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1 Introduction

Markov processes describe the time-evolution of random systems that do not have any memory.
Let us demonstrate what we mean by this with the following example.

Consider a switch that has two states: on and off. At the beginning of the experiment, the
switch is on. Every minute after that, we throw a dice. If the dice shows 6, we flip the switch,
otherwise we leave it as it is. The state of the switch as a function of time is a Markov process.
This very simple example allows us to explain what we mean by “does not have any memory”.
It is clear that the state of the switch has some memory in the sense that if the switch is off after
10 minutes, then it is more likely to be also off after 11 minutes, whereas if it was on, it would
be more likely to be on. However, if we know the state of the switch at time n, we can predict
its evolution (in terms of random variables of course) for all future times, without requiring any
knowledge about the state of the switch at times less than n. In other words, the future of the
process depends on the present but is independent of the past.

The following is an example of a process which is not a Markov process. Consider again a
switch that has two states and is on at the beginning of the experiment. We again throw a dice
every minute. However, this time we flip the switch only if the dice shows a 6 but didn’t show a 6
the previous time.

Let us go back to our first example and write x(n)
1 for the probability that the switch is on at

time n. Similarly, we write x(n)
2 for the probability of the switch being off at time n. One then has

the following recursion relation:

x(n+1)
1 =

5

6
x(n)

1 +
1

6
x(n)

2 , x(n+1)
2 =

1

6
x(n)

1 +
5

6
x(n)

2 , (1.1)

with x(0)
1 = 1 and x(0)

2 = 0. The first equality comes from the observation that the switch is on at
time n+ 1 if either it was on at time n and we didn’t throw a 6 or it was off at time n and we did
throw a 6. Equation (1.1) can be written in matrix form as

x(n+1) = Tx(n) , T =
1

6

(
5 1
1 5

)
.

We note that T has the eigenvalue 1 with eigenvector (1, 1) and the eigenvalue 2/3 with eigenvector
(1,−1). Note also that x(n)

1 + x(n)
2 = 1 for all values of n. Therefore we have

lim
n→∞

x(n)
1 =

1

2
, lim

n→∞
x(n)

2 =
1

2
.

We would of course have reached the same conclusion if we started with our switch being off at
time 0.
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2 Elements of probability theory

Recall that a probability space (Ω,F ,P) consists of a set Ω endowed with a σ-algebra F and a
probability measure P. We have

Definition 2.1 A σ-algebra F over a set Ω is a collection of subsets of Ω with the properties that
6# ∈ F , if A ∈ F then Ac ∈ F and, if {An}n>0 is a countable collection of elements of F , then⋃
n>0An ∈ F .

Note that if G is any collection of subsets of a set Ω, then there always exists a smallest σ-
algebra containing G . (Show that this is indeed the case.) We denote it by σG and call it the
σ-algebra generated by G .

Definition 2.2 A probability measure P on the measurable space (Ω,F ) is a map P: F → [0, 1]
with the properties
• P(6#) = 0 and P(Ω) = 1.
• If {An}n>0 is a countable collection of elements of F that are all disjoint, then one has

P(
⋃
n>0An) =

∑
n>0 P(An).

Throughout this course, we will always consider the case of discrete time. We therefore give
the following definition of a stochastic process.

Definition 2.3 A stochastic process x with state space X is a collection {xn}∞n=0 of X -valued
random variables on some probability space (Ω,F ,P). Given n, we refer to xn as the value of the
process at time n. We will sometimes consider processes for which time can take negative values,
i.e. {xn}n∈Z.

Note that we didn’t say anything about the state space X . For the moment, all we need is that
the notion of X -valued random variable makes sense. For this, we need X to be a measurable
space, so that an X -valued random variable is a measurable map from Ω to X . We will however
always assume that X is a complete separable metric space, so that for example Fubini’s theorem
holds.

We will impose more structure on X further on. Typical examples are:
• A finite set, X = {1, . . . , n}.
• X = Rn or X = Zn.
• Some manifold, for example X = Sn, the n-dimensional sphere or X = T , the torus.
• A Hilbert space X = L2([0, 1]) or X = `2.

We will always denote by B(X ) the Borel σ-algebra on X , i.e. B(X ) is the smallest σ-algebra
which contains every open set. We will call a function f between two topological spaces measur-
able if f−1(A) is a Borel set for every Borel set A. If f : Ω → X , we call f a random variable,
provided that f−1(A) ∈ F for every Borel set A. One actually has:

Proposition 2.4 Let f : Ω → X and suppose that f−1(A) ∈ F for every open set A. Then
f−1(A) ∈ F for every Borel set A.

Proof. Define G0 = {f−1(A) |A open} and G = {f−1(A) |ABorel}. Since G is a σ-algebra and
G0 ⊂ G , one has σG0 ⊂ G .

Define now F0 = {A ∈ B(X ) | f−1(A) ∈ σG0}. It is straightforward to check that F0 is a σ-
algebra and that it contains all open sets. Since B(X ) is the smallest σ-algebra containing all open
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sets, this shows that F0 = B(X ) and therefore σG0 = G . Since on the other hand σG0 ⊂ F , this
shows the claim.

This proposition is useful because of the following corollary:

Corollary 2.5 Let X and Y be two topological spaces and let f :X → Y be continuous. Then f
is (Borel) measurable.

Proof. Since f is continuous, f−1(A) is open for every open set A, so that f−1(A) ∈ B(X ). The
claim then follows from Proposition 2.4.

Exercise 2.6 You have probably seen Lebesgue measurable functions defined through the prop-
erty that f−1(A) is Lebesgue measurable for every open set A. Show that every Borel measurable
function is also Lebesgue measurable but that the converse is not true in the case of functions from
R to R.

Show that if f : X → Y and g : Y → Z are Borel measurable functions, then g ◦ f is also
Borel measurable. This property is not true for Lebesgue measurable functions. Try to find a
continuous function f : R → R and a Lebesgue measurable function g (you can take an indicator
function for g) such that g ◦ f is not Lebesgue meausrable. Hint: It is useful to remember that
every measurable set A of positive Lebesgue measure contains a subset A′ ⊂ A which is not
Lebesgue measurable. Another useful ingredient for the construction of f is the Cantor function
(also called Devil’s staircase).

2.1 Conditional expectations and probabilities
Consider the following situation. You and three friends play Bridge. The dealer dealt the cards
but you haven’t looked at them yet. At this point, assuming that the cards were perfectly shuffled
(i.e. every configuration has the same probability), the probability that your partner has the ace
of spades is equal to 1/4. Now look at your cards. If you happen to have the ace of spades, the
probability that your partner has it obviously drops to 0. If you don’t have it, the probability that
your partner has it raises to 1/3. Note that this probability is now a function of the values of the
cards in your hand. The possible values of this function depend on the nature of the information
that becomes available. This is a simple example of a conditional probability.

The mathematical object that represents information is the σ-algebra. In mathematical terms,
if a quantity can be evaluated by using only the information contained in a given σ-algebra, then
it is measurable with respect to that σ-algebra. It is a good exercise to convince yourself that this
intuitive notion of measurability does indeed correspond to the formal definition given above.

As an example, consider the trivial σ-algebra given by T = {6#,Ω}. This is the mathematical
equivalent to the statement ‘we have no information at all’. A function which is measurable with
respect to T is constant, which means that its value at any given point can be computed without
requiring any information at all on that point. One should think of the conditional expectation of a
random variable as the best guess one can make for its value (on average) given a certain amount
of information. If no information at all is given, the best guess would be the expectation of the
random variable, which is indeed a constant.

Let us go back to the example of the Bridge players. In this case, a natural choice for Ω is the
set of all possible configuration of cards. When you look at your hand, the σ-algebra encoding this
extra information is given by the collection of all subsets A with the property that if one particular
configuration of cards belongs to A, then all the other configurations that assign to you the same
hand also belong to A.

These considerations motivate the following definition for the conditional expectation of a
random variable:
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Definition 2.7 Let X be a real-valued random variable on some probability space (Ω,F ,P) such
that E|X| <∞ and let F ′ be a sub σ-algebra of F . Then the conditional expectation of X with
respect to F ′ is the F ′-measurable random variable X ′ such that∫

A
X(ω) P(dω) =

∫
A
X ′(ω) P(dω) , (2.1)

for every A ∈ F ′. We denote this by X ′ = E(X |F ′).

Example 2.8 If the only information we know is whether a certain event B happened or not, then
it should by now be intuitively clear that the conditional expectation of a random variable X with
respect to this information is given by

XB =
1

P(B)

∫
B
X(ω) P(dω) ,

if B happened and by

XBc =
1

P(Bc)

∫
Bc
X(ω) P(dω) ,

if B didn’t happen. (Here we used the notation Bc to denote the complement of B.) It is a
straightforward exercise that the conditional expectation ofX with respect to the σ-algebra FB =
{6#,Ω, B,Bc} is indeed given by

E(X |FB)(ω) =

{
XB if ω ∈ B
XBc otherwise.

It is a good exercise to compute the conditional expectation of a random variable X with respect
to the σ-algebra generated by two events B1 and B2 (i.e. the smallest σ-algebra containing both
B1 and B2).

Recall the Radon-Nikodym theorem from measure theory:

Theorem 2.9 (Radon-Nikodym) Let µ and ν be two finite measures on a space (Ω,F ) such
that µ is absolutely continuous with respect to ν (i.e. ν(A) = 0 implies µ(A) = 0) and ν is
positive. Then, there exists an essentially unique measurable functionD: Ω→ R such that µ(A) =∫
AD(ω) ν(dω).

Here we used the expression essentially unique to say that if D1 and D2 are two possible
choices for the density of µ with respect to ν, then the set {ω |D1(ω) 6= D2(ω)}, is of ν-measure
0. Using this theorem, we can prove:

Proposition 2.10 With the notations as above, the conditional expectation X ′ = E(X |F ′) exists
and is essentially unique.

Proof. Denote by ν the restriction of P to F ′ and define the measure µ on (Ω,F ′) by µ(A) =∫
AX(ω) P(dω) for every A ∈ F ′. It is clear that µ is absolutely continuous with respect to ν. Its

density with respect to ν given by the Radon-Nikodym theorem is then the required conditional
expectation. The uniqueness follows from the uniqueness statement in the Radon-Nikodym theo-
rem.

Exercise 2.11 Show that if F ′ is the trivial σ-algebra, i.e. F ′ = {6#,Ω}, then X ′ is constant
and equal to the expectation of X . Hint: remember that X ′ being F ′-measurable means that the
preimage under X ′ of an arbitrary Borel set is in F ′.

Using only (2.1), show that F ′ = F implies X ′(ω) = X(ω) for almost every ω ∈ Ω.
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Exercise 2.12 Show the following elementary properties of conditional expectations:
• If F1 ⊂ F2, then one has E(E(X |F2) |F1) = E(E(X |F1) |F2) = E(X |F1 ∧F2).
• If Y is F1-measurable, then E(XY |F1) = Y E(X |F1).
• If F1 ⊂ F2, and Y is F2-measurable then E(Y E(X |F2) |F1) = E(XY |F1).
• Show by a counterexample that E(E(X |F2) |F1) = E(E(X |F1) |F2) is not true in

general.

We define similarly the concept of conditional probability.

Definition 2.13 Let X be an X -valued random variable and write χA for the characteristic func-
tion of a measurable set A ⊂ X . Let F ′ and (Ω,F ,P) be as above. We define

P(X ∈ A |F ′) = E(χA ◦X |F ′) ,

and we call this the conditional probability that X is in A knowing F ′.

Remark 2.14 It is in general a non-trivial task to show that the conditional probabilities as defined
above yield a F ′-measurable function from X into the space of probability measures on X . Can
you imagine where the problem lies?

In many situations, we will describe F ′ as the σ-algebra generated by an other random variable
Y :

Definition 2.15 Let Y be a Y-valued random variable on a probability space (Ω,F ,P). We de-
note by FY ⊂ F the σ-algebra consisting of all elements of the form Y −1(A) with A ∈ B(Y)
and we say that FY is the σ-algebra generated by Y .

The following lemma gives a rigorous meaning to the notation P(X ∈ A |Y = y):

Lemma 2.16 Let X be an R-valued random variable and Y be a Y-valued random variable.
Then X is FY -measurable if and only if there exists a measurable function f : Y → R such that
X = f ◦ Y .

Proof. It is clear that X = f ◦ Y implies the FY -measurability of X , so we only prove the
converse.

Consider first the case where X takes only a countable number of values (an) and write An =
X−1({an}). Since X is FY -measurable, there exist sets Bn ∈ B(Y) such that Y −1(Bn) = An.
Define now the setsCn = Bn\

⋃
p<nBp. These sets are disjoint and one has again Y −1(Cn) = An.

Setting f (x) = an for x ∈ Cn and f (x) = 0 for x ∈ Y \
⋃
nCn, we see that f has the required

property.
In the general case, we can approximate X by a FY -measurable random variable XN =

[NX]/N . This random variable takes only a countable number of values, so, by the previous part,
there is fN such that XN = fN ◦ Y . Define f (x) = limn→∞ fn(x) whenever that limit exists and
0 otherwise. Then f is the function we are looking for. Since f is a pointwise limit of measurable
functions, f is also measurable.

Note that Lemma 2.16 is still valid if R is replaced by Rn. This results allows us to use the
notations E(X |Y = y) for Rn valued random variables X and P(X ∈ A |Y = y) for arbitrary
random variables.
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Definition 2.17 Given two σ-algebras F1 and F2, we denote by F1 ∨F2 the smallest σ-algebra
containing F1 and F2. We denote by F1 ∧F2 the intersection of F1 and F2.

Exercise 2.18 Show that F1 ∧F2 is indeed again a σ-algebra.

Exercise 2.19 Show that F1 ∨F2 can equivalently be characterised by the expressions:
• F1 ∨F2 = σ{A ∪B |A ∈ F1 and B ∈ F2},
• F1 ∨F2 = σ{A ∩B |A ∈ F1 and B ∈ F2},

where σG denotes the smallest σ-algebra containing G .

2.2 Markov processes
With the previous notations, given a stochastic process {xn}n∈N, we define for every m ≥ n the
σ-algebras Fm

n = σ(xn) ∨ σ(xn+1) ∨ . . . ∨ σ(xm), where σ(Y ) denotes the σ-algebra generated
by a random variable Y . We also use the abbreviation Fn = σ(xn) = Fn

n .
With this notation, we define a Markov process as follows:

Definition 2.20 A process x is Markov if, for every n > 0 and every measurable bounded function
f :X → R one has

E(f (xn) |Fn−1
0 ) = E(f (xn) |Fn−1) ,

almost surely.

Intuitively, this means that knowing the entire history of the process does not contain any more
information than knowing its last value.

Exercise 2.21 Show that if a process is Markov then, for every sequence of times t1, . . . , tk, one
has

E(f (xtk ) |Ft1 ∨Ft2 ∨ . . . ∨Ftk−1
) = E(f (xtk ) |Ftk−1

) ,

for every measurable bounded function f :X → R.

Definition 2.20 has the following consequence:

Proposition 2.22 Let x be a Markov process and let ` ≤ m ≤ n. Then, for every measurable
function f , E(f (xn) |F` ∨Fm) = E(f (xn) |Fm).

Proof. Fix ` and m and let us prove the claim by recursion on n. If n = m, the claim is true since
both sides of the equality are simply equal to f (xn). Let us therefore assume that the claim holds
for n = k − 1 with k > m. One then has

E(f (xk) |F` ∨Fm) = E(E(f (xk) |F k−1
0 ) |F` ∨Fm) = E(E(f (xk) |Fk−1) |F` ∨Fm) .

Let us now define g by g(xk−1) = E(f (xk) |Fk−1) (such a function exists by Lemma 2.16). One
can the use our assumption, so that

E(f (xk) |F` ∨Fm) = E(g(xk−1) |F` ∨Fm) = E(g(xk−1) |Fm)

= E(E(f (xk) |Fk−1) |Fm) .

On the other hand, E(f (xk) |Fk−1) = E(f (xk) |F k−1
0 ) by the Markov property and Fm ⊂

F k−1
0 , so that the right-hand side is equal to E(f (xk) |Fm). This shows that the claim then holds

for n = k, so that by induction it holds for every n ≥ m.
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Theorem 2.23 Given a process {xn}n∈N, three indices ` < m < n, the following properties are
equivalent:

(i) For every measurable function f , E(f (xn) |F` ∨Fm) = E(f (xn) |Fm).
(ii) For every measurable function g, E(g(x`) |Fm ∨Fn) = E(g(x`) |Fm).

(iii) For every two measurable functions f and g, one has

E(f (xn)g(x`) |Fm) = E(f (xn) |Fm) E(g(x`) |Fm) .

Proof. By symmetry, it is enough to prove that (i) is equivalent to (iii). We start by proving that
(i) implies (iii). Given some f and g, it follows from Exercise 2.12 that

E(f (xn)g(x`) |Fm) = E(E(f (xn)g(x`) |Fm ∨Fn) |Fm) = E(f (xn)E(g(x`) |Fm ∨Fn) |Fm)

= E(f (xn)E(g(x`) |Fm) |Fm) = E(g(x`) |Fm) E(f (xn) |Fm) ,

and so (iii) holds. To show the converse, fix arbitrary functions f , g and h. One then has

E(g(x`)h(xm)E(f (xn) |F` ∨Fm)) = E(g(x`)h(xm)f (xn)) = E(h(xm)E(g(x`)f (xn) |Fm))

= E(h(xm)E(g(x`) |Fm)E(f (xn) |Fm)) = E(E(h(xm)g(x`)E(f (xn) |Fm) |Fm))

= E(h(xm)g(x`)E(f (xn) |Fm)) .

Since g and h are arbitrary, this shows that one must have E(f (xn |F` ∨Fm) = E(f (xn) |Fm)
(almost surely).

Intuitively, property (iii) means that the future of the process is independent of its past, pro-
vided that we know the present.

Remark 2.24 It follows from Exercise 2.21 that every Markov properties satisfies the properties
of the last theorem. It was however proven in [FWY00] that the converse is not true, i.e. there exist
processes that satisfy the three (equivalent) properties above but fail to be Markov.

Definition 2.25 A Markov process is time-homogeneous if there exists a measurable map P from
X into P(X ), the space of probability measures on X , such that

P(xn ∈ A |xn−1 = a) = (P (a))(A) ,

for everyA ∈ B(X ), almost every a ∈ X , and every n > 0. We will from now on use the notation
(P (a))(A) = P (a,A) and we call P the transition probabilities for x.

Example 2.26 Let X = R, let {ξn}n≥0 be an i.i.d. sequence of Normally distributed random
variables, and let α, β ∈ R be fixed. Then, the process defined by x0 = ξ0 and xn+1 = αxn +
βξn+1 is Markov. Its transition probabilities are given by

P (x, dy) =
1√
2πβ

exp
(−(y − αx)2

2β2

)
dy .

Note that if α2 + β2 = 1, the law of xn is independent of n.

Example 2.27 Let F :X → X be an arbitrary measurable map and consider an arbitrary proba-
bility measure µ on X . Then, the stochastic process obtained by choosing x0 randomly in X with
law µ and defining recursively xn+1 = F (xn) is a Markov process. Its transition probabilities are
given by P (x, ·) = δF (x).
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We will only consider time-homogeneous Markov processes from now on.

Exercise 2.28 Let ξn be a sequence of real-valued i.i.d. random variables and define xn recur-
sively by x0 = 0, xn = αxn−1 + ξn. Sow that x defined in this way is a time-homogeneous
Markov process and write its transition probabilities in the cases where (1) the ξn are Bernoulli
random variables (i.e. ξn = 0 with probability 1/2 and ξn = 1 otherwise) and (2) the law of ξn
has a density p with respect to the Lebesgue measure on R.

In the case (1) with α < 1/2, what does the law of xn look like for large values of n?

The following result is fundamental to the description of Markov processes:

Theorem 2.29 Let x be a time-homogeneous Markov process with transition probabilities P .
Then, one has

P(xn ∈ A |x0 = a) = Pn(a,A) , (2.2)

where Pn is defined recursively by

P 1 = P , Pn(a,A) =

∫
X
P (x,A)Pn−1(a, dx) . (2.3)

Equation (2.3) is called the Chapman-Kolmogorov equation.

Proof. The proof goes by induction. The statement is true for n = 1 by Definition 2.25. Assume
that it holds for n = k ≥ 1. We then have

P(xk+1 ∈ A |F0) = E(χA(xk+1) |F0) = E(E(χA(xk+1) |F0 ∨Fk) |F0)

= E(E(χA(xk+1) |Fk) |F0) = E(P (xk, A) |F0) .

Since, by assumption, the law of xk conditioned on x0 = a is given by P k(a, · ), the claim follows.

Exercise 2.30 Check that Pn+m(a,A) =
∫
X P

n(x,A)Pm(a, dx) for every n,m ≥ 1.

Definition 2.31 Given transition probabilities P , we define a transition operator T on P(X ) by

(Tµ)(A) =

∫
X
P (x,A)µ(dx) . (2.4)

Note that T can be extended to the space of all signed measures by linearity.

Exercise 2.32 Check that the operator Tn obtained by replacing P by Pn in (2.4) is equal to the
operator obtained by applying T n times, Tn = T ◦ T ◦ . . . ◦ T .

Exercise 2.33 Show that if the state space X is countable and T is an arbitrary linear operator on
the space of finite signed measures which maps probability measures into probability measures,
then T is of the form (2.4) for some P .

Exercise 2.34 (?) Show that the conclusions of Exercise 2.33 still hold under the assumptions that
X is a complete separable metric space and T is continuous in the weak topology.

Hint Use the fact that with these assumptions, every probability measure can be approximated
in the weak topology by a finite sum of δ-measures (with some weigths).



ELEMENTS OF PROBABILITY THEORY 9

We similarly define an operator T? on the space of bounded measurable functions from X to
R by

(T?f)(x) = E(f (x1) |x0 = x) =

∫
X
f (y)P (x, dy) .

Note that one always has T?1 = 1.

Exercise 2.35 Check that the operators T and T? are each other’s dual, i.e. that∫
X

(T?f)(x)µ(dx) =

∫
X
f (x) (Tµ)(dx)

holds for every probability measure µ and every bounded function f .

Definition 2.36 We say that a homogeneous Markov process with transition operator T? is Feller
if T?f is continuous whenever f is continuous and bounded. It is strong Feller if T?f is continu-
ous whenever f is measurable and bounded.

It is a legitimate question to ask whether any such function P can be used to construct a
corresponding time-homogeneous Markov process. This can be answered affirmatively by making
use of the following result from probability theory which will not be proven here:

Theorem 2.37 (Kolmogorov’s extension theorem) Let {µn} be a sequence of probability mea-
sures on X n such that

µn(A1 ×A2 × . . .×An) = µn+1(A1 ×A2 × . . .×An ×X ) (2.5)

for every n and every sequence of Borel sets Ai. Then there exists a unique probabiliy measure µ
on X∞ such that µn(A) = µ(A×X∞).

As a corollary, we get the following result:

Proposition 2.38 Let P be a measurable map fromX toP(X ) and let µ0 be a probability measure
on X . Then, there exists a (unique in law) Markov process x with transition probabilities P such
that the law of x0 is µ0.

Proof. Define the sequence of measures µn on X n by

µn+1(A0 × . . .×An) =∫
A0

∫
A1

∫
A2

· · ·
∫
An−2

∫
An−1

P (xn−1, An)P (xn−2, dxn−1) · · ·P (x1, dx2)P (x0, dx1)µ(dx0) .

It is easy to check that this sequence of measures satisfies (2.5). By Kolmogorov’s extension
theorem, there thus exists a unique measure µ on X∞ such that the restriction of µ to X n is given
by µn. We now choose Ω = X∞ as our probability space equipped with the probability measure
P = µ. We define the process x as the canonical process, i.e. xn(w0, w1, . . .) = wn.

It is straightforward to check that x is a Markov process with the required transition proba-
bilities (and such that the law of x0 is µ0). This concludes the ‘existence’ part. The uniqueness
follows from the ‘uniqueness’ part of Kolmogorov’s extension theorem, since one can show by
induction that the law of (x0, . . . , xn) must be equal to µn+1 for every n.
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2.3 Stopping times
Definition 2.39 Given a Markov process x, an integer-valued random variable T is called a stop-
ping time for x, if the event {T = n} is Fn

0 -measurable for every n ≥ 0. (The value T = ∞ is
usually allowed as well and no condition is imposed on its measurability.)

Exercise 2.40 Show that the above definition is equivalent to the same definition with {T = n}
replaced by {T ≤ n}.

Given a stopping time T and a Markov process x we introduce the stopped process xn∧T by

xn∧T =

{
xn if n ≤ T ,
xT otherwise.

We denote by FT = F T
T the σ-algebra generated by xT and by F T

m the σ-algebra generated by
the collection {xn∧T }n≥m.

Exercise 2.41 Show that this notation is consistent with the one introduced in Section 2.2 in the
sense that if T = m almost surely for some m, then one has F T

n = Fm
n and FT = Fm.

Proposition 2.42 Let T be a random variable taking a countable number of values ti and let
X and Y be random variables such that there exist countable families of random variables Xi

and Yi such that X(ω) = Xi(ω) if T (ω) = ti and Y (ω) = Yi(ω) if T (ω) = ti. Then, one has
E(X|Y&T ) = E(Xi|Yi&T ) on the set T (ω) = ti.

Proof. Denote Ωi = {ω |T (ω) = ti} and introduce the σ-algebras Fi = σ{Y −1(A) ∩ Ωi}. Note
that since Y and Yi coincide on Ωi, one also has Fi = σ{Y −1

i (A) ∩ Ωi}.
Using the notation X|A for the random variable which is equal to X on A and equal to 0

otherwise, one has
E(X|Y&T )|Ωi = E(X|Ωi |Fi) .

On the other hand, one has

E(Xi|Yi&T )|Ωi = E(Xi|Ωi |Fi) = E(X|Ωi |Fi) ,

which completes the proof.

The interest of the definition of a stopping time is that if T is a stopping time for a time-
homogeneous Markov process x, then the process xT+n is again a Markov process with the same
transition probabilities. Stopping times can therefore be considered as times where the process x
“starts afresh”. More precisely, we have the following theorem:

Theorem 2.43 (strong Markov property) Let x be a time-homogeneous Markov process with
transition probabilities P and let T be a stopping time which is almost-surely finite. Then, the
process x̃n = xT+n is also Markov with transition probabilities P and one has

E(f (x̃) |F T
0 ) = E(f (x̃) |FT ) , (2.6)

for every measurable f : X∞ → R.
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Proof. Let us first show that x̃ is Markov. We have indeed

P(x̃n ∈ A | x̃0 = a0, . . . , x̃n−1 = an−1)

=
∑
m≥0

P(x̃n ∈ A | x̃0 = a0, . . . , x̃n−1 = an−1 &T = m)P(T = m)

=
∑
m≥0

P(x̃n ∈ A |xm = a0, . . . , xm+n−1 = an−1 &T = m)P(T = m)

=
∑
m≥0

P(xn+m ∈ A |xn+m−1 = an−1)P(T = m) = P(an−1, A) .

Here we used Proposition 2.42 to go from the second to the third line and the Markov property of
x to obtain the last line.

For every measurable set A ⊂ X , one has

P(xT+1 ∈ A |xT = a) =
∑
n≥0

P(xT+1 ∈ A |xT = a & T = n) P(T = n)

=
∑
n≥0

P(xn+1 ∈ A |xn = a & T = n) P(T = n) .

Since T is a stopping time, the event {xn = a & T = n} is in Fn
0 . Furthermore, the Markov

property for x ensures that the function P(xn+1 ∈ A |Fn
0 ) only depends on xn and is equal to

P (xn, A). Therefore, one has

P(xT+1 ∈ A |xT = a) =
∑
n≥0

P (a,A) P(T = n) = P (a,A) .

Since the above reasoning still holds if, instead of fixing xT one fixes the whole stopped process
xn∧T , one actually has

P(xT+1 ∈ A |F T
0 ) = P (xT , A) .

This shows that (2.6) holds if f depends only on the first coordinate. The whole argument can
however be repeated for any expression of the type

P(xT+j ∈ Aj ∀j ≥ 0 |F T
0 ) ,

thus leading to the stated result.

Exercise 2.44 Prove that if T = ∞ is allowed, then the process xT+n conditioned on {T < ∞}
(it is undefined outside of that set) is again Markov with transition probabilities P .

3 Finite state space

In this section, we assume that the space X is finite, so we identify it with {1, . . . , N} for some
N > 0. In this case, the space of signed measures is identified in a natural way with RN in the
following way. Given a measure µ on X , we associate to it the vector a ∈ RN by ai = µ({i}).
Reciprocally, given a ∈ RN , we associate to it a measure µ by µ(A) =

∑
i∈A ai. From now

on, we will therefore use the terms “vector” and “measure” interchangeably and use the notation
µi = µ(i) = µ({i}).

The set of probability measures onX is thus identified with the set of vectors in RN which have
non-negative entries that sum up to 1. In this context, a transition operator is a linear operator from
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RN to RN which preserves probability measures. Such operators are given by N × N matrices
(Pij) with positive entries such that

N∑
i=1

Pij = 1 , for all j. (3.1)

The number Pij should be interpreted as the probability of jumping from state j to state i.

Definition 3.1 We call a matrix P with positive entries which satisfies (3.1) a stochastic matrix.

Exercise 3.2 Given a vector µ ∈ CN , we write |µ| for the vector with entries |µi| and
∑

(µ) for
the number

∑N
i=1 µi. Show that if P is a stochastic matrix, then one has

∑
(Pµ) =

∑
(µ) and∑

(|Pµ|) ≤
∑

(|µ|).

2

1

3

4

Figure 1: Graph for P .

We can associate to such a matrix Pij an oriented graph,
called the incidence graph of P by takingX = {1, . . . , N}
as the set of vertices and by saying that there is an oriented
edge going from i to j if and only if Pji 6= 0. For example,
if

P =
1

10


0 3 0 2
5 7 10 8
5 0 0 0
0 0 0 0

 (3.2)

then the associated graph is given by the one in Figure 1.
Note that the 4th row of P is zero, which implies that the
vertex 4 can not be reached by any walk on the graph that
follows the arrows.

3.1 Irreducible matrices
Definition 3.3 We call a transition matrix P irreducible if it is possible to go from any point to
any point of the associated graph by following the arrows. Otherwise, we call it reducible.

At an intuitive level, being irreducible means that every point will be visited by our Markov
process. Otherwise, the state space can be split into several setsAi such a way that if one starts the
process in Ai it stays in Ai forever and if one starts it outside of the Ai’s it will eventually enter
one of them. For example, the matrix given in (3.2) is reducible because it is impossible to reach
4 from any of the other points in the system.

For every state i = 1, . . . , N , we define the set R(i) of return times to i by

R(i) = {n > 0 | (Pn)ii > 0} .

In other words,R(i) contains the lengths of all possible paths (on the incidence graph) that connect
i to itself. Note that R(i) has the property that if n and m belong to it, then n+m belongs to it as
well.

The period of the state i is then defined by

p(i) = gcdR(i) .

We call a stochastic matrix aperiodic if p(i) = 1 for every i. We call it periodic of period p if
p(i) = p > 1 for every i.

The following result is well-known in number theory:
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Proposition 3.4 There exists K > 0 such that kp(i) ∈ R(i) for every k ≥ K

Proof. By dividing everything by p(i), we can assume without loss that p(i) = 1. Since gcdR(i) =
1, there exists a finite collection p1, . . . , pn in R(i) such that gcd{p1, . . . , pn} = 1. The Euclidean
algorithm implies that there exist integers a1, . . . , an such that

∑n
i=1 aipi = 1. Set P =

∑
pi.

Then, for k = 1, . . . , P , one has

NP + k =
n∑
i=1

(N + kai)pi .

This shows that NP + k ∈ R(i) for every k ∈ {0, . . . , P} and every N ≥ N0 with N0 =
P max{|a1|, . . . , |an|}. Therefore, the claim holds with K = N0P .

As a consequence of this result, we can show

Proposition 3.5 An irreducible stochastic matrix is either aperiodic or of period p for some p.

Proof. It suffices to show that p(i) = p(j) for every pair i, j. Since P is irreducible, there exist
n and m such that (Pn)ij > 0 and (Pm)ji > 0. Setting N = n + m, this implies that N ∈
R(i) ∩ R(j) and so p(i) divides N and p(j) divides N . Since one has N + R(i) ⊂ R(j), this
implies that p(j) divides p(i). On the other hand, the same is true with i and j exchanged, so that
one must have p(i) = p(j).

Note that a different characterisation of stochastic matrices with period p is the following;

Lemma 3.6 A stochastic matrix P is periodic with period p if and only if it is possible to write
{1, . . . , N} as a disjoint union of sets A0 t . . . tAp−1 in such a way that if Pji 6= 0 for a pair of
indices i and j, then i ∈ An and j ∈ Am with m = n+ 1 (mod p).

Proof. Assume for the moment that P is irreducible and define An by

An = {j | ∃ m = n (mod p) such thatPmj1 > 0} .

The choice of the index 1 is arbitrary, this just determines that 1 ∈ A0. Since Ω is assumed to be
irreducible, the union of the An is all of {1, . . . , N}. Furthermore, they are disjoint. Otherwise,
one could find j such that Pnj1 > 0 and Pmj1 > 0 withm 6= n (mod p). Since P is irreducible, there
exists furthermore q such that P q1j > 0, so that n+ q ∈ R(1) and m+ q ∈ R(1). This contradicts
the fact that P is periodic of period p. The fact that these sets have the required property is then
immediate.

IfP is not irreducible, it suffices to note that the definition of periodicity implies that {1, . . . , N}
can be broken into sets B1, . . . , Bk with the property that Pij = 0 if i ∈ Bk, j ∈ B` and k 6= `.
The restriction of P to each of these sets is then irreducible, so that the result follows from the
irreducible case.

Exercise 3.7 Let P be irreducible of period p. Show that, for n ≥ 1, the period q of Pn is given
by q = p/r, where r is the greatest common divider between p and n. The corresponding partition
{Bi} of {1, . . . , N} is given by Bi =

⋃
n≥0Ai+nq (mod p), where {Ai} is the partition associated

to P by Lemma 3.6.
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Exercise 3.8 Consider an irreducible stochastic matrix P and an arbitrary partition {Bj}q−1
j=0 of

{1, . . . , N} such that if i ∈ Bn and j ∈ Bm with m 6= n+ 1 (mod q), then Pji = 0. Show that q
must be a divider of p and that the partition {Bj} is the one associated by Lemma 3.6 to the matrix
P p/q.

Exercise 3.9 Show that the three following conditions are equivalent:
(a) P is irreducible and aperiodic.
(b) Pn is irreducible for every n ≥ 1.
(c) There exists n ≥ 1 such that (Pn)ij > 0 for every i, j = 1, . . . , N .

2

1

3

4

Figure 2: Periodic.

The example given in (3.2) is aperiodic. However the exam-
ple shown in Figure 2 is periodic with period 3. In this particu-
lar case, one can take A0 = {2}, A1 = {1, 3}, and A2 = {4}.
Note that this choice is unique (up to permutations of course).
Note also that even though P is irreducible, P 3 is not. This is
a general fact for periodic processes. Stochastic matrices such
that the corresponding incidence graph is given by Figure 2 are
of the form

P =


0 0 0 q
1 0 1 0
0 0 0 1− q
0 1 0 0


for some q ∈ (0, 1).

Exercise 3.10 Prove that if there exists j such that Pjj 6= 0, then the matrix is aperiodic.

Theorem 3.11 (Perron-Frobenius) If P is irreducible, then there exists exactly one eigenvector
π with Pπ = π. Furthermore, π can be chosen such that all its entries are strictly positive. If
P is aperiodic, all other eigenvalues satisfy |λ| < 1. If P is periodic with period p, there are

eigenvalues λj = e
2iπj
p and the associated eigenvectors µj satisfy

µj(n) = e
−2iπ jk

p π(n) , if n ∈ Ak, (3.3)

where π is the (only) eigenvector with eigenvalue 1 and the sets Ak are the ones associated to P
by Lemma 3.6.

Proof. Since ‖Pµ‖1 ≤ ‖µ‖1 for every vector µ ∈ CN (see Exercise 3.2), the eigenvalues of P
must all satisfy |λ| ≤ 1. Since the vector 1 = 1

N (1, 1, . . . , 1) is an eigenvector with eigenvalue 1
for P T , there exists an eigenvector with eigenvalue 1 for P , let us call it π. Since P is real, we can
choose π to be real too. Let us now prove that π can be chosen positive as well.

Define the matrix Tn = 1
n (P + P 2 + . . . + Pn). Clearly Tn is again a stochastic matrix and

π is an eigenvector of Tn with eigenvalue 1. Since P is irreducible, there exists n and δ > 0 such
that Tnij ≥ δ for every i and j. Write now π+ for the positive part of π and π− for its negative part.
We also define α = min{‖π+‖1, ‖π−‖1}. It is clear that one has Tnπ+ ≥ δα1 and Tnπ− ≥ δα1.
Therefore,

‖Tnπ‖1 = ‖Tnπ+ − Tnπ−‖1 ≤ ‖Tnπ+ − δα1‖1 + ‖Tnπ− − δα1‖1
≤ ‖π+‖1 + ‖π−‖1 − 2δα = ‖π‖1 − 2δα .
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Since Tnπ = π and δ > 0, one must have α = 0, which implies that π is either entirely positive
or entirely negative (in which case −π is entirely positive).

From now on, we normalise π in such a way that
∑

(π) =
∑

(|π|) = 1. All entries of π
are strictly positive since π = Tnπ ≥ δ1. The fact that exists only one π (up to multiplication
by a scalar) such that Pπ = π is now easy. Assume that Pπ1 = π1 and Pπ2 = π2. By the
previous argument, we can assume that the entries of the πi are positive sum to 1. Then the vector
π3 = π1 − π2 is also an eigenvector with eigenvalue 1 for P . However, since

∑
(π3) = 0, one

must have π3 = 0. From now on, we call the unique positive eigenvector with eigenvalue 1 of an
irreducible stochastic matrix P the Perron-Frobenius vector of P .

It remains to consider eigenvalues with |λ| = 1 but λ 6= 1. Denote by ν an eigenvector for the
eigenvalue eiθ. We write the components of ν in the form νi = rie

iθi for ri ≥ 0 and we normalise
them in such a way that

∑
ri = 1. The relation

∑N
j=1 Pkjνj = eiθνk then translates into

N∑
j=1

eiθjPkjrj = ei(θ+θk)rk . (3.4)

Multiplying both sides by e−i(θ+θk) and summing up yields
∑N
j,k=1 e

i(θj−θk−θ)Pkjrj = 1. On the
other hand, we know that Pkjrj ≥ 0 and that

∑N
j,k=1 Pkjrj = 1. This implies that

eiθk = ei(θj−θ) , for every j and k such that Pkj 6= 0. (3.5)

Combining this with (3.4) in turn implies that r = π, the Perron-Frobenius vector. By multiplying
ν with a scalar, we can assume that θ1 = 0. Since P is irreducible, the relation (3.5) then deter-
mines every θj uniquely provided that we know θ. On the other hand, (3.5) shows that one must
have Nθ = 0 (mod 2π) for every N ∈ R(i) (and for every i). It follows from Proposition 3.4 that
R(i) contains every large enough multiple of p, so that one must have θ = 2πj

p for some integer j,
so that the corresponding eigenvector ν is of the form (3.3).

Remark 3.12 The Perron-Frobenius vector π has a very specific interpretation. We see that if we
construct a Markov process xn with transition probabilities P and such that the law of x0 is π,
then the law of xn is π for every n ≥ 0 as well. For this reason, we will also call it the invariant
measure of P .

A very important consequence of the Perron-Frobenius theorem is the following

Theorem 3.13 Let P be irreducible and aperiodic and let π be its Perron-Frobenius vector. Then,
for any probability measure ν ∈ RN , one has limn→∞ P

nν = π.

Proof. Let us denote by ‖µ‖1 =
∑
i |µi| the L1-norm of a vector. It follows from Exercise 3.9

that there exist values n > 0 and δ ∈ (0, 1) such that Pnη ≥ δ‖η‖11 for every positive vector η.
Write now (π− ν)+ for the positive part of π− ν and similarly for its negative part. Note also that
‖(π − ν)+‖1 = ‖(π − ν)−‖1 = 1

2‖π − ν‖1. One then has

‖Pnν − π‖1 = ‖Pn(π − ν)‖1 = ‖Pn(π − ν)+ − Pn(π − ν)−‖1
≤ ‖Pn(π − ν)+ − δ‖(π − ν)+‖11‖1 + ‖Pn(π − ν)− − δ‖(π − ν)−‖11‖1
≤ (1− δ)‖π − ν‖1 .

Since ν was arbitrary, one gets ‖P knν − π‖1 ≤ (1− δ)k‖π − ν‖1 by iterating this bound.
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Note that Theorem 3.13 also follows immediately from the fact that if P is irreducible and
aperiodic, then all eigenvalues of P have modulus strictly smaller than 1, except for the isolated
eigenvalue 1 with eigenvector π. The proof given above however has the advantage that it can be
generalised in a straightforward way to situations where the state space is not finite.

Exercise 3.14 Show that the conclusion of Theorem 3.13 also hold if one only assumes that∑
i νi = 1.

3.2 The general case
A general stochastic matrix is not irreducible. It can however be broken up into irreducible com-
ponents in the following way. Fix an arbitrary stochastic matrix P of dimension N and call Γ
the associated directed graph. The set {1, . . . , N} is then naturally endowed with an equivalence
relation by saying that i ∼ j if and only if there is a path on Γ going from i to j and back to i (we
make it an equivalence relation by writing i ∼ i regardless on whether Pii > 0 or not). In terms
of the matrix, this means that i ∼ j if and only if there exist m,n ≥ 0 such that (Pm)ij > 0 and
(Pn)ji > 0, with the convention that P 0 is the identity matrix.

We denote by [i] the equivalence class of i under this relation and we call it the communica-
tion class of i. For example, in the case of (3.2), we have [1] = {1, 2, 3} and [4] = {4}. The
set of equivalence classes is endowed with a partial order ≤ by saying that [i] ≤ [j] if and only
if there is a path on Γ going from j to i. In the above example, one has [1] ≤ [4]. Note that this
order is not total, so it may happen that one has neither [i] ≤ [j] nor [j] ≤ [i].

Exercise 3.15 Check that the relation ≤ defined above is indeed a partial order.

Definition 3.16 An equivalence class [i] is minimal if there is no [j] such that [j] ≤ [i] and
[j] 6= [i].

Consider a stochastic matrix such that the associated graph is given by

1 2 3 4

5 6 7

In this case, the communication classes are given by

[1] = {1} , [2] = {2} , [3] = {3} ,

[4] = {4, 7} , [5] = {5, 6} .

One furthermore has the relations [5] < [2] < [1], [3] < [4], and [3] < [2] < [1]. Note that [4]
and [2] for instance are not comparable.

Definition 3.17 A state i such that [i] is minimal is called recurrent. All other states are called
transient.
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By construction, we see that every Markov process {xn} with transition probabilities P sat-
isfies [xn+1] ≤ [xn] for every n. It seems therefore reasonable that every Markov process with
transition probabilities P eventually ends up in one of the recurrent states. This justifies the ter-
minology “transient” for the other states, since they will only ever be visited a finite number of
times. Before we prove this result, we give a definition.

Definition 3.18 An N × N matrix P with positive entries such that
∑
i Pij ≤ 1 for all j is a

substochastic matrix.

Substochastic matrices are typically obtained when we restrict a stochastic matrix to a subset
of indices. One has the following:

Lemma 3.19 Let P be an irreducible substochastic matrix which is not a stochastic matrix. Then,
Pnµ → 0 for every µ and the convergence is exponential. In particular, the eigenvalues of P are
all of modulus strictly less than 1 and so 1− P is invertible.

Proof. It is sufficient to prove the claim for µ positive with norm 1. Define Tn as in the proof of
the Perron-Frobenius theorem. Then, since ‖Pµ‖1 ≤ ‖µ‖1 for every positive vector µ, one has
‖Pn+1µ‖1 ≤ ‖PTnµ‖1 for every n > 0. Choose n such that Tnµ ≥ δ1 (such an n exists by the
irreducibility of P ). Since P is not a stochastic matrix, there exists α > 0 and an index j such that∑
i Pij ≤ 1− α. Therefore ‖Pn+1µ‖1 ≤ ‖PTnµ‖1 ≤ (1− αδ)‖µ‖1, which concludes the proof.

This shows that

Theorem 3.20 Let {xn} be a Markov process with transition probabilities P and let i be a tran-
sient state. Then the probability that xn ∈ [i] for an infinite number of values n is 0.

Proof. Recall first the Borel-Cantelli lemma from probability theory:

Lemma 3.21 (Borel-Cantelli) Let {An}n≥0 be a sequence of events in a probability space Ω. If∑
n P(An) <∞, then the probability that infinitely many of these events happen is 0.

By the strong Markov property, it is sufficient to prove the theorem for the particular case when
x0 = j for a state j ∈ [i]. We take as An the event {xn ∈ [i]}. By the Borel-Cantelli lemma, the
claim follows if we can show that∑

n

P(xn ∈ [i]) =
∑
n

∑
k∈[i]

(Pn)kj <∞ .

Denote by P̃ the restriction of P to the indices in [i]. Then P̃ is an irreducible substochastic matrix
and one has (Pn)kj = (P̃n)kj for k, j ∈ [i]. The result follows from Lemma 3.19.

Exercise 3.22 Let P be an arbitrary stochastic matrix. Show that the set of all normalised positive
vectors µ such that Pµ = µ consists of all convex linear combinations of the Perron-Frobenius
vectors of the restrictions of P to its recurrent classes.

In order to conclude this subsection, let us give a formula for the probability that, starting from
a given transient state, the Markov process will eventually end up in a given recurrence class. In
order to somewhat simplify the argument, we assume that the recurrent classes consist of single
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points, that the states 1 to R are recurrent, and that the states R + 1 to R + T are transient (set
N = T +R). Therefore, the transition matrix P can be written as

P =

(
I S
0 Q

)
,

where I is the identity and Q is some substochastic matrix (so that (Q− I) is invertible).
Define now the matrix Aij with j ∈ {1, . . . , T} and i ∈ {1, . . . , R} as the probability that the

process starting at the transient state R+ j will eventually end up in the recurrent state i. One has

Proposition 3.23 The matrix A is given by A = S(I −Q)−1.

Proof. One has

Aij = P(the process reaches i eventually |x0 = R+ j)

=
T∑
k=1

Qkj P(the process reaches i eventually |x0 = R+ k) + Sij

=
T∑
k=1

AikQkj + Sij ,

where we used the Markov property to go from the first to the second line. In matrix notation, this
reads A = AQ+ S, and therefore A = S(I −Q)−1. The invertibility of (I −Q) is an immediate
consequence of Lemma 3.19.

3.3 Return times and the law of large numbers
In this section, we are interested in the following question: given a finite-state Markov process
with transition probabilities P starting in a distinguished state i. How long does it take to get back
to i? It may be rather surprising that this can easily be computed explicitely:

Theorem 3.24 Let x be an aperiodic irreducible homogeneous Markov process on a finite state
space X with invariant measure π and satisfying x0 = i almost surely for some distinguished state
i. Let T be the random (stopping) time defined by

T = min{n > 0 such that xn = i} .

Then, one has ET = 1/π(i).

A closely related result is the Strong Law of Large Numbers for Markov processes. Let us
recall the Strong Law of Large Numbers of probability theory:

Theorem 3.25 (Strong Law of Large Numbers) Let {ξn}n≥1 be a sequence of i.i.d. real-valued
random variables such that Eξn = µ <∞ and E(ξ − µ)2 = σ2 <∞. Define SN = 1

N

∑N
n=1 ξn.

Then, one has limN→∞ SN = µ almost surely.

Its simplest extension to Markov processes states:

Theorem 3.26 Let x be an aperiodic irreducible homogeneous Markov process on a finite state
space X with invariant measure π and let f :X → R. Then, one has

lim
N→∞

1

N

N∑
n=1

f (xn) =
∑
j∈X

f (j)π(j) , (3.6)

almost surely.
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Before we turn to the proof of these two results, let us make a preliminary calculation.

Lemma 3.27 Let P be irreducible and let x be a Markov process with transition probabilities P .
Fix two states i and j and define the stopping time Ti by

Ti = inf{k ≥ 0 |xk = i} .

Then, for every p ≥ 1, the expectation E(T pi |x0 = j) is finite.

Proof. Fix i as in the statement of the Lemma and denote by x̃ the process stopped at Ti. For
every n > 0, define the quantity

Qn = sup
j 6=i

P(x̃n 6= i | x̃0 = j) .

Note in particular that P(Ti > n |x0 = j) ≤ Qn. The irreducibility of P implies that there exist
N > 0 and δ > 0 such that QN ≤ 1− δ.

The strong Markov property yields the following bound:

QkN = sup
j 6=i

∑
6̀=i

P(x̃kN 6= i | x̃N = `)P(x̃N = ` | x̃0 = j) ≤ sup
j 6=i

∑
`6=i

Q(k−1)NP(x̃N = ` | x̃0 = j)

= Q(k−1)N sup
j 6=i

P(x̃N 6= i | x̃0 = j) = Q(k−1)NQN ≤ (1− δ)Q(k−1)N .

It follows that QkN ≤ (1− δ)k, so that there exist constants C and γ > 0 such that Qn ≤ Ce−γn
for every n ≥ 0. Therefore, one has

E(T pi |x0 = j) =
∑
n≥0

npP(Ti = n |x0 = j) ≤
∑
n≥0

npP(Ti > n− 1 |x0 = j)

≤
∑
n≥0

npQn−1 ≤ C
∑
n≥0

npe−γn .

This sum always converges, and so the result follows.

We now give the reasoning that simultaneously proves both results stated at the beginning of
this section.

Proof of Theorems 3.24 and 3.26. Let χi:X → R be the indicator function for the set {i}. Since
any function on X can be written as a finite linear combination of such functions, it suffices to
consider Theorem 3.26 with f = χi, so that the right-hand side is equal to π(i).

Note that we have already proven in Theorem 3.13 that limn→∞ Eχi(xn) = π(i) and therefore
also that

lim
N→∞

E
( 1

N

N∑
n=1

χi(xn)
)

= π(i) . (3.7)

In order to get (3.6) it thus suffices to get rid of the expectation on the left-hand side. Define a
sequence of stopping times Tn by T0 = −1 and, recursively,

Tn+1 = min{k > Tn such that xk = i} .

The strong Markov property implies that (except for T1−T0) the sequence of intervals Tn−Tn−1

consists of i.i.d. random variables with the same law as the time T considered in Theorem 3.24.
Since ET 2 <∞ by Lemma 3.27, It follows from the Law of Large Numbers that

lim
n→∞

Tn
n

= ET ,
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almost surely. Define now En = nET , so that one has Tn ≈ En for large values of n. Since
Tn ≥ n by definition, one has |EnTn − 1| < 1 + ET , so that Lebesgue’s dominated convergence
theorem yields

lim
n→∞

E
∣∣∣En
Tn
− 1

∣∣∣ = 0 . (3.8)

Note that the definition of the times Tn yields the relation n
Tn

= 1
Tn

∑Tn
k=0 χi(xk). We can rewrite

this as
En
Tn

1

ET
=

1

En

En∑
k=1

χi(xk) +Rn , (3.9)

where the rest term Rn satisfies

|Rn| =
∣∣∣ 1

Tn

Tn∑
k=1

χi(xk)− 1

En

En∑
k=1

χi(xk)
∣∣∣ ≤ ∣∣∣ 1

Tn

( Tn∑
k=1

χi(xk)−
En∑
k=1

χi(xk)
)∣∣∣

+
∣∣∣( 1

Tn
− 1

En

) En∑
k=1

χi(xk)
∣∣∣ ≤ ∣∣∣En − Tn

Tn

∣∣∣+ ∣∣∣En
Tn
− 1

∣∣∣ = 2
∣∣∣En
Tn
− 1

∣∣∣ . (3.10)

Taking expectations on both sides and using (3.7) and (3.8), we see that one has ET = 1/π(i),
thus concluding the proof of Theorem 3.24.

On the other hand taking limits on both sides of (3.9) and using the fact that En/Tn → 1
almost surely, we see that limn→∞

1
En

∑En
k=1 χi(xk) = π(i) almost surely. By the same argument

as in (3.10), it follows immeditely that one has limN→∞
1
N

∑N
k=1 χi(xk) = π(i), thus concluding

the proof of Theorem 3.26.

Exercise 3.28 Show that the assumption that x is aperiodic is not needed in order to prove (3.7).
Therefore, Theorems 3.24 and 3.26 hold for general irreducible Markov chains on a finite state
space.

3.4 Random walks on finite groups and card shuffling
A very important particular case is that of a random walk on a finite group. Think of card shuffling:
there are only a finite number of possible orders for a deck of card, so this is a Markov process on
a finite set. However, this set has a natural group structure by identifying a deck of card with an
element of the group of permutations and the Markov process respects this group structure in the
following sense. The probability of going from e (the identity) to an element g of the permutation
group is the same as the probability of going from an arbitrary element h to g · h. This motivates
the following definition:

Definition 3.29 Consider a group G and a Markov chain with transition matrix P on G. We say
that the Markov chain is a left-invariant random walk on G if there exists a probability measure
P̄ on G such that Pgh = P̄ (h−1g). We call it right-invariant if the same statement holds with
Pgh = P̄ (gh−1) instead.

It is clear that if the group G happens to be abelian, right-invariant and left-invariant random
walks are the same.

Exercise 3.30 Show that if {xn} is a left-invariant random walk, then {x−1
n } is a right-invariant

random walk and find its transition probabilities.
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Because of Exercise 3.30, it suffices to study one of the two types of random walks. Let us
choose the left-invariant ones.

Exercise 3.31 Consider a random walk with transition matrix P on a finite group G and define
Σ = {g ∈ G | P̄ (g) > 0}. Show that P is irreducible if and only if Σ generates G.

Exercise 3.32 Show that the normalised counting measure π(g) = 1/|G| is an invariant measure
for every random walk on G.

The most common example of a random walk on a finite group is card shuffling. Take a deck
consisting of n cards. Then, the set of all possible states of the deck can be identified in an obvious
way with the symmetric group Sn, i.e. the group of all possible permutations of n elements. When
identifying a permutation with a bijective map from {1, . . . , n} into itself, the composition law on
the group is simply the composition of maps.

3.5 The Gilbert-Shannon-Reeds shuffling
A quite realistic way of shuffling a deck of n cards is the following. Assign 0 or 1 randomly and
independently to each card. Then make a pile with all the cards marked 0 and another one with all
the cards marked 1 (without changing the order of the cards within the pile) and put the two piles
on top of each other. This is the definition of the inverse of a Gilbert-Shannon-Reeds shuffle. In
this section, we will argue why the following result holds:

Theorem 3.33 It takes about 3
2 log2 n GSR shuffles to mix a deck of n cards.

The precise formulation of Theorem 3.33 can be found in a 1992 paper by Bayer and Diaconis.
In principle, this approximation holds only for very large values of n. However, if we denote

by π the uniform measure, by δe the measure concentrated on the identity, and by P the transition
matrix associated to the GSR shuffle with 52 cards, one gets the following picture for ‖π−Pmδe‖1
as a function of m:

0 1 2 3 4 5 6 7 8 9 10
0

1

2
3
2 log2 52

Note that 3
2 log2 52 is quite a good approximation for the number of shuffles required to mix the

deck.
A little thought shows that the inverse of m consecutive GSR shuffles can be constructed as

follows. Make space for 2m piles of cards on the table and place your deck of cards face up. Pick
the cards one by one and place each of them face down onto one of the 2m piles chosen uniformly
and independently for each card. Finally, put each of the piles on top of each other starting with
the first one. Using this characterisation of the inverse of m consecutive GSR shuffles, we will
now give an explicit formula for the probability of m shuffles producing a given permutation σ. In
order to state the formula, we introduce the concept of “rising sequences” for a permutation σ.

Definition 3.34 A rising sequence for a permutation σ of N elements is a collection of consecu-
tive indices A ⊂ {1, . . . , N} such that σ is increasing on A. A rising sequence is maximal if it is
not contained in any other rising sequence. The number of rising sequences of a given permutation
is denoted by R(σ).
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Example 3.35 Consider the shuffle that brings an ordered deck of 5 cards in the configuration
(2, 4, 1, 5, 3). We associate to it the permutation σ(1) = 3, σ(2) = 1, σ(3) = 5, σ(4) = 2,
σ(5) = 4. This permutation contains three maximal rising sequences, {1}, {2, 3}, and {4, 5}, so
that R(σ) = 3. Note that even though σ is increasing on {2, 4, 5}, this is not a rising sequence
because the indices are not consecutive.

Theorem 3.36 The probability that m GSR shuffles of a deck of n cards produce a given permu-
tation σ is given by

P (σ) =
1

2mn

(
2m + n−R(σ)

n

)
, (3.11)

where we use the convention
(
a
b

)
= 0 if a < b.

Proof. Take the example of n = 5, m = 2 and σ as in Example 3.35. In this case, we want to find
a sequence of 2 inverse GSR shuffles that map (2, 4, 1, 5, 3) into (1, 2, 3, 4, 5). An inverse GSR
shuffle is characterised in this case by a sequence of numbers Ni ∈ {1, . . . , 4} which say in which
pile the card i ends up. There are obviously 2nm such inverse shuffles. In order to get a perfectly
ordered card deck at the end, one certainly needs that Ni ≤ Nj if i ≤ j. Furthermore, we need in
our example that N1 6= N2 and that N3 6= N4. In this particular case, the list of all possible GSR
shuffles (written in the format (N1N2N3N4N5)) that produce the right permutation is thus given
by

(12233) (12344) (12234) (12244) (13344) (23344) .

This is consistent with (3.11) which predicts
(

4+5−3
5

)
= 6.

In the general case, the number of GSR shuffles which yields a given permutation σ is given
by the number of increasing functions N : {1, . . . , n} → {1, . . . , 2m} that have jumps of size at
least 1 at R(σ) − 1 prescribed places. Of course no such function exists if R(σ) > 2m, which is
consistent with the convention taken in (3.11). Subtracting the function that jumps by 1 at these
places, this is the same as the number of increasing functions N : {1, . . . , n} → {1, . . . , 2m+ 1−
R(σ)}. If we use the convention N (0) = 1 and N (n+ 1) = 2m + 1−R(σ) and count jumps with
multiplicities, such a function has exactly 2m − R(σ) jumps. We can therefore represent it by a
sequence of n zeroes and 2m − R(σ) ones, where having k ones between the ith and the jth zero
means that N (j)−N (i) = k. The number of such sequences is obviously given by

(
2m+n−R(σ)

n

)
and the result follows since every inverse GSR shuffle is equally likely.

We can now give the idea of the proof of Theorem 3.33. One has

‖Pmδe − π‖1 =
1

n!

∑
σ

∣∣∣∣1− n!

2mn

(
2m + n−R(σ)

n

)∣∣∣∣ =
1

n!

∑
σ

∣∣∣∣1− (2m + n−R(σ))!
2mn(2m −R(σ))!

∣∣∣∣
=

1

n!

∑
σ

∣∣∣∣1− n∏
k=1

2m + k −R(σ)
2m

∣∣∣∣ =
1

n!

∑
σ

∣∣∣∣1− n∏
k=1

(
1 +

k −R(σ)
2m

)∣∣∣∣ .
Since, ifm is large, the term k−R(σ)

2m is small, one can arguably use the approximation
∏
i(1+xi) ≈

1 +
∑
i xi, which is valid if the xi are small. One gets

‖Pmδe − π‖1 ≈
1

n!

∑
σ

∣∣∣∣ n∑
k=1

k −R(σ)
2m

∣∣∣∣ ≈ n

n!

∑
σ

∣∣∣∣n/2−R(σ)
2m

∣∣∣∣ =
n

2m
E
∣∣∣n
2
−R(σ)

∣∣∣ ,

where the expectation is taken with respect to the uniform measure on the set of all permutations
σ.
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At this point, it is not obvious how to proceed. It has been proven however that the probability
(under the uniform measure) that R(σ) = m is exactly given by the probability that the sum of n
i.i.d. uniform [0, 1]-valued random variables is between m and m+ 1. Therefore, the central limit
applies and shows that, for large values of n, the expression n

2 − R(σ) is approximately normal
with variance n. This implies that

‖Pmδe − π‖1 ≈
n3/2

2m
.

As a consequence, one needsm� 3
2 log2 n to make this distance small, which is exactly the result

of Bayer and Diaconis.

4 Invariant measures in the general case

4.1 Reversible and stationary Markov processes
Recall that, given a transition probability P on a space X , we associate to it the operator T acting
on finite signed measures on X by

(Tµ)(A) =

∫
X
P (x,A)µ(dx) .

A probability measure π is said to be invariant for P if Tπ = π.
In general, given a transition probability P and a corresponding invariant measure π, one can

construct a measure Pπ on the space of biinfinite sequences X Z in the following way. Given any
positive number n > 0, we define a measure Pnπ on X 2n+1 by∫

f (x−n, . . . , xn) Pnπ(dx) = (4.1)∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)P (xn−1, dxn) · · ·P (x−n, dx1−n)π(dx−n) .

It is an easy, although tedious, exercise to check that the family of measures on X 2n+1 defined by
(4.1) is consistent, so that it defines a unique measure on X Z by Kolmogorov’s extension theorem,
Theorem 2.37. We define on X Z the family {θn} of shift maps and the time-reversal map % by

(%(x))k = x−k , (θn(x))k = xk+n .

Note that one has the group property θk ◦ θ` = θk+`, so that the family of maps θn induces a
natural action of Z on X Z. With these two maps at hand, we give the following definitions:

Definition 4.1 A probability measure P on X Z is said to define a stationary process if θ∗nP = P
for every n ∈ Z.

Definition 4.2 A probability measure P on X Z is said to define a reversible process if %∗P = P.

In other words, a stationary process is one where, statistically speaking, every time is equiva-
lent. A reversible process is one which looks the same whether time flows forward or backward.
We have the following results:

Lemma 4.3 The measure Pπ defined above defines a stationary Markov process.
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Proof. It is sufficient to check that∫
f (x−n, . . . , xn−1) Pnπ(dx) =

∫
f (x1−n, . . . , xn) Pnπ(dx) ,

for every f :X 2n → R. We have∫
f (x−n, . . . , xn−1) Pnπ(dx)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn−1)P (xn−2, dxn−1) · · ·P (x−n, dx1−n)π(dx−n)

=

∫
X

∫
X
· · ·
∫
X
f (x1−n, . . . , xn)P (xn−1, dxn) · · ·P (x1−n, dx2−n)π(dx1−n)

=

∫
X

∫
X
· · ·
∫
X
f (x1−n, . . . , xn)P (xn−1, dxn) · · ·P (x1−n, dx2−n)P (x−n, dx1−n)π(dx−n)

=

∫
f (x1−n, . . . , xn) Pnπ(dx) .

Here we went from the second to the third line by just renaming variables. We went from the third
to the fourth line by using the invariance of π, namely that

∫
X P (x,A)π(dx) = π(A).

It turns out that, for Markov processes, there is an easy criteria that allows to check whether a
given process is reversible or not. In order to state it, define %:X 2 → X 2 by %(x, y) = (y, x), and
write Pπ for the measure on X 2 given by

(Pπ)(A×B) =

∫
A
P (x,B)π(dx) . (4.2)

With this notation, we have

Theorem 4.4 Consider a stationary Markov process x with transition probabilities P and invari-
ant measure π. Suppose that there exist transition probabilities Q such that %∗(Pπ) = Qπ. Then,
the process yn = x−n is a stationary Markov process with transition probabilitiesQ and invariant
measure π.

Proof. Note that the assumption is just another way of saying that∫
f (x, y)P (x, dy)π(dx) =

∫
f (x, y)Q(y, dx)π(dy) ,

for every measurable and integrable function f :X 2 → R. We therefore have∫
f (x−n, . . . , xn) Pnπ(dx)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)P (xn−1, dxn) · · ·P (x−n, dx1−n)π(dx−n)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)P (xn−1, dxn) · · ·P (x1−n, dx2−n)Q(x1−n, dx−n)π(dx1−n)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)P (xn−1, dxn) · · ·Q(x1−n, dx−n)P (x1−n, dx2−n)π(dx1−n)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)P (xn−1, dxn) · · ·Q(x1−n, dx−n)Q(x2−n, dx1−n)π(dx2−n) .
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Proceeding in the same fashion, we finally arrive at∫
f (x−n, . . . , xn) Pnπ(dx)

=

∫
X

∫
X
· · ·
∫
X
f (x−n, . . . , xn)Q(x1−n, dx−n) · · ·Q(xn, dxn−1)π(dxn)

=

∫
f (x−n, . . . , xn) (%∗Qn

π)(dx) ,

where we denoted by Qπ the law of the stationary Markov process with transition probabilities Q
and invariant measure π. This shows that Pπ = %∗Qπ and therefore that %∗Pπ = Qπ, which is the
desired result.

We get as an immediate corollary:

Corollary 4.5 The measure Pπ defined above defines a reversible Markov process if and only if
one has %∗(Pπ) = Pπ.

Proof. It is obvious that the condition is necessary since otherwise the law of (x0, x1) would be
different from the law of (x1, x0) under Pπ. The sufficiency follows from the above theorem since
on can take Q = P .

Note that in the case where X is countable, the condition (4.2) can be written as

Pijπj = Pjiπi (4.3)

for every pair i, j. Summing over j in (4.3) or choosing B = X in (4.2), we see that if there exists
a probability measure π such that (4.2) holds, then this measure is automatically an invariant
measure for P . This allows one to easily ‘guess’ an invariant measure if one believes that a given
process is reversible by using the equality

πi
πj

=
Pij
Pji

.

Closer inspection of this equation allows to formulate the following equivalent characterisation for
reversibility:

Lemma 4.6 An irreducible Markov process on a finite state space with transition probabilities P
is reversible with respect to some measure π if and only if one has

Pi1inPinin−1 · · ·Pi3i2Pi2i1 = Pini1Pi1i2 · · ·Pin−2in−1Pin−1in (4.4)

for every n and every sequence of indices i1, . . . , in.

In other words, such a process is reversible if and only if the product of the transition prob-
abilities over any loop in the incidence graph is independent of the direction in which one goes
through the loop.

Proof. In order to show that the condition is necessary, let us consider the case n = 3. One has

Pi1i3Pi3i2Pi2i1πi1 = Pi1i3Pi3i2Pi1i2πi2 = Pi1i3Pi2i3Pi1i2πi3 = Pi3i1Pi2i3Pi1i2πi1 .
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Since the process is irreducible, we can divide by πi1 on both sides and get the desired equality.
The proof for arbitrary n works in exactly the same way.

Let us now show that the condition is sufficient. Fix one particular point in the state space, say
the point 1. Since the process is irreducible, we can find for every index i a path i1, . . . , in in the
incidence graph connecting 1 to i (we set i1 = 1 and in = i). We then define a measure π on the
state space by

πi =
Pinin−1

Pin−1in

Pin−1in−2

Pin−2in−1

· · · Pi2i1
Pi1i2

.

Note that (4.4) ensures that this definition does not depend on the particular path that was chosen.
Since our state space is finite, one can then normalise the resulting measure in order to make it a
probability measure. Furthermore, one has

Pjiπi
Pijπj

=
Pji
Pij
·
Pinin−1

Pin−1in

Pin−1in−2

Pin−2in−1

· · · Pi2i1
Pi1i2

·
Pjn−1jn

Pjnjn−1

Pjn−2jn−1

Pjn−1jn−2

· · · Pj1j2
Pj2j1

. (4.5)

Since we have i = in, j = jn, and i1 = j1, the path i1, . . . , in, jn, . . . , j1 forms a closed loop and
the ratio in (4.5) is equal to 1. This shows that the process is indeed reversible with respect to π
(and therefore that π is its invariant measure).

Example 4.7 Let α ∈ (0, 1) and β > 0 be some fixed constants and let {ξn} be a sequence of
i.i.d. N (0, 1) random variables. Define a Markov process on R by the recursion relation

xn+1 = αxn + βξn .

It is immediate that π = N (0, β2/(1 − α2)) is an invariant measure for this process (in fact it is
the only one). The measure Pπ is given by

(Pπ)(dx, dy) = C exp
(
− (1− α2)x2

2β2
− (y − αx)2

2β2

)
dx dy

= C exp
(
−x

2 + y2 − 2αxy

2β2

)
dx dy ,

for some constant C. It is clear that this measure is invariant under the transformation x ↔ y, so
that this process is reversible with respect to π. This may appear strange at first sight if one bases
one’s intuition on the behaviour of the determinstic part of the recursion relation xn+1 = αxn.

Example 4.8 Let L > 0 be fixed and let X be the interval [0, L] with the idntification 0 ∼ L (i.e.
X is a circle of perimeter L). Let {ξn} be again a sequence of i.i.d. N (0, 1) random variables and
define a Markov process on X by

xn+1 = xn + ξn (mod L) .

In this case, an invariant probability measure is given by the multiple of the Lebesgue measure
π(dx) = dx/L, and the transition probabilities are given by

P (x, dy) = C
∑
n∈Z

exp
(
− (y − x− nL)2

2

)
dy .

Since this density is symmetric under the exchange of x and y, the process is reversible with
respect to the Lebesque measure.
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Example 4.9 Let (V,E) be a non-oriented connected graph and let x be a random walk on V
defined in the following way. Let us fix a function p:V → (0, 1). If xn = v ∈ V , then xn+1

is equal to v with probability p(v) and to one of the kv adjacent edges to v with probability (1 −
p(v))/k(v). In this case, the measure π(v) = ck(v)/(1 − p(v)) is invariant and the process is
reversible with respect to this measure.

Finally, let us note that if a Markov process with transition probabilities P is reversible with
respect to some probability measure π, then the operator T? is symmetric when viewed as an
operator on L2(X , π).

4.2 Existence of invariant measures
In the previous section, we have seen that a Markov process on a finite state space always has (at
least) one invariant probability measure π.

In the case of an infinite state space, this is no longer true. Consider for example the simpe
random walk on Z. This process is constructed by choosing a sequence {ξn} of i.i.d. random
variables taking the values {±1} with equal probabilities. One then writes x0 = 0 and xn+1 =
xn + ξn. A probability measure π on Z is given by a sequence of positive numbers πn such that∑∞
n=−∞ πn = 1. The invariance condition for π shows that one should have

πn =
πn+1 + πn−1

2
, (4.6)

for every n ∈ Z. A moment of reflection shows that the only positive solution to (4.6) with the
convention π0 = 1 is given by the constant solution πn = 1 for every n (exercise: prove it). Since
there are infinitely many values of n, this can not be normalised as to give a probability measure.

Intuitively, this phenomenon can be understood by the fact that the random walk tends to make
larger and larger excursions away from the origin. In the following subsection, we make this
intuition clear by formulating a condition which guarantees the existence of invariant measures
for a Markov process on a general state space.

4.3 Weak convergence and Prokhorov’s theorem
Recall first of all the following definition:

Definition 4.10 A metric space X is called separable if it has a countable dense subset.

Example 4.11 Examples of separable spaces are Rn (take points with rational coordinates) and
Lp(Rn) for every n and every p ∈ [1,∞) (take functions of the form P (x)e−|x|

2
where P is a

polynomial with rational coefficients).

Remember that a sequence µn of probability measures on a topological space X is said to
converge weakly to a probability measure µ if

lim
n→∞

∫
X
ϕ(x)µn(dx) =

∫
X
ϕ(x)µ(dx) , (4.7)

for every bounded and continuous function ϕ:X → R. Note that the speed of the convergence in
(4.7) is allowed to depend on ϕ.

Example 4.12 If {xn} is a sequence of elements converging to a limit x, then the sequence δxn
converges weakly to δx. In this sense the notion of weak convergence is a natural extension of the
notion of convergence on the underlying space X .
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The aim of this section is to give a ‘compactness’ theorem that provides us with a very useful
criteria to check whether a given sequence of probability measures has a convergent subsequence.
In order to state this criteria, let us first introduce the notion of ‘tightness’:

Definition 4.13 LetM⊂ P(X ) be an arbitrary subset of the set of probability measures on some
topological space X . We say thatM is tight if, for every ε > 0 there exists a compact set K ⊂ X
such that µ(K) ≥ 1− ε for every µ ∈M.

To see that this concept is not far-fetched consider the following:

Lemma 4.14 If X is a complete separable metric space andM consists of a single measure µ,
thenM is tight.

Loosely speaking, this lemma says that on every ‘reasonable’ space X , probability measures
concentrate on compact sets.

Proof. Let {ri} be a countable dense subset ofX and denote by B(x, r) the ball of radius r centred
at x. Fix ε > 0 and, for every integer n > 0, denote by Nn the smallest integer such that

µ
( ⋃
k≤Nn

B(rk, 1/n)
)
≥ 1− ε

2n
.

Note that since {rk} is a dense set, one has
⋃
k>0 B(rk, 1/n) = X , so that Nn is finite for every n.

Define now the set K as
K =

⋂
n≥0

⋃
k≤Nn

B(rk, 1/n) .

It is clear that µ(K) > 1 − ε. Furthermore, K is totally bounded, i.e. for every δ > 0 it can be
covered by a finite number of balls of radius δ (since it can be covered by Nn balls of radius 1/n).
It is a classical result from topology that in complete separable metric spaces, totally bounded sets
have compact closure.

On the other hand, one can show that:

Theorem 4.15 (Prohorov) Let {µn} be a tight sequence of probability measures on a complete
separable metric space X . Then, there exists a probability measure µ on X and a subsequence
µnk such that µnk → µ weakly.

In order to prove this theorem, we need the following little lemma, which is a special case of
Tychonoff’s theorem:

Lemma 4.16 Let {xn} be a sequence of elements in [0, 1]∞. Then, there exists a subsequence nk
and an element x ∈ [0, 1]∞ such that limk→∞ xnk (i)→ x(i) for every i.

Proof. Since [0, 1] is compact, there exists a subsequence n1
k and a number x(1) ∈ [0, 1] such that

limk→∞ xn1
k
(1)→ x(1). Similarly, there exists a subsubsequence n2

k of n1
k and a number x(2) such

that limk→∞ xn2
k
(2)→ x(2). One can iterate this construction to find a family of subsequences nik

and numbers x(i) such that
• xni

k
is a subsequence of xni−1

k
for every i.

• limk→∞ xni
k
(i)→ x(i) for every i.
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It now suffices to define nk = nkk. The sequence nk obviously tends to infinity. Furthermore, for
every i, the sequence {xnk (i)}k≥i is a subsequence of {xni

k
(i)}k≥0 and therefore converges to the

same limit x(i).

Proof of Prohorov’s theorem. We only give a sketch of the proof and only consider the case X =
R. Let ri be an enumeration of Q and write Fn for the distribution function of µn, i.e. Fn(x) =
µn((−∞, x]). Note that Fn is automatically right-continuous since (−∞, x] =

⋂
k>0(−∞, xk]

for every sequence xk converging to x from above. (It is not left-continuous in general since
if xk is a sequence converging to x from below, one has

⋃
k>0(−∞, xk] = (−∞, x) which is

not the same as (−∞, x]. As a generic counterexample, consider the case µ = δ and x = 0.)
Note that the right-continuity of Fn and the density of the points ri together imply that one has
Fn(x) = inf{Fn(ri) | ri > x} for every x. In other words, the values of Fn at the points ri are
sufficient to determine Fn.

Note furthermore that Fn(x) ∈ [0, 1] for every n and every x since we are considering
probability measures, so that we can associate to every function Fn an element F̃n in [0, 1]∞

by F̃n.i = Fn(ri). Since [0, 1]∞ is compact, there exists a subsequence F̃nk and an element
F̃ ∈ [0, 1]∞ such that limk→∞ F̃nk,i = F̃i for every i. Define a function F : R → [0, 1] by
F (x) = inf{F̃i | ri > x} for every x ∈ R. Then the function F has the following properties:

1. F is increasing.
2. F is right-continuous.
3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

The first and second claims follows immediately from the definition of F . Since the sequence of
measures {µn} is tight by assumption, for every ε > 0 there existsR > 0 such that Fn(R) ≥ 1−ε
and Fn(−R) ≤ ε for every n. Therefore F satisfies the same equalities so that the third claim
follows, so that F is the distribution function of some probability measure µ.

We now show that if F is continuous at some point x, then one actually has Fnk (x) → F (x).
The continuity of F at x implies that, for every ε > 0, we can find rationals ri and rj such that
ri < x < rj and such that F̃i > F (x) − ε and F̃j < F (x) + ε. Therefore, there exists N such
that F̃nk,i > F (x) − 2ε and F̃nk,j < F (x) + 2ε for every k ≥ N . In particular, the fact that the
functions Fn are increasing implies that |Fnk (x)−F (x)| ≤ 2ε for every k ≥ N and so proves the
claim.

Denote now by S the set of discontinuities of F . Since F is increasing, S is countable. We
just proved that µnk ((a, b])→ µ((a, b]) for every interval (a, b] such that a and b do not belong to
S. Fix now an arbitrary continuous function ϕ: R→ [−1, 1] and a value ε > 0. We want to show
that there exists an N such that |

∫
ϕ(x)µnk (dx)−

∫
ϕ(x)µ(dx)| < 7ε for every k ≥ N . Choose R

as above and note that the tightness condition implies that

∣∣∣∫ ϕ(x)µnk (dx)−
∫ R

−R
ϕ(x)µnk (dx)

∣∣∣ ≤ 2ε , (4.8)

for every n. The same bound also holds for the integral against µ. Since ϕ is uniformly continous
on [−R,R], there exists δ > 0 such that |ϕ(x)− ϕ(y)| ≤ ε for every pair (x, y) ∈ [−R,R]2 such
that |x − y| ≤ δ. Choose now an arbitrary finite strictly increasing sequence {xm}Mm=0 such that
x0 = −R, xM = R, |xm+1− xm| ≤ δ for every m, and xm 6∈ S for every m. Define furthermore
the function ϕ̃: on (−R,R] by ϕ̃(x) = xm whenever x ∈ (xm, xm+1]. Since ϕ̃ is a finite linear
combination of characteristic functions for intervals of the form considered above, there exists
N such that |

∫ R
−R ϕ̃(x)µnk (dx) −

∫ R
−R ϕ̃(x)µ(dx)| < ε for every k ≥ N . Putting these bounds
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together yields

∣∣∣∫ ϕ(x)µnk (dx)−
∫
ϕ(x)µ(dx)

∣∣∣ ≤ ∣∣∣∫ ϕ(x)µnk (dx)−
∫ R

−R
ϕ(x)µnk (dx)

∣∣∣
+
∣∣∣∫ ϕ(x)µ(dx)−

∫ R

−R
ϕ(x)µ(dx)

∣∣∣+ ∣∣∣∫ R

−R
ϕ̃(x)µnk (dx)−

∫ R

−R
ϕ(x)µnk (dx)

∣∣∣
+
∣∣∣∫ R

−R
ϕ̃(x)µ(dx)−

∫ R

−R
ϕ(x)µ(dx)

∣∣∣+ ∣∣∣∫ R

−R
ϕ̃(x)µnk (dx)−

∫ R

−R
ϕ̃(x)µ(dx)

∣∣∣
≤ 2ε+ 2ε+ ε+ ε+ ε ≤ 7ε ,

for every k ≥ N , thus concluding the proof.

This theorem allows us to give a very simple criteria for the existence of an invariant measure
for a given Markov process.

Theorem 4.17 (Krylov-Bogolubov) Let P be a Feller transition probability on a complete sepa-
rable metric space X . If there exists x ∈ X such that the sequence of measures {Pn(x, · )}n≥0 is
tight, then there exists an invariant probability measure for P .

Proof. Fix x as given by the assumptions and consider the sequenceQn of measures on X defined
by

Qn(A) =
1

n

n∑
k=1

P k(x,A) .

It is clear that this sequence is also tight, so it has a subsequence that converges weakly to some
probability measure π on X . Note furthermore that one has the equality

TQn −Qn =
1

n
(Pn+1(x, · )− P (x, · )) .

Let ϕ be any continuous function from X to R which is bounded by 1 and fix ε > 0. By
the definition of weak convergence, there exists a value n > 1/ε for which |

∫
ϕ(x)Qn(dx) −∫

ϕ(x)π(dx)| ≤ ε. Since T?ϕ is also continuous by assumption (we assumed that P was Feller),
we can choose n sufficiently large so that |

∫
T?ϕ(x)Qn(dx) −

∫
T?ϕ(x)π(dx)| ≤ ε as well. We

then have∣∣∣∫ ϕ(x) (Tπ)(dx)−
∫
ϕ(x)π(dx)

∣∣∣ ≤ ∣∣∣∫ ϕ(x) (Tπ)(dx)−
∫
ϕ(x) (TQn)(dx)

∣∣∣
+
∣∣∣∫ ϕ(x) (TQn)(dx)−

∫
ϕ(x)Qn(dx)

∣∣∣+ ∣∣∣∫ ϕ(x)Qn(dx)−
∫
ϕ(x)π(dx)

∣∣∣
≤
∣∣∣∫ (T?ϕ)(x)π(dx)−

∫
(T?ϕ)(x)Qn(dx)

∣∣∣
+

1

n

∣∣∣∫ ϕ(y) (Pn+1)(x, dy)−
∫
ϕ(y)P (x, dy)

∣∣∣+ ε

≤ 2ε+
2

n
≤ 4ε .

Since ε was arbitrary, this means that |
∫
ϕ(x) (Tπ)(dx) −

∫
ϕ(x)π(dx)| = 0. Since ϕ was also

arbitrary, this in trun implies that Tπ = π, i.e. that π is an invariant measure for our system.

As an immediate consequence, we have that
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Corollary 4.18 If the space X is compact, then every Feller semigroup on X has an invariant
probability measure.

Proof. On a compact space, every family of probability measures is tight.

Remark 4.19 Note that the completeness ofX is essential in all the previous arguments. Consider
for example the Markov process defined on (0, 1) by the recursion relation xn+1 = xn/2. It
obviously doesn’t have an invariant measure on the open interval (0, 1), even though it defines a
perfectly valid Feller semigroup on (0, 1) equipped with the topology inherited from R.

One simple way of checking that the tightness condition of the Krylov-Bogolubov theorem
holds is to find a so-called Lyapunov function for the system:

Definition 4.20 Let X be a complete separable metric space and let P be a transition probability
on X . A Borel measurable function V :X → R+ ∪ {∞} is called a Lyapunov function for P if
it satisfies the following conditions:
• V −1(R+) 6= 6#, in other words there are some values of x for which V (x) is finite.
• For every c ∈ R+, the set V −1({x ≤ c}) is compact.
• There exists a positive constant γ < 1 and a constant C such that∫

X
V (y)P (x, dy) ≤ γV (x) + C ,

for every x such that V (x) 6=∞.

With this definition at hand, it is now easy to prove the following result:

Theorem 4.21 If a transition probability P is Feller and admits a Lyapunov function, then it also
has an invariant probability measure.

Proof. Let x ∈ X be any point such that V (x) 6= ∞, and consider the sequence of measures
{Pn(x, · )}. Defining Vn =

∫
X V (y)Pn(x, dy), we then have the inequalities:

Vn ≤ γVn−1 + C ≤ γ(γVn−2 + C) + C ≤ . . . ≤ γnV (x) +
C

1− γ
≤ V (x) +

C

1− γ
. (4.9)

Therefore, there exists a constant C̃ such that Vn ≤ C̃ for every n ≥ 0. Let now ε > 0 and
denote by Kc the family of compact sets {x |V (x) ≤ c}. Tchebycheff’s inequality shows that
Pn(x,Kc) ≥ 1 − C̃/c. It thus suffices to choose K = Kc with c = ε/C̃ to have a compact set
such that Pn(x,K) ≥ 1− ε for every n ≥ 0.

It remains to find an effective criteria for the transition probabilities to be Feller. We have the
following:

Theorem 4.22 Let x be a Markov process defined by a recursion relation of the type

xn+1 = F (xn, ξn) ,

for {ξn} a sequence of i.i.d. random variables taking values in a measurable space Ω and F :X ×
Ω → X . If the function F (·, ξ):X → X is continuous for almost every realisation of ξ, then the
corresponding transition semigroup is Feller.
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Proof. Denote by P the law of ξn on Ω and by ϕ:X → X an arbitrary continuous bounded
function. It follows from the definition of the transition semigroup T? that

(T?ϕ)(x) =

∫
Ω
ϕ(F (x, ξ)) P(dξ) .

Let now {xn} be a sequence of elements inX converging to x. Lebesgue’s dominated convergence
theorem shows that

lim
n→∞

(T?ϕ)(xn) = lim
n→∞

∫
Ω
ϕ(F (xn, ξ)) P(dξ) =

∫
Ω

lim
n→∞

ϕ(F (xn, ξ)) P(dξ)

=

∫
Ω
ϕ(F (x, ξ)) P(dξ) = (T?ϕ)(x) ,

which implies that T?ϕ is continuous and therefore that T? is Feller.

Combining all of the above yields:

Corollary 4.23 Let x be a Markov process defined by a recursion relation of the type

xn+1 = F (xn, ξn) ,

for {ξn} a sequence of i.i.d. random variables taking values in a measurable space Ω and F :X ×
Ω→ X . If there exists a function V :X → X with compact level sets and constants γ ∈ (0, 1) and
C > 0 such that ∫

Ω
V (F (x, ξ)) P(dξ) ≤ γV (x) + C , ∀x ∈ X ,

then the process x has at least one invariant probability measure on X .

The proof of the previous theorem suggests that if a Markov process has a Lyapunov function
V , then its invariant measures should satisfy the bound

∫
V (x)π(dx) ≤ C/(1 − γ), where C

and γ are the constants appearing in (4.9). This is indeed the case, as shown by the following
proposition:

Proposition 4.24 Let P be a transition probability on X and let V :X → R+ be a measurable
function such that there exist constants γ ∈ (0, 1) and C ≥ 0 with∫

X
V (y)P (x, dy) ≤ γV (x) + C .

Then, every invariant measure π for P satisfies∫
X
V (x)π(dx) ≤ C

1− γ
.

Proof. LetM ≥ 0 be an arbitrary constant. As a shorthand, we will use the notation a∧b to denote
the minimum between two numbers a and b. One then has the following chain of inequalities:∫
X

(V (x) ∧M)π(dx) =

∫
X

(V (x) ∧M) (Tπ)(dx) =

∫
X

(T?(V ∧M))(x)π(dx)

=

∫
X

∫
X

(V (y) ∧M)P (x, dy)π(dx) ≤
∫
X

((γV (x) + C) ∧M)π(dx)
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Iterating this estimate, one finds that∫
X

(V (x) ∧M)π(dx) ≤
∫
X

((γnV (x) + C
1−γ ) ∧M)π(dx)

for every n ≥ 0. Since the function on the right hand side is bounded by M , we can apply the
Lebesgue dominated convergence theorem. It yields the bound∫

X
(V (x) ∧M)π(dx) ≤ C

1− γ
,

which holds uniformily in M , and the result follows.

4.4 Uniqueness of the invariant measure due to deterministic contraction
In this section, we give a very simple criteria for the uniqueness of the invariant measure for a
given system.

Theorem 4.25 Consider a Markov process defined by a recursion relation of the type

xn+1 = F (xn, ξn) , (4.10)

for {ξn} a sequence of i.i.d. random variables taking values in a measurable space Ω and F :X ×
Ω→ X . If there exists a constant γ ∈ (0, 1) such that

Ed(F (x, ξ), F (y, ξ)) ≤ γd(x, y) , (4.11)

for every pair x, y in X , then the process (4.10) has at most one invariant probability measure.

Proof. Let π1 and π2 be any two invariant measures for (4.10) and let x0 and y0 be two independent
X -valued random variables with respective laws π1 and π2. Let {ξn} be an independent sequence
of i.i.d. random variables as in the statement of the theorem and define xn and yn recursively via
(4.10).

We have the inequality

E(1 ∧ d(xn, yn) | Fn) = E(1 ∧ d(F (xn−1, ξ), F (yn−1, ξ))) ≤ 1 ∧ γd(xn−1, yn−1) .

Iterating this bound in the same way as in the proof of Proposition 4.24, we obtain

E(1 ∧ d(xn, yn)) ≤ E(1 ∧ γnd(x0, y0)) . (4.12)

Denote now by µn the joint law of (xn, yn) in X 2 and define the projection maps Gi:X 2 → X
by G1(x, y) = x and G2(x, y) = y. Since the measures πi are invariant, we have G∗iµn = πi for
i = 1, 2 and for every n ≥ 0. In order to show that the sequence µn is tight, fix ε > 0. We know
from Lemma 4.14 that there exist compact setsK1 andK2 in X such that πi(Ki) ≥ 1−ε (in other
words πi(X \Ki) < ε). Therefore

µn(K1×K2) = 1−µn(X 2 \K1×K2) ≥ 1−µn(X × (X \K2))−µn((X \K1)×X ) ≥ 1− 2ε ,

so that the sequence µn is tight. This implies that there exists a measure µ and a subsequence nk
such that µnk → µ weakly. Since 1 ∧ d is continuous, one has∫

(1∧d(x, y))µ(dx, dy) = lim
k→∞

∫
(1∧d(x, y))µnk (dx, dy) ≤ lim

k→∞

∫
(1∧γnkd(x, y))µ0(dx, dy) ,



INVARIANT MEASURES IN THE GENERAL CASE 34

where the second inequality is nothing but (4.12). Note now that 1 ∧ dn converges pointwise to 0
and is bounded by 1, so that Lebesgue’s dominated convergence theorem yields∫

(1 ∧ d(x, y))µ(dx, dy) = 0 ,

so that µ(∆) = 1, where ∆ = {(x, x) |x ∈ X} is the ‘diagonal’ in X 2. Since the Gi are
continuous, one has again G∗iµ = πi, so that

π1(A) = µ(A×X ) = µ((A×X ) ∩∆) = µ(A×A) = µ((X ×A) ∩∆) = π2(A) ,

implying π1 = π2. Since the πi were arbitrary invariant measures, this shows that there can be
only one of them.

There are situations (we will see one of them immediately) where (4.11) only holds for x and
y in some subset A of X , but where A has the property of eventually ‘absorbing’ every trajectory.
This motivates the following discussion.

If there exists a closed setA ⊂ X such that P (x,A) = 1 for every x ∈ A, then one can restrict
the original Markov process to a process on A. In this situation, we say that A is invariant for P .
It then suffices to check (4.11) for x and y inA to conclude that the process has a unique invariant
measure in P(A). In this case, one would like to have a criteria that ensures that every invariant
measure for P is in P(A). Consider the sequence An of sets recursively defined by

A0 = A , An+1 = {x ∈ X |P (x,An) > 0} . (4.13)

With these definitions, we have

Proposition 4.26 LetA be an invariant set for P and letAn be defined as in (4.13). If
⋃
n≥0An =

X , then every invariant measure π for P is in P(A).

Proof. We first show recursively that Pn(x,A) > 0 for every x ∈ An. The statement is true by
assumption for n = 0. Suppose that it is also true for n = k − 1 and let x be an arbitrary element
in Ak. One then has

P k(x,A) =

∫
X
P k−1(y,A)P (x, dy) ≥

∫
Ak−1

P k−1(y,A)P (x, dy) > 0 .

The last inequality follows from the fact that the function y 7→ P k−1(y,A) is strictly positive on
Ak−1 by construction and P (x,Ak−1) > 0 by the definition of Ak.

Suppose now that π(A) < 1. Since
⋃
n≥0An = X and obviously π(X ) = 1, there must exist

n > 0 such that π(An \ A) > 0. Since Tnπ = π by the invariance of π, this implies that

π(A) =

∫
X
Pn(x,A)π(dx) ≥

∫
A
Pn(x,A)π(dx) +

∫
An\A

Pn(x,A)π(dx) > π(A) ,

where the last inequality follows from the fact that π(An \ A) > 0 and Pn(x,A) > 0 for every
x ∈ An. This is a contradiction, so that one must have π(A) = 1.

Let us conclude this section by a complete treatment of the following example:
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Proposition 4.27 Let x be the Markov process on R+ such that xn+1 is given by the solution at
time 1 to the differential equation

dx

dt
=

1

x(t)
− 2 + ξn(t) , x(0) = xn , (4.14)

for a sequence of i.i.d. C([0, 1],R)-valued random variables {ξn} such that supt∈[0,1] |ξn(t)| ≤ 1
almost surely. Then, this process has a unique invariant measure π. Furthermore, π satisfies
π([1/3, 1]) = 1.

Proof. Denote by Φ the solution map to (4.14), so that xn+1 = Φ(xn, ξn). Denote furthermore by
Φ+ the map that solves (4.14) with ξn(t) = 1 for all t and by Φ− the map that solves (4.14) with
ξn(t) = −1 for all t. Then, a standard comparison argument shows that xn+1 ∈ [Φ−(xn),Φ+(xn)]
almost surely.

Fix ε > 0, and define A = [1/3 − ε, 1 + ε]. With this definition, one has [Φ−n− (1/3 −
ε),Φ−n+ (1 + ε)] ⊂ An, where we set Φ−n− (x) = 0 if x has no preimage under Φn

−. Since
limn→∞Φn

−(x) = 1/3 and limn→∞Φn
+(x) = 1 for every x ∈ R+, it is clear that

⋃
n≥0An = R+

so that Proposition 4.26 applies. Since this was true for every ε > 0, one must actually have
π([1/3, 1]) = 1.

Denote now by Φ′ the derivative of Φ with respect to x. We know from the elementary prop-
erties of differential equations that Φ′(xn, ξn) is the solution at time 1 to the differential equation

dy

dt
= − y(t)

x2(t)
, y(0) = 1 ,

where x is the solution to (4.14). This equation can be solved explicitly, so that

Φ′(xn, ξn) = exp
(
−
∫ 1

0

dt

x2(t)

)
.

This shows that the map Φ is continuous in x (actually even differentiable), so that the correspond-
ing transition operator is Feller. Since [1/3, 1] is compact, this in turn implies that it has at least
one invariant probability measure. Furthermore, one has |Φ′(x, ξ)| ≤ 1/e < 1 for every x ≤ 1, so
that Theorem 4.25 applies.

4.5 Uniqueness of the invariant measure due to probabilistic effects
In this section, we give another simple criteria for the uniqueness of the invariant measure of a
Markov transition operator which is based on completely different mechanisms from the previous
section. The result presented in the previous section only used the contractive properties of the
map F in order to prove uniqueness. This was very much in the spirit of the Banach fixed point
theorem and can be viewed as a purely ‘deterministic’ effect. The criteria given in this section is
much more probabilistic in nature and can be viewed as a strong form of irreducibility.

The criteria in this section will also be based on Banach’s fixed point theorem, but this time in
the space of probability measures. The ‘right’ distance between probability measures that makes
it work is the total variation distance defined in the following way.

Given two positive measures µ and ν on a measurable space Ω, we denote by Dµ and Dν their
Radon-Nikodym derivatives with respect to the measure µ+ ν. It is easy to check that both µ and
ν are absolutely continuous with respect to µ+ν, so that these derivatives exist. With this notation
in mind, we then define

‖µ− ν‖TV ≡
∫

Ω
|Dµ(w)−Dν(w)| (µ+ ν)(dw) . (4.15)
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Note that this distance does not depend on the choice of reference measure. In other words, if η is
an arbitrary positive measure on Ω such that both µ and ν are absolutely continuous with respect
to η (with respective derivatives D̃µ and D̃ν), then one has

‖µ− ν‖TV =

∫
Ω
|D̃µ(w)− D̃ν(w)| η(dw) . (4.16)

This follows immediately from the fact that in this case one has D̃µ = Dµ(D̃µ + D̃ν) and D̃ν =
Dν(D̃µ + D̃ν), and therefore |D̃ν − D̃µ| = |Dν −Dµ|(D̃µ + D̃ν).

Given two positive measures µ and ν, we denote by µ ∧ ν the measure obtained by

(µ ∧ ν)(A) =

∫
A

min{Dµ(w),Dν(w)} (µ+ ν)(dw) .

Since, for any two positive numbers, one has |x− y| = x+ y − 2 min{x, y}, the definition (4.15)
immediately implies that if µ and ν are two probability measures, one has

‖µ− ν‖TV = 2− 2(µ ∧ ν)(Ω) . (4.17)

Note also that

Lemma 4.28 The space of probability measures on Ω endowed with the total variation distance
‖ · ‖TV is complete.

Proof. Let µn be a sequence of probability measures that is Cauchy in the total variation distance
and let η be defined by η =

∑
n>0 2−nµn. Then each of the µn is absolutely continuous with

respect to η. By (4.16), the total variation distance is equal to the L1 distance between the corre-
sponding Radon-Nikodym derivatives. The result thus follows from the completeness of L1(Ω, η).

We are now in a position to formulate the criteria announced at the beginning of this section.

Theorem 4.29 Let P be a transition probability on a space X . Assume that there exists α > 0
and a probability measure η on X such that P (x, · ) ≥ αη for every x ∈ X . Then, P has a unique
invariant measure π.

Proof. Note first that the assumption implies that Tµ ≥ αη for every probability measure µ on X .
We can therefore define probability measures T̄ µ by

Tµ = αη + (1− α)T̄ µ . (4.18)

Let µ and ν now be two arbitrary probability measures on X . Using (4.17), we can define the
probability measures µ̄ and ν̄ by

µ = µ ∧ ν +
‖µ− ν‖TV

2
µ̄ , ν = µ ∧ ν +

‖µ− ν‖TV

2
ν̄ .

One then has

‖Tµ− Tν‖TV = ‖T µ̄− T ν̄‖TV
‖µ− ν‖TV

2
.

It follows from the definition (4.18) that

‖T µ̄− T ν̄‖TV = ‖αη + (1− α)T̄ µ̄− αη − (1− α)T̄ ν̄‖TV
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= (1− α)‖T̄ µ̄− T̄ ν̄‖ ≤ 2(1− α) ,

where we used the fact that the total variation distance between two probability measures can
never exceed 2. Combining these bounds yields

‖Tµ− Tν‖TV ≤ (1− α)‖µ− ν‖TV ,

so that T is a contraction. The result now follows from Banach’s fixed point theorem.

5 Structure theorem for invariant measures

In this section, we prove a general structure theorem for Markov processes that gives us a better
understanding of what the set of invariant probability measures can look like. Since for any two
invariant measures π1 and π2 for a given transition operator T , any convex combination of the
type tπ1 + (1− t)π2 with t ∈ [0, 1] is again an invariant measure for T , the set I(T ) of invariant
probability measures for T is obviously convex. If T is Feller, then it is a continuous map from
P(X ) to P(X ) in the topology of weak convergence. Therefore, if πn is a sequence of invariant
measures converging weakly to a limit π, one has

Tπ = T lim
n→∞

πn = lim
n→∞

Tπn = lim
n→∞

πn = π ,

so that π is again an invariant probability measure for T . This shows that if T is Feller, then the
set I(T ) is closed (in the topology of weak convergence).

Remark 5.1 If T is not Feller, it is not true in general that I(T ) is closed. Choose for example an
arbitrary measure µ on R+ and consider the transition probabilities given by

P (x, · ) =

{
δx if x < 0
µ if x ≥ 0.

In this case, δx ∈ I(T ) for every x < 0, but δ0 6∈ I(T ).

Before we get to the “meat” of this section, let us make a short excursion into deterministic
ergodic theory.

5.1 Ergodic theory for dynamical systems
Recall that a dynamical system consists of a probability space (Ω,F ,P) and a measurable mea-
sure preserving map θ: Ω→ Ω, i.e. a map such that P(θ−1(A)) = P(A) for every A ∈ F . We will
denote as usual by E expectations with respect to P.

Given such a dynamical system, we define I ⊂ F as the set of subsets such that θ−1(A) = A.
It is clear that I is again a σ-algebra. The perhaps most famous result in the theory of dynamical
systems is

Theorem 5.2 (Birkhoff’s Ergodic Theorem) Let (Ω,F ,P, θ,I ) be as above and let f : Ω→ R
be such that E|f | <∞. Then,

lim
N→∞

1

N

N−1∑
n=0

f (θnω) = E(f |I )

almost surely.
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remember that a dynamical system is said to be ergodic if all sets in I have either measure 0
or measure 1. Note that this is a property of the map θ as well as of the measure P.

Corollary 5.3 With the notations of Theorem 5.2, if the dynamical system is ergodic, then

lim
N→∞

1

N

N−1∑
n=0

f (θnω) = Ef

almost surely.

Proof of the corollary. By definition, the function f̄ ≡ E(f |I ) is I -measurable. Define the sets
A+ = {ω ∈ Ω | f̄ (ω) > Ef̄}, A− = {ω ∈ Ω | f̄ (ω) < Ef̄}, and A0 = {ω ∈ Ω | f̄ (ω) = Ef̄}. All
three sets belong to I and they form a partition of Ω. Therefore, exactly one of them has measure
1 and the other two must have measure 0. If it was A+, one would have Ef̄ =

∫
A+

f (ω) P(dω) >
Ef̄ , which is a contradiction and similarly for A−. This implies that P(A0) = 1, and so P(f̄ =
Ef̄ ) = 1.

Before we trun to the proof of Theorem 5.2, we establish the following important result:

Theorem 5.4 (Maximal Ergodic Theorem) With the notations of Theorem 5.2, define

SN (ω) =
N−1∑
n=0

f (θnω) , MN (ω) = max{S0(ω), S1(ω), . . . , SN (ω)} ,

with the convention S0 = 0. Then,
∫
{MN>0} f (ω) P(dω) ≥ 0 for every N ≥ 1.

Proof. For every N ≥ k ≥ 0 and every ω ∈ Ω, one has MN (θω) ≥ Sk(θω) by definition, and so
f (ω) +MN (θω) ≥ f (ω) + Sk(θω) = Sk+1(ω). Therefore

f (ω) ≥ max{S1(ω), S2(ω), . . . , SN (ω)} −MN (θω) .

Furthermore, max{S1(ω), . . . , SN (ω)} = MN (ω) on the set {MN > 0}, so that∫
{MN>0}

f (ω) P(dω) ≥
∫
{MN>0}

(MN (ω)−MN (θω)) P(dω) ≥ EMN −
∫
AN

MN (ω) P(dω) ,

where AN = {θω |MN (ω) > 0}. The second-to-last inequality follows from the fact that MN ≥
0 and the last inequality follows from the fact that θ is measure-preserving. Since MN ≥ 0,∫
AMN (ω) P(dω) ≤ EMN for every set A, so that the expression above is greater or equal to 0,

which is the required result.

We can now turn to the

Proof of Birkhoff’s Ergodic Theorem. Replacing f by f − E(f |I ), we can assume without loss
of generality that E(f |I ) = 0. Define η̄ = lim supn→∞ Sn/n and η = lim infn→∞ Sn/n. It is
sufficient to show that η̄ ≤ 0 almost surely, since this implies (by considering −f instead of f )
that η ≥ 0 and so η̄ = η = 0.

It is clear that η̄(θω) = η̄(ω) for every ω, so that, for every ε > 0, one has Aε = {η̄(ω) > ε} ∈
I . Define

f ε(ω) = (f (ω)− ε)χAε(ω) ,
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and define SεN and M ε
N accordingly. It follows from Theorem 5.4 that

∫
{Mε

N>0} f
ε(ω) P(dω) ≥ 0

for every N ≥ 1. Note that with these definitions we have that

SεN (ω)
N

=

{
0 if η̄(ω) ≤ ε

SN (ω)
N − ε otherwise.

(5.1)

The sequence of sets {M ε
N > 0} increases to the set Bε ≡ {supN S

ε
N > 0} = {supN

SεN
N > 0}. It

follows from (5.1) that

Bε = {η̄ > ε} ∩
{

sup
N

SN
N

> ε
}

= {η̄ > ε} = Aε .

Since E|f ε| ≤ E|f |+ ε <∞, the dominated convergence theorem implies that

lim
N→∞

∫
{Mε

N>0}
f ε(ω) P(dω) =

∫
Aε
f ε(ω) P(dω) ≥ 0 ,

and so

0 ≤
∫
Aε
f ε(ω) P(dω) =

∫
Aε

(f (ω)− ε) P(dω) =

∫
Aε
f (ω) P(dω)− εP(Aε)

=

∫
Aε

E(f (ω) |I ) P(dω)− εP(Aε) = −εP(Aε) ,

where we used the fact that Aε ∈ I to go from the first to the second line. Therefore, one must
have P(Aε) = 0 for every ε > 0, which implies that η̄ ≤ 0 almost surely.

5.2 Structure of the set of invariant measures
Recall the construction from Section 4.1 that associates to every invariant probability measure π of
a given transition operator a measure Pπ on the space X Z of X -valued processes. We furthermore
defined the shifts θn on X Z by

(θnx)(m) = x(n+m) ,

and we write θ = θ1. By the definition of stationarity, one has:

Lemma 5.5 The triple (X Z, θ,Pπ) defines a continuous dynamical system.

Proof. It is clear that θ is continuous. It was already checked in Lemma 4.3 that Pπ defines a
stationary process, i.e. that it is invariant under θ.

In this section, we will often approximate sets belonging to one particular σ-algebra by sets
belonging to another σ-algebra. In this context, it is convenient to introduce a notation for the
completion of a σ-algebra under a given probability measure. Assuming that it is clear from the
context what the probability measure P is, we define the completion F̄ of a σ-algebra F to be the
smallest σ-algebra containing F with the additional property that if A ∈ F̄ with P(A) = 0 and
B ⊂ A is any subset of A, then B ∈ F̄ .

Remember also from the theory of dynamical systems that the measure Pπ is said to be ergodic
if every measurable set A ⊂ X Z which is invariant under θ satisfies Pπ(A) ∈ {0, 1}. As in the
previous section, we denote by I the set of all measurable subsets of X Z that are invariant under
θ.
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Definition 5.6 We say that an invariant measure π of a Markov process with associated transition
semigroup T is ergodic if the corresponding measure Pπ is ergodic for θ.

The main result of this section is the following characterisation of the set of all invariant mea-
sure for a given Markov semigroup:

Theorem 5.7 The set I(T ) of all invariant probability measures for a Markov semigroup T is
convex and π ∈ I(T ) is ergodic if and only if it is an extremal of I(T ) (that is it cannot be
decomposed as π = tπ1 + (1− t)π2 with t ∈ (0, 1) and πi ∈ I(T )). Furthermore, any two ergodic
invariant probability measures are either identical or mutually singular.

Before we turn to the proof of Theorem 5.7, we prove the following preliminary lemma,

Lemma 5.8 Let P be the law of a stationary Markov process on X Z. Then, the σ-algebra I of
all subsets invariant under θ is contained (up to sets of P-measure 0) in F 0

0 .

Proof. Consider the collection of events

B0 = {A ∈ B : ∀ε > 0 ∃N > 0 &Aε ∈ FN
−N with P(A 4 Aε) < ε} .

We claim that one actually has B0 = B(X Z). Since B0 contains all cylindrical sets, it suffices to
show that it is a σ-algebra. For this, since B0 clearly contains 6# and X Z and is stable under taking
complements, it suffices to consider countable unions. For a sequence of events {Aj}j≥1 ⊂ B0,
we can by assumption find a sequence Nj and events A′j ∈ F

Nj
−Nj such that P(Aj 4 A′j) ≤ ε2−j .

Since P is finite, we can also find J such that, setting A =
⋃
j≥1Aj , one has P(A 4

⋃
j≤J Aj) ≤

ε. We conclude that P(A 4
⋃
j≤J A

′
j) ≤ 2ε so that, since

⋃
j≤J A

′
j ⊂ FN−N for N = max{Nj :

j ≤ J}, the claim follows.
Let now A ∈ I and, for every ε > 0, consider N > 0 and a set Aε ∈ FN

−N such that
P(A 4 Aε) < ε, which exists since A ∈ B0. By the invariance of A and of P under shifts, it
follows that we also have P(A 4 θ−(k+N )Aε) < ε. Since θ−(k+N )Aε ⊂ F∞k for every ε, it
follows that one hasA ∈ F̄∞k . Since this is true for every k, one actually hasA ∈ F̄∞∞ . The same
reasoning but shifting in the other direction shows that one also has A ∈ F̄−∞−∞ .

We use from now on the notation A ∼ B to signify that A and B differ by a set of P-measure
0. Point (iii) of Theorem 2.23 (or rather a slight extension of it) shows that if f and g are two
functions that are respectively F̄∞∞ and F̄−∞−∞ -measurable, then

E(fg |F 0
0 ) = E(f |F 0

0 ) E(g |F 0
0 ) .

Applying this result with f = g = χA, we find that

E(χ2
A |F 0

0 ) = (E(χA |F 0
0 ))2 .

Since on the other hand χ2
A = χA and E(χA |F 0

0 ) ∈ [0, 1], one has E(χA |F 0
0 ) ∈ {0, 1} almost

surely. Let Â denote the points such that E(χA |F 0
0 ) = 1, so that Â ∈ F 0

0 by the definition
of conditional expectations. Furthermore, the definition of conditional expectations yields P(Â ∩
E) = P(A ∩ E) for every set E ∈ F 0

0 and (using the same reasoning as above for 1 − χA)
P(Âc ∩ E) = P(Ac ∩ E) as well. Using this for E = Â and E = Âc respectively shows that
A ∼ Â, as required.

Corollary 5.9 Let again P be the law of a stationary Markov process. Then, for every set A ∈ I
there exists a measurable set Ā ⊂ X such that A ∼ ĀZ.
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Proof. We know by Lemma 5.8 that A ∈ F̄ 0
0 , so that the event A is equivalent to an event of

the form {x0 ∈ Ā} for some Ā ⊂ X . Since P is stationary and A ∈ I , the time 0 is not
distinguishable from any other time, so that this implies thatA is equivalent to the event {xn ∈ Ā}
for every n ∈ Z. In particular, it is equivalent to the event {xn ∈ Ā for every n}.

Note that this result is crucial in the proof of the structure theorem, since it allows us to relate
invariant sets A ∈ I to invariant sets Ā ⊂ X , in the following sense:

Definition 5.10 Let T be a transition operator on a space X and let π be an invariant probability
measure for T . We say that a measurable set Ā ⊂ X is π-invariant if P (x, Ā) = 1 for π-almost
every x ∈ Ā.

With this definition, we have

Corollary 5.11 Let T be a transition operator on a space X and let π be an invariant probability
measure for T . Then π is ergodic if and only if every π-invariant set Ā is of π-measure 0 or 1.

Proof. It follows immediately from the definition of an invariant set that one has π(Ā) = Pπ(ĀZ)
for every π-invariant set Ā.

Now if π is ergodic, then Pπ(ĀZ) ∈ {0, 1} for every set Ā, so that in particular π(Ā) ∈ {0, 1}
for every π-invariant set. If π is not ergodic, then there exists a set A ∈ I such that Pπ(A) 6∈
{0, 1}. By Corollary 5.9, there exists a set Ā ⊂ X such that A ∼ {x0 ∈ Ā} ∼ ĀZ. The set Ā
must be π-invariant, since otherwise the relation {x0 ∈ Ā} ∼ ĀZ would fail.

Proof of Theorem 5.7. Assume first that π ∈ I(T ) is not extremal, i.e. it is of the form π =
tπ1 + (1 − t)π2 with t ∈ (0, 1) and πi ∈ I(T ). (Note that therefore Pπ = tPπ1 + (1 − t)Pπ2 .)
Assume by contradiction that π is ergodic, so that Pπ(A) ∈ {0, 1} for everyA ∈ I . If Pπ(A) = 0,
then one must have Pπ1(A) = Pπ2(A) = 0 and smilarly if Pπ(A) = 1. Therefore, Pπ1 and Pπ2
agree on I , so that both Pπ1 and Pπ2 are ergodic. Let now f :X Z → R be an arbitrary bounded
measurable function and consider the function f∗:X Z → R which is defined by

f∗(x) = lim
n→∞

1

n

n∑
k=1

f (θk(x)) ,

on the set E on which this limit exists and by f∗(x) = 0 otherwise. Denote by Ei the set of points
x such that f∗(x) =

∫
f (x) Pπi(dx). By Corollary 5.3, one has Pπi(Ei) = 1, so that in particular

Pπ(E1) = Pπ(E2) = 1. Since f was arbitrary, one can choose it so that
∫
f (x) Pπ1(dx) 6=∫

f (x) Pπ2(dx), which would imply E1 ∩ E2 = 6#, thus contradicting the fact that Pπ(E1) =
Pπ(E2) = 1.

Let now π ∈ I(T ) be an invariant measure that is not ergodic, we want to show that it can be
written as π = tπ1 + (1− t)π2 for some πi ∈ I(T ) and t ∈ (0, 1). By Corollary 5.11, there exists a
set Ā ⊂ X such that π(Ā) = t and such that P (x, Ā) = 1 for π-almost every x ∈ Ā. Furthermore,
one has π(Āc) = 1 − t and the stationarity of π implies that one must have P (x, Āc) = 1 for π-
almost every x ∈ Āc. This invariance property immediately implies that the measures πi defined
by

π1(B) =
1

t
π(Ā ∩B) , π2(B) =

1

1− t
π(Āc ∩B) ,

belong to I(T ) and therefore have the required property.
The last statement follows immediately from Corollary 5.3. Let indeed π1 and π2 be two

distinct ergodic invariant probability measures. Since they are distinct, there exists a measurable
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bounded function f :X → R such that
∫
f (x)π1(dx) 6=

∫
f (x)π2(dx). Let us denote by {xn}

the Markov process with transition operator T starting at x0. Then, using the shift map θ in
Corollary 5.3, we find that the equality

lim
N→∞

1

N

N∑
n=1

f (xn) =

∫
f (x)πi(dx)

holds almost surely for πi-almost every initial condition x0 (which is the same as to say that it
holds for Pπi-almost every sequence x). Since

∫
f (x)π1(dx) 6=

∫
f (x)π2(dx) by assumption, this

implies that π1 and π2 are mutually singular.

This structure theorem allows to draw several important conclusions concerning the set of all
invariant probability measures of a given Markov process. For example, we have that

Corollary 5.12 If a Markov process with transition operator T has a unique invariant measure
π, then π is ergodic.

Proof. In this case I(T ) = {π}, so that π is an extremal of I(T ).

In a rather analogous way, one has the following extension of Proposition 4.26:

Proposition 5.13 LetA be an invariant set for P and letAn be defined as in (4.13). If
⋃
n≥0An =

X and A can be written as a disjoint union of closed sets

A =
m⊔
k=1

Bk ,

with the property that every Bk is invariant for P and the Markov process restricted to Bk has
a unique invariant measure πk, then the πk are ergodic and they are the only ergodic invariant
measures for that process.

Proof. The ergodicity of the πk follows from Corollary 5.12. Suppose now that π is an arbitrary
invariant measure for the process. It follows from Proposition 4.26 that π(A) = 1. Furthermore,
it follows as in the proof of the second part of Theorem 5.7 that the restriction of π to Bk is again
an invariant measure for P . Since on the other hand we assumed that the process restricted to Bk
has a unique invariant measure πk, this shows that π =

∑
k π(Bk)πk.

Let us finish this course with a final example. Consider a sequence ξn of i.i.d. random variables
that take the values ±1 with equal probabilities and fix some small value ε > 0. Define a Markov
process {xn} so that, given xn, xn+1 is the solution at time 1 to the differential equation

dx(t)
dt

= sinx(t) + εξn sin x(t)
2 , x(0) = xn .

It is a good exercise to check the following facts:
• The measures δ2kπ with k ∈ Z are invariant (and therefore ergodic because they are δ-

measures) for this Markov process.
• For ε sufficiently small (how small approximately?), the sets of the form [(2k+3/4)π, (2k+

5/4)π] with k ∈ Z are invariant and there exists a unique (and therefore ergodic) invariant
measure on each of them.

• The invariant measures that were just considered are the only ergodic invariant measures
for this system.
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Appendix A Measurable and topological spaces

This section contains some definitions from measure theory that are taken to be granted. They are
only included here so that the course is self-contained. It also contains a few notations that are
used throughout this course.

Given a set X , denote by 2X the set of all subsets of X .
A measurable space (M,F ) consists of a setM equipped with a σ-algebra F , i.e. a subset

F ⊂ 2M such that:
• 6# ∈ F andM∈ F .
• If A ∈ F , then Ac ∈ F , where Ac denotes the complement of A.
• If {A0, A1, . . .} ⊂ F , then

⋃∞
n=0An ∈ F and

⋂∞
n=0An ∈ F .

In other words, F is closed under complementation, countable unions, and countable intersec-
tions. Elements of F are called measurable sets. A function between measurable spaces is
measurable if the preimages of measurable sets are measurable sets.

A topological space (X , T ) consists of a set X equipped with a topology T , i.e. a subset
T ⊂ 2X such that:
• 6# ∈ T and X ∈ T .
• If {A0, A1, . . . , AN} ⊂ T , then

⋂N
n=0An ∈ T .

• If A ⊂ T , then
⋃
A∈AA ∈ T .

In other words, T is closed under arbitrary unions and finite intersections. Elements of T are
called open sets. A function between topological spaces is continuous if the preimages of open
sets are open sets.

Given a topological space (X , T ), we define B(X ) as the smallest σ-algebra on X containing
T . This particular σ-algebra is called the Borel σ-algebra of X . In other words, the Borel σ-
algebra is the smallest σ-algebra such that all open sets are measurable. We denote by Bb(X ) the
(Banach) space of all Borel-measurable and bounded functions from X to R equipped with the
norm

‖ϕ‖∞ = sup
x∈X
|ϕ(x)| . (A.1)

We denote by Cb(X ) the (Banach) space of all continuous and bounded functions from X to R
equipped with the same norm as in (A.1).

All the measurable spaces we will consider are topological spaces equipped with their Borel
σ-algebra.

A.1 Measures
Given a measurable space (M,F ), a measure µ on M is a function from F to R+ with the
following properties:
• µ( 6#) = 0.
• If {A0, A1, . . .} ⊂ F is a collection of pairwise disjoint sets, then

µ
( ∞⋃
n=0

An
)

=
∞∑
n=0

µ(An) .

We will call µ(M) the mass of µ. A signed measure µ is a function from F to R with the
property that there exists two measures µ+ and µ− such that µ(A) = µ+(A) − µ−(A) for every
A ∈ F .
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Given a measure space (M,F , µ), we denote by F̄ the completion of F with respect to µ.
The σ-algebra F̄ is defined to be the smallest σ-algebra with the properties that F ⊂ F̄ and that
if A ∈ F̄ , µ(A) = 0 and B ⊂ A, then B ∈ F̄ . In the particular case where M = [0, 1], F
consists of the Borel sets, and µ is the Lebesgue measure, F̄ consists precisely of the Lebesgue
measurable sets. This is why F̄ is also called the Lebesgue completion of F with respect to µ.

A probability space (Ω,F ,P) consists of a measurable space (Ω,F ) and a probability mea-
sure P on Ω, i.e. a measure on Ω such that P(Ω) = 1. We denote the set of probability measures
on Ω by P(Ω).

A.2 Weak, strong, and total variation convergence
Let µ1, µ2, . . . be a sequence of measures on a topological space X . We say that the sequence
converges weakly to a limit µ if

lim
n→∞

∫
X
f (x)µn(dx) =

∫
X
f (x)µ(dx) , (A.2)

for every f ∈ Cb(X ). We say that it converges strongly if (A.2) holds for every f ∈ Bb(X ). We
define the total variation distance between two measures µ and ν by

‖µ− ν‖TV =
1

2
sup

f∈Bb(X )
‖f‖∞=1

∣∣∣∫
X
f (x)µ(dx)−

∫
X
f (x) ν(dx)

∣∣∣ , (A.3)

Another equivalent definition of the total variation distance is

‖µ− ν‖TV = sup
A⊂X

|µ(A)− ν(A)| ,

where the supremum runs over all measurable subsets of X . Finally, if we denote by Dµ and Dν

the densities of µ and ν with respect to the measure η = 1
2 (µ + ν) (these densities can easily be

shown to exist by the Radon-Nikodym theorem), then one has the equality

‖µ− ν‖TV =

∫
X
|Dµ(x)−Dν(x)| η(dx) .

We say that a sequence {µn} converges in total variation to a limit µ if

lim
n→∞

‖µn − µ‖TV = 0 .

Even though it may look at first sight as if convergence in total variation was equivalent to strong
convergence, this is not true as can be seen in Example A.5 below.

It is also a fact that under very mild conditions on X (being a complete separable metric space
is more than enough), (A.3) is the same as the seemingly weaker norm,

‖µ− ν‖TV = sup
f∈Cb(X )
‖f‖∞=1

∣∣∣∫
X
f (x)µ(dx)−

∫
X
f (x) ν(dx)

∣∣∣ , (A.4)

where the supremum only runs over continuous bounded functions.
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A.3 Examples
Example A.1 The interval [0, 1] equipped with its Borel σ-algebra and the Lebesgue measure is
a probability space.

Example A.2 The half-line R+ equipped with the measure

P(A) =

∫
A
e−x dx

is a probability space. In such a situation, where the measure has a density with respect to
Lebesgue measure, we will also use the short-hand notation P(dx) = e−x dx.

Example A.3 Given a ∈ Ω, the measure δa defined by

δa(A) =

{
1 if a ∈ A,
0 otherwise.

is a probability measure.

Example A.4 Let {an}n≥0 ⊂ R be a sequence such that limn→∞ an = a exists. Then, the
sequence δan converges weakly to δa, but does not converge strongly.

Example A.5 Let Ω be the unit interval and define the probability measures

µn(dx) = (1 + sin(2πnx)) dx .

Then, µn converges to the Lebesgue measure weakly and strongly, but not in total variation. (This
resut is also called Riemann’s lemma and is well-known in Fourier analysis.)

Example A.6 The sequence N (1/n, 1) of normal measures with mean 1/n and variance one
converges to N (0, 1) in total variation (and therefore also weakly and strongly).
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