e(n) © pr [Pr.vK @ (n) = 1} -5 (3.5)
The number of oracle queries made by A is upper bounded by its running-
time. Since A runs in polynomial-time, the number of oracle queries it makes
is upper bounded by some polynomial ¢(-). Note that Equation (3.4) also
holds with respect to this A. Thus, at this point, we have the following:

Pr[Priij}I(n) =1 <

and 1
Pr[PrivK 3% (n) = 1] = 5t e(n).

If € is not negligible, then the difference between these is not negligible, ei-
ther. Intuitively, such a “gap” (if present) would enable us to distinguish the
pseudorandom function from a truly random function. Formally, we prove
this via reduction.

We use A to construct a distinguisher D for the pseudorandom function F.
The distinguisher D is given oracle access to some function, and its goal is
to determine whether this function is “pseudorandom” (i.e., equal to F}, for
randomly-chosen k <« {0,1}") or “random” (i.e., equal to f, for randomly-
chosen f,, « Func,). To do this, D emulates the CPA indistinguishability
experiment for A (in a manner described below), and observes whether A
succeeds or not. If A succeeds then D guesses that its oracle must be a
pseudorandom function, while if A does not succeed then D guesses that its
oracle must be a random function. In detail:

Distinguisher D:
D is given as input 1™ and has access to an oracle O.

1. Run A(1™). Whenever A queries its encryption oracle on a
message m, answer this query in the following way:
(a) Choose r < {0,1}" uniformly at random.
(b) Query O(r) and obtain response s’.
(c) Return the ciphertext (r,s’ @ m) to A.
2. When A outputs messages mg, m1 € {0,1}", choose a ran-
dom bit b « {0,1} and then:
(a) Choose r « {0,1}" uniformly at random.
(b) Query O(r) and obtain response s'.
(c) Return the challenge ciphertext (r, s’ @ my) to A.
3. Continue answering any encryption oracle queries of A as

before. Eventually, A outputs a bit &’. Output 1 if ¥’ = b,
and output 0 otherwise.

92 Introduction to Modern Cryptography

The key points are as follows:

1. If D’s oracle is a pseudorandom function, then the view of A when
run as a sub-routine by D is distributed identically to the view of A
in experiment PrivK}%;(n). This holds because a key k is chosen at
random and then every encryption is carried out by choosing a random
r, computing s’ = Fy(r), and setting the ciphertext equal to (r, s’ & m),
exactly as in Construction 3.25. Thus,

Pr [DFO)(17) = 1} — Pr [Privag}[(n) =1],
where k < {0,1}" is chosen uniformly at random in the above.

2. If D’s oracle is a random function, then the view of A when run as a sub-
routine by D is distributed identically to the view of A in experiment
Priijaﬁ(n). This can be seen exactly as above, with the only difference

being that a random function fn is used instead of Fj. Thus,

Pr [Df"(')(ln) = 1} =Pr [Priijaﬁ(n) = 1} ,

s

where f,, < Func, is chosen uniformly at random in the above.

Since F' is a pseudorandom function and D runs in probabilistic polynomial
time, there exists a negligible function negl such that

}Pr [DFH')(l") - 1] _Pr [Dfn<'>(1") - 1] ‘ < negl(n).

Combining this with the above observations and Equations (3.4) and (3.5),
we have that

negl(n) > |Pr [DFk<'>(1") - 1} —Pr [Df"(')(ln) - 1”
= ‘Pr [Privafl’)aH(n) = 1] —Pr {Priijfﬁ(n) = 1] ‘
> Pr |PrivK} T (n) = 1} —Pr [PrivKi’fﬁ(n) = 1}

1 1 q(n)
> = _
25 +e(n) 5 o

()_Q(n)

=e(n o

from which we see that e(n) < negl(n) 4+ ¢(n)/2". Since ¢ is polynomial this
means that ¢ is negligible, completing the proof. []

As discussed in Section 3.5, any CPA-secure fixed-length encryption scheme
automatically yields a CPA-secure encryption scheme for messages of arbitrary
length. Applying the approach discussed there to the fixed-length scheme we

Private-Key Encryption and Pseudorandomness 93

have just constructed, the encryption of a message m = mg, ..., my, where
each m; is an n-bit block, is given by

(r1, Fi(r1) @ ma, ro, Fp(ro) @ ma, ..., ¢, Fi(re) & my).

The scheme can handle messages whose length is not an exact multiple of n
by truncation; we omit the details. We have:

COROLLARY 3.27 IfF is a pseudorandom function, the scheme sketched
above is a private-key encryption scheme for arbitrary-length messages that
has indistinguishable encryptions under a chosen-plaintezt attack.

Efficiency of Construction 3.25. The CPA-secure encryption scheme in
Construction 3.25, and its extension to arbitrary-length messages in the corol-
lary above, has the drawback that the length of the ciphertext is (at least)
double the length of the plaintext. This is because each block of size n is
encrypted using an n-bit random string which must be included as part of the
ciphertext. In Section 3.6.4 we will show how long plaintexts can be encrypted
more efficiently.

3.6.3 Pseudorandom Permutations and Block Ciphers

Let F:{0,1}* x {0,1}* — {0,1}* be an efficient, length-preserving, keyed
function. We call F' a keyed permutation if for every k, the function Fj(-) is
one-to-one (and therefore, since F' is length-preserving, a bijection). We say a
keyed permutation is efficient if there is a polynomial-time algorithm comput-
ing Fi(x) given k and x, as well as a polynomial-time algorithm computing
F*(x) given k and x.

We define what it means for a keyed permutation F' to be pseudorandom
in a manner analogous to Definition 3.24 but with two differences. First, we
require that F) (for a randomly-chosen k) be indistinguishable from a ran-
dom permutation rather than a random function. This is merely an aesthetic
choice since random permutations and random functions are anyway indis-
tinguishable using polynomially-many queries. The second difference is more
significant, and is motivated by the fact that cryptographic schemes using a
keyed permutation may utilize the inverse F)~ Lin addition to Fj,. Thus, we
require Fj to be indistinguishable from a random permutation even if the dis-
tinguisher is given oracle access to the inverse of the permutation.® Formally:

9In some other works, a pseudorandom permutation is defined by considering a distin-
guisher that is only given access to the permutation (and not its inverse) as in the case of
Definition 3.24, and the stronger variant we define in Definition 3.28 is called a strong or
super pseudorandom permutation.

94 Introduction to Modern Cryptography

DEFINITION 3.28 Let F: {0,1}* x {0,1}* — {0,1}* be an efficient,
keyed permutation. We say F is a pseudorandom permutation if for all prob-
abilistic polynomial-time distinguishers D, there exists a negligible function
negl such that:

Pr[DFO-F O (1) = 1] — Pr[D/+ OO (1) = 1]| < negl(n),

where k — {0,1}™ is chosen uniformly at random and f, is chosen uniformly
at random from the set of permutations on n-bit strings.

A pseudorandom permutation can be used in place of a pseudorandom
function in any cryptographic construction. This is due to the fact that to
any polynomial-time observer, a pseudorandom permutation cannot be dis-
tinguished from a pseudorandom function. Intuitively this is due to the fact
that a random function f,, looks identical to a random permutation unless a
distinct pair of values z and y are found for which f,(x) = fn(y) (since in
such a case the function cannot be a permutation). The probability of finding
such points x,y using a polynomial number of queries is, however, low. We
leave a proof of the following for an exercise:

PROPOSITION 3.29 If F is a pseudorandom permutation then it is also
a pseudorandom function.

We noted earlier that a stream cipher can be modeled as a pseudorandom
generator. The analogue for the case of pseudorandom permutations is a block
cipher. Unfortunately, it is often not stated that a block cipher is actually as-
sumed to be a pseudorandom permutation. Explicitly modeling block ciphers
as pseudorandom permutations enables us to formally analyze many practical
constructions that rely on block ciphers. These constructions include encryp-
tion schemes (as studied here), message authentication codes (to be studied
in Chapter 4), authentication protocols, and more.

We stress that, as with stream ciphers, block ciphers themselves are not
secure encryption schemes. Rather, they are building blocks or tools that
can be used to construct secure encryption schemes. For example, using a
block cipher in Construction 3.25 yields a CPA-secure private-key encryption
scheme. In contrast, an encryption scheme that works by just computing
¢ = Fy(m) where Fj, is a pseudorandom permutation (block cipher) yields a
scheme that is not CPA secure as we have already mentioned earlier.

We will study constructions of block ciphers in Chapter 5. We remark that
the convention that we have taken here that the lengths of the key, input,
and output are all the same does not necessarily hold for constructions in
practice. Rather, the input and output lengths — typically called the block
size — are the same (which must be the case since it is a permutation), but
the key length can be smaller or larger than the block size, depending on the
construction.

Private-Key Encryption and Pseudorandomness 95

3.6.4 Modes of Operation

A mode of operation is essentially a way of encrypting arbitrary-length
messages using a block cipher (i.e., pseudorandom permutation). In Corol-
lary 3.27 we have already seen one example of a mode of encryption, albeit
one that is not very efficient in terms of the length of the ciphertext. In
this section, we will see a number of modes of encryption having improved
ciphertext expansion (defined to be the difference between the length of the
ciphertext and the length of the message).

Note that arbitrary-length messages can be unambiguously padded to a
total length that is a multiple of any desired block size by appending a 1
followed by sufficiently-many Os (and adding a block in case the length of the
message is already a multiple of the block size). For most of the constructions
in this section, we will therefore just assume that the length of the plaintext
message is exactly a multiple of the block size. Throughout this section, we
will refer to a pseudorandom permutation/block cipher F' with block length n,
and will consider the encryption of messages consisting of ¢ blocks each of
length n. We present four modes of operation and discuss their security.

Mode 1 — Electronic Code Book (ECB) mode. This is the most naive
mode of operation possible. Given a plaintext message m = my,mo, ..., my,
the ciphertext is obtained by “encrypting” each block separately, where “en-
cryption” here means a direct application of the pseudorandom permutation
to the plaintext block. That is, ¢ = (Fy(m1), Fx(m2),..., Fx(my)). (See Fig-
ure ?? for a graphic depiction.) Decryption is done in the obvious way, using
the fact that Fj~ ! is efficiently computable.

The encryption process here is deterministic and therefore this mode of
operation cannot possibly be CPA-secure (see the discussion following Defini-
tion 3.22). Even worse, ECB-mode encryption does not have indistinguishable
encryptions in the presence of an eavesdropper, even if only used once. This
is due to the fact that if the same block is repeated twice in the plaintext, this
can be detected as a repeating block in the ciphertext. Thus, it is easy to dis-
tinguish an encryption of a plaintext that consists of two identical blocks from
an encryption of a plaintext that consists of two different blocks. We stress
that this is not just a “theoretical problem” and much information can be
learned from viewing ciphertexts that are generated in this way. ECB mode
should therefore never be used. (We include it for its historical significance.)

Mode 2 — Cipher Block Chaining (CBC) mode. In this mode, a
random initial vector (IV') of length n is first chosen. Then, the first ciphertext
block is generated by applying the pseudorandom permutation to IV @ mq
(i.e., the XOR of the first plaintext block and the I'V'). The remainder of the
ciphertext is obtained by XORing the i*" ciphertext block with the i 4 1*®
plaintext block. (See Figure ?? for a graphical depiction.) That is, set ¢o =
IV. Then, for every i > 0 we set ¢; := Fy(ci—1 & m;). The final ciphertext
is (IV,ecq,...,ce). We stress that the IV is not kept secret and is sent in

96 Introduction to Modern Cryptography

the clear as part of the ciphertext. This is crucial so that decryption can be
carried out (without the IV it will be impossible for the recipient to obtain
the first plaintext block).

Importantly, encryption in CBC mode is probabilistic. Indeed, it has been
proven that if F' is a pseudorandom permutation, then CBC-mode encryption
is CPA-secure. The main drawback of this mode is that encryption must be
carried out sequentially because the ciphertext block ¢; is needed in order to
encrypt the plaintext block m;y; (unlike decryption which may be executed
in parallel). Thus, if parallel processing is available, CBC-mode encryption
may not be the best choice.

One may be tempted to think that it suffices to use a distinct IV (rather
than a random IV) for every encryption; e.g., first use IV = 1 and then
increment the IV by one each time. We leave it as an exercise to show that
this variant of CBC encryption is not secure.

Mode 3 — Output Feedback (OFB) mode. The third mode that we
present here is called OFB. Essentially, this mode is a way of using a block
cipher to generate a pseudorandom stream that is then XORed with the mes-
sage. First, a random IV «— {0,1}" is chosen and a stream is generated
from IV (independently of the plaintext message) in the following way. De-
fine 7o = IV, and set the i block r; of the stream equal to 7; := Fg(r;_1).
Finally, each block of the plaintext is encrypted by XORing it with the appro-
priate block of the stream; that is, ¢; := m;®r;. (See Figure ?? for a graphical
depiction.) As in CBC mode, the IV is included in the clear as part of the
ciphertext in order to enable decryption; in contrast to CBC mode, here it is
not required that F be invertible (in fact, it need not even be a permutation).

This mode is also probabilistic, and it can be shown that it, too, is a
CPA-secure encryption scheme if F' is a pseudorandom function. Here, both
encryption and decryption must be carried out sequentially; on the other
hand, this mode has the advantage that the bulk of the computation (namely,
computation of the pseudorandom stream) can be done independently of the
actual message to be encrypted. So, it may be possible to prepare a stream
ahead of time using pre-processing, after which point the encryption of the
plaintext (once it is known) is incredibly fast.

Mode 4 — Counter (CTR) mode. This mode of operation is less common
than CBC mode, but has a number of advantages. There are different variants
of counter mode; we describe the randomized counter mode. As with OFB,
counter mode can also be viewed as a way of generating a pseudorandom
stream from a block cipher. First, a random IV € {0,1}" is chosen; here,
this IV is often denoted ctr. Then, a stream is generated by computing
r; == Fy(ctr +14) (where addition is performed modulo 2%). Finally, the i*}
plaintext block is computed as ¢; := ; & m;. See Figure 7?7 for a graphical
depiction of this mode. Note once again that decryption does not require F'
to be invertible, or even a permutation.

Private-Key Encryption and Pseudorandomness 97

Counter mode has a number of important properties. First and foremost,
randomized counter mode (i.e., when ctr is chosen uniformly at random each
time a message is encrypted) is CPA-secure, as will be proven below. Second,
both encryption and decryption can be fully parallelized and, as with OFB
mode, it is possible to generate the pseudorandom stream ahead of time,
independently of the message. Finally, it is possible to decrypt the i*" block
of the ciphertext without decrypting anything else; this property is called
random access. The above make counter mode a very attractive choice.

THEOREM 3.30 If F is a pseudorandom function, then randomized
counter mode (as described above) has indistinguishable encryptions under
a chosen-plaintext attack.

PROOF As in the proof of Theorem 3.26, we prove the present theorem
by first showing that randomized counter mode is CPA-secure when a truly
random function is used. We then prove that replacing the random function
by a pseudorandom function cannot make the scheme insecure.

Let ctr. denote the initial value ctr used when the challenge ciphertext is
encrypted. Intuitively, when a random function f,, is used in randomized
counter mode, security is achieved as long as each block ¢; of the challenge
ciphertext is encrypted using a value ctr. + ¢ that was never used by the en-
cryption oracle in answering any of its queries. This is so because if ctr.+: was
never used to answer a previous encryption query, then the value f,(ctr. +)
is a completely random value, and so XORing this value with a block of the
plaintext has the same effect as encrypting with the one-time pad. Proving
that randomized counter mode is CPA-secure when using a random function
thus boils down to bounding the probability that ctr. + ¢ was previously used.

Let IT = (Gen, Enc, Dec) denote the randomized counter mode encryption
scheme, and let = (Gen, Enc, Dec) be an encryption scheme that is identical
to I except that instead of using a pseudorandom permutation F, a truly ran-
dom function f,, is used instead. That is, Gen(1™) chooses a random function
fn < Func,, and Enc encrypts just like Enc except that frn is used instead
of Fy. (Of course, neither Gen nor Enc are efficient algorithms, but this does
not matter for the purposes of defining an experiment involving ﬁ) We now
show that for every probabilistic polynomial-time adversary A, there exists a
negligible function negl such that

1
Pr Priij?ﬁ(n) = 1} S5+ negl(n) . (3.6)

Actually, we do not need to make any assumptions regarding the running time
(or computational power) of A; it would be sufficient only to require that A
make polynomially-many queries to its encryption oracle (each query being a
message of polynomial length), and output mg, mq of polynomial length.

98 Introduction to Modern Cryptography

Let g be a polynomial upper-bound on the number of oracle queries made by
A as well as the maximum length of any such query and the maximum length
of mgy, my. Fix some value n for the security parameter. Let ctr. denote the
initial value ctr used when the challenge ciphertext is encrypted, and let ctr;
denote the value ctr used when the encryption oracle answers the " oracle
query of A. When the challenge ciphertext is encrypted, the function f,, is
applied to the value ctr.+1,...,ctr. + £, where £, < g(n) is the length of mg
and m;. When the i*" oracle query is answered, the function f,, is applied to
the values ctr; +1,. .., ctr; +£;, where £; < q(n) is the length (in blocks) of the
message whose encryption was requested. There are two cases to consider:

Case 1. There do not exist any i,7,j > 1 (with j < €; and j' < £.) for which
ctr; + j = ctr. + 5’ In this case, the values f,(ctr.+1),..., fo(ctr. +£.) used
when encrypting the challenge ciphertext are independently and uniformly
distributed since f, was not previously applied to any of these inputs. This
means that the challenge ciphertext is computed by XORing a random stream
of bits to the message my, and so the probability that A outputs ' = b in
this case is exactly 1/2 (as in the case of the one-time pad).

Case 2. There exist i,7,j > 1 (with j < ¥£; and j' < {.) for which ctr; +j =
ctr, + j: That is, the value used to encrypt block j of the i*" encryption
oracle query is the same as the value used to encrypt block j of the challenge
ciphertext. In this case A may easily determine which of its messages was
encrypted to give the challenge ciphertext (since the adversary learns the
value of f,(ctr; + j) = fn(ctr. + j') from the answer to its i*" oracle query).

Let us now analyze the probability that this occurs. The probability is
maximized if £, and each ¢; are as large as possible, so we assume that ¢, =
¢; = q(n) for all 7. Let Overlap; denote the event that the sequence ctr; +
1,...,ctr;+q(n) overlaps the sequence ctr.+1, ..., ctr.+¢q(n), and let Overlap
denote the event that Overlap; occurs for some 7. Since there are at most g(n)
oracle queries, we have

a(n)
Pr[Overlap] < ZPr[OverIapi]. (3.7)

i=1
Fixing ctr., event Overlap, occurs exactly when ctr; satisfies
ctr. + 1 —g(n) <ctr; <ctr. +q(n) — 1.

Since there are 2¢(n) — 1 values of ctr; for which Overlap; can occur, and ctr;
is chosen uniformly at random from {0, 1}"™, we see that
2q(n) — 1

Pr[Overlap;] = on

Combined with Equation (3.7), this gives Pr[Overlap] < 2¢(n)?/2".

Private-Key Encryption and Pseudorandomness 99

Given the above, we can bound the success probability of A easily:
Pr[Priij}I(n) =1] = Pr[Priij’fﬁ(n) = 1 A Overlap]
+ Pr[Priijfﬁ(n) =1 A Overlap|
< Pr[Overlap] + Pr[Priij’fﬁ(n) =1 Overlap]

2
< 2q2(f) +3

3

[\

proving Equation (3.6). That is, the (imaginary) scheme IT is CPA-secure.
The next step in the proof is to show that this implies that II (i.e., the

scheme we are interested in) is CPA-secure; that is, that for any probabilistic

polynomial-time A there exists a negligible function negl’ such that

1
Pr [PrivKi’ffH(n) = 1} > 5t negl'(n) .

Intuitively, this is because replacing the random function f, used in Il by
the pseudorandom function Fj, used in II should have “no effect” as far as a
polynomial-time adversary is concerned. Of course, this intuition should be
rigorously proved; since a formal proof is very similar to the analogous step
in the proof of Theorem 3.26, this is left as an exercise. [|

Block length and security. All of the above modes (with the exception of
ECB that is anyway not secure) use a random V. The IV has the effect of
randomizing the encryption process, and ensures that (with high probability)
the block cipher is always evaluated on a new input that was never used before.
This is important because, as we have seen in the proofs of Theorem 3.26
and Theorem 3.30, if an input to the block cipher is used more than once
then security can be violated. (E.g., in the case of counter mode, the same
pseudorandom string will be XORed with two difference plaintext blocks.)
Interestingly, this shows that it is not only the key length of a block cipher that
is important in evaluating its security, but also its block length. For example,
say we use a block cipher with a 64-bit block length. We showed in the proof
of Theorem 3.30 that, in randomized counter mode, even if a completely
random function with this block length is used (i.e., even if the block cipher

is “perfect”), an adversary can achieve success probability roughly % + 2%
in a chosen-plaintext attack when it makes ¢ queries to its encryption oracle,
each ¢ blocks long. Although this is asymptotically negligible (when the block
length grows as a function of the security parameter n), security no longer
holds in any practical sense (for this particular block length) when ¢ ~ 23°.
Depending on the application, one may want to switch to a block cipher having
a larger block length.

Other modes of operation. In recent years, many different modes of op-
eration have been introduced, offering certain advantages for certain settings.

100 Introduction to Modern Cryptography

In general, CBC, OFB, and CTR modes suffice for most applications where
CPA-security is needed. Note, however, that none of these modes is secure
against chosen-ciphertext attacks, something we will consider next.

Modes of encryption and message tampering. In many texts on cryp-
tography, modes of operation are also compared based on how well they pro-
tect against adversarial modifications of the ciphertext. We do not include
such a comparison here because we believe that the issue of message integrity
or message authentication should be dealt with separately from encryption,
and we do so in the next chapter. In fact, none of the above modes achieve
full message integrity in the sense we will define there.

Stream ciphers versus block ciphers. As we have seen here, it is pos-
sible to work in “stream-cipher mode” using a block-cipher (i.e., generating
a stream of pseudorandom bits and XORing this stream with the plaintext).
Furthermore, a block cipher can be used to generate multiple (independent)
pseudorandom streams, while (in general) a stream cipher is limited to gen-
erating a single such stream. This begs the question: which is preferable, a
block cipher or a stream cipher? The only advantage of stream ciphers is
their relative efficiency, though this gain may only be a factor of two unless
one is using resource-constrained devices such as PDAs or cell phones.!? On
the other hand, stream ciphers appear to be much less well understood (in
practice) than block ciphers. There are a number of excellent block ciphers
that are efficient and believed to be highly secure (we will study two of these
in Chapter 5). In contrast, stream ciphers seem to be broken more often, and
our confidence in their security is lower. Furthermore, it is more likely that
stream ciphers will be misused in such a way that the same pseudorandom
stream will be used twice. We therefore recommend using block ciphers unless
for some reason this is not possible.

3.7 Security Against Chosen-Ciphertext Attacks (CCA)

Until now, we have defined security against two types of adversaries: a pas-
sive adversary that only eavesdrops, and an active adversary that carries out
a chosen-plaintext attack. A third type of attack, called a chosen-ciphertext
attack, is even more powerful than these two. In a chosen-ciphertext attack,
we provide the adversary with the ability to encrypt any messages of its choice
as in a chosen-plaintext attack, and also provide the adversary with the ability
to decrypt any ciphertexts of its choice (with one exception discussed later).

10Tn particular, estimates from [45] indicate that on a typical home PC the stream cipher
RC4 is only about twice as fast as the block cipher AES, measured in terms of bits/second.

Private-Key Encryption and Pseudorandomness 101

Formally, we give the adversary access to a decryption oracle in addition to
the encryption oracle. We present the formal definition and defer further
discussion until afterward.

Consider the following experiment for any private-key encryption scheme
IT = (Gen, Enc, Dec), adversary A, and value n for the security parameter.

The CCA indistinguishability experiment PrivK % (n):

1. A random key k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle access to Ency(-)
and Decy(+). It outputs a pair of messages mg, my of the same
length.

3. A random bit b — {0,1} is chosen, and then a ciphertext
¢ «— Enci(my) is computed and given to A. We call ¢ the
challenge ciphertext.

4. The adversary A continues to have oracle access to Ency()
and Decg(+), but is not allowed to query the latter on the
challenge ciphertext itself. Eventually, A outputs a bit b’.

5. The output of the experiment is defined to be 1 if b’ = b, and
0 otherwise.

DEFINITION 3.31 A private-key encryption scheme I1 has indistinguish-
able encryptions under a chosen-ciphertext attack (or is CCA-secure) if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that:

1
Pr[PrivKG(n) = 1] < 3 + negl(n),
where the probability is taken over all random coins used in the experiment.

In the experiment above, the adversary’s access to the decryption oracle is
unlimited except for the restriction that the adversary may not request de-
cryption of the challenge ciphertext itself. This restriction is necessary or else
there is clearly no hope for any encryption scheme to satisfy Definition 3.31.

Are chosen-ciphertext attacks realistic? As in the case of a chosen-plaintext
attack, we do not expect honest parties to decrypt arbitrary ciphertexts of
an adversary’s choice. Nevertheless, there may be scenarios where an adver-
sary might be able to influence what gets decrypted, and learn some partial
information about the result:

1. In the case of Midway (see Section 3.5) it is conceivable that the US
cryptanalysts might also have tried to send encrypted messages to the
Japanese and then monitor their behavior. Such behavior (e.g., move-
ment of forces and the like) could have provided important information
about the underlying plaintext.

102 Introduction to Modern Cryptography

2. Imagine a user communicating with their bank, where all communica-
tion is encrypted. If this communication is not authenticated, then an
adversary may be able to send certain ciphertexts on behalf of the user;
the bank will decrypt these ciphertext, and the adversary may learn
something about the result. For example, if a ciphertext corresponds to
an ill-formed plaintext (e.g., a gibberish message, or simply one that is
not formatted correctly), the adversary may be able to deduce this from
the pattern of the subsequent communication.

3. Encryption is often used in higher-level protocols; e.g., an encryption
scheme might be used as part of an authentication protocol where one
party sends a ciphertext to the other, who decrypts it and returns the
result. (Note: we do not recommend such a protocol, but protocols like
these are sometimes suggested.) In this case, one of the honest parties
may exactly act like a decryption oracle.

Insecurity of the schemes we have studied. None of the encryption
schemes we have seen is CCA-secure. We will demonstrate this for Construc-
tion 3.25, where encryption is carried out as Ency(m) = (r, Fi(r) & m). The
fact that this scheme is not CCA-secure can be easily demonstrated as fol-
lows. An adversary A running in the CCA indistinguishability experiment can
choose my = 0™ and m; = 1™. Then, upon receiving a ciphertext ¢ = (r, s),
the adversary A can flip the first bit of s and ask for a decryption of the
resulting ciphertext ¢’. Since ¢’ # ¢, this query is allowed, and the decryption
oracle answers with either 10"~! (in which case it is clear that b = 0) or
01"~! (in which case b = 1). This example demonstrates why CCA-security
is so stringent. Specifically, any encryption scheme that allows ciphertexts
to be manipulated in a “logical way” cannot be CCA-secure. Thus, CCA-
security actually implies a very important property called non-malleability.
Loosely speaking, a non-malleable encryption scheme has the property that if
the adversary tries to modify a given ciphertext, the result is either an illegal
ciphertext or one that encrypts a plaintext having no relation to the original
one. We leave for an exercise the demonstration that none of the modes of
encryption that we have seen yields a CCA-secure encryption scheme.

Construction of a CCA-secure encryption scheme. We show how to
construct a CCA-secure encryption scheme in Section 4.8. The construction
is presented there because it uses tools that we develop in Chapter 4.

References and Additional Reading

The modern, computational approach to cryptography was initiated in a
ground-breaking paper by Goldwasser and Micali [70]. That paper introduced

Private-Key Encryption and Pseudorandomness 103

the notion of semantic security, and showed how this goal could be achieved
in the setting of public-key encryption (see Chapters 9 and 10).

Formal definitions of security against chosen-plaintext attacks were given
by Luby [90] and Bellare et al. [15]. Chosen-ciphertext attacks (in the context
of public-key encryption) were first formally defined by Naor-Yung [99] and
Rackoff-Simon [109], and were considered also in [51] and [15]. See [83] for
other notions of security for private-key encryption.

The notion of pseudorandomness was first introduced by Yao [134]. Pseu-
dorandom generators were defined and constructed by Blum and Micali [2§],
who also pointed out their connection to encryption via stream ciphers (the
use of stream ciphers for encryption pre-dated the formal notion of pseudo-
random generators). Pseudorandom functions were defined and constructed
by Goldreich et al. [67] and their application to encryption was demonstrated
in subsequent work by the same authors [68]. Pseudorandom permutations
were studied by Luby and Rackoff [91].

Various modes of operation were standardized in [103], and the CBC and
CTR modes of encryption were proven secure in [15]. For more recent modes of
encryption, see http://csrc.nist.gov/CryptoToolkit. A good but some-
what outdated overview of stream ciphers used in practice can be found in [93,
Chapter 6]. The RC4 stream cipher is discussed in [112] and an accessible dis-
cussion of recent attacks and their ramifications can be found in [57].

Exercises
3.1 Prove Proposition 3.7.
3.2 The best algorithm known today for finding the prime factors of an n-bit

1 2
number runs in time 2¢7% (1987)% - Agsuming 4Ghz computers and ¢ = 1
(and that the units of the given expression are clock cycles), estimate
the size of numbers that cannot be factored for the next 100 years.

3.3 Prove that Definition 3.9 cannot be satisfied if II can encrypt arbitrary-
length messages and the adversary is not restricted to output equal-
length messages in experiment PrivK% ;.

Hint: Let g(n) be a polynomial upper-bound on the length of the cipher-
text when II is used to encrypt a single bit. Then consider an adversary
who outputs mg € {0,1} and m1 € {0,1}9()+2,

3.4 Say II = (Gen, Enc,Dec) is such that for k output by Gen(1"), algo-
rithm Ency, is only defined for messages of length at most ¢(n) (for some
polynomial £). Construct a scheme satisfying Definition 3.9 when the
adversary is not restricted to output equal-length messages in experi-

H eav
ment PrivK7 .

104

3.5
3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Introduction to Modern Cryptography

Prove the equivalence of Definition 3.10 and Definition 3.9.

Let G be a pseudorandom generator where |G(s)| > 2 - |s|.

def

(a) Define G’(s) = G(s0*!). Is G’ necessarily a pseudorandom gener-

ator?

(b) Define G'(s) et G(s1---5p/2), where s = s -+ - 5,. Is G’ necessarily

a pseudorandom generator?

Assuming the existence of pseudorandom functions, prove that there
exists an encryption scheme that has indistinguishable multiple encryp-
tions in the presence of an eavesdropper (i.e., is secure with respect to
Definition 3.19), but is not CPA-secure (i.e., is not secure with respect
to Definition 3.22).

Hint: You will need to use the fact that in a chosen-plaintext attack the

adversary can choose its queries to the encryption oracle adaptively.

Prove unconditionally the existence of an efficient pseudorandom func-
tion F': {0,1}* x {0,1}* — {0, 1}* where the input-length is logarithmic
in the key-length (i.e., F(k, x) is defined only when |z| = log |k|, in which
case |F(k,z)| = |k]).

Hint: Use the fact that any random function is also pseudorandom.

Present a construction of a variable output-length pseudorandom gener-
ator from any pseudorandom function. Prove your construction secure.

Let G be a pseudorandom generator and define G’(s) to be the output of
G truncated to n bits (where s is of length n). Prove that the function
Fy.(z) = G'(k) ® z is not pseudorandom.
Prove Proposition 3.29 (i.e., prove that any pseudorandom permutation
is also a pseudorandom function).

Hint: Show that in polynomial time, a random permutation cannot be

distinguished from a random function (use the results of Section A.4).

Define a notion of perfect secrecy against a chosen-plaintext attack via
the natural adaptation of Definition 3.22. Show that the definition can-
not be achieved.

Let (Gen, Enc, Dec) be an encryption scheme defined as follows:

(a) Gen outputs a key k for a pseudorandom permutation F.

(b) Upon input m € {0,1}"/? and key k, algorithm Enc chooses a ran-
dom string r «— {0,1}"/2 of length n/2 and computes ¢ = Fy(r|m).

Show how to decrypt, and prove that this scheme is CPA-secure. (If
you are looking for a real challenge, prove that this scheme is actually

CCA-secure.)

3.14

3.15

3.16
3.17

3.18

3.19

Private-Key Encryption and Pseudorandomness 105

Consider a variant of CBC mode encryption where the sender simply
increments the IV by 1 each time a message is encrypted (rather than
choosing IV at random each time). Show that the resulting scheme is
not CPA-secure.

Present formulas for decryption of all the different modes of encryption
we have seen. For which modes can decryption be parallelized?

Complete the proof of Theorem 3.30.

Let F' be a pseudorandom function such that Fy, for k € {0,1}", maps
£in(n)-bit inputs to £y (n)-bit outputs. (Throughout this chapter, we
have assumed £;n(n) = oy (n) = n.)

(a) Consider implementing counter mode encryption using an F' of
this form. For which functions ¢;,,, £,y is the resulting encryption
scheme CPA-secure?

(b) Consider implementing counter mode encryption using an F' as
above, but only for fized-length messages of length ¢(n) - £oui(n).
For which ¢;,,, £yt is the scheme CPA-secure? For which £;,,, £ous
does the scheme have indistinguishable encryptions in the presence
of an eavesdropper?

Let II; = (Geny, Ency,Decy) and IIs = (Geng, Ency, Decy) be two en-
cryption schemes for which it is known that at least one is CPA-secure.
The problem is that you don’t know which one is CPA-secure and which
one may not be. Show how to construct an encryption scheme II that
is guaranteed to be CPA-secure as long as at least one of II; or Iy is
CPA-secure. Try to provide a full proof of your answer.

Hint: Generate two plaintext messages from the original plaintext so
that knowledge of either one of the parts reveals nothing about the plain-

text, but knowledge of both does yield the original plaintext.

Show that the CBC, OFB, and counter modes of encryption do not yield
CCA-secure encryption schemes.

Chapter 4

Message Authentication Codes and
Collision-Resistant Hash Functions

4.1 Secure Communication and Message Integrity

One of the most basic goals of cryptography is to enable parties to commu-
nicate over an open communication channel in a secure way. One immediate
question that arises, however, is what do we mean by “secure communication”.
In Chapter 3 we showed how it is possible to obtain private communication
over an open channel. That is, we showed how encryption can be used to
prevent an eavesdropper (or possibly a more active adversary) from learning
anything about the content of messages sent over an unprotected communi-
cation channel. However, not all security concerns are related to the ability
or inability of an adversary to learn something about messages being sent.
Specifically, when two parties communicate, they have the implicit assump-
tion that the message sent by one party is indeed the message received by
the other party. This expectation of message integrity is the source of a criti-
cal security concern. For example, consider the case that a large supermarket
chain sends an email request to purchase 10,000 crates of soda from a supplier.
Upon receiving such a request, the supplier has to ask itself two questions:

1. Is the order authentic? That is, did the supermarket chain really issue
the order, or was it issued by an adversary who spoofed the email address
of the supermarket (something that is remarkably easy to do).

2. If the order was issued by the supermarket, then the supplier must still
ask whether the details of the order that it received are exactly those
sent by the supermarket, or were these details somehow changed en
route by an adversarial router.

Notice that the order itself is not secret and therefore the question of privacy
does not arise here at all. Rather, the problem is that of message integrity.
Such examples are very common. Indeed, any unprotected online purchase
order, online banking operation, email or SMS message cannot be trusted
whatsoever. Unfortunately, people are in general trusting and thus informa-
tion like the ID of the caller or email return address are taken to be “proofs
of identity” in many cases. This leaves the door open to potentially damaging

107

108 Introduction to Modern Cryptography

adversarial attacks. In this chapter we will show how to cryptographically
prevent any tampering of messages that are sent over an open communica-
tion line. As we have already mentioned, the problem dealt with here is that
of message authentication. We reiterate this because the goals of privacy
and message authentication are often confused and unnecessarily intertwined.
Having said this, at the end of this chapter, we will show how to combine
encryption and authentication in a secure way so that both goals (privacy
and integrity) can be simultaneously achieved.

4.2 Encryption and Message Authentication

We have already stressed that the problems of privacy and message au-
thentication are distinct. However, this does not necessarily mean that their
solutions are distinct. Specifically, at first sight, it may seem that encryp-
tion should immediately solve the problem of message authentication as well.
This is due to the fact that a ciphertext completely hides the contents of the
message. Therefore, it seems that an adversary cannot possibly modify an
encrypted message en route — all that it sees is “random garbage”. Despite
its intuitive appeal, the claim that encryption solves the problem of message
authentication is completely false.

Stream ciphers and message authentication. First, consider the case
that a message m is encrypted using a stream cipher. That is, Fx(m) =
G(k) @ m where G is a pseudorandom generator. Such ciphertexts are very
easy to manipulate. Specifically, flipping any bit in ¢ results in the same
bit being flipped in m upon decryption. Thus, given a ciphertext ¢ that
encrypts a message m, it is possible to modify ¢ to ¢’ such that Dy (c’) equals
Dy (c) except for the least significant (or any other) bit which is flipped. Note
that such a modification may be very useful. For example, most electronic
messages consist of a header and a body. Furthermore, headers have a fixed
format and contain a number of flags. Using the strategy defined here, it is
straightforward to modify flags in the header of an encrypted message (using
the fixed format, an adversary can easily know which bits to flip). Needless to
say, such flags can have significant meaning (for example, whether to buy or
sell stock). Furthermore, if the message m represents a financial transaction
where the amount appears in a fixed place, then an adversary can easily
modify this amount. Note that even if the modification is oblivious (meaning
that the adversary does not know what the amount is changed to), the result
may still be very damaging.

Block ciphers and message authentication. The aforementioned attacks
utilize the fact that flipping a single bit in a ciphertext generated via a stream
cipher results in the flipping of the same bit in the decrypted plaintext. In

Message Authentication Codes and Collision-Resistant Hash Functions 109

contrast, block ciphers seem to be significantly harder to attack. This is
because a block cipher is a pseudorandom function and so flipping a single
bit in the ciphertext of a block results in the entire block becoming scrambled
upon decryption. Despite this, we argue that encryption with a block cipher
still does not afford protection against message tampering. On the most basic
level, one needs to assume that the recipient will be able to detect that one of
the blocks has become scrambled. Since this may be application dependent,
it cannot be relied upon as a general solution. In addition to the above,
we note that the ability to tamper with a message depends on the mode of
operation being used; see Section 3.6.4. Specifically, if ECB mode is used, then
the order of blocks may be flipped. In this case, there is no block that has
become scrambled. If OFB or CTR modes are used, then these just generate
stream ciphers and so the same vulnerabilities of stream ciphers are inherent
here as well. Finally, if CBC mode is used, then flipping any bit of the IV in
the ciphertext results in a bit being flipped in the first block of the resulting
plaintext. Since this first block may contain sensitive header information,
this can yield a potentially damaging attack. We conclude that encrypting a
message with a block cipher does not suffice for ensuring message integrity,
even if a scrambled block can be detected (something that we argue is very
problematic to assume).

As we have seen, encryption does not solve the problem of message authen-
tication. Rather, an additional mechanism is needed that will enable commu-
nicating parties to know whether or not a message was tampered with. Such
mechanisms are called message authentication codes. We remark that there is
no way of preventing an adversary from modifying a message en route. The
aim of a message authentication code is therefore to detect any such modifi-
cation, so that modified messages can be discarded.

4.3 Message Authentication Codes — Definitions

The aim of a message authentication code is to prevent an adversary from
modifying a message sent by one party to another, without the parties de-
tecting that a modification has been made. As in the case of encryption, such
a task is only possible if the communicating parties have some secret that
the adversary does not know (otherwise nothing can prevent an adversary
from impersonating the party sending the message). The setting that we con-
sider here therefore assumes that the parties share the same secret key. Since
the parties share the same key, the notion of a message authentication code
belongs to the world of private-key cryptography.

Loosely speaking, a message authentication code is an algorithm that is
applied to a message. The output of the algorithm is a MAC tag (or just tag)

110 Introduction to Modern Cryptography

that is sent along with the message. Security is formulated by requiring that
no adversary can generate a valid MAC tag on any message that was not sent
by the legitimate communicating parties.

The syntax of a message authentication code. Before defining security,
we first present the technical definition of what a message authentication
code is. As with encryption, a message authentication code is made up of
three algorithms Gen, Mac and Vrfy. The algorithm Gen generates a secret
key; as with private-key encryption, we will assume that upon input 1™, the
algorithm outputs a uniformly distributed string of length n. The algorithm
Mac generates MAC tags; i.e., it maps a key k and a message m to a tag t. We
write this as Macg(m). Finally, the algorithm Vrfy receives a key k, a message
m, and a tag ¢, and outputs either 1 (meaning VALID) or 0 (meaning INVALID).
We write this as Vrfy,(m,t). We have the following formal definition:

DEFINITION 4.1 (message authentication code — syntax): A message
authentication code or MAC is a tuple of probabilistic polynomial-time algo-
rithms (Gen, Mac, Vrfy) fulfilling the following:

1. Upon input 1™, the algorithm Gen outputs a uniformly distributed key k
of length n; k «— Gen(1™).

2. The algorithm Mac receives for input some k € {0,1}" and m € {0,1}*,
and outputs some t € {0,1}*. The value t is called the MAC tag.

3. The algorithm Vrfy receives for input some k € {0,1}", m € {0,1}* and
t € {0,1}*, and outputs a bit b € {0,1}.

4. For every n, every k € {0,1}" and every m € {0,1}* it holds that
Vrfy, (m, Mack(m)) = 1.

If there exists a function ¢(-) such that Macg(-) is defined only over messages
of length £(n) and Vrfy, (m,t) outputs 0 for every m that is not of length £(n),
then we say that (Gen, Mac, Vrfy) is a fixed length MAC with length parameter £.

We remark that as for encryption, the second requirement in Definition 4.1
can be relaxed so that

Pr[Vrfy, (m, Mack(m)) = 1] > 1 — negl(n)

where negl is a negligible function, and the probabilities are taken over the
choice of k and any internal coin tosses of Mac and Vrfy.

Security of message authentication codes. Definition 4.1 says nothing
whatsoever about security. The intuitive idea behind the definition of security
is that no polynomial-time adversary should be able to generate a valid MAC
tag on any “new” message (i.e., a message not sent by the communicating

Message Authentication Codes and Collision-Resistant Hash Functions 111

parties). As with any definition, we have to define the adversary’s power,
as well as what is considered to be a “break” of the scheme. Regarding
the adversary’s power, in the setting of message authentication, an adversary
may be able to see many tagged messages that the parties send to each other.
Furthermore, the adversary may even be able to influence the content of these
messages. For example, consider the case that the adversary is the personal
assistant of one of the parties. In this case, the adversary may be responsible
for the actual wording of many of the messages that are sent (of course, we
assume that the assistant does not have access to the party’s key and that
the party reviews any message before computing a MAC on it). Clearly, we
need to ensure that this assistant is unable to generate any valid MAC on a
message not reviewed by the legitimate party. In order to model the possibility
that the adversary is able to effectively choose the messages that are tagged
(or at least influence them to some extent), we provide the adversary with a
MAC-generation box, or more technically, with a MAC oracle. During the
adversarial attack, the adversary is able to request a MAC tag on any message
that it wishes, where this tag is computed using the communicating parties’
secret key.

At the end of this attack, the adversary attempts to break the MAC scheme.
We model the break by saying that the adversary succeeds if it outputs a new
message and a valid MAC tag upon that message. By a new message, we
mean one that the adversary did not query to the MAC tag oracle. The
final question that should be answered here is what form should the “new
message” have. That is, should it be a valid English text, or a correctly
encoded Word document? As you may have guessed, specifying any specific
format would make the security of the MAC scheme dependent on a given
application. Since cryptographic schemes should be secure for all applications,
even those applications where random strings are tagged, we will consider a
MAC scheme broken if the adversary generates any new message together
with a valid MAC tag. This level of security is called ezistential unforgeability
against a chosen message attack. The “existential unforgeability” refers to
the fact that the adversary should not be able to generate a valid MAC tag
on any message, and the “chosen message attack” refers to the fact that the
adversary is able to obtain MAC tags on any messages it wishes during its
attack. The formal definition of the experiment for the message authentication
code II = (Gen, Mac, Vrfy), with adversary A and security parameter n, is as
follows:

The message authentication experiment Mac-forge 4 ().

1. A random key k «— {0,1}" is chosen.

2. The adversary A is given oracle access to Macy(-) and outputs
a pair (m,t). Formally, (m,t) « AM2()(17). Let Q denote
the queries asked by A during the execution.

112 Introduction to Modern Cryptography

3. The output of the experiment is defined to be 1 if and only if
m & Q and Vrfy, (m,t) = 1.

The definition states that no efficient adversary should succeed in the above
experiment with non-negligible probability.

DEFINITION 4.2 A message authentication code I = (Gen, Mac, Vrfy) is
existentially unforgeable under an adaptive chosen-message attack, or just secure,
if for all probabilistic polynomial-time adversaries A, there exists a negligible
function negl such that:

Pr[Mac-forge 4 1(n) = 1] < negl(n)

We remark that a message authentication code can always be broken with
negligible probability (that is, there is no hope of ensuring that an adversary’s
success in the experiment is zero). In order to see this, let ¢(-) be a polynomial
denoting the length of the MAC tags for the scheme (i.e., for a key of length
n and message m, the output tag ¢ is of length at most ¢(|m| + n)). Then, a
naive attack that works for any scheme is to take any m (of any length) and
simply choose a random string ¢ of length ¢(|m|+ n). The probability that
this string is a valid MAC tag is at least 2-9("1+7) because at least one string
constitutes a valid MAC tag. Of course, such attacks are of little consequence
because their success is too small. Nevertheless, this does give us a lower
bound on the required length of the tag in a secure MAC scheme. Specifically,
the tag must be super-logarithmic; otherwise g(|m| 4+ n) = O(logn) and so
2-allml+n) — 9-0(ogny — 1 /poly(n). In such a case, a random guess of the
MAC tag is correct with non-negligible probability, and so the scheme cannot
be secure.

Replay attacks and message authentication codes. Consider the fol-
lowing scenario: a user Alice sends her bank an order to transfer $1,000 from
her account to Bob’s account. Alice is the legitimate user, and so she also
applies a message authentication code to the message so that the bank knows
that it is authentic. Bob is unable to intercept the message and change the
sum to $10,000 because this would involve forging the MAC scheme. However,
nothing prevents Bob from intercepting Alice’s message and forwarding it ten
times repeatedly to the bank. If the bank accepts all of these messages, then
$10,000 will be transferred to Bob’s account, and not $1,000. Such an attack
is called a replay attack and the MAC mechanism within itself does not pre-
vent it. Rather, the application using the MAC is responsible for preventing
replays. The reason for this is that the legitimacy or illegitimacy of replays
depends on the application. Furthermore, it cannot be solved by considering
a single isolated message; rather the context and history must be taken into
account. It is thus left to the higher-level application.

Message Authentication Codes and Collision-Resistant Hash Functions 113

Two of the possible techniques for preventing replay are using unique se-
quence numbers in transactions and using timestamps. When using unique
sequence numbers, the idea is to not allow two transactions to have the
same number (of course, this requires remembering previously used trans-
action numbers, but there are solutions to this as well). When using sequence
numbers, the MAC is applied to the transaction content together with the se-
quence number. Note than any successful reply attack must forge the MAC in
order to change the sequence number (if the exact same message is replayed,
it will be rejected because the number has already been used). Timestamps
have a similar effect: here, the message includes the current time, and some
mechanism is employed so that no two transactions with the same timestamp
are accepted. We stress again that the issue of replay attacks is a very real
concern. However, this must be solved at the level of the application.

4.4 Constructing Secure Message Authentication Codes

A natural tool to use for constructing a message authentication code is a
pseudorandom function. Intuitively, if the MAC tag t is obtained by applying
a pseudorandom function to the message m, then forging a MAC involves
guessing the input/output behavior of a pseudorandom function. More for-
mally, we know that the probability of guessing the value of a random function
on an unobserved point is 27" when the output length is n. It therefore fol-
lows that the probability of guessing such a value for a pseudorandom function
(which is equivalent to guessing a MAC tag) can only be negligibly different.

A technicality that arises here is that our definition of pseudorandom func-
tions (Definition 3.24) considers messages of a fixed length. Specifically, for
a key of length n, the function maps inputs of length n to outputs of length
n. In contrast, a MAC must be defined for all messages of all lengths. (Of
course, security only holds for messages of length that is polynomial in n.
However, this is implicit in the fact that a polynomial-time adversary chooses
the messages and such an adversary cannot write down a message that is “too
long”.) We therefore first prove that a pseudorandom function constitutes a
secure fixed-length MAC with length parameter ¢(n) = n.

We now prove that Construction 4.3 constitutes a secure MAC.

THEOREM 4.4 Assume that the function F used in Construction 4.3
is a pseudorandom function. Then, Construction 4.3 is a fized-length mes-
sage authentication code with length parameter {(n) = n that is existentially
unforgeable under chosen message attacks.

114 Introduction to Modern Cryptography

CONSTRUCTION 4.3 Fixed-length MAC.

Let F: {0,1}" x {0,1}* — {0,1}" be a function such that for every k,
F.(-) maps n-bit strings to n-bit strings. Define a fixed-length MAC as
follows:
e Gen(1™): upon input 17, choose k «— {0, 1}"
e Macy(m): upon input key k& € {0,1}" and message m € {0,1}",
compute t = Fj(m). (If |[m| # |k| then output L.)
e Vrfy, (m,t): upon input key k € {0, 1}", message m € {0,1}" and
tag t € {0,1}", output 1 if and only if ¢ = Fj(m). (If the lengths
are incorrect, then output 0.)

PROOF The intuition behind the proof of this theorem was described
above. We therefore delve directly into the details. As in previous uses of
pseudorandom functions, this proof follows the paradigm of first analyzing the
security of the scheme using a truly random function, and then considering
the result of replacing the truly random function with a pseudorandom one.
Let A be a probabilistic polynomial-time adversary and let £(-) be a function
so that
Pr[Mac-forge 4 1(n) = 1] = ¢(n) (4.1)

We show that this implies the existence of a polynomial-time algorithm that
can distinguish the pseudorandom function from a random one with advantage
€(n). This will then imply that € must be negligible, as required.

Consider a message authentication code II = (aa?l, Enc, DAe/c) which is the
same as II = (Gen, Mac, Vrfy) in Construction 4.3 except that a truly random
function f, is used instead of the pseudorandom function F'. (Of course, this
is not a “legal MAC” because it is not efficient. Nevertheless, this is used for
the sake of the proof only.) It is straightforward to see that

Pr[Mac-forge , (n) = 1] < % (4.2)

because for any message m ¢ Q, the value ¢t = f,(m) is uniformly distributed
in {0,1}" from the point of view of the adversary A.

We now construct a polynomial-time distinguisher D that is given an oracle
(that is either of a pseudorandom function or a truly random function) and
works as follows. Upon input 1", algorithm D invokes A upon input 1™. Then,
when A queries its oracle with a message m’, D queries its oracle with m’ and
sets t' to be the oracle reply. D hands ¢’ to A and continues. At the end,
when A outputs a pair (m,t), distinguisher D checks that m was not asked
during the execution (i.e., m ¢ Q) and that ¢ is a “valid” MAC. D does this
by querying m to its oracle and checking that the response equals t. If both
of the above checks pass (and so A “succeeded” in the experiment), then D
outputs 1. Otherwise it outputs 0.

Message Authentication Codes and Collision-Resistant Hash Functions 115

(From the construction of D, and the success of A as shown in Equa-
tions (4.1) and (4.2), it follows that:

Pr {DF’“(')(ln) = 1} = Pr [Mac-forge y 1;(n) = 1] = ¢(n)

and

Pr [Df"(')(ln) = 1} =Pr [Mac—forgeAﬁ(n) = 1} < zin

Therefore,

Pr [DFk<'>(1") - 1} —Pr [Df"(')(ln) - 1} ’ > e(n) — 2%

By the assumption that F' is a pseudorandom function, it follows that e(n) —
27" must be negligible, and so &(-) must be a negligible function. This im-
plies that A succeeds in Mac-forge with at most negligible probability, and so
Construction 4.3 is existentially unforgeable under chosen message attacks.

Variable-length message authentication codes. Construction 4.3 is im-
portant in that it shows a general paradigm for constructing secure message
authentication codes. That is, it demonstrates that any pseudorandom func-
tion suffices. However, in its current form, this construction is only capable
of dealing with messages of a fixed length; a limitation that is unacceptable
in many (if not most) applications.! We therefore show here how a gen-
eral (variable-length) MAC can be constructed from a fixed-length one. The
construction here is not very efficient and is unlikely to be used in practice.
Indeed, there are far more efficient constructions that have been proven se-
cure. Nevertheless, we include this specific construction due to its simplicity.
Practical constructions will be discussed later in Sections 4.5 and 4.7.

Before presenting the construction, we rule out some simple ideas. In all
of the following (and in our secure construction below), the idea is to break
the message into blocks and apply a pseudorandom function to the blocks in
some way.

1. Apply a pseudorandom function to the first block: This clearly is not a
secure MAC because nothing prevents an adversary from changing all
the other blocks apart from the first.

1We note that if we had a pseudorandom function that works for variable-length inputs,
then the proof of Theorem 4.4 would go through unchanged and so a variable-length MAC
would be derived. However, since we did not define pseudorandom functions in this way,
and since practical pseudorandom functions are for fixed input lengths, we use a different
method of obtaining variable-length MACs.

116 Introduction to Modern Cryptography

2. Ezlusively-OR all of the blocks and apply a pseudorandom function to the
result: In this case, all an adversary needs to do is to change the message
so that the XOR of the blocks does not change (thus implying that the
MAC tag remains the same). This can be carried out by changing two
of the blocks so that their XOR remains the same.

3. Apply a pseudorandom function to each block separately and output the
results: This is similar to ECB mode in Section 3.6.4. In this case,
no blocks can be easily modified. However, blocks can be removed,
repeated and their order can be interchanged. The method is therefore
not secure. We also note that blocks from different messages can be
combined into a new message.

We leave the details of how to exactly carry out the above attacks in an
effective way as an exercise.

Similarly to the above simple ideas, the actual construction (see below)
works by breaking the message up into blocks and applying the pseudorandom
function separately to each block. However, this must be done carefully so
that the order of the blocks cannot be rearranged and so that blocks from
signatures on different messages cannot be intertwined. This is achieved by
including additional information in every block. Specifically, in addition to
part of the message, each block contains an index of its position in the series,
in order to prevent rearranging the blocks. Furthermore, all the blocks in
a signature contain the same random identifier. This prevents blocks from
different signatures from being combined, because they will have different
identifiers. Finally, all the blocks in a signature contain the total number of
blocks, so that blocks cannot be dropped from the end of the message. This
brings us to the actual construction:

We now prove that Construction 4.5 constitutes a secure message authen-
ticate code:

THEOREM 4.6 Assume that the function F used in Construction 4.5 is a
pseudorandom function. Then, Construction 4.5 is a message authentication
code that is existentially unforgeable under chosen message attacks.

PROOF The intuition behind the proof is that if the random identifier r is
different in every signature that the adversary receives from the oracle, then
a forgery must either contain a new identifier or it must somehow manipulate
the blocks of a signed message. In both cases, the adversary must guess the
output of the pseudorandom function at a “new point”.

Let A be a probabilistic polynomial-time adversary and let £(-) be a function
so that

Pr[Mac-forge 4 1(n) = 1] = £(n) (4.3)

Message Authentication Codes and Collision-Resistant Hash Functions 117

CONSTRUCTION 4.5 Variable-length MAC.

Let F : {0,1}* x {0,1}* — {0,1}" be a function such that for every
k € {0,1}", Fj(-) maps n-bit strings to n-bit strings. Define a variable-
length MAC as follows:

e Gen(1™): upon input 17, choose k «— {0, 1}"

e Macg(m): upon input a key k € {0,1}" and a message m € {0,1}"
of length at most 2%_1, first parse m into d blocks m1,--- ,mgq,
each of length n/4. (In order to ensure unique encoding, the last
block is padded with 10*.) Next, choose a random identifier r «—
{0,1}"/%.

Then, for ¢ =1,...,d, compute t; = Fj(r||d||i][m;:), where ¢ and d
are uniquely encoded into strings of length n/4 and “||” denotes
concatenation.”

Finally, output the tag ¢t = (r,t1,...,tq).

e Vrfy, (m,t): Upon input key k, message m and tag ¢, run the MAC-
tag generation algorithm Mac except that instead of choosing a
random identifier, take the identifier r that appears in ¢t. Output
1 if and only if the tag that is received by running Mac with this
r is identical to t.

“Notice that ¢ and d can be encoded in n/4 bits because the length of the
padded m is at most on/4,

We show that this implies the existence of a polynomial-time algorithm that
can distinguish the pseudorandom function from a random one with advantage
at least e(n) — negl(n) for a negligible function negl(-). This will then imply
that £(-) must be negligible, as required.

Consider a message authentication code Il = ((EE\, Envc, E)E) which is the
same as II = (Gen, Mac, Vrfy) in Construction 4.5 except that a truly random
function f,, is used instead of the pseudorandom function F. We now show
that

Pr[Mac-forge , ;(n) = 1] < negl(n) (4.4)

for a negligible function negl(-). Let Q be the set of queries made by A in
Mac-forge with IT and let (m,t) be its output. We analyze the probability
that m ¢ Q and yet ¢ is a valid MAC tag for m. Recall that our analysis here
is in the case that a truly random function is used.

Let t = (r,t1,...,tq). We have the following cases:

1. The identifier r appearing in the tag t output by A is different from all
the identifiers obtained by A from its MAC oracle during the experiment:
This implies that the function f, was never applied to a block of the
form (r,*,,*) during Mac-forge with II. Since f, is truly random, it
follows that the probability that A succeeds in guessing any single ¢; is

118

Introduction to Modern Cryptography

at most 27", (It actually needs to successfully guess all the tq,...,¢q
values because the new identifier r must appear in all of the blocks.
Nevertheless, it suffices to bound its success by 27".)

. The identifier r appearing in the tag t output by A appears in exactly

one of the MAC tags obtained by A from its MAC oracle during the
experiment: Denote by m’ the message that A queried to its oracle for
which the reply ¢’ contained the identifier r. Since m ¢ Q it holds that
m # m'/, where m is the message output by A. Let d and d’ be the
number of blocks in the parsing of m and m’, respectively. There are
two subcases here:

(a) Case 1: d = d’. In this case, the message content of one of the
blocks must be different (i.e., for some 4 it must hold that (m;, i) #
(ml},1)); let i denote the index of the different block. As in the
previous case, this means that the random function f,, was never
applied to a block with content (r,d,i,m;) during Mac-forge with
ﬁ, and so A can succeed in guessing ¢; with probability at most
27,

(b) Case 2: d # d'. In this case, each block in the parsed message m
is of the form (r,d,,*). However, r was only used in generating
the MAC for m’ of length d’. Therefore, f,, was never applied to a
block of the form (r,d,*,x) during the experiment. (The function
fn was only applied to blocks with a different 7' or of the form
(r,d',x,*) where d’ # d.) Thus, f, was never applied to the blocks
appearing in the MAC forgery t. As above, this means that 4 can
succeed with probability at most 277.

3. The identifier r appearing in the tag t output by A appears in two or

more of the MAC tags obtained by A from its MAC oracle during the
experiment: We rule out this case by showing that two MAC tags (gen-
erated legally) have the same identifier with at most negligible proba-
bility. Now, the length of a random identifier is n/4. Therefore, for N
messages, the probability that at least two MAC tags have the same

identifier is (g) LoTn/4 = 02(,1]\/’;)
that the probability that a single pair has the same identifier is 2~
and there are () possible pairs). Since N' = poly(n), we have that this

is negligible, as required.

(this calculation is based on the fact
n/4

The above analysis covers all possible cases, and so we have that A can suc-
ceed in Mac-forge with II with at most negligible probability, proving Equa-
tion (4.2).

The remainder of the proof follows by building a distinguisher, exactly as
in the proof of Theorem 4.4. (The only difference is that the distinguisher
carries out the parsing and then uses its oracle function.) Using the same

Message Authentication Codes and Collision-Resistant Hash Functions 119

arguments, we have that

Pr [DFk<'>(1") - 1} —Pr [Df"(')(ln) - 1} ’ > 2(n) — negl(n)

and so () must be a negligible function, as required. [|

4.5 CBC-MAC

Theorem 4.6 above provides a simple proof that it is possible to construct
message authentication codes for messages of any length, given only pseu-
dorandom functions that work for a specific input/output length. Thus, for
example, it demonstrates that it is possible to use block ciphers as a basis for
constructing secure MACs. The problem, however, with the construction is
that in order to compute a MAC tag on a message of length £-n, it is necessary
to apply the block cipher 4¢ times. More seriously, the size of the MAC tag
is 4¢n. Fortunately, it is possible to achieve far more efficient solutions.

The CBC-MAC construction is based on the CBC mode of encryption and
is widely used in practice. It works in a similar way to Construction 4.3 in
that the message is broken up into blocks, and a block cipher is then applied.
However, in order to compute a tag on a message of length ¢-n, where n is the
size of the block, the block cipher is applied ¢ times. Furthermore, the size
of the MAC tag is only n bits (i.e., a single block). We begin by presenting
the basic CBC-MAC construction. However, as will be discussed below, this
basic scheme is not secure in the general case.

CONSTRUCTION 4.7 Basic CBC-MAC.
The basic CBC-MAC construction is as follows:

e Gen(1™): upon input 1", choose a uniformly distributed string
k—{0,1}"

e Maci(m): upon input key k& € {0,1}" and a message m of length
¢ - n, do the following:

1. Denote m = mi,...,my where each m; is of length n, and
set to = 0".

2. For i =1 to ¢, set t; « Fi(ti—1 & m;) where F : {0,1}" x
{0,1}* — {0,1}" is a function.

3. Output ty

e Vrfy,(m,t): upon input key k£ € {0,1}", a message m of length
£-n and a tag ¢ of length n, output 1 if and only if ¢ = Macy(m)

120 Introduction to Modern Cryptography

See Figure 77 for a graphical depiction of Construction 4.7. The security
of this construction is given in the following theorem:

THEOREM 4.8 Let £ be any fized value. If F is a pseudorandom function
such that for every k € {0,1}" the function Fy, maps n-bit strings to n-bit
strings, then Construction 4.7 is a fived-length MAC with length parameter
{ - n that is existentially unforgeable under a chosen-message attack.

The proof of Theorem 4.8 is very involved and is therefore omitted. We
stress that Construction 4.7 is only secure when the length of the messages is
fixed. Of course, the advantage of this construction over Construction 4.3 is
that any length can be chosen (as long as it is fixed), and we are not limited
by the input/output length of the pseudorandom function. We also remark
that it is not really necessary to take the length to be a multiple of n as long
as padding is used.

CBC-MAC versus CBC encryption. There are two differences between
the basic CBC-MAC and the CBC mode of encryption:

1. CBC encryption uses a random IV and this is crucial for obtaining
security. In contrast, CBC-MAC uses no IV — or any fixed IV — and this
is also crucial for obtaining security (i.e., a CBC-MAC with a random
IV is not a secure MAC).

2. In CBC encryption all blocks are output by the encryption algorithm
whereas in CBC-MAC only the last block is output. It may seem that
this is a technical difference based on the fact that for encryption all
blocks must be output in order to enable decryption, whereas for a
MAC this is simply not necessary and so is not done. However, if all
blocks are output in the MAC setting, then the result is not a secure
MAC.

In Exercise 4.4 you are asked to demonstrate attacks on a CBC-MAC that uses
a random IV or one that outputs all blocks. This is a good example of the fact
that harmless-looking modifications to cryptographic constructions can render
them insecure. It is crucial to always implement the exact construction, and
not some slight variant (unless you have a proof). Furthermore, it is crucial to
understand the constructions. For example, in many cases, a cryptographic
library provides a programmer with a “CBC function.” However, it does not
distinguish between the use of this function for encryption or for message
authentication.

Construction 4.7 and variable-length messages. Theorem 4.8 states
that the basic CBC-MAC construction is only secure for fixed-length messages.
However, in the general case of variable-length messages it is easy to generate
a forgery for the basic CBC construction. We leave the task of finding the

Message Authentication Codes and Collision-Resistant Hash Functions 121

actual attack as an exercise. We remark that the attack that exists does
not provide much control to the adversary over the content of the forged
message. Nevertheless, as we have discussed, it is crucial that cryptographic
constructions be secure for all applications and we have no way of knowing
that the attack described above will not harm any application. In addition,
we also have no way of knowing that other, possibly more devastating, attacks
do not exist. When one attack is known, this often means that many more
are possible.

Secure CBC-MAC for variable-length messages. In order to obtain
a secure MAC via the CBC construction for variable-length messages, Con-
struction 4.7 must be modified. This can be done in a number of ways. Three
possible options that have been proven secure are:

1. Apply the pseudorandom function (block cipher) to the block length ¢
of the input message in order to obtain a key ky. Then, compute the
basic CBC-MAC using the key k; and send the resulting tag along with
the block length.

2. Prepend the message with its block length ¢, and then compute the
CBC-MAC (the first block contains the number of blocks to follow). We
stress that appending the message with its block length is not secure.

3. Choose two different keys k1 «— {0,1}" and ks < {0,1}". Then, com-
pute the basic CBC-MAC using ki; let t; be the result. The output
MAC-tag is defined to be t = Fj, (t1).

We note that the third option has the advantage that it is not necessary to
know the message length before starting to compute the MAC. Its disadvan-
tage is that it requires two keys. However, at the expense of two additional
applications of the pseudorandom function, it is possible to store a single key
k and then derive keys k1 = F(1) and ke = Fj(2) at the beginning of the
computation.

4.6 Collision-Resistant Hash Functions

Collision-resistant hash functions (sometimes called “cryptographic” hash
functions) have many applications in cryptography and computer security. In
this section we will study collision-resistant hash functions and how they are
constructed. In the next section, we will show how they are used in order to
construct secure message authentication codes (this explains why we study
collision-resistant hash functions in this chapter).

In general, hash functions are just functions that take arbitrary-length
strings and compress them into shorter strings. The classic use of hash func-

122 Introduction to Modern Cryptography

tions is in data structures as a way to achieve O(1) lookup time for retrieving
an element. Specifically, if the size of the range of the hash function H is NV,
then a table is first allocated with N entries. Then, the element z is stored
in cell H(x) in the table. In order to retrieve z, it suffices to compute H(x)
and probe that entry in the table. Observe that since the output range of
H equals the size of the table, the output length must be rather short (or
else, the table will be too large). A “good” hash function for this purpose
is one that yields as few collisions as possible, where a collision is a pair of
distinct data items x and ' for which H(z) = H(a'). Notice that when a
collision occurs, two elements end up being stored in the same cell. Therefore,
many collisions may result in a higher than desired retrieval complexity. In
short, what is desired is that the hash function spreads the elements well in
the table, thereby minimizing the number of collisions.

Collision-resistant hash functions are similar in principle to those used in
data structures. In particular, they are also functions that compress their
output by transforming arbitrary-length input strings into output strings of
a fixed shorter length. Furthermore, as in data structures, collisions are a
problem. However, there is a fundamental difference between standard hash
functions and collision-resistant ones. Namely, the desire in data structures to
have few collisions is converted into a mandatory requirement in cryptography.
That is, a collision-resistant hash function must have the property that no
polynomial-time adversary can find a collision in it. Stated differently, no
polynomial-time adversary should be able to find a distinct pair of values
x and 2’ such that H(x) = H(z'). We stress that in data structures some
collisions may be tolerated, whereas in cryptography no collisions whatsoever
are allowed. Furthermore, the adversary in cryptography specifically searches
for a collision, whereas in data structures, the “data items” do not attempt
to collide intentionally. This means that the requirements on hash functions
in cryptography are much more stringent than the analogous requirements in
data structures. It also means that cryptographic hash functions are harder
to construct.

4.6.1 Defining Collision Resistance

A collision in a function H is a pair of distinct inputs z and z’ such that
H(xz) = H(z'); in this case we also say that x and «’ collide under H. As we
have mentioned, a function H is collision-resistant if it is infeasible for any
probabilistic polynomial-time algorithm to find a collision in H. Typically
we will be interested in functions H that have an infinite domain (i.e., they
accept all strings of all input lengths) and a finite range. Note that in such a
case, collisions must exist (by the pigeon-hole principle). The requirement is
therefore only that such collisions should be “hard” to find. We will sometimes
refer to functions H for which both the input domain and output range are
finite. However, we will only be interested in functions that compress the
input, meaning that the length of the output is shorter than that of the

Message Authentication Codes and Collision-Resistant Hash Functions 123

input. We remark that collision resistance is trivial to achieve if compression
is not required: for example, the identity function is collision resistant.

More formally, one usually deals with a family of hash functions indexed by
a “key” s. This is not a usual cryptographic key, at least in the sense that it is
not kept secret. Rather, it is merely a means to specify a particular function
H? from the family. The requirement is that it must be hard to find a collision
in H® for a randomly-chosen key s. We stress that s is not a secret key and
as such it is fundamentally different to the keys that we have seen so far in
this book. In order to make this explicit, we use the notation H* (rather than
the more standard H). As usual, we begin by defining the syntax for hash
functions.

DEFINITION 4.9 (hash function — syntax): A hash function is a pair
of probabilistic polynomial-time algorithms (Gen, H) fulfilling the following:

e Gen is a probabilistic algorithm which takes as input a security parameter
1™ and outputs a key s. We assume that 1™ is included in s (though, we
will let this be implicit).

o There exists a polynomial £ such that H is (deterministic) polynomial-
time algorithm that takes as input a key s and any string x € {0,1}*,
and outputs a string H*(z) € {0,1}(™).

If for every n and s, H® is defined only over inputs of length ¢'(n) and ¢'(n) >
4(n), then we say that (Gen, H) is a fixed-length hash function with length
parameter {'.

Notice that in the fixed-length case we require that ¢’ be greater than £.
This ensures that the function is a hash function in the classic sense in that
it compresses the input. We remark that in the general case we have no
requirement on ¢ because the function takes for input all (finite) binary strings,
and so in particular all strings that are longer than ¢(n). Thus, by definition,
it also compresses (albeit only strings that are longer than £(n)). We now
proceed to define security. As usual, we begin by defining an experiment for
a hash function IT = (Gen, H), an adversary A and a security parameter n:

The collision-finding experiment Hash-coll 4 i1(n):

1. A key s is chosen: s «— Gen(1™)

2. The adversary A is given s and outputs a pair x and z'.
Formally, (z,x') < A(s).

3. The output of the experiment is 1 if and only if v # x’' and
Hs(x) = H*(2'). In such a case we say that A has found a
collision.

124 Introduction to Modern Cryptography

The definition of collision resistance for hash functions states that no efficient
adversary can find a collision except with negligible probability.

DEFINITION 4.10 A hash function II = (Gen, H) is collision resistant
if for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr [Hash-coll 4 i1(n) = 1] < negl(n)

Terminology: For simplicity, we refer to H, H*®, and (Gen, H) all using the
same term “collision-resistant hash function.” This should not cause any
confusion.

4.6.2 Weaker Notions of Security for Hash Functions

Collision resistance is a strong security requirement and is quite difficult
to achieve. However, in some applications it suffices to rely on more relaxed
requirements. When considering “cryptographic” hash functions, there are
typically three levels of security considered:

1. Collision resistance: This is the highest level and the one we have con-
sidered so far.

2. Second preimage resistance: Informally speaking, a hash function is sec-
ond preimage resistant if given s and x it is hard for a probabilistic
polynomial-time adversary to find 2’ such that H*(x) = H*(2').

3. Preimage resistance: Informally, a hash function is preimage resistant
if given s and some y it is hard for a probabilistic polynomial-time
adversary to find a value 2’ such that H*(2’) = y. This is exactly the
notion of a one-way function that we will describe in Chapter 6.1 (except
that here we include a key s).

Notice that any hash function that is collision resistant is second preimage
resistant. Intuitively, this is the case because if given x an adversary can find
2’ for which H*®(z) = H*®(2'), then it can clearly find a colliding pair = and 2’
from scratch. Likewise, any hash function that is second preimage resistant is
also preimage resistant. This is due to the fact that if it is possible to invert
y and find an 2’ such that H®(2’) = y then it is possible to take x, compute
y = H*(z) and invert it again obtaining x’. Since the domain of H is infinite,
it follows that with good probability = # z’. We conclude that the above
three security requirements form a hierarchy with each definition implying
the one below it. We remark that our arguments here can all be formalized
and we leave this for an exercise.

Message Authentication Codes and Collision-Resistant Hash Functions 125

4.6.3 A Generic “Birthday” Attack

Before we show how to construct collision-resistant hash functions, we
present a generic attack that finds collisions in any length-decreasing function
(for simplicity of notation, we will focus on the basic case where the input
domain is infinite). This attack implies a minimal output length necessary for
a hash function to potentially be secure against adversaries of a certain time
complexity, as is subsequently explained.

Assume that we are given a hash function H® : {0,1}* — {0,1}¢ (for
notational convenience we set £ = ¢(n)). Then, in order to find a collision, we
choose random (distinct) inputs @1, ...,z, € {0,1}?*, compute y; := H*(z;)
for all ¢, and check whether any of the two y; values are equal.

What is the probability that this algorithm finds a collision? Clearly, if
q > 2%, then this occurs with probability 1. However, we are interested in the
case of a smaller ¢q. It is somewhat difficult to analyze this probability exactly,
and so we will instead analyze an idealized case in which H? is treated as a
random function.? That is, for each z; we assume that the value y; = H®(z;)
is uniformly distributed in {0, 1}* independent of any of the previous output
values {y;};j<; (recall we assume all {x;} are distinct). We have thus reduced

our problem to the following one: if we choose values y1,...,y, € {0, 1}¢
uniformly at random, what is the probability that there exist distinct 4, j
with y; = y;7

This problem has been extensively studied, and is related to the so-called
birthday problem. In fact, the collision-finding algorithm we have described is
often called a “birthday attack.” The birthday problem is the following: if ¢
people are in a room, what is the probability that there exist two people with
the same birthday? (We assume birthdays are uniformly and independently
distributed among the 365 days of a non-leap year.) This is exactly the
same as our problem: if y; represents the birthday of person ¢, then we have
Y1s---,Yq € {1,...,365} chosen uniformly at random. Furthermore, matching
birthdays correspond to distinct ¢,j with y; = y; (i.e., matching birthdays
correspond to collisions).

It turns out that when ¢ = O(V2f) (or equivalently O(2¢/2)), then the
probability of such a collision is greater than one half. (In the real birthday
case, it turns out that if there are 23 people in the room, then the probability
that two have the same birthday is at greater than one half.) We prove this
fact in Section A.4.

Birthday attacks on hash functions — summary. If the output length
of a hash function is £ bits then the aforementioned birthday attack finds a
collision with high probability in O(q) = O(2¢?) time (for simplicity, we as-
sume that evaluating H® can be done in constant time, and ignore the time

2 Actually, it can be shown that this is (essentially) the worst case, and the algorithm finds
collisions with higher probability if H*® deviates significantly from random.

126 Introduction to Modern Cryptography

required to make all the comparisons). We therefore conclude that for the
hash function to resist collision-finding attacks that run in time 7', the output
length of the hash function needs to be at least 2log T bits. When considering
asymptotic bounds on security, there is no difference between a naive attack
that tries 2¢ 4+ 1 elements and a birthday attack that tries 2¢/2 elements. This
is because if ¢(n) = O(logn) then both attacks are polynomial and if ¢(n)
is super-logarithmic then both attacks are not polynomial. Nevertheless, in
practice, birthday attacks make a huge difference. Specifically, assume that
a hash function is designed with output length of 128 bits. It is clearly in-
feasible to run 2'228 steps in order to find a collision. However, 264 is already
feasible (albeit, still rather difficult). Thus, the existence of generic birthday
attacks essentially mandates that any collision-resistant hash function in prac-
tice needs to have output that is significantly longer than 128 bits. We stress
that having a long enough output is only a mecessary condition for meeting
Definition 4.10, but is very far from being a sufficient one. We also stress
that birthday attacks work only for collision resistance; there are no generic
attacks on hash functions for second preimage or preimage resistance that are
quicker than time 2¢.

Improved birthday attacks. The birthday attack that we described above
has two weaknesses. First, it requires a large amount of memory. Second, we
have very little control over the colliding values (note that although we choose
the g values x1,..., x4, we have no control over which x; and x; are likely to
collide). It is possible to construct better birthday attacks as follows.

The basic birthday attack requires the attacker to store all ¢ values, because
it cannot know which pair will form a collision until it happens. This is very
significant because, for example, it is far more feasible to run in 24 time than
it is to obtain a disk of size 264. Nevertheless, it is possible to construct a
birthday attack that takes time 2¢/2 as above, yet requires only a constant
amount of memory. We will only describe the basic idea here, and leave
the details as an exercise. The idea is to take two random values x; and y;
and then for every ¢ > 1 to compute xz; = H(x;—1) and y; = H(H (y;—1)),
until we have some m for which z,, = y,. Notice that this means that
H(zpm—1) = H(H(ym—1)) and so z,,—1 and H (y;,—1) constitute a collision in
H (as long as they are distinct, which holds with good probability). It can
be shown that this collision is expected to appear after O(2¢/2) steps, as with
the regular birthday attack. Thus, it is not necessary to use a large amount
of memory in order to carry out a birthday attack.

The second weakness that we mentioned relates to the lack of control over
the colliding messages that are found. We stress that it is not necessary to find
“nice” collisions in order to break cryptographic applications that use collision-
resistant hash functions. Nevertheless, it is informative to see that birthday
attacks can be made to work on messages of a certain form. Assume that an
attacker wishes to prepare two messages x and 2’ such that H(z) = H(z').
Furthermore, the first message x is a letter from her employer that she was

Message Authentication Codes and Collision-Resistant Hash Functions 127

fired for lack of motivation at work, while the second message ' is a flattering
letter of recommendation from her employer. Now, a birthday attack works
by generating 2¢/? different messages and it seems hard to conceive that this
can be done for the aforementioned letters. However, it is actually possible
to write the same sentence in many different ways. For example, consider the
following sentence:

It is (hard)(difficult)(infeasible) to (find)(obtain)(acquire)(locate)
collisions in (cryptographic)(collision-resistant) hash functions in
(reasonable) (acceptable) (unexcessive) time.

The important point to notice about this sentence is that any combination
of the words is possible. Thus, the sentence can be written in 3-4-2-3 >
26 different ways. This is just one sentence and so it is actually easy to
write a letter that can be rewritten in 264 different ways (you just need 64
words with one synonym each). Using this idea it is possible to prepare
2¢/2 Jetters explaining why the attacker was fired and another 2¢/2 letters of
recommendation and with good probability, a collision between the two types
of letters will be found. We remark that this attack does require a large
amount of memory and the low-memory version described above cannot be
used here.

4.6.4 The Merkle-Damgard Transform

We now present an important methodology that is widely used for con-
structing collision-resistant hash functions. The task of constructing a collision-
resistant hash function is difficult. It is made even more difficult by the fact
that the input domain must be infinite (any string of any length may be in-
put). The Merkle-Damgard transform is a way of extending a fized-length
collision-resistant hash function into a general one that receives inputs of any
length. The method works for any fixed-length collision-resistant hash func-
tion, even one that reduces the length of its input by just a single bit. This
transform therefore reduces the problem of designing a collision-resistant hash
function to the (easier) problem of designing a fixed-length collision-resistant
function that compresses its input by any amount (even a single bit). The
Merkle-Damgard transform is used in practical constructions of hash func-
tions, and is also very interesting from a theoretical point of view since it
implies that compressing by one bit is as easy (or as hard) as compressing by
an arbitrary amount.

We remark that in order to obtain a full construction of a collision-resistant
hash function it is necessary to first construct a fixed-length collision-resistant
hash function. We will not show how this is achieved in practice. However, in
Section 7.4.2 we will present theoretical constructions of fixed-length collision-
resistant hash functions. These constructions constitute a proof that it is pos-
sible to obtain collision-resistant hash functions under standard cryptographic
assumptions.

128 Introduction to Modern Cryptography

For concreteness, we look at the case that we are given a fixed-length
collision-resistant hash function that compresses its input by half; that is,
the input length is ¢'(n) = 2¢(n) and the output length is ¢(n). In Exer-
cise 4.7 you are asked to generalize the construction for any ¢’ > £. We denote
the given fixed-length collision-resistant hash function by (Genyp, h) and use
it to construct a general collision-resistant hash function (Gen, H) that maps
inputs of any length to outputs of length ¢(n). We remark that in much of the
literature, the fixed-length collision-resistant hash function used in the Merkle-
Damgard transform is called a compression function. The Merkle-Damgard
transform is defined in Construction 4.11 and depicted in Figure ?7?.

CONSTRUCTION 4.11 The Merkle-Damgard Transform.

Let (Genp, h) be a fixed-length hash function with input length 2¢(n) and
output length ¢(n). Construct a variable-length hash function (Gen, H)
as follows:

e Gen(1™): upon input 1", run the key-generation algorithm Genp
of the fixed-length hash function and output the key. That is,
output s « Geny,.

e H®(z): Upon input key s and message z € {0,1}" of length at
most 2¢(™ — 1, compute as follows:

1. Let L = |z| (the length of) and let B = [£] (ie., the
number of blocks in z). Pad z with zeroes so that its length
is an exact multiple of /4.

2. Define zo := 0° and then for every ¢ = 1,..., B, compute
zi = h®(zi—1]|zi), where h® is the given fixed-length hash
function.

3. Output z = H®(zg||L)

We remark that we limit the length of z to be at most 24" — 1 so that
its length can fit into a single block of length ¢(n) bits. Of course, this is
not a limitation because we assume that all messages considered are of length
polynomial in n and not exponential.

The initialization vector. We remark that the value zy used in step 2 is
arbitrary can be replaced by any constant. This value is typically called the
IV or initialization vector.

THEOREM 4.12 If (Genp,h) is a fized-length collision-resistant hash
function, then (Gen, H) is a collision-resistant hash function.

Message Authentication Codes and Collision-Resistant Hash Functions 129

PROOF We first show that for any s, a collision in H*® yields a collision in
h®. Let x and 2’ be two different strings of respective lengths L and L’ such
that H®(xz) = H®(2’). Let 21 --- 25 be the B blocks of the padded z, and let
x} - - - &5, be the B’ blocks of the padded z’. There are two cases to consider.

1. Case 1 — L # L’: In this case, the last step of the computation of H*(z)
is z = h®(zp||L) and of H*(2') is z = h®(zp/||L’). Since H*(z) = H*(z')
it follows that h*(zp||L) = h®(zp/||L’). However, L # L' and so hp|L
and hp/||L’ are two different strings that collide for h®.

2. Case 2 -~ L = L': Let z; and 2] be the intermediate hash values of «
and 2’ (as in Figure ??) during the computation of H*(z) and H*(z'),
respectively. Since x # 2’ and they are of the same length, there must
exist at least one index i (with 1 < 4 < B) such that z; # z;. Let i*
be the highest index for which it holds that z;«_1||zi« # zf _||ak.. If
i* = B then (z;+_1]|zs+) and (2}._,||z}+) constitutes a collision because
we know that H*(z) = H*(2') and L = L’ implying that that zp = 2.
If i* < B, then the maximality of ¢* implies that z;» = z[.. Thus, once
again, (z;+_1||zi«) and (2. _||z;.) constitutes a collision. That is, in
both cases, we obtain that

zin—1 || # zie_q || 75

while
he (zie—tllzie) = B (25 _q [|25),

meaning that we have found a collision in hA®.

It follows that any collision in the hash function H*® yields a collision in the
fixed-length hash function h®. It is straightforward to turn this into a formal
security reduction, and we leave this for an exercise. [|

4.6.5 Collision-Resistant Hash Functions in Practice

In Section 7.4.2 we will present theoretical constructions of collision-resistant
hash functions whose security can be reduced to standard cryptographic as-
sumptions. Unfortunately, those constructions are rather inefficient and so
are not used in practice. Rather, the constructions in practice are heuristic
in nature and we do not present them here. Nevertheless, we present a few
important remarks about these functions.

One important difference between collision-resistant hash functions used
in practice and the notion we discussed above is that the hash functions in
practice are generally unkeyed, rather than keyed. Essentially this means that
a fixed hash function H is defined and there is no longer any notion of a Gen
algorithm generating a key s for H. The Gen algorithm was included in the
formal definition because the known theoretical constructions all rely in an

130 Introduction to Modern Cryptography

essential way on the use of a key. In fact, subtle technical difficulties arise
even in trying to define a meaningful notion of collision resistance for unkeyed
hash functions.® On a pragmatic level, once a collision is found in an unkeyed
function H (say, by mounting an exhaustive search taking many years) then H
is no longer collision resistant in any meaningful way. On the other hand, if H
were a keyed function then a collision for H® does not necessarily make it any
easier to find a collision in H* for a freshly-generated key s’ (although an
algorithm that finds collisions may succeed for all keys).

An even more fundamental technical difference arises if H has a fixed output
length, which is the case for most practical hash function constructions: in this
case, there is no longer any notion of a security parameter and so it no longer
makes any sense to speak of a “polynomial-time algorithm” finding collisions
with “negligible probability.” (Specifically, relying on the birthday bounds, a
collision in a hash function with constant output length ¢ can always be found
with high probability in constant(!) time 2¢/2.) Instead, the most that can be
claimed is that it is infeasible for any algorithm running in some “reasonable”
amount of time to find a collision in H with “significant” probability.

Nevertheless, unkeyed hash functions are used extensively in practice. The
reason is that they are vastly more efficient than the known theoretical con-
structions and, in practice, the security guarantee stated in the previous para-
graph is enough. In particular, if ¢ is large enough the possibility of finding a
collision in constant time 2¢/2 is not a concern. Indeed, good collision-resistant
hash functions in practice have an output length of at least 160 bits, meaning
that a birthday attack would take time 230 which is out of reach today. We
remark that despite the above, it is possible to reconcile the unkeyed hash
functions in practice with the keyed hash functions in theory. We present two
such reconciliations now:

1. Collision-resistant hash functions in practice have a fixed initialization
vector IV (as in Merkle-Damgard) as part of the code. One could argue
that the IV is essentially the key s. Similarly, the code of collision-
resistant hash functions in practice typically includes certain constants.
Again, these constants can be viewed as part of the key s. Note that
viewed in this way, the key s was chosen once and for all. Nevertheless,
also in theory, once s is chosen it can be used by everyone and for many
years.

2. The proofs of security that rely on collision resistance all show that if
the considered construction is not secure, then a collision can be found
in the hash function (as with the Merkle-Damgard transform). Thus,

3To get a sense for the technical problem, let x,z’ be a collision for a fixed hash function
H (if H is length decreasing, then such z,z’ surely exist). Now, consider the constant-
time algorithm that simply outputs = and z’. Such an algorithm finds a collision in H
with probability 1. Note that an analogous algorithm that outputs a collision in H* for a
randomly-chosen (rather than fixed) key s does not exist.

Message Authentication Codes and Collision-Resistant Hash Functions 131

when considering unkeyed functions, this could be translated into saying
that “if a real-world adversary breaks the considered construction, then
it is possible to construct a real-world algorithm that finds an actual
collision in the hash function”. If we believe that it is hard to find an
actual collision in the hash functions used in practice, then this gives us
a good security guarantee.

Two popular hash functions are MD5 and SHA-1. Both MD5 and SHA-1
first define a compression function that compresses fixed-length inputs by a
relatively small amount (in our terms, this compression function is a fized-
length collision-resistant hash function). The Merkle-Damgard transform (or
actually something very similar) is then applied to the compression function
in order to obtain a collision-resistant hash function for arbitrary-length mes-
sages. The output length of MD5 is 128 bits and that of SHA-1 is 160 bits. The
longer output length of SHA-1 makes the generic “birthday attack” (cf. Sec-
tion 4.6.3) more difficult: for MD5, a birthday attack requires ~ 2128/2 = 264
hash computations, while for SHA-1 such an attack requires ~ 2169/2 = 280
hash computations.

In 2004, a team of Chinese cryptanalysts presented a breakthrough method
of attacking hash functions. The attack worked on MD5 and a large number of
other hash functions. In addition to a general algorithm (that finds collisions
for every IV), the team presented an actual collision in MD5. (Prior to this,
weaknesses were known to exist in MD5, but no full collision was ever found.)
The algorithm is such that there is little control over the collisions that are
found. Nevertheless, it was later shown that their method (and in fact any
method that finds “random collisions”) can be used to find collisions between
two postscript files containing whatever content is desired. A year later, the
Chinese team applied the new approach to SHA-1 and demonstrated an algo-
rithm for finding collisions in SHA-1 using less time than that required by a
generic birthday attack. The attack on SHA-1 requires time 259 and as of yet,
no explicit collision has been found. These attacks have motivated a gradual
shift toward hash functions with larger outputs lengths which are presumed to
be less susceptible to the known set of attacks on MD5 and SHA-1. Notable
in this regard is the SHA-2 family, which extends SHA-1 and includes hash
functions with 256 and 512-bit output lengths. Another ramification of these
results is that there is great interest today in developing new hash functions
and a new hash standard. We stress that today MD5 has been completely
broken and collisions can be found in mere minutes. Thus, MD5 should not
be used in any application where collision-resistance is required (and it is
prudent not to use it even when only second preimage resistance is needed).

132 Introduction to Modern Cryptography

4.7 * NMAC and HMAC

Until now we have seen constructions of message authentication codes that
are based on pseudorandom functions (or block ciphers). A completely dif-
ferent approach is taken in the NMAC and HMAC constructions which are
based on collision-resistant hash functions. Loosely speaking (and not being
entirely accurate), the constructions of NMAC and HMAC rely on the follow-
ing assumptions regarding the collision-resistant hash function being used:

1. The hash function is constructed using the Merkle-Damgard transform,
and

2. The fixed-length collision-resistant hash function — typically called a
compression function — that lies at the heart of the hash function, has
certain pseudorandom or MAC-like properties.

The first assumption is true of most known collision-resistant hash functions.
The second assumption is believed to be true of the hash functions that are
used in practice and believed to be collision resistant. We remark that the
security of NMAC and HMAC actually rests on a weaker assumption than
that described above, as we will discuss below.

We first present NMAC and then HMAC, since as we will see, HMAC can
be cast as a special case of NMAC. Furthermore, it is easier to first analyze
the security of NMAC and then derive the security of HMAC.

Notation — the IV in Merkle-Damgard. In this section we will explicitly
refer to the IV used in the Merkle-Damgard transform of Construction 4.11;
recall that this is the value given to zp. In the standard Merkle-Damgard
construction, the I'V is fixed. However, here we will wish to vary it. We
denote by Hjy (z) the computation of Construction 4.11 on input z, with key
s and zp set to the value IV € {0, 1}

4.7.1 Nested MAC (NMAC)

Let H be a hash function of the Merkle-Damgard type, and let h be the
compression function used inside H. For simplicity, we denote the output
length of H and h by n (rather than by ¢(n)). The first step in the con-
struction of NMAC is to consider secretly keyed versions of the compression
and hash functions. This is achieved via the initialization vector IV. Specifi-
cally, for a given hash function H*® constructed according to Merkle-Damgard
and using (the non-secret) key s, define H} to be the keyed hash function
obtained by setting IV = k, where k is secret. Likewise, for a compression
function h®, define a secretly keyed version by hj(z) = h®(k|z). That is,
the keyed compression function works by applying the unkeyed compression
function to the concatenation of the key and the message. Note that in the

Message Authentication Codes and Collision-Resistant Hash Functions 133

Merkle-Damgard construction, the use of the I'V is such that the first iteration
computes z; = h*(IV||xz1). Here IV = k and so we obtain that z; = h®(k||z)
which is the same as hj (z). This implies that the secret key for H and h can
be of the same size. By the construction, this equals the size of the output
of h, and so the keys are of length n. To summarize, we define secretly keyed
compression and hash functions as follows:

e For a compression function i with non-secret key s, we define h; (x) def

h®(k||z) for a secret key k.

e For a Merkle-Damgéard hash function H with non-secret key s, we define
H}(z) to equal the output of H® on input x, when the IV is set to the
secret key k. This is consistent with notation above of H7}y, ().

We are now ready to define the NMAC function:

CONSTRUCTION 4.13 Nested MAC (NMAC).
The NMAC construction is as follows:

e Gen(1™): upon input 1™, run the key-generation for the hash func-
tion obtaining s, and choose k1, k2 «— {0,1}".

e Macig(m): upon input (s,ki,k2) and = € {0,1}*, compute
NMACE, y, (z) = hi, (H}, (z))

e Vrfy,(m,t): Output 1 if and only if t = Macy(m)

In words, NMAC works by first applying a keyed collision-resistant hash
function H® to the input x, and then applying a keyed compression function
to the result. Notice that the input/output sizes are all appropriate (you
should convince yourself of this fact). Hy is called the inner function and
hi, the outer function.

The security of NMAC relies on the assumption that H}} with a secret k is
collision-resistant, and that hj with a secret k constitutes a secure MAC. In
order to state the security claim formally, we define the following:

o Given a hash function (Gen, H) generated via the Merkle-Damgard trans-
form, define (Gen, H) to be a modification where Gen runs Gen to obtain
s and in addition chooses k < {0,1}". Furthermore, H is computed ac-
cording to Construction 4.11 using IV = k (that is, H, x(z) = H;(z)).

e Given a fixed-length hash function (Gen, h) mapping 2n bits to n bits,
define (Gen, k) to be a modification where Gen runs Gen to obtain s
and in addition chooses k — {0,1}". Furthermore, hyj(z) = h*(k||z).
Define a message authentication code based on (Gen,h) by computing
Mac, () = hs () and Vrfy in the natural way.

134 Introduction to Modern Cryptography

We have the following theorem:

THEOREM 4.14 Let (Gen,h) be a fized-length hash function and let
(Gen, H) be a hash function derived from it using the Merkle-Damgard trans-
form. Assume that the secretly-keyed (Gémﬁ) defined as above is collision-
resistant, and that the secretly keyed (Gén,ﬁ) as defined above is a secure
fized-length message authentication code. Then, NMAC described in Con-
struction 4.13 is a secure (arbitrary-length) message authentication code.

We will not present a formal proof of this theorem here. Rather, an almost
identical proof is given later in Section 12.4 in the context of digital signatures
(see Theorem 12.5). It is a straightforward exercise to translate that proof
into one that works here as well.

For now, we will be content to sketch the idea behind the proof of The-
orem 4.14. Assume, by contradiction, that a polynomial-time adversary A
manages to forge a MAC. Recall that A is given an oracle and can ask for a
MAC on any message it wishes. Then, it is considered to successfully forge if
it outputs a valid MAC tag on any message that it did not ask its oracle. Let
m* denote the message for which A produces a forgery and let @ denote the
set of queries it made to its oracle (i.e., the set of messages that for which it
obtained a MAC tag). There are two possible cases:

L. Case 1 — there exists a message m € Q such that Hj (m*) = H} (m):
in this case, the MAC tag for m equals the MAC tag for m* and so
clearly A can successfully forge. However, this case directly contradicts
the assumption that Hj is collision resistant because A found distinct
m and m* for which H (m*) = Hj (m).

2. Case 2 — for every message m € Q it holds that H}; (m*) # H} (m):
Define Q" = {H},(m) | m € Q}. The important observation here is
that the message m* for which the MAC forgery is formed is such that
Hp (m*) ¢ Q. Thus, we can consider the attack by A to be a MAC
attack on hj where the messages are all formed as Hj (m) for some m,
and the message for which the forgery is generated is H}, (m*). In this
light, we have that A successfully generates a MAC forgery in the fized-
length message authentication code hj,. This contradicts the assumption
that hj is a secure MAC.

Once again, for a formal proof of this fact, see the proof of Theorem 12.5 (the
only modifications necessary are to replace “signature scheme” with “message
authentication code”).

Security assumptions. We remark that if the inner hash function is as-
sumed to be collision resistant (in the standard sense), then no secret key ko
is needed. The reason why NMAC (and HMAC below) were designed with
secret keying for the inner function is that it allows us to make a weaker

Message Authentication Codes and Collision-Resistant Hash Functions 135

assumption on the security of H®. Specifically, even if it is possible to find
collisions in H*®, it does not mean that it is possible to find collisions in the
secretly keyed version Hj,. Furthermore, even if it is possible to find collisions,
notice that the attacker cannot compute millions of hashes by itself but must
query its MAC oracle (in real life, this means that it must obtain these values
from the legitimately communicating parties). To make its life even harder,
the attacker does not even receive Hy (z); rather it receives hy (Hj (z)) that
at the very least hides much of H} (7).

Despite the above, it is not clear that the assumption that H; is collision
resistant is significantly “better” than the assumption that H*® is collision
resistant. For example, the new attacks on MD5 and other hash functions
that we mentioned above work for any IV. Furthermore, the prefix of any
message in a Merkle-Damgard hash function can essentially be looked at as
an IV. Thus, if it is possible to obtain a single value H}(x) for some z,
then one can define IV = Hj(x). Then, a collision in Hj,, can be used to
derive a collision in Hj, even though a secret key k is used. We reiterate that
in NMAC, the adversary actually only receives hy (Hj (v)) and not Hj ().
Nevertheless, the statement of security in Theorem 4.14 does not use this fact
(and currently it is not known how to utilize it).

4.7.2 HMAC

The only disadvantage of NMAC is that the IV of the underlying hash
function must be modified. In practice this can be annoying because the IV
is fixed by the function specification and so existing cryptographic libraries
do not enable an external IV input. Essentially, HMAC solves this problem
by keying the compression and hash functions by concatenating the input to
the key. Thus, the specification of HMAC refers to an unkeyed hash function
H. Another difference is that HMAC uses a single secret key, rather than two
secret keys.

As in NMAC, let H be a hash function of the Merkle-Damgard type, and
let h be the compression function used inside H. For the sake of concreteness
here, we will assume that A compresses its input by exactly one half and so its
input is of length 2n (the description of HMAC depends on this length and
so must be modified for the general case; we leave this for an exercise). The
HMAC construction uses two (rather arbitrarily chosen) fixed constants opad
and ipad. These are two strings of length n (i.e., the length of a single block
of the input to H) and are defined as follows. The string opad is formed by
repeating the byte 36 in hexadecimal as many times as needed; the string ipad
is formed in the same way using the byte 5C. The HMAC construction, with
an arbitrary fixed IV, is as follows (recall that ‘||’ denotes concatenation):

We stress that “k @ ipad || ” means that k is exclusively-ored with ipad
and the result is concatenated with x. Construction 4.15 looks very different
from Construction 4.13. However, as we will see, it is possible to view HMAC
as a special case of NMAC. First, assume that hj with a secret k£ behaves like

136 Introduction to Modern Cryptography

CONSTRUCTION 4.15 HMAC.
The HMAC construction is as follows:

e Gen(1™): upon input 1™, run the key-generation for the hash func-
tion obtaining s, and choose k «— {0,1}".

e Maci(m): upon input (s, k) and = € {0,1}", compute
HMAC; (z) = Hjy <k @ opad | Hryv (k: @ ipad | x))

and output the result.

e Vrfy,(m,t): output 1 if and only if ¢ = Mack(m).

a pseudorandom function (note that SHA-1 is often used as a pseudorandom
generator in practice and so this is believed to be the case). Now, the first step
in the computation of the inner hash Hj (k @ipad || z) is z1 = h*(IV || k &
ipad). Likewise, the first step in the computation of the outer hash is 2} =
h*(IV || k®opad). Looking at h as a pseudorandom function, this implies that
h*(IV || k@ipad) and h*(IV || k@ opad) are essential different pseudorandom
keys k1 and ko. Thus, denoting k1 = h*(IV || k@ipad) and ko = R*(IV || k®
opad) we have

HMAC;(z) = Hjy, (k@ opad || H(k®ipad || z)) = Hi (H, (z)).

Notice now that the outer application of H is to the output of H} (x) and so
is just a single computation of h®. We therefore conclude that

HMACy(x) = hi, (H, (2))

which is exactly NMAC. In order to formally restate the theorem of NMAC
for HMAC, we just need to assume that the key derivation of k1 and ko using
ipad and opad yields two pseudorandom keys, and everything else remains the
same. We formally state this by defining the function G by

G(k) = h*(IV ||k & opad) || h*(IV ||k & ipad)

and requiring that it be a pseudorandom generator with expansion factor 2n
(see Definition 3.15 in Chapter 3). Observe that the generator doubles its
length and so produces two pseudorandom keys each of length n from a single
random key of length n. Keying the hash functions as we have described
above, we have the following:

THEOREM 4.16 Assume that (Gen, H), (Gen, H), (Gen, h) and (Gen, h)
are all as in Theorem 4.14. In addition, assume that G as defined above is a
pseudorandom generator. Then, HMAC described in Construction 4.15 is a
secure (arbitrary-length) message authentication code.

Message Authentication Codes and Collision-Resistant Hash Functions 137

HMAC in practice. HMAC is an industry standard and is widely used in
practice. It is highly efficient and easy to implement, and is supported by a
proof of security (based on assumptions that are believed to hold for all hash
functions in practice that are considered collision resistant). The importance
of HMAC is partially due to the timeliness of its appearance. When HMAC
was presented, many practitioners refused to use CBC-MAC (with the claim
that is is “too slow”) and instead used heuristic constructions that were often
insecure. For example, a MAC was defined as H (k|z) where H is a collision-
resistant hash function. It is not difficult to show that when H is constructed
using Merkle-Damgard, this is not a secure MAC at all.

4.8 * Achieving Chosen-Ciphertext Secure Encryption

In Section 3.7, we introduced the notion of CCA security. In this section we
will use message authentication codes (and CPA secure encryption) in order
to construct a CCA-secure private-key encryption scheme.

Constructing CCA-secure encryption schemes. In order to achieve
CCA-security, we will construct an encryption scheme with the property that
the adversary will not be able to obtain any valid ciphertext that was not
generated by the legitimate parties. This will have the effect that the de-
cryption oracle will be rendered useless. Given this intuition, it is clear why
message authentication codes help. Namely, our construction works by first
encrypting the plaintext message, and then applying a MAC to the resulting
ciphertext. This means that only messages generated by the communicating
parties will be valid (except with negligible probability).

Let IIg = (Geng, Enc, Dec) be a CPA-secure encryption scheme and Il =
(Genyas, Mac, Vrfy) a secure message authentication code. The construction is
as follows:

CONSTRUCTION 4.17 CCA-secure encryption.
Define a CCA-secure encryption scheme as follows:
e Gen’(1™): upon input 1", choose k1, ks « {0,1}"
e Encj(m): upon input key (k1,k2) and plaintext message m, com-
pute ¢ = Ency, (m) and ¢t = Macg, (c) and output the pair (c,t)
e Decy,(c,t): upon input key (k1, k2) and ciphertext (c, t), first verify
that Vrfy, (c,t) = 1. If yes, then output Decy, (c); if no, then
output L.

138 Introduction to Modern Cryptography

Before stating and proving the security of this construction, we introduce
an additional requirement on the MAC scheme, called unique tags. Simply,
a message authentication code has unique tags if for every k£ and every m,
there is a single value t such that Macg(m) = ¢t. Note that the fixed-length
MAC of Construction 4.3 has unique tags, whereas the variable-length MAC
of Construction 4.5 does not. Nevertheless, this is not really a limitation
because both the CBC-MAC and HMAC constructions have unique tags. We
are now ready to state the theorem.

THEOREM 4.18 Assume that Iy = (Geng, Enc,Dec) is a CPA-secure
encryption scheme and that Il = (Genpr, Mac, Vrfy) is a secure message
authentication code with unique tags. Then, Construction 4.17 is a CCA-
secure encryption scheme.

PROOF The idea behind the proof of this theorem is as follows. Since
(Genps, Mac, Vrfy) is a secure message authentication code, we can assume
that all queries to the decryption oracle are invalid, unless the queried ci-
phertext was previously obtained by the adversary from its encryption oracle.
Therefore, the security of the scheme II'’ = (Gen’,Enc’, Dec’) in Construc-
tion 4.17 is reduced to the CPA-security of (Geng,Enc,Dec) (because the
decryption oracle is effectively useless). In more detail, we first prove that
except with negligible probability, the only valid queries made by the adver-
sary to the decryption oracle are ciphertexts that were previously obtained
from the encryption oracle. Then, given this claim, we prove that if the
CCA-secure scheme is not secure, then neither is the underlying CPA-scheme
(Genpg, Enc, Dec). This is due to the fact that an adversary for the CPA-secure
scheme can actually simulate a decryption oracle for the CCA adversary. This
simulation works by returning | if the received ciphertext was never queried
before, and returning the appropriate message if the ciphertext was generated
by querying the encryption oracle. The validity of this simulation follows from
the above claim. We now proceed to the formal proof.

Let A be any probabilistic polynomial-time CCA adversary attacking Con-
struction 4.17. Define VALID-QUERY 4 11 (1) to be the event that in the experi-
ment PrivK{’y/ (n), the adversary A generates a query (c,t) to the decryption
oracle that was not obtained from the encryption oracle and does not result
in an oracle reply L. We claim that Pr[VALID-QUERY 4 11/ (n)] is at most neg-
ligible. Intuitively, this is due to the fact that if the oracle does not reply L,
then ¢ is a valid MAC tag for ¢. Thus, if (¢,t) was not obtained by querying
the encryption oracle, this means that .4 must have forged a MAC. Formally,
we prove that if the probability that VALID-QUERY occurs is non-negligible,
then we can construct an adversary Ap.. that breaks the MAC as follows.
Let ¢(-) be a polynomial that upper-bounds the running-time of A (and thus
the number of oracle queries it makes). Then, adversary Amac, interacting in
Mac-forge 4 11,,(n), chooses a random key k1 for Enc and a random value

Message Authentication Codes and Collision-Resistant Hash Functions 139

i—{1,...,9(n)}, and invokes the CCA-adversary A. Adversary Apmac then
simulates the encryption and decryption oracles for A. The way it does this is
to use ky and its MAC-generating oracle to simulate the encryption oracle for
A. Regarding the decryption oracle, all but the i** query will be assumed to
be invalid, and Amac will “hope” that the 3P query is valid. In this case, Apac
will hope to have obtained a forged tag. More specifically, when A queries
the encryption oracle with m, adversary Ap.. computes ¢ = Encg, (m) and
requests a tag t for c¢. Adversary Apac then returns the pair (¢, t) to A as its
oracle reply. In contrast, in every decryption oracle query (c,t) from A apart
from the i*" one, adversary Apa. first checks if (c,t) was ever generated from
an encryption query. If yes, Apac returns the plaintext m that was queried
by A when (c,t) was generated. If not, Amac returns L. In contrast, for the
ith decryption oracle query (c,t), adversary Amyac outputs (c,t) as its MAC
forgery and halts. (We remark that the generation of the challenge cipher-
text from the pair (mg,m1) is also carried out by Amac for A as in the CCA
experiment.)

Clearly Apmac runs in probabilistic polynomial-time. We now analyze the
probability that A,.. generates a good forgery, and so succeeds in Mac-forge.
By our contradicting assumption, with non-negligible probability, adversary
A generates a query (c,t) to the decryption oracle that was not obtained
from the encryption oracle, and does not return L. We remark that since
(Gen s, Mac, Vrfy) has unique tags, it follows that the query ¢ was never asked
by Amac to its MAC-tag oracle (because (c,t) was not obtained from an en-
cryption query and there is only a single possible ¢ that is a valid MAC tag
for ¢). Therefore, such a pair (¢, t) is a “good forgery” for Amac. Now, if all
the decryption oracle queries generated by A up until the i*" one were indeed
invalid, then the simulation by Apa.. for A up until the i** query is perfect.
Furthermore, the probability that the i*" query is the first valid one generated
by A is at least 1/¢(n) because A makes at most g(n) oracle queries, and one
of these is the first valid one. Therefore, the probability that A, succeeds in
Mac-forge is at least 1/¢g(n) times the probability that the VALID-QUERY event
occurs. Since Apae can succeed in Mac-forge with at most negligible proba-
bility, it follows that VALID-QUERY occurs with at most negligible probability.
That is, we have that for some negligible function negl,

Pr [VALID-QUERY 4 i (n)] < negl(n).

Given that VALID-QUERY occurs with at most negligible probability, we now
show that Construction 4.17 is CCA-secure. In this part of the proof, we
reduce the security to the CPA-security of (Geng, Enc, Dec). Specifically, let
A be any probabilistic polynomial-time adversary for PrivK*?. We use A to
construct an adversary Aenc for the CPA experiment with (Geng, Enc, Dec).
Adversary Aepn. chooses a key ko and invokes the adversary A. Whenever A
asks an encryption query m, adversary Aep. queries its encryption oracle with
m and receives back some ¢. Then Ae,, computes ¢ = Macy, (¢) and hands A
the pair (¢,t). Whenever A asks for a decryption query (c,t), Aenc checks if

140 Introduction to Modern Cryptography

(c,t) was generated in a previous encryption query. If yes, Ae,e hands A the
value m that was queried when (c,t) was generated. If no, Ae,. hands A the
response L. When A outputs a pair (mg, m1), adversary Ae,. outputs the
same pair and receives back a challenge ciphertext ¢. As above, Agpc hands
A the challenge ciphertext (¢, t) where t = Macyg,(¢). Notice that Ae,e does
not need a decryption oracle because it assumes that any new query is always
invalid. Furthermore, Ag,. runs in probabilistic polynomial-time because it
just invokes A and adds MAC tags (that are efficiently computable because
Aenc chose kq). Tt is straightforward to see that the success of Agye in PrivkK?
when VALID-QUERY does not occur equals the success of A in PrivK“® when
VALID-QUERY does not occur. That is,

Pr[PrivK®® 11, (n) = 1 A “VALID-QUERY 4 1/ (n)]
= Pr[PrivK’y/(n) = 1 A =VALID-QUERY 4 11/ (n)]]
implying that
Pr[Privk®® 1 (n) =1] (4.5)
> Pr[PrivkK3? 1 (n) = 1 A “VALID-QUERY 4 11/ (1))
= Pr[PrivK{’ (n) = 1 A =VALID-QUERY 4 11/ (1)]
Assume now by contradiction that there exists a non-negligible function e
such that

1
Pr[PrivKy/(n) = 1] = 3 +e(n).

By the fact that Pr[VALID-QUERY 4 1/(n)] is negligible, we have that it is
smaller than £(n)/2. This in turn implies that

Pr[PrivK% (n) = 1 A VALID-QUERY 4 1 (n)] < £(n)/2
and so
Pr[PrivKp (n) = 1] = Pr[PrivK’ (n) = 1 A =VALID-QUERY 4 1/ (1)]
+ Pr[PrivK%y, (n) = 1 A VALID-QUERY 4 1 (1)]

e(n)
5

Rearranging the above, and using the fact that A succeeds in PrivK®® with
probability 1/2 4 ¢(n), we have that

< Pr[PrivK%%y/(n) = 1 A =VALID-QUERY 4 11/ (n)] +

Pr[PrivK{y (n) = 1 A ZVALID-QUERY 4 1 (n)] > Pr[PrivK{%y (n) = 1] — @
1 e(n)
S22

Combining this with Equation (4.5), we have that

Pr[Privk3® o (n)=1] >

Message Authentication Codes and Collision-Resistant Hash Functions 141

implying that Aene succeeds in PrivK®® with non-negligible advantage over
1/2. Since this contradicts the CPA-security of Il = (Geng, Enc, Dec), we
conclude that Construction 4.17 is CCA-secure. []

CCA-security and unique tags. If the MAC scheme does not have unique
tags, then it may be easy to break the CCA scheme by simply modifying the
MAC tag of the challenge ciphertext so that it is different to the given one,
but is still valid. In such a case, it is possible to query the decryption oracle
with the modified ciphertext, and the plaintext m; will be returned. This
seems rather artificial and actually demonstrates that full CCA-security may
be an overkill, possibly motivating the search for meaningful relaxations of
the notion. In any case, in the private-key encryption setting we have highly
efficient constructions (i.e., Construction 4.17) and thus there is no reason to
use relaxations.

CCA-security in real life. In some sense, Construction 4.17 is somewhat
unsatisfying. It appears to bypass the meaning of CCA-security by preventing
the adversary from ever using its decryption oracle. However, this is exactly
the point! If in real life the adversary ever manages to achieve the effect of a
decryption oracle, then it can only be used to obtain decryptions of ciphertexts
sent by the legitimate parties. (We remark that this is unavoidable in any
case. Furthermore, in real life, the decryption oracle that an adversary can
obtains is typically limited and an adversary would usually not be able to learn
anything by feeding captured ciphertexts. See the discussion on CCA-security
in Section 3.7.)

4.9 * Obtaining Privacy and Message Authentication

In Chapter 3, we studied how it is possible to encrypt messages, thereby
guaranteeing privacy. Until now in this chapter, we have showed how to
generate secure message authentication codes, thereby guaranteeing data au-
thenticity or integrity. However, sometimes we actually need both privacy
and authentication. It may be tempting to think that if we use a secure en-
cryption scheme and a secure MAC, then any combination of them should
provide both privacy and authentication. However, this is unfortunately not
at all the case. In general, even excellent cryptographic tools can be applied
in a way so that the result is not secure. The unfortunate state of affairs is
actually that it is very hard to combine cryptographic tools correctly. Thus,
unless a specific combination has been proven secure, it is unwise to use it.

There are three common approaches to combining encryption and message
authentication. We will consider each of the three. Let (Geng, Enc, Dec) be

142 Introduction to Modern Cryptography

an encryption scheme and let (Geng, Mac, Vrfy) be a message authentication
code. We will denote by k1 an encryption key, and by ke a MAC key. The
three approaches are:

1. Encrypt-and-authenticate: In this method, encryption and message au-
thentication are computed and sent separately. That is, given a message
m, the final message is the pair (¢, t) where:

¢ = Encg, (m) and t = Macg,(m)

2. Authenticate-then-encrypt: Here a MAC tag t is first computed, and
then the message and tag are encrypted together. That is, the message
is ¢, where:

¢ = Encg, (m,t) and t = Macy,(m)

Note that ¢ is not sent separately to ¢, but is rather incorporated into
the plaintext.

3. Encrypt-then-authenticate: In this case, the message m is first encrypted
and then a MAC tag is computed over the encrypted message. That is,
the message is the pair (c,t) where:

¢ = Encg, (m) and ¢t = Macg,(c)

In this section we analyze each of these approaches. We stress that our anal-
ysis follows an all or nothing approach. That is, we require a scheme that
will provide both privacy and authentication for every possible secure encryp-
tion scheme and message authentication code. Thus, our analysis will reject
any combination for which there exists even a single counter-example. For
example, we will show that “encrypt and authenticate” is not necessarily se-
cure. This does not mean that for every encryption scheme and MAC, the
combination is not secure. Rather it means that there exists an encryption
scheme and MAC for which the combination is not secure. The reason that
we insist that security should hold for all schemes is due to the fact that it
should be possible to replace any secure encryption scheme with another one
(and likewise MAC) without affecting the security of applications that use
the scheme. We remark that such replacements are common in practice when
cryptographic libraries are modified or updated, or standards are modified (as
in the transition from 3DES to AES — see Section 5).

Encryption only versus encryption and authentication. Before pro-
ceeding, we briefly discuss the issue of when encryption alone is enough, and
when it is necessary to both encrypt and authenticate. Clearly, when both
privacy and integrity are needed, then combined encryption and authentica-
tion is essential. Thus, most online tasks, and clearly any online purchase
or bank transaction, needs to be encrypted and authenticated. In general,
however, it is not always clear when authentication is needed in addition to

Message Authentication Codes and Collision-Resistant Hash Functions 143

secrecy. For example, when encrypting files on a disk, is it necessary to also
authenticate them? At first sight, one may think that since disk encryption
is used to prevent an attacker from reading secret files, there is no need to
authenticate. However, it may be possible to inflict significant damage if fi-
nancial reports and so on are modified (e.g., thereby causing a company to
mistakenly publish false reports). We believe that it is best practice to al-
ways encrypt and authenticate by default; encryption-only should not be used
unless you are absolutely sure that no damage can be caused by undetected
modification of your files. There are also surprising cases where the lack of
authentication can result in a breach of privacy, especially when it comes to
network traffic.

The building blocks. The first question to be considered when discussing
combinations of encryption schemes and message authentication codes, is
what level of security is required from the encryption scheme and message
authentication code that are used in the combination. We will consider the
case that the encryption scheme is indistinguishable under chosen-plaintext
attacks and the message authentication code is existentially unforgeable under
chosen-message attacks. As will be shown below, this suffices for obtaining
chosen-ciphertext security together with existential unforgeability.

Security requirements. In order to analyze which of the combinations of
encryption and authentication are secure, we have to first define what we mean
by a “secure combination”. The best approach for this is to model in general
what we mean by a secure communication channel and then prove that a
given combination meets this definition. Unfortunately, providing a formal
definition of a secure channel is beyond the scope of this book. We therefore
provide a more “naive” definition that simply refer to indistinguishability in
the presence of chosen-ciphertext attacks and existential unforgeability in the
presence of chosen-message attacks. Nevertheless, the definition and analysis
suffice for understanding the key issues at hand.

Let (Geng, Enc,Dec) be an encryption scheme and let (Geng,Mac, Vrfy)
be a message authentication code. A combination of (Geng, Enc, Dec) and
(Geng, Mac, Vrfy) is a tuple of algorithms (Gen’, EncMac’, Dec’, Vrfy') as fol-
lows:

e Key generation Gen’: upon input 17, the key-generation algorithm G
chooses ki, ka < {0,1}", and outputs (ki, k2).

e The combination algorithm EncMac’: the combination algorithm re-
ceives a pair of keys (k1, k) and a message m and outputs a value ¢
that is derived by applying some combination of Ency, (-) and Macg, (-).

o Verification algorithm Vrfy': the verification algorithm receives a pair
of keys (k1, k2) and a value ¢, and applies some combination of Ency, (-)
and Macy, (-). At the end, Vrfy’ outputs 1 or 0. (Notice that unlike in

144 Introduction to Modern Cryptography

the MAC setting, Vrfy’ does not receive a plaintext message as well as
a tag. Rather, all the necessary information is contained in c.)

o Decryption algorithm Dec’: the decryption algorithm receives a pair of
keys (k1,k2) and a value ¢, and applies some combination of Ency, (-)
and Macg, (-). At the end, Dec’ outputs some value m.

The non-triviality requirement is that for every n and every pair of keys
k1,ke € {0,1}™, and for every value m € {0,1}*,

Dec;th(EncMac;ﬂ’,€2 (m)) =m and Vrfy;ﬂ’,Q(EncMac;%,62 (m)) =1

As we have mentioned, our definition of security is simple. We require that
the combination (Gen’, EncMac’, Dec’, Vrfy’) is both a CCA-secure encryption
scheme and a secure MAC. Notice that we actually “boost” security, because
we begin only with a CPA-secure encryption scheme. We have the following
definition:

DEFINITION 4.19 We say that (Gen’, EncMac’, Dec’, Vrfy’) is a secure
combination of encryption and authentication if (Gen’, EncMac’, Dec’) has in-
distinguishable encryptions under chosen-ciphertext attacks and the scheme
(Gen’, EncMac’, Vrfy') is existentially unforgeable under chosen message at-
tacks.

Definition 4.19 essentially says that a combination is secure if it does not
harm the encryption security or the message authentication security. That is,
each goal holds separately. We now analyze the three approaches for combin-
ing encryption and authentication mentioned above.

Encrypt-and-authenticate. As we have mentioned, in this approach an en-
cryption and message authentication code are computed and sent separately.
That is, given a message m, the final message is the pair (c,t) where

¢ = Encg, (m) and t = Macg,(m)

This combination does not yield a secure encryption scheme. In order to see
this, first notice that at least by definition, a secure MAC does not necessarily
imply privacy. Specifically, if (Geng, Mac, Vrfy) is a secure message authenti-
cation code, then so is the scheme defined by Mac.(m) = (m, Mack(m)). The
important point is that Mac’ reveals the message m completely. Therefore,
for any encryption scheme, the combination (Ency, (m), Macy,, (m)) completely
reveals m and is therefore not indistinguishable. Note that this is true even
if (Geng, Enc, Dec) is itself CCA-secure, rather than only being CPA-secure.

This example is enough because by our requirements, a secure combination
must be secure for any instantiation of the underlying building blocks. Nev-
ertheless, a counter-example for this combination exists for message authenti-
cation codes used in practice. In Exercise 4.15 you are asked to demonstrate
this fact.

Message Authentication Codes and Collision-Resistant Hash Functions 145

Authenticate-then-encrypt. In this approach, a MAC tag t = Macy,(m)
is first computed, and then the pair (m, t) is encrypted. Finally, the ciphertext
Encg, (m, Macy, (m)) is sent. We will now show that this combination is also
not necessarily secure. The counter-example here is somewhat contrived but
as we will discuss below, it suffices to show that the method should not be
used. The counter-example uses the following encryption scheme:

o Let Transform(m) be as follows: any 0 in m is transformed to 00, and
any 1 in m is transformed arbitrarily to 01 or 10.* The decoding of
a message works by mapping 00 back to 0, and 01 and 10 back to 1.
However, a pair of bits 11 will result in decoding the message back to L
(irrespective of the other bits).

e Define Encj,(m) = Ency(Transform(m)), where Enc is a stream cipher
that works by generating a new pseudorandom stream for each message
to encrypt, and then XORs the stream with the input message. For
example, this can be obtained by using a pseudorandom function (secure
block cipher) in CTR mode, with a new random IV for each encryption.
Note that both the encryption schemes Enc and Enc’ are CPA secure.

We now show that the combination of the above encryption scheme with any
MAC is not secure in the presence of chosen-ciphertext attacks. In fact, the
attack that we will show works as long as an adversary can find out if a given
ciphertext is valid, even if it cannot obtain full decryptions. (As we have
discussed in Section 4.8, such an attack is very realistic.)

Let A be an adversary for the CCA-experiment that works as follows. Given
a challenge ciphertext ¢ = Encj, (Transform(m, Macy, (m))), the attacker sim-
ply flips the first two bits of ¢ (i.e., takes their complement), and verifies if
the resulting ciphertext is valid. (Technically, in the CCA setting this query
can be made to the decryption oracle. However, the adversary only needs
to know if the ciphertext is valid or not, and so a weaker oracle would also
suffice.) If the ciphertext is valid, then the adversary knows that the first bit
of the message sent equals 1. This is due to the fact that if the first bit of m
equals 1, then the first two bits of Transform(m) can be 01 or 10. Thus, the
complement of these two bits still maps to the same initial bit 1. In contrast
if the ciphertext is not valid, then the adversary knows that the first bit of
m equals 0. This is due to the fact that 0 is mapped to 00 and so flipping
these bits results in 11, which is an incorrect encoding. Thus, the plaintext is
L # m but the MAC is still computed over m.

We remark that flipping bits in the ciphertext results in exactly the same
effect in the plaintext due to the fact that Enc’ is based on a stream cipher.

4We remark that this encoding is contrived. However, encodings of initial inputs are often
used and we would not like the security of a cryptographic scheme to depend on which
encoding is used, if any.

146 Introduction to Modern Cryptography

We also note that this attack can be carried out on each bit separately, if
desired, with the result being a full decryption of the ciphertext.

We stress that this counter-example demonstrates that the authenticate-
then-encrypt combination is not always secure. However, there are some
instantiations that are secure (for example, the specific encryption scheme
and MAC used within SSL are secure); see [86]. Nevertheless, as mentioned
above, it is bad practice to use a methodology whose security depends on
specific implementations.

Encrypt-then-authenticate. In this approach, an encryption is first com-
puted, and then the MAC is computed over the ciphertext. That is, the
message is the pair (¢, t) where

¢ = Encg, (m) and t = Macg,(c)

We have the following theorem:

THEOREM 4.20 Let (Geng,Enc,Dec) be any encryption scheme that
is secure under a chosen plaintext attack, and let (Genys, Mac, Vrfy) be any
message authentication code that is existentially unforgeable under chosen-
message attacks. Then, (Gen’,EncMac’, Dec’, Vrfy') derived by the encrypt-
then-authenticate methodology with these schemes is a secure combination of
encryption and authentication.

Note that (Geng, Enc,Dec) is only CPA-secure, but the combination is
CCA-secure. This should not come as a surprise given Construction 4.17 that
follows the encrypt-then-authenticate methodology and is CCA-secure. We
do not present the proof of this theorem and leave it as an exercise. The fact
that the combination is CCA-secure has already been proven in Theorem 4.18.
The fact that it is a secure MAC can be proven by a rather straightforward
reduction to the MAC scheme (in a similar way to the first half of the proof
of Theorem 4.18).

Secure combinations versus CCA-security. We note that although we
use the same construction for achieving CCA-security and combining privacy
and encryption, the security goals in both cases are different. Namely, in
the setting of CCA-security, we are not necessarily interested in obtaining
authentication. Rather, we wish to ensure privacy even in a strong adversar-
ial setting where the adversary is able to obtain some information about a
plaintext from a given ciphertext. In contrast, when considering secure com-
binations, we are interested in both goals of CCA-security and authenticity.
Clearly, as we have defined it, a secure combination provides CCA-security.
However, the opposite direction is not necessarily true.

Independent keys. We conclude by stressing a basic principle of security

Message Authentication Codes and Collision-Resistant Hash Functions 147

and cryptography: different security goals should always use different keys.®
That is, if an encryption scheme and a message authentication scheme are
both needed, then independent keys should be used for each one. In order to
illustrate this here, consider what happens to the encrypt-then-authenticate
methodology when the same key k is used both for the encryption scheme
(Geng, Enc, Dec) and for the message-authentication code (Geng, Mac, Vrfy).
We provide a concrete example using a pseudorandom-permutation based
encryption scheme and a pseudorandom-permutation based MAC. That is, let
F be a pseudorandom permutation. Then, it follows that both F and F~! are
pseudorandom permutations. Define Encg(m) = Fi(r|m) for m € {0,1}"/?
and a random 7 « {0,1}"/2, and define Maci(c) = F},'(c). (This encryption
scheme is different from the one we defined in Construction 3.25. Nevertheless,
using a similar analysis it can be shown to be CPA-secure. In fact, it is even
CCA-secure.) Clearly, Enc is CPA-secure and Mac is a secure MAC. However,
the combined encryption and authentication of a message m with the same
key k yields:

Enci(m), Macy (Ency,(m)) = Fi(ml|r), Fy* (Fi(m|r)) = Fi(m|r), (m]r)

Thus, the message m is revealed in the output.

References and Additional Reading

The definition of security for message authentication codes was adapted
by Bellare et al. [17] from the definition of security for digital signatures
given by Goldwasser et al. [71] (see Chapter 12). The basic paradigm of
using pseudorandom functions for message authentication was introduced by
Goldreich et al. [68], and Construction 4.5 for extending a fixed-length MAC
to a variable-length MAC was shown by Goldreich in [66]. An alternative
of extending a fixed-length MAC to a variable-length MAC using collision-
resistant hash functions is presented in the context of digital signatures in
Section 12.4. CBC-MAC was standardized in the early '80s [133, 9] and
was later formally analyzed and proven secure by Bellare et al. [17] the proofs
include both the fixed-length case and the secure extensions to variable-length
messages). The NMAC and HMAC constructions were introduced by Bellare
et al. [14] and later became a standard [104].

Collision-resistant hash functions were formally defined by Damgard [46].
The Merkle-Damgard transform was introduced independently by Damgard
and Merkle [47, 96]. For further information about SHA-1 and MD5, see, e.g.,

5We note that it is sometimes possible to use the same key for different goals; however, an
explicit proof is needed for such cases.

148 Introduction to Modern Cryptography

the textbook by Kaufman, et al. [84]. Note, however, that their treatment
pre-dates the recent attacks by Wang et al. [129, 128]. For other interest-
ing applications of collision-resistant hash functions in computer security, see
Kaufman et al. [84] (but beware that in many cases the security arguments
are heuristic only). There are many hash functions that appear in the litera-
ture; many have been broken and some have not. Up-to-date information is
maintained at the “Hash Function Lounge”.%

The notion of chosen-ciphertext attacks was first formally considered by
Naor and Yung [99] and then by Rackoff and Simon [109]. The method of en-
crypting and then applying a MAC for achieving CCA-security was described
by Dolev et al. [52]. Analyses of the different ways of applying encryption and
message authentication for simultaneously achieving privacy and authentica-
tion were given by [18] and Krawczyk [86].

Exercises

4.1 Consider the following fixed-length MAC scheme with length parame-
ter £(n) = 2n — 2 that uses a pseudorandom function F. Algorithm
Gen chooses k « {0,1}™. Upon input m € {0,1}?"~2, algorithm Mac
outputs t = Fy,(0]|mo)|| Fx(1||m1). Algorithm Vrfy is defined in the nat-
ural way. Is (Gen, Mac, Vrfy) existentially unforgeable under a chosen
message attack? Prove your answer.

4.2 Consider a “CCA-type” extension of the definition of secure message
authentication codes where the adversary is provided with both a Mac
and Vrfy oracle.

(a) Provide a formal definition and explain why such a notion may
make sense.

(b) Show that when the Mac scheme is deterministic, your definition
is equivalent to Definition 4.2.

(c) Show that when the Mac scheme may be probabilistic, the defini-
tions are not equivalent. (That is, show that there exists a prob-
abilistic scheme that is secure by Definition 4.2 but not by your
definition.)

4.3 Prove that Construction 4.5 remains secure for each of the following
modifications:

Shttp://paginas.terra.com.br/informatica/paulobarreto/hflounge.html.

Message Authentication Codes and Collision-Resistant Hash Functions 149

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

(a) Instead of using a pseudorandom function, use any fixed-length
MAC with the appropriate parameters.

(b) Instead of including d in every block, set t; = Fy(r||b||¢||m;) where
b is a single bit such that b = 0 in all blocks but the last one, and
b = 1 in the last block. What is the advantage of this modification?

(c) Instead of outputting (r,t1,...,tq), output (r,®¢ ;¢;). What is
the advantage of this modification? (This is a more challenging
modification to prove.)

Prove that the basic CBC-MAC construction is not secure if a random
IV is used or if all the blocks are output (rather than one). Demonstrate
this even for the case of fixed-length messages. Try and find a real-life
scenario where the attack on the case of a random IV can be utilized.

Show that the basic CBC-MAC construction is not secure when consid-
ering messages of different lengths.

Provide formal definitions for second preimage resistance and preimage
resistance. Then formally prove that any hash function that is collision
resistant is second preimage resistant, and any hash function that is
second preimage resistant is preimage resistant.

Generalize the Merkle-Damgard construction so that it can work for
any function that compresses by at least one bit. You should refer to a
general input length ¢/ and general output length /.

Let (Geny, Hy) and (Geng, Hz) be two hash functions. Define (Gen, H)
so that Gen runs Gen; and Gens obtaining s; and so, respectively. Then,
H% (o) = HY (2) [(0)

(a) Prove that if at least one of (Genyi, Hy) and (Geng, Hy) are colli-
sion resistant, then (Gen, H) is collision resistant. Why is such a
construction useful?

(b) Show that an analogous claim cannot be made regarding second

preimage and preimage resistance.

Hint: You may use contrived functions to demonstrate this.

Let (Gen,H) be a collision-resistant hash function. Is the function
(Gen, H) defined by H*(x) = H*(H?*(x)) necessarily collision resistant?

Provide a formal proof of Theorem 4.12 (i.e., describe and prove the
formal reduction).

For each of the following modifications to the Merkle-Damgard trans-
form, determine whether the result is collision resistant or not. If yes,
provide a proof; if not, demonstrate an attack.

150 Introduction to Modern Cryptography

(a) Modify the construction so that the input length is not included at
all (i.e., output zp and not h*(zg||L)).

(b) Modify the construction so that instead of outputting z = h*(zg|| L),
the algorithm outputs z = (zp||L).

(c) Instead of using a fixed IV, choose IV «— {0,1}" and define zo =
IV. Then, set the output to be z = (IV, h*(zg||L)).

(d) Instead of using a fixed IV, just start the computation from z;.
That is, define z; = x; and compute z; = h®(z;_1||x;) for i =
2 B.

geeey

4.12 Provide a full and detailed specification of HMAC for arbitrary length
inputs and outputs ¢ and ¢ of the underlying compression function.
Describe the instantiation of HMAC with SHA-1.

4.13 Before HMAC was invented, it was quite common to define a MAC by
Macy(m) = H*(k|m) where H is a collision-resistant hash function.
Show that this is not a secure MAC when H is constructed via the
Merkle-Damgard transform.

4.14 Show that Construction 4.17 is CCA-secure even when the MAC of
Construction 4.5 is used (recall that this MAC does not have unique
tags). Try and come up with a general requirement for the MAC used
that includes those with unique tags and Construction 4.5.

Hint: The standard notion of a MAC forgery is that as m must not
have been queried to the oracle. Thus, if A queries m and receives back
t, then it is not considered a forgery if it outputs (m,t’) where t’ # t
and Vrfy, (m,t) = 1. Consider a stronger notion of forgery that state
that .4 must not even be able to output (m,¢’) as above. That is, even
after seeing one valid MAC tag ¢ for a message m it should be hard to

generate another valid MAC tag for m.

4.15 Show that for both the CBC-MAC and HMAC constructions, the encrypt-
and-authenticate method is not secure. In particular, show that it is not
CPA-secure or even indistinguishable for multiple messages and eaves-
dropping adversaries. Describe where this attack can be used in real
life. (You are not allowed to use encodings as for the authenticate-then-
encrypt method; there is a much simpler attack here.)

4.16 Prove Theorem 4.20.

Hint: The fact that the combination is CCA-secure has already been
proven in Theorem 4.18. The fact that it is a secure MAC can be proven
by a rather straightforward reduction to the MAC scheme, in a similar
way to the first half of the proof of Theorem 4.18.

Chapter 5

Pseudorandom Objects in Practice:
Block Ciphers

In previous chapters, we have studied how pseudorandom permutations (or
block ciphers, as they are often called) can be used to construct secure en-
cryption schemes and message authentication codes. However, one question
of prime importance that we have not yet studied is how pseudorandom per-
mutations are constructed in the first place. In fact, an even more basic
questions to ask is whether they even exist. We stress that the mere exis-
tence of pseudorandom functions and permutations (under widely-believed
assumptions) is within itself amazing. In Chapter 6 we study this question
from a theoretical point of view and show under what (minimal) assumptions
it is possible to construct pseudorandom permutations. In contrast, in this
chapter, we show how block ciphers (i.e., pseudorandom permutations) are
constructed in practice. We stress that unlike previously studied material,
there will be no formal proof or justification about why the constructions in
this chapter are secure. The reason for this is that the constructions presented
here are in fact heuristic and have no proof of security. Furthermore, there is
no known reduction of the security of these constructions to some other prob-
lem. Nevertheless, a number of the block ciphers that are used in practice
have withstood many years of public scrutiny and attempted cryptanalysis.
Given this fact, it is reasonable to just assume that these tried and tested
block ciphers are indeed pseudorandom permutations, and thus can be used
in our proven constructions of secure encryption and message authentication
codes.

One may wonder why it makes sense to rigorously prove the security of an
encryption scheme based on pseudorandom permutations, when in the end
the pseudorandom permutation is instantiated with a completely heuristic
construction. There are actually a number of reasons why this methodology
makes sense. We outline three of these reasons:

e A pseudorandom permutation is a relatively low-level primitive, mean-
ing that its security requirements are simple to understand and relatively
simple to test.! This makes cryptanalysis of a candidate pseudorandom

I1We remark that our categorization of a pseudorandom permutation as “low-level” is a rel-
ative one. Relative to the assumptions used in Chapter 6, pseudorandom permutations are

151

152 Introduction to Modern Cryptography

permutation easier, thus raising our confidence in its security if it is not
broken. (Compare the task of testing if a function behaves pseudoran-
domly to the task of testing if an encryption scheme provides security
in the presence of chosen-ciphertext attacks. We argue that the latter
is often more complex to analyze.)

e If a specific construction of a pseudorandom permutation is used and
later broken, it can be more easily replaced than if the high-level appli-
cation is broken. That is, if an encryption scheme uses a pseudorandom
permutation with a specific length (say 128 bits), then the permutation
can be replaced with any other construction of the same length without
any change to the input/output format of the higher-level encryption
scheme.

e Pseudorandom permutations have many applications (encryption, mes-
sage authentication and others). By proving the security of higher
level constructions that use pseudorandom permutations, we limit the
amount of heuristics used to a single realm. This also means that cryp-
tographers who design practical schemes can focus on constructing good
pseudorandom permutations, without thinking about the specific appli-
cation they will be used for.

We will now proceed to show how pseudorandom permutations are constructed
in practice.

Block ciphers as encryption schemes or pseudorandom permuta-
tions. In many textbooks and other sources on cryptography, block ciphers
are presented as encryption schemes. In contrast, we stress here that despite
their name, block ciphers should be viewed as pseudorandom permutations
and not as encryption schemes. Stated differently, we strongly advocate view-
ing block ciphers as basic building blocks for encryption (and other) schemes,
and not as encryption schemes themselves. From here on in this chapter we
will use the name “block cipher” in conformance with their popular name.
We hope that this will not cause confusion regarding what they really are.

We remark that this view is very widespread today and modern block ci-
phers are constructed with the aim of being pseudorandom permutations. In
order to see this, we diverge for a moment to the Advanced Encryption Stan-
dard (AES). The AES is a block cipher that was adopted in 2001 as a standard
by the National Institute of Standards and Technology in the USA. Due to its
importance, we will study it later in this chapter. At this point, we will just
note that it was chosen after a lengthy competition in which many algorithms
were submitted and analyzed. The call for candidate algorithms for the AES
stated the following under the section on “evaluation criteria”:

very high level. However, relative to encryption schemes via modes of operation and mes-
sage authentication codes, we consider the building block of a pseudorandom permutation
to be rather low level.

Pseudorandom Objects in Practice: Block Ciphers 153

The security provided by an algorithm is the most important fac-
tor in the evaluation. Algorithms will be judged on the following
factors:

1. Actual security of the algorithm compared to other submitted
algorithms (at the same key and block size).

2. The extent to which the algorithm output is indistinguishable
from a random permutation on the input block.

3. Soundness of the mathematical basis for the algorithm’s se-
curity.

4. Other security factors raised by the public during the evalu-
ation process, including any attacks which demonstrate that
the actual security of the algorithm is less than the strength
claimed by the submitter.

Notice that the second factor explicitly states that the AES must be a pseu-
dorandom permutation. Thus, as we have stated, modern block ciphers are
intended to be pseudorandom permutations. As such, they are suited for use
in all of the constructions that use pseudorandom permutations and functions
that we have seen so far in this book.

Block ciphers in practice and Definition 3.28. Although we are going to
consider block ciphers as pseudorandom permutations, practical constructions
of block ciphers do not quite meet the definition. Specifically, practical block
ciphers are typically only defined for one (or a few) different key and block
lengths. This is in contrast to Definition 3.28 that refers to all possible key
and block lengths. Nevertheless, we believe that the appropriate way to deal
with this discrepancy is to consider only the lengths specified by the block
cipher, and then to ensure that these lengths (or more exactly the values n
taken) are large enough to maintain pseudorandomness in the presence of
modern adversaries using modern powerful computers (and a large amount of
computing time).

The aim and outline of this chapter. We stress that the aim of this
chapter is not to teach how to construct secure block ciphers. On the con-
trary, we strongly believe that new (and proprietary) block ciphers should
neither be constructed nor used. There are excellent standardized block ci-
phers that are not patented, are highly efficient, and have undergone intensive
scrutiny regarding their security (this is true of both DES and AES that we
describe later in the chapter). Rather, the aim of this section is to provide a
feeling or intuition as to how modern block ciphers are constructed and why.
We will look at two different types of high-level constructions: substitution-
permutation networks (first introduced by Shannon) and Feistel structures
(introduced by Feistel). Following this, we will describe the DES and AES
block ciphers, but will not provide full detailed descriptions. In particular,
the descriptions that we provide here are not fully accurate and are definitely

154 Introduction to Modern Cryptography

not specifications that can be used for implementation. Given that our aim is
to provide intuition as to how modern block ciphers are constructed, we don’t
feel that much is gained by providing full detailed specifications.

5.1 Substitution-Permutation Networks

As we have mentioned, the main property of a block cipher is that it should
behave like a random permutation. Of course, a truly random permutation
would be perfect. However, for a block cipher with input and output length
of n bits, the size of the table needed for holding the random permutation is
n - 2" (actually, this is the size of the table needed for a random function, but
it is not much smaller for a random permutation). Thus, we need to somehow
construct a concise function that behaves like a random one.

The confusion-diffusion paradigm. In addition to his work on perfect se-
crecy, Shannon introduced a basic paradigm for constructing concise random-
looking functions. The basic idea is to break the input up into small parts
and then feed these parts through different small random functions. The
outputs of these random functions are then mixed together, and the process
is repeated again (for a given number of times). Each application of random
functions followed by mixing is called a round of the network (the construction
is often called a “network” and we keep this name for consistency with other
sources). Note that by using small random functions, the lack of structure
that is inherent to a random function is introduced into the construction, but
without the heavy expense.? This paradigm introduced by Shannon is often
called the confusion-diffusion approach (in fact, Shannon himself coined these
terms in his original paper). Small random functions introduce “confusion”
into the construction. However, in order to spread the confusion throughout,
the results are mixed together, achieving “diffusion”.

In order to see why diffusion is necessary, consider a block-cipher Fj that
works by simply applying small random functions to each 8-bit portion of
the input. Now, let and 2’ be values that differ only in the first bit. It
follows that Fy(x) and Fy(z’) differ only in the first byte (because in all
other bytes z equals z’). In a truly random function Fi(z) and Fj(z') should
look completely different, because each output value in a random function is
chosen uniformly and independently of all other output values. However, in

2Sixteen random functions with input/output of 8 bits each can be stored in only 16-8 - 28
bits, or 32 Kbits. This is in contrast with a random functions with input/output of 128 bits,
that requires 128 -2128 bits to store. We note that this latter number has 40 digits, whereas
it is estimated that the number of atoms in Earth is a number with 49 digits. Thus, we
could never even build a disk large enough to store such a table.

Pseudorandom Objects in Practice: Block Ciphers 155

this imaginary block cipher where diffusion is not used, they are the same
except for in the first byte. Thus, such a block cipher is very far from a
pseudorandom function. The repeated use of confusion and diffusion ensures
that any small changes in the input will be mixed throughout and so the
outputs of similar inputs will look completely different.

Substitution-permutation networks. A substitution-permutation net-
work is a direct implementation of this paradigm. The “substitution” portion
refers to small random functions (much like the mono-alphabetic substitution
cipher studied in Section 1.3 that is actually a random 1-1 and onto function
of the alphabet), and “permutation” refers to the mixing of the outputs of
the random functions. In this context, “permutation” refers to a reordering
of the output bits (not to a 1-1 and onto function as we typically use it in
this book). The small substitution functions are called S-bozes and we call
the permutations that follow them mizing permutations. One question that
you may be asking yourselves is where does the secret key come in? There are
a number of possible answers to this, and different substitution-permutation
networks can use different methods. One possibility is to have the key spec-
ify the S-boxes and mixing permutations. Another possibility is to mix the
key into the computation in between each round of substitution-permutation
(recall that the substitution-permutation operation is repeated many times).
In this latter case, the S-boxes and mixing permutations are publicly known
(in accordance with Kerckhoffs’ principle; see Section 1.3). Our presentation
here is in accordance with the latter approach, where the key is mixed into
the intermediate results between each round. This is often just by a simple
XOR operation. That is, the key is XORed with the intermediate result after
each round of the network computation. We remark that typically it is not
the same key that is XORed each time. Rather, different keys are used. To
be more exact, the key to the block cipher is referred to as a master key,
and subkeys for each round are derived from it; this derivation procedure is
known as the key schedule. We remark that the key schedule is often very
simple and may work by just taking subsets of the bits, although complex
schedules can also be defined. See Figure 7?7 for the high-level structure of a
substitution-permutation network, and Figure ?? for a closer look at a single
round of such a network.

An important point to notice is that we have not specified at all how the
S-boxes and mixing permutations should be chosen. We have also not speci-
fied whether the S-boxes and mixing permutations are the same or different
in each round. We will not present design principles for the construction of
“good” S-boxes (with one exception below), and likewise will not describe
how the subkeys should be derived from the master key and how the mix-
ing permutations should be chosen. We do stress that these choices are what
determines whether the block cipher is trivially breakable or very secure. Nev-
ertheless, as we have mentioned, our aim in this chapter is not to teach how to
construct block ciphers. The contrary is true: we strongly believe that non-

156 Introduction to Modern Cryptography

experts (meaning those who do not have many many many years of experience
in this) should never attempt such a task.

Despite the above there are two design choices that we will mention. The
first is necessary for making the block cipher a permutation (i.e., a 1-1 and
onto function), and the other is a basic requirement for security. Both choices
relate to the S-boxes.

Design choice 1 — invertibility of the S-boxes. In a substitution-
permutation network, the S-boxes must be invertible. In other words, they
must be 1-1 and onto functions. The reason for this is that otherwise the
block cipher will not be a permutation (i.e., it will not be 1-1 and onto). In
order to see that making the S-boxes 1-1 and onto suffices, we show that
given this assumption it is possible to fully determine the input given any
output and the key. Specifically, we show that every round can be uniquely
inverted (yielding that the entire network can be inverted by working from
the end back to the beginning). For the sake of this description, we define a
round to consist of three stages: XORing of the subkey with the input to the
round, passing the input through the S-boxes, and mixing the result via the
mixing permutation. The mixing permutation can easily be inverted because
the permutation determines for every bit ¢ in the input, the bit j where it
appears in the output (thus the j*" bit is just reversed to the i*" bit). Given
the output of the permutation, we therefore obtain the input to the permu-
tation, which is exactly the output of the S-boxes. Given the fact that the
S-boxes are 1-1 and onto functions, these too can be inverted by looking at
the table that defines them. We therefore obtain the input to the S-boxes.
Finally, the subkey can be XORed with this input and we obtain the value
from the beginning of the round (note that the required subkey can be derived
from the master key in the same way when inverting the block cipher as when
computing it). We therefore have the following claim:

CLAIM 5.1 In a substitution-permutation network F in which the S-bozes
are all 1-1 and onto (and of polynomial-size), there exists an efficient proce-

dure for computing F~*(y). Furthermore, for every key k and every input x,
F (Fi(2)) = o

In addition to the requirement that the S-boxes be uniquely invertible,
it is clear that they must be random looking. Omne might therefore think
that the best strategy is to simply choose them completely randomly, under
the constraint that they be 1-1 and onto. However, this is actually not the
best strategy, because truly random S-boxes do not provide the strongest
protection against advanced cryptanalytic techniques (like differential and
linear cryptanalysis that we briefly discuss below in Section 5.6).

Design choice 2 — the avalanche effect. An important property in any
block cipher is that small changes to the input must result in large changes

Pseudorandom Objects in Practice: Block Ciphers 157

to the output. Otherwise, the outputs of the block cipher on similar inputs
will not look independent (whereas in a random permutation, the outputs of
similar inputs are independently distributed). In order to ensure that this
is the case, block ciphers are designed to have an avalanche effect, meaning
that small changes in the input propagate quickly to very large changes in the
intermediate values (and thus outputs). It is easy to demonstrate that the
avalanche effect holds in a substitution-permutation network, provided that
the following two properties hold:

1. The S-boxes are designed so that any change of at least a
single bit to the input to an S-box results in a change of at
least two bits in the output.

2. The mixing permutations are designed so that the output bits
of any giwven S-box are spread into different S-boxes in the
next round.

We remark that the first property is not necessarily obtained by small random
functions or permutations. For example, consider the case that the S-box has
input/output length of 4 bits (this may seem very small but the size of a table
for an 8-bit S-box is often too large). Now, for any 4-bit input, there are 5
values that differ from the input by 1 or less bits (the input itself plus four
other values obtained by flipping a single bit of the input). In contrast, there
are 16 possible output values. Thus, the probability that a random output
differs from the input by 1 or less bits is % > %. Given that a number of
S-boxes may be used (e.g., DES has 8 of them), randomly chosen S-boxes are
not likely to have this property.

Returning to the avalanche effect, let us assume that all the S-boxes and
mixing permutations are chosen with the aforementioned properties. Consider
now what happens when the block cipher is applied to two inputs that differ
by only a single bit. For the sake of concreteness, assume that the S-boxes
have input/output size of 4 bits, and that the block size is 128 bits. We track

the computation of two similar inputs round by round:

1. After the first round of the network, the intermediate values differ in
two places. This is due to the fact that the two inputs differ in only
a single bit and so all the input values are the same except for in one
S-box. Given the above S-box property, it follows that the outputs of
this S-box differ in two places.

2. By the second property, the permutation at the end of the first round
spreads the two different bits into different regions of the intermediate
string. Therefore, it follows that at the beginning of the second round,
there are two S-boxes that receive inputs that differ by one bit. Fol-
lowing the same argument as previously, we have that at the end of the
second round, the intermediate values differ in 4 bits.

158 Introduction to Modern Cryptography

3. Continuing with the same argument, we have that the intermediate
values differ by 8 bits after the 3rd round, 16 bits after the 4th round,
32 bits after the 5th round, 64 bits after the 6th round and 128 bits (i.e.,
everywhere) after the 7th round. Of course, we don’t really mean that
the bits are all different, but rather that they have all been affected and
so no similarity remains.

We conclude that after i rounds, 2¢ bits have been affected (thus for a 128 bit
block, 7 rounds are required to complete the avalanche effect).

Pseudorandomness of substitution-permutation networks. As we
have discussed, there is no formal justification for why such a design yields
a pseudorandom permutation. Nevertheless, experience of many years shows
that the confusion-diffusion paradigm works, as long as great care is taken in
the choice of the S-boxes, the mixing permutations and the key schedule. The
Advanced Encryption Standard (AES), described below in Section 5.5, has a
similar structure to the substitution-permutation network described above,
and is widely believed to be a very strong pseudorandom permutation.

Attacks on reduced-round substitution-permutation networks. In
order to obtain more of an insight into substitution-permutation networks,
we will demonstrate attacks on block ciphers of this type that have very
few rounds. These attacks are straightforward, but are worthwhile seeing.
They also show why a number of rounds are needed. Recall that according
to Definition 3.28 (pseudorandom permutations), the adversary is given an
oracle that is either a random permutation or the given block cipher (with a
randomly chosen key). The aim of the adversary is to guess what function is
computed by its oracle. Clearly, if an adversary can obtain the secret key of
the block cipher, then it can distinguish it from a random permutation. Such
an attack is called a complete break because once the secret key is learned, no
security remains.

1. Attack on a single-round substitution-permutation network: We demon-
strate this attack in a weaker adversarial model than above. Namely,
we assume only that the adversary is given one input/output pair (and
not that it can choose the inputs upon which the block cipher is com-
puted). Let x be the input and y the output. We will demonstrate how
the adversary can easily learn the secret key k for which y = Fj(z),
where F' denotes the single-round substitution-permutation network.
The adversary begins by inverting the mixing permutation, and then
the S-boxes. It can do this because the specification of the permuta-
tion and S-boxes is public. The intermediate value that the adversary
receives from these inversions is exactly z @ k (by the design of a single
substitution-permutation round). Since the adversary also has the in-
put z, it immediately derives the secret key k. This is therefore a trivial
complete break.

Pseudorandom Objects in Practice: Block Ciphers 159

2. Attack on a two-round substitution-permutation network: In this case,
we also show a complete break. In order to demonstrate the attack,
we consider concrete parameters. Let the block size be 64 bits and let
each S-box have input/output of size 4 bits (as we have mentioned, 8
is usually too large). Furthermore, let the key k be of length 128 bits
where the first half of the key is used in the first round and the second
half in the second round (let k® and k® denote these two 64 bit parts of
the key). We use independent keys here to simplify the description of
the attack below, but this only makes the attack “harder”.

Now, let « be the input and y the output (each of 64 bits). Denote
z=z1,...,216, Where each z; is of length 4 bits (we will use this notation
for x, y, k* and k®). The adversary begins by peeling off the last round,
as in the attack on the single-round block cipher. Denote by w the
value that it receives after inverting the mixing permutation and .S-
boxes of the second round. Denote o = w; @ k% (of course, the adversary
does not know k® but it wishes to learn it). The important observation
here is that when working from the input to the output, the value of
a is influenced by at most 4 different S-boxes (because in the worst
case, each bit of input comes from a different S-box in the first round).
Furthermore, since the mixing permutation of the first round is known,
the adversary knows exactly which of the S-boxes influence it. Next,
notice that at most 16 bits of the key k% influence the computation of
these four S-boxes. It follows that the adversary can guess 16 bits of k¢
and the four-bit portion k% of the key k®, and then verify the guess with
the input-output (x,y). This verification is carried out by XORing the
relevant 16 bits of the input with the relevant 16 bits of k%, and then
computing the appropriate 4 first-round S-boxes and 4 bits of the first-
round mixing permutation. The value a obtained is then compared
with wy @ k% (where k} is also part of the guess). If equality is not
obtained, then this guess of 16 bits of k% and k? is certainly incorrect.
If equality is obtained, then this guess may be correct. However, it may
also be incorrect (and equality is obtained by chance). Nevertheless, it
is possible to use a number of input/output pairs and verify the guess
of the key portion with all of the pairs.? For the sake of concreteness,
assume that 8 pairs are used. It follows that the adversary learns the 4
bits of k% in time 8 -22° = 223, This can be repeated for all 16 portions
of k¥ and we obtain a total complexity of 16 - 223 = 227, We remark
that in this process all of k¢ is also learned and so the entire 128-bit key

3Since there are 220 possible guesses of the key portion, and verification takes place with
just 4 bits, we obtain that 216 different keys are expected to pass the test with a single
input/output pair. Assuming random behavior of the block cipher, we obtain that with 5
different (preferably random) input/output pairs, the verification takes place with 20 bits
and so just a single key is expected to pass the test. Given 10 different input/output pairs,
it is unlikely that the test will leave more than one possibility for the key portion.

160 Introduction to Modern Cryptography

k = (k% k®) is learned in only time 227. (In fact, the complexity will be
even less because all of k® will be learned after only 4 or so repetitions
of the above procedure, and only k® will remain unknown.)

We recommend sketching two rounds of a substitution-permutation net-
work and tracing the steps of the above attack.

There is an important lesson to be learned from the above attack. Ob-
serve that the attack is made possible since different parts of the key
can be isolated from the other parts (it is much quicker to carry out 16
attacks of time 22° than a single attack of time 22 or even 264). Thus,
the diffusion step in the construction is also needed to make sure that
all of the bits of the key affect all of the bits of the output. Two rounds
of the network are not enough for this to happen.

3. Attack on a three-round substitution-permutation network: We present a
weaker attack here; instead of attempting to learn the key, we just show
that it is easy to distinguish a three-round block cipher from a pseu-
dorandom permutation. This attack is based on the observation that
the avalanche effect is not complete after only three rounds (of course,
this depends on the block size and S-box size, but with reasonable pa-
rameters this will be the case). Thus, the adversary just needs to ask
for the function to be computed on two strings that differ on only one
bit. A three-round block cipher will have the property that many bits
of the output of both inputs will be the same. Thus, it is clearly not a
pseudorandom function.

5.2 Feistel Networks

A Feistel network is an alternative way of constructing a block cipher. The
low-level building blocks (S-boxes, mixing permutations and key schedule) are
the same; the difference is in the high-level design. The advantage of Feistel
networks over substitution permutation networks is that they enable the use of
S-boxes that are not necessarily invertible. This is important because a good
block cipher has chaotic behavior (and as such it looks random). However, re-
quiring that all of the components of the construction be invertible inherently
introduces structure, which contradicts the need for chaos. A Feistel net-
work is thus a way of constructing an invertible function from non-invertible
components. This seems like a contradiction in terms (if you cannot invert
the components, how can you invert the overall structure). Nevertheless, the
Feistel design ingeniously overcomes this obstacle.

A Feistel network refers to an internal f-function that does not need to be
invertible. This function receives a subkey and typically contains components

Pseudorandom Objects in Practice: Block Ciphers 161

like S-boxes and mixing permutations. In any case, the framework of a Feis-
tel network can deal with any internal f-function, irrespective of its design.
The input x to a Feistel network is separated into two halves, x1 and z2, and
each half is passed separately through the f-function. Thus, for an n-block
cipher, the f-function has input/output length of n/2. (We stress again that
although the input and output lengths are the same, the function is not nec-
essarily invertible and so, in particular, is not necessarily 1-1 and onto.) The
mathematical definition of a Feistel network is given as follows:

1. For input x, denote by x; and zo the first and second halves of =z,
respectively.

2. Let v1 = 21 and vy = 29.
3. For i =1 to r (where r is the number of rounds in the network):

(a) Let wy = ve and wy = v1 @ f;(v2), where f; denotes the f-function
in the i*® round of the network.

(b) Let v1 = wy and vy = wo.
4. The output y is (v1, v2).

See Figure ?? for a 4-round Feistel network (it is easier to understand how it
works by looking at the diagram, and then only afterwards at the mathemat-
ical definition above).

Inverting a Feistel network. Recall that the f-function is not necessarily
invertible and may not even be 1-1. Thus in order to invert the block cipher,
we cannot rely on the ability to compute f~!. Rather, the block cipher can be
inverted while computing the f-function in a forward manner only. In order
to see this, let (ay, B8;) be the intermediate values at the beginning of round
¢ and let (ajt1,Bi+1) be the intermediate values at the beginning of round
i+ 1. Then, it holds that:

;= Bit1 ® filaip1) and B = aqiq (5.1)

This can easily be seen by following the network in Figure 7?7 (note that
the value on a wire in a network is the same irrespective of the direction from
which it is computed). Furthermore, by looking at the mathematical definition
above and setting v; = «; and v9 = (; we have that ;11 = w; = §; and
Bit1 = we = v1 ® fi(v2) = a; @ fi(Bi). However, since a; 11 = (; this is the
same as saying that o; = Bi11 @ fi(a,11), fulfilling Equation (5.1). Of course,
the important observation in Equation (5.1) is that «; and §; can be efficiently
computed from «;41 and F;11, as long as f; is efficiently computable. Given
that this is possible in any round, we have that all of the rounds of the network
can be inverted, thus yielding an efficient procedure for inverting the entire
block cipher. We therefore have the following claim:

162 Introduction to Modern Cryptography

CLAIM 5.2 In a Feistel network F in which the f-function can be effi-
ciently computed, there exists an efficient procedure for computing F~'(y).
Furthermore, for every key k and every input x, F,;l(Fk (x)) = =.

We remark that typically the f-function in a Feistel network is constructed
from S-boxes and mixing permutations, exactly as in a substitution-permutation
network. The main difference is thus that in a Feistel network, the S-boxes
need not be invertible. When this is indeed the case (i.e., the S-boxes and
mixing permutations are used in a similar way), attacks on Feistel networks
with very few rounds can be designed in the same way as described above for
substitution-permutation networks.

5.3 DES — The Data Encryption Standard

The Data Encryption Standard, or DES, was developed in the 1970s at
IBM (with some help from the National Security Agency), and adopted in
1976 as a Federal Information Processing Standard (FIPS) for the US. In its
basic form, DES is no longer secure due to its short key size. Nevertheless,
it is still widely in use today in the form of triple DES (triple DES is a
block cipher that is based on DES and is described below in Section 5.4).
The DES block cipher has undergone great scrutiny; arguably more than any
other encryption algorithm in history. The common consensus is that it is
extremely secure. Indeed, the best known attack on DES in practice is a
brute force (or exhaustive key) search on its key space (i.e., attack by trying
all possible keys and seeing which key decrypts the message correctly). As we
will see below, there are important theoretical attacks on DES that require less
computation than such a brute force attack. However, they provide no real
threat in practice. The DES algorithm was recently replaced by the Advanced
Encryption Standard (AES). Nevertheless, as we have mentioned, it is still
widely used in the form of triple DES. In this section, we will describe the
details of the DES construction. We stress that we will not provide the full
specification, and some parts of the design will be omitted from our description
(e.g., the permutation on the key before the key schedule). Rather, our aim
is to present the basic ideas behind the construction.

5.3.1 The Design of DES

The DES block cipher is a 16-round Feistel network with a block size of 64
bits and a key length of 56 bits. Recall that in a Feistel network the internal f-
function works on half a block at a time. Thus, the input and output length of
the DES internal f-function is 32 bits. Furthermore, as is to be expected, the

Pseudorandom Objects in Practice: Block Ciphers 163

DES f-function is non-invertible, thereby utilizing the advantage of a Feistel
network over a substitution-permutation network. In each of the 16 rounds
of DES the same internal f-function is used. However, a different subkey is
derived in each round. Each subkey is of length 48 bits, and is composed of
a subset of the 56 bits of the master key (in each round, a different subset is
chosen and so there is a different subkey). The way the subkeys are chosen is
called the key schedule. We will not show exactly how the key schedule works.
Rather, it suffices for us to note that an initial permutation is applied to the
bits of the key. Following this, it is divided into two halves of length 28 bits
each. Then, in each round, the left 24 bits of the subkey are taken as a subset
of the left 28 bits in the (permuted) master key, and the right 24 bits of the
subkey are taken as a subset of the right 28 bits in the (permuted) master
key. We stress that the initial permutation and the choice of which subsets
are taken in each round are fixed and public. The only secret is the key itself.

We note that before and after the Feistel network, DES actually applies a
fixed and known permutation to the input and its inverse to the output; this
permutation is known as the initial permutation and is denoted I P. This slows
down software implementations of DES (the computation of this permutation
takes about one third of the running time, in contrast to hardware where it
takes almost no time). As with the permutation on the key, we will ignore
these permutations in our description and analysis below because they play
no security role beyond slowing down attackers who use software.

The internal DES f-function. The f-function is constructed using the
same basic building blocks of S-boxes and mixing permutations described
above for substitution-permutation networks. The exact construction works
as follows. The first step in the f-function is to miz the 48-bit subkey with the
32-bit input. This mixing is carried out via a bitwise exclusive-or. However,
this operation works on two strings of the same size. Thus, the 32-bit input
to the f-function is first passed through an expansion function E : {0,1}3% —
{0,1}*® that takes inputs of size 32 and produces outputs of size 48. The
expansion is very simple and works by just duplicating half of the input bits.
The 48-bit output of the expansion function is then exclusively-ored with the
subkey. In summary, the first step in the f-function is to compute E(z) @ k,
where z is the 32-bit input and k is the 48-bit subkey of the round.

This intermediate 48-bit result is then divided into 8 blocks of size 6 bits
each. Each block is passed through an S-box that takes inputs of length 6
bits and produces outputs of length 4 bits. There are 8 S-boxes, denoted
S1,...,5s. Notice that the S-boxes are not invertible because the output is
shorter than the input. This is the non-invertible part of the DES internal f-
function. As with the S-boxes in a substitution-permutation network, these
small functions (lookup tables) have non-linear and random behavior and
provide the “confusion” portion of the block cipher. Notice that the output
of the S-box computations consists of 8 blocks, each of length 4 bits. Thus, we
obtain an intermediate value of length 32 bits; exactly the size of the output

164 Introduction to Modern Cryptography

of the f-box. The last step in the computation is the “diffusion” step. That
is, the outputs from the S-boxes are all passed through a mixing permutation.
We stress once again that the expansion function F, the lookup tables defining
the S-boxes and the final mixing permutation are all known and fixed. The
only unknown value is the master key. See Figure 7?7 for a diagram of the
construction.

The S-boxes. The definition of the S-boxes is a crucial element of the
DES construction. In fact, even though the DES S-boxes look very random,
they were very carefully designed (reportedly, with the help of the National
Security Agency). Studies on DES have shown that if the S-boxes are chosen
truly at random, then DES becomes much easier to break. These attacks use
advanced cryptanalytic techniques called differential cryptanalysis (see below
for a brief description). This should serve as a warning to anyone who wishes
to design a block cipher; seemingly arbitrary choices are not arbitrary at all,
and if not made correctly render the entire construction insecure. Due to their
importance, we will describe some basic properties of the DES S-boxes:

1. Each box can be described as a table with 4 row and 16 columns, where
each entry in the table contains 4 bits. (The 64 entries correspond to
the 2% possible inputs of length 6 bits.)

2. The first and last input bits are used to choose the table row and bits 2
to 5 are used to choose the table column.

3. Each row in the table is a permutation of 0,1,2,...,15.
4. Changing one input bit, always changes at least two output bits.

We will use some of the above properties in our analysis of reduced-round
DES below.

The DES avalanche effect. As we have discussed above in the context of
substitution-permutation networks, the avalanche effect is one of the crucial
properties of any secure block cipher (i.e., pseudorandom permutation). The
fourth property of the DES S-boxes described above ensures that DES has
a strong avalanche effect. In order to see this, we will trace the difference
between the intermediate values in a DES computation of two inputs that
differ by just a single bit. If the difference between the inputs is in the half
of the input that does not enter the internal f-function in the first round,
then after this round the intermediate values still differ by only a single bit
(note that the other half of the input is the same and so it remains the same
after running it through f). Now, in the second round of DES, the half of
the input with the single-bit difference is run through the internal f-function.
Assuming that the bit is not duplicated in the expansion function, we have
that the intermediate values before applying the S-boxes still differ by a single
bit. By property 4 above, we have that the intermediate values after the S-box
computation differ in at least two bits. The mixing permutation then spreads

Pseudorandom Objects in Practice: Block Ciphers 165

these two bits into different areas of the block. In the next third round,
each of these two bits enters a different S-box and so by following the same
arguments as above, the results differ in at least 4 bits. As with a substitution-
permutation network we have an exponential avalanche and so after the 4"
round the values differ in 8 bits, after the 5*" round the difference is 16
bits and after the 6** round the difference is 32 bits, thereby completing the
avalanche. Notice that DES has 16 rounds, and so the avalanche is completed
very early on in the computation. This ensures that the computation of
DES on similar inputs yields completely different and independent-looking
outputs. We remark that the success of the DES avalanche effect is also due
to the choice of the mixing permutation. In fact, it has been shown that a
random mixing permutation yields a far weaker avalanche effect, and results
in DES being much easier to break.

The DES standard. A complete description of the DES standard can be
obtained from the FIPS (Federal Information Processing Standards Publica-
tions) website of NIST (National Institute of Standards and Technology).

5.3.2 Attacks on Reduced-Round Variants of DES

A useful exercise for understanding more about the DES construction and
its security is to look at its behavior with only a few rounds. We will look
at DES with one, two and three rounds (recall that the real DES has 16
rounds). Some of the attacks are similar to those discussed for substitution-
permutation networks. However, here we will see how they are applied to a
concrete block cipher rather than to a general design. In the attacks below,
we will show how to obtain the secret key from input/output pairs. Clearly
DES with 3 rounds or less cannot be a pseudorandom function because the
avalanche effect is not yet completed in 3 rounds (exactly as in the attack on
a three-round Substitution-Permutation Network). Thus, our aim is to show
something much stronger; i.e., that the secret key can be fully determined.

In all of the attacks below, we assume that the adversary has a number
of pairs (z,y) where y = DESy(z), and k is the secret key. (We will not
need the fact that the adversary can adaptively choose the values x for which
it will receive y = DESy(x)). Since DES is a Feistel network, the internal
f-function works on half a block at a time. We denote the left half of the
input by x; and the right half by x5. Likewise, we denote the left half of the
output by y; and the right half of the output by ys.

Single-round DES. In a single round of DES, we have that y; = x5 and
Y2 = x1 ® fi(x2) where f1 is the internal f-function in the first and only
round (see the definition of a Feistel network above). We therefore know
the complete input and output to f;. Specifically, the input to f; is o and
the output is yo & x1. The first step is to apply the inverse of the mixing
permutation to the output. This yields the intermediate value that contains
the outputs from all the S-boxes, where the first 4 bits are the output from

166 Introduction to Modern Cryptography

S1, the next 4 bits are the output from S and so on. This means that we
have the exact output of each S-box. As we have seen, each row of an S-box
is a permutation over 0, ..., 15 in binary form. Therefore, given the output of
an S-box, the only uncertainty remaining is from which row it came. Stated
differently, each value appears only once in each row. Thus, given the output
value, the row number completely determines the 6-bit input to the S-box.
Since there are 4 rows, it follows that there are only 4 possible input values
that could have occurred. Each of these possible input values is the XOR, of
E(z2) with the 48-bit key (where FE is the expansion function). Now, since
T9 is known, we conclude that for each 6-bit portion of the 48-bit key, there
are 4 possible values. This is true for each of the 8 S-boxes, and so we have
reduced the possible number of keys from 24 to 48 = 216 (because each of the
8 portions have 4 possibilities). This is already a very small number and so
we can just try all of the possibilities on a different input/output pair (z’,y’).
We therefore obtain the full key in very little time.

Two-round DES. In two rounds of DES, with internal functions f; and fs
in the first and second rounds, respectively, we have the following:

1. The input to f7 is z2 and the output is y1 @ x1. (This follows because in
the Feistel computation with two rounds, the output f;(z2) is XORed
with 27 and then appears as the left half of the output.)

2. The input to fo is y; and the output is ys P x-.

(We strongly recommend drawing a 2-round Feistel network in order to verify
the above.) We therefore know the inputs and outputs the both f; and f.
Thus, the same method can be used as above for single-round DES. Note
that this attack works even if a completely different 48-bit key is used in each
round.

Three-round DES. See Figure 7?7 for a diagram of DES reduced to only
three rounds. In order to describe the attack, we have denoted the interme-
diate values on the wires during the computation, as in Figure ?7. As usual,
the input string to the cipher is denoted = = (x1,x2) and the output string is
denoted y = (y1,y2). Note that a1 = x5 and B2 = y1. Thus the only unknown
values amongst a, ag, 51, 02 are as and 31 (where in fact as = 7).

In the case of 3-round DES, we do not have the input and output of the
internal f-function in each round. For example, let us consider fo. In this
case, we know the output because tracing the wires we can see that it equals
a1 @ [o, where as we have mentioned a; = x5 and B2 = y;. Thus, the output
of fyis xo @B y1 and so is known. In contrast, we do not know the input value
to fo. By tracing the wires we see that the input to fo equals x1 @ fi(x2)
or equivalently yo @ f3(y1), but neither of these values are known. (Note
that we can trace the wires in either direction and this makes no difference.)
A similar exercise yields that for both f; and f3 we know the inputs, but
not the outputs. Thus, the attack that we used to break DES with one and

Pseudorandom Objects in Practice: Block Ciphers 167

two rounds will not work here. Rather, instead of relying on full knowledge
of the input and output of one of the f-functions, we will use knowledge of
a certain relation between the inputs and outputs of f; and f3. We begin
by describing the relation that we will use. Observe that the output of f;
equals 1 ® as = z1 @ (1. Furthermore, the output of f3 equals (51 & yo.
Taking the XOR of the output of f; with the output of f3 we obtain the value
(1@ B1) B (61D y2) = x1 D y2. Since both x1 and y, are known, we have that
the exclusive-or of the outputs of f1 and f3 is known. Furthermore, the input
to f1 is xo (and so is known) and the input to f3 is y1 (and so is known). We
conclude that from the overall input and output we can determine the inputs
to the internal functions f; and f3 and the XOR of their outputs. We now
describe an attack that finds the secret key based on this information.

Recall that in DES, the subkeys in each round are generated by rotating
each half of the key (we are ignoring the initial permutation on the key, which
makes no difference to the security). This means that the left half of the key
affects the S-boxes Si,...,S54 only, and the right half of the key affects the
S-boxes Ss, ..., Ss only. Since the permutation after the S-boxes is fixed, we
also know which bits come out of which S-box.

Since the length of the entire key is 56 bits, it follows that there are 228
possible half-keys (for each half). The idea behind the attack is to separately
traverse the key-space for each half of the key. If we can verify the guess of
a half key, then this is possible. Now, let k; be a guess for the left half of
the key. We know the input x5 into f; and so using the guess kr as the key
and zo as the input, we can compute the output of Si,...,54 in f1. This
implies that we can compute half of the output of f; (the mixing permutation
spreads out the 16 computed bits, but we know exactly which bits these are).
Likewise, we can compute the same locations for the output of f3 by using
input y; and the same guessed half-key k7. Finally, we can compute the XOR
of these output values and see if they match the appropriate bits in x1 & yo
which is known (recall that z1 @ y2 equals the XOR of the outputs of f; and
f3). If they are not equal, then we know that the guessed half key is incorrect.
If they are equal, then we take the half-key as a candidate. We stress that
there are likely to be many candidates. In particular, since we consider 16 bits
of output, an incorrect key is accepted with probability approximately 216
(assuming random behavior of DES). There are 2% keys and so approximately

212 keys are expected to cause equality and thus be accepted as candidates
for the left half of the key.

The above method is carried out separately for each half of the key. The
result is that in time 2 - 22® we obtain approximately 2'2 candidates for the
left half and 2'2 candidates for the right half. Since each combination of the
left half and right half is possible, we remain with 224 candidate keys overall
and can run a brute-force search over them all. The total complexity of the
attack is 228 + 228 4 224 which is less than 23°. We remark that an attack of
complexity 230 can easily be carried out on standard personal computers.

168 Introduction to Modern Cryptography

5.3.3 The Security of DES

As we discussed in Section 1.3, no encryption scheme can be secure if it
is possible to traverse the entire key space. This is due to the fact that it is
possible to try to decrypt a ciphertext using all possible keys. If the ciphertext
is long enough (e.g., longer than the key), then with high probability only
one key will map the given plaintext to the ciphertext. (Note, of course,
that multiple plaintext/ciphertext pairs can be used to achieve the effect of a
“long enough” ciphertext.) The same observation is true of block ciphers (as
pseudorandom permutations and a building block for encryption schemes).
Specifically, in the setting of pseudorandom permutations the adversary can
query its oracle (see Definition 3.28) and obtain a number of pairs (x, y) where
y is the output of the block cipher on input = (and a secret key). Thus, given
enough time, the adversary can always determine the secret key by finding
the unique key that maps the inputs to their respective outputs, as obtained
from its oracle. Such an attack is called a brute force attack or ezhaustive key
search and it can be carried out on any block cipher. We therefore conclude
that since DES has a 56-bit key, it can be broken in time 2°6. In fact, due
to the “complementary property” of DES (see Exercise ***), it can actually
be broken in time 2°°. Although this is not a trivial amount of computation,
it is definitely feasible today. In fact, already in the late 1970’s there were
strong objections to the choice of such a short key for DES. Back then, the
objection was more theoretical as no one had the computational power to
traverse that many keys. The practicality of a brute force attack on DES
was demonstrated in 1997 and 1998 when a number of DES challenges set
up by RSA Security were solved (these challenges were input/output pairs
and a reward was given to the first person or organization to find the secret
key that was used to compute the output). The first challenge was broken
in 96 days in 1997 by the DESCHALL project. The second challenge was
broken in early 1998 in 41 days by the distributed.net project. A significant
breakthrough came later in 1998 when the third challenge was solved in just 56
hours. This impressive feat was achieved via a special-purpose DES-breaking
machine called Deep Crack (it was built by the Electronic Frontier Foundation
at a cost of $250,000). Additional challenges have been solved, and the latest
was solved in just 22 hours and 15 minutes (as a combined effort of Deep
Crack and distributed.net). The bottom line of the above is that DES is no
longer secure, and in fact has not been secure in a very long time (even an
attack taking a full year is completely unacceptable).

It is important to note that the insecurity of DES has nothing to do with its
internal structure and design, but rather is due only to its short key length.
Thus, it makes sense to try to use DES as a building block in order to construct
a block cipher with a longer key. This was carried out very successfully and the
result is called triple DES. We discuss this construction below in Section 5.4.

One issue worth noting with respect to brute force attacks on DES is that
given a single input/output pair (z,y), with probability approximately 28

Pseudorandom Objects in Practice: Block Ciphers 169

there may be more than one key that maps x to y. This occurs because for
a single randomly-chosen key k, the probability that DESy(x) = y is 2764
(assuming random behavior of DES). Thus, the probability that there exists
a key k (that is not equal to the real key used to compute y from z) may be
close to 256/264 = 278, This means that with a not too small probability, a
brute force search may turn up more than one candidate key. In such a case,
it is easy to rule out the additional candidate or candidates by trying another
pair (z',y"); note that it suffices to test the few remaining candidate keys on
the additional input/output pair.

5.3.3.1 Advanced Cryptanalytic Attacks on DES

The brute force attacks described above do not utilize any internal weak-
nesses of DES (apart from the complementary property that reduces the at-
tack time by one half). Indeed, for many years no such weaknesses were known
to exist. The first breakthrough on this front was by Biham and Shamir in
the late 1980s who developed a technique called differential cryptanalysis and
used it to achieve an attack on DES that took less time than 255. Their
specific attack takes time 237 and works by analyzing 236 outputs that are
obtained from a larger pool of 247 chosen inputs. Thus, in essence 247 time is
really needed. Nevertheless, the real problem is that the adversary needs to
be able to make 247 queries to its oracle (or in real-life, it needs to be able to
make something like 247 chosen-plaintext requests). It is hard to imagine any
realistic scenario where such a large amount of chosen inputs can be obtained.
We stress that this does not take away from the importance of the work of
Biham and Shamir. However, it does mean that as an attack on DES, it is
more theoretical than practical. We note that it is believed that differential
cryptanalysis as a technique was already known to the designers of DES at
the time that DES was developed. One of the reasons for this belief is the fact
that Biham and Shamir also showed that a variant of DES with random S-
boxes is much easier to break using differential cryptanalysis than the actual
DES. Later, the designers of DES at revealed that the method was indeed
known to them (but that they were asked to keep it quiet in the interest of
National security). Thus, the general belief is that the actual S-boxes of DES
were specifically chosen to thwart differential cryptanalytic attacks, and thus
the NSA already knew about these attacks at the time.

Following Biham and Shamir’s breakthrough, an additional cryptanalytic
attack called linear cryptanalysis was developed by Matsui in the early 1990s
and applied to DES. The advantage of Matsui’s attack is that although it still
requires a large number of outputs (243 to be exact), it suffices for them to
be known-input only. That is, the adversary needs to be able to obtain 243
input/output pairs. This is a great improvement over the requirement that
the adversary needs to be able to also choose the inputs to the block cipher.
Nevertheless, it is still hard to conceive of any real scenario where it is possible
to obtain such a large number of input/output (or plaintext/ciphertext) pairs.

170 Introduction to Modern Cryptography

We conclude that although using sophisticated cryptanalytic techniques it
is possible to break DES in less time than required by a brute-force attack, in
practice exhaustive key search is still the most effective attack on DES today.
This is a great tribute to the designers of DES who seem to have succeeded
in constructing an almost “perfect” block cipher (with the glaring exception
of its too-short key). In Section 5.6 we will briefly describe the basic ideas
behind differential and linear cryptanalysis.

5.4 Increasing the Key Size for Block Ciphers

As we have seen, the DES design seems to be almost optimal. It has
withstood decades of cryptanalytic attacks and an exhaustive key search still
remains the best attack in practice. Thus, it is very natural to try to build a
block cipher with a long key, using DES as a building block. In this section
we will study such constructions.

Internal tampering versus black-box constructions. There are two
possible approaches that one could take to this task. The first is to somehow
try to modify the internal structure of DES, while increasing the key size. For
example, one may leave the internal f-functions untouched and simply use a
128-bit key with a different key schedule (still choosing a 48-bit subkey in each
round). The disadvantage of this approach is that by modifying the design of
DES we lose the confidence that we have gained over the many years of its
existence. Cryptographic constructions are very sensitive and even mild and
seemingly insignificant changes can render the original scheme completely in-
secure. This approach is therefore usually not recommended. An alternative
approach that does not suffer from the above problem is to use the original
DES as a “black box”. That is, no change is made to the original cipher, and
the key is lengthened by somehow applying the complete original DES a num-
ber of times to the input (while using different keys each time). For example,
in double-DES, the block cipher is defined by two applications of DES to the
input where each application uses an independent key. Another advantage of
black-box constructions is that they can be applied to any underlying block
cipher, because they make no reference to the internal structure. Indeed, in
the constructions below we will often refer to an arbitrary block-cipher, and
not just to DES.

5.4.0.2 Double Invocation

Let F be a block cipher and let k1 and ko be two independent keys for F'.
Then, a new block cipher with a key that is twice the length of the original

Pseudorandom Objects in Practice: Block Ciphers 171

one can be defined by
Fyy 1y () = Fiy (F, ().

If F =DES then the result is a key of size 112, which is much too long for any
exhaustive key search (for DES this method is typically called double-DES).
Unfortunately, as we will show now, a double invocation of a block cipher
does not provide a high enough level of security. We describe a “meet-in-the-
middle” attack on the double-invocation method. Denote the length of the
keys of F by n (thus the length of the keys of F’ is 2n). The attack that we
will describe now uses approximately 2™ time and 2" space.

The adversary is given an input/output pair (z,y) where y = Fy , (z) =
Fy, (Fg, (7)), and works as follows. First, it starts by building two lists of
pairs. The first list is made up of all the pairs of the form (ki,21) where
z1 = Fy, (z); that is, for every possible key ki, the pair (k1,21) is added
to the list. The second list is made up of all the pairs of the form (ks, 22)
where zo = szl(y) (Recall that z and y are the given input/output pair.)

Notice now that there exists a value z such that Fy, (z) = 2z = F L(y), where
k1 and ko are the keys that the adversary is searching for. Therefore, the
aim of the adversary is to match up pairs in the first list with pairs in the
second list, where a match is defined by the pairs having the same 2z portion
(i.e., where z1 = 23). Any such match defines a candidate key (k1, k2) for F’
because Fj (z) =21 =2 =22 = Fk_zl(y) and so y = Fy_(Fy, (v)). This is the
“meet-in-the-middle” that we are looking for; see Figure 77.

We therefore remain with an algorithmic problem which is to scan the two
lists and find all matches. We leave the solution of this as an exercise (see
Exercise 5.8), and note that it can be carried out in time O(2™).

Assuming random behavior of F', we have that approximately 2™ candidates
key-pairs (151, 152) should be chosen. (This is because each z should appear
approximately once in each table. Thus, each z in the first table should have
approximately one match in the second table. This yields 2" candidates.)
The attack is then concluded by testing all of the candidate pairs on a new
input/output pair (2’,3") obtained by the adversary.

Complexity. Using counting sort, the lists can be constructed and sorted
in time O(2"). Furthermore, the search for all candidates can be carried out
in time 2 - 2™. Overall, the time complexity of the attack is therefore O(2").
In other words, double-invocation is vulnerable to an attack that takes no
longer than an exhaustive key search on the original block cipher. We stress
that although this is true with respect to the time complexity of the attack,
it requires 2 - 2™ memory, which is a very high space complexity.

Double-DES. When applying double invocation to DES, we obtain that the
result is vulnerable to an attack requiring time that is in the order of 256
(to be more exact, it would be something like 26°). This is still within our
computing capabilities today and so is highly problematic. Of course, the

172 Introduction to Modern Cryptography

attack also requires 2°7 space and this is far more problematic. Despite this,
the margin of security for double-DES is not large enough and it is therefore
not used.

5.4.0.3 Triple Invocation

In order to thwart meet-in-the-middle attacks, three invocations of the un-
derlying block cipher can be used. We have no proof that no other shortcuts
exist for this method. Despite this, it is widely believed that triple invocation
of the block cipher provides a high level of security against brute force attacks.
There are two variants that are typically used for triple invocation:

1. Variant 1 — three independent keys: Choose 3 independent keys k1, ko, k3
and compute y = Flél,kQ,kS (x) = F, (Fk;l(F;Cl (2))).

2. Variant 2 — two independent keys: Choose 2 independent keys ki, ko
and compute y = Fy . (v) = Fy, (Fk;l(Flm (2)))-

Before comparing the security of the two alternatives we note that the middle
invocation of F is actually F~!. This makes no difference to the security
because if F' is a pseudorandom permutation then so too is F'~! (see Defini-
tion 3.28). The reason for this strange alternation between F, F~1 and F is
so that if one chooses k1 = ko = kg3, the result is a single invocation of F' with
k1. This helps with backward compatibility (in order to reverse back to a sin-
gle invocation, there is no need for special code and it suffices to just set the
keys to all be equal). Regarding the security of the alternatives, no weakness
whatsoever has been demonstrated with the first alternative. In contrast, it
has been shown that for the second alternative it is possible to carry out an
attack in time 2™ and using 2" queries to the block cipher. However, as we
have mentioned above, the possibility of obtaining 2™ outputs of the block
cipher on chosen inputs is so far fetched that it is not considered a concern at
all. (This is in contrast with 2 memory that is far more feasible.) Therefore,
both alternatives are reasonable, although it seems preferable to go with the
first.

Triple-DES (3DES). Triple-DES is based on a triple invocation of DES,
as described above. It is widely believed to be highly secure and in 1999
officially replaced DES as the NIST standard (although one would hope that
the basic DES was already phased out well before this time). We remark that
triple-DES is still widely used today and is considered a very strong block
cipher. Its only drawbacks are its relatively small block-size (that can be
problematic as discussed in the paragraph on “block length and security” in
Section 3.6.4) and the fact that it is quite slow since it requires 3 full block
cipher operations (in fact, even single DES is not that fast, making triple DES
even worse). These drawbacks have led to its recent replacement in 2001 by
the Advanced Encryption Standard (AES), presented in the next section.

Pseudorandom Objects in Practice: Block Ciphers 173

5.5 AES — The Advanced Encryption Standard

In January 1997, the National Institute of Standards and Technology of the
United States (NIST) announced that they were seeking a new block cipher
to replace the DES standard. The new cipher was to be called the Advanced
Encryption Standard, or AES for short. Later that year the terms of the AES
competition were published. The competition was ingeniously designed and
resulted in extraordinarily intensive scrutiny on the proposed ciphers. This
was achieved by having two rounds in the competition. In the first round, any
team could submit a candidate algorithm. There were 15 different algorithms
that were submitted from all over the world. These submissions included the
work of many of the best cryptographers and cryptanalysts today. Follow-
ing the first round of submission, the different algorithms were analyzed for
their security and performance. Two AES conferences were held, one in 1998
and one in 1999, in which papers were published regarding the different se-
curity and other properties of the submitted schemes. Following the second
AES conference, NIST narrowed the field down to 5 submissions and the sec-
ond round begun. A third AES conference was then held, inviting additional
scrutiny on the five finalists. Finally, in October 2000 NIST announced that
the winning algorithm is Rijndael (a block cipher designed by John Daemen
and Vincent Rijmen from Belgium). This process was ingenious because any
group who submitted an algorithm, and was therefore interested in having
their algorithm be adopted, had strong motivation to attack all the other
submissions.* In this way, essentially all of the world’s best cryptanalysts
worked intensively to find even the slightest weaknesses in the AES submis-
sions. Thus, after only a few years, the scrutiny received was very great, and
our confidence in the security of the winning algorithm was high. Of course,
the longer the algorithm is used, the more our confidence will grow. However
today, only about 5 years later, the AES block cipher is already very widely
used and no significant security weaknesses have been discovered.

The AES construction. In this section, we will present the high-level
structure of the AES block cipher. As with DES, we will not present a full
specification and our description should never be used as a basis for implemen-
tation. In particular, we will not present the AES S-box or describe the key
schedule. Rather, our aim is to provide a general idea of how the algorithm
works. Before we begin, we remark that although the terms AES and Rijndael
are used interchangeably, the AES is a specific standard and is different from
Rijndael. For example, Rijndael can be implemented with a large range of

4We note that the motivation was not financial because the winning submission could not
be patented. Nevertheless, much honor and glory was at stake.

174 Introduction to Modern Cryptography

block and key sizes whereas the AES is limited to a block size of 128 and a
key size of 128, 192 or 256 bits.

In contrast to DES that has a Feistel structure, AES is essentially a substitution-
permutation network. The AES algorithm holds a 4 by 4 array of bytes called
the state, that is initialized to the input to the cipher (note that the input is
128 bits which is exactly 16 bytes). The substitution and permutation oper-
ations (providing confusion and diffusion) are all applied to the state array.
There are four stages in every round of AES (see Figure 7?7 for a graphical
presentation of each of the four steps):

1. Stage 1 — AddRoundKey: In every round of AES,; a 16 byte round key
is derived from the master key, and is interpreted as a 4 by 4 array
of bytes.® Then, the key array is simply XORed with the state array.
Denote by a; ; the byte appearing in the i*™® row and j* column of the
state array, and likewise by k; ; that analogous byte in the key array.
Then the AddRoundKey step consists of computing a; ; = a; ; ® k; ; for
every 1 <i<4and1<j<4.

2. Stage 2 — SubBytes: In this step, each byte of the state array is re-
placed by another byte, according to a single fixed lookup table S. This
substitution table (or S-box) is a bijection over {0,1}8. Thus, the Sub-
Bytes step consists of computing a; ; = S(a;,;) for every 1 < i < 4 and
1 < j < 4. We stress that there is only one S-box and it is used for
substituting all of the bytes in the state array.

3. Stage 8 — ShiftRows: In this step, the bytes in each row of the state
array are cyclically shifted to the left as follows: the first row of the
array is untouched, the second row is shifted one place to the left, the
third row is shifted two places to the left, and the fourth row is shifted
three places to the left. Of course, all shifts are cyclic so in the second
row, we have that byte a>; become a4, byte az » becomes as 1 and so
on.

4. Stage 4 — MixColumns: In this step, each column is mixed via an in-
vertible linear transformation. Specifically, each column is interpreted
as a polynomial over GF[2%] (with the entries being the polynomial
coefficients) and is multiplied modulo z* + 1 with a fixed polynomial
c(x) = 323 + 22 + x + 2. This step can also be viewed as a matrix
multiplication in GF[28].

By viewing stages 3 and 4 as a “mixing permutation” step, we have that
each round of AES has the structure of a substitution-permutation network.
(That is, the round key is first XORed with the intermediate value. Then,

5Recall that the master key may be of size 16, 24 or 32 bytes. This effects the key schedule
only.

Pseudorandom Objects in Practice: Block Ciphers 175

confusion is applied by applying a small, invertible random-looking function
to each byte. Finally, the bytes are mixed. We stress that unlike our general
description of a substitution-permutation network, here the third stage is not
via a simple mixing permutation.)

The number of rounds in AES depends on the key-size. There are 10 rounds
for a 128-bit key, 12 rounds for a 192-bit key, and 14 rounds for a 256-bit key.
In the final round of AES the MixColumns stage is replaced with an additional
AddRoundKey step (this prevents simply rewinding the last round as we have
seen).

Security of AES. As we have mentioned, the AES cipher underwent intense
scrutiny during the selection process and this has continued ever since. To
date, the only non-trivial cryptanalytic attacks that have been found are for
reduced-round variants of AES. It is often hard to compare cryptanalytic
attacks because they vary on different parameters. We will therefore describe
the complexity of one set of attacks that gives the flavor of what is known.
There are known attacks on 6-round AES for 128 bit keys (taking time in
the order of 2™ encryptions), 8-round AES for 192 bit keys (taking time in
the order of 2!% encryptions), and 8-round AES for 256 bit keys (taking
time in the order of 2294 encryptions). We stress that the above attacks are
for reduced-round variants of AES, and as of today nothing better than an
exhaustive search on the key space is known for the full AES construction.
(Observe that even the complexities on the reduced-round variants are very
high.) Of course, the fact that no attack is known today does not mean that
one does not exist. In any case, it appears that AES has a large security
margin (especially if one uses 192-bit or 256-bit keys).

A different class of attacks, called side-channel attacks, consider the scenario
that the adversary is somehow able to make measurements on the processor
computing the encryption or decryption with the unknown secret key. Al-
though it sounds far-fetched, information such as the time taken to encrypt
or the power consumed during encryption has actually been used to extract
secret keys in reasonable amounts of time. Such attacks are sometimes feasi-
ble (e.g., when a secure coprocessor, typically called a smartcard, is used for
carrying out encryption and decryption, and may fall into the hands of the
adversary). In any case, a number of side-channel attacks have been demon-
strated on AES. However, they typically require very strong assumptions on
the power of the adversary.

We conclude that as of today, AES constitutes an excellent choice for almost
any cryptographic implementation that needs a pseudorandom permutation
or function. It is free, standardized and highly secure.

176 Introduction to Modern Cryptography

5.6 Differential and Linear Cryptanalysis — A Brief Look

Typical block ciphers are relatively complicated constructions, and as such
are hard to analyze and cryptanalyze. Nevertheless, one should not be fooled
into thinking that a complicated cipher is difficult to break. On the contrary, it
is very very difficult to construct a secure block cipher and surprisingly easy to
construct a trivially insecure one (no matter how complicated it looks). This
should serve as a warning that non-experts (and even many experts) should
not try to construct new ciphers unless there is a very good reason to. Given
that we have 3DES and AES, in most applications it is hard to justify the
necessity to use anything else.

In this section we will very briefly mention two central tools that belong
in the cryptanalysts toolbox. The existence of such tools should also help to
strengthen our above warning that it is very hard to construct good block
ciphers. Today, any new cipher must demonstrate resilience to differential
and linear cryptanalysis.

Differential cryptanalysis. This technique was first presented by Biham
and Shamir in the late 1980s who used it to attack DES. The basic idea
behind the attack is to find specific differences in input that lead to specific
differences in output with above expected probability. Let 1 and xo be two
inputs to the block cipher. The difference between x1 and o is defined by

A, df 1 P 2. Likewise, let y; and yo be the output of the block cipher with

a secret key k, given inputs x; and x, respectively (i.e., y1 = Fr(z1) and

y2 = Fi(22)), and let A, def y1 ®y2. The pair (A;, Ay) is called a differential.

Differential cryptanalysis capitalizes on a potential weakness in the cipher
that results in certain differentials appearing with probability that is higher
than expected in a random function. In order to clarify, we say that a dif-
ferential (A;, A,) appears with probability p if for random plaintexts 1 and
xg such that x; @ 2 = A, the probability that Fy(z1) @ Fi(z2) = Ay is p.
Denoting now the size of the block by n, it is clear that in a random function,
no differential should appear with probability that is much higher than 27".
However, in a block cipher (especially a weak one), there are differential that
appear with significantly higher probability.

We will not discuss here how one finds such differentials or even how they
are used to extract the secret key. We will mention that applying the block
cipher to random pairs of inputs that have the given differential enables a
cryptanalyst to isolate portions of the secret key and verify guesses for those
portions. As we discussed regarding the attack on a 2-round substitution-
permutation network, the ability to isolate parts of a key enables an attacker
to obtain the key in time that is less than a brute force search. Notice that
differential cryptanalysis uses a chosen-plaintext attack. This can be seen
from the fact that the method works by observing what happens with pairs

Pseudorandom Objects in Practice: Block Ciphers 177

of plaintexts with a given differential (in order to observe pairs with this
differential, the attacker must be able to choose the pairs of plaintexts it
wishes). Thus, if an attack requires a large number of plaintext pairs, its
practicality is in question.

We remark that although DES and AES are resilient to differential crypt-
analysis (or at least, they seem to be), it has been used with success on other
block ciphers. One important example is FEAL-8 which was completely bro-
ken using differential cryptanalysis.

Linear cryptanalysis. Linear cryptanalysis was developed by Matsui in
the early 1990s. Matsui’s method works by considering linear relationships
between some of the bits of input and output. That is, the potential weak-
ness here is that some subset of the plaintext and ciphertext bits are lin-
early correlated. Letting x1,...,z, and y1,...,y, denote the input and out-
put bits, respectively, linear cryptanalysis considers equations of the form
Tiy &, D Yiy, Dy, = 0. Clearly, if the function in question was truly
random, then such linear equations can only hold with probability 1/2. Thus,
here the cryptanalyst looks for equations of the above type that hold with
probability that is far from 1/2. Matsui showed how to use such equations
to completely break the cipher by finding the secret key. However, we note
that the existence of such an equation that holds with probability that is non-
negligibly far from 1/2 is enough to declare that the block cipher is not pseu-
dorandom. (Specifically, any such equation holding with probability 1/2 + ¢
yields an algorithm that can distinguish the block cipher from a random func-
tion with advantage €. All the algorithm needs to do is to output 1 when
the equation holds and 0 otherwise.) An important property of this attack is
that it does not require chosen-plaintext abilities. Rather it suffices for the
cryptanalyst to have many plaintext/ciphertext pairs (i.e., here the cryptan-
alyst carries out a known-plaintext attack). Despite this, as with differential
cryptanalysis, if a very large number of pairs are needed the attack becomes
impractical in most settings.

We have already discussed the applications of differential and linear crypt-
analysis on DES in Section 5.3.3 and therefore do not repeat it here.

5.7 Stream Ciphers from Block Ciphers

In this chapter we have studied practical constructions of block ciphers. We
have not covered stream ciphers, and will not do so in this book. There are a
number of stream ciphers in use today; just one popular example is RC4. As
we have mentioned (in Section 3.4.3), it seems that the cryptographic commu-
nity’s understanding of stream ciphers is somewhat less satisfactory than its
understanding of block ciphers. This can be seen by the fact that extremely

178 Introduction to Modern Cryptography

strong block ciphers like 3DES and AES exist and have been standardized.
In contrast, stream ciphers seem to be far more prone to attack, and there is
no standard stream cipher with no known weakness that has withstood years
of cryptanalytic attacks.

Having said the above, it is well known that stream ciphers can easily be
constructed from block ciphers, in which case the stream cipher inherits the
security of the block cipher. We have already seen how this can be achieved
when we studied modes of operation for block ciphers (see Section 3.6.4).
Therefore, unless severe constraints mandate the use of a dedicated stream
cipher (e.g., in the case of weak hardware where the additional efficiency of
stream ciphers is crucial), we advocate the use of AES and 3DES in practice.
We note that AES is extremely fast and so for most applications it more than
suffices.%

Additional Reading and References

The confusion-diffusion paradigm and substitution-permutation networks
were both introduced by Shannon [113]. The Feistel method of constructing
a block cipher was presented by Feistel [54] when working on Lucifer, a block
cipher predating DES. A theoretical analysis of the Feistel methodology was
later given by Luby and Rackoff [91].

The full DES standard can be found at [102] and a more friendly description
can be found in Kaufman et al. [84]. The most comprehensive presentation
of AES can be found in the book written by its designers Daemen and Ri-
jmen [44]. There are a large number of other good (and less good) block
ciphers in the literature. For a broad but somewhat outdated overview of
other ciphers, see [93, Chapter 7].

A recent analysis of the security of triple-DES is given by Bellare and Ro-
gaway [22].

Differential cryptanalysis was introduced by Biham and Shamir [23] and its
use on full DES was presented in [24]. Coppersmith [37] describes the DES
design in light of the public discovery of differential cryptanalysis. Linear
cryptanalysis was discovered by Matsui [92]. For more information on these
advanced techniques, we refer to the excellent tutorial on differential and

60ne may wonder why stream ciphers are preferred over block ciphers in the first place.
There are two main reasons. First, they are often faster (and our recommendation to use a
block cipher in a “stream-cipher mode” will therefore cause some slowdown). The second
reason is that implementors often prefer to use a stream cipher because no padding of the
message is needed (recall that when encrypting with a block cipher, the plaintext message
must be padded in order to make its length an exact multiple of the block size).

Pseudorandom Objects in Practice: Block Ciphers 179

linear cryptanalysis by Heys [78]. A more concise presentation can be found
in the textbook by Stinson [124].

Exercises

5.1

5.2

5.3

5.4

5.5

5.6

5.7

In our attack on a two-round substitution-permutation network, we con-
sidered a block size of 64 bits and a network with 16 S-boxes that take
input of size 4 bits. Repeat the analysis for the case of 8 S-boxes, each
S-box taking an input of size 8 bits. Present an exact description of the
complexity of the attack. Repeat the analysis again with a block size
of 128 bits (and S-boxes that take input of size 8). Does the block size
make any difference?

Our attack on a three-round substitution-permutation network does not
recover the key but only shows how to distinguish it from a random
permutation. Thus it is not a “complete break”. Despite this, show
that using a three-round substitution-permutation network with counter
mode (see Section 3.6.4) can have disastrous effects on the security of
encryption.

Consider a modified substitution-permutation network where instead of
carrying out key-mixing, substitution and permutation in alternating
order, first R keys are mixed (via XOR), then R substitution steps are
carried out, and finally R permutations are run. Analyze the security
of this construction. Does it make a difference if the same S-boxes and
permutations are used in all steps or if they are different?

Show that in the DES structure, DESy(z) = DES(T) for every key
k and input x (where Z denotes the bitwise complement of z). This is
called the complementary property of DES.

Use the previous exercise to show how it is possible to find the DES
secret key in time 2°° (i.e., half the time of a straightforward brute-
force search). For your attack, you can assume that you are given an
oracle that computes DES under the secret key k.

Provide a formal proof that the initial and final permutations IP and
IP~! have no effect on the security of DES (beyond slowing down at-
tacks by a constant factor).

Hint: Show that any attack on DES without the permutations can be

converted into an attack on DES with the permutations.

This exercise discusses problematic keys for DES; these keys are called
weak keys:

180

5.8

5.9

5.10

Introduction to Modern Cryptography

(a) Assume that the DES secret key k equals 0%6. Show that for every

x it holds that DESy,(DESk(x)) = x. Why does the use of such a
key pose a security threat?

(b) Find three other DES keys with the same property. Present the
keys and explain why they have the property.

(¢) Is the existence of these 4 keys a threat to the security of DES?
Explain your answer.

Describe an algorithm that is given two sorted lists of length N and
finds all values that appear in both lists in time O(N). Recall that this
is used in the attack on double-DES.

It has been proposed to use double-DES as a fixed-length collision-
resistant hash function within the Merkle-Damgard transform, in the
following way. Define the hash function h : {0,1}'2 — {0,1}%* as
h(z1||xe) = DES,,(DES,,(0%)) where |z| = |z2| = 56.

(a) Write down an actual collision in this fixed-length hash function.

(b) In how much time is it possible to find a preimage for the hash
function. That is, given some y € {0,1}%* show how to find a
pair (z1,z2) such that h(zq||z2) = y. Make your attack as quick
as possible. Does your attack make it possible to find a preimage
that “makes sense” (say, one that contains an English word)?

(¢) What happens when h as above is used in the Merkle-Damgard
transform? Find the most effective attack that you can think of.

Describe a detailed attack on all of the following (silly) modifications to
DES:

(a) The S-boxes all output zeroes, irrespective of the input

(b) The internal f function computes the identity function

(c) Instead of using different subkeys in every round, the same 48-bit

key is used in every round of the Feistel structure.

If you claim insecurity, then describe a detailed attack and analyze its
complexity.

Chapter 6

* Theoretical Constructions of
Pseudorandom Objects

In Chapter 3 we introduced the notion of pseudorandomness, and defined the
basic cryptographic primitives of pseudorandom generators and pseudoran-
dom functions. In addition, we showed that these objects are the basic build-
ing blocks for constructing secure encryption schemes (in Chapter 4 we also
saw that they can be used for constructing message authentication codes).
Finally, in Chapter 5 we studied how pseudorandom functions can be con-
structed heuristically. Thus, all of our constructions of encryption schemes
and message authentication codes can be proven secure under the assump-
tion that pseudorandom generators and functions exist (and thus under the
assumption that constructions like the AES block cipher indeed constitute
pseudorandom functions). Since these objects form the basis of essentially
all of “private-key cryptography”, it is of great importance to enhance our
understanding of them from a theoretical (and more rigorous) point of view.
In this chapter we study pseudorandom generators and functions and show
under what (minimal) assumptions they can be constructed, and how.

That material in this chapter is for the most part theoretical, and we do
not suggest that the constructions presented here should (or could) be used in
practice. Indeed, they are far too inefficient for that. Nevertheless, a strong
theoretical understanding of pseudorandomness greatly deepens our under-
standing of how security is achieved, and what assumptions are necessary. In
addition, a strong theoretical understanding is often beneficial when analyzing
schemes used in practice.

A note regarding this chapter. This chapter is somewhat more advanced
and more theoretical than the others in the book. The chapter may be skipped
entirely and is not relied on in the rest of the book. (The one exception to this
rule is that we do mention one-way functions later on. Nevertheless, if desired,
they can be taken at the intuitive level.) Having said this, we have made great
efforts to make the material here suitable for an advanced undergraduate or
beginning graduate audience. This is especially true for Sections 6.1 and 6.2
that we believe are suitable for a general undergraduate audience. We believe
that familiarity with at least some of the topics covered here is important
enough to warrant the effort involved.

181

182 Introduction to Modern Cryptography

6.1 One Way Functions

As we have mentioned, the basic aim of this chapter is to understand the
minimal assumption required for constructing pseudorandom generators and
functions, and how this assumption is used in those constructions. But, why is
any assumption necessary? Why can’t we construct a pseudorandom function
from scratch, and just prove mathematically that it is indeed pseudorandom?
The answer to this question is simply that an unconditional proof of the exis-
tence of pseudorandom generators or functions would involve breakthroughs
in complexity theory that seem far beyond reach today.

Given that some assumption is necessary, at least with our current under-
standing of complexity, a natural goal is to try to base our constructions on
the “minimal assumption” possible. Formally, a minimal assumption is one
that is both necessary and sufficient for achieving constructions of pseudo-
random generators and functions. As it turns out, the minimal assumption
here is that of the existence of one-way functions. Loosely speaking, such
a function has the property that it is easy to compute, but (almost always)
hard to invert. The fact that this assumption is indeed minimal will be proven
throughout this chapter, and in particular in Section 6.7.

We remark that one-way functions are in fact a minimal assumption for
almost all of cryptography, and not just for obtaining pseudorandom genera-
tors and functions. (The only exception are cryptographic tasks for which no
computational assumptions are needed.) Furthermore, on an intuitive level
they constitute a far weaker assumption than the existence of pseudorandom
generators or functions (although technically speaking, as we show in this
chapter they are actually equivalent and either they both exist or they both
do not exist).

6.1.1 Definitions

One-way functions have the property that they are easy to compute, but
hard to invert. Since we are interested in a computational task that is almost
always hard to solve, the hard-to-invert requirement is formalized by saying
that a polynomial-time adversary will fail to invert the function (i.e., find
some preimage), except with negligible probability. (Note that it is always
possible to succeed with negligible probability, by just guessing a preimage of
the appropriate length. Likewise, given exponential-time, it is always possible
to search the entire domain for a preimage.)

Simplifying convention. Throughout this entire chapter, we will assume
that the input and output lengths of every one-way function (or variant) f
are polynomially related. This means that there exist two constants ¢; and ¢
such that for every =, it holds that |z|'/¢* < |f(z)| < |z|®*. We remark that
the requirement that f(x) be at most of length |z|°2 is given in any case by

* Theoretical Constructions of Pseudorandom Objects 183

the fact that f must be efficiently computable (a polynomial-time algorithm
cannot write more than polynomially many bits). In contrast, the requirement
that f(z) be at least of length |z|'/ is a simplifying convention. We remark
that there are ways of dealing with one-way functions for which this doesn’t
hold. However, this convention simplifies the notation and so we adopt it.

DEFINITION 6.1 (one-way functions): A function f:{0,1}* — {0,1}*
is called one-way if the following two conditions hold:

1. Easy to compute: There exists a polynomial-time algorithm My such
that on input any x € {0,1}*, My outputs f(z) (i.e., M¢(x) = f(x) for
every x).

2. Hard to invert: For every probabilistic polynomial-time inverting algo-
rithm A, there exists a negligible function negl such that

Pr [A(f(2)) € £ (f(2))] < negl(n) (6.1)

where the probability is taken over the uniform choice of x in {0,1}™
and the random coin tosses of A.

We stress that it is only guaranteed that a one-way function is hard to
invert when the input is uniformly distributed. Thus, there may be many
inputs (albeit a negligible fraction) for which the function can be inverted.
Furthermore, as usual for asymptotic definitions, it is only guaranteed that it
be hard to invert for all long enough values of x.

Successful inversion of one-way functions. A very important point to
note also that a function that is not one-way is not necessarily easy to invert
all the time (or even “often”). Rather, the converse of Definition 6.1 is that
there exists a probabilistic polynomial-time algorithm .4 and a non-negligible
function e such that A inverts f(z) for x € {0,1}"™ with probability at least
e(n). What this actually means is that there exists a positive polynomial g(-)
such that for infinitely many n’s, the algorithm A inverts f with probability at
least 1/g(n). Thus, if there exists an A that inverts f with probability n =19 for
all even values of n, then the function is not one-way. This holds even though
A only succeeds on half of the values of n and even though when it succeeds,
it is only with probability n~1°. We also stress that the inverting algorithm
is not required to find the exact = used in computing y = f(z). Rather, if it
finds any value 2’ such that f(z') = y = f(z), then it has succeeded in its
task.

Exponential-time inversion. As we have mentioned, any one-way function
can be inverted given enough time. Specifically, given a value y, it is always
possible to simply try all values z of increasing length (up to some bound) until
a value z is found such that f(z) = y. This algorithm runs in exponential time

184 Introduction to Modern Cryptography

and always succeeds. Thus, the existence of one-way functions is inherently
an assumption about computational complexity and computational hardness.
That is, it considers a problem that can be solved in principle. However, it
cannot be solved efficiently.

One-way permutations. We will often be interested in one-way functions
with special properties. One particular category of interest is that of one-way
functions that are bijections. We call such functions “one-way permutations”.
Since we are considering infinite domains (i.e., functions that receive inputs
of all lengths), we should explain in more detail what we mean. We will call
a function over an infinite domain a permutation if for every n, the function
restricted to inputs of length n is a bijection.

DEFINITION 6.2 (one-way permutations): Let f be a function with
domain {0,1}* and define the function f, to be the restriction of f to the
domain {0,1}" (i.e., for every x € {0,1}", fn(x) = f(x)). Then, a one-way
function f is called a one-way permutation if for every n, the function f, is
1-1 and onto {0,1}".

An interesting property of one-way permutations is that any value y uniquely
determines its preimage x. This is due to the fact that a permutation f is a
bijection, and so there exists only one preimage. Thus, even though y fully
determines z, it is still hard to find x in polynomial-time.

We remark that a more involved notion called “families of one-way permu-
tations” is typically considered in the cryptography literature. Nevertheless,
for the sake of clarity, we will consider the above simpler notion and remark
that it makes almost no difference to the material presented in this chapter.

Families of one-way functions and permutations. The above defini-
tions of one-way functions and permutations are very convenient in that they
consider a single function over an infinite domain and range. However, most
candidates that we have for one-way functions and permutations actually
don’t fit into this type of formalization. Rather, for every n there is a differ-
ent function with a finite domain and range containing inputs of size poly(n).
Furthermore, the inputs and outputs may not be mere strings of size n but
may have a certain form. For example, for every prime p we may consider a
permutation fj, over Z,. The collection of all f,, then constitutes a family of
functions. This brings us to the following definition:

DEFINITION 6.3 A tupleII = (Gen, Samp, f) of probabilistic, polynomial-
time algorithms is a family of functions if the following hold:

1. The parameter generation algorithm Gen, on input 1™, outputs parameters
I with |I| > n. Each value of I output by Gen defines sets Dy and Ry that
constitute the domain and range, respectively, of a function we define
next.

* Theoretical Constructions of Pseudorandom Objects 185

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed
element of Dy (except possibly with probability negligible in |I|).

3. The deterministic evaluation algorithm f, on input I and x € Dy, outputs
an element y € Ry. We write this as y := f1(x).

IT is a family of permutations if for each value of I output by Gen(1™), it holds
that Dy = Ry and the function fr: Dy — Dy is a bijection.

Consider a function f, that is defined for every prime p as follows: fp(z) =
g® mod p. Then, one can define a family of functions where Gen chooses
a random prime of the appropriate length n (in this case I = p), Samp(I)
chooses a random element = within Z,, and f(z) computes g* mod p. It is
not hard to see that this is actually a family of permutations. We now proceed
to define one-wayness for a family of functions or permutations. We begin by
defining an “inversion” experiment:

The inverting experiment Invert 4 7(n):

1. Gen(1™) is run to obtain I, and then Samp([I) is run to obtain
a random x < Dj. Finally, y = f1(x) is computed.

2. A is given I and y as input, and outputs x’.

3. The output of the experiment is defined to be 1 if fr(z') =y,
and 0 otherwise.

A function is one-way if success in the above experiment occurs with at most
negligible probability. That is:

DEFINITION 6.4 A family of functions/permutations II = (Gen, Samp,
f) is called one-way if for all probabilistic polynomial-time algorithms A there
exists a negligible function negl such that

PrlInvert 4 i(n) = 1] < negl(n).

6.1.2 Candidates

One-way functions are only of interest if they actually exist. Since we do
not know how to prove that they exist (because this would imply a major
breakthrough in complexity theory), we conjecture or assume their existence.
This conjecture (assumption) is based on some very natural computational
problems that have received much attention, and have yet to yield polynomial-
time algorithms. Perhaps the most famous of these problems is that of integer
factorization. This problem relates to the difficulty of finding the prime factors
of a number that is the product of long uniformly distributed primes of similar
length. This leads us to define the function fuui(z|ly) = = - y. Now, if there
is no restriction on the lengths of x and y, then fi,, is easy to invert (with

186 Introduction to Modern Cryptography

high probability z - y will have a small prime factor p that can be found, and
then it is possible to return (p,zy/p) as a preimage). Nevertheless, there are
two ways to modify fiu so that it yields a one-way function. The first is
to require that |x| = |y| (this prevents finding a small prime factor), and the
other is to use the input to sample two primes of approximately the same size
(see Section 7.2.1). The integer factorization problem is discussed in greater
length in Chapters 7 and 8.

Another candidate one-way function is based on the subset-sum problem
and is defined by f(z1,...,2n,J) = (21,...,2n, Y ;c; ;) where all z;’s are
of length n, and J is a subset of {1,...,n}. Note that when given an image
(z1,-..,2n,y) of this function, the task of inverting it is exactly that of finding
a subset J' of {1,...,n} such that } ., z; = y.t

We conclude with a family of permutations that is widely believed to be one-
way. This family is based on the so-called discrete logarithm problem and is
defined by f,(z) = ¢” mod p for any prime p. We described this family above
and remark here that it is believed to be one-way. This is called the discrete
logarithm because the logarithm function is the inverse of exponentiation; it
is “discrete” because we work over Z, and not the reals.

In summary, one-way functions and one-way permutations are assumed to
exist, and we have a number of concrete candidates for their existence. We
will study some of these in detail in Chapters 7, 8 and 11.

6.1.3 Hard-Core Predicates

By the definition, a one-way function is hard to invert. Stated differently,
given a value y = f(x), the value of z is unknown to any polynomial-time
inverting algorithm. Thus, f hides information about x, even when f(x)
is known. Recall that when f is a permutation, f(z) fully determines z.
Nevertheless, x is still hidden to any polynomial-time algorithm.

One may have the impression that this means that x is completely unknown,
even given f(x). However, this is not the case. Indeed, a one-way function f
may yield a lot of information about its input, and yet still be hard to invert.
For example, let f be a one-way function and define g(z1,x2) = (f(x1), z2),
where |z1| = |x2|. Then, it is easy to show that g is also a one-way function,
even though it reveals half of its input (the proof that g is one-way is left as
an exercise). For our applications, we will need to classify what information
is truly hidden by f. This is exactly the purpose of a hard-core predicate.

1We remark that students who have taken a course in complexity or who have studied
NP-completeness may be familiar with the subset-sum problem and the fact that it is
NP-complete. We stress that N/P-completeness does not imply one-wayness because N P-
completeness relates to worst-case complexity and not average case as we consider here.
Thus, our belief that this function is one-way is based on the lack of known algorithms to
solve this problem, and not on the fact that the general problem is N'P-complete.

* Theoretical Constructions of Pseudorandom Objects 187

Loosely speaking, a hard-core predicate hc of a function f is a function out-
putting a single bit with the following property: If f is one-way, then upon
input f(x) it is infeasible to correctly guess hc(x) with any non-negligible ad-
vantage above 1/2. (Note that it is always possible to compute hc(x) correctly
with probability 1/2 by just randomly guessing it.)

Notation: Before proceeding to the definition, we remark that in this chapter
we will often make the probability space explicit by subscripting it in the
probability (see the equation in the definition below). We found this to be
clearer for the material in this chapter.

We now proceed with the definition of a hard-core predicate.

DEFINITION 6.5 (hard-core predicate): A polynomial-time computable
predicate hc : {0,1}* — {0,1} is called a hard-core of a function f if for every
probabilistic polynomial-time algorithm A, there exists a negligible function
negl such that
1
P =h <= I
L Pr AU (@) = he(a)] < 5+ nel(n)

where the probability is taken over the uniform choice of x in {0,1}™ and the
random coin tosses of A.

Simple ideas don’t work. Consider for a moment the candidate hard-core
predicate defined as he(z) = @), z; where z1,...,z, denote the bits of z.
The intuition behind why this function “should” be a hard-core predicate is
that if f cannot be inverted, then f(z) must hide at least one of the bits x;
of its preimage. Then, the exclusive-or of all of the bits of x must be hard
to compute (since x; alone is already hard to compute). Despite its appeal,
this argument is incorrect. Specifically, given a one-way function f, define
the function g(z) = (f(z), @, z;). It is not hard to show that g is one-way.
However, it is clear that g(z) does not hide the value of he(z) = @), @i,
because this is part of its output. Therefore, hc(z) is not always a hard-core
predicate. (Actually, it can be shown that for every given predicate hc, there
exists a one-way function for which hc is not a hard-core of f.)

Meaningless hard-core predicates. We note that some functions have
“meaningless” hard-core predicates. For example, let f be any function and
define g(o,z) = f(x) where o € {0,1} and x € {0,1}". Then, given g(o,x) it
is clearly hard to guess o with probability greater than 1/2 (because ¢ is not
determined by g(o,z)). This holds even if f (and thus g) is not one-way.

In contrast, a 1-1 function f has a hard-core predicate only if it is one-
way (see Exercise 6.9). Intuitively, this is the case because when a function
is 1-1, the value f(z) fully determines x. Now, if f is not one-way, then
it can be inverted, revealing the unique preimage x. Thus, hc(z) can be
computed from f(z) with some non-negligible advantage. This shows that if

188 Introduction to Modern Cryptography

a 1-1 function is not one-way, then it cannot have a hard-core predicate. We
stress that in the example above of g(o, z), the fact that o remains hidden is
due to the fact that it is not determined. In contrast, for 1-1 functions, the
difficulty of guessing the hard-core is due to computational difficulty. We will
use hard-core predicates in order to construct pseudorandom generators. In
that construction, it will become clear why a hard-core predicate that hides
an undetermined bit is of no use.

6.2 Overview of Constructions

In this section, we describe the steps in the construction of pseudorandom
generators and functions from one-way functions. The first step is to show
that for every one-way function f, there exist a hard-core predicate for the
function g(z,r) = (f(x),r), where |z| = |r| (recall that if f is one-way then so
is g). Notice that if f was 1-1 or a permutation, then so is g. Thus, nothing
is lost by considering g instead of f. We have the following theorem:

THEOREM 6.6 Let f be a one-way function and define g(x,r) = (f(x),r).
Then, the function gl(z,r) = @Ll x; - 1r;, where * = x1,...,T, and v =
T1,...,Tn, 15 a hard-core predicate of g.

Notice that the function gl(z,) outputs a bit that consists of the exclusive-
or of a random subset of the bits x1,...,x,. This is due to the fact that r
can be seen as selecting this subset (when r; = 1 the bit z; is included in
the XOR, and otherwise it is zeroed), and r is uniformly distributed. Thus,
Theorem 6.6 essentially states that f(z) hides the exclusive-or of a random
subset of the bits of . ;From here on, we will write f(z) as the one-way
function, and unless explicitly stated otherwise, it should be understood that
we really mean a one-way function of the form g as above. We remark that
the function is denoted gl after Goldreich and Levin who proved Theorem 6.6.

The next step in the construction is to show how hard-core predicates can be
used to obtain pseudorandom generators. Despite the fact that more general
theorems exist, we will show this only for the case of one-way permutations.
We use the following two important facts. First, if f is a permutation, then
for a uniformly distributed z it holds that f(x) is also uniformly distributed.
Second, if hc is a hard-core of f, then the bit hc(z) looks random, even given
f(x). (This second fact follows from the fact that a polynomial-time algorithm
can guess the value hc(z) given f(z) with probability only negligibly greater
than 1/2. This is equivalent to say that it looks random, or more formally,
that it is pseudorandom.) We have the following theorem:

* Theoretical Constructions of Pseudorandom Objects 189

THEOREM 6.7 Let f be a one-way permutation and let hc be a hard-
core predicate of f. Then, G(s) = (f(s),hc(s)) constitutes a pseudorandom
generator with expansion factor £(n) =n + 1.

The existence of a pseudorandom generator that stretches the seed even by
just a single bit is very non-trivial. The possibility of creating even a single bit
of randomness in a deterministic way is very surprising (note, for example,
that such a result cannot be achieved in a world where algorithms are not
computationally bounded). Despite this, we are interested in obtaining many
pseudorandom bits. This is due to the fact that in order to encrypt with pseu-
dorandom generators (as in Section 3.4) it is necessary to have pseudorandom
generators with large expansion factors. Fortunately, pseudorandom genera-
tors that stretch the seed by one bit can be used to construct pseudorandom
generators with any polynomial expansion factor.

THEOREM 6.8 Assume that there exist pseudorandom generators with
expansion factor £(n) = n+ 1. Then, for every polynomial p(-), there exists a
pseudorandom generator with expansion factor £(n) = p(n).

Thus, pseudorandom generators can be constructed from any one-way per-
mutation. Pseudorandom generators suffice for obtaining secure encryption
in the presence of eavesdropping adversaries. However, for active CPA and
CCA attacks and for constructing message authentication code, we relied upon
pseudorandom functions. The last step is thus the construction of pseudoran-
dom functions from pseudorandom generators. That is,

THEOREM 6.9 Assume that there exist pseudorandom generators with
expansion factor £(n) = 2n. Then, there exist pseudorandom functions and
pseudorandom permutations.

Combining Theorems 6.6 to 6.9, we have the following corollary:

COROLLARY 6.10 Assuming the existence of one-way permutations,
there exist pseudorandom generators with any polynomial expansion factor,
pseudorandom functions and pseudorandom permutations.

We remark that it is actually possible to obtain all of these results from
any one-way function (without requiring that it be a permutation or even
1-1). However, the construction that is based on arbitrary one-way functions
is very involved and is out of the scope of this book.

190 Introduction to Modern Cryptography

6.3 Hard-Core Predicates from Every One-Way Func-
tion

In this section, we prove Theorem 6.6. We begin by restating the theorem:

THEOREM 6.11 (hard-core predicate — restated): Let f be a one-way
function and let g be defined by g(z,7) = ((f(z),r)), where |x| = |r|. Let
gl(z,7) = @, x; - ; be the inner product function, where ¥ = x1 -, and
r=7r1--Tyn. Then, the predicate gl is a hard-core of the function g.

We now proceed to prove Theorem 6.11. Due to the complexity of the
proof, we present it in three stages beginning with the most simplistic case
and ending with the full proof.

6.3.1 The Most Simplistic Case

We first show that if there exists a polynomial-time adversary A that always
successfully guesses gl(x,r) given (f(z),r), then it is possible to invert f in
polynomial-time. Given the assumption that f is a one-way function, it follows
that no such adversary A exists.

PROPOSITION 6.12 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A such that for infinitely many n’s

Pr[A(f@).1) = gl(a.r)] =1

z,r—{0,1}™

then there exists a probabilistic polynomial-time adversary A’ such that for
infinitely many n’s

Pr [A(f(x) € fTH(f(x)] =1

z—{0,1}"

PROOF Let A be as in the proposition and consider the infinite set of
n’s upon which A successfully guesses gl(z,7). We construct an adversary
A’ as follows. Let e denote the length-n vector that contains zeroes in all
positions, except for the i*" position where it contains a one. Then, upon
input y, adversary A’ invokes A with input (y,e?) for i = 1,...,n. That is,
for y = f(x), A’ effectively invokes A with input g(z,e?). By the assumption
in the proposition (that A always succeeds in guessing gl), we have that for

* Theoretical Constructions of Pseudorandom Objects 191

each i, A outputs gl(z, e’). However,

n
i i i i
gl(x,e)z@mj-ejzxi-ei—i—@xj-ej:m
i=1

J#i
where the last equality is due to the fact that el =1, but for all j # i it
holds that e; = 0. We therefore conclude that A’ obtains the bits x1,...,z,

one at a time from A. Once it concludes, it outputs x = z1,...,x,. By the
assumption on A, we have that f(z) = y, and so A’ successfully inverts f.
|

As we have mentioned, by the assumption that f is one-way, it is impos-
sible to invert f with non-negligible probability (let alone probability 1) in
polynomial-time. Thus, we conclude that an adversary A that can guess
gl(z,r) with probability 1 does not exist. Of course, this is still very far from
our ultimate goal of showing that gl(x,r) can be guessed with probability only
negligibly greater than 1/2.

6.3.2 A More Involved Case

We now proceed to show that it is hard to guess gl(z,r) with probability
that is non-negligibly greater than 3/4. This already establishes a measure
of unpredictability of gl(x,r) given f(x,r). Notice that the strategy in the
proof of Proposition 6.12 fails completely here because it may be that A never
succeeds when it receives r = e’. Furthermore, notice that in this case, A’
cannot know if a particular bit output by A as a guess for gl(x, r) is correct or
not. The only fact that A’ can deduce is that with probability non-negligibly
greater than 3/4, adversary A is indeed correct. We now prove the following:

PROPOSITION 6.13 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A and a polynomial p(-) such that
for infinitely many n’s it holds

3 1
%N%”nVU@%H=Q@wﬂZZ+RB

then there exists a probabilistic polynomial-time adversary A’ and a polynomial
p' () such that for infinitely many n’s

’ -1 1
(P U@ e @) 2 s

PROOF The main observation behind the proof of this proposition is that
for every r € {0,1}", the values gl(x,r @ e’) and gl(z,r) together can be used

192 Introduction to Modern Cryptography

to derive the i*" bit of 2. This follows from the following calculation:

gl(z,7) ® gl(z, 7 ® e
=P |o | Pa-(ryoe) | =ai-rivr-(nol) =
j=1 j=1

where the second equality is due to the fact that for all j # 4, the value
xj-r; ®x;-r; appears (and so is cancelled out).

In order to use this observation, we will need to choose many different values
of r for a fixed x (the reason for this will become apparent later). We therefore
need to show that for many z’s, the probability that A’s correctly outputs
both gl(z,r) and gl(x,r @ e'), when r is chosen uniformly, is good. In the
following claim, we show that there is a large enough set of concrete “good
inputs” x upon which A often succeeds. This claim allows us to consider the
probability distribution over the choice of r (and not over the uniform choice
of both z and), which makes things easier.

CLAIM 6.14 For infinitely many n’s, there exists a set S, C {0,1}" of

size at least % - 2™ such that for every x € Sy, it holds that

[A(f(z),7) = gl(z,7)] =2 7 + 5—— (6.2)

r
r—{0,1}"

where the probability is taken over the choice of r only.

PROOF Set ¢(n) = 1/p(n) and for any given z, let
@)= P [A((0)r) = gl

Then, let S,, be the set of all x’s for which s(x) > 3/4+4¢(n)/2 (i.e., for which

Equation (6.2) holds). We show that |S,| > LQ”) - 2™, This follows from a
simple averaging argument. (That is, if A inverts with probability 3/4+(n),
then there must be at least an e(n)/2 fraction of inputs for which it succeeds
with probability 3/4 + e(n)/2.) We have:

PrA(f (@),) = gl(z,7)
= PrA(f(z).7) = gl(z,1) | = € S,] - Prle € S,
+ PrLA(f(2),7) = gl(z,7) | @ ¢ Su] - Prfe ¢ S,
< Prfo € S,] + PrlA(f(2), 1) = gl(@.7) | o ¢ S,]
and so
IZr[x €S,
= PrA(f(z),r) = gl(z,)] — PrlA(f(x),r) = gl(z,7) | # ¢ 5]

z,r z,r

* Theoretical Constructions of Pseudorandom Objects 193

Al

By the definition of S, it holds that for every = ¢ S,, Pr[A(f(x),r)
gl(xz,r)] < 3/4+ e(n)/2. That is, Pry . [A(f(x),7) = gl(z,r) | z ¢ Sy]
3/4+¢€(n)/2, and so we have that

3 3 e(n) en)
> 2 _2_ A _ A
l:g’cr[x € Sy] > 1 +e(n) 1 5
This implies that .S,, must be at least of size @ - 2" (because x is uniformly
distributed in {0,1}"™), completing the proof of the claim. [|

For the rest of the proof we set e(n) = 1/p(n) and consider only the infinite
set of n’s upon which A succeeds with probability e(n). The claim above
states that for an £(n)/2 = 1/2p(n) fraction of inputs z, the adversary A
correctly outputs gl(z,r) with probability at least 3/4 4+ £(n)/2, when r is
uniformly distributed. Below, we will show that A’ can invert f(x) with good
probability in the case that z is as above (i.e., for x € S,). Since &(:) is
a non-negligible function, this is enough to contradict the one-wayness of f
(because for a one-way function it must be possible to invert only a negligible
fraction of the inputs with good probability). Formally, it suffices to look only
at x € S,, because

Pr[A'(f(z)) =] > Pr[z € S, - Pr[A'(f(z)) =2 | z € S,].

From now on, we focus only on z € S,,.

Now, let A be as in the proposition. Then, given y = f(z) for any « € S,
an adversary A’ can choose a random r and invoke A on (y,r). By the
assumption in the proposition, it holds that A outputs gl(x,7) = @?:1 T
with probability at least 3/4 4+ £(n)/2. Stated otherwise, A fails to output
the correct gl(z,r) with probability at most 1/4 — e(n)/2. Likewise, upon
input (y,r @ e’), we have that A outputs gl(z,r ® e?) with probability at least
3/4 + e(n)/2 and so fails with probability at most 1/4 — £(n)/2. This holds
because if r is uniformly distributed then so is r @ €.

Recall that if A outputs the correct values for both gl(x,7) and gl(x,r @ e?)
then A" will obtain the correct value x;. We would now like to analyze the
probability that A outputs the correct values for both gl(x,r) and gl(z,r®e?).
Note that r and r@e? are not independent. Therefore, we cannot just multiply
the probabilities of success; that is, we cannot claim that the probability is
(3/44+¢e(n)/2)- (3/4+¢e(n)/2) > 9/16. Nevertheless, we can use the union
bound (see Proposition A.7 in Appendix A) and just sum the probabilities of
failure. Thus, we have that the probability that A is incorrect on at least one
of gl(x,7) or gl(x,r @ e') is at most

() ()t

and so A is correct on both gl(x,r) and gl(z,r @ e) with probability at least
1/2 + £(n). This means that the adversary A’, upon input f(z), is able to

194 Introduction to Modern Cryptography

correctly guess the i*® bit of 2 with probability that is non-negligibly greater
than 1/2 (when = € S,,). This does not yet suffice because in order to invert
f(x), A must simultaneously guess all of the bits of the preimage z1,..., 2,
correctly. However, this can be achieved by separately running the above
procedure for each bit, while reducing the error probability for each guess. In
order to see how this works, assume that we can improve the above procedure
so that A’ obtains a correct guess of z; with probability at least 1 — % Since
this holds for each 7, we have the following: A" incorrectly guesses a bit x; with
probability at most % Therefore, by the union bound, the probability that
A’ will guess at least one of x1, .. ., x, incorrectly is at most n- % = % Stated
differently, A’ obtains the correct preimage x = 1 - - -z, with probability at
least 1/2 and so successfully inverts f(x), in contradiction to the one-wayness
of f.

It remains to show how we can improve the procedure of A’ for guessing
x; so that it is correct with probability at least 1 — % The idea behind
the improved procedure is to run the original procedure many times (using
independent coins each time). Then, since the correct answer is obtained more
often than the incorrect one (with an advantage of (n)), it holds that over
many trials — proportionate to n/e(n) — the majority result will be correct with
high probability (if a coin that is biased towards heads is flipped many times,
then with very high probability heads will appear more often than tails). This
can be proven using the Chernoff bound (a standard bound from probability
theory). We remark that the Chernoff bound only works for independent
random variables. However, since z € S,, is fixed, the probability is only over
the choice of r, which is chosen independently in each attempt. Therefore,
each trial is independent.? We leave the application of the Chernoff bound
here (so as to complete the proof) as an exercise. [|

A corollary of Proposition 6.13 is that if f is a one-way function, then
the probability of correctly guessing gl(z,r) when given (f(x),r) is at most
negligibly greater than 3/4. Thus, the bit gl(x, r) has considerable uncertainty
(when considering polynomial-time observers).

6.3.3 The Full Proof

We remark that this section is more advanced than the rest of the book, and
relies on more involved concepts from probability theory and theoretical com-
puter science (for example, the proof relies heavily on the notion of pairwise

2This is the reason that we needed to fix the set Sy,. Otherwise, we would have a random x
and a random 7, and in the different trials we would only be changing r. Such trials would
not be independent, and so Chernoff could not be used. We note that the random coins of
A can be chosen independently each time and so pose no problem.

* Theoretical Constructions of Pseudorandom Objects 195

independent random variables). We include the full proof for completeness,
and for more advanced students and courses.

6.3.3.1 Preliminaries — Markov and Chebyshev Inequalities

Before proceeding to the full proof of Theorem 6.11, we prove two impor-
tant inequalities that we will use. These inequalities are used to measure the
probability that a random variable will significantly deviate from its expecta-
tion.

Markov Inequality: Let X be a non-negative random variable and v a real
number. Then:

Pr[X > v - Exp[X]] <

SN

Equivalently: Pr[X > v] < Exp[X]/v.

PROOF

Exp[X] = ZPr[X =z]-z

ZZPr[X:x]~O+ZPr[X:x]~v

r<v r>v

=Pr[X >v]-v
|

The Markov inequality is extremely simple, and is useful when very little
information about X is given. However, when an upper-bound on its variance

is known, better bounds exist. Recall that Var(X) dof Exp[(X — Exp[X])?],
that Var(X) = Exp[X?] — Exp[X]?, and that Var[aX + b] = a?Var[X].

Chebyshev’s Inequality: Let X be a random variable and 6 > 0. Then:

Var(X)
52

Pr{|X — Exp[X]| > 4] <

PROOF We define a random variable ¥ << (X — Exp[X])? and then apply
the Markov inequality to Pr[Y > §2]. That is,

Pr[|X — Exp[X]| > 6] = Pr[(X — Exp[X])? > ¢?]
_ Expl(X — ExplX))?
< 52
Var(X)
52

196 Introduction to Modern Cryptography

where the second inequality is by the “equivalent” formulation of Markov.

An important corollary of Chebyshev’s inequality relates to pairwise inde-
pendent random variables. A series of random variables X1, ..., X, are called
pairwise independent if for every i # j and every a and b it holds that

PriX;=a AN X; =b] =Pr[X; =a]-Pr[X; =10

We note that for pairwise independent random variables X7, ..., X,, it holds
that Var[} ", X;] = Y%, Var[X;] (this is due to the fact that every pair
of variables are independent and so their covariance equals 0). (Recall that
cov(X,Y) = Exp[XY] — Exp[X|Exp[Y] and Var[X + Y| = Var[X] + Var[Y] —
2cov(X,Y). This can be extended to any number of random variables.)

COROLLARY 6.15 (pairwise-independent sampling): Let X1,...,X,, be
pairwise-independent random variables with the same expectation p and the
same variance o2. Then, for every € > 0,

m X,
Pr |: 21:1

m
PROOF By the linearity of expectations, Exp[>_"", X;/m] = p. Applying
Chebyshev’s inequality, we have

PY{M—H}Z(Q]SM

m e?
By pairwise independence, it follows that

0.2

—M‘ZE} Sgg—

X - X; 1 13, o2
Var (Z E) :2 var<m> _ WZ Var(Xi) = Wz;a -7
The inequality is obtained by combining the above two equations. [|

6.3.3.2 The Full Proof of the Hard-Core Predicate

Similarly to above, we prove Theorem 6.11 via the following proposition:

PROPOSITION 6.16 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A and a polynomial p(-) such that
for infinitely many n’s it holds that

Pr o [A((@).r) =gl(zr)] =

z,r—{0,1}"

* Theoretical Constructions of Pseudorandom Objects 197

then there exists a probabilistic polynomial-time adversary A’ and a polynomial
p'(+) such that for infinitely many n’s

/ -1 1
P @) e @) 2 S

PROOF Before we prove the proposition, we remark that it implies Theo-
rem 6.11 because it states that if it is possible to guess the hard-core predicate
with any non-negligible advantage, then it is possible to invert f with non-
negligible advantage. Thus, the assumed one-wayness of f implies that gl is
a hard-core predicate of f.

As in the proof of Proposition 6.13, we set (n) = 1/p(n) and focus only
on the infinite set of n’s upon which A succeeds with probability e(n). We
also begin by defining a set S,, of inputs = € {0,1}" for which A is successful
in guessing gl(x,r), when r is randomly chosen. The following claim is anal-
ogous to the claim presented in the case where A is assumed to succeed with
probability greater than 3/4.

CLAIM 6.17 There exists a set S, C {0,1}" of size at least @ -2™ such
that for every x € S, it holds that

1
s@)=_Pr [A(f@).m) =gllw.r)] > 5

Claim 6.17 is proved in an almost identical way to Claim 6.14 and we
therefore leave it as an exercise.

In the proof of Proposition 6.13, we showed how to convert A’s capability
of correctly guessing gl(x,r) into a way of guessing the " bit of z with
probability that is non-negligibly greater than 1/2. This suffices because given
such a non-negligible success in guessing x;, it is possible to boost this success
further to 1 — 1/2n, which suffices.

The proof of this case (where A guesses gl(x, r) with probability 1/2+¢&(n))
is significantly more involved than in the case of Proposition 6.13 (where .4
guesses gl(x,r) with probability 3/4 + (n)). The reason for this is that if A
guesses gl(z,7) and gl(z, r®e?) correctly with probability only 1/2+¢(n) each,
then the probability that at least one is incorrect can only be upper-bound
by 1/2 —e(n) +1/2 —e(n) = 1 — 2¢(n). Thus, there is no guarantee that the
majority of the guesses made by A’ will be correct (when using the procedure
from above).?> We therefore must somehow compute gl(z,7) and gl(z,r @ e)

3We stress again that the events of successfully guessing gl(z,r) and gl(z,r @ e?) are not
independent. Furthermore, we don’t know that the minority guess will be correct; rather,
we know nothing at all.

198 Introduction to Modern Cryptography

without invoking A twice. The way we do this is to invoke A on gl(x,r & e?)
and “guess” the value gl(z,r) ourselves. This guess is generated in a special
way so that the probability of the guess being correct (for all 7) is reasonable
good. (Of course, a naive way of guessing would be correct with only negligible
probability, because we need to guess gl(x, r) for a polynomial number of r’s.)
The strategy for generating the guesses is via pairwise independent sampling.
As we have already seen, Chebyshev’s inequality can be applied to this case
in order to bound the deviation from the expected value.

Continuing with this discussion, we show how the pairwise independent r’s
are generated. In order to generate m different r’s (where m will be polynomial
in n — see below), we select [l = log(m+1)] independent uniformly distributed
strings in {0,1}"; denote them by s',...,s!. Then, for every possible non-
empty subset I C {1,...,1}, we define r/ = @®;c;s". Notice that there are
2! — 1 non-empty subsets, and therefore we have defined 2'°8(m+1) 1 —
m different strings. Furthermore, each string is uniformly distributed when
considered in isolation. We now claim that all of the strings ! are pairwise
independent. In order to see this, notice that for every two subsets I # J,
there exists an index j such that j ¢ I N .J. Without loss of generality,
assume that j € J. Then, given r, it is clear that r”/ is uniformly distributed
because it contains a uniformly distributed string s/ that does not appear in
rI. Likewise, r! is uniformly distributed given r”/ because s/ “hides” 7. (A
formal proof of pairwise independence is straightforward and is omitted.) We
now have the following two important observations:

1. Given the correct values gl(z, s1),...,gl(z,s;) and any non-empty sub-
set I C {1,...,1}, it is possible to correctly compute gl(x,r!). This
is due to the fact that by the definition of the predicate, gl(z,r!) =
gl(x, ier ') = Bicr gl(x, s°).

2. The values gl(x, s1),...,gl(z,s;) can be correctly guessed with proba-
bility 1/2' (this is the case because there are only I bits and so only
2! = m + 1 possibilities — one of which is correct). Note that since m
is polynomial in n, it follows that 2¢ is polynomial in n. Thus, the val-
ues gl(x, s1),...,8l(x,s) can be correctly guessed with non-negligible
probability.

Combining the above, we obtain the surprising property that this procedure
yields a way of obtaining m = poly(n) pairwise independent strings r € {0,1}"
along with their corresponding correct gl(x,r) values, with non-negligible
probability. It follows that these r and gl(z,r) values can then be used to
compute x; in the same way as in the proof of Proposition 6.13. Details
follow.

The inversion algorithm A’. We now provide a full description of the
algorithm A’ that receives an input y and uses algorithm A in order to find
f~1(y). Upon input y, A" sets n = |y| and | = [log(2n/e(n)? + 1)], and
proceeds as follows:

* Theoretical Constructions of Pseudorandom Objects 199

1. Uniformly choose s',...,s" « {0,1}" and o' ... 0! — {0,1} (0% is a
guess for gl(z, s?)).

2. For every non-empty subset I C {1,...,l}, define 1 = @®;c; s’ and
compute 71 = @7 o (11 is a guess for gl(x,r!)). We remark that as
long as the o values are all correct, so too are the 77 values.

3. For every i € {1,...,n}, obtain a guess for x; as follows:

(a) For every non-empty subset I C {1,...,1}, set v} =7/ ® A(y,r’ @
e').
b) Guess 2; = majority;{v!} (i.e., take the bit that appeared a major-
Y
ity of the times in the previous step).

4. Output x = x1 - - - xp,.

Analyzing the success probability of A’. It remains to compute the
probability that A’ successfully outputs z € f~!(y). Before proceeding with
the formal analysis, we provide an intuitive explanation. First, consider the
case that the 71’s are all correct (recall that this occurs with non-negligible
probability). In such a case, we have that v/ = x; with probability at least
1/2+£(n)/2 (this is due to the fact that A is invoked only once in computing
v!; the 7! factor is already assumed to be correct). It therefore follows that
a majority of the v} values will equal the real value of x;. Our analysis will
rely on Chebyshev’s inequality for the case of pairwise independent variables,
because we need to compute the probability that the majority equals the
correct x;, where this majority is due to all the pairwise independent 77’s.
We now present the formal proof.

CLAIM 6.18 Assume that for every I, 71 = gl(z,r!). Then, for every
x €8, and every 1 < i < n, the probability that the majority of the v} values
equal x; is at least 1 — 1/2n. That is,

1, 1
>§-(2 —1)]>1—%

Pr “ {I:gl(z,r")® A(f(z),r" ®e') =2}

PROOF For every I, define a 0-1 random variable X! such that X! =1
if and only if A(y,r! @ e') = gl(z,7’ @ e'). Notice that if X! = 1, then
gl(z, v @Ay, r' @e?) = ;. Since each ! and 7! @e? are uniformly distributed
in {0,1}" (when considered in isolation), we have that Pr[X! = 1] = s(z),
and so for x € S,,, we have that Pr[X! = 1] > 1/2 + ¢(n)/2 implying that
Exp[X] > 1/2+ &(n)/2. Furthermore, we claim that all the X’ random vari-
ables are pairwise independent. This follows from the fact that the ! values

200 Introduction to Modern Cryptography

are pairwise independent. (Notice that if 7! and 7/ are truly independent,
then clearly so are X and X”7. The same is true of pairwise independence.)

Let m = 2! —1 and let X be a random variable that is distributed the same
as all of the X?’s. Then, using Chebyshev’s inequality, we have:

1 -E mXI 1
I<_. — P27 it <
PrlEIX 2m1 PI'_ m 2m 0:|

m 2 -

e |E (L)) 2]

o [ymXxt 1 e(n) e(n)
=Pr ;——-m—T-m<—T-m]

Var[mX]
~ (m-e(n)/2)?-m
m?2Var[X]
(e(n)/2)? - m?
Var[X]
(e(n)/2)? - m

Since m = 2! — 1 = 2n/e(n)?, it follows from the above that:

Pr lZXI <
I

.]_ Var[X]

" T w22 2n/z(n)?
_ Var[X]

n/2

1/4 1

n—/2_2n

N =

where Var[X] < 1/4 because Var[X| = E[X?] — E[X]? = E[X] - E[X]? =
E[X|1-E[X])=(1/2+¢e(n)/2)(1/2—¢e(n)/2) = 1/4—e(n)?/4 < 1/4. This
completes the proof of the claim because), X T is exactly the number of
correct v} values. []

By Claim 6.18, we have that if all of the 7/ values are correct, then each
x; computed by A’ is correct with probability at least 1 —1/2n. By the union
bound over the failure probability of 1/2n for each 4, we have that if all the
71 values are correct, then the entire £ = 21 - - - x,, is correct with probability
at least 1/2. Notice now that the probability of the 7! values being correct is
independent of the analysis of Claim 6.18 and that this event happens with
probability

1 1 e(n)?
2l 2n/e(n)2 41 4n

* Theoretical Constructions of Pseudorandom Objects 201

Therefore, for € S, algorithm A’ succeeds in inverting y = f(z) with
probability at least £(n)?/8n. Recalling that |S,| > @ - 2™ we have that
x € S, with probability €(n)/2 and so the overall probability that A" suc-
ceeds in inverting f(z) is greater than or equal to £(n)3/16n. Recalling that
e(n) = 1/p(n) we have that for infinitely many n’s, A’ succeeds in inverting
f with probability at least p’(n) = 16n/p(n)?. Finally, noting that A’ runs in
polynomial-time, we obtain a contradiction to the one-wayness of f. [|

6.4 Constructions of Pseudorandom Generators

As we have seen in Section 3.3, pseudorandom generators are deterministic
algorithms that receive a random input s of length n, and output a longer
string of length ¢(n) that looks random to any polynomial-time observer (or
distinguisher). In this section we begin by showing how to construct pseu-
dorandom generators that stretch the seed by one bit, under the assumption
that one-way permutations exist. Then, we will show how to extend this to
any polynomial expansion factor. Our presentation is based on one-way per-
mutations. However, they can all be extended to hold for families of one-way
permutations as well.

6.4.1 Pseudorandom Generators with Minimal Expansion

Let f be a one-way permutation and let hc be a hard-core predicate of
f (such a predicate exists by Theorem 6.11). The starting point for the
construction is the fact that given f(s) for a random s, it is hard to guess
the value of hc(s) with probability that is non-negligibly higher than 1/2.
Thus, intuitively, hc(s) is a pseudorandom bit. Furthermore, since f is a
permutation, f(s) is uniformly distributed (applying a permutation to a uni-
formly distributed value yields a uniformly distributed value). We therefore
conclude that the string (f(s),hc(s)) is pseudorandom and so the algorithm
G(s) = (f(s),hc(s)) constitutes a pseudorandom generator.

THEOREM 6.19 Let f be a one-way permutation, and let hc be a hard-
core predicate of f. Then, the algorithm G(s) = (f(s), hc(s)) is a pseudoran-
dom generator with ¢(n) =n + 1.

PROOF We have already seen the intuition and therefore begin directly
with the proof. As with the theorems above, the proof is by reduction. That
is, we show that if there exists a distinguisher D that can distinguish G(s)
from a truly random string, then we can use this distinguisher to construct

202 Introduction to Modern Cryptography

an adversary A that guesses hc(s) from f(s) with probability that is non-
negligibly greater than 1/2.

Assume, by contradiction, that there exists a probabilistic polynomial-time
distinguisher D and a non-negligible function £(n) such that

P D h =1] - P
P ID((s)he(s) =1 = Pr

[D(r) =1]| Z &(n)
We call € the “distinguishing gap” and say that D distinguishes (f(s), hc(s))
from a random r with probability e(n).

As a first step to constructing an algorithm A to guess hc(s) from f(s),
we show that D can distinguish (f(s), hc(s)) from (f(s), hc(s)) where hc(s) =
1 — hc(s). In order to see this, first note that

[D(f(s),8) = 1]

r
s€{0,1}m,8€{0,1}

= £ - Pr(D(/(s). he(s) = 1] + 1 - Pr{D(f(s). Fe(s)) = 1

because with probability 1/2 the random bit 3 equals hc(s), and with proba-
bility 1/2 it equals hc(s). Given this, we have:

[Pr[D(f(s), he(s)) = 1] = Pr[D(f(s), 8) = 1]]
= [Pr[D(f(s), he(s)) = 1] — % -Pr[D(f(s), he(s)) = 1]

1

3| PriD(f(s), he(s)) = 1] = Pr[D(f(s), he(s)) = 1]

where in all of the probabilities above s < {0,1}™ and 8 « {0,1} are chosen
uniformly at random. By our contradicting assumption, and noting that
(f(s),) is just a uniformly distributed string of length n 4+ 1, we have that

Br DU e(9) = 1= _Pr [D(7(6)Re(s) = 1]

SG{I(;,rl}"[D(f(S)’ he(s)) = 1] = re{(i)lr}n+1[D(T) - 1]‘

> 2e(n)

Assume that Pr[D(f(s),hc(s)) = 1] > Pr[D(f(s), hc(s)) = 1]; this is without
loss of generality. We now use D to construct an algorithm A that is given
f(s) and guesses hc(s). Intuitively this is not difficult because D outputs 1
more often when it receives (f(s),hc(s)) than when it receives (f(s), hc(s)).
Upon input y = f(s) for a random s, algorithm A works as follows:

1. Uniformly choose o «— {0,1}

* Theoretical Constructions of Pseudorandom Objects 203

2. Invoke D upon (y, o).
3. If D returns 1, then output o. Otherwise, output &.

It remains to analyze the success probability of A. As we have mentioned, A
should succeed because D outputs 1 when o = hc(s) with probability 2&(n)
more than it outputs 1 when o = hc(s). Formally,

PrA(f(s)) = hc(s)]
PrlA(f(s)) = he(s) | o = he(s)] + %PY[A(J‘(S)) = he(s) | o = he(s)]

N = N =

Pr{D(f(s),he(s)) = 1] + 5 - Pr[D(f(s), Fe(s)) = 0

where equality holds here because when D outputs 1, A outputs the value
o (and otherwise it outputs @). Thus, if ¢ = hc(s), we have that A invokes
D on input (f(s),hc(s)) and so A outputs hc(s) if and only if D outputs 1
upon input (f(s),hc(s)). Likewise, if o # hc(s), then A invokes D on input

(f(s),hc(s)) and so A outputs he(s) if and only if D outputs 0 upon input
(f(s),hc(s)). Continuing the analysis, we have that
PA(/(s)) = he(s)
= 5 PD(f(s),hels)) = 1]+ 5 (1~ PHD(f(5), els) = 1]
= 2+ 5 PrD((), he(s) = 1] = 5 - PD(f(5),e(s) = 1]
= 5+ 5 (PHID((s), hels)) = 1] = Pr{D(7(s), Res)) = 1]
>4y 2e(n) = 5 +e(n)

and so A guesses hc(s) with probability 1/2 + e(n). Since e(n) is a non-
negligible function, this contradicts the assumption that hc is a hard-core
predicate of f. [|

6.4.2 Increasing the Expansion Factor

In this section, we show that the expansion factor of any pseudorandom
generator can be increased by any polynomial amount. This means that the
construction above (with expansion factor ¢(n) = n + 1) suffices for demon-
strating the existence of pseudorandom generators with arbitrary polynomial
expansion factor.

THEOREM 6.20 If there exists a pseudorandom generator G1 with ex-
pansion factor £1(n) = n + 1, then for any polynomial p(n) > n, there exists
a pseudorandom generator G with expansion factor £(n) = p(n).

204 Introduction to Modern Cryptography

PROOF The idea behind the construction of G from G is as follows.
Given an initial seed s of length n, the generator G; can be used to obtain
n + 1 pseudorandom bits. One of the n + 1 bits may be output, and the
remaining n bits can be used once again as a seed for G;. The reason that
these n bits can be used as a seed is because they are pseudorandom, and
therefore essentially as good as a truly random seed. This procedure can be
iteratively applied to output as many bits as desired; see Figure ?7.
We now formally describe the construction of G from Gjy:

1. Let s € {0,1}™ be the seed, and denote sp = s.

2. Foreveryi=1,...,p(n), compute (s;,0;) = G1(s;—1), where o; € {0,1}
and s; € {0,1}".

3. Output o1, ...,0,mn)

We now proceed to prove that G(s) is a pseudorandom string of length p(n).
We begin by proving this for the special and simple case of p(n) = 2. That
is, the output of G(s) = (o1,02). Of course, this is not even a pseudoran-
dom generator, because the output length is shorter than the input length.
Nevertheless, it is helpful for understanding the basis of the proof.

A simplified case — p(n) = 2. Recall that the output (o1,02) of G(s)
is derived in two stages: first by computing (s1,01) = G1(s) and then by
computing (s2,02) = Gi(s1). Now, consider a “hybrid” experiment (the
reason that we call this experiment “hybrid” will become apparent later)
with an algorithm G’ that receives m + 1 random bits for input, denoted
§ € {0,1}™*, and works as follows . Let 5[be the first n bits of § and let
"1 be the last bit of 3. Then, G’ works by computing (s, 09) = G1 (/") and
setting o1 = §"*! (thus o is uniformly distributed). As with G, the algorithm
G’ outputs (01, 02). First, notice that for every probabilistic polynomial-time
distinguisher D there exists a negligible function negl such that

LPr @) =1 Pr [D(E(E)=1]| <negln) (63)

This must be the case because otherwise D can be used by an algorithm D’
to distinguish G1(s) from random in the following way. Given a string w of
length n + 1, the algorithm D’ can compute (sq,02) = G1(w!™) and define
o1 = w"t (exactly like G’). Then, D’ invokes D on (o1,02) and outputs
whatever D outputs. The important observations are as follows:

1. If w = r is truly random, then the pair (oy,02) prepared by D’ is
distributed identically to G’(8). Thus,

P D/ =1| = P D '(3)) — 1
T’E{Oalr}”“[(T)] §€{0,1r}n+1[(G (S))]

* Theoretical Constructions of Pseudorandom Objects 205

2. If w is the output of Gi(s) for a random s « {0,1}", then the pair
(01,02) prepared by D’ is distributed identically to G(s). In order to
see this, note that in this case, oy is the n+ 1*® bit of G (s) and o9 is the
n+ 1" bit of G1(s1), where s; = G1(s)["), exactly as in the construction
of G. Therefore,

. {f(;’rl}n[D/(GﬂS)) =1]= se{lz,rl}“[D(G(S)) =1]

Combining the above equations together, we have that

P DG =1 e D0 =1
= | Pr @) =1~ Pr_ [DE(E)= 1}'

Now, if Equation (6.3) does not hold, then this implies that D’ distinguishes
G1(s) from random with non-negligible probability, in contradiction to the
assumed pseudorandomness of G.

Next, we claim that for every probabilistic polynomial-time D there exists
a negligible function negl such that

'~
PP E) =1 pr ID0) =1 <neglln) (60
This is proven in a very similar way as above. Specifically, if it does not hold,
then D can be used by an algorithm D’ to distinguish G(s) from random in
the following way. Given a string w of length n + 1, the distinguisher D’ sets
o1 to be truly random and o3 to be the n + 1*" bit of w. As above, we have
the following two observations:

1. If w = r is truly random, then the pair (o1, 02) prepared by D’ is truly
random. Thus,

D'(w) =1] = D(r) = 1]

r Pr

we{0,1}+1 re{0,1}2

2. If w is the output of G1(s) for a random s < {0,1}", then the pair
(01,02) prepared by D’ is distributed identically to G'(8). This follows
because G’ sets o2 to be the n + 1t bit of the output of G1(3) and oy
to be truly random. Therefore,

Se}zfl}n[D'(Gl(S)) =1]= ge{%ﬁ}n[D(Gl(g)) = 1]

Combining the above equations together, we have that

/ . _ / _
B DG =1 P D) =1)

P D@ @) =1 P D6) = 1)

206 Introduction to Modern Cryptography

Now, if Equation (6.4) does not hold, then this implies that D’ distinguishes
G1(s) from random with non-negligible probability, in contradiction to the
assumed pseudorandomness of Gj.

Finally, combining Equations (6.3) and (6.4), we have that for every prob-
abilistic polynomial-time distinguisher there exists a negligible function negl
such that

P D =1- P
se{o,rl}n[(G(s))] rE{Of‘l}?

D(r) =1]| < negl(n)
and so we have proven that G is pseudorandom (however, as we have men-
tioned, it is not a generator because it only outputs 2 bits).

* The full proof. The full proof of the theorem works in a similar way as
above, except that we need to consider an arbitrary polynomial number of
invocations of G;. This proof uses a very important proof technique, called
a hybrid argument, that is common in proofs in cryptography. As usual, the
proof is by reduction and we show how a distinguisher for G with expansion
factor p(n) can be used to distinguish G (s) from random. Assume by contra-
diction that there exists a probabilistic polynomial-time distinguisher D and
a non-negligible function e such that

Pr [D(G(s)) =1] -
sephy [P(Gs) = 1] e

For every i, we define a hybrid random variable H! as a string with a length i
prefix that is truly random, and a length p(n) — i suffix that is pseudorandom.
Specifically, H: is computed by first fixing its first i bits to be truly random.
Then, a random s «— {0,1}" is chosen and p(n) — i bits are obtained by
iteratively applying G1(s) and taking the last bit each time (stated differently,
the remaining p(n) — 4 bits are taken as G(s) with expansion factor ¢(n) =
p(n)—1). Clearly, this random variable is a “hybrid” between a random string
and a pseudorandom one.

Notice that H? = G(s), because all of the bits are taken from G(s) with ex-

pansion factor p(n), and that H2™ is a uniformly distributed string of length
p(n). The main idea behind the hybrid argument is that if D can distinguish
these extreme hybrids, then it can also distinguish neighboring hybrids (even
though it was not “designed” to do so). However, the difference between one
hybrid and its neighbor is a single application of the pseudorandom generator.
Thus, as we will show, the distinguisher D for G can be transformed into a
distinguisher D’ for G;.

We now describe the probabilistic polynomial-time distinguisher D’ that
uses D and distinguishes between G1(s) and r, where s «— {0,1}" and r «—
{0,1}"*L. Upon input w € {0,1}"*! distinguisher D’ chooses a random
i — {0,...,p(n) — 1} and constructs a string § as follows. It first chooses
1 random bits and sets them to be the first i bits of 5. Then, it takes the

* Theoretical Constructions of Pseudorandom Objects 207

n 4+ 1" bit of w and sets it to be the i + 1*" bit of 5. Finally, it computes
G(w) with expansion factor ¢(n) = p(n) —i — 1 and writes the result as the
remaining bits of 5. Finally, D’ invokes D on 5 and outputs whatever D does.
The important observations here are as follows:

1. If w = Gy (s) for some random s < {0,1}™, then § is distributed exactly
like H! (because the first i bits are random and the rest are pseudoran-
dom). Furthermore, each i is chosen with probability exactly 1/p(n).
Thus,

1

/ 1 p(n)— .
segﬁ}"[D (Gi(s)=1] = m : ; Pr[D(H,) = 1]

2. If w = r is a truly random string (r < {0,1}"*1), then 3 is distributed
exactly like H:1 (because the first ¢ + 1 bits are random and the rest
are pseudorandom). Thus,

(n)—1

17 .

P Diry=1=—- Pr[D(HTY = 1].
el PO =1 =2o5 - 3 PP =1

Combining this together, and using the fact that

p(m)~1 | p(m)-1 }
> PiDH,) =1~) PiDH,) =1]
i=0 =0

= [PD(G(HD)) = 1] = Pr{D(HE™) = 1]|

(since it is a telescopic sum), we have that:

segﬂ}n[D/(Gl(S)) =1] - TE{OIEHH D'(r)= l]‘
1 p(n)—1 ' p(n)—1 ,
=—| Y Pp@El) =1- Y PrD@E) =1]
p(n) i—0 i=0
— L PD(H®) = 11— PrD(HP)Y —
S [PHDER) =11 = PuD(™) = 1]
1
B m . se{lz,rl}"[D(G(S)) - 1] B TE{O]?lr}nJrl T) - 1]‘
_)
p(n)

which is non-negligible, in contradiction to the pseudorandomness of G;. W

208 Introduction to Modern Cryptography

The hybrid technique. The hybrid proof technique is used in many proofs
of cryptographic constructions and is considered a basic technique. Note that
there are three conditions for using it. First, the extreme hybrids are the
same as the original distributions (in this case, H? = G(s) and H2™ = r
{0, 1}”(”)). Second, the capability of distinguishing neighboring hybrids can
be translated into the capability of distinguishing the underlying primitive (in
this case, G1(s) from 7 € {0,1}"*1). Finally, the number of hybrids is poly-
nomial (and so the degradation of distinguishing success is only polynomial).
We stress that although it may seem strange that we invoke the distinguisher
D on an input that it does not expect, D is just an algorithm and so its
behavior is well-defined (irrespective of what it “means” to do).

An efficiency improvement. It is possible to modify the construction of
the generator G' given in the proof of Theorem 6.20 so that G outputs s,
as well as 01,...,0p,). The proof of this modification can be obtained from
the proof of Theorem 6.20 and we leave it as an exercise.

An explicit generator with arbitrary expansion factor. By combining
the construction of Theorem 6.19 (that states that G(s) = (f(s), hc(s)) is a
pseudorandom generator) together with the proof of Theorem 6.20 (actually,
with the efficiency improvement described above), we obtain that for every
polynomial p,

Ga(s) = (£70) (), he(s), he(F(s), - . he(f70) 77 (5)))

is a pseudorandom generator with expansion factor p(n), assuming that f is
a one-way permutation and hc is a hard-core predicate of f.

Modern (heuristic) stream cipher design. Many modern stream ciphers
(i.e., pseudorandom generators) work by maintaining a large pseudorandom
internal state. In each iteration of the generator, some pseudorandom bits
are output and the internal state is updated. It is interesting to note that
the construction described in Theorem 6.20 (and in Figure ??) works in this
exact way. This may be seen as evidence that this is a good heuristic, since in
some circumstances it can be used to achieve a provable-secure construction.

6.5 Constructions of Pseudorandom Functions

Having shown how to construct pseudorandom generators from one-way
permutations, we continue and show how to construct pseudorandom func-
tions from pseudorandom generators. As defined in Section 3.6.1, a pseudoran-
dom function is an efficiently-computable keyed function that looks random
to any polynomial-time distinguisher (recall, this distinguisher receives oracle
access to either a truly random function or a pseudorandom one).

* Theoretical Constructions of Pseudorandom Objects 209

Before presenting the full construction, we motivate it through the following
short example. Let G be a pseudorandom generator with expansion factor
¢(n) = 2n (ie., G is length doubling), and denote G(s) = (Go(s),G1(s)),
where [s| = |Go(s)| = |G1(s)| = n; that is, the seed length is n, Go(s) is the
first half of the output and G1(s) is the second half of the output. We now
use G to construct a keyed function (with a key of length n bits) that takes a
single input bit and outputs strings of length n bits. For a randomly-chosen
key k, we define:

Fi(0) = Go(k) Fi(1) = G1(k)

We claim now that this function is pseudorandom.* This follows immediately
from the fact that G is a pseudorandom generator and so no polynomial-time
algorithm can distinguish G(k) = (Go(k), G1(k)) from a truly random string.
Now, a truly random function f of this type has two random strings, one
defining f(0) and the other defining f(1). Thus, these two functions cannot
be distinguished by any polynomial-time algorithm.

We take this construction a step further and define a pseudorandom function
that has a two-bit input and an n-bit output. Namely, for a random k, define:

Fi(00) = Go(Go(k)) Fi(10) = G1(Go(k))
Fr(01) = Go(G1(k)) Fi(11) = G1(G1(k))

We claim that the four strings Go(Go(k)), Go(G1(k)), G1(Go(k)), and G1(G1(k))
are all pseudorandom, even when viewed all together. (As above, this suffices
to prove that the function Fy is pseudorandom.) In order to see that all four
strings are indeed pseudorandom, consider the following hybrid distribution:

Go(ko), Go(k1), Gi(ko), G1(k1)

where ko, k1 < {0,1}"™ are independent, uniformly distributed strings. In this
hybrid distribution, the random string ko takes the place of Go(k) and the
random string k; takes the place of G1 (k). Now, if it is possible to distinguish
the hybrid distribution from the original distribution, then we would be able
to distinguish between the pseudorandom string G(k) = (Go(k), G1(k)) and
a truly random string (k1, k2), in contradiction to the pseudorandomness of
G. Likewise, if it is possible to distinguish the hybrid distribution from a
truly random string of length 4n, then it would be possible to distinguish
either G(ko) = Go(ko), G1(ko) from a truly random string of length 2n, or
G(k1) = Go(k1),G1(kq1) from a truly random string of length 2n. Once again,
this contradicts the pseudorandomness of G. Combining the above, we have
that the four strings are pseudorandom, and so the function defined is also
pseudorandom. The formal proof of this fact is left as an exercise.

4Note that our definition of pseudorandom function (Definition 3.24) restricts the function
to domain and range of {0,1}™. Nevertheless, the definition can be extended to domain
{0, 1} and range {0,1}" in a straightforward way.

210 Introduction to Modern Cryptography

As we have discussed, long pseudorandom strings yield pseudorandom func-
tions. This is due to the fact that a truly random function is just a very long
random string, where a different part of the string is allocated as output for
every possible input. (In order to see this, one can view a random function as
just a large table of random values.) The fundamental leap between pseudo-
random generators and pseudorandom functions is due to the fact that when
the function is defined over inputs of length n, the string defining the function
is of length n2", which is exponential and so cannot be computed.? Despite
this fact, the above ideas can be used in order to obtain a pseudorandom
function. Specifically, the full construction below works in the same way as
above, except that the pseudorandom generator is applied n times, once for
each input bit.

CONSTRUCTION 6.21 Pseudorandom function.

Let G be a deterministic function that maps inputs of length n into
outputs of length 2n (G will be instantiated as a pseudorandom generator
with £(n) = 2n). Denote by Go(k) the first n bits of G’s output, and by
G1(k) the second n bits of G’s output. For every k € {0,1}", define the
function Fy : {0,1}" — {0,1}™ as:

Fk(I1I2 T xn) = Gzn (o (Gwz (Gml (k))) o)

The function F : {0,1}" x {0,1}* — {0,1}" is obtained by defining
F(k,z) = Fi(z) for every k and z of the same length (and setting the
output to be L if k and z are not of the same length).

This construction can be viewed as a full binary tree of depth n, defined as
follows. The value at the root equals the key k. Then, for any node of value
k', the left son of &’ has value Gy (k') and the right son of &’ has value G1 (k).
The function on an input value x = x1---x, is then equal to the value at
the leaf that is reached by traversing the tree according to x (that is, z; =0
means “go left in the tree”, and z; = 1 means “go right”). We stress that
the inputs to the function are also of length n exactly, and thus only values
in the leaves are output (if the values at internal nodes could also be output,
the result would not be a pseudorandom function). Note also that the size of
the tree is exponential in n; in particular, there are 2™ leaves. Nevertheless,
we never need to construct and hold the tree explicitly. Rather, the values on
the path (and so the value of the appropriate leaf) can be efficiently obtained

5Indeed, a pseudorandom function from two input bits to n output bits could have been
constructed by using a pseudorandom generator with £(n) = 4n, and allocating a different
n-bit portion to each of the 4 inputs. However, such a strategy would not generalize to
pseudorandom functions with domain {0, 1}".

* Theoretical Constructions of Pseudorandom Objects 211

given the key k, and so can be computed dynamically. See Figure 77 for a
graphical presentation of the construction.

We now claim that when G is a pseudorandom generator, the above con-
struction constitutes a pseudorandom function.

THEOREM 6.22 If the function G is a pseudorandom generator with ex-
pansion factor £(n) = 2n, then Construction 6.21 is an efficiently computable
pseudorandom function.

PROOF (Sketch) The intuition behind the proof of this theorem follows
from the motivating examples given above. Namely, the hybrid distribution
provided for the case of a 2-bit input can be extended to inputs of length n.
This extension works by just continuing to build the binary tree of Figure 77
(note that the case of 1 input bit gives the root and the next level of the
tree and the case of 2 input bits extends this to an additional level of the
tree). The reason why it is possible to continue extending the construction is
that if the intermediate result is pseudorandom, then it can be replaced by
truly random strings, that can then be used as seeds to the pseudorandom
generator once again.

The actual proof of the theorem works by a hybrid argument (see the proof
of Theorem 6.20), and we only sketch it here. We define a hybrid random
variable H! to be a full binary tree of depth n where the nodes of levels 0 to i
are labelled with independent truly random values, and the nodes of levels i+1
to n are constructed as in Construction 6.21 (given the labels of level 7).
We note that in H!, the labels in nodes 0 to i — 1 are actually irrelevant.
The function associated with this tree is obtained as in Construction 6.21 by
outputting the appropriate values in the leaves.

Notice that H? is a truly random function, because all of the leaves are
given truly random and independent values. On the other hand, HY is ex-
actly Construction 6.21 (because only the key is random and everything else
is pseudorandom, as in the construction). Using a standard hybrid argument
as made in the proof of Theorem 6.20, we obtain that if a polynomial-time dis-
tinguisher D can distinguish Construction 6.21 from a truly random function
with non-negligible probability, then there must be values i for which H? can
be distinguished from H:™' with non-negligible probability. We use this to
distinguish the pseudorandom generator from random. Intuitively this follows
because the only difference between the neighboring hybrid distributions H?
and H*! is that in H:*! the pseudorandom generator G is applied one more
time on the way from the root to the leaves of the tree. The actual proof
is more tricky than this because we cannot hold the entire (i + 1) level of
the tree (it may be exponential in size). Rather, let ¢(n) be the maximum
running-time of the distinguisher D who manages to distinguish Construc-
tion 6.21 from a random function. It follows that D makes at most t(n)
oracle queries to its oracle function. Now, let D’ be a distinguisher for G that

212 Introduction to Modern Cryptography

receives an input of length 2n - ¢(n) that is either truly random or ¢(n) invo-
cations of G(s) with independent random values of s each time. (Although
we have not shown it here, it is not difficult to show that all of these sam-
ples together constitute a pseudorandom string of length 2n -t(n).) Then, D’
chooses a random i « {0,...,n—1} and answers D’s oracle queries as follows,
initially holding an empty binary tree. Upon receiving a query x = z1 ---x,
from D, distinguisher D’ uses 1 - - - x; to reach a node on the i*" level (filling
all values to that point with arbitrary values — they are of no consequence).
Then, D’ takes one of its input samples (of length 2n) and labels the left son
of the reached node with the first half of the sample and the right son with
the second half of the sample. D’ then continues to compute the output as
in Construction 6.21. Note that in future queries, if the input z brings D’
to a node that has already been filled, then D’ answers consistently to the
value that already exists there. Otherwise, D’ uses a new sample from its
input. (Notice that D’ works by filling the tree dynamically, depending on
D’s queries. It does this because the full tree is too large to hold.)
The important observations are as follows:

1. If D’ receives a truly random string of length 2n - ¢(n), then it answers
D' exactly according to the distribution H:*1. This holds because all
the values in level i 4+ 1 in the tree that are (dynamically) constructed
by D’ are random.

2. If D' receives pseudorandom input (i.e., t(n) invocations of G(s) with
independent values of s each time), then it answers D’ exactly according
to HY. This holds because the values in level i + 1 are pseudorandom
and generated by G, exactly as defined. (Notice that the seeds to these
pseudorandom values are not known to D’ but this makes no difference
to the result.)

By carrying out a similar hybrid analysis as in the proof of Theorem 6.20, we
obtain that if D distinguishes Construction 6.21 from a truly random function
with non-negligible probability ¢(n), then D’ distinguishes ¢(n) invocations of
G(s) from a truly random string of length 2n - t(n) with probability e(n)/n.
Since £(n) is non-negligible, this contradicts the assumption that G is a pseu-
dorandom generator. [|

6.6 Constructions of Pseudorandom Permutations

In this section, we show how pseudorandom permutations can be con-
structed from pseudorandom functions. Recall that a pseudorandom per-
mutation is a pseudorandom function F' with the property that for every
k € {0,1}™, the function F(-) is a bijection over {0,1}". In addition, the

* Theoretical Constructions of Pseudorandom Objects 213

security requirement is that it is hard to distinguish such a function from a
truly random one, even when given oracle access to both Fj and F}~ 1 (i.e.,
the inversion function). See Section 3.6.3 for more details. In contrast to
the previous sections in this chapter, we will not prove the security of this
construction (nor even provide a proof sketch) and refer the interested reader
to more advanced texts.

Feistel structures revisited. Recall that a Feistel structure is a way of
constructing an invertible function from non-invertible operations (see Sec-
tion 5.2). In some sense, this is exactly what we wish to do here. Namely,
given a pseudorandom function, we wish to construct another pseudorandom
function that is a bijection (and thus is invertible). In another interesting
connection between theoretical and heuristic constructions, it turns out that
four rounds of a Feistel structure with the F-functions taken as pseudoran-
dom functions, constitutes a pseudorandom permutation. That is, we have
the following construction:

CONSTRUCTION 6.23 Pseudorandom permutation.

Let F be a pseudorandom function so that for every n and every k €
{0, 1}", the function Fj(-) maps inputs of length n into outputs of length
n. Define the function F’ that maps inputs of length 2n into outputs of
length 2n as follows:
e Inputs: akey k € {0, 1}*" of length 4n and an input = € {0, 1}*™;
denote x = (z1,z2) where |z1| = |z2| =n

e Computation:

Denote k = (k1, k2, k3, ka) where each k; is of length n
Compute oy = z2 and az = z1 @ Fi, (z2)
Compute 81 = a2 and B2 = a1 P Fi, (a2)

. Compute y1 = B2 and v2 = f1 © Fi, (B2)
. Compute y1 = v2 and y2 = v1 & Fg, (72)

> ol e W N e

. Output (y1,y2)

We remark that Construction 6.23 deviates slightly from Definition 3.28
because the input and key lengths are different. Nevertheless, Definition 3.28
can easily be modified to allow this. Notice that in each round of the Feistel
structure, a different key k; is used. Furthermore, the construction is “legal”
because Fy, with a key of length n is applied to an input that is also of length
n. See Figure 77 for a graphical presentation of the construction.

We have the following theorem:

214 Introduction to Modern Cryptography

THEOREM 6.24 If the function F is pseudorandom and maps n-bit
strings to n-bit strings, then Construction 6.23 is an efficiently computable
and efficiently invertible pseudorandom function that maps 2n-bit strings to
2n-bit strings (and uses a key of length 4n).

As we have mentioned, we will not prove the theorem. However, we do
remark that it is easy to prove that the resulting function is indeed a bijection
and that it is efficiently invertible. We leave this for an exercise. We also
remark that if only three rounds of a Feistel is used, then the result is a
weaker type of pseudorandom permutation where the distinguisher is only
given access to the function oracle (and not the inversion oracle).

6.7 Private-Key Cryptography — Necessary and Suffi-
cient Assumptions

Summing up what we have seen so far in this chapter, we have the following:

1. For every one-way function f, there exists a hard-core predicate for the
function g(x,r) = (f(z),r).

2. If there exist one-way permutations, then there exist pseudorandom
generators (the proof of this fact uses the hard-core predicate that is
guaranteed to exist).

3. If there exist pseudorandom generators, then there exist pseudorandom
functions.

4. If there exist pseudorandom functions, then there exist pseudorandom
permutations.

Thus, pseudorandom generators and functions (that can be used for encryp-
tion) can be achieved assuming the existence of one-way permutations. In
actuality, it is possible to construct pseudorandom generators from any one-
way function (we did not present this construction as it is highly complex).
Thus, we have the following fundamental theorem:

THEOREM 6.25 If there exist one-way functions, then there exist pseu-
dorandom generators, pseudorandom functions and pseudorandom permuta-
tions.

Recall now that all of the private-key cryptographic tools that we have stud-
ied so far can be constructed from pseudorandom generators and functions.
This includes basic encryption that is secure for eavesdropping adversaries,

* Theoretical Constructions of Pseudorandom Objects 215

more advanced methods that are CPA and CCA-secure, and message authenti-
cation codes. Noting that CCA-security implies both CPA and eavesdropping
security, we have the following theorem:

THEOREM 6.26 If there exist one-way functions, then there exist encryp-
tion schemes that have indistinguishable encryptions under chosen-ciphertext
attacks, and there exist message authentication codes that are existentially
unforgeable under chosen message attacks.

Stated informally, one-way functions are a sufficient assumption for private-
key cryptography. Given this fact, a question of great importance is whether
or not one-way functions are also a necessary (or minimal) assumptions. We
now show that this is indeed the case.

Pseudorandom entities imply one-way functions. We begin by showing
that the existence of pseudorandom generators and functions imply the exis-
tence of one-way functions. In fact, since it is easy to show that pseudorandom
functions imply pseudorandom generators (just define G(s) = (F5(0), F5(1))),
it follows that it suffices to prove the following:

PROPOSITION 6.27 If there exist pseudorandom generators, then there
exist one-way functions.

PROOF We prove this proposition by showing how to construct a one-way
function f from a pseudorandom generator G. The construction is simple and
is defined by f(z) = G(z). In order to show that f is indeed one-way, we
need to show that it can be efficiently computed but that it is hard to invert.
Efficient computability is straightforward (by the fact that G can be computed
in polynomial-time). Regarding inversion, we will show that the ability to
invert f can be translated into the ability to distinguish G from random.
Intuitively, this holds because the ability to invert f equals the ability to find
the seed used by the generator. (Recall that a one-way function is invoked on
a uniformly distributed string, just like a pseudorandom generator.)

Formally, let G be a pseudorandom generator with expansion factor £(n) =
2n (recall that the expansion factor can be increased, so assuming ¢(n) = 2n is
without loss of generality). Assume by contradiction that f(z) = G(z) is not
a one-way function. This implies that there exists a probabilistic polynomial-
time algorithm A and a non-negligible function ¢ such that

Pr[A(f(x)) € [T (f(2))] = Pr[A(G(x)) € GT(G(2))] = e(n)

where & < {0,1}" is uniformly chosen. We now use A to construct a distin-
guisher D for G. The distinguisher D receives a string w € {0,1}?" (that is
either pseudorandom or truly random) and runs A on w. Then, D outputs 1

216 Introduction to Modern Cryptography

if and only if A outputs a value x such that G(z) = w. We claim that D is a
good distinguisher for G. We first show that

1
P D(r)=1]< —
r€{0711‘}2"[() I< 2n
This holds because there are at most 2™ values w in the range of G; namely the
values {G(s)}seq0,13n- However, there are 22" different values r in {0,1}2".
It therefore follows that a uniformly distributed string of length 2n is in the
range of G with probability at most 27/22" = 2", Of course, if w is not
even in the range of G, then A cannot output z such that G(x) = w and so
D definitely outputs 0. Next, we claim that
Pr [D(G(s)) =1] > ¢e(n
LB ID(G() = 1] > <(n)
This follows immediately from the way we constructed D and from the as-
sumed success of A in inverting the function f(x) = G(z). We therefore have
that
P D(r)=1—- Pr [D(G =1]| > - —
LB D) =1 Py [D(G(s) = 1] = <) - o
Since ¢ is non-negligible, the function (n)—2~" is also non-negligible. We con-
clude that D distinguishes the output of G from random with non-negligible
probability, in contradiction to the assumed pseudorandomness of G. Thus,
we conclude that f is a one-way function and so the existence of pseudoran-
dom generators implies the existence of one-way functions. [|

Private-key encryption schemes imply one-way functions. Proposi-
tion 6.27 tells us that if we want to build pseudorandom generators or func-
tions, then we need to assume that one-way functions exist. It is important to
note that this does not imply that one-way functions are needed for construct-
ing secure private-key encryption schemes (it may be possible to construct
secure encryption schemes in a completely different way). Furthermore, it is
possible to construct perfectly secret encryption schemes (see Chapter 2), as
long as the plaintext is shorter than the key. Thus, the proof that secure
private-key encryption implies one-way function is somewhat more subtle.
Since security in the presence of eavesdropping adversaries is the weakest of
the definitions we considered, we prove the proposition based on such schemes.

PROPOSITION 6.28 If there exist private-key encryption schemes that
have indistinguishable encryptions in the presence of eavesdropping adver-
saries (as in Definition 3.9), then there exist one-way functions.

PROOF We remark that since Definition 3.9 is considered, security must
hold for messages of any length output by the adversary. In particular, se-
curity must hold for messages that are longer than the key, and so perfectly

* Theoretical Constructions of Pseudorandom Objects 217

secret encryption schemes do not meet the requirements. This is important
because perfectly-secret encryption (with the key at least as long as the plain-
text) can be constructed without any assumptions, and in particular without
assuming the existence of one-way functions. The idea behind the proof here is
similar to that of Proposition 6.27. Specifically, we define a one-way function
for which successful inversion implies breaking the encryption scheme (specifi-
cally, finding the secret key). Then, we show how any adversary that succeeds
in inverting the one-way function can be used to distinguish encryptions (in
contradiction to the assumed security of the encryption scheme). In this proof
we assume familiarity with Definition 3.9 and PrivK®¥ (see Section 3.2.1).
Let IT = (Gen, Enc,Dec) be a private-key encryption scheme that has in-
distinguishable encryptions in the presence of an eavesdropper. Assume that
Enc uses at most ¢ bits of randomness in order to encrypt a plaintext of
length ¢. (The proof can be modified to hold for any polynomial number
of random bits. We assume this for simplicity.) Denote an encryption of a
message m with key k£ and random coins r by Encg(m;r). Now, define a
function f(k,m,r) = (Encg(m;r), m) where m is twice the length of k (i.e.,
|m| = 2|k|). Thus, if the input length is n, we have that k is of length n/5
and m are r are both of length 2n/5. We claim that f is a one-way function.
The fact that it can be efficiently computed is immediate. We show that it
is hard to invert. Assume by contradiction that there exists a probabilistic
polynomial-time algorithm A and a non-negligible function e such that

PrA(f(2)) € f(f(2))] = &(n)

where x « {0,1}" is uniformly chosen. Recall, z = (k,m,r) and f(z) =
f(k,m,r) = (Enck(m;r),m). We use A to construct an adversary A’ that
succeeds with non-negligible advantage in PrivK{Y4, (%). (We note that the
key length is n/5. Therefore, it will be convenient to refer to the security pa-
rameter in the encryption experiment as being of length n/5.) The adversary
A’ simply chooses two random strings mg, m; «— {0, 1}2"/5 of length 2n/5
and receives back ¢ = Ency(my;r) for some b € {0,1} and r € {0,1}?"/5.
Then, A’ invokes A on (¢, mp). If A outputs a tuple (k',mg,r’) such that
¢ = Encys (mg; '), then A’ outputs b’ = 0. Otherwise, A outputs a uniformly
chosen b’ < {0,1}. We now show that .4’ guesses the correct value b’ = b
with probability that is non-negligibly greater than 1/2.

We first claim that if ¢ = Encg(mo;) for some r, then A outputs (k', mg,r’)
such that ¢ = Ency (mo;7’) with probability at least €(n). This follows im-
mediately from the assumption regarding A’s capability of inverting f. Fur-
thermore, in such a case, A’ always succeeds in PrivK®®Y. This is due to the
fact that A’ outputs 0, and we are considering the case that ¢ = Encg(myg)
and so b = 0. We note that k' may not be the “correct key” (i.e., the
key k chosen by the experiment may be such that k # k', but neverthe-
less Enci(mg;r) = ¢ = Ency(mg;r’) for some r and r'). However, A’ still
outputs 0 and b = 0; thus A’ succeeds. Denoting by invert 4 the event that A

218 Introduction to Modern Cryptography

outputs (k', mg,r’) where ¢ = Ency/(mo;7’), we have that:
Pr[invert4 | b= 0] > e(n)
and
Pr [PrivK{Y, (£) =1 | invertqg A b=0] =1
Notice also that if the event invert 4 does mot occur, then A’ succeeds in

PrivkK®" with probability exactly 1/2 (because in this case A’ just outputs a
random bit). Thus,

1
Pr [PrivKEYy (£) =1 | —inverty A b=0] = 3
Combining the above, we have:

Pr [PrivKi4 (%) = 1] b= 0]
= Prinverty | b= 0] - Pr [PrivK{", (%) = 1| invertg A b=0]

5
+ Pr[-inverty | b= 0] Pr[PrivK{i", (%) =1 | —inverty A b=0]
1

= Prlinverty | b=10]-1+ (1 — Prlinvert4 | b:0])-§

1 1
=3 -Prinvert4 | b=0] + 5

1 en)
> - 2\VY
-2 + 2

We now proceed to analyze the case that b = 1. At first sight, it may seem
that in this case, A’ always succeeds in PrivK®" with probability 1/2, because
c is an encryption of m; and so cannot possibly be “inverted” by A to be an
encryption of mg. However, this is not true. For some ¢ = Encg(m;), there
may exist a key k&’ such that mg = Decy (c); indeed perfectly-secret encryption
schemes always have this property. We will now show that this occurs (in this
computational setting) with at most negligible probability. Fix k, mq, r, and
¢ = Encg(my;7). We upper-bound the probability that there exists a key &’
such that mo = Decy (¢). Notice that k' is of length n/5 and mg is a uniformly
distributed string of length 2n/5. Furthermore, mg is chosen independently
of my. Since myg is independent of m; and ¢ = Encg(m1), we can consider
the probability that there exists a key k' such that mo = Ency(c), where the
probability is over the random choice of mg. We have:

P k' = Decy/ < P = Decy
moe{Oﬁ}Q"/f’[" v lo) = k'€{0,1}n/5 mOE{Oﬁ}Z"/S[mO i (©)]

_ 1
- Z 22n/5
k’e{0,1}n/5
on/5 1

T 92n/5 9n/5

* Theoretical Constructions of Pseudorandom Objects 219

where the first inequality is by the union bound, the second equality is due to
the uniform choice of m(and the unique decryption requirement on the en-
cryption scheme (i.e., for any given key &’ there is only a single value Decy/(c)),
and the third equality is due to the number of different possible keys.® Now, if
there does not exist such a key k', then clearly A cannot “invert” and output
(K’',mo,r") such that ¢ = Encys(mo;7’). Thus,

1

Pr [—invert 4 | b= 1] ZI—W

Furthermore, as in the case of b = 0, if the event invert 4 does not occur, then
A’ succeeds in PrivK®" with probability exactly 1/2. Noting finally that if
invert 4 does occur in this case then A’ succeeds with probability 0 (because
it outputs 0 when b = 1), we have:

Pr [PrivK{iY, (%) =1] b=1]
= Prinverty | b=1]-Pr[PrivK{"4 (%) =1 | invertqg A b=1]
+ Prlninverty | b=1]-Pr [PrivK{i", (%) =1 | —invertqg A b=1]
= Pr[-invertq | b= 1] - Pr [PrivK{i¥y (8) = 1 | —invertq A b=1]

(i- W) g

1
2 2. 271/5

Y

Putting the above together (and noting that b = 0 and b = 1 with probability
1/2), we have:

Pr [PrivKE 'y (2) = 1]
= = - Pr[PrivKi"4 (2) =1] b= 0]

>

™

—
3

Ny
—

N~ N~ N
+
N
+
O
1\3"5
~__

|
I
[\&]
3
~
ot

Since ¢ is a non-negligible function (and 2~"/% is negligible), it follows that A’
succeeds with probability that is non-negligibly greater than 1/2, in contradic-
tion to the assumed security of (Gen, Enc, Dec) in the presence of eavesdrop-
ping adversaries. Thus, f(k,m,r) = (Encg(m;r),m) is a one-way function.

6This bound only holds when the plaintext can be longer than the key. Therefore the proof
falls completely when one-time pad like schemes are considered.

220 Introduction to Modern Cryptography

Message authentication codes imply one-way functions. Having cov-
ered pseudorandom generators and functions and secure private-key encryp-
tion, it remains to show that message authentication codes also imply the
existence of one-way functions. The proof of this fact is also somewhat subtle,
because unconditionally secure message authentication codes do exist (again,
with a limitation on the relation between the number of messages authenti-
cated and the key length). We state this proposition without proof:

PROPOSITION 6.29 If there exist message authentication codes that
are existentially unforgeable under chosen message attacks, then there exist
one-way functions.

Conclusion and discussion. We conclude that the existence of one-way
functions is both a necessary and sufficient assumption for achieving private-
key cryptography. Thus the assumption regarding the existence of one-way
functions is indeed minimal when it comes to private-key cryptography. We
remark that this seems not to be the case for public-key encryption, that
will be studied next. That is, although one-way functions is a necessary
assumption also for public-key cryptography, it seems not to be a sufficient
one. (We remark that in addition to the fact that we do not know how to
construct public-key encryption from one-way functions, there is also evidence
that such constructions are in some sense “unlikely to exist”.)

6.8 A Digression — Computational Indistinguishability

The notion of computational indistinguishability is central to the theory of
cryptography. It underlies much of what we have seen in this chapter, and is
therefore worthy of explicit treatment. Informally speaking, two probability
distributions are computationally indistinguishable if no efficient algorithm
can tell them apart (or distinguish them). This is formalized as follows. Let
D be some probabilistic polynomial-time algorithm, or distinguisher. Then,
D is provided either a sample from the first distribution or the second one.
We say that the distributions are computationally indistinguishable if every
such distinguisher D outputs 1 with (almost) the same probability upon re-
ceiving a sample from the first or second distribution. This should sound very
familiar, and is indeed exactly how we defined pseudorandom generators (and
functions). Indeed, a pseudorandom generator is an algorithm that generates
a distribution that is computationally indistinguishable from the uniform dis-
tribution over strings of a certain length. Below, we will formally redefine the
notion of a pseudorandom generator in this way.

* Theoretical Constructions of Pseudorandom Objects 221

The actual definition of computational indistinguishability refers to prob-
ability ensembles. These are infinite series of finite probability distributions
(rather than being a single distribution). This formalism is a necessary by-
product of the asymptotic approach because distinguishing two finite dis-
tributions is easy (an algorithm can just have both distributions explicitly
hardwired into its code).

DEFINITION 6.30 (probability ensemble): Let I be a countable index
set. A probability ensemble indexed by I is a sequence of random wvariables
indexed by I.

In most cases, the set I is either the set of natural numbers N or an ef-
ficiently computable subset of {0,1}*. In the case of I = N, a probability
ensemble is made up of a series of random variables X1, X5, ..., and is denoted
X ={X,}nen. The actual random variable taken in a cryptographic context
is determined by the security parameter (i.e., for a given security parameter
n, the random variable X,, is used). Furthermore, in most cases the random
variable X, ranges over strings of length that is polynomial in n. More specif-
ically, it is typically the case that probability ensembles X = {X,},en are
considered for which there exists a polynomial p(-) such that for every n, the
support of the random variable X, is a subset of {0,1}?(™) (or a subset of the
set of all strings of size at most p(n)). We present the formal definition for
the case that I = N.

DEFINITION 6.31 (computational indistinguishability): Two probability
ensembles X = { Xy nen and Y = {Y,, }nen are computationally indistinguish-

able, denoted X = Y, if for every probabilistic polynomial-time distinguisher
D there exists a negligible function negl such that:

[Pr{D(X,)) = 1] - Pr[D(Y,) = 1]| < negl(n)

The distinguisher D is given the unary input 1™ so that it can run in time
that is polynomial in n in its attempt to distinguish. (This is of importance
when the output range of X and Y may be very small.)

6.8.1 Pseudorandomness and Pseudorandom Generators

We now show that the notion of pseudorandomness is just a special case of
computational indistinguishability. Then, we have the following;:

DEFINITION 6.32 (pseudorandom ensembles): An ensemble X = { X, }nen
is called pseudorandom if there exists a polynomial £(n) such that X is com-
putationally indistinguishable from the ensemble U = {Uy () fnen, where Uy,

222 Introduction to Modern Cryptography
the uniform distribution over {0,1}4").

This can now in turn be used to redefine the notion of a pseudorandom
generator, as previously defined in Definition 3.15 of Chapter 3.

DEFINITION 6.33 (pseudorandom generator): Let £(-) be a polynomial
and let G be a (deterministic) polynomial-time algorithm such that upon any
input s, algorithm G outputs a string of length £(|s|). We say that G is a
pseudorandom generator if the following two conditions hold:

1. Expansion: For every n it holds that {(n) > n

2. Pseudorandomness: The ensemble {G(sp)}tnen, where s, «— {0,1}™ is
pseudorandom

Thus, pseudorandomness is just a special case of computational indistin-
guishability. We remark that many of the concepts that we see in this book
can be cast as special cases of computational indistinguishability. Despite the
fact that this involves jumping ahead (or jumping back), we give two examples.
First, the decisional Diffie-Hellman (DDH) assumption of Section 7.3.2 can be
formalized by stating that the ensemble of tuples of the type (G, g, g%, g¥, g*¥)
is computationally indistinguishable from the ensemble of tuples of the type
(G,g,9%, 9¥,9%), where z,y, z are randomly chosen. A second example from
Section 11.1.3 is that the quadratic residuosity assumption can be formalized
by stating that the ensemble of quadratic residues QR = {QR N} is com-
putationally indistinguishable from the ensemble of quadratic non-residues
ONR = {OQNRN}. (Note that the index set of the above ensembles is not
the set of natural numbers. In the DDH example the index set is made up of
pairs (G, g), and in the quadratic residuosity example it is made up of values
N where N = pg and p and ¢ are primes.)

6.8.2 Multiple Samples

An important general theorem regarding computational indistinguishabil-
ity is that multiple samples of computationally indistinguishable ensembles
are also computationally indistinguishable. For example, consider a pseudo-
random generator G with expansion factor £. Then, the output of two inde-
pendent applications of G is a pseudorandom string of length 2¢(n). That is,
{(G(s1),G(s2))} is computationally indistinguishable from the uniform dis-
tribution over {0,1}2(") where s; and sy are independently chosen random
strings of length n. We prove this theorem due to its interest in its own right,
and also because it is another example of a proof using the hybrid argument
technique (as seen in the proof of Theorem 6.20).

We say that an ensemble X = { X, },,¢n is efficiently samplable if there exists
a probabilistic polynomial-time algorithm S such that for every n, the random

* Theoretical Constructions of Pseudorandom Objects 223

variables S(1™) and X, are identically distributed. That is, the algorithm S is
an efficient way of sampling X. Clearly, the ensemble generated by a pseudo-
random generator is efficiently samplable: the algorithm S chooses a random
string s of length n and then outputs G(s). We now prove that if two effi-
ciently samplable ensembles X and Y are computationally indistinguishable,
then a polynomial number of (independent) samples of X are computationally
indistinguishable from a polynomial number of (independent) samples of Y.
We stress that this theorem does not hold in the case that X and Y are not
efficiently samplable. We will denote by X = {(X,(Ll), . ,X,(f(”)))}neN the
ensemble generated by p(n) independent samples of X,,; likewise for Y. For
the sake of clarity, we do not explicitly give the distinguisher the unary input
1™, but do assume that it knows the value of the security parameter and can
run in time that is polynomial in n.

THEOREM 6.34 Let X and Y be efficiently samplable ensembles such
that X =Y. Then, for every polynomial p(-), the multisample ensemble
X = {(X,(Zl), .. .,X,(Zp(n)))}neN is computationally indistinguishable from the
multisample ensemble Y = {(Yn(l), ce Yn(p(”)))}neN.

PROOF The proof is by reduction. We show that if there exists a prob-
abilistic polynomial-time distinguisher D that distinguishes X from Y with
non-negligible success, then there exists a probabilistic polynomial-time dis-
tinguisher D’ that distinguishes a single sample of X from a single sample of
Y with non-negligible success. Formally, assume by contradiction that there
exists a probabilistic polynomial-time distinguisher D and a non-negligible
function e(-), such that:

‘Pr [D(Xfﬁ, L X)) = 1} _Pr [D(Y,gU, LYy = 1} ‘ > &(n)

For every i, we define a hybrid random variable H! as a sequence containing i
independent copies of X, followed by p(n) — i independent copies of Y;,. That
is:

n n

H; = (X,Ql),...,X(i) Yn(i+1),m7y(p(n)))

Notice that Hg =Y, and Hﬁ(”) = X,,. The main idea behind the hybrid
argument is that if D can distinguish these extreme hybrids, then it can also
distinguish neighboring hybrids (even though it was not “designed” to do so).
In order to see this, and before we proceed to the formal argument, we present
the basic hybrid analysis. Denote X, = (X,(Zl), .. ,X,(Zp (”))) and likewise for

224 Introduction to Modern Cryptography

Y .. Then, we have:

|Pr[D(X,) = 1] — Pr[D(Y,) = 1]|
p(n)—1 p(n)-1
= Pr[D(H}) =1]— > Pr[D(H/) = 1]
=0 1=0

This follows from the fact that the only remaining terms in this telescopic sum
are Pr[D(H?) = 1] and Pr[D(HfZ(”)) = 1]. By our contradicting assumption,
it holds that:

p(n)—1 p(n)—1
= Pr[D(H;,) = 1] - Pr[D(H,) = 1]
1=0 =0
p(n)—1 ,
< Z |Pr[D(H}) = 1] — Pr[D(HL) = 1]|
1=0

Therefore, there must exist some i for which |Pr[D(H}) = 1] — Pr[D(H}F) = 1]|
is non-negligible (otherwise, the entire sum would be negligible which is not
the case). Notice now that the only difference between H! and H:'! is a
single sample (in both, the first ¢ samples are from X,, and the last n —i — 1
samples are from Y,,). Thus, the fact that D can distinguish between H!
and H*! can be used to construct a distinguisher D’ that can distinguish
between a single sample of X and a single sample of Y, in contradiction to
the assumption that X =Y.

Formally, we construct a probabilistic polynomial-time distinguisher D’ for
a single sample of X,, and Y,,. Upon input a single sample o, D’ chooses a
random i « {0,...,p(n) — 1}, generates the vector H,, = (7(11), ol 7(:‘)’ Q,
AN (n))), invokes D on the vector H,, and outputs whatever D
does.” Now, if a is distributed according to X,, then H,, is distributed
exactly like Hi™! (because the first i + 1 samples are from X,, and the last
n—i—1fromY,). In contrast, if « is distributed according to Y,,, then H, is
distributed exactly like H? (because the first i samples are from X,, and the
last n—1 from Y,,). This argument holds because the samples are independent
and so it makes no difference who generates the samples and in which order.
Now, each i is chosen with probability exactly 1/p(n). Therefore,

p(n)—1
P{D'(X,) = 1] = =25 3 PDUI) =
=0

"The efficient samplability of X and Y is needed for constructing the vector H,.

* Theoretical Constructions of Pseudorandom Objects 225

and
p

(n)—1
P{D'(YV,) = 1) = - 3 Pe{D(H}) = 1
=0

It therefore follows that:

[Pr[D'(X,) = 1] = Pr[D'(Ys) = 1]]
1 p(n)—1 ' p(n)—1)
= o > PrDH) =11- > Pr[D(H}) =1]
i=0 =0
= - [Prp() = 1~ PrD(Y) = 1)
_]ﬁ [Pr[D(X,) = 1] - Pe{D(Y,) = 1]|
e(n)
= p(n)

which is non-negligible (a non-negligible function divided by a polynomial
is always a non-negligible function). This contradicts the assumed indistin-
guishability of a single sample of X from Y. [|

References and Additional Reading

The notion of a one-way function was first introduced by Diffie and Hell-
man [50] and was later formalized and studied by Yao [134]. The concept of
hard-core bits was first studied by Blum and Micali [28] and the fact that
there exists a hard-core bit for every one-way function was proven by Goldre-
ich and Levin [69]. The notion of pseudorandomness was introduced first by
Yao [134] and the first construction of pseudorandom generators was given by
Blum and Micali [28]. The construction of a pseudorandom generator from
any one-way permutation was given by Yao [134], and the fact that pseudoran-
dom generators can be constructed from any one-way function was shown by
Hastad et al. [75]. Pseudorandom functions were defined and constructed by
Goldreich, Goldwasser and Micali [67] and their extension to pseudorandom
permutations was presented by Luby and Rackoff [91].

Most of the presentation in this chapter follows the textbook of Goldre-
ich [65] (Chapters 2 and 3). We highly recommend this book to students who
are interested in furthering their understanding of the foundations of cryptog-
raphy. This chapter is only a taste of the rich theory that cryptography has
to offer.

226

Introduction to Modern Cryptography

Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Show that the addition function f(z,y) = = + y (where |z| = |y| and
2 and y are interpreted as natural numbers) is not one-way. Likewise,
show that f(x) = 22 when computed over the integers is not one-way.

Prove that if there exist one-way functions, then there exists a one-way
function f such that for every n, f(0™) = 0™. Provide a full (formal)
proof of your answer. No